
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly fiom the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter frice, while others may be 

from aiy  type o f  computer printer.

The quality of this reproduction is dependent upon the quality o f the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely afifect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to  be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600





University of Oklahoma 

Graduate College

AN INTEGRATED CONCURRENCY CONTROL IN 

OBJECT-ORIENTED DATABASE SYSTEMS

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fiilfiUment of the requirements for the 

degree of 

DOCTOR OF PHILOSOPHY

By

Woochim Jun 

Norman, Oklahoma 

1998



UMI Ntimber: 9 8 1 7 7 2 4

UMI Microform 9817724 
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103



AN INTEGRATED CONCURRENCY CONTROL IN 

OBJECT-ORIENTED DATABASE SYSTEMS

A DISSERTATION 

APPROVED FOR THE SCHOOL OF COMPUTER SCIENCE

By

-  M àS^\U_



© Copyright by Woochun Jun 1998 

Ali Rights Reserved



Acknowledgments

First o f all, I would like to express my appreciation to my advisor Dr. Le 

Gruenwald, who is a great researcher and teacher, for her encouragement and 

valuable advice. Especially, she has taught me how to do research during the past 

four years.

I also would like to thank Dr. S. Lakshmivarahan, Dr. S. Dhall, Dr. D. 

Trytten and Dr. S. Pulat for their guidance and serving as my committee members.

I am indebted to my officemate Jing Huang for her friendship and 

suggestions, especially helping in experiments.

I do not know how to express my deep gratitude to my father Youngjoon 

Jun, my mother Euisoon Kim, and my sister Yooja Jun, for their support and 

patience. W ithout their sacrifice, I would never have finished my research.

Finally, this work would not be possible without the help o f God.

IV



Table of Contents

CHAPTER I Introduction ........................................................................................  I
1.1 Motivation................................................................................................  I
1.2 Problem Statement ...................................................    5

1.2.1 Conflict Among Methods ................................................................ 6
1.2.2 Class Ffietarchy Locking..................................................................  7
1.2.3 Nested Method Invocations..............................................................  8

1.3 Research Objectives ..................................................................................  10
1.4 Organization of The Dissertation ...............................................................  II

CHAPTER 2 Literature Review................................................................................  12
2.1 Conflicts Among Methods .........................................................................  12

2.1.1 Conflicts Between Instance Accesses ................................................. 12
2.1.2 Conflicts Between Class Definition Accesses ..................................... 21
2.1.3 Conflicts Between Instance Access and Class Definition Access .......  23

2.2 Class Hierarchy Locking ...........................................................................  25
2.3 Locking on Neked Metiiod Invocations .....................................................  29

CHAPTER 3 An Integrated Concurrency Control Scheme............................................ 35
3.1 Handling Individual Access Type .....................................................   36

3.1.1 Conflict Among Methods .................................................................  36
3.1.1.1 Conflict Among Instance Accesses ....................................... 36
3.1.1.2 Concurrency Amoi^ Class Definition Accesses .................... 47
3.1.1.3 Concurrency Between Class Definition Access and Instance 
Access .............................................................................................  50

3.1.2 Class Hierarchy Locking ................................................................. 54
3.1.2.1 Basic Idea............................................................................  54
3.1.2.2 Lock Modes ........................................................................ 56
3.1.2.3 Commutativity Relation Table .............................................  59
3.1.2.4 Class Hierarchy Locking Algorithm for Single Inheritance ... 60
3.1.2.5 Considering Multiple Inheritance .........................................  63
3.1.2.6 Special Class Assignment ....................................................  64
3.1.2.7 Performance Evaluation of The Proposed Scheme ................  67

3.1.3 Nested Medwd Invocations ..............................................................  70
3.1.3.1 Assumptions .......................................................................  70
3.1.3.2 Automation of Commutativity For kfethods .......................... 73
3.1.3.3 Considering Semantics, Nested Medud Invocation and RSO 77 
3 .1.3 .4 The Proposed Concurrency Control Sdieme ......................... 79

3.2 bt^rated Concurrency Control Scheme ....................................................  82
3.2.1 Transaction and Method Model .......................................................  82
3.2.2 Complete Concurrency Control Algorithm ........................................ 83

3.2.2.1 Lock Table Format ............................................................ 83
3.2.2 2 The Integrated Concurrency Control Algorithm .................  85

3.3 The Correctness of The Proposed Concurrency Control Scheme ................. 96
3.3.1 The Correctness of Class Hierarchy Locking ..................................... 96
3.3.2 The Correctness of Nested Method Invocations ................................. 101



CHAPTER 4 Performance Analysis by Analytical Model ..........................................105
4.1 Analytical Model ....................................................................................106

4.1.1 A Basic Model .............................................................................  106
4.1.1 An Extended Model ......................................................................  110

4.2 Analytical Parameters ............................................................................  114
4.2.1 Lock Tables .................................................................................  114
4.2.2 Analytical Parameters ..................................................................  116

4.3 Analysis For Eadi Access Type .............................................................  121
4.3.1 Analysis For Conflict Among Methods ..........................................  121

4.3.1.1 Response Time without Blocking .......................................  121
4.3.1.2 Response Time with Blocku% ...........................................  122

4.3.2 Analysis For Class Hierarchy Locking ...........................................  124
4.3.3 Analysis For Nested Method Invocations .......................................  128

4.4 Analysis ..................................................................................................  132
4.4.1 Conflict Among Methods ..............................................................  132
4.4.2 Class Hierarchy Locking ..............................................................  135
4.4.3 Nested Method Invocations ...........................................................  137
4.4.4 Overall Performance ....................................................................  139

CHAPTER 5 Performance Evaluation and Analysis by Simulation .........................  141
5.1 Introduction ........................................................................................... 141
5.2 Simulation Model ...................................................................................  141

5.2.1 Simulation Component Descriptions ..............................................  141
5.2.2 Message Interface Among Simulation Modules .............................. 143
5.2.3 Algorithms of Simulation Modules ................................................. 144

5.3 Simulation Parameter and Methodology .................................................  146
5.3.1 007 Benchmark Descriptions ........................................................  147
5.3.2 Simulation Parameters ..................................................................  149
5.3.3 Simulation Methodology ...............................................................  151

5.4 Analysis .................................................................................................  152
5.4.1 Conflict Among Methods ..............................................................  152
5.4.2 Class Hierarchy Locking ..............................................................  156
5.4.3 Nested Method Invocations ...........................................................  157

5.4 Conclusions ........................................................................................... 160

CHAPTER 6 Conclusions and Future Research ..................................................... 161
6.1 Summary and Conclusions ....................................................................  161
6.2. Directions for Future Research ..............................................................  163

REFERENCES ...................................................................................................... 165

APPENDIX ......................................................................................................  174

VI



List of Figures

Figure 1-1. Illustrative OODB Schema ................................................................  6
Figure 2-1. An Example of Implicit and Explicit Locking.............. ........................  28
Figure 3-1. niustiationoftiie Proposed Scheme ...................................................  50
Figure 3-2.a Class Hierarcly.................................................................................. 56
Figure 3-2.b Explicit Locking ................................................................................ 56
Figure 3-2.C Implicit Locking ................................................................................  56
Figure 3-2.d The Proposed Scheme .......................................................................  56
Figure 3-3.a Class Hierarchy ................................................................................ 63
Figure 3-3 b Locks widi Proposed Scheme ............................................................  63
Figure 3-3 c Locks with Explicit Locking ..............................................................  63
Figure 3-3 d Locks with hrqxlicit Locking ..............................................................  63
Figure 3-4 a Class Hierarchy ................................................................................ 64
Figure 3-4.b QR Lock on Class F ..........................................................................  64
Figure 3-4.C CW Lock on Class G ........................................................................  64
Figure 3-4.d Locks with multiple Inheritance Consideration in Proposed Scheme .... 64
Figure 3-5 a Simple Class Hierarchy .....................................................................  66
Figure 3-5 b Access Numbers for Each Class ........................................................  66
Figure 3-5 c Result of SC Assignment ................................................................... 66
Figure 3-6.a Simple Class Hierarchy .....................................................................  67
Figure 3-6.b Access Numbers for Each Class ........................................................ 67
Figure 3-6.C Results of SC Assignment ................................................................. 67
Figure 3-7 The case where x is not SC ................................................................ 68
Figure 3-8 a An Object Hierarchy ......................................................................... 71
Figure 3-8 b An Example of the Object Hierarchy ................................................. 72
Figure 3-9 A Possible Execution of Transactions in the Proposed Scheme ...........  81
Figure 3-10 A Possible Execution by a Scheme Requiring Locks for Atomic Operations

  82
Figure 3-11 An Illustrative Class Hierarchy and Composite Object Hierarchy Example

.......................................................................................................... 98
Figure 3-12 Transaction Executions on Class Hierarchy ......................................  99
Figure 3-13.a Case 2.1 .............................................................................................ICO
Figure 3-13.b Subcase a of case 2.2 ....................................................................... 100
Figure 3-13.b Subcase a of case 2.2 ....................................................................... 100
Figure 3-14.a Case 3.1 .............................................................................................101
Figure 3-14.b Case 3.2 .............................................................................................101
Figure 4-1 Illustrative Lock Table Structure for Three Technique Implementations

........................................................................................................... 115
Figure 4-2 Varying Instance Read to Write (Conflict Annong Methods) ............... 133
Figure 4-3 Varying Class Definition Read to Write Ratio (Conflict Among Methods)

........................................................................................................... 134
Figure 4-4 Varying Arrival Rate (Conflict Among Methods) .............................135
Figure 4-5 Varying Class Definition Read to Write Ratio (Class Hierarchy Locking)

........................................................................................................... 136
Figure 4-6 Varying Access to Class Hierardxy ................................................... 137
Figure 4-7 Varying Arrival Rate (Class Hierarchy Locking).... .............................138
Figure 4-8 Varying Instance Read to Write Ratio (Nested Method Invocations) ... 138

Vll



I Figure 4-9 Varying Arrival Rate (Nested Method Invocations) ............................. 139
Figure 4-10 Varying Nested Method Invocation to R%ular Transaction Ratio (Overall

Performance) ..................................................................................... 140
Figure 5-1 Simulation Model ............................................................................... 142
Figure 5-2 Varying Arrival Rate ...........................................................................153
Figure 5-3 Varying Instance Read to Write Ratio ..................................................154
Figure 5-4 Varying Class Definition Read to Write Ratio ......................................155
Figure 5-5 Varyir% Arrival Rate ...........................................................................156
Figure 5-6 Varying Access to Class Hierarchy ..................................................... 158
Figure 5-7 Varying Arrival Rate (Transaction response time).................................158
Figure 5-8 Varying Nested Method Invocation to Non-Nested Method Invocation

Ratio .................................................................................................. 160

Vlll



List of Tables

Table 3-1 Examples of Commutativity Tables Constructed for Proposed Scheme
and for [Malt,1993] ..........................................................................  41

Table 3-2 Commutativity Relationship Among Class Definition Access .............  49
Table 3-3 Commutativity Relationship Between Class Definition Access and Instance

Access .............................................................................................  52
Table 3-4 Commutativity Relation for Locks on an bistance ..............................  59
Table 3-5 Commutativity Table fiir Locks on a Class ........................................ 60
Table 3-6.a A Commutativity Table for Class Cars .............................................. 77
Table 3-6.b A Commutativity Table for Class Orders ........................................... 77
Table 3-7 A Commutativity Table fiar Class Cars .............................................. 78
Table 3-8 Commutativity Table Between Intention Locks and Regular Lock ......  89
Table 3-9 Commutativity Table Between (R%ular) Locks .................................  90
Table 3-10 Commutativity Table Between Regular Locks and Intention Locks .....  91
Table 3-11 Commutativity Table for Class Domestic_Auto .................................  95
Table 3-12 Commutativity Table for Class Company .......................................... 95
Table 3-13 Commutativity Table for Class Employee .......................................... 95
Table 4-1 Commutativity Table for Instance Access in Malta's Work .................116
Table 4-2 Commutativity Table for Instance Access and Class Definition Access in

Malta's woric .................................................................................... 116
Table 4-3 Analytical Parameter Table ................................................................ 118
Table 5-1 007 Benchmark Parameters ................................................................ 147
Table 5-2 Static Parameters of the Simulation Model .......................................... 149
Table 5-3 Dvnamic Parameters of foe Simulation Model ......................................150

IX



Abstract

Object-oriented databases (OODBs) have been adopted for non-standard 

applications requiring advanced modding power, in order to handle complex data 

and relationships among such data. One o f the important characteristics in database 

system is manipulation of shared data. That is, database systems, including 

OODBs, allow shared data to be accessed by multiple users at the same time. 

Concurrency control is a mechanism used to coordinate access to the multi-user 

databases so that the consistency o f the database is maintained. In order to provide 

good performance, it is very important that concurrency control schemes incur low 

overhead and increase concurrency among users. This dissertation presents a 

concurrency control scheme in OODBs that meets those requirements.

First, the dissertation discusses three important issues o f concurrency 

control in OODBs These include conflict among methods, class hierarchy locking, 

and nested method invocations. The previous works for each issue are presented, 

and their advantages and disadvantages are also discussed. Then, an integrated 

concurrency control udiich addresses all three issues is proposed. For conflict 

among methods, a finer locking granularity, such as an attribute and an individual 

class object, is adopted for instance access and class definition access so that 

higher concurrency is achieved. Especially, for instance access, higher concurrency 

is obtained using run-time information. Also, locks are required for instance 

method invocations instead o f atomic operation invocations so that locking



overhead is reduced. For class hierarchy locking, locking overheads are reduced 

using special classes which are based on access frequency information on classes. 

Finally, for nested method invocations, semantic information is used in order to 

provide higher concurrency among methods. Also, parent/children parallelism is 

adopted for better performance.

Secondly, an analytical model is constructed to measure the performance of 

concurrency control in an OODB system. Using this model, the proposed 

technique is then compared with the two existing techniques, Orion and Malta. 

The analytical results show that the proposed scheme gives the best transaction 

response time, Malta the second best, and Orion the worst.

Finally, a performance study is conducted by means o f simulation using the 

007 benchmark. The simulation results show that, in terms o f transaction response 

time and lock waiting time, the proposed scheme performs the best, Malta the 

second best, and Orion the worst.

XI



CHAPTER 1

INTRODUCTION

1. Motivation

Recently, many new database applications such as computer-aided design (CAD), 

computer-aided software engineering (CASE), office information systems, and artificial 

intelligence have emerged. These new areas require advanced modeling capabilities to 

handle complex data and complex relationships among data. In those areas, complex 

modeling is impossible or very difficult, if relational data model is adopted. An object- 

oriented database (OODB) is suitable for such applications, since it provides modeling 

power as grouping similar objects into class, and organizing all classes into a hierarchy 

where a subclass inherits all definitions from its superclasses.

In [Kim, 1990], an OODB is defined as “a collection of objects whose behavior and 

state, and the relationships are defined in accordance with an object-oriented data model”. 

Also, an object-oriented database system (OODBS) is defined as “a database system 

which allows the definition and manipulation o f an OODB”. The followings are basic 

concepts in OODBs ([Kim, 1990],[Olse, 1995]).

• Object: any real world entity can be an object. Also, each object is associated with a 

unique identifier.

•  Attribute: an object has one or more attributes whose values are also objects. The values 

o f an attribute represent the state o f an object

• Method: an object has one or more methods which operates on the state o f  the object.



• Class: all objects sharing the same set o f attributes and methods can be grouped into a 

class. An object belongs to only one class as an instance o f the class.

•  Encapsulation: it is the process o f packaging the data elements and functionality together 

[Dene, 1994]. That is, the state o f an object can be manipulated and read only by 

invoking the object’s methods.

•  Class hierarchy: the classes form a hierarchy (which is directed-acyclic graph) called a 

class hierarchy. It is based on generalization and specialization concepts, which will be 

discussed later.

Usually, several operations on the database form a logical unit o f work. For 

example, consider customer’s fund transfer in Wiich one account is debited and the other 

account is credited. It is important to maintain database consistency so that either both 

debit and credit occur or none o f them occurs. That is, the fund transfer is done 

atomically. A transaction is a collection o f operations that performs a single logical 

function in a database application [Kort,1991]. In general, a transaction has four 

properties: atomicity, consistency, isolation, and durability. Each transaction is a unit o f 

atomicity {atomicity). Thus, a successful execution of a transaction maps one consistent 

database state into another {conàstency). Also, an executing transaction’s intermediate 

results cannot be revealed to other concurrently ninning transactions before commitment 

{isolation). Once a transaction commits, its results are recorded in the database 

permanently and cannot be erased {durability). In OODBs, a database is a collection of 

classes and instances vdiere classes and instances are called objects. Users can access 

objects by invoking methods. To make sure atomicity o f u s c t  interactions, the traditional



transaction model can be used in OODBs. That is, users can access an OODB by 

executing transactions, each o f which is defined as a partially ordered set of method 

invocations on a class or an instance object [Agra, 1992].

Transactions in OODBs have the following characteristics* first, unlike traditional 

applications, transactions in advanced applications such as CAD and CASE require long- 

duration ninning time (hours or even days). In particular, in CAD, design tasks generally 

make a team o f designers cooperate for days to months [Jose,1991]. Second, in OODBs, 

since a method on an object can invoke other methods on other objects, this results in 

transaction executions with a nested form ([Agra,1992], [Hadz,1991]). Third, some 

advanced applications require user transactions to cooperate to perform a common task. 

This results in the concept o f cooperating transactions.

One of the important characteristics in database systems is manipulation of shared 

data. That is, database systems, including OODBs, allow shared data to be accessed by 

multiple users at the same time. Concurrency control involves synchronization of access to 

the database so that the consistency o f the database is maintained ([Ozsu,1991], 

[Bern, 1987]). Like in conventional databases, concurrency control in OODBs also 

requires logeai consistency o f data and transactions. Concurrency control requires an 

qipUcation-dependent correctness criterion to maintain database consistency while 

transactions are running concurrently on the same object SeriaUzabiUty is a widely used 

correctness criterioiL Transactions are serialiatble if  the interieaved execution of their 

operations produces the same output and has the same efiects on the datdiase as some 

serial execution o f the same transactions ([Bern, 1987], [Bem,1981]).



In general, three concurrency control schemes have been used: locking-based 

([Eswa,1976], [Hung, 1992], [Kort,I983]), optimistic [Kung,I981], and timestamp 

ordering ([Bern, 1987], [Sing, 1985], [Ulos,1992]). The locking-based (also called 

pessimistic) schemes assume that there will likely be conflicts among concurrent 

transactions and transactions must acquire locks before accessing the database. One 

locking_based scheme that ensures serializability is the two-phase locking scheme 

[Kort,1991], The basic rules o f this protocol require that two phases be observed by every 

transaction as follows. First, in growing phax^ a  transaction may only obtain locks 

(releasing any lock is prohibited). Second, in shrinking phase, a transaction may only 

release locks (obtaining further lock is prohibited likewise). Initially, a transaction belongs 

to growing phase. After the transaction obtains as many locks as needed, it enters to the 

shrinking phase and further lock requests are prohibited. The optimistic schemes assume 

that transactions will not conflict with each other, and the isolation o f a transaction is 

checked only at its commit time. The timestamp ordering scheme is a technique in which 

the transaction execution is ordered on a priori serialization order. To obey this order, 

each transaction is assigned a timestamp when it is initiated. Conflicting operations of 

transactions are processed in the timestamp order. There are many variations o f these 

three basic schemes ([Care, 1987], [Hali,1989], [Serv,1990], [Hali,1991], [Levy, 1994], 

[Naka,1994]). Locking4)ased scheme are the most widdy used schemes in database 

systems.

Supporting concurrent control in an OODB is more complicated than in a 

rdational database for the W owing reasons ([Jaga,1993], [Muth,1993]). First, the



semantics o f methods on encapsulated objects can be exploited to provide better 

concurrency. That is, although two methods conflict with each other in terms o f read and 

write conflict relationships, OODB systems can provide concurrency between two 

methods using semantics o f the methods since the methods usually represent behaviors of 

objects pCwon,1997]. Second, an object participates in various forms o f hierarchies 

among objects such as class hierarchy or composite-object hierarchy [Garz, 1988]. Access 

to one object may aflfect other objects in the hierarchies; thus access control is more 

complicated. For example, if a definition o f a class is updated, this blocks any access to the 

class as well as its subclasses.

As we discussed earlier, typical transactions are long-lived nature. Thus, in order 

to meet database consistency, blocking or aborting transactions may delay transaction’s 

response time. For better performance in transaction processing in OODBs, it is essential 

for a concurrency control scheme to incur low overhead whenever invoked and provide 

higher concurrency so that as many as transactions can run concurrently.

1.2. Problem Statement

A number o f concurrency control techniques have been developed for OODBs 

([Jaga, 1993],[MaIt, 1993],[Muth, 1993],[Oise, l995],[Rese, 1994],[Lee, I996],[Shar, 1996],[ 

Kwon,1997]). These existing works deal with three features o f access: conflicts among 

methods, class hierarchy locking, and nested method invocations. In order to illustrate 

each type o f access, consider the following Figure 1-1. Assume that class vehicle has four



attributes /</, color, drivetrain and manufacturer and class company has three attributes 

name, location, and president. Class employee has three attributes ssn, name, age.

1.2.1. Conflicts among methods

In general, there are two types of access to an object ; instance access and class 

definition access [Cart, 1990], An instance access consists o f consultations and 

modifications of attribute values in an instance or a set o f instances. A class definition 

access includes consulting class definition, adding/deleting an attribute or a method, 

changing the implementation code o f a method or changing the inheritance relationship 

between classes, etc. In Figure 1-1, for class vehicle, a possible instance access is a 

modification o f the attribute color o f an instance, and a possible class definition access is 

changing domain o f the attribute id fi-om integer to character.

Vehicle
id
color 
drivetrain 
manufiicturer<

I Automobile

Company Employee
name SSN
location name
president age

I PomestjcAutomobiiel I Autdcompanyl Truckcompany

I PomesticAutocompanv I | JapaneseAutocompany

class/subclass link attribute/domain link

Figure 1-1. Illustrative OODB schema [Kim, 1990]



In OODBs, one o f the main concerns is to increase concurrency among methods 

so that more transactions can run in parallel. Otherwise, aborting or blocking a transaction 

to meet database consistency may waste system resources or delay other transactions. 

Commutativity is a widely used criterion to determine whether a method can run 

concurrently with those in progress on the same object [Malt, 1992]. Two methods 

commute if their execution orders do not affect the results o f the methods. Two methods 

conflict with each other if they do not commute.

Two types o f access to an object induce three different types of conflicts among 

accesses to a class: conflicts between instance accesses, conflicts between class definition 

accesses, and conflict between instance access and class definition access. For example, 

a conflict between instance accesses occurs if two instance methods are trying to modify 

an attribute value o f the same instance at the same time. Also, updating the same class 

definition such as modifying the implementation code of the same instance method at the 

same time induces conflict between class definition accesses.

1.2.2. Class Hierarchy Locking

One o f the major properties o f an OODB is inheritance. That is, a subclass inherits 

definitions defined on its superclasses. Also, there is an is-a relationship between a 

subclass and its superclass. Thus, an instance of a subclass is a specialization o f its 

superclasses (and conversely, an instance of a superclass is a generalization of its 

subclasses) [Garz, 1988]. This inheritance relationship between classes forms a class 

hierarchy. There are two types o f inheritance: single inheritance and multiple inheritance. 

In single inheritance, a class can inherit the class definition from one superclass. On the



other hand, a class can inherit the class definition fi'om more than one class in multiple 

inheritance.

While there are some operations on only one class such as class definition read or 

instance write on one instance, there are two types o f operations on a class hierarchy; 

class definition write and instance access to all or some instances o f a given class and its 

subclasses (also called lACH, meaning Instance Access to Class Hierarchy). A query is an 

example o f lACH where a query is defined as instance reads to a given class and its 

subclasses [Garz, 1988]. Due to inheritance, while a class and its instances are being 

accessed, the definitions o f the class’ superclasses should not be modified. Also, due to the 

is-a relationship between classes, the search space for a query against a class, say C, may 

include the instances of all classes in the class hierarchy rooted at C as well as all instances 

of C. Thus, for lockingjbased concurrency control schemes, when a class definition write 

or query is requested on some class, say C, we need to get locks for all subclasses o f C as 

well as C. We call MCA (Multiple Class Access) for class definition write and lACHs, and 

SCA (Single Class Access) for other operations such as class definition read and instance 

access to a single class.

For example, in Figure l- l, ch an ^g  any definition o f a class vehicle may block 

any other incoming access to das&AuUmobile, Truck or DomesticAutomobile. Also, due 

to the is-a relationship among classes, a query to a class Autoctmpar^ may access all 

instances o f class DomesticAutocompany and JcqtaneseAutocompany as well as instances 

of class Autocompany.

1.23. Nested method invocations



In OODBs, objects can have nested structures. That is, an object can be composed 

o f complex objects or atomic objects. For example, in Figure 1-1, an object vehicle can 

consist o f three atomic objects (i.e., /</, color  ̂ and drivetraih) and a complex object 

manufacturer . It is natural that, in OODBs, each class can define its own method and a 

method on a class can invoke another method on its subobject (also called nested method 

invocation) [Muth, 1993].

In OODBs, two different objects can share a common object in an underlying 

hierarchy [Herr, 1990]. We call the common object a referentially shared object (RSO). 

Once again, in Figure 1, two different instance objects vehicles may share the same 

instance object company in an underlying nested object hierarchy. Thus, methods on 

different objects may not commute [Muth, 1993]. The RSO (also called non-disjoint 

complex object) is a fundamental concern o f OODB since new objects may be composed 

o f existing objects in modular design as indicated in [Rese,I994]. Thus, a nested object 

hierarchy may result in referential sharing.

Existing works have many disadvantages as follows. For conflicts among methods, 

application programmers have a burden to provide commutativity relationships for 

instance access. That is, in order to provide better concurrency among methods, 

application programmers should know possible states o f objects and results o f each 

method. Also, for class definition access, existing works either provide less concurrency 

due to big locking granularity or incur too much run-time overhead for higher 

concurrency. For class hierarchy locking, existing studies, which can be classified into 

two types (i.e., explicit lockh^ and implicit locking), incur too much locking overhead



and aim at a special type o f access to class hierarchy (i.e., explicit locking aims at access 

to a higher-level class o f the hierarclty while implicit locking aims at access to a class near 

the leaf-IeveO- For nested method invocations, either concurrency is still limited since 

semantic information is not utilized or too much run-time overhead is incurred since locks 

are required for each atomic operation. Also, most existing studies do not consider 

referentially shared objects (non-digoint complex objects) which is a necessary condition 

for modular design in an OODB [Rese, 1994].

1,3. Research Objectives

This research has the following objectives.

An integrated concurrency control scheme is developed for an OODB. The 

proposed scheme is based on locking and deals with the following issues; conflicts among 

methods 0.e., conflicts among instance access methods, conflicts among class deflnition 

access methods, conflicts among instance access methods and class definition access 

methods), class hierarchy locking with single inheritance and multiple inheritance, and 

nested method invocations. Also, a  proof to the correctness o f the proposed concurrency 

control scheme is given

In order to test the performance o f the proposed scheme, first, an analytical model 

is constructed for concurren t controls in OODBs. Based on the model, performance is 

evaluated for each type o f access and for a mixture o f all types o f access to compare the 

proposed scheme and the existing works: Orion [Garz, 1988] and Malta

([Malt,1991].[Malt,1993]).

10



Also, extensive simulation experiments are conducted to compare the proposed 

concurrency control scheme with the existing schemes, based on the 007 OODB 

benchmark. The results obtained are then analyzed, and guidelines for developing and 

selecting an OODB concurrency control technique are provided.

1.4. Organization of the dissertation

The rest o f the dissertation is organized as follows.

In Chapter 2, related work for concurrency controls in OODBs is discussed. For 

each access type (conflict among methods, class hierarchy locking and nested method 

invocations), advantages and disadvantages of existing work is presented

In Chapter 3, an integrated concurrency control is proposed. The scheme deals 

with the three access types. The correctness o f the proposed scheme is also provided.

An analytical model for the proposed concurrency control scheme and also two 

existing schemes in OODBs is introduced in Chapter 4. Using the analytical model, 

performance analysis is conducted comparing the proposed work and the existing work o f 

Orion and Malta.

In chiq>ter S, a simulation model is introduced in order to compare performance 

among the proposed scheme and the existing work of Orion and Malta. For standard set 

o f requirements, the 007 OODB benchmark is adopted. Based on the benchmark, results 

are obtained and then analyzed.

Finally, Chapter 6 gives conclusions and future research issues of the dissertation.

11



CHAPTER 2

LITERATURE REVIEW

In this chapter, a review of relevant research on concurrency control techniques in 

OODBs are presented. Techniques are discussed in terms of three access types (conflict 

among methods, class hierarchy locking and nested method invocations) for centralized 

OODBs.

2.1. Conflicts among methods

2.1.1. Conflicts between instance accesses

In many existing locking-based schemes, concurrency between instance accesses is 

limited since locking granularity is an entire instance object ([Garz,1988], [Cart, 1990], 

[Wang, 1990], [Malt, 1991]). In ([Garz,1988], [Wang, 1990], [Cart, 1990], [Malt,1991]), 

and their locking granularity is a unit o f instance object for an instance read and an 

instance write, respectively. Thus, two transactions accessing the same object may conflict 

with each other even though they access disjoint attributes of the instance object. This 

results in limited concurrency among instance accesses.

While the above schemes are based on only locking, a scheme in Gemstone OODB 

system [Serv,1990] is based on both optimistic and pessimistic (locking-based) 

concurrency control. Under optimistic concurrency control, a transaction T’s possible 

conflicts can be detected by comparing its read and write sets with those o f any other 

transactions T l’s that already committed after transaction T began. That is, a conflict may 

occur either if T’s write set and a T l’s write set have common objects or if an object in

12

i



T’s write set is in another transaction T l’s read set and an object in T’s read set in also in 

T l’s write set. If a conflict is detected, T needs to be restarted. Under a locking based 

concurrency control, the scheme provide three lock types: read, write and exclusive. 

Holding a read lock on an object means that any other transaction cannot get write or 

exclusive lock on the same object or commit if  it has written the object. A holding a write 

lock on an object means that any other lock requesting transaction cannot get any kind of 

lock on the same object or commit if the lock requesting transaction has written on the 

object. This write lock is different from conventional exclusive lock. That is, other 

transaction may read a write-locked object optimistically and commit. If  a transaction 

holds an exclusive lock on an object, any other lock requesting transactions cannot get any 

kind o f lock on the same object or commit if the lock requesting transaction has written or 

read on the object. This lock prevents another transaction from reading the value o f the 

object and then writing that derived information in other objects. In this approach, a lock 

granularity for an instance access is an entire instance object so that the concurrency 

provided is still limited.

In addition to the above techniques, several techniques have been proposed to 

increase concurrency among instance accesses ([Agra, 1992], [Badr,I988], [Badr,1992], 

[Chry,1991]). In order to decide commutativity o f instance access methods, they require 

application programmers to perform semantic analysis on the methods as follows.

The rrgfrr backword commuteOivity is introduced to provide more concurrency 

among methods in [Agra,1992]. It assumes that, at any given time, the current state o f an 

object consists o f a committed state, and a set o f operations belonging to active

13



transactions. Also, it assumes that, when an operation is executed on an object, a result 

res is returned. Like conventional commutativity relations, the right backward 

commutativity is used to define conflict or none-conflict relationship between a lock 

holder and a lock requester. But, the right backward relationship has the following 

characteristics [Agra, 1992]: “an operation 0 | is said to have r i ^  backward 

commutatmty with another operation 02 on an object if for every state in which 02 can be 

executed after oi, executing 02 followed by Oi has the same state and result as executing 

Oi followed by 02”. This is less restrictive than commutativity relation since right 

backward commutativity is included in commutavitity and commutativity does not 

necessarily include the right backward commutativity. But, in order to support right 

backward commutativity, application programmers need to know all possible outcomes of 

each method. For example, consider an instance object representing bank account in 

[Agra, 1992]. The state o f the instance object is the amount o f money at given time. 

Assume that there are three operations defined on the object: deposit, withdraw and 

balance. The response to a deposit operation is always OK. The response to a withdraw 

operation is either yes or no depending on balance while the response to a balance 

operation is the amount o f m on^ in the account. Then, depending on the response to 

operation o, <0, res> may have dififerent conflict relationships with other operations. For 

example, <withdraw (i), no> does not conflict with <balance, j> since <withdraw (i), no> 

has right backward commutativity relationship with all <balance, i> pairs where i and j are 

the amount o f money. If  the response o f withdraw operation is not considered, the balance 

operation always conflicts with the balance operation.

14



In [Bard, 1988], the concurrency is enhanced by taking attribute locking 

granularity instead o f an instance object. They define the affected set of each method 

attributes accessed by the method so that two methods commute if the intersection o f their 

afifected set of attributes is digoint. For example, two instance write methods do not 

conflict, as long as their affected set o f attributes is disjoint. Thus, it can achieve higher 

concurrency than entire instance object is taken as a locking granularity. But, application 

programmers need to know the affected set o f each method and structure of every object. 

For example, assume two methods Mi and M? , and four attributes ai, az, as and a4 are 

defined on object o. Again, assume that Mi reads attributes at and a, while Mz modifies 

attribute values o f az and a4. Then, two methods can run concurrently whereas they 

conflict with each other when the entire object lock granularity is considered.

Recoverability is used to enhance concurrency in [Badr,1992]. It is defined as 

follows; “an instance method mi is recoverable relative to another instance method mz, if 

mz returns the same value whether or not mi is executed immediately before mz”. Fo; 

commutativity-based schemes, a method which does not commute with other 

uncommitted methods will be blocked until those conflicting methods are aborted or 

committed. In the recoverability-based scheme, non-commuting but recoverable methods 

are allowed to execute concurrently. But, the commit order o f the transactions invoking 

recovend)le methods should be fixed. That is, it is based on the order in which they are 

invoked. If  a lock requesting method does not have recoverability relationship with a lock 

holding method which is uncommitted, the lock requesting method is blocked. This

15



recoverability implies commutativity. This work requires application programmers to 

know all outcomes of each method for possible input parameters.

A formal methodology to define the commutativity relationships among methods is 

presented in [Chry, 1991]. In this work, for each operation, the outcome and result should 

be provided by application programmers. The outcome of an operation is its status such as 

ok or nok (not ok) and other values it returns are called its result. For example. Pop 

operation in stack can have nok and top element as an outcome and result, respectively. 

Also, this technique adopts refined commutativity relations among operations: abort- 

dependency (AD) and commh-dependency (CD). In the traditional commutativity 

relationship among operations, a commutativity table contains binary relation with yes 

(commute) or no (not commute). Instead, in this woiic, an entry may contain three entries 

[Chry, 1991]: ND (no-dependency), AD and CD. AD and CD have the following 

relationship: assume that an operation r follows an operation s. If s is a write and r is a 

read, the transaction has to abort when the first transaction aborts for some reason. This is 

due to the fact that the information used by r may not be valid. The second transaction can 

commit only if the first transaction commits. In this case, the second transaction is said to 

have an AD relationship with the first transaction. On the other hand, if s is a read and r is 

a write, the outcome and result o f r  are not affected by the effects of s. In this case, if  both 

transactions commit, the first has to commit before the second in order to ensure 

serializability. That is, the second can conunit only aAw the first commits or aborts. In this 

case, the second transaction is said to have a CD relationship with the first transaction. For 

example, consider a QStack object where a QStack combines the properties of a stack and

16



a queue [Chry,l991]. The operations defined on QStack are Enq (e)/Push (e) and Deq (e). 

Enq (e) or Push (e) add an element e to the back of the QStack. It returns ok if the 

QStack is not full, nok otherwise. Deq (e) deletes an element e from the front of the 

QStack. It returns e if the QStack is not empty, nok otherwise. Then, (Deq, Push) entry in 

commutativity table has the following relationships: ((AD, Puslw = ok), (CD, Puslw = 

nok)} where (Deq, Push) entry represents the situation that a Deq follows a Push on a 

QStack object. Finally, for each operation, its locality (i.e., a set of component objects 

accessed by an operation) is defined. This concept is similar to affected set o f attributes in 

[Badr,1988]. As can be seen in the above description, application programmers need to 

know the outcomes of each method. In addition to this, dependency relation such as 

abort-dependency or commit-dependency between each pair of method should be 

provided by application programmers.

Forward and backward commutativity relations, which are introduced in 

([Weih,1988],[Weih,1989]), are combined into a new relation called Forward-Backward 

commutativity (FBC) in [Guer,199S]. The backward commutativity is supported by the 

update in place (UIP) model. In the UIP model, any effects of active transactions are 

recorded immediatdy in the database. The backward commutativity (EC) is defined as 

follows [Guer,199S]: assume that the values o f an object represent the state o f  the object. 

The state o f an object can be accessed only by operations defined in the specifications of 

the object The specification o f an object represents the set o f possible states and 

responses produced by this operation. Formally, for a given state s, a response and a state 

o f an object are stated as follows: The return (op,s) represents return value by operation

17



op on state s. The state (op,s) represents the state produced after the execution of op. 

Then , “opl BC op2 if and only if V s such that state (opl,s), state (op2, state(opl,s)), 

return (opl,s) and return (op2, state (opl,s)) are defined, the followings three equalities 

hold”;

(1) state (opl, state (op2,s)) =  state (op2, state (opl,s))

(2) return (opl,s) = return (opl, state (op2,s))

(3) return (op2,s) = return (op2, state (opl,s))

On the other hand. Forward commutativity (FC) is supported by the deferred 

update model (DU). In the DU model, the effects o f active transactions are not recorded 

until those transactions commit. Also, those effects can not be seen by any other 

transactions. FC can be defined as follows [Guer,1995]: “op l FC op2 if and only if V s 

such that state (opl,s), state (op2,s), return (opl,s) and return (op2,s) are defined, then 

three equalities (1), (2) and (3) defined above hold” . Finally, FBC can be defined a& 

follows [Guer,1995]: “opl FBC op2 if and only if V s such that state (opl, s), state (op2, 

s), state (op2, state (opl,s)) are defined and return (op2,s) = return (op2, state (opl,s)>, 

the two equalities (2) and (3) hold”. This FBC is less restrictive than both BC and FC 

since all FBC relationships imply BC and FC relationships, not vice versa. Thus, FBC 

relationship can provide more concurrency than both relationships. The three 

commutativity relations BC, FC and FBC define commutativity relationships between a 

lock requester and a lock holder. But, unlike conventional commutativity, the three 

commutativity rdationships BC, FC and FBC utilize states and responses of objects in 

order to enhance concurrency. In order to define this commutativity relationship, possible

18



States and response o f all operations in an object should be analyzed and then 

commutativity relation table is constructed. Note that FBC can be supported by the neither 

the UIP nor DU model since FBC requires both o f  UIP and DU model. In other words, in 

order to support FBC, each object needs to be biversioned. In the biversion object model, 

each object has two states: current-state and committed-state. The current-state has the 

value accessed by both active transaction and committed transactions. Whereas, the 

committed-state has the value accessed only by committed transactions.

Recently, a commutativity relation, called general commutativity, has been 

introduced in order to provide concurrency more than both forward commutativity and 

backward commutativity [Naka,l994]. This commutativity is based on both forward 

commutativity and backward commutativity defined in ([Weih,1988], [Weih,1989]). 

[Naka,l994] argues that two commutativity relationships are not subsets of each other, so 

that one caimot claim which one is better. Moreover, each commutativity requires a 

dififerent recovery algorithm and a dififerent implementation of an object. A general 

commutativity relation includes both commutativity (forward and backward) relations. 

This means that a general commutativity relation can achieve higher degree of 

concurrency. Like in [Guer,199S], possible states and responses of all operations should 

be analyzed in order to construct general commutativity But, unlike [Guer,199S], the 

commutativity is based on multiversion objects which have both committed states and 

current states of objects at the same time, since this scheme requires histories of objects.

Those techniques presented so far require application programmers to define the 

commutativity relationships among methods. The construction of commutativity relations

19



is a burden on application programmers. Recently in [Malt, 1993], the process of 

constructing commutativity relations from method contents is automated. It is based on 

the notion o f affected sets o f attributes [Badr,1988]. That is, even if two instance 

methods conflict in terms of read or write operations, as long as their access modes on 

individual attributes do not conflict, two methods can run in parallel. Commutativity of 

methods is determined at compile-time so that run-time commutativity checking is 

avoided. As a preliminary step to construct commutativity relations among methods, they 

construct an Direct Access Vector (DAY) for each method. A DAY is a vector whose 

field corresponds to each attribute defined in the class on which the method operates. 

