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Abstract

In this work, we discuss the development of a bridge weigh-in-motion (WIM) 

algorithm to predict axle weights to witliin 1% for ±lxlO'^m measurement noise. WIM 

systems that use bridges as scales are already in limited use, but they are only able to 

predict axle weights to within 10-15%, in part due to the models used to represent the 

bridge and the truck. We are proposing a method to estimate truck axle weights, axle 

spacing, and speed that includes the dynamic properties o f both the bridge and the truck, 

as well as the static effects of the truck weight, therefore, improving the axle weight 

estimates. Estimates o f the truck’s dynamic properties, including natural frequencies, 

damping ratios, and initial conditions, are also found.

To identify the truck, the deflection profiles over time at given measurement 

locations are calculated. An optimization routine is then employed to determine the set of 

truck parameters that produces the closest match to the “measured” deflection profile. 

Throughout this work, the bridge is modeled as a simply-supported Euler beam. Two 

truck models are used to represent the truck. The first treats each axle o f the truck as a 

moving point force and considers only the static weight of each axle. Using this static 

truck model, only axle weights and axle spacing are unknown and treated as optimization 

parameters. The second truck model is a 2 degree-of-freedom ‘quarter-car’ model that 

represents the static weight as well as the dynamic behavior of the truck. The coupled 

bridge/truck equations o f motion are developed and integrated to expressly include the 

interaction between the two. In this model, the static axle weights and axle spacing are 

again unknown as are the natural frequencies, damping ratios, and initial conditions of
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each mode of each axle. Both truck models assume that the truck travels at a constant 

speed, and that the truck’s total time on the bridge is known from another source.

The final algorithm is developed in stages using increasing levels o f complexity in 

the models. In the first case, the static bridge model, which neglects the inertial properties 

of the bridge, is used in conjunction with the moving point force model. In the second, 

the dynamic properties of the bridge are included, and the moving point force model is 

again used to excite the bridge. In the third and fourth cases, the dynamic, ‘quarter-car’ 

model of the truck is used to excite the static and dynamic bridge respectively.

To identify the relevant properties of the dynamic truck, an approximate model of 

the force applied by each axle is assumed. The force is assumed to be the superposition of 

the static weight of each axle and a homogeneous solution of the ‘quarter-car’ equations 

of motion. This homogeneous solution consists of two damped oscillatory modes, in 

which the natural frequencies, damping ratios, and initial conditions are unknown and are 

used as optimization parameters along with the static weight and axle spacing.

In the dynamic bridge/dynamic truck system, it is necessary to integrate the 

differential equations o f motion of the coupled bridge/truck system. To do this, it is 

necessary to transform the truck system of equations in terms of the unknown parameters 

in the homogeneous solution. This transformation is the first major contribution of this 

dissertation. The transformation allows the original system of equations, which is 

expressed in terms of the physical parameters stiffness, damping, and mass, to be written 

in terms of the modal parameters of the truck. Expressing the truck system in this manner 

eliminates the need for additional optimization parameters but still allows the integration 

of the coupled bridge/truck equations inside the optimization routine.
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It is necessary to integrate the bridge/truck equations of motion at each iteration 

of the optimization routine. It was found that approximately 7,000 iterations were 

necessary to identify the truck. Each integration takes approximately 5 seconds, resulting 

in approximately 10-12 hours of computation time for each truck. This lengthy time scale 

prevents real-time identification o f each truck.

The second major contribution o f this dissertation is the ability to determine static 

axle weights very accurately, as well as the dynamic properties of each axle. Other 

authors have considered identifying the static weight or the total applied force of the 

truck but expressly identifying the natural frequencies, damping ratios and initial 

conditions of each axle is unique to this method. Since the dynamic properties o f the 

truck are included in the approximate force model, they are therefore determined by the 

optimization routine. This algorithm determines not only the static axle weight and axle 

spacing o f the truck, but also provides very accurate estimates o f the natural frequencies 

and damping ratios of each axle. The estimation o f the dynamic properties o f each axle is 

unique to this algorithm and provides useful information about the passing truck.

Using this algorithm, axle weights could be determined to within 0.019% for zero 

measurement noise. The natural frequency and damping ratio of each axle’s low mode 

could be determined to within 0.5 Hz and 0.8% (of critical damping) respectively. The 

properties o f each axle’s high mode could be determined to within 1.3 Hz and 3.1% (of 

critical damping). Measurement noise was also added to the deflection profiles to 

determine its effect on the algorithm’s performance. With the addition of measurement 

noise o f ± lx  lO'^m, estimates o f axle weights remained within 0.03%. The frequency and 

damping of the low mode could be found within 0.85 Hz and 2.1% (of critical damping)

XX



and the high mode could be identified to within 1.9 Hz and 3.4% (of critical damping). 

The largest measurement noise examined was ±lxlO"*m. With this level o f noise, the 

error in axle weight estimates remained below 1.15%. The natural frequency and 

damping o f the low mode could be determined within 2 Hz and 3.6%, and the high mode 

was determined to within 4.4 Hz and 14% (of critical damping).
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Chapter 1 

WIM Systems and Force Identification

Methods

A great deal of work has been done over the years on modeling, simulating, and 

identifying the characteristics and behavior of highway bridges and vehicles, both 

independently o f one another and of the coupled systems. This work has been especially 

useful in aiding in bridge design and maintenance, as well as for developing regulations 

for truck loads and traffic control.

