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Abstract

Object-oriented databases (OODBs) have been adopted for non-standard
applications requiring advanced modeling power, in order to handle complex data
and relationships among such data. One of the important characteristics in database
system is manipulation of shared data. That is, database systems, including
OODBs, allow shared data to be accessed by multiple users at the same time.
Concurrency control is a mechanism used to coordinate access to the multi-user
databases so that the consistency of the database is maintained. In order to provide
good performance, it is very important that concurrency control schemes incur low
overhead and increase concurrency among users. This dissertation presents a
concurrency control scheme in OODBs that meets those requirements.

First, the dissertation discusses three important issues of concurrency
control in OODBs. These include conflict among methods, class hierarchy locking,
and nested method invocations. The previous works for each issue are presented,
and their advantages and disadvantages are also discussed. Then, an integrated
concurrency control which addresses all three issues is proposed. For conflict
among methods, a finer locking granularity, such as an attribute and an individual
class object, is adopted for instance access and class definition access so that
higher concurrency is achieved. Especially, for instance access, higher concurrency
is obtained using run-time information. Also, locks are required for instance

method invocations instead of atomic operation invocations so that locking



overhead is reduced. For class hierarchy locking, locking overheads are reduced
using special classes which are based on access frequency information on classes.
Finally, for nested method invocations, semantic information is used in order to
provide higher concurrency among methods. Also, parent/children parallelism is
adopted for better performance.

Secondly, an analytical model is constructed to measure the performance of
concurrency control in an OODB system. Using this model, the proposed
technique is then compared with the two existing techniques, Orion and Malta.
The analytical results show that the proposed scheme gives the best transaction
response time, Malta the second best, and Orion the worst.

Finally, a performance study is conducted by means of simulation using the
007 benchmark. The simulation results show that, in terms of transaction response
time and lock waiting time, the proposed scheme performs the best, Malta the

second best, and Orion the worst.



CHAPTER 1

INTRODUCTION

1. Motivation

Recently, many new database applications such as computer-aided design (CAD),
computer-aided software engineering (CASE), office information systems, and artificial
intelligence have emerged. These new areas require advanced modeling capabilities to
handle complex data and complex relationships among data. In those areas, complex
modeling is impossible or very difficult, if relational data model is adopted. An object-
oriented database (OODB) is suitable for such applications, since it provides modeling
power as grouping similar objects into class, and organizing all classes into a hierarchy
where a subclass inherits all definitions from its superclasses.

In [Kim, 1990}, an OODB is defined as “a collection of objects whose behavior and
state, and the relationships are defined in accordance with an object-oriented data model”.
Also, an object-oriented database system (OODBS) is defined as “a database system
which allows the definition and manipulation of an OODB”. The followings are basic
concepts in OODBs ([Kim, 1990],[Olse, 1995]).

e Object: any real world entity can be an object. Also, each object is associated with a
unique identifier.

o Attribute: an object has one or more attributes whose values are also objects. The values
of an attribute represent the state of an object.

¢ Method: an object has one or more methods which operates on the state of the object.



o Class: all objects sharing the same set of attributes and methods can be grouped into a

class. An object belongs to only one class as an instance of the class.

¢ Encapsulation: it is the process of packaging the data elements and functionality together
[Denc,1994]. That is, the state of an object can be manipulated and read only by
invoking the object’s methods.

e Class hierarchy: the classes form a hierarchy (which is directed-acyclic graph) called a
class hierarchy. It is based on generalization and specialization concepts, which will be
discussed later.

Usually, several operations on the database form a logical unit of work. For
example, consider customer’s fund transfer in which one account is debited and the other
account is credited. It is important to maintain database consistency so that either both
debit and credit occur or none of them occurs. That is, the fund transfer is done
atomically. A transaction is a collection of operations that performs a single logical
function in a database application [Kort,1991]. In general, a transaction has four
properties: atomicity, consistency, isolation, and durability. Each transaction is a unit of
atomicity (atomicity). Thus, a successful execution of a transaction maps one consistent
database state into another (comsistency). Also, an executing transaction’s intermediate
results cannot be revealed to other concurrently running transactions before commitment
(isolation). Once a transaction commits, its resuits are recorded in the database
permanently and cannot be erased (durability). In OODBS, a database is a collection of
classes and instances where classes and instances are called objects. Users can access

objects by invoking methods. To make sure atomicity of user interactions, the traditional



transaction model can be used in OODBs. That is, users can access an OODB by
executing transactions, each of which is defined as a partially ordered set of method
invocations on a class or an instance object [Agra, 1992].

Transactions in OODBs have the following characteristics- first, unlike traditional
applications, transactions in advanced applications such as CAD and CASE require long-
duration running time (hours or even days). In particular, in CAD, design tasks generally
make a team of designers cooperate for days to months [Jose,1991]. Second, in OODBs,
since a method on an object can invoke other methods on other objects, this results in
transaction executions with a nested form ([Agra, 1992), [Hadz 1991]). Third, some
advanced applications require user transactions to cooperate to perform a common task.
This results in the concept of cooperating transactions.

One of the important characteristics in database systems is manipulation of shared
data. That is, database systems, including OODBs, allow shared data to be accessed by
multiple users at the same time. Concurrency control involves synchronization of access to
the database so that the consistency of the database is maintained ([Ozsu,1991],
[Bern,1987]). Like in conventional databases, concurrency control in OODBs also
requires logical consistency of data and transactions. Concurrency control requires an
application-dependent correctness criterion to maintain database consistency while
transactions are running concurrently on the same object. Serializability is a widely used
correctness criterion. Transactions are serializable if the interleaved execution of their
operations produces the same output and has the same effects on the database as some

serial execution of the same transactions ([Bern,1987], [Bern, 1981]).



In general, three concurrency control schemes have been used: locking-based
([Eswa,1976], [Hung,1992], [Kort,1983]), optimistic [Kung,1981], and timestamp
ordering ([Bern,1987], [Sing,1985], [Ulos,1992]). The locking-based (also called
pessimistic) schemes assume that there will likely be conflicts among concurrent
transactions and transactions must acquire locks before accessing the database. One
locking_based scheme that ensures serializability is the two-phase locking scheme
[Kort,1991]. The basic rules of this protocol require that two phases be observed by every
transaction as follows. First, in growing phase, a transaction may only obtain locks
(releasing any lock is prohibited). Second, in shrinking phase, a transaction may only
release locks (obtaining further lock is prohibited likewise). Initially, a transaction belongs
to growing phase. After the transaction obtains as many locks as needed, it enters to the
shrinking phase and further lock requests are prohibited. The optimistic schemes assume
that transactions will not conflict with each other, and the isolation of a transaction is
checked only at its commit time. The timestamp ordering scheme is a technique in which
the transaction execution is ordered on a priori serialization order. To obey this order,
each transaction is assigned a timestamp when it is initiated. Conflicting operations of
transactions are processed in the timestamp order. There are many variations of these
three basic schemes ([Care,1987], [Hali,1989), [Serv,1990], [Hali,1991], [Levy,1994],
[Naka, 1994]). Locking-based scheme are the most widely used schemes in database
systems.

Supporting concurrency control in an OODB is more complicated than in a

relational database for the following reasons ([Jaga,1993], [Muth,1993]). First, the



semantics of methods on encapsulated objects can be exploited to provide better
concurrency. That is, although two methods conflict with each other in terms of read and
write conflict relationships, OODB systems can provide concurrency between two
methods using semantics of the methods since the methods usually represent behaviors of
objects [Kwon,1997]. Second, an object participates in various forms of hierarchies
among objects such as class hierarchy or composite-object hierarchy [Garz, 1988]. Access
to one object may affect other objects in the hierarchies; thus access control is more
complicated. For example, if a definition of a class is updated, this blocks any access to the
class as well as its subclasses.

As we discussed carlier, typical transactions are long-lived nature. Thus, in order
to meet database consistency, blocking or aborting transactions may delay transaction’s
response time. For better performance in transaction processing in OODBs, it is essential
for a concurrency control scheme to incur low overhead whenever invoked and provide

higher concurrency so that as many as transactions can run concurrently.

1.2. Problem Statement

A number of concurrency control techniques have been developed for OODBs
([Jaga, 1993],[Malt, 1993],[Muth, 1993],[Olse, 1995),[Rese, 1994],[Lee, 1996],[ Shar, 1996],[
Kwon,1997]). These existing works deal with three features of access: conflicts among
methods, class hierarchy locking, and nested method invocations. In order to illustrate

each type of access, consider the following Figure 1-1. Assume that class vehicle has four



o e e e n e

attributes id, color, drivetrain and manufacturer and class company has three attributes
name, location, and president. Class emplayee has three attributes ssn, name, age.
1.2.1. Conflicts among methods

In general, there are two types of access to an object : instance access and class
definition access [Cart,1990]. An instance access consists of consultations and
modifications of attribute values in an instance or a set of instances. A class definition
access includes consulting class definition, adding/deleting an attribute or a method,
changing the implementation code of a method or changing the inheritance relationship
between classes, etc. In Figure 1-1, for class vehicle, a possible instance access is a
modification of the attribute color of an instance, and a possible class definition access is

changing domain of the attribute id from integer to character.

Compa Employee

SSN
name
Truck e
DomesticAutomobile | Truckcompany |

{ DomesticAutocompany | { JapaneseAutocompany|

emsssmssmse  class/subclass link attribute/domain link

Figure 1-1. Illustrative OODB schema [Kim, 1990]



In OODBs, one of the main concems is to increase concurrency among methods
so that more transactions can run in parallel. Otherwise, aborting or blocking a transaction
to meet database consistency may waste system resources or delay other transactions.
Commutativity is a widely used criterion to determine whether a method can run
concurrently with those in progress on the same object [Malt,1992]). Two methods
commute if their execution orders do not affect the results of the methods. Two methods
conflict with each other if they do not commute.

Two types of access to an object induce three different types of conflicts among
accesses to a class: conflicts between instance accesses, conflicts between class definition
accesses, and conflict between instance access and class definition access. For example,
a conflict between instance accesses occurs if two instance methods are trying to modify
an attribute value of the same instance at the same time. Also, updating the same class
definition such as modifying the implementation code of the same instance method at the
same time induces conflict between class definition accesses.

1.2.2. Class Hierarchy Locking

One of the major properties of an OODB is inheritance. That is, a subclass inherits
definitions defined on its superclasses. Also, there is an is-a relationship between a
subclass and its superclass. Thus, an instance of a subclass is a specialization of its
superclasses (and corversely, an instance of a superclass is a generalization of its
subclasses) [Garz,1988]). This inheritance relationship between classes forms a class
hierarchy. There are two types of inheritance: single inheritance and multiple inheritance.

In single inheritance, a class can inherit the class definition from one superclass. On the



other hand, a class can inherit the class definition from more than one class in multiple
inheritance.

While there are some operations on only one class such as class definition read or
instance write on one instance, there are two types of operations on a class hierarchy:
class definition write and instance access to all or some instances of a given class and its
subclasses (also called IACH, meaning Instance Access to Class Hierarchy). A query is an
example of IACH where a query is defined as instance reads to a given class and its
subclasses [Garz,1988). Due to inheritance, while a class and its instances are being
accessed, the definitions of the class’ superclasses should not be modified. Also, due to the
is-a relationship between classes, the search space for a query against a class, say C, may
include the instances of all classes in the class hierarchy rooted at C as well as all instances
of C. Thus, for locking_based concurrency control schemes, when a class definition write
or query is requested on some class, say C, we need to get locks for all subclasses of C as
well as C. We call MCA (Multiple Class Access) for class definition write and IACHs, and
SCA (Single Class Access) for other operations such as class definition read and instance
access to a single class.

For example, in Figure 1-1, changing any definition of a class vehicle may block
any other incoming access to class Automobile, Truck or DomesticAutomobile. Also, due
to the is-a relationship among classes, a query to a class Aufocompany may access all
instances of class DomesticAutocompany and JapaneseAutocompany as well as instances
of class Autocompany.

1.2.3. Nested method invocations



In OODBs, objects can have nested structures. That is, an object can be composed
of complex objects or atomic objects. For example, in Figure 1-1, an object vehicle can
consist of three atomic objects (i.e., id, color, and drivetrain) and a complex object
manufacturer . It is natural that, in OODBs, each class can define its own method and a
method on a class can invoke another method on its subobject (also called nested method
invocation) [Muth, 1993].

In OODBs, two different objects can share a common object in an underlying
hierarchy [Herr,1990]. We call the common object a referentially shared object (RSO).
Once again, in Figure 1, two different instance objects vehicles may share the same
instance object company in an underlying nested object hierarchy. Thus, methods on
different objects may not commute [Muth,1993]. The RSO (also called non-disjoint
complex object) is a fundamental concern of OODB since new objects may be composed
of existing objects in modular design as indicated in [Rese,1994]. Thus, a nested object
hierarchy may result in referential sharing.

Existing works have many disadvantages as follows. For conflicts among methods,
application programmers have a burden to provide commutativity relationships for
instance access. That is, in order to provide better concurrency among methods,
application programmers should know possible states of objects and results of each
method. Also, for class definition access, existing works either provide less concurrency
due to big locking granularity or incur too much run-time overhead for higher
concurrency. For class hierarchy locking, existing studies, which can be classified into

two types (i.e., explicit locking and implicit locking), incur too much locking overhead



and aim at a special type of access to class hierarchy (i.e., explicit locking aims at access
to a higher-level class of the hierarchy while implicit locking aims at access to a class near
the leaf-level). For nested method invocations, either concurrency is still limited since
semantic information is not utilized or too much run-time overhead is incurred since locks
are required for each atomic operation. Also, most existing studies do not consider
referentially shared objects (non-disjoint complex objects) which is a necessary condition

for modular design in an OODB [Rese, 1994].

1.3. Research Objectives
This research has the following objectives.

An integrated concurrency control scheme is developed for an OODB. The
proposed scheme is based on locking and deals with the following issues: conflicts amonzg
methods (i.e., conflicts among instance access methods, conflicts among class definition
access methods, conflicts among instance access methods and class definition access
methods), class hierarchy locking with single inheritance and multiple inheritance, and
nested method invocations. Also, a proof to the correctness of the proposed concurrency
control scheme is given

In order to test the performance of the proposed scheme, first, an analytical model
is constructed for concurrency controls in OODBs. Based on the model, performance is
evaluated for each type of access and for a mixture of all types of access to compare the
proposed scheme and the existing works: Orion [Garz 1988]) arnd Malta
([Malt, 1991}, [Malt,1993]).
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Also, extensive simulation experiments are conducted to compare the proposed
concurrency control scheme with the existing schemes, based on the 007 OODB
benchmark. The results obtained are then analyzed, and guidelines for developing and

selecting an OODB concurrency control technique are provided.

1.4. Organization of the dissertation

The rest of the dissertation is organized as follows.

In Chapter 2, related work for concurrency controls in OODBs is discussed. For
each access type (conflict among methods, class hierarchy locking and nested method
invocations), advantages and disadvantages of existing work is presented

In Chapter 3, an integrated concurrency control is proposed. The scheme deals
with the three access types. The correctness of the proposed scheme is also provided.

An analytical model for the proposed concurrency control scheme and also two
existing schemes in OODBs is introduced in Chapter 4. Using the analytical model,
performance analysis is conducted comparing the proposed work and the existing work of
Orion and Malta.

In chapter S, a simulation model is introduced in order to compare performance
among the proposed scheme and the existing work of Orion and Malta. For standard set
of requirements, the 007 OODB benchmark is adopted. Based on the benchmark, results
are obtained and then analyzed.

Finally, Chapter 6 gives conclusions and future research issues of the dissertation.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a review of relevant research on concurrency control techniques in
OODBs are presented. Techniques are discussed in terms of three access types (conflict
among methods, class hierarchy locking and nested method invocations) for centralized

OODBs.

2.1. Conflicts among methods
2.1.1. Conflicts between instance accesses

In many existing locking-based schemes, concurrency between instance accesses is
limited since locking granularity is an entire instance object ([Garz,1988], [Cart,1990],

[Wang,1990], [Malt,1991]). In ([Garz,1988], [Wang, 1990}, [Cart,1990], [Malt,1991]),

and their locking granularity is a unit of instance object for an instance read and an
instance write, respectively. Thus, two transactions accessing the same object may conflict
with each other even though they access disjoint attributes of the instance object. This
results in limited concurrency among instance accesses.

While the above schemes are based on only locking, a scheme in Gemstone OODB
system [Serv,1990] is based on both optimistic and pessimistic (locking-based)
concurrency control. Under optimistic concurrency control, a transaction T’s possible
conflicts can be detected by comparing its read and write sets with those of any other
transactions T1’s that already committed after transaction T began. That is, a conflict may

occur either if T’s write set and a T1’s write set have common objects or if an object in
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T’s write set is in another transaction T1’s read set and an object in T’s read set in also in
T1’s write set. If a conflict is detected, T needs to be restarted. Under a locking based
concurrency control, the scheme provide three lock types: read, write and exclusive.
Holding a read lock on an object means that any other transaction cannot get write or
exclusive lock on the same object or commit if it has written the object. A holding a write
lock on an object means that any other lock requesting transaction cannot get any kind of
lock on the same object or commiit if the lock requesting transaction has written on the
object. This write lock is different from conventional exclusive lock. That is, other
transaction may read a write-locked object optimistically and commit. If a transaction
holds an exclusive lock on an object, any other lock requesting transactions cannot get any
kind of lock on the same object or commiit if the lock requesting transaction has written or
read on the object. This lock prevents another transaction from reading the value of the
object and then writing that derived information in other objects. In this approach, a lock
granularity for an instance access is an entire instance object so that the concurrency
provided is still limited.

In addition to the above techniques, several techniques have been proposed to
increase concurrency among instance accesses ([Agra, 1992], [Badr,1988], [Badr,1992],
[Chry,1991]). In order to decide commutativity of instance access methods, they require
application programmers to perform semantic analysis on the methods as follows.

The right backward commutativity is introduced to provide more concurrency
among methods in [Agra, 1992]. It assumes that, at any given time, the current state of an

object consists of a committed state, and a set of operations belonging to active
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transactions. Also, it assumes that, when an operation is executed on an object, a resuit
res is returned. Like conventional commutativity relations, the right backward
commutativity is used to define conflict or none-conflict relationship between a lock
holder and a lock requester. But, the right backward relationship has the following
characteristics [Agra,1992]: “an operation o, is said to have right backward
commutativity with another operation 02 on an object if for every state in which o, can be
executed after o;, executing o, followed by 0, has the same state and result as executing
o; followed by o;”. This is less restrictive than commutativity relation since right
backward commutativity is included in commutavitity and commutativity does not
necessarily include the right backward commutativity. But, in order to support right
backward commutativity, application programmers need to know all possible outcomes of
each method. For example, consider an instance object representing bank account in
[Agra, 1992]. The state of the instance object is the amount of money at given time.
Assume that there are three operations defined on the object: deposit, withdraw and
balance. The response to a deposit operation is always OK. The response to a withdraw
operation is either yes or no depending on balance while the response to a balance
operation is the amount of money in the account. Then, depending on the response to
operation o, <o, res> may have different conflict relationships with other operations. For
example, <withdraw (i), no> does not conflict with <balance, j> since <withdraw (i), no>
has right backward commutativity relationship with all <balance, i> pairs where i and j are
the amount of money. If the response of withdraw operation is not considered, the balance

operation always conflicts with the balance operation.
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In [Bard,1988], the concurrency is enhanced by taking attribute locking
granularity instead of an instance object. They define the affected set of each method
attributes accessed by the method so that two methods commute if the intersection of their
affected set of attributes is disjoint. For example, two instance write methods do not
conflict, as long as their affected set of attributes is disjoint. Thus, it can achieve higher
concurrency than entire instance object is taken as a locking granularity. But, application
programmers need to know the affected set of each method and structure of every object.
For example, assume two methods M, and M, , and four attributes a,, a,, a; and a, are
defined on object 0. Again, assume that M, reads attributes a, and a; while M, modifies
attribute values of a; and a,. Then, two methods can run concurrently whereas they
conflict with each other when the entire object lock granularity is considered.

Recoverability is used to enhance concurrency in [Badr,1992]. It is defined as
follows: “an instance method m; is recoverable relative to another instance method m,, if
m; returns the same value whether or not m, is executed immediately before m,”. Fo-
commutativity-based schemes, a method which does not commute with other
uncommitted methods will be blocked until those conflicting methods are aborted or
committed. In the recoverability-based scheme, non-commuting but recoverable methods
are allowed to execute concurrently. But, the commit order of the transactions invoking
recoverable methods should be fixed. That is, it is based on the order in which they are
invoked. If a lock requesting method does not have recoverability relationship with a lock

holding method which is uncommitted, the lock requesting method is blocked. This
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recoverability implies commutativity. This work requires application programmers to
know all outcomes of each method for possible input parameters.

A formal methodology to define the commutativity relationships among methods is
presented in [Chry, 1991]. In this work, for each operation, the outcome and result should
be provided by application programmers. The outcome of an operation is its status such as
ok or nok (not ok) and other values it returns are called its result. For example, Pop
operation in stack can have nok and top element as an outcome and result, respectively.
Also, this technique adopts refined commutativity relations among operations: abort-
dependency (AD) and commit-dependency (CD). In the traditional commutativity
relationship among operations, a commutativity table contains binary relation with yes
(commute) or no (not commute). Instead, in this work, an entry may contain three entries
[Chry,1991]: ND (no-dependency), AD and CD. AD and CD have the following
relationship: assume that an operation r follows an operation s. If s is a write and r is a
read, the transaction has to abort when the first transaction aborts for some reason. This is
due to the fact that the information used by r may not be valid. The second transaction can
commit only if the first transaction commits. In this case, the second transaction is said to
have an AD relationship with the first transaction. On the other hand, if s is a read and r is
a write, the outcome and result of r are not affected by the effects of s. In this case, if both
transactions commit, the first has to commit before the second in order to ensure
serializability. That is, the second can commit only after the first commits or aborts. In this
case, the second transaction is said to have a CD relationship with the first transaction. For

example, consider a QStack object where a QStack combines the properties of a stack and
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a queue [Chry,1991]. The operations defined on QStack are Enq (e)/Push (e) and Deq (e).
Enq (e) or Push (e) add an element e to the back of the QStack. It returns ok if the
QStack is not full, nok otherwise. Deq (e) deletes an element e from the front of the
QStack. It returns e if the QStack is not empty, nok otherwise. Then, (Deq, Push) entry in
commutativity table has the following relationships: {(AD, Push.. = 0k), (CD, Push,, =
nok)} where (Deq, Push) entry represents the situation that a Deq follows a Push on a
QStack object. Finally, for each operation, its locality (i.e., a set of component objects
accessed by an operation) is defined. This concept is similar to affected set of attributes in
[Badr,1988]. As can be seen in the above description, application programmers need to
know the outcomes of each method. In addition to this, dependency relation such as
abort-dependency or commit-dependency between each pair of method should be
provided by application programmers.

Forward and backward commutativity relations, which are introduced in
([Weih, 1988],[Weih,1989]), are combined into a new relation called Forward-Backward
commutativity (FBC) in [Guer,1995]. The backward commutativity is supported by the
update in place (UIP) model. In the UIP model, any effects of active transactions are
recorded immediately in the database. The backward commutativity (BC) is defined as
follows [Guer,1995]: assume that the values of an object represent the state of the object.
The state of an object can be accessed only by operations defined in the specifications of
the object. The specification of an object represents the set of possible states and
responses produced by this operation. Formally, for a given state s, a response and a state

of an object are stated as follows: The return (op,s) represents return value by operation
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op on state s. The state (op,s) represents the state produced after the execution of op.
Then , “opl BC op2 if and only if ¥V s such that state (opl,s), state (op2, state(opl,s)),
return (opl,s) and return (op2, state (opl,s)) are defined, the followings three equalities
hold”:

(1) state (op1l, state (op2,s)) = state (op2, state (opl,s))

(2) return (opl,s) = return (op1, state (op2,s))

(3) return (op2,s) = return (op2, state (opl,s))

On the other hand, Forward commutativity (FC) is supported by the deferred
update model (DU). In the DU model, the effects of active transactions are not recorded
until those transactions commit. Also, those effects can not be seen by any other
transactions. FC can be defined as follows [Guer,1995]: “opl FC op2 if and only if V s
such that state (opl,s), state (op2,s), return (opl,s) and return (op2,s) are defined, then
three equalities (1), (2) and (3) defined above hold”. Finally, FBC can be defined a:
follows [Guer,1995]: “op1 FBC op2 if and only if V s such that state (opl, s), state (op2,
s), state (op2, state (opl,s)) are defined and return (op2,s) = return (op2, state (opl,s)),
the two equalities (2) and (3) hold”. This FBC is less restrictive than both BC and FC
since all FBC relationships imply BC and FC relationships, not vice versa. Thus, FBC
relationship can provide more concurrency than both relationships. The three
commutativity relations BC, FC and FBC define commutativity relationships between a
lock requester and a lock holder. But, unlike conventional commutativity, the three
commutativity relationships BC, FC and FBC utilize states and responses of objects in

order to enhance concurrency. In order to define this commutativity relationship, possible
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states and response of all operations in an object should be analyzed and then
commutativity relation table is constructed. Note that FBC can be supported by the neither
the UIP nor DU model since FBC requires both of UIP and DU model. In other words, in
order to support FBC, each object needs to be biversioned. In the biversion object model,
each object has two states: current-state and committed-state. The current-state has the
value accessed by both active transaction and committed transactions. Whereas, the
committed-state has the value accessed only by committed transactions.

Recently, a commutativity relation, called gemeral commutativity, has been
introduced in order to provide concurrency more than both forward commutativity and
backward commutativity [Naka 1994]. This commutativity is based on both forward
commutativity and backward commutativity defined in ([Weih,1988], [Weih,1989]).
[Naka,1994] argues that two commutativity relationships are not subsets of each other, so
that one cannot claim which one is better. Moreover, each commutativity requires a
different recovery algorithm and a different implementation of an object. A general
commutativity relation includes both commutativity (forward and backward) relations.
This means that a general commutativity relation can achieve higher degree of
concurrency. Like in [Guer,1995], possible states and responses of all operations should
be analyzed in order to construct general commutativity. But, unlike [Guer,1995], the
commutativity is based on multiversion objects which have both committed states and
current states of objects at the same time, since this scheme requires histories of objects.

Those techniques presented so far require application programmers to define the

commutativity relationships among methods. The construction of commutativity relations
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is a burden on application programmers. Recently in [Malt,1993], the process of
constructing commutativity relations from method contents is automated. It is based on
the notion of affected sets of attributes [Badr,1988]. That is, even if two instance
methods conflict in terms of read or write operations, as long as their access modes on
individual attributes do not conflict, two methods can run in parallel. Commutativity of
methods is determined at compile-time so that run-time commutativity checking is
avoided. As a preliminary step to construct commutativity relations among methods, they
construct an Direct Access Vector (DAV) for each method. A DAYV is a vector whose
field corresponds to each attribute defined in the class on which the method operates.
Each value composing this vector denotes the most restrictive access mode used by the
method when accessing the corresponding field. An access mode of an attribute can have
one of three values, N (Null), R (Read) and W (Write) with N < R < W for their
restrictiveness. Access mode information is syntactically extracted from the source code of
the method at compile-time. After the construction of DAVs of methods, commutativity
of methods can be constructed as follows : two methods commute if their corresponding
DAVs commute. In turn, two DAVs commute if their access modes are compatible for
each attribute. This commutativity relation is defined in the form of a table.

The above technique [Malt,1993] takes access mode information solely from the
source code of a method and thus frees the user from determining commutativity relations.
Also, this approach can provide finer concurrency by examining aitribute level rather than
object level locking granularity. Since a DAV of a method is the “:nion of its own DAV

and DAV:s of all other methods defined in that method, deadlocks due to lock escalation
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can be reduced by declaring the most exclusive access mode in a method. In other words,
this scheme reduces possibility of lock conversions [Malt,1993], which is a main source
of deadlocks. However, concurrency improvement offered by this technique is still limited
since run-time information on attributes is not taken into account. Actual access modes of
a method can be determined at run-time since every statement is not used due to some
branch statements. Those access modes may be less restrictive than access modes in the

corresponding DAV. Thus, by taking run-time information, concurrency can be increased.

2.1.2. Contflicts between class definition accesses

In the existing OODBs such as Orion, O: and Gemstone ([Garz, 1988],
[Cart,1990], [Serv,1990]), any class definition access requires a read or write lock
(depending on class definition read or class definition write) on an entire class object.
Thus, no matter what kind of update operation is performed on a class object, it blocks all
other class definition access operations even if they need to access disjoint portions of the
class object.

The only two lock modes on class definition access, RD (Read Definition) and MD
(Modify Definition), are adopted in [Malt,1991). They do not consider any finer granules
on class definition access such as reading definition of attributes or updating definition of
methods, etc. This results in limited concurrency among class definition writes and class
definition reads. This is due to that more concurrency can be achieved by taking finer
locking granularity such as attribute definition or method definition on class definition.

A higher concurrency among class definition writes is achieved in [Agra,1992] by
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providing finer locking granularity rather than taking locking granularity as an entire class
object. That is, they classify a class definition into definitions of attributes and methods.
For class definition writes on methods, they classify them intc three categories and
corresponding lock types : 1) add a method m to a class, add (m), 2) delete a method m
from a class, del (m), and 3) replace the implementation of a method m by a new
implementation, rep (m). For updates on attributes, they classify them into two categories
: 1) add an attribute a to a class, add (a), and 2) delete an attribute a from a class, del/ (a).
Thus, as long as two class definition write methods access disjoint portions of a class
definition, they can run concurrently. But, they do not consider class hierarchy
relationships which are also class definition as well as attribute definition and method
definition.

A locking-based technique, called O’C? is proposed in order to increase
concurrency between class definition accesses [Olse,1995]. This scheme is based on Orior
[Gart,1988] and O, [Cart,1990] and has basically the same lock types for class definition
access and instance access. Also, their locking granularity for a class definition and an
instance access are an entire class object and an instance object, respectively. But, in orde;:
to provide more concurrency between class definition accesses, they extract method
definition from a class definition. By doing this, there is concurrency between class
definition write and method definition. This concurrency is not poasible in Orion and Ox
But, they do not consider attribute definitions which are smaller definitions than an entire
class object. Thus, they fail to provide further concurrency by taking finer granularity in a

class object.
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2.1.3. Conflicts between instance access and class definition access

In most concurrency control schemes dealing with class definition writes, a
definition write on a class C blocks instance accesses as well as class definition reads on
the same class C ([Garz, 1988], [Cart,1990], [Malt,1991], [Serv,1990], [Lee,1996]). These
techniques are discussed in the following paragraphs..

In [Garz,1988], they adopt S (shared) and X (exclusive) lock modes for class
definition reads and writes, respectively. Also, an entire class object is taken for a lock
granularity. Since X mode conflicts with all other lock modes, a class definition write
blocks all other access to the same class. In their work, S and X modes are used for an
instance read and instance write. This results in limited concurrency since a class definition
read does not commute with any instance write in the scheme. Actually, a class definition
read commutes with an instance write as described in [Cart,1990]. In [Cart,1990], as in
[Garz,1988]), only two lock modes are used for an entire class object: Cg (class definition
read) and Cw (class definition write), respectively. Since Cw conflicts with Cz and any
other instance access modes, concurrency between class definition access (class definition
read and class definition write) and instance access is limited. As discussed in Section
2.1.2, two lock modes on a class object limits concurrency between class definition write
and instance access [Malt,1991] since higher concurrency is possible by taking finer
locking granularity in both class objects and instance objects. In [Malt,1991], MD (Modify
Definition) blocks any other instance access as well as RD (Read Definition) and MD,
since MD lock does not commute with any other lock modes. In |Serv,1990), an exclusive

lock is required for a class definition write. It guarantees that other transactions (they call
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sessions) cannot acquire any kind of lock on the object since an exclusive lock on a class
does not commute with any other lock requesting transactions. This results in severe
concurrency degradation. Similarly, in [Lee, 1996}, they adopt two locks on a class object:
RS (Read Schema) and WS (Write Schema). Since WS lock is nit compatible with any
other lock modes, concurrency between a class definition access and an instance access is
limited.

A limited concurrency between class definition write and instance access is
provided in [Agra,1992] as follows. A lock granularity as individual attributes and
individual methods instead of an entire class object is adopted. That is, as long as two
class definition access methods or instance access methods access disjoint portions of a
class definition, they can run concurrently. For example, updating the implementation code
of a method, say M1, can run concurrently with an instance me‘hod, say M2. In their
work, whenever an instance method M is invoked, the instance me:hod M is read-metho 1-
definition-locked use (M), which is a read lock for method definition M, instead of a lock
on entire class object. Also, attributes, say a,, ay, ..., a, accessed by that method are read-
attribute-definition-locked use (a;), use (ay), ,,,, use (a). By taking fine lock granularity,
two method definitions can be updated as long as they access a disjoint set of attributes.
For example, assume that two methods M, and M and four attributes a,, a;, a; and a,.
Also, assume that M, accesses three attributes a,, a;, a;. If a transaction invokes M;, use
(M) lock for the method and use (a;), use (az), and use (a;) locks for attributes in M, are
required. If another transaction is trying to delete attribute a,, thin del (delete attribute)

lock is required so that del (as) is requested. In this case, two transactions access disjoint
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set of attributes, they can run concurrently without any blocking. But, these attribute locks
are required each time an instance access method is invoked, they incur large overhead.

In [Olse,1995], an instance write method can run concurrently with a class
definition write method on the same class. This concurrency is based on the following
argument: “the instance update operation is given a copy of old class definition that is
publicly available. Once a class definition is updated, it becomes publicly available and all
new instances use it. After all instance update operations that used an old class definition
have either aborted or completed, the new class definition are applied to all instances of
that class”. Although they allow concurrency between instance access and class definition

access, their lock granularity is still too big because an entire instance object is taken.

2.2. Class Hierarchy Locking

As discussed in Chapter 1, due to class hierarchy, class definition write and query-
type access on a class may need to access more than one class on a class hierarchy. More
specifically, updating a class definition at a high level in the hierarchy may require locks
for classes at lower levels in the hierarchy. This is not issue in the relational database since
locking tables or records are independent [Olse,1995). That is, if a table needs to be
updated, only locking on the table is needed and no more effects will be propagated to any
other tables.

There are two approaches dealing with a class hierarchy locking: explicit locking
([Garz,1988], [Cart,1990}, [Mait,1993]) and implicit locking ([Jaga,1993],[Malt,1991],

[Lee, 1996)).
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In explicit locking, for an IACH (Instance Access to Class Hierarchy) involving a
class, say C, and all of its subclasses, and for a class definition write on a class C, a lock is
set not only on the class C, but also on each subclass of C on the class hierarchy. For other
types of access (i.e., class definition read and instance access to a single class), a lock is
set for only the class to be accessed (also called target class). Thus. for an MCA (Multiple
Class Access), transactions accessing a class near the leaf level of a class hierarchy will
require fewer locks than transactions accessing a class near the root of a class hierarchy.
As another advantage of explicit locking, it can treat single inheritance where a class can
inherit the class definition from one superclass, and multiple inheritance where a class can
inherit the class definition from more than one superclass, in the same way. But, it
increases the number of locks required by transactions accessing a class at a higher level in
the class hierarchy.