Each value composing this vector denotes the most restrictive access mode used by the 

method when accessing the corresponding field. An access mode of an attribute can have 

one o f three values, N (Null), R (Read) and W (Write) with N < R < W for their 

restrictiveness. Access mode information is syntactically extracted from the source code o f 

the method at compile-time. After the construction o f DAYs of methods, commutativity 

of methods can be constructed as follows : two methods commute if their corresponding 

DAYs commute. In turn, two DAYs commute if their access modes are compatible for 

each attribute. This conunutativity relation is defined in the form of a table.

The above technique [Malt, 1993] takes access mode information solely from the 

source code o f  a method and thus fiees the user from determining commutativity relations. 

Also, this approach can provide finer concurrency by examining attribute level rather than 

object level locking granularity. Since a DAY o f a method is the ;nion of its own DAY 

and DAYs o f all other methods defined in that method, deadlocks due to lock escalation

20



I can be reduced by declaring the most exclusive access mode in a method. In other words,

this scheme reduces possibility o f lock conversions [Malt, 1993], which is a main source 

o f deadlocks. However, concurrency improvement offered by this technique is still limited 

since run-time information on attributes is not taken into account. Actual access modes of 

a method can be determined at run-time since every statement is not used due to some 

branch statements. Those access modes may be less restrictive than access modes in the 

corresponding DAV. Thus, by taking run-time information, concurrency can be increased.

2.1.2. Conflicts between class definition accesses

In the existing OODBs such as Orion, Ch and Gemstone ([Garz,1988], 

[Cart, 1990], [Serv,1990]), any class definition access requires a read or write lock 

(depending on class definition read or class definition write) on an entire class object. 

Thus, no matter what kind of update operation is performed on a class object, it blocks all 

other class definition access operations even if they need to access disjoint portions of the 

class object.

The only two lock modes on class definition access, RD (Read Definition) and MD 

(Modify Definition), are adopted in [Malt, 1991]. They do not consider any finer granules 

on class definition access such as reading definition of attributes or updating definition of 

methods, etc. This results in limited concurrency among class definition writes and class 

definition reads. This is due to that more concurrency can be achieved by taking finer 

locking granularity such as attribute definition or method definition on class definition.

A higher concurrency among class definition writes is achieved in [Agra, 1992] by

21



providing finer locking granularity rather than taking locking granularity as an entire class 

object. That is, they classify a class definition into definitions of attributes and methods. 

For class definition writes on methods, they classify them into three categories and 

corresponding lock types : 1) add a method m to a class, add (m), 2) delete a method m 

from a class, del (m), and 3) replace the implementation o f a method m by a new 

implementation, rep (m). For updates on attributes, they classify them into two categories 

; 1) add an attribute a  to a class, a d i (a), and 2) delete an attribute a fi-om a class, del (a). 

Thus, as long as two class definition write methods access disjoint portions o f a class 

definition, they can run concurrently. But, they do not consider class hierarchy 

relationships which are also class definition as well as attribute definition and method 

definition.

A locking-based technique, called is proposed in order to increase

concurrency between class definition accesses [Oise, 1995]. This scheme is based on Orior 

[Gait, 1988] and 0% [Cart, 1990] and has basically the same lock types for class definition 

access and instance access. Also, their locking granularity for a class definition and an 

instance access are an entire class object and an instance object, respectively. But, in order 

to provide more concurrency between class definition accesses, they extract method 

definition fi'om a class definition. By doing this, there is concurrency between class 

definition write and method definition. This concurrency is not possible in Orion and Ch- 

But, t h ^  do not consider attribute definitions which are smaller definitions than an entire 

class object. Thus, they Ail to provide further concurrency by taking finer granularity in a 

class object.

22



2.1.3. Conflicts between instance access and class definition access

In most concurrency control schemes dealing with class definition writes, a 

definition write on a class C blocks instance accesses as well as class definition reads on 

the same class C ([Garz, 1988], [Cart, 1990], [Malt,1991], [Serv, 1990], [Lee, 1996]). These 

techniques are discussed in the following paragraphs..

In [Garz, 1988], they adopt S (shared) and X (exclusive) lock modes for class 

definition reads and writes, respectively. Also, an entire class object is taken for a lock 

granularity. Since X mode conflicts with all other lock modes, a class definition write 

blocks all other access to the same class. In their work, S and X modes are used for an 

instance read and instance write. This results in limited concurrency since a class definition 

read does not commute with any instance write in the scheme. Actually, a class definition 

read commutes with an instance write as described in [Cart, 1990]. In [Cart, 1990], as in 

[Garz, 1988], only two lock modes are used for an entire class object: Cr (class definition 

read) and Cw (class definition write), respectively. Since Cw conflicts with Cr and any 

other instance access modes, concurrency between class definition access (class definition 

read and class definition write) and instance access is limited. As discussed in Section

2.1.2, two lock modes on a class object limits concurrency between class definition write 

and instance access [Malt, 1991] since higher concurrency is possible by taking finer 

locking granularity in both class objects and instance objects. In [Malt, 1991], MD (Modify 

Definition) blocks any other instance access as well as RD (Read Definition) and MD, 

since MD lock does not commute with any other lock modes. In [Serv, 1990], an exclusive 

lock is required for a class definition write. It guarantees that other transactions (they call

23



sessions) cannot acquire any kind o f lock on the object since an exclusive lock on a class 

does not commute with any other lock requesting transactions. This results in severe 

concurrency degradation. Similarly, in [Lee, 1996], they adopt two locks on a class object; 

RS (Read Schema) and WS (Write Schema). Since WS lock is not compatible with any 

other lock modes, concurrency between a class definition access and an instance access is 

limited.

A limited concurrency between class definition write and instance access is 

provided in [Agra, 1992] as follows. A lock granularity as individual attributes and 

individual methods instead o f an entire class object is adopted. That is, as long as two 

class definition access methods or instance access methods access disjoint portions of a 

class definition, th ^  can run concurrently. For example, updating the implementation code 

of a method, say M l, can run concurrently with an instance method, say M2. In their 

wort, whenever an instance method M is invoked, the instance method M is read-metho 1- 

definition-locked use (M), which is a read lock for method definition M, instead o f  a lock 

on entire class object. Also, attributes, say a,, az,..., at, accessed by that method are read- 

attribute-definition-locked use (ai), use (az), „„ use (at). By taking fine lock granularity, 

two method definitions can be updated as long as they access a disjoint set o f attributes 

For example, assume that two methods Mi and Mz and four attributes ai, az, as and a, 

Also, assume that Mi accesses three attributes ai, az, as. If  a transaction invokes Mi, use 

(M i)  lock for the method and use (ai), use (i^), and use (as) locks for attributes in Mi are 

required. If another transaction is trying to delete attribute ai, then del (delete attribute) 

lock is required so that del (a,) is requested. In this case, two transactions access disjoint

24



set of attributes, they can run concurrently without any blocking. But, these attribute locks 

are required each time an instance access method is invoked, they incur large overhead.

In [Oise, 1995], an instance write method can run concurrently with a class 

definition write method on the same class. This concurrency is based on the following 

argument: “the instance update operation is given a copy of old class definition that is 

publicly available. Once a class definition is updated, it becomes publicly available and all 

new instances use it. After all instance update operations that used an old class definition 

have either aborted or completed, the new class definition are applied to all instances of 

that class”. Although they allow concurrency between instance access and class definition 

access, their lock granularity is still too big because an entire instance object is taken.

2.2. Class Hierarchy Locking

As discussed in Chapter 1, due to class hierarchy, class definition write and query- 

type access on a class may need to access more than one class on a class hierarchy. More 

specifically, updating a class definition at a high level in the hierarchy may require locks 

for classes at lower levels in the hierarchy. This is not issue in the relational database since 

locking tables or records are independent [Oise, 1995]. That is, if a table needs to be 

updated, only locking on the table is needed and no more effects will be propagated to any 

other tables.

There are two approaches dealing with a class hierarchy locking: ejq}Iicit locking 

([Garz, 1988], [Cart, 1990], [Malt, 1993]) and implicit locking ([Jaga,1993],[MaIt,1991], 

[Lee, 1996]).

25



In e3q>licit locking, for an lACH (Instance Access to Class Hierarchy) involving a 

class, say C, and all of its subclasses, and for a class definition write on a class C, a lock is 

set not only on the class C, but also on each subclass o f C on the class hierarchy. For other 

types o f  access 0  * , class definition read and instance access to a single class), a lock is 

set for only the class to be accessed (also called target class). Thus, for an MCA (Multiple 

Class Access), transactions accessing a class near the leaf level o f a class hierarchy will 

require fewer locks than transactions accessing a class near the root o f a class hierarchy. 

As another advantage o f explicit locking, it can treat single inheritance where a class can 

inherit the class definition fi-om one superclass, and nmltiple inheritance where a class can 

inherit the class definition from more than one superclass, in the same way. But, it 

increases the number of locks required by transactions accessing a class at a higher level in 

the class hierarchy.

In implicit locking, setting a lock on a class C requires extra locking on a path 

fi’om C to its root as well as on C. Intention locks ([Kort, 1991],[D*ite, 1985]) are set on all 

ancestors o f a class before the class (also called target class) is locked. An intention lock 

on a class indicates that some lock is held on a subclass o f the class. For an MCA on a 

target class, locks are not required for every subclass of the target class. It is sufiBcient to 

put a lock on only the target class (in single inheritance) or locks on the target class and 

subclasses o f the target class which have more than one superclass (in multiple 

inheritance) [Garz,1988]. (Note that, in [Garz, 1988], for a query to some instances of a 

class and its subclasses, locks are required for instances o f each subclass). This is due to 

that, for an MCA access, only lock on a target class is enough to detect any conflict in

26



subclasses of the target class. Thus, it can reduce lock overhead over explicit locking. But, 

implicit locldng requires a higher locking cost when a target class is near the leaf level in 

the class hierarchy due to intention lock overhead.

For example, consider the following class hierarchy. In order to update the class 

definition o f class C, each scheme works as in Figure. 2-1.

In Figure 2-1, for implicit locking, intention locks IWs corresponding to W 

(Write) locks are required for all superclasses on the path firom C to the root A. Thus, if 

another transaction, say T, needs to update the class definition in A (i.e., it needs to get W 

lock on class A), it does not have to search each class through the class hierarchy for 

conflict checking by the help o f the intention lock IW on class A. That is, since IW and W 

conflict with each other, T’s lock request is blocked on class A. (Note that, in implicit 

locking, there is no conflicts between intention locks, and between an intention lock and 

an SCA (Single Class Access) lock. But, there can be conflicts between an intention lock 

and an MCA lock depending on the commutativity relationship ([Garz,1988],[Malt,1993]) 

On the other hand, an explicit locking does not require any intention locks. But, it requires 

a Cw (Class Write) lock on each subclass (i.e., class D and E) of the target class through 

the class hierarchy since any modification o f the class definition in C may affect the 

definitions o f its subclasses.

A new class hierarchy locking scheme, which is based on implicit locking, is 

introduced in [Jaga,1993]. T h ^  number the classes based on a topological sort with 

respect to the partial order o f inclusion relationships so that an inclusion path goes fi-om a 

higher-numbered class to a lower-numbered class. For any two classes Ci and C2, Ci is

27



included in Cz if every member of Ci is also a member of Cz When a transaction requests 

a lock on some class, it requests intention locks on the class' inclusion path in numeric 

order, i.e., from the highest number to the lowest number. For any preferred class such as 

frequently accessed one, locking cost is reduced by assigning it a low number. That is, the 

number of lock setting can be reduced by starting with a low number rather than a high 

number. But, even though this scheme can reduce locking overhead in some sense, it still 

has fundamental disadvantages of implicit locking. Their numbering scheme can be applied 

to only the multiple inheritance case since multiple numberings are possible in only 

multiple inheritance. For single inheritance, it works like the conventional implicit locking 

scheme.

Implicit locking in Orion [Garz, 1988] Explicit locking in 0% [Cart, 1990]

IW lock AI
IWIock B

I
W lock C Cw lockI

DI Cwlock

Cwlock

Figure. 2-1. An example o f implicit and explicit locking

The class hierarchy locking scheme in [Wang, 1990], which is also based on 

implicit locking, reduces locking overhead by adopting two boundaries; attribute 

boundary and transaction boundary. For each attribute in a class, the attribute boundary is

2 8



determined as follows. The boundary of attribute aj in class C is (I) any class up to and 

including the first superclass where the attribute is redefined and (2) any class up to but 

not including the first subclass where the attribute is redefined. After all attribute 

boundaries are determined, the transaction boundary is determined by taking the 

intersection o f individual attribute boundaries. Based on transaction boundary information, 

locks are granted on classes within the boundary fi'om the highest class to the lowest class. 

Thus, if a class hierarchy has some attributes redefinwl, a transaction needs fewer locks 

than an implicit locking. But, this scheme depends on the number of attributes redefined so 

that it has basically same problem as in implicit locking. That is, if there is no attribute 

redefined, their scheme acts like implicit locking.

2.3. Locking on nested method invocations

As we discussed in Chapter I, an object consists of many disjoint and/or non- 

disjoint subobjects and also nested method invocations are natural in OODB applications. 

In the literature, the following approaches are used to deal with nested method 

invocations.

In an earlier attempt for nested method invocations, a locking technique is 

developed fisr disjoint and non-digoint complex objects in [Herr, 1990]. They argue that 

the traditional approaches dealing with complex objects have the following problems: the 

granule-oriented problem, protocol oriented problem and authorization problem. Locking 

an entire complex object may decrease comxirrency severely although it can reduce 

concurrency control overhead. On the other hand, locking individual objects can lead to

29



tremendous overhead (granule-oriented problem). In non-disjoint complex objects, 

updating shared object can lead to big overhead since all parent objects o f the shared 

object should be locked (protocol-oriented protocol). Combining concurrency control and 

authorization components can achieve higher concurrency (authorization-oriented 

problem). For example, if a transaction does not have right to update some object, an 

exclusive lock is not required for the object. In order to solve three problems above, for a 

complex object type, they created the general lock graph, which is to solve the granule- 

oriented problem. In turn, for the general lock graph, the corre^yonding object-specific 

lock graph which is to solve the protocol-oriented problem and authorization-oriented 

problem, is constructed. Although their locking protocol considers non-disjoint subobjects 

or RSO (Referentially Shared Object), it does not exploit semantics in order to enhance 

concurrency.

As discussed in Chapter 1, OODBs can provide higher concurrency among 

methods using behavioral properties of methods. That is, although two methods do not 

commute with each other in terms of read and write operations, they commute using 

semantics associated with methods. For example, consider a bank object and a method 

deposit (x, m) where deposit (x, m) is to deposit m dollars after reading an initial balance 

X. Two deposit methods are considered two write operations, but their execution results 

are same regardless o f their execution order. In existing OODBs such as Orion, O2 and 

Gemstone ([Garz, 1988], [C^art,1990], [Serv, 1990]), they do not exploit any semantics of 

methods. Their locking schemes are based on read and write operations so that the 

concurrency provided is very limited.

30

i / '



The nested two-phase locldng with ordered dnaring is proposed in [Agra, 1992], 

Their woric is based on nested two-phase locking in [Moss,198S], In ordered sharing 

scheme, locks are required for each atomic operation. They provide better concurrency 

using ordered sharing between locks. Unlike commutativity relationships, vdien ordered 

sharing is adopted, a lock request is never delayed until a transaction holding a conflicting 

lock commits or aborts. That is, a lock request is always granted as follows [Agra, 1992]: 

for a given operation oi, the set of operations are divided into two categories: the set of 

operations that commute with oi, and the set of operations that do not commute with Oi. 

If  oi, a  lock requester, commutes with some operation 02, a  lock holder, (i.e., oi has a 

shared relationship with respect to %), the lock request is granted and the execution 

order between them is not important. But if o, does not commute with 02 (i.e., oi has an 

ordered shared relationship with 02), a lock request is granted but the execution order 

should be preserved by observing a so called ordered commit rule: “if a transaction Ti is 

granted a lock with an ordered shared relationship with respect to a lock held by T2 on an 

object and T% is a proper descendent of parent of Ti„ then, Ti cannot commit unless T2 has 

committed or aborted. Otherwise, the commit order of T2 and T, is violated and T2 may 

reveal its intermediate results to Ti before abortion or commitment”. Also, like the nested 

transaction model in [Moss, 1985], a transaction cannot commit or abort until all its 

children are terminated, and locks are inherited by its parent when it commits. Using 

ordered sharing rule, concurrency can be increased in a sense since any lock request is 

granted and access can be shared as long as commit rule is observed. Even though this 

scheme increases concurrency, they do not exploit semantics o f me hods

31



In [Muth,I993], a locking-based concurrency control scheme for OODB is 

presented. They exploit the semantics of methods to increase concurrency. In their work, 

the conflict between lower level operations or methods can be ignored due to the 

commutativity of higher level invoked methods in nested method execution. In their work, 

a lock is required on an object whenever a method or operation is called on the object. 

Also, locks are converted to retained locks at the end o f a subtransaction. If a top-level 

transaction commits, all the locks held are released. They use semantics of methods as 

follows; when two atomic operations conflict with each other, if they have ancestor which 

are compatible with each other and the ancestor of the lock holder commits, the lock 

request is granted. That is, the lock request is not delayed until the top-level transaction 

commits so that a higher degree of concurrency can be achieved. Similarly, when two 

methods conflict with each other, the same principle can be applied But, these authors do 

not consider OODBs with RSOs. This is a weakness o f their work because RSOs are a 

fundamental property o f OODBs and are necessary for modular design as indicated in 

[Rese,1994].

A semantic two-phase locking protocol for OODB is presented in [Rese,1994]. 

They consider RSOs and nested method execution. Also, they use semantics of method in 

order to increase concurrency as follows: any two methods may commute with each other 

if tq)plication programmers dedde that their execution order is not important, by using 

semantics o f methods. Thus, two instance write methods commute semantically with each 

other if their execution order does not violate behavioral aspect o f an object. Thus, by 

taking semantics into considerations, higher concurrency can be achieved. But, the

32



I

semantically commuting methods should be executed atomically. In this work, locks are 

required only for atomic operations shown in [Date, 1985], The protocol works as follows: 

a subtransaction or top-level transaction T cannot terminate until all o f the children are 

terminated. When a subtransaction is committed, its locks are inherited by its parent. On 

the other hand, when a transaction is aborted or is top-level and committed, its locks are 

released. A lock request is granted if one of the three following conditions are met: (a) no 

other transaction holds a conflicting lock, (b) if conflicting locks are found after checking 

commutativity relationship table, such locks are held by its ancestors and (c) if conflicting 

locks are found after checking commutativity relationship table and these locks are held by 

non-ancestors o f  lock holders, then one of the ancestors of the lock holders (not including 

the lock holders) and some ancestors of the lock requester commute. By applying rule (c), 

two semantically commuting methods are guaranteed to be executed atomically. Locking 

for each atomic operation incurs an overhead which has a critical effect on OODBs where 

many transactions are long-lived. Also, locking for each atomic operation may incur the 

following problem: it is likely that lock conversion from less restrictive lock (i.e., read 

lock) to more restrictive lock (i.e., write lock) may occur. This lock conversion is known 

as main source o f deadlocks [Malt, 1993]. Also, [Rese,l994] assumes that the 

commutativity relationships between methods are well-defined and can be derived based 

on semantics as well as the specification of the class and its methods. But, [Rese,1994] 

fails to provide a formal way to construct commutativity relationships among methods.

A semantic locking, called ESL (Enhanced Semantic Locking), is introduced in 

[Kwon,1997]. Basically, their locking scheme is same as the locking scheme in

33



[Rese,1994], They consider semantics of methods and RSO as follows. For semantics of 

methods, they argue that methods can provide rich semantics than read and write 

operations since methods usually represent behavior o f objects. Semantics can be provided 

at the discretion o f the application programmer. On the other hand, in order for ESL to 

support RSO, they adopt "in-place" conflict resolution policy as follows. That is, lock 

modes are not associated with methods. In this work, commutativity o f methods is 

determined at the time o f methods invoke shared subobject at the same time. This scheme 

requests a lock whenever an read or write atomic operation is invoked in a method as in 

[Rese,1994]. But, ESL is different from [Rese,1994] in that lock conversion for retained 

lock is prohibited. Basically, this scheme has the same problem as in [Rese,1994]. That is, 

it may incur big overhead since a lock is required for each atomic operation invoked in a 

method. Also, an entire instance object locking granularity is adopted so that two methods 

accessing a disjoint set o f attributes may conflict each other.

34



Chapter 3

AN INTEGRATED CONCURRENCY CONTROL SCHEME

In this Chapter, an integrated concurrency control scheme for three access types is 

developed. The principle for an integrated concurrency control is as follows; for conflict 

among methods, the finer locking granularity is adopted for both instance access and class 

definition access so that higher concurrency is achieved. Especially, for instance access, 

DAV concept is used in order to adopt attribute locking granularity instead o f an entire 

instance object. These DAYs are also used for automation of commutativity relationships 

among instance access methods so that application programmers are free from burdens. 

These DAVs can reduce locking overheads and possibility of deadlocks. Also, breakpoints 

are used to adopt run-time information so that further concurrency can be achieved. For 

class definition access, fine lock granularity is adopted so that two methods can run 

concurrently as long as they access disjoint portions of class objects. For class hierarchy 

locking, special classes are used in order to reduce locking overhead where a special class 

is defined as a class on which class definition writes are performed frequently. The 

proposed class hierarchy scheme incurs fewer locks than both existing schemes, for any 

type o f access. Finally, for nested method invocations, semantic information is used in 

order to increase higher concurrency among methods. Also, parent/children parallelism is 

adopted for better response time. For RSOs, conflicts are detected on actual method 

invocation so that low concurrency due to static conunutativity relationships can be 

avoided.

35



I Basic approaches for each access type are introduced in Section 3.1. Based on

these approaches, the complete concurrency control algorithm is constructed in Section

3.2. Finally, in Section 3.3, the correctness of an integrated concurrency control is proven.

3.1. Handling individual access types

3.1.1. Conflicts among methods

As discussed in Chapter 2, there are two types o f  access to an object: instance 

access and class definition access. Thus, there are three kinds of conflicts depending on a 

lock holder and a lock requester: conflicts among instance accesses, conflicts among class 

definition accesses and conflicts between instance access and class definition access. For 

each type of conflict, principles to increase concurrency are presented in following 

Sections.

3.1.1.1. Conflicts among instance accesses

The principles are based on [Malt, 1993]. Their work has the following 

characteristics: in order to enhance concurrency among instance accesses, attribute level 

lock granularity is taken instead o f an entire instance object granularity. Also, lock is 

required for each instance access method invocation instead of atomic operations in an 

instance access method. By doing this, locking overheads as well as possibility of 

deadlocks can be reduced significantly. But, in [Malt, 1993], dynamic information is not 

utilized, thus concurrency provided is still limited. In the proposed scheme, further 

concurrency can be achieved by adopting run-time information.

The work in [Malt,1993] is summarized as follows: lock is required for an instance 

method invocation. Also, attribute level lock granularity is consid ered. Thus, although two

36



instance methods conflict in terms of read or write operations, as long as their access 

modes on individual attributes do not conflict, two methods can run concurrently. In order 

to build commutativity relationships among methods, they construct an DAV for each 

method. An DAV is a vector whose field represents access mode of each attribute Each 

value consists o f one of three access modes: N (Null), R (Read) and W (Write). After 

construction of DAVs of methods, commutativity o f methods can be constructed as 

follows: two methods commute if their corresponding DAVs commute. In this work, in 

addition to further concurrency by taking finer locking granularity, the possibility of 

deadlocks can be reduced. This is due to that an DAV of an instance access method 

represents most restrictive access mode for each attribute, lock escalation, which is a main 

source of deadlock, can be reduced.

In the proposed scheme, four objectives will be pursued. First, it still automates the 

process of commutativity relation construction. Second, it provides more concurrency 

than read and write access modes on methods. Third, it reduces deadlocks due to lock 

escalation. Finally, it increases concurrency among methods by exploiting run-time 

information.

The above objectives can be achieved as follows. In the proposed scheme, DAVs 

are used so that attribute level locking granularity is possible. Also, the construction of the 

commutativity relationships among instance access methods is based on these DAVs. 

Since the construction of DAVs is solely based on access modes of attributes, automation 

o f commutativity relationships is possible. Also, locks are required for each method 

instead of each atomic operation so that locking overhead and the possibility of deadlocks

37



can be reduced. In [Malt, 1993], DAVs represent static access modes of attributes. Thus, 

concurrency is still limited since some attributes are not accessed during actual method 

execution. In order to provide further concurrency, actual access modes of attributes are 

reflected using breakpoints where a breakpoint represent a code segment executed 

regardless o f execution path. In [Malt, 1993], the commutativity table entries contains only 

method names. But, in the proposed scheme, breakpoints as well as method names are 

included in the commutativity table entries. After a method execution, locks are changed 

from method to breakpoint, which is less restrictive, so that further concurrency is 

possible.

Similar to [Malt, 1993], a two-phase pre-analysis is needed. It consists of two steps 

; 1) construction of DAV for each method and 2) construction of a commutativity table of 

methods. In each method, a break point is inserted by a programmer or a compiler when a 

conditional statement is encountered. Eveiy method has a special break point called first 

break point before the first statement in the method. There are three kinds of DAVs m 

each method : 1) a final DAV of the first break point, which is a DAV of the entire 

method as in [Malt, 1993] 2) an initial DAV of the first break point, which is a union of 

access modes o f each attribute used by statements between the first break point and the 

next break point and access modes of each attribute used by statements fi'om the first 

statement to the last statement that are «cecuted regardless o f execution paths. A union 

operation ‘+* is equivalent to max, e.g., N + W = W, that is, take more restrictive mode 

among two operations. Note that this union operation is necessary to build worst case 

access mode o f  each attribute, and 3) an initial DAV of every other break point, which

38



contains access modes of all attributes used by statements between this break point and 

the next break point (or end of the method).

For example, assume that there are three methods M I, M2 and M3 and an object 

01 with four attributes at, az, as and lu- A, A l, A2, and A3 are breakpoints o f M l, B is  a 

breakpoint o f  M2, and C, C l, and C2 are breakpoints of M3. Note that the operation ‘+’ 

stands for union. The contents and DAVs o f each method are given below

method M2
[B1
read a, 
read a*

3 4 < = a i

method M3
[C]

read a,

If (a, > 100) 

{[Cl]
return a ,} 

else 
{[C2] 

read an 
return a:} 

end if

method Ml
[A]
read a.

If (a, > 100) then
then
{[All
a: <= a,
End if

read a: — (*)

If(az> 100)then 
[A2] 
as <=az 
End if
read as — (**)
If (as > 100) then 
{[A3] 
caUM2 
End if

The DAVs constructed for method MI are :

initial DAV o f [A] : {DAV of [A]} + {DAV o f (♦)} + {DAV of (*♦)}
= [R,N,N,N] + [N,R,N,N] + [N,N,R,N]
= [R,R,R,N]

initial DAV o f [Al] : [R,W,N,N] 
initial DAV o f [A2] : [N.R,W,N] 
initial DAV o f  [A3] = final DAV of M2 = [R,N,N,W]

final DAV o f  [A] = initial DAV of [A] + initial DAV o f [Al] + initial DAV o f [A2] + 
initial DAV o f [A3] = [R,R,R,N] + [R,W,N,N] + [N,R,W,N] + [R,N,N,W] = [R,W,W,W]

39



Similarly, the DAVs for M2 are :

Final DAV of [B] : [R,N,N,W] 
initial DAV of [B] : [R,N,N,W]

and DAVs for M3 are

Final DAV of [C] 
initial DAV of [C] 
initial DAV of [Cl] 
initial DAV of [C2]

[R,R,N,N]
[R,N,N,N]
[R,N,N,N]
[N,R,N,N]

While in the scheme proposed in [Malt, 1993], the DAVs for the methods would be:

DAV o f M I : [R,W,W,W] DAV o f M2 : [R,N,N,W] DAV of M3 : [R,R,N,N]

After the construction of the breakpoints’ DAVs in all methods, a commutativity 

relation o f  methods is constructed. Unlike in [Malt, 1993], entries in the commutativity 

table contain breakpoints as well as method names. The construction process is as follows 

([Jun,1995-l],[Jun, 1995-2]).

In a commutativity table, a lock requester’s entries contain names of the final 

DAVs o f the first break points in all methods (represented as Np where N is the name of 

the first break point in each method). For example, Ap represents a final DAV of the first 

break point A in method Ml, which is [R,W,W,W]. A lock holder’s entries contain names 

of the final DAV o f the first break point (in the form of Np), name o f  the initial DAV of 

the first break point On the form of N,) and names of the initial DAVs of other break 

points (represented as Ni where 1 £ i ^  number of breakpoints -1 ) in each method. For 

example, in method M l, Af, Ai, A l, A2 and A3 represent the following DAVs, 

[R,W,W,W], [R,R,R,N], [R,W,N,N], [N,R,W,N] and [R,N,N,W], respectively. Since we 

assume the worst case access mode fiar each attribute before execution, lock requesters

40



always have the most restrictive access modes (i.e., final DAVs o f the first break points). 

But, after a method execution, a lock holder may have a less restrictive access mode. Two 

break points commute if their corresponding DAVs commute. Two DAVs commute i( for 

every attribute, its access mode in the two DAVs commute. Table 3-1 gives the 

commutativity tables constructed in the proposed scheme and in the scheme proposed in 

[Malt, 1993].

The proposed concurrency control is based on two-phase locking [Eswa,1976]. 

When a transaction invokes a method on an object, it gets a lock containing the final DAV 

of the first break point in the method (represented as Nf where N is the name of the first 

break point in each method). As the transaction meets a break point during run-time, the 

break point is recorded. After the method execution, the lock is changed fi'om Np to N,, 

Nj,...Ns where Ni is a name representing the initial DAV of the first break point and 

Nj...Ns are names representing the initial DAVs o f the other break points encountered 

during the method execution. Since the union of DAVs of Ni, Nj,...Ns may be less 

restrictive than the DAV of Nf, this can give more concurrency to other transactions 

which request locks on the same object.

The commutativity table of the proposed scheme Commutativity table in
[Malt, 1993] for object 01 for object 01

lock holders
Af Al AI A2 A3 Bf Cf Cl Ci C2 MI M2 M3

lock Af N N N N N N N Y Y N MI N N N
requester Bf N Y Y Y N N Y Y Y Y M2 N N Y

Cf N Y N Y Y Y Y Y Y Y M3 N Y Y

Table 3-1. Examples of commutativity tables constructed for the proposed scheme and 
for [Malt, 1993]

41



Below is an example that illustrates how the proposed scheme works and how 

concurrency is improved over that proposed in [Malt, 1993]. Consider the following 

concurrent transaction invocations T l, T2, T3 and T4 on class 01, which is defined 

previously, with three instances il, i2 and i3. (Mi, Ij) is an invocation o f method Mi on 

instance Ij. Assume that, starting at time t, each method call execution (Mi, Ij) takes I 

second and a transaction commits as soon as its last method call execution is finished.

(time) t+l t+2 t+3 t+4 t+5 t+6

(transactions) 
Tl 
T2 
T3 
T4

(Ml,il) (MI,i2)
(M2,il)

(M3,i2) (M3.Î3) (M3.i3)
(M2.i3)

Assume that, in the proposed work, the lock format on instance has the following 

form [trans-name, m-name(BiXB2) ...(Bo)] where trans-name is a transaction holding a 

lock, m-name is a method invoked, Bi, Bz,...B. are break points encountered during the 

method execution. In [Malt, 1993], the lock format has the following form : [trans-name, 

m-ncane] where trans-name and m-name have same meaning as the lock table in proposed 

work.

The following example shows how the proposed scheme works and how the 

proposed scheme gives better transaction response time than the scheme in [Malt, 1993] by 

adopting run-time information. Starting fiom time t, the locks on each instance are 

changed as follows.

The Proposed Scheme__________________________________ Scheme in (Malt. 1993]

t : il : (Tl, M1:AfI
// lock request is granted since no other lock is held 
// Assume that break points encountered after execution
// are. A, and A%

il : [Tl>fl] // lock request is granted 
// since other lock is held on il

42



t+1 : il : [Tl, M1:(Ai)(A,)(A2)I [T2, M2:(Bf)J 
// Bf commutes each of A[, A,_ A ŝo that lock is granted 
// T2 is committed since T2 does not have any more 
// method invocation

t+2 : il  : (Tl, M1:(A0(A,)(A2)J 
i2 : [T3, M3;(Cf)1 

// lock request is granted since no lodt is held on 12 
// Assume that break points encountered after execution 
// are Q, C,

t+3 : il : [Tl, Ml:(AO(A,)(Aj|
12 : [T3, M3:(Q(C,)I [Tl, M1:(Af)[

// Assume that break points encountered after execution 
//are Al and A).
// Tl is committed

t+4 : i2 : [T3, M3:(Ci)(C,)|
13 : [T3, M3(Cf)1 

t+4.5 : i2 : [T3, M3:(Ci)(C,)j
13 : [T3, M3(Ci)(C2)1 

// Assume that break points encountered after execution 
//areQandCi-

t+5 :12 : [T3, M3:(Ci)(C,)j
13 ; [T3. M3;(Cd(C2)I [T4, M2:(Bf)[ 

t+5.5 :12 : [T3, M3:(C0(C,)|
13 : [T3, M3:(Ci)(C:)I [T4, M2:(B01 
// T4 is committed

t+6 :12 ; [T3, M3:(Ct)(C,)j
13 : r n . M3:(C0(C,)1 [T3, M3:(Cf)| 

t+6.5 :12 : [T3. M3:(Ci)(C,)|
13 : [T3, M3:(Ci){C,)l [T3. M3:(CD(C,)1 

// Assume that break points encountered after execution 
//are Cl and C,.

t+7 ; T3 is committed (all transactions are committed)

t+8: 

t+9 :

11 : [Tljvlll blocked : [T2,M2]
// lock request M2 by T2 is blocked 
// since M2 and Ml do not commute

11 : [T1,M1| blocked : [T2,M2j 
12:[T3,M3|

// lock request is granted since no lock is 
// since no lock is held on 12

il:[T l,M l| blocked : [T2,M2| 
12 : [T3,M3| blocked : [T1,MIj

11 :[T1,M1| blocked : [T2,M2j
12 : [T3,M3| blocked : [T1,M1| 
Î3 : [T3,M3|

11 : [T1,M1| blocked : [T2,M2|
12 : [T3,M3| blocked : [T1,MI]
13 : [T3.M3I [T4.M2]

// T4 is committed

11 : [T1,M1| blocked : [T2.M2J
12 : [T3.M3I blocked : [T1.M1|
13 : [T3,M3|

// T3 is committed

11 : [T1,M1| blocked : [T2,M2|
12 : [T1,M1| // Tl is committed

11 : [T2,M2| // T2 is committed 

all transactions are committed

From the above example, it is concluded that the proposed scheme gives better 

transaction response time using run-time information.

43



In this approach, a method may have many break points depending on the 

method’s logic. This requires larger commutativity tables and also incurs much run-time 

oveihead for lock changes and commutativity checking. Thus, a way to reduce the number 

o f break points in a method is necessary in order to reduce this overiiead. Some strategies 

are presented to reduce the number o f break points as follows.

• Breakpoint optimization strategy 1

It is known that the union o f DAVs encountered after a method execution is at 

least as restrictive as the initial DAV of the first break point. Thus, if an initial DAV of 

some break point in a method has equal or less restrictive DAV than the initial DAV of the 

first break point, it is not necessary to keep track of it and to include it as a member o f the 

commutativity table. This is due to that further concurrency can not be achieved by keep 

tracking o f such break points. For example, the DAV of the break point Cl o f method M3 

in the previous example is [R,N,N,N], which is the same as the initial DAV of the first 

break point C. Thus, we do not have to include the initial DAV o f Cl in the commutativity 

table.

• Breakpoint optimization strategy 2

The key idea in this strategy is to control concurrency level at the expense of run­

time overhead. That is, if higher concurrency is necessary, keep track o f more breakpoints 

during run-time. Otherwise, make DAVs more restrictive so that run-time overhead can be 

reduced at the expense o f concurrency. For this purpose, define the most restrictive access 

mode (MRAM) for each method. MRAM can have one of two \alues, R (Read) or W

44



(Write). A method m has MRAM = R if it is an instance read method. On the other hand, 

a method m has MRAM = W if there is at least one attribute with a W mode in method m. 

Also, Access Mode Change Percentage (AMCP), 0 < AMCP < 100, for each break 

point. The AMCP of break point B; in method m is defined as follows.

AMCP of B- = the number of attribute in Bi whose access mode is MRAM 
' the number of attribute in m whose access mode is MRAM

For example, if the initial DAV of B; and the final DAV of Bp in method m are 

defined as [R,R,W,N] and [W,W,W,R], respectively, then AMCP of B; is 33% (=1/3) 

since MRAM is W and the number of attributes in B; whose access mode = W (MRAM) is 

I, and also the number of attributes in method m whose access mode = W is 3.

If a method has many breakpoints, large overhead may be incurred due to 

commutativity table searching for conflict checking and run-time breakpoint tracking 

Thus, to reduce the number of break points (i.e., reduce the commutativity table size), let 

a break point, say B, have an initial DAV and be an entry in the commutativity table only if 

AMCP of B is greater than P% where P (0^<100) is defined. (The specific value of P can 

be chosen depending on whether concurrency is important or not). Otherwise, perform the 

following operation and do not include the initial DAV of B in the commutativity table.

the initial DAV o/the first breakpoint = the initial DAV o f the first breakpoint + the initial DAV 
ofB

For example, consider the following DAVs of methods M l, M2, and M3.

method Ml method M2 method M3
Final DAV of [Al :[R,W,W,W] Final DAV of [BJ: [R,N,N,W] Final DAV of [C] 
initial DAV of [A] : [R,R,R,N] initial DAV of [C]
initial DAV of [Al]: [R,W,N,W] initial DAV of [Cl]
initial DAV of [A2]: [N,R,W,N] initial DAV of [C2]
initial DAV of [A3] : [N,R,R,R]

45

[R,R,N,N]
[R,N,N,N]
[R,N,N,N]
[R,R,N,N]



MRAM of Ml =W 
from Final DAV of [A]

MRAMofM2 = W 
from Final DAV of [B]

MRAM of M3 = R 
from Final DAV of [C]

AMCP of each break point in each method is as follows.

For Final DAV of [A], AMCP = 100 (=3/3)
For initial DAV of [AIJ, AMCP = 66.6 (=2/3)
For initial DAV of [A2J, AMCP = 33.3 (=1/3)
For initial DAV of [A3], AMCP = 0 (=0/3)

For Final DAV of [B], AMCP = 100 (= 1/1)

For Final DAV of [C], AMCP = 100 (=2/2)
For initial DAV of [C], AMCP =50 (=1/2)
For initial DAV of [Cl], AMCP = 50 (= 1/2)
For initial DAV of [C2], AMCP = 100 (=2/2)

For example. AMCP of breakpoint [A2] = 33.3%. This is because the number of 

attribute in [A2] whose access mode = W is 1, and the number of attributes in the final 

DAV of [A] whose access mode = W is 3. Also, AMCP o f breakpoint [A3] = 0 since the 

number of attributes in [A3] whose access mode =  W is zero. Suppose we define P as 

30%. Then, the following break points participating as entries in the commutativity table 

can be obtained.

Final DAV of [A] : [R,W,W,W] Final DAV of [B] : [R,N,N,W] Final DAV of [C] : [R,R,N,N]
initial DAV of [A] :[R,R,R,R] initial DAV of [C] : [R,N,N,N]
initial DAV of [Al] : [R,W,N,W] initial DAV of [C2] : [R,R,N,N]
initial DAV of [A2] : [N,R,W,N]

=> [A3] is added to the initial DAV of
[A].

[Cl] is removed due to the breakpoint 
optimization strat^y 1.