In recent times, there has been a great deal o f attention paid to the condition of the 

nation’s roads and bridges. In 1989, the Federal Highway Administration gave a 

substandard rating to 41% of the bridges in the U.S. highway system (“Exclusive, 1989). 

The poor condition of the nation’s roads and bridges is, in part, due to the increased 

munber and weight o f the heavy truck traffic traveling these highways (Cebon, 1999). In 

1987, it was estimated that the repair and replacement o f the faulty bridges would require 

a $2.65 billion investment annually for the next 20 years (“Fragile”, 1988). The potential 

for this exorbitant expense has prompted even more work to be done to effectively model 

bridges and trucks, as well as their interaction with one another.

Vehicle-induced bridge vibration is a significant contribution to the degradation 

o f the surface and structure o f highway bridges. While not typically the cause o f 

catastrophic bridge failure, it does contribute to surface wear and concrete cracking.
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which can lead to corrosion (Cebon, 1999). Understanding and potentially reducing this 

vibration could lead to the extension of the services lives o f many bridges and roadways, 

resulting in significant monetary savings for the responsible agencies.

Improving the condition of bridges and extending their service lives is two-fold. It 

would be possible to better design bridges to be less susceptible to truck-induced 

vibration or to reduce the effects of vibration through some sort of structural control. 

Better regulation and design of truck suspensions and loads would also be beneficial to 

the condition o f both the bridges and roadways. One way to accomplish the latter would 

be to better enforce truck weight regulations on the nation’s highways. This is the focus 

of this work-to develop a system to determine truck weights as they traverse a highway 

bridge based on the vibration of that bridge.

The standard method of weighing trucks and enforcing weight regulations is 

through the use of stationary weigh stations. These stations require trucks to exit the 

highway and be weighed while at rest on scales. The weigh stations are manned at all 

times while operational. While the use of static scales is the simplest and most obvious 

method of monitoring truck loads on the highway, it is not always the most effective. 

Besides being costly to staff and maintain, they are easily and often avoided by drivers of 

overweight vehicles since their location can be known miles in advance through driver 

communication (Snyder, 1992). For these reasons, there has been a great deal o f work to 

develop weigh-in-motion (WIM) systems to reduce the dependency on static weigh 

stations.

There are currently several types o f WIM systems in limited use around the 

world. The majority o f them fall into three main categories-systems mounted on the road



surface, systems installed in the roadbed, and systems that use bridges as scales. While 

there are advantages and disadvantages to all types of systems, their use is becoming 

more desirable and commonplace as the need to monitor traffic grows. Many patents 

have been issued for different types of systems, and a study on the effectiveness of WIM 

systems was performed by the Transportation Research Board in 1986 (Transportation 

Research Board, 1986). Descriptions of a few of the primary systems are given in the 

following section.

A chart outlining several individual WIM systems is given below in Figure 1.1. 

The systems described are representative o f the types of systems currently in commercial 

production and use around the world.

1.1 In-Service WIM Systems

One common type o f WIM system essentially consists of scales embedded in the 

surface of the road aligned with the wheel paths of oncoming vehicles. The standard 

design o f these systems is a steel frame housing various numbers of load cells or other 

electromechanical devices to measure the force from a passing vehicle. A piece of the 

road surface is removed and the system is placed level with the road surface. Typically, 

two o f these frames are installed in each lane to align with the wheel paths of oncoming 

vehicles. Patents for the systems developed by Yamanaka (Yamanaka, 1974) and 

Tamamura (Tamamura, 1977) issued to the same company (Yamato Scale Company, 

Limited) outline two systems of this type. In Yamanaka’s system, one platform is 

embedded in the pavement in the path o f the vehicle. The signal recorded at the front and 

rear edges of the platform are averaged to yield the weight o f the vehicle. Tamamura’s



system is similar, but it averages the response from several smaller platforms placed in a 

series along the wheel path. The systems proposed by Mills (Mills, 1990) and Loshbough 

(Loshbough, 1991) are similar to the others, although the construction details o f the 

frame and platform over which the truck passes vary slightly. All o f the systems average 

a very few measurements of the force applied by the truck over time and/or space to yield 

the total weight and axle weights of the vehicle.



I

I

On a bridge 
(>10%)

On a bridge (<l%)
(open problem)

In the Roadbed On the road surface

Leming

Mills (1990)

Yamanaka (1974)
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A study performed by the Transportation Research Board (Transportation 

Research Board, 1986) examined operational and installation problems and performance 

of a number of commercially produced systems similar to the ones described above. 

Although the companies’ products described above were not specifically discussed, 

systems with similar installation and operation were evaluated. It was found that such 

systems were quite useful in obtaining truck information in multi-lane, high traffic 

environments, because each lane could accommodate an individual system, making 

simultaneous, uncoupled measurements possible. Initial installation of the systems was 

cited as a problem since traffic had to be diverted and large pieces o f the roadway surface 

removed to house the WIM apparatus. It was also found that, since these systems are 

placed in a hole in the roadway surface material, it was possible for them to work loose 

over time as the surrounding surface material degraded. This problem was solved by 

constructing another slab in the bottom of the hole to which the frame was bolted, making 

installation even more time consuming and expensive. The problem o f scale avoidance 

was also not solved by such a system. Once the systems were identified by drivers, 

changing lanes or straddling lanes if the systems were installed in multiple lanes provided 

unusable information. Some systems were modified to correct for this problem by 

creating a continuous platform that spanned all lanes. While this method prevented 

avoiding the scale, it did not allow for independent measurements of side-by-side 

vehicles. Despite many of the problems, at the time of publication of the Transportation 

Research Board’s report, this type o f WIM system was the most widely used.