In implicit locking, setting a lock on a class C requires extra locking on a path
from C to its root as well as on C. Intention locks ([Kort,1991],[D=te, 1985]) are set on al!
ancestors of a class before the class (also called sarget class) is locked. An intention lock
on a class indicates that some lock is held on a subclass of the class. For an MCA on a
target class, locks are not required for every subclass of the target class. It is sufficient to
put a lock on only the target class (in single inheritance) or locks on the target class and
subclasses of the target class which have more than one superclass (in multiple
inheritance) [Garz, 1988]. (Note that, in [Garz, 1988], for a query to some instances of a
class and its subclasses, locks are required for instances of each subclass). This is due to

that, for an MCA access, only lock on a target class is enough t-3 detect any conflict in
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subclasses of the target class. Thus, it can reduce lock overhead over explicit locking. But,
implicit locking requires a higher locking cost when a target class is near the leaf level in
the class hierarchy due to intention lock overhead.

For example, consider the following class hierarchy. In order to update the class
definition of class C, each scheme works as in Figure. 2-1.

In Figure 2-1, for implicit locking, intention locks IWs corresponding to W
(Write) locks are required for all superclasses on the path from C to the root A. Thus, if
another transaction, say T, needs to update the class definition in A (i.e., it needs to get W
lock on class A), it does not have to search each class through the class hierarchy for
conflict checking by the help of the intention lock IW on class A. That is, since IW and W
conflict with each other, T’s lock request is blocked on class A. (Note that, in implicit
locking, there is no conflicts between intention locks, and between an intention lock and
an SCA (Single Class Access) lock. But, there can be conflicts between an intention lock
and an MCA lock depending on the commutativity relationship ([Garz, 1988],[Malt,1993])
On the other hand, an explicit locking does not require any intention locks. But, it requires
a Cw (Class Write) lock on each subclass (i.e., class D and E) of the target class through
the class hierarchy since any modification of the class definition in C may affect the
definitions of its subclasses.

A new class hierarchy locking scheme, which is based on implicit locking, is
introduced in [Jaga,1993). They number the classes based on a topological sort with
respect to the partial order of inclusion relationships so that an inclusion path goes from a

higher-numbered class to a lower-numbered class. For any two classes C; and C,, C; is
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included in C; if every member of C, is also a member of C,. When a transaction requests
a lock on some class, it requests intention locks on the class’ inclusion path in numeric
order, i.e., from the highest number to the lowest number. For any preferred class such as
frequently accessed one, locking cost is reduced by assigning it a low number. That is, the
number of lock setting can be reduced by starting with a low number rather than a high
number. But, even though this scheme can reduce locking overhead in some sense, it still
has fundamental disadvantages of implicit locking. Their numbering scheme can be applied
to only the multiple inheritance case since multiple numberings are possible in only

multiple inheritance. For single inheritance, it works like the conveational implicit locking

scheme.
Implicit locking in Orion [Garz, 1988] Explicit locking in O, [Cart,1990]
IW lock A
l
IW lock B
!
W lock C Cw lock
|
D Cw lock
|
E Cw lock

Figure. 2-1. An example of implicit and explicit locking

The class hierarchy locking scheme in [Wang,1990], which is also based on
implicit locking, reduces locking overhead by adopting two boundaries: attribute

boundary and transaction boundary. For each attribute in a class, the attribute boundary is
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determined as follows. The boundary of attribute a; in class C is (1) any class up to and
including the first superclass where the attribute is redefined and (2) any class up to but
not including the first subclass where the attribute is redefined. After all attribute
boundaries are determined, the transaction boundary is determined by taking the
intersection of individual attribute boundaries. Based on transaction boundary information,
locks are granted on classes within the boundary from the highest class to the lowest class.
Thus, if a class hierarchy has some attributes redefined, a transaction needs fewer locks
than an implicit locking. But, this scheme depends on the number of attributes redefined so
that it has basically same problem as in implicit locking. That is, if there is no attribute

redefined, their scheme acts like implicit locking.

2.3. Locking on nested method invocations

As we discussed in Chapter 1, an object consists of many disjoint and/or non-
disjoint subobjects and also nested method invocations are natural in OODB applications.
In the literature, the following approaches are used to deal with nested method
invocations.

In an earlier attempt for nested method invocations, a locking technique is
developed for disjoint and non-disjoint complex objects in [Herr,1990]. They argue that
the traditional approaches dealing with complex objects have the following problems: the
granule-oriented problem, protocol oriented problem and authorization problem. Locking
an entire complex object may decrease concurrency severely aithough it can reduce

concurrency control overhead. On the other hand, locking individual objects can lead to
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tremendous overhead (granule-oriented problem). In non-disjoint complex objects,
updating shared object can lead to big overhead since all parent objects of the shared
object should be locked (protocol-oriented protocol). Combining concurrency control and
authorization components can achieve higher concurrency (authorization-oriented
problem). For example, if a transaction does not have right to update some object, an
exclusive lock is not required for the object. In order to solve three problems above, for a
complex object type, they created the general lock graph, which is to solve the granule-
oriented problem. In turn, for the general lock graph, the corresponding object-specific
lock graph which is to solve the protocol-oriented problem and authorization-oriented
problem, is constructed. Although their locking protocol considers non-disjoint subobjects
or RSO (Referentially Shared Object), it does not exploit semantics in order to enhance
concurrency.

As discussed in Chapter 1, OODBs can provide higher concurrency among
methods using behavioral properties of methods. That is, aithough two methods do not
commute with each other in terms of read and write operations, they commute using
semantics associated with methods. For example, consider a bank object and a method
deposit (x, m) where deposit (x, m) is to deposit m dollars after reading an initial balance
x. Two deposit methods are considered two write operations, but their execution resuits
are same regardless of their execution order. In existing OODBs such as Orion, O, and
Gemstone ([Garz, 1988], [Cart,1990], [Serv,1990]), they do not exploit any semantics of
methods. Their locking schemes are based on read and write operations so that the

concurrency provided is very limited.
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The nested two-phase locking with ordered sharing is proposed in [Agra 1992].
Their work is based on nested two-phase locking in [Moss,1985]. In ordered sharing
scheme, locks are required for each atomic operation. They provide better concurrency
using ordered sharing between locks. Unlike commutativity relationships, when ordered
sharing is adopted, a lock request is never delayed until a transaction holding a conflicting
lock commits or aborts. That is, a lock request is always granted as follows [Agra, 1992]:
for a given operation 0,, the set of operations are divided into two categories: the set of
operations that commute with 0,, and the set of operations that do not commute with o;.
If 01, a lock requester, commutes with some operation 0,, a lock holder, (i.e, o; has a
shared relationship with respect to o02), the lock request is granted and the execution
order between them is not important. But if 0, does not commute with o, (i.e., 0o; has an
ordered shared relationship with 0;), a lock request is granted but the execution order
should be preserved by observing a so called ordered commit rule: “if a transaction T, is
granted a lock with an ordered shared relationship with respect to a lock held by T, on an
object and T is a proper descendent of parent of T, then, T, cannot commit unless T, has
committed or aborted. Otherwise, the commit order of T, and T, is violated and T, may
reveal its intermediate results to T, before abortion or commitment™. Also, like the nested
transaction model in [Moss,1985], a transaction cannot commit or abort until all its
children are terminated, and locks are inherited by its parent when it commits. Using
ordered sharing rule, concurrency can be increased in a sense since any lock request is
granted and access can be shared as long as commit rule is observed. Even though this

scheme increases concurrency, they do not exploit semantics of me:hods.
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In [Muth,1993], a locking-based concurrency control scheme for OODB is
presented. They exploit the semantics of methods to increase concurrency. In their work,
the conflict between lower level operations or methods can be ignored due to the
commutativity of higher level invoked methods in nested method execution. In their work,
a lock is required on an object whenever a method or operation is called on the object.
Also, locks are converted to retained locks at the end of a subtransaction. If a top-level
transaction commits, all the locks held are released. They use semantics of methods as
follows: when two atomic operations conflict with each other, if they have ancestor which
are compatible with each other and the ancestor of the lock hoider commits, the lock
request is granted. That is, the lock request is not delayed until the top-level transaction
commits so that a higher degree of concurrency can be achieved. Similarly, when two
methods conflict with each other, the same principle can be applied. But, these authors do
not consider OODBs with RSOs. This is a weakness of their work because RSOs are a
fundamental property of OODBs and are necessary for modular design as indicated in
[Rese, 1994).

A semantic two-phase locking protocol for OODB is presented in [Rese,1994].
They consider RSOs and nested method execution. Also, they use semantics of method in
order to increase concurrency as follows: any two methods may commute with each other
if application programmers decide that their execution order is not important, by using
semantics of methods. Thus, two instance write methods commute semantically with each
other if their execution order does not violate behavioral aspect of an object. Thus, by

taking semantics into considerations, higher concurrency can be achieved. But, the
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semantically commuting methods should be executed atomically. In this work, locks are
required only for atomic operations shown in [Date, 1985]. The protocol works as follows:
a subtransaction or top-level transaction T cannot terminate until all of the children are
terminated. When a subtransaction is committed, its locks are inherited by its parent. On
the other hand, when a transaction is aborted or is top-level and committed, its locks are
released. A lock request is granted if one of the three following conditions are met: (a) no
other transaction holds a conflicting lock, (b) if conflicting locks are found after checking
commutativity relationship table, such locks are held by its ancestors and (c) if conflicting
locks are found after checking commutativity relationship table and these locks are held by
non-ancestors of lock holders, then one of the ancestors of the lock holders (not including
the lock holders) and some ancestors of the lock requester commute. By applying rule (c),
two semantically commuting methods are guaranteed to be executed atomically. Locking
for each atomic operation incurs an overhead which has a critical effect on OODBs where
many transactions are long-lived. Also, locking for each atomic operation may incur the
following problem: it is likely that lock conversion from less res‘rictive lock (i.e., read
lock) to more restrictive lock (i.e., write lock) may occur. This lock conversion is known
as main source of deadlocks [Malt,1993]. Also, [Rese,1994] assumes that the
commutativity relationships between methods are well-defined and can be derived based
on semantics as well as the specification of the class and its methods. But, [Rese, 1994]
fails to provide a formal way to construct commutativity relationships among methods.

A semantic locking, called ESL (Enhanced Semantic Locking), is introduced in

[Kwon,1997). Basically, their locking scheme is same as the locking scheme in
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[Rese, 1994]. They consider semantics of methods and RSO as follows. For semantics of
methods, they argue that methods can provide rich semantics than read and write
operations since methods usually represent behavior of objects. Semantics can be provided
at the discretion of the application programmer. On the other hand, in order for ESL to
support RSO, they adopt "in-place” conflict resolution policy as follows. That is, lock
modes are not associated with methods. In this work, commutativity of methods is
determined at the time of methods invoke shared subobject at the same time. This scheme
requests a lock whenever an read or write atomic operation is invoked in a method as in
[Rese, 1994]. But, ESL is different from [Rese,1994] in that lock conversion for retained
lock is prohibited. Basically, this scheme has the same problem as in [Rese,1994]. That is,
it may incur big overhead since a lock is required for each atomic operation invoked in a
method. Also, an entire instance object locking granularity is adopted so that two methods

accessing a disjoint set of attributes may conflict each other.

34



Rianielige .

Chapter 3

AN INTEGRATED CONCURRENCY CONTROL SCHEME

In this Chapter, an integrated concurrency control scheme for three access types is
developed. The principle for an integrated concurrency control is as follows: for conflict
among methods, the finer locking granularity is adopted for both instance access and class
definition access so that higher concurrency is achieved. Especially, for instance access,
DAYV concept is used in order to adopt attribute locking granularity instead of an entire
instance object. These DAVs are also used for automation of commutativity relationships
among instance access methods so that application programmers are free from burdens.
These DAVs can reduce locking overheads and possibility of deadlocks. Also, breakpoints
are used to adopt run-time information so that further concurrency can be achieved. For
class definition access, fine lock granularity is adopted so that two methods can run
concurrently as long as they access disjoint portions of class objects. For class hierarchy
locking, special classes are used in order to reduce locking overhead where a special class
is defined as a class on which class definition writes are performed frequently. The
proposed class hierarchy scheme incurs fewer locks than both existing schemes, for any
type of access. Finally, for nested method invocations, semantic information is used in
order to increase higher concurrency among methods. Also, parent/children parallelism is
adopted for better response time. For RSOs, conflicts are detected on actual method
invocation so that low concurrency due to static commutativity relationships can be

avoided.
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Basic approaches for each access type are introduced in Section 3.1. Based on
these approaches, the complete concurrency control algorithm is constructed in Section
3.2. Finally, in Section 3.3, the correctness of an integrated concurrency control is proven.
3.1. Handling individual access types
3.1.1. Conflicts among methods

As discussed in Chapter 2, there are two types of access to an object: instance
access and class definition access. Thus, there are three kinds of conflicts depending on a
lock holder and a lock requester: conflicts among instance accesses, conflicts among class
definition accesses and conflicts between instance access and class definition access. For
each type of conflict, principles to increase concurrency are presented in following
Sections.
3.1.1.1. Conflicts among instance accesses

The principles are based on ([Malt,1993]. Their work has the following
characteristics: in order to enhance concurrency among instance accesses, attribute level
lock granularity is taken instead of an entire instance object granularity. Also, lock is
required for each instance access method invocation instead of atomic operations in an
instance access method. By doing this, locking overheads as well as possibility of
deadlocks can be reduced significantly. But, in [Malt,1993], dynamic information is not
utilized, thus concurrency provided is still limited. In the proposed scheme, further
concurrency can be achieved by adopting run-time information.

The work in [Malt,1993] is summarized as follows: lock is required for an instance

method invocation. Also, attribute level lock granularity is considz2red. Thus, although two
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instance methods conflict in terms of read or write operations, as long as their access
modes on individual attributes do not conflict, two methods can run concurrently. In order
to build commutativity relationships among methods, they construct an DAV for each
method. An DAYV is a vector whose field represents access mode of each attribute. Each
value consists of one of three access modes: N (Null), R (Read) and W (Write). After
construction of DAVs of methods, commutativity of methods can be constructed as
follows: two methods commute if their corresponding DAVs commute. In this work, in
addition to further concurrency by taking finer locking granularity, the possibility of
deadlocks can be reduced. This is due to that an DAV of an instance access method
represents most restrictive access mode for each attribute, lock escalation, which is a main
source of deadlock, can be reduced.

In the proposed scheme, four objectives will be pursued. First, it still automates the
process of commutativity relation construction. Second, it provides more concurrency
than read and write access modes on methods. Third, it reduces deadlocks due to lock
escalation. Finally, it increases concurrency among methods by exploiting run-time
information.

The above objectives can be achieved as follows. In the proposed scheme, DAVs
are used so that attribute level locking granularity is possible. Also, the construction of the
commutativity relationships among instance access methods is based on these DAVs.
Since the construction of DAVs is solely based on access modes of attributes, automation
of commutativity relationships is possible. Also, locks are required for each method

instead of each atomic operation so that locking overhead and the possibility of deadlocks
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can be reduced. In [Malt,1993], DAVs represent static access modes of attributes. Thus,
concurrency is still limited since some attributes are not accessed during actual method
execution. In order to provide further concurrency, actual access modes of attributes are
reflected using breakpoints where a breakpoint represent a code segment executed
regardless of execution path. In [Malt,1993], the commutativity table entries contains only
method names. But, in the proposed scheme, breakpoints as wel! as method names are
included in the commutativity table entries. After a method execution, locks are changed
from method to breakpoint, which is less restrictive, so that further concurrency is
possible.

Similar to [Malt,1993], a two-phase pre-analysis is needed. It consists of two steps
: 1) construction of DAYV for each method and 2) construction of a commutativity table of
methods. In each method, a break point is inserted by a programmer or a compiler when a
conditional statement is encountered. Every method has a special break point called first
break point before the first statement in the method. There are three kinds of DAVs m
each method : 1) a final DAV of the first break point, which is a DAV of the entire
method as in [Malt,1993] 2) an initial DAV of the first break point, which is a union of
access modes of each attribute used by statements between the first break point and the
next break point and access modes of each attribute used by statements from the first
statement to the last statement that are executed regardless of execution paths. A union
operation ‘+’ is equivalent to max, e.g., N + W = W, that is, take more restrictive mode
among two operations. Note that this union operation is necessary to build worst case

access mode of each attribute. and 3) an initial DAV of every other break point, which
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contains access modes of all attributes used by statements between this break point and
the next break point (or end of the method).

For example, assume that there are three methods M1, M2 and M3 and an object
O1 with four attributes a,, a;, a; and a,. A, Al, A2, and A3 are breakpoints of M1, B is a
breakpoint of M2, and C, C1, and C2 are breakpoints of M3. Note that the operation ‘+’

stands for union. The contents and DAVs of each method are given below.

method M1 method M2 method M3
[A] (B] [C]
read a, read a; read a;
read a,
If (a, > 100) then a3 <=a, If (a; > 100)
then
{(Al] {[C1]
a<=a; return a, }
End if else
{[C2]

read a; — (*) read a,

return a,}
If (a2 > 100) then end if
[A2]
a3 << ay
End if
read a; — (**)
If (a; > 100) then
{[A3]
call M2
End if

The DAVs constructed for method M1 are :

initial DAV of [A] : {DAV of [A]} + {DAV of (*)} + {DAV of (**)}
=[R,N,N,N] + [N,R,N,N] + [N,N,R,N]
=[R,R,RN]

initial DAV of [A1] : [R,W,N,N]
initial DAV of [A2] : [N,R,W,N]
initial DAV of [A3] = final DAV of M2 = [R,N,N,W]

final DAV of [A] = initial DAV of [A] + initial DAV of [A1] + initial DAV of [A2] +
initial DAV of [A3] = [R,R,R,N] + [R,W,N,N] + [N,R,W,N] + [R,N,N,W] = [R, W,W,W]
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Similarly, the DAVs for M2 are :

Final DAV of [B] : [R,N,N,W]
initial DAV of [B] : [R,N,N,W]

and DAVs for M3 are

Final DAV of [C] :[R,RN,N]

initial DAV of [C] : [R,N,N,N]

initial DAV of [C1] : [R,N,N,N]

initial DAV of [C2] : [N,RN,N]

While in the scheme proposed in [Malt,1993], the DAVs for the methods would be:

DAV of M1 : [RW,W,W] DAV of M2 : [RN,N,W] DAV of M3 : [RR,N,N]

After the construction of the breakpoints’ DAVs in all methods, a commutativity
relation of methods is constructed. Unlike in [Malt,1993], entries in the commutativity
table contain breakpoints as well as method names. The construction process is as follows
([Jun,1995-1],[Jun, 1995-2)).

In a commutativity table, a lock requester’s entries contain names of the final
DAV:s of the first break points in all methods (represented as Nr where N is the name of
the first break point in each method). For example, Ar represents : final DAV of the first
break point A in method M1, which is [R,W,W,W]. A lock holder’s entries contain names
of the final DAV of the first break point (in the form of Ng), name of the initial DAV of
the first break point (in the form of N;) and names of the initial DAVs of other break
points (represented as Ni where 1 < i < number of breakpoints -1 ) in each method. For
example, in method M1, Af, A, Al, A2 and A3 represent the following DAVs,
R,W,W,W], [RRRN], [R,W,N,N], [N,R,W,N] and [R,N,N,W], respectively. Since we

assume the worst case access mode for each attribute before execution, lock requesters
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always have the most restrictive access modes (i.e., final DAVs of the first break points).
But, after a method execution, a lock holder may have a less restrictive access mode. Two
break points commute if their corresponding DAVs commute. Two DAVs commute if, for
every attribute, its access mode in the two DAVs commute. Table 3-1 gives the
commutativity tables constructed in the proposed scheme and in the scheme proposed in
[Malt,1993].

The proposed concurrency control is based on two-phase locking [Eswa, 1976].
When a transaction invokes a method on an object, it gets a lock containing the final DAV
of the first break point in the method (represented as Nr where N is the name of the first
break point in each method). As the transaction meets a break point during run-time, the
break point is recorded. After the method execution, the lock is changed from Nf to N,
Nj,...Ns where N; is a name representing the initial DAV of the first break point and
N;...Ns are names representing the initial DAVs of the other break points encountered
during the method execution. Since the union of DAVs of Ni, Nj,..Ns may be less
restrictive than the DAV of N, this can give more concurrency to other transactions

which request locks on the same object.

The commutativity table of the proposed scheme Commutativity table in
{Malt,1993] for object O1 for object O1
lock holders
IApA;AlAZMBpCpC;ClQ |M1M2M3
lock Af N NN N NNNYYN Ml N N N
requester By N YY Y NNY YYY M2 N N Y
Cr N YN Y YYY YYY M3 N Y Y

Table 3-1. Examples of commutativity tables constructed for the proposed scheme and
for [Malt,1993]
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Below is an example that illustrates how the proposed scheme works and how
concurrency is improved over that proposed in [Malt,1993]. Consider the following
concurrent transaction invocations T1, T2, T3 and T4 on class Ol, which is defined
previously, with three instances il, i2 and i3. (Mi, I;) is an invocation of method Mi on
instance I;. Assume that, starting at time t, each method call execution (Mi, I;) takes 1

second and a transaction commits as soon as its last method call execution is finished.

(time) t t+1 t+2 t+3 t+4 t+5 t+6

(transactions)
Tl: MLl,il) MLl,i2)
T2: M2,il)
T3 : M3.i2) (M3.,i3) M3.i3)
T4 : M2,i3)

Assume that, in the proposed work, the lock format on instance has the following
form [trans-name, m-name(B}(B:) ...(B.)] where trans-name is a transaction holding a
lock, m-name is a method invoked, B,, B,,...B, are break points encountered during the
method execution. In [Malt,1993], the lock format has the following form : [trans-name,

m-name] where trans-name and m-name have same meaning as the lock table in proposed
work.

The following example shows how the proposed scheme works and how the
proposed scheme gives better transaction response time than the scheme in [Malt,1993] by
adopting run-time information. Starting from time t, the locks on each instance are

changed as follows.

The Proposed Scheme Scheme in [Malt, 1993]

t:il: [T1, Ml:Ag] il : [T1,M1]} // lock request is granted
// lock request is granted since no other lock is held // since other lock is held on il
// Assume that break points encountered after execution

1/l are, A| and Az
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t+1 :il : [T1, ML:(AD(A)(A2)] [T2, M2:(Bp)]

// B; commutes each of A, A, A,so that lock is granted
// T2 is committed since T2 does not have any more

// method invocation

t+2 : il : [T1, ML:(AD(A)(A2)]
i2 : [T3, M3:(Cy)]
/1 lock request is granted since no lock is held on i2
// Assume that break points encountered after execution
/! are C[, C|

t+3 : il : [T1, ML:(AD(A)(A)]
i2 : [T3, M3:(C)(Ci)] [T1, M1:(Ap)]
/I Assume that break points encountered after execution
// are A and A,.
// T1 is committed

t+4 :i2 : [T3, M3:(C)(C))]
i3 : [T3, M3(Cs)]
t+4.5 : i2 : [T3, M3:(CH(C)}
i3 : [T3, M3(Cy(C)]
// Assume that break points encountered after execution
// are C;and C;.

t+5 112 : [T3, M3:(Cy(C))]
i3 : [T3, M3:(C)(Cy)] [T4, M2:(Bg)]
t+5.5 ;12 : [T3, M3:(C)(C))]}
i3 - [T3, M3:(C)(C))] [T4, M2:(Bp]
/1 T4 is committed

t+6 :i2 : [T3, M3:(C)(C))]
i3: mv M3:(C[)(Cl)l mv M3~(CF)I
t+6.5 1 12 : [T3, M3:(C)(Cy)]
i3 : [T3, M3:(Cx(Cy)] [T3, M3:(Co(C)]
/! Assume that break points encountered after execution
/! are Ciand C,.

t+7 : T3 is committed (all transactions are commiitted)

t+8:

t+9 :

il : [TILMI1} blocked : [T2,M2]
1 lock request M2 by T2 is blocked
/! since M2 and M1 do not commute

il : [TL,MI1] blocked : [T2,M2]

i2 : [T3,M3]
// lock request is granted since no lock is
// since no lock is held on i2

il : [TILMI1] blocked : [T2,M2]
i2 : (T3M3] blocked : [T1 Ml]

il : [TLMI1] blocked : [T2M2]
i2 : [T3,M3] blocked : [T1M1]
i3 : [T3,M3]

il : [TI,M1] blocked : T2, M2]
i2: [T3,M3] blocked : [T1,Ml1]
i3 : [T3,M3] [T4,M2}

/i T4 is committed

il : [TI.M1] blocked : [T2,M2]
i2 : [T3,M3] blocked : [T1.MI]
i3 : [T3,M3]

/! T3 is committed

il : [TL,M1] blocked : [T2,M2]
i2 : [TL,M1] / T1 is committed

il : [T2,M2] // T2 is committed

all trarsactions are commiitted

From the above example, it is concluded that the proposed scheme gives better

transaction response time using run-time information.
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In this approach, a method may have many break points depending on the
method’s logic. This requires larger commutativity tables and also incurs much run-time
overhead for lock changes and commutativity checking. Thus, a way to reduce the number
of break points in a method is necessary in order to reduce this overhead. Some strategies

are presented to reduce the number of break points as follows.

e Breakpoint optimization strategy 1

It is known that the union of DAVs encountered after a method execution is at
least as restrictive as the initial DAV of the first break point. Thus, if an initial DAV of
some break point in a method has equal or less restrictive DAV than the initial DAV of the
first break point, it is not necessary to keep track of it and to include it as a member of the
commutativity table. This is due to that further concurrency can not be achieved by keep
tracking of such break points. For example, the DAV of the break point C1 of method M3
in the previous example is [R,N,N,N], which is the same as the initial DAV of the first
break point C. Thus, we do not have to include the initial DAV of C1 in the commutativity

table.

¢ Breakpoint optimization strategy 2
The key idea in this strategy is to control concurrency level at the expense of run-

time overhead. That is, if higher concurrency is necessary, keep track of more breakpoints
during run-time. Otherwise, make DAV's more restrictive so that run-time overhead can be
reduced at the expense of concurrency. For this purpose, define the most restrictive access

mode (MRAM) for each method. MRAM can have one of two values, R (Read) or W
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(Write). A method m has MRAM =R if it is an instance read method. On the other hand,
a method m has MRAM = W if there is at least one attribute with a W mode in method m.
Also, define Access Mode Change Percentage (AMCP), 0 < AMCP < 100, for each break

point. The AMCP of break point B; in method m is defined as follows.

AMCP of B; = the number of attribute in Bi whose access mode is MRAM
' the number of attribute in m whose access mode is MRAM

For example, if the initial DAV of B; and the final DAV of B in method m are
defined as [R,R,W,N] and [W,W,W R], respectively, then AMCP of B; is 33% (=1/3)
since MRAM is W and the number of attributes in B; whose access mode = W (MRAM) is
1, and also the number of attributes in method m whose access mode = W is 3.

If a method has many breakpoints, large overhead may be incurred due to
commutativity table searching for conflict checking and run-time breakpoint tracking
Thus, to reduce the number of break points (i.e., reduce the commutativity table size), let
a break point, say B, have an initial DAV and be an entry in the commutativity table only if
AMCEP of B is greater than P% where P (0<P<100) is defined. (The specific value of P can
be chosen depending on whether concurrency is important or not). Otherwise, perform the

following operation and do not include the initial DAV of B in the commutativity table.

the initial DAV of the first break point = the initial DAV of the first breakpoint + the initial DAV
of B

For example, consider the following DAV of methods M1, M2, and M3.

method M1 method M2 method M3
Final DAV of [A] : [RRW,W,W] Final DAV of [B]: [R,N,N,W] Final DAV of [C]: [R,R,N,N]
initial DAV of [A] : [R,R,RN] initial DAV of [C]: [R.N.N,N]
initial DAV of [Al]}: [R,W,N,W] initial DAV of [C1]: [R.N,N,N]
initial DAV of [A2): [N,R,W,N] | initial DAV of [C2): [R.R.N,N]

initial DAV of [A3] : [N,R,R.R]
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MRAMof Ml =W MRAMof M2 =W MRAM of M3 =R
from Final DAV of [A] from Final DAV of [B] irom Final DAV of [C]

AMCP of each break point in each method is as follows.
For Final DAV of [A], AMCP = 100 (=3/3)

For initial DAV of [A1], AMCP = 66.6 (=2/3)

For initial DAV of [A2], AMCP = 33.3 (=1/3)

For initial DAV of [A3], AMCP = 0 (=0/3)

For Final DAV of [B], AMCP = 100 (= 1/1)

For Final DAV of [C], AMCP =100 (=2/2)

For initial DAV of [C], AMCP =50 (=1/2)

For initial DAV of [C1]), AMCP =50 (= 1/2)

For initial DAV of [C2), AMCP = 100 (=2/2)

For example, AMCP of breakpoint [A2] = 33.3%. This is because the number of
attribute in [A2] whose access mode = W is 1, and the number of attributes in the final
DAYV of [A] whose access mode = W is 3. Also, AMCP of breakpoint [A3] = 0 since the
number of attributes in [A3] whose access mode = W is zero. Suppose we define P as

30%. Then, the following break points participating as entries in ihe commutativity table

can be obtained.

Final DAV of [A] : [R,W,W,W] Final DAV of [B] : [R,N,N,W] Final DAV of [C] : [R,R,N,N]

initial DAV of [A] : [R,R,R,R] initial DAV of [C] : [R,N,N,N]

initial DAV of [Al] : [R,W,N,W] initial DAV of [C2] : [R,R,N,N]

initial DAYV of [A2] : [N,R,W,N]

=> [A3] is added to the initial DAV of [C1] is removed due to the breakpoint
[Al optimization strategy 1.

Strategy 1 is to eliminate any breakpoint which is not helpful to increase
concurrency. By removing those break points, we can reduce run-time overhead and

storage overhead. Strategy 2 is to give trade-off between concurrency and run-time



overhead. That is, the higher AMCP is, the less run-time overhead is; but this results in
less concurrency. On the other hand, with less AMCP value, more concurrency can be
provided at the expense of run-time overhead since access modes of attributes can be less
restrictive so that more transactions can run concurrently. Strategy 2 is to adjust the
degree of concurrency depending on applications. For example, any application adopting
long transactions may require small AMCP value since lock waiting time due to conflict
may outweigh concurrency control overhead. The strategy 1 can be applied to ;my method
without further information such as the frequency of method invocations. But, it provides
a limited form of concurrency since methods may not have many conditional branch
statements. On the other hand, in strategy 2, the level of concurrency for each method can
be changed by increasing or decreasing its AMCP value. But, deciding the value of AMCP
for each method may need additional cost since access frequency in breakpoints should be
analyzed.

This optimization process is done at compilation time. Thus, it is not necessary to
optimize break points for each method invocation, resulting in a reduction in run-time
overhead. But, for OODBS whose schema is continuously evolving, the optimization
incurs some overhead since method contents (also corresponding DAVs) may change

frequently.

3.1.1.2. Concurrency among class definition access
In [Kim,1990], the taxonomy of class definition update, which is comprehensive

among OODB:s, is provided as follows. There are two types of changes to the schema ol

an OODB. One is to the definition of a class. This-includes changes to the attributes and
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methods defined for a class, such as changing the name or domain of an attribute, adding
or dropping an attribute or a method. Another type of change is to the class-hierarchy
structure. This includes adding or dropping a class, and changing the superclass/subclass
relationship between a pair of classes. We represent MA (Modify Attribute), MM (Modify
Method), and MCR (Modify Class Relationship) as Modify definition of an attribute,
Modify definition of a method, and Modify the superclass/subclass relationship.
respectively. |

The definition of each class object can be classified into three groups : definition of
the class itself, definition of attributes in the class, definition of methods in the class,
respectively [Kim, 1990]. The definition of a class includes the name of the class, set of all
attributes defined for or inherited into the class, sets of superclasses and subclasses of the
class, and a set of methods defined or inherited into the class. The definition of attributes
contains the class to which the attribute belongs, the superclass on which the attribute is
defined if the attribute is inherited, and the domain of the attribute. Likewise, thc
definition of methods includes the class to which the method belongs, the name of the
method, the implementation code of the method, and the superclass in which the method is
defined if the method is inherited. Assume that RA (Read Attribute), RM (Read Method)
and RCR (Read Class Relationship) represent Read definition of attributes, Read
definition of methods, Read definition of class itself, respectively.

Assume that updating definition of any method does not affect definition of any

attribute. The following table 3-2 gives the commutativity relationships among class
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definition updates and class definition reads, where Y and N stands for commute and not

commute, respectively.

MA MM MCR RA RM RCR
MA N N N N N N
MM | N N N Y N N
MCR| N N N N N N
RA N Y N Y Y Y
RM N N N Y Y Y
RCR | N N N Y Y Y

Table 3-2. Commutativity relationship among class definition access

Using the above commutativity relationship, for a class definition access method, a
finer granularity lock can be obtained on class than conventional QODBS such as Orion
and O do since a class definition object is divided into three parts: attribute, method and
class relationship. The lock granularity in the proposed work is one of MA, MM and MCR
( for class definition update) and RA, RM. RCR ( for class definition read) [Jun, 1995-3].
Whenever a class definition access method is invoked, the commutativity needs to be
checked between the lock holder and the lock requester using the commutativity table in
Table 3-1 and grant a lock if they commute. Also, the lock format is [trans-name, lock-
type] where trans-name is a transaction holding a lock and lock-fype is a class definition
access lock type € { MA, MM, MCR, RA, RM, RCR}. For example, consider the
following transactions on class O1. For example, consider the following two transactions
T1 and T2. T1, at time t, is modifying the definition of a method and T2, at time t+1, is
reading the definition of an attribute. The following diagram shows the possible execution
of two transactions T1 and T2 by the proposed scheme and Malta’s scheme.

<Malta’s scheme>
T1 T2
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t MM (delete a method)
t+l1 RA (read definition of an attribute)

< Proposed Scheme >

t Cl: [TLMM]
t+1 Cl : [T1,MM] [T2,RA]

Figure 3-1. lllustration of the Proposed scheme

3.1.1.3. Concurrency between class definition access and instance access

Fine concurrency between class definition access and instance access can be
achieved based on following principle: take finer granularity for an instance access and a
class definition access so that let transaction run concurrently as long as they access
disjoint portion of objects.

