UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

FORECAST SENSITIVITY TO OBSERVATIONS USING DATA DENIAL AND

ENSEMBLE-BASED METHODS OVER THE DALLAS-FORT WORTH TESTBED

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of

DOCTOR OF PHILOSOPHY

By

NICHOLAS ANTONIO GASPERONI
Norman, Oklahoma
2018



FORECAST SENSITIVITY TO OBSERVATIONS USING DATA DENIAL AND
ENSEMBLE-BASED METHODS OVER THE DALLAS-FORT WORTH TESTBED

A DISSERTATION APPROVED FOR THE
SCHOOL OF METEOROLOGY

BY

Dr. Xuguang Wang, Chair

Dr. Frederick Carr, Co-Chair

Dr. Ming Xue

Dr. Keith Brewster

Dr. Deepak Devegowda



© Copyright by NICHOLAS ANTIONIO GASPERONI 2018
All Rights Reserved.



Acknowledgements

[ am deeply grateful for the guidance of my main advisor, Dr. Xuguang
Wang. She put me in an excellent position to succeed with my research goals
despite the many challenges encountered. I would like to acknowledge all of my
committee members - Drs. Frederick Carr, Keith Brewster, Ming Xue, and Deepak
Devegowda - for their support. [ am also very thankful for the input and support
for the project provided by Drs. Fred Carr and Keith Brewster. The different
perspectives allowed my research to grow in unique directions. This dissertation
would not exist if not for the advice of my Master’s thesis advisor, Dr. Ming Xue,
who was supportive in pursuing for me the OU Alumni Fellowship and
instrumental in convincing me to stay on to pursue this Ph.D. [ would also like to
thank several fellow past and present graduate students and colleagues for our
research and general discussions including Lee Carlaw, Yongzuo Li, Sam Degelia,
Aaron Johnson, Hristo Chipilski, and Matthew Morris.

Computer resources used for experiments in this dissertation were
provided by the OU Supercomputing Center for Education and Research (OSCER)
at the University of Oklahoma, the Texas Advanced Computing Center (TACC) at
the University of Texas, and the National Science Foundation XSEDE program. I
want to thank director Henry Neeman and the rest of the OSCER staff for being
very responsive to any computing issues encountered. [ would also like to
acknowledge and thank the Oklahoma Mesonet and the Meteorological

Assimilation Data Ingest System (MADIS) at NCEP for providing observation

iv



datasets used in this work. I also want to thank Yoichiro Ota for providing me with
his code to calculate EFSO within the GSI-EnKF system.

On a personal note, I absolutely must thank my wonderful, patient, caring
wife Agatha-Beth, without whom I do not think I could have ever gotten through
this most trying time of my life. You were there for me for all of my ups and downs,
and I can unequivocally say I would not be where I am today without you. Special
thanks to sisters Rachael and Vittoria, and close friends Amanda Kis, Wade
DeJager, Virginia Silvis, and Mike Hunter for the great moments of fun we had
among the long Ph.D. grind! Finally, I would like to think my parents, Deborah and
Vittorio, for the love and support you provide me every day even from 1,100 miles

away.



Table of Contents

ACKNOWIEAZEMENLS ......coeicimrcmsnssssisssssnsssss s s a s n s s iv
LiSt Of Tables.....cmssss s viii
LiSt Of FIiGUIES ... ss s s ssssssns s s sssssnsnss ix
ADSETACE .. XV
Chapter 1: INtroduction ... 1
1.1 BACKGTOUNM ...oieeieceeeeeeeseeeeeeesseeeessessse e ssesssesssss st s s sssnsas 1

1.2 Motivation and diSSertation OVEIVIEW ........ereneesneensesseessesseessessessssssessessseens 7
Chapter 2: Ensemble-based methods.........nnsssans 10
2.1 KalMan filEET et sessses s s s ss bbb 10

2.2 Ensemble Kalman filter (ENKF)....oeeeseseeseeseeseeseeeessessesseessessesseeanes 13
2.2.1 Ensemble Square ROOt FIlter ... ssesseessessesssessnees 17

2.2.2 Review of localization Methods.......ccmenmeeneemeenseenseneeseeseeseesseesesseesseseees 18

2.2.2.1 Adaptive localization Methods ......cmeererreereenrerseesneereereeseesseeseeseenns 23

2.3 Ensemble forecast sensitivity to observations (EFSO) ....cconeineenneneenes 27
2.3.1 Studies applying the EFSO method ... 30

Chapter 3: Assessing Impacts of the High-Frequency Assimilation of Surface
Observations for the Forecast of Convection Initiation on 3 April 2014

within the Dallas-Fort Worth Testbed. ..., 33
700 B {4 Lo 0T LT 0 o) o 33
3.2 3 ADPIil 2014 CASE OVEIVIEW....oieureeeeureeeeneeseesseessssssssessessesssessssssessssssssssssssssssssssssssanes 37

3.2.1 Summary, synoptic setup, and storm evolution ..........reesreennens 37

3.2.2 Description of 0bServations USed ........uomemeenreeseeneeseesseessesseesessesssessees 43
S J0C T 05 40 1= 00 0 =) 0 LY =1 0 o O 46

3.3.1 Model configurations and initial ensemble.........ccoorrneorrrnrereenneereerennnens 46

3.3.2 Data assimilation SEHNES .....cccureereereeneesseereeseessessessessssssessssssessesssessesssesssees 49

3.3.3 Observation processing and quality control........onneneesseennens 53

3.3.4 Data denial eXperiment SETUP ....coeeererreererseessessessesssessesssessesseessessesssesssees 54
34 RESUILS oottt 57

3.4.1 Evaluation of CNTL eXPeriment .....emeenseenseseeseessesssesseessessesssesseees 58

3.4.2 Evaluation of denial eXperiments.......enenneenseseessesseesessessseseees 61

3.4.3 Evaluation of surface fields ... 66

3.4.4 Sensitivity t0 ODSEIrvation LYPe ...ooereenreeneeserssesseeseeseessessesseessessesssesssees 74
3.5 SUMMAry and diSCUSSION .....cuereereereeeesreeeesseessesesssessessesssesssssesssesssssssssssssssssessssanes 76

Chapter 4: Adaptive Localization for the Ensemble-based Forecast Sensitivity
to Observations (EFSO) Metric using Regression Confidence Factors 81
T2 R ' U 0 Yo 10 ot () o N0 81

vi



4.2 The RCF method of computing localization for EFSO.......ccononenecineennens 83

4.3 EXPEriment dESIZIN ..oocucereereeereeresseessseseessesssessesssessesssessssssesssesssssssssssssssssssssssssssesssssanees 84
4.3.1 The assimilation and forecast SYSteM.......ccorenerneenmerseeserssesseessesseessesseeens 84
4.3.2 Settings for impact estimate experiments using RCF .......cccoonerreneenn. 86
44 RESUILS .ottt 88
T30 30 S 208 B 0 Yoz=1 221 [0 ) ¢ 0O 88
4.4.2 Single-observation impact eXperiment........eeneeseesneessesseesseeseeens 93
4.4.3 All-observation impact eXPeriments.......ceemeensesseessesseessessesseessesseeens 97
4.4.4 Relationship between localizations for data assimilation and for
0 S O 102
4.4.5 All-observation experiment using RCF localization during
ASSIMIIALION oo 107
4.4.6 Using RCF to design automatically-tuned elliptical GC localization
100 011 0 ) o PN 108
4.5 Conclusion and diSCUSSION.....cuirmrmereserssrssss s 112
Chapter 5: Application of EFSO to Convective-Scale Case Study .........ccceuseruns 116
S0 S 00 L0 076 L Tod 0 ) o 116
5.2 EXPEriMENt SETUP .eovereereeureeeesseesesseessesseessessessessssssessssssssssssssesssssssssssssssssesssssssssssssssanes 118
5.3 RCF 10CaliZation.....osiercereririssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssans 121
ST 700 BN 0 01 1 1oF: U (0 ) o 00O RT 121
5.3.2 Analysis of resulting RCF funCtions .......ccooenenenneeneeseessesseesesseessesseens 125
S 0 T O/ E] 1 128
5.4.1 Comparison of verification MEetriCS.....cuemenereesmeeseeseeseesseesesseessesseees 128
5.4.2 Evaluation of localization functions applied to EFSO ......cccccovenneunece. 132
5.4.3 Effect of nonlinearity on EFSO accuracy ......eeensesseesseeseens 137
5.5 Summary and diSCUSSION ......ceucereereemreeeeeseeseeseessesssessessessessssssssssesssessssssssssssssanes 140
Chapter 6: CONCIUSIONS ... ssssssssssssssssnsas 143
Appendix A: Derivation Of EFSO.......nssssssnsssssssssssssssssssssssssssses 160

Appendix B: Relationship between EnKF localization and EFSO localization

vii



List of Tables

Table 3.1. All observing platforms available within the DFW testbed as of 2017.
Used column represents whether that observation platform was used in this study
(Y) or not (N); n/a means “not available for this study”. The last column specifies
whether the platform is considered a “conventional” or “nonconventional” dataset

Table 3.2. WRF model settings and physics parameterization schemes.........ccccc.... 47
Table 3.3. Initial observation error table values used for surface and radar

datasets. Last column indicates localization cutoff scale used for each data source.

Table 3.4. Summary of surface data denial experiments.........ccomeereneerreeneessessesseennes 56

viii



List of Figures

Figure 2.1. Depiction of the effect of covariance localization, adapted from Hamill
(2006). Observation is located in East Asia and contours are sea-level pressure,
with color contours representing correlations in (a,b,d) and the GC function in (c).

Figure 2.2. Schematic of actual forecast error reduction in a cycled DA system. Each
line represents forecast error with time. Vertical line represents observations
assimilated at time 0 using the first guess forecast as a background. Difference in
error at time ¢ is linked to assimilated observations at time 0. ... 28

Figure 3.1. SPC preliminary storm reports valid from 1200Z on 4/3/17 to 1200Z
on 4/4/17, overlaid on the day 1 categorical outlook issued at 1630 UTC on
04/03/17. Markers indicate tornado reports (red dots), significant hail reports
greater than 2 in. diameter (black triangles), other severe hail reports (green dots),
significant wind reports above 65 kts (black squares), and other severe wind
FEPOTTS (DIUE AOTS). couueeieeereereereereeeeteese s e s e s s p e 37

Figure 3.2. Upper-air 300-hPa observations, isotachs (blue and color-filled
contours), streamlines (black contours), and divergence (red contours) valid at (a)
1200 UTC 3 April 2014 and (b) 0000 UTC 4 April 2014........oermeernmeeereerreerseeessesssseeennns 38

Figure 3.3. Surface map of observations with approximate locations of cold front
(blue line with triangles), stationary front (mixture of blue-triangles and red-
scallops), and dryline (brown scalloped line), valid 1607 UTC 3 April 2014............ 39

Figure 3.4. Fort Worth, TX (FWD) sounding and hodograph (upper right corner)
valid 1200 Z 3 April 2014, taken from the SPC Experimental Sounding Analysis
System which uses sounding analysis program NSHARP (Thompson and Hart
2017 ceeerteueeessessssessssessssesss s s RS R R R RS R R R R R R R SRR 40

Figure 3.5. (a-e) Observed digital hybrid reflectivity from terminal Doppler radar
TDAL, valid at 1829, 1911, 2008, 2044, and 2144 UTC, respectively. (f) SPC severe
hail reports (triangles) and MPING hail reports (asterisks) between 1800 and 2200
UTC. Red markers indicate significant hail reports greater than 2 in, and magenta
lines indicate the 30-dBZ contour of maximum observed composite reflectivity
over the 1800-2200 UTC time Perioqd. ..c.oereereereereeeesseesessesssesseessesssessesssesssssssssssssssssesssans 42

Figure 3.6. WRF model two-way nested grid setup. Outer domain has 12-km
horizontal resolution, and inner grid has 2.4-km horizontal resolution (5:1 ratio).
Dots indicate locations of WSR-88D radars used during inner cycle DA, with circles
representing 200-km ranges for each radar. ... 48

Figure 3.7. Cycled DA experiment diagram. On the outer grid, after 3-hour spinup
four 3-hourly DA cycles of conventional observations were performed, inner grid

ix



initialized at 1500 UTC. After 1-hour spinup, 5-min. DA cycling of all observations
was performed for 2 hours (1600 - 1800 UTC). Free ensemble forecast initialized
at 1800 UTC and run for 3 ROUTS.....ess s ssssssssssssssssssssssssssssssssssssssssssaes 49

Figure 3.8. (a) Locations of all observations assimilated on inner domain between
1600 and 1800 UTC. (b) All surface observations available from 1600-1800 UTC,
zoomed iNto the DFW FeZIOMN. ...t seessssssssesssssesssessssssssssssssssssssssssssssssanes 55

Figure 3.9. (a-b) Observed composite reflectivity mosaic valid 1930 and 2030 UTC
on 3 April 2014, respectively. (c) Ensemble probability of maximum 3-h (18-21
UTC) composite reflectivity = 35 dBZ (%), with observed 35-dBZ maximum 3-h
composite reflectivity (black CONTOUTS). ..ot seeaseeeeans 59

Figure 3.10. Ensemble probability of 15-min maximum composite reflectivity
greater than 35 dBZ for experiments CNTL (a-c), denyASOS (d-f), and NOSFC (g-i).
Magenta contour indicates observed maximum 15-min composite reflectivity for
each time period indicated by COIUMNS. ... 60

Figure 3.11. Neighborhood ensemble probability of maximum hail size in the
entire column exceeding 10 mm (a) and 25 mm (b) for the entire 3-h forecast
period (18-21 UTC) plotted for the CNTL experiment, using a neighborhood radius
of 9.6 km. Triangles indicate SPC hail reports, and asterisks indicate mPING hail
reports, sized according to size of the hail reported. ... 61

Figure 3.12. As in Figure 3.10, but for experiments NONEWSFC (a-c), denyERNET
(d-f), and dENYCWOP (1) .ccureereereerreeeessersresseessesseessesssessesssessssssessssssssssessssssessssssesssssssssssssssssesssssns 63

Figure 3.13. As in Figure 3.11a, but for denial experiments (a) denyASOS, (b)
denyERNET, (c) denyCWOP, (d) NONEWSEFC, (e) denyMISC, and (f) NOSFC............ 65

Figure 3.14. As in Figure 3.11b, but for denial experiments (a) denyASQOS, (b)
denyERNET, (c) denyCWOP, (d) NONEWSEFC, (e) denyMISC, and (f) NOSFC............ 66

Figure 3.15. (a-b) Final analysis mean 10-m dewpoint temperature (color fill) and
wind (vectors), valid 18 UTC 3 April 2014, for experiments CNTL and NOSFC,
respectively. (c-d) Vertically-integrated moisture flux convergence (mm(H:0) s1)
computed for the lowest 2-km above ground level, with wind (vectors) at 2 km
above ground, valid 18 UTC 3 April 2014 for experiments CNTL and NOSFC,
respectively. Thick brown line indicates approximate dryline location, and blue
box indicates location of Wise COUNLY, TX. ..oorerrrneemeeneerreenesseeseeseesssesessessessesssesssssssssnees 68

Figure 3.16. Difference fields for ensemble mean 2-m dewpoint temperature
(color fill) and 10-m wind (vectors) for final analysis time 18 UTC 3 April 2014: (a)
denyERNET minus CNTL, (b) denyCWOP minus CNTL, (c) denyASOS minus CNTL,
(d) denyMISC minus CNLT. Color-fill dots indicate respective observations from
each denial experiment for each plot, with colors and sizes indicating the 0-A
values for each denial dataset (i.e. what the observation innovations would have

X



been if denied observations were assimilated). Yellow star indicates approximate
CI location in SW Wise County, and blue outlines highlight relevant observations
INfluencing the CI fOrECAST. ...t ses s sssss s s s snsaes 71

Figure 3.17. Time series root mean square difference (RMSD) and bias (model
minus observations) of ensemble mean for all experiments, plotted for
temperature (a-b), dewpoint temperature (c-d), and wind (e-f). Note that the bias
in (f) is wind magnitude bias ONLY. ... seesessesssssesssssssessssaes 73

Figure 3.18. As in Figure 3.10, but for denial experiments (a-c) denyMISC, (d-f)
denyCW, and (g-1) deNYCWWIIA......ccouruereereesreesesseessesseessssssesssssssssesssssssesssssssssessssssssssssassssesns 75

Figure 3.19. As in Figure 3.11, but comparing NEP of max hail size exceeding 10
mm (a-b) and 25 mm (c-d) for experiments CNTL (a,c) and denyCWwnd (b,d). ....76

Figure 4.1. Flowchart of RCF method. After an LETKF ensemble analysis, an
ensemble forecast is run to some time t. Then the analysis and forecast ensembles
are randomly split into four groups, and for each group fis calculated according to
Equation (4.3) . The RCF is then computed according to Equation (4.2) for all
observation-state pairs. This RCF envelope, unique for each analysis cycle, is fed
into a running average over all the analysis cycles. The mean RCF envelope then
serves as the GF localization function for impact estimate experiments. For the
experiments in this chapter, the mean RCF function is calculated over 900 cycles
110 7= PPN 86

Figure 4.2. Zonal cross-sections of RCF, averaged over 900 cycles, for model
interface height of a midlatitude observation located at 60°N, 15°E. The curves
represent mean RCF functions calculated using g = 4 groups, with differing
numbers of ensemble members per group - 8, 16, 32, and 64. The vertical dashed
line represents the longitudinal location of the observation. (a) RCF function for
the analysis (forecast t = 0), (b) RCF functions for a t = 2-day ensemble forecast..89

Figure 4.3. As in Figure 4.2., but for RCF functions calculated with varying numbers
of groups, with 16 ensemble members Per GroUP. ....coereeneesreesmesseessessemssesssessesssesseeans 90

Figure 4.4. Examples of RCF functions for seven differing interface height
observations (locations marked by white dots), calculated for analysis time (t =0)
of model interface height. The wind vectors are a 900-cycle average of ensemble
mean layer-2 wind. For plotting purposes, each observation’s RCF function is
displayed only for values greater than 0.3........cenenneeeeeeseeseessessessessseeseeens 92

Figure 4.5. Contour plots of RCF localization functions for one interface height
observation valid at various forecast lengths, (a-c) for analysis time, t = 0, (d-f) for t
= 1-day forecast, (g-i) for t = 2-day forecast, and (k-1) for t = 3-day forecast. The
first column shows RCF envelopes for model interface height, and the second and
third columns show envelopes for cross-variables zonal and meridional layer-2
wind, Ugz and Vgz, FESPECLIVELY. ..t seessesseesse s sesses s s s sssssasasees 93

xi



Figure 4.6. Contour maps of EFSO impact estimates from a single-observation
(vellow dot) assimilation experiment. Each column, from left to right, is the actual
impact (i.e. actual forecast error reduction), the ensemble-estimated impact using
a static GC function with 8,000-km cutoff radius, and the ensemble-estimated
impact using the RCF localization functions as pictured in Figure 4.5, and
ensemble-estimated impact using automatically-tuned elliptical GC functions (see
section 4.4.6), respectively. (a-d) Impacts at analysis (t = 0), (e-h) impactsona t =
2-day forecast, (i-1) impacts on a t = 4-day forecast. Color-filled contours show
impact values (m?), black contours are model interface height in 1000-m intervals,
and magenta contour lines show the localization function applied to the impact
estimate contoured in intervals of 0.2 starting at 0.2. ....coonerenreneesneeseeseensesseeseeseeens 96

Figure 4.7. Global-average skill score of EFSO estimates verified against actual
error reduction. Red lines are impact estimations using RCF localization; blue lines
are estimations using static GC localization (8000 km). Solid lines valid for
assimilation experiment using 8000-km GC localization during assimilation,
dashed lines valid for assimilation experiment using analysis RCF functions as
localization (RCF-assim, see section 4.4.5). (a) Skill scores for impact on model
interface height impact, and (b) Skill scores for layer two meridional wind............. 98

Figure 4.8. Bar charts showing percentage of cycles with skill scores of ensemble
observation impact estimates greater than (a) 0.0 and (b) 0.5, for no localization
(light blue), square or top-hat localization with 8000-km cutoff (orange), GC
localization with 8000-km length scale (blue), and GF localization (red). .....c.ccoceeu.. 99

Figure 4.9. Optimal tuning of the GC length scale for EFSO at analysis (black), 1-day
forecast (blue) and 4-day forecast (green), verified against actual error reduction
and averaged over 48 cycles. Colored dots indicate RMSE of ensemble impacts
using RCF localization, plotted vertically from its respective optimal RMSE using
GC. Vertical dashed line indicates the GC length scale used for assimilation (8000
540 ) PP 100

Figure 4.10. Zonally-averaged pattern/map correlation of EFSO in model interface
height compared to actual impact, for no localization (black), GC localization
(blue), and dynamic RCF localization (red). Dashed red line shows correlations of
estimated impact using RCF localization at analysis time during assimilation (RCF-
assim, see section 4.4.5 for further details) (a) For 1-day forecast impact, (b) For 3-
(0 F2 N8 0] (=T0r= 13 o 101 0 X- Lot OO 102

Figure 4.11. Localization functions for an equatorial observation (white dot): (a)

GC localization function with 8000-km length scale (outermost ring is contoured at
0.01), (b-c) RCF functions valid for analysis (t = 0) and 2-day forecast, respectively.
................................................................................................................................................................... 105

Figure 4.12. Single-observation impact experiment for an assimilated observation
located at the equator (yellow dot). (a) Actual impact, or actual error reduction, of

xii



observation at analysis time, (b) Ensemble estimate of impact using GC localization
(8000 km), and (c) Ensemble estimate of impact using RCF localization. Color-filled
contours show impact values (m?) and black contours are model interface height

IN 1000-M INEEIVALS ...vveiererirrersesss s 106

Figure 4.13. Summary plot of potential localization tuning parameters for the
impact estimation as a function of forecast time, derived from RCF functions in
model interface height. (a) Offset distance from observation, or shift, defined as the
distance between RCF maximum and the observation, (b) Reduction in magnitude
with increasing forecast time, (c) Fractional surface area coverage, (d) Maximum
span, or range, of RCF values in zonal direction (solid) and meridional direction
(dashed). Values are averaged for all observations within 40 - 55 °N (black) and 55
= 70 ON (BTOY ). ceeurerreerrerseesserssesseessesssessesssesssessessesssesssessasssessasssesssessesssessssssesssessesssessesssesssessassssssssssssanes 109

Figure 4.14. Automatically-tuned elliptical GC localization functions for (a)
analysis, (b) 1-day, (c) 2-day, and (d) 3-day forecasts. The parameters used for the
tuning are shown in Figure 4.13. Results of test application of these automatic GC
localizations to EFSO estimate are shown in the rightmost column of Figure 4.6.