Another type o f WIM system that is growing in popularity is placed temporarily 

on the road surface. Typically the housings o f these systems consist o f a rubber or



elastomeric pad that is fixed to the roadway surface in the wheel path of the vehicles. 

Different types of electric or optical sensors are imbedded in these pads to measure the 

force imparted by a truck. Steel sheets separated by layers of rubber are used as parallel- 

plate capacitive sensors in the Golden River Corporation Design (Transportation 

Research Board, 1986). As the rubber is compressed, the change in capacitance is 

measured and correlated to a truck weight. Ibanez (Ibanez, 1985) and Muhs (Muhs, 1993) 

use a similar rubber pad, but embed optical fibers and attenuating devices that, when 

compressed by a passing vehicle, attenuate the light passed through the fibers. The 

measured light intensity is then correlated to a weight. Other systems use inductive loops 

rather than capacitors or optical fibers to detect the force.

These very portable, surface-mounted systems are growing in popularity around 

the U.S. They have been found to be quite reliable since there are few moving parts and 

they are simple to install, reducing the potential for human error. They are also much less 

expensive than the embedded systems discussed previously, and installation is simpler, 

much faster (an hour as opposed to multiple days), and, consequently, much less 

expensive. It has been found that these types of systems are more susceptible to 

intentional damage by drivers than the below-the-surface models since heavy braking can 

quickly deteriorate the rubber pads in which the sensors are installed. It was also found 

that it was necessary to install such systems on very smooth sections of roadway as 

surface irregularities caused a serious degradation in performance (Transportation 

Research Board, 1986).

The bridge WIM in motion system developed by Snyder (Snyder, 1985, 1992, 

Transportation Research Board, 1986) is one of the few o f its kind in use in the U.S. It



consists o f a system of strain gages installed on the girders underneath a bridge deck to 

record the bridge’s response to a passing vehicle over time. Each bridge is individually 

calibrated using a slowly moving test truck to determine its response to the moving load. 

Axle sensors at the entrance and exit o f the bridge are installed to determine the number 

and spacing of the axles as well as the vehicle speed. Details o f the authors’ algorithm to 

determine axle weight will be discussed in the following section.

Although Snyder’s system is one of few bridge WIM systems in use in the U S, it 

was found to perform very well by the Transportation Research Board. Once a bridge 

was instrumented, the strain gages and associated electronics remained functional for 

long periods of time and did not require recalibration often, fhe axle sensors at the 

entrance and exit of the bridge were cited as the primary problem with the hardware of 

the system, since they required stopping traffic to install, were easily damaged by 

vehicles, and were difficult to install in damp or below freezing conditions. Errors in the 

system’s weight estimates cited by the inventor (Snyder, 1985) were on the order o f 10- 

15%. It is the opinion o f this author that this level of error is due in part to the algorithm 

used to deduce weight from the measured strain record, as will be discussed in a 

subsequent section.

Although several construction, installation, and operational variations exist in 

commercial WIM devices, the above outlines the primary structure o f existing systems. 

Due to the need for more effective traffic monitoring, WIM is becoming an attractive 

alternative and addition to stationary weigh stations, prompting extensive and on-going 

work in the area. In the following section, algorithms associated with moving force 

identification will be addressed.
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1.2 WIM Methods

The primary goal o f any WIM system is to accurately estimate axle weights 

and/or gross weights o f vehicles in motion. Therefore, while the structure o f the system is 

important, designing the hardware is not the only aspect to WIM. Developing an 

algorithm that accurately predicts these weights is also a necessary part o f solving the 

WIM problem. Several authors, as well as the inventors o f the systems described in the 

previous section, have worked to develop methods to determine truck characteristics from 

WIM data. A chart o f some of the contributions in this area is given below in Figure 1.2. 

The methods used in many of the in-service systems described above as well as work 

&om other authors studying the moving force identification problem are included.



Scale & Truck 
Dynamics Considered 

(Open Problem)

No Truck Dynamics 
Considered

Truck Dynamics 
Considered

Scale Dynamics 
Considered

Law (1997, 
(1999,2000,2001)

|Loshbough(1991) Thater (1991)

Leming (2002 a)

Yamanaka (1974)

Mills (1990)

Leming (2002 b)

Leming (2003 b)

Tamamura (1977 Thater (1991)

Synder 
(1985, 1992)

Law (1997, 
1999,2000, 2001)

Loshbough
(1991)

Law (1997, 
2000, 1999)

Leming 
(2003 a,b)

WIM Methods

Figure 1.2 Force Identification Methods

To develop an algorithm to accurately predict truck characteristics from data 

acquired while the vehicle is in motion, it is necessary to first understand precisely what 

is being measured. As a vehicle moves along a real roadway or bridge, it does not apply a 

constant force over time. Irregularities in the road surface or interaction with a bridge or 

platform over which it travels can potentially excite the dynamics of the vehicle’s 

suspension and tires, resulting in a time-varying force to be applied by the vehicle. 

Further details of this tire force will be discussed in a later chapter, but to examine the 

problem of moving force identification in regards to a truck, it is important to recognize 

that what is being measured is not necessarily a constant force.