In order to provide fine concurrency between attribute definition accesses and
between attribute definition access and instance access, an attribute access vector (AAV)
is created whenever an MA or RA or an instance access method has a lock (that is, no
other active MA or RA or instance access method has the lock). Each field in AAV
represents an attribute. For each attribute field, a value can have one of three values: W
(update, set by MA), R (read, set by RA or instance access method) and N (null).
¢ The incoming MA or RA method checks commutativity using this vector and set R (for
RA) or W (for MA) on the corresponding attribute in AAV if, for each attribute to be
accessed by an incoming method, the lock modes of the requester and the holder are
compatible.
¢ The incoming instance method checks commutativity comparing this vector with its
DAV as follows. : For each attribute accessed by the instance access method, check if the

attribute is W locked in AAV. If so, block the lock request by the instance access method.
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Otherwise, set R lock (in AAV) to each attribute accessed by the instance access method
and grant the lock. Note that we do not change the access modes of the AAV after the
instance access method execution in order to avoid excessive runtime overhead.

e Whenever an MA or RA or an instance access method is committed by an invoking
transaction, it resets the vector AAV (that is, if there is no active MA or RA or instance
access method, it removes the AAV).

Second, in order to increase concurrency between method definition accesses,
between method definition access and instance access, and between method definition
access and attribute definition access, each individual method is taken as locking
granularity instead of taking all methods of one transaction as locking granularity.

A method access vector (MAYV) is created whenever an MM or RM or an instance
access method has a lock (that is, no other active MM or RM or :nstance access method
has the lock). Each field in MAYV represents a method. For each m=thod field, a value can
have one of three values: W (update, set by MM), R (read, set b); RM or instance access
method) and N (null). The vector MAV is to give parallelism between method definition
updates and between method definition updates and method definition read. For example,
while the implementation code of method M1 is updated by a transaction T1, another
transaction T2 can read the implementation code of method M2.
¢ The incoming MM or RM method checks commutativity using this vector and set R (for
RM) or W (for MA) on the corresponding method field in MAYV if the lock is granted.

Also, check commutativity using AAV and set R on the correspunding attribute field in
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AAV if, for each attribute to be accessed by an incoming method, the lock modes of the
requester and holder are compatible.
e The incoming access instance method checks commutativity comparing this vector with
its DAYV as follows : Check if the method field is W locked in MAV. If so, block the lock
request by the instance method. Otherwise, set R lock (in MAV) in the corresponding
method’s field. Also, check commutativity comparing AAV with its DAV and set a R lock
on each field if compatible.
e Whenever an MM or RM or instance access method is committed by the invoking
transaction, it resets the vector MAYV (That is, if there is no active MM or RM or instance
access method, it removes the MAV) and AAV.

The following table gives the commutativity relationships among class definition

updates (MA,MM,MCR), class definition reads (RA,RM,RCR}, and instance acces:

methods (noted by I).

MA MM MCR RA RM RCR !
MA A A N A A N A
MM A A N Y A N A
MCR N N N N N N N
RA A Y N Y Y Y Y
RM A A N Y Y Y Y
RCR N N N Y Y Y Y
I A A N Y Y Y A

Table 3-3. Commutativity relationship between class definition access and instance acces:
where A means that two methods commute as long as they are accessing disjoint portions

of an object.
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For example, with class CL1 defined in Section 3.1.1.1, consider the following
method invocations by transactions T1, T2 and T3. At time t, T1 is reading definition of
attribute a;. At time t+1, T is invoking a method M2 on an instance ;. At time t+2, T3 is
invoking a method M3 on instance I,. At time t+3, T1 is modifying the definition of

method M1. Finally, at time t+4, T2 is reading the definition of an attribute a, .

time T1 T2 T3

t CL1:RA(a3)

t+1 CLI:M2onl,

t+2 CLI: M3on],
t+3 CL1: MM(M1)

t+4 CL1: RA(ay)

The followings show how lock are changed on class CL1 and instance I, by each

transaction at a time.

t. CL1: AAV : [a;:N, a;:N, a;:R(T1), as:N]

// The method call RA on attribute a; by T1 needs to create an AAV since no other
// transaction has invoked MA, RA or an instance access method and set W on the a; field.

t+1. CL1: AAV[a;:R(T2), ax:N, a;:R(T1), a,:R(T2)], MAV[a;:N, a,:R(T2), a;:N]
I : [M2(Bg), T2]

// For T2 invoking M2 on I, checks AAYV if| for each attribute accessed by M2, there is an
// incompatible attribute access mode using DAV of M2. Also, check M2 field in MAYV if
// some other transaction is updating M2.

t+2. CL1 : AAV[a,:R(T2,T3), a;:R(T3), a;:R(T1), a::R(T2)], MAV[a;:N, a,:R(T2),
a;:R(T3)]
I : (M2(Bg), T2], [M3(Cs), T3]

// Perform the same task like T2 in step 2. Assume that break points C; and C, are met
// during execution of M3.

t+3. CL1 : AAV[a;:R(T1,T2,T3), a;:R(T1,T3), a;:R(T1), a;:R(T1,T2)],

53



MAV[a;:W(T1), a;:R(T2), a5:R(T3)]
I, : [M2(Bg), T2], [M3(C,, Cy), T3]

// Since any transaction is not invoking M1, T1’s request is granted. Thus, set W on M1
// field in MAV and set R on AAV for each attribute used in M1.

t+4. CL1 : AAV[a;:R(T1,T2,T3),a:R(T1,T2,T3),a3:W(T1),a,:R(T1,T2)],

MAV[a,:W(T1), 2;:R(T2), a3:R(T3)]
I; : [M2(B¢), T2}, [M3(Cy, Cy), T3]

// Since any transaction is not modifying definition of an attribute a,, T2’s request is
// granted. Thus, set R on a; field in AAV.

It is possible that updating AAV and MAYV whenever an instance access method is
invoked incurs too much overhead. This is true especially for those OODB systems whose
schema need not be changed frequently. In this case, the frequency of schema update is
not high. Thus, the overhead by the technique used in this subsection outweighs the
concurrency increased. For such OODB systems, take lock granularity as all attributes for
RA or MA rather than individual attributes. For a method definition access, take lock
granularity as all methods for RM or MM. Likewise, for instance access methods, use RA
and RM locks on class, instead of using AAV and MAV. Thus, the following protocol can
be used as an alternative.

e When a transaction invokes an instance access method, get RA and RM locks and check
commutativity among instance access methods.
e When a transaction which has invoked an instance access method is committed, release

RA and RM locks.

3.1.2. Class hierarchy locking

3.1.2.1. Basic Idea
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The objective here is to develop a new class hierarchy locking scheme which can
be used for any OODB applications with less locking overhead than both existing
schemes, explicit locking and implicit locking. To achieve this, some classes in a class
hierarchy are designated as special classes. Roughly, a special class (SC) is defined as a
class on which class definition writes or IACHs (Instance Access to Class Hierarchy) are
performed frequently. For the proposed scheme, how to determine if a class is a SC or

not will be discussed in Section 3.1.2.6.

In this new class hierarchy locking scheme, intention locks are set on SCs only:
thus, locking overhead is reduced compared to implicit locking which requires intention
locks on every superclass of the target class. When a transaction needs to access an SC
which is already intention locked, by invoking an MCA lock on it, a concurrency control
can reduce conflict checking overhead due to the help of the intention locks. That is, every
conflict can be detected by the help of commutativity relationships between intention
locks and MCA (Multiple Class Access) locks on the SC. On the other hand, if a class has
little or no possibility of being accessed by an MCA, there is no need to set an intention
lock on that class since SCA (Single Class Access)s do not use intention locks to check
for conflicts. As we discussed earlier, there is no conflict between an intention lock and an
SCA lock and any conflict is determined only at the target class. Thus, unlike implicit
locking, we do not have to set an intention lock on every class on the path from a target
class to a root.

In order to have fewer locks required for an MCA than those required by explicit

locking, the proposed scheme works as follows: for an SCA, a lock is set on only the
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target class, like explicit locking. For MCAs, unlike explicit locking which requires locks
on the target class and all its subclasses, locks are set on every class from the target class
to the first SC through the subclass chain of the target class. If there is no such SC, then
locks are set on the leaf classes. If the target class is an SC, then set a lock only on the
target class. Thus, by choosing an SC as a class on which MCAs are performed frequently,
the locking overhead can be reduced.

For example, consider the following class hierarchy in Figure. 3-2.a. Assume that a
transaction T1 invokes an MCA lock on class C6. Let LS1 be a lock setting for T1.
Assuming that classes C1, C4 and C7 are SCs, then Figure. 3-2.b, 3-2.c, and 3-2.d show
how locks are set in explicit locking, implicit locking, and the proposed scheme. Note that

C, and C,o are a root and a leaf class, respectively.

Cl Cl Cl:Lsl1 CI(SC): Ls1

{ + + {

Cc2 Cc2 C2:LSs1 c2

¢ { ¢ {

c c C3:LSi [ox}

{ + e +

C4 C4 C4: LSl C4 (SC): Ls1

$ ¢ + $

cs cs Cs:Ls1 Cs

$ e + {

C6 C6: LSl Cs6:LS1 C6: LS1

¢ + + +

C7 C7:LS1 c7 C7(SC): Ls1

' + ¢ {

cg C8: LSl cs cs

+ ¢ ¢ e

c9 C9: LSl oo co

+ ¢ + $

c1o C10: LSl cio cio

Figure. 3-2.a Figure 3-2.b Figure 3-2. c Figure. 3-2.d

Class hierarchy Explicit locking Implicit locking the proposed

scheme

3.1.2.2. Lock Modes




In order to illustrate the principle for reducing overhead for class hierarchy
locking, the following locking granularity and lock modes are used. The principle is to
keep low overhead for any type of access to a class hierarchy. At first, assume the lock
granularity as follows: adopt instance level granularity for instance access and entire class
object for class definition access like Orion [Kim,1990] and O, [Cart,1990]. Below are
locks needed for different types of instance and class access ([Jun,1996],[Jun,1997-
1],[Jun,1997-2]). For convenience, lower-case letters and upper-case letters are used to

name locks on an instance and a class, respectively.

Operations Locks needed
instance read r (on target instance)

TR, IMPR, INTSR, INTSPR, QR, PQR (on target class or its

superclasses)

instance write w (on target instance)
TW, IMPW, INTSW, INTSPW, QW, PQW (»n target class or its
superclasses)

Class definition write CW (on target class)
INTSW (intention lock for each SC on the path from the target class to
its root)

Class definition read CR (on target class)

INTSR (intention lock for each SC on the path from the target class to
its root)

¢ instance read
- (for SCA) TR (Target Read) lock means that some (not all) instances of a target class
are r locked. A TR lock is set on a target class whenever an r lock is set on its instance.

- (for SCA) IMPR lock (Implicit Read on target class) means that all instances are read

locked implicitly. Like both explicit locking and implicit locking, we reduce locking
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overhead by setting an IMPR lock on the target class, not on individual instances, if the
majority of instances are accessed.

- (for MCA) QR (Query Read on a target class) means that all instances of a target class
and its subclasses are read locked as in implicit locking. We reduce locking overhead by
setting an QR lock on only the target class, not setting IMPR lock on all subclasses of the
target class.

~ (for MCA) PQR (Partial Query Read on a target class) means that some instances of a
target class and its subclasses are read locked. For access to some instances of a target
class and its subclasses, we put only a PQR lock on a target class and a 7 lock on each
individual instance to be accessed. Thus, unlike QR lock, when a PQR lock is set on a
class, say C, any instance write to some instances of a subclass of C may not conflict
because actual conflicts can be detected only on individual instances.

- An intention lock INTSR (INTention Superclass Read) is set for every SC on the
superclass chain from a target class to its root whenever an IMPR or a QR lock is set on
the target class. It indicates that some instance read lock is held on a subclass of the class.
- An intention lock INTSPR (INTention Superclass Partial Read) is set for every SC on
the superclass chain from a target class to its root when a TR or PQR lock is set on the
target class.

e Instance write

- (for SCA) TW lock (Instance Write on target class) means that some (not all) instances
of a target class are w locked. An TW lock is set on a rarget class whenever w lock is set

on its instance.
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- (for SCA) IMPW (Implicit Write) lock means that all instances of a target class are w
locked implicitly.

- (for MCA) QW (Query Write on a target class) means that all instances of a target class
and its subclasses are write locked.

- (for MCA) PQW (Partial Query Write on a target class) means that some instances of a
target class and its subclasses are write locked. As in PQR lock, we set only a PQW lock
on a target class and a w lock on each individual instance to be accessed.

- INTSW (INTention Superclass Write) lock is set for every SC on the superclass chain
from the target class to its root whenever an IMPW or QW lock is set on an instance or
class.

- An intention lock INTSPW (INTention Superclass Partial Write) is set for every SC on
the superclass chain from a target class to its root when a TW or PQW lock is set on the

target class

3.1.2.3. Commutativity Relation Table

In Tables 3-4 and 3-5, we provide commutativity relation among the lock modes

introduced above.

a) instance

lock holder

| r w

lock r Y N
requester w N N

Table 3-4. Commutativity relation for locks on an instance
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b) Class

Conflicts are checked based on the principle of implicit locking as follows. For
conflict checking between MCAs, if either the lock holder or requester requires locks only
on a class, conflict relationships are determined directly by read-write commutativity
relationship. Otherwise (i.e., both require locks on a class as well as instances), conflicts
are determined on individual instances. For conflicts between MCAs and intention locks,
conflicts are determined as if an intention lock were a real lock. For example, setting CW
and INTSR on the same class will cause conflicts. Also, there is no conflict between SCAs

and intention locks.

TW IMPW INTSW INTSPW QW PQW
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Table 3-5. Commutativity table for locks on a class

Once again, the principle is to reduce locking overhead than both implicit locking

and explicit locking using special class concept, for any type of access to a class hierarchy.

3.1.2.4. Class hierarchy locking algorithm for single inheritance
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In this section, class hierarchy locking scheme is presented. It is to reduce locking
overhead than both implicit locking and explicit locking using SC. Especially, based on
access frequency information for each class, intention locks are set on only SC only so that
locking overhead is reduced comparing implicit locking. Also, unlike explicit locking,
locks are not required for the target class and all its subclasses. In the proposed scheme,
locks are set only every class from the target class to the first SC through the subclass
chain of the target class. This results in less locking overhead than explicit locking.

The proposed locking-based concurrency control scheme is based on two-phase
locking which requires each transaction to obtain a read (or write) lock on a data item
before it reads (or writes) that data item, and not to obtain any more locks after it has
released some lock [Eswa,1976]. For a given lock request on a class, say C, we set locks
on C and all classes on the class hierarchy to which the class C belongs as follows.

Step 1) locking on SCs

o For each SC (if any) through the superclass chain of C, check conflicts and set an
intention lock if it commutes. If it does not commute, block the lock requester.

Step 2) Locking on a target class

oIf the lock request is an SCA, check conflicts with locks set by other transactions and set
one of TR, TW, IMPR, IMPW (depending on the lock request type) or CR (class
definition read) on only the target class C if it commutes and set an » or w lock on the
instance to be accessed (which we call target instance) if a method is invoked on the

instance and commute. If it does not commute, block the requester.
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oIf the lock request is an MCA, then, from class C to the first SC (or leaf class if there is
no SC) through the subclass chain of C, check conflicts and set either CW, QR, PQR, QW

or PQW lock on each class if commute. If the class C is an SC, then set a lock only on C.

Note that a lock is set on the first SC so that other incoming transactions that
access a subclass of the first SC can check conflicts since those transactions need to set
intention locks on the first SC. Thus, every conflict can be detected. The reason we set a
lock on each class (besides the first SC) from the class C to the first SC (not including the
SC) is as follows: if a lock is set only on the first SC, then some conflict may not be
detected. For example, if a requester accesses a subclass of a lock holder’s class which is
CW locked, then such a conflict may not be detected.

oIf class C has more than one subclass, perform the same step 2) for each subclass of C.

Step 3) Locks are released only if a transaction is committed or aborted.

As an example, consider the following lock requests by two transactions T, and T,
on a class hierarchy in Figure. 3-3.a
a) T: class definition write (CW) request on class C6

b) T.: class definition read on class C5

Let LS; be a lock set by transaction T;. Assume that class C1, C4 and C7 are SCs.
As seen in Figure 3-3.b, 3-3.c, and 3-3.d, 7, 12 and 11 locks are required for T, and T; by

the proposed scheme, explicit locking, and implicit locking, respectively.
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? il(SC): INTSW,; INTSR; E 1 51: INTSW,; INTSR;
c2 2 c2 C2: INTSW,; INTSR;
d d i3 i
c3 C3 C3 C3: INTSW;: INTSR,
{ { { d
i:“ ?(SC) lN'I‘SWl; INTSRz f4 i:41 INTSW], INT SRz
Cs C5:CR; CS:CR; Cs: INTSW;; CR
1 ' i { n
cs c6 C5,  C6CW, C5: C6:CW, CS:1  C6:CW,
4 J $ i 3 i3 $ d
cs; C7 CS:  CX(SC):CW, CSy CI-CW, cs; C©7
d 3 $ {
cs cs C8: CW, cs
{ $ { i
c9 c9 C9: CW, c9
1 \ ¢ — 1 e
C9, ?o C9; cé./ i:h, C9::CW, cn@‘cm;cw. C9, CI0 9
$ $
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{ d d iR
c12 c12 Cl12:CW, cn2
i yan — 1 v
ci2, ciI3 C12, CI3 CI2:CW, CI13:CW, cl2, CI3
Fig 3-3.a 3-3.b. 3-3c. 3-3.d.
A class hierarchy Locks with Locks with Locks with

the Proposed scheme  Explicit locking

3.1.2.5. Considering Multiple Inheritance

Implicit locking

The above protocol works for a single inheritance. But, it does not work for a

multiple inheritance. Consider the following class hierarchy in which a class J has two

superclasses, H and I in Figure. 3-4.a. Suppose a transaction T1 sets a QR lock on class F

(Figure. 3-4.b). Suppose now another transaction T2 sets a CW lock on class G (Figure.

3-4.c). Even though T1 already sets a conflict lock mode QR on classes J and K implicitly,

T2 can get a lock successfully. This is due to that the conflict can not be detected by

intention locks on class A which is only common class by both transactions. That is, the

above protocol does not work correctly.
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In order to make the above protocol work correctly in multiple inheritance, a
principle is adopted from Orion [Kim, 1990]: when setting a QR, PQR, QW, PQW, or CW
lock on a class C, also set those locks on subclasses of C which have more than one
superclass. By doing this, any conflict on the subclasses of C can be detected. Then only
those subclasses need to be examined for conflict checking. Also, intention locks are set
on each class through only one superclass chain of the target class C. Although only one
chain is selected for intention locks, possible conflicts are detected on either the target
class C or subclasses of the target class C. In this example, using the proposed scheme,

lock settings for QR lock on class F are changed as in Figure. 3-4.d.

A A (SC): INTSR A; INTSR, INTSW A: INTSR
7 N\ e «
B cC B C B \c B T c
i { { ! $ $ { {
D E D (SC):INTSR E(SC) D:INTSR E: INTSW D: INSTR E:
{ { { { { { $ 1
F G F: QR G F: QR G: CW F:QR G
{ $ i { { { ! {
H I (SC): QR I(SC) H:QR I:CW H: QR 1
\J/ J/ ~ / ~ J-‘QR/
3 { : !
K K K K
Fig. 3-4.a Fig. 3-4b Fig. 3-4.c Fig. 3-4.d
class hierarchy QR lock on class F CW lock on class G Locks with
multiple inheritance
consideration in the
proposed scheme

3.1.2.6. Special Class Assignment

Assume that we have information on the number of access to each class (by
different transactions) in an OODB. For the proposed scheme, it is necessary to know only
two types of access frequency to each class: SCA and MCA. With this access information

for each class, whether the class is designated as an SC or not can be determined as
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follows. The principle is to designate SC as a class on which class definition writes or
[ACHs are performed frequently. Note that the following SC assignment scheme is taken

place at preprocessing so that any run-time overhead does not occur.

Starting from each leaf class until all classes are checked.
step 1) If a class is a leaf, then do not designate it as an SC.
If a class C has not been considered for SC assignment and all subclasses of C have
been already considered for SC assignment, then do the followings:
for class C and all of the subclasses,
calculate the number of locks (N;) when the class is designated as an SC
calculate the number of locks (N>) when the class is not designated as an SC

/[ In calculation, we do not consider any superclass of C yet

step 2) Designate it as an SC only if N; < N> . That is, the class can be an SC only if the
number of locks can be reduced by doing so.

For example, consider a simple class hierarchy as in Fig 3-5.a and assume that
number of access information on the hierarchy are defined as in Fig. 3-5.b. The numbers
represent the numbers of access to the class by different transactions. For example, in Fig
3-5.b, 100 MCAs are performed on class C; and 300 SCAs on C, by different transactions
accessing this class hierarchy. Note that, for MCAs, the numbers represent only access
initiated at a given class. Thus, we do not count the number of MCA access initiated at its
superclasses. In the SC assignment scheme, since C, and Cs are leaf classes, they are not

designated as SCs. At the class C;, if C; is designated as an SC, the number of locks
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needed for class C;, C4 and Cs are 450, 300 and 400, respectively, resulting 1150 locks for
three classes. That is, C; needs only 450 locks since any locks are not necessary for its
subclasses as in implicit locking. On the other hand, any access to C4 or Cs needs intention
locks on C;, resulting 300 and 400 locks for C, and Cs, respectively. On the other hand, if
C; is not designated as an SC, then the number of locks needed for classes Cs, Cs, and Cs
are 1200 locks. In this case, the proposed scheme works as in explicit locking. Thus, class
Cs become an SC. Similarly, two classes C; and C; become non-SCs. Fig. 3-5.c shows the

result of the SC assignment scheme based on access frequency information.

C| C| IMCAIIOO. SCA: 300 C|
2 Cz : MCA: 200, SCA: 200 ,
Cy : MCA:400, SCA: 50 C;:SC

3
Ca \\':, C.: MCA: 100, SCA: 50 c./ \&5

Cs: MCA:100, SCA: 100

Fig. 3-5.a. Simple class hierarchy Fig. 3-5.b. Number of Access for each class Fig. 3-5.c.
Result of
SC assignment

For multiple inheritance, the same SC assignment scheme can be applied. For
example, consider a simple multiple class hierarchy as in Fig. 3-6.2. and assume that we
have frequency information on the hierarchy as in Fig. 3-6.b. Assume that, when Cs is
locked, C; is chosen for intention lock setting. The result of the SC assignment scheme is

shown in Fig. 3-6.c.
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il Ci: MCA: 50, SCA: 100 .
C> : MCA: 600, SCA: 200 » :SC

\&/Q C; : MCA: 100, SCA:150 K‘C ‘/C4

C.:MCA: 300, SCA: 100

o

Cs: MCA: 100, SCA: SO

Fig. 3-6.a. Simple class hierarchy  Fig 3-6.b. Access numbers for each class  Fig. 3-6.c. Result
of SC assignment

3.1.2.7. Performance evaluation of the proposed scheme

In this subsection, it is shown that the proposed scheme performs better than both
explicit locking and implicit locking. That is, assuming that the number of access is stable
for each class, it is shown that the proposed scheme incurs either equal or fewer number of
locks than both explicit locking and implicit locking. The proof is based on induction.
Claim: with a stable number of access for each class, the proposed class hierarchy
scheme performs better than both explicit locking and implicit locking.
Proof) Induction is used on the number n in a given class hierarchy. Let n be the number
of classes considered so far in the SC assignment scheme. Let Ng, N and Np be the
number of locks by explicit locking, implicit locking and proposed locking, respectively,
for classes considered so far in SC assignment.
en=1l :Ng=N;=Np

e n=2 : In this case, without loss of generality, two classes are formed as follows.

C:i (SC) C
$ $
C: (leaf) C: (leaf)
case a) case b)
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If C, (superclass) is an SC as in case a), then Np < N otherwise C; would not be an SC,
and Np = N;. If C; is not an SC as in case b), then Np < N, and Np = Ng.

Assume that the proposed scheme works up ton=K

e n = K+1: without loss of generality, let (K+1)th class be a root of the classes considered
for SC assignment. Let X be a root (i.e,, K+1th class) and Y),...,Y. be the first SCs
through the subclass chain of X as in Figure. 3-7. Also, Let N (X:SC) and N (X:non-SC)
be number of locks required when a class X is designated as an SC, and when X is not
designated SC, respectively in the proposed scheme (assume that all subclasses of X have

been considered in the SC assignment scheme).

Figure. 3-7. The case where X is not SC

case a) Assume that X is not SC (i.e., N (X:SC) > N (X:non-SC))

At first, prove that Np < Ng: for locks required for SCA to class X, both schemes
need the same number of locks. For MCA to class X, for the proposed scheme, locks are
required for each class from X to Y},...,Y, and subclasses of X which have more than one
superclass, if multiple inheritance. On the other hand, locks are required from X to every
subclass of X by explicit locking. Also, for locks required for access to classes other than
X, Np < Ng by induction assumption and no intention locks on x are necessary by the

proposed scheme. Thus, Np < Ng for any access.




B ety 0 |

Now, prove that Np < N;.

subcase a.1), Np < N(X:SC). Otherwise, x would be an SC by the proposed SC
assignment scheme.

subcase a.2) prove that N(X: SC) < N;. In implicit locking, every class is an SC since any
access to class C needs intention locks on superclasses of C and any MCA access to C
need no locks other than a lock on class C. This is corresponding to the proposed scheme
where all classes are SCs. Thus, for locks required for access to X, both schemes incur the
same number of locks. For locks required for access to classes other than X, intention
locks (if necessary) are needed to be set on X by both schemes. But, for locks required for

access to classes other than X, Np < N; by induction assumption. Thus, N (X:SC) < N,.

This implies that Np < N|.

case b) Assume that x is SC (i.e., N (X:SC) <N (X:non-SC))

Np < Ni: same as subcase a.2

Now, we prove that Np < NEg.

subcase b.1), Np < N (X:non-SC). Otherwise, X would not be a SC by the proposed SC
assignment scheme.

subcase b.2) N (X:non-SC) < Ng: for locks required for SCA to class X, both schemes

incur the same number of locks. For MCA to class X, locks are needed from X to y;,....Ya

as in Figure 3-6 and subclasses of X which have more than one superclass, if multiple

inheritance, in the proposed scheme. But locks are required from x to every subclass of X
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in explicit locking. For locks required for access to classes other than X, Np < Ng by
induction assumption. Thus, Np < Ng.

From case a) and b), with a stable number of access to a class hierarchy, it is
concluded that the proposed scheme does not require more locks than explicit locking and -

implicit locking.

3.1.3. Nested method invocations

In this subsection, a way to handle nested method invocations is presented. It deals
with all three aspects discussed earlier: semantics of methods, nested method invocation,
and referentially shared objects.

In order to increase concurrency among methods, semantic information can be
utilized. This semantic information can be extracted at the discretion of application
programmers since methods represent behaviors of objects. Thus, although two methods
conflicts in terms of read and write commutativity relationships, two methods can run
concurrently using semantics. Also, better transaction response time can be achieved by
using parent/children parallelism. Also, in order to deal with RSOs, conflicts on RSOs are
not defined statically. This results in low concurrency. The conflict among methods are
detected on actual method invocation on objects so that further concurrency can be

achieved

3.1.3.1. Assumptions
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Assume that objects are organized in a hierarchy and referential sharing is allowed.
Also, adopt the following transaction model and method model: a transaction consists of
a sequence of method invocations to objects ([Cart,1990], [Agra,1992]). A method
execution consists of a partial order of method invocations and atomic operations
[Hadz 1991]. Also, assume that a method in an object can invoke methods on objects
which are lower in the hierarchy [Rese, 1994].

Consider the following object hierarchy in Fig. 3-8.a. The database (DB) consists
of class Cars. Each car instance is a tuple object composed of various atomic objects and
of component class Orders. Each order instance is a tuple object composed of atomic
objects. In the proposed scheme, referential sharing is allowed. That is, an instance of class
Order can be shared by two different instances of class Cars. In this object hierarchy,
assume that a customer can rent only one car at any time. But a customer can request
multiple car rental orders so that the order is granted by any available car. Figure 3-8.b

shows an example of a car rental order requested for two cars by a customer.

Carad Name Price-To-Rent QOH Orders
(Quanﬁty-on_b%\

Order-No Customer-No  Status

Figure. 3-8.a. An Object Hierarchy
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Car objects:

il | Grand-Am _$30 4

i2 [Grand Prix

$50 2

Figure. 3-8.b. An example of the object hierarchy

Assume that there are three methods Adjust-Price, Check-Out-Rent and Pay-Rent,

for class Cars.

Adjust-Price(i)
// For a car instance i (Car-id), if QOH is greater than 10, price to rent a car is decreased
by 10%
If1.QOH > 10 then
i.Price-To-Rent <=i.Price-To-Rent * 0.9
End if
End

Check-Out-Rent(i,Order-No)
// For a car instance i, a rent-a-car request by Order-No o is granted if that order is not

granted
/l yet
If Test-status (0) = new then
call Change-Status (o, granted)
i.QOH <=i.QOH -1
end if
End
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Pay-Rent (i.0)

// Pay rental fee for car i by Order-No o
read i.Price-To-Rent

read i. QOH

Change-Status (o, paid)

End

For class Orders, assume that two methods Test-status and Change-status have the
following implementation code, respectively. There are three status for each order: new,
granted and paid.

Test-status (o)

// test status of an instance o of class Orders
read (o.status)

return status

End

Change-status(o, value)

// change status of an instance o of class Orders to value
write (0.status, value)
End

3.1.3.2. Automation of commutativity for methods

In order to provide fine concurrency while automating commutativity of methods,
the sample principle used in Section. 3.1.1 is adopted. That is, a two-phase pre-analysis is
needed. It consists of two steps : 1) construction of DAV for each method and 2)
construction of a commutativity table of methods. The construction of DAV for each

method is summarized as follows: in each method, a break point is inserted by a
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programmer or a compiler when a conditional statement is encountered. Every method has
a special break point called first break point before the first statement in the method.
There are three kinds of DAVSs in each method : 1) a final DAV of the first break point, 2)
an initial DAV of the first break point, and 3) an initial DAV of every other break point,
which contains access modes of all attributes used by statements between this break point
and the next break point (or end of the method). The commutativity table of methods is
constructed as follows: a lock requester’s entries contain names of the final DAVs of the
first break points in all methods (represented as N where N is the name of the first break
point in each method). When a transaction invokes a method on an object, it gets a lock
containing the final DAV of the first break point in the method. As the transaction meets a
break point during run-time, the break point is recorded. After the method execution, the
lock is changed to names of breakpoints encountered during method execution.

For example, consider the object hierarchy in Figure 3-8.a. For convenience, for
class Cars, let four attributes Car-id, Name, Price-To-Rent and QOH be a,, a, a;, and aq,
respectively. Similarly, for class Orders, let three attributes Order-No, Customer-No, and
Status be b,, b;, and b;, respectively. Assume that, for class Cars, A and A, are
breakpoints of method Adjust-Price, B and B, are breakpoints of method Check-Out-Rent
and C is a breakpoint of method Pay-Rent. Likewise, assume that, for class Orders, let D
and E be breakpoints of methods Test-Status and Change-Status, respectively. Also, for
simplicity, we call methods Adjust-Price, Check-Out-Rent and Pay-Rent as M1, M2 and
M3, respectively. Similarly, we call methods Zest-status and Change-status as N1 and N2,

respectively, for class Orders.
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Adjust-Price(i) (also called M1)
[A]
If i.QOH > 10 then
[Ad]
i.Price-To-Rent :=i.Price-To-Rent * 0.9
End if
End

Check-Out-Rent(i, Order-No) (also called M2)
[B]

If Test-status (0) = new then

[B:]
call Change-Status (o, granted)

i.QOH =i.QOH -1
end if
End

Pay-Rent (i,0) (also called M3)
(C]

read i.Price-To-Rent

Change-Status (o, paid)

End

Based on the definition of breakpoints and DAVs, for the object hierarchy in
Figure 3-8.a, the following breakpoints and DAVs for the methods can be obtained. For
convenience, let DAV (x) represent the initial DAV of a breakpoint x in some method M.

Also, let DAV (M) represent the final DAV of the first break point in method M.
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Note that, in this example, a method Check-Out-Rent or Pay-Rent includes another
nested method invocation (Zest-status or Change-status). But, this nested method invokes
another subobject so that its DAYV is not included in the DAV of method Check-Out-Rent

or Pay-Rent.

The DAVs constructed for method M1 are:

DAV (M1) = [RN,WR]; DAV (A) = [R,N,N,R]; DAV (Al) = [R,N,W,N]

Similarly, the DAV for M2 and M3 are:

DAV (M2) = [R,N,N,W]; DAV (B) = [R,N,N,N]; DAV (B1) = [R,N,N,W]

DAV (M3) = [RN,R,R]

Similarly, for class Orders, we have DA Vs of each break point in the method as follows.

Test-status (o) (also callea N1)
D]

read (o.status)
End

Change-status(o, value) (also called N2)
[E]

write (0.status, value)
End

DAV (N1) = [RN,R]; DAV (N2) = [R,N,W]

Note that, for class Orders, two methods do not have conditional statements so

that the DAVs of the methods are the same as the DAVs of the first breakpoints. In this
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work, we do not include the DAVs of the first break point for such a case since further
concurrency can not be achieved.

After the construction of the breakpoints’ DAVs in all methods, a commutativity
relation of methods in the form of a table as in Section 3.1.1.1 is created. For convenience,
denote D(x) as DAV(x) where x is the name of a method or a break point. Table 3-6 gives
the commutativity tables constructed in proposed scheme.

lock holders
| DM1) D(A) D(A) DM2) D(B) D(B) D(M3)

lock D(M1) N Y N N Y N N
requester D(M2) N N Y N Y N N
D(M3) N Y N N Y N Y

Table 3-6.a. A commutativity table for class Cars

lock holders
I D(N1) D(N2)
lock D(N1) Y N
requester D(N2) N N

Table. 3-6.b. A commutativity table for class Orders

3.1.3.3. Considering semantics, nested method invocation and RSO (Referentially
Shared Object)
In this subsection, a way of dealing with three aspects semantics of methods,
nested method invocation and RSO) is presented [Jun,1997-3].
At first, based on the automated commutativity relationships presented in Section
3.1.1, it is possible that application programmers may define commutativity relationships
for some methods by making use of semantics of methods as in ([Muth,1993].

[Rese, 1994]). Thus, though these two methods do hot commute in terms of read and write
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access modes, they may commute semantically at the discretion of an application
programmer. For example, for class Cars, two methods Check-Out-Rent and Pay-Rent
may commute semantically, that is, customers may check out first and then pay the rental
fee or vice versa. If two methods, say, M1 (requester) and M2 (holder), commute
semantically, then we give S commutativity relationship between M1 (and all breakpoints
of M1) and M2 (and also all breakpoints of M2) where S means semantically commute.
Then, a new commutativity table for class Cars is constructed as in Table 3-7. In the
commutativity table, Y means commute (unconditionally). That is, if two methods (one is
a lock requester and the other is a lock holder) have Y relationship, a lock requester can
get a lock at any time. If two methods have N relationship, a lock requester can get a lock
only if the lock holding transaction is committed or aborted. On the other hand, if two
methods have S relationship, a lock requester can get a lock if a holder’s method
execution is finished. That is, the requester does not have to wait until the lock holding

transaction is committed or aborted.

lock holders
| bMI) D(A) D(A) D(M2) D(B) D(B;) D(M3)
lock D(M1) N Y N N Y N N

requester D(M2) N N Y N Y N S
D(M3) N Y N S S S Y

Table 3-7. A commutativity table for class Cars

For nested method invocations, the following principles are applied: each method
invocation is associated with a lock. Before any method invocation, a lock is requested

and granted. Also, when a method execution is finished, the lock is inherited by its parent.
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Then, the lock is said to be retained by its parent [Rese,1994]. If a transaction is finished,
its locks are discarded. For two methods which commute semantically, they commute only
if both execute atomically. That is, for such methods, a requester cannot get a lock until a
holder’s method execution is finished so that the requester can get a lock only if a holder’s
lock is inherited by its parent. Thus, unlike N commutativity relationship, a lock request is
not delayed until the lock holding transaction commits.