Figure 5.1. (a) Static 200-km GC localization function (b) Advected GC localization
using t = 30 min forecast. White dot indicates location of observation.................... 121

Figure 5.2. (a-b) Examples of RCF functions computed for the observation locations
shown by the white dots, valid for 60-minute forecast. (c-d) 2°x2° bin-averaged
RCF for the bins corresponding to the observation locations in (a) and (b),
respectively. White dotes correspond to the central location for each bin. (e-f) As in
(C-d) DUL FOT 1°X 1" DINS. cerreeeeeeeeeeneesessseesseesssesssesssesssessseesssssssssssssssssssessssssssesssssssesssssssssssssssssssnees 124

Figure 5.3. Bin-averaged RCF functions for different observation variable types: (a)
zonal wind, (b) meridional wind, (c) temperature, and (d) specific humidity. White
dot indicates central position of the location of the bin........ccoononereneecseeneeneenns 126

Figure 5.4. Demonstration of the time-forecast component for bin-averaged RCF
function. White dot indicates central position of the location of the bin. Times
shown are (a) Analysis (0-min fcst), (b) 60-min fcst, and (c) 120-min fcst. ........... 127

Figure 5.5. Actual impact (top row, a-c) and EFSO estimate with static localization
(bottom row, d-f) in terms of moist total energy. Three times are shown: analysis
t=0 (a,d), 60 min forecast (b,e), and 120 min forecast (C,f). ...ccorrereermeereereenrerseesrerseens 129

Figure 5.6. Pattern correlation of EFSO estimate compared to actual impact,
averaged over the number of cycles available (25) for kinetic energy (a), dry total
energy (b), and moist total energy (c). Black lines indicate static GC localization
and blue lines indicate advected localization with weighting coefficient of 0.75
(solid) and 1.5 (dAShed). ..o sses s s s 130

xiil



Figure 5.7. As in Figure 5.6 but for surface verification fields zonal wind (a),
meridional wind (b), specific humidity (c), and temperature (d). ....cccueoreerreereerreennes 131

Figure 5.8. As in Figure 5.6 but with the addition of RCF localization tests using
2°x2° binning (solid red lines) and 1°x1° binning (dashed red lines). Verification
metrics shown are (a) dry total energy, (b) moist total energy, (c) surface moisture,
(d) surface temperature, and (e) surface zonal Wind........coooneneenreseesseeseeseesseeseenns 133

Figure 5.9. (a-b) Actual impact in surface moisture after 1800 UTC analysis. (c-d)
EFSO estimates with static localization, (e-f) EFSO estimated with advected
localization (coef=0.75), (g-h) EFSO estimates with 1°x1° binned RCF localization.
Left column is 30-min forecast, right column is 60-min forecast. Black contours
show impact values at analysis time t=0. ... seeesesesseees 135

Figure 5.10. (a-b) Actual impact in surface zonal wind after 1800 UTC analysis. (c-
d) EFSO estimate with advected localization, (e-f) EFSO estimate using binned RCF
localization. Left column is for 60-min forecast, right column is 120-min forecast.
Black contours show impact values at analysis time t=0. .......ccccocomnerneenrereerseereeseennes 136

Figure 5.11. (a-b) 30-min forecast of composite reflectivity for the first guess and
analysis mean, respectively. (c) Actual impact computed in terms of composite
reflectivity as a verification, in units of dBZ2. (d) The EFSO estimate of impact.
Negative (blue) values indicate positive impact of observations. ..........ccoeerereereenes 137

Figure 5.12. Correlation of EFSO estimate with actual impact in (a) surface
pressure and (b) composite reflectivity verification metrics, shown for EFSO
estimates with static (blue) and advected (red) localizations .........ceeneeereereeneenes 139

Figure 5.13. Single observation impact experiment with a surface pressure
observation, verifying against surface pressure field. Top row (a-c) is the actual
impact at t=0, 5, and 10 min forecasts, and bottom row (d-f) are EFSO estimates
with static 200-km GC localization applied. ......ooenenreeneeineenneeseenseeseeseeseessessesseesseseens 140

Xiv



Abstract

The ‘Nationwide Network of Networks’ (NNoN) concept was introduced by
the National Research Council to address the growing need for a national
mesoscale observing system. Part of this growing need is the continued
advancement toward accurate high-resolution numerical weather prediction. The
research testbed known as the Dallas — Fort Worth (DFW) Urban Demonstration
Network was created to experiment with many kinds of mesoscale observations that
could be used in a data assimilation system, in order to identify observational systems
that are most impactful on high-resolution forecasts. Many observation systems have
been implemented for the DFW testbed, including Earth Networks (ERNET) Weather
Bug surface stations, Citizen Weather Observer Program (CWOP) amateur surface
stations, Global Science and Technology (GST) mobile truck observations, CASA X-
band radars, SODARs, and radiometers. These ‘nonconventional’ observations are
combined with conventional operational data from METARs, mesonet, aircraft,
rawinsondes, profilers, and operational radars to form the testbed network. A principal
component of the NNoN effort is the quantification of observation impact from several
different sources of information. This dissertation covers two main themes related to
quantifying the impact that observations have on forecasts.

The first part is the quantification of impact using data denial experiments, or
observational simulation experiments. The GSI-based EnKF data assimilation system
was used together with the WRF-ARW model to examine impacts of observations

assimilated for forecasting convection initiation (CI) in the 3 April 2014 hailstorm case.
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Data denial experiments were conducted testing the impact of high-frequency (5-min)
assimilation of nonconventional data on the timing and location of CI, as well as on the
development of storms as they progress through the testbed domain. Results using
ensemble probability of reflectivity and neighborhood ensemble probability of hail
show nonconventional observations were necessary to capture local details in the
dryline structure causing localized enhanced convergence and leading to CI. Diagnosis
of denial-minus-control fields showed the cumulative influence each observing network
had on the resulting CI forecast. It was found that most of this impact came from the
assimilation of thermodynamic observations. Accurate metadata is found to be crucial
to the application of nonconventional observations in high-resolution assimilation and
forecasts systems.

The second part of this dissertation explored the application of the ensemble-
based forecast sensitivity to observations (EFSO). First, tests using a global two-layer
model were performed to identify areas of improvement in the localization methods
needed to make EFSO estimates accurate. Due to the time-forecast component,
localization of the EFSO metric is more complicated than during traditional assimilation
because as forecast time increases the error correlation structures evolve with the flow.
Experiments made use of the local ensemble transform Kalman filter (LETKF) with
a simple two-layer primitive equation model and simulated observations.
Application of an adaptive localization method — regression confidence factors (RCF)
based on a Monte Carlo “group filter” technique — led to marked improvement
especially for longer forecasts and at midlatitudes, when systematically verified

against actual impact in RMSE and skill scores. Results showed that the shape,
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location, time-dependency, and variable-dependency of RCF localization functions
are consistent with underlying dynamical processes of the model. The impact
estimates near the equator were not as effective due to large discrepancies
between the RCF function and the localization used at assimilation time. These
latter results indicated that there exists an inherent relationship between the
localization applied during the assimilation time and the proper localization choice
for observation impact estimates. Application of RCF for automatically tuned
localization is introduced and tested for a single observation experiment.

Next, the EFSO method was applied to the high-resolution CI case from 3 April
2014 and evaluated for accuracy in terms of several verification metrics, including
energy norms surface variables, and composite reflectivity. Static and advected
localization were applied to EFSO and compared for accuracy to the actual forecast
error reduction. The RCF method was also applied to the convective-scale EFSO
estimation. Results showed that different verification metrics lead to different forecast
length scales of useful estimates. The application of EFSO to reflectivity is hindered by
the high nonlinearity of convection, though there were some qualitative insights in its
use. The application of RCF localization, while found to reveal the underlying flow-
dependence of the case study including the time-forecast component, did not improve
upon the advected localization method. This is hypothesized to be due in part to insights
gained from the two-layer model work, though other adaptive methods may yet yield
better results. Nevertheless, the application of EFSO is appropriate for convective-scale

systems on forecast time scales of 90 minutes or less.
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Chapter 1: Introduction

Portions of this dissertation are direct excerpts of Gasperoni and Wang
(2015; © American Meteorological Society). This includes parts of chapters 1, 2,
and 4.
1.1 Background

The field of Numerical Weather Prediction (NWP) has enjoyed a steady
increase in weather forecast skill of about one day per decade over the last 4-5
decades, representing a ‘quiet revolution’ of the accumulation of scientific
knowledge over that timeframe (Bauer et al. 2015). According to Simmons and
Hollingsworth (2002), this steady improvement can be broadly attributed to
improvements in three areas: data assimilation (DA), modeling, and observing
systems. Examples of DA improvements include the use of increasingly advanced
methods such as four-dimensional variational analysis (4DVAR) and the use of
ensembles within the DA methods to directly inform on daily forecast
uncertainties. Ensemble methods include variations of the ensemble Kalman filter
(EnKF) or hybrid methods that combine ensemble-based and variational-based
methods. Improvements in modeling include the use of parameterization schemes
to represent the physical processes at sub-grid scales, as well as the continued
effort to increase the grid resolution to better resolve finer scale features. The
clearest example of improvements to observing systems is the increasing use of
global satellite radiance observations, which advanced the predictive skill of the
southern hemisphere to match the skill in the northern hemisphere. It would be

remiss to not mention a fourth contributor to the steady improvements -



advancements in computing power - without which the many advancements in the
DA, modeling, and the use of large-volume observing systems would not be
possible.

With the increasing computing power and sophistication of DA methods
and NWP models, there is great potential to increase our understanding and
forecasting accuracy of high-impact severe weather events. As NWP moves
towards grid resolutions that explicitly resolve convection, there are unique
challenges to be addressed in the pursuit of skillful high-resolution forecasts. For
instance, in terms of DA, a significant unknown remains how to optimally design
an ensemble such that smaller meso-beta-scale uncertainty is represented within
the ensemble. In terms of modeling, increasing grid resolution reduces but does
not eliminate the need for physical parameterization schemes. Further study is
needed to refine schemes to work in a modeling environment that partially
resolves some physical features but not others. For example, boundary layer rolls
are partially resolved at 1 km horizontal resolution, but boundary layer
parameterization is still necessary to capture the sub-km-scale processes.

Accurate high-resolution forecasts also require the availability of mesoscale
observing networks. Dense observations are needed in both space and time to be
able to capture the small scale and rapidly evolving features of severe events.
Unfortunately, no such national mesoscale network currently exists. A report by
the National Research Council (NRC; 2009) underscored the need for a national
mesoscale network of observations and recommended the integration of existing

and future mesoscale observations into a nationwide network of networks



(NNoN). Identified deficiencies in measurements include the height of the
boundary layer, vertical profiles of humidity and temperature, and soil moisture
and temperature profiles. The report further recommended the implementation of
research testbeds in order to objectively evaluate the impacts of proposed
observing systems for the NNoN concept. Such testbeds facilitate collaboration
between researchers, forecasters, measurement specialists, and the private sector
to accelerate the transition from research on observing systems to their
operational implementation (Dabberdt et al. 2005; National Research Council
2009).

The Collaborative Adaptive Sensing of the Atmosphere (CASA; McLaughlin et
al. 2009) Dallas-Fort Worth (DFW) Urban Demonstration Network (DFW Testbed,
hereafter) was established as a testbed to carry out the vision of the NNoN concept
(National Research Council 2012). It is an ideal location given the DFW area is
home to a population exceeding 7 million, two major airports, other transportation
centers and many large sports venues; additionally DFW experiences a wide range
of hazardous weather from flash flooding to severe storms with large hail,
damaging winds, and tornadoes throughout the year. Many in situ surface and
remote sensing observation systems have been implemented for the DFW testbed.
Surface observing networks include Earth Networks surface stations (ERNET;
Earth Networks 2017), amateur stations from the Citizen Weather Observer
Program (CWOP; Chadwick 2014), truck-mounted observations from the Mobile
Platform Environmental Data network (MoPED; Heppner 2013), and weather

stations operated by Understory Weather (2015). Remote sensing observations



include seven X-band radars operated by CASA, two SODARs operated by
WeatherFlow (2017), and three microwave radiometers supplied by Radiometrics
in partnership with Earth Networks (Bosse et al. 2012).

In an average sense, DA of observations in both time and space improves an
NWP forecast. One important goal of the DFW testbed is to measure the impacts
from each of the aforementioned observing systems in robust state-of-the-art DA
and forecasting systems. In other words, we can investigate by instrument type,
observation type, and location, which observations are the most impactful on a
forecast. Additionally, we can avoid using observations that have negative impacts
on a forecast. Evaluating the usefulness of observations is particularly important
for operational NWP centers that operate under limited budgets and need to weigh
the costs and benefits of adding more observations to an already large
observational dataset.

There are a few basic approaches to quantifying the impact that assimilated
observations have on a forecast. Traditionally, quantification of forecast impact
from different observational systems is done through observation system
experiments (OSEs) or observation system simulation experiments (OSSEs; Atlas
1997; Lord et al. 1997). OSSEs test the potential impacts of future observing
systems by creating synthetic observations extracted from a model simulation,
known as a “nature run®, and treated as the “truth”. Experiments with and without
the synthetic observations are compared to this truth to quantify their potential
benefits and limitations. On the other hand, OSEs test impacts from many different

real observation systems already deployed, either in a data addition or data denial



sense. Depending on the OSE approach, the “control” experiment can refer to a
baseline experiment before the observation networks to be tested are added one-
by-one (data addition); or the control can refer to the “optimal” experiment where
all available observations are assimilated and compared with subsequent
experiments withholding subsets of observations (data denial).

There is an ever-expanding array of OSE-related research encompassing a
wide variety of subtopics in NWP forecasting. The first OSEs were used to test the
impact of mainly satellite and upper-air data on forecasts of synoptic systems with
global models (e.g., Andersson et al. 1991; Zapotocny et al. 2002, 2007). With the
increase in computing power and expanding use of observation networks, more
recent OSEs tested data impacts using more sophisticated hybrid DA methods (e.g.,
Kutty and Wang 2015) and have included impacts of assimilating GPS-derived
precipitable water, mesonet observations, and wind profiler data (e.g., Benjamin et
al. 2010). Other recent OSEs have focused on specific regions and weather types
(e.g., Singh et al. 2014; Coniglio et al. 2016; Zhang et al. 2016). With the increasing
use of regional models at convection-allowing horizontal resolutions less than ~4
km, studies have also focused on the effects of assimilating Doppler radar radial
winds and reflectivity on high-resolution forecasts of deep convection (e.g.,
Schenkman et al. 2011a, b; Snook et al. 2015).

While the OSE approach is a popular and straightforward method, it is
computationally expensive because of the number of experiments required. A
second method to quantifying observation impact is the adjoint-based approach,

first explored by Langland and Baker (2004). Different from OSEs, this method can



provide observation impact estimates for all observations simultaneously, without
the need for separate data denial or addition experiments. The adjoint method has
been applied successfully as an important diagnostic tool (e.g., Cardinali 2009;
Langland et al. 2009; Gelaro et al. 2010; Weissmann et al. 2012; Hamill et al. 2013).
However, adjoints are generally difficult to create, and because of the tangent
linear assumption their application is limited to shorter forecast lengths.

A third approach to evaluating observation impact on a forecast is the
ensemble-based method. An approach analogous to the adjoint method of
Langland and Baker (2004) was proposed by Liu and Kalnay (2008) with minor
correction in Li et al. (2010). Kunii et al. (2012) successfully applied their method
by evaluating the impact of real observations in a forecast of Typhoon Sinlaku,
using the Weather Research and Forecasting (WRF) model together with the local
ensemble transform Kalman filter (LETKF; Hunt et al. 2007). Kalnay et al. (2012)
derived a simpler formulation - the “Ensemble Forecast Sensitivity to
Observations” or EFSO metric - that makes fewer approximations; it is more
general and computationally efficient because it relies on readily-available EnKF
products and can be used with any deterministic EnKF method. Ota etal. (2013)
successfully applied the Kalnay et al. (2012) formulation to the National Centers
for Environmental Prediction (NCEP) Global Forecasting System EnKF (GFS/EnKF;
Whitaker et al. 2008), which is now part of the GFS hybrid data assimilation
system (Wang et al. 2013).

The Kalnay et al. (2012) observation impact metric is appealing because

ensemble perturbations take the place of the adjoint model in estimating



sensitivities. This is particularly beneficial with the expanding use and reliance on
ensembles within the field of NWP. However, as with any ensemble method it
suffers from sampling error, which occurs when the number of ensemble members
is small compared to the degrees of freedom in a model and observing system -
predominantly the case in ensemble NWP. Sampling error results in spurious
correlations and can lead to filter divergence in deterministic EnKF assimilation, a
condition where the ensemble spread becomes too small and disconnects from the
true state. Houtekamer and Mitchell (1998) showed that the effects of sampling
error can be suppressed by excluding distant observations from influencing the
analysis at a given grid point. They experimented with filtering covariance
estimates using a distance-dependent correlation function, referred to as
covariance localization (Houtekamer and Mitchell 2001). Since then, much
research has been done in developing localization methods to improve EnKF
analyses using limited ensembles (e.g., Hamill et al. 2001; Houtekamer and
Mitchell 2005; Anderson 2007; Kepert 2011; Anderson 2012; Anderson and Lei

2013; Holland and Wang 2013).

1.2 Motivation and dissertation overview

The initial success of applying the EFSO to synoptic-scale systems has
motivated the question relevant to this dissertation - what are the pros and cons
of the EFSO method, and to what degree can it be applied in a high resolution
modeling framework? The DFW testbed gives a good testing framework for the

application of such a method. Additionally, if successful, the EFSO metric provides



a means to evaluate relative impacts from differing observation platforms within
the DFW testbed. The primary method of evaluation within the DFW testbed has
been a data denial framework, using a selection of case studies to identify any
challenges with the DA of various observations (e.g. Carlaw et al. 2015). However,
month-long or seasonal studies are necessary to establish the statistical
robustness of the differing observation system impacts within the testbed. The
EFSO method is ideal to facilitate such a long-term impact study. However, it is
unclear to what degree EFSO can be applied on the convective scale, and this
dissertation explores it in detail.

To accomplish this goal, three main research topics are covered within
this dissertation. The first is an OSE study within the DFW testbed. The OSE study
explores observation impacts on the prediction of convection initiation (CI) within
the domain. It also establishes a baseline for comparison for the later application of
EFSO. The second topic is an exploration into the EFSO metric itself using a
simplified two-layer model approach. This approach limits complications from
model complexity so that the focus can be on the benefits and limitations of the
method itself. In this way, areas of improvement can be identified and accounted
for when transitioning to the application of EFSO to the DFW testbed system. The
third area of research is the application of EFSO to convective scale, using the same
case study previously used for OSE experiments.

This dissertation is organized as follows. In Chapter 2, ensemble based
methods are introduced. This includes background on the EnKF as well as the

EFSO method, with a discussion on localization methods to correct for sampling



error. Chapter 3 covers the OSE case study within the DFW testbed using the GSI-
based EnKF system extended for use on the convective scale (Johnson et al. 2015).
The case study, 3 April 2014, was a dryline CI case with numerous isolated storms
that produced large hail and a few weak tornadoes.

In Chapter 4, the EFSO method is evaluated using a simple two-layer
model approach to identify potential areas of improvement within the method
(Gasperoni and Wang 2015). This is accomplished via application of an adaptive
localization technique called regression confidence factor (RCFs), which reveals the
underlying dynamics of the model using a Monte Carlo approach that utilizes
groups of ensembles to evaluate sampling error.

Finally, in Chapter 5 the EFSO method is applied to the same 3 April 2014
DFW testbed case study presented in Chapter 3. Previous studies have focused on
synoptic scale application verifying with energy norms. In this case, additional
verification metrics more appropriate to convective-scale modeling, such as
composite reflectivity and neighborhood probability, are explored for application.
The accuracy of EFSO is tested against the impact found via data denial for various
verifications. Additionally, the RCF method of Chapter 4 is tested on the convective
scale to see if EFSO accuracy can be improved upon and extended for longer
forecast periods

A summary and discussion of conclusions is presented in Chapter 6.



Chapter 2: Ensemble-based methods

2.1 Kalman filter

The DA technique used throughout this dissertation is based upon the
Kalman filter (KF; Kalman 1960; Kalman and Bucy 1961). The goal of the KF, as
with any DA method, is to optimally combine prior information about the
atmospheric state (referred to as a background or first guess) with available
observations. Often this background is taken from a previous model forecast. To
achieve this, it is necessary to provide statistical information about the errors in
both the background field and observations. In methods such as optimal
interpolation (OI) and variational approaches (3DVAR and 4DVAR), the
background error has to be specified for each analysis, referred to as background
covariance matrix B. In the KF method, the background error covariance is
advanced between each analysis step by some linear model. Thus the main
difference between KF and other methods is estimation of analysis uncertainty or
analysis covariances in addition to the optimal statel.

Propagating the error within the KF crucially allows for each analysis to
take into account the rapidly-evolving “errors of the day”. Fully evolving the
uncertainty would require numerically integrating the joint probability density
function (pdf) of the state, which describes both the state (mean of the pdf) as well

as its uncertainty (spread). However, numerically evolving this pdf is

10I and 3DVAR methods assume static covariances, B. Within 4DVAR the
background error is implicitly evolved by the model, however the estimate of
optimal analysis error is unavailable. An initial estimate of background error
covariances is thus required for each analysis time.
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computationally prohibitive, thus the pdf is assumed to be Gaussian. This ensures
that the final pdf, obtained by propagating the initial pdf by the linear model, will
remain Gaussian with updated mean and covariance.

There are two steps within the KF update. The first step is the forecast or
propagation step, evolving both the state and error covariance with a linear
forward model M;.1 from time i-1 to time i. The second step is the analysis or DA
step, which for the KF is obtained through least squares minimization or
minimization of the mean squared error of the analysis. These steps are shown in
matrix form in the following equations.

Forecast step:

X =M, x", (2.1)
P’ =M, P/ M/, +Q, (22)
Analysis step:
X =x) +K, (O - Hx) (2.3)
K, =P’H’ (HP'H' +R) (24)
P! = (I-KH)P’ (2.5)

Superscripts a,b, and o represent analysis, background, and observation,
respectively, and subscript i refers to time index. Defining n and p as the number of
model state variables and observations, respectively, each variable is described as
follows with matrix sizes in parentheses. Variable x is the model state vector (n x
1); y is the vector of observations (p x 1); P is the error covariance matrix of the
model state (n x n); R is the observation error covariance matrix (p x p); Q is the

model error covariance matrix (n x n); H is the linear observation operator that
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converts the state to observation locations (p x n); and K is the matrix of optimal
weights for every observation-state pair known as the Kalman gain? (n x p).
Equations (2.1)-(2.5) define a recursive algorithm because the background state
and covariances for analysis at time i come from the model propagation of a
previous analysis at time i-1. It should be noted that the least squares approach
within the KF is the same as in O], and that equations (2.1), (2.3), and (2.4) are
equivalent to the equations used for OI, with equations (2.2) and (2.5) showing the
addition of error covariance propagation and update.

Several assumptions were made to obtain the KF equations. The success of
the KF method in finding the optimal solution depends on the degree to which
these assumptions remain valid. The assumptions include: unbiased observations,
an unbiased forecast model, uncorrelated observation and forecast errors,
knowledge of the observation and model error covariances, and linearity of the
model and observation operators. In atmospheric DA applications, many of these
assumptions are invalid. The atmosphere is highly nonlinear, some observation
types have highly nonlinear observation operators (e.g. reflectivity), and biases
often exist within NWP models. Thus the KF is ill suited for NWP applications.

A variation of the KF known as the extended Kalman filter (EKF; Jazwinski
1970) was developed to incorporate nonlinearities of the forecast model and
observation operator, though linearized model and observation operators are still
used for the covariance propagation and update steps. Additionally, the linear

observation operator is used in the Kalman gain calculation. While the EKF

2 See Kalnay (2003) for a full derivation of the optimal weight matrix K obtained
within a least-squares framework.
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assumptions are better suited for NWP applications, typical model dimensions
used in NWP make it computationally prohibitive and thus impractical to

implement.

2.2 Ensemble Kalman filter (EnKF)

Both the KF and EKF are prohibitively costly for NWP modeling and other
high-dimensional applications. The high cost is related to the propagation step of
covariances, which would require on the order of n model propagations to fully
resolve. A simplification to this step is a Monte Carlo approach utilizing ensembles
of atmospheric states in the propagation step.

x; =M (x{(.)) k=1.K (2.6)
Equation (2.6) replaces (2.2) in the KF formulation, where an ensemble of K model
analysis states is propagated forward by the full nonlinear model M(). The forecast
ensemble can then be used to estimate the forecast error covariances. Such an
approach was first applied by Evensen (1994) for oceanographic applications and
later applied to atmospheric applications by Houtekamer and Mitchell (1998).

There are several advantages to using the EnKF over the EKF. First, the
ensemble forecast replaces the covariance propagation steps, eliminating the need
for developing linearized model M and observation operator H or their
corresponding adjoints. The cost of advancing the ensemble to estimate the error
covariances is much less than fully evolving them, as for typical NWP applications
the number of ensembles K is on the order of 10-100. This is a much smaller and

more tractable number of model evolutions than if we were to propagate the full
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model covariance, which would require n state evolutions (on the order of 106 or
larger for typical NWP applications). Additionally, the use of ensembles in the DA
automatically gives you an initialization ensemble analysis for probabilistic
forecast purposes, rather than a final deterministic analysis. Finally, as with the
EKF, the EnKF provides fully flow-dependent error covariances including cross-
variable covariances, as opposed to OI or variational methods.

There are two types of EnKF algorithms: stochastic and deterministic. In
stochastic algorithms, random perturbations consistent with observation error
covariances R are added to the observations assimilated by each ensemble
member(e.g., Houtekamer and Mitchell 1998; Hamill and Snyder 2002). In such a
way, each member DA update maintains realistic independence as each ensemble
member assimilates a different representation of the original set of observations. A
stochastic EnKF has been operational at the Canadian Meteorological Centre (CMC)
since 2005 (Houtekamer and Mitchell 2005). With deterministic algorithms, on the
other hand, no perturbations are added to the observations. Instead, the
observations are used to first update the ensemble mean, followed by an update of
ensemble perturbations in a manner consistent with the analysis covariance
update of the KF (Equation 2.5). The updated ensemble perturbations are then
added to the ensemble mean to provide full updates for each ensemble member.
Many flavors of deterministic EnKF algorithms exist, including the ensemble
square root filter (EnSRF; Whitaker and Hamill 2002), the ensemble adjustment

filter (EAKF; Anderson 2001), and the ensemble transform Kalman filter (ETKF;
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Bishop et al. 2001). Differences in these approaches are summarized by Tippett et
al. (2003).