Varying levels of complexity in the models and algorithms used to predict static 

weight &om time-varying data exist in the literature and the in-service systems. Some
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inventors, such as Ibanez and Muhs (Ibanez, 1985, Muhs, 1993) do not consider the 

dynamic nature o f the vehicle or the weighing device over which it travels, but rather 

make measurements over a short period of time and ignore the time-varying aspect of the 

tire force. Other inventors use a method of averaging a very few measurements made of 

each axle over time to account for the time varying nature o f the tire force. The systems 

developed by Yamanaka (Yamanaka, 1974) and Mills (Mills, 1990) make two 

measurements at the leading and trailing edges o f the plate as an axle passes over and 

averages them to obtain an estimate of the static weight. In a similar method, Tamamura 

(Tamamura, 1977) averages the force measurements obtained from a series of 2-4 

successive platforms to estimate the weight.

It could also be said that the dynamic properties of the scale, whether it be a 

platform embedded in the pavement or a bridge structure, such as in Snyder’s work 

(Snyder, 1985, 1992), must be considered to obtain accurate measurements of the tire 

force. Loshbough’s system (Loshbough, 1991) handles the problem of scale platform 

dynamics by designing the platform to have a natural frequency far from that of the 

truck’s so that the two do not interact and successive measurements o f tire force do not 

contain the effects o f the vibrating scale platform.

The system designed by Snyder (Snyder, 1985, 1992) uses a bridge structure as a 

scale platform. This means that the weighing platform is much larger and more flexible 

than the other systems discussed, and the vehicle remains on the platform for a much 

longer period o f time. Measurements of the strain in the bridge girders are made 

continuously over time, so there are many measurements to work with. Each bridge is 

characterized by an influence line (the bending moment at a given measurement location
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versus force position along the bridge for a unit load). This influence line can be 

approximated by the influence line o f a beam with equivalent geometry and bending 

properties as the sum of the girders or by direct measurement. To obtain the influence 

line directly, a slowly moving truck passes over the bridge, and measurements are made 

at each of the sensor locations. The truck travels across the bridge slowly enough that 

neither the bridge dynamics nor the truck dynamics are excited. The magnitude o f the 

line is then normalized by the weight o f the truck.

Axle sensors at the entrance and exit of the bridge record the number and spacing 

of the axles, and the speed is also calculated using this information. Assuming a constant 

speed, the position of each axle is therefore known at every point in time. A system of 

equations is generated at each time step that relates the measured strain to the product of 

the appropriate value along the influence line for each axle and the unknown axle 

weights. To solve this system of equations, it is necessary that there be at least as many 

measurement locations as axles of the truck. The equations are then solved for the 

unknown axle weights at each time step. To account for the dynamic nature of both the 

bridge and the truck, the axle weights obtained at each time step are then averaged to give 

an approximate static weight. The estimates of axle weight reported by the author 

(Snyder, 1985) show errors up to 15%. Although Snyder does not speculate on the origin 

of this error, recent studies in the literature indicate that this is approximately equal to the 

error found in simulating a  bridge’s response to a dynamic truck crossing a bridge when 

the interaction between the truck and the bridge is neglected, as it is in Snyder’s model, 

(Green and Cebon, 1997).
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Other authors in the literature are also working on the identification of moving 

forces from bridge response information. Some o f the work involves attempting to 

eliminate the dynamic properties of the measured signal to extract the only the static 

response. Thater et al. (Thater, et al., 1991) developed a method to filter the dynamic 

bridge response using the pre-determined response of the bridge to a slowly moving 

vehicle (“static” response). They had previously determined that using conventional 

filtering methods were not effective for separating the dynamic and static responses of 

the bridge. Working in the frequency domain, it was assumed that the static and dynamic 

responses o f the bridge at 0 Hz to the same truck were equal. An FFT was performed on 

both the static bridge response due to the calibration test truck and the measured dynamic 

response o f an unknown truck. The magnitude of the dynamic response at 0 Hz was then 

scaled by the magnitude of the static response to the calibration truck at 0 Hz to 

determine the unknown weight. While this method provided some improvement in 

weight estimates over the existing bridge WIM techniques, errors of 5% using simulated 

data were still observed.

Another group. Law, et al. (Law, 1997, 1999, 2000, 2001) is also working on the 

moving force identification problem, although their goal is not to extract the static weight 

o f a simulated truck crossing a bridge, but rather to identify numerically the total force 

applied by the truck. Modeling the bridge as a simply supported Euler beam, two types of 

moving forces are examined. First, a static point force moving at a constant speed along 

the beam is used to excite the bridge. Next, a simple vehicle model that includes 

interaction with the bridge due to the displacement of the bridge under each contact point 

is used. Details of this vehicle model wUl be discussed in a later chapter.
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For both the moving point force and the vehicle model, the differential equation 

of motion for the deflection of an Euler beam (neglecting damping) is developed. For the 

point force analysis, a closed form solution is obtained for the deflection o f the beam as a 

function of space and time, and expressions for the bending moment and acceleration are 

derived from this. Either the moment or acceleration at a given sensor location is used as 

the measured bridge response, and the number of measurement locations is greater than 

or equal to the number o f point forces moving across the beam. A system of equations for 

each point in time is then formulated based on the measured bridge response and the 

closed form solution with the magnitudes of the point forces assumed to be unknown. 

Solving these equations leads to an estimate of the magnitude o f each point force for each 

instant in time. In the point force case, these estimates are averaged to determine the 

magnitudes of all point forces.