Strategy 1 is to eliminate any breakpoint which is not helpful to increase 

concurrency. By removing those break points, we can reduce run-time overhead and 

storage overhead. Strategy 2 is to give trade-off between concurrency and run-time

46



overhead. That is, the higher AMCP is, the less run-time overhead is; but this results in 

less concurrency. On the other hand, with less AMCP value, more concurrency can be 

provided at the expense of run-time overhead since access modes o f attributes can be less 

restrictive so that more transactions can run concurrently. Strategy 2 is to adjust the 

degree o f concurrency depending on applications. For example, any application adopting 

long transactions may require small AMCP value since lock waiting time due to conflict 

may outweigh concurrency control overhead. The strategy 1 can be applied to any method 

without further information such as the frequency o f method invocations. But, it provides 

a limited form of concurrency since methods may not have many conditional branch 

statements. On the other hand, in strategy 2, the level o f concurrency for each method can 

be changed by increasing or decreasing its AMCP value. But, deciding the value of AMCP 

for each method may need additional cost since access frequency in breakpoints should be 

analyzed.

This optimization process is done at compilation time. Thus, it is not necessary to 

optimize break points for each method invocation, resulting in a reduction in run-time 

overhead. But, for OODBS whose schema is continuously evolving, the optimization 

incurs some overhead since method contents (also corresponding DAVs) may change 

frequently.

3.1.1.2. C oncurrent among class definition access

In [Kim, 1990], the taxonomy of class definition update, which is comprehensive

among OODBs, is provided as follows. There are two types of changes to the schema oi 

an OODB. One is to the definition o f a class. This includes changes to the attributes and

47



methods defined for a class, such as changing the name or domain o f  an attribute, adding 

or dropping an attribute or a method. Another type of change is to the class-hierarchy 

structure. This includes adding or dropping a class, and changing the superclass/subclass 

relationship between a pair o f classes. We represent MA (Modify Attribute), MM (Modify 

Method), and MCR (Modify Class Relationship) as Modify definition o f an attribute. 

Modify definition o f a method, and Modify the superclass/subclass relationship. 

respectively.

The definition of each class object can be classified into three groups ; definition of 

the class itself, definition of attributes in the class, definition ot methods in the class, 

respectively [Kim, 1990]. The definition of a class includes the name o f the class, set of all 

attributes defined for or inherited into the class, sets of superclasses and subclasses of the 

class, and a set o f methods defined or inherited into the class. The definition o f attributes 

contains the class to which the attribute belongs, the superclass on which the attribute is 

defined if the attribute is inherited, and the domain of the attribute. Likewise, the 

definition of methods includes the class to which the method belongs, the name of the 

method, the implementation code o f the method, and the superclass in which the method is 

defined if the method is inherited. Assume that RA (Read Attribute), RM (Read Method) 

and RCR (Read Class Relationship) represent Read definition o f attributes. Read 

definition o f methods. Read definition o f class itself respectively.

Assume that updating definition o f any method does not affect definition of any 

attribute. The following table 3-2 gives the commutativity relationships among class

48



:
f definition updates and class definition reads, where Y and N stands for commute and not

commute, respectively.

MA MM MCR RA RM RCR

MA N N N N N N
MM N N N Y N N
MCR N N N N N N
RA N Y N Y Y Y
RM N N N Y Y Y
RCR N N N Y Y Y

Table 3-2. Commutativity relationship among class definition access 

Using the above commutativity relationship, for a class definition access method, a

finer granularity lock can be obtained on class than conventional OODBS such as Orion

and O2 do since a class definition object is divided into three parts; attribute, method and

class relationship. The lock granularity in the proposed work is one of MA, MM and MCR

( for class definition update) and RA, RM. RCR ( for class definition read) [Jun, 1995-3].

Whenever a class definition access method is invoked, the commutativity needs to be

checked between the lock holder and the lock requester using the commutativity table in

Table 3-1 and grant a lock if they commute. Also, the lock format is [trans-name, lock-

type] where trans-name is a transaction holding a lock and lock-type is a class definition

access lock type e  { MA, MM, MCR, RA, RM, RCR}. For example, consider the

following transactions on class O l. For example, consider the following two transactions

T l and T2. T l, at time t, is modifying the definition of a method and T2, at time t+1, is

reading the definition of an attribute. The following diagram shows the possible execution

o f two transactions T l and T2 by the proposed scheme and Malta’s scheme.

<Malta’s scheme>
T l T2

49



t MM (delete a method)
t+1 RA (read definition of an attribute)

< Proposed Scheme >

t C l : rrijw lM l
t+1 C l : (T1.MM] rn.R A J

Figure 3-1. Illustration of the Proposed scheme

3.1.1.3. Concurrency between class definition access and instance access

Fine concurrency between class definition access and instance access can be

achieved based on following principle; take finer granularity for an instance access and a 

class definition access so that let transaction run concurrently as long as they access 

disjoint portion o f objects.

In order to provide fine concurrency between attribute definition accesses and 

between attribute definition access and instance access, an attribute access vector (AAV) 

is created whenever an MA or RA or an instance access method has a lock (that is, no 

other active MA or RA or instance access method has the lock). Each field in AAV 

represents an attribute. For each attribute field, a value can have one of three values: W 

(update, set by MA), R (read, set by RA or instance access method) and N (null).

• The incoming MA or RA method checks commutativity using this vector and set R (for 

RA) or W (for MA) on the corresponding attribute in AAV % for each attribute to be 

accessed by an incoming method, the lock modes of the requester and the holder are 

compatible.

•  The incoming instance method checks commutativity comparing this vector with its 

DAV as follows. ; For each attribute accessed by the instance access method, check if the 

attribute is W locked in AAV. If so, block the lock request by the instance access method.

50



Otherwise, set R lock (in AAV) to each attribute accessed by the instance access method 

and grant the lock. Note that we do not change the access modes o f  the AAV after the 

instance access method execution in order to avoid excessive runtime overhead.

•  Whenever an MA or RA or an instance access method is committed by an invoking 

transaction, it resets the vector AAV (that is, if there is no active MA or RA or instance 

access method, it removes the AAV).

Second, in order to increase concurrency between method definition accesses, 

between method definition access and instance access, and between method definition 

access and attribute definition access, each individual method is taken as locking 

granularity instead of taking all methods o f one transaction as locking granularity.

A method access vector (MAV) is created whenever an MM or RM or an instance 

access method has a lock (that is, no other active MM or RM or instance access method 

has the lock). Each field in MAV represents a method. For each method field, a value can 

have one of three values: W (update, set by MM), R (read, set by RM or instance access 

method) and N (null). The vector MAV is to give parallelism between method definition 

updates and between method definition updates and method definition read. For example, 

while the implementation code of method M l is updated by a transaction T l, another 

transaction T2 can read the implementation code of method M2.

• The incoming MM or RM method checks commutativity using this vector and set R (for 

RM) or W (for MA) on the corresponding method field in MAV if the lock is granted. 

Also, check commutativity using AAV and set R on the corresponding attribute field in

51



AAV if, for each attribute to be accessed by an incoming method, the lock modes o f the 

requester and holder are compatible.

•  The incoming access instance method checks commutativity comparing this vector with 

its DAV as follows : Check if the method field is W locked in MAV. If so, block the lock 

request by the instance method. Otherwise, set R lock (in MAV) in the corresponding 

method’s field. Also, check commutativity comparing AAV with its DAV and set a R lock 

on each field if compatible.

•  Whenever an MM or RM or instance access method is committed by the invoking 

transaction, it resets the vector MAV (That is, if there is no active MM or RM or instance 

access method, it removes the MAV) and AAV

The following table gives the commutativity relationships among class definition 

updates (MA,MM,MCR), class definition reads (RA,RM,RCR), and instance accès; 

methods (noted by I)

MA MM MCR RA RM RCR r

MA A A N A A N A
MM A A N V A N A
MCR N N N N N N N
RA A Y N Y Y Y Y
RM A A N Y Y Y Y
RCR N N N Y Y Y Y
I A A N Y Y Y A

Table 3-3. Commutativity relationship between class definition access and instance access 

where A means that two methods commute as long as th ^  are accessing disjoint portions 

o f an object.

52



For example, with class CLI defined in Section 3.1.1.1, consider the following 

method invocations by transactions Tl, T2 and T3. At time t, Tl is reading definition of 

attribute as. At time t+1, T is invoking a method M2 on an instance h. At time t+2, T3 is 

invoking a method M3 on instance I|. At time t+3, T l is modifying the definition of 

method M l. Finally, at time t+4, T2 is reading the definition o f an attribute a^.

time T l T2 T3

t CLl:RA(a3>
t+1 CLI;M2oqI,
t+2 CLI: M3 on I,
t+3 CLI:MM(M1)
t+4 CLI: RA(aj

The followings show how lock are changed on class CLI and instance L by each 

transaction at a time.

t. CLI : AAV : [ai:N, aziN, a3:R(Tl), a4:N]

// The method call RA on attribute as by T l needs to create an AAV since no other 
// transaction has invoked MA, RA or an instance access method and set W on the as field

t+1. CLI : AAV[ai:R(T2), a^zN, as:R(Tl), a4:R(T2)], MAV[ai:N, a2.R(T2), as.N]
I, : [M2(Bf), T2]

// For T2 invoking M2 on L, checks AAV i( for each attribute accessed by M2, there is an 
// incompatible attribute access mode using DAV o f M2. Also, check M2 field in MAV if 
// some other transaction is updating M2.

t+2. CLI : AAV[ai:R(T2,T3), a::R(T3), as:R(Tl), a4:R(T2)], MAV[auN, az:R(T2), 
as:R(T3)]

I i :[M2(Bf),T 2], [M3(Cf),T3]

// Perform the same task like T2 in step 2. Assume that break points C| and Ci are met 
// during execution o f M3.

t+3. CLI : AAV[ai;R(Tl,T2,T3), az:R(Tl,T3), as:R(Tl), a4:R(Tl,T2)],

53



MAV[a,:W(Tl), a2:R(T2), a3:R(T3)]
I, : [M 2(Bf), T2], [M3(Q, C,), T3]

// Since any transaction is not invoking M l, T l’s request is granted. Thus, set W on M l 
// field in MAV and set Ron AAV for each attribute used in M l.

t+4. CLI : AAV[ai:R(Tl,T2,T3),a2:R(Tl,T2,T3),a3:W(Tl),a4:R(Tl,T2)], 
MAV[ar.W(Tl), a2.R(T2), a3.R(T3)]

I, : [M2(Bf), T2], [M3(Ci, C,), T3]

// Since any transaction is not modifying definition o f  an attribute a2, T2’s request is 
// granted. Thus, set R on a2 field in AAV

It is possible that updating AAV and MAV whenever an instance access method is

invoked incurs too much overhead. This is true especially for those OODB systems whose

schema need not be changed fi’equently. In this case, the firequency of schema update is

not high. Thus, the overhead by the technique used in this subsection outweighs the

concurrency increased. For such OODB systems, take lock granularity as all attributes for

RA or MA rather than individual attributes. For a method definition access, take lock

granularity as all methods for RM or MM. Likewise, for instance access methods, use RA

and RM locks on class, instead of using AAV and MAV. Thus, the following protocol can

be used as an alternative.

• When a transaction invokes an instance access method, get RA and RM locks and check 

commutativity among instance access methods.

• When a transaction which has invoked an instance access method is committed, release 

RA and RM locks.

3.1.2. Class hierarchy locking 

3.1.21. Basic Idea

54



The objective here is to develop a new class hierarchy locking scheme which can 

be used for any OODB applications with less locking overhead than both existing 

schemes, explicit locking and implicit locking. To achieve this, some classes in a class 

hierarchy are designated as special classes. Roughly, a special class (SC) is defined as a 

class on which class definition writes or lACHs (Instance Access to Class Hierarchy) are 

performed fi-equently. For the proposed scheme, how to determine if a class is a SC or 

not will be discussed in Section 3.1.2.6.

In this new class hierarchy locking scheme, intention locks are set on SCs only, 

thus, locking overhead is reduced compared to implicit locking which requires intention 

locks on every superclass of the target class. When a transaction needs to access an SC 

which is already intention locked, by invoking an MCA lock on it. a concurrency control 

can reduce conflict checking overhead due to the help of the intention locks. That is, ever) 

conflict can be detected by the help o f commutativity relationships between intention 

locks and MCA (Multiple Class Access) locks on the SC On the other hand, if a class has 

little or no possibility of being accessed by an MCA, there is no need to set an intention 

lock on that class since SCA (Single Class Access)s do not use intention locks to check 

for conflicts. As we discussed eariier, there is no conflict between an intention lock and an 

SCA lock and any conflict is determined only at the target class. Thus, unlike implicit 

locking, we do not have to set an intention lock on every class on the path fi'om a target 

class to a root.

In order to have fewer locks required for an MCA than those required by explicit 

locking, the proposed scheme works as follows: for an SCA, a lock is set on only the

55



target class, like explicit locking. For MCAs, unlike explicit locking which requires locks 

on the target class and all its subclasses, locks are set on every class from the target class 

to the first SC through the subclass chain of the target class. I f  there is no such SC, then 

locks are set on the leaf classes. I f  the target class is an SC, then set a lock only on the 

target class. Thus, by choosing an SC as a class on which MCAs are performed frequently, 

the locking overhead can be reduced.

For example, consider the following class hierarchy in Figure. 3-2.a. Assume that a 

transaction T l invokes an MCA lock on class C6 . Let LSI be a lock setting for Tl. 

Assuming that classes Cl, C4 and C7 are SCs, then Figure. 3-2.b, 3-2.c, and 3-2.d show 

how locks are set in explicit locking, implicit locking, and the proposed scheme. Note that 

Cl and Cio are a root and a leaf class, respectively.

Cl 01 01: LSI 01(S0):LS1
i 4 4 4
C2 02 02: LSI 02
i 4 4 4
03 03 03: LSI 03
I 4 4 4
04 04 04: LSI 0 4 (SO): LSI
4. 4 4 4
05 05 05: LSI 05
4 4 4 4
06 06: LSI 06. LSI 06: LSI
4 4 4 4
07 07: LSI 07 0 7 (SO): LSI
4 4 4 4
0 8 C 8:U Sl 08 08
4 4 4 4
09 09: LSI 09 09
4 4 4 4
OlO 010: LSI OlO OlO

Figure. 3-2.a Figure 3-2.b Figure 3-2. c Figure. 3-2.d
Class hierarchy Explicit locking Implicit locking the proposed 

scheme

3.1,2.2. Lock Modes

56



In order to illustrate the principle for reducing overhead for class hierarchy 

locking, the following locking granularity and lock modes are used. The principle is to 

keep low overhead for any type of access to a class hierarchy. At first, assume the lock 

granularity as follows; adopt instance level granularity for instance access and entire class 

object for class definition access like Orion [Kim, 1990] and O2 [Cart, 1990]. Below are 

locks needed for different types o f instance and class access ([Jun, 1996], [Jun, 199 7- 

l],[Jun, 1997-2]). For convenience, lower-case letters and upper-case letters are used to 

name locks on an instance and a class, respectively.

Operations 

instance read

instance write

Class definition write

Class definition read

Locks needed 

r (on target instance)
TR, IMPR, INTSR, INTSPR, QR, PQR (on target class or its 
superclasses)

w (on target instance)
TW, IMPW, INTSW, INTSPW, QW, PQW (on target class or its 
superclasses)

CW (on target class)
INTSW (intention lock for each SC on the path fiom the target class to 
its root)

CR (on target class)
INTSR (intention lock for each SC on the path fiom the target class to 
its root)

•  instance read

- (for SCA) TR (Target Read) lock means that some (not all) instances of a target class 

are r  locked. A TR lock is set on a target class whenever an r lock is set on its instance.

- (for SCA) IMPR lock (Implicit Read on target class) means that all instances are read 

locked implicitly. Like both explicit locking and implicit locking, we reduce locking

57



overhead by setting an IMPR lock on the target class, not on individual instances, if the 

majority o f  instances are accessed.

- (for MCA) QR (Query Read on a target class) means that all instances o f a target class 

and its subclasses are read locked as in implicit locking. We reduce locking overhead by 

setting an QR lock on only the target class, not setting IMPR lock on all subclasses of the 

target class.

- (for MCA) PQR (Partial Query Read on a target class) means that some instances of a 

target class and its subclasses are read locked. For access to some instances of a target 

class and its subclasses, we put only a PQR lock on a target class and a r lock on each 

individual instance to be accessed. Thus, unlike QR lock, when a PQR lock is set on a 

class, say C, any instance write to some instances of a subclass of C may not conflict 

because actual conflicts can be detected only on individual instances.

- An intention lock INTSR (INTention Superclass Read) is set for every SC on the 

superclass chain from a target class to its root whenever an IMPR or a QR lock is set on 

the target class. It indicates that some instance read lock is held on a subclass of the class.

- An intention lock INTSPR (INTention Superclass Partial Read) is set for every SC on 

the superclass chain from a target class to its root when a TR or PQR lock is set on the 

target class.

• Instance write

- (for SCA) TW lock (Instance Write on taiget class) means that some (not all) instances 

o f a target class are w locked. An TW lock is set on a target class whenever w lock is set 

on its instance.

58



- (for SCA) IMPW (Implicit Write) lock means that all instances of a target class are w 

locked implicitly.

- (for MCA) QW (Query Write on a target class) means that all instances of a target class 

and its subclasses are write locked. .

- (for MCA) PQW (Partial Query Write on a target class) means that some instances of a 

target class and its subclasses are write locked. As in PQR lock, we set only a PQW lock 

on a target class and a w lock on each individual instance to be accessed.

- INTSW (INTention Superclass Write) lock is set for every SC on the superclass chain 

from the target class to its root whenever an IMPW or QW lock is set on an instance or 

class.

- An intention lock INTSPW (INTention Superclass Partial Write) is set for every SC on 

the superclass chain from a target class to its root when a TW or PQW lock is set on the 

target class

3.1.2.3. Commutativity Relation Table

In Tables 3-4 and 3-5, we provide commutativity relation among the lock modes 

introduced above.

a) instance

lock holder
r T*

lock r Y N
requester w N N

Table 3-4. Commutativity relation for locks on an instance

59



b) Class

Conflicts are checked based on the principle o f  implicit locking as follows. For 

conflict checking between MCAs, if either the lock holder or requester requires locks only 

on a class, conflict relationships are determined directly by read-write commutativity 

relationship. Otherwise (i.e., both require locks on a class as well as instances), conflicts 

are determined on individual instances. For conflicts between MCAs and intention locks, 

conflicts are determined as if  an intention lock were a real lock. For example, setting CW 

and INTSR on the same class will cause conflicts. Also, there is no conflict between SCAs 

and intention locks.

lock holder

CW CR TR IMPR INTSR INTSPR QR PQR TW IMPW INTSW INTSPW QW PQW

I CW N N N N N N N N N N N N N N
0 CR N Y Y Y Y Y Y Y Y Y Y Y Y \
c TR N Y Y Y Y Y Y Y Y N Y Y N Y
k IMPR N Y Y Y Y Y Y Y N N Y Y N N

INTSR N Y Y Y Y Y Y Y Y Y Y Y N N
r INTSPR N Y Y Y Y Y Y Y Y Y Y Y N Y
e QR N Y Y Y Y Y Y Y N N N N N N
4 PQR N Y Y Y Y Y Y Y Y N N Y N Y
4 TW N Y Y N Y Y N Y Y N Y Y N V
e IMPW N Y N N Y Y N N N N Y Y N N
s INTSW N Y Y Y Y Y N N Y Y Y Y N N
t INTSPW N Y Y Y Y Y N Y Y Y Y Y N Y
e QW N Y N N N N N N N N N N N N
r PQW N Y Y N N Y N Y Y N N Y N Y

Table 3-5. Commutativity table for locks on a class

Once again, the principle is to reduce locking overhead than both implicit locking 

and explicit locking using special class concept, for any type o f access to a class hierarchy.

3.1.2 4. Class hierarchy locking algorithm for single inheritance

60



In this section, class hierarchy locking scheme is presented. It is to reduce locking 

overhead than both implicit locking and explicit locking using SC. Especially, based on 

access frequency information for each class, intention locks are set on only SC only so that 

locking oveihead is reduced comparing implicit locking. Also, unlike explicit locking, 

locks are not required for the target class and all its subclasses. In the proposed scheme, 

locks are set only every class from the target class to the first SC through the subclass 

chain of the target class. This results in less locking overhead than explicit locking.

The proposed locking-based concurrency control scheme is based on two-phase 

locking which requires each transaction to obtain a read (or write) lock on a data item 

before it reads (or writes) that data item, and not to obtain any more locks afrer it has 

released some lock [Eswa,1976]. For a given lock request on a class, say C, we set locks 

on C and all classes on the class hierarchy to which the class C belongs as follows.

Step 1) locking on SCs

• For each SC (if any) through the superclass chain of C, check conflicts and set an 

intention lock if it commutes. If it does not commute, block the lock requester.

Step 2) Locking on a target class

•If the lock request is an SCA, check conflicts with locks set by other transactions and set 

one of TR, TW, IMPR, IMPW (depending on the lock request type) or CR (class 

definition read) on only the target class C if it commutes and set an r  or w lock on the 

instance to be accessed (which we call ta r^ t instance) if a method is invoked on the 

instance and commute. If  it does not commute, block the requester.

61



•If  the lock request is an MCA, then, from class C to the first SC (or leaf class if there is 

no SC) through the subclass chain of C, check conflicts and set either CW , Q R , P Q R , Q W  

or PQW lock on each class if commute. If  the class C is an SC, then set a lock only on C

Note that a lock is set on the first SC so that other incoming transactions that 

access a subclass of the first SC can check conflicts since those transactions need to set 

intention locks on the first SC Thus, every conflict can be detected. The reason we set a 

lock on each class (besides the first SC) from the class C to the first SC (not including the 

SC) is as follows; if a lock is set only on the first SC, then some conflict may not be 

detected. For example, if a requester accesses a subclass of a lock holder's class which is 

CW locked, then such a conflict may not be detected.

•If class C has more than one subclass, perform the same step 2) for each subclass o f C.

Step 3) Locks are released only if a transaction is committed or aborted.

As an example, consider the following lock requests by two transactions Ti and Tz 

on a class hierarchy in Figure. 3-3.a

a) T il class definition write (C W ) request on class C 6

b) Tz: class definition read on class C5

Let L Si be a lock set by transaction T; Assume that class Cl, C4  and C7 are SCs. 

As seen in Figure 3-3 b, 3-3 c, and 3-3 d, 7, 12 and 11 locks are required for Ti and Tz by 

the proposed scheme, explicit locking, and implicit locking, respectivdy.

62



C5,
i
C5:

Cl
i
C2
i
03 
A
04
i
05
i
06 
i
07
i
08 
:

,09

C5,
i

OS:

Ol(SO): INTSW,; INTSR: 
1 
02 
i  
03 
i
04(S0): INTSW,; INTSR:
ir
05: OR:
i
06:CW, 
i
07(S0):0W,

C9, 010^ :

012 ,

i
O il

,012

013

08
ir

09, 010 CT:
;
oil

i

xT
012, 013

Cl Cl: INTSW,; INTSR:
i i
C2 C2: INTSW,; INTSR:
I i
C3 C3: INTSW,: INTSR:
i i
C4 C4: INTSW,, INTSR:

i
,C5£R: ^ C 5 :  INTSW,; CR:

C6:CW, C5, C6:CW,
i  i

07: CW: C5: C7
i i
C8:CW, C8
i
C9:CW, .09

09,:0W, OlOiOW, 09::0W, 09, OlO 09:

Fig 3-3.a 3-3.b.
A class hierarchy Locks with

i
OllzOW,
i

^ 0 1 2 :0 W , 

012,:0W, 013: OW,

3-3.C. 
Locks with

i  
oil 
;

/ 0 1 2  

012, 013

3-3.d.
Locks with 
Implicit lockingthe Proposed scheme Explicit locking 

3.1.2.5. Considering Multiple Inheritance

The above protocol works for a single inheritance. But, it does not work for a 

multiple inheritance. Consider the following class hierarchy in which a class J has two 

superclasses, H and I in Figure. 3-4.a. Suppose a transaction TI sets a QR lock on class F 

(Figure. 3-4.b). Suppose now another transaction T2 sets a CW lock on class G (Figure. 

3-4.C). Even though TI already sets a conflict lock mode QR on classes J and K implicitly, 

T2 can get a lock successfully. This is due to that the conflict can not be detected by 

intention locks on class A which is only common class by both transactions. That is, the 

above protocol does not work correctly.

63



In order to make the above protocol work correctly in multiple inheritance, a 

principle is adopted from Orion [Kim, 1990]: when setting a QR, PQR, QW, PQW, or CW 

lock on a class C, also set those locks on subclasses o f C which have more than one 

superclass. By doing this, any conflict on the subclasses o f  C can be detected. Then only 

those subclasses need to be examined for conflict checking. Also, intention locks are set 

on each class through only one superclass chain of the target class C. Although only one 

chain is selected for intention locks, possible conflicts are detected on either the target 

class C or subclasses o f the target class C. In this example, using the proposed scheme, 

lock settings for QR lock on class F are changed as in Figure. 3-4.d.

B C
I  i
D E 
i  i  
F G
i  i

V '
i
K

Fig. 3-4.a 
class hierarchy

B
i

A (SC): INTSR

C
i

A: INTSR, INTSW A: INTSR

B
i

D (SC): INTSR E (SC) D: INTSR
i
F:QR
i

SSC): QR

j"" 
i  
K

i
G
i
I(SC) I[:QR

E: INTSW

G: CW

I:CW

DrINSTR

H:QR

Fig. 3-4.b 
QR lock on class F

Fig. 3-4 .C  
CW lock on class G

Fig. 3-4.d 
Lodcs with 

multiple inheritance 
consideration in the 
proposed scheme

3.1.2 6. Special Class Assignment

Assume that we have information on the number o f access to each class (by

different transactions) in an CX)DB. For the proposed scheme, it is necessary to know only 

two types o f access frequency to each class; SCA and MCA. With this access information 

for each class, whether the class is designated as an SC or not can be determined as

64



follows. The principle is to designate SC as a class on which class definition writes or 

lACHs are performed frequently. Note that the following SC assignment scheme is taken 

place at preprocessing so that any run-time overiiead does not occur.

Starting from each leaf class until all classes are checked, 

step 1) If a class is a lea^ then do not designate it as an SC

If a class C has not been considered for SC assignment and all subclasses o f C have 

been already considered for SC assignment, then do the followings; 

for class C and all o f the subclasses,

calculate the number of locks (N,) when the class is designated as an SC 

calculate the number of locks (N?) when the class is not designated as an SC 

// In calculation, we do not consider any superclass of C yet

step 2) Designate it as an SC only if N, < N2 . That is, the class can be an SC only if the 

number of locks can be reduced by doing so.

For example, consider a simple class hierarchy as in Fig 3-S.a and assume that

number of access information on the hierarchy are defined as in Fig 3-S.b. The numbers

represent the numbers o f access to the class by dififerent transactions. For example, in Fig 

3-S.b, 100 MCAs are performed on class C| and 300 SCAs on Ci by different transactions 

accessing this class hierarchy. Note that, for MCAs, the numbers represent only access 

initiated at a given class. Thus, we do not count the number o f MCA access initiated at its 

superclasses. In the SC assignment scheme, since C4 and Cs are leaf classes, they are not 

designated as SCs. At the class C3, if C3 is designated as an SC, the number of locks

65



needed for class C3, C4 and C$ are 450, 300 and 400, respectively, resulting 1150 locks for 

three classes. That is, C3 needs only 450 locks since any locks are not necessary for its 

subclasses as in implicit locking. On the other hand, any access to C4 or Cs needs intention 

locks on C3, resulting 300 and 400 locks for C4 and Cs, respectively. On the other hand, if 

C3 is not designated as an SC, then the number o f locks needed for classes C3, C4, and Cs 

are 1200 locks. In this case, the proposed scheme works as in explicit locking. Thus, class 

C3 become an SC. SimilaMy, two classes Ci and C2 become non-SCs. Fig. 3-5.c shows the 

result o f the SC assignment scheme based on access frequency information.

Cl : MCA.IOO. SCA; 300 

Cl : MCA; 200, SCA; 200 

Cj ; MCA;400, SCA; 50 

C^;MCA; 100, SCA; 50 

Cÿ MCA: 100, SCA: 100

C.

Ï
c:

Cj;SC

Fig. 3-5.a. Simple class hierarchy Fig. 3-5.b. Number of Access for each class Fig. 3-5 .c.
Result of 
SC assignment

For multiple inheritance, the same SC assignment scheme can be applied. For 

example, consider a simple multiple class hierarchy as in Fig. 3-6 a. and assume that we 

have frequency information on the hierarchy as in Fig. 3-6.b. Assume that, when Cs is 

locked, Cs is chosen for intention lock setting. The result of the SC assignment scheme is 

shown in Fig. 3-6.c.

66



J , C i : MCA: 50, SCA: 100 J ,

• ^CA: 600. SCA: 200 

Ca C4 C j: MCA: 100. SCA: 150 (;% C4

C 4 : MCA: 300. SCA: 100 

C5 : MCA: 100. SCA: 50

Fig. 3-6.a. Simple class hierarchy Fig 3-6.b. Access numbers for each class Fig. 3-6.c. Result
of SC assignment

3.1.2.7. Performance evaluation of the proposed scheme

In this subsection, it is shown that the proposed scheme performs better than both 

explicit locking and implicit locking. That is, assuming that the number of access is stable 

for each class, it is shown that the proposed scheme incurs either equal or fewer number o f  

locks than both explicit locking and implicit locking. The proof is based on induction. 

Claim: with a stable number o f access for each class, the proposed class hierarchy 

scheme performs better than both explicit locking and implicit locking.

Proof) Induction is used on the number n in a given class hierarchy. Let n be the number 

o f classes considered so far in the SC assignment scheme. Let Ne. Ni and Np be the 

number o f locks by explicit locking, implicit locking and proposed locking, respectively, 

for classes considered so 6 r  in SC assignment.

•  n =1 : Ne = Ni == Np

•  n-2 : In this case, without loss o f generality, two classes are formed as follows.

C i (SC) Cl
i  i

C2 (leaf) C2 (leaf)
case a) case b)

67



If Cl (superclass) is an SC as in case a), then Np < Ne otherwise Ci would not be an SC, 

and Np = Nt. If Ci is not an SC as in case b), then Np < Ni, and Np = Ne.

Assume that the proposed scheme works up to n = K

•  n =  K+1: without loss of generality, let (K+l)th class be a root o f the classes considered 

for SC assignment. Let X be a root O e , K+lth class) and Y i , b e  the first SCs 

through the subclass chain o f X as in Figure. 3-7. Also, Let N  (X.SC) and N (X;non-SC) 

be number of locks required when a class X is designated as an SC, and when X is not 

designated SC, respectively in the proposed scheme (assume that all subclasses of X have 

been considered in the SC assignment scheme).

. . .
6  V

.♦.Y, ..Y ; .Y .

■■■■..
•  •  •  •

Figure. 3-7. The case where X is not SC

case a) Assume that X is not SC (i.e., N (X.SC) > N (X:non-SC))

At first, prove that Np ^  Ng: for locks required for SCA to class X, both schemes 

need the same number o f locks. For MCA to class X, for the proposed scheme, locks are 

required for each class fi-om X to Yi,...,Y. and subclasses o f X which have more than one 

superclass, if multiple inheritance. On the other hand, locks are required from X to every 

subclass o f X by explicit locking. Also, for locks required for access to classes other than 

X, Np ^  Ne by induction assumption and no intention locks on x are necessary by the 

proposed scheme. Thus, Np < Ne for any access.

68



Now, prove that Np < Nj. 

subcase a.1), Np < N(X:SC). Otherwise, x would be an SC by the proposed SC 

assignment scheme.

subcase a.2) prove that N(X; SC) < Ni. In implicit locking, every class is an SC since any 

access to class C needs intention locks on superclasses o f C and any MCA access to C 

need no locks other than a lock on class C This is corresponding to the proposed scheme 

where all classes are SCs. Thus, for locks required for access to X, both schemes incur the 

same number of locks. For locks required for access to classes other than X, intention 

locks (if necessary) are needed to be set on X by both schemes. But, for locks required for 

access to classes other than X, Np < N, by induction assumption. Thus, N (X:SC) < N,. 

This implies that Np < Nj.

case b) Assume that x is SC (i.e., N (X:SC) < N (X;non-SC))

Np < N|: same as subcase a.2 

Now, we prove that Np < Ne.

subcase b. 1), Np < N (X:non-SC). Otherwise, X would not be a SC by the proposed SC 

assignment scheme.

subcase b.2) N (X:non-SC) < Ng: for locks required for SCA to class X, both schemes 

incur the same number o f locks. For MCA to class X, locks are needed from X to yi,...,yn 

as in Figure 3-6 and subclasses of X which have more than one superclass, if multiple 

inheritance, in the proposed scheme. But locks are required from x to every subclass of X

6 9



in explicit locking. For locks required for access to classes other than X, Np < Ne by 

induction assumption. Thus, N? < Ne.

From case a) and b), with a stable number of access to a class hierarchy, it is 

concluded that the proposed scheme does not require more locks than explicit locking and 

implicit locking.

3.1^. Nested method invocations

In this subsection, a way to handle nested method invocations is presented. It deals 

with all three aspects discussed earlier; semantics o f methods, nested method invocation, 

and referentially shared objects.

In order to increase concurrency among methods, semantic information can be 

utilized. This semantic information can be extracted at the discretion of application 

programmers since methods represent behaviors of objects. Thus, although two methods 

conflicts in terms of read and write commutativity relationships, two methods can run 

concurrently using semantics. Also, better transaction response time can be achieved by 

using parent/children parallelism. Also, in order to deal with RSOs, conflicts on RSOs are 

not defined statically. This results in low concurrency. The conflict among methods are 

detected on actual method invocation on objects so that further concurrency can be 

achieved

3.1,3.1. Assumptions

70



Assume that objects are organized in a hierarchy and referential sharing is allowed. 

Also, adopt the following transaction model and method model; a transaction consists of 

a sequence o f method invocations to objects ([Cart, 1990], [Agra, 1992]). A method 

execution consists o f a partial order of method invocations and atomic operations 

[Eladz,199I]. Also, assume that a method in an object can invoke methods on objects 

which are lower in the hierarchy [Rese,1994].

Consider the following object hierarchy in Fig. 3-8.a. The database (DB) consists 

of class Cars. Each car instance is a tuple object composed of various atomic objects and 

of component class Orders. Each order instance is a tuple object composed o f atomic 

objects. In the proposed scheme, referential sharing is allowed. That is, an instance of class 

Order can be shared by two different instances of class Cars. In this object hierarchy, 

assume that a customer can rent only one car at any time. But a customer can request 

multiple car rental orders so that the order is granted by any available car. Figure 3-8.b 

shows an example o f a car rental order requested for two cars by a customer.

Car-id Name Price-To-Rent QOH Orders
(Quantity-oa-hand)

Order-No Customer-No Status 

Figure. 3-8.a. An Object Hierarchy

71



Car objects;

il Grand-Am S30 4 «J

i2 Grand Prix $50 2 ^

[Order 10 1 new

Figure. 3-8.b. An example of the object hierarchy

Assume that there are three methods Adjust-Price, Check-Out-Rent and Fay-Rent, 

for class Cars.

Adjust-PricefH

// For a car instance i (Car-id), if QOH is greater than 10, price to rent a car is decreased 

by 10%

Ifi.QOH> 10 then

i.Price-To-Rent <= i.Price-To-Rent * 0.9

End if 

End

Check-Out-Rent(i. Order-No^

// For a car instance i, a rent-a-car request by Order-No o is granted if that order is not 

granted

//yet

If Test-status (o) = new then

call Change-Status (o, granted) 

i.QOH<=i.QOH-l

end if 

End

72



Pay-Rent (Lo)

// Pay rental fee for car i by Order-No o 

read LPrice-To-Rent 

read i QOH

Change-Status (o, paid)
End

For class Orders, assume that two methods Test-status and Change-status have the 

following implementation code, respectively. There are three status for each order: new, 

granted and paid 

Test-status (o1

// test status of an instance o of class Orders 

read (o.status) 

return status 

End

Change-status(o. valued

// change status of an instance o o f class Orders to value 
write (o.status, value)
End

3.1.3.2. Automation of commutativity for methods

In order to provide fine concurrency while automating commutativity o f methods, 

the sample principle used in Section. 3.1.1 is adopted. That is, a two-phase pre-analysis is 

needed. It consists o f two steps : 1) construction o f DAV for each method and 2) 

construction of a commutativity table o f methods. The construction of DAV for each 

method is summarized as follows: in each method, a break point is inserted by a

73



programmer or a compiler when a conditional statement is encountered. Every method has 

a special break point called first break point before the first statement in the method. 

There are three kinds o f DAVs in each method : 1) a final DAV of the first break point, 2) 

an initial DAV of the first break point, and 3) an initial DAV of every other break point, 

which contains access modes o f all attributes used by statements between this break point 

and the next break point (or end o f the method). The commutativity table of methods is 

constructed as follows; a lock requester’s entries contain names of the final DAVs of the 

first break points in all methods (represented as Nf where N is the name of the first break 

point in each method). When a transaction invokes a method on an object, it gets a lock 

containing the final DAV o f the first break point in the method. As the transaction meets a 

break point during run-time, the break point is recorded. After the method execution, the 

lock is changed to names o f breakpoints encountered during method execution.

For example, consider the object hierarchy in Figure 3-8.a. For convenience, for 

class Cars, let four attributes Car-id, Name, Price-To-Rent and QOH be ai, a:, as, and a4, 

respectively. Similarly, for class Orders, let three attributes Order-No, Customer-No, and 

Status be bi, bz, and bs, respectively. Assume that, for class Cars, A and Ai are 

breakpoints of method Adjust-Price, B and B# are breakpoints of method Check-Out-Rent 

and C is a breakpoint o f method Pay-Rent. Likewise, assume that, for class Orders, let D 

and E be breakpoints of methods TestStatus and ChangeStatus, respectively. Also, for 

simplicity, we call methods AdJust-Price, Check-Out-Rent and Pay-Rent as M l, M2 and 

M3, respectively. Similarly, we call methods Test-status and Change-status as NI and N2, 

respectively, for class Orders.

74



Adiust-PriceCn (also called M l)

[A]

Ifi.QOH> 10 then 

[All

i.Price-To-Rent := i Price-To-Rent * 0.9

End if 

End

Check-Out-Rent(i. Order-No^ (also called M2)

[B]

If  Test-status (o) = new then 

[Bi]

call ChangeStatus (o, granted)
i.QOH := i.QOH - I

end if 

End

Pav-Rent (i.oI (also called M3)

[C]

read i.Price-To-Rent 

Change-Status (o, paid)
End

Based on the definition o f breakpoints and DAVs, for the object hierarchy in 

Figure 3-8.a, the following breakpoints and DAVs for the methods can be obtained. For 

convenience, let DAV (x) represent the initial DAV of a breakpoint x in some method M. 

Also, let DAV (M) represent the final DAV of the first break point in method M.

75



Note that, in this example, a method Check-Out-Rent or Pay-Rent includes another 

nested method invocation {Test-status or Change-status). But, this nested method invokes 

another subobject so that its DAV is not included in the DAV of method Check-Out-Rent 

ox Pay-Rent.

The DAVs constructed for method M l are:

DAV (M l) = [R,N,W,R]; DAV (A) = [R,N,N,R]; DAV (AI) = [R,N,W,N]

Similariy, the DAVs for M2 and M3 are:

DAV (M2) = [R,N,N,W]; DAV (B) = [R,N,N,N]; DAV (B1) = [R,N,N,W]

DAV(M3) = [R,N,R,R]

Similarly, for class Orders, we have DAVs of each break point in the method as follows.

Test-status (oi) (also called NI)

[D]
read (o.status)

End

Change-statusfo. valuel (also called N2)

[E]

write (o.status, value)

End

DAV (NI) = [R.N.R]; DAV (N2) = [R,N,W]

Note that, for class Orders, two methods do not have conditional statements so 

that the DAVs of the methods are the same as the DAVs of the first breakpoints. In this

76



work, we do not include the DAVs of the first break point for such a case since further 

concurrency can not be achieved

After the construction of the breakpoints’ DAVs in all methods, a commutativity 

relation o f methods in the form of a table as in Section 3 1.1.1 is created. For convenience, 

denote D(x) as DAV(x) where x is the name o f a method or a break point. Table 3-6 gives 

the commutativity tables constructed in proposed scheme.

lock holders
D(Ml) D(A) D(A,) D(M2) D(B) D(B,) D(M3)

lock D(M1) N Y N N V N N
requester D(M2) N N V N Y N N

D(M3) N V N N Y N Y

Table 3-6.a. A commutativity table for class Cars

lock holders
D(Nl) D(N2)

lock D(N1) Y N
requester D(N2) N N

Table. 3-6.b. A commutativity table for class Orders

3.1.3.3. Considering semantics, nested method invocation and RSO (Referentially 

Shared Object)

In this subsection, a way of dealing with three aspects semantics o f methods, 

nested method invocatim  and RSO) is presented [Jun, 1997-3].