Finally, for RSOs, method invocations on different objects may result in conflicts
since those methods may invoke methods on the same subobject. In the proposed scheme,
conflicts are determined dynamically for each subobject as in [Rese,1994] since such a

conflict may not be detected before actual method invocation.

3.1.3.4. The proposed scheme for nested method invocations
The proposed scheme for nested method invocations is based on two-phase
locking [Eswa,1976]. Based on the discussion in Section 3.1.3.3, the following scheme is

constructed .

1. Lock is required only for method execution and is granted before method execution.
After method execution, lock is changed (i.e., it reflects the breakpcints executed)
2. A method execution cannot terminate until all of its children are terminated. When a

method execution m terminates:

a. there exists a parent of m and m commits: locks held by m are inherited by its parent

(i.e., locks are retained by its parent)
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b. either there exists a parent of m and m aborts or there is no parent of m: locks held
by m are discarded.

3. A lock can be granted if either of the following conditions is satisfied.
a. no other method holds or retains a conflicting lock
b. if conflicting locks are held, such locks are retained by ancestors of the requesting
method
c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then
one of the ancestors of the retainer (not including the retainer itself) and an ancestor of
the requester commute.

In rule 3.b, when ancestor/descendent parallelism is allowed, a parent is not
supposed to see uncommitted results of the child method. Otherwise, the parent may be
aborted due to reading uncommitted value. For example, assume that a parent T initiates a
method M, which accesses some data item X, and continues to do its own work. When T
needs to access data item X so that it requires a conflicting lock on X, T can get a lock
only if the lock held by M is retained by T.

In rule 3.c, we implement semantically commutativity relationships. As we
discussed for the two methods which commute semantically, two methods commute only
if both execute in an atomic way. Thus, we let a lock requester get a lock only if a holde:’s
method execution is finished (i.e., its lock is inherited by an ancestor). In additions, for
two methods commuting semantically, a requester’s descendent can also get a lock if a

holder’s method execution is finished.
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Figure 3-9 shows that two transactions T1 and T2 invoke the same method M1 on
instance carl of class Car and M2 (by T1) and M3 (by T2) on car2 (and on order2 of class
Orders), and the same method M2 on car3 (and on order3 of class Orders). Assume that,
only the first breakpoint [A] has been executed in two method invocations of M1 by T1
and T2 on an instance carl. Also, assume that breakpoints [B] and [B;] have been
executed on an instance car3 in method invocations of M2 by T1 and T2. Note that a line

indicates a nested method invocation.

Tl
MT M1 M2 M3 M2 M2
carl ‘ r2 N\, \Q@%‘
7 X N\ N\
Nl N2 N2 NI N2 NI N2
Order2 Order3

> time

Figure 3-9. A possible execution of transactions in the proposed scheme
In the above example, two method invocations of M1 on carl commute by
adopting dynamic information. This commutativity would not be possible if we used static
commutativity relationships for methods as in [Malt,1993]. Also, two methods M2 and
M3 on instance car2 commute semantically so that the method invocation on M3 by T2
can be executed only after M2 invoked by T1 is finished, that is, after the lock held by M2
is inherited by T1. This guarantees atomic execution of method invocation M2 by T1.

Without the semantics of methods, the method execution M3 by T2 is blocked until the
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entire transaction T1 is committed. In the proposed scheme, the method execution is
delayed only until method M2 invoked by T1 is committed. Thus, we can increase
concurrency by adopting semantic information. Also, a lock request by method invocation
M2 of T2 on car3 is not granted since a conflicting lock is held by T1. Thus, the method
invocation M2 of T2 can be executed after T1 is committed. For method invocations on
instance car3, consider the following execution which requires locks by atomic operations
as in [Rese,1994]. This results in a deadlock situation as in Figure 3-10. In Figure 3-10,
two transactions T1 and T2 invoke a method M2. In turn, M2 invokes two atomic
operations Test-status and Change-status on instance Order3. When the two transactions
invoke the method M2 such an order as in Figure 3-10, a deadlock can occur if the
scheme in [Rese, 1994] is adopted. In the proposed scheme, such a deadlock situation can

be avoided by adopting locks for the execution of the methods.

T'\ "
car3: ‘M2 l\j&

KN T~

-~ e N  —
Test-status Test- status Change-status Change-status
Order3

Figure 3-10. A possible execution by a scheme requiring locks for atomic
operations

3.2. Integrated concurrency control scheme

3.2.1. Transaction and method model
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Several transaction models have been proposed for OODBs depending on
applications and their needs ([Ozsu,1994], [Bili,1992]). In this work, the transaction and
method model are adopted from ([Cart,1990], [Agra,1992]). This model is simple and

does not require any compensating work when a part of a transaction is aborted.

A transaction has the following format: <trans-id, O> where

trans-id : a unique transaction identifier

O : a set of operations representing the implementation of the transaction. These
operations may include a sequence of method invocations (oid;.m;....oid;. m;) where oid
and m are an object name and a method name, respectively, a begin transaction
statement which indicates a new transaction is starting for bookkeeping purpose, a

commit or an abort statement.

A method consists of <Nm, Arg, OP > where

Nm : name of the method

Arg : arguments of the method

.OP :a set of operations representing the implementation of the method. These operations
include statements for conditional branching, looping, I/O, and reads and writes to
an attribute's value. Also, a method can call another method defined on the same

object or different objects during its execution.

3.2.2. Complete concurrency control algorithm
3.2.2.1. Lock format
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A lock of an instance access on a class has the following format:
a) for a target class:
[trans-name, method-name (break-points), F,, F;] where trans-name, method-name
(break-points) are transaction holding a lock and method invoked (including breakpoints
encountered). F, and F, are Boolean fields. F, indicates whether an instance access
method applies to some instance (represented as F) or all instances of the class
(represented as T). F; indicates whether an instance method is an MCA (represented as T)
or not (represented as F).
b) For an intention lock
[trans-name, I, class-name] where trans-name is the same as in a), [ means an intention
lock for instance access, and class-name is the class on which actual lock is held.
c) For a target instance

[trans-name, method-name (break-points)]

Also, a lock table for a class definition access has the following format:
a) For a target class
[trans-name, method-name)] where trans-name is the same as before and method-name is
one of the followings: {MCR, MM(method-names), MA(attribute-names), RCR,
RM(method-names), RA(attribute-names)}.
b) For an intention lock
[trans-name, method-name, I] where trans-name is the same as before, method-name is

the same as in a), and / means an intention lock for a class definition access
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Finally, a lock of a nested method invocation has the following format:
a) For a class
[trans-name, ancestors-ids, owner-id, RET, method (break-points), F,, F,] where trans-
name is the same as before, ancestors-ids are ancestors of current lock requester, owner-
id is lock requester (method or transaction), RET is a Boolean field indicating the lock is
retained or not, remaining fields are the same as above.

b) For an instance
[trans-name, ancestor-ids, owner-id, RET, method (break-points)] where each field is the

same as above.

3.2.2.2. The Integrated Concurrency Control Algorithm

Based on the principles for conflict among methods, class hierarchy locking and
nested method invocations discussed so far, an integrated concurrency control algorithms
is constructed as follows. For each method invocation, the procedure Main is invoked

first.

// Depending on method types, there are two branches for each method invocations

Main

If a method is a regular (non-nested) method invocation, then go to Conflict-among-methods
else go to Nested-method-invocations

end if

end Main

Conflict-among-methods
- go to Decide-conflict-types and return conflict-type

/[There are four cases depending on the lock requester and the lock holder as follows
- If conflict-type is type-a, then go to Check-if-instance-method
20 to Class-hierarchy-locking
else if conflict-type is type-b, then go to type-b-conflict-check and check conflict
If there is conflict, block the request
else go to Check-if-instance-method:
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go to Class-hierarchy-locking;
end if
else if conflict-type is type-c, then go to type-c-conflict-check and check conflict
If there is conflict, block the request
else go to Check-if-instance-method;
g0 to Class-hierarchy-locking;
end if
else if conflict-type is type-d, then go to type-d-conflict-check and check conflict
If there is conflict, block the request
else go to Check-if-instance-method;
go to Class-hierarchy-locking;
end if
end if

Check-if-instance-method
// If the requesting method is an instance access method, then do extra work as follows.
/I If the requesting method is a class definition access method, just grant lock.

If the method is an instance access method, perform the followings.

// before instance access method execution
set a lock of final breakpoint of a method;
// during instance access method execution
record break point encountered during the method execution
// after instance access method execution
change lock from an initial lock to lock of break points encountered
during run-time.
else
grant the lock request
end if;
end Check-if-instance-method
end Conflict-among-methods

Class-hierarchy-locking

// For a given lock request on class, say Y, we set locks on class hierarchy as follows.
case i)
If the access is an MCA, then do the followings
// Set intention locks at every SC through superclass chain (if the class hierarchy
// forms multiple inheritance, use only one superclass chain
For each SC though superclass chain do
g0 to Decide-conflict-types and return conflict-type;
//There are four cases depending on the lock requester and the lock holder as follows
- If conflict-type is type-a, then go to type-a-conflict-check and check conflict
If there is conflict, block the request
else set an intention lock
end if
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else if conflict-type is type-b, then go to type-b-conflict-check ard check conflict
If there is conflict, block the request
else set an intention lock
end if
else if conflict-type is type-c, then go to type-c-conflict-check and check conflict
If there is conflict, block the request
else set an intention I &
end if
else if conflict-type is type-d, then go to type-d-conflict-cieck and check conflict
If there is conflict, bl>ck the request
else set an intentior 'ock
end if
end if
end For
I/ Now, set locks for subclasses through subclass chain
For each class from the target class Y to up to first S do
/1 If there is no such SC, then up to leaf class through the subclass chain. If Y has more than one
/1 subclass, then, for each subclass of Y, do the following steps
2o to Decide-conflict-types and return conflict-type;
/[There are four cases depending on the lock requester and the lock holder as follows
- If conflict-type is type-a, then go to type-a-conflict-check and check conflict
If there is conflict, block the request
else set the lock
end if
else if conflict-type is type-b, then go to type-b-conflict-check :nJ check conflict
If there is conflict, block the 1. uest

else set an the lock
end if
else if conflict-type is type-c, then go to type-c-conflict-che:’c and check conflict
If there is conflict, block ‘he request
else set the lock ’
end if
else if conflict-type is type-d, then go to type-d-conflict~check and check conflict
If there is conflict, b'ock the request
else the lock
end if
end if
end For
end if
Case ii)

If the access is an SCA, then do the followings
// Set intention locks at every SC through superclass chain (if the clacs hierarchy
// forms multiple inheritance, use only one superclass chain
For each SC though superclass chain do
go to Decide-conflict-types and retumn conflict-type;
//There are four cases depending on the lock requester and the lock heider as follows
- If conflict-type is type-a, then go to type-a-conflict-check and chec.: conflict
If there is conflict, block the request
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else set an intention lock
end if
else if conflict-type is type-b, then go to type-b-conflict-check and check conflict
If there is conflict, block the request
else set an intention lock
end if
else if conflict-type is type-c, then go to type-c-conflict-check and check conflict
If there is conflict, block the request
else set an intention lock
end if
else if conflict-type is type-d, then go to type-d-conflict-check and check conflict
If there is conflict, block the request
else set an intention lock
end if
end if
end For
/I Now, set a lock for only on target class
go to Decide-conflict-types and return conflict-type;
//There are four cases depending on the lock requester and the lock holder as follows
- If conflict-type is type-a, then go to type-a-conflict-check and check conflict
If there is conflict, block the request
else set a lock on the target class
end if
else if conflict-type is type-b, then go to type-b-conflict-check and check conflict
If there is conflict, block the request
else set a lock on the target class
end if
else if conflict-type is type-¢, then go to type-c-conflict-check and check conflict
If there is conflict, block the request
else set a lock on the target class
end if
else if conflict-type is type-d, then go to type-d-conflict-check and check conflict
If there is conflict, block the request
else set a lock on the target class
end if
end if
end for
end if
end Class-hierarchy-locking

Decide-conflict-types
// Depending on lock types of lock requesters and holders, there are four types of conflicts as
/I follows..

case a) Lock requester: intention lock; Lock holder: intention lock

return type-a;
case b) Lock requester: intention lock; Lock holder: regular lock



return type-b;

case c¢) Lock requester: regular lock; Lock holder: regular lock
return type-c;

case d) Lock requester: regular lock; Lock holder: intention lock
return type-d;

end Decide-conflict-types

Type-a-conflict-check

// There is no conflicts between intention locks
return no-conflict

end Type-a-conflict-check

Type-b-conflict-check
// Commutativity can be checked using the following table 3-8. Let {I,X] be intention lock for

/I lock type X.

SCA MCA RCR_ RM RA MCR MM MA
[I.SCA] Y ¢ Y Y Y N G G
[LMCA] Y &G Y Y Y N C: G;s
[LRCR] Y Y Y Y Y N Y Y
[LRM] Y Y Y Y Y N C G
[LRA] Y Y Y Y Y N Y G
[LMCR] N N N N N N N N
(L.MM] Y ¢ Y Y Y N G Cs
[LMA] Y G Y Y Y N G G

Table 3-8. Commutativity table between intention lock and regular lock

/! For symbols other than Y or N, conflict are decided as follows.

C.: //check commutativity using instance access commutativity table

call Conflict-resolution (C;)

Ca: // check commutativity using vector MAV

call Conflict-resolution (C,)

C;: // check using vector AAV and DAYV of the requester

call Conflict-resolution (C;)

Ca: // check redefinition using instance access commutativity table

call Conflict-resolution (C,)

Cs: // check commutativity between DAYV of lock requester’s method (and each DAYV of lock
// requester’s method redefined through subclass chain of the requester’s class) and AAV

call Conflict-resolution (C;)

Cs: // check using vector AAV

call Conflict-resolution (Cs)

C: // check commutativity using DAVs of methods in MAV and vector AAV. If methods in
/l MAV is redefined through subclass chain of MM’s class, check commutativity for each
// redefined method using DAYV of such method and AAV.

call Conflict-resolution (C;) A

Cs: // check commutativity between DAYV of holder’s method (instance access method or RM)
// and vector AAV
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call Conflict-resolution (C;)

C,: // check commutativity between DAYV of lock holder’s method (and DAVs of lock holder’s
// method redefined through subclass chain of the holder’s class) and AAV

call Conflict-resolution (C,)

end Type-b-conflict-check

Type-c-conflict-check
/l Commutativity can be checked using the following table 3-9.

SCA MCA RCR RM RA MCR MM MA
SCA C C Y Y Y N 2 G
MCA C Cs Y Y Y N C: Cs
RCR Y Y Y Y Y N Y Y
RM Y Y Y Y Y N C. G
RA Y Y Y Y Y N Y Cs
MCR N N N N N N N N
MM C: C; N C. o N C. Cs
MA Cs G N Cs Cs N C, Cs

Table 3-9. Commutativity table between (regular) locks

// For symbols other than Y or N, conflict are decided as follows.

C.i: //check commutativity using instance access commutativity table

call Conflict-resolution (C,)

C,: // check commutativity using vector MAV

call Contflict-resolution (C;)

C;: // check using vector AAV and DAYV of the requester

call Conflict-resolution (C;)

C.a: // check redefinition using instance access commutativity table

call Contflict-resolution (C,)

Cs: // check commutativity between DAV of lock requester’s method (and each DAYV of lock
// requester’s method redefined through subclass chain of the requester’s class) and AAV

call Contflict-resolution (Cs) ‘

Cs: // check using vector AAV

call Conflict-resolution (Cs)

Cy: // check commutativity using DAVs of methods in MAYV and vector AAV. If methods in
// MAV is redefined through subclass chain of MM’s class, check commutativity for each
// redefined method using DAV of such method and AAV.

call Conflict-resolution (C;)

Cs: // check commutativity between DAYV of holder’s method (instance access method or RM)
// and vector AAV

call Conflict-resolution (Cs)

Cs: // check commutativity between DAYV of lock holder’s method (and DA Vs of lock holder’s
// method redefined through subclass chain of the holder’s class) and AAV

call Conflict-resolution (C,)

end Type-c-conflict-check

Type-d-conflict-check



// Commutativity can be checked using the following table 3-10.

[LSCA] [LIMCA] [LRCR] [LRM] [LRA] [LMCR] [LMM] [LMA]
SCA Y Y Y Y Y Y Y Y
MCA C Cs Y Y Y N C: Cs
RCR Y Y Y Y Y Y Y Y
RM Y Y Y Y Y Y Y Y
RA Y Y Y Y Y Y Y Y
MCR N N N N N N N N
MM ¢ C N C; Y N C. Cs
MA G G N Cs Cs N G Cs

Table 3-10. Commutativity table between regular locks and intention locks

// For symbols other than Y or N, conflict are decided as follows.

C,: //check commutativity using instance access commutativity table

call Conflict-resolution (C))

C,: // check commutativity using vector MAV

call Conflict-resolution (C,)

C4: // check redefinition using instance access commutativity table

call Conflict-resolution (C;)

Cs: // check commutativity between DAYV of lock requester’s method (and each DAYV of lock

// requester’s method redefined through subclass chain of the requester’s class) and AAV

call Conflict-resolution (Cs)

Cs: // check using vector AAV

call Conflict-resolution (Ce)

C;: /1 check commutativity using DAVs of methods in MAYV and vector AAV. If methods in
/l MAY is redefined through subclass chain of MM’s class, check commutativity for each
// redefined method using DAV of such method and AAV.

call Conflict-resolution (C;)

Cs: // check commutativity between DAYV of holder’s method (instance access method or RM)
// and vector AAV

call Conflict-resolution (Cs)

C,: // check commutativity between DAYV of lock holder’s method (and DAVs of lock holder’s
// method redefined through subclass chain of the holder’s class) and AAV

call Conflict-resolution (C,)

end Type-d-conflict-check

Conflict-resolution ( p)

case p=C,
If intention lock is held by holder, go to the class indicated by intention lock and use instance
access commutativity table. Otherwise use instance access commutativity table on the target class.
case i) lock requester accesses only some instance of a class,
If lock holder has lock on a set of instance, then check commutativity with lock on the class using
the instance access commutativity table;
return commute or no-commute

91



otherwise check commutativity with locks on target
instances using instance access commutativity table;
return commute or no-commute;

case ii) lock requester accesses a set of instance of a class

check commutativity with lock (set by the lock holder) on the class using the instance access
commutativity table;

return commute or no-commute;

casep=C;
If the lock holder is MM (or intentioned MM) locked, then
// Assume that an instance method M, is invoked by lock requester
check if method field of M, is W locked in MAV;
return commute or no-commute;
else
/I Assume that an instance method M, is invoked or the definition of M, is being read by holder
Check if the definition of M, is to be modified;
retum commute or no-commute;
end if

case p=GC;
// Assume that either an instance method M, is invoked by lock requester or the definition of M, is
// to be read by requester
use DAV of M, defined on target class;
For each attribute accessed in DAV of M, do
check if there is at least one attribute with W locked in vector AAV;
return commute or no-commute;
end do

casep=C,

/! Assume that an instance method M, is invoked by the requester and another instance method M,

// is being executed by the lock holder

Check commutativity using instance access commutativity table at target class.

If not commute, return no-commute.

Otherwise, do the following steps.
For each subclass S of the lock requester’s class on which either M, or M, is redefined do

check commutativity with lock on the class using instance access commutativity table on S;

end do
If there is at least one class on which the commutativity is not satisfied, return no-commute;
Otherwise, return commute;

casep=GC;s
// Assume that an instance method M, is invoked by the lock requester
use DAV of M; on the target class;

For each attribute accessed in DAV of M, do

check if there is at least on attribute with W locked in AAV;

If so, retum no-commute;

Otherwise, do the following steps.

For each subclass S of the target class on which M, is redefined do
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For each attribute accessed in DAV of M, do
check if there is at least one attribute with W locked in vector AAV;
If so, return no-commute;
Otherwise, continue;
end do
end do
end do
return commute;

case p=Cq
If CA lock is held, then
for each attribute to be accessed by lock requester do
check if there is at least one attribute with W locked in vector CA set by lock holder;
If so, return ne-commute;
Otherwise, return commute;
end do
else if a; is being read by holder, then return no-commute // Assume a; is to be modified//
else return commute
end if

case p=0C,
For each method M; with R or W lock in MAV do
use DAYV of M; on the target class;
For each attribute accessed in DAV of M; do
check if there is at least one attribute with W locked in vector AAV or a; is to be modified.
If so, retum no-commute;
Otherwise, perform the following steps;
For each subclass of the target class on which M; is redefined do
For each attribute accessed in DAV of M;;
check if there is at least one attribute with W locked in vector AAV or a; is to be modified;
If so, return no-commute;
end do
end do
end do
end do
return commute;

casep=C,

/] Assume that an instance method M, is being invoked or a definition of M, is being read by
// holder

// assume that attribute a; is to be modified

use DAV of M, on the class indicated by intention lock (if an intention lock is held);

Check if a; is accessed in DAV of M;;

If so, return no-commute;

Otherwise, return commute;

casep=GC,

// Assume that an instance method M, is being invoked by the lock holder and attribute a; is to be /-
modified
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use DAV of M, on the class indicated by intention lock (if an intention lock is held);
For attribute a; do
check if a; is accessed in DAV of M, ;
If so, return no-commute;
Otherwise, perform the following steps;
For each subclass S of the lock holder’s class on which M; is redefined do
For each attribute a; do
check if a; is accessed in DAV of M;;
If so, return no-commute;
end do
end do
end do
return commute;

end Conflict-resolution ()

Nested-method-invocations
/1 A lock is required for method execution and is granted before method execution.
/I A method execution cannot terminate until all of its children are terminated. When a method
/1 execution m terminates as follows:
// a. there exists parent of m and m commits : locks held by m are inherited by its parent (ic.,
/I locks are retained by its parent)
/1 b. there exists parent of m and m aborts: locks held by m are discarded.
// c. there is no parent of m: locks are discarded
If a nested method satisfies one of three following condition, grant the lock request
a. no other method or transaction holds or retain a conflicting lock
b. if conflicting locks are held, such locks are retained by ancestors of the requesting
method
c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then one
of the ancestors of the retainer (not including retainer itself) and an ancestor of the
requester commute
else
block the request
end if
end Nested-method-invocations

For an illustration of the concurrency control scheme, consider a class hierarchy
and a composite object hierarchy in Figure 3-11. Assume that each method has the

following break points.

mg: A, Al

m;: no break point
mj: C, Cl

ms. E, El

m;: no break point
Myp: K, Kl
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my;. L, L1
m;2: N, N1
my3: 0, Ol

Let class Domestic_auto, Company and Employee have the following commutativity
tables.

D(m;) D(A) D(Al) D(m;) D(m;) D(C) D(Cl) D(m;) D(E) D(El1) D(m)
Dim) | Y Y Y N N Y N N N N Y
Dim) | N N N N N Y N N N N N
Dm;) | N N N N Y Y Y N Y N N
Dms) | N N N N N N N Y Y Y N
Dim) | Y Y Y N N Y N N N N Y

Table 3-11. Commutativity table for class Domestic_auto

| DM DK) DKI) D(my) DL) DL

D(m,0) I N Y N S S S
D(m,,) S S S N N N

Table 3-12. Commutativity table for class Company

| D(m:;) D(N) DENI) D(mis) D(O) D(OI)

D(m,,) ' N Y N N Y N
D(m3) N N N N Y N

Table 3-13. Commutativity for class Employee
Consider the following transactions on the class hierarchy in Figure 3-11.
T1: change implementation code of method ms on class Passenger
T2: Domestic_auto.Il.m;
T3: Domestic_auto.I1.m,, Company.I1.m,, (nested method invocation)

T4: Company.I1.my,
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Assume that the break point C is encountered by T2. Figure 3-12 shows the lock
table after four transactions are finished but not committed. Assume that classes

Vehicle_on_land and Domestic_auto are only SCs.

3.3. The correctness of the proposed concurrency control scheme

The proposed scheme has three features of access: conflicts among methods, class
hierarchy locking and nested method invocations. For the first two types of access, that is,
conflicts among access and class hierarchy locking, the standard two phase locking is
adopted [Eswa,1976]. For the standard two phase locking, the serializability is
guaranteed. That is, as long as a concurrency control produces a schedule based on two-
phase locking, the schedule satisfies the serializability.

But, for nested method invocations, semantic commutativity is adopted. For notion of
serializability where all conflicts are preserved, it is called conflict serializability
[Rese,1994]. But, for the serializability where some conflicts can be ignored based on the
semantics of operations at higher level, it is called semantic serializability. For semantic
serializability of semantic concurrency control, its proof is given in [Rese,1994]. For their
concurrency control, lock is required for each atomic operation while locks are required
for method invocation for the proposed semantic concurrency control scheme. In this
subsection, the proof of the correctness is shown for class hierarchy locking and nested

method invocations, respectively.

3.3.1. The correctness of class hierarchy locking -
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A= mmes ol

In this subsection, it is proven that the proposed algorithm is correct, that is, it
satisfies serializability [Eswa, 1976]. The proof is based on that, for any lock requester, its
conflict with a lock holder (if any) is always detected. With this proof, since the class
hierarchy locking scheme is based on two-phase locking, it is guaranteed that the
proposed scheme satisfies serializability [Eswa, 1976]. This type of proof technique is
adopted in earlier work in [Liou,1991]. Also, for simplicity, we prove only for single
inheritance. For multiple inheritance, the correctness can be proved similarly. If a lock
requester is an SCA, then its lock holders (whose lock modes need to checked for conflict
with lock requester) consist of transactions holding locks on the target class and all special
classes in the superclass chain of the target class. If a lock requester is an MCA, then its
lock holders include those defined above plus transactions holding locks on each class

from the target class to the first special class in the subclass chain of the target class.

There are four cases depending on the types of lock requesters and holders.

case 1) the lock holder is an SCA
the lock requester is an SCA

If a lock holder (Ly) and a lock requester (Lg) access different classes, there is no
conflict. If a lock holder and a lock requester access the same class, there is no conflict
on all SCs through the superclass chain of the target class because intention locks on

SCs are compatible with Lg . Thus conflicts can be detected on the target class.
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a = attribute

i = instance
m = method
Vehicle_on_land (SC) Vehicle on water
] asMinWaterlevel my i,
: Size i
Passenger Truck
az: Capacity ms as: Capacity I
as: Trunk_capacity ajo: load_capacity i,
Japanese_auto Domestic_auto (SC)
ay;: engine_type ms I a;3; engine_type m; 1
a;y: fuel_type iz a, Manufacturer | i>
Company
a,7. name
ajs: president, my i
a,9: location \n” iz
Fuel_injected Non_fuel injected
[ais: injector_type ms i1 ]| aie: cabulator_type my iy
Employee
0. SSN my2 il

az:name my; ip

Attribute/ Domain link

Class/ Subclass link

Figure 3-11. An illustrative class hierarchy and composite object hierarchy example
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Vehicle

Vehicle_on_land (SC) Vehicle_on_water

(T1, MM(ms).I)
(T2, Domestic_auto.
(T3, Domestic _: auto l)

Passenger Truck
(T1, MM(ms))

Japanese_auto Domestic_auto (SC)
(T1,MM(ms)) (T1,CM(ms))

(T2,m3(C),F,F)
(T3,mi(A,Al), F.F)
[l: mv m3(C))) mv m\(A’Al))

Company
(T3,nil, T3,T, mio(K.K1),F,F)
(T4,m;,(L,L1),F.F)
L (T3,nil, T3, T, mo(K,K1))
(T4,m(L,L1))
Employee

Fuel_injected Non_Fuel_injected

Attribute/ Domain link

Class/ Subclass link

Figure. 3-12. Transaction executions on class hierarchy
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case 2) the lock holder is an SCA
the lock requester is an MCA

If the Ly is holding a lock on a superclass of the Lg’s class, there is no conflict since the Lg
does not access the Ly’s class. If the Ly is holding a lock on the Lg’s class or subclass,
then there are two subcases. If there exists an SC between Ly and Lg, then conflict is
detected on the nearest SC through the subclass chain of the Li’s class (case 2.1).
Otherwise, the conflict is detected on the class of Ly (case 2.2). Let R and H be two
classes on which the L requests a lock and the Ly holds a lock, respectively. In case 2.1,
as shown in Figure 3-13.a, a conflict (if any) is checked on SC1, which is the nearest
special class of the Lg’s class through its subclass chain, since the Ly has an intention lock
on SC1 and the requester requests CW, QR, PQR, QW or PQW on SC1. On the other
hand, in case 2.2, for subcase a, a conflict (if any) is checked on H as in Figure. 3-13.b
since Ly does not have any intention locks through the superclass chain of R and Lg needs
to set an MCA lock on H. For subcase b, a conflict (if any) is checked on H as in Figure 3-
13.c since intention locks on all special classes through the superclass chain of H are

compatible and the requester needs to set an MCA lock on H.

(R) R) (Ch)
sC1
(H)
sC2 sCt (sC2)
®)
SC3 sC2
(H) H

Fig 3-13. a. Case 2.1 Fig. 3-13.b. Subcase a of case 2.2 Fig. 3-13.c. Subcase b of case 2.2

case 3) the lock holder is an MCA
the lock requester is an SCA
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If Ly is holding a lock on a subclass of Lg, there is no conflict. If Ly is holding a lock
on the class of Lr or on a superclass of Lg, then there are two cases in which conflicts
will be detected. If there exists some SCs between Ly and Ly, the conflict is detected
on the first SC to Ly through the subclass chain of Ly such as SC2 in Figure. 3-14.a

(case 3.1). Otherwise, the conflict is detected on the class of Lg as in Figure. 3-14.b

(case 3.2).
ﬁ
 SCI SC1
 (H) (H)
4
' (R)
) SC2 sc2
p
) SC3 SC3
' (R)
vi
Figure. 3-14. a. Case 3.1 Figure. 3-14.b. Case 3.2

case 4 ) the lock holder is an MCA
the lock requester is an MCA

If Ly accesses the same class or superclass of Lg’s class, the conflict is detected as in
either case 3.1 or case 3.2. On the other hand, if Ly accesses a subclass of the Lg’
class, the conflict is detected as in either case 2.1 or case 2.2.
From cases 1), 2), 3) and 4), for any lock requester, it is guaranteed that its
conflict with a lock holder (if any) is always detected. Also, since the proposed scheme is

based on two-phase locking, serializability is guaranteed [Eswa, 1976].

3.3.2. The correctness of nested method invocations

The proof for nested method invocations is similar to that in [Rese,1994], which is

based on two techniques: substitution and commutativity-based reversals. The
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substitution can be further divided into two techniques: reduction and expansion.
Reduction is to transform a separated transaction t whose children are leaves to another
transaction t' which is the same as t except that t is substituted by the method
corresponding to transaction t. Note that a transaction is said to be separated if no
operations of other transactions are interleaved with its leaves. Expansion.is the inverse of
the reduction. The commutativity-based reversal is also to transform a transaction t which
has two commuting consecutive leaves to another transaction t’ which is the same as t
except that these consecutive leaves are reversed.

The proof is based on the following principle [Rese,1994]: create a sequence of
equivalent intermediate executions starting from an original execution of the proposed
scheme and finally create a serial execution consisting only top-level transactions. From
original execution, a node is selected and separated by necessary commutativity-based
reversals, and finally reduced. These separations and reductions are repeated until only
top-level transactions are created. Thus, it is enough to show that, for any execution
produced by the proposed semantic locking, equivalent serial execution can be obtained by
iterations of separations and reductions from the original execution.

In each intermediate execution step, for separation and reduction, any node t is
selected. The node should satisfy the following property: its right most child is the
lefflmost among nodes having only leaves as children. The proof is based on that it is
always possible to separate t. It is said that an operation o interleaves within operation t if
there are some children of t on the leftside as well as on the rightside of the operation o

[Rese,1994). For an initial execution, say Eo, it is not possible that a method m can be
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interleaved within t where m conflicts with a child of t. This is due to the proposed
scheme that requires m to wait until t is terminated. Thus, the concern is focused on any
intermediate execution E;.

For contradiction, assume that, in an intermediate execution E; t cannot be
separated where t’s rightmost child is the leftmost among nodes that have only leaves as
children. This is because a child of t, say t., conflicts with and precedes v and in turn v
conflicts with and precedes, another child of t, say tg. Since t. conflicts with v, there exists
descendants t.’ and v’ of t, and v, respectively in original executior: Eo so that t.’ conflicts
with and precedes v’.

At first, it is concluded that t;* and v’ conflict with each other on the same object
since conflicts on different objects can not be defined due to the proposed scheme.
Assume that there is no semantic commutativity between t.’ and v’. Since there is a
conflict between t.’ and v’ by assumption, the execution of v’ can be resumed only after
the lock set by t.’ is released. That is, the execution of v’ can be started only after all
descendants of t are finished. Thus, y can not be interleaved within the children of x.
Assume that there is semantic commutativity between method t’ and v’. In this case,
there exist some ancestor (t.’) and ancestor of (v) and they commute with each other
where ancestor (t.’) and ancestor (v) are ancestor of t.’ and the proper ancestor of v,
respectively. Then, v’ can get a lock as long as the execution of ancestor (t.’) is finished.
Since the method commutativity is defined on each object, the ancestor (t.’) and ancestor
(v) are defined on the same object. But, since ancestor of (t.’) and ancestor (v) are the

ancestor of t.’ and the proper ancestor of v, respectively, the method t. is defined cn
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higher object than object on which v is defined. Similarly, it is proven that the method v is
defined on higher object than object on which t is defined. This violates the assumption
that a nested method is called from a higher object to a lower object. Thus, it is concluded
that, for any execution produced by the proposed semantic locking scheme, an equivalent
serial execution can be obtained by iterations of separations and reductions from the

original execution.
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Chapter 4

Performance Analysis by Analytical Models

In this chapter, an analytical model is constructed to measure the performance of
the proposed concurrency control techniques. The rationales for adopting an analytical
model for performance evaluation are as follows: an analytical model is an abstraction of a
system that avoids unnecessary details [Lazo,1984]. Thus, an analytical modeling is to
extract and test essential parts to the system behavior from mass of details that is the
system itself, with less time and cost. On the other hand, simulation gives accurate result,
in a more extensive and real environment. But, it may take tremendous time to complete.
Also, modeling gives guidelines for simulation as to which parameters are necessary.
which system components are important, which performance metrics are needed, and
which testing cases are should be prepared.