To determine the magnitude of the moving vehicle model’s force, coupled 

differential equations o f the vehicle and the bridge are formulated. This formulation will 

be discussed in greater detail in a later chapter along with the model. To first obtain the 

“measured” (obtained through simulation) bridge response to the vehicle model, the 

coupled, nonlinear equations are numerically integrated to obtain deflection, moment, 

and acceleration profiles at the sensor locations over time. Using the same method as 

above, a system of equations is formed for each time step using either bending moment or 

acceleration as the measured quantity. The equations are then solved for the magnitude of 

the applied force at each time step. This method was not intended to determine axle 

weights, but rather to identify the magnitude o f the applied force at each instant. Random 

white noise o f various magnitudes was also added to the measured signal to determine the
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performance. Using this method, errors in force magnitude estimates o f both the point 

force and the vehicle model ranged from 6-24% for the smallest noise level.

The goal o f our work is to develop an algorithm that relates a measured bridge 

response to a set o f truck parameters including axle weights, axle spacing and speed that 

produced the bridge response. In certain cases, speed is assumed to be known from an 

independent sensor. Different models of both the truck and the bridge are examined 

which include both moving point forces and moving vehicle models. The effect o f the 

bridge dynamics on our ability to determine truck properties is also examined by first 

neglecting and then including the inertia of the bridge. A simply supported Euler beam 

model is used to represent the dominant behavior of the bridge, and both point force and 

one-dimensional axle models described in later chapters are used to simulate a truck. An 

optimization routine minimizes the least-squares difference between the measured 

profiles and the simulated ones and modifies relevant truck parameters to obtain the best 

approximation o f the truck characteristics. The different models and combinations of 

models used as well as the optimization technique will be outlined throughout the 

remainder o f this work.
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Chapter 2 

Bridge Models

Examining the response o f bridges to different loadings is a large area of research, 

focusing on a variety o f different driving forces. Response to wind, earthquake and 

vehicle loading comprise a significant portion of the work in structural dynamics. A 

portion of this work deals with modeling bridges to obtain their response to excitation by 

vehicles. Many authors are also working in this area and using a variety of different types 

of models. These models vary in structure as well as in level of complexity. A chart 

outlining some of the contributions in the area o f bridge model construction and solution 

is given below in Figure 2.1. The works have been categorized by the geometric 

properties o f the model.
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Bridge Models
Plates Single Beams [ Multiple Beams Combinations

Cebon(book) Cebon, Green 
(I997a,b) Tan(1998)

Fafard
(1997,1998)

Zeng, Bert 
(2003)

Cebon (book) Patten (1997)

Pesterev, 
Bergman 

(1997 a,b, 1998, 
2000, 2001 a,b,c)

Chompooming
(1995)

Yang (1996)

Patten (1996)

Yang, Y. (1997)

Hilal (2000)

Law (1997, 1999, 
2000. 2001)

Thater (1991)

Chatteqee (1994)

Leming (2000, 
2002 a,b, 2003 a,b

Figure 2.1 Flowchart of Bridge Models in the Literature

2.1 Combination Models

Different authors use varying degrees o f complexity to model bridges, depending 

on their purpose. Some of the most complex models are finite element representations of 

a given bridge that include a variety o f elements, including plates, beam, solids, shells 

and bars. One such model developed by Patten and Sun (Sun, 1997) included the 

bridge’s superstructure and piers for use in the design of a vibration mitigation system. It 

was a 4,800 degree of freedom (DGF) model composed of three types o f beam elements, 

thin shell, bar, and solid elements, and 811 nodes. The accuracy o f  the model was
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verified experimentally, and it was found that the first eight natural fiequencies matched 

those o f the actual bridge upon which the model was based to within 3%. Higher modes, 

up to the 14***, were also predicted with slightly less accuracy. To use this model more 

efficiently, a coarser meshing technique was used which resulted in only 225 DOF but 

maintained the accuracy in predicting the first ten modes of the bridge (Patten, 1999).

The model was based on an in-service interstate highway bridge on 1-35 N near 

Purcell, Oklahoma. Since this bridge is the basis for other models used in the body of this 

text, some important conclusions drawn from Patten’s work should be discussed here, 

although geometric and construction details will be given in the following section. First, 

the first two modes of the bridge were found to be bending modes o f frequencies 2.5 and 

3.0 Hz. Higher modes were torsion and combinations of torsion and bending (Sun, 1997). 

It was also found that standard trucks crossing this bridge excited only those modes 

below 10 Hz (the first fourteen modes for the actual bridge). An even simpler model of 

this bridge was also used in much o f the practical application of this group’s work. It was 

found that modeling this bridge as a simply supported beam with the appropriate mass, 

stiffriess, and damping properties gave sufficient performance and computational 

efQciency to design the authors’ vibration control system. Time domain measurements 

compared favorably with those from the actual bridge and the full-scale finite element 

model (FEM), making it attractive for estimating deflection. It is on this simplified beam 

model that the bridge models used in the following chapters are based.

Other authors have also constructed finite element models that are combinations 

of a variety o f  elements. One common method for doing this is to model the bridge deck 

using plate/shell elements and to model the girders independently using beam elements.
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Fafard (Fafard et al., 1998, Fafard and Bermur, 1997) and Chompooming (Chompooming 

and Yener, 1995) both constructed this type o f model. Fafard’s model also included the 

parapet and a sidewalk on one side of the bridge and modeled them using beam elements. 

The model also used a non-uniform set of bending properties to more fully capture the 

cracks and irregularities in the concrete deck. This model was quite accurate in predicting 

the modal characteristics of the first ten modes, but showed large variations of up to 70% 

in the prediction of strain along the bridge for various vehicle induced loadings. The 

authors attribute a significant portion o f this error to the fact that the surface roughness of 

the actual bridge is not included in the model, which would change the response o f the 

simulated vehicle model. Variations in the actual vehicle dynamics and the simulated one 

were also cited as a source of error in these calculations. Chompooming’s model was 

very similar in structure to Fafard’s although it included only the deck and the girders and 

not the parapet or any other parts o f the bridge structure. The majority o f their work dealt 

with the influence of vehicle parameters, which will be discussed in the following 

chapters.