Though the EnKF is computationally feasible within NWP applications,
there are still computational concerns to take into account. For example, the
ensemble-based approximation to the background covariances PP can be
calculated as follows:

(2.7)

b 1 < b B\ )
P =ﬁ2(xk—x )(xk—x)
—1£

1

However in practice, there is no need to calculate the full n x n covariance matrix in
model space. Houtekamer and Mitchell (2001) showed that instead, ensemble-
based approximations for PPHT and HPPHT can be directly evaluated for use in the
Kalman gain computation (2.4):

(2.8)

PH - ﬁg(x; _F)(H(x;’)—m)T

HP'H’ - ég(mxf)— HG)(H ) —W)T 29
Equations (2.8) and (2.9) reduce the number of computations from (nxn)to (nxp
+ p x p), which will be generally smaller as the number of observations p is usually
much less than the number of state variables n. However, as the number of
observations increases, the above may still be computationally expensive.
Furthermore, the Kalman gain formulation in (2.4) requires a prohibitively costly
matrix inversion.

Two different algorithm methods have been developed to avoid the

numerical cost of large matrix inversion. The first is called sequential or serial
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processing, where observations are assimilated either one at a time or in small
batches (e.g., Anderson 2001) . If observations have independent errors, then
assimilation sequentially should produce an identical result to assimilating all
observations at once. This significantly reduces numerical cost because the matrix
inversion becomes a trivial inversion of scalars (in the case of assimilating
observations one at a time). The other approach is called the local ensemble
transform Kalman filter (LETKF; Ott et al. 2004; Hunt et al. 2007). Within the
LETKEF, each grid point of the model domain is updated individually using all
observations within a predefined radius. This allows for computational efficiency
via parallelism, as domain decomposition can be readily implemented within the
LETKF (each grid point can be updated independently).

The use of ensembles to estimate forecast covariances can cause problems
within the EnKF that may lead to less accurate analyses or even filter divergence.
Two of the major issues are sampling error and model error. Sampling error is
caused by the use of a limited number of ensemble members relative to the
degrees of freedom in the model, and it leads to spurious correlations within the
covariance estimates. The remedy to treat sampling error is called covariance
localization, where covariances are multiplied point-by-point with a correlation
function. A review of localization methods is discussed in section 2.2.2.

Model error occurs because the ensemble cannot adequately resolve certain
small-scale features or their interaction with larger scales. Additionally, the
ensemble does not take into account errors related to physical parameterization

schemes (e.g. scheme parameter uncertainty) or other approximations used in the
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model (e.g. numerical methods, boundary conditions). When these sources of
uncertainty are not accounted for, the final ensemble analysis spread is too small.
In fact, the resulting ensembles may only explain roughly one quarter of the error
variance in the ensemble mean (Houtekamer and Zhang 2016). Thus, covariance
inflation is necessary to adjust for this underdispersion, by artificially inflating the
spread after the EnKF analysis. There are many types of inflation methods that
exist, such as additive inflation, multiplicative inflation, and relaxation to prior
spread (RTPS; Whitaker and Hamill 2012). Often a combination of more than one
type of inflation method is necessary to account for multiple sources of error

within a cycled EnKF system.

2.2.1 Ensemble Square Root Filter

The forecast step of the EnSRF is the same as in stochastic EnKF where each
ensemble member is propagated forward in time by the full nonlinear model, as in
Equation (2.6). The forecast error covariances are then estimated using (2.8) and
(2.9). The DA step can be written in two steps -

Mean update:

-7 K[y - HOO) (2.10)
Perturbation update for each member k:

X =x" ~KH(x}) (2.11)

Here, x|" =x{ —x{ and x}” = x; — x are ensemble perturbations for the analysis and

background, respectively, and H (x,f Y=H (x,f )— H(x") are background ensemble
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perturbations projected to observation space. Matrix K is called the reduced
Kalman gain, which is used only during the perturbation update and is calculated
in the following equation.

-1 (2.12)

K[+ )R
HP'H' +R

Because the observations are processed serially, all terms in (2.12) are scalars.

In the stochastic EnKF, it can be shown that as the ensemble size approaches
infinity the ensemble based estimate of analysis covariances converges to the
actual analysis covariance of the EKF, but only if observations are perturbed
(Burgers et al. 1998). The correction in (2.12) is needed because using the full
Kalman gain Kin (2.11) would result in excess spread reduction inconsistent with

the analysis covariance update of the EKF in Equation (2.5).

2.2.2 Review of localization methods

The Monte Carlo EnKF method first proposed by Evensen (1994) provided
an easily implemented alternative to variational methods that, in theory, provided
background flow-dependent error statistics for analysis updates more consistent
with the underlying model. However in practice, the use of a limited set of
ensembles to estimate errors within a nonlinear model with many more degrees of
freedom led to spurious correlation that could lead to filter divergence.
Fortunately, covariance localization can be used to mitigate the effects of sampling
error by considering only spatially close locations, assuming that distant

correlations go to zero. Houtekamer and Mitchell (1998) was the first to attempt
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such a procedure, by implementing for each grid point analysis a cutoff radius
beyond which observations were not used in the update. In a follow-up article by
Houtekamer and Mitchell (2001), the localization method was modified to create
more spatially smooth analysis increments. This avoids the introduction of noise
and significant imbalance in the analysis from abrupt cutoffs, similar to the noise
that data selection introduces within OI analyses (e.g., Cohn et al. 1998).
Houtekamer and Mitchell (2001) utilized the so-called Gaspari-Cohn (GC)
localization function of Gaspari and Cohn (1999, Eqn. 4.10), a compactly supported
(i.e. goes to 0 at a predefined distance) piecewise polynomial approximation to a
Gaussian function. Hamill et al. (2001) showed that the GC function length scale
can be optimally tuned. Additionally, the optimal scale increases with increasing
ensemble size, allowing for more distant observations to update the analysis
because of diminishing noise from sampling error. Their examination of the Eigen
spectrum of background error covariance estimates showed that without
localization the spectrum was too steep, but with localization it became flatter with
sufficient projection onto the tails of the spectrum, effectively adding extra degrees
of freedom back. This can also be seen in Figure 2.1. A limited 25-member
ensemble shows spurious correlations far away from the observation location
(Figure 2.1a), whereas a larger 200-member ensemble shows those locations
should have near-0 values (Figure 2.1b). However, when the GC correlation
function of Figure 2.1c is applied to the 25-member background covariances, the

resulting field (Figure 2.1d) effectively resembles the 200-member correlations.
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(a) Correlations in P?, 25—member ensemble

Figure 2.1. Depiction of the effect of covariance localization, adapted from
Hamill (2006). Observation is located in East Asia and contours are sea-level
pressure, with color contours representing correlations in (a,b,d) and the GC
function in (c).

The GC function works well for horizontally removing spurious covariances,
since the atmosphere is naturally inclined to diminishing correlation with

increasing distance. However, localization in the vertical is also required and there

is less theoretical basis for the proper choice of a function (e.g., Anderson 2012).

20



For instance, surface pressure is valid at the surface, but by the definition of n
coordinates impacts all model variables (Houtekamer et al. 2005). Nevertheless,
methods for vertical localization have been used which seemingly improve the
analyses. Whitaker et al. (2004) created a vertical localization function in o
coordinates that was equal to 1.0 below ¢ = 0.2 and decreased linearly to 0.0 by o =
0.05, above which no update was performed. Houtekamer and Mitchell (2005)
implemented a vertical version of the GC function, with the natural logarithm of
pressure as the vertical coordinate and a cutoff radius of two units in In p.
Compounding the localization problem further are integrated observations
that are not local in nature and cannot be represented by a unique spatial location,
such as those from remote-sensing platforms (e.g. satellite and Doppler weather
radar). Sobash and Stensrud (2013) investigated the impacts of differing
horizontal and vertical GC localization scales on the assimilation of radar data for
several modes of convection, using OSSEs. They found a large horizontal scale (12-
18 km) and small vertical scale (3 km) could improve the radar analyses, which
was different from the optimal localization used in Tong and Xue (2005). Several
studies have examined the issue of how to apply vertical localization to different
microwave-radiance channels of satellite observations, each of which are sensitive
to different broad levels of the atmosphere but have significant overlapping
regions (e.g., Houtekamer and Mitchell 2005; Houtekamer et al. 2005; Campbell et

al. 2010).
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There are several ways in which localization can be applied to limit
spurious correlations in the ensemble covariances. The first is the so-called B

localization of the following form in the Kalman gain matrix K,

K =0y, oB)H' [H(py,. oB)H' +R] (2.13)
where py,,.is the localization function that operates on the B matrix. In practice,
full B localization is rarely done because both instances of p,,. require O(n?)
operations where n is the number of model state variables. Instead, it is done in
observation space, modifying (py,. cB)H' of (2.13) into pgy,, o(BHT) , which
requires O(np) operations. This greatly reduces number of operations for NWP
models even for abundant observational platforms such as satellite (Campbell et
al,, 2010). There are other flavors of B localization which have been studied by
Greybush et al. (2011), Janji¢ et al. (2011), and Holland and Wang (2013). For the
EnSREF, localization can be applied in both the Kalman gain and reduced Kalman
gain matrices (Holland and Wang 2013).

Another broad category of localization application is R localization, which
takes the general form in the Kalman gain of
K =BH'[HBH' +p,, oR] . (2.14)
where now the localization function pg,,. operates on the observation error
covariance matrix, requiring O(p?) computations. Typically the LETKF adopts R

localization, since assimilation is done grid point by grid point using patches of

observations, though B localization is still possible as shown in Janji¢ et al. (2011)
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and Holland and Wang (2013). The choice of how to apply localization is problem
dependent, as there are tradeoffs to the various B and R methods.

Other types of localization have been proposed in the literature. Kepert
(2009, 2011), based on dynamical balance considerations, proposed a ‘balance-
aware’ localization in ¢y space rather than ¢uv-space, since streamfunction ),
velocity potential y, and geostrophic height ¢ covariances are typically isotropic in
nature (u and v are horizontal and vertical components of wind). Such a
transformation of variables has been used successfully in Ol and variational
methods as well. Buehner and Charron (2007) explored localizing in spectral
space. Results showed that spectral localization affects correlations at all distances,
in contrast to spatial localization, with an overall effect of smoothing correlations
in grid point space. They found that the effects of combined spectral and spatial
localization were complementary, but optimal combinations were case specific.
Buehner (2012) further evaluated a scale-dependent spectral/spatial localization
over a one-month assimilation experiment and found that it had similar forecast
quality compared to experiments using spatial localization with double the
ensemble size, and in some regions improved the forecasts. While there is
significant computational cost of implementing spectral/spatial localization, it

avoids the added costs of increasing the number of ensemble members.

2.2.2.1 Adaptive localization methods

The localization methods discussed thus far have required some form of

global ad hoc tuning to find the optimal cutoff scale for use throughout
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assimilation. Such methods could be referred to as static or non-adaptive
localizations. However, the highly variable flow-dependent nature of evolving
background error covariances means that the optimal cutoff may also vary with
time and change shape, such as an elongation along of a cold front (Bishop and
Hodyss 2007). There are also problems with vertical localization and localizing
observations from nonlocal remote sensing platforms that have no obvious spatial
localization. Further, defining the localization ‘distance’ between variables such as
moisture and wind components is difficult, and different variables may require
different localizations for the same observations (Anderson 2007). Often,
observations may be temporally separated from the analysis time, inviting another
complication to the problem (Anderson 2007). These considerations have
motivated the development of adaptive or dynamic localization methods, which
refers to methods for which localization functions adapt to the underlying
dynamical flow of the model.

The first of these adaptive methods was the group filter (GF) method of
Anderson (2007), which evaluates the sampling error in a given ensemble by
utilizing groups of ensembles to compute an optimal weighting factor. The GF
method was found to produce analyses at least as accurate as using GC localization
with optimal width, with the benefit of automatic tuning. A drawback of the GF
method is the need for g groups of K ensembles to produce a proper localization
for the K-member ensemble, which is an added cost. However, Lei and Anderson
(2014) have shown that just g = 2 groups may be sufficient to produce good results

with the GF method. Zhang and Oliver (2010) presented a bootstrap
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implementation of the GF method to estimate errors in ensemble covariances,
where the use of bootstrapped samples avoids the cost of additional groups of
ensembles.

Other adaptive methods have been developed to reduce sampling error
using underlying model correlations. Bishop and Hodyss (2007) introduced an
adaptive method referred to as Smoothed Ensemble Correlations Raised to a
Power (SENCORP) localization. The ensemble correlation matrix of smoothed
perturbations is raised to a power m element-by-element, with the intent of
attenuating small spurious correlations while maintaining the real correlations.
Then a matrix product smoother is applied to amplify nonzero correlations and the
result is raised to another element-by-element power r to attenuate remaining
spurious correlations. A modification to this localization developed by Bishop and
Hodyss (2009a,b) is known as ECO-RAP localization, which contains a different
smoothing procedure compared to SENCORP localization. Bishop and Hodyss
(2009a) compared the new ECO-RAP method with SENCORP. While the ECO-RAP
was not any better or worse than the SENCORP, it is more computationally
efficient and contains one less tunable parameter. The drawback of both methods
is the number of parameters that require tuning - 4 for SENCORP, 3 for ECO-RAP -
and it is unclear how to proceed with optimally tuning other than laborious ‘trial
and error’.

For a petroleum reservoir application, Chen and Oliver (2010) used the
prior ensemble covariance between an observation and a state variable to

calculate localization. In another reservoir method, Emerick and Reynolds (2011)
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used sensitivity matrices and principal correlation lengths of the model to compute
different critical lengths for the GC localization of different observations. Anderson
(2012) developed a related algorithm called sampling error correction (SEC) that
computes localization as a function of ensemble size and pre-defined correlation
between an observation and state variable. The SEC method works even with prior
correlations as uninformative as having a uniform distribution between -1 and 1,
though the algorithm can be made more efficient if the prior correlation
distribution can be specified in a more informative way.

More recently, Anderson and Lei (2013) developed the empirical
localization function (ELF), which computes localizations from the output of an
Observing System Simulation Experiment (OSSE) in sets of pairs of observation
and state variables binned by distance (e.g. all state variables between 100- and
200-km away from an observation). The ELF localization is computed by
minimizing the RMS difference between the true values and posterior ensemble mean
of the OSSE. Lei and Anderson (2014) compared the ELF to the GF method of
Anderson (2007). In an ideal simulation where the true covariances are known,
the ELF and GF show similar results, especially for larger ensembles. The ELF
shows benefit over the GF in cases where there are biases in the spurious
ensemble covariances. It also has the unique ability to detect underestimated
ensemble spread and automatically inflate covariances. However, extension of the
ELF to real atmospheric applications poses challenges. A large number of
observation-state pairs are needed for accurate ELF localizations, especially for

small localization values. Second, for real-data applications where there is no truth,
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the method will likely require long assimilations for reliable localization
estimations (Anderson and Lei 2013).

There are many localization methods in the literature, with very different
applications. Until a method is proven to be superior, the choice of which adaptive
method to use comes down to cost and case-by-case concerns. We have chosen to
use a modified version of the group filter of Anderson (2007) for work in this
dissertation evaluating an ensemble-based method for quantifying observation
impact on forecasts. A discussion of this modification and application is given in

chapter 4. In the next section, the ensemble-based impact technique is introduced.

2.3 Ensemble forecast sensitivity to observations (EFSO)

Following Kalnay et al. (2012), let X; represent the ensemble mean analysis

and X/, the deterministic forecast launched from the mean analysis (subscript

“t/0” can be read as “valid at time ¢, initialized from analysis at time 0”). A cost
function, J, is defined in Langland and Baker (2004) to be the actual forecast error

reduction - the difference in squared error between two adjacent forecasts,

J=(ehen—el e, )=(en-¢..) (e0-e.) (2.15)

t-n>tl-n

f

I tr _<f
where e, =X),-Xx; and e, , =X

t-n

x;" are the forecast errors initialized from

mean analyses at time t = 0 and t = -n, respectively. Here x! is the truth valid at

time ¢; in the absence of the true state, a verifying analysis can be used. The actual

forecast error reduction is shown schematically in Figure 2.2.
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Figure 2.2. Schematic of actual forecast error reduction in a cycled DA
system. Each line represents forecast error with time. Vertical line
represents observations assimilated at time 0 using the first guess forecast
as a background. Difference in error at time ¢t is linked to assimilated
observations at time 0.

The differences in forecast errors e, and e, , are due to the assimilation of
observations at time t = 0, so (2.15) represents the impact of assimilating
observations on a forecast. When J is negative (positive), the magnitude of error in
e,, isless (greater) than the magnitude of error in e, ,, which can be interpreted
as positive (negative) impact.

It is shown in Kalnay et al. (2012) that (2.15) can be rewritten in ensemble

form as

| ] ) 2.16
J = ﬁéy()TR IHXOXi;OT (etIO + etl—n )’ ( )

where 8y, =y, - H(X;) is the observation innovation vector - the difference
between the observations, y,, assimilated at time 0 and the mean background

interpolated to observation space by forward operator H( ). H is the linearized

forward observation operator, R is the observation error covariance matrix, K is
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the ensemble size, and X{ and X/, are n x K analysis and forecast perturbation

matrices, respectively (n = number of model state variables, K = number of
ensemble members). Despite the use of the tangent linear model approximation to

obtain (2.16) each column in X/, can be calculated using the full non-linear model

M( ), such that the ith column is M (x{"”)~- M (x{). The expression in equation

(2.16) is appealing as it can be applied using available assimilation products of any
deterministic EnKF method. A full derivation of the EFSO metric can be found in
Appendix A.

As with any method involving the use of ensemble to estimate covariances,

covariance localization is needed to suppress the effects of sampling error from

too small ensembles. The matrix product Y/ X/ = HX!X/ is the ensemble

estimate of model error covariance between the analysis in observation space and
forecast valid at time t. Localization of (2.16) is applied to this p x n matrix (p =
number of observations). Denoting localization matrix p;, the observation impact
estimate modulated by the localization function becomes

J = ﬁ&’gR_l [PIT ° (Yg‘Xﬁg)](eﬂo +e,.,) (2.17)

The localization matrix p; must be an n x p matrix, meaning that every grid point-
observation pair can have a unique localization weight. Since localization in (2.17)

is applied to Y/X/7, in addition to spatial and cross-variable components, a level of

complexity is added in the time-forecast component. In equation (2.17), there is no
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requirement that p, has to be the same localization as that used during EnKF
assimilation, pa.

The choice of p; should attempt to take the time-forecast component into
account, in addition to spatial and cross-variable components. To partially address
the issue, Kalnay et al. (2012) proposed two methods of moving localization: (1)
using a model-forecast nonlinear incremental evolution of the localization
function, and (2) advecting the localization center using the climatological group
velocity of dominant wavenumbers. Ota et al. (2013) applied a similar advected
localization method, using the average forecast horizontal wind at each model
vertical level. Both studies showed improvement relative to fixed GC localization;
however, possible limitations exist with each method. The nonlinear evolution of
the localization is computationally prohibitive for real NWP systems because a
forecast is required for every observation. The advection methods are simpler to
implement; however, they assume that the optimal localization is tied to the mean

flow of the model and does not change in magnitude, size, or shape.

2.3.1 Studies applying the EFSO method

Kunii et al. (2012) successfully applied the original ensemble-based method
by WRF model together with the LETKF. They found the ensemble method could
capture the actual error reduction, though they noted a significant
underestimation of the estimates. Generally all observation systems were found to
have positive impacts, with upper level soundings providing the largest

contribution. Ota et al. (2013) applied the EFSO to the NCEP GFS system for a one-
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month period in early 2012, totaling 124 cases. The EFSO provided a useful online
monitoring of impacts for different types, particularly to help identify observations
that may not be optimally assimilated. They found that satellite radiance
observations were the most important in reducing short-range forecast error,
particularly in moisture. Other observations were found to be of high value as well,
including aircraft, radiosonde, marine surface observations, and scatterometer
winds.

Another application of the Ota et al. (2013) study was in the identification
of detrimental observations that led to 24-hour forecast failures. Such a ‘proactive
quality control’ (PQC) concept was further explored and developed by Hotta et al.
(2017b). In PQC, the EFSO is used to identify detrimental observations on a 6-hour
forecast. The analysis is then performed again withholding the detrimental
observations. In a semi-operational context, Hotta et al. (2017b) found that
applying such a procedure significantly reduced the number of forecast ‘dropouts’
- abrupt drops in 24-hour forecast skill. In 18 of 20 dropout cases, withholding
detrimental observations identified by EFSO improved the 24-hour forecast error,
with over 30% improvement in seven of the cases. This improvement was found to
persist beyond 5 days in forecast. They were careful to note, however, that a
negative impact does not necessarily indicate the observation is bad. The EFSO
estimates impact from the observed-minus-background innovations associated
with each observation. The source of error in a detrimental observation could thus
be related to the observation, background, or errors related to the DA system (e.g.

misspecification of observation error). The most obvious application of the PQC
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method is for reanalysis purposes. The 6-h forecast requirement to identify
detrimental observations makes it challenging to apply in an operational context,
though the authors do discuss the potential for such an application and how some
of the challenges could be addressed. A modification of the EFSO system is the
Ensemble Forecast Sensitivity to Observation Error Covariance, or ESFR,
developed by Hotta et al. (2017a) to help facilitate objective and systematic tuning
of observation error covariances R.

The first study to apply the EFSO on a convective-scale forecast system was
Sommer and Weissmann (2014). They applied the EFSO to the German-developed
Kilometre-scale Ensemble Data Assimilation (KENDA) system together with the
Consortium for Small- scale Modeling (COSMO) model, run at 2.8-km horizontal
grid resolution. Using 0, 3, and 6-hour forecast valid times they found good
agreement between the data denial impact and the EFSO estimates for different
observation types. Additionally, the EFSO method was able to properly identify
cases where an observation type is assimilated with suboptimal observation error.
They also found little sensitivity in varying the localization length scale, though
they did not take into account the time-forecast component. Later, Sommer and
Weissmann (2016) modified the original EFSO method to verify against
observations directly. This eliminates the need for a verification analysis and thus

avoids the potential problem of the forecast correlating with the verification field.
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Chapter 3: Assessing Impacts of the High-Frequency Assimilation of
Surface Observations for the Forecast of Convection Initiation on 3 April
2014 within the Dallas-Fort Worth Testbed

3.1 Introduction

The 2009 NRC report noted that the highest priority of observational need
is measurements of the planetary boundary layer (PBL), the layer directly
influenced by contact with the earth’s surface (National Research Council 2009).
Many mesoscale features are prominently featured in the PBL including horizontal
convective rolls, surface boundaries such as drylines and fronts, and other
gradients and diurnal variations influenced by topography. While radar data
provide crucial measurements of ongoing precipitating systems, the current
network of S-band radars overshoots a large part of the PBL. Additionally radar
data do not directly measure temperature or moisture, so important features that
may trigger or maintain convection under favorable conditions are missed, such as
areas of enhanced moisture convergence or location and strength of cold pools.
For these reasons, recent high-resolution DA studies have placed increasing
emphasis on the assimilation of mesonet surface observations in addition to radar
data (e.g., Carlaw et al. 2015; Johnson et al. 2015; Snook et al. 2015; Chen et al.
2016). Despite positive results, surface observations remain an operationally
underutilized dataset, partly due to mismatches between coarse model terrain and
actual observation heights, particularly in areas of high varying terrain (Pu et al.
2013), and other concerns about siting and instrument quality.

One fundamental limitation of radar data is the inability to measure pre-

convective environments and the different features that lead to convection
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initiation (CI). Given a favorable large-scale environment, variations on the order
of 1 g kgt of specific humidity have a large influence on the existence and location
of storm initiation, owing to small-scale features in the PBL such as dryline bulges
and convective rolls (Weckwerth 2000; Weckwerth and Parsons 2006). The
prediction of CI can be potentially improved with the utilization of mesonet surface
observations. Xue and Martin (2006a) and Liu and Xue (2008) explored the
prediction of CI of two separate cases as part of the International H20 Project
(IHOP; Weckwerth et al. 2004). They performed hourly assimilation of mesonet
observations in addition to special [HOP upper-air and surface observations. Xue
and Martin (2006a) found moderate improvements in the CI forecast; however, Liu
and Xue (2008) found mixed results, showing that reducing the assimilation to 3-
hourly actually improved the forecast in some ways. They suggested that too
frequent surface DA may weaken the surface forcing responsible for CI, leading to
a worse forecast.

Sobash and Stensrud (2015; hereafter SS15) was the first study to examine
sub-hourly assimilation of mesonet observations for the prediction of CI. They
assimilated mesonet observations every 5 minutes for 1, 2, and 3 hours prior to CI
using an EnKF system. Results showed that high-frequency assimilation of
mesonet observations led to improvements in timing and placement of CI as
compared to hourly assimilation experiments, with 3-hours of 5-min. cycling
performing best. These improvements persisted throughout their 3-hour free
forecast period owing to better representation of the surface moisture field and

dryline strength. SS15 concluded that mesonet observations provided important
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information on the diurnal progression of the dryline mixing eastward, including
important small-scale variability such as dryline surges, that helped to provide
more accurate initial conditions (IC) and a more accurate short-term forecast.
Furthermore, frequent assimilation of mesonet observations helped to constrain
the positive moisture bias of the PBL scheme used in their study. They note,
however, that frequent mesonet DA may not be as impactful in other cases where
model biases are minimal or in cases where Cl is driven by more large-scale
forcing rather than surface features.