In order to analyze the performance of the proposed technique, two existing
representative technique are selected for comparison: Orion [Kim,1990] and Malta’s
([Malt,1991], [Malit,1993]). The reasons to choose these two existing schemes are as
follows. These schemes include all of three access types in OODBs, that is, conflict among
methods, class hierarchy locking and nested method invocations. Also, those schemes
have different characteristics for each access type. First, consider conflict among methods.
Orion and Malta adopt an entire class object as locking granularity for class definition
access. But, for instance access, Malta adopts attributes as locking granularity while Orion

adopts an entire instance object.
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Also, Orion does not provide any concurrency between an instance access and a class
definition access while Malta does. Second, for class hierarchy locking, Orion adopts
implicit locking while explicit locking is adopted in Malta. For nested method invocations,
both Orion and Malta do not consider parent/child parallelism. But, locks are required for
every atomic operations in Orion while locks are required for each method invocation in
Malta.

This Chapter is organized as follows. In Section 4.1, an analytical model for
concurrency control for OODB is introduced. In Section 4.2, data structures to implement
three schemes are introduced. Also, an analytical parameters are identified in Section 4.2.
In Section 4.3, for each access type in OODB (that is, conflict among access, class
hierarchy locking and nested method invocation), necessary analytical parameter values
are obtained in order to measure the performance of the concurrency control techniques.
Finally, an OODB benchmark, called 007 benchmark ([Care,1993], [Care,1994]), and

analysis results based on this benchmark are presented in Section 4 4.

4.1. Analytical Model
4.1.1. A Basic Model

The analytical model is based on [Yu,1993]. In that work, an analytical model is
introduced for two-phase locking concurrency control with the following simple
assumptions: each transaction can have only exclusive (write) access mode to data items.
Also, every transaction has the same number of granule access. For access patterns, they

assume uniform access over a set of granules. That is, each granule has equal probability
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to be accessed. Finally, they assume the same execution time for each granule in the
database .

The transaction model in [Yu,1993] is as follows: each transaction consists of N +
2 states where Ny is the random number of granules accessed by the transaction (granule
is the unit of data to which concurrency control is applied) and L is the number of granules
in the database. The state O, called initial setup phase is to generate transaction-id,
granules and lock types for each transaction. Also, states 1 to Ni-1 are called execution
phase. In these states, before access, conflicts are checked. If there is a conflict, the lock
request is denied. Otherwise, a lock is set and the data item is accessed. In state Ny, called
commit phase, each transaction releases its locks and is committed. Each state i, 1< i <
Ni.-1, is divided into two substates i; and i,. In substate i,, the transaction holds i-1 locks
and is waiting for its ith lock request to be satisfied. Let b denote the mean time in
substate i; and where b = Pw * Rw where Py and Rw are lock contention probability and
lock waiting time, respectively . In substate i», the transaction holds i locks and is
executing. Let a denote the mean time in substate i,.

Based on the transaction model, the transaction response time is calculated as
follows.
R =Rmnpr + Rg + NL * Py * Rw + Teoumi Where R is mean response time, Rppy is the
execution time in state 0, R is the sum of execution times in states 1,..., N, Pw is lock
contention probability, Rw is lock waiting time for a transaction, and Tecomm: is commit time
for a transaction. Note that Rnpt, Re, Ni and Teommit are constants. Thus, once the values

of Pw and Rw are found, the mean response time R can be obtained.
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At first consider Ry. In order to get Rw, let G be the sum of lock holding times for
each granule over N, granules by a transaction. Then

Nt
G= {z(iu-(i- 1)b)}+ Nic “.1)

i=1

where ¢ is commit time (= Teommit)
Then, G/N. becomes mean lock holding time overhead over N, granules. Also, Rw can be

defined as follows.

- N (G—-Db|Rs ia| a ) Nwe <
Rw El( G {?+a+s‘}+6{-ﬁ+a} +-G_{f;} 4.2)

where (i-1)b/G and ia/G are the conditional probability that a lock request contends with a
transaction in substate i, and i,, respectively, given that lock contention occurs, 1 <i <N,
and N.c/G is the similar expression for state Ny +1.

The quantity s; is the mean time from leaving state i until the end of commit and given by

si=(NL-ia+b)+c

Also, Rw/fy and a/f; are the mean remaining time in substate i; and i,, respectively, given
that the transaction blocking the lock request was in that state, 1 <i < N.. ¢/f; is the mean
remaining time in the commit phase given that the transaction blocking the lock request

was in that state. Based on these expressions, the following expressions can be induced.

t

{&4- a+ s.} = lock waiting time (in substate i;) + execution time (in substate i;) + mean
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time from leaving state i until the end of commit

{-"—4-&} = execution time (in substate i;) + mean time from leaving state i until the end of
2

commit

{-ff-} = commit time (i.e., = T commit)

Rw can be simplified as follows.

(a +b)2 (Me+ D)(Ne-D)

R, = 6
el 1)
. (N‘+l)((az/f’2)+ab+ac+bc)/{d(N‘2- l) +c+b(M2- l)(l-%)}

{C_Z —-ab- bc}
+ 43)

IC IS )

Now, consider Pw. Pw can be expressed as follows.

Pw = (arrival rate of lock request for a granule) * (mean lock holding time)

={A*(NJL)} * {G/N.} (4.4)
where A is transaction arrival rate. Note that wutilization factor(or traffic intensity) =

arrival rate * mean service time [Lazo, 1984]. That is, the probability of conflict is the
same as the utilization factor of the data item.

Based on expressions (4.3) and (4.4), values of Rw and Py can be obtained
repeatedly as follows: knowing that b = Ry * Py, start with b = 0 to get values of Rw =

f(b) = 0) = x(1) and of Py = f{b) = f0) = x(2) where x(i), i > 1, are temporary variables.
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Then, b = x(1)*x(2). Once again, get the value of Rw = f{b) = x(3) and of Pw = f{(b) =
x(4). These iterations are continued until approximation of b is reached. For example, If b
=x(2n-1)*x(2n) = x(2n+1)*x(2n+2) , then choose values of Rw and Pw at stage n+1.
4.1.2. An Extended Model

For performance comparisons of the three techniques, the following less restrictive
assumptions are necessary: there are only two types of transactions : IA (instance access)
and CDA (class definition access). Also each transaction can have variable execution time
for each granule. In addition, multiple access modes as well as exclusive access mode are
allowed for locks. For the above assumptions, the basic model in Section 4.1.1 can be
extended as follows [Yu,1993].

Since there are two types of transactions, Rw and Pw can be divided further as
follows. Let P,y be the probability that a transaction is an IA transaction. Likewise, let
Pcpa be the probability that a transaction is a CDA transaction v/here P, + Pcpa = 1.
Also, let Py; and P c be the probabilities of lock contention with [A transactions and CD A
transactions, respectively, assuming that a lock requester is an IA transaction. Likewise,
let Pc, 1 and P, ¢ be the probabilities of lock contention with IA transactions and CDA
transactions, respectively, assuming that a lock requester is a CDA transaction. Also, let
R; and Rc be the mean waiting times given that there was a contention with a IA
transaction and a CDA transaction, respectively.

Assuming that Pw; represents the overall contention prob. of an IA transaction and
Rw represents mean waiting time of an IA transaction for all types of conflict given that

there was a contention. Then, Py and Rw can be expressed as follows.
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Pw[ = PL! + PLC (45)
=(Pu1*Ri + P c*Rc) / Pwm (4.6)
Let by =P *R; + P, c*Rc and
N
G= { Y (iar+ (i - l)bl)} +No*c
i=l
where a; is the execution time for each granule for an IA transaction and c; is commit time

for an IA transaction.

Let s; 14 be the mean time from leaving state i, until the end of commit for an IA

transaction. Then,

siia=(NL-)*(@+b)+c 4.7)

and
R( Zl( Gt)bl { fl +a +Sc.u}+%{%+&.u}) + %lfi{%} (4.8)

R, can be simplified as follows:

(@+b) (N + (N =)
Re= ® { M+1) (M l) a}

2 -
+ We+Dal! [ +b;R- +abi +ac: +bicr) / {m( N;2+ 1) . b'( Mz 1) +a}

{ef-éﬁz_a.b.-ba
s 4.9)

{ M+l) (, )m}

Il



Let Pwc be the overall contention prob. of a CDA transaction and Rwc be mean waiting
time of a CDA transaction for all types of conflict given that there was a contention. Py

and Rwc are expressed as follows.

Pwc =Pc,1 +Pc,c (4.10)

RWC = (PC. [*RI + Pq c*Rc) / ch (4. 1 l)

Let bc =Pc *R; + Pc,c*Rc and

Ne i
Gc = {2 (iac+(i - l)bc)} + N *cc

i=1

where ac is execution time for each granule for a CDA transaction and cc is commit time
for a CDA transaction.

Let sicpa be the mean time from leaving state i, until the end of commit for a CDA

transaction. Then,

sicoa = (NL - 1)*(ac + bc) + ¢c 4.12)
and
Nl s .
= 5| G=Dbe [Ree o ismbsiBE]O Nice | cc.
Rc El( = {f. +ac+s. }+Gc{ —+5. }) = {f’} 4.13)
Rc can be simplified as follows:

(@c+bc)> (Ne+ (N = 1)
D AL I I
2 2

(Ne+ D@2 ! f1) +bcRec +ache + ache +bece) Ne-1 Ne—-1
+ 3 — +b 5 +ce
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{CIL - b‘;l ~ ache—bCe
+ U (4.14)

EESEECSR

The values of by and bc can be obtained repeatedly as follows:
step 1) Start withby=bc =0

Re  =f(,b) =£(0,0)
Re  =f(,b) =£0,0)

Py =f(b) =£(0)
Pc; =f() =£(0)
Prc =f(bc) =£(0)
Pcc =f(bc) = f{0)

Then, get the new values of by = Py * Ry + P c*Rc and bc =P (*R; + Pc c*Rc¢

step 2) With the new values of by and bc obtained in step (1), compute:

Ry = £ (by, be)
Rc  =f(b, beo)
Py =f(b)
Pcy  =f(by)
Prc  =f(bc)
Pcc =f(bo)

Get the new values of by = P ; * R; + P, c*Rc and bc =P 1*R; + Pc c*Rc

step n) With the new values of b; and bc obtained in step (n-1), compute:

Ry = £ (by, be)
Rc =f(by,beo)
Py =f(
Peg  =f(b)
Prce =f(bc)
Pcc =f(bc)

Get the new values of bj=P;; * R; + Py c*Rc and bc = Pc, i*R; + Pc c*Rc

If by = by (of step n-1) and bc = be (of step n-1), then choose the values of by and bc of step
n. _
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Let RES; and RESc be the response times of IA transaction and CDA transaction,
respectively. Then,

RES; =ty + Np*a; + NL*(PL *Ri+ P c*Rc) + ¢ (4.15)

RESc = tie + No*ac +NL*(Pc.i*Rct+ Pc,c*Re) + ¢ (4.16)

Then, the overall response time RES is expressed as follows

RES

-
_ Pu*RES + Pcoa* RESc @.17)
Pu+ Pena

4.2. Analytical parameters

In this section, in order to get necessary analytical parameter values such as mean
lock waiting time and mean conflict probability, data structures used for implementation
are presented. Also, a complete analytical parameter table is constructed. Finally,

analytical parameter values are obtained.
4.2.1. Lock tables

For an implementation of the lock table, the following data structure is assumed (in
Figure 4-1): each class has B buckets for maintaining lock tables for instances where the
parameter B is chosen by the application programmer. The reason for adopting buckets is
to reduce search time for a particular instance. Assume that, for each class and each
instance, two pointers X and Y are used and each pointer takes one MM (main memory)
word to point transactions holding locks where X and Y are pointers for the first lock

holding transaction and for the last lock holding transaction, respectively. Also, assume
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that, for each bucket, two pointers X’ and Y’ are used to point the first instance accessed

and the last instance accessed, respectively.

a

I—Y X141t (lock mode)| +—> oo —Y{tx (Tock mode)[v f—l
bucket 1 &Y IX; ¥
in[Y X[V |
—3t, (Iock mode)|v |
T
bucket B | Y’ {X’

Figure 4-1. illustrative lock table structure for three technique implementations

In Figure 4-1, for each class and each instance, two pointers are used for the lock
holding transactions so that searching for any particular transaction can be done either
forward traversal or backward traversal. By doing this, the search time can be reduced
significantly than sequential search. Likewise, for each bucket, two pointers are used for
the same purpose. A lock format of each lock holding transaction consists of a
transaction-id, lock mode and pointer to the next lock holding transaction. Note that, in
Figure 4-1, t; and v represent a transaction-id and nil pointer, respectively.

For the commutativity table, Orion and the proposed scheme use the same ones
introduced in Chapter 3. But, for Malta’s technique, the following commutativity tables

are used.

-instance (Assume that there are Nm methods in each class)
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M, M, ... NNL
M, Y N Y
M; N Y ... N
Mym Y N ... Y

Table 4-1. Commutativity table for instance access in Malta’s work
Also, for the commutativity table for both instance access and class definition
access is as follows (Table 4-2). Let I denote an instance access method. Let RD and MD
denote read class definition and modify class definition, respectively. A means that

commutativity depends on instance method commutativity.

I RD MD

I A Y N
RD|Y Y N
MDI! N N N

Table 4-2. Commutativity table for instance access and class definition access in Malta’s
work

The lock table is same as the Orion, but each lock mode is replaced either by a
method name (if the lock requester is an instance method) or by a lock mode € {RD,

MD} (if the lock requester is a class definition access method).

4.2.2. Analytic Parameters
Table 4-3 shows the complete analytical parameter table for the analytical model
In order to compare three techniques using real values of analytical parameters, a

representative benchmark, called 007 ([Care, 1993], [Care, 1994]).

Parameters Description ' Default value
AT (A) Number of atomic operations in a method 4
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b mean lock waiting time calculated
B Number of buckets 5
BASIC_OP | Time to perform one basic operation 0.000007 ms
[Huan,1995]
D class hierarchy depth 3
L Number of instances in a database 42100
Lc levels in composite object hierarchy 3
MM_ One main memory word access time 0.0922 ms
ACCESS [Huan,1995]
M, Multiprogramming number A*(ti+NCc*x)
Na Number of attributes in a class 5
Nc Number of classes in a class 10
No Number of granule accesses per transaction 3.95
N; Number of instances in a class 4210
Ncom Number of objects accessed by a nested method 4
NUM_INST | Number of instances in a bucket Mp*Ng/(2*B*Nc)
NUM_ Average number of transactions holding locks on Mp*Ng/Nc
TRANScuass | 3 class
NUM_ Average number of transactions holding locks on Mp*Ng/(Nc*Np)
TRANSwst | an instance
Num _br | number of breakpoints in an instance method 1
P prob. of instance access transaction 0.9
Pcpa prob. of class definition access transaction 0.1
Pr prob. of instance read 0.72
Pw prob. of instance write 0.18
Pcor prob. of class definition read 0.05
Pceow prob. of class definition write 0.05
Pcor_re prob. of class definition read for class Pcpr*0.25
relationship
Pcor-rM prob. of class definition read for method Pcor*0.5
Pcor rA prob. of class definition read for attribute Pceor*0.25
Pcowwe | prob. of class definition write for class Pcow™*0.25
relationship
Pcow wm | prob. of class definition write for method Pcpw*0.5
Pcow wa | prob. of class definition write for attribute Pcow*0.25
A transaction arrival rate 500 (200-700)
X execution time for each granule 2ms
S number of attributes accessed in an instance 4
method
tiock time to get a lock calculated
toommit time to commit a transaction calculated
| threakpoint time to record breakpoints in 2 method calculated
| tim time to initialize a transaction 0.0072ms
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| x | execution time for each granule | 2ms 1

Table 4-3. Analytical parameter table
The parameters tiock, tcommit, aNd twekpoin are calculated based on each algorithm
shown in Section 4.2.1 and the lock table and analytical parameters shown in this section.

Detail steps to calculate each parameter are found in appendix.

tiock (Orion)

=[12+ 10*NUM_TRANSass +Pia*[7+2*NUM_INST + 7*NUM_TRANSpst]|*MM_ACCESS
+[6+17*NUM_TRANS L ass+ Pia*[9+2*NUM_INST + 1 1*NUM_TRANSs7]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScass =  Mp*Ng/Nc,

NUM_TRANSnst Mp*NG/(N.*N;) where NUM_INST is number of buckets,

n

NUM_TRANSAss is the average number of transactions holding locks on class,
NUM_TRANSst is the average number of transactions holding locks on instance, and
M is the average number of transactions in the system. Let tioci 14 (Orion) and tor cpa
(Orion) be times to get a lock by instance access transaction and class definition access
transaction, respectively. Then,

tiock, 14 (Orion) = t;,4(Orion) where Py, = 1

tiock, cpa (Orion) = t,u(Orion) where Py =0

teommit (Orion)=

NG*[6+2*NUM_TRANSc Ass+Pin*2*NUM_TRANSpst+Pia*[4+NUM_INST*2] +
[AT-1]*Pu*[NUM_TRANSps*2+3]]*MM_ACCESS
+Ng*[6+2*NUM_TRANScass+Pin*2* NUM_TRANSpst+ Pia*[9+NUM_INST*2)+
[AT-1]*Pu*(NUM_TRANSnsr*2]]*BASIC_OP
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where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*Nc),
NUM_TRANSnst = Mp*Ng/(2*N.*Np)

Let ¢; (Orion) and cc (Orion) be commit times taken by an instance access transaction and
a class definition access transaction, respectively, in the Orion technique.

ci(Orion) = teommit (Orion) where Py = 1

cc(Orion) = teommit (Orion) where Py, =0

Time to get a lock in the Malta’s technique:

tiock (Malta) =

=[12+8*NUM_TRANScrass+Pa*[8+2*NUM_INST+NUM_TRANSpsr*[10+Nu/26]]*MM_AC
CESS+[6+13*NUM__TRANSc;ass+P11*[9+2*NUM_INST+NUM_TRANSs7*[17+Np/26%2]]*
BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScpass = Mp*No/Ne,

NUM_TRANSnst = Mp*Ng/(N*N))

tiock, 14 (Malta) = tioc (Malta) where Piy = 1

tiock, CDA (Malta) = tiock (Malta) where Py =0

teommie (Malta)=
=Ng*[6+2*NUM_TRANScLass+2*Pi*NUM_TRANSps+Pia*[4+NUM_INST*2]]*
MM_ACCESS + Ng*[6+2*NUM_TRANScLAss+2*Pia*NUM _TRANSnst
+P;A"[9+NUM INST*2]]*BASIC_OP

where NUM_INST = Mp*No/(2*B*Nc), NUM_TRANScss = Mp*N/(2*Ne),

NUM_TRANSnst = Mp*No/(2*N.*N)

c(Malta) = toommi (Malta) where Py = 1

cc(Malta) = toommie (Malta) where Py, =0
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In the proposed technique, tix (Proposed) is represented as follows. tiock, i
(Proposed) = tinittock (Proposed) + toceakpoint + tchangelock Where Pia = 1, tinitdock, toreakpoine and
tehangelock TEpresent time to get initial lock in instance access, time to record a breakpoint
during method invocation, time to change locks after method invocation, respectively.
Also, tiock,cpa (Proposed) = tigiiock (Proposed) where Py =0
tinit-lock, Toreakpoint AN tehangelock have the following values.

Thus, tiitie (Proposed)

= [12+12*NUM_TRANScLAss+Pa*[8+2*NUM_INST+ NUM_TRANSyst*[10+N\/26]]]*
MM_ACCESS +[6+[19+t*2]*NUM_TRANS Ass+P1a*[9+2*NUM_INST+NUM_TRANSpst
*[15+Nyw/26*2+t*2]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSass = Mp*Ng/N,

NUM_TRANSnst = Mp*No/(N.*N)), t = num_br*P+N*Pc

toreakpoint = [S*num_br + 3]*MM_ACCESS + [num_br*7 + 5]*BASIC_OP

td\augelock= [5 +

2*NUM_TRANSCpass+2*NUM_TRANSnst+2*NUM_INST]*MM_ACCESS
+

[15+2*NUM_TRANScass+2*NUM_INST+2*NUM_TRANSpsr]*BASIC_OP

Thus, tieex (Proposed) = tiocx(Proposed) + toreakpoint + tehangetock

= [28+14*NUM_TRANSassH4*NUM_INST+ NUM_TRANSnst*[12+Nw/26]+5*num_br]*
MM_ACCESS+[35+{21+t*2]*NUM_TRANSAss+4*NUM_INST+NUM_TRANSst*[17+Nw/
26*2+t*2+num_br*7]*BASIC_OP

Also, temmit (Proposed) has the following value.

teommis (Proposed)=

= Ng*[6+2*NUM_TRANScLAss+2*Pia *NUM_TRANSpst+Pi *[4+NUM_INST*2]]*
MM_ACCESS +Ng*[6+2*NUM_TRANScLass+ 2*Pia*NUM_TRANSpst +
Pu\*[9+NUM _INST*2]]*BASIC_OP
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where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*Ne),
NUM_TRANSnst = Mp*Ng/(2*N.*Ny)

Thus,

ci(Proposed) = teommit (Proposed) where P, = 1

cc(Proposed) = teommit (Proposed) where Py, =0

4.3. Analysis for each access type
In this section, for each access type (i.e., conflict among methods, class hierarchy
locking, and nested method invocations), mathematical formulas for transaction response

time are obtained for each technique.

4.3.1. Analysis for Conflict among methods

4.3.1.1. Response time without blocking

If there is no blocking, then Pw = Rw = 0. Let Rx 14 and Ry, cpa represent response times
of an instance access (IA) transaction and a class definition access (CDA) transaction of
technique X, respectively. Then, each technique has the following response time for an IA
transaction. Note that C; (X) is defined in Section 4.2.2.

Rorion,ia = tim + AT*NL*(X Htiock, 14 (Orion)) + ¢; (Orion)

RmaLta, 4 =t + NL¥*(X + tiok, 1a (Malta))+ ¢; (Malta)

Reroposen, 14 = ti + NL*(X+ tiock, 1a (Proposed))+c; (Proposed)

Also, each technique has the following response time for a CDA transaction. Also, note
that Cc (X) and ti,, cpa (Proposed) are defined Section 4.2.2.

Rorion, cpa = tim + NL*(X +Hioer. cpa (Orion))+ cc'(Orion)
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Rumarta.coa = tie + NL*(X + tiock, cpa (Malta)) + cc (Malta)

Rrroposep, cpa = tim + NL*(X +tiock, coa (Proposed))+ cc (Proposed)

Finally, each transaction has the following response time for both types of transactions.
Rorion = Pia* Rorion. i + Pepa *Rorion, coa
Ruarta =P * Ruacta ia + Popa * Ruacta. coa

Rerorosep = Pia* Reroposep.ia + Pcoa® Reroposen, coa

4.3.1.2. Response time with blocking
If blocking is possible, the response time for each technique is as follows
a) Orion

Pri = {A *G/N*Nc}* Pu* {2*Pr*Pw + Pw*Prw}/(Pr+Pw)’
PLC = {X*GC / NC}‘PCDA * {PCDW + PCDR‘ le}/ (PCDA + P[A)z
PC.I = {;v‘G'l/NC}. Pu* {PCDW+ PCDR*PI\V}/ (PCDA + P[A)z

Pc.c = {A*Gc/ Nc}* Pcpa*{2*Pcpr*Pcow + Peow*Pepw} / (Pepr + Pepw)?

Go= 220D ep (Orion) + 22D s 4 e
where a(Orion) and ac(Orion) represent the execution times of each method by an [A
transaction and a CDA transaction, respectively.

Let RES; and RESc be the response times of an IA transaction and a CDA transaction,

respectively. Then

RES; = tiw + Np*a; (Orion) + NL*(P1*R; + P c*Rc) + ¢; (Orion)

RESc = tiy + N *ac (Orion) +N_*(Pc.(*R+ Pc.c*Rc) + cc (Orion)
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The overall response time RES is

- Pu® RES: + Pcod® RES:

RES Pu+ Pcna

b) Malta

PLi= {A *Gi/Ni*Nc}*Pn * {2*PRr*Pw * (S/A)2+P|w‘Pm"‘(S/A)2}/{(P.R+P;w)2 *(S/A)}
Pic = {A*Gc/ Nc}*Pcoa*Peow / (Pepa + Pi)?

Pc 1= {A*Gi/Nc }* P *Pcow / (Pcoa + Pn)?

Pc.c = {A*Gc/ Nc}*Pcpa* {2*Pcor*Pcow + Peow*Peow}/ (Peor+Peow)?

G = *(12\& *D «; (Malta) + 22Fe-D ‘2" =D «py + Ny *c; (Malta)

Go= e (;Vz *D vac (Malta) + w *be + Np*cc (Malta)

where a, (Malta) and ac(Malta) are the execution times of each method by an IA
transaction and a CDA transaction, respectively.

Let RES; and RESc be response time of IA transaction and CDA transaction,
respectively. Then

RES; =ty + Np*a; (Malta) + NL*(P1*R; + P c*Ro) + ¢ (Malta)

RESc = tiu + NL*ac (Malta)+Np*(Pc,i*Ri+ Pc, c*Rc) + cc (Malta)

The overall response time RES

= Pu®* RES! + Pcod® RESc
Pu+ Peou

RES

c) The proposed scheme

Pi1= {A *Gi/Ni*Nc}*Pis * {2*Pr*Pw * (S/A)*/(0.9*num_br) +
Prw*Prw*(S/A)%(0.9*num_br)}/(Px+Piw)>*(S/A)

Pic = {A*Gc/Nc}* Peoa * {Peow-we + Peow.wm®(1/NMD) + Peow.wa*(S/A)} / (PepatPia)’
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Pc.1= {A*Gi/ Nc}* Pur * {Pcow-we + Pcowwm®*(1/Nut’) + Poow-wa®*(S/A)} / (PepatPa)’

Pc.c = {A *Gc/Nc}*Pcpa * [Pcor_rc*Peow_we + Pepr_jm *{Peow we + Peow wm*
(1/Nu**2)y+Pcow_wa*(S/A)}+Pcor_ra* {Pcow we+ Poow wa*(1/A**2)} +
Pcow wc*{Pcor_rctPcor_rm + Peor_ra + Peow we + Poow wm+ Pcpw wa) +

Pcow_wm® {Pcow_wetPeow wu*(1/Nn**2)) + Poow wa*(S/A) + Pepr_rm*
(1/NM**2)} + Pcow_wa * {Pcow_we + Peow wn*(S/A)+Pcpw wa*(1/A**2)
+Pcor_rm*(S/AYPcor_ra*(1/A**2)}]/ (Pcor*Pepw)”

G = w *a; (Proposed) + .NL‘_(-;—,"—D *b + NL*c; (Proposed)

Go= MeZet) (;V; *D eac (Proposed) + X2 - (Izv‘ =D #p + Ny *cc (Proposed)
where a(Proposed) and ac(Proposed) are the execution times of each method by an IA

transaction and a CDA transaction, respectively.

Let RES; and RESc be the response times of an IA transaction and a CDA transaction,

respectively

RES; = tine + Np*a; (Proposed) + NL*(Py*R; + Pi. c*Rc) + ¢ (Proposed)

RESc = tix + NL*ac (Proposed) +N_*(Pc, *Ri+ Pc,c*Rc) + cc (Proposed)

The overall response time RES is
RES = Pu*RES: + Po® RES:
Pu+ Pemu

4.3.2. Analysis for Class hierarchy locking

For the analysis for class hierarchy locking, we have the following assumptions

- the fan-out of each class (the number of subclasses of a class) is F (default)
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- the class hierarchy depth (level) is D. Thus, the average level in the class hierarchy

requested by a transaction is Ap = [ O+1)2] (i.e, in the middle of the class hierarchy).

tiock-cHr. ANd teommitcr, for each class hierarchy locking, can be obtained as follows: Let C;.
an (X) and Cean (X) be the commit time of an IA transaction and 2 CDA transaction,

respectively, for class hierarchy locking technique X.

a) Orion (Implicit locking)

Assume that N is the number of locks required ( including intention locks).

tiock-cur, (Orion) =

=[12+10*N*NUM_TRANS cLAss P *[7+2*NUM_INST+7*NUM_TRANSyst]]*N*
MM_ACCESS+[6+17*N*NUM_TRANScAss+Pia *[9+2*NUM_INST+11*
NUM_TRANSnst]] * N*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*N¢), NUM TRANSqass = Mp*Ng/Ng,
NUM_TRANSnst = Mp*Ng/(N.*N))

tiock-crr, 1a (Orion) = tiex(Orion) where Py = 1; tisecrr, coa (Orion) = tioa(Orion) where Py

=0

teommitcHr (Orion)=

N*[6+2*N*NUM_TRANScLAsstPia*2*NUM_TRANSns1+Pa *[4+NUM_INST*2]+[AT-
I]*Pa*[NUM_TRANSnst*2+3]]*N*MM_ACCESS  +Ng*[6+2*N*NUM_TRANS Ass+P1a*2*

NUM_TRANSpst+Pu *[9+NUM_INST*2] HAT-1]*Pia*[NUM_TRANSst*2]]*N*BASIC_OP

where NUM_INST = Mp*No/(2*B*Nc), NUM TRANScass = Mp*No/(2*No),

NUM_TRANSpst = Mp*Ng/(2*N.*Ny)

CrcHL(OTi0N) = tegmmiccr. (Orion) where Py = 1; cc.cur (Orion) = teommir-crn. (Orion) where
P[A =0

b) Malta (Explicit locking)
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Let N be the number of locks on classes (including locks on subclasses)

tiockcrr, 1a (Malta) =
=[12+8*NUM_TRANScass P2 *[8+2*NUM_INST+NUM_TRANSsr*[10+N\/26]]]*

MM_ACCESS+{6+13*NUM__TRANSpass+Pis*[9+2*NUM_INST+NUM_TRANSnst*
[17+N\/26*2]]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM _TRANSqass = Mp*Ngo/Ng,
NUM_TRANS[NST = Mp*Nc,/(-Ng’NO where P 1A= 1

tiock-cr, cpa (Malta) =

=[[12+8*NUM_TRANSLAsstPia *(8+2*NUM_INST+NUM_TRANSsr*[1 0+N\/26]111*
[PcortPcow*N)/Pcpa] *MM_ACCESS
+[6+13*NUM__TRANScLAsstPa*[9+2*NUM_INST+2*

NUM_TRANSnst *[17+Nw/26*2]1]*[PcortPcow* N}/ Pcpa *BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScass = Mp*Ng/Nc,
NUM_TRANSNst = Mp*Ng/(N*N) where Pia =0

Crcu. (Malta)=

Ng*(6+2*NUM_TRANScrasstPia*2*NUM_TRANSwst+P *[4+NUM_INST*2]]*
MM_ACCESS+Ng*[6+2*NUM_TRANScpasstPia*2* NUM_TRANSpst+ Pra*[9+
NUM_INST*2]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*Nc),
NUM_TRANSHsT = Mp*No/(2*N:.*N;) where Py = 1

Cccn. (Malta)=

NG*[6+2*NUM_TRANScLAssHPin *2*NUM_TRANSnst+Pu *[4+NUM_INST*2]]
l'[Pcn,m‘FPcpw"‘N-]/ Pcoa *MM ACCESS+NG*[6+2.NUM TRANSLAssHPIA*2*
NUM_TRANSpst+ P *[9+NUM_INST*2]1*[PcorPcow* NV Pcpa *BASIC_OP

wvhere NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLAss = Mp*Ng/(2*Nc),
NUM_TRANSnsT = Mp*N6/(2*N.*N;) where P, =0

c) The proposed scheme
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Let N be all locks required (including intention locks and locks on subclasses). In this

analysis, only locks on subclasses are assumed for simplicity.

tiock-car, ta(Proposed)=
= [28+14*NUM_TRANScAss+4*NUM_INST+NUM_TRANSpsr*[12+ Nyw/26]
+5*num_br]*MM_ACCESS +{35+[21+t*2]*NUM_TRANS ass+4*NUM_INST+
NUM_TRANSpst *[17+Nw/26*2+t*2]+num_br*7*N*BASIC_OP

where Pia =1 and NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ne/Ne,

NUM_TRANSKst = Mp*NG/(N.*Np), t = num_br*P+N,*Pc

tiock-CHL, CDA (Proposed) =
[12+12*NUM_TRANScrass+Pia*[8+2*NUM_INST+NUM_TRANSusr*[10+Nw/26]]]*[
Pcor+P cow*N]/Pcoa *MM_ACCESS
+{6+[19+t*2]*NUM_TRANScass+Pia*[9+2*NUM_INST+
NUM_TRANSnst*[15+Nw/26*2+t*2]]]* [Pcor+Pcow* N}/ Pcpa*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScpass = Mp*Ng/Ng,
NUM_TRANSKsT = Mp*Ng/(N.*Np), t = num_br*Pr+N,*Pc where Py =0

Crcu(Proposed) =

Ng*[6+2*NUM_TRANSc asstPia*2*NUM_TRANSpst+P *[4+NUM_INST*2]]*MM
reads

+Ng*[6+2*NUM_TRANScLAssHPin *2*NUM_TRANSnst+P *[9+NUM_INST*2]]*BA
SIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScass = Mp*No/(2*Nc),
NUM_TRANSnst = Mp*NG/(2*N.*N))

cc.an(Proposed) =

Ng*[6+2*NUM_TRANScLAss HP1a*2*NUM_TRANS nst+HP A *[4+NUM_INST*2]]*(Pcprt+

Pcow*N]/Pcoa*MM_ACCESS+Ng*[6+2*NUM_TRANSc Ass+P1a*2*NUM_TRANSpyst+
P *[9+NUM_INST*2]]*[Pcor+Pcow*N]/Pcpa *BASIC_OP
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where NUM_INST = Mp*No/(2*B*Nc), NUM _TRANScass = Mp*No/(2*No),

NUM_TRANSpst = Mp*Ng/(2*N.*N)

4.3.3. Analysis for nested method invocations

For analysis for nested method invocations, consider the following assumptions:

- There are Lc levels in the composite object hierarchy.

- For each instance access method accessing a composite object, there are Fc number of
method invocations to subobjects in the composite object hierarchy. Thus, for each
instance access method invocation on the top-level composite object, there are Ncoy =
1+ Fc + (Fc)* + ... + (Fc)™ number of objects accessed

- For the analysis of the proposed technique, semantic commutativity is not considered for
simplicity.

- Instance access methods are only considered in order to simplify analysis.