Many of these combination-type models most accurately predict the finer points 

o f the bridge response, including many modes and a variety of mode shapes, but they can 

also be computationally intensive and time consuming to use. Simplified models that 

include important features o f  the bridge response are often developed to predict specific 

aspects o f interest to the author. In Cebon’s book (Cebon, 1999), two simplified models 

were developed and compared to experiment and to each other. The first model was a 

mesh o f orthotropic plate elements mounted on flexible supports. To incorporate the 

effect of the girders, the plate elements were given different stifftiesses along the

19



direction o f the girders than in the other direction. In the second model, the beam was 

approximated as a simply-supported beam with mass and stifhiess properties 

representative of the deck and girder cross sections. The responses of both models were 

then compared to measured data from the actual bridge. It was found that the beam model 

predicted only four of the first eight modes while the plate model was relatively accurate 

for them all. However, in examining time domain data, it was found that both the plate 

and the beam model gave accurate and nearly identical deflection information when 

compared to the measured response to various loads. This was attributed to the fact that 

the two dominant modes of this particular bridge were bending modes and were 

represented well by both models. The author concludes that either model would suffice 

for accurately obtaining deflection information for this bridge, but computation time and 

complexity would infiuence the choice of model.

2.2 Multiple Beam Models

Other models of highway bridges that use only beams have also been examined. 

These models typically represent the bridge as either a single beam along the direction of 

the bridge or as a grillage or mesh of beams to include both transverse deflections and 

torsional effects. One such grillage model o f a bridge was constructed by Tan (Tan, et al. 

1998). The model used beam longitudinal beam elements to represent the girders and 

transverse diaphragms to represent the torsional stiffness. The two types of elements were 

pinned at their intersection to ensure equal deflections at these nodes. The stiffiiess and 

geometric spacings were tuned so that the static deflections measured fi-om an actual
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bridge corresponded to ones simulated using the model, but does not compare the 

dynamic response of the two.

2.3 Single Beam Models

One of the simplest types o f models used to simulate a bridge’s response is a 

single or multi-span beam. As discussed previously, this type of model captures the 

dominant behavior of many types of bridges (Cebon, 1999, Patten, et al. 1999), although 

it does not include the torsional effects of the bridge deck. In terms of computational 

efficiency, however, beam models are usually considered much more practical for actual 

use. Extensive work has been done using beam models to examine not only bridge 

response, but also interaction effects between vehicles and bridges. Different methods of 

solving the coupled systems have also been proposed. Pesterev and Bergman (Pesterev 

and Tavrizov, 1994 a,b, Pesterev and Bergman, 1997 a,b, 1998, 2000, Pesterev et al, 

2001 a,b) did extensive work developing efficient and accurate methods to solve the 

bridge-truck interaction problem using a beam model. Their emphasis, however, was on 

the solution rather than the model, and details o f their work will be discussed in the next 

chapter.

Many other authors also use beam models to study the interaction between 

vehicles and bridges. Yang (Yang, Y. 1995, 1997) used such a model to study the 

interaction between railway bridges and trains. They used regular beam elements of 

appropriate cross-section and properties where the train was not in contact and proposed 

an “interaction” element where the train was in contact. This element included the mass, 

stiffiiess, and damping o f  the combined beam/vehicle system. Hilal (Hilal and Zibdeh,
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2000) used beam models with a variety of boundary conditions to examine the effects o f 

acceleration, deceleration, and uniform motion o f a moving point force and obtained a 

closed form solution for the deflection profile. Chatteqee (Chatteqee et al., 1994) used a 

multi-span beam model that allowed torsion of the beam due to eccentric loads. The 

bridge on which this model was based had much higher frequencies in torsion than in 

bending, meaning that it was torsionally stiff. This resulted in a negligible change in 

bridge deflection when torsional coupling was included, indicating that, for this bridge, 

the eccentricity of the vehicle with respect to the center-line of the beam had did not have 

an effect on bridge behavior. Results were not given for a less torsionally stiff bridge.

Because of the computational efficiency, beam models were chosen to use in the 

rest of this work. Single span, simply supported beams are used to determine the bridge 

response to a variety of load conditions. We also examine the effect o f the inertia o f the 

beam on the response of the bridge to a loading and on our ability to identify that load. 

Details of these models are given in the following sections.

2.4 My Models

The goal of this work was to identify the axle weights, axle spacing, and speed of 

a truck passing over a bridge based on the deflection response of the bridge. To do this, it 

was necessary to develop a model of the bridge that would be representative o f the 

principal behavior of the bridge when subjected to vehicular loading. An in-service 

highway bridge spanning Walnut Creek on 1-35 N near Purcell, Oklahoma was the basis 

for the simplified beam models used in this work. The original bridge consisted o f a 

reinforced concrete deck and five steel I-beam girders spanning the entire length o f the 

bridge. The four-span bridge was supported by three equally spaced piers and two end
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abutments. The right-hand traffic lane was centered over the second girder (near east) 

and the left-hand lane was centered between the fourth and fifth girders (near and far 

west) (Sun et al., 1997). For simplicity, a single span beam model based on the above­

described bridge was developed for this work. It is important to note that this model and 

the force identification method could easily be extended to include more lanes.