Although SS15 was an important foundation in showing the benefit of
frequent DA of surface mesonet observations, that work was focused on the use of
mesonet data as a whole, with the predominant impacts coming over areas well-
covered by Oklahoma mesonet (McPherson et al. 2007) and West Texas mesonet
(Schroeder et al. 2005) observations. Unfortunately, many areas such as the DFW
metroplex do not have a federal or state sanctioned and maintained mesonet
network available; additionally, although the number of mesonet networks is
increasing in different states and regions across the US, budget constraints make a
national implementation of such a network unfeasible. In order to have the NNoN
vision succeed, then for cases where there are no mesonet networks we must
leverage the use of nonconventional surface observations from other sources, such
as the CWOP and ERNET data within the DFW testbed. In this work, we explore the
use of nonconventional surface observing networks within the DFW area for the

prediction of a CI event. In contrast to SS15, we will examine impacts from
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different nonconventional networks individually to assess benefits and limitations
from using the different systems.

The first OSE study using nonconventional data within the DFW testbed
was done by Carlaw et al. (2015). They tested the utility of nonconventional
surface data, specifically from CWOP and ERNET, on the forecast of a tornadic
supercell that caused EF3 damage near Cleburne, TX on 15 May 2013. Results
showed that these nonconventional surface observations helped improve the
surface analysis of low-level thermodynamic fields in an otherwise data sparse
region. These observations caused enhanced instability ahead of the storm and led
to a stronger updraft and vertical vorticity within the storm, which better matched
observations. Though not the first case study using these nonconventional
networks, this study is different from Carlaw et al. (2015) in that we are using
these data to predict storm initiation rather than as a supplement to radar data for
an ongoing storm.

In section 3.2, we summarize the severe weather event used for this study,
3 April 2014, and further detail the different observation sources available within
the DFW testbed for this case. Section 3.3 describes the experiment setup,
including model and DA configurations, as well as descriptions of the data denial
experiments. In section 3.4, the results of the data denial experiments are
discussed, with a diagnosis of impacts tied to observations that led to forecast
differences in ensemble CI performance. In section 3.5, the case study is
summarized with implications for potential of utilizing these nonconventional

observations in future DA systems.
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3.2 3 April 2014 case overview
3.2.1 Summary, synoptic setup, and storm evolution

According to the National Center for Environmental Information (NCEI;
2014), severe storms in the Dallas area on April 3, 2014 caused an estimated $500
million damage to 35,000 vehicles and 22,000 homes, mainly in Denton County,
Texas. Reports at the Storm Prediction Center (SPC) included all types of severe
weather across N. Texas on that day, including numerous hail reports with the
largest up to softball size (108 mm or 4.25 in. diameter), a high wind report of 41
m s'1 (82 kt), and three confirmed tornadoes NE of the DFW area causing EF0 and
EF1 damage (Figure 3.1). Outside of Texas there were numerous severe reports,
altogether totaling 288 filtered reports across the United States - including 16

tornado reports.
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Figure 3.1. SPC preliminary storm reports valid from 1200Z on 4/3/17 to
1200Z on 4/4/17, overlaid on the day 1 categorical outlook issued at 1630
UTC on 04/03/17. Markers indicate tornado reports (red dots), significant
hail reports greater than 2 in. diameter (black triangles), other severe hail
reports (green dots), significant wind reports above 65 kts (black squares),
and other severe wind reports (blue dots).
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Figure 3.2. Upper-air 300-hPa observations, isotachs (blue and color-filled
contours), streamlines (black contours), and divergence (red contours) valid
at(a) 1200 UTC 3 April 2014 and (b) 0000 UTC 4 April 2014.
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On the synoptic scale, a high-amplitude, positively tilted short-wave trough
was located over the central and southern Rockies region at 12Z on 3 April 2014
(Figure 3.2a). As the trough progressed eastward it became more neutral to
slightly negatively tilted, with a region of upper-level divergence extending from
NE Texas through Oklahoma, Arkansas, and Missouri by 00 UTC 4 April 2014
(Figure 3.2b). In response the associated surface low, located in southern Kansas
at 12 UTC on April 3, deepened and moved towards NE Missouri by 00 UTC on
April 4. A cold front extended to the SW across NE and central Oklahoma through
the Texas panhandle, with a dryline intersecting it near central OK and extending

SW through Texas, west of the DFW area (Figure 3.3).
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Figure 3.3. Surface map of observations with approximate locations of cold
front (blue line with triangles), stationary front (mixture of blue-triangles
and red-scallops), and dryline (brown scalloped line), valid 1607 UTC 3 April
2014.
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Figure 3.4. Fort Worth, TX (FWD) sounding and hodograbh (upper right
corner) valid 1200 Z 3 April 2014, taken from the SPC Experimental
Sounding Analysis System which uses sounding analysis program NSHARP
(Thompson and Hart 2017).

As the afternoon progressed the dryline propagated eastward towards the western
edge of the DFW domain. The Fort Worth, TX radiosonde launched at 12 UTC on
April 3rd was representative of the potential instability available ahead of the
dryline near Dallas, with convective available potential energy (CAPE) ranging

from 2000 to 4000 J kg1 (Figure 3.4). The high values of CAPE are attributable to

steep mid level lapse rates exceeding 8 2C km-! with a very moist boundary layer
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including surface dewpoints 18-21°C. A substantial capping inversion existed,
inhibiting convection from developing before 1800 UTC. As the afternoon
progressed, the cloud layer just east of the dryline near Dallas cleared and moved
east (Figure 3.3), allowing for the solar insolation necessary to erode the capping
inversion and result in conditions favorable for CI. The 0-6km deep layer shear is
supportive of supercells with sufficient low-level shear to allow for tornadoes;
however, the veer-back-veer wind profile in the hodograph was not conducive for
strong, long-track tornadoes (Figure 3.4).

The first CI event in north Texas appears at 1820 UTC in SW Wise County,
TX (Figure 3.5a). As this storm grows and moves NE, a second storm initiates at
approximately 1900 UTC in NW Parker County, TX, approximately 25 km to the
SW of the first CI event (Figure 3.5b). Both storms develop into strong hail-
producing supercells, though they remain nontornadic as they travel through the
north side of the DFW testbed (Figure 3.5c). The second storm tracks through
Denton, TX around 2030 UTC, producing very large hail of up to 100 mm around
2045 UTC (Figure 3.5d). Other areas of CI occur outside of the DFW area, including
a cell along the Northern border of Comanche County, TX around 2000 UTC
(Figure 3.5c) and additional locations S and SW of there between 2100 and 2200
UTC, though these storms are generally not as well-organized as the DFW
supercells (Figure 3.5e). Additional storm development occurs after 2200 UTC and
progresses eastward, eventually producing the EF0 and EF1 tornadoes NE of the

DFW area.
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Figure 3.5. (a-e) Observed digital hybrid reflectivity from terminal Doppler
radar TDAL, valid at 1829, 1911, 2008, 2044, and 2144 UTC, respectively. (f)
SPC severe hail reports (triangles) and MPING hail reports (asterisks)
between 1800 and 2200 UTC. Red markers indicate significant hail reports
greater than 2 in, and magenta lines indicate the 30-dBZ contour of
maximum observed composite reflectivity over the 1800-2200 UTC time
period.

Hail report locations and relative sizes are shown for the 1800 - 2200 UTC period
on 3 April 2014 in (Figure 3.5f). These reports were taken from the SPC as well as
the Meteorological Phenomena Identification Near the Ground (mPING; Elmore et
al. 2014) project, run by the National Severe Storms Laboratory (NSSL); mPING
observations use crowd sourcing to provide observations of precipitation type
across the U.S. The largest hail occurs right over the city of Denton, TX, and hail is

reported from E and NE Wise County through Denton County and NE to Collin and

Grayson Counties.
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3.2.2 Description of observations used

The DFW Testbed is a medley of many observational platforms,
summarized in Table 3.1. Observing systems are separated into two categories:
conventional and nonconventional. Here, conventional data refers to observations
that are already typically used in operational data assimilation systems. They
include upper air soundings launched twice daily, wind profilers, aircraft data from
the Aircraft Communications Addressing and Reporting System (ACARS; Moninger
et al. 2003), surface data from Automated Surface Observing System (ASOS) and
Automated Weather Observing System (AWOS), and integrated water vapor data
from Global Positioning Satellite Precipitable Water Vapor (GPS PWV)
observations. In this study we also consider the state-sanctioned Oklahoma and
West Texas mesonets to be conventional datasets whose quality is similar to that
of ASOS and AWOS. Additionally, radar data from the Next Generation Radar
(NEXRAD) network of WSR-88D S-band radars is used as a conventional data
source. Nonconventional data are all the other sources that are not yet fully
implemented in many systems. For radar, these include the low-cost CASA X-band
radars deployed in the DFW Testbed as well as C-band Terminal Doppler Weather
Radars (TDWRs) available at major airports. Because this study focuses on
forecasts of CI, the CASA and TDWRs are not used during assimilation.
Additionally, the radiometers available for this case were not assimilated because

here we are focusing on the impacts of surface observing networks.
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Table 3.1. All observing platforms available within the DFW testbed as of
2017. Used column represents whether that observation platform was used
in this study (Y) or not (N); n/a means “not available for this study”. The last

column specifies whether the platform is considered a “conventional” or
“nonconventional” dataset

Used Conv. (C) or
Observation Type Provider ” Nonconv.
) (NC)?
NEXRAD S-band radar NWS Y C
TDWR C-band radar FAA N NC
CASA X-band radar CASA N NC
MDCRS/ACAR . Airlines via
S Alrcraft MDCRS/ACARS Y ¢
Radiosonde Weather Balloon | NWS Y C
NOAA Profiler | v\ 4 profiler | NOAA Y C
Network
Precipitable .
GPS PWV Water Vapor Suominet C
ASOS/AWOS Surface NWS & FAA C
Oklahoma
Oklahoma Surface Climatological Y C
Mesonet
Survey
West Texas Texas Tech
Mesonet Surface University Y ¢
CWOP Surface NWS Y NC
ERNET Surface Earth Networks Y NC
N
Understor Surface & Hail Understor NC
Y Y (n/a)
Misc.
Other Mesonet | Surface Federal/State Y NC
Agencies
MoPED Surface GST Y NC
SODAR Wind Profile WeatherFlow N NC
(n/a)
. Thermodynamic | Radiometrics via
Radiometer Profile Earth Networks N NC

Nonconventional surface observations include CWOP, ERNET, and MoPED.
CWOP data come from a volunteer group of over 10,000 amateur radio operators
who transmit weather data using the Automatic Position Reporting System as a

Weather Network (APRSWXNET; Chadwick 2014). These observations are found
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near volunteers’ homes, backyards, farms, and businesses. They are ingested into
the Meteorological Assimilation Data Ingest System (MADIS) and subject to the
same quality-control checks as other datasets within MADIS (Miller et al. 2005).
ERNET is a network of over 8000 surface observations across the country, initially
installed on or near public schools and buildings for real-time weather data to be
used during television broadcasts. An additional benefit is the ability for the
schools with ERNET stations to use them within their science and technology
curriculum. These data are also ingested via MADIS and have been made available
for experiments with the DFW testbed. Both CWOP and ERNET were installed
without enforcing siting standards that ASOS and AWOS employ. As such, they may
exhibit additional representativeness errors and biases, such as the low wind
speed bias noted in Carlaw et al. (2015). MoPED data are weather sensors
mounted on trucking fleets involved in interstate transportation. Global Science
and Technology (GST) started the program in 2009 in partnership with NOAA and
the National Mesonet Program (Dahlia 2013). These sensors provide
measurements of pressure, temperature, humidity, and precipitation; however,
wind measurements cannot be obtained due to contamination from vehicle motion
at high speeds. There are a few other nonconventional mesonet-type observations
within the MADIS dataset that are separate from any previously mentioned. These
observations are still used during the assimilation procedure described in the next
section; however, they are not a primary focus of this study, so they have been

separated into a miscellaneous nonconventional category.
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3.3 Experiment setup
3.3.1 Model configurations and initial ensemble

The model chosen for this study is Weather Research and Forecast (WRF)
model, specifically version 3.7 of the Advanced Research WRF (ARW) core
(Skamarock and Klemp 2008). The ensemble used here was initialized from a
combination of ensemble members from other systems, shown in Table 3.2,
chosen such that each ensemble member had its own unique lateral boundary
conditions (LBCs) from their respective model perturbations. The ensemble initial
condition (IC) was provided by interpolating each ensemble member at 03 UTC on
April 3,2014 to a 12-km horizontal grid with 250 x 180 grid points, centered over
N Oklahoma (Figure 3.6). This intermediate outer grid was chosen to facilitate
smooth transition from the coarse ICs to a convection allowing model (CAM) grid
resolution. The inner grid, shown in Figure 3.6, has 2.4-km horizontal grid spacing
with 351 x 351 grid points, centered over the DFW domain. This grid is initialized
at 15 UTC on April 3, 2014 using two-way nesting within the WRF. Prior to any DA
on the inner grid, an hour of model integration was performed to allow the model
to spinup the small-scale processes that can be resolved on the 2.4-km grid (Figure
3.7). Further details on the assimilation procedure can be found in the next two

sections.
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Table 3.2. WRF model settings and physics parameterization schemes

WREF setting

Option Chosen

Number of Ensembles

43

Initial Conditions

SREF (21 members); GEFS (21 members);
NAM (1 member) at 03 UTC 3 April 2014

Horizontal grid (outer domain)

250 x 180, Ax =12 km

Horizontal grid (inner domain)

351 x351,Ax=2.4km

Vertical grid

50 levels, ptop =50 hPa

Cumulus scheme

Outer: mixed -
Kain-Fristch (Kain 2004)
Betts-Miller-]Janjic (Janjic 1994)
Grell-Freitas Ensemble (Grell and Freitas
2014)
Grell 3D Ensemble (Grell and De’ve'nyi
2002)

Inner: none

PBL scheme

Mellor-Yamada Nakanishi Niino (MYNN)
Level 2.5 (Nakanishi and Niino 2009)

Microphysics scheme

Thompson (Thompson et al. 2008)

LW radiation scheme

Rapid Radiative Transfer Model for global
climate models (RRTMG; [acono et al. 2008)

SW radiation scheme

New Goddard (Chou and Suarez 1999)

Land surface scheme

Noah (Tewari et al. 2004)

Table 3.2 summarizes the different model settings for the WRF, including all

parameterization schemes used for the outer and inner grids. Cumulus

parameterization is only done on the outer grid, with four schemes evenly mixed

throughout the ensemble, similar to that done in Johnson and Wang (2017). The

MYNN PBL scheme was chosen in part based on results from Coniglio et al. (2013),

who found that the MYNN scheme is almost unbiased in PBL depth, moisture, and

potential temperature when verified against sounding observations. The MYNN
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scheme was unique among local schemes, as others tended to produce too shallow
and too moist PBLs. The Thompson microphysics scheme in combination with the
MYNN PBL scheme produced forecasts with storm mode most closely matching

reality for the supercells in the DFW domain in the case study here.

44°N —
42°N —
40°N — %
38°N —
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34°N —

32°N —
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26°N —\

[ [ [ [ [ [
110°W 105°W 100°W 95°W 90°W 85°W

Figure 3.6. WRF model two-way nested grid setup. Outer domain has 12-km
horizontal resolution, and inner grid has 2.4-km horizontal resolution (5:1
ratio). Dots indicate locations of WSR-88D radars used during inner cycle DA,
with circles representing 200-km ranges for each radar.
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Figure 3.7. Cycled DA experiment diagram. On the outer grid, after 3-hour
spinup four 3-hourly DA cycles of conventional observations were
performed, inner grid initialized at 1500 UTC. After 1-hour spinup, 5-min. DA
cycling of all observations was performed for 2 hours (1600 - 1800 UTC).
Free ensemble forecast initialized at 1800 UTC and run for 3 hours.
3.3.2 Data assimilation settings

The DA system chosen for this study is the Gridpoint Statistical
Interpolation analysis system (GSI) based EnKF extended to directly assimilate
radar observations (Johnson et al. 2015). The GSI-based EnKF uses the ensemble
square root filter (EnSRF) introduced by Whitaker and Hamill (2002). On the outer
domain, four 3-hourly cycles were performed at 6,9, 12, and 15 UTC using all
available conventional observations except radar to better simulate the mesoscale
environment prior to assimilating small-scale features at CAM resolution (Figure
3.7). For these analyses, first guess at appropriate time (FGAT) was used with
output model first-guess fields every 30-min until the end of the DA cycling
window (1.5 h after analysis time). On the inner grid, 5-min cycling is used to
capture rapidly-evolving storm-scale structures within the DA system. In addition

to conventional observations, nonconventional surface observations and NEXRAD

radar radial velocity and reflectivity are also assimilated on the inner grid.
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The purpose of the radar DA is to capture existing convection within the
1600-1800 UTC time period, as well as to eliminate any spurious convection that
develops within the model. To accomplish this, both precipitation and clear-air
reflectivity observations are assimilated from the 15 radars shown in Figure 3.6,
including assimilating missing observations as clear-air. Past studies have shown
assimilating clear-air reflectivity to be effective in suppressing spurious cells (e.g.,
Tong and Xue 2005; Aksoy et al. 2009). Here, we consider the precipitation
threshold to be 15 dBZ; that is, all observed reflectivity = 15 dBZ were assimilated
as precipitation observations. Any missing observation or observation less than 5
dBZ was set to 0 dBZ, the clear air value. Additionally, any first guess reflectivity
value less than 0 dBZ was reset to 0 dBZ, to ensure clear-air reflectivity could only
have the effect of precipitation suppression. Note that there is a gap between 5 and
15 dBZ where the reflectivity observations were ignored (not assimilated) to
prevent overlap in assimilation of precipitation and clear-air observations near the
edges of precipitation.

One challenge for ensemble assimilation methods is how to treat error
sources within the system. The first error source is sampling error owing to use of
arelatively small ensemble compared to the large number of degrees of freedom
within the model, causing spurious covariances. Fortunately, covariance
localization can be used to ameliorate sampling error (Houtekamer and Mitchell
1998, 2001). This study employs the commonly-used Gaspari and Cohn (1999)
function, which approximates a Gaussian function but implements an explicit

cutoff radius. For the outer grid, a cutoff radius of 700-km was used horizontally,
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the same as in Johnson et al. (2015). On the inner grid, horizontal localization is
varied dependent on observation type and network density, summarized in the
last column of Table 3.3. All conventional observations save radar use a
localization scale of 200-km on the inner grid. For radar, the 20-km cutoff is the
same as used in Johnson et al. (2015), and similar to the 18-km radius that worked
best in Sobash and Stensrud (2013). For surface mesonet observations two
different scales are used. For Oklahoma and West Texas mesonets we chose 80 km
to allow some overlapping of localization functions based on their average station
separation of approximately 35 km. Nonconventional surface observations such as
CWOP and ERNET have much denser networks, particularly near major cities, thus
for each of these categories a 40-km localization radius was chosen. In SS15, a 60-
km localization radius was used for all mesonet observations, so the values of 40-
km and 80-km are similar but chosen to more accurately reflect the different
surface mesonet networks rather than all of them at once. Vertical localization for
all observations was chosen to be 0.55 in natural log pressure coordinates.
Another error source that must be accounted for is intrinsic model error
that is not represented within the ensemble. Covariance inflation methods can be
used to correct for model error. Two methods of covariance inflation are used in
this work, following Johnson et al. (2015). The first is height-dependent
multiplicative inflation, to account for model errors that cannot be represented
within the ensemble (Whitaker and Hamill 2012). The amount of multiplicative
inflation at the surface is set to 15% every 3 h on the outer domain, and 0.3% for

each 5-min cycle on the inner domain. The multiplicative inflation smoothly tapers
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to about 9% at 200 mb and 3% at the 50-mb model top to avoid excess spread, as
in Johnson et al. (2015). The second inflation method is called relaxation to prior
spread (RTPS; Whitaker and Hamill 2012). RTPS inflates posterior ensemble
spread to some fraction, a, of the prior ensemble spread, accounting for excessive
spread reduction in regions where there are many observations assimilated. Here
we chose a value of 0.95 for a, meaning the posterior ensemble spread is inflated
to 95% of the prior ensemble spread. RTPS is applied for both outer and inner

domain DA.

Table 3.3. Initial observation error table values used for surface and radar
datasets. Last column indicates localization cutoff scale used for each data
source.

Data o RH uv Z Vg

Source RhPa) TCO (g  (msny (dB7) (msy Moo Um)
NEXRAD -- -- -- -- 5.0 2.0 20
ASOS/

AWOS 0.5426 0.8 2.705 1.5 -- - 200
OK/WTX

Mesonet 0.75 1.0 3.5 1.5 - - 30
ERNET 1125 15 50 20 @ - -~ 40
CWOP 1.5 2.0 7.0 2.5 -- - 40
MoPED 1.125 1.5 5.0 -- -- - 40
Misc.

Mesonet 1.125 1.5 5.0 2.0 - - 40
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3.3.3 Observation processing and quality control

All conventional observations minus radar were obtained from the NAM
Data Assimilation System (NDAS) in prepbufr format. These observations were put
through various automated quality control (QC) checks within the prepbufr
processing (Keyser 2017). Nonconventional surface observations were obtained
through MADIS and subjected to the same QC checks within the MADIS system,
which uses several levels of checks including temporal and spatial consistency. As
in Johnson et al. (2015), radar observations were processed using the Warning
Decision Support System-Integrated Information (WDSSII; Lakshmanan et al.
2007) software. The GSI system itself performs additional QC gross error checks
based on the ratio of the observation innovation to the observation error for a
given observation.

An important consideration for this work is how to specify observation
error values. Carlaw et al. (2015) showed that misspecification of error, in their
case specifying CWOP data as accurate as ASOS data, led to degradation in
verification scores. Values for initial observation error are shown in Table 3.3.
They were based on similar values used in Carlaw et al. (2015) but further tuned
for the GSI system. The basic idea, though, is that we consider ASOS to have the
least amount of error, conventional mesonets to be nearly as accurate, and
nonconventional data to be less accurate, with CWOP data being the least trusted
due to the amateur nature of the observations. These values are initially smaller
than what was used in Carlaw et al. (2015) because the GSI automatically adjusts

(inflates) observation errors based on mismatches between observation pressure
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and the first guess pressure, including assessing a higher penalty if the observation
is found below the model terrain height. Since nonconventional data have
enhanced siting concerns, the degree of observation error inflation is generally
higher than in any of the conventional datasets. Other conventional observations
for both inner and outer domains used the default observation error table values

found within the GSI software.

3.3.4 Data denial experiment setup

Data denial experiments were done within the 5-min DA cycling from 1600-
1800 UTC on the inner grid (Figure 3.7). The locations of all observations
assimilated within this period are shown in Figure 3.8. Surface data are abundant
within the DFW metroplex, but near the dryline the observations are relatively
sparse, though there is some coverage of nonconventional observations (Figure
3.8b). The temporal interval of surface observations varies by dataset; ASOS and
AWOS were available typically every 20 min, Oklahoma and West Texas mesonets
every 5 min, and ERNET every 5 min with a few exceptions. CWOP data were much
more intermittent; while most locations had observations available every 5
minutes, some stations were available every 10-15 minutes, with a few remote
locations reporting even less frequently. Additionally, the miscellaneous mesonet
data have a wide variety of reporting intervals, from 15 minutes to as infrequent as

once per hour.
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Figure 3.8. (a) Locations of all observations assimilated on inner domain
between 1600 and 1800 UTC. (b) All surface observations available from
1600-1800 UTC, zoomed into the DFW region.
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All data denial experiments are listed in Table 3.4. The control experiment,
CNTL, uses all available data. Experiment NOSFC is a baseline experiment to show
the effects of not having any surface data DA on the inner domain for the CI
forecast, while NONEWSFC denies just the nonconventional surface observations
in DFW. The other denial experiments will be compared with CNTL to evaluate the
relative impacts of each dataset. The experiment denying ASOS data, denyASQOS, is
presented as another point of comparison with the other nonconventional denials.
Finally, given past results of Carlaw et al. (2015) that showed the majority of
positive benefit coming from thermodynamic variables, an experiment denying
just wind information from CWOP and ERNET (denyCWwnd) is also considered to

separate out the relative impacts from thermodynamic and wind observations.

Table 3.4. Summary of surface data denial experiments.