At first, based on the automated commutativity relationships presented in Section

3.1.1, it is possible that application programmers may define commutativity relationships 

for some methods by making use o f semantics o f methods as in ([Muth,1993], 

[Rese,1994]). Thus, though these two methods do not commute in terms of read and write

77



access modes, they may commute semantically at the discretion o f an application 

programmer. For example, for class Cars, two methods Check-Out-Rent and Pay-Rent 

may commute semantically, that is, customers may check out first and then pay the rental 

fee or vice versa. If two methods, say, Ml (requester) and M2 (holder), commute 

semantically, then we give S  commutativity relationship between M l (and all breakpoints 

o f M l) and M2 (and also all breakpoints of M2) where S  means semantically commute. 

Then, a new commutativity table for class Cars is constructed as in Table 3-7. In the 

commutativity table, Y means commute (unconditionally). That is, if two methods (one is 

a lock requester and the other is a lock holder) have Y relationship, a lock requester can 

get a lock at any time. If two methods have N relationship, a lock requester can get a lock 

only if the lock holding transaction is committed or aborted. On the other hand, if two 

methods have S relationship, a lock requester can get a lock if a holder’s method 

execution is finished. That is, the requester does not have to wait until the lock holding 

transaction is committed or aborted.

lock holders
D(M1) D(A) D(A,) D(M2) D(B) D(B,) D(M3)

lock EKMl) N Y N N Y N N
requester D(M2) N N Y N Y N S

D(M3) N Y N S S S Y

Table 3-7. A commutativity table for class Cars

For nested method invocations, the following principles are applied: each method 

invocation is associated with a lock. Before any method invocation, a lock is requested 

and granted. Also, when a method execution is finished, the lock is inherited by its parent.

78



Then, the lock is said to be retained by its parent [Rese, 1994]. If a transaction is finished, 

its locks are discarded. For two methods which commute semantically, they commute only 

if both execute atomically. That is, for such methods, a requester cannot get a lock until a 

holder’s method execution is finished so that the requester can get a lock only if a holder’s 

lock is inherited by its parent. Thus, unlike N commutativity relationship, a lock request is 

not delayed until the lock holding transaction commits.

Finally, for RSOs, method invocations on dififerent objects may result in conflicts 

since those methods may invoke methods on the same subobject. In the proposed scheme, 

conflicts are determined dynamically for each subobject as in [Rese, 1994] since such a 

conflict may not be detected before actual method invocation.

3.13.4. The proposed scheme for nested method invocations

The proposed scheme for nested method invocations is based on two-phase 

locking [Eswa,1976]. Based on the discussion in Section 3.1.3.3, the following scheme is 

constructed.

1. Lock is required only for method execution and is granted before method execution. 

After method execution, lock is changed (i.e., it reflects the breakpoints executed)

2. A method execution cannot terminate until all of its children are terminated. When a 

method execution m terminates:

a. there exists a parent o f m and m commits: locks held by m are inherited by its parent 

(i.e., locks are retainedhy its parent)

79



b. either there exists a parent of m and m aborts or there is no parent o f m; locks held 

by nt are discarded.

3. A lock can be granted if either of the following conditions is satisfied.

a. no other method holds or retains a conflicting lock

b. if conflicting locks are held, such locks are retained by ancestors of the requesting 

method

c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then 

one of the ancestors o f  the retainer (not including the retainer itself) and an ancestor of 

the requester commute.

In rule 3.b, when ancestor/descendent parallelism is allowed, a parent is not 

supposed to see uncommitted results of the child method. Otherwise, the parent may be 

aborted due to reading uncommitted value. For example, assume that a parent T initiates a 

method M, which accesses some data item X, and continues to do its own work. When T 

needs to access data item X so that it requires a conflicting lock on X, T can get a lock 

only if the lock held by M is retained by T.

In rule 3.c, we implement semantically commutativity relationships. As we 

discussed for the two methods which commute semantically, two methods commute only 

if both execute in an atomic way. Thus, we let a lock requester get a lock only if a holder’s 

method execution is finished (i.e., its lock is inherited by an ancestor). In additions, for 

two methods conunuting semantically, a requester’s descendent can also get a lock if a 

holder’s method execution is finished.

80



Figure 3-9 shows that two transactions TI and T2 invoke the same method Ml on 

instance carl o f class Car and M2 (by TI) and M3 (by T2) on car2 (and on order2 of class 

Orders), and the same method M2 on car3 (and on order3 o f class Orders). Assume that, 

only the first breakpoint [A] has been executed in two method invocations of M l by TI 

and T2 on an instance carl. Also, assume that breakpoints [B] and [Bi] have been 

executed on an instance car3 in method invocations of M2 by TI and T2. Note that a line 

indicates a nested method invocation.

M2
car3

M2
carl

Ml

NI N2 N2 
Order2

tune

Figure 3-9. A possible execution of transactions in the proposed scheme 

In the above example, two method invocations o f M l on carl commute by 

adopting dynamic information. This commutativity would not be possible if we used static 

commutativity relationships for methods as in [Malt, 1993]. Also, two methods M2 and 

M3 on instance car2 commute semantically so that the method invocation on M3 by T2 

can be executed only after M2 invoked by TI is finished, that is, after the lock held by M2 

is inherited by TI. This guarantees atonüc execution of method invocation M2 by TI.. 

Without the semantics of methods, the method execution M3 by T2 is blocked until the

81



entire transaction TI is committed. In the proposed scheme, the method execution is 

delayed only until method M2 invoked by TI is committed. Thus, we can increase 

concurrency by adopting semantic information. Also, a lock request by method invocation 

M2 of T2 on car3 is not granted since a conflicting lock is held by TI. Thus, the method 

invocation M2 of T2 can be executed after TI is committed. For method invocations on 

instance car3, consider the following execution which requires locks by atomic operations 

as in [Rese, 1994]. This results in a deadlock situation as in Figure 3-10. In Figure 3-10, 

two transactions TI and T2 invoke a method M2. In turn, M2 invokes two atomic 

operations Test-status and Change-status on instance Order3. When the two transactions 

invoke the method M2 such an order as in Figure 3-10, a deadlock can occur if the 

scheme in [Rese, 1994] is adopted. In the proposed scheme, such a deadlock situation can 

be avoided by adopting locks for the execution of the methods.

TI T2

Test-status Test-status Change-status Change-status 
Orders

----------------------------------------------------------------------------------->  time

Figure 3-10. A possible execution by a scheme requiring locks for atomic 
operations

3.2. Integrated concurrency control scheme

3.2.1. Transaction and method model

82



Several transaction models have been proposed for OODBs depending on 

applications and their needs ([Ozsu,I994], [Bili,I992]). In this work, the transaction and 

method model are adopted from ([Cart, 1990], [Agra, 1992]). This model is simple and 

does not require any compensating work when a part o f a transaction is aborted.

A transaction has the following format: <trans-id, 0>  where 

trans-id : a unique transaction identifier

O : a set of operations representing the implementation of the transaction. These 

operations may include a sequence of method invocations (oidi.mt;... oidj.m,) where oid 

and m are an object name and a method name, respectively, a begin transaction 

statement which indicates a new transaction is starting for bookkeeping purpose, a 

commit or an abort statement.

A method consists o f <Nm, Arg. OP > where 

J^m : name of the method 

Arg : arguments o f the method

.OP :a set of operations representing the implementation o f the method. These operations 

include statements for conditional branching, looping, I/O, and reads and writes to 

an attribute's value. Also, a method can call another method defined on the same 

object or different objects during its execution.

3.2.2. Complete concurrency control algorithm

3.2.2.1. Lock format

83



A  lo ck  o f  an  instance access on  a  class has the  following form at;

a) for a target class:

[trans-name, method-name fl>reak-points), Fi, Fz] where trans-name, method-name 

(break-points) are transaction holding a lock and method invoked (including breakpoints 

encountered). Fi and F% are Boolean fields. Fi indicates whether an instance access 

method applies to some instance (represented as F) or all instances o f the class 

(represented as T). Fz indicates whether an instance method is an MCA (represented as T) 

or not (represented as F).

b) For an intention lock

[trans-name,I, class-name\ where trans-name is the same as in a), I means an intention 

lock for instance access, and class-name is the class on which actual lock is held.

c) For a target instance

[trans-name, method-name (Jbreak-pomts)\

Also, a lock table for a class definition access has the following format:

a) For a target class

[trans-name, method-name\ where trans-name is the same as before and method-name is 

one o f the followings: {MGR, MM(method-names), MA(attribute-names), RCR, 

RM(method-names), RA(attribute-names)}.

b) For an intention lock

[trans-name, method-name, /] where trans-name is the same as before, method-name is 

the same as in a), and I  means an intention lock for a class definition access

84

r'



Finally, a  lock  o f  a  nested  m eth o d  invocation  has the  fo llow ing form at;

a) For a class

[trans-name, ancestors-ids, awner-id, RET, method (break-points), Fi, F2] where trans­

name is the same as before, ancestors-ids are ancestors o f current lock requester, awner- 

id  is lock requester (method or transaction), RET is a  Boolean field indicating the lock is 

retained or not, remaining fields are the same as above.

b) For an instance

[trans-name, ancestor-ids, awner-id, RET, method (break-points)] where each field is the 

same as above.

3 2.2.2. The Integrated Concurrency Control Algorithm

Based on the principles for conflict among methods, class hierarchy locking and 

nested method invocations discussed so far, an integrated concurrency control algorithms 

is constructed as follows. For each method invocation, the procedure Main is invoked 

first.

// Depending on method types, there are two branches for each method invocations 

Main
If a method is a r%ular (oon-nested) method invocation, then go to Conflict-among-methods

else go to Nested-method-invocations
end if 
end Main

Conflict-among-methods
-goto Dedde-conflict-types and return conflict-type

//There are fixir cases depending on the lock requester and the lock holder as follows 
- If conflict-type is type-a, then go to Check-lf-instance-method

go to Class-hierarchy-locking 
else if conflict-type is type-b, then go to typc-b-conflict-check and check conflict

If there is conflict, block the request 
else go to Check-if-instance-method:

85



go to Class-hierarchy-locldng;
end if

else if conflict-type is type-c, then go to type-c-confUct-check and check conflict
If there is conflict, block the request 

else go to Check-if-instance-method; 
go to Class-hierarchy-locking;

end if
else if conflict-type is type-d, then go to type-d-conflict-check and check conflict

If there is conflict, block the request 
else go to Check-if-instance-method; 

go to Class-hierarchy-locking;
end if

end if

Check-if-instance-method
// If the requesting method is an instance access method, then do extra woik as follows.
// If the requesting method is a class definition access method, just grant lock.

If the method is an instance access method, perform the followings.

// befi)re instance access method execution 
set a lock of final breakpoint of a method;

// during instance access method execution 
record break point encountered during the method execution 
// after instance access method execution 

change lock from an initial lock to lock of break points encountered 
during run-time.

else
grant the lock request

end if;
end Check-if-instance-method 

end Conflict-among-methods

Class-hierarchy-locldng

// For a given lock request on class, say Y, we set locks on class hierarchy as follows, 
casei)
If die access is an MCA, then do the followings

// Set intention locks at every SC throng superclass chain (if the class hierarchy
// forms multiple inheritance, use only one superclass chain
For each SC though superclass chain do
go to Dedde-conflict-types and return conflict-type;
//There are fiair cases dependix% on the lock requester and the lock holder as follows 
- If conflict-type is type-a, then go to type-a-conflict-dieck and check conflict

If there is conflict, block the request 
else set an intention lock 

end if

86



else if conflict-type is type-b, then go to tjrpc-b-conflict-check and check conflict
If there is conflict, block the request 

else set an intention lock 
end if

else if conflict-type is tjrpe-c, then go to type-c-conflict-check and check conflict
If diere is conflict, block the request 

else set an intention b  k 
end if

else if conflict-type is type-d, then go to type-d-conflict-check and check conflict
If there is conflict, block the request 

else set an intention lock 
end if

end if 
end For

// Now, set locks for subclasses through subclass chain 
For each class from the target class Y to up to first S do
// If there is no such SC, then up to leaf class through the subclass chain. If Y has more than one 

// subclass, then, for each subclass of Y, do the following steps 
go to Decide-confllct-types and return conflict-type;
//There are four cases depending on the lock requester and the lock holder as follows
- If conflict-type is type-a, then go to type-a-conflict-check and check conflict

If there is conflict, block the request 
else set the lock 

end if
else if conflict-type is type-b, then go to type-b-conflict-check and check conflict

If there is conflict, block the r^juest 
else set an the lock 

end if
else if conflict-type is type-c, then go to typc-c-conflict-check and check conflict

If there is conflict, block tfie request 
else set the lock 

end if
else if conflict-type is type-d, then go to type-d-conflict-check and check conflict

If there is conflict, block the request 
else the lock 

end if
end if 

end For 
end if 
Case ii)
If the access is an SCA, then do the followings

// Set intention locks at every SC through superclass chain (if the cbis hierarchy
II forms multiple inheritance, use only one superclass chain
For each SC though superclass chain do
go to Decide-conilict-types and return conflict-type;
//There are flxir cases depending on die lock requester and the lock holder as follows
- If conflict-type is type-a, then go to type-a-conflict-check and chec:: conflict

If there is conflict, block the request

87



else set an intention lock 
end if

else if conflict-type is type-b, then go to tjrpe-b-conflict-dieck and check conflict
If there is conflict, block the request 

else set an intention lock 
end if

else if conflict-type is type-c, then go to type-c-conflict-check and check conflict
If there is conflict, block the request 

else set an intention lock 
end if

else if conflict-type is type-d, flien go to type-d-conflict-check and check conflict
If there is conflict, block the request 

else set an intention lock 
end if

end if 
end For

// Now, set a lock for only on target class
go to Decide-confUct-typcs and return conflict-type;

//There are four cases depending on the lock requester and the lock holder as follows 
- If conflict-type is type-a, then go to type-a-conflict-check and check conflict

If there is conflict, block the request 
else set a lock on the target class 

end if
else if conflict-type is type-b, dien go to type-b-conflict-check and check conflict

If there is conflict, block the request 
else set a lock on the target class 

end if
else if conflict-type is type-c, dten go to type-c-conflict-check and check conflict

If there is conflict, block the request 
else set a lock on the target class 

end if
else if conflict-type is type-d, flien go to type-d-conflict-check and check conflict

If there is conflict, block the request 
else set a lock on the target class 

end if
end if 

end for 
end if
end Class-hierarchy-locking

Decide-conflict-typcs
// Depending on lode types of lock requesters and holders, there are four types of conflicts as 
// follows..

case a) Lock requester intention lock; Lock holder intention lock 
return type-a;
case b) Lock requester intention lock; Lock holder r%ular lock

88



return type-b;
case c) Lock requester regular lock; Lock bolder regular lock 
return type-c;
case d) Lock requester regular lock; Lock holder intention lock
return type-d;
end Dedde-conflict-types

Type-a-conflict-check
// There is no conflicts between intention locks
return no-conflict
end Type-a-conflict-check

Type-b-conflict-check
// Conunutativity can be checked using the following table 3-8. Let [ I ^  be intention lock for 
// lock type X.

SCA MCA RCR RM RA MGR MM MA
[LSCA] Y C, Y Y Y N Cz C 3

[I,MCA] Y C4 Y Y Y N Cz Cs
[I,RCR1 Y Y Y Y Y N Y Y
[I,RM] Y Y Y Y Y N Cz C 3

[I,RA] Y Y Y Y Y N Y Cg
[I,MCR] N N N N N N N N
[I,MM1 Y Cz Y Y Y N Cz Cs
[I,MA] Y C9 Y Y Y N Cz Cg

Table 3-8. Commutativity table between intention lock and regular lock

// For symbols other than Y or N, conflict are decided as follows.
C|: //check commutativity using instance access commutativity table 
call Conflict-resolution (C|)
Cz: // check commutativity using vector MAY 
call Conflict-resolution (C%)
C3: // check using vector AAV and DAY of the requester 
call Conflict-resolution (€ 3)
C4: / /  check redefinition using instance access commutativity table 
call Conflict-resolution (C4)
C$: // check commutativity between DAY of lock requester’s mediod (and each DAY of lock 

// requester’s mefood redefined A rou^ subclass chain of the requester’s class) and AAY 
call Conflict-resolution (Cs)
Ce'. // check using vector AAY 
call Conflict-resolution (C«)
C?: // check commutativity using DAYs of methods in MAY and vector AAY. If methods in 

// MAY is redefined through subclass chain of MM’s class, dieck commutativity for each 
// redefined method using DAY of sudi mediod and AAY. 

call Conflict-resolution (C?)
Cg; // check commutativity between DAY of holder’s method (instance access method or RM) 

// and vector AAY

89



call Conflict-resolution (Ct)
Cg: // check commutativity between DAV of lock holder’s method (and DAVs of lock holder’s 

// method redefined through subclass chain of the holder’s class) and AAV 
call Conflict-resolution (Cg) 
end Type-b-conflict-check

Type-c-conflict-check
// Commutativity can be checked using the following table 3-9.

SCA MCA RCR RM RA MCR MM m

SCA c , C, Y Y Y N Cz C3

MCA c , C4 Y Y Y N Cz Cs
RCR Y Y Y Y Y N Y Y
RM Y Y Y Y Y N Cz C3

KA Y Y Y Y Y N Y Cg
MCR N N N N N N N N
MM Cz Cz N Cz 0 N Cz Cs
MA c . Cg N Cg Cg N Ct Cg

Table 3-9. Commutativity table between (regular) locks

// For symbols other than Y or N, conflict are decided as follows.
C|: //check commutativity using instance access commutativity table 
call Conflict-resolution (C,)
Cl: // check commutativity using vector MAY 
call Conflict-resolution (C%)
C3: // check using vector AAV and DAV of the requester 
call Conflict-resolution (C3)
C4: // check redefinition using instance access commutativity table 
call Conflict-resolution (C4 )
Cs: // check commutativity between DAV of lock requester’s method (and each DAV of lock 

// requester’s method redefined through subclass chain of the requester’s class) and AAV 
call Conflict-resolution (Cs)
Ce: // check using vector AAV 
call Conflict-resolution (Cg)
C7 : // check commutativity using DAVs of medmds in MAY and vector AAV If methods in 

// MAY is redefined tiuough subclass chain of MM’s class, check commutativity for each 
// redefined method using DAV of such mediod and AAV. 

call Conflict-resolution (C?)
C«: // check commutativity between DAV of holder’s method (instance access method or RM) 

// and vector AAV 
call Conflict-resolution (Ct)
Cg: // check commutativity between DAV of lock holder’s method (and DAVs of lock holder’s 

// method redefined through subclass chain of the holder’s class) and AAV 
call Conflict-resolution (Cg) 
end Type-c-conflict-check

T y pe-d-conflict-check

90



//  Commutativity can be checked using the following table 3-10.

1I.SCAI [I>ICA| [UlCRj [UIM] (I.RAI [I,MCR] PJVÎMI P.MA1

SCA Y Y Y Y Y Y Y Y
MCA C, C4 Y Y Y N Cz Cs
RCR Y Y Y Y Y Y Y Y
RM Y Y Y Y Y Y Y Y
RA Y Y Y Y Y Y Y Y
MCR N N N N N N N N
MM Cz Cz N Cz Y N Cz Cs
MA C, Cg N Cg Cfi N C t Cs

Table 3-10. Commutativity table between regular locks and intention locks

// For symbols other than Y or N, conflict are decided as follows.
C,: //check commutativity using instance access commutativity table 
call Conflict-resolution (C|)
Cz: II check commutativity using vector MAV 
call Conflict-resolution (Cz)
C4: II check redefinition using instance access commutativity table 
call Conflict-resolution (C4 )
C$: // check commutativity between DAV of lock requester’s method (and each DAV of lock 

// requester’s method redefined through subclass chain of the requester’s class) and AAV 
call Conflict-resolution (C5)
Ce: // check using vector AAV 
call Conflict-resolution (Ce)
C7 : // check commutativity using DAVs of methods in MAV and vector AAV. If methods in 

// MAV is redefined through subclass chain of MM’s class, check commutativity for each 
// redefined method using DAV of such method and AAV 

call Conflict-resolution (C?)
Cg: // check conunutativity between DAV of holder’s method (instance access method or RM)

// and vector AAV 
call Conflict-resolution (Cg)
Cg: // check commutativity between DAV of lock holder’s method (and DAVs of lock holder’s 

// method redefined through subclass chain of foe holder’s class) and AAV 
call Conflict-resolution (Cg) 
end Tjrpe-d-conflict-check

Conflict-resolution ( p)

casep = C,
If intention lode is held by holder, go to the class indicated by intention lode and use instance 
access commutativity table. Otherwise use instance access commutativity table on the target class, 
casei) lode requester accesses only some instance of a class.
If lock holder has lode on a set of instance, Aen check conunutativity wiA lock on the class using

the instance access commutativity table; 
return commute or no-commute

91



otherwise check commutativity with locks on target 
instances using instance access commutativity table; 
return commute or no-commute;

case ii) lock requester accesses a set of instance of a class
check commutativity with lock (set by the lock holder) on the class using the instance access
commutativity table;
return commute or no-commute;

casep = C%
If the lock holder is MM (or intentioned MM) locked, then 

// Assume that an instance method M, is invdced by lock requester 
check if method field of Mi is W locked in MAV; 
return commute or no-commute; 

else
// Assume that an instance method M| is invoked or the definition of M, is being read by holder 

Check if the definition of M| is to be modified; 
return commute or no-commute; 

end if

case p = C,
// Assume that either an instance method Mi is invoked by lock requester or the definition of M, is
// to be read by requester
use DAV of Mi defined on target class;
For each attribute accessed in DAV of M| do

check if there is at least one attribute with W locked in vector AAV; 
return commute or no-commute; 

end do

casep = €4
// Assume that an instance method M, is invoked by the requester and another instance method Mh 
// is being executed by the lock holder
Check commutativity using instance access commutativity table at target class.
If not commute, return no-commute 
Otherwise, do the fi}Uowing stq)s.

For each subclass S of the lock requester’s class on which either Mr or My is redefined do 
check commutativity with lock on the class using instance access conunutativity table on S; 

end do
If there is at least one class on which the commutativity is not satisfied, return no-commute; 
Otherwise, return commute;

casep = Cs
// Assume tfiat an instance method M| is invoked by the lock requester 
use DAV of Ml on the target class;
For each attribute accessed in DAV of Mi do
check if there is at least on attribute with W locked in AAV;
If so, return no-commute;
Otherwise, do the following steps.

For each subclass S of the target class on which Mi is redefined do

92



For each attribute accessed in DAV of Mi do 
check if there is at least one attribute with W locked in vector AAV;
If so, return no-commute;
Otherwise, continue; 

end do 
end do 

end do
return commute;

case p = Ce
If CA lock is held, then

for each attribute to be accessed by lock requester do
check if there is at least one attribute with W locked in vector CA set by lock holder;
If so, return no-commute;
Otherwise, return commute; 

end do
else if ai is being read by holder, then return no-commute // Assume ai is to be modified// 
else return commute 
end if

case p = C?
For each method Mi with R or W lock in MAV do 

use DAV of Mi on the target class;
For each attribute accessed in DAV of Mi do 

check if there is at least one attribute with W locked in vector AAV or ai is to be modified.
If so, return no-commute;
Otherwise, perform the following steps;
For each subclass of the target class on vtidr Mi is redefined do 

For each attribute accessed in DAV of Mi; 
check if there is at least one attribute with W locked in vector AAV or ai is to be modified; 
If so, return no-conunute; 

end do 
end do 

end do 
end do
return commute; 

casep = C,
// Assume that an instance method M| is beirrg invoked or a  definition of M| is being read by 
// holder
// assume that attribute ai is to be modified
use DAV of Ml on the class indicated by intention lock (if an intention lock is held);
Check if ai is accessed in DAV of Mi;
If so, return no-commute;
Otherwise, return commute;

case p = C9
// Assume that an instance method M| is being invoked by the lock holder and attribute at is to be /< 
modified

93



use DAV of Mi on the class indicated by intention lock (if an intention lock is held);
For attribute ai do 

check if at is accessed in DAV of Mi;
If so, return no-commute;
Otherwise, perform the following steps;
For each subclass S of the lock holder's class on which Mi is redefined do 

For each attribute an do 
check if ai is accessed in DAV of Mr,
If so, return no-commute; 

end do 
end do 

end do
return commute;

end Conflict-resolution ( )

Nested-method-invocations
// A lock is required for method execution and is granted before method execution.
// A method execution cannot terminate until all of its children are terminated. When a method 
// execution m terminates as follows:

// a. there exists parent of m and m commits : locks held by m are inherited by its parent (i.e.,
// locks are retained by its parent)
// b. there exists parent of m and m aborts: locks held by m are discarded.
// c. there is no parent of m: locks are discarded
If a nested method satisfies one of three following condition, grant the lock request

a. no other method or transaction holds or retain a conflicting lock
b. if conflicting locks are held, such locks are retained by ancestors of the requesting 

method
c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then one 

of the ancestors of the retainer (not including retainer itselQ and an ancestor of the 
requester commute

else
block the request 

end if
end Nested-method-invocations

For an illustration of the concurrency control scheme, consider a class hierarchy 

and a composite object hierarchy in Figure 3-11. Assume that each method has the 

following break points.

mi: A, A1
m2: no break point
m3: C, Cl
ms: E, El
m?: no break point
mio: K, K1

94



m,|: L, LI 
m,2: N, N1 
m,3: O, OI

Let class Domesticjauto, Company and Employee have the following commutativity 
tables.

D(mO D(A) D(A1) D(m:) D(ma) D(C) D(C1) IKms) D(E) D(E1) D(m7>

D(m,) Y V Y N N Y N N N N Y
D(m2> N N N N N Y N N N N N
D(m3) N N N N Y Y Y N Y N N
D(ms) N N N N N N N Y Y Y N
D(m?) V V Y N N Y N N N N Y

Table 3-11. Commutativity table for class Domestic auto

D(M,o) D(K) D(K1) D(mii) D(L) D(L1)

D(m%o) N Y N S S S
D(mii) S S S N N N

Table 3-12. Commutativity table for class Company

D(mi2> D(N) D(N1) D(mi3> D(0) D(Ol)

D(m,2) N Y N N Y N
D(mi3> N N N N Y N

Table 3-13. Commutativity for class Employee 

Consider the following transactions on the class hierarchy in Figure 3-11. 

T l: change implementation code of method ms on class Passenger 

T2: D0mestic_aut0 .Il.m3

T3; Domestic_auto.Il.mi, Company.Il.mio (nested method invocation) 

T4: Company.Il.mil

95



Assume that the break point C is encountered by T2. Figure 3-12 shows the lock 

table after four transactions are finished but not committed. Assume that classes 

Vehicle on land and Domestic auto are only SCs.

3.3. The correctness of the proposed concurrency control scheme

The proposed scheme has three features of access: conflicts among methods, class 

hierarchy locking and nested method invocations. For the first two types of access, that is, 

conflicts among access and class hierarchy locking, the standard two phase locking is 

adopted [Eswa,1976]. For the standard two phase locking, the serializability is 

guaranteed. That is, as long as a concurrency control produces a schedule based on two- 

phase locking, the schedule satisfies the serializability.

But, for nested method invocations, semantic commutativity is adopted. For notion of 

serializability where all conflicts are preserved, it is called conflict serializability 

[Rose, 1994]. But, for the serializability where some conflicts can be ignored based on the 

semantics of operations at higher level, it is called semantic serializability. For semantic 

serializability of semantic concurrency control, its proof is given in [Rese,1994], For their 

concurrency control, lock is required for each atomic operation while locks are required 

for method invocation for the proposed semantic concurrency control scheme. In this 

subsection, the proof of the correctness is shown for class hierarchy locking and nested 

method invocations, respectively.

3.3.1. The correctness of class hierarchy locking

96



In this subsection, it is proven that the proposed algorithm is correct, that is, it 

satisfies serializability [£swa,I976]. The proof is based on that, for any lock requester, its 

conflict with a lock holder (if any) is always detected. With this proofs since the class 

hierarchy locking scheme is based on two-phase locking, it is guaranteed that the 

proposed scheme satisfies serializability [Eswa,I976], This type of proof technique is 

adopted in earlier work in [Liou,1991]. Also, for simplicity, we prove only for single 

inheritance. For multiple inheritance, the correctness can be proved similarly. If  a lock 

requester is an SCA, then its lock holders (whose lock modes need to checked for conflict 

with lock requester) consist o f transactions holding locks on the target class and all special 

classes in the superclass chain of the target class. I f  a lock requester is an MCA, then its 

lock holders include those defined above plus transactions holding locks on each class 

from the target class to the first special class in the subclass chain of the target class.

There are four cases depending on the types of lock requesters and holders.

case I) the lock holder is an SCA 
the lock requester is cm SCA

I f  a lock holder (Lh) and a lock requester (Lr) access different classes, there is no

conflict. If a lock holder and a lock requester access the same class, there is no conflict

on all SCs through the superclass chain of the target class because intention locks on

SCs are compatible with L r . Thus conflicts can be detected on the target class.

97



a = attribute 
i = instance 
m = method

Vehicle

a-.: wei

VehiclejDuJand (SC) Vehicle on water
as: horsqxiwer m3 i, 
34: color ii

as:MinWaterlevel nxt it 
a«: Size i->

Passenger Truck

a«:Tnink capacity
a,: Capacity i,
a,o: loadjcapacity i:

Japanesejauto
an: engmejtype nvs ii 
a,2: fiieljtype iz

Domestic_auto (SC) 
ai3: engine_type m? iT 
a,4: Manufacturer ^ ij

Fuel injected Non_fiiel_injected

Company 
a,7: name 
a„: president. m,o ii 
a,9: location \n n  ij

a,;: injectorjtype m, i, | aie: cabulator_type mg i|
Employee
azo: SSN miz ii
azi: name m%3 iz

Attribute/Domain link 

Class/ Subclass link

Figure 3-11. An illustrative class hierarchy and composite object hierarchy example

98



Vehicle

Velilcle_oii_land (SC) 
V l, Nfl̂ Cms),!)
(T2, Domestic_auto, : 
(T3, Domestic_auto, I)

Vehicle on water

Passenger —
(T l, MM(ms))

Truck

Japanese_auto
(TI,MM(m5>)

Fuel_injected

Domenic auto
(Tl,CM(m5))
(T2,m3(C),F,F)
(T3.m,(A,AI), F,F)
I,; (T2, m3(C)), (T3, ra,(A,AI))'

Company
(T3,nil,T3,T, m,o(K,KI),F,F)\ 
(T4,m„(L,Ll),F,F)

I,;(T3,ml,T3,T, m,o(K,Kl)> 
(T4,mt,(L,LI))

Employee

Non_Fiiel_injected

Attribute/ Domain link 

Class/ Subclass link

Figure. 3-12. Transaction executions on class hierarchy

99



case 2) the lock holder is an SCA
the lock requester is an MCA

I f  th e  L h is holding a  lock on a superclass o f  the Lr’s class, there is no conflict since the Lr

does not access the Lh’s class. If the Lh is holding a lock on the Lr’s class or subclass,

then there  are tw o subcases. If there exists an SC between Lh and L r, then conflict is

detected on the nearest SC through the subclass chain of the Lr’s class (case 2.1).

Otherwise, the conflict is detected on the class o f Lh (case 2.2). Let R and H be two

classes on which the Lr requests a  lock and the Lh holds a lock, respectively. In case 2.1,

as shown in Figure 3-l3.a, a conflict (if any) is checked on SCI, which is the nearest

special class o f  the Lr’s class through its subclass chain, since the Lh has an intention lock

on SCI and the requester requests CW, QR, PQR, QW or PQW on SCI. On the other

hand, in case 2.2, for subcase a, a conflict (if any) is checked on H as in Figure. 3-13.b

since L h does not have any intention locks through the superclass chain of R and L r needs

to set an MCA lock on H. For subcase b, a conflict (if any) is checked on H as in Figure 3-

I3.C since intention locks on all special classes through the superclass chain o f  H are

compatible and the requester needs to set an MCA lock on H.

(SCI)(R) .(R)
SCI > >

(H)
SC2 SCI

' »
SC3 SC2

(SC2) 

(R)

(H)
Fig 3-13. a. Case 2.1 Fig 3-!3.b. Subcase a of case 2.2 Fig. 3-13.C. Subcase b of case 2.2

case 3) the lock holder is an MCA 
the lock requester is an SCA

100



If L h is holding a lock on a subclass oFLr, there is no conflict. If Lh is holding a lock 

on the class o f Lr or on a superclass o f Lr, then there are two cases in which conflicts 

will be detected. If there exists some SCs between L r and L h, the conflict is detected 

on the first SC to Lh through the subclass chain of Lh such as SC2 in Figure. 3-l4.a 

(case 3.1). Otherwise, the conflict is detected on the class o f Lr as in Figure. 3-14.b 

(case 3.2).

SCI
(H)

SC2

SC3
(R)

SCI
(H)

(R)
SC2

SC3

Figure. 3-I4.b. Case 3.2Figure. 3-14. a. Case 3.1

case 4 ) the lock holder is an MCA 
the lock requester is art MCA

If Lh accesses the same class or superclass of L r’s class, the conflict is detected as in

either case 3.1 or case 3.2. On the other hand, if Lh accesses a subclass of the Lr’

class, the conflict is detected as in either case 2.1 or case 2.2.

From cases 1), 2), 3) and 4), for any lock requester, it is guaranteed that its

conflict with a lock holder (if any) is always detected. Also, since the proposed scheme is

based on two-phase locking, serializability is guaranteed [Eswa, 1976].

3.3.2. The correctness of nested method invocations

The proof for nested method invocations is similar to that in [Rese,I994], which is 

based on two techniques: substitution and comrmitativity-based reversals. The

101



substitution can be further divided into two techniques; reduction and expansion. 

Reduction is to transform a separated transaction t whose children are leaves to another 

transaction t ' which is the same as t except that t is substituted by the method 

corresponding to transaction t. Note that a transaction is said to be separated if no 

operations of other transactions are interleaved with its leaves. Expansion is the inverse of 

the reduction. The commutativity-based reversal is also to transform a transaction t which 

has two commuting consecutive leaves to another transaction t ’ which is the same as t 

except that these consecutive leaves are reversed.

The proof is based on the following principle [Rese,1994]: create a sequence of 

equivalent intermediate executions starting from an original execution of the proposed 

scheme and finally create a  serial execution consisting only top-level transactions. From 

original execution, a node is selected and separated by necessary commutativity-based 

reversals, and finally reduced. These separations and reductions are repeated until only 

top-level transactions are created. Thus, it is enough to show that, for any execution 

produced by the proposed semantic locking, equivalent serial execution can be obtained by 

iterations of separations and reductions from the original execution.

In each intermediate execution step, for separation and reduction, any node t is 

selected. The node should satisfy the following property: its right most child is the 

leftmost among nodes having only leaves as children. The proof is based on that it is 

always possible to separate t. It is said that an operation o interleaves within operation t if 

there are some children o f t on the leftside as well as on the rightside of the operation o 

[Rese,1994]. For an initial execution, say Eo, it is not possible that a method m can be

102



interleaved within t where m conflicts with a child o f t. This is due to the proposed 

scheme that requires m to wait until t is terminated. Thus, the concern is focused on any 

intermediate execution E;.

For contradiction, assume that, in an intermediate execution E„ t cannot be 

separated where t ’s rightmost child is the leftmost among nodes that have only leaves as 

children. This is because a child of t, say tu conflicts with and precedes v and in turn v 

conflicts with and precedes, another child of t, say tR. Since tu conflicts with v, there exists 

descendants t t ’ and v’ o f t t  and v, respectively in original execution Eo so that II’ conflicts 

with and precedes v’.

At first, it is concluded that t t ’ and v' conflict with each other on the same object 

since conflicts on different objects can not be defined due to the proposed scheme. 

Assume that there is no semantic commutativity between t t ’ and v'. Since there is a 

conflict between t t ’ and v’ by assumption, the execution of v’ can be resumed only after 

the lock set by t t ’ is released. That is, the execution o f v’ can be started only after all 

descendants o f t are finished. Thus, y can not be interleaved within the children of x. 

Assume that there is semantic commutativity between method t t ’ and v’. In this case, 

there exist some ancestor (tt’) and ancestor o f (v) and they commute with each other 

where ancestor (ti ) and ancestor (v) are ancestor of t t ’ and the proper ancestor o f v, 

respectively. Then, v’ can get a lock as long as the execution of ancestor (tt’) is finished. 

Since the method commutativity is defined on each object, the ancestor (tu’) and ancestor 

(v) are defined on the same object. But, since ancestor o f (tt’) and ancestor (v) are the 

ancestor o f ti.’ and the proper ancestor of v, respectively, the method tc is defined on

103



higher object than object on which v is defined. Similarly, it is proven that the method v is 

defined on higher object than object on which t is defined. This violates the assumption 

that a nested method is called fi’om a higher object to a lower object. Thus, it is concluded 

that, for any execution produced by the proposed semantic locking scheme, an equivalent 

serial execution can be obtained by iterations o f separations and reductions fî om the 

original execution.

104



Chapter 4

Performance Analysis by Analytical Models

In this chapter, an analytical model is constructed to measure the performance of 

the proposed concurrency control techniques. The rationales for adopting an analytical 

model for performance evaluation are as follows; an analytical model is an abstraction of a 

system that avoids unnecessary details [Lazo, 1984], Thus, an analytical modeling is to 

extract and test essential parts to the system behavior from mass of details that is the 

system itself with less time and cost. On the other hand, simulation gives accurate result, 

in a more extensive and real environment. But, it may take tremendous time to complete. 

Also, modeling gives guidelines for simulation as to which parameters are necessary, 

which system components are important, which performance metrics are needed, and 

which testing cases are should be prepared.

In order to analyze the performance o f the proposed technique, two existing 

representative technique are selected for comparison: Orion [Kim, 1990] and Malta's 

([Malt, 1991], [Malt, 1993]). The reasons to choose these two existing schemes are as 

follows. These schemes include all o f three access types in OODBs, that is, conflict among 

methods, class hierarchy locking and nested method invocations Also, those schemes 

have different characteristics for each access type. First, consider conflict among methods. 

Orion and Malta adopt an entire class object as locking granularity for class definition 

access. But, for instance access, Malta adopts attributes as locking granularity while Orion 

adopts an entire instance object.

105



Also, Orion does not provide any concurrency between an instance access and a class 

definition access while Malta does. Second, fi>r class hierarchy locking, Orion adopts 

implicit locking while explicit locking is adopted in Malta. For nested method invocations, 

both Orion and Malta do not consider parent/child parallelism. But, locks are required for 

every atomic operations in Orion while locks are required for each method invocation in 

Malta.

This Chapter is organized as follows. In Section 4.1, an analytical model for 

concurrency control for OODB is introduced. In Section 4.2, data structures to implement 

three schemes are introduced. Also, an analytical parameters are identified in Section 4.2. 

In Section 4.3, for each access type in OODB (that is, conflict among access, class 

hierarchy locking and nested method invocation), necessary analytical parameter values 

are obtained in order to measure the performance of the concurrency control techniques. 

Finally, an OODB benchmark, called 007 benchmark ([Care, 1993], [Care, 1994]), and 

analysis results based on this benchmark are presented in Section 4 4.

4.1. Analytical Model

4.1.1. A Basic Model

The analytical model is based on [Yu, 1993]. In that work, an analytical model is 

introduced for two-phase locking concurrency control with the following simple 

assumptions: each transaction can have only exclusive (write) access mode to data items. 

Also, every transaction has the same number of granule access. For access patterns, they 

assume uniform access over a set o f granules. That is, each granule has equal probability

106



to be accessed. Finally, they assume the same execution time for each granule in the 

database.