The general model consisted of eight beam elements and nine nodes. It was found 

that this number o f elements was sufficiently large to accurately represent the 

displacement while still remaining computationally efficient. The use of eight elements 

was also advantageous, because it provided nodes at locations that were desirable for 

measurements, the midpoint, the quarter-length point, and the three-quarter-length point. 

A diagram of this model is given below with the potential sensor locations marked in 

Figure 2.2. A discussion of these sensor locations will fjc given below in section 2.4.

E,I,p,A

Midpoint % PointV* Point

Figure 2.2 Finite Element Model of Bridge

Each node was given two degrees of freedom (DOF), vertical displacement and 

in-plane rotation. The boimdary conditions of the simply supported beam were such that 

the displacements at the first and last nodes were fixed. In total, this model had 16 DOF. 

The properties of the beam were determined to correlate with the measured properties of 

the second span of the Walnut Creek Bridge. These properties are given below in Table 

2.2.1.
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Table 2.2.1 Properties Used in Beam Model

L 30.48 m
El (product) 7.36x10'® Nm^
pA 3.35x10" kg/m

Two versions of this beam model were used in this work. The first, termed the “static” 

model, did not include the inertia of the beam, the solution of which was a series of static 

calculations through time. The second, the “dynamic” beam, included the inertia o f the 

beam and was solved continuously.

2.5 Static Beam

Three methods o f solving the static beam response were used, the finite element 

method, the direct solution of the differential equation of motion of the beam for a 

moving point force, and static beam bending equations. Details of the solution for a 

moving vehicle model will be given in the Interaction chapter of this work.

2.6 Finite Element Model

The first solution method used the finite element model and properties given 

above. The elemental stiffness matrix Kg was derived using the standard beam element 

equations and is given below in Equation (2.1). The global stiffiiess matrix was 

assembled using standard finite element method and will not be given here for the sake of 

brevity.

12 6Z 
6L AÛ 

-1 2  -6 L  
6L 2Û

-1 2  6L 
- 6 1  21? 

12 - 6 1  
- 6 L  AI?

(2.1)
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For the moving point force problem, a static calculation of the beam deflection 

was performed at each time step to determine the displacement of each node. Although 

the same beam model was used for a moving vehicle model, a slightly different solution 

method was employed and will be discussed in Chapter 4. In both cases, however, the 

governing equation of the bridge deflection was given by

f(r)= K c x (()  (2.2)
the solution o f which is given by

x ( ,)= K g - 'F ( ,)  (2.3)

where Kc is the global stifhiess matrix of the beam, x(t) is the deflection and rotation at

each node, and F(t) is a vector o f the applied force at each node.

The term deflection profile’ will be used throughout this work to define the 

deflection as a function o f time at a given sensor location. An example of a profile using 

the static bridge finite element model is given below.

-0 .:

-0 .4-

1-0.0-
â - 0 .8 -

-1 r

- 1 .2-

- 1 .

Time Profile of Midpoint

$  0 2  0.4 0.6 0.8 1 1.2 1.4
Time

Figure 2.3Sample Deflection Profile of the Static Bridge Midpoint Deflection

The measurement equation, giving the beam deflection at the sensor location is 
given by
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ÿ= C gx

“ [^3x3 2]
C B (1,8) = l for midpoint deflection (2.4)
C B (2,4) = 1 for quarter point deflection
C b(3,12) = 1 for three-quarter point deflection

for three sensor locations. For only one sensor located at the span midpoint, Cb is a 1x32 
vector and Cb( 1,8)=1.

2.7 Solution of the Differential Equation

The second method for determining the deflection profile of a static beam

subjected to a moving force involves the solution o f the partial differential equation of

bending for a beam. This method o f solution assumed a moving point force, although it 

was expanded for use with a moving vehicle model. For this section, however, we will 

limit our discussion to moving point forces only.

The differential equation o f bending for a Bemoulli-Euler beam is given by

(2.5)

where w(x,t) is the vertical displacement o f the beam as a function of time and horizontal 

distance along the length, x, P is the force, and x(/) is the location of the force as a 

function of time. A solution to this equation in terms of the mode shapes of the beam can 

be written as

w(x,r)=2^^.(x)F;.(/) (2.6)
/=i

For a simply supported beam, the mode shapes,^(5r), can be written as

^ . ( x ) = s i n ^  (2.7)
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Substituting Equations (2.6) and (2.7) into Equation (2.5) and multiplying both sides by 

sin^^^ leads to

sin— s in " ^ ^ .( / ) = P ^ ( jc - x ( r ) ) s in ^  (2.8)

If Equation (2.8) is integrated with respect to x  from 0 to L, the right-hand side becomes 

zero except where x  = x(f). The equation then becomes

The left-hand side o f Equation (2.9) is zero unless i=j, when it is undefined. Applying 

L’Hospital’s rule with respect to the quantity i-J, the left-hand side becomes

(2.10)

The above equation gives an expression for the time-dependent portion of the solution to 

Equation (2.4). The complete solution to Equation (2.5) is therefore given by

Evaluating Equation (2.11) at the sensor locations generated deflection profiles of the 

same nature as in Figure 2.3. It was determined that using 4-5 terms o f the series 

expansion in Equation (2.11) gave the best approximation to the finite element deflection 

profiles. Equation (2.11) was evaluated at x=L/2, L/4, 3L/4 to measure the deflection 

profile.