Experiment ASOS OK/WTX Misc.
Narr)ne AWOé Meéonet ERNET CWOP MoPED Mesonet
CNTL Yes Yes Yes Yes Yes Yes
NOSFC No No No No No No
NONEWSEFC Yes Yes No No No No
denyASOS No Yes Yes Yes Yes Yes
denyERNET Yes Yes No Yes Yes Yes
denyCWOP Yes Yes Yes No Yes Yes
denyCW Yes Yes No No Yes Yes
denyMISC Yes Yes Yes Yes Yes No
denyCWwnd Yes Yes ‘({;Sermo) ‘({;Sermo) Yes Yes

56



3.4 Results

There are a few methods of evaluating the experiment forecast output for
CI. First, we use a subjective evaluation of ensemble probability of composite
reflectivity (CREF) exceeding 35 dBZ for various time intervals. This threshold is
common for identification of active ongoing convection (e.g., Roberts and Rutledge
2003). The focus for evaluating ensemble probability is on the first hour of the free
ensemble forecast, chosen since the actual CI occurs around or just before 1820
UTC. Given that this is an extreme hail event for the DFW testbed, another metric
to examine is the maximum hail diameter produced within the model throughout
the 3-h free forecast. Given the even larger uncertainty involved with hail
prediction, we employ a neighborhood ensemble probability (NEP) method, where
for each ensemble member the fraction of points exceeding the threshold value
within a given neighborhood radius is calculated at all model grid points, then
averaged across all ensembles (Schwartz et al. 2010). In hail two thresholds are
considered - 10 mm and 25 mm. The former is used as the lower limit of hail,
slightly larger than pea size; the latter is approximately the threshold for severe
hail used by the US National Weather Service. The NEP output will be compared
with SPC and mPING report locations gathered between 1800 and 2100 UTC. The
experiments are then further analyzed by tying the differences in ensemble
probabilities to differences seen in surface fields, as well as comparison of root

mean square differences (RMSD) and bias statistics among experiments.
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3.4.1 Evaluation of CNTL experiment

The overall view of the severe event on the inner domain is shown in Figure
3.9,where observations at 1930 and 2030 UTC are compared to forecast
probabilities of 35-dBZ composite reflectivity. Aside from the two supercells in the
DFW region, another area of Cl is observed in NE Oklahoma along the advancing
cold front between 1800 and 1900 UTC (Figure 3.9a,b). This line of storms
stretches SW into central Oklahoma. Another area of CI occurs in SW Texas
between 1900 and 1930 UTC. Throughout the 3-h free ensemble forecast, CNTL
captures the Oklahoma line of storms with very high confidence, as probabilities
are shown exceeding 90% for a large portion of the line and as high as 100% for an
early part of the line (Figure 3.9c). There is a bit less confidence in the
southwestern extent of the line, but still over half the ensemble members indicate
convection extending that far south. The storms of interest near Dallas are also
captured very well in this 3-h view, with probabilities exceeding 90%. Convection
also initiates to the SW in the ensemble and appears overaggressive compared to
reality. There are additional points of observed CI in this area after 2100 UTC (not
shown), so we consider this area forecast to be early CI rather than completely
spurious.

Within the DFW region, the ensemble shows CI activity very quickly after
the IC time of 1800 UTC, as shown in the top row of Figure 3.10. Already 10-20
minutes into the forecast, probabilities of CREF = 35 dBZ as high as 90% are seen
in SW Wise County, centered less than 10-km from the actual CI location (Figure

3.10a). Probabilities remain above 70% by 1850 UTC with a general collocation of
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the actual storm extent (Figure 3.10c).

.-a) 1930 UTC
There are, however, spurious CI
locations nearby, with a couple areas
to the NE showing probabilities

greater than 50% in the ensemble. By
‘E} s
£ 4 1850 UTC the swath of probabilities
.h.-.....\‘ w .g’
; 2030 UTC exceeding 30% extends from SW Wise

-

}';‘v

County up to the Oklahoma-Texas

border (Figure 3.10c).

The output of maximum hail
size NEP is shown in Figure 3.11. The

ensemble has high confidence in hail

37°N

36°N exceeding 10 mm and covers nearly all
35°N — . .
hail reports with above 50%
34°N

probability (Figure 3.11a). There is a

33°N

32°N 7 slight northern bias to the hail swath,
31°N -
however, as
30°N —

probabilities above 70% extend as far

north as Oklahoma.

10 20 30 40 50 60 70 80 90 100

Figure 3.9. (a-b) Observed composite
reflectivity mosaic valid 1930 and 2030
UTC on 3 April 2014, respectively. (c)
Ensemble probability of maximum 3-h
(18-21 UTC) composite reflectivity = 35
dBZ (%), with observed 35-dBZ
maximum 3-h composite reflectivity
(black contours).
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Figure 3.10. Ensemble probability of 15-min maximum composite
reflectivity greater than 35 dBZ for experiments CNTL (a-c), denyASOS (d-f),
and NOSFC (g-i). Magenta contour indicates observed maximum 15-min
composite reflectivity for each time period indicated by columns.

With the higher severe threshold of 25 mm, probabilities are significantly reduced.
There are two distinct centers of probability exceeding 50%. The first is in SW
Wise County, just to the SW of the hail reports - an indication that the model grew
the storms too quickly and aggressively compared to reality. The second peak is

stronger and covers a larger area, with the center approximately 20-30 km NE of

the maximum hail size reports located in Denton, TX. Despite the small location
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errors, the CNTL ensemble was able to predict with high confidence severe hail in

the north DFW region.
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Figure 3.11. Neighborhood ensemble probability of maximum hail size in the
entire column exceeding 10 mm (a) and 25 mm (b) for the entire 3-h forecast
period (18-21 UTC) plotted for the CNTL experiment, using a neighborhood
radius of 9.6 km. Triangles indicate SPC hail reports, and asterisks indicate
mPING hail reports, sized according to size of the hail reported.
3.4.2 Evaluation of denial experiments

In addition to CNTL, experiments denyASOS and NOSFC are shown in
Figure 3.10. These experiments were conducted as different baselines to compare
to the nonconventional denials. One might anticipate a marked negative impact in
denying ASOS and AWOS, since it is considered the most reliable surface dataset
assimilated with the smallest observational errors. Additionally information is
spread out at a larger scale than other surface data sets, due to the larger 200-km
localization. As seen in Figure 3.10d-f, there is a substantial impact in the CI

forecast, with the main area of CI shifted about 65 km to the NE, close to the

Oklahoma border. Additionally this CI was delayed by about 15 minutes compared
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to the CNTL. An even larger negative impact is seen when assimilating no surface
observations (Figure 3.10g-i), where minimal CI occurs in the ensemble within the
first hour. This extends further into the free forecast, as between 1900 and 2000
UTC less than one third of ensemble members show convection within the DFW
domain (not shown). This result of experiment NOSFC is an important baseline to
show the impact that any surface observations have on the CI forecast in this case -
that CI is highly sensitive to surface observations. Comparing NOSFC to denyASOS,
we can infer that nonconventional observations have added some value in
capturing CI, even though there are larger timing and location errors than CNTL.
Ensemble probabilities of CREF = 35 dBZ for nonconventional denial
experiments are shown in Figure 3.12. The differences are generally smaller than
the differences shown in Figure 3.10; however, there are still some notable effects.
When denying all nonconventional data (NONEWSFC), the CI in SW Wise County is
reduced in probability to below 40%, though two additional CI points just S and
SW show probabilities in the 40-50% range. Additionally, a spurious point of CI
occurs by the Oklahoma border, with probabilities over 80% (Figure 3.12a). This
storm dissipates rapidly within the ensemble, as probabilities quickly diminish.
For experiment denyERNET, there are many more spurious CI locations within the
ensemble; additionally, the Wise County CI shows probabilities no higher than
60%, which is a small reduction compared to CNTL (Figure 3.12d-f). On the other
hand, denyCWOP shows a marked reduction in the number of spurious CI points
within the DFW region, though the CI in Wise County is reduced 10% more in

probability as compared to denyERNET. Taken together, there are mixed signals in
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positive and negative impacts - we can infer that CWOP data are important in

establishing the CI in Wise County; however, CWOP also contribute to the amount

of spurious CI in the ensemble. While ERNET data have a bit less impact on the CI

itself, they do help counteract the spurious activity.
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Figure 3.12. As in Figure 3.10, but for experiments NONEWSFC (a-c),
denyERNET (d-f), and denyCWOP (g-i).
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When looking at NEP of maximum hail 2 10 mm (Figure 3.13) denyASOS is
again displaced to the NE, close to the Oklahoma border. Denying ERNET has a
minor effect on the 10 mm hail forecast, but denying CWOP data constrains the
hail swath to more closely match the report locations - eliminating much of the
northerly extent of hail (Figure 3.13c). Experiment NONEWSFC shows reduced
probabilities - less than 70% - and smaller hail swaths, though the location still
matches the hail reports. A similar pattern can be seen with the NEP of 25 mm hail
(Figure 3.14). There is a small NE displacement of the max hail probability in
denyERNET, and probabilities are reduced slightly (around 10%) compared to
CNTL (Figure 3.14b). There is less displacement in denyCWOP, but the
probabilities are again reduced by around 10% compared to CNTL (Figure 3.14c).
In NONEWSEFC, less than a quarter of ensemble members show severe hail, which
is as much as 40 percentage points lower than the CNTL (Figure 3.14d); less than

15% of ensemble members have severe hail in NOSFC (Figure 3.14f).
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Figure 3.13. As in Figure 3.11a, but for denial experiments (a) denyASOS, (b)
denyERNET, (c) denyCWOP, (d) NONEWSFC, (e) denyMISC, and (f) NOSFC
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Figure 3.14. As in Figure 3.11b, but for denial experiments (a) denyASQOS, (b)
denyERNET, (c) denyCWOP, (d) NONEWSFC, (e) denyMISC, and (f) NOSFC
3.4.3 Evaluation of surface fields

Since Cl is especially sensitive to boundary layer moisture for dryline cases,

it is important to look at the surface moisture field to gain insight into some of the
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differences shown in the ensemble probability fields. Dewpoint temperature for
the final mean analysis is shown for CNTL and NOSFC in Figure 3.15a and b,
respectively. The actual dryline placement error is not very large in NOSFC
compared to CNTL, perhaps one county further east at most. However, there are
several other notable differences in the dryline that led to CI in the proper location
and time. First, the dryline in CNTL has stronger gradients and shows higher
values of moisture in general - the dryline in NOSFC is over-mixed and has coarser
gradients, as a result it is drier than it should be at locations too far east.
Additionally, there are important kinks in the dryline in CNTL that are not as
apparent in NOSFC. Several studies have linked CI to dryline bulges and kinks such
as that seen in CNTL (e.g., Hane et al. 1997; Hane et al. 2002). Near the CI location,
the local dryline is approximately east-west in orientation in CNTL, whereas in
NOSFC no such small-scale variation exists. Due to the east-west local variation, an
area of enhanced convergence exists owing to the largely southerly flow in the
moist regime being locally perpendicular to the dryline. Additionally, there
appears to be a small pocket of enhanced moisture in that location.

Of course, it can be challenging to look at a moisture plot and simply point
to an exact location of CI. Not all dryline kinks result in convection. One avenue to
address this is to look at plots of mass convergence or moisture flux convergence

(MFC) to identify favorable areas of CI (Banacos and Schultz 2005).

67



34°N

33°30'N

33°N

33°30'N 27 sses0'N |0

N N . o4

33°N

L e

e // / j/ i 12
SN N /‘/\'//‘/ N 9
/j:/// 4 */ ///' \ %j/f f/ff 6
»//,l/////& /‘//'fffjff// .

99°W

frfff 2 32°N

' ;
98°30'W 9g°W 97°30'W 97w 96°30' W 99°W 98°30'W 98°W 97°30'W 97°W 96°30'W

Figure 3.15. (a-b) Final analysis mean 10-m dewpoint temperature (color
fill) and wind (vectors), valid 18 UTC 3 April 2014, for experiments CNTL and
NOSFC, respectively. (c-d) Vertically-integrated moisture flux convergence
(mm(Hz0) s1) computed for the lowest 2-km above ground level, with wind
(vectors) at 2 km above ground, valid 18 UTC 3 April 2014 for experiments
CNTL and NOSFC, respectively. Thick brown line indicates approximate
dryline location, and blue box indicates location of Wise County, TX.

While the utility of a snapshot of MFC is questionable in a forecasting sense, it can
be used as an important visual tool for CI case studies. One such example is Xue
and Martin (2006a,b), who with the aid of MFC plots developed a conceptual
model for dryline CI that posits locations of enhanced convergence occur at
intersections between boundary layer convective rolls and the primary dryline
convergence band. It is possible the east-west kink in Figure 3.15a is a reflection of

such a process, though the horizontal resolution of this forecast is too coarse to

fully resolve convective rolls in the PBL.
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A drawback of MFC is that it only reflects a single level, while triggering CI
is a 3D process that requires convergence at more than one level such that parcels
can be lifted to the level of free convection. Additionally, plots of MFC along the
dryline often show many areas of enhanced convergence - it may show favorable
areas of CI, but does not discriminate very well between CI from none. For this
reason, we have instead plotted vertically integrated moisture flux convergence
(VIMFC) over the lowest 2km of the atmosphere, to reflect the amount of forced
lifting in the PBL. VIMFC was explored as a discriminator on synoptic scales by van
Zomeren and van Delden (2007); however, to the best of our knowledge has not
been used for convective scales. VIMFC is analogous to precipitable water in that it
reflects the depth of liquid water within a column - in the case of VIMFC, it reflects
the liquid equivalent depth of water entering the column per second. As seen in
Figure 3.15c, CNTL has a strong center of VIMFC associated with the east-west
local kink near Wise County. With a strong center of VIMFC clearly CI is imminent,
and this helps explain why timing and location errors were very small in CNTL for
this cell. On the other hand, VIMFC shows much more limited favorable CI areas in
NOSFC (Figure 3.15d), which helps to show why convective activity was low in the
experiment.

Difference fields of dewpoint are shown in Figure 3.16 to further focus on
factors that lead to the enhanced VIMFC shown in the CNTL experiment. Overlaid
on these difference plots are the denied observations minus the analysis, which
can be thought of as the observation innovation that the denied observations

would have had if they were assimilated in the denial experiment. The goal of this
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is to clearly tie the differences between the CNTL and denial experiments - which
include nonlinear effects of model integration - to the actual observations had they
been assimilated. As such, we can see many important impacts from each
observational dataset. From Figure 3.164a, there are a few ERNET observations
upstream of the Cl location in relatively data-sparse locations that help feed
moisture to the CI location. The CWOP data - which had a larger impact on the CI
probability - have fortuitous data coverage near the CI location to help capture
that east-west kink in the dryline, as locally there are dry and moist observations
directly north and south of each other right next to that CI location (Figure 3.16b).
ASOS data, which had the largest impact of the surface datasets, can be seen to
have more broad-scale impacts in Figure 3.16¢, which helps to constrain the
gradient and location of the dryline from the over-mixing tendency found within
NOSFC.

Finally, though not discussed thus far, the miscellaneous mesonet data had
a surprising impact on the moisture field as well, as observations far away SW of
the CI location were found to feed directly to that location in a river of moisture
after 2 hours of model integration. Denying this data did have a slightly larger
negative impact in terms of severe hail (Figure 3.14€) than either denyCWOP or
denyERNET. These observations to the SW were from a hydrometeorological
observation network, located often next to small lakes and streams. As such it is
possible they have an additional representativeness error that was unaccounted

for, though it is also worth noting the observations in Figure 3.16d also lie right
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along the dryline gradient so there is an added sensitivity to these observations

because of proximity to this feature.
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Figure 3.16. Difference fields for ensemble mean 2-m dewpoint temperature
(color fill) and 10-m wind (vectors) for final analysis time 18 UTC 3 April
2014: (a) denyERNET minus CNTL, (b) denyCWOP minus CNTL, (c) denyASOS
minus CNTL, (d) denyMISC minus CNLT. Color-fill dots indicate respective
observations from each denial experiment for each plot, with colors and

sizes indicating the O-A values for each denial dataset (i.e. what the

observation innovations would have been if denied observations were
assimilated). Yellow star indicates approximate CI location in SW Wise
County, and blue outlines highlight relevant observations influencing the CI

forecast.
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In summary, Figure 3.16 indicates that there is a cumulative effect of all
these different observations. Each network is adding moisture in a different way.
This helps explain why the location and timing of CI was not greatly affected by the
nonconventional denials, but the ensemble probabilities of CI and hail were
reduced.

The RMSD and bias statistics for all experiments are shown in Figure 3.17,
computed against all surface observations available. The negative time period
RMSD and biases were calculated using first guess and analysis ensemble means
during DA cycling creating a “sawtooth” appearance, while the positive period uses
ensemble means from the 3-h free forecast period (18-21 UTC). Both temperature
and wind speed show little difference in RMSD among all experiments during the
free forecast, aside from a slight degradation in RMSD of wind for denyASOS. Most
of the notable differences occur in specific humidity. Experiment NOSFC is
generally 0.5 g kg1 higher than CNTL. Interestingly, CNTL is somewhere in the
middle of the experiments in terms of RMSD, while denyCWOP and denyCWwnd
are generally lowest. In terms of bias, there tends to be a model dry bias in
moisture on the order of 0.5 to 1.0 g kg1. There is also a high wind speed bias in
the model, which may also be a reflection of the low speed bias of these

nonconventional data discussed in Carlaw et al. (2015).
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Figure 3.17. Time series root mean square difference (RMSD) and bias
(model minus observations) of ensemble mean for all experiments, plotted
for temperature (a-b), dewpoint temperature (c-d), and wind (e-f). Note that
the bias in (f) is wind magnitude bias only.
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3.4.4 Sensitivity to observation type

Carlaw et al. (2015) found the majority of impact from nonconventional
observations came from thermodynamic information. On the other hand, SS15
found slightly more impact on their CI forecasts from the wind information. To find
out which information has a larger benefit for this case study, experiment
denyCWwnd was conducted, where only the wind observations from CWOP and
ERNET are denied but thermodynamic variables are still assimilated. Compared
with denyCW, denyCWwnd matches much more closely with CNTL (Figure 3.18),
with only a minor reduction in ensemble probability within the first hour of the
free forecast. But interestingly, the forecast of hail is actually improved in
denyCWwnd for both 10 mm and 25 mm thresholds (Figure 3.19). In fact the 25
mm NEP has improved by 10% and shows a max probability slightly closer to the
significant hail reports in Denton. So in this case study, it is clear that the
thermodynamic information from the nonconventional datasets - specifically
moisture - is of greater importance than the wind information.

What could be the cause of wind observations degrading the forecast?
Previous studies focusing on nonconventional mesonet observations have
mentioned low wind speed bias concerns of wind measurements, which is a
potential source of degradation (Hilliker et al. 2010; Carlaw et al. 2015). Another
source can be inferred from Figure 3.17. Denying just the wind observations from
CWOP and ERNET results in an almost negligible difference in the forecast RMSD
of wind - an indication that the wind observations are not adding much

information. Additionally, the RMSD of specific humidity slightly improves over the
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CNTL just from denying wind observations. If the wind observations do not add
much information, then their assimilation is not necessary and instead will only
accumulate noise in the analysis from the large number of observations being
assimilated. In other words, it is possible the variability of the ensemble wind is
actually smaller than the variability of the nonconventional wind observations

themselves due to siting issues.
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Figure 3.18. As in Figure 3.10, but for denial experiments (a-c) denyMISC, (d-
f) denyCW, and (g-i) denyCWwnd.
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Figure 3.19. As in Figure 3.11, but comparing NEP of max hail size exceeding
10 mm (a-b) and 25 mm (c-d) for experiments CNTL (a,c) and denyCWwnd
(b,d).
3.5 Summary and discussion

While the number of studies assimilating surface observations in addition
to radar observations has increased, there have been very few to examine the use
of surface mesonet observations on forecasts of CI. Additionally, these mesonet
surface observations are typically taken as one observation source. In this study,
we examined the impacts of different systems of nonconventional surface

observations on the forecast of CI from an extreme hail event in the DFW testbed, 3

April 2014, using data denial experiments. Our results indicated that while
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nonconventional data sources did not have a very large magnitude impact
compared with conventional surface observations, they still had an important
contribution to the accurate prediction of CI and subsequent hail within the
ensemble. Each nonconventional dataset contained observations from different
locations that modified the moisture near the CI location, leading to a cumulative
effect of all networks. These important observations were all located in
advantageous areas just along the dryline, bringing to mind a key result of Tyndall
and Horel (2013), “location, location, location.” They examined analysis impacts of
mesonet observations and found those observations located in data sparse regions
or in regions with sensitive local weather patterns (i.e. coastal regions) had the
biggest impact. Similarly, the most important observations in this study were
found within the dryline gradient, in areas where observations were relatively
sparse compared to the densest part of the network in the most populous parts of
DFW. In terms of the NNoN concept, dryline positions change on a daily basis so
aside from a broad climatological average of dryline location it is difficult to know
exactly where to site the observations, so a general approach such that
observations are spread out evenly (as in the Oklahoma mesonet) is preferred.
Alternatively, mobile platforms such as unmanned area vehicles (UAVs) may be
useful for measuring the dryline gradient.

The high-frequency assimilation of surface observations assisted in
successfully constraining model biases related to the PBL scheme, as also found in
SS15. The ASOS and AWOS data largely constrained the dryline position and

gradient strength, preventing the model from over-mixing the dryline and causing
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the surface to be too dry in areas where Cl occurred in reality. The addition of
nonconventional observations helped to define the important small-scale features
in drylines that are often the foci of CI. In this case, CWOP observations helped to
define a small east-west kink in the dryline over Wise County, TX that allowed for
the southerly flow within the moist regime to be more normal to the dryline,
enhancing convergence and lift.

While the potential value of assimilating CWOP is intriguing, there are many
issues that remain a challenge. Despite the positive result in CI, it was also clear
that assimilating CWOP led to additional spurious convection, due to noisiness in
the wind observations inducing small noisy areas of convergence where none
exist. Additionally, the siting concerns of CWOP prevent it from being optimally
utilized. Nearly 10% of the CWOP observations in the domain of this study were
flagged with having a reported elevation significantly different than the model
terrain - some may be an inaccuracy in reported elevation (such as reporting in
feet rather than meters), but others could be a misreported location. Separately we
have found errors in many observing systems, including Federal stations, on the
order of the grid spacing used here. While the GSI automatically handled these
siting issues by inflating their observation errors, it still leaves some untapped
potential into fully utilizing these nonconventional observations. ERNET data do
not share as much of the location and reporting concerns as CWOP, but station
siting is still a big issue. We simply do not know what height these observations
were located, and could only make an assumption of 2-m AGL. Since many are

located on tops of buildings, it is possible that this is introducing an artificial high
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bias when using those ERNET observations, as the actual height of the observation
is higher than reported.

In general, the metadata for nonconventional observations needs to be
improved before they can be used reliably in DA systems. This study shows that
we need to treat each observation source appropriately - it is not good enough to
simply lump CWOP data in with the same assumed error as Oklahoma Mesonet.
Additionally, observations that we have not explicitly studied need to be examined
more carefully for any sources of bias. In this work, hydrometeorological
observation stations had a positive impact on the CI location but also enhanced
some spurious activity. Are observations at these stations moist-biased - or have
enhanced representativeness error - due to their locations next to small lakes and
streams? We need to learn about observation data issues in representativeness so
that it can be treated properly within the DA systems, either by removing the bias
or setting more appropriate localizations and observation errors. Although this
thinking leads to more complicated DA configurations with endless tuning
possibilities, these fine details will determine the future utility of these high-
resolution surface observations for improving high-resolution forecasts.

Despite the issues with nonconventional observations, this case study was
still important in quantifying the value we can get from these surface observations
in our DA systems even in the absence of radar data. They truly can give us the
small-scale information that is necessary to pinpoint the correct location for Cl in a
dryline case. The caveat is this is just one case study, though an important high

impact case. More cases need to be examined utilizing nonconventional
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observations. Other ideas include evaluating a month-long quasi-real-time study or
a series of high impact weather cases so that effects are not diluted by quiescent
days.

Finally, this work lays the foundation of experiments to examine the
application of the EFSO on the convective scale. The application of EFSO is the

subject of chapter 5.
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Chapter 4: Adaptive Localization for the Ensemble-based Forecast
Sensitivity to Observations (EFSO) Metric using Regression Confidence
Factors

4.1 Introduction

The EFSO metric is appealing because ensemble perturbations take the
place of the adjoint model in estimating sensitivities. However as with any
ensemble method, it suffers from sampling error, which occurs when the number
of ensemble members is small compared to the degrees of freedom in a model and
observing system - predominantly the case in ensemble NWP. Sampling error
results in spurious correlations and can lead to filter divergence in deterministic
EnKF assimilation. The problem of sampling error caused by small ensembles is a
more serious issue for the EFSO metric. Localization can be applied to alleviate
sampling error; however, a time-forecast component is added to the localization
problem, such that a straightforward application of fixed localization techniques
would not guarantee accurate impact estimates with EFSO.