Assume that the same lock table is used as in Figure 4-1. In calculating the
analytical parameter, tiock-ava 8Nd teommic-nnva Where tionva and teommic-nna are time to get a
lock by a nested method invocation transaction and time to commit by a nested method
invocation transaction, respectively, the detail steps to calculate each parameter are found

in the appendix.

a) Orion
tiock-nna (Orion) =

=[18 + 2*NUM_INST + 7*NUM_TRANSps1]*MM_ACCESS
+[15 + 2*NUM_INST + 11*NUM_TRANSpst + Ny/26*2]*BASIC_OP
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where NUM_INST Mp*Ncom/(2*B*Nc), and NUM_TRANSst = Mp*Ncom / (Nc*Np)

teommitzva (Orion)=

Ncom*[9+2*NUM_TRANSc1Ass+2*NUM _TRANSpst+2*NUM_INSTHAT-
1]*[2*NUM_TRANSnst+3]]*MM_ACCESS

+ Ncom®*[15+2*NUM_TRANSqass+ 2*NUM_TRANSpsr + 2*NUM_INSTHAT-

1]*[2*NUM_TRANSpst]]*BASIC_OP

where NUM_INST = Mp/(2*B*Nc), NUM_TRANS ass = Mp*No/(2*No),

NUM_TRANSpst = Mp/(2*N:*N)

b) Maita’s

tiock-anv (Malta) =

= [18 + 2*NUM_INST + NUM_TRANSust *[10+ Nyy/26]]*MM_ACCESS

+[15 + 2*NUM_INST + NUM_TRANSmst [17+ Nn/26*2]]*BASIC_OP

where NUM_INST Mp*Ncow/(2*B*Nc), and NUM_TRANSpst = Mp*Ncons / (2*Nc*Np)
teommic-rna (Malta)=
Ncow*[9+2*NUM_TRANSAss*2*NUM_TRANSnsr+2*NUM_INSTJ*MM_ACCESS
+Ncom*[15+2*NUM_TRANScLasst2* NUM_TRANSpst+ 2*NUM_INST]*BASIC OP
where NUM_INST = Mp/(2*B*Nc), NUM_TRANScLAss = Mp*No/(2*No),

NUM_TRANSpst = Mp/(2*N:*N)

c) The proposed scheme
In the proposed scheme, tiocx-nva (Proposed) = tictock-NMI + toveakpoint-NM1 + tehangelock-ava. Each

Of tinit-tock-NMI, toveakpoint-NMI + Lehangelock-Nna iS as follows.

Cinit-lock-NMI =
= [18 + 2*NUM_INST + NUM_TRANSApsr *[10+Nw/26 ]]*MM_ACCESS
+ [15 + 2*NUM_INST + NUM_TRANSpst *[17+ NWw26*2]]*BASIC_OP

Torcakpoint-NMI =
= [9*num_br+(num_br+1)*Ncom+12]*MM_ ACCESS
+ [9*num_br + (2*num_br+2)*Ncom+7]*BASIC_OP
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Cehangetock-NMI =
=[5 + 2*NUM_TRANScLAsst2*NUM_TRANSnst+2*NUM_INST]*MM_ACCESS

+ [15+2*NUM_TRANSq Ass+2*NUM_INST+2*NUM_TRANSps;]*BASIC_OP

teommit-Nna (Proposed)=
Ncom*Ncom/2*[9+2*NUM_TRANScpass+2*NUM_TRANSpsr+2*NUM _INST]
*MM_ACCESS

+Ncom*Ncow/2*[15+2*NUM_TRANScpLass+2* NUM_TRANSpist+ 2*NUM_INST]
*BASIC_OP

where NUM_INST = NcoMt Mp'Nq/(Z‘B‘Nc), N[JM_TRANSG.ASS = Ncom* Mp/ (Z*Nc),

NUM_TRANSNst = Neom® Mp/(2*N:*N))

In order to find the response time for each technique, it is sufficient to find Pw and

Rw of each technique. The same notations are adopted as in Section 4.1.

a) Orion

G= {%-(ia +(i - l)b)} + Neom*c

i=1
where a = x (i.e., execution time for each granule) and ¢ = teommic.xng (Orion)

(@+5)? (Nem+ DY(Newm~ 1)
R = 6 {,,(N“'+')+c+b("’“")(l-—'-)}
2 2 Iz

+ (N..+l)((a2/f:)+ab+ac+bc)/{a(1v--l)+c+b(N——l)(l__l_J}
2

2 2 1
2
€ _ab-bc
{5+

‘ ({5 een(252) - 1)

Pw = {A* (Ncow/L)}*{G/Ncom}*(2*Pr*Pw + P;w‘Pm)/ (Pr+Pw)’
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Thus, ReSorion = tinie + (XAT*tiok-ana (Orion))*Neom + Neom*Pw*Rwt teommirana (Orion)

b) Malta’s

G= {E(ia +(- l)b)} + Neom*C

i=1
where a = x (i.e., execution time for each granule) and ¢ = tcommitona ( Malta)

(@+b5)? (Nem + I)(Nem = 1)
= 6
- (o) een25)1-2)

+ (Na-+l)((azlf;)+ab+ac+bc)/{a(Na-—l)+C+b(Nm—l)(l_L)}
2

2 2 S
2
{C— —ab -»bc}
S

' 5 rero("570-7))

Pw={A* (NCOM/L)}"{G/NCOM}‘{Z‘PR*PW*(S/A)Z + P *Pro*(S/A) }/ { (Pr+Pw)*
*(S/A)}

Thus, ReSmatta = tinit + (X tiock-NM1 (Malta))‘Nc()M + Neom*Pw*Rw teommit-aaa (Malta)

c) The proposed scheme

G= {f;(ia +(- 1»)}+ Neom*c

i=1

where a = x (i.e., execution time for each granule) and ¢ = t.,ami.naa (Proposed)

(@+b)*(Le+ (Le=1)

R = 6 { Q(Lc;l) +c+b(%-—l)(l.-_}l)}
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N (Lc+l)((azlfz)+ab+ac+bc)/{a(Lc-l) +c+b(£c———l)(l—-l—)}
2 2 2 Iz

2
c—-ab-l:c
3

) e 507

Pw = {A* (NcowL)}*{G/Ncom} {2*Pw*Pw * (S/A)%(0.9*num_br) +
Prw*Prw*(S/A)/(0.9*num_br)} /(Px+Pw)**(S/A)

ResproroseD = tinit + (X+Htiockana (Proposed))*Let Lo*Pw*Rw + teommirang (Proposed)

4.4. Analysis
In this section, the performance of the three techniques are evaluated based on the
analytical results using the 007 benchmark. The performance for access type as well as

the overall performance are presented.
4.4.1. Conflict among methods

As can be seen in Figure 4-2, as instance write ratio increases, transaction response
time increases since the probability of conflict becomes higher. The possible conflicts
include conflicts between instance reads and instance writes (in all schemes) and between
instance write and class definition accesses (in only Orion). Analysis for each technique is
as follows: in Figure 4-2, as instance write ratio increases, Orion performs worst. This is
due to the fact that, in Orion, their locking granularity for instance access is an instance

object and also a lock is required whenever an atomic action is invoked during an instance
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access method invocation. In Malta’s work, they adopt attribute as locking granularity for
an instance access and a lock is required for an instance access method invocation. As in
Malta’s, the proposed technique adopts attribute locking granularity and a lock is required
for each instance access method invocation. In addition, dynamic information is adopted
to increase concurrency among methods in the proposed scheme. As Figure 4-2 shows,
since Orion’s performance falls dramatically as instance write ratio increases, relative

performance of Malta’s and the proposed scheme is insensitive.

(Conflict among methods)
Varying instace read to write ratio

Transaction response
time(ms)

00 01 02 03 04 05 06 07 08 09 10
Instance read to write ratio !
|

Figure 4-2. Varying instance read to write (Conflict among methods)

In Figure 4-3, as the class definition write ratio increases, the proposed scheme
performs best and Orion does worst. This is due to the fact that, in Orion, class definition
reads conflicts with instance writes. In Malta’s work, they provide concurrency between
instance writes and class definition reads, but their locking granularity for class definition

access is still an entire class object. In the proposed technique, unlike other work, class
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definition write access may run concurrently with other class definition access or instance
access as long as they access disjoint sets of objects. As class definition write ratio
increases, the difference become increases.

Figure 4-4 shows testing case of varying arrival rate. The higher arrival rate means
the bigger load in the system. In turn, the bigger system load results in more conflicts on
shared resources such as CPU or data items among transactions so that transaction
response times become higher. As shown in Figure 4-4, when the system load is light,
there is no clear winner among the three techniques. But, when the load is heavy, Orion
and Malta perform worse. The proposed technique is immune to arrival rate due to higher
concurrency than other schemes. Especially, Orion’s performance becomes worst due to
its big locking granularity for instance access and class object and low concurrency among

its lock types.

(Conflict among methods)
Varying class definition read to write ratio

o
(X}

[: [« ]
b
2 2
T

~a
©

Transaction response
time (ms)
[+ ]
882

00 0.1 02 03 04 05 06 0.7 038 0.9 1:0
Class definition read to write ratio

Figure 4-3. Varying class definition read to write ratio (Conflict among methods)
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(Conflict among methods)
Varying armrival rate

Transaction response
time (ms)

250 300 35 400 450 500 55 600 650 700
Arrival rate

Figure 4-4. Varying arrival rate (Conflict among methods)

4.4.2. Class hierarchy locking

Figure 4-5 shows testing case of varying class definition read to write ratio. As the
ratio increases, transaction response times become higher. This is due to the fact that, as
the ratio is increased, the conflicts among transactions are also increased. When class
higher locking is considered, as the ratio is increased, Orion, which adopts explicit
locking, incurs higher overhead since locking overhead for MCA access is increased.
Likewise, Malta’s scheme, which adopts implicit locking, incur higher overhead since
locking overhead due to intention locks is increased. Thus, both schemes is very sensitive
to the ratio change. On the other hand, the proposed scheme incurs less locking overhead
than both explicit locking and implicit locking. Thus, transaction response time in the

proposed scheme is immune to the ratio change.
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(Class hierarchy locking)
Varying class definition read to write ratio

Transaction response
time (ms)

09 08 07 06 0S5 04 03 02 01 00

01 02 03 04 05 06 07 o8 09 10
Varying class definition read to write ratio

Figure 4-5. Varying class definition read to write ratio (Class hierarchy locking)

In Figure 4-6, as access to class hierarchy goes down from root to bottom, Orion
takes more response time. This is due to the fact that implicit locking is adopted in Orion.
It requires more intention locks as access to the class hierarchy is near leaf level. On the
other hand, Malta adopts explicit locking. In explicit locking, access to root requires more
locks for class definition write and query type access. Thus, as access to a class hierarchy
toward the bottom, it requires fewer locks. But, in the 007 benchmark, there are only 3
levels in the class hierarchy. Thus, the performances of Malta’s technique and the
proposed scheme (whose locking scheme takes less overhead than Malta’s) do not change

much.
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(Class hierarchy locking)
Varying access to class hierarchy

Transaction response
time {ms)

-]
-

1 :root 2 : middle 3: bottom
Access to class hierarchy

Figure 4-6. Varying access to class hierarchy (Class hierarchy locking)
The Figure 4-7 shows the performance of the three techniques when varying

arrival rate. As arrival rate increases, the transaction response time increases in all three
techniques. This is due the fact that, the system load increases, conflicts on data items
among transactions may be increased. Especially, in the proposed scheme, the class
hierarchy locking is based on a hybrid of implicit locking and explicit locking. It is based
on special class and provides fewer number of locks than both implicit locking and explicit
locking. Orion requires locks in class hierarchy locking. Thus, its performance is worst.
4.4.3. Nested method invocations

Figure 4-8 shows the performance of the three techniques when varying instance
read to write ratio. The performances of both Orion and Malta’s scheme are worse than
the proposed work. This is mainly due to the fact that parent/children parallelism is not
allowed in both Orion and Malta’s work. Also, the small difference between Orion and
Malta’s scheme is due to the non-parallelism between parent/children. Thus, as the depth
of a composite object hierarchy increases, the differences become clear. The other reasons

for big difference between the proposed scheme and other two schemes are their locking
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granularity and concurrency degree as in testing case of conflict among methods. Figure 4-
9 shows testing case of varying arrival rate. As in Figure 4-8, the proposed scheme is
better than both Orion and Malta’s scheme. This difference is due to mainly the

parallelism. Also, Malta’s work is slightly better than Orion in their performance.

(Class hierarchy locking)
Varying arrival rate

Transaction response
time (ms)

N 0000000000000

Vo=hwarnON®LOO

------- Orion
—-—-=MaRa
=== ' = ' : = Proposed
100 150 200 250 300 350 400 450 500 550
Arrival rate
Figure 4-7. Varying arrival rate (Class hierarchy locking) -
(Nested method invocation)
Varying instance read to write ratio
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Figure 4-8. varying instance read to write ratio (Nested method invocations)
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(Nested method invocation)
Varying armrival rate
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Figure 4-9. Varying arrival rate (Nested method invocations)
4.4.4. Overall performance

In order to get the overall performance for both class hierarchy locking and nested
method invocation, the following principle is adopted: for each technique, let RESgeg and
RES\est be the response time of regular transaction (i.e., transactions concerning with
only conflict among methods and class hierarchy locking) and response time of
transactions invoking nested method, respectively. Also, let Preg and Paest be the
probability of regular transaction and probability of nested method invoking transaction,
respectively where Preg + Prxgst =1. Then, the overall performance can be measured as
follows: RESoveraLL = Prec*RESgec + Prest*RESxest

Figure 4-10 shows the performance of three techniques when the ratios of Prec
and Puest is varied. As in Figures 4-5 to 4-9, the response times in class hierarchy locking
are much higher than the response times in nested method invocations, for all three

techniques. Thus, as the nested method invocation ratio decreases, the overall transaction
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[P

response times is increased. Also, as in Figure 4-8 and 4-9, the difference between the
proposed work and the other works is bigger. Thus, as the nested method invocation ratio
increases, the difference between the proposed scheme and the other schemes becomes

higher.

(Overall performance)
Varying nested method invocation transaction to regular transaction |

85

Transaction response time (ms)
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0.0 0.1 0.2 03 04 05 0.6 07 08 09 1.0
Nested method invocation trans action to regular trans action
ratio

Figure 4-10. Varying nested method invocation to regular transaction ratio (Overall

Performance)
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Chapter 5

Performance Evaluation and Analysis by Simulation

5.1. Introduction

In Chapter 4, performance evaluation and analysis are done by mathematical
modeling, under restricted environments. In order to evaluate the proposed technique in
more general environments, in this chapter, a simulation model is constructed and
extensive simulation experiments are conducted. In Section 5.2, a simulation model is
introduced. In Section 5.3, the simulation parameters and simulation methodology are
discussed. In Section 5.4, simulation results from various testing cases and analysis are

presented.

5.2. Simulation Model

The simulation model is constructed from models used in existing works for
concurrency control performance evaluation ([Kim, 1991]). Also, the simulation model is
implemented using SLAM II simulation language [Prit,1986]. Figure 5.1 shows a general

diagram of the simulation model.

5.2.1 Simulation Component Descriptions
The simulation model has six major components: transaction generator, transaction
manager, CPU scheduler, concurrency control manager (lock manager), deadlock

manager, buffer manager. Also, it consists of two physical resources : CPU, memory.
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Fig. 5.1, Simulation Model ([Kim, 1991])

The transaction generator (TG) creates each transaction with its creation time,

unique transaction identifier and transaction type. Each transaction consists of a sequence

of (method, object-id) pairs. The transaction manager (TM) is responsible for scheduling

and executing all transactions. It sends lock/unlock requests as well as abort/commit

messages to the concurrency control (CC) scheduler. It also restarts aborted transactions.

The CPU scheduler performs various CPU-related operations such as executions of

methods. The CPU can be released by a transaction as a result of a lock conflict or for an

1/0 operation. The FIFO (First-in First-out) is chosen for CPU scheduling scheme. That is,

any transaction arriving to CPU first has the higher priority. Also, any transaction holding

CPU can not be preempted by other transactions. The concurrency control scheduler (CC

scheduler) synchronizes data access requests of transactions. The CC scheduler orders the
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data accesses based on the concurrency control protocol executed. An access request of a
transaction is either granted or results in blocking or abort of the transaction. If access
request is granted, the transaction attempts to read the data item from the MM (main
memory). The data access to MM is done by buffer Manager (BM). Since main-memory
database is assumed in this simulation, there is no page fault. The FIFO strategy is used in
the management of memory buffer. The deadlock manager (DM) detects any deadlock
occurred during data item access. If a transaction is blocked for specific time period, DM
is invoked to check a deadlock using WFG (wait-for graph). If a cycle is detected, then

the transaction will be aborted and restarted.

5.2.2. Message interface among simulation modules
In this subsection, messages among components are defined. Note that an arrow

represents direction for message, and contents within parenthesis represent messages.

TG » TM.
(transaction-id, creation time, transaction type)

™ » CPU Scheduler
(request-CPU, transaction-id)
(release-CPU, transaction-id)

™ o CC Scheduler
(lock-request, transaction-id)
(abort-request, transaction-id)
(commit-request, transaction-id)

-
(acknowledge-to-lock-request, transaction-id)
(acknowledge-to-commit, transaction-id)
(acknowledge-to-abort, transaction-id)
(abort-transaction, transaction-id)
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CC Scheduler » BM
(object-id, transaction-id)

-

(acknowledge-to-object-id (or page request), transaction-id)

CC > DM
(check-deadlock, transaction-id)
-

(transaction-id)

5.2.3. Algorithms of Simulation Modules

In this subsection, the algorithm of each simulation module is presented.

a).Transaction Generator (TG)

For each transaction:
Generate transaction-id, creation time, transaction type;
// Each transaction has the following structure: ([method;,object-id;]...[methody,object-idx]) ;
Pass the transaction to the transaction manager (TM);

b). Transaction Manager (TM)
1) accept ( transaction-id and its transaction type) from TG

request multiprogramming resource (MP) ;

send (request-CPU, transaction-id) to CPU Scheduler;

While there is still access remained in that transaction do
send (request-CPU, transaction-id) to CPU Scheduler;
send (lock-request, transaction-id) to CC Scheduler;
send (release-CPU, transaction-id) to CPU scheduler;

End while;

send (request-CPU, transaction-id) to CPU scheduler;

send (commit-request, transaction-id) to CC Scheduler;

send (release-CPU, transaction-id) to CPU Scheduler;

2) accept (abort-transaction, transaction-id) from the CC Scheduler
// Due to deadlock and conflict resolution scheme
send (request-CPU, transaction-id) to CPU Scheduler;

send (abort-request, transaction-id) to CC Scheduler;
send (release-CPU, transaction-id) to CPU Scheduler;
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3) accept (acknowledge-to-lock-request, transaction-id) from CC scheduler through CPU Scheduler
go to step 1) // process next (transaction-id, transaction-type)

4) accept (acknowledge-to-abort, transaction-id) from CC scheduler through CPU Scheduler
// restart an aborted transaction

send (request-CPU, transaction-id) to CPU Scheduler
do any bookkeeping work(or statistics) for the aborted transaction;
While there is still access remained in that transaction do
send (request-CPU, transaction-id) to CPU Scheduler;
send (lock-request, transaction-id) to CC Scheduler;
send (request-CPU, transaction-id) to CPU scheduler;
End while;
send (request-CPU, transaction-id) to CPU scheduler;
send (commit-request, transaction-id) to CC Scheduler;
send (release-CPU, transaction-id) to CPU Scheduler;

5) accept (acknowledge-to-commit, transaction-id) from CC scheduler through CPU Scheduler
// Do any bookkeeping work(statistics) for the committed transaction

send (request-CPU, transaction-id) to CPU Scheduler;

do any bookkeeping work(statistics) for the committed transaction;

send (release-CPU, transaction-id) to CPU Scheduler;

free MP;

go to step 1); // process next (transaction-id, transaction-type)

c). CPU Scheduler
1) accept (request-CPU, transaction-id) from TM
If CPU-busy = yes then
put (request-CPU, transaction-id) into ready queue
else
assign CPU to the transaction with transaction-id
end if
2) accept (release-CPU, transaction-id) from TM
release CPU,;
If there is waiting transaction(s) in the ready queue then
pick the first transaction in the ready queue and assign CPU
end if
d). CC Scheduler
1) accept (lock-request, transaction-id) from TM through CPU Scheduler

send (request-CPU, transaction-id) to CPU Scheduler
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If lock is conflict then // depending on schemes
put (transaction-id, method-id, object-id) in the block queue;
send (release-CPU, transaction-id) to CPU Scheduler;
else
get a lock; // depending on schemes
send (object-id, transaction-id, method-id) to BM;
wait-for (acknowledge-to-object-id, transaction-id, method-id) from BM;
send (acknowledge-to-lock request, transaction-id, method-id) to TM:
end if

2) accept (abort-request, transaction-id) from TM

send (request-CPU, transaction-id) to CPU Scheduler;
remove all entry with transaction-id from lock table;
wake any blocked transaction and send it to TM;

send (acknowledge-to-abort, transaction-id) to TM;
send (release-CPU, transaction-id) to CPU Scheduler;

3) accept (commit-request, transaction-id) from TM

send (request-CPU, transaction-id) to CPU Scheduler;
remove all entry with transaction-id from lock table;

send (acknowledge-to~commit, transaction-id) to TM through;
wake up any blocked transaction and send it to TM;

send (release-CPU, transaction-id) to CPU Scheduler;

4) accept (transaction-id) from DM
send (request-CPU, transaction-id) to CPU Scheduler;
send (abort-transaction, transaction-id) to TM;

e). Deadlock Manager
accept (check-deadlock, transaction-id) from CC scheduler;
check cycle in WFG (wait-for-graph);
send (transaction-id) to CC scheduler;

f). Buffer Manager

1) accept (object-id, transaction-id) from CC scheduler
send (request-CPU, transaction-id) to CPU Scheduler;
get page number corresponding to object-id.// use buffer table

send (acknowledge-to-page-request, transaction-id) to CC scheduler;
send (release-CPU, transaction-id) to CPU scheduler;

5.3. Simulation parameter and methodology
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5.3.1. 007 Benchmark Descriptions

The 007 benchmark is chosen in order to evaluate the proposed locking scheme in
OODB There have been a number of benchmarks in OODB environments ([Cart,1992],
[Ande, 1990], [Berr,1991]). But, existing benchmarks are not comprehensive so that wide
range of OODB features can not be tested accordingly. For example, HyperModel
[Ande,1990] does not include object queries and repeated object updates. Also, it is
difficult for testers to implement the model from their specifications.

The 007 benchmark ([Care,1993),[Care, 1994-1],[Care,1994-2]) provides a
comprehensive test of OODB performance than its predecessors. Especially, it provides
wide range of pointer traversal including sparse traversals and dense traversals, a rich set
of updates and queries including sparse updates and the creation and deletion of objects.
Also, its implementation details are open to public so that OODB testers can implement
the benchmark easily.

There are three sizes of the 007 benchmark: small, medium and large. Table 5-1
shows the parameters of the 007 benchmark. There are ten classes in the 007 benchmark.
Among those ten classes, classes DesignObj and Assembly serve as abstract superclass in
whicﬁ provide class definitions but not instance object. The DesignObj is the root of the
class hierarchy and is (direct) superclass of classes AtomicPart, CompositePart, Assembly
and Module, respectively. Also, the Assembly class is (direct) superclass of classes

ComplexAssembly and BaseAssembly, respectively.

Parameters Small Medium Large
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NumAtomicPerComp 20 200 200
NumConnPerAtomic 3,6,9 3,6,9 3,69
DocumentSize (bytes) 2000 20000 20000
Manual Size (bytes) 100K 1M 1M
NumCompPerModule 500 500 500
NumAssmPerAssm 3 3 3
NumAssmLevels 7 7 7
NumCompPerAssm 3 3 3
NumModules 1 1 1

Table 5-1. 007 Benchmark parameters [Care,1994-1]

The 007 benchmark consists of two components: the design library and assembly

The Assembly Hierarchy provides higher structure to the Design Library.
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hierarchy. The key component of the design library is a set of composite parts, forming
CompositePart class. Each composite part is associated with document object (Document
class). Also, each composite part consists of a set of atomic parts, forming AtomicParts
class. In small 007, 20 atomic parts form a composite part. The connections between

atomic parts are supported by the a Connection object between each pair of atomic parts.

Especially, each assembly is either consisted of composite part (the assembly is called a
BaseAssembly class) or it is consisted of other assembly objects (the assembly is called a
ComplexAssembly class). There are 7 levels in the assembly hierarchy. The bottom level of

the assembly hierarchy consists of base assembly objects. Each base assembly object is




associated with composite part object bi-directionally. The higher level consists of
complex assemblies. Each complex object is associated with either base assemblies (if the
complex object has level two) or other complex object (if the complex object has higher
level). Each assembly hierarchy forms a module which is the largest unit. Each module is

associated with a Manual object.

§.3.2. Simulation Parameters

All the parameters used in simulation are summarized in Tables 5-2 and 5-3. Note
that the OODB benchmark 007 ([Care,1993], [Care,1994-1], [Care,1994-2]) is adopted to
define database and transaction-related parameters. Also, all the parameters related to
machine and disk are derived from the DEC 3000 Model 400/400S AXP Alpha
workstation [DEC, 1993] and Micropolis 22000 disk drivers [SCSI, 1993], respectively.
The following notations are used to classify the simulation parameters accordingly.
M : Machine related parameters
D : Disk related parameters

TR : Transaction related parameters
DB : Database related parameters

Parameters Default Value [Reference]
M: CPU power 140 MIPS [Dec, 1993]
M: time to process one operation 0.000007 ms [Huan, 1995]
M: mean time to set a lock by an instance access | 0.3641 ms (Orion) [calculated]
transaction 0.3537 ms (Malta) [calculated]

0.3572 ms (Proposed) [calculated]

M: mean time to release a lock by instance access | 0.0035 ms (Orion) [calculated]

transaction 0.0019 ms (Malta) [calculated]
0.0019 ms (Proposed) [calculated]

M: mean time to set a lock by class definition 0.3522 ms (Orion) [calculated]

access transaction 0.3522 ms (Malta) [calculated]

0.3522 ms (Proposed) [calculated)
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M: mean time to release a lock by class
definition access transaction

0.0011 ms (Orion) [calculated]
0.0011 ms (Malta) [calculated)
0.0011 ms (Proposed)[calculated]

M: number of bytes per word

4 [Dec, 1993]

M: Memory word access time

0.00018 ms [Dec, 1993]

M: number of memory buffer

20 {DEC, 1993]

D: Size of disk(block) page

2048 bytes [SCSL, 1993]

D: Avg. disk seek time

10 ms [SCSL, 1993]

D: Avg. disk latency time

5.56 ms [SCSIL, 1993]

D: Disk page transfer time

0.0064 ms [SCSI, 1993]

D: Number of pages in Database 1997 pages [Calculated]
DB: NumAtomicPerComp 20 [Care,1994]

DB: NumConnPerAtomic

3,6,9 [Care, 1994]

DB: NumCompPerModule

500 [Care,1994]

DB: NumAssmPerAssm

3 [Care, 1994]

DB: NumAssmLevels

7 [Care, 1994]

DB: NumCompPerAssm

3 [Care, 1994]

DB: NumModules

1 [Care, 1994]

DB: Number of instances in class Module

1 [Care, 1994]

DB: Number of instances in class Manual

1 [Care, 1994]

DB: Number of instances in class
ComplexAsssembly

364 [Care, 1994]

DB: Number of instances in class BaseAssembly

729 [Care, 1994]

DB: Number of instances in class CompositePart

500 [Care, 1994]

DB: Number of instances in class Document

500 [Care, 1994]

DB: Number of instances in class AtomicPart

10000 [Care, 1994]

DB: Number of instances in class Connection

30000 [Care, 1994]

Table 5-2. Static Parameters of the Simulation Model

Parameters Default value (Range)
M: multiprogramming level 10(5-15)
TR: Prob. of Traversal 045(0-1)
TR: Prob. of Query 0.45(0-1)
TR: Prob. of Structural Modification 0.1 (0-1)
TR: Prob. of Traversal T1 (Traversal type) 0.08(0-1)
TR: Prob. of Traversal T6 (Traversal type) 0.08(0-1)
TR: Prob. of Traversal T2 (Traversal type) 0.08(0-1)
TR: Prob. of Traversal T3 (Traversal type) 0.08(0-1)
TR: Prob. of Traversal T8 and T9 (Traversal 0.08(0-1)
type)
TR: Prob. of Traversal CU (Traversal type) 0.05(0-1)
TR: Prob. of Query Q1 (Query type) 0.09(0-1)
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TR: Prob. of Query Q2, Q3 and Q7 (Query type) 0.09(0-1)
TR: Prob. of Query Q4 (Query type) 009(0-1)
TR: Prob. of Query Q5 (Query type) 009(0-1)
TR: Prob. of Query Q8 (Query type) 0.09(0-1)
TR: Prob. of Insert (Structural Modification) 0050-1)
TR: Prob. of Delete (Structural Modification) 005(00-1)
TR: Transaction interarrival time 500 (100 - 1000)

Table. 5-3. Dynamic Parameters of the Simulation Model

5.3.2. Simulation Methodology

The 007 benchmark has three database sizes: small, medium and large. Each has
different number of instance per class. For the simulation, small size is selected for
simplicity. It is assumed that the transaction arrivals are based on the Poisson distribution.
In the Poisson distribution, any transaction arrival time is totally random [Freu,1987]. In
this simulation, each transaction has equal probability to be generated. Also, in order to
prevent system overload, the total number transactions in the system at any moment is
limited by the parameter Multiprogramming level.

For the simulation, the following methodology is adopted. For CPU scheduling,
transaction arrived earlier to CPU ready queue has higher priority. Unless a transaction is
blocked due to I/O or conflict by lock request, the transaction can hold CPU without any
preemption. Also, the FIFO policy is also adopted for the buffer management for
simplicity, although this policy may not produce the best performance. In order to
manage deadlock, the following principle is adopted: If a transaction’s lock request is
denied and thus the transaction is kept blocked for some time, abort and restart the

transaction if blocking the transaction creates a cycle in the WFG (wait-for graph). As the
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performance metrics, average response time and average lock waiting time are adopted.
The response time of a transaction and lock waiting time are defined as follows.

Transaction response time = transaction commit time - transaction arrival time

N
Lock waiting time of a transaction = f(b-l,) where Ng is the number of granules

i=l
accessed in a transaction, and I; and L; represent the initial lock requesting time to granule

i and the lock granted time to granule i.

5.4. Analysis

In order to evaluate the performance of the proposed concurrency control
technique, extensive simulation testing cases are performed. As in performance evaluation
by mathematical modeling in Chapter 4, the proposed scheme and two existing

concurrency control techniques are tested for each access type. Also, analysis is done

based on the simulation results.

5.4.1. Conflict among methods

Three testing cases are chosen for conflict among methods: varying arrival rate,
varying instance read to write ratio and varying class definition read to write ratio.

Figure 5-2. shows the testing case of varying arrival rate. The purpose of this
testing case is to examine how those techniques work under various system load. Orion
performs the worst. Malta’s scheme works better than Orion. The proposed scheme works
the best for the entire range. The average lock waiting times of Orion, Malta’s scheme and

the proposed work are 34.81 ms, 26.3 ms and 15.18 ms, respectively. Thus, the proposed
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scheme incurs the least lock waiting time. The differences among each scheme are based
on concurrency they provide. That is, Orion provides the worst concurrency while the
proposed scheme provides the best concurrency. Orion adopts an entire instance object
locking granularity so that the degree of concurrency is very limited. Malta’s scheme and
the proposed scheme adopt attribute locking granularity so that concurrency is enhanced.
Especially, in the proposed work, further concurrency is achieved by adopting run-time
information on access modes of attributes. Also, unlike Orion, in the Malta’s scheme and
the proposed scheme, locks are required for each instance method instead of atomic
operation so that locking overhead is reduced. On the average, the proposed technique
works better than Malta’s scheme by 7.3% and better than Orion by 37%. On the other

hand, Malta’s work is better than Orion by 27.7%.

(Conflict among methods)
Varying arrival rate

Transaction response
time

Varying arrival rate

Figure 5-2. Varying arrival rate
Figure 5-3 shows the testing case of varying class definition read to write ratio.

Orion performs the worst. Since Orion takes an entire class object as the lock granularity
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for class definition access and also there is no concurrency between class definition read
and class definition write, Orion results in the worst performance. Although the entire
class object is taken as the lock granularity in Malta’s scheme, still limited concurrency is
provided in their work. That is, there is no conflict between an instance write and a class
definition read method. On the other hand, in the proposed scheme, high concurrency is
achieved by taking small granularity in class definition access. Thus, even though two class
definition write methods conflict with each other if the entire class object is adopted for
lock granularity, two methods may not conflict if the small granularity is taken. The
average lock waiting time of Orion, Malta’s scheme and the proposed scheme are 38.57
ms, 25 ms and 18.49 ms, respectively. On the average, the proposed scheme works better
than Orion by 30.14% and better than Malta’s work by 13.74%. Also, Malta’s scheme

works better than Orion by 14..42%.

{Conflict among methods)
Varying class definition read to write ratio

Transaction response

Varying class definition read to
write ratio

Figure 5-3. Varying class definition read to write ratio
Figure 5-4 shows the testing case of varying instance read to write ratio. Orion

performs the worst. Especially, as the instance read to write increases, transaction
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response time is increased dramatically. Since the lock granularity is an entire instance
object for instance access in Orion, Orion does not provide any concurrency between an
instance read method and an instance write method. Malta provides some concurrency
among instance access methods but the concurrency is still limited since access modes of
attributes are static. The proposed scheme works the best. This is mainly due to high
concurrency among instance access methods resuited from dynamic information for
attribute access is adopted. Also, in Malta’s scheme and the proposed scheme, lock
requests are based on methods while Orion is based on atomic operations in the method.
This results in less overhead as well as less chance of deadlock due to lock escalation, in
both Maita’s scheme and the proposed scheme. On the average, the proposed scheme
works better than Malta’s scheme by 7.8% and better than Orion by 66.8%. Malta’s
scheme works better than Orion by 53.9%. Also, the average lock waiting time of Orion,

Malta’s scheme and the proposed work are 43.2 ms, 24.9 ms and 17.1 ms, respectively.

(Conflict among methods)
Varing instance read to write ratio

g
-
i
]
------- Qrion
-« =-=Mala
§ Proposed
(™
Varying instance read to write
ratio

Figure 5-4. Varying instance read to write ratio
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5.4.2. Class hierarchy locking

Three techniques have different class hierarchy locking schemes. In order to test
their class hierarchy locking, two testing cases are performed as follows.

Figure 5-5 shows the testing case of varying arrival rate. Orion performs the
worst. Orion adopts an implicit locking which requires intention locks for superclasses of a
target class, for any kind of access. This results in lock overhead. Malta’s scheme adopts
explicit locking which does not require any intention locks. But, for class definition access
and queries, it may incur much overhead than implicit locking. On the other hand, in the
proposed scheme, lock overhead is less than both implicit and explicit locking, using
frequency information of each class. On the average, the proposed scheme works better
than Orion by 52.6% and better than Malta’s scheme by 32.9%. Malta’s scheme works
better than Orion by 26.5%. Also, the average lock waiting time of Orion, Malta’s work

and the proposed scheme are 31.2 ms, 23.9 ms and 11.4 ms, respectively.

(Class hierarchy locking)
Varying amrival rate

Transaction response

Figure 5-5. Varying arrival rate
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Figure 5-6 shows the testing case of varying access to class hierarchy. In
this testing case, transactions access from the root class to the leaf class in the class
hierarchy. The purpose of this testing case is to measure the performance of class
hierarchy locking technique used by each scheme as transactions access classes in the
different levels of the class hierarchy.