The transaction model in [Yu, 1993] is as follows; each transaction consists ofNL + 

2 states where N l is the random number o f granules accessed by the transaction (granule 

is the unit o f data to which concurrency control is applied) and L is the number o f granules 

in the database. The state 0, called initial setup phase is to generate transaction-id, 

granules and lock types for each transaction. Also, states 1 to Nl-1 are called execution 

phase. In these states, before access, conflicts are checked. If  there is a conflict, the lock 

request is denied. Otherwise, a lock is set and the data item is accessed. In state N l, called 

commit phase, each transaction releases its locks and is committed Each state i, 1< i < 

Nl-1, is divided into two substates i, and ij. In substate i,, the transaction holds i-1 locks 

and is waiting for its rth lock request to be satisfied. Let b denote the mean time in 

substate it and where b = Pw * Rw where Pw and Rw are lock contention probability and 

lock waiting time, respectively . In substate iz, the transaction holds i locks and is 

executing. Let a  denote the mean time in substate iz.

Based on the transaction model, the transaction response time is calculated as 

follows.

R = R inpl +  R e  +  N l * P w  * R w + where R is mean response time, R inpl is the 

execution time in state 0 , R e  is the sum o f execution times in states 1,..., N l, Pw is lock 

contention probability, Rw is lock waiting time for a transaction, and TeoanH is commit time 

for a transaction. Note that R inpl. R e, N l and TeoanH are constants. Thus, once the values 

of Pw and Rw are found, the mean response time R can be obtained.

107



At first consider Rw. In order to get Rw, let G be the sum of lock holding times for 

each granule over Nl granules by a transaction. Then

G = + (/ - 1)6)|+ NlC (4.1)

where c is commit time (= Teomnut)

Then, G/Nl becomes mean lock holding time overhead over N l granules. Also, Rw can be 

defined as follows.

where (i-l)b/G and ia/G are the conditional probability that a lock request contends with a 

transaction in substate ii and iz, respectively, given that lock contention occurs, 1 < i < N l, 

and N lc/ G  is the similar expression for state N l+1 .

The quantity Si is the mean time fi'om leaving state i until the end of commit and given by 

Si = ( Nl - i)(a + b) + c

Also, Rw/fi and a/fz are the mean remaining time in substate ii and iz, respectively, given 

that the transaction blocking the lock request was in that state, 1 ^ i < N l . c/fs is the mean 

renuüning time in the conurat phase pven that the transaction blocking the lock request 

was in that state. Based on these expressions, the following expressions can be induced.

+a + =  lock waiting time On substate ii) + execution time On substate iz) + mean

108



time from leaving state i until the end o f commit 

= execution time (in substate iz) + mean time from leaving state i until the end of 

commit

1 ^ 1  = commit time (i.e., = Tc«nmit)

Rw can be simplified as follows. 

Rw =
(a+bfjNi + lXï/i-i)

'c + m a^ /A )- i-ab  + a c + b c )  ̂ ^  ̂ l '

i+ .M (4.3)

Now, consider Pw Pw can be expressed as follows.

Pw = (arrival rate of lock request for a granule) * (mean lock holding time)

= {X * (NiA)} * (G/Nu) (4.4)

where X is transaction arrival rate. Note that utilization factor(or traffic intensity) =

arrival rate * mean service time [Lazo, 1984]. That is, the probability of conflict is the

same as the utilization fitctor o f the data hem.

Based on expressions (4.3) and (4.4), values of Rw and Pw can be obtained

repeatedly as follows: knowing that b = Rw * Pw, start with b = 0 to get values of Rw =

f(b) = f(0) = x(l) and of Pw = f(b) = f(0) = x(2) where x(i), i > 1, are temporary variables.

109



Then, b = x(l)*x(2). Once again, get the value of Rw = f(b) = x(3) and of Pw = f(b) = 

x(4). These iterations are continued until approximation o f  b is reached. For example. If  b 

=x(2n-l)*x(2n) = x(2n+l)*x(2n+2), then choose values o f Rw and Pw at stage n+1.

4.1.2. An Extended Model

For performance comparisons of the three techniques, the following less restrictive 

assumptions are necessary: there are only two types of transactions : lA (instance access) 

and CDA (class definition access). Also each transaction can have variable execution time 

for each granule. In addition, multiple access modes as well as exclusive access mode are 

allowed for locks. For the above assumptions, the basic model in Section 4.1.1 can be 

extended as follows [Yu, 1993].

Since there are two types of transactions, Rw and Pw can be divided further as 

follows. Let PtA be the probability that a transaction is an lA transaction. Likewise, let 

PcDA be the probability that a transaction is a CDA transaction where Pu + P cda =  1 

Also, let Pu and Pi.c be the probabilities of lock contention with lA transactions and CDA 

transactions, respectively, assuming that a lock requester is an LA transaction. Likewise, 

let Pc. I and Pc. c be the probabilities of lock contention with lA transactions and CDA 

transactions, respectively, assuming that a lock requester is a CDA transaction. Also, let 

Ri and Re be the mean wmting times ÿven that there was a contention with a lA 

transaction and a CDA transaction, respectively.

Assuming that Pwi represents the overall contention prob. o f an lA transaction and 

Rwi represents mean waiting time o f an lA transaction for all types of conflict given that 

there was a contention. Then, Pwi and Rwi can be expressed as follows.

110



P wi — Pl. I P t  c  (4 .5 )

R wi =  ( P i. i* R i  +  Pi. c*Rc) /  Pwi ( 4 .6 )

Let bi = P i. i* R i  + Pi, c*Rc and

G l =  ISO'Or +  0  -  1)* /) | +  N l*C |

where ai is the execution time for each granule for an lA transaction and Ci is commit time 

for an lA transaction.

Let Si. u  be the mean time from leaving state i% until the end o f commit for an lA 

transaction. Then,

Si.iA = (Nl - i)*(a, + bi) + C| 

and

( 4 .7 )

A/iC/ I C l  

G, IT T
(4 .8 )

Ri can be simplified as follows;

(a + 6 y (M  + lXM -l)

(A/i + //%) + o io  +& A ) / /  fA/t + l"̂  . f  A/t —I

Ri —

( 4 .9 )

111



Let Pwc be the overall contention prob. o f a CDA transaction and Rwc be mean waiting 

time of a CDA transaction for all types o f conflict given that there was a contention. Pwc 

and Rwc are expressed as follows.

Pwc = Pc, I + Pc, c (4.10)

Rwc — (Pc, i*R( + Pc, c*Rc) / Pwc (4.11)

Let be = Pc, i*Ri + Pc, c*Rc and

Gc — + (f -  l)Ac)| + Nl*Cc

where ac is execution time for each granule for a CDA transaction and Cc is commit time 

for a CDA transaction.

Let Si,cDA be the mean time from leaving state i% until the end o f commit for a CDA 

transaction. Then,

Si,cDA = (Nl - i)*(ac + be) + Cc (4.12)

and

Rc can be simplified as follows:

(qc+dc)^(M-HXM-D /

+ / fi)-i~bcRm:+acbc + acbc’t-bcCc)  ̂ I+6e| ’ 1 +

112



— acbc — 6cG r1
+ Cc

(4.14)

The values of bi and be can be obtained repeatedly as follows:

step 1) Start with bi = be = 0

Ri = f(bi, be) = f(0,0)
Rc = fÔh, be) = # 0 )
Pu = f(bi) = f(0)
Pea = fÔîi) = f(0)
P ic = fOîc) = f(0)
P ee = fÔîc) = f(0)

Then, get the new values of bi = Pli * Rj + Pi.c*Rc and be = Pc.i*Ri + Pc.c*Rc

step 2) With the new values o f bi and be obtained in step (1), compute:

Ri = f  (bi, be)
Rc = f  (bi, be)
Pu =fC>i)
Pea “ f  (bi)
Pi.c — ^(bc)
Pc. c = f  Ô c)

Get the new values of bi = Pm * Ri + Pie*Rc and be = Pe.i*Ri + Pc.c*Rc

step n) With the new values o f bi and be obtained in step (n-1), compute:

R i =  f  (bi, be)
Rc ~ f  (bi, be)
Pu =f(bi)
Pea = f  (bi)
Pi,c =f(be)
Pc,c =f(bc)

Get the new values of bi = Pm * Ri + Pi c*Rc and be = Pc i*Ri + Pc c*Rc

If bi = bi (of step n-1) and b e  = b e  (of step n-1), then choose the values o f bi and be of step 
n.

113



Let RESi and RESc be the response times o f lA transaction and CDA transaction, 
respectively. Then,

RESi = tirt + Nt*ai +  Nl*(Pi. i*Ri + Pi. c*Rc) + c, (4.15)

RESc = tw + Nt*ac +Nl*(Pc i*Ri+ Pc. c*Rc) + Cc (4.16)

Then, the overall response time RES is expressed as follows 

RES = + (4.17)
PtA +  PcOA

4.2. Analytical parameters

In this section, in order to  get necessary analytical parameter values such as mean 

lock waiting time and mean conflict probability, data structures used for implementation 

are presented. Also, a  complete analytical parameter table is constructed. Finally, 

analytical parameter values are obtained.

4.2.1. Lock tables

For an implementation o f  the lock table, the following data structure is assumed (in 

Figure 4-1): each class has B buckets for maintaining lock tables for instances where the 

parameter B is chosen by the application programmer. The reason for adopting buckets is 

to reduce search tim e for a  particular instance. Assume that, for each class and each 

instance, tw o pointers X  and Y  are used and each pointer takes one M M  (main memory) 

word to point transactions holding locks where X  and Y  are pointers for the first lock 

holding transaction and for the last lock holtfing transaction, respectively. Also, assume

114



that, for each bucket, two pointers X’ and Y* are used to point the first instance accessed 

and the last instance accessed, respectively.

bucket I

bucket B

X- -4 1, (lock mode)n— > ......................  —ajtK (lock mode) I v p
2C

X'

Y X Y X

t| (lock mode)! -I— * ..............  — ^t, (lock mode)

Figure 4-1. illustrative lock table structure for three technique implementations

In Figure 4-1, for each class and each instance, two pointers are used for the lock 

holding transactions so that searching for any particular transaction can be done either 

forward traversal or backward traversal. By doing this, the search time can be reduced 

significantly than sequential search. Likewise, for each bucket, two pointers are used for 

the same purpose. A lock format o f each lock holding transaction consists o f a 

transaction-id, lock mode and pointer to the next lock holding transaction. Note that, in 

Figure 4-1, t; and v represent a transaction-id and nil pointer, respectively.

For the commutativity table, Orion and the proposed scheme use the same ones 

introduced in Chapter 3. But, for Malta’s technique, the following commutativity tables 

are used.

-instance (Assume that there are Nm methods in each class)

115



M i M z . . . . -  N n„
M l Y N Y
M z N Y N

Mnbi Y N .... ... Y

Table 4-1. Commutativity table for instance access in Malta’s work 

Also, for the commutativity table for both instance access and class definition 

access is as follows (Table 4-2). Let I denote an instance access method. Let RD and MD 

denote read class definition and modify class definition, respectively. A means that 

commutativity depends on instance method commutativity.

I RD MD

I A Y N
RD Y Y N
MD N N N

Table 4-2. Commutativity table for instance access and class definition access in Malta’s 
work

The lock table is same as the Orion, but each lock mode is replaced either by a 

method name (if the lock requester is an instance method) or by a lock mode e  {RD, 

MD} (if the lock requester is a class definition access method).

4.2.2. Analytic Parameters

Table 4-3 shows the complete analytical parameter table for the analytical model 

In order to compare three techniques using real values of analytical parameters, a 

representative benchmark, called 007 ([Care, 1993], [Care, 1994]).

Parameters Description Default value
Number of atomic operations in a method 4

116



b mean lock waiting time calculated
B Number o f buckets 5
BASIC_OP Time to perform one basic operation 0.000007 ms 

(Huan, 19951
D class hierarchy depth 3
L Number of instances in a database 42100
Le levels in composite object hierarchy 3
MM
ACŒSS

One main memory word access time 0.0922 ms 
fHuan, 19951

Mp Multiprogramming number X*(tm,+Nc*x)
N a Number of attributes in a class 5
Ne Number of classes in a class 10
Ng Number of granule accesses per transaction 3.95
Ni Number of instances in a class 4210
Ncxjm Number o f objects accessed by a nested method 4

NUM_INST Number of instances in a bucket M p * N g/ ( 2 * B * N c )
NUM_
IKANSttass

Average number o f  transactions holding locks on 
a class

M p * N g/N c

NUM_
i k ANSinsx

Average number o f transactions holding locks on 
an instance

M p* N g/ ( N c* N i)

Num br number of breakpoints in an instance method 1
PlA prob. of instance access transaction 0.9
PCDA prob. of class definition access transaction 0.1
Pr prob. of instance read 0.72
Piw prob. of instance write 0.18
PCDR prob. of class definition read 0.05
PcDW prob. of class definition write 0.05
PcDR_RC prob. of class definition read for class 

relationship
P cdr* 0 .2 5

PcDR-RM prob. of class definition read for method P cdr* 0 .5

PcDR RA prob. of class definition read for attribute P cdr* 0 .2 5

PCDW-WC prob. of class definition write for class 
relationship

P cdw* 0 .2 5

PcDW WM prob. of class definition write for method P cD w *0.5

PcDW WA prob. of class definition write for attribute P cdw* 0 .2 5

X transaction arrival rate 500 (200-700)
X execution time for each granule 2 ms
S number of attributes accessed in an instance 

method
4

tlœk time to get a lock calculated
toonmit time to commit a transaction calculated
tbRabKnit time to record breakpoints in a method calculated
tte time to initialize a transaction 0.0072ms

117



I X execution time for each granule 2 ms |

Table 4-3 . Analytical parameter table 

The parameters tiock> .t, and timkpate are calculated based on each algorithm 

shown in Section 4.2.1 and the lock table and analytical parameters shown in this section. 

Detail steps to calculate each parameter are found in appendix.

tiock (Orion)

=[12+ 10*NUM_TRANSo .ass+Pu *I7+2*NUM_INST + 7*NUM_TRANSinst1I*MM_ACCESS 
+[6+17*NUM_TRANS(xass+  Pia*I9+2*NUM_INST + 1 l*NUM_TRANStNST]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass = Mp*Ng/N c,

NUM_TRANSinst = M p * N g /(N c * N i)  where NUM_INST is number o f  buckets,

NUM _TRANSclass is the average number of transactions holding locks on class,

NUM_TRANSinst is the average number of transactions holding locks on instance, and

Mp is the average number of transactions in the system. Let tioct. ia (Orion) and tioct co.\

(Orion) be times to get a lock by instance access transaction and class definition access

transaction, respectively. Then,

tiock, IA (Orion) = tiock(Orion) where Pia = 1

tiocfc, CDA (Orion) = tiock(Orion) where Pia = 0

tcommi, (Orion)=

N g*[6+2*NUM _TRANSclass+P ia*2*NUM_TRANSinst+P ia*[4+NUM _INST*2] + 
[AT-l]*Pu*[NUM_TRANSiNsr*2+3]]*MM_ACCESS
+Ng*[6+2*NUM _TRANSclass+P ia*2* N U M .TR A N S inst̂ - P ia*[9+NUM _INST*2]+ 
[A T-1]*Pu *(NUM _TRANS inst*21]*BASIC_0P

118



where NUM_INST = Mp*Ng/(2*B*Nc), NTJM_TRANSclass = Mp*Ng/(2*Nc), 

NUM_TRANSinct = Mp*Ng/(2*Nc*N,)

Let Cl (Orion) and cc (Orion) be commit times taken by an instance access transaction and 

a class definition access transaction, respectively, in the Orion technique.

Ci(Orion) = tcommit (Orion) where Pu = 1 
cc(Orion) = tcommit (Orion) where ?u  = 0

Time to get a lock in the Malta’s technique:

tiock (Malta) =

=[12+8*NUM_TRANSclass+Pu *[8+2*NUM_INST+NUM_TRANSinst*[10+Nm/26]]*MM_AC
CESS+[6+I3*NUM _TRANSclass+Pu *[9+2*NUM_INST+NUM_TRANS[nst*[17+Nm/26*2]]*
BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass = Mp*Ng/Nc, 

NUM_TRANSmsr = Mp*Ng/(No*N,)

tiock, IA (Malta) = tiock (Malta) where Pu = 1 

tiock, CDA (Malta) = tiock (Malta) where Pu = 0 

tcommit (Malta)=
=Ng*[6+2*NUM_TRANS(xass+2*Pu *NUM_TRANSdot+Pu*[4+NUM_INST*2]]* 
MM_ACCESS+ Ng*[6+2*NUM_TRANSclass+2*Pu *NUM_TRANSinst 
+Pia*[9+NUM_INST*2]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass = Mp*Ng/(2*Nc), 

NUM_TRANSinct = Mp*Ng/(2*Nc*N|)

Q ^ialta) = tcommit ^ a l ta )  where Pu = 1 

Cc(Malta) = tcommit (Malta) where Pu = 0

119



In the proposed technique, tiock (Proposed) is represented as follows, tiock. ia 

(Proposed) tinmock (Proposed) ti«ci[poû% tdangciock where Pia I» tûuwock» tincakpomt and 

tchwigeioGk represent time to get initial lock in instance access, time to record a breakpoint 

during method invocation, time to change locks after method invocation, respectively. 

Also, tiodbCDA (Proposed) = tmî ock (Proposed) where Pia= 0 

tinit'iockj tbfcakpoint and tdmgciock have the following values.

Thus, tinit-iock (Proposed)
= [12+I2*NUM_TRANSclass+Pia*[8+2*NUM_INST+ NUM_TRANSofin-*(10+NM/26]]]* 
MM_ACCESS +[6+[19+t*2]*NUM_TRANScLAss+PiA*[9+2*NUM_INST+NUM_TRANSiNST 
*[I5+NM/26*2+t*211*BASIC_OP

where NUM_INST = M p*Ng/(2*B*N c), NUM _TRAN Sclass 5  M p*Ng/N c, 

N U M _T R A N S inst = Mp*No/(Nc*N|), t  = num_br*P|+NA*Pc

tbceakpoint = [5*uum_br + 3]*MM_ACCESS + [num_br*7 + 5]*BASIC_0P

tclungclock~ [5 +
2*NUM_TRANScLAss+2*NUM_TRANSiNsr+2*NUM_INST]*MM_ACCESS

+

[ 15+2*NUM_TRANScLAss+2*NUM_INST+2*NUM_TRANSwsr] *B ASIC_OP 

Thus, tiock (Proposed) = tkck(Proposed) + ti*«.kpow + tckngeiock

= [28+I4*NUM_TRANSclass+4*NUM_INST+ NUM_TRANSwsr*[12+NM/26]+5*num_br]* 
MM_ACCESS+[35+(2l+t*2]*NUM_TRANScLAss+4*NUM INST+NUM_TRANSinst*[17+Nm/ 
26*2+t*2+num_br*7]*BASIC_OP

Also, tcomnH (Proposed) has the following value.

(Proposed)*
*No*[6+2*IWMjrRANScLASS+2*Pu*NUM_TRANSiNsrr+PiA*[4+NUM_INST*2]]* 
MM_ACCESS +No*[6+2*NUM_TRANSclass+ 2*Pu^*NUM_TRANSinst + 
Pia*[9+NUM_INST*2]]*BASIC_OP

120



[ w here N U M _IN ST =  M p*No/(2*B*Nc), NUM_TRANSclass = Mp*No/(2*Nc),

N U M _TRAN Swsr = Mp*Ng/(2*N c*N,)

Thus,

ci(Proposed) =  tcommit (P roposed) w here P u  =  1 

Cc(Proposed) =  tcommit (Proposed) w here P u  =  0

4.3. Analysis for each access type

In this section, fo r each access type (i.e., conflict am ong methods, class hierarchy 

locking, and nested m ethod invocations), mathematical formulas for transaction response 

tim e are obtained for each technique.

4.3.1. Analysis for Conflict among methods

4.3.1.1. Response time without blocking

I f  there  is no blocking, then Pw =  Rw =  0 . Let Rx. u  and Rx. cda represent response times 

o f  an instance access (IA ) transaction and a  class definition access (CDA) transaction o f  

technique X, respectively. Then, each technique has the following response time for an IA  

transaction. N ote that Ci (X ) is defined in Section 4.2.2.

Rorion, ia =  tm, +  AT*Nl*(x +tiock. IA (OMon)) +  c  (Orion)

R m alta .ia  — tini + Nl*(x +  tiQcfc, u  (Malta))+q  (Malta)

Rproposed. u  =  t«i +  Nl*(x+ tiock. lA ̂ roposcd))+C i (Proposed)

Also, each technique has the  following response time for a  CD A  transaction. Also, note 

th a t Cc (X ) and t;.* , cda (P roposed) are  defined Section 4.2.2.

Rorion, cda ~  tmi +  Nl*(x +tiock.cDA (O rion))+ cc (Orion)

121



Rmalta. cda =  tint +  N l*(x +  tiock. CDA (M alta)) +  Cc (M alta)

Rproposed. CDA =  tint +  N l*(x +tiock.cDA (Proposed))^ cc (Proposed)

Finally, each transaction has the following response tim e for bo th  types o f  transactions. 

R o rio n  =  P ia*  R o rio n . ia  +  P c d a  *Rork)n. c d a  

R m a l ta  =  P u  * R m a l ta .  u  +  P c d a  * R m a l ta  c d a  

R proposed = P u*  R proposed . u  +  P cda*  Rproposed. c d a

4.3.1.2. Response time with blocking

I f  blocking is possible, the response time for each technique is as follows

a) Orion

Pli = {>. *G|/N,*Nc}* P u*  {2*Pr *Pw  + Pw *Piw}/(Pir+P iw)"

P l c  ~  {X *G c /  N c } * P cda  * {PcDw +  P cdr* P iw}/ (P cda  +  P u ) ^

P c . I ~  {A ,*G i/N c}*  P u  * {P cD w +  PcDR*Piw}/ (P cda +  P u ) ^

P c .c =  {A,*Gc/Nc}* P cda* { 2 * P cdr*Pcdw + P cdw* P cd w } /  (P c d r "*" P cdw)^

Gi = *ai (O rion) +  *bi +  Nl*ci

Gc = *ac (O rion) +  *bc +  Nl*Cc

w here ai(Orion) and ac(O rion) represent the execution tim es o f  each method by an IA  

transaction and a  C D A  transaction, respectively.

L et RES i and R E Sc be the response times o f  an IA  transaction and a CDA transaction, 

respectively. Then

R ES i =tiot + NL*ai (O rion) + N l*(Pli*Ri + Pic*Rc) + Q (O rion)

RESc = tiot +  NL*ac (O rion) +N l*(Pc.i*Ri+ Pc.c*Rc) +  Cc (Orion)

122



f
\

The overall response time RES is 

RES=
P u  +  P au

b) Malta

Pli =  {X *G i /N,*Nc}*Pia * {2*Pr *Piw * (S/A)^+Piw*Piw*(S/A)"}/{(Pni+Pnv)" *(S/A)} 

P ic  =  {X*Gc /  Nc} *PcDA*PcDW /  (Pcda + Pia)^

Pc.I =  {X*Gi /  Nc }* Pia *Pcdw /  (Pcda +  P ia)^

Pc,c =  {X*Gc /  Nc }*Pcda* {2*Po3r*Pcdw + Pcdw*Pcdw}/ (Pcdr+Pcdw)^

G[ = *ai (Malta) + — *b, + Nl*ci (Malta)

Gc = *ac (Malta) + *bc + Nl*Cc (Malta)

where ai (Malta) and ac(Malta) are the execution times of each method by an IA 

transaction and a CDA transaction, respectively.

Let RESi and RESc be response time of IA transaction and CDA transaction, 
respectively. Then

RESi = tint + Nt*ai (Malta) + Nl*(Pl i*Ri + Pi c*Rc) + Q (Malta)

RESc = tint + NL*ac (Malta)+Ni*(Pc. i*Ri+ Pc. c*Rc) + Cc (Malta)

The overall response time RES

Pu* RESi ^  Pau* REScRES =
P u  +  P au

c) The proposed scheme

P ii=  {X *Gi/N|*Nc}*Pu * { 2 * P ir* P iw * (S/A)^/(0.9*num_br) + 

Piw*Piw*(S/A)V(0.9*num_br)}/(Pni+Piw)^*(S/A)

Pic = {X*Gc / Nc}* P cda * {Pcdw-wc +  P cdw-wm* (1 /N m^) +  P cdw-wa* (S /A )}  /  ( P cda '^'Pu )^

123



P c  I — {^*G i/ Ne}* P u  * {PcDw-wc +  P cdw-wm*(1/N m^) + Pcdw-wa*(S/A )} /  (P cda+Pu )^

P c c  — * G c /N c}* P cD A  * [PcDR_RC*PcDW_WC +  PcDR_RM *{PcDW WC +  PcDW_WM*

(1/Nm**2))+Pcdw_wa*(S/A)}+Pcdr_ra*{Pcdw_wc+ P cdw_wa* (1 /A * * 2 )}  +

PcDW_WC*{PcDR_RC+PcDR_RM +  PcDR_RA +  PcDW_WC +  PcDW_WM+ P cDW_Wa } +

PcDW_WM* {P cDW_WC+PcDW_WM*(1/Nm * * 2 ) )  +  P cdW_WA*(S/A) +  PcDR_RM* 
(1 / N m * * 2 )}  + PcDw_WA * {PcDW_wc +  P cdw_wm* (S /A )+ P cdw_w a* ( 1 /A * * 2 )  
+ P cdr_rm * (S /A )+ P cdr_ra* ( 1 /A * * 2 ) } ]  /  ( P cdr+ P cdw)^

Gi = ^  (Proposed) + — ~ —— *bi +  Nl*ci (Proposed)

Gc = ^  *ac (Proposed) +  ^  —— *bc + Nl*Cc (Proposed)

where a,(Proposed) and 3c(Proposed) are the execution times o f  each method by an IA

transaction and a  CDA transaction, respectively.

Let R ES i and RESc be the response times o f  an LA transaction and a CDA transaction, 

respectively

RESi =  tirt +  Ni,*ai (Proposed) + Nl*(Pi, i*Ri +  P i c*Rc) + Ci (Proposed)

RESc =  tint +  Nl*3c (Proposed) +Nl*(Pc  i*Ri+ Pcc*Rc) + Cc (Proposed)

The overall response time RES is 

Pu* RES,-k-Pa»* REScRES =
P u  +  Pea*

4.3.2. Analysis for Class hierarchy locking

For the analysis for class hierarchy locking, we have the following assumptions 

- the fan-out o f each class (the number o f subclasses of a class) is F (default)

124



- the class hierarchy depth (level) is D. Thus, the average level in the class hierarchy 

requested by a transaction is Ad =  [(D + I)/!!  (i.e, in the middle o f  the class hierarchy).

tiock-cHL and tcgout-cHL, for each class hierarct^ locking, can be obtained as follows; Let C[. 

CHL (X) and Cochl (X) be the commit time o f an IA transaction and a CDA transaction, 

respectively, for class hierarchy locking technique X

a) Orion (Implicit locking)

Assume that N  is the number o f  locks required ( including intention locks). 

tiock-cHL, (Orion) =
=[12+10*N*NUM_TRANScLAss+PtA*[7+2*NUM_INST+7*NUM_TRANStt4yr]]*N* 
MM_ACCESS+[6+17*N*NUM_TRANScLAss+PtA*[9+2*NUM_INST+l I * 
NUM_TRANSwsr]] *N*BASIC_OP

where NUM_INST =  M p*Ng/(2*B*Nc), N U M JIR A N S class = Mp*Nc/Nc,

NUM_TRANSiNsr = M p*Ng/(N c*N i)

tiock-cHuiA (Orion) = tiock(Orion) where Pu = 1; tiock<m,cDA (Orion) =  tiodc(Orion) where P u  
=  0

tcomnil-CHL (Orion)
Ng*[6+2*N*NUM_TRANSclass+Pu *2*NUM TRANSb,st+Pu *[4+NUM_INST*2]+[AT- 
l]*Pu*(NUM_TRANSttBT*2+3]]*N*MM_ACCESS +Nq*[6+2*N*NUM_TRANSclass+Pu *2* 
NUM_TRANSDBT+Pu*[9+NUM_INST*21+[AT-Il*Pu*[NUM_TRANSn®r*21]*N*BASIC_OP

where NUM_INST = M p *Ng/(2*B*N c). N U M _TRA NSclass = Mp*No/(2*Nc),

NUM_TRANSiNsr 5  Mp*No/(2*Nc*N,)

CKHL(Orion) =  (O rfon) where P u  = 1; Ccoa.(O rion) =  tco«mit-cHL (Orion) where
P u = 0

b) M alta (Explicit locking)

125



Let N be the number o f locks on classes (including locks on subclasses) 

tlock-CHL, IA (Malta) =
=[12+8*NUM_TRANSclass+Pia*[8+2*NUM_INST+NUM_TRANSinst*[10+Nm/26]]]*
MM_ACCESS+[6+13*NUM_TRANSclass+Pia*[9+2*NUM_INST+NUM_TRANSinst*
[17+Nm/26*2]]]*BASIC_OP

w here N U M _IN ST  =  M p*No/(2*B*Nc), NUM _TRANSclass =  Mp*Nc/Nc,

NTJM JTRAN S inst =  M p*Ng/(N c*N i)  w here P ia =  1

tiodc-cHL. CDA (Malta) =
=[[12+8*N U M _TR A N Sclass+P ia*(8+2*NU M _IN ST+NU M _TRANSd«ist*[10+N m/26]]]*
[Pcdr+P cdw*N ]/Pcda] *MM ACCESS
+[6+13 ♦ N U M _ T R A N S class+P ia*[9+2*NU M _IN ST+2*
NUM_TRANSiN5rr * [1 7 + N m/2 6 * 2 ] ] ] * [ P cdr+ P cdw * N ] /  P cda *BASIC_0P

where N U M _IN ST  =  Mp*N<j/(2*B*Nc), NUM _TRANSclass =  Mp*No/Nc,

NUM_TRANSdmst =  Mp*Ng/(Nc*N,) where P ia =  0

Ci-cHL (Malta)=
NG*[6+2*NUM_TRANScLASs+PiA*2*NUM_TRANSiNsr+PiA*[4+NUM_INST*2]]* 
M M _A CCESS+Ng*[6+2*NUM _TRA NSclass+Pia*2* NUM _TRANSinst+ P ia* [9 +  
NUM _ESrST*2]]*BASIC_0P

w here NUM_INST =  M p*Ng/(2*B*N c), N U M _TRA N Sclass = M p*Ng/(2*N c), 

N U M _TR A N S inst =  Mp*No/(2*Nc*Ni) w here P u  =  1

Cc-cHL (Malta)=
N g*[6+2*NUM_TRANS<xass+Pu *2*N UM _TRAN Swsi+ P u *[4+NUM _INST*2]] 
*[Pcdr+Pcdw*N ]/ Pcda *M M_ACCESS+Ng*[6+2*NUM _TRANSclass+Pu *2* 
N U M JT R A N S inst̂ - P u *[9+NU M _IN ST*2]]*[Pcdr+Pcdw*N]/Pcda *B A SIC _0P

where NUM_INST =  Mp*Ng/(2*B*Nc), N U M JTR A N Sclass =  M p* N g/ ( 2 * N c ) ,

N U M _TR A N Sinst =  Mp*Ng/(2*Nc*Ni) w here P u  =  0

c) The proposed scheme

126



Let N  be all locks required (including intention locks and locks on subclasses). In this 

analysis, only locks on subclasses are assumed for simplicity.

tiocfc-cHL, iA(Proposed)=
= [28+l4*NUM_TRANScLAss+4*NUM_INST+NUM_'niANSiNsr*[12+ Nm/26] 

+5*num_br]*MM_ACCESS+[35+[21+t*2]*NUM_TRANScLASs+4*NUM_INST+ 
NUM_TRANSwin-*[I7+NM/26*2+t*2]+num_br*7*N*BASIC_OP

w here P ia=1 and NUM_INST =  M p*Ng/(2*B*Nc), N UM _TRA N Sclass =  Mp*Ng/Nc, 

NUM_TRANSmsr = Mp*Ng/(Nc*Ni), t  =  num_br*Pr»-NA*Pc

tlock-CHL, CDA (Proposed) =
[12+12*N U M _TRAN Sclass+P ia*[8+2*N U M _IN ST+N U M _TRA N S inst*[10+N m/26]]]*[ 
PcDR+P cdw*N]/Pcda *M M _ACCESS 
+[6+[ 19+t*2]*NUM_TRANScLAss+PtA*[9+2*NUM_INST+ 
NUM_TRANSw!rr*[15+NM/26*2+t*2]]]* [Pcdr+Pcdw*N]/Pcda*BASIC_OP

w here NUM_INST = M p*Ng/(2*B*N c), NUM _TRA N Sclass =  Mp*No/Nc,

NUM_TRANSinst = Mp*Ng/(Nc*Ni), t  =  num_br*Prt-NA*Pc w here Pia =  0

ci-cHL(Propcsed) =
N g*[6+2*N U M _TRAN Sclass+P ia*2*NUM _TRAN S inst+Pu *[4+NU M _IN ST*2]]*M M
reads
+N g*[6+2*NUM _TRANSclass+P ia*2*N UM _TRA N S inst+P ia*[9+NUM _IN ST*2]]*BA
SIC_OP

where NUM_INST = Mp*No/(2*B*Nc), N UM _TRANSclass = Mp*Ng/(2*Nc), 

N U M _TR A N Sinst E Mp*Ng/(2 *Nc*N|)

<fecHL(Proposed) =
No*[6+2*NUM_TRANSclass+Pia*2*NUM_TRANSi>«t+P ia*[4+NUM_INST*2]]*(Pcdr+
PcDw*N]/PcDA*MM_ACCESS+No*(6+2*NUM_TRANScLAss+PiA*2*NUM_TRANSiNsr+-
Pia*[9+NUM_INST*2]]*[Pcdr+Pcdw*N]/Pcda*BASIC_OP

127



where NUM_INST = M p*N g/(2*B *N c), N U M _TRA N Sclass = M p*Ng/(2*N c), 

NUM_TRANSiNsr 5  Mp*No/(2*Nc*Ni)

4.3.3. Analysis for nested method invocations

For analysis for nested method invocations, consider the following assumptions;

- There are Lc levels in the composite object hierarchy.

- For each instance access method accessing a composite object, there are Fc number of 

method invocations to subobjects in the composite object hierarchy. Thus, for each 

instance access method invocation on the top-level composite object, there are N c o m  =

1+ Fc + (FcŸ +.... + (Fc)^ number o f objects accessed

- For the analysis o f the proposed technique, semantic commutativity is not considered for 

simplicity.

- Instance access methods are only considered in order to simplify analysis.

Assume that the same lock table is used as in Figure 4-1. In calculating the 

analytical parameter, tiock-NMi and tcoomt-NMi where tiock-NMi and tcommit-NMi are time to get a 

lock by a nested method invocation transaction and time to commit by a nested method 

invocation transaction, respectively, the detail steps to calculate each parameter are found 

in the appendix.

a) Orion

tiock-NMi (Orion) =
= [18 + 2*NUM_INST + 7*NUM_TRANSwst]*MM_ACCESS 
+ [15 + 2*NUM_INST + 1 l*NUM_TRANSiNsr + Nm/26*2]*BASIC_OP

128



where NUM_INST M p*Ncom/(2*B*N c), and N U M _TR A N S inst =  Mp*Ncom /  (Nc*Ni)

tcaanit-NMI (Ofion)=
NcoM*[9+2*NUM_TRANScLASS+2*NUM_TRANSiNsrr+2*NUM_INST+[AT-
1]*[2*NUM _TRANS insi+3]]*M M _A CCESS
+ N com*[15+2*N U M _TRAN Sclass+  2*NUM_TRANSiNsr +  2*NUM_INST+[AT- 
1]*[2*NUM _TRANS inct]]*B A SIC _0P

where NUM_INST = Mp/(2*B*Nc), N U M JTRA N Sclass 5  M p*Ng/(2*N c), 

NUM_TRANSoot = Mp/(2*Nc*N,)

b) Malta’s 

tiodc-NMi (Malta) =
= [18 + 2*NUM_INST + NUM_TRANSn«rr *[1 0 +  N m /26]]♦MM_ACCESS 
+ [15 +  2*NUM_nsrST +  NUM _TRANSinst [17+ N m /26*2]]*BASIC_OP

where NUM_1NST M p * N com/ ( 2 * B * N c ), and NUM_TRANSmsr = Mp*Ncom / (2*Nc*Ni)

Icammit-NMI (hdalta^~
NcoM*[9+2*NUM_TRANScLASs+2*NUM_TRANSw«n+2*NUM_INST]*MM_ACCESS 
+Ncom*[15+2*NUM _TRANSclass+2* N U M _TRA N S inst+  2*NUM_INST]*BASIC_0P

where NUM_INST = Mp/(2*B*Nc), NU M _TR A N Sclass = Mp*Nc/(2*Nc),

NUM_TRANSiN!rr =  M p/(2*N /N ,)

c) The proposed scheme

In the proposed scheme, tiock-NMi (Proposed) tiMt>iadc-NMi + hMakpaint-NMi + tchangeiock-NMi> Each

o f  tinit-ladc-NMI» Ibmkpoiat-NMI +  tchuifdaek-NMI IS aS foUoW S.

tôiit-lock-NMI
= [18 + 2*NUM_INST + NUM_TRANSAn«r *(10+Nm/26 ]]*MM_ACCESS 

+ [15 + 2*NUM_INST + NUM_TRANSn«r *[17+ Nm/26*2]]*BASIC_OP

ttMcakpomt-NMI ~

= [9*num_bi+(num_br+1 )* N com+  12] *MM_ACCES S 
+ [9*num_br + (2*num_bi+2)*NcoM+7]*BASIC_OP

129



tchingeiock'NMI

= [5 + 2*NUM_TRANScLAss+2*NUM_TRANSiNsr+2*NUM_INST]*MM_ACCESS 
+ [ 15-i-2*NUM_TRANScLASs+2*NUM_INST+2*NUM_TRANSDisr]*BASIC_OP

tconout-NMi (Proposed)^
NcoM*NcoM/2*[9+2*NUM_TRANScLAss+2*NUM_TRANSn«n+2*NUM_INST]
*MM_ACCESS
+Ncom*Notm/2*[15+2*NUM_TRANSclass+2* NUM_TRANSinst+ 2*NUM_INST] 
♦BASIC_OP

where NUM_INST = N com* M p * N g/ ( 2 * B * N c) ,  N U M _ T R A N S class =  N com * Mp/(2*Nc), 

NUM_TRANSnsisr = N com* M p/ ( 2 * N c* N i)

In order to find the response time for each technique, it is sufficient to find Pw and 

Rw of each technique. The same notations are adopted as in Section 4.1.

a) Orion

G =  (/ -  1)6)| +  Ncm*C

where a = x (i.e., execution time for each granule) and c = tcommit-N\n (Orion)

(a4-6)^(AL.+ lXM_-1)
Rw =

— — —Qo —6c

Pw — {X* (N com/L)}*{G/N com}*(2*Pr *Piw+ Ptw*Piw)/ (P ir+Piw)^

130



T hus, ReSoiian — tail +  (X+AT*t|ock-NMl(Orioil))*NcOM Ncom*Pw*Rw+ tconnnit-NMI (O rioil)

b) Malta’s

G = j S / a +(I - 1)6)| + Nco«*C

where a = x (i.e., execution time for each granule) and c = teonmit-NMi ( Malta)

(M-i + l)((a^/ fz)+ab+ac-i-bc)/H ^)—-{VX'-T-Jl
I ——  üb — be /

Pw = {X* (N comÆ .)} * { G /N com} * { 2 * P ir* P iw* (S /A )^  + Pw*Piw*(S/A)"}/{(Pir+Piw)^ 
*(S/A)>

Thus, ReSmmh. = tiBit + (X+t|ock.NMl(Malta))*NcOM + NcOM*Pw*Rw+ tcommit-N\D (Malta)

c) The proposed scheme 

G = I  £ ( ia +(/ -  l)ft)|+ N««*(2:(ia+(1-1)6)
li=l J

where a = x ^.e., execution time for each granule) and c = tconnit-NMi (Proposed)

(a+byiU+lXLc-D 
Rw= ®

131



' , (£ c  +  l)((a ^  /  / i )  +ab  + a c + 6 c )

Pw = {X* (N <W L )}*{G /N com} {2*Pk *P iw * (S/A)V(0.9*num_br) + 

Piw*Piw*(S/A)V(0.9*num_br)}/(PR+Piw)^*(S/A)

RespROPosED =  tinit +  (x+tiock-NMi (P roposcd))*L c+ Lc*Pw*Rw +  tcommit-NVD (P foposed)

4.4. Analysis

In this section, the performance o f the three techniques are evaluated based on the 

analytical results using the 007 benchmark. The performance for access type as well as 

the overall performance are presented.