This chapter explores the application of a dynamic localization method for
the EFSO metric. There are two main purposes of this study. The first is to simply
learn what a ‘proper’ localization function looks like for the EFSO impact estimate,
and how it evolves with increasing forecast time. Kalnay et al. (2012) and Ota et al
(2013) only considered moving the localization function, but it is possible that the
shape and magnitude also need to evolve with forecast component, something that
an adaptive method will be able to automatically determine. The second purpose is

to test the potential effectiveness of an adaptive method on EFSO. Adaptive
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localizations generally have been shown to provide more accurate assimilations at
increased computational cost relative to fixed localization; in this chapter it is
explored whether the application of such adaptive methods initially developed for
assimilation can be extended and applied successfully to the EFSO metric. Briefly,
the dynamic localization function used here is obtained from confidence factors
derived using groups of ensembles, first proposed for EnKF by Anderson (2007).
The focus of this chapter is to extend this group filter (GF) concept in the context of
the observation impact estimate.

In section 4.2, the regression confidence factor (RCF) method is
introduced. Section 4.3 describes the experiment setup. As an initial test of the
method on observation impact estimates, an isentropic two-layer primitive
equation model (Zou et al. 1993) under the perfect-model assumption is adopted.
This model is coupled with the LETKF data assimilation system following Holland
and Wang (2013). The RCF calculation settings are also explained in section 4.3.
The resulting RCF localization functions are shown and applied in section 4.4 for
both single-observation and full-domain observation assimilation experiments.
The accuracy of the ensemble observation impact estimate using the dynamic
localization is compared with that of using fixed Gaspari-Cohn localization for
different observation locations (tropical vs. midlatitude), forecast length, and
differing state variables. The goal of comparison to static GC is to first determine if
the adaptive method is better for EFSO. More importantly, the GC function is used
as a tool to provide a baseline for comparisons with RCF localization experiments,

to help provide context for qualitative discussion. From this comparison, an
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important relationship between localization used during assimilation and for the
impact estimate was discovered and is discussed in sections 4.4.4-4.4.5. Another
potential use for adaptive methods is in the ability to automatically tune GC
localization. This concept is introduced and tested in section 4.4.6. A summary and

discussion are given in section 4.5.

4.2 The RCF method of computing localization for EFSO

The GF method of Anderson (2007) operates using groups of ensembles to
calculate regression-sampling errors in the ensembles. Assume that g groups of k
ensembles are available in an assimilation system. When computing the linear
regression between the state variables and observations, there are g samples of
the regression coefficient, . A weighting factor, ¢, is defined to minimize the
expected RMS differences between all possible combinations of sample g pairs. So,

o is chosen to minimize

JE i_(“ﬁf -5) - (4.1)

A simple derivation (see Anderson 2007) leads to the following expression for

Omin,

(S) /Sl

a.. = = —
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min

(4.2)

where Q is the ratio of the sample standard deviation to the absolute value of the

sample mean of the group f’s. The optimal weighting factor ominis also known as
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the regression confidence factor (RCF). A unique amin can be calculated for each
observation-state pair. The set of RCFs for a given observation and all state
variables is called a regression confidence envelope and can be used directly as a
localization function (Anderson 2007).

In the hierarchical filter of Anderson (2007), the regression coefficient 8

represents the regression between observations y, and state background X, . So

is the covariance between y, and X, normalized by the variance of y,. To apply

this method to EFSO, a different regression is considered to be between the
analysis in observation space and the forecast, such that for each observation / and
state variable j,

(x;xs)
ng(ng)T)u ' (4.3)

/51,/‘ =
(

The use of the RCF method for the EFSO impact metric is inherently limited by the
linear regression approximation needed to compute the group f’s according to
(4.3) so there is an inherent limit to the forecast length at which it can be

successfully applied.

4.3 Experiment design
4.3.1 The assimilation and forecast system

To evaluate and explore methods to improve the accuracy of EFSO in
quantifying observation impact, experiments with a simplified primitive equation

model and simulated observations were done. The dry, global, two-layer primitive
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equation spectral model of Zou et al. (1993) was chosen, which has been used in
several studies of perfect- and imperfect-model ensemble-based data assimilation
experiments (e.g., Wang et al. 2007, 2009; Holland and Wang 2013). It is useful due
to its low computational demands allowing for many experiments to be conducted.
The model variables include two vertical layers of vorticity, divergence, and layer
thickness coefficients. The layer thicknesses, Ami and Amg, are described in terms of
n - the Exner function. The model includes simple parameterization schemes for
radiative heating and surface drag, with zonal wavenumber-2 terrain. A fourth-
order Runge Kutta scheme is used for forward integration.

The model was run using the same parameters as in Holland and Wang
(2013). To isolate the impact of sampling error, the experiments were conducted
in a perfect model context. A model run with daily output over thousands of days
of integration at T31 resolution served as the truth. An initial ensemble was
generated by a random draw of the truth states. The assimilation-forecast cycles
were run at the T31 resolution for 1000 cycles at one day (n = 24 h) intervals due
to the long error doubling time of 3.78 days (Hamill and Whitaker 2005). The first
100 cycles were discarded from the RCF and impact calculations to allow the
system to stabilize. Observations in interface height - the height between layer 1
and layer 2 - were generated from the truth by adding errors drawn from a
distribution with zero mean and fixed standard deviation of 250-m, as in Wang et
al. (2007). There are 362 equally-spaced observations total. These observations
were assimilated into the LETKF following the settings of Holland and Wang

(2013) with multiplicative and additive inflation. GC localization was applied
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during assimilation with a cutoff radius of 8000 km, which was optimally tuned
but, more importantly, provided a stable forecast-assimilation system for the full
1000 cycles.
4.3.2 Settings for impact estimate experiments using RCF

Figure 4.1 shows a flowchart of RCF computations. An initial set of
ensembles is randomly split into g groups of k ensembles each prior to
assimilation. Cycled LETKF analyses are done for each group of k ensembles

separately. Following analysis, an ensemble forecast is run to some valid time t.

First Guess First Guess »
Ensemble, X! Ensemble, X" T
- T Emn
v - v - -
LETKE ,:—: - = "}i Ensemble » LETKE ,:—: - = ~‘; Ensemble y
Analysis, X | 7~ -~7 | Forecast, X/, Analysis, X/ So_~7 | Forecast, X,
1 Splitinto i 1 Splitinto :
: 4 groups | 4groups |
v 07 ¥
Gpl Gp 2 Gp 3 Gp 4 Gp1l Gp 2 Gp3 Gp 4
XX || xox | | xax || xix, Xo X || xoxg | | xixg || xrx
Emn

RCF calculation for
each ob, state pair

RCF calculation for
each ob, state pair

Mean RCF over cycles

Figure 4.1. Flowchart of RCF method. After an LETKF ensemble analysis, an
ensemble forecast is run to some time t. Then the analysis and forecast
ensembles are randomly split into four groups, and for each group g is
calculated according to Equation (4.3) . The RCF is then computed according
to Equation (4.2) for all observation-state pairs. This RCF envelope, unique
for each analysis cycle, is fed into a running average over all the analysis
cycles. The mean RCF envelope then serves as the GF localization function for
impact estimate experiments. For the experiments in this chapter, the mean
RCF function is calculated over 900 cycles total.
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For each group, a regression coefficient §is then calculated according to (4.3) from
which RCF is calculated according to (4.2) and saved for each assimilation cycle.
Each grid point-observation pair has a unique RCF. Since the RCF from each cycle
is noisy due to a small number of groups used in the calculation, particularly for
locations far away from an observation, the next step is to take the mean of the
RCFs across all cycles to dampen out those effects. This results in a ‘lookup table’ of
RCF functions for every observation. There are up to 256 ensemble members total,
which are grouped randomly prior to assimilation. Initial experiments tested the
sensitivity of resulting RCF functions with varying number of groups (2,4,8, and
16) using 16-member groups, and varying the number of ensembles per group (8,
16, 32, and 64) using 4 groups. For the subsequent impact experiments, RCF
functions were calculated using g = 4 groups of k = 16 ensemble members each (64
ensemble members total) and applied as localization functions for ensemble
impact estimates using a 16-member ensemble.

Impact experiments were conducted varying the forecast valid time ¢
from O to 4 days. At t = 0, no forecast is run so the method gives RCF functions for
the impact of the observations on the analysis. RCF functions were calculated first
for model interface height, zin, and then in terms of the state variables Am;, A, us,
uz, vy, v2. RCF functions for the latter are considered cross-variable impacts, which
will serve to examine the effects of using the new localization method to estimate

the impact of observations on unobserved variables.
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Once the RCF functions were calculated, they were applied directly to the
impact metric in Equation (2.17) using one of the 16 ensemble group assimilations
and compared with ensemble estimates with no localization and using a static GC
localization. The results were validated against the actual impact, which is the
impact calculated directly from Equation (2.15) using the truth. Additionally, sets
of single-observation experiments were conducted to better understand the
results qualitatively, to aid in viewing specifically the time- and cross-variable

components of the localization and the impact estimate.

4.4 Results
4.4.1 RCF localization

Prior to application of the dynamic RCF functions to the EFSO metric, we
first examine the structure of the localization functions outputted from the
procedure described in Figure 4.1. At the analysis time (Figure 4.2a) RCF appears
to have a Gaussian-like shape to it, though there are some differences such as
narrow peaks and heavier tails. The effect of averaging over 900 cycles has
smoothed the functions, though some noisiness still remains particularly in the
tails of the distributions. Increasing the number of ensemble members per group
increases the width of the RCF function, mostly greater than 30 degrees in
longitude away from the observation. The increased RCF width is because larger
ensembles are less prone to noise from spurious correlations until greater

distances from the observation. This result is consistent with results of Anderson
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(2007, c.f. Fig. 4), as well as studies examining changes in optimal GC length scale
with changing ensemble size (e.g., Hamill et al. 2001).

RCF functions for a 2-day forecast are shown in Figure 4.2b. The time-
forecast dependency causes the main signal to dampen and shift downstream from
the observation location. The diminished magnitude suggests less confidence in
ensemble covariances at longer forecast lead times. With increasing ensemble
member size per group, there is an increase in the strength of the RCF function
across all longitudes. Each ensemble size is able to capture the same time-
dependent shift away from the observation and generally the same shape. The
ensemble size of 16 chosen for various impact experiments in following sections

has a maximum

1.0 . | | | | . | 1.0 . | | |
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Figure 4.2. Zonal cross-sections of RCF, averaged over 900 cycles, for model
interface height of a midlatitude observation located at 60°N, 15°E. The
curves represent mean RCF functions calculated using g = 4 groups, with
differing numbers of ensemble members per group - 8, 16, 32, and 64. The
vertical dashed line represents the longitudinal location of the observation.
(a) RCF function for the analysis (forecast ¢ = 0), (b) RCF functions fora t = 2-
day ensemble forecast

89



signal of about 0.55 for the 2-day forecast, in contrast to the maximum of 1.0 for
the analysis RCF function (Figure 4.2a).

Figure 4.3 examines the sensitivity of changing the number of groups used
in the RCF computation. The differences in number of groups results in small
differences in the RCF functions for both the analysis and 2-day forecast. This
insensitivity can be attributed to the process of taking a long-term average of RCF
functions over all LETKF cycles. Interestingly, just two groups would be sufficient
in capturing the general shape of the RCF function. The rest of the results consider
RCF functions computed from four groups of 16 ensemble members per group.

Each observation within the domain has a unique RCF function, and
because the method reveals dynamical features of the model not all observations

have a Gaussian-like spatial correlation. The seven observations in Figure 4.4 each
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Figure 4.3. As in Figure 4.2., but for RCF functions calculated with varying
numbers of groups, with 16 ensemble members per group.
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show zonally-stretched RCF distributions, consistent with the predominantly zonal
flow of the model. Midlatitude observations (obs. 1,2,3,6,7) tend to have a more
Gaussian-like appearance, though some have a triple-peaked structure (obs. 1 and
6) associated with the strongest westerly flow. The distance between the peaks of
about 40 degrees in longitude is likely a representation of underlying Rossby
waves. For example, for an observation placed at a trough these additional peaks
represent the adjacent ridges associated with a trough. As observations get closer
to the tropics (e.g. obs. 4, 5), RCF begins to take a different, sometimes complex
shape, including stretching eastward along the equator upstream of the main flow.
RCF functions from Figure 4.4 are valid for the analysis time of model
interface height. As illustrated in Figure 4.5, RCF functions also reveal the time-
forecast and cross-variable dynamics of the model. With increasing time from
analysis to 3-day forecast, the RCF function in interface height (Figure 4.5a,d,g)

shifts downstream of the observation, expands in area, and reduces in magnitude.
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Figure 4.4. Examples of RCF functions for seven differing interface height
observations (locations marked by white dots), calculated for analysis time
(t =0) of model interface height. The wind vectors are a 900-cycle average of
ensemble mean layer-2 wind. For plotting purposes, each observation’s RCF
function is displayed only for values greater than 0.3.

The shift in maximum amplitude is approximately 10° per day between analysis
and 2-day forecast, which is roughly 1000-km per day. This is consistent with
results of Torn and Hakim (2008) who found a 1000-km distance in their
composite sensitivity 24-h patterns over Washington. In terms of layer two zonal
wind, uz (Figure 4.5b) and meridional wind, vz (Figure 4.5c), the RCF functions
exhibit dual peak dynamical structures. These RCF functions together mimic the
shape of geostrophic adjustment correlations (e.g., Schlatter 1975) for both
analysis and 1-day forecast. As forecast time increases to 2 days and longer, the
RCF functions for cross-variables smooth out and lose definition in dynamical

linkage, though they still show the time-forecast dependency. It is possible that

the small 16-member ensemble is unable to resolve cross-variable correlations
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beyond 2 days due to the weaker correlations, or other dynamical processes

beyond advection occur past the 2-day lead-time forecast.
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Figure 4.5. Contour plots of RCF localization functions for one interface
height observation valid at various forecast lengths, (a-c) for analysis time, ¢
=0, (d-f) for t = 1-day forecast, (g-i) for t = 2-day forecast, and (k-1) for t = 3-
day forecast. The first column shows RCF envelopes for model interface
height, and the second and third columns show envelopes for cross-variables
zonal and meridional layer-2 wind, ugyz and vg2, respectively.
4.4.2 Single-observation impact experiment

A single-observation experiment was first conducted to examine the
qualitative results of EFSO impact estimates with differing localizations, compared
to the actual forecast error reduction. For the experiment, a one-day forecast of
one of the all-observation LETKF analyses was chosen as the background for a
single-observation analysis. This single interface height observation has an

observation innovation of +500-m. Deterministic forecasts initialized from the
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ensemble mean analyses and backgrounds were run to calculate actual impact
according to (4.1) Ensemble forecasts of the single-observation analysis were run
to calculate the ensemble estimated impact according to (4.3) with differing
choices of localization. Two localizations were tested: the same optimal GC
localization (8000 km) as was used during assimilation, and the dynamic RCF
functions shown in Figure 4.5.

Results for one single-observation experiment are shown in Figure 4.6 for
analysis, 2-day, and 4-day impact of model interface height. Note again that
negative EFSO values (filled blue) imply positive impact. The actual impact at
analysis (Figure 4.6a) follows flow-dependent structures of the background.
Initially, three main centers are present at magnitudes above 500 m?. The
ensemble estimates (Figure 4.6b,c) are qualitatively similar, as both localizations
capture these three main centers well.

The actual impact on 2-day and 4-day forecasts (Figure 4.6e,i) shows many more
impact centers due to forecast error growth. These impact areas propagate along
the main westerly waves predominantly located within the tightly packed interface
height contours. Actual impact centers span a much greater zonal distance and can
be seen at distances exceeding 8000-km from the observation. The ensemble
impact estimate using static GC localization (Figure 4.6f,j) cannot capture these far
away impact centers due to the limited length scale. Moreover, the magnitude of
the estimated impacts of areas closest to the observation are much stronger than
those shown in the actual impact, indicating the GC localization weight is too large

there. Conversely, the largest area of actual positive impact in the analysis
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(602N,752W) has now advected 302 and 752 eastward near the edge of the GC
localization function in the 2-day and 4-day forecasts, respectively, where the
localization weight is nearly zero. As a result, the GC localized impact value is
underestimated compared to actual impact. These effects combined result in a
global RMSE that is about the same or

greater than the RMS of the actual impact fields. The ensemble impact using
dynamic RCF localization (Figure 4.6g,k) shows improved estimates, able to match
the magnitudes of each center more closely with the actual error reduction. The
localization functions spans a much greater distance than the GC function, with
centers shifted downstream of the observation. Overall, the RMSE is much lower at
less than half of global RMS of the actual impact.

This one case demonstrates both the qualitative nature of actual impact
varying with forecast length, and how the RCF can outperform static GC
localization and lead to improved estimates from the evolving RCF functions. In the
next section, verification of the all-observation experiment is discussed to see if the
RCF localization shows added overall skill in the case of homogeneous observation

coverage.
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Figure 4.6. Contour maps of EFSO impact estimates from a single-observation (yellow dot) assimilation experiment.
Each column, from left to right, is the actual impact (i.e. actual forecast error reduction), the ensemble-estimated

impact using a static GC function with 8,000-km cutoff radius, and the ensemble-estimated impact using the RCF

localization functions as pictured in Figure 4.5, and ensemble-estimated impact using automatically-tuned elliptical

GC functions (see section 4.4.6), respectively. (a-d) Impacts at analysis (t

(i-1) impactsonat

0), (e-h) impacts on a t = 2-day forecast,

4-day forecast. Color-filled contours show impact values (m?), black contours are model

interface height in 1000-m intervals, and magenta contour lines show the localization function applied to the

impact estimate contoured in intervals of 0.2 starting at 0.2.



4.4.3 All-observation impact experiments

In all-observation impact experiments, each LETKF analysis ensemble was
run for forecast lengths varied between 0 and 4 days. Actual error reduction was
calculated using deterministic forecasts off the analysis mean and background
fields. Ensemble-estimated impact was calculated by summing at each grid point
contributions of the impact from all observations, with varying localizations
applied. Figure 4.7 shows globally-averaged skill score (SS) of the time-mean
RMSE of ensemble impact estimations verified against actual forecast error

reduction. SS is defined as

12
RMSE 1 [E (Aejcmuz,k ~Ael )2 ]

SS=1 = = 72 ’
N (4.4)
3 (scto |

RMSE,

where N is the number of cycles in time considered (900 throughout this chapter).
This SS is equivalent to that used in Kalnay et al. (2012) where the reference RMSE
is equivalent to the time-mean RMS values of the actual forecast error reduction.
With increasing forecast time, for EFSO estimation of zin, differences in SS
emerge between GC and RCF localizations, with RCF localization showing
increasingly higher skill. While the GC experiment approaches the no skill line
(0.0) by day 4, the RCF experiment has a skill around 0.4, still higher than the skill
of the GC experiment at day 2. At the analysis time, the SS of the fixed GC
localization experiment is nearly the same as the RCF localization in impact
estimates of model interface height. In terms of indirectly observed layer-2

meridional wind (Figure 4.7b), at analysis time the RCF experiment shows slightly

97



lower skill than the GC experiment, but with increasing forecast time the RCF
experiment becomes increasingly skillful relative to the GC experiment. The slight
degradation in skill at the analysis time can be attributed to the inconsistency
between the localization used in data assimilation and the localization used for the
EFSO estimate. This issue is discussed further in section 4.4.4.

In addition to SS using time-mean RMSE, Figure 4.8 considers SS where
global-mean RMSE is calculated in (4.4) and N is now the number of grid points

(4608). The result is a unique global SS for each cycle in the experiment.
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Figure 4.7. Global-average skill score of EFSO estimates verified against
actual error reduction. Red lines are impact estimations using RCF
localization; blue lines are estimations using static GC localization (8000
km). Solid lines valid for assimilation experiment using 8000-km GC
localization during assimilation, dashed lines valid for assimilation
experiment using analysis RCF functions as localization (RCF-assim, see
section 4.4.5). (a) Skill scores for impact on model interface height impact,
and (b) Skill scores for layer two meridional wind.
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The bar chart in Figure 4.8a shows the percentage of the 900 cycles that
have positive global skill for interface height EFSO. At the analysis time and 1-day
forecast, both RCF and GC localization have a high percentage of cycles showing
positive global SS. But as in Figure 4.7, at 2-day forecast and beyond the
differences become larger. The RCF function still shows positive skill more than
three-quarters of the time at the 4-day forecast length, which is still better than
even the GC function at 2-day forecast impacts. Of course, positive skill may not
necessarily mean much when the skill is close to zero, so Figure 4.8b shows
instead percentages of cycles with SS exceeding 0.5. With the increased threshold,
at 2-days and beyond the RCF still outperforms the GC by more than 20%. By 4-
day forecast, with a stricter threshold the GC function is not any more favorable
than a simple top-hat localization with the same length scale, whereas the RCF

shows high skill for nearly a quarter of the cycles considered.
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Figure 4.8. Bar charts showing percentage of cycles with skill scores of
ensemble observation impact estimates greater than (a) 0.0 and (b) 0.5, for
no localization (light blue), square or top-hat localization with 8000-km
cutoff (orange), GC localization with 8000-km length scale (blue), and GF
localization (red).
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The previous results for GC localization operate under the assumption that
the same localization applied during assimilation is applied towards the impact
estimate. What if, instead, we were allowed to optimally tune the localization
length of the GC function for each forecast length? The GC tuning of impact
estimates is shown in Figure 4.9 for the analysis, 1-day and 4-day forecast lengths.
At the analysis, it is verified that the same tuning (8000-km) used at assimilation
also provides optimal ensemble impact estimates. With forecasts, potential
improvement by tuning the GC width is relatively minor, especially compared to

the improvement that the RCF localizations show (dots in Figure 4.9).
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Figure 4.9. Optimal tuning of the GC length scale for EFSO at analysis (black),
1-day forecast (blue) and 4-day forecast (green), verified against actual error
reduction and averaged over 48 cycles. Colored dots indicate RMSE of
ensemble impacts using RCF localization, plotted vertically from its
respective optimal RMSE using GC. Vertical dashed line indicates the GC
length scale used for assimilation (8000 km).
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A similar set of experiments varying the GC radius was conducted in Sommer and
Weissmann (2014), and they too concluded that simple adjustment of the GC
radius did not lead to a large improvement in accuracy of the ensemble impact
method.

Finally, we examine the effect of RCF localization varying by latitude, since
RCF functions at midlatitudes and near the equator are very different in shape
(Figure 4.4). Here the pattern or map correlation is considered, which is the
Pearson correlation calculated between the ensemble-estimated and actual impact
at the same location over all 900 cycles. The result is a map of correlation values,
and in Figure 4.10 the zonal average of this correlation map is shown. For 1-day
forecast impact, both fixed GC and RCF show correlations well above the no
localization case, as expected due to sampling error in the raw ensemble
correlations. RCF shows slight improvement relative to GC at mid-latitudes (30-
70°) and the same or slight degradation elsewhere. At the 3-day impact (Figure
4.10b), the RCF shows improvement over the fixed GC localization for most
latitudes with the largest improvement at the midlatitudes. On the other hand, GC
shows low skill comparable to no localization, an indication that while localization
is needed, the GC localization is too restricted and centered in the wrong spot. A
distinct shape is present at both 1-day and 3-day lead times, showing high values
at midlatitudes with a large dip within 30° of the equator. The improvement of GC
and RCF relative to no localization is much smaller in tropics than midlatitudes. In

the next section we further investigate this issue.
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Figure 4.10. Zonally-averaged pattern/map correlation of EFSO in model
interface height compared to actual impact, for no localization (black), GC
localization (blue), and dynamic RCF localization (red). Dashed red line
shows correlations of estimated impact using RCF localization at analysis
time during assimilation (RCF-assim, see section 4.4.5 for further details) (a)
For 1-day forecast impact, (b) For 3-day forecast impact.
4.4.4 Relationship between localizations for data assimilation and for EFSO

The improvement in skill in the 1-4 day forecast range is due to the time-
shift dependency. Two issues with the RCF localization applied to EFSO were
noted. The first is why RCF did not show improved performance at the tropics, as

seen in Figure 4.10. The second, as seen in Figure 4.7, is that the cross-variable

dynamical linkage revealed within RCF did not offer any improvement to skill at
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analysis time. Both issues are related to the fact that localization used during
assimilation was not consistent with the localization that the RCF suggested for the
EFSO metric.

First, it is important to note the uniqueness of the equatorially-stretched
RCF functions in the tropics (Figure 4.11). The two-layer model used here, while
able to well represent realistic midlatitude baroclinic instability, is not a realistic
representation for the tropics due in part to the simplifying exclusion of moisture.
Hendon and Hartmann (1985) analyzed the variability of a similar dry two-layer
model and noted that the tropics are dominated by internal normal modes
consistent with Matsuno (1966). Additionally, these waves are equatorially
trapped, with minimal activity propagating from tropics to midlatitudes. The RCFs
of an equatorial observation are also equatorially trapped and show east- and
westward propagating components (Figure 4.11c). So tropical RCF functions
represent the internal normal mode dynamics of the two-layer model used
throughout this chapter.