As transactions access classes near the root in the class hierarchy, implicit locking
has less locking overhead while explicit locking incurs much locking overhead for class
definition writes and queries. On the other hand, if transactions access the leaf level in the
class hierarchy, the implicit locking incurs higher locking overhead due to intention locks
while explicit locking takes less overhead. No matter where transactions access to class
hierarchy, the proposed scheme performs better than both works. As shown in Figure 5-6,
there is not much difference as access to class hierarchy varies. This shows that locking
overhead incurred by each scheme does not affect the performance significantly. On the
average, the proposed scheme works better than Orion by 40.91% and better than Malta
by 5.9%. Malta’s scheme works better than Orion by 33%. Also, average lock waiting
time of Orion, Malta’s work and the proposed scheme are 29.5 ms, 19.9 ms and 14.6 ms,

respectively.

5.4.2. Nested method invocations
In order to test three techniques for nested method invocation access, two testing
cases, varying arrival rate and the ratio nested method invocation and non-nested method

invocation, are performed as follows.
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Figure 5-7 shows the testing case of varying arrival rate. In this case, transactions
invoke only nested methods so that the performance is evaluated only for nested method

invocations.

(Class hierarchy locking)

Transaction response

Varying access to class hierarchy

Figure 5-6. Varying access to class hierarchy

(nested method invocations)
Varying arrival rate

Transaction response

Figure 5-7. Varying arrival rate (Transaction response time)
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The reason Orion performs the worst is as follows: Like in the conflict among
method testing case, the concurrency provided by Orion is lower than those provided by
Malta’s scheme and the proposed scheme. Also, for nested method invocations,
parent/children parallelism is not utilized in Orion and Malita’s scheme. Malta’s scheme
provides higher concurrency than Orion but less than the proposed scheme. Also,
parent/children parallelism is not considered. On the other hand, the proposed scheme
provides the highest concurrency by using the small lock granularity and parallelism
between parent and children method invocations using concurrent execution of parent and
children methods. On the average, the proposed technique performs better than Orion by
30.8% and better than 16% by Malta’s scheme. Maita’s scheme works better than Orion
by 12.8%. Also, the average lock waiting time of Orion, Malta’s scheme and the proposed
scheme are 16.2 ms, 18.9 ms and 13.1 ms, respectively.

Figure 5-8 shows the testing case of varying nested method invocation to non-
nested method invocation ratio. In Figure 5-8, as nested method invocation method ratio
is increased, the performance in Crion decreases. The reason is as in the testing case of
varying arrival rate. Malta’s scheme and the proposed scheme is relatively insensitive to
the ratio of nested method invocation and non-nested method invocation. This is due to
higher concurrency provided by both schemes. On the average, the proposed scheme
works better than Orion by 28.4% and better than Malta’s scheme by 11.2%. Malta’s
scheme works better than Orion by 15.5%. Also, the average lock waiting times of Orion,

Malta’s work and the proposed scheme are 17.8%, 23.4% and 14.2%, respectively.
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(Nested method invocation)
Varying nested method invocation to non-

Transaction response time

Varying nested method invocation
to non-nested method ratio

Figure 5-8. Varying nested method invocation to non-nested method invocation ratio

5.5. Conclusions

Through the simulation study for the performance evaluations of three schemes,
the following conclusions are reached: for any testing case, the proposed scheme performs
the best. Malta’s work performs the second best. Finally, Orion performs the worst.
Especially, the proposed scheme performs better than Orion by 28.4% to 66.75% and
better than Malta’s scheme by 5.9% to 32.9%. Malta’s scheme performs better than Orion
by 14.42% to 53.9%.

In the simulation study, the transaction response time is much larger than locking
overhead. In other words, reducing locking overhead in concurrency control scheme in
OODB does not affect the performance significantly. Thus, it is concluded that providing
high degree of concurrency is the key factor in order to obtain the best performance in

transaction response time.

160



Chapter 6

Conclusions and Future Research

6.1. Summary and Conclusions

Concurrency control is a mechanism used to coordinate accesses to the multi-user
database so that the consistency of the database is maintained. OODBs have been adopted
for non-standard applications requiring advanced modeling power to handle complex data
and relationships among such data. Thus, concurrency control schemes in OODBs are
more complicated than conventional databases. Also, transactions in OODBs usually
requires long-duration running time. Thus, it is very important that concurrency control
schemes not incur large overhead while increasing concurrency among users so that the
performance should not be degraded.

In this research, three important issues of concurrency controls in OODBs are
discussed: conflict among methods, class hierarchy locking and nested method
invocations. The previous works for each issue were presented. Techniques were
proposed to overcome the shortcomings of the previous works. Finally, an integrated
concurrency control which includes all three issues was proposed.

The proposed technique was based on the following principles for each access
type. For conflict among methods, finer locking granularity is adopted for both instance
access and class definition access so that higher concurrency is achieved. Especially, for
instance access, DAVs and breakpoints are adopted in order to provide higher

concurrency using fine locking granularity and run-time information. Also, locks are
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required for instance method invocations so that locking overhead is reduced and the
possibility of deadlocks is also reduced. For class hierarchy locking, special classes are
used in order to reduce locking overhead. The proposed class hierarchy scheme incurs
fewer locks than both existing schemes. Finally, for nested method invocations, semantic
information is used in order to provide higher concurrency among methods. Also,
parent/children parallelism is adopted for better response time. In order to test the
performance of the proposed technique, a mathematical model was constructed and
extensive simulation experiments were conducted. Through the mathematical model and
simulation, the performance evaluation of the proposed scheme and two existing works
Orion and Malta’s were conduced and results were analyzed.

As shown in the simulation results, there are clear differences among three
techniques. The simulation results for each access type are as follows. For conflict among
methods, the proposed scheme performs better than Orion by 37.03% and Malta’s work
by 7.3%. For class hierarchy locking, the proposed scheme performs better than Orion by
52.6 % and Malta’s work by 32.9%. For nested method invocation, the proposed scheme
performs better than Orion by 30.8% and Malta’s scheme by 16%. In overall performance,
the proposed scheme performs better than Orion by 37.03% and Malta’s scheme by 7.3%.

Through extensive performance evaluations by mathematical modeling and
simulation, the following conclusions are made: for conflicts among instance accesses, the
proposed scheme utilized run-time information of attributes and adopted attribute level
locking granularity so that it provides the better response time than both Orion and Malta.

For conflicts among class definition accesses and conflicts among class definition access
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and instance access, the proposed scheme provides the better response time by adopting
small locking granularity instead of an entire instance object and an entire class object.
For class hierarchy locking, the proposed scheme gives the better response time than both
implicit locking and explicit locking, by utilizing access information of the classes. Finally,
for nested method invocations, the proposed scheme utilized parent/children parallelism,
run-time information of attributes and reduced locking overheads so that its response time
is better than both existing works.

Based on the performance evaluations, the guideline for using concurrency control
schemes in OODB:s is as follows: for conflict among methods, the better response time can
be achieved by utilizing run-time information of attributes and taking smaller lock
granularity instead of an entire instance object and an entire class object. For class
hierarchy locking, the locking overheads can be reduced by special classes which are based
on access information on classes. Finally, for nested method invocations, utilizing
parent/children parallelism and run-time information of attributes gives the better response
time. Also, locks for method invocations instead of atomic operations give the better

response time.

6.2. Directions for Future Research

The proposed scheme aims at centralized environments. For centralized OODBs,
the proposed aims at stable OODB systems. But, if an OODB system whose schemas are
continuously evolving, modifying DAVs and SCs may incur overheads. Thus, the future

research is to deal with evolving OODB systems.
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The proposed OODB concurrency control technique can be extended to
distributed OODBs as follows: although considerable concurrency control schemes have
been proposed for distributed databases ([Bern,1981], [Bern,1987], [Ozsu,1991],
[Levy,1994]) only a few techniques have been proposed for a distributed OODB
([Daya,1994], [Naka, 1994]). But, the following issues are not discussed in the previous
research. First, replication in distributed OODB makes a concurrency control scheme
complicated. Consider the following partial replicated OODB such that a class D with
two subclasses, say A and C, is stored in site 1 and a class D is alone stored in site 2. In
this case, locking on D in site 2 requires locks on A and C on site 1 if explicit locking is
used. Thus, how to manage replicated objects with less locking overhead is of concerns.
Second, in a distributed OODB with composite objects, composite objects may reside in
different sites. Thus, locking on a composite object requires locking on all subcomposite
objects in different sites, resulting in much overhead. The concern is to provide an efficient
locking on distributed composite objects. Third, it is necessary to consider how to

distribute lock managers effectively to reduce communication cost.
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Appendix
L Algorithm for three techniques for conflict among methods

L1. Orion
e Whenever a transaction requests a lock on class or instance, do the following steps.

(1) - Read the lock requester’s mode and transaction_id
(2) - Find the lock entry for the class
(3) - Find the lock holder on the class
- while there is different transaction holds a lock do
(C)) - Find the commutativity table
Q) - Read the holder’s mode
- Check the commutativity table for commutativity of the lock holder’s mode
and the lock requester’s mode
- If no commute, go to step 12)
end while
(6) - If the requester is a CDA transaction, then go to step 12)
(7) - Find lock entry for an instance
- while there is a different transaction holding lock on instance do
(9)- Find a lock holder on instance
- while there is different transaction holds a lock do

(10) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s mode

and the lock requester’s mode
- If no commute, the go to step 12)
end while

(11) Set a lock in the lock table and stop
(12) Block the requester and stop

oIf transaction is committed or aborted, release all the locks . For each locks held, do as

follows.

(1) Find the lock entry for the class
(2) -Find the lock holder on the class
- while there is the same transaction holding lock on the class do

3) - Release the lock on the class
“4) - If the commiitted transaction is a CDA transaction, then stop
5) - Find the lock entry for the instance
6) - Find a lock holder on the instance
-while the same transaction holds a lock do
@) - Release the lock on the instance, and stop.
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end while
end while

L2. Malta
e Whenever a transaction requests a lock on class or instance, do the following steps.

(1) - Read the lock requester’s method name and transaction_id
(2) - Find the lock entry for the class
(3) - Find the lock holder on the class
- while there is a different transaction holding lock do

(©)) - Find the commutativity table
(5) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s method

and the lock requester’s method
- If no commute, then go to step 12)
end while
(6) - If the requester is a CDA transaction, then go to step 11)
(7) - Find the lock entry for the instance
(8) - Find the lock holder on the instance
- while there is a different transaction holding lock do

(9) - Find the method commutativity table for instance
(10) - Read the holder’s method

- Check the commutativity table for commutativity of the lock holder’s method

and the lock requester’s method
- If no commute, go to step 12)
- end while

(11) Set a lock in the lock table and stop
(12) Block the requester and stop

e If transaction is committed or aborted, release all the locks

(1) Find the lock entry for the class
(2) -Find the lock holder on the class

- while there is the same transaction holding lock on the class do
3) - Release the lock on the class
()] - If the commiitted transaction is a CDA transaction, then stop
() - Find the lock entry for the instance

©) - Find the lock holder on the instance
-while the same transaction holds a lock do
@)) - Release the lock on instance, and stop.

175



ST RNTA

end while
end while

L3. The proposed scheme

o Initial lock request
Whenever a transaction requests a lock on some granule (class or instance), do the
following steps.

(1) -Read the lock requester’s method name and transaction_id
(2) -Find the lock entry for the class
(3) -Find the lock holder on the class
- while there is a different transaction holding a lock do
O] - Find the commutativity table for class
) -Read the holder’s method name
- Check the commutativity table for commutativity of the lock holder’s method
and the lock requester’s method
- If no commute, then go to step 12)
- end while
(6) - If the requester is a CDA transaction, then go to step 11)
(7) - Find the lock entry for the instance
(8) - Find the lock holder on the instance
- while there is a different transaction holding locks do
) - Find the method commutativity table for the instance
(10) - Read the holder’s mode
- Check the commutativity table for commutativity of the lock holder’s method
and the lock requester’s method
- If no commute, go to step 12)
end while
(11) Set a lock in the lock table
(12) Block the request

e During method execution (if the method invoked is an instance method)
Record all the breakpoints encountered during method execution

o After method execution (if the method invoked is an instance method)
Change method level lock to breakpoint level using all the breakpoints recorded at run-
time

(1) - Find the lock entry for the class
(2) - Find the lock holder for the class
- while the same transaction holding lock do
3) Change method level lock to breakpoint level lock
) Find the lock entry for the instance
) Find the lock holder for on the instance
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- while the same transaction holding lock do

(6) Change method level lock to breakpoint level lock
end while

end while

o If transaction is committed or aborted, release all the locks
(1) - Find the lock entry for the class

(2) - Find the lock holder on the class
- while there is the same transaction holding lock on the class do

3) - Release the lock on class
@) - If the commiitted transaction is a CDA transaction, then stop
) - Find the lock entry for the instance
(6) - Find the lock holder on the instance
-while the same transaction holds a lock do
@) - Release the lock on instance, and stop.
end while
end while

I1. How to calculate ti,x and toommic ?

IL.1 Orion

step 1)
=>2 MM read //we assume that transaction_id, lock mode occupy one word,
respectively.//

step 2)
Assume that transaction_id, lock mode and pointer takes one word. respectively.

- get address of lock table => 1 MM read

- get address of lock entry for class =>

(address. of lock table) +(class-id - 1)*S_Lock // S_Lock is size of lock entry for each
class where S_Lock = B*2+4. Assume that this number is stored in S_Lock

load regl, address of lock table
load reg2, T-cid (target class id)
SUB reg2, 1

load reg3, S_Lock => 1 MM read

MUL reg2, reg3
ADD regl, reg2
Total : 2 MM read and 6 operations

step 3)
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=> For each lock holder, the following overhead is required.

1 MM read (for X)

1 MM read (for transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANScy4ss times in a class
NUM_TRANScLass = Mp*Ng / Nc where Mp is the multiprogramming level

Total: NUM_TRANScLass*(2 MM read + 2 operations)

step 4)
=> | MM read

step 5) - Read the holder’s mode
=> | MM read; load reg3, lockmode

- Check commutativity table for commutativity of the lock holder’s mode and the
lock requester’s mode
- sequential search for row address of conflict table
=> average 3 MM read; compare (load regl, lock mode; comp regl, reg3) for
each read
- sequential search for column address of conflict table
=> average 3 MM read; compare (load reg2, lockmode; comp reg2, reg4) for
each read
- check commutativity
=> 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp

(regl, °y’)
For each lock holder, 8 MM reads + 15 operations
Total: NUM_TRANScLass*(8 MM reads + 15 operations)

step 6)
=> ] MM read // Reading transactica type

step 7)

-get bucket address with prob. Py,

load regl, T-iid (target instance id)

load regl, reg2

load reg3, B (number of buckets) => 1 MM read
DIV reg2, reg3

MUL reg2, reg3

SUB regl, reg2

MUL regl, 2
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SUB regl, 2
ADD regl, 4
=> Pia*(1 MM read + 9 operations)

- Find target instance

1 MM read (for x or pointer)

1 MM read (for T-iid)

Compare (check if that is target instance) => load regl, iid; comp regl, T-iid (target
instance)

Assume that above steps are repeated NUM_INST times with prob. Py,

NUM_INST can be approximated as follows.

NUM_INST = Mp*Ng/(2*B*Nc) where Mp is the number of transactions in the system,
Mp = (tie + NG*x)*A , by applying Little’s formula [Freu, 1987]

Total: Pia*(1 + NUN_INST*2) MM reads + Pia*(9 + NUM_INST*2) operations

step 8)

=> For each lock holder, the following overhead is required.

1 MM read (for X)

1 MM read (for transaction)

1 Compare (if this is other transaction or not) => load regl, t-id; comp regl, T-tid (target
transaction)

Assume that above steps are done NUM_TRANSpsy times in an instance
NUM_TRANS[NST = MP‘NG / (thN()

Total: PW*NUM_TRANSNst*(2 MM read + 2 operations)

step 9) - Read the holder’s mode
=> | MM read; load reg3, lockmode
- Check commutativity table for commutativity of the lock holder’s mode and the
lock requester’s mode
- sequential search for row address of conflict table
=> average 1.5 MM read; compare (load regl, lock mode; comp regl, reg3) for
each read
- sequential search for column address of conflict table
=> average 1.5 MM read; compare (load reg2, lockmode; comp reg2, reg4) for
each read
- check the commutativity
=> 1 MM read (y or n) + i compare (load regl, conflict(row,column); comp
(regl, °y’)

For each lock holder, S MM reads + 9 operations -
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Total: Pia* NUM_TRANSnst*(5 MM reads + 9 operations)
step 10)

If there are some transactions holding locks =>

1 MM read (read Y)

3 MM writes (for transaction_id, lock, pointer <- nil)

1 MM write (change Y)

1 MM wrrite (change Nil to newly inserted transaction)
=>6 MM access

If there is no transaction holding locks =>

1 MM read (read Y)

3 MM wrrites (for transaction_id, lock, pointer <-nil)
2 MM writes (change Y and X)

=> 6 MM access

If the lock requester is IA transaction, perform the same step as above.
=> P11 *6 MM access

Total: (6+6*P,) MM access

step 11)
=> same as step 10)

Total: (6 + 6%P1a) MM reads

Thus, tie (Orion) =2 MM reads (step 1)
+ 2 MM reads + 6 operations (step 2)
+ NUM_TRANScLAss*(2 MM reads + 2 operations)
+ 1 MM read (step 4)
+ NUM_TRANSAss*(8 MM reads + 15 operations) (step 5)
+ 1 MM read (step 6)
+ Pu*[1+NUM_INST*2) MM read + (3+NUM_INST*2) operations)

(step 7)

+ Pu*NUM_TRANSnst*(2 MM read + 2 operations) (step 8)
+ Pu*NUM_TRANSpst*( S MM reads + 9 operations) (step 9)
+ (6+6*Pn) MM reads (step 10 or 11)

=[12+10*NUM_TRANScass+Pi *[7+2*NUM_INST + 7*NUM_TRANSnesr]] *MM_ACCESS

+ [6+17*NUM_TRANScuiss+ Pi*[9+2*NUM_INST + 1 1¥NUM_TRANSn:st]]*BASIC_OP
where NUM_INST = Mp*No/(2*B*Nc), NUM_TRANSqass = Mp*Ng/Ne,
NUM_TRANSpst = Mp*No/(N*Ny)

tiock, 14 (Orion) = ti(Orion) where Py, = 1
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tiock, cpa (Orion) = tiock(Orion) where Py =0

How t0 find teomms (Orion)?

step 1)

=> same as step 1) in ti : 2 MM reads + 6 operations

step 2)

=> For each lock holder, the following overhead is required.
1 MM read (for X)

1 MM read (for transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANSq 4ss times in a class.
NUM_TRANScLass = Mp*NG / (2*Nc) where Mp is the multiprogramming level
Assume that only half of NUM_TRANScass transactions is searched.

Total: NUM_TRANS ass*(2 MM read + 2 operations)

step 3)
1 MM read (read next record of committed transaction)
1 MM read (read previous record of committed transaction)
1 MM write (the pointer of previous record indicates the next record of committed
transaction)
=> 3 MM access

step 4)
=> 1 MM read // reading transaction type

step S)
=> same as step 7) in tiox
=> P *(1 + NUN_INST*2) MM reads + P, *(9 + NUM_INST*2) operations

step 6)

=> For each lock holder, the following overhead is required.

1 MM read (for X)

1 MM read (for transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANSsr times in an instance
NUM_TRANSnst = Mp*NGg / (2*Nc*N))

Assume that only half of NUM_TRANSnst transacﬁons is searched
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O TTITRRIY,

Total: P,a*NUM_TRANSNst*(2 MM read + 2 operations)

step 7)
=> Pa*step 3)
=> 3*Pix MM reads

Total:[6+2*NUM_TRANSc1ass+2*P1a*NUM _TRANSnst+Pia*[4+NUM_INST*2]] MM reads
[6+2*NUM_TRANSasst Pra®*2*NUM_TRANSnst + Pra*[9+NUM_INST*2]] operations

Since each transaction accesses Ng granules and each instance access method requests AT
locks per instance, step 6) and 7) need to be performed additional (AT-1) times for
instance access method.

tcommit (Orion)—

NG*[6+2*NUM_TRANScLAss P *2*NUM_TRANSpstHP *[4+NUM_INST*2] +
[AT-1]1*Pin*[NUM_TRANSpst*2+3]]*MM_ACCESS
+Ng*[6+2*NUM_TRANScLAsstPin*2* NUM_TRANSnst+ Pia*[9+NUM_INST*2}+
[AT-1]*P *[NUM_TRANSnst*2]]*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*N¢),
NUM_TRANSnst = Mp*Ng/(2*N:.*N))

c(Orion) = teommi (Orion) where Py =1
cc(Orion) = teommic (Orion) where Py =0

I1.2 Malita

step 1)
=>2 MM read // Assume that transaction_id, lock mode (or method name) occupy one
// word, respectively

step 2)

=>The lock table has basically same structure. But, in Malta’s work, the lock is requested
by the unit of method, if the requester is an instance method, so that the lock mode is
replaced by the method name.

=> 2 MM read and 6 operations

step 3)
=> same as step 3) in Orion
=> NUM_TRANSc1ass*(2 MM read + 2 operations)

step 4)
=> 1 MM read

step S) - Read the holder’s mode
=> 1 MM read; load reg3, lockmode
- Check commutativity table for commutativity of the lock holder’s mode and the
lock requester’s mode
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- sequential search for row address of conflict table
=> average 2 MM read; compare (load regl, lock mode; comp regl, reg3)
- sequential search for column address of conflict table
=> average 2 MM read; compare (load reg2, lockmode; comp reg2, reg4)
- If no commute => step 10)
- 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp
(regl, °y’)
Thus, one conflict checking requires: NUM_TRANScLass* (6 MM reads + 11 operations)

step 6)
=> | MM read // Reading transaction type

step 7)
=> same as step 7) in Orion
=> P *(1 + NUN_INST*2) MM reads + P, *(9 + NUM_INST*2) operations

step 8)
=> P *NUM_TRANSNst*(2 MM read + 2 operations)

step 9)
=> Pia MM read

step 10)- Read the holder’s mode
=>]1 MM read; load reg3, lockmode
- Check the commutativity table for the commutativity of the lock holder’s
method and the lock requester’s method
- If no commute, go to step 12)

¢ In Malta’s work, the lock is requested for each instance access method. In real OODB:s,
there are many methods defined in each class so that searching a particular method in a
commutativity table takes so much overtiead. Thus, the following strategy is adopted:
assign each method to the unique number so that the method can be searched directly in a

commutativity table. There are two steps to do it.

e substep 1) The hash function is adopted to map each instance method to integer.
Assume that each method is named based on alphabet. Whenever a method is invoked,
read the first character of the method. Based on order of this character in alphabet, the
character is mapped into number.

h(first character of each method) =1 where 1<I1<26

For example, for method ASCEND_ORDER and DESCEND_ORDER has the following
hash function. '
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h(ASCEND_ORDER) = 1
h(DESCEND_ORDER) = 4

e substep 2) Then, assume that array M_NUM stores the unique number for each method.
The array is has total Ny (number of methods) elements, and divided into 26 sectors.
Thus, each sector has N\/26 elements.

o

M _NUM [A SEARCH

ANUM |2 |

Nw26 elements
: —
B_SEEK
Z FIND
N
- calculate hash function => load regl, first_Char; | MM read for reading first character
DIV regl, 26 '
- calculate the first entry of address in array M_NUM
load reg2, 0
load reg3, Ny => 1| MM read
DIV reg3, 26
MUL regl, reg3
- search the method name
average N\/(26*2) MM read
compare; load regl, method_name; comp regl, T_method // Assume that T method is to

// be searched
- read the integer number => 1 MM read
Thus, total (NW(26*2)+3) MM read + (NM/(26*2)*2+6) operations

- read the method name of the requester in the commutativity table => same as read
method name of the holder

- read the commutativity relation
1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp (regl, ‘y’)

Total: P,y *NUM_TRANSpst*[(Nw/26+8) MM reads + (Nw/26*2+15)] operations

step 11)
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=> same as step 10) in Orion
=> (6+6*P1) MM reads

step 12)
=> same as step 11) in Orion
=> (6+6*Pn) MM access

tiock (Malta) =2 MM read (step 1)

+ 2 MM read and 6 operations (step 2)

+ NUM_TRANScLAss*(2 MM read + 2 operations) (step 3)

+ 1 MM read (step 4)

+ NUM_TRANScLass* (6 MM reads + 11 operations) (step 5)

+ 1 MM read (step 6)

+Pra*(1 + NUN_INST*2) MM reads + P, *(9 + NUM_INST*2) operations
(step7)

+ Pu*NUM_TRANSNst*(2 MM read + 2 operations) (step 8)

+ Pia MM read (step 9)

+ Pin* NUM_TRANSnst *[(NW26+8) MM reads + Pia*(Nw/26*2+15))
operations (step 10)

+ (6 + 6*P1y) MM access (step 11 or 12)

[12+8"‘NUM TRANScLass P *[8+2*NUM_INST+NUM_TRANS pist*[10+Nw/26]]*MM_ACC
ESS+[6+13*NUM__TRANS (L asstPa*[9+2*NUM_INST+NUM_TRANSpnst*  [17+Np/26*2]]
*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScass =  Mp*Ng/N:,
NUM_TRANS[NST = MP*NG/ (thNl)

tiock, 1A (Malta) = tio (Malta) where Py = 1
tiock, coa (Malta) =ty (Malta) where Pia =0

How to calculate topm (Malta)?

=> same as Orion, but step 6) and 7) are not repeated (AT-1) times

Thus, teomma (Malta)=

= NG*[6+2*NUM_TRANScLAss+2*Pia *NUM_TRANSpnst P *[4+NUM_INST*2]]*
MM_ACCESS
Nc‘[6+2‘NUM_TRANSaAss+2‘P.A‘NUM _TRANSpst P *[9+NUM_INST*2]]*
BASIC_OP where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSpAss =

Mp*Ng/(2*Nc), NUM_TRANSnst = Mp*NG/(2*N:*Np)

ci(Malta) = toommit (Malta) where P, = 1
cc(Malta) = teomm (Malta) where Py =0

IL.3. The proposed scheme
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a) initial lock request

step 1)
=> same as Malta
=> 2 MM reads

step 2)
=> same as in Malta
=> 2 MM read and 6 operations

step 3)
=> NUM_TRANScpass*(2 MM read + 2 operations)

step 4)
=> 1 MM read

step S) -Read the holder’s mode
- read method name of the holder => 1 MM read; load reg3, lockmode
- Check commutativity table for commutativity of the lock holder’s mode and the
lock requester’s mode
- If no commute, then go to step 10)

- sequential search for row address of conflict table => average 4 MM read; compare
(load regl, lock mode; comp regl, reg3)

- sequential search for column address of conflict table => average 4 MM read; compare
(load reg2, lockmode; comp reg2, reg4)

- 1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp regl, ‘y’)

Thus, one conflict checking requires: NUM_TRANScLass*(10 MM reads + (17+t*2))
operations. Assume that compare operations are performed t times where t =
num_br*P+N.*Pc, P; and Pc denote probability of instance access transaction and
probability of class definition access transaction

step 6)
=> | MM read

step 7)
=> same as Malta’s work
=> P *(1 + NUN_INST*2) MM reads + Pis*(9 + NUM_INST*2) operations

step 8)

=> same as Malta’s work

=> Pu*NUM_TRANSpnst*(2 MM read + 2 operations)
step 9)

=> Pa MM read
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step 10)

- calculate hash function => load regl, first_Char; | MM read for reading first character
DIV regl, 26
- calculate the first entry of address in array M_NUM
load reg2, 0
load reg3, Ny => 1 MM read
DIV reg3, 26
MUL regl, reg3
- search the method name
average Ny/(26*2) MM read
compare; load regl, method_name; comp regl, T_method // Assume that T _method is to
// be searched
- read the integer number => 1 MM read
Thus, total (NM/(26*2)+3) MM read + (N\/(26*2)*2+6) operations

- read the method name of the requester in the commutativity table => same as read
method name of the holder

- read the commutativity relation
1 MM read (y or n) + 1 compare (load reg!, conflict(row,column); comp regl, ‘y’)

Total: Pia* NUM_TRANSNst * [(NM/26+8) MM reads + (Nn/26*2+13+t*2)] operations

step 11)
=> same as Malta’s work
=>(6+6*P1n) MM reads

step 12)
=> same as Malta’s work
=> ({6 + 6*F1a) MM access

Thus, tie (Proposed) => 2 MM reads (step 1)

+ 2 MM read and 6 operations (step 2)

+ NUM_TRANS Ass*(2 MM read + 2 operations) (step 3)

+ 1 MM read (step 4)

+ NUM_TRANScLass* [10 MM reads + (17+t*2)] operations
(step 5)

+ 1 MM read (step 6)

+ Pia*(1 + NUN_INST*2) MM reads + P, *(9 + NUM_INST*2)
operations (step 7)

+ Pu*NUM_TRANSpNst*(2 MM read + 2 operations) (step 8)

+ Pia MM read (step 9)

+ Pu*NUM_TRANSpst * [(Nw/26+8) MM reads +
(NMW/26*2+13+t*2)] operations (step 10)
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+ (6 + 6*P1a) MM access (step 11 or 12)
= [12+12*NUM_TRANScLAss P *[8+2*NUM_INST+
NUM_TRANSnst*(10+Nw26)]]* MM_ACCESS
H6+H[19+t*2]*NUM_TRANSLAss P *[9+2*NUM_INST+NUM_TRANSpst *[15+
Nw/26*2+t*2]}*BASIC_OP
where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSass = Mp*Ng/Nc,
NUM_TRANSpst = Mp*Ng/(N.*N)), t = num_br*P+N,*Pc

Thus, tieck, 1a (Proposed) = tiok (Proposed)+ tucakpoint + tchangelock Where Py = 1, where
toreakpoint AN tenangetok Will be calculated later.

tiock,cpa (Proposed) = tioex (Proposed) where Py =0
How to calculate tomi (Proposed)?

=> same as Malta’s work

Thus, teommit (Proposed)=

= Ng*[6+2*NUM_TRANSLAss+2*Pia*NUM_TRANSpstHP2 *[4+NUM_INST*2]]*
MM_ACCESS

Ng*[6+2*NUM_TRANScpass+ 2*Pa*NUM_TRANSnst + P *[9+NUM_INST*2]]*
BASIC_Op

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*No),
NUM_TRANSst = Mp*Ng/(2*N.*N))

ci(Proposed) = teommit (Proposed) where Py, = 1
cc(Proposed) = temmi (Proposed) where Py =0

b) Recording breakpoints during method execution

- Assume that there are MUL_NUM (active) transactions in the system at the same time

(i.e., The multiprogramming level is MUL_NUM).

- Whenever a transaction is entered into system, the transaction is assigned
multiprogramming number (MN) and MN is stored in some attribute of the transaction.

- Use array for maintaining breakpoints

- Assume that an array A(11*MUL_NUM) is used for maintaining breakpoints.

- The first element DISP stores displacement of the last element (breakpoint) of the
transaction.

- The remaining elements are used to store the breakpoints.

- Assume that each method has maximum 10 breakpoints
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MN, |DISP

MN, |DISP

MNyur som  [DISP

a) For each breakpoint encountered during method execution, the following steps are
performed.

e Find MN for the transaction
1 MM read
e Find location of DISP
A+ (MN - 1)*11 => 5 CPU operations
=> load regl, A; load reg2, MN; SUB reg2, 1; MUL reg2, 11; ADD regl, reg2

e Put breakpoint into end of the list
1 MM read (for DISP) + 1 MM write (for breakpoint) +  adding DISP (2
operations: load regl, DISP; ADD regl, 2)) + 1 MM write (for DISP) => 2 CPU
operations + 3 MM accesses

b) After method execution is finished, the following steps are performed

® Read all breakpoints
1 MM read (for finding MN)
A + (MN-1)*11 (finding DISP) => 5 operations
1 MM read (for DISP)
num_br* MM read ( for each breakpoint)
=> (num_br + 2) MM accesses + 5 CPU operations

¢ Release memories
1 MM write ( DISP <- nil)

From a) and b), for recording all breakpoints in a method, the following overhead is
obtained.

a) num_br * (4 MM accesses + 7 CPU operations)
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b) (num_br+3) MM accesses + 5 CPU operations

Total: tyeakpoiw = [S*num_br + 3]*MM_ACCESS + [num_br*7 + 5]*BASIC_OP

c) Lock change (After method execution)

step 1)
=> 2 MM read and 6 operations

step 2)
=> NUM_TRANScLAss*(2 MM read + 2 operations)
// Assume that half of transactions on the class are searched

step 3)
=> | MM access (write breakpoints)

step 4)
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step S)
=> NUM_TRANSpst*(2 MM read + 2 operations)

step 6)
=> | MM access

Total: tipungeios= [5 + 2*NUM_TRANSc1Ass+2*NUM_TRANSpst+2*NUM_INST]
*MM_ACCESS
+ [15+2*NUM_TRANSAss+2“NUM_INST+2*NUM_TRANSps1]
*BASIC_OP

Thus, ti (Proposed) = ticu(Proposed) + toreakpoint + tehangelock

= [28+14*NUM_TRANSc1Ass+4*NUM_INST+
NUM_TRANSpst*[12+Nw/26)+5*num_br]* MM_ACCESS

+ [35+{21+t*2]*NUM_TRANScLAss H4*NUM_INST+NUM_TRANSpsr*
[17+Nw/26*2+t*2]+num_br*7]*BASIC_OP

II1. Analysis for Class hierarchy locking

HL.1. Assumption

¢ The fan-out of each class : F (default)
e For class hierarchy, the depth (level) is D. Thus, average level requested by overall
transactions is Ap =/ (D+1)/21 (i.e, in the middle of class hierarchy).

190



II1.2. Analysis

Assume that 2 locks required for each level in implicit locking.

1) average level of access to class hierarchy = 1 (root class)
e Orion (Implicit locking): 1 + (D-2)*2 = 2*D - 3 (intention locks) for every access.
e Malta (Explicit locking): F>! extra locks for CDA transactions
o The proposed work: 1+(D-2)*2 = 2*D - 3 extra locks for every access.

2) average level of access to class hierarchy = Ap (middle class)
e Orion (Implicit locking): (Ap -1)+2*(D-Ap) = 2*D-Ap -1 locks (intention locks) for
every access
e Malta (Explicit locking): F* extra locks for CDA transaciions
e The proposed work: min[F** 2*D-Ap-1] - D (one each level) extra locks for
transactions. Assume that all locks are required for special classes in class hierarchy.