4.4.1. Conflict among methods

As can be seen in Figure 4-2, as instance write ratio increases, transaction response 

time increases since the probability o f conflict becomes higher. The possible conflicts 

include conflicts between instance reads and instance writes (in all schemes) and between 

instance write and class definition accesses On only Orion). Analysis for each technique is 

as follows: in Figure 4-2, as instance write ratio increases, Orion performs worst. This is 

due to the fiict that, in Orion, their locking granularity for instance access is an instance 

object and also a lock is required whenever an atomic action is invoked during an instance

132



access method invocation. In Malta’s work, they adopt attribute as locking granularity for 

an instance access and a lock is required for an instance access method invocation. As in 

Malta’s, the proposed technique adopts attribute locking granularity and a lock is required 

for each instance access method invocation. In addition, dynamic information is adopted 

to increase concurrency among methods in the proposed scheme. As Figure 4-2 shows, 

since Orion’s performance 611s dramatically as instance write ratio increases, relative 

performance o f Malta’s and the proposed scheme is insensitive.

(Conflict among methods) 
Varying instace read to write ratio

0.6 0.5 0.4 0.3

0.3 0.4 0.5 0.6 0.7

instance read to w rite ratio

0.2 0.1 0.0

0.8 0.9 1.0

. . . . . . .  Orion

 Ftoposed

Figure 4-2. Varying instance read to write (Conflict among methods)

In Figure 4-3, as the class definition write ratio increases, the proposed scheme 

performs best and Orion does worst. This is due to the 6 c t that, in Orion, class definition 

reads conflicts with instance writes. In Malta’s work, they provide concurrency between 

instance writes and class definition reads, but their locking granularity for class definition 

access is still an entire class object. In the proposed technique, unlike other work, class

133



definition write access may nin concurrently with other class definition access or instance 

access as long as they access disjoint sets of objects. As class definition write ratio 

increases, the difiference become increases.

Figure 4-4 shows testing case of varying arrival rate. The higher arrival rate means 

the bigger load in the qrstem. In turn, the bigger system load results in more conflicts on 

shared resources such as CPU or data items among transactions so that transaction 

response times become higher. As shown in Figure 4-4, when the system load is light, 

there is no clear winner among the three techniques. But, when the load is heavy, Orion 

and Malta perform worse. The proposed technique is immune to arrival rate due to higher 

concurrency than other schemes. Especially, Orion’s performance becomes worst due to 

its big locking granularity for instance access and class object and low concurrency among 

its lock types.

(Conflict among methods)
Varying dass definition read to write ratio

S i  8.15

0.3 0.2 0.1 0.0

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Class dsllnilion read to writ* ratio

Figure 4-3. Varying class definition read to write ratio (Conflict among methods)

134



(Conflict among methods) 
Varying arrivai rate

Ornn

m

Arrival rata

Figure 4-4. Varying arrival rate (Conflict among methods)

4.4.2. Class hierarchy locking

Figure 4-5 shows testing case o f varying class definition read to write ratio. As the 

ratio increases, transaction response times become higher. This is due to the fact that, as 

the ratio is increased, the conflicts among transactions are also increased. When class 

higher locking is considered, as the ratio is increased, Orion, which adopts explicit 

locking, incurs higher overhead since locking overhead for MCA access is increased. 

Likewise, Malta’s scheme, which adopts implicit locking, incur higher overhead since 

locking overhead due to intention locks is increased. Thus, both schemes is very sensitive 

to the ratio change. On the other hand, the proposed scheme incurs less locking overhead 

than both explicit locking and implicit locking. Thus, transaction response time in the 

proposed scheme is immune to the ratio change.

135



il
1 1

(Class hierarchy locking)
Varying class definition read to write ratio

0.9

0.1

0.8

0.2

0.7 0.6 0.5 0.4 0.3 0.2

0.3 0.4 0.5 0.6 0.7 0.8

Varying d a ss  dafinition read to write ratio

0.1

0.9

0.0

1.0

••• ••*•  Orion 
— * — - —

---------- Reposed

Figure 4-5. Varying class definition read to write ratio (Class hierarchy locking)

In Figure 4-6, as access to class hierarchy goes down from root to bottom, Orion 

takes more response time. This is due to the 6ct that implicit locking is adopted in Orion. 

It requires more intention locks as access to the class hierarchy is near leaf level. On the 

other hand, Malta adopts explicit locking. In explicit locking, access to root requires more 

locks for class definition write and query type access. Thus, as access to a class hierarchy 

toward the bottom, it requires fewer locks. But, in the 007 benchmark, there are only 3 

levels in the class hierarchy. Thus, the performances of Malta’s technique and the 

proposed scheme (whose locking scheme takes less overhead than Malta’s) do not change 

much.

136



(Class hierarchy locking) 
Varying access to class hierarchy

8.7 1

8.6
— 8.5

— 8.4

1  8 3
8.2
8.1 ■

1 '.root 2 : middle 

A ccess to  d e s s  h ie ra rd iy

3 '.bottom

 Orion
— Mets 

 FVoposed

Figure 4-6. Varying access to class hierarchy (Class hierarchy locking)

The Figure 4-7 shows the performance o f the three techniques when varying

arrival rate. As arrival rate increases, the transaction response time increases in all three

techniques. This is due the fact that, the system load increases, conflicts on data items

among transactions may be increased. Especially, in the proposed scheme, the class

hierarchy locking is based on a hybrid of implicit locking and explicit locking. It is based

on special class and provides fewer number of locks than both implicit locking and explicit

locking. Orion requires locks in class hierarchy locking. Thus, its performance is worst.

4.4.3. Nested method invocations

Figure 4-8 shows the performance of the three techniques when varying instance

read to write ratio. The performances of both Orion and Malta’s scheme are worse than

the proposed work. This is mainly due to the Act that parent/children parallelism is not

allowed in both Orion and Malta’s work. Also, the small difference between Orion and

Malta’s scheme is due to the non-parallelism between parent/children. Thus, as the depth

of a composite object hierarchy increases, the differences become clear. The other reasons

for big difference between the proposed scheme and other two schemes are their locking

137



granularity and concurrency degree as in testing case o f conflict among methods. Figure 4- 

9 shows testing case o f varying arrival rate. As in Figure 4-8, the proposed scheme is 

better than both Orion and Malta’s scheme. This difference is due to mainly the 

parallelism. Also, Malta’s work is slightly better than Orion in their performance.

(Class hierarchy locking) 
Varying arrival rata

300 350

Arrival rata

Orion 

■ Malta 

- n-oposed

Figure 4-7. Varying arrival rate (Class hierarchy locking)

(Nested method invocation) 
Varying instance read to write ratio

Onon

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Inatancc read to writ# ratio

Figure 4-8. varying instance read to write ratio (Nested method invocations)

138



(Nested method invocation)
Varying arrival rate

Onon

450 500

Arrival rata

Figure 4-9. Varying arrival rate (Nested method invocations)

4.4.4. Overall performance

In order to get the overall performance for both class hierarchy locking and nested 

method invocation, the following principle is adopted; for each technique, let RESreg and 

RESnest be the response time of regular transaction (i.e., transactions concerning with 

only conflict among methods and class hierarchy locking) and response time of 

transactions invoking nested method, respectively. Also, let P r e g  and P n e s t  be the 

probability o f  regular transaction and probability o f nested method invoking transaction, 

respectively where Preg +  P nest =1 Then, the overall performance can be measured as 

follows; RES overall ~  Preo*RESreg +  P nest*R ESnest

Figure 4-10 shows the performance o f three techniques when the ratios of P re g  

and P n e s t  is varied. As in Rgures 4-5 to 4-9, the response times in class hierarchy locking 

are much higher than the response times in nested method invocations, for all three 

techniques. Thus, as the nested method invocation ratio decreases, the overall transaction

139



response times is increased. Also, as in Figure 4-8 and 4-9, the difference between the 

proposed work and the other works is bigger. Thus, as the nested method invocation ratio 

increases, the difference between the proposed scheme and the other schemes becomes 

higher.

(Overall peifonnance)
Varying iwsted method invocation transaction to regular transaction

.............Orion |
— • — —  M ait3  ! 
---------- R-oposed I

Nested method Invocetkwi transaction to regular transaction
ratio

_J

Figure 4-10. Varying nested method invocation to regular transaction ratio (Overall 

Performance)

140



Chapter 5

Performance Evaluation and Analysis by Simulation

5.1. Introduction

In Chapter 4, performance evaluation and analysis are done by mathematical 

modeling, under restricted environments. In order to evaluate the proposed technique in 

more general environments, in this chapter, a simulation model is constructed and 

extensive simulation experiments are conducted. In Section 5.2, a simulation model is 

introduced. In Section 5.3, the simulation parameters and simulation methodology are 

discussed. In Section 5.4, simulation results from various testing cases and analysis are 

presented.

5.2. Simulation Model

The simulation model is constructed from models used in existing works for 

concurrency control performance evaluation ([Kim, 1991]). Also, the simulation model is 

implemented using SLAM II simulation language [Prit, 1986]. Figure 5.1 shows a general 

diagram o f the simulation model.

5.2.1 Simulation Component Descriptions

The simulation model has six nuyor components: transaction generator, transaction 

manager, CPU scheduler, concurrency control manager (lock manager), deadlock 

manager, buffer manager. Also, it consists o f two physical resources : CPU, memory.

141



ready queue
block queue

Buffer
Manager

Deadlock
Handler

Scheduler

C.C.
CPU

Scheduler

Transaction
generator

Transaction
Manager

Fig. 5.1, Simulation Model ([Kim, 1991])

The transaction generator (TO) creates each transaction with its creation time, 

unique transaction identifier and transaction type. Each transaction consists of a sequence 

of (method, object-id) pairs. The transaction manager (TM) is responsible for scheduling 

and executing all transactions. It sends lock/unlock requests as well as abort/commit 

messages to the concurrency control (CC) scheduler. It also restarts aborted transactions. 

The CPU scheduler performs various CPU-related operations such as executions of 

methods. The CPU can be released by a transaction as a result o f a lock conflict or for an 

I/O operation. The FIFO (First-in First-out) is chosen for CPU scheduling scheme. That is, 

any transaction arriving to CPU first has the higher priority. Also, any transaction holding 

CPU can not be preempted by other transactions. The concurrency control scheduler (CC 

scheduler) synchronizes data access requests o f transactions. The CC scheduler orders the

142



data accesses based on the concurrency control protocol executed. An access request of a 

transaction is either granted or results in blocking or abort of the transaction. If access 

request is granted, the transaction attempts to read the data item from the MM (main 

memory). The data access to MM is done by buffer Manager (BM). Since main-memory 

database is assumed in this simulation, there is no page Êuilt. The FIFO strategy is used in 

the management o f memory buffer. The deadlock manager (DM) detects any deadlock 

occurred during data item access. If a transaction is blocked for specific time period, DM 

is invoked to check a deadlock using WFG (wait-for graph). If a cycle is detected, then 

the transaction will be aborted and restarted.

5.2.2. Message interface among simulation modules

In this subsection, messages among components are defined. Note that an arrow 

represents direction for message, and contents within parenthesis represent messages.

TG ---------------------------------► TM.
(transaction-id, creation time, transaction type)

TM ------  », CPU Scheduler
(request-CPU, transaction-id)
(release-CPU. transaction-id)

TM  ^  CC Scheduler
Oock-request, transaction-id)
(aboit-iequest, transactioa-î

(commit-rcquest, transaction-id)

(admowledge-io-lodc-request, transaction-id) 
(admowledge-to-conimit, transaction-id) 
(acknowledge-to-aboit, transactkm-id) 
(abort-transaction, transaction-id)

143



CC Scheduler ------------------------------- ^  BM
(object-id, transaction-id)

(acknowledge<4o-object-id (or page request), transaction-id)

CC ----------------------------------- ► DM
(chedc-deadlodc, transaction-id)

(transaction-id)

5.2.3. Algorithms of Simulation Modules

In this subsection, the algorithm o f each simulation module is presented.

a) Transaction Generator (TG)

For each transaction:
Generate transaction-id, creation time, transaction type;
// Each transaction has the following structure: ([method),object-idi]...[methodN,object-idN]> ; 
Pass the transaction to the transaction manager (TM);

b). Transaction Manager (TM)

I) accept ( transaction-id and its transaction type) from TG

request multiprogramming resource (MP) ;
send (request-CPU, transaction-id) to CPU Scheduler,
While there is still access remained in that transaction do 

send (request-CPU, transaction-id) to CPU Scheduler, 
send (lodc-request, transaction-id) to CC Scheduler, 
send (release-CPU, transaction-irO to CPU scheduler.

End vAile;
send (request-CPU, transaction-id) to CPU scheduler, 
send (commit-request, transaction-id) to CC Scheduler, 
send (release-CPU, transaction-id) to CPU Scheduler,

2) accept (abort-transaction, transaction-id) from the CC Scheduler 
// Due to deadlock and conflict resolution scheme

send (request-CPU, transaction-id) to CPU Scheduler, 
send (abort-request, transaction-id) to CC Scheduler, 
send (release-CPU, transaction-id) to CPU Scheduler,

144



3) accept (acknowiedge-to-lock-request, transaction-id) from CC scheduler through CPU Scheduler 

go to step 1) // process next (transaction-id, transaction-type)

4) accept (acknowledge-to-abort, transaction-id) from CC scheduler through CPU Scheduler 
// restart an aborted transaction

send (request-CPU, transaction-id) to CPU Scheduler
do any bookkeeping woric(or statistics) for the aborted transaction;

WÛle there is still access remained in that transaction do 
send (request-CPU, transaction-id) to CPU Scheduler, 
send (lock-request, transaction-id) to CC Scheduler; 
send (request-CPU, transaction-id) to CPU scheduler;
End while;

send (request-CPU, transaction-id) to CPU scheduler; 
send (commit-request, transaction-id) to CC Scheduler, 
send (release-CPU, transaction-id) to CPU Scheduler;

5) accept (acknowledge-to-conunit, transaction-id) from CC scheduler through CPU Scheduler 
// Do any bookkeeping work(statistics) for the conunitted transaction
send (request-CPU, transaction-id) to CPU Scheduler; 
do any bookkeeping wodc(statistics) for the committed transaction; 
send (release-CPU, transaction-id) to CPU Scheduler; 
free PdP;
go to step 1); // process next (transaction-id, transaction-type)

c). CPU Scheduler

I ) acc^t (requestCPU, transaction-id) from TM

If CPU-busy = yes then 
put (request-CPU, transaction-id) into ready queue 

else
assign CPU to the transaction with transaction-id 

end if

2) accept (releaseCPU, transaction-id) firom TM 

release CPU;
If there is waiting transaction(s) in Ae ready queue then 

pick the first transactioo in t k  ready queue and assign CPU 
end if

d). CC Scheduler

I) accept (lock-request, transaction-id) from TM Arough CPU Scheduler 

send (request-CPU, transaction-id) A CPU Scheduler

145



If lock is conflict then // depending on schemes
put (transaction-id, method-id, object-id) in the block queue; 
send (release-CPU, transaction-id) to CPU Scheduler; 

else
get a lock; // dqiendi%% on schemes 
send (object-id, transaction-id, method-id) to BM; 
wait-for (acknowledge-to-object-id, transaction-id, mefood-id) from BM; 
send (acknowledge-to-lock request, transaction-id, method-id) to TM; 

end if

2) accept (abort-request, transaction-id) from TM

send (request-CPU, transaction-id) to CPU Scheduler; 
remove all entry with transaction-id from lock table; 
wake any blocked transaction and send it to TM; 
send (acknowledge-to-abort, transaction-id) to TM; 
send (release-CPU, transaction-id) to CPU Scheduler,

3) accept (commit-request, transaction-id) from TM

send (request-CPU, transaction-id) to CPU Scheduler, 
remove all entry with transaction-id from lock table; 
send (acknowledge-to-commit, transaction-id) to TM through; 
wake up any blocked transaction and send it to TM; 
send (release-CPU, transaction-id) to CPU Scheduler,

4) accept (transaction-id) from DM
send (request-CPU, transaction-id) to CPU Scheduler; 
send (abort-transaction, transaction-id) to TM;

e). Deadlock Manager

accept (check-deadlock, transaction-id) from CC scheduler, 
check cycle in WFG (wait-for-graph); 
send (transaction-id) to CC scheduler;

f). BufTer Manager

1) accept (object-id, transactkm-id) from CC scheduler 
send (request-CPU, transaction-id) to CPU Scheduler; 
get page number corresponding to object4dJI use buffer table 
send (acknowkdge-to-page-tequest, transaction-id) to CC scheduler, 
send (release-CPU, transactkm-id) to CPU scheduler.

5.3. Simulation parameter and methodology

146



5 3 .1 .0 0 7  Benchmark Descriptions

The 007 benchmark is chosen in order to evaluate the proposed locking scheme in 

OCDE There have been a number of benchmarks in OCDE environments ([Cart, 1992], 

[Ande,1990], [Berr,199I]). But, existing benchmarks are not comprehensive so that wide 

range o f CODE features can not be tested accordingly. For example, HyperModel 

[Ande,1990] does not include object queries and repeated object updates. Also, it is 

difiScult for testers to implement the model from their specifications.

The 007 benchmark ([Care, 1993],[Care,1994-l],[Care, 1994-2]) provides a 

comprehensive test o f  OODB performance than its predecessors. Especially, it provides 

wide range of pointer traversal including sparse traversals and dense traversals, a rich set 

o f updates and queries including sparse updates and the creation and deletion of objects. 

Also, its implementation details are open to public so that OODB testers can implement 

the benchmark easily.

There are three sizes of the 007 benchmark: small, medium and large. Table 5-1 

shows the parameters o f  the 007 benchmaik. There are ten classes in the 007 benchmark. 

Among those ten classes, classes DesignObj and Assembly serve as abstract superclass in 

which provide class definitions but not instance object. The DesignObj is the root of the 

class hierarchy and is (direct) superclass of classes AtomicPart, CompositePart, Assembly 

and Module, respectively. Also, the Assembly class is (direct) superclass of classes 

ComplexAssembly and BaseAssembly, respectively.

Parameters Small Medium Large

147



NumAtomicPerComp 20 200 200

NumConnPerAtomic 3,6,9 3,6,9 3,6,9

DocumentSize (bytes) 2000 20000 20000

Manual Size (bytes) lOOK 1 M 1 M

NumCompPerModule 500 500 500

NumAssmPerAssm 3 3 3

NumAssmLevels 7 7 7

NumCompPerAssm 3 3 3

NumModules 1 1 1

Table 5-1. 007 Benchmark parameters [Care,1994-1]

The 007 benchmark consists o f two components: the design library and assembly 

hierarchy. The key component of the design library is a set of composite parts, forming 

CompositePart class. Each composite part is associated with document object (Document 

class). Also, each composite part consists of a set o f atomic parts, forming AtomicParts 

class. In small 007, 20 atomic parts form a composite part. The connections between 

atomic parts are supported by the a Connection object between each pair o f atomic parts.

The Assembly Hierarchy provides higher structure to the Design Library. 

Especially, each assembly is dther consisted o f  composite part (the assembly is called a 

BaseAssembly class) or it is consisted o f other assembly objects (the assembly is called a 

ComplexAssembly class). There are 7 levels in the assembly hierarchy The bottom level of 

the assembly hierarchy consists o f base assembly objects. Each base assembly object is

148



associated with composite part object bi-directionally. The higher level consists of 

complex assemblies. Each complex object is associated with either base assemblies (if the 

complex object has level two) or other complex object (if the complex object has higher 

level). Each assembly hierarchy forms a module which is the largest unit. Each module is 

associated with a Manual object.

5.3.2. Simulation Parameters

All the parameters used in simulation are summarized in Tables 5-2 and 5-3. Note

that the OODB benchmark 007 ([Care, 1993], [Care, 1994-1], [Care, 1994-2]) is adopted to

define database and transaction-related parameters. Also, all the parameters related to

machine and disk are derived from the DEC 3000 Model 400/400S AXP Alpha

workstation [DEC, 1993] and Micropolis 22000 disk drivers [SCSI, 1993], respectively.

The following notations are used to classify the simulation parameters accordingly.

M : Machine related parameters 
D : Disk related parameters 
TR ; Transaction related parameters 
DB : Database related parameters

Parameters Default Value [Reference]
M: CPU power 140 MIPS [Dec, 1993]
M time to process one operation 0.000007 ms [Huan,1995]
M; mean time to set a lock by an instance access 

transaction
0.3641 ms (Orion) [calculated] 
0.3537 ms (Malta) [calculated] 
0.3572 ms (Proposed) [calculated]

M: mean time to release a lock by instance access 
transaction

0.0035 ms (Orion) [calculated] 
0.0019 ms (Malta) [calculated] 
0.0019 ms (Proposed) [calculated]

M: mean time to set a lock by class definition 
access transaction

0.3522 ms (Orion) [calculated] 
0.3522 ms (Malta) [calculated] 
0.3522 ms (Proposed) [calculated]

149



M; mean time to release a lock by class 
definition access transaction

0.0011ms (Orion) [calculated] 
0.0011 ms (Malta) [calculated] 
0.0011 ms ^roposW)[calculated]

M; number o f bytes per word 4 [Dec, 1993]
M; Memory word access time 0.00018 ms [Dec, 1993]
M: number o f memory buffer 20 [DEC, 19931
D: Size o f disk(block) page 2048 bytes [SCSL 1993]
D: Avg. disk seek time 10 ms [SCSL 1993]
D; Avg. disk latency time 5.56 ms [SCSL 1993]
D: Disk page transfer time 0.0064 ms [SCSL 1993]
D; Number o f pages in Database 1997 pages [Calculated]
DB: NumAtomicPerComp 20 [Care, 1994]
DB: NumConnPerAtomic 3,6,9 [Care, 1994]
DB: NumCompPerModule 500 [Care, 1994]
DB: NumAssmPerAssm 3 [Care, 1994]
DB: NumAssmLevels 7 [Care, 1994]
DB: NumCompPerAssm 3 [Care, 1994]
DB: NumModules 1 [Care, 1994]
DB: Number o f instances in class Module 1 [Care, 1994]
DB: Number o f instances in class Manual 1 [Care, 1994]
DB: Number o f instances in class 

ComplexAsssembly
364 [Care, 1994]

DB: Number o f instances in class BaseAssembly 729 [Care, 1994]
DB: Number o f instances in class CompositePart 500 [Care, 1994]
DB: Number o f instances in class Document 500 [Care, 1994]
DB: Number o f instances in class AtomicPart 10000 [Care. 1994]
DB: Number of instances in class Connection 30000 [Care, 1994]

Table 5-2. Static Parameters of the Simulation Model

Parameten Default value (Range)
M: multiprogramming level 10 ( 5 - 15)
TR: Prob. of Traversal 0.45 (0 -1)
TR: Prob. o f Query 0.45 (0 -1)
TR: Prob. o f Structural Modification 0.1 (0 -1 )
TR: Prob. o f Traversal T1 (Traversal type) 0.08 (0 -1)
TR: Prob. o f Traversal T6 (Traversal type) 0.08 (0 -1)
TR: Prob. o f Traversal T2 (Traversal type) 0.08 (0 -1)
TR: Prob. of Traversal T3 (Traversal type) 0.08 (0 - 1)
TR: Prob. o f Traversal T8 and T9 (Traversal 

type)
0 .08(0-1)

TR: Prob. of Traversal CU (Traversal type) 0.05 (0 -1)
TR: Prob. of (Juery Q l (<)uery type) 0.09 (0 - 1)

150



TR: Prob. o f Query Q 2,03 and Q7 (Query type) 0.09 (0 - 1)
TR: Prob. o f  Query Q4 (Query type) 0.09 (0 -1 )
TR: Prob. o f Query Q5 (Query type) 0.09 (0 - 1)
TR: Prob. o f  Query Q8 (Query type) 0.09 (0 - I)
TR: Prob. o f  Insert (Structural Modification) 0.05 (0 - I)
TR: Prob. o f Delete (Structural Modification) 0.05 (0 - I)
TR: Transaction interarrival time 500 (100 - 1000)

Table. 5-3. Dynamic Parameters of the Simulation Model

5.3.2. Simulation Methodology

The 007 benchmark has three database sizes: small, medium and large. Each has 

different number of instance per class. For the simulation, small size is selected for 

simplicity. It is assumed that the transaction arrivals are based on the Poisson distribution. 

In the Poisson distribution, any transaction arrival time is totally random [Freu,I987]. In 

this simulation, each transaction has equal probability to be generated. Also, in order to 

prevent system overload, the total number transactions in the system at any moment is 

limited by the parameter A/w/r/program/nw^ level.

For the simulation, the following methodology is adopted. For CPU scheduling, 

transaction arrived earlier to CPU ready queue has higher priority. Unless a transaction is 

blocked due to I/O or conflict by lock request, the transaction can hold CPU without any 

preemption. Also, the FIFO policy is also adopted for the buffer management for 

simplicity, although this policy may not produce the best performance. In order to 

manage deadlock, the following principle is adopted: If  a transaction’s lock request is 

denied and thus the transaction is kept blocked for some time, abort and restart the 

transaction if blocking the transaction creates a cycle in the WFG (wait-for graph). As the

151



performance metrics, average response time and average lock waiting time are adopted. 

The response time o f a transaction and lock waiting time are defined as follows. 

Transaction response time = transaction commit time - transaction arrival time

Na
Lock waiting time of a transaction = where Ng is the number of granules

1=1

accessed in a transaction, and h and L{ represent the initial lock requesting time to granule 

i and the lock granted time to granule i.

5.4. Analysis

In order to evaluate the performance of the proposed concurrency control 

technique, extensive simulation testing cases are performed. As in performance evaluation 

by mathematical modeling in Chapter 4, the proposed scheme and two existing 

concurrency control techniques are tested for each access type. Also, analysis is done 

based on the simulation results.

5.4.1. Conflict among methods

Three testing cases are chosen for conflict among methods: varying arrival rate, 

varying instance read to write ratio and varying class definition read to write ratio

Figure 5-2. shows the testing case o f varying arrival rate. The purpose of this 

testing case is to examine how those techniques work under various system load. Orion 

performs the worst. Malta’s scheme works better than Orion. The proposed scheme works 

the best for the entire range. The average lock waiting times of Orion, Malta’s scheme and 

the proposed work are 34.81 ms, 26.3 ms and 15.18 ms, respectively. Thus, the proposed

152



scheme incurs the least lock waiting time. The difierences among each scheme are based 

on concurrency they provide. That is, Orion provides the worst concurrency while the 

proposed scheme provides the best concurrency. Orion adopts an entire instance object 

locking granularity so that the d%ree of concurrency is very limited. Malta’s scheme and 

the proposed scheme adopt attribute locking granularity so that concurrency is enhanced. 

Especially, in the proposed work, further concurrency is achieved by adopting run-time 

information on access modes o f attributes. Also, unlike Orion, in the Malta’s scheme and 

the proposed scheme, locks are required for each instance method instead of atomic 

operation so that locking overhead is reduced. On the average, the proposed technique 

works better than Malta’s scheme by 7.3% and better than Orion by 37%. On the other 

hand, Malta’s work is better than Orion by 27.7%.

(Conflict among methods) 
Varying arrival rate

14500

11500
10600 -

 Orion
' — - — Mita 
 Roposed

Varying arrival rale

Figure 5-2. Varying arrival rate 

Figure 5-3 shows the testing case of varying class definition read to write ratio. 

Orion performs the worst. Since Orion takes an entire class object as the lock granularity

153



for class definition access and also there is no concurrency between class definition read 

and class definition write, Orion results in the worst performance. Although the entire 

class object is taken as the lock granularity in Malta’s scheme, still limited concurrency is 

provided in their work. That is, there is no conflict between an instance write and a class 

definition read method. On the other hand, in the proposed scheme, high concurrency is 

achieved by taking small granularity in class definition access. Thus, even though two class 

definition write methods conflict with each other if  the entire class object is adopted for 

lock granularity, two methods may not conflict if  the small granularity is taken. The 

average lock waiting time o f Orion, Malta’s scheme and the proposed scheme are 38.57 

ms, 25 ms and 18.49 ms, respectively. On the average, the proposed scheme works better 

than Orion by 30.14% and better than Malta’s work by 13.74%. Also, Malta’s scheme 

works better than Orion by 14. 42%.

(Conflict among methods)
Varying dass definition read to write ratio

•  18000 
I  leooo

I I <2000

Varying daas definaion read to  
wrRa ratio

Figure 5-3. Varying class definition read to write ratio 

Figure 5-4 shows the testing case of varying instance read to write ratio. Orion 

performs the worst. Especially, as the instance read to write increases, transaction

154



response time is increased dramatically. Since the lock granularity is an entire instance 

object for instance access in Orion, Orion does not provide any concurrency between an 

instance read method and an instance write method. Malta provides some concurrency 

among instance access methods but the concurrency is still limited since access modes of 

attributes are static. The proposed scheme works the best. This is mainly due to high 

concurrency among instance access methods resulted from dynamic information for 

attribute access is adopted. Also, in Malta’s scheme and the proposed scheme, lock 

requests are based on methods while Orion is based on atomic operations in the method. 

This results in less overhead as well as less chance of deadlock due to lock escalation, in 

both Malta’s scheme and the proposed scheme. On the average, the proposed scheme 

works better than Malta’s scheme by 7.8% and better than Orion by 66.8%. Malta’s 

scheme works better than Orion by 53.9%. Also, the average lock waiting time o f Orion, 

Malta’s scheme and the proposed work are 43.2 ms, 24.9 ms and 17.1 ms, respectively.

(Conflict among methods) 
Varing instance read to write ratio

17000 '

Orion
■Mila
■Roposad

Varying inttance rand to wriln 
ratio

Figure 5-4. Varying instance read to write ratio

155



5.4.2. Class hierarchy locking

Three techniques have different class hierarchy locking schemes. In order to test 

their class hierarchy locking, two testing cases are performed as follows.

Figure 5-5 shows the testing case o f varying arrival rate. Orion performs the 

worst. Orion adopts an implicit locking which requires intention locks for superclasses of a 

target class, for any kind of access. This results in lock overhead Malta’s scheme adopts 

explicit locking which does not require any intention locks. But, for class definition access 

and queries, it may incur much overhead than implicit locking. On the other hand, in the 

proposed scheme, lock overhead is less than both implicit and explicit locking, using 

frequency information of each class. On the average, the proposed scheme works better 

than Orion by 52.6% and better than Malta’s scheme by 32.9%. Malta’s scheme works 

better than Orion by 26.5%. Also, the average lock waiting time of Orion, Malta’s work 

and the proposed scheme are 31.2 ms, 23.9 ms and 11.4 ms, respectively.

(Class hierarchy locking) 
Varying arrival rate

Orion
Mata

•R eposed

Varying arrival rale

Figure 5-5. Varying arrival rate

156



Figure 5-6 shows the testing case of varying access to class hierarchy. In 

this testing case, transactions access from the root class to the leaf class in the class 

hierarchy. The purpose of this testing case is to measure the performance of class 

hierarchy locking technique used by each scheme as transactions access classes in the 

different levels of the class hierarchy.

As transactions access classes near the root in the class hierarchy, implicit locking 

has less locking overhead while explicit locking incurs much locking overhead for class 

definition writes and queries. On the other hand, if transactions access the leaf level in the 

class hierarchy, the implicit locking incurs higher locking overhead due to intention locks 

while explicit locking takes less overhead. No matter where transactions access to class 

hierarchy, the proposed scheme performs better than both works. As shown in Figure 5-6, 

there is not much difference as access to class hierarchy varies. This shows that locking 

overhead incurred by each scheme does not affect the performance significantly. On the 

average, the proposed scheme works better than Orion by 40.91% and better than Malta 

by 5.9%. Malta’s scheme works better than Orion by 33%. Also, average lock waiting 

time o f Orion, Malta’s work and the proposed scheme are 29.5 ms, 19.9 ms and 14.6 ms, 

respectively.

5.4.2. Nested method invocations

In order to test three techniques for nested method invocation access, two testing 

cases, varying arrival rate and the ratio nested method invocation and non-nested method 

invocation, are performed as follows.

157



Figure 5-7 shows the testing case o f varying arrival rate. In this case, transactions 

invoke only nested methods so that the performance is evaluated only for nested method 

invocations.

(Ctaas hierarchy locking)

e S 10000
Orion

 Malta

 R'oposed

Varying access to d ass hierarchy

Figure 5-6. Varying access to class hierarchy

(nested method invocations) 
Varying arrival rate

Orion
Itete

-Roposed

Varying arrival rate

Figure 5-7. Varying arrival rate (Transaction response time)

158



The reason Orion performs the worst is as follows; Like in the conflict among 

method testing case, the concurrency provided by Orion is lower than those provided by 

Malta’s scheme and the proposed scheme. Also, for nested method invocations, 

parent/children parallelism is not utilized in Orion and Malta’s scheme. Malta’s scheme 

provides higher concurrency than Orion but less than the proposed scheme. Also, 

parent/children parallelism is not considered. On the other hand, the proposed scheme 

provides the highest concurrency by umng the small lock granularity and parallelism 

between parent and children method invocations using concurrent execution of parent and 

children methods. On the average, the proposed technique performs better than Orion by 

30.8% and better than 16% by Malta’s scheme. Malta’s scheme works better than Orion 

by 12.8%. Also, the average lock waiting time o f Orion, Malta’s scheme and the proposed 

scheme are 16.2 ms, 18.9 ms and 13.1 ms, respectively.

Figure 5-8 shows the testing case of varying nested method invocation to non­

nested method invocation ratio. In Figure 5-8, as nested method invocation method ratio 

is increased, the performance in Orion decreases. The reason is as in the testing case of 

varying arrival rate. Malta’s scheme and the proposed scheme is relatively insensitive to 

the ratio o f  nested method invocation and non-nested method invocation. This is due to 

higher concurrency provided by both schemes. On the average, the proposed scheme 

works better than Orion by 28.4% and better than Malta’s scheme by 11.2%. Malta’s 

scheme works better than Orion by 15.5%. Also, the average lock waiting times of Orion, 

Malta’s work and the proposed scheme are 17.8%, 23.4% and 14.2%, respectively.

159



(Nested method invocation) 
Varying nested method invocation to non- 

13000 nested method retie,

Varying nested method invocation 
to non nested method ratio

Figure 5-8. Varying nested method invocation to non-nested method invocation ratio 

5.5. Conclusions

Through the simulation study for the performance evaluations of three schemes, 

the following conclusions are reached; for any testing case, the proposed scheme performs 

the best. Malta’s work performs the second best. Finally, Orion performs the worst. 

Especially, the proposed scheme performs better than Orion by 28.4% to 66.75% and 

better than Malta’s scheme by 5.9% to 32.9%. Malta’s scheme performs better than Orion 

by 14.42% to 53.9%.

In the simulation study, the transaction response time is much larger than locking 

overhead. In other words, reducing locking overhead in concurrency control scheme in 

OODB does not affect the performance significantly. Thus, it is concluded that providing 

high degree of concurrency is the key 6ctor in order to obtain the best performance in 

transaction response time.

160



Chapter 6 

Conclusions and Future Research

6.1. Summary and Conclusions

Concurrency control is a mechanism used to coordinate accesses to the multi-user 

database so that the consistency of the database is maintained. OODBs have been adopted 

for non-standard applications requiring advanced modeling power to handle complex data 

and relationships among such data. Thus, concurrency control schemes in OODBs are 

more complicated than conventional databases. Also, transactions in OODBs usually 

requires long-duration running time. Thus, it is very important that concurrency control 

schemes not incur large overhead while increasing concurrency among users so that the 

performance should not be degraded.

In this research, three important issues of concurrency controls in OODBs are 

discussed; conflict among methods, class hierarchy locking and nested method 

invocations. The previous works for each issue were presented. Techniques were 

proposed to overcome the shortcomings of the previous works. Finally, an integrated 

concurrency control which includes all three issues was proposed.

The proposed technique was based on the following principles for each access 

type. For conflict among methods, finer locking granularity is adopted for both instance 

access and class definition access so that higher concurrency is achieved. Especially, for 

instance access, DAVs and breakpoints are adopted in order to provide higher 

concurrency using fine locking granularity and run-time information. Also, locks are

161



required for instance method invocations so that locking overhead is reduced and the 

possibility o f deadlocks is also reduced. For class hierarchy locking, special classes are 

used in order to reduce locking overhead. The proposed class hierarchy scheme incurs 

fewer locks than both existing schemes. Finally, for nested method invocations, semantic 

information is used in order to provide higher concurrency among methods. Also, 

parent/children parallelism is adopted for better response time. In order to test the 

performance o f the proposed technique, a mathematical model was constructed and 

extensive simulation experiments were conducted. Through the mathematical model and 

simulation, the performance evaluation of the proposed scheme and two existing works 

Orion and Malta’s were conduced and results were analyzed.

As shown in the simulation results, there are clear differences among three 

techniques. The simulation results for each access type are as follows. For conflict among 

methods, the proposed scheme performs better than Orion by 37.03% and Malta’s work 

by 7.3%. For class hierarchy locking, the proposed scheme performs better than Orion by 

52.6 % and Malta’s work by 32.9%. For nested method invocation, the proposed scheme 

performs better than Orion by 30.8% and Malta’s scheme by 16%. In overall performance, 

the proposed scheme performs better than Orion by 37.03% and Malta’s scheme by 7.3%.

Through extensive performance evaluations by mathematical modeling and 

simulation, the following conclusions are made; for conflicts among instance accesses, the 

proposed scheme utilized run-time information of attributes and adopted attribute level 

locking granularity so that it provides the better response time than both Orion and Malta 

For conflicts among class definition accesses and conflicts among class definition access

162



and instance access, the proposed scheme provides the better response time by adopting 

small locking granularity instead o f an entire instance object and an entire class object. 

For class hierarchy locking, the proposed scheme gives the better response time than both 

implicit locking and explicit locking, by utilizing access information o f the classes. Finally, 

for nested method invocations, the proposed scheme utilized parent/children parallelism, 

run-time information of attributes and reduced locking overheads so that its response time 

is better than both existing works.

Based on the performance evaluations, the guideline for using concurrency control 

schemes in OODBs is as follows: for conflict among methods, the better response time can 

be achieved by utilizing run-time information of attributes and taking smaller lock 

granularity instead of an entire instance object and an entire class object. For class 

hierarchy locking, the locking overheads can be reduced by special classes which are based 

on access information on classes. Finally, for nested method invocations, utilizing 

parent/children parallelism and run-time information of attributes gives the better response 

time. Also, locks for method invocations instead of atomic operations give the better 

response time.

6.2. Directions for Future Research

The proposed scheme aims at centralized environments. For centralized OODBs, 

the proposed aims at stable OODB systems. But, if an OODB system whose schemas are 

continuously evolving, modifying DAVs and SCs may incur overheads. Thus, the future 

research is to deal with evolving OODB systems.

163



The proposed OODB concurrency control technique can be extended to 

distributed OODBs as follows: although considerable concurrency control schemes have 

been proposed for distributed databases ([Bern, 1981], [Bern, 1987], [Ozsu,1991], 

[Levy, 1994]) only a few techniques have been proposed for a distributed OODB 

([Daya, 1994], [Naka, 1994]). But, the following issues are not discussed in the previous 

research. First, replication in distributed OODB makes a concurrency control scheme 

complicated. Consider the following partial replicated OODB such that a class D with 

two subclasses, say A and C, is stored in site 1 and a class D is alone stored in site 2. In 

this case, locking on D in site 2 requires locks on A and C on site 1 if explicit locking is 

used. Thus, how to manage replicated objects with less locking overhead is of concerns. 

Second, in a distributed OODB with composite objects, composite objects may reside in 

different sites. Thus, locking on a composite object requires locking on all subcomposite 

objects in different sites, resulting in much overhead. The concern is to provide an efficient 

locking on distributed composite objects. Third, it is necessary to consider how to 

distribute lock managers effectively to reduce communication cost.