The effect of inconsistent localization functions for the impact estimate
compared to the localization used during data assimilation can be shown within
the derivation of Kalnay et al. (2012) together with a single-observation
experiment for an equatorial observation using 8000-km GC localization during
assimilation (Figure 4.12). A basic EnKF mean update is of the form x“ - x” = Kdy.
Assuming that localization, p,, was applied to the EnKF in some way, then it is
contained within K such that it and mean update X —x” both go to 0 as p. goes to

0 (i.e. no update of the background). This is evidenced by the actual impact field at
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analysis time shown in Figure 4.12a, which covers the same extent as the 8000-km
GC localization shown in Figure 4.11a. In Kalnay et al. (2012), the derivation of
EFSO was based on substitution of post-analysis expression for gain K = PPHTR-1=
(k-1)-7XXeTHTR1 into MK&8y (where M is the tangent linear model). In order for
the post-analysis formulation of gain K to be consistent with the EnKF update
using some localization matrix p,, then that localization function also has to be

present in the post-analysis formation,

K=P:H'R" (4.5)

loc

where P =(I- KH)( 0, °P ) is the “localized” analysis error covariance matrix. In

other words, for the impact metric we need find a localization p; so that

Py =p, oP* (4.6)

where P = (k-1)"X“X“". Itis not straightforward to find a localization function p;

to satisfy (4.6) . However taken together, (4.5) (4.6) indicate that we should expect
the optimal localization choice for the impact metric p; to be related to the
localization used during assimilation p, This is consistent with why the GC
estimate (Figure 4.12b) is qualitatively close to the actual impact (Figure 4.12a)
while the RCF estimate (Figure 4.12c) is not, since the GC function is the same as
was used during assimilation whereas RCF is a completely different shape. For
the case studied in Figure 4.11-Figure 4.12, because little activity propagates from
the tropics to midlatitudes, the 8000 km GC function used during assimilation may
be inappropriate for this observation, incorrectly adjusting midlatitude locations.

Instead, localization consistent with RCF should be used during assimilation.
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Figure 4.11. Localization functions for an equatorial observation (white dot):
(a) GC localization function with 8000-km length scale (outermost ring is
contoured at 0.01), (b-c) RCF functions valid for analysis (t = 0) and 2-day
forecast, respectively.
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Actual Impact RMS = 6.9833 (m?)

180 150W 120W 90W 60W  30W 0 30E 60E 90E 120E 150E 180

-15.2 -8.8 -2.4 4 10.4 16.8

Figure 4.12. Single-observation impact experiment for an assimilated
observation located at the equator (yellow dot). (a) Actual impact, or actual
error reduction, of observation at analysis time, (b) Ensemble estimate of
impact using GC localization (8000 km), and (c) Ensemble estimate of impact
using RCF localization. Color-filled contours show impact values (m?) and
black contours are model interface height in 1000-m intervals
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The implicit relationship between p; and p, may also explain why the dynamical
linking of cross variables in the RCF function did not show improved impact
estimates at the analysis (Figure 4.7), because it is simply a different shape than
what was used at assimilation time. It also helps explain why the dynamic RCF
method was successful at midlatitudes, because the initial RCF function at the
analysis time was similar to the 8000-km GC function used during assimilation,
allowing for the added benefit of the time-evolving component for forecasts.

Further discussion on this implicit relationship between localizations can be

found in Appendix B.

4.4.5 All-observation experiment using RCF localization during assimilation
The inherent relationship between p; and p4 suggests that the best use of

adaptive localization for the impact metric occurs when the same adaptive method
is used during assimilation. To test this hypothesis, a new all-observation
assimilation experiment is conducted where the analysis RCF functions (e.g. Figure
4.4a,b,c) are used during the assimilation as localization, p,. This experiment will
be referred to as “RCF-assim”. Impact estimates are calculated with the RCF
functions applied as localization and verified against the actual forecast error
reduction, as in previous experiments. Pattern correlation and SS is compared to
the results of the previous experiments using GC localization during assimilation.

The SS in Figure 4.7 shows that RCF-assim yields improved skill compared to
the previous application of RCF to the GC assimilation, particularly for shorter (0-2

day) forecasts. This improvement converges to the level of skill from the previous
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RCF experiment at longer lead times for interface height. In terms of cross-variable
vzimpact, RCF-assim shows higher skill than the previous RCF experiment for 0-2
day forecasts, but actually becomes less skillful for 3-4 days. It is possibly an
indication that RCF should also be re-calculated from the new RCF assimilation.
Comparing pattern correlations of RCF-assim to the previous RCF experiment,
there is clear improvement at all latitudes, including significant improvement in
the tropics at both 1-day and 3-day forecasts (Figure 4.10). The results of RCF-
assim confirm that the best use of adaptive localization methods for the ensemble
impact metric occurs when the same adaptive method is used for localization

during the assimilation.

4.4.6 Using RCF to design automatically-tuned elliptical GC localization functions
Another potential use of adaptive methods such as the RCF is its derived
shifting, magnitude change, and area coverage of the localization that could be
used in the future to automatically tune a GC function for localization of EFSO. For
example, Figure 4.13 shows four potential tuning parameters that may be
calculated from RCF and how they evolve with increasing forecast time. Given
predominantly zonal flow, each parameter was tuned for observations binned by
latitude. One can see, for example, the differences in how far to advect a GC
localization away from an observation due to differences in the zonal wind
strength at each latitude (Figure 4.13a) and the similarities at each latitude in
reduction of maximum magnitude with increasing forecast time (Figure 4.13b). It

can also be seen that localization area should expand with increasing forecast time,
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but at different amounts depending on latitude of the observation (Figure 4.13c).
Complimentary to that, the localization function should have more of a two

dimensional elliptical shape, since the zonal extent is greater than the meridional

extent (Figure 4.13d).
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Figure 4.13. Summary plot of potential localization tuning parameters for the
impact estimation as a function of forecast time, derived from RCF functions
in model interface height. (a) Offset distance from observation, or shift,
defined as the distance between RCF maximum and the observation, (b)
Reduction in magnitude with increasing forecast time, (c) Fractional surface
area coverage, (d) Maximum span, or range, of RCF values in zonal direction
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(solid) and meridional direction (dashed). Values are averaged for all
observations within 40 - 55 °N (black) and 55 - 70 °N (grey).

One question is how to apply these parameters with the preexisting
definition of the GC function from Gaspari and Cohn (1999) to create an elliptically
shaped localization. In the homogeneous or ‘circular’ case, the GC function has the
same cutoff distance in all directions; however in the elliptical case, the cutoff
distance changes based on the angle relative to the major and minor axes of the
ellipse.

The steps to defining an elliptical GC localization for the impact metric are
as follows:

1) Calculate parameters from the RCF functions as in Figure 4.13. Parameters
needed are the zonal span, meridional span, maximum magnitude, and offset
distance from observation.

2) Use offset distance to define the center of the ellipse for a given observation
and forecast time.

3) Ateach grid point, calculate the angle 6 relative to the center of the ellipse
using 6 = arctan(4y/4x), where Ax and Ay are the zonal and meridional
component distances, respectively, between the grid point and the center of the
ellipse.

4) The parametric form of an ellipse is given by x = a cos t; y = b sin t, where a and
b are major and minor axis distances, respectively, and t is the parametric
angle. In this case, a and b are simply half of the zonal and meridional spans.

Convert from polar angle 6 to parametric angle t using
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a
t = arctan (Ztan 9) (4.7)

5) The cutoff distance for the GC functions as a function of angle is given by the

distance formula

c=a’cos’t+bsin’ t (4.8)
6) Once the cutoff radius c is determined, the GC function can be applied directly.
To adjust for reducing magnitude with forecast time, multiply the output weights
from the GC function by the maximum magnitude parameter. Figure 4.14 displays
the resulting elliptical GC localization functions using the parameters from Figure
4.13.

This new elliptical GC localization function was tested with the single-
observation impact experiment. As shown in the rightmost column of Figure 4.6,
the estimates are similar in performance to the RCF in terms of overall structure
and RMSE. More precise definitions and applications of these derived parameters
may yield better results, but are beyond the scope of this dissertation. Here it is
presented as a proof-of-concept to demonstrate how such parameters can be

calculated from RCF and applied to tune the GC function.
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Figure 4.14. Automatically-tuned elliptical GC localization functions for (a)
analysis, (b) 1-day, (c) 2-day, and (d) 3-day forecasts. The parameters used
for the tuning are shown in Figure 4.13. Results of test application of these
automatic GC localizations to EFSO estimate are shown in the rightmost
column of Figure 4.6.

4.5 Conclusion and discussion

The real-world application of the Ensemble-based Forecast Sensitivity to
Observations (EFSO) metric for evaluating observational impact needs to consider
proper implementation of localization to reduce errors due to limited ensemble
members. Such localization needs to consider time-forecast dependency in
addition to spatial and cross-variable dependencies. Kalnay et al. (2012) and Ota et
al. (2013) have shown that initial attempts to ‘advect’ the localization function
downstream from an observation leads to more reliable and accurate impact
estimates. Here we examined an alternative method, an adaptive localization that
varies by location and state variable according to the underlying model dynamics.
The method is based on confidence factors of grouped ensemble regression

coefficients, first proposed for EnKF assimilation (Anderson 2007). In this chapter,
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the method was extended to work for the ensemble-based observation impact
estimate known as Ensemble-based Forecast Sensitivity to Observations, or EFSO.
An envelope of regression confidence factors, or RCFs, for each observation and all
grid points was used directly as localization. The purpose of the chapter was to
explore the potential effectiveness of applying this adaptive method on the EFSO
metric and to learn more about how to properly localize this impact estimate.
Results of the technique within a simple two-layer isentropic model showed
the ability of the RCF method to reveal underlying dynamics between variables
and the time-forecast component. Applying RCF functions for impact estimates
showed overall improvement when verified against the actual forecast error
reduction, especially at longer forecast lead times compared to using fixed GC
localization. Single-observation experiments displayed the evolving structures of
the actual forecast error reduction with increasing forecast time and showed that
the dynamic localization was able to simulate the evolved error reduction much
more closely than the static localization especially at longer forecast lead time. For
an LETKF using all 362 observations, skill scores of EFSO estimates applying RCF
localization significantly improved upon those using fixed GC for increasing
forecast lead times. For example, the skill of the estimates of the impact using RCF
on a 4-day forecast beats the skill of the estimate using static GC at the 2-day
forecast, essentially doubling the forecast length of accurate impact estimates. This
improvement was attributed mainly to the time-dependency of RCF shifting

downstream, diminishing magnitude, and expanding in areal coverage.
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Further diagnostics also found that optimal use of localization from
dynamical methods relies on the assumption that consistent localization was used
during the assimilation as well. In other words, there is a fundamental relationship
between the localization applied at assimilation time and the localization used for
the impact estimate. Therefore, further improvement in skill of using RCF with
EFSO is possible if a consistent adaptive localization is used at the assimilation
time in place of the static GC function. This was confirmed in an additional
experiment using RCF localization both during assimilation and for the impact
estimates. Skill scores were higher and significant improvement was made in the
estimates at the topics.

Another potential utility of adaptive methods such as the RCF is to
automatically tune an elliptical GC function for localization of EFSO. As a proof-of-
concept, the application of RCF-derived parameters to tune the GC function shows
promising results that were comparable to the RCF experiment for a single
observation test.

For real-time application, a drawback of the RCF technique is
computational cost of additional groups of ensemble members. To partially
alleviate this issue, one could use increased ensembles only during a “training
period” for a given weather regime to create RCF lookup tables offline, similar to
the suggestion of Anderson (2007). Additionally, Figure 4.3 suggests that just 2
groups can yield RCF functions consistent with RCF using more groups, due to the
averaging process over many cycles to reduce noise. Figure 4.3 also suggests

another idea, which is to split available ensembles into subgroups without
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increasing the total number of ensemble members and then to artificially “inflate”
the resulting RCF functions, because with increasing groups the RCF functions
retain similar shape and shift but differ only in magnitude. Alternatively, dividing
existing ensembles into subgroups the RCF method can still be utilized to derive

parameters for automatically tuning localizations.
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Chapter 5: Application of EFSO to Convective-Scale Case Study

5.1 Introduction

In this chapter, the EFSO method will be applied to the same case study
explored in chapter 3. In chapter 4, we learned that the localization function
required for accurate EFSO estimates is inherently linked to the localization used
during the DA, in addition to other dependencies including the time-forecast
component. This adds a further layer of complexity to the proper localization
application, though the dependency on the localization used during DA does
constrain the problem. For example, we know that if a GC function of 200 km
radius was applied for an observation, then we also know that the localization
function to apply to the EFSO metric should be of similar shape and extent. This
means a simple method such as the advected localization of Ota et al. (2013) may
work well even for convective-scale DA.

Of course, the advected localization does not take fully into account other
dependencies found using the RCF method on the two layer model in chapter 4.
These dependencies include the stretching shape, the decreasing magnitude of the
peak localization value, and cross-variable components. Additionally, it remains to
be seen whether the assumption that advection fully captures the optimal time-
forecast shift holds for more complex, nonlinear interactions found at the
convective scales. For these reasons, it is important to explore the use of an
adaptive method such as the RCF on the convective scale application of EFSO.

An additional consideration for the application of EFSO on the convective

scale is how to choose a verification metric. Traditionally, based on the adjoint
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method of Langland and Baker (2004), the formation of the actual impact metric
includes an energy norm matrix C, such that equation (2.15) is written in the

following form.
J = (ezoceno - e;—ncetl—n) = (eno —€r )T C (eﬂo - etl—n) (5.1)

The energy norm matrix C is an n x n matrix of weights that converts errors in
model state variables to energy in ] kg-1. This allows for the whole modeling
system to be accounted for within the impact metric simultaneously. The most
common energy norms used are the dry and moist total energy norms (Ehrendorfer
et al. 1999). The total energy norm can be written in the following form.

2

R T
TE=%§ff;{(u’2+v’2)+;—”T’2+ ;’32"# plw, L q’z}dndS (5.2)
N

ref ref Cp ref

Here u’, v’, T’, ps’, and q’ are forecast errors of zonal wind, meridional wind,
temperature, surface pressure, and specific humidity, respectively. Constants cp, Rq
and L are the specific heat at constant pressure, dry air gas constant, and the latent
heat of condensation per unit mass, respectively. Tr,and Prrare constant
reference temperature and pressure, respectively, commonly set to values of 280 K
and 10> Pa. Weight wy is a constant to define which energy norm is used (0 for dry
total energy, 1 for moist total energy).

There is no requirement for a total energy norm to even be included in
equation (5.1). In fact, in the previous chapter impacts were partitioned by
variable, such that C was left off in the formula altogether. This is an important
consideration for application to the convective scale because an integrated energy

norm may not be appropriate to describe the impacts at these scales. In other
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words, at convective scales we may be interested in only specific parts of the
modeling system, such as the performance of convection described by just
hydrometeor variables in the state (often represented as reflectivity). In the case of
the CI event studied in chapter 3, we are mainly interested in the boundary layer
and near-surface fields, given the strong dependence of CI on the resultant details
of those fields. Using a total energy metric may hide some of these subtle details
within a high-resolution forecast. Another example is focusing in a specific area of
interest, such as the focus of impacts of observation within the DFW testbed only.
For these reasons, multiple different verification metrics will be studied in
addition to energy norms to see what differences exist when applying EFSO to
different verifications other than integrated energy norms.

In section 5.2, the experiment setup will be discussed, including which
verification metrics are used for this study and how the RCF localization is applied
to this case study. In section 5.3, the resulting RCF functions are presented and
analyzed. In section 5.4, the results of the application of EFSO are shown, including
analysis of different localizations (static, advected, RCF-derived) and different

verification metric. A summary and discussion are provided in section 5.5.

5.2 Experiment setup

The model and DA settings for this EFSO study are equivalent to the GSI-
based EnKF DA and WRF forecast system described in chapter 3. Here, we will take

the CNTL experiment from the 3 Apr 2014 case and use it for the EFSO
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experiments. The EFSO method is the same as that used in Ota et al. (2013). It has
been adapted to interface with WRF model input data.

Additionally, multiple verification metrics are tested for EFSO accuracy.
Kinetic energy (KE), dry total energy (DTE), and moist total energy (MTE) norms
are used as in (5.2). Note that the kinetic energy norm is made up of just the
horizontal wind error components in (5.2) and setting the other components to 0.
Other non-integrated metrics are used for verification testing. Given the strong
dependence of CI on the features near the surface in the DFW domain (dryline
characteristics), as well as the use of predominantly surface observations in the
data denial study, the additional verification metrics will include near-surface
model levels partitioned by state variable: ps, us, vs, Ts, gs. These variables are
defined as the first vertical mass level (k=1) above the surface with a height
between 27 and 30 m AGL for the inner grid described in section 3.3.1. Finally,
composite reflectivity MDBZ is tested as a verification metric, defined as the
maximum value of reflectivity in the column at each grid point.

The EFSO will be computed at ten-minute forecast intervals between 0 and
120 minutes. As covered in section 2.3, the EFSO is designed to capture the impact
of an analysis on the differences in deterministic forecasts initialized from the first
guess and analysis means. This is a notable difference from the data denial work,
which focused on analyzing the ensemble free forecast using ensemble
probabilities.

The two-layer model experiments conducted statistics over 900 cycles of

DA and free forecasts. The equivalent here would be to test over a significant
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selection of similar convection case studies at high resolution, similar to 10 case
studies used in Johnson et al. (2015). Given the application here to just a single
case study, another method will be employed to get statistically meaningful
results. The experiment setup described in Figure 3.6 includes 25 five-minute DA
cycles over the 2-hour period from 1600 - 1800 UTC on 3 April 2014. Each DA
cycle offers a relatively independent sample from which EFSO can be calculated for
a given forecast verification time. In order to calculate impact for different forecast
lengths from 0 to 120 minutes, two-hour free forecasts were run for each of the 25
ensemble analyses between 1600 and 1800 UTC. The EFSO metric is compared to
the actual impact calculated using equation (2.15) for different verification metrics
described previously. The actual impact in the case of the CNTL experiment
represents the impact of all observations assimilated within each 5-min DA cycling
window.

Multiple localization methods are applied to the EFSO metric and compared
for accuracy against the actual impact. The first is static localization, applying the
same GC localization as that used during DA for each observation type (see last
column of Table 3.3). The next is advected localization, where the center of the GC
localization is shifted proportionally to the average of the analysis and forecast
horizontal wind at each vertical level, following Ota et al. (2013). The coefficient
that multiplies the mean wind is chosen to be 0.75, equivalent to the optimal value
found in Ota et al. (2013). A visual demonstration of 200 km GC localization and
advected localization for a 30 min forecast is shown in Figure 5.1. Finally, a third

localization function, the RCF or ‘regression confidence factors’ as introduced in
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section 4.2, is applied to see if improvements can be made upon the accuracy of the
EFSO metric. Details of the RCF method are discussed in the next section, with

examples of different functions for different grid locations and forecast lengths.

00 0.1 0.2 03 04 05 06 0.7 08 09 1.0

Figure 5.1. (a) Static 200-km GC localization function (b) Advected GC
localization using t = 30 min forecast. White dot indicates location of
observation.

5.3 RCF localization
5.3.1 Application

The RCF method introduced in chapter 4 is adapted for use within the GSI-
based EnKF system. The method relies on independent groups of ensembles to
capture the localizations for each observation. As such, the CNTL experiment was
reran 3 additional times with 43 members each to create a group of 4 CNTL
experiments, totaling 172 ensembles. These 3 additional ensembles were
initialized by adding 3 random perturbations to the outer grid (12 km) initial
conditions of each ensemble member (interpolated from SREF, GEFS, and NAM) at

the beginning of the experiment, 0300 UTC 3 April 2014. Perturbations are also
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added to each of the outer grid lateral boundary conditions in a similar manner.
Each group is then run through the CNTL experiment setup as before (Figure 3.6).
The RCF is then computed from observations assimilated at 1800 UTC for ten
minute forecast intervals up to 120 minutes.

Within the two-layer model work, it was noted that the resulting RCF
functions contain sampling error related to the limited number of groups used. The
same is certainly true here, as can be seen in Figure 5.2a,b. To reduce noise from
sampling error, RCFs across the 900 cycles were averaged together. The resulting
RCF functions reflected information about the underlying dynamical correlations
by model location and variable type (see Figure 4.4 and Figure 4.5). However, they
did not reflect the underlying flow-dependent “errors of the day”. Additionally,
such an average would be difficult to accomplish at the convective scale, where
cases are much more variable in nature and the observations that are assimilated
vary from case-to-case and even cycle-to-cycle.

For the application to convective-scale, a different “binned” technique is
used to limit the effect of sampling error in the RCF functions and more readily
apply to different cycles no matter which observations are used. The model grid
domain is split into latitude and longitude boxes or bins, and RCFs of all
observations within each bin are averaged. Two different binning techniques are
attempted here, based on the tradeoff of wanting to average a larger number of
RCFs to reduce noisiness from sampling error while also maintaining important
flow-dependent information valid for all observations in each box. The first is 2°x2°

binning, with observations for different variable types (ps, u, v, T, q) averaged
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separately, making for 5 different RCF functions for each bin. While this allows for
treatment of different observed variables independently, the bins themselves
cover a much larger area that may result in over-smoothing important flow-
dependent information for sensitive high-gradient varying areas (e.g. near the
dryline). The second is a 1°x1° binning with RCFs averaged together from all
observation variable locations and types in each bin (except surface pressure).
This allows for more precise flow-dependent information, at the expense of losing
variable-dependent information. It is not clear which method will yield better
results, so both will be tested and compared with each other as well as static and
advected methods. This binned technique is different from the averaging used in
Lei and Anderson (2014), who binned RCF by radius from a given observation
type.

For each observation in the EFSO estimate, it is first determined which bin
the observation is located. The RCF function for that bin is directly applied as a
localization function for that observation, with an applied threshold of 0.2 below
which the RCF is considered zero. Additionally, the RCF is cutoff at a radius
equivalent to that used during DA for each observation after re-centering using the
time-shift estimated from advected localization. This process is demonstrated in
Figure 5.2 for two observations and both bin types. It is motivated partially to
further limit any remaining sampling error of the RCFs after averaging, but
importantly to also have a localization function consistent with the results of the
two-layer model study in chapter 4 (Gasperoni and Wang 2015). Since we know

that localization for EFSO is implicitly related to the localization used during DA,
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then it is logical to make sure the RCF for each observation also has some
knowledge of the observation-dependent GC length scale used during DA. The

hypothesis here is that applying a cutoff radius will add back the dependence of DA

localization into the RCF localization.
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Figure 5.2. (a-b) Examples of RCF functions computed for the observation
locations shown by the white dots, valid for 60-minute forecast. (c-d) 2°x2°
bin-averaged RCF for the bins corresponding to the observation locations in
(a) and (b), respectively. White dotes correspond to the central location for
each bin. (e-f) As in (c-d) but for 1°x1° bins.

124



5.3.2 Analysis of resulting RCF functions

Figure 5.3 shows examples of RCF functions for different variable types in a
given bin. There is a clear difference between dynamic wind observation RCFs and
the thermodynamic RCFs both in magnitude and general areal coverage.
Additionally, the RCFs in temperature and moisture both mark important
underlying characteristics about the flow, tracing the warm, dry air west of the
dryline and south of the cold/stationary front. The RCF for this observation is
different from the two locations shown in Figure 5.2, as in general it covers a larger
area than the previous examples.

The time-forecast component is also revealed within RCF functions, as can
be seen in Figure 5.4. The RCF is initially centered on the bin, but advects north
with the rich southerly flow in the moist air in East Texas. Additionally, the
maximum magnitude diminishes, consistent with RCFs shown in chapter 4 for the
two-layer model study. It should be noted, however, that these are just a few
examples and the number of different RCFs is very diverse. Some RCFs maintain

high magnitude or even slightly increase with forecast time (not shown).
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Figure 5.3. Bin-averaged RCF functions for different observation variable
types: (a) zonal wind, (b) meridional wind, (c) temperature, and (d) specific
humidity. White dot indicates central position of the location of the bin.
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5.4 EFSO results

5.4.1 Comparison of verification metrics

Two-dimensional patterns of impact are shown in Figure 5.5, where each
grid point value is a vertical integral of energy components from the MTE formula.
Initially, at analysis time, the EFSO and actual impact patterns match very closely,
with some minor differences. At 60-min forecast time, the patterns begin to
diverge, though the general locations of large impact are the same. At this time,
convective activity is forming ahead of the dryline in Texas and the cold front in
Oklahoma, which manifests as strong areas of small-scale positive and negative
impacts along those areas. The EFSO metric is underestimating the impact in MTE
along the cold front in Oklahoma, but captures the areas of impact at the OK-TX
border and south into the DFW domain well. At 120-min forecast time, the
estimate appears to have lost most of its skill except for a few small areas.
Additionally, large-scale areas of negative impact appear in Oklahoma and the
Texas panhandle. These areas of impact are associated with the surface pressure
term in the MTE integration. The issue related to verifying pressure is discussed
further in section 5.4.3.