3) average level of access to class hierarchy = D (leaf class)
e Orion (Implicit locking): (D-1) extra locks (intention locks) for every access
e Malta (Explicit locking): 0 extra locks for CDA transactions where 2 locks (level 5)
e The proposed work: 0 extra locks for CDA transactions

tiock and teommit fOr €ach technique can be obtained as follows.

a) Orion (Implicit lockin

Assume that N is the number of locks required ( including intention locks).

tiock, (Orion) =
=[12+10*N*NUM_TRANS L Ass P *[7+2*NUM_INST+7*NUM_TRANSnst]]*N*
MM_ACCESS
H6+17*N*NUM_TRANScLAss P *[9+2*NUM_INST+11*NUM_TRANSpst]]*N*
BASIC_OP where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANSpLass = Mp*No/Ng,
NUM_TRANSnst = Mp*Ng/(N.*N))

tiock, 14 (Orion) = ta(Orion) where Py, = 1; tiok, cpa (Orion) = tioq(Orion) where Py =0

teommit (Orion)=

NG*[6+2*N*NUM_TRANScAsstPin*2*NUM_TRANS-
mnsTHPIA*[4+tNUM_INST*2]+[AT-1]*P1s* [NUM [ TRANSnsT*2+3]]*N*MM_ACCESS
+Ng*[6+2*N*NUM_TRANSAss+P11*2* NUM_TRANSps1+
Pu*[9+NUM_INST*2H{AT-1]*P.*[NUM_TRANSnst*2]]*N*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScass = Mp*Ng/(2*No),
NUM_TRANSnst = Mp*NG/(2*N.*N))

c(Orion) = teommit (Orion) where Py, = 1; cc(Orion) = teommi (Orion) where Py = 0
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b) Maita licit lockin

Let N be locks (including locks on subclasses)

tiock, 14 (Malta) =
=12+8*NUM_TRANScass+Pia*[8+2*NUM_INST+NUM_TRANSsr*[10+Nw/26]]1*MM_AC

CESS+[6+13*NUM__ TRANS p.oss*+P12*[9+2*NUM_INST+NUM_TRANSusr*[17+Np/26%2]]]
*BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM _TRANSciass = Mp*Ne/Nc,
NUM_TRANSHst = Mp*Ng/(N:*N;) where Py, = 1
tiock, coa (Malta) =

=[[12+8*NUM_TRANS Ass+Pi*[8+2*NUM_INST+NUM_TRANSxs7*[10+Npo/26]]]*[Pcos+P
cow*NV/ Pepa J'MM_ACCESS+[6+13*NUM__TRANS1rss+Pia*[9+2*NUM_INST+2*
NUM_TRANSs1*[17+Npy/26*2]1]*[Pcor+Pcow*N)/ Pepa *BASIC_OP

where NUM_INST = Mp*No/(2*B*Nc), NUM TRANSciass = Mp*No/Ne,
NUM_TRANSpst = Mp*Ng/(N:*N;) where Py, = 0

How to calculate t g (Malta)?

¢ (Malta)=

Ng*[6+2*NUM_TRANSLAsstPia*2*NUM_TRANSpst+PiA *[4+NUM_INST*2]}*
MM_ACCESS

+Ng*[6+2*NUM_TRANScLAss P *2* NUM_TRANSpnst+ Pia*(9+NUM_INST*2])*
BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*Nc),
NUM_TRANSpst = Mp*No/(2*N.*N|) where P = 1

cc Malta)=

NG*[6+2*NUM_TRANScLAss+Pia*2*NUM_TRANSst+Pia *[4+NUM_INST*2]]
*[PcortPcow*N)/ Pcoa *MM_ACCESS

+NG*[6+2*NUM_ TRANSq,Ass-i-Pu‘Z“ NUM_TRANSpnst+
Pu*[9+NUM_INST*2]]*[Pcor*+Pcow*N)/Pcoa *BASIC_OP

where NUM_INST = Mp*Ng/(2*B*Nc), NUM_TRANScLAss = Mp*Ng/(2*No),
NUM_TRANSpst = Mp*N6/(2*N.*N)) where P, =0

c) The pr work

—

Let N be all locks required (including intention locks and locks on subclasses). In this
analysis, only locks on subclasses are assumed for simplicity.

tiock, (Proposed)=
—T28+14*NUM TRANScLass+4*NUM_INST+NUM TRANSpsr*[12+ Nu/26]
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+5*num_br]*MM_ACCESS
+[35+[21+t*2]*NUM_TRANScLAsst4*NUM_INST+NUM_TRANSnst*[17+Nw26*2+t
*2]+ num_br*7]*N*BASIC_OP where P;, =1 and NUM_INST = Mp*Ng/(2*B*N¢),
NUM_TRANSCLASS = Mp*Ng/Nc, NUM_TRANS[NST = Mp‘NG/(NC*Nx), t=
num_br*P+N,*Pc

tiock, coa (Proposed) =
[12+12*NUM_TRANScLAss TP *[8+2*NUM_INST+NUM_TRANSnst*[10+Nw/26]1]]*{
PcortPcpw*N)/Pcpa *MM_ACCESS

+H6+H19+t*2]*NUM_TRANScLAssHPA *[9+2*NUM_INST+NUM_TRANSpst*[15+Ny/
26*2+1t*2]]1* [Pcor+Pcow*N}/Pcpa *BASIC_OP where NUM_INST =

M;p*Ng/(2*B*Nc), NUM_TRANSpAss = Mp*NG/Nc, NUM_TRANSpst =
Mp*NG/(N.*N)), t = num_br*P+N,*Pc where Piy, =0

ci(Proposed) =

Ng*[6+2*NUM_TRANScrLAsstPia*2*NUM_TRANSnst+P *[4+NUM_INST*2]]*
MM_ACCESS

+NG*[6+2*NUM_TRANScLAsstPia*2*NUM_TRANSnsT+P *[9+NUM_INST*2]]*BA
SIC_OP

where NUM_INST = Mp*NG/(2*B*Nc), NUM_TRANScass = Mp*No/(2*No),
NUM_TRANSpst = Mp*Ng/(2*N.*N))

cc(Proposed) =
Ng*[6+2*NUM_TRANScLAsstPia*2*NUM_TRANSnst+Pu*[4+NUM_INST*211*[Pcor
+Pcpw*N)/Pcpa *MM_ACCESS

+Ng*[6+2*NUM_TRANS AsstPun*2*NUM_TRANSpst+Pa *[9+NUM_INST*21]*
[PcortPcpw*N1/Pcpa *BASIC_OP  where NUM INST = Mp*Ng/(2*B*No),
NUM_TRANScrass = Mp*No/(2*Nc), NUM_TRANSnst = Mp*Ng/(2*N*N))

IV. Analysis for nested method invocations

Assumptions:

¢ For composite object hierarchy, assume that there are Lc levels.

o For each instance access method accessing composite object, there are Fc number of
method invocations to subobject in composite object hierarchy. Thus, for each instance
access method invocation on top-level composite object, there are Neoy = 1+ Fc + (Fc)?
+ ... + (Fc)™* number of objects accessed

o For the proposed work, semantic commutativity and commutativity between parents and
children (due to inheritance) are not considered for simplicity.

e Conflicts among instance access methods are only considered in order to simplify
analysis.
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IV.1. Orion
e Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s mode and transaction_id
(2) Find the lock entry for the class
(3) Set a lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance
- while there is a different transaction holding lock do

(6) - Find the commutativity table for the instance
(7) - Read the holder’s mode

- Check the commutativity table for commutativity of the lock holder’s mode and

the lock requester’s mode
- If no commute, go to step 9)
end while

(8) Set a lock in the lock table and stop
(9) Block the request and stop

o If a transaction is committed or aborted, release all the locks. For each locks held, do as
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class

- while the same transaction holds a lock do
(3) - Release the lock on the class

end while

(4) - Find the lock entry for the instance
(5) - Find a lock holder on the instance

- while the same transaction holds a lock do

6) - Release the lock on the instance, and stop
end while
TV.2. Malta’s scheme

e Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s method name and transaction_id
(2) Find the lock entry for the class
(3) Set a lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance
- while there is a different transaction holding lock do
©) - Find the method commutativity table for instance
@ - Read the holder’s method
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- Check the commutativity table for commutativity of the lock holder’s method
and the lock requester’s method
- If no commute, go to step 9)
end while
(8) Set a lock into lock table and stop
(9) Block the request and stop

e If a transaction is committed or aborted, release all the locks. For each locks held, do as
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class
- while there is a different transaction holding lock do
(3) - Release the lock on class
(4) - Find the lock entry for the instance
(5) - Find alock holder on the instance
- while the same transaction holds a lock do
(6) - Release the lock on instance
end while
end while

IV.3. The proposed scheme
o Whenever a transaction requests a lock on instance, do the following steps.

(1) Read the lock requester’s method name and transaction_id
(2) Find the lock entry for the class
(3) Set a lock on the class
(4) Find the lock entry for the instance
(5) - Find a lock holder on the instance
- while there is not a same subtransaction holding lock do

(6) - Find the method commutativity table for instance
(7) - Read the holder’s method

- Check the commutativity table for commutativity of the lock holder’s method

and the lock requester’s method
- If no commute, go to step 9)
end while

(8) Set a lock in the lock table and stop
(9) Block the request and stop

e If a transaction is committed or aborted, release all the locks. For each locks held, do as
follows.

(1) - Find the lock entry for the class
(2) - Find a lock holder on the class
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- while there is a different transaction holding lock do
(3) - Ifthe commiting method is top-level, release the lock
else inherit locks to parents
end while
(4) - Find the lock entry for the instance
(5) - Find a lock holder on the instance
- while there is not same subtransaction holds a lock do

(6) - If the commiting transaction is top-level, release the lock
else inherit locks to parents
end while
IV.1. Orion

How to calculate t,. in Orion?

step 1)
=>2 MM read // Assume that transaction_id, lock mode occupy one word,
respectively.

step 2)

- Each class has B buckets for maintaining lock tables for instances

- The class has 4 MM words (2 words for blocked transactions, 2 words for locking
transactions): Assume that transaction_id, lock mode and pointer takes one word,
respectively.

- get address of lock table => 1 MM read

- get address of lock entry for class =>

(address of lock table) +(class-id - 1)*S_Lock // S_Lock is size of lock entry for each
class where S_Lock = B*2+4. Assume that this number is stored in S_Lock.

load regl, address of lock table
load reg2, T-cid (target class id)
SUB reg2, |

load reg3, S_Lock => 1 MM read
MUL reg2, reg3

ADD regl, reg2

Total : 2 MM read and 6 operations

step 3)

If there are some transactions holding locks =>

1 MM read (read Y)

3 MM writes (for transaction_id, lock, pointer <- nil)
1 MM write (change Y)
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1 MM write (change Nil to newly inserted transaction)
=> 6 MM access

If there is no transaction holding locks =>

1 MM read (read Y)

3 MM writes (for transaction_id, lock, pointer <-nil)
2 MM wrrites (change Y and X)

=>6 MM access

step 4)

load regl, T-iid (target instance id)
load regl, reg2

load reg3, B (number of buckets) => 1 MM read
DIV reg2, reg3

MUL reg2, reg3

SUB regl, reg2

MUL regl, 2

SUB regl, 2

ADD regl, 4

=> (1 MM read + 9 operations)

- Find target instance

1 MM read (for x or pointer)

1 MM read (for T-iid)

Compare (if that is target instance) => load regl, iid; comp regl, T-iid (target instance)

Assume above steps are done NUM_INST times. NUM_INST can be approximated as
follows. NUM_INST = Mp*Ncon/(2*B*Nc)

Total: (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step 5)

=> For each lock holder, the following overhead is required.

1 MM read (for pointer X)

1 MM read (for transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANSyst times in an instance
NUM_TRANSm = Mp*NmM / (Nc‘Nx)

Total: NUM_TRANSpst*(2 MM read + 2 operations)
step 6)
=> 1 MM read
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step 7) - Read the holder’s mode
=> | MM read; load reg3, lockmode
- Check commutativity table for commutativity of the lock holder’s mode and the
lock requester’s mode

- sequential search for row address of conflict table

=> average 1.5 MM read; compare (load regl, lock mode; comp regl, reg3) for
each read

- sequential search for column address of conflict table

=> average 1.5 MM read; compare (load reg2, lockmode; comp reg2, reg4) for
each read
- check the commutativity
=>] MM read (y or n) + 1 compare (load regl, conflict(row,column); comp

(regl, °y’)

For each lock holder, 5 MM reads + 9 operations

Total: NUM_TRANSNst*(5 MM reads + 9 operations)

step 8)
=> same as step 3) => 6 MM access

step 9)
=> same as step 3) => 6 MM access

tiock (Orion) = 2 MM reads (step 1)
+ 2 MM reads and 6 operations (step 2)
+ 6 MM access (step 3)
+ (1+NUM_INST*2) MM reads + (9+NUM_INST*2) operations (step 4)
+ NUM_TRANSnst *(2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
+ NUM_TRANSNst *(5 MM reads +9 operations) (step 7)
+ 6 MM access (step 8 or 9)
=[18 + 2*NUM_INST + 7*NUM_TRANSpst]*MM_ACCESS
+ 15+ 2*NUM _INST + 11*NUM_TRANSpst + NWw26*2]*BASIC_OP where
NUM_INST Mp*Ncow/(2*B*Nc), and NUM_TRANSwst = Mp*Ncom / (Nc*Ny)

How to find toauy in Orion?

step 1)
=> same as step 2) in ti : 2 MM reads + 6 operations

step 2)
For each lock holder, the following overhead is required.
1 MM read (for pointer X)
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1 MM read (for transaction)
1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANSy ass times in a class

NUM_TRANScLass = Mp / (2*Nc) where Mp is the multiprogramming level. Assume that
only half of NUM_TRANScyass transactions is assumed.

Total: NUM_TRANSc ass*(2 MM read + 2 operations)

step 3)
1 MM read (read next record of committed transaction)
1 MM read (read previous record of committed transaction)
1 MM write (pointer of previous record => next record of committed transaction)
=>3 MM access

step 4)
=> same as step 4) in tio
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step 5)

For each lock holder, the following overhead is required.

1 MM read (for pointer X)

1 MM read (for a transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)

Assume that above steps are done NUM_TRANSst times in an instance
NUM_TRANSpst = Mp / (2*Nc*Np)

Assume that only half of NUM_TRANSnst transactions is searched.
Total: NUM_TRANSpst*(2 MM read + 2 operations)

step 6)
=> same as step 3)
=>3 MM reads

Note that, in Orion, since each method requires AT locks, step 5) and 6) need to be
performed additional (AT-1) times.

Total: Ncon*[9+2*NUM_TRANS ass+2*NUM _TRANSwst+2*NUM_INSTHAT-
1]*[2*NUM_TRANSnst+31]*MM_ACCESS

+ Ncom® [15+2*NUM_TRANScass+ 2*NUM_TRANSpst + 2*NUM_INST+HAT-
1]*[2*NUM_TRANSnst]]*BASIC_OP

199



Since each transaction accesses Ncoy granules,

teommit (Orion)=
Neom*[9+2*NUM_TRANSLaAss+2*NUM _TRANSpsr+2*NUM_INST+[AT-
1]*[2*NUM_TRANSpsr+3]]*MM_ACCESS

+ Neom®*[15+2*NUM_TRANScLasst+ 2*NUM_TRANSpst + 2*NUM_INST+HAT-
1]*[2*NUM_TRANSNs1]]*BASIC_OP where NUM_INST = Mp/(2*B*No),
NUM_TRANScLass = Mp*Ng/(2*N¢), NUM_TRANSwst = Mp/(2*N.*N))

IV.2. Malta’s work
How to calculate t in Malta’s?

step 1)
=> same as Orion: 2 MM read

step 2)
=> same as Orion: 2 MM read and 6 operations

step 3)
=> same as Orion: 6 MM access

step 4)
=> same as Orion: (1+NUM_INST*2) MM reads + (9+NUM_INST*2) operations

step 5)
=> same as Orion
step 6)
=> same as Orion: | MM read

step 7) - Read the holder’s mode
=> ]| MM read; load reg3, lockmode
- Check the commutativity table for commutativity of the lock holder’s method and the
lock requester’s method
- If no commute, go to step 8)

e In Malta’s work, the lock is requested for each instance access method. In real OODBs,
there are many methods defined in each class so that searching a particular method in a
commutativity table takes so much overhead. Thus, the following strategy is adopted:
assign each method to the unique number so that the method can be searched directly in a
commutativity table. There are two steps to do it.

e substep 1) The hash function is used to map each instance method to integer. Also,
assume that each method is named based on alphabet. Whenever a method is invoked,
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read the first character of the method. Based on order of this character in alphabet, the
character is mapped into number.

h(first character of each method) = I where 1<1<26

For example, for method ASCEND_ORDER and DESCEND_ORDER has the following
hash function.

h(ASCEND_ORDER) =1

h(DESCEND_ORDER) = 4

e substep 2) Then, assume that array M_NUM stores the unique number for each method.
The array is has total Nv (number of methods) elements, and divided into 26 sectors.
Thus, each sector has N\w/26 elements.

M_NUM |A SEARCH| 1
A_NUM 2
] Nwm/26 elements
B_SEEK
Z FIND
N;

- calculate hash function => load regl, first_Char; 1 MM read for reading first character
DIV regl, 26
- calculate the first entry of address in array M_NUM
load reg2, 0
load reg3, Ny => 1 MM read
DIV reg3, 26
MUL regl, reg3
- search the method name
average N\/(26*2) MM read
compare; load regl, method_name; comp regl, T_method / Assume that T method is to
// be searched
- read the integer number => 1 MM read
Thus, total (N\/(26*2)+3) MM read + (NW/(26*2)*2+6) operations

- read method name of the requester in the commutativity table => same as read method
name of the holder
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- read the commutativity table
1 MM read (y or n) + 1 compare (load regl, conflict(row,column); comp regl, ‘y’)

Total: NUM_TRANSnst* [(NMw/26+8) MM reads + (Nw/26*2+15) operations]

step 8)
=> same as step 3) => 6 MM access

step 9)
=> same as step 3) => 6 MM access

tiock (Malta) = 2 MM reads (step 1)
+ 2 MM reads and 6 operations (step 2)
+ 6 MM access (step 3)
+ (1+NUM_INST*2) MM reads + (9+NUM_INST*2) operations (step 4)
+ NUM_TRANSnst (2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
+ NUM_TRANSnst*[(NWw26+8) MM reads + (Nw/26*2+15) operations]
(step 7)
+ 6 MM access (step 8 or 9)
= [18 + 2*NUM_INST + NUM_TRANSnst *[10+ N\W/26]]*MM_ACCESS
+ [15 + 2*NUM_INST + NUM_TRANSnst *[17+ N\wW/26*2]]*BASIC_OP where
NUM_INST Mp*Ncom/(2*B*Nc), and NUM_TRANSst = Mp*Ncom / (2*Nc*Ny)

How to find tommi in Malta’s?

step 1)
=> same as Orion: 2 MM reads + 6 operations

step 2)
=> same as Orion: NUM_TRANScyass*(2 MM read + 2 operations)

step 3)
=> same as Orion: 3 MM access

step 4)
=> same as Orion: (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step 5)
=> same as Orion: NUM_TRANSpst*(2 MM read + 2 operations)

step 6)
=> same as Orion: 3 MM reads
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Total:{9+2*NUM_TRANSLAss+2*NUM _TRANSpnsr+2*NUM_INST] MM reads
[15+2*NUM_TRANSLass+ 2*NUM_TRANSpst + 2*NUM_INST] operations

Since each transaction accesses Ncoym granules,

teommic (Malta)=
Ncom*[9+2*NUM_TRANScLAss+2*NUM_TRANSpnsr+2*NUM_INST]* MM_ACCESS
+Ncom*[15+2*NUM_TRANSass+2* NUM_TRANSpst+ 2*NUM_INST]*BASIC_OP
where NUM_INST = Mp/(2*B*Nc), NUM_TRANScLass = Mp*Ng/(2*Nc¢),
NUM_TRANSpst = Mp/(2*N.*N))

IV.3. The proposed work
How to find t,,« in the proposed work?
1) initial lock request

step 1)
=> same as Malta’s work
=> 2 MM reads

step 2)
=> same as in Malta
=> 2 MM read and 6 operations

step 3)

If there are some transactions holding locks =>

1 MM read (read Y)

3 MM writes (for transaction_id, lock, pointer <- nil)
1 MM write (change Y)

1 MM write (change Nil to newly inserted transaction)
=>6 MM access

If there is no transaction holding locks =>

1 MM read (read Y)

3 MM writes (for transaction_id, lock, pointer <-nil)
2 MM writes (change Y and X)

=> 6 MM access

step 4)

load regl, T-iid (target instance id)

load regl, reg2

load reg3, B (number of buckets) => 1 MM read
DIV reg2, reg3

MUL reg2, reg3

SUB regl, reg2
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MUL regl, 2
SUB regl, 2
ADD regl, 4
=> (1 MM read + 9 operations)

- Find target instance

1 MM read (for x or pointer)

1 MM read (for T-iid)

Compare (check if that is target instance) => load regl, iid; comp regl, T-iid (target
instance)

Assume above steps are done NUM_INST times. NUM_INST can be approximated as
follows.
NUM_INST = Ncom*Mp/(2*B*Nc)

Total: (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step 5)

=> For each lock holder, the following overhead is required.

I MM read (for X)

1 MM read (for transaction)

1 Compare (if this is other transaction or not) => load regl, t-id; comp regl, T-tid (target
transaction)

Assume that above steps are done NUM_TRANSpst times in an instance
NUM_TRANSpst = Nocom*Mp/ (Nc*Ni)

Total: NUM_TRANSnst*(2 MM read + 2 operations)

step 6)
=> | MM read
step 7) - Find a lock holder on instance
- Check commutativity table for commutativity of the lock holder’s method and the
lock requester’s method
- If no commute, go to step 9)
=> same as Malta’s work
Total: NUM_TRANSpst* [(NWw/26+8) MM reads + (N\w/26*2+15) operations]

step 8)
=> same as step 3) => 6 MM access

step 9)
=> same as step 3) => 6 MM access

tmi (Proposed)= 2 MM reads (step 1)
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+ 2 MM read and 6 operations (step 2)
+ 6 MM access (step 3)
+ (1+ NUN_INST*2) MM reads + (9 + NUM_INST*2) operations (step 4)
+ NUM_TRANSNst*(2 MM read + 2 operations) (step 5)
+ 1 MM read (step 6)
+ NUM_TRANSwst *[(Nw/26+8) MM reads + (NM/26*2+15) operations]
(step 7)
+ 6 MM access (step 8 or 9)
= [18 + 2*NUM_INST + NUM_TRANSApst *[10+Nw/26 ]]*MM_ACCESS
+ [15 + 2*NUM_INST + NUM_TRANSpsr *[17+ Nw/26*2]]*BASIC_OP

2) Recording breakpoints during method execution

- Assume that there are MUL_NUM (active) transactions in the system at the same time
(i.e., The multiprogramming level is MUL_NUM).
- Whenever a transaction is cntered into system, the transaction is assigned
multiprogramming number (MN) and MN is stored in some attribute of the transaction.

- Use array for maintaining breakpoints

- Assume that there are Ncom number of subtransaction of a given transaction

- Assume that an array A(13*MUL_NUM, Ncown) is used for maintaining breakpoints.

- The first and second element store object-id and method_name, respectively.

- The second element DISP stores displacement of the last element (breakpoint) of the
transaction.

- The remaining elements are used to store the breakpoints.

- Assume that each method has maximum 10 breakpoints.

MN, object_id object id | ...
method_name method name | ...
DISP DISP | ...
object_id object id | ...
MNmu vom | method_name method name | ...
DISP DISP | ...
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a) For each breakpoint encountered during method execution, the following steps are
done.

¢ Read MN for the transaction, object_id and method name
1 MM read + 1 MM read (o_id) + 1 MM read (method name) => 3 MM reads
o Find location of MN for the transaction in array
A+ (MN - 1)*13* Ncom
=> 7 CPU operations
=> load regl, A (1 MM read); load reg2, MN; SUB reg2, 1; MUL reg2, 13; load
reg3, Noom (1 MM read); MUL reg2, reg3, ADD regl, reg2;
Time to find (object_id, method_name) pair
0.5 * Ncom * {2 MM reads (object_id and method name) + 2 compare} where 2 compares
take 4 operations as follows: load regl, object_id; comp regl, target oid; load reg2,
method_name; comp reg2, target_method name)

=> (5 + Ncom ) MM access + (7 + 2*Ncoum) operations

e Put breakpoint into end of the list
1 MM read (for DISP) + 1 MM write (for breakpoint) +  adding DISP (2
operations:
load regl, DISP; ADD regl, 2)) + 1 MM write (for DISP) => 2 CPU operations +
3 MM accesses

b) After method execution is finished, the following steps are done.

¢ Read all breakpoints
3 MM read (for finding MN, object_id and method_name)
(5 + Ncom) MM access + (7 + 2*Nconm) operations (finding DISP)
1 MM read (for DISP)
num_br MM read ( for each breakpoint)
=> (9+ Ncom +num_br) MM accesses + (7 +2*Ncom) CPU operations

¢ Release memories

1 MM write ( DISP <- nil)

2 MM writes (object_id, method name <- nil)
=> 3 MM access

From a) and b), for recording all breakpoints in a method, we have the following
overhead.

a) num_br*(8 + Ncom) MM accesses + num_br*(9 + 2*Nconm) CPU operations
b) (Ncom + num_br+12) MM accesses + (7+2*Ncom) CPU operations

Total: toeatpois = [9*num_br+{num_br+1]*Ncoa+12]*MM_ACCESS +
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[9*num_br + [2*num_br+2]*Ncom+7]*BASIC_OP

c) lock change (After method execution)

step 1)
=> 2 MM read and 6 operations

step 2)

=> NUM_TRANScLass*(2 MM read + 2 operations)
// Assume that half of transactions on the class are searched

step 3)
=> ] MM access (write breakpoints)

step 4)
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) operations

step S)
=> NUM_TRANSnsr*(2 MM read + 2 operations)

step 6)
=> ] MM access

Total: tepsngeioct™ [S + 2*NUM_TRANScpass+2*NUM_TRANSpsr+2*NUM_INST]*
MM_ACCESS
+ [15+2*NUM_TRANSquss+2*NUM_INST+2*NUM_TRANSps1]
*BASIC_OP

Thus, tioe (Proposed) = tic(Proposed) + tveakpoiat + tehangelock

How to find t.omau in the proposed work?

step 1)
=> same as step 1) in tia : 2 MM reads + 6 operations

step 2)

=> For each lock holder, the following overhead is required.

1 MM read (for X)

1 MM read (for transaction)

1 Compare (check if this is other transaction or not) => load regl, t-id; comp regl, T-tid
(target transaction)
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Assume that above steps are done NUM_TRANScass times in a class
NUM_TRANScLass = Ncom®™ Mp/ (2*Nc) where Mp is the multiprogramming level.
Assume that only half of NUM_TRANScyass transactions is searched.

Total: NUM_TRANScLass*(2 MM read + 2 operations)

step 3)

inherit locks into parents

1 MM read (ancestor_id)

1 MM write (owner_id)

1 MM write (RET<- True)
=>3 MM access

Release the lock on class

1 MM read (read next record of committed transaction)

1 MM read (read previous record of committed transaction)

1 MM write (pointer of previous record => next record of comrmitted transaction)

=> 3 MM access

step 4)
=> same as step 4) in tiex
=> (1 + NUN_INST*2) MM reads + (9 + NUM_INST*2) opcrations

step 5)

=> For each lock holder, the following overhead is required.

1 MM read (for X)
1 MM read (for transaction)
1 Compare (if this is other transaction or not) => load regl, t-id; comp regl, T-tid (target

transaction)

Assume that above steps are done NUM_TRANSnst times in an instance
NUM_TRANSwst = Neom®*Me / (2*Nc*Ny)

Also, assume that we search only half of NUM_TRANSst transaciions.
Total: NUM_TRANSnst*(2 MM read + 2 operations)
step 6)

=> same as step 3)

=> 3 MM reads
Total:[9+2*N"JM_TRANScLAss+2*NUM _TRANSpst+2*NUM INST]*MM_ACCESS
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[15+2*NUM_TRANSLass+ 2*NUM_TRANSpst + 2*NUM_INST]*BASIC_OP
where NUM_TRANSCLASS = NcoMt Mp/ (Z‘Nc) and NUM_TRANS[NST = NcoMtMp /
(2*Nc*Np), NUM_INST = Ncou*Mp/(2*B*Nc)

Since there are Ncom subtransactions and each subtransaction has average Ncom/2
numbers of granules accessed,

toomenit (Proposed)=
Ncom®*Neow/2*[9+2*NUM_TRANS Asst2*NUM_TRANSnst+2*NUM_INST]*
MM_ACCESS

+Ncom*Neow/2*[15+2*NUM_TRANScLasst2* NUM_TRANSnsT+
2*NUM_INST]*BASIC_OP where NUM_INST = Ncom® Mp*Ng/(2*B*N¢),
NUM_TRANSLass = Ncom® Mp/(2*Nc), NUM_TRANSpst = Ncom® Mp/(2*N.*N))

V. How to calculate Database size (number of pages in database)?
V.1. Storage format

Assume that storage format for instances is adopted as follows [Kim, 1990]

uid object length | attribute count | attribute vector | values offset | values
vector

uid (unique object identifier): 4 bytes

object length (the total length of the object): 4 bytes (assumed)

attribute count (the number of attributes): 4 bytes (assumed)

attribute vector (identifiers of all attributes): 5 bytes*(number of attributes)

values offset vector (offsets of the values of the attributes): 4 bytes*(number of attributes)
values (values of attributes): depends on attribute size

1) Module class

size of values = 4+10+4+4+1093*4+4 = 4398 bytes
size of uid : 4 bytes

size of object length : 4 bytes

size of attribute count : 4 bytes

size of attribute vector size  : 5*6 = 30 bytes
size of values offset vector size: 4*6 = 24 bytes
size of values : 4398 bytes

=> total : 4464 bytes

2) Manual class

size of values = 40+4+80+4+4= 132 bytes
size of uid : 4 bytes
size of object length : 4 bytes
size of attribute count : 4 bytes
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size of attribute vector size  : 5*5 = 25 bytes
size of values offset vector size: 4*5= 20 bytes
size of values : 132 bytes

=> total : 189 bytes

3) CompositePart class

size of values = 4+10+4+4+4*4+4*20+4 = 122 bytes
size of uid : 4 bytes

size of object length : 4 bytes

size of attribute count : 4 bytes

size of attribute vector size  : 5*7 = 35 bytes
size of values offset vector size: 4*7= 28 bytes
size of values : 122 bytes

=> Total: 197 bytes

4) Document class
size of values = 40+4+80+4 = 128 bytes

size of uid : 4 bytes
size of object length : 4 bytes
size of attribute count : 4 bytes

size of attribute vector size  : 5*4 = 20 bytes
size of values offset vector size: 4*4 = 16 bytes
size of values : 128 bytes

=> total : 176 bytes

5) AtomicPart class

size of values = 4+10+4+4%2+4+4*3+4*3+4 =58 bytes
size of uid : 4 bytes

size of object length : 4 bytes

size of attribute count : 4 bytes

size of attribute vector size  : 5*9 = 45 bytes
size of values offset vector size: 4*9 = 36 bytes
size of values : 58 bytes

=> total : 151 bytes

6) Connection class
size of values = 10+4+4+4 = 22 bytes

size of uid : 4 bytes
size of object length : 4 bytes
size of attribute count : 4 bytes

size of attribute vector size  : 5*4 = 20 bytes
size of values offset vector size: 4*4 = 16 bytes
size of values : 22 bytes

=> total : 70 bytes
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7) ComplexAssembly class
size of values = 4+10+4+4+4+4*3 = 38 bytes

size of uid : 4 bytes
size of object length : 4 bytes
size of attribute count : 4 bytes

size of attribute vector size : 5*6 = 30 bytes
size of values offset vector size: 4*6 = 24 bytes
size of values : 38 bytes

=> total : 104 bytes

8) BaseAssembly class
size of values = 4+10+4+4+4+4*3 = 38 bytes

size of uid : 4 bytes
size of object length : 4 bytes
size of attribute count : 4 bytes

size of attribute vector size  : 5%*6 = 30 bytes
size of values offset vector size: 4*6 = 24 bytes
size of values : 38 bytes

=> Total 104 bytes

V.2. Disk and Page layout in OODB [Kim, 1990]

Assumptions:

A raw disk can be divided into a set of partitions (analogous to cylinder groups).
Each partition consists of number of segments.

Each segment in turn consists of a number of blocks or pages.

In each partition, the disk header contains information such as the number of partitions,
the address and size of each partition and the recovery log file

Segments in a partition are described by a segment table in which the address and sizes of
the page tables for the segments are stored.

Each page table in a segment records information about the size of each page in number
of blocks

The partition table (in disk header) format

Class Partition number partition address partition size
C 1 L
C. 15 N P
The segment table format in partition P; (indicated by partition address in partition table).
Class Segment number segment address | segment size
C, St e e
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. CERmTTs

............................................................................

The page table format irriegment Si (indicated by segment address in segment table).

Class Page number Page address Page size
C Pr et e
Cn Pm .................................................

A page has the following format [Kim, 1990]

Indirect-pointer array  Contiguous Total free space
free space
/ A"
Header N R A Y-\ e I - B : B
I INEMEN 1% l 1 |

Header provides information about the page such as number of objects, total free space,

contiguous free space, offset to free space, etc.
Indirect pointer array: offset to the page location where the object is placed.

The physical address of an object: concatenation of the page that holds the object and the

byte offset within the page.

For simplicity, assume that size of header is negligible and there is no free space. Then, for
each class C; , the amount of memory required for all of its instances, say S;, can be

calculated as follows. Let I; be the number of instances in C;.

S; = size to store indirect pointer array + size to store all of instances in C;
= J;*size to store each address +I;*size to store each instance
= I;*(size to store each address + size to store each instance)

Then, for 007 benchmark, we can calculate DBsize as follows.
Module class = 4 + 4464 = 4468 bytes

Manual class =4 + 189 = 193 bytes

CompositePart class = 500*(4+197) = 100500 bytes
Document class = 500*(4+176) = 90000 bytes

AtomicPart class = 500*20*(4+151) = 1550000 bytes
Connection class = 500*20*3*(4+70) = 2220000 bytes
ComplexAssemby class = 364*(4+104) = 39312 bytes
BaseAssembly class = 729%(4+104) = 78732 bytes

Pages needed for each class can be calculated as follows. Note that size of each page is

2048 bytes.
Module =[4468/2048 ] = 2 pages
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Manual =[193/20481 =1 page
CompositePart =[ 100500/2048 | = 50 pages
Document =[90000/20481 = 44 pages
AtomicPart =[1550000/2048 1= 757 pages
Connection =[ 2220000/2048 1= 1084 pages
ComplexAssembly =[39312/2048 1 = 20 pages
BaseAssembly = 78732/20481=39 pages

Therefore, DBsize = 2+1+50+44+757+1084+20+39 = 1997 pages
Assume that there are 10 partitions (cylinders). Then, each partition has about 200 pages.

Also, assume that only one class is stored in the same segment of disk pages. Thus, total
8 segment are required to store 007 benchmark database.

213