164



R eferences

[Ande,1990] T. L Anderson, A. J. Berre, M. Mallison, H. H. Porter HI, B Scheider, 

“The HyperModel Benchmark”, Proc. o f the 2nd Int. Conf on Extending Database 

Technology, Lecture Notes on Computer Science 416, Springer-Veriag, Berlin, pp. 

317-331.

[Agra, 1992] D. Agrawal and A. E. Abbadi, “A Non-restrictive Concurrency Control for 

Object-Oriented Databases”, 3rd Int. Conf. on Extending Data Base Technology, 

Vienna, Austria, Mar. 1992, pp. 469 - 482.

[Badr,1988] B. R. Badrinath and K. Ramamritham, “Synchronizing Transactions on 

Objects”, IEEE Transactions on Comptiters, 57(5), 1988, pp. 541 - 547.

[Badr,1992] B. R. Badrinath and K. Ramamritham, “Semantic-Based Concurrency 

Control : Beyond Commutativity”, ACM Transactions o f Database Systems, I7{\), 

1992, pp. 163 - 199.

[Bern, 1981] P. A. Bernstein and N. Goodman, “Concurrency Control in Distributed 

Database Systems”, ACM Computing Survis, 13 ( 2), 1981, pp. 185 - 221.

[Bern, 1987] P. A. Berstein, V. Hadzilacos and N. Goodman, Concurrency Control and 

Recovery in Database Systems, Addison-Wesley, 1987.

[Berr,1991]. A. J. Berre and T. L. Anderson, “The HyperModel Benchmaric for evaluating 

object-oriented databases. In Object-Oriented Databases with Applications to CASE, 

Networks, and VLSI CAD, edited by R. Gupta and E. Horowitz, Englewood Cliffs, 

Jew Jersey, Prentice-Hall, pp. 75 - 91.

165



|Bili,1992] A. Biliris, S. Dar, N. Gehani, H. V Jagadish and K. Ramamritham, “A Flexible 

Transaction Facility for an Object-Oriented Database”, Tech. Report, AT&T Bell 

Labs, 1992.

[Care,1987] M. J. C ar^ , “Improving the Performance o f an Optimistic Concurrency 

Control Algorithm Through Timestamps and Versions”, IEEE Trans, on Software 

Engineering, Vol. 13, No. 6, Jun. 1987, pp. 746 - 751.

[Care, 1993] M. J. Carey, D. J. Dewitt and J. F. Naughton, “The 007 Benchmark”, Proc. 

o f the 1993 ACM SIGMOD Conference on Management o f Data, Washington D C , 

May, 1993, pp. 12 - 21.

[Care, 1994] M. J. Carey, D. J. Dewitt, C. Kant and F. Naughton, “A Status Report on the 

007 OODBMS Benchmarking Eflfort”, Proc. of OOPSLA, Portland, Oregon, 1994, 

pp. 414-426.

[Care, 1994-1] M. J. Carey, D. J. Dewitt, C. Kant and F. Naughton, “A Status Report on 

the 007 OODBMS Benchmarking Effort”, Proc. of OOPSLA, Portland, Oregon, 

1994, pp. 414 - 426.

[Care, 1994-2] M. J. Carey, D. J. Dewitt and J. F. Naughton, “The 007 Benchmark”, Tech. 

Report, Dept o f Computer Science, Univ. of Wisconsin, 1994

[Cart, 1990] M  Cart and J. Ferrie, “Integrating concurrency control into an object- 

oriented database system”, 2nd InL Cortf. on Extending Data Base Technology, 

Venice, Italy, Mar. 1990, pp. 363 - 377.

[Catt,1992] R. Cattell and J. Skeen, “Object Operations Benchmark”, ACM Transactions 

on Database Systems, Vol. 17, No. 1, Mar. 1992, pp. 1 -31 .

166



[Chiy,1991] P. K. Chrysanthis, S. Raughuram, and K. Ramamritham, “Extracting 

Concurrency from Objects : A Methodology”, Proc. o f the 1991 ACM SIGMOD Int. 

Conf. on Management o f Data, 1991, pp. 108 - 117.

[Date, 1985] C J. Date, An Introduction to Database Systems, Vol. H, Addison-Wesley,

1985.

[Daya, 1994] U. Dayal, “An Activity/Transaction Model for a Distributed Multi-Service 

System” in Distributed Object Management edited by M T Ozsu, U. Dayal and P. 

Valduriez, Morgan-Kaufinann, 1994.

[DEC, 1993] DECdirect Workshop Solutions Catalog, winter 1993.

[Dene, 1994] D. Dench and B. Prior, Introduction to C++, Chapman& Hall, 1994.

[Eswa,1976] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notion of 

consistency and predicate locks in a database system”, Communication o f ACM, 

79(11), 1976, pp. 624-633.

[Freu, 1987] J. E. Freund and R. E. Walpole, Mathematical Statistics, 4th Edition, 

Prentice-Hall, Englewood Clifl  ̂NJ, 1987.

[Garz,1988]. J. F. Garza and W. Kim, “Transaction Management in an Object-Oriented 

Database System”, ACM SIGMOD In t Conf. on Management o f Data, Chicago, 

minois, Jun. 1988, pp. 37 - 45.

[Goya,1993] P Goyal, T S. Narayanan and F. Sadri, “Concurrency Control for Object 

Bases”, Journal o f Information Systems, Vol. 18, No. 3,1993, pp. 167 - 180.

1 6 7



[Guer,1993] R. Guerraoui, “Toward Modular Concurrency Control for Object-Oriented 

Distributed Systems”, Proc. of the 4th Workshop on Future Trends of Distributed 

Computing System, Lisbon, Portugal, 1993, pp. 240 - 246.

[Guer, 1995] M. Guemi, J. Ferrie, J. Pons, “Concurrency and Recovery for Typed Objects 

using a New Commutativity Relation”, Lecture Notes in Computer Science 1013, 4th 

Int. Conf. on Deductive and Object-Oriented Databases, Singapore, 1995, pp. 411 - 

428.

[Hadz,1991] T. Hadzilacos and V. Hadzilacos, “Transaction Synchronization in Object 

Bases”, Journal of Computer and System Sciences, Vol. 43, No. I, pp. 2 - 24.

[Hali,1989] U. Halid and A. Dogac, “Concurrency Control in Distributed Databases 

Through Time Intervals and Short-Terim Locks” IEEE Trans, on Software 

Engineering, Vol. 15, No. 8, Aug. 1989, pp. 994 - 1003.

[Hali,1991] U. Halid and A. Dogac, “An Optimistic Locking Technique For Concurrency 

Control in Distributed Databases”, IEEE Trans, on Software Engineering, Vol. 17, 

No. 7, Jul. 1991, pp. 712 - 724.

[Herr, 1990] U. Herrmann, P. Dadam, K. Kuspert, E. A. Roman and G. Schlageter, “A 

Lock Technique for Digoint and Non-Digoint Complex Objects”, 2nd Int. Corrf. on 

Extending Data Beae Technology  ̂Venice, Italy, Mar. 1990, pp. 219 - 237.

[IRian,1995] J. Huang, “Recovery Techniques in Real-Time Main Memory Databases”, 

PhD . Dissertation, Univ. of Oklahoma, Dept, of Computer Science, 1995.

[Hung, 1992] S. L. Hung and K. Y. Lam, “Locking protocols for Concurrency Control in 

Real-Time Database Systems”, ACM SIGMOD RECORD, 21(4), 1992, pp. 22 - 27.

168



[Jaga,1993] H. V. Jagadish and Daniel F. Lieuwen, “Multi-Granularity Locks in an 

Object-Oriented Database”, AT&T Tech. Report, 1993.

[Jose, 1991] J. V. Joseph, S. M. Thatte, C. W. Thompson, D. L. Wells, “Objected- 

Oriented Database: Design and Implementation”, Proc. of IEEE. Vol. 79, No. 1, Jan. 

1991, pp. 42 - 64.

[Jun, 1995-1] W. Jun and L. Gruenwald, “Supporting Fine Concurrency in Object-Oriented 

Databases”, 1995 Arkansas Computer Conferences, Mar 1995, pp. 28-29.

[Jun, 1995-2] W. Jun and L. Gruenwald, “Automation of Fine Concurrency in Object- 

Oriented Database”, Int. Conf. on Computer Applications on Engineering and 

Medicine, Dec. 1995, pp. 72 - 75.

[Jun, 1995-3] W. Jun and L. Gruenwald, “An Integrated Concurrency Control in Object- 

Oriented Databases”, Mid-America Symposium on Emerging Computer Technologies, 

Sep. 1995, pp. 51-58.

[Jun, 1996] W. Jun and L. Gruenwald, “A Flexible Class Hierarchy Concurrency Control 

Technique in Object-Oriented Database Systems”, Int. Conf. on Computers and Their 

Applications, San Francisco, CA, Mar. 1996, pp. 191 - 196.

[Jun, 1997-1] W. Jun and L. Gruenwald, “A Class Hierarchy Concurrency Control 

Technique in Object-Oriented Database Systems”, The Third Int. Conf. on Computer 

Science and Informatics, Mar. Raleigh, NC, pp. 293 - 296.

[Jun,1997-2] W. Jun and L. Gruenwald, “An EfiBcient Class Hierarchy Concurrency 

Control Technique in Object-Oriented Database Systems”, Journal of Information and 

Software Technolo^, Submitted in Nov. 1997.

169



[Jun, 1997-3] W. Jun and L Gruenwald, ‘̂ Semantic-Based Concurrency Control in Object- 

Oriented Databases”, Journal o f Object-Oriented Programming, accepted, appear in 

Jan. 1998 issue.

[Kim, 1990] W. Kim, Introduction to Object-Oriented Databases, The MIT Press, 1990

[Kim, 1991] W. Kim, T. M. Chan and J. Srivastava, "Processor Scheduling and 

Concurrency Control in Real-Time Main Memory Databases”, IEEE Symposium on 

Applied Computing, Kansas City, hAssouri, USA, Apr., 1991, pp. 12-21.

[Kort,1983] H. F. Korth, “Locking Primitives in a Database System”, Journal o f ACM, 

30(1), 1983, pp. 55 - 79.

[Kort,1991] R  F. Korth and A. Silberschartz, Database System Concepts, 2nd Edition, 

McGraw Hill, Singapore, 1991.

[Kung,1981] H. T. Kung and J T. Robinson, “On Optimistic Methods for Concurrency' 

Control”, ACM Trans, on Database Systems, 6(2), 1981, pp. 213 - 226.

[Kwon,1997] K. Kwon and S. Moon, “Semantic Multigranularity Locking for Object- 

Oriented Database Management Systems”, Journal of Database Management Systems, 

Vol. 8, No. 2,1997, pp. 23 - 33.

[Lazo, 1984] E D Lazowska, Quantitative System Performance: Computer System 

Anafysis Using Queuing Network Mockis, Prentice-Hall, New Jersey, 1984.

[Lee,1996] S. Lee and R. Liou, “A Multi-Granularity Locking Model for Concurrency 

Control in Object-Oriented Database Systems”, IEEE Trans, on Knowledge and Data 

Engineering, Vol. 8, No. 1, Fd). 1996, pp. 144 - 156.

170



[Levy, 1994] E. Levy, H. F. Korth and A. Silberschartz, “An Optimistic Commit Protocol 

for Distributed Transaction Management”, Proc. of ACM SIGMOD Int. Conf. on 

Management of Data, Denver, Colorado, May 1991, pp. 88 - 97.

[Liou, 1991] R. L. Liou, A Multi-Granularity Locking Model fo r Concurrency Control in 

Object-Oriented Database Systems  ̂ Master Thesis, Dept, o f Computer Science and 

Information Engineering, National Chiao Tung University, Jun. 1991.

[Malt, 1991] C. Malta and J. Martinez, “Controlling Concurrent Accesses in an Object- 

Oriented Environment”, 2nd Int. Symp. on Database Systems for Advanced 

Applications, Tokyo, Japan, Apr. 1991, pp. 192 - 200

[Malt, 1992] C. Malta and J. Martinez, “Limits of commutativity on abstract data types”, 

3rd Int. Cortf. on Irtformation Systems and Management o f Data, Bangalore, India, 

Jul. 1992, pp. 261 - 270.

[Malt, 1993] C. Malta and J. Martinez, “Automating Fine Concurrency Control in Object- 

Oriented Databases”, 9th IEEE Cortf. on Data Engineering, Vienna, Austria, Apr. 

1993, pp. 253- 260.

[Moss, 1985] J. E. B. Moss, Nested Transactions : An Approach to Reliable Distributed 

Computing, MIT Press, Cambridge, 1985.

[Muth,1993] P. Muth, T. C Rakow, G. Weikum, P. Brossler, and C. Hasse, “Semantic 

Concurrency Control in Object-Oriented Database Systems”, Proc. o f the 9th IEEE 

Int. Conf. on Data Engineering, Apr. 1993, pp. 233 - 242.

171



[Naka, 1994] T. Nakajima, “Commutativity Based Concurrency Control and Recovery for 

Multiversion Objects”, in Distributed Object Management edited by M T. Ozsu, U. 

Dayal and P. Valduriez, Morgan-Kaufinann, 1994.

[01se,199S] D. H. Olsen and S. Ram, “Towards a Comprehensive Concurrency Control 

Mechanism for Object-Oriented Databases”, Journal o f Database Management, Vol. 6, 

No. 4, 1995, pp. 24 - 35.

[Ozsu, 1991] M. T. Ozsu and Patrick Valduriez, Principles o f Distributed Database 

Systems, Prentice Hall, 1991.

[Ozsu, 1994] M. T. Ozsu, “Transaction Models and Transaction Management in Object- 

Oriented Database Management Systems”, in Advanced in Object-Oriented Database 

Systems edited by A. Dogac, M. T. Ozsu, A. Biliris and T Sellis, Springer-Verlag, 

1994, pp. 147 - 184.

[Prit, 1986] A  Alan B. Pritsker, “Introduction to Simulation and SLAM XT’, Systems 

Publishing Corporation, 1986.

[Rese,1994] R. F. Resende, D. Agrawal, and A. E. Abbadi, “Semantic Locking in Object- 

Oriented Database Systems”, Proc.of OOPSLA 94, Portland, OR, USA, Oct. 1994, 

pp. 388 - 402.

[SCSI, 1993] 22000 Series - SCSI Micropolis Disk Drive Information, 1993.

[Serv,1990] Servio Logic Corp : “Chap. 16 : Transactions and Concurrency Control”, in 

Gemstone Product Overview, Alameda, CA., 1990.

[Shar,1996] P. Shah and J. Wong, “Concurrency Control in an Object-Oriented Data Base 

System”, Journal o f Systems and Software, Vol. 35, No. 3, Dec 1996, pp. 169 - 183.

1 7 2



[Sing, 1985] M Singha, P. D. Nanadikar and S. L. Mebndirratta, “Timestamp Based 

Certification Schemes for Transaction in Distributed Database System”, Proc. o f ACM 

SIGMOD InL Conf. on Management o f Data, 1985, pp. 402 - 411.

[Ulos,1992] O. Ulosoy, “Concurrency Control in Real-Time Database Systems”, Ph. D. 

Dissertation, Dept, o f  Computer Science, Univ. o f Illinois, Urbana-Champaign, 1992.

[Wang, 1990] S. Wang, “Improvement o f Concurrency Control within Object-Oriented 

Database Systems”, ACM Symposium on Applied Computing, Apr 1990, pp. 68 - 70.

[Weih,1988] W. E. WeiW, “Commutativity-Based Concurrency Control for Abstract Data 

Types”, IEEE Trans, on Computers, 37(12), 1988, pp. 1488 - 1505.

[Weih,1989] W. E. Weihl, “The impact o f Recovery on Concurrency Control”, Proc. of 

the ACM Symposium on Principles of Database Systems, Philadelphia, Mar. 1989, pp. 

259 - 269.

[Wolf 1993] V. F. Wolfe and Lisa B. Cingiser, “Object-Based Semantic Real-Time 

Concurrency Control”, Proc. o f 1993 IEEE Real-Time Systems Symposium, 1993.

[Yu, 1993] P. S. Yu, D. M. Dias and S. Lavenberg, “On the Analytical Modeling of 

Database Concurrency Control”, Journal o f ACM, Vol. 40, No. 4, Sep. 1993, pp. 831 

-872.

173



Appendix

L Algorithm for three techniques for conflict among methods 

LI. Orion

•  Whenever a transaction requests a lock on class or instance, do the following steps.

(1) - Read the lock requester’s mode and transaction id
(2) - Find the lock entry for the class
(3) - Find the lock holder on the class

- while there is different transaction holds a lock do
(4) - Find the commutativity table
(5) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s mode 
and the lock requester’s mode

- If  no commute, go to step 12) 
end while

(6) - If  the requester is a CDA transaction, then go to step 12)
(7) - Find lock entry for an instance

- while there is a different transaction holding lock on instance do
(9)- Find a lock holder on instance

- while there is different transaction holds a lock do
(10) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’ s mode 
and the lock requester’s mode

- If  no commute, the go to step 12) 
end while

(11) Set a lock in the lock table and stop
(12) Block the requester and stop

•If  transaction is committed or aborted, release all the locks . For each locks held, do as 

follows.

(1) Find the lock entry for the class
(2) -Find the lock holder on the class

- while there is the same transaction holding lock on the class do
(3) - Release the lock on the class
(4) - I f  the committed transaction is a  CDA transaction, then stop
(5) - Find the lock entry for the instance
(6) - Find a lock holder on the instance

-while the same transaction holds a lock do
(7) - Release the lock on the instance, and stop.

174



end while
end while 

L2. Malta

• Whenever a transaction requests a lock on class or instance, do the following steps.

(1) - Read the lock requester’s method name and transaction id
(2) - Find the lock entry for the class
(3) - Find the lock holder on the class

- while there is a different transaction holding lock do
(4) - Find the commutativity table
(5) - Read the holder’s mode

- Check the commutativity table for commutativity o f the lock holder’s method 
and the lock requester’s method

- If no commute, then go to step 12) 
end while

(6) - If the requester is a CDA transaction, then go to step 11)
(7) - Find the lock entry for the instance
(8) - Find the lock holder on the instance

- while there is a different transaction holding lock do
(9) - Find the method commutativity table for instance
(10) - Read the holder’s method

- Check the commutativity table for commutativity o f the lock holder's method 
and the lock requester’s method

- If no commute, go to step 12)
- end while

(11) Set a lock in the lock table and stop
(12) Block the requester and stop

• If  transaction is committed or aborted, rdease all the locks

(1) Find the lock entry for the class
(2) -Find the lock holder on the class

- while there is the same transaction holding lock on the class do
(3) - Release the lock on the class
(4) - If the committed transaction is a CDA transaction, then stop
(5) - Find the lock entry for the instance
(6) - Find the lock holder on the instance

-while the same transaction holds a lock do
(7) - Release the lock on instance, and stop.

175



end while
end while

L3. The proposed scheme

• Initial lock request
Whenever a transaction requests a lock on some granule (class or instance), do the 
following steps.

(1) - Read the lock requester’s method name and transaction id
(2) - Find the lock entry for the class
(3) - Find the lock holder on the class

- while there is a different transaction holding a lock do
(4) - Find the commutativity table for class
(5) -Read the holder’s method name

- Check the commutativity table for commutativity of the lock holder’s method 
and the lock requester’s method

- If  no commute, then go to step 12)
- end while

(6) - If the requester is a CDA transaction, then go to step 11)
(7) - Find the lock entry for the instance
(8) - Find the lock holder on the instance

- while there is a different transaction holding locks do
(9) - Find the method commutativity table for the instance
0 0 ) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s method 
and the lock requester’s method

- If no commute, go to step 12) 
end while

(11) Set a lock in the lock table
(12) Block the request

• During method execution Of the method invoked is an instance method)
Record all the breakpoints encountered during method execution

• After method execution (if the method invoked is an instance method)
Change method level lode to breakpoint level using all the breakpoints recorded at run­
time

(1) - Find the lock entry for the class
(2) - Find the lock holder for the class

- while the same transaction holding lock do
(3) Change method level lock to breakpoint level lock
(4) Find the lock entry for the instance
(5) Find the lock holder for on the instance

176



- while the same transaction holding lock do
(6) Change method level lock to breakpoint level lock

end while
end while

• If transaction is committed or aborted, release all the locks

(1) - Find the lock entry for the class
(2) - Find the lock holder on the class

- while there is the same transaction holding lock on the class do
(3) - Release the lock on class
(4) - If the committed transaction is a CDA transaction, then stop
(5) - Find the lock entry for the instance
(6) - Find the lock holder on the instance

-while the same transaction holds a lock do
(7) - Release the lock on instance, and stop, 

end while
end while

n. How to calculate tiock and toNwait ?

H I Orion

step 1)
=> 2 MM read //we assume that transaction id, lock mode occupy one word, 
respectively.//

step 2)
Assume that transaction id, lock mode and pointer takes one word respectively.

- get address o f lock table => 1 MM read
- get address o f lock entry for class =>
(address, o f lock table) +(class-id - l)*S_Lock // S Lock is size of lock entry for each 
class where S_Lock = B*2+4. Assume that this number is stored in S Lock

load regl, address o f lock table 
load reg2, T-cid (target class id)
SUB reg2, 1
load reg3, S Lock => 1 MM read 
MUL reg2, reg3 
ADD regl, reg2

Total : 2 MM read and 6 operations 

step 3)

177



=> For each lock holder, the following overhead is required.
1 MM read (for X)
1 MM read (for transaction)
I Compare (check if  this is other transaction or not) => load regl, t-td; comp regl, T-tid 
(target transaction)

Assume that above steps are done N UM JTRA N Sclass times in a class 
NUM_TRANS<xass = M p*Ng / Nc where Nfr is the multiprogramming level

Total: N U M _TR A N Sclass*(2 MM read + 2 operations)

step 4)
=> 1 MM read

step 5) - Read the holder’s mode
=> 1 MM read; load reg3, lockmode

- Check commutativity table for commutativity of the lock holder’s mode and the 
lock requester’s mode

- sequential search for row address of conflict table
=> average 3 MM read; compare (load regl, lock mode; comp regl, regS) for 

each read
- sequential search for column address o f conflict table
=> average 3 MM read; compare (load reg2, lockmode; comp reg2, reg4) for 

each read 
- check commutativity
=> 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp 

(regl, ‘y’)

For each lock holder, 8 MM reads + IS operations 

Total: NUM _TRANS<xass*(8 MM reads + 15 operations) 

step 6)
=> 1 MM read // Reading transaction type

step 7)
•get bucket address with prob. Pia 
load regl, T-iid (target instance id) 
load regl, reg2
load reg3, B (number o f buckets) => 1 MM read 
DIV reg2, r e ^
MUL reg2, reg3 
SUB regl, reg2 
MUL regl, 2

178



f  SUB regl, 2
ADD regl, 4
=> P iA * (l MM read + 9 operations)

- Find target instance 
1 MM read (for x or pointer)
1 MM read (for T-iid)
Compare (check if that is target instance) => load regl, iid; comp regl, T-iid (target 
instance)

Assume that above steps are repeated NUM INST times with prob Pu 
NUM_INST can be approximated as follows.
N U M IN ST  = Mp*Ng/(2*B*Nc) where Mp is the number o f  transactions in the system, 
Mp = (tmt + No*x)*A., by applying Little’s formula (TFreu, 1987]

Total: PiA*(l + NUN_INST*2) MM reads + Pu*(9 + NUM_INST*2) operations

step 8)
=> For each lock holder, the following overhead is required 
1 MM read (for X)
1 MM read (for transaction)
1 Compare Of this is other transaction or not) => load regl, t-id; comp regl, T-tid (target 
transaction)

Assume that above steps are done NUM_TRANSinst times in an instance 
NUM_TRANSiNsr = Mp*No / (Nc*N,)

Total: P[a*NUM _TRANSinst*(2 MM read + 2 operations)

step 9) - Read the holder’s mode
=> 1 MM read; load reg3, lockmode

- Check commutativity table for commutativity o f the lock holder’s mode and the 
lock requester’s mode

- sequential search for row address of conflict table
> average 1.5 MM read; compare (load regl, lock mode; comp regl, reg3) for 

each read
- sequential search for column address o f conflict table
=> average 1.5 MM read; compare (load regl, lockmode; comp reg2, reg4) for 

each read
- check the commutativity
=> 1 MM read (y or n) + i compare (load regl, conflict(row,colunm); comp 

(regl, ‘y’)

For each lock holder, 5 MM reads + 9 operations

179



Total; Pia* NUM_TRANSinst*(5 MM reads + 9 operations) 

step 10)

If there are some transactions holding locks =>
1 MM read (read Y)
3 MM writes (for transaction id, lock, pointer < nil)
1 MM write (change Y)
1 MM write (change Nil to newdy inserted transaction)
=> 6 MM access

If there is no transaction holding locks =>
1 MM read (read Y)
3 MM writes (for transaction id, lock, pointer <-nil)
2 MM writes (change Y and X)
=> 6 MM access

If the lock requester is lA transaction, perform the same step as above.
=> ? ia*6 MM access

Total: (6+6*?ia) MM access

step 11)
=> same as step 10)

Total: (6 + 6*?u) MM reads

Thus, tiock (Orion) = 2 MM reads (step 1)
+ 2 MM reads + 6 operations (step 2)
+ NUMJTRANSclass *(2 M M  reads + 2 operations)
+ I MM read (step 4)
+ NUM TRANScLAss*(8 MM reads +15 operations) (step 5)
+ 1 MM read (step 6)
+ Pia*[1+NUM_INST*2) MM read + (9+NUM_INST*2) operations] 

(step?)
+ PiA*NUMjrRANSinaT*(2 MM read + 2 operations) (step 8)
+ PiA*NUMjrRANSiNST*( S MM reads + 9 operations) (step 9)
+  (6+6*Pia)  MM reads (step  10 o r  11)

=[12+lG*NUMjrRANSciAss+PiA*[7+2*NUM_INST + 7*NUMjrRANSn«r]] *MM_ACCESS 
+ [6+17*NUMJFRANScwas+PiA*l9+2*NUMJWST+ ll*NUMJTRANSiN!rrll*BASIC_OP 

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass 5  Mp*Ng/Nc. 
NUM_TRANSnwr s  Mp*No/(Nc*NO

tiock. lA (Orion) = tiock(Orion) w here Pia = 1

180



tiock, CDA (Orion) =  tiock(Orion) where P u  =  0 

How to find *-— - (Orion)? 

step 1)
=> same as step 1) in tiock : 2 MM reads + 6 operations 

step 2)
=> For each lock holder, the following oveihead is required.
1 MM read (for X)
1 MM read (for transaction)
I Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

Assume that above steps are done NUMJTRANSclass times in a class. 
NUMJTRANSclass = Mp*Nc /  (2*Nc) where Mp is the multiprogramming level 
Assume that only half o f NUM JTRANSclass transactions is searched.

Total: NUM_TRANSclass*(2 M M  read + 2 operations)

step 3)
1 MM read (read next record o f committed transaction)
1 MM read (read previous record of committed transaction)
I M M  write (the pointer of previous record indicates the next record o f  committed 

transaction)
=> 3 MM access

step 4)
=> 1 MM read // reading transaction type

step 5)
=> same as step 7) in tiock
=> Pu*(l + NUN_INST*2) MM reads + ?u*(9 + NUM_INST*2) operations 

step 6)
=> For each lock holder, the following overhead is required.
1 MM read (for X)
1 MM read (for transaction)
1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

Assume that above steps are done NUM_TRANSinst times in an instance 
NUM_TRANSiwr 5  Mp*Ng /  (2*Nc*Ni)

Assume that only half o f NUMJTRANSinst transactions is searched

181



Total: Pia*NUM _TRANSinst*(2 MM read + 2 operations)

step ?)
=> PiA.*step 3)

=> 3*P ia m m  reads
Totai:[6+2*NUM_TRANScu«s+2*PiA*NUM_TRANSiNsr+Pu*[4+NUM_INST*21] MM reads 

[6+2*NUM_TRANSciass+ P[A*2*NUM_TRANSnwr + Pia*[9+NUM_INST*2]] operations

Since each transaction accesses Ng granules and each instance access method requests AT 
locks per instance, step 6) and 7) need to be performed additional (AT-1) times for 
instance access method, 
tconmit (Orion)=

Ng*[6+2*NUM _TRANSci.̂ ss+Pia*2*NUM_TRANSinst+P ia*[4+NUM_INST*2] + 
[AT-1]*P,a*[NUM _TRANSinst*2+3]]*MM_ACCESS
+Ng*[6+2*NUM _TRANSclass+Pia*2* NUM_TRANSiNsr+ Pia*[9+NUM_INST*2]+ 
[AT-1 ] *Pu*[NUM_TRANSw!rr*2]]*B ASIC_OP
where NUM_INST =  Mp*Ng/(2*B*Nc), NUM _TRANSclass =  M p * N g /(2 * N c ), 
NUM_TRANSn<ffr = Mp*Ng/(2*Nc*Ni)

ci(Orion) = tcommft (Orfon) w here P u  = 1 
Cc(Orion) =  tcomma (O rion) w here P u  =  0

IL2 Malta

step 1)
=> 2 MM read // Assume that transaction id, lock mode (or method name) occupy one 

// word, respectively

step 2)
=>The lock table has basically same structure. But, in Malta’s work, the lock is requested 

by the unit o f method, if the requester is an instance method, so that the lock mode is 
replaced by the method name.

=> 2 MM read and 6 operations

step 3)
=> same as step 3) in Orion 
=> NUM_TRANScxass*(2 MM read + 2 operations)

step 4)
=> 1 MM read

step S) - Read the holder’s mode
=> I MM read; load reg3, lockmode
- Check commutativity table for commutativity o f the lock holder’s mode and the 

lock requester’s mode

182

[

I



- sequential search for row address o f  conflict table
=> average 2 MM read; compare (load regl, lock mode; comp regl, reg3)

- sequential search for colunm address o f conflict table
=> average 2 MM read; compare (load reg2, lockmode; comp reg2, reg4)

- I f  no commute => step 10)
- 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp 

(regl, y )
Thus, one conflict checking requires: NUM_TRANSclass* (6 MM reads +11 operations)

step 6)
=> 1 MM read // Reading transaction type 

step 7)
=> same as step 7) in Orion
=> PiA*(l + NUN_INST*2) MM reads + Pu*(9 + NUM_INST*2) operations 

step 8)
=> Pia*NUM_TRANSinst*(2 MM read + 2 operations) 

step 9)
=> Pia m m  read

step 10)- Read the holder’s mode
=>1 MM read; load reg3, lockmode
- Check the commutativity table for the commutativity of the lock holder’s 

method and the lock requester’s method 
- I fn o  commute, go to step 12)

• In Malta’s work, the lock is requested for each instance access method. In real OODBs, 
there are many methods defined in each class so that searching a particular method in a 
commutativity table takes so much overiiead. Thus, the following strategy is adopted: 
assign each method to the unique number so that the method can be searched directly in a 
commutativity table. There are two steps to do it.

• substep 1) The hash function is adopted to map each instance method to integer. 
Assume that each method is named based on alphabet. Whenever a method is invoked, 
read the first character o f the method. Based on order o f this character in alphabet, the 
character is mapped into number.

h(first character o f each method) = I where 1< I ^  26

For example, for method ASCEND ORDER and DESCEND ORDER has the following 
hash function.

183



h(ASCEND_ORDER) = I 
h(DESCEND_ORDER) = 4

•  substep 2) Then, assume that array M_NUM stores the unique number for each method. 
The array is has total Nm (number o f methods) elements, and divided into 26 sectors. 
Thus, each sector has Nm/26 elements.

M NUM A SEARCH 1
A NUM 2

-

B_SEEK

Z FIND
-

Nk,

N m/26 elements

- calculate hash function => load regl, first_Char, 1 MM read for reading first character
DIV regl, 26

- calculate the first entry of address in array M_NUM
load reg2, 0
load reg3, Nm => 1 MM read 
DIV reg3, 26 
MUL regl, reg3

- search the method name 
average N m/ ( 2 6 * 2 )  MM read
compare; load regl, method_name; comp regl, T method // Assume that T method is to

// be searched
- read the integer number => 1 MM read
Thus, total (N m /(2 6 * 2 )+ 3 )  MM read + (N m /(2 6 * 2 )* 2 + 6 )  operations

- read the method name of the requester in the commutativity table => same as read 
method name of the holder

- read the commutativity rdation
1 MM read (y  o r  n) + 1 compare (load regl, confiict(row,column); comp (r% l, ‘y ’)  

Total: Pia*NUM _TRANSinst*[(Nm/26+8) MM reads + (Nm/26*2+15)] operations 

step 11)

184



=> same as step 10) in Orion 
=> (6+6*P ia) MM reads

step 12)
=> same as step 11) in Orion 
= >  (6+6*P ia) m m  access

tiock (Malta) = 2 MM read (step 1)
+ 2 MM read and 6 operations (step 2)
+  NUM _TRANScxass*(2 MM read + 2 operations) (step  3)
+ 1 MM read (step 4)
+ NUMJTRANSclass* (6 MM reads +11 operations) (step 5)
+ 1 MM read (step 6)
+ PiA*(l + NUN_INST*2) MM reads + Pu*(9 + NUM_INST*2) operations 

(step?)
+ PiA*NUMjrRANSrNST*(2 MM read + 2 operations) (step 8)
+ Pia m m  read (step 9)
+ PiA* NUMJFRANSiNsr *[(Nm/26+8) MM reads + Pia*(Nm/26*2+15)] 

operations (step 10)
+ (6 + 6*Pia) m m  access (step 11 or 12)

[12+8*NUMJFRANSclass+Pia*[8+2*NUM_INST+NUM_TRANSinst*[10+Nm/26]]*MM_ACC 
ESS+[6+13*NUM_TRANScLAss+PiA*[9+2*NUM_INST+NUMjrRANSiNsr* [1?+Nm/26*2]] 
*BASIC_OP
where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass = Mp*Ng/Nc,
NUM_TRANSinst = Mp*Ng/(Nc*N,)

tiock. lA (Malta) = tiock (Malta) where Pia = 1 
tiock. CDA (Malta) = tiock (Malta) where Pu = 0

How to calculate *— - (Malta)?

=> same as Orion, but step 6) and 7) are not repeated (AT-1) times 
Thus, tcommk (Malta)=
= NG*[6+2*NUM_TRANScLASs+2*Pu*NUM_TRANSiNsr+Pu*[4+NUM_INST*2]]* 

MM_ACCESS
NG*[6+2*NüM_TRANScLAss+2*Pu*NUM_TRANSiN!n+Pu*[9+NUM_INST*2]]* 
BASIC_OP where NUM_INST = Mp*Ng/(2*B*Nc). NUM_TRANSclass = 

Mp*Ng/(2*Nc), NUM_TRANSinct = Mp*Ng/(2*Nc*N|)

cKMalta) = tconnt ^dalta) where Pu  = 1 
Cc(Malta) = tcowMt (Malta) where Pu = 0

n.3. The proposed scheme

185



a) initial lock request 

step 1)
=> same as Malta 
=> 2 MM reads

step 2)
=> same as in Malta
=> 2 MM read and 6 operations

step 3)
=> NUM _TRANSclass*(2 M M  read +  2 operations) 

step 4)
=> 1 MM read

step S) -Read the holder’s mode
- read method name of the holder => 1 MM read; load reg3, lockmode

- Check commutativity table for commutativity o f the lock holder’s mode and the 
lock requester’s mode

- If no commute, then go to step 10)

- sequential search for row address of conflict table => average 4 MM read; compare 
(load regl, lock mode; comp regl, reg3)
- sequential search for column address of conflict table => average 4 MM read; compare 
(load reg2, lockmode; comp reg2, reg4)
- 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp regl, ‘y’)
Thus, one conflict checking requires; NUM _TRANSclass*(10 M M  reads + (17+t*2)) 
operations. Assume that compare operations are performed t times where t = 
num_br*Pi+-NA*Pc, Pi and Pc denote probability of instance access transaction and 
probability of class definition access transaction

step 6)
=> 1 MM read 

step 7)
=> same as Malta’s work
=> PiA*(l + NUN_INST*2) MM reads + Pk*(9 + NUM_INST*2) operations 

step 8)
=> same as Malta’s work
=> P ia*NUM _TRANS inst*(2 M M  read + 2 operations) 

step 9)
=> P ia m m  read

186



step  10)

- calculate hash function => load regl, first Char; I MM read for reading first character
DIV regl, 26

• calculate the first entry o f address in array M_NUM
load re g 2 ,0
load reg3, Nm => 1 MM read 
DIV reg3, 26 
MUL regl, reg3

- search the method name 
average Nm/(26*2) MM read
compare; load regl, method name; comp regl, T method // Assume that T method is to

// be searched
- read the integer number => 1 MM read
Thus, to tal (N m/(26*2)+3) MM read + (N m/(26*2)*2+6) operations

- read the method name of the requester in the commutativity table => same as read 
method name o f the holder

- read the com m utativity relation
1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp regl, ‘y’)

Total: PiA* NUM_TRANSinst * [(Nm/26+8) MM reads + (NM/26*2+13+t*2)] operations 

step 11)
=> same as Malta’s work 
=>(6+6*Pia) m m  reads

step 12)
=> same as Malta’s work 
—> (6 + 6*Fia) m m  access

Thus, tiock (Proposed) => 2 MM reads (step 1)
+ 2 MM read and 6 operations (step 2)
+ NUM_TRANSclass*(2 MM read + 2 operations) (step 3)
+ 1 MM read (step 4)
+ NUM TRANSclass* [10 MM reads + (17+t*2)] operations 

(steps)
+ 1 MM read (step 6)
+ PiA*(l + NUN_INST*2) MM reads + Pu*(9 + NUM_INST*2) 

operations (step 7)
+ PiA*NUM_TRANSiNsr*(2 MM read + 2 operations) (step 8)
+ ? u  m m  read (step 9)
+ Pia*NUM_TRANSinst * [(Nm/26+8) MM reads + 

(N m/26*2+13+1*2)] operations (step 10)

187



+ (6 + 6*PtA) MM access (step 11 or 12)
=  [12+12*N UM _TRANSclass+Pia*[8+2*NU M _IN ST+ 
NUM_TRANSiMsr*(10+NM/26)])* MM_ACCESS
+[6+[19+t*2]*NUM_TRANScLASS+PiA*[9+2*NUM_INST+NUM_TRANSwCT *[15+ 

NM/26*2+t*2]]*BASIC_OP 
where NUM_INST = Mp*No/(2*B*Nc), NUM _TRANSclass =  M p*Ng/N c, 
NUM_TRANSiNsr 5  M r♦Ng/(N c*N i), t  =  num_br*PrfNA*Pc

Thus, tiocfc. lA (Proposed) = tiœk (Proposed)+ ttaakpo«t+ tdmgeiocfc where Pu  = 1, where 
tbrakpoint and tchngdock wUl be calculated later.

tiock,cDA (Proposed) = tiock (Proposed) where Pu=  0

How to calculate *— (Proposed)?

=> same as Malta’s work 
Thus, tcommh (Proposed)=
= No*[6+2*NUM_TRANScLAss+2*Pu*NUM_TRANSwsr+PiA*[4+NUM_INST*2]] * 
MM_ACCESS
N g*[6+2*NUM _TRANSclass+ 2*Pu *NUM _TRA NS inst +  Pu*[9+NUM_INST*2]]* 

BASIC_Op
where NUM_INST = Mp*No/(2*B*Nc), NUM _TRANSclass = Mp*Ng/(2*Nc). 
NUM_TRANSmsr 5  Mp*Ng/(2*Nc*Ni)

cKProposed) = tcon«H (Proposed) where Pu = 1 
Cc(Proposed) = t«—a (Proposed) where Pu = 0

bl Recording breakpoints during method execution

- Assume that there are MUL NUM (active) transactions in the system at the same time 
(i.e.. The multiprogramming level is MUL_NIJM).
- Whenever a transaction is entered into system, the transaction is assigned 

multiprogramming number (MN) and MN is stored in some attribute o f  the transaction.

- Use array for maintaining breakpoints

- Assume that an array A(11 *MUL_NUM) is used for maintaining breakpoints.
- The first element DISP stores displacement o f the last element (breakpoint) of the 
transaction.
- The remaining dements are used to store the breakpoints.
- Assume that each method has maximum 10 breakpoints

188



M N i DISP

MNi DISP

M N mul num DISP

a) For each breakpoint encountered during method execution, the following steps are 
performed.