In addition to qualitative comparison, it is important to summarize the data
in a statistical sense. Given the patterns in Figure 5.5, one way to evaluate the
usefulness in EFSO is to calculate the pattern correlation for the maps. This way we
can determine if, regardless of potential magnitude differences, the EFSO is

capturing the meteorological patterns shown in the actual impact field.
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Figure 5.5. Actual impact (top row, a-c) and EFSO estimate with static

localization (bottom row, d-f) in terms of moist total energy. Three times are

0 (a,d), 60 min forecast (b,e), and 120 min forecast (c,f).

shown: analysis t
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Figure 5.6 shows pattern correlations averaged over all 25 DA cycles, for different
forecast valid times, for energy norm metrics. The correlation starts off high at t=0
but drops off quickly for each metric. The use of advected localization does
improve the correlations at 10-30 minute forecast times, but beyond that

correlation is too weak (below 0.3).
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Figure 5.6. Pattern correlation of EFSO estimate compared to actual impact,
averaged over the number of cycles available (25) for kinetic energy (a), dry
total energy (b), and moist total energy (c). Black lines indicate static GC
localization and blue lines indicate advected localization with weighting
coefficient of 0.75 (solid) and 1.5 (dashed).
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Correlations for surface energy metrics are shown in Figure 5.7. In contrast
to energy norms, the surface variables have a slower drop off in correlation with
forecast time. Using a weak relationship correlation threshold of 0.3, the EFSO for
surface variables is accurate up to 50 minutes, even as high as 80 minutes for
surface moisture. Additionally, surface thermodynamic variables match for longer

forecasts (70-80 minutes) than either wind component (50-60 minutes).
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Figure 5.7. As in Figure 5.6 but for surface verification fields zonal wind (a),
meridional wind (b), specific humidity (c), and temperature (d).
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5.4.2 Evaluation of localization functions applied to EFSO

Correlations for EFSO with advected localizations show improvements for
both energy norms and surface variable metrics (Figure 5.6Figure 5.7) The
improvement is largest in the 10-30 minute forecast timeframe for energy normes,
and the 20-60 minute timeframe for surface variables. The improvement is
consistent as well, never falling below the performance of EFSO using static
localization.

The advected localization method employs a tunable weighting factor to
choose how far the localization is advected. A value greater than 1 indicates that
processes other than physical advection must be contributing to the impact metric.
Though most verifications show little difference in the setting of this coefficient,
surface moisture shows a marked improvement when using a weight of 1.5 rather
than 0.75 (Figure 5.7c). This is likely an indication that key nonlinearities are
contributing to the impact metric. For surface moisture, complex boundary layer
interactions ahead of the dryline could be processes contributing to impact being
located further downstream than simple advection would indicate. This
observation could indicate potential improvement in localizing the EFSO metric,
perhaps with an adaptive method.

The pattern correlations from EFSO estimates applying RCF localization are
shown in Figure 5.8. At earl lead times, the RCF underperforms static localization
for all metrics. This is likely related to the finding from chapter 4, since the RCF is
not the same as used during assimilation the estimate will not be as accurate. At

20-60 minute forecast times the RCF improves and is greater than static
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localization for DTE, surface temperature, and surface zonal wind components,

though it remains below the performance of advected localization. The exception is

the period from 40-60 minutes for u-wind where the RCF actually outperforms the

advected localization. On the other hand, for surface moisture and MTE variables

the RCF remains below static localization for the duration of the forecast period.
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Verification metrics shown are (a) dry total energy, (b) moist total energy,

(c) surface moisture, (d) surface temperature, and (e) surface zonal wind.
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A subjective evaluation of EFSO for different localizations is shown in
Figure 5.9, zoomed into the DFW domain. With increasing forecast lead-time, the
field of actual impact also moves downstream. Each applied localization does a
good job subjectively matching most of the areas. Some subtle differences in the
advected localization exist, for instance the small-scale negative impact area is
better captured than using static localization. The RCF function matches the main
areas of positive impact well; however, the area closest to Dallas the RCF shows no
negative impact as is seen in the actual field.

In terms of u-wind for longer lead times (60 and 120 minutes, Figure 5.10)
the situation is considerably more complex. The actual impact field shows
extensive small-scale areas of positive and negative impact. One such area in the
western part of the domain appears to reflect convective rolls and cells found in
the boundary layer. However, the EFSO is unable to capture such fine-scale details,
and instead shows broad areas of positive impact. The RCF application does show
a stronger hint of the rolls, but they are still too large compared to reality Figure

5.10f).
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Figure 5.9. (a-b) Actual impact in surface moisture after 1800 UTC analysis.
(c-d) EFSO estimates with static localization, (e-f) EFSO estimated with
advected localization (coef=0.75), (g-h) EFSO estimates with 1°x1° binned
RCF localization. Left column is 30-min forecast, right column is 60-min
forecast. Black contours show impact values at analysis time t=0.
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Figure 5.10. (a-b) Actual impact in surface zonal wind after 1800 UTC

analysis. (c-d) EFSO estimate with advected localization, (e-f) EFSO estimate

using binned RCF localization. Left column is for 60-min forecast, right
column is 120-min forecast. Black contours show impact values at analysis

time t=0.
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5.4.3 Effect of nonlinearity on EFSO accuracy

Previous results have shown difficulty in the EFSO when significant

nonlinear interactions exist in the forecast field, such as the fine scale wind

features in Figure 5.10. Despite these nonlinearities, the EFSO matches favorably

with the actual impact field for forecast times up to 80 minutes. The next question

is can the EFSO be applied for nonlinear convective scale verification such as

composite reflectivity? Figure 5.11 shows a case where it is feasible.
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Figure 5.11. (a-b) 30-min forecast of composite reflectivity for the first guess
and analysis mean, respectively. (c) Actual impact computed in terms of
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observations.
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Though the differences in the forecast storm between analysis and first guess
forecasts are subjectively minor, the impact fields are consistent with the
differences. The analysis forecast storm is displaced slightly south, causing a better
match of the actual storm location and a slight improvement on the northern side.
This area of improvement is captured in the EFSO estimate as well. Other areas of
negative impact match as well. Additionally, the use of reflectivity as a verification
metric can help identify areas where storms were effectively suppressed by the
assimilation, such as the area in the southwest part of the plot domain. The EFSO is
also capable of capturing the signal associated with removal of spurious
convection.

Though the previous example shows the application of EFSO is possible for
composite reflectivity, the correlation over many cycles is shown to be low (Figure
5.12b). There are several possible reasons for this low performance including
sample size (less storms in the beginning of the forecast) and the enhanced
nonlinearity caused by model spin up. Model spin up is also a concern for another
nonlinear variable, surface pressure, where the correlation is also low and at parts
even negative (Figure 5.12a).

To explore how large nonlinearity can negatively affect the EFSO metric, a
single observation test with a surface observation was performed (Figure 5.13).
Without an initialization technique, the effect of assimilating a single surface
pressure observation is to shock the model, creating spurious gravity waves that
emanate from the observation. The actual impact field thus covers a much wider

area after just 5-10 minutes than the GC radius used during assimilation. Though
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the EFSO captures the impact well at analysis time, even at just 5-minute forecast
the EFSO is completely incapable of revealing the actual impact. Furthermore,
moving localization cannot fix such a situation because the EFSO relies on linear
ensemble covariances. The extent to which the EFSO is accurate relies on the

accuracy of ensemble covariance between observations and a given forecast

metric.
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Figure 5.12. Correlation of EFSO estimate with actual impact in (a) surface
pressure and (b) composite reflectivity verification metrics, shown for EFSO
estimates with static (blue) and advected (red) localizations
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a) t=0 min, Actual b) t=5 min, Actual c) t=1 Omin, Actual

Figure 5.13. Single observation impact experiment with a surface pressure
observation, verifying against surface pressure field. Top row (a-c) is the
actual impact at t=0, 5, and 10 min forecasts, and bottom row (d-f) are EFSO
estimates with static 200-km GC localization applied.
5.5 Summary and discussion

This chapter explored the application of the ensemble-based forecast
sensitivity to observations, or EFSO, metric to a convective-scale DA and forecast
system. Though one previous study, Sommer et al (2014), had applied EFSO to a
convective-scale model, this is the first such study to explore the use of different
verification metrics other than energy norms. These metrics included surface level
variables us, vy, Ts, gs as well as composite reflectivity. Additionally, this is the first
application of EFSO for high-frequency sub-hourly assimilation cycles.

The CNTL experiment from the CI case study of chapter 3 was used for the

EFSO experiments. Each 5-min DA cycle in the 2-hour inner grid cycling period
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allowed for 25 quasi-independent samples to compare EFSO with the actual
impact. Results showed pattern correlation that dropped off quickly for energy
norms. With advected localization applied, energy norms remained above a weak
0.3 correlation threshold only up until 20-30 minutes forecast. However when
verifying against surface variables, it was found that the correlations dropped off
much more gradually, remaining useful up until as much as 80 minutes in forecast
length.

The RCF localization used in Gasperoni and Wang (2015) was adapted for
the EFSO study here to see if improvements could be made to the estimate. A
binning technique was used to allow for averaging to reduce sampling error. The
resulting RCF functions revealed underlying flow-dependent correlations specific
to the case study and represented the time-forecast component. However, the
application of RCF to EFSO did not yield improved estimates. The main benefit of
RCF appears to be the time-forecast component, which the advected localization
already covers. Additionally RCF was not used during assimilation, and the implicit
dependence on the localization function used during DA may have hindered its
usefulness. Moreover, the binning technique may have smoothed out important
subtle details in the forecast-time component that go beyond simple advection.
Results could be improved with further tuning of the bin technique, or finding
another method to average out noise while maintaining the signal. Other adaptive
localization methods may be better suited to application at convective scale, such

as the SENCORP method of Bishop and Hodyss (2007).
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The biggest drawback to the application of EFSO to convective scales is the
significant increase in nonlinear processes within model integration, which limited
ensemble-size covariances will not be able to adequately represent. The EFSO can
work to identify impactful areas in developing storms, but the highly nonlinear
nature of storm evolution limits the accuracy of EFSO in such cases. [t may be the
case, however, that more predictable scenarios such as linear storm systems ahead
of cold fronts and mesoscale convective systems are better suited for application of
EFSO. Additionally, other convectively suitable verifications such as neighborhood
methods may yield better results to avoid any double-penalty issues - though it is
unclear how well the ensemble could handle covariances in that case. More study
is needed in the application of the EFSO method to more diverse cases at

convective scales.
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Chapter 6: Conclusions

The research presented in this dissertation was motivated by the
Nationwide Network of Networks vision of the National Research Council (2009).
Part of the effort is to help identify mesoscale observation networks most useful
for high-impact severe weather forecasts. Two main themes of research in this
dissertation cover different methods to achieve such a goal. The first is
straightforward data denial experiments, where all observations in the Dallas Fort
Worth Testbed are assimilated in a model and experiments withholding subsets of
observations help to determine the degree of impact of each different system. The
second theme of research covers a new ensemble-based method - the ensemble
based forecast sensitivity to observations (EFSO) method of Kalnay et al. (2012) -
formulated to automatically generate observation system impacts without the
need for laborious separate denial experiments. If successful, the EFSO can be
applied to the DFW testbed for a month-long or seasonal monitoring of impacts in
the DA system. This chapter provides a summary and synthesis of the key results

of previous chapters.

On the usefulness of nonconventional surface data for CI prediction. Results
from the CI case study of 3 April 2014 showed that each observational data source
- conventional and nonconventional - played an important role in the successful CI
prediction within the ensemble. While conventional surface data from ASOS and
AWOS defined the larger mesoscale environment (i.e. dryline position), the

nonconventional surface data from ERNET and WXBUG together helped constrain
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the model to define a small-scale kink in the dryline where the Cl occurred in
reality. Though removal of one source did not completely alter the ensemble
preference to initiate convection in SW Wise country, the optimal performance

occurred when all sources were included within the assimilation.

The importance of metadata. The data denial work revealed a surprising
dependence of resulting CI on observations relatively far away, but in a sensitive
region along the dryline. These observations were also from hydrometeorology
sites, which may or may not contain a moisture representativeness bias that
should be taken into account into the assimilation. Additionally, many
observations have unknown heights and siting quality. In the DA, the height was
assumed to be 2 m AGL, but this may be highly variable and unrepresentative of
the actual observation height. This had an effect on the influence of wind
observations, since wind is much more dependent on the assimilation height due
to the nature of friction at the surface. Poorly sited observations can also
negatively affect the wind estimates. As a result, the wind information assimilated
from nonconventional sources could be detrimental due to the noisiness
introduced by unknown poor observations. Additionally, accurate metadata is
essential to improve upon the usefulness of these nonconventional sources for the

NNoN vision.

High-frequency data assimilation. The use of a long period of 5-min DA cycling

helped to constrain model biases and tendencies for the CI case. The conventional
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and nonconventional data together prevented the dryline from overmixing and
advancing too far east. They further helped in defining the sharp gradient that the
model tended to smooth out too much, further hindering the CI prediction. This
result was similar to the findings of Sobash and Stensrud (2015), who found the

best performance using three hours of 5-min cycling in their case study.

Application of adaptive localization to EFSO. The two-layer model work showed
that an adaptive technique, in this case the RCF method based on a group filter
technique, was able to capture the important time-forecast component of the
localization for the EFSO metric. The improvements shown were the strongest for

longer forecast time periods.

Dependence of EFSO localization on DA localization. The two-layer model work
also revealed an important dependence that had not been explicitly discussed
before in the literature. It was found that optimal EFSO localization depends on the
localization applied during the DA period, in addition to the model time-forecast
component. This was further proven by assimilating observations using analysis
RCF functions such that there was consistency in localization method during DA
and during EFSO estimation forecast times. This new experiment had skill scores
that outperformed all other experiments, further confirming this implicit
dependence. Revisiting the derivation of Kalnay et al. (2012) including the
presence of localization within the Kalman gain matrix further confirmed this

assumption and dependence.
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Feasibility of applying EFSO at convective scales. The EFSO technique had been
successfully applied to many synoptic and global scale systems. However, it had
not been applied to a fully convective scale system, using not only convective scale
model grid resolution but also high-frequency DA cycling with many different
observation sources. The application here also critically included verification
metrics more suitable for convective scale application. This was an important
point stressed because energy norms may not be appropriate to describe the
performance of a convective NWP system. Oftentimes the concern is with different
subsets of the model grid, such as surface variables influenced heavily by the
boundary layer, or metrics describing the evolution of storms such as reflectivity.

The use of reflectivity as a verification metric needs further study. It was
demonstrated to work for a qualitative case study, but when compared statistically
over many cycles the correlations with the actual impact were very small.
Improvements may be made by using other convective-scale appropriate metrics
such as neighborhood probabilities, though it is not clear how EFSO would work
with a more complex, bounded variable.

Another consideration to the application of EFSO is to study more diverse
cases. The CI case may limit the applicability of convective scale metrics, given its
highly nonlinear evolution. More linear convective type systems such as mesoscale

convective systems may be better suited for EFSO application.

Localization of EFSO at convective scales. The advected localization method

from Ota et al. (2013) may likely be the most appropriate method to use for EFSO
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at convective scales, given it is simple to implement and performed better than
even the adaptive RCF method at convective scales. This is likely due again to the
implicit dependence of localizing EFSO on the localization function applied during
DA. Since the GC function is most commonly used as localization in ensemble DA
systems, the easiest way to maintain this dependence is through the use of
advected GC localization. Other adaptive methods may yet yield better results with
EFSO, but more work is needed in order to determine where improvements can be

made in localizing for EFSO.
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Appendix A: Derivation of EFSO

Observation impact is defined as the reduction of squared error at some
forecast time t from observations assimilated at time O.

(Al)

t-n

1
JAcrual = E(egocetlo - eT Cetl—n)

f

I tr _<f
Where e,, =X;,—-x, and e, , =X

t-n

x;" are the errors for analysis and first guess

mean forecasts, respectively, relative to some verifying truth field. Matrix C is often
within the formulation to define the error norm used. Equation (A1) can be

rearranged into the following form.

J petwat = %(eno ~ €1 )T C(eﬂo + erl—n)

= (%5 -%L) Clew+e,) (A2)
If we assume the forecast length is short enough such that the linear tangent model
can be used, the first term can be approximated as X/, -X/_ ~ M(ig - igl_n). Thus,

(A2) becomes

“m(ze-x )T A3
J = E[M(Xo = Xorn )] C(ezlo + etl—n) (A3)
The first term of (A3) is tied directly to the mean update step of any deterministic

EnKF; that is, we know that X -X/,_, = Kdy, . So, (A3) can be rewritten as

J = %[MKcSyO Ic (e,,o + e,l_n) (A4)

Within the approach of Langland and Baker (2004), the transpose of the first term
is then taken, i.e. [MKdy,] = dy/K"M" . This requires the formation of the adjoint

to the tangent linear model (M7) and data assimilation (KT).

160



In the ensemble approach of Kalnay et al. (2012), the ensemble approach to
(A4) starts from Kalman gain matrix K and substitutes the expression
K =PH'R" = (K-1)"X!X{H'R™" into (A4). Note here we are using the post-DA
analysis ensemble perturbations to calculate the analysis error covariances.

J= !
2(K-1)

[MX{XTH'R™0y,] Ce, +e,.,) (AS)
Here we define Y; = HX{ as the analysis ensemble perturbations in observation

space. Additionally, since we can approximate MX{ ~ X/, then (A5) becomes

e
2K -1)

[XngoaTR_ICSYO ]T C (etIO T ) (A6)
Finally, taking the transpose of the first term we obtain the full ensemble estimate

as in Kalnay et al. (2012)

1

Jerso = 2(K—_1)5YOTR_1YOGX£EC(€,|O + etl—n) (A7)

The benefit to the formulation of (A7) is that each term can be readily available
from any deterministic EnKF. Additionally, there is no tangent linear model in the
formulation; the ensemble forecast perturbations X/, could be computed from the

full nonlinear model. That is, each column in X/, , corresponding to each ensemble

member k, can be calculated using M (x/,_))-M(x;_,).
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Appendix B: Relationship between EnKF localization and EFSO
localization

In Chapter 4, section 4.4.4, it was inferred from a single observation
experiment at the tropics that when localization is applied during assimilation, pa,
then the EFSO localization, py, is also implicitly dependent on pa. This can also be
shown within the derivation of the EFSO equations. The Kalman gain K matrix in
an EnKF is calculated as follows.

K =P'H' (HP'H' +R) (B1)
However, when localization is applied during DA, the Kalman gain matrix is
instead written in the following form.

K, =(p,oP")H [H(p, -P')H" +R] (B2)

For demonstrative purposes, we will assume B-type localization (see section
2.2.2), though the following can be shown with other types of localization in a
similar manner. Depending on the type of EnKF used, the ensemble is then
updated to be consistent with analysis covariance update step of the Kalman filter.

With a localized Kalman gain, Kio, this step can be written as

P'=(I-K,H)P’ (B3)
Note that while localization is applied to each instance of P® within Kie, it is not
applied to the final P? in (B3). This is logical since we expect no update to be

performed on the model state where localization goes to 0, resulting in unchanged

covariances in those locations.
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When pa is applied to the Kalman gain, then the “localized analysis

covariance” matrix, P’ , can be defined as

loc?

P =(I-K,H)(p, P (B4)

loc

Though P/

loc

has no physical meaning, it is nevertheless an important mathematical

relationship relevant to the discussion here. Note that P, =P.

In the next step, equation (B2) will be manipulated with some basic matrix
algebra into a different form. Each step is written below, starting with the (B2)

expression.
K, =(p,oP")H [H(p, -P')H" +R]
K, [H(p,oP")H" +R|=(p,oP"|H"
K, R+ K, H{p, P’ = p, P!

K,R=(p,oP")H' -K,H(p, - P"|H'

loc

K, =(p,oP")H'R"-K, H(p,P’)H'R"

loc

K,. ~[1-K, H](p, - P')HR"

(BS)

Note that the final expression (B5) contains the previously-defined localized

analysis covariance matrix, P,

loc

from (B4), such that (B5) becomes

K

loc loc

=P’ H'R™! (B6)
Equation (B6) is critical in understanding how pa and pi are related. The
derivation in Kalnay et al. (2012) depended on the expression K =P“H'R™.

Though true without localization, the previous steps show that it is not explicitly

true when pa is applied. Rather, the correct expression to use in the derivation is
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(B6). Since P,

. i1s never calculated, we still seek to use P“ since it is readily
available from the analysis ensemble. Thus there is an implicit assumption to
maintain consistency in the Kalnay et al. (2012) derivation, which can be written
as the following:

pe

loc

~p,oP’ (B7)
Returning to the EFSO derivation, then §y” KTMT = 8y” K,.TMT with
localization applied during DA. Equations (B6) and (B7) can be combined and

plugged into dy” Kj,."TMT

loc loc

Sy'K! M = oy” (Pa HTR—I)T M’
~3dy'R™H(p, - P")M"
=(K-1)"6y'RH(p, o (X“X")|M" (B8)

From Kalnay et al. (2012), equation (B8) then becomes the following form within

the final EFSO expression.

YK M =(K-1)"8y"R"'[p, oYX )] | (B9)
Together, (B8) and (B9) reveal the implicit relationship between the two types of
localization, thus the EFSO localization p1 is dependent upon pa in addition to other
dependencies (spatial, cross-variable, time-forecast component). This can be
summarized in the following expression.

P, o(YX")~H(p, o (X“X"))M' (B10)
The best EFSO estimates depends on finding the EFSO localization p;such that

(B10) is a good approximation, as well as the degree to which of the implicit

assumption in (B7) is true.
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Appendix C: Details of GSI observation error adjustment and
quality control check

The GSI system is used prior to running the EnKF to precompute the
observation innovations as well and perform various quality control (QC) and
observation error adjustments. The procedures summarized here are also
described in the GSI User’s Guide (Hu et al. 2017) and the Advanced User’s Guide
(Developmental Testbed Center 2016).

The QC method is a gross error check based on the magnitude of
observation innovations and the (adjusted) observation error. The user sets three
parameters - gross, ermax, and ermin - for each type of observations. Parameters
ermin and ermax define the minimum and maximum standard deviation error
values for each type of observation, respectively, to limit the range of values. Thus
if an observation error is below ermin (above ermax), the GSI will automatically
reset the observation error to ermin (ermax). The gross parameter defines the
standard deviation threshold for which observations are rejected based on the
ratio of the observation innovations (observed-minus-background values) to the
adjusted observation error for each value. For example, consider a temperature
observation has an observation error of 0.5 °C and an associated innovation of 2.0
°C. The innovation-over-obserror ratio is then 2.0/0.5 = 4.0 °C. If the gross
parameter for this observation were set to 3.0 °C, this observation would then be
flagged for rejection since this ratio (4.0 °C) is larger than the gross parameter.
Conversely with a more relaxed threshold of gross = 6.0 °C, this observation would

be accepted for assimilation.
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The GSI system also includes automatic adjustment of observation errors.
There are several methods of automatic tuning and inflation of observation error
(see Developmental Testbed Center 2016), though by default these options are not
used and were not used within this dissertation. However, surface observation
errors are automatically inflated based on discrepancies in reported pressure or
height of the surface observations compared to the background grid. Surface
observations are automatically placed at 2-m height above the model surface
terrain for temperature, pressure, and moisture, and at 10-m for wind, consistent
with the real measurement heights. Since it is unknown what height
nonconventional surface observations are taken at we assumed a 2-m height for all
nonconventional surface observations, including wind. For temperature and
moisture surface observations, the observation error inflation is based upon the
difference between the station observation surface pressure and the background
model surface pressure. Larger differences result in increased observation error
inflation. For wind and pressure observations, the observation error inflation is
based upon the difference between the reported height of the observation and the
height of background grid terrain at the observation location. An increased penalty
is imposed upon surface observations that are found to be below the model
surface.

As an example of this inflation procedure for surface observations, consider
an ERNET surface moisture observation with a reported pressure of 964.0 mb. At
the location of this observation, the model background has a surface pressure of

971.4 mb, resulting in a difference of 7.4 mb. Assuming the observation passes the
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gross error check, the GSI adjusts this observation error from the original value
that was set at 5.0% (in terms of RH) to 12.97% as a result of this discrepancy in
surface pressures.

One important consideration affecting wind observations specifically is how
the background field is computed at the assumed observation height. The
calculation of background wind is based upon the 10-m wind read in from the
background field. Note that the 10-m wind calculation occurs during WRF
integration and is dependent on the chosen surface physics scheme. For surface
observations above 10-m and below the first model level (approximately 25-30 m
AGL), the computed background wind is a linear interpolation of the 10-m wind
and first model level wind to the observation height. For surface observations
below 10-m, the background wind is a linear interpolation of the 10-m wind and
the wind at the surface (zero due to no-slip condition). In the case of the 2-m
height assumption for nonconventional observations, the background wind is thus

reduced to 0.2 times the magnitude of the 10-m wind.
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