• Find MN for the transaction
1 MM read

• Find location of DISP
A + (MN - 1)* 11 => 5 CPU operations
=> load regl, A; load reg2, MN; SUB reg2. I; MUL reg2, 11; ADD regl, reg2

• Put breakpoint into end o f the list
1 read (for DISP) + I MM write (for breakpoint) + adding DISP (2 
operations; load regl, DISP; ADD regl, 2)) + 1 MM write (for DISP) => 2 CPU 
operations + 3 MM accesses

b) After method execution is finished, the following steps are performed

• Read all breakpoints
I MM read (for finding MN)
A + (MN-1)*11 (finding DISP) => 5 operations
I MM read (for DISP)
numjbr* MM read ( for each breakpoint)
=> (numjbr + 2) MM accesses + 5 CPU operations

• Release memories
1 MM write ( DISP < -ml)

From a) and b), for recording all breakpoints in a method, the following overitead is 
obtained.

a) numjbr * (4 MM accesses + 7 CPU operations)

189



b) (num_bi+3) MM accesses + 5 CPU operations

Total: theakpont = [S^HumJbf + 3]*MM_ACCESS + [numjbr*7 + 5]*BASIC_OP

c) Lock change (After method execution^ 

step 1)
=> 2 MM read and 6 operations 

step 2)
=> NUM_TRANSclass*(2 MM read + 2 operations)
// Assume that half o f transactions on the class are searched

step 3)
—> 1 MM access (write breakpoints) 

step 4)
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations 

step 5)
=> NUM_TRANSinst*(2 MM read + 2 operations) 

step 6)
=> I MM access

Total: tcwyi«=k= [5 + 2*NUM TRANSclass+2*NUM_TRANSinst+2*NUM_INST1 
*MM_ACCESS

+ [15+2*NUM_TRANS(xass+2^NUM_INST+2*NUM_TRANSd4st] 
*BASIC_OP

Thus, tiodc proposed) =  twc(Proposed) + tk^kpow + tcwgdock

= [28+14*NUM_TRANSctAss+4*NUM INST+ 
NUM_TRANSiNsr*[12+NM/26)+5*numl)r]*MM_ACCESS 
+ [35+[21+t*2]*NUMJTRANScLAss+4*NUM_INST+NUM_TRANSwsT* 
[17+NM/26*2+t*2]+num_br*7]*BASIC_OP

in. Analysis for Class hierarchy locking 

nLl. Assumption

• The fan-out o f each class : F (default)
•  For class hierarchy, the depth (level) is D Thus, average level requested by overall 

transactions is Aq = f  (D +l)/2l (i e, in the middle o f class hierarchy).

190



m .2 . Analysis

Assume that 2 locks required for each level in implicit locking.

1) average level o f access to class hierarchy = I (root class)
•  Orion (Implicit locking): 1 + (D-2)*2 = 2*D - 3 (intention locks) for every access.
•  Malta (Explicit locking): extra locks for CDA transactions
•  The proposed work: l+(D-2)*2 = 2*D - 3 extra locks for every access.

2) average level o f access to class hierarchy = Ao (middle class)
•  Orion (Implicit locking): (Ad -1)+2*(D -A d)  = 2*D -A d -1 locks (intention locks) for 

every access
•  Malta (Explicit locking): extra locks for CDA transactions
•  The proposed work: min[F*^,2*D-Ao-l] - D (one each level) extra locks for 

transactions. Assume that all locks are required for special classes in class hierarchy.

3) average level o f access to class hierarchy = D (leaf class)
• Orion (Implicit locking): (D-1) extra locks (intention locks) for every access
•  Malta (Explicit locking): 0 extra locks for CDA transactions where 2 locks (level 5)
• The proposed work: 0 extra locks for CDA transactions

tiock and tconmit for each techmque can be obtained as follows. 

a1 Orion (Implicit locking)

Assume that N is the number of locks required ( including intention locks), 

tiock. (Orion) =
=  [12+10*N *N U M _TR A N Sclass+P ia*[7+2*N U M _IN ST+7*N U M _TR A N Swst]]*N * 

MM_ACCESS
+[6+17*N *N U M _TR A N Sclass+P ia*[9+2*N U M _IN ST+1 1 *NUM_TRANSiNST]]*N* 
BASIC_OP where NUM_INST = Mp*No/(2*B*Nc), NUM _TRANSclass = Mp*Ng/Nc, 
N U M _T R A N S inst =  Mp*Ng/(Nc*N|)

tiock. lA (Orion) =  tiock(Orion) where P ia =  1; tiock. cda (Orion) =  tiock(Orion) where P u  =  0

at (Orion)=
No*[6+2*N*NUM_TRANSclass+Pu *2*NUM_TRANS-
insi+Pu*[4+NUM_INST*2]+[AT-1]*Pu*[NUM_TRANSinct*2+3]]*N*MM_ACCESS 
+Ng*[6+2*N*NUM TRANSduss+Pu*2* NUM_TRANSiNsr+ 
Pu*[9+NUMJNST*2]+[AT-ll*Pu*[NUM_TRANSwsr*2]]*N*BASIC_OP 
w here NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSclass = M p*Ng/(2*N c), 
NUM_TRANSinst s  Mp*Ng/(2*Nc*Ni)

Cj(Orion) =  tgoomit (Orion) where Pu = I ; Cc(Orion) = tcommit (Orion) where Pu = 0

191



b1 M alta  (Explicit locldny')

Let N be locks (including locks on subclasses) 

tiock, lA (Malta) =
=12+8*NUM_TRANSclass+Pia*[«+2*NUM_INST+NUM_TRANSinst*[10+Nm/26111*MM_AC
CESS+(6+13*NUM_TRANSciASs+PiA*I9+2*NUM_INST+NUM_TRANSrosr*[17+NM/26*2]]]
•BASIC_OP
where NUM_INST =  M p*N g/(2*B *N c), N U M _TR A N Sclass =  M p*Ng/N c,
N U M _TR A N S inct =  M p*Ng/(N c*N i) where P ^  =  1

tiocfc. CDA (Malta) =
=[[12+8*NUM_TRANSclass+Pia*[8+2*NUM_INST+NUM_TRANSinst*[10+Nm/26]]]*[Pcdr+P 
cdw*N]/ Pcda ]*MM ACCESS+[6+13*NUM _TRANSciass+Pia*[9+2*NUM_INST+2* 
NUM_TRANSinst*iT7+Nm/26*2)11*(Pcdr+Pcdw*N]/ Pcda *BASIC_0P 
where NUM_INST =  M p*N g/(2*B *N c), N U M _TR A N Sclass =  Mp*Ng/N c,
N U M _TR A N S inst =  M p*Ng/(N c*N i)  where P u  =  0

How to calculate * (Malta)?

Cl (Malta)=
NG*[6+2*NUM_TRANScLAss+PiA*2*NUM_TRANSwsr+PiA*[4+NUM_INST*2]]*
MM_ACCESS
+N g*[6+2*N U M _TRA N Sclass+P ia*2* N UM _TRA N S inct+  P u *(9+N U M _IN ST*2]]* 
BASIC_OP
w here NUM_INST =  M p*N g/(2*B *N c), N U M _TRA N Sclass =  M p*Ng/(2*Nc), 
MUMJTRANSiNjrr s  M p*Ng/(2*Nc*Ni) w here Pu =  1

cc(M alta)=
N g*[6+2*N U M _TR A N Sclass+Pia*2*N U M _TR A N Sikst+Pu*[4+N U M _IN ST*2]] 
*[Pcdr+Pcdw *N ]/ Pcda *M M _A CCESS 
+N g*[6+2*N U M _TR A N Sclass+Pia*2* NUM_TRANSix$T+ 
Pu*[9+N U M _IN ST *2]]*[Pcdr+Pcdw *N ]/Pcda*B A SIC _O P 
where NUM_INST =  M p*N g/(2*B*N c). NUM _TRANS<xass =  M p*Ng/(2*Nc). 
MUMJTRANSiNsr S Mp*Ng/(2*Nc*Ni) where Pu = 0

c) The proposed work

Let N be all locks required (including intention locks and locks on subclasses). In this 
analysis, only locks on subclasses are assumed for simplicity.

tiocfc, u(Proposed)=
=  [28+I4*N U M _TR A N Sclass+4*N U M _IN ST+N U M _TR A N Sinst*[12+ N m/26]

192



+5 *num_br] *MM ACCES S
+[35+[21+t*2]*NUM_TRANScLASs+4*NUM_INST+NUM_TRANSiNCT*[17+NM/26*2+t 
*2]+ num_br*7]*N*BASIC_OP where Pu= l and NUM_INST = M p*N g/(2*B*N c), 
N U M _TRA N Sclass =  M p*Ng/Nc. NUM_TRANSiN!rr =  Mp*No/(N/Ni), t = 
num_br*Pi+NA*Pc

tiock. CDA (Proposed) =
[12+12*NUM_TRANScLAss+PiA*[8+2*NUM_INST+NUM_TRANSiN!rr*[10+NM/26]]]*[ 
Pcdr'*‘Pcdw*N]/Pcda *MM_ACCESS
+[6+[19+t*2]*NUM_TRANScLASs+Pu*[9+2*NUM_INST+NUM_TRANSiN!n-*[15+NM/ 
26*2+t*2]]]* [P cdr+ P cdw * N ]/P cda *BASIC_0P where NUM_INST =
M p*Ng/(2*B*Nc), N U M _TR A N Sclass =  M /N o /N c , N UM _TRA N Sojst =  
Mp*No/(Nc*Ni), t  =  num_br*Pi+NA*Pc where Pia =  0

ci(Proposed) =
N g*[6+2*N U M _TRA N Scxass+P ia*2*NUM _TRANSwst+P ia*[4+N U M _IN ST*2]]*
MM_ACCESS
+No*[6+2*NUM_TRANScLASs+PiA*2*NUM_TRANSn^sT+PiA*[9+NUM_INST*2]]*BA
SIC_OP
where NUM_INST = M p*Ng/(2*B*Nc), N U M _TRA N Sclass =  M p*N g/(2*N c), 
N U M _TRA N Sw st =  M p*Ng/(2*Nc*N,)

Cc(Proposed) =
N g*[6+2*N U M _TRA N Sclass+Pu *2*NUM _TRANSinst+P ia*[4+N U M _IN ST*2]]*[Pcdr 
+Pcdw*N ]/Pcda *M M _A CCESS
+N g*[6+2*N U M _TRA N Sclass+P ia*2*NUM _TRANSinst+P ia*[9+N U M _IN ST*2]]* 
[Pcdr+Pcdw*N ]/Pcda *B A SIC _0P where NUM_INST = M p*Ng/(2*B *N c),
N U M JTRA N Sclass =  M p*N g/(2*N c), NUM _TRANSwct =  M p*Ng/(2*N c*N,)

IV. Analysis for nested method invocations

Assumptions:

•  For composite object hierarchy, assume that there are Lc levels.
• For each instance access method accessing composite object, there are Fc number of 

method invocations to subobject in composite object hierarchy. Thus, for each instance 
access method invocation on top-level composite object, there are N com = 1+ Fc + (Fcf 
+ .... + (Fc)*  ̂number o f objects accessed

•  For the proposed work, semantic commutativity and commutativity between parents and 
children (due to inheritance) are not considered for simplicity.

•  Conflicts among instance access methods are only considered in order to simplify 
analysis.

193



IV.l. Orion

•  Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s mode and transactionjd
(2) Find the lock entry for the class
(3) Set a  lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while there is a different transaction holding lock do
(6) - Find the commutativity table for the instance
(7) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s mode and 
the lock requester’s mode

- If  no commute, go to step 9) 
end while

(8) Set a lock in the lock table and stop
(9) Block the request and stop

•  If  a transaction is committed or aborted, release all the locks. For each locks held, do as 
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class

- while the same transaction holds a lock do
(3) - Release the lock on the class

end while
(4) - Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while the same transaction holds a lock do
(6) - Release the lock on the instance, and stop

end while

IV.2. M alta's scheme

• Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s method name and transactionjd
(2) Find the lock entry for the class
(3) Set a lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while there is a different transaction holding lock do
(6) - Find the method commutativity table for instance
(7) - Read the holder’s method

194



- Check the commutativity table for commutativity o f the lock holder’s method 
and the lock requester’s method

- If  no commute, go to step 9) 
end while

(8) Set a lock into lock table and stop
(9) Block the request and stop

•  If  a transaction is committed or aborted, release all the locks. For each locks held, do as 
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class

- while there is a different transaction holding lock do
(3) - Release the lock on class
(4) - Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while the same transaction holds a lock do
(6) - Release the lock on instance

end while
end while

IV.3. The proposed scheme

•  Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s method name and transactionjd
(2) Find the lock entry for the class
(3) Set a lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while there is not a same subtransaction holding lock do
(6) - Find the method commutativity table for instance
(7) - Read the holder’s method

- Check the commutativity table for commutativity o f the lock holder’s method 
and the lock requester’s method

- If no commute, go to step 9) 
end while

(8) Set a lock in the lock table and stop
(9) Block the request and stop

•  I f  a transaction is committed or aborted, release all the locks. For each locks held, do as 
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class

195



- while there is a dififerent transaction holding lock do
(3) - If the commiting method is top-level, release the lock

else inherit locks to parents 
end while

(4) - Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while there is not same subtransaction holds a lock do
(6) - If the commiting transaction is top-level, release the lock

else inherit locks to parents 
end while

IV .l. Orion

How to calculate tiodc in Orion?

step  1)
=> 2 MM read // Assume that transactionjd, lock mode occupy one word, 

respectively.

step  2)
- Each class has B buckets for maintaining lock tables for instances
- The class has 4 MM words (2 words for blocked transactions, 2 words for locking 

transactions); Assume that transactionjd, lock mode and pointer takes one word, 
respectively.

- get address o f lock table => 1 MM read
- get address o f lock entry for class =>
(address of lock table) +(class-id - l)*S_Lock // S_Lock is size o f lock entry for each 
class where S Lock = B*2+4. Assume that this number is stored in SJLock.

load regl, address o f lock table 
load reg2, T-cid (target class id)
SUBreg2, 1
load reg3, S_Lock => 1 MM read 
MUL reg2, reg3 
ADD regl, reg2

Total : 2 MM read and 6 operations 

step 3)
If  there are some transactions holding locks =>
1 MM read (read Y)
3 MM writes (for transactionjd, lock, pointer <- nil)
1 MM write (change Y)

196



1 MM write (change Nil to newly inserted transaction)
=> 6 MM access

If there is no transaction holding locks =>
1 MM read (read Y)
3 MM writes (for transaction id, lock, pointer <-nil)
2 MM writes (change Y and X)
=>6 MM access

step 4)
load reg l, T-iid (target instance id) 
load reg l, reg2
load regS, B (number of buckets) => 1 MM read 
DIV reg2, r e ^
MUL reg2, regS 
SUB regl, reg2 
MUL regl, 2 
SUB regl, 2 
ADD reg l, 4
=> (1 MM read + 9 operations)

- Find target instance 
1 MM read (for x or pointer)
1 MM read (for T-iid)
Compare (if that is target instance) => load regl, iid; com p re g l, T-iid (targ e t instance)

Assume above steps are done NUM_INST times. NUM INST can be approxim ated as 
foUows. NUM_INST = M p * N c o m /(2 * B * N c )

Total: (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations 

step 5)
=> For each lock holder, the following overhead is required.
1 MM read (for pointer X)
I MM read (for transaction)
I Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

Assume that above steps are done NUMJTRANSinst times in an instance 
NUM_TRANSwsrr = Mp*Ncom /  (Nc*Ni)

Total: NUM_TRANSinst*(2 MM read + 2 operations)

step 6)
=> I MM read

197



step 7) - Read the holder’s mode
==> 1 MM read; load reg3, lockmode

- Check commutativtty table for commutativity o f the lock holder’s mode and the 
lock requester’s mode

- sequential search for row address o f conflict table
=> average 1.5 MM read; compare (load regl, lock mode; comp regl, reg3) for 

each read
- sequential search for column address of conflict table
=> average 1.5 MM read; compare (load reg2, lockmode; comp reg2, reg4) for 

each read
- check the commutativity
=> I MM read ^  or n) + 1 compare (load regl, conflict(row,column); comp 

(regl, ‘y’)

For each lock holder, 5 MM reads + 9 operations 

Total; NUM _TRA N Sinst*(5 MM reads + 9 operations) 

step 8)
=> same as step 3) => 6 MM access 

step 9)
=> same as step 3) => 6 MM access

tiock (Orion) = 2 MM reads (step 1)
+ 2 MM reads and 6 operations (step 2)
+ 6 MM access (step 3)
+ (1+NUM_INST*2) MM reads + (9+NUM_INST*2) operations (step 4) 
+ NUM_TRANSinst *(2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
+ NUM TRANSinst *(5 MM reads +9 operations) (step 7)
+ 6 MM access (step 8 or 9)

=  [18 + 2*NUM_INST + 7*NUM_TRANSinst]*MM_ACCESS 
+  [15 + 2*NUM_INST + 1 l*NUM_TRANSiMsr + Nm/26*2]*BASIC_OP where 
NUM_INST Mp*Ncom/(2*B*Nc), and NUM_TRANSinst = Mp*Ncom /  (Nc*Ni)

How to find tcoMMii in Orion?

step 1)
=> same as step 2) in tiock : 2 MM reads + 6 operations 

step 2)
For each lock holder, the following overhead is required.
1 MM read (for pointer X)

198



1 MM read (for transaction)
I Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

Assume that above steps are done NUM_TRANSclass times in a class 
NUMJTRANSclass = N4» /  (2*Nc) where is the multiprogramming level. Assume that 
only half o f NUMJTRANSclass transactions is assumed.

Total: N U M J T R A N S class* (2  MM read + 2  operations)

step 3)
1 MM read (read next record o f committed transaction)
1 MM read (read previous record o f committed transaction)
I MM write (pointer o f previous record => next record of committed transaction)
=> 3 MM access

step 4)
=> same as step 4) in tiock
=> (1 + NUN INST*2) MM reads + (9 + NUM_INST*2) operations 

step 5)
For each lock holder, the following overhead is required.
1 MM read (for pointer X)
1 MM read (for a transaction)
1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

Assume that above steps are done NUMJTRANSinst times in an instance 
NUM_TRANSinst = Mp /  (2*Nc*Ni)

Assume that only half o f NUM_TRANSinst transactions is searched.

Total: NUM_TRANSinst*(2 MM read + 2 operations)

step 6)
=> same as step 3)

=> 3 MM reads

Note that, in Orion, since each method requires AT locks, step S) and 6) need to  be 
performed additional (AT-1) times.

Total: Ncom*[9+2*NUM_TRANSclass+2*NUM _TRANSn«m+2*NUM_INST+[AT- 
I]*[2*NUM_TRANSinsi+3]]*MM_ACCESS
+ Ncom* [15+2*NUM_TRANSclass+ 2*NUM_TRANSiNsr + 2*NUM_INST+[AT- 
l]*[2*NUM_TRANSwsr]]*BASIC_0P

199



Since each transaction accesses N c o m  granules, 
tco««it (Orion)=

N c o m * [9 + 2 * N U M _ T Ï IA N S c la s s + 2 * N U M  _TRANSiMsr+2*NUM_INST+[AT- 
l]*[2*NUM_TRANSiNsr+3]]*MM_ACCESS
+ Ncom*[15+2*NUM_TRANSclass+ 2*NUM_TRANSiNsr + 2*NUM_INST+[AT- 
I]*[2*NUM_TRANSiN!rr]]*BASIC_OP where NUM_INST = Mp/(2*B*Nc), 
NUMJTRANSclass = Mp*No/(2*Nc), NUMJTRANSdot = Mp/(2*N/Ni)

IV.2. Malta’s work

How to calculate t̂ ck in Malta’s?

step I)
=> same as Orion: 2 MM read 

step 2)
=> same as Orion: 2 MM read and 6 operations 

step 3)
=> same as Orion: 6 MM access 

step 4)
=> same as Orion: (I+NUM_INST*2) MM reads + (9+NUM_INST*2) operations

step 5)
=> same as Orion 

step 6)
=> same as Orion: 1 MM read

step 7) - Read the holder’s mode 
=> 1 MM read; load reg3, lockmode
- Check the commutativity table for commutativity of the lock holder’s method and the 

lock requester’s method
- If  no commute, go to step 8)

•  In Malta’s work, the lock is requested for each instance access method. In real OODBs, 
there are many methods defined in each class so that searching a particular method in a 
commutativity table takes so much overhead. Thus, the following strategy is adopted: 
assign each method to the unique number so that the method can be searched directly in a 
commutativity table. There are two steps to  do it.

•  substep I) The hash fiinction is used to map each instance method to integer. Also, 
assume that each method is named based on alphabet. Whenever a method is invoked.

200



read the first character o f the method. Based on order o f this character in alphabet, the 
character is mapped into number.

h(first character o f each method) = I where 1< I < 26

For example, for method ASCEND ORDER and DESCEND ORDER has the following 
hash function. 
h(ASCEND_ORDER) = 1 
h(DESCEND_ORDER) = 4

•  substep 2) Then, assume that array M_NUM stores the unique number for each method. 
The array is has total Nm (number o f methods) elements, and divided into 26 sectors. 
Thus, each sector has N m/2 6  elements.

M NUM A SEARCH 1
A_NUM 2

.

.

B_SEEK .

•

Z_FIND .

•

N m

N m/2 6  elements

- calculate hash function => load regl, first Char; 1 MM read for reading first character
DIV regl, 26

- calculate the first entry o f address in array M NUM
load reg2, 0
load reg3, N m => 1 MM read 
DIV reg3, 26 
MUL regl, reg3

- search the method name 
average N m /(2 6 * 2 )  MM read
compare; load regl, method_name; comp regl, T_method // Assume that T method is to

//b e  searched
- read the integer number => 1 MM read
Thus, total (N m /(2 6 * 2 )+ 3 )  MM read + (N m /(2 6 * 2 )* 2 + 6 )  operations

- read method name of the requester in the commutativity table => same as read method 
name o f the holder

201



- read the commutativity table
1 MM read (y or n) + 1 compare (load regl, conflict(row,coIumn); comp regl, ‘y’)

Total: NUMJTRANSinst* [(Nm/26+8) MM reads + (Nm/26*2+15) operations] 

step 8)
=> same as step 3) => 6 MM access 

step 9)
=> same as step 3) => 6 MM access

tiock (Malta) = 2 MM reads (step I)
+ 2 MM reads and 6 operations (step 2)
+ 6 MM access (step 3)
+ (1+NUM_INST*2) MM reads + (9+NUM_lNST*2) operations (step 4)
+ NUM  TRANSINST (2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
+ NUM _TRANSinst*[(Nm/26+8) MM reads + (N m/26*2+15) operations] 

(step?)
+ 6 MM access (step 8 or 9)

= [18 + 2*NUM_INST + NUM_TRANSinst *[10+ Nm/26]]*MM_ACCESS 
+ [15 + 2*NUM_INST + NUM_TRANSiN5rr *[17+ Nm/26*2]]*BASIC_OP where 
NUM_ESrST Mp*Ncom/(2*B*Nc), and NUM_TRANSiN!n- = Mp*Ncom / (2*Nc*Ni)

How to find tcomm* in M alta’s?

step 1)
=> same as Orion: 2 MM reads + 6 operations 

step 2)
=> same as Orion: NUMJTRANSclass*(2 MM read + 2 operations) 

step 3)
=> same as Orion: 3 MM access 

step 4)
=> same as Orion: (1 + NUN_INST*2) MM reads + (9 + NUM INST*2) operations 

step 5)

=> same as Orion: NUM_TRANSinst*(2 MM read + 2 operations) 

step 6)
=> same as Orion: 3 MM reads

202



TotaI:[9+2*NUM_TRANScxAss+2*NUM _TRANSiN!rr+2*NUM_INST] MM reads 
[I5+2*NUM_TRANSclass+ 2*NUM_TRANSiNsr + 2*NUM_INST] opérations

Since each transaction accesses Ncom granules, 
tcommit (Malta)=

Ncom*[9+2*NUM_TRANSclass+2*NUM_TRANSinst+2*NUM_INST]*MM_ACCESS 
+Ncom*[15+2*NUM_TRANSclass+2* NUM_TRANSiN!n+ 2*NUM_INST]*BASIC_0P 
where NUM_INST = Mp/(2*B*Nc), NUMJTRANSclass = Mp*Ntj/(2*Nc), 
NUM_TRANSw!rr = Mp/(2*Nc*N,)

IV.3. The proposed work

How to find tiock in the proposed work?

1) initial lock request 

step 1)
=> same as M alta's work 
=> 2 MM reads

step 2)
=> same as in Malta
=> 2 MM read and 6 operations

step 3)
If there are some transactions holding locks =>
I MM read (read Y)
3 MM writes (for transactionjd, lock, pointer < nil)
I MM write (change Y)
1 MM write (change Nil to newly inserted transaction)
=> 6 MM access

If there is no transaction holding locks =>
1 MM read (read Y)
3 MM writes (for transactionjd, lock, pointer <-nil)
2 MM writes (change Y and X)
=> 6 MM access

step 4)
load regl, T-iid (target instance id) 
load regl, reg2
load reg3, B (number of buckets) => 1 MM read 
DIV reg2, reg3 
MUL reg2, reg3 
SUB regl, reg2

203



MUL regl, 2 
SUB regl, 2 
ADD regl, 4
=> (I MM read + 9 operations)

- Find target instance 
1 MM read (for x or pointer)
IM M read(forT -üd)
Compare (check if that is target instance) => load regl, iid; comp reg l, T-iid (target 
instance)

Assume above steps are done NUM INST times. NUM INST can be approximated as 
follows.
NUM_INST = N com*M p/(2*B *N c)

Total: (1 + NUN INST*2) MM reads + (9 + NUM INST*2) operations 

step 5)
=> For each lock holder, the following overhead is required.
1 MM read (for X)
1 MM read (for transaction)
1 Compare (if this is other transaction or not) => load regl, t-id; comp regl, T-tid (target 
transaction)

Assume that above steps are done NUM_TRANStNsr times in an instance 
NUM_TRANSd« t =  Ncom*M p/ (N c*N i)

Total: NUM_TRANSinst*(2 MM read + 2 operations)

step 6)
=> 1 MM read 

step 7) - Find a lock holder on instance
- Check commutativity table for commutativity o f the lock holder’s method and the 

lock requester’s method
- If no commute, go to step 9)

=> same as M alta’s woik
Total: NUMJTRANSinst* [(Nm/26+8) MM reads + (Nm/26*2+15) operations] 

step 8)
=> same as step 3) => 6 MM access 

step 9)
=> same as step 3) => 6 MM access 

tinit (Proposed)= 2 MM reads (step 1)

204



+ 2 MM read and 6 operations (step 2)
4- 6 MM access (step 3)
+ (1+ NUN_INST*2) MM reads + (9 + NUM_INST*2) operations (step 4) 
+ NUM _TRANSinst*(2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
4- NUM_TRANSinst *[(Nm/264-8) MM reads +  (Nm/26*24-15) operations] 

(step 7)
4- 6 MM access (step 8 or 9)

= [18 4- 2*NUM_INST 4- NUM_TRANSAinsr *[10+Nm^6 ]]*MM_ACCESS 
4- [15 4- 2*NUM_INST 4- NUM_TRANSmsr *[174- Nm/26*2]]*BASIC_OP

2) Recording breakpoints during method execution

- Assume that there are MUL_NUM (active) transactions in the system at the same time 
(i.e.. The multiprogramming level is MUL_>JUM).

- Whenever a transaction is entered into system, the transaction is assigned 
multiprogramming number (MN) and MN is stored in some attribute of the transaction.

- Use array for maintaining breakpoints

- Assume that there are N c o m  number o f subtransaction o f a given transaction
- Assume that an array A(13*MUL_NUM, N c o m )  is used for maintaining breakpoints.
- The first and second element store object-id and method name, respectively.
- The second element DISP stores displacement o f the last element (breakpoint) of the 

transaction.
- The remaining elements are used to store the breakpoints.
- Assume that each method has maximum 10 breakpoints.

M N i object id objectjd
method name method name

DISP DISP
•

M N mul mum

object_id objectjd
method name method name
DISP DISP

205



a) For each breakpoint encountered during method execution, the following steps are 
done.

• Read MN for the transaction, objectjd  and method name
1 MM read + 1 MM read (o id) + 1 MM read (method name) => 3 MM reads

•  Find location o f MN for the transaction in array
A + (M N - 1 ) * 1 3 * N com 

=> 7 CPU operations
=> load regl, A (1 MM read); load reg2, MN; SUB reg2, 1; MUL reg2, 13; load 

reg3, N com  (1  MM read); MUL reg2, reg3, ADD regl, reg2;
Time to find (objectjd, method name) pair
0 .5  * Ncom * {2 MM reads (objectjd and method name) + 2 compare} where 2 compares 
take 4 operations as follows: load regl, objectjd; comp regl, target oid; load reg2, 
method name; comp reg2, target method name)

=> (5  +  N com  ) MM access + (7  +  2 * N com)  operations

• Put breakpoint into end of the list
1 read (for DISP) + 1 MM write (for breakpoint) + adding DISP (2 
operations:
load regl, DISP; ADD regl, 2)) + 1 MM write (for DISP) => 2 CPU operations + 
3 MM accesses

b) After method execution is finished, the following steps are done.

•  Read all breakpoints
3 MM read (for finding MN, objectjd  and method name)
(5 + N com)  MM access + (7 + 2*N com)  operations (finding DISP)
1 MM read (for DISP)
num J ) r  MM read ( for each breakpoint)
=> (9+ N com +num_br) MM accesses + (7 + 2*N com) CPU operations

• Release memories
1 MM write ( DISP <-nU)
2 MM writes (objectjd, method name < nil)

=> 3 MM access

From a) and b), for recording all breakpoints in a method, we have the following 
overhead.

a) num j)r*(8 + N com)  MM accesses + numj>r*(9 + 2*N com)  CPU operations
b) (N com+  numj)f+12) MM accesses + (7+ 2*N com)  CPU operations

Total: tbre,icpoini= [9*numJ)r+[mim_br»-l]*NcoM+12]*MM_ACCESS +

206



[9*num_br + [2*num_bH-2]*NœM+7]*BASIC_OP

c) lock change (After method execution) 

step 1)
=> 2 MM read and 6 operations 

step 2)

=> NUM_TRANSclass*(2 MM read + 2 operations)
// Assume that half o f transactions on the class are searched

step 3)
=> 1 MM access (write breakpoints) 

step 4)
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations 

step 5)

=> NUM_TRANSinst*(2 MM read + 2 operations) 

step 6)
=> 1 MM access

Total: tch«,geiock= [5 + 2*NUM_TRANSclass+2*NUM_TRANSwst+2*NUM_INST]* 
MM_ACCESS
+ [15+2*NUM_TRANScLASs+2*NUM_INST+2*NUM_TRANSDjsr] 
*BASIC_OP

Thus, tiock (Proposed) = tiock(Proposed) + th«kpd# + tduoyiock

How to find * in the proposed work?

step 1)
=> same as step 1) in tiock : 2 MM reads + 6 operations 

step 2)
=> For each lock holder, the following overhead is required.
1 MM read (for X)
1 MM read (for transaction)
I Compare (check if dûs is other transaction or not) => load regl, t-id; comp regl, T-tid 
(target transaction)

207



Assume that above steps are done N U M JT R A N S class times in a class 
N U M JT R A N S class =  Ncom* M p/ (2*N c) where M p is the multiprogramming level 
Assume that only half o f N U M JT R A N S class transactions is searched.

Total; NUMJTRANSclass*(2 MM read + 2 operations)

step 3)

inherit locks into parents 
1 MM read (ancestor id)
1 MM write (owner_id)
1 MM write (RET<- True)
=> 3 MM access

Release the lock on class
1 MM read (read next record o f committed transaction)
1 MM read (read previous record o f committed transaction)
1 MM write (pointer o f previous record => next record o f committed transaction)
=> 3 MM access

step 4)
=> same as step 4) in tiock
=> (1 + NUN INST*2) MM reads + (9 + NUM_INST*2) operations 

step 5)

=> For each lock holder, the following overhead is required.
1 MM read (for X)
1 MM read (for transaction)
I Compare Of this is other transaction or not) => load regl, t-id; comp regl, T-tid (target 
transaction)

Assume that above steps are done NUMJTRANSinst times in an instance 
NUM_TRANSinst = Ncom*Mp /  (2*Nc*N,)

Also, assume that we search only half ofNUM  TRANSnwr transactions.

Total: NUMJTRANSinst*(2 MM read + 2 operations)

step 6)
=> same as step 3)

=> 3 MM reads

Total:[9+2*N».JM_TRANScLAss+2*NUM_TRANSwsT+2*NUMjn>fST]*MM_ACCESS

208



[15+2*N U M _TR A N Sclass+ 2*NUM_TRANSn«rr + 2*NUM_INST]*BASIC_0P 
w here N U M _TRA N Sclass =  Ncom* M p/ (2*Nc) and N U M _TRA N Sinst =  NcoM*Mp / 
(2*Nc*Ni), NUM_INST =  Ncom*M p/(2*B*Nc)

Since there are N com  subtransactions and each subtransaction has average N com/2  
numbers o f granules accessed, 
tcaanit (Proposed)=

NcoM*NcoM/2*[9+2*NUM_TRANScLAss+2*NUM_TRANSiN!n+2*NUM_INSTl*
MM_ACCESS

+N com *Ncom /2*[15+2*NU M _TRA NSclass+2* NUM.TRANSinst*- 
2*NUM_INST]*BASIC_OP w here NUM_INST = Ncom* M p*N g/(2*B *N c), 
N U M _TR A N Sclass = Ncom* Mp/(2*Nc), NUMJTRANSwsr =  Ncom* Mp/(2*N=*Nr)

V. How to calculate Database size (number of pages in database)?

V .l. Storage format

Assume that storage format for instances is adopted as follows [Kim, 1990]

uid object length attribute count attribute vector values offset values
vector

uid (unique object identilBer); ^ bytes
object length (the total length o f  the object); 4 bytes (assumed)
attribute count (the number o f attributes): 4 bytes (assumed)
attribute vector (identifiers o f all attributes): 5 bytes*(number o f attributes)
values offset vector (of&ets o f the values o f the attributes): 4 bytes*(number o f attributes)
values (values of attributes): depends on attribute size

1) Module class
size o f values = 4+10+4+4+1093*4+4 = 4398 bytes
size o f uid 
size o f object length 
size o f attribute count 
size o f attribute vector size 
size o f values offset vector size 
size o f values 
=> total : 4464 bytes

4 bytes 
4 bytes 
4 bytes
5*6= 30 bytes 
4*6 = 24 bytes 
4398 bytes

2) Manual class
size o f values = 40+4+80+4+4= 132 bytes
size o f uid
size o f object length
size o f attribute count

4 bytes 
4 bytes 
4 bytes

209



size o f attribute vector size 
size o f values offset vector size 
size o f values 
=> total : 189 bytes

5*5 = 25 bytes 
4*5= 20 bytes 
132 bytes

3) CompositePait class
size o f values — 4+10+4+4+4*4+4*20+4 = 122 bytes
size o f uid 
size o f object length 
size o f attribute count 
size o f attribute vector size 
size o f values offset vector size 
size o f values 
=> Total: 197 bytes

4 bytes 
4 bytes 
4 bytes
5*7= 35 bytes 
4*7= 28 bytes 
122 bytes

4) Document class
size o f values = 40+4+80+4 = 128 bytes
size of uid 
size o f object length 
size of attribute count 
size o f attribute vector size 
size o f values offset vector size 
size o f values 
=> total : 176 bytes

4 bytes 
4 bytes 
4 bytes
5*4= 20 bytes 
4*4= 16 bytes 
128 bytes

5) AtomicPart class
size o f values = 4+10+4+4*2+4+4*3+4*3+4 =58 bytes
size o f uid : 4 bytes
size o f object length : 4 bytes
size of attribute count : 4 bytes
size o f attribute vector size : 5*9 = 45 bytes
size o f values offset vector size: 4*9 = 36 bytes
size o f values : 58 bytes
=> total : 151 bytes

6) Connection class
size o f values = 10+4+4+4 = 22 bytes
size o f uid 
size o f object length 
size o f attribute count 
size o f attribute vector size 
size o f values of&et vector size 
size o f values 
=> total : 70 bytes

4 bytes 
4 bytes 
4 bytes
5*4= 20 bytes 
4*4= 16 bytes 
22 bytes

210



7) ComplexAssembly class
size o f values = 4+10+4+4+4+4*3 =38 bytes 
size o f uid ; 4 bytes
size o f object length ; 4 bytes
size o f attribute count ; 4 bytes
Mze o f attribute vector size : 5*6 = 30 bytes 
size o f values offset vector size: 4*6 = 24 bytes 
size o f values : 38 bytes
=> total : 104 bytes

8) BaseAssembly class
size o f values = 4+10+4+4+4+4*3 = 38 bytes 
size o f uid : 4 bytes
size o f object length : 4 bytes
size o f attribute count : 4 bytes
size o f attribute vector size : 5*6 = 30 bytes 
size o f values offset vector size: 4*6 = 24 bytes 
size o f values ; 38 bytes
=> Total 104 bytes

V.2. Disk and Page layout in OODB [Kim, 1990]

Assumptions:
A raw disk can be divided into a set o f partitions (analogous to cylinder groups).
Each partition consists o f number of segments.
Each segment in turn consists of a number o f blocks or pages.

In each partition, the disk header contains information such as the number o f partitions, 
the address and size of each partition and the recovery log file

Segments in a partition are described by a segment table in which the address and sizes of 
the page tables for the segments are stored.

Each page table in a segment records information about the size of each page in number 
ofblocks

The partition table Qn disk header) format
Class Partition number partition address partition size
c , 1

c . 15

The segment table format in partition P, (Indicated by partition address in partition table)
Class Segment number segment address segment size
Cl Si

211



c . Sk

The page table format in segment S. (indicatet by segment address in segment table).
Class Page number Page address Page size
Cl Pi

c« P .

A page has the following format [Kim, 1990]

Indirect-pointer array 
1

Contiguous 
free space

Total free space

Header .... .-r - - . .5  ...... ..S f - . . . . . . . . . .
I- - - - - - - - - - - - - - - 1— f

Header provides information about the page such as number o f objects, total free space, 
contiguous free space, offset to free space, etc.
Indirect pointer array: offset to the page location where the object is placed.
The physical address of an object: concatenation o f the page that holds the object and the 
byte offset within the page.
For simplicity, assume that size o f header is negligible and there is no free space. Then, for 
each class Q  , the amount o f memory required for all of its instances, say Si, can be 
calculated as follows. Let L be the number o f instances in C;
Si = size to store indirect pointer array + size to store all o f instances in Q 

= Ii*size to store each address +Ii*size to store each instance 
= Ii*(size to store each address + size to store each instance)

Then, for 007 benchmark, we can calculate DBsize as follows.
Module class = 4 + 4464 = 4468 bytes 
Manual class = 4 + 189 = 193 bytes 
CompositePart class = 500*(4+197) = 100500 bytes 
Document class = 500*(4+176) = 90000 bytes 
AtomicPart class = 500*20*(4+151) = 1550000 bytes 
Connection class = 500*20*3*(4+70) = 2220000 bytes 
ComplexAssemby class = 364*(4+104) = 39312 bytes 
BaseAssembly class = 729*(4+I04) = 78732 bytes

P%es needed for each class can be calculated as follows. Note that size of each page is 
2048 bytes.
Module =  [4468/20481 = 2 pages

212



Manual = F193/20481 = 1 page 
CompositePart = f 100500/20481 = 50 pages 
Document = f 90000/20481 = 44 pages 
A tom iff art = f 1550000/20481 = 757 pages 
Connection = f 2220000^0481 = 1084 pages 
ComplexAssembly = f39312/20481 =  20 pages 
BaseAssembly = f78732/20481 =39 pages

Therefore, DBsize = 2+1+50+44+757+1084+20+39 = 1997 pages

Assume that there are 10 partitions (cylinders). Then, each partition has about 200 pages. 
Also, assume that only one class is stored in the same segment o f disk pages. Thus, total 
8 segment are required to store 007 benchmaric database.

213