2.8 Static Beam Bending Equations
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The standard equations for static beam bending were also used to evaluate the 

deflection profiles of the beam. The deflections due to each force at a given location are 

found using the standard expressions for the inverse of beam stiffiiess and are given 

below (Gere, 1997). Ht is used if the x<b, and H2 is used if x>b, where x  is the location 

o f the applied force along the beam.

H (v- j )  -  ~ ~
6 EIL

(2.12)

where and ai+bi=L. The deflection of the beam is given below in three different

time frames which determine how many axles on the beam at a given time. The details of 

the truck motion will be given in Chapter 3. Wi and fP? are the front and rear axle weights 

of the truck, a is the spacing between the weights, and v is the truck speed. The subscripts 

/ and j  depend on the relative location of the sensors and each applied force.

w{x,t)=-H.(x,b^ j(x,b^)W^

w {x ,t)= -H f^ x ,b ^ ^

when 0 < / < —
V

when — <t< —

. L ^  ^L -¥ a  when — < / < -------
V V

(2.13)

The sensors are located at the midpoint and/or the quarter-point and three-quarter- 

point (x=L/2, L/4, 3L/4). The deflections at these locations would be given by evaluating 

Equation (2.13) at these points.

2.9 Dynamic Beam

The second version of the beam model used in this work included the inertial 

effects o f the bridge and was termed the “dynamic” bridge model. The same eight
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element, nine node geometric model of the simply supported beam was used, but the 

mass of the beam was included in the development. The figure below illustrates a 

deflection profile of the midpoint deflection of the beam using this model compared with 

one firom the static model.

« 10 '

-2.t{

No dynamics 
With dynamics

Time(s)

Figure 2.4 Sample Deflectlou Profile of the Midpoint 
Deflection Using the Dynamic Beam Model

A consistent mass matrix for a beam element was developed using the parameters 

given in Table 2.2.1, and is given below in Equation (2.14). The same element stiffiiess 

matrix was used as in the static model. Equation (2.1). The global mass and stiffiiess 

matrices were assembled using the standard finite element method.

M pAL
420

156 22L 54 -13L
22Z 4£? 131 -31?
54 131 156 -2 2 L

-\3 L -3Û- -2 2 1 4Û-

(2.14)

The damping in bridges is typically quite low (approximately 2% o f critical) 

(Cebon, book). The measured values of the damping in the Walnut Creek Bridge are
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quite close to 2% for the first eight modes of the actual bridge. Using the 2% damping, 

the global damping matrix is therefore given by

Cc =0.04M c(Mg- 'K c )^  (2.15)

where Ma and Kc are the global mass and stiffiiess matrices respectively.

The discretized equations of motion for the beam becomes

M^xCr) + K j { t ) = F i t )  (2.16)

where x(t) is again the displacement and rotation of the nodes, and F(t) is a vector of

force applied at each node.

To conveniently integrate these equations, it is necessary to reduce the set of 

second order differential equations to a set of first order ones

(2.17)

where Xg =[x x f  and Ab and Bs(t) are given below./(t) is the time force vector. This

quantity will be discussed for individual truck models in later chapters. Cg varies 

depending on which of the three potential sensor locations are being measured.

A g —
0 16x16

- I

I 16x16 
- 1, BB

016x16 
- 1 R(s,z)

(2.18)

Cg —[0 3 3̂ 2 ] 
Cg(l,8) = l 
Cg(2,4) =  l 
Cg(3,I2) = I

for midpoint deflection 
for quarter point deflection 
for three - quarter point deflection

(2.19)
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A  " i t ' ^  ■
node i £  i node i+l

where R(s,z) describes the distribution of the force and moment due to the load between 

the modes as described below.

2.10 R(s^)

For a force applied at a position z, 0<z<[., 0 < s^ /8

For zeEj, and 0 < s^ /8 , the 32x1 vector (or 32x2 for two axles) R(s^> is formed from an 

36x1 (or 36x2) vector r(s^) whose elements are defined below. Each column of R(s^) 

represents the location o f an individual axle.

r(5,z)2,_, = j^{2 s^ -3 s -L  + û )  

ris,z)„  = j^ (s ^ L -2 s -Û  + sü )

ris, z)2t,2 = ^ ( -  2s  ̂ + 3 f"A ) (2.20)

ris,z)2„.2 = -^ { s ^ L -s ^ l} )

All other r(s,z)j = 0 for 2i -2 > j > 2i + 2

The boundary conditions are such that the deflections at the endpoints of the span are 

zero. For this reason the 1®*, 17*, 19*, and 35* rows o f r(s«z) are removed (r(s,z)i=[ ], 

r(s,z)i7=[ ], etc.) to form R(s^).
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2.11 Reduced Order Model

For computational efficiency, two reduced order models of the dynamic bridge 

were also developed. It was found that 99.5% o f the midpoint deflection was expressed 

by the first, third, fifth and seventh modes. The simplest reduced order model contained 

only these modes and was produced using a transformation algorithm in MATLAB. The 

second reduced order model used the first seven modes of the beam and was used with in 

the dynamic bridge/dynamic truck section o f the work. The even munbered modes were 

included to improve the deflection estimates at the quarter and three-quarter points. The 

deflection from the reduced order models was compared to the full-order model to 

determine the contribution o f the higher modes. The two figures below show the error 

between the reduced-order model and the full-order model at each of the three sensor 

locations for two different combinations o f modes. The first. Figure 2.5, shows the error 

using modes 1 ,2 ,3 , 5, 7. The second. Figure 2.6, includes the even modes 4 and 6 and 

was the model used for the larger reduced-order model. Adding the fourth and sixth 

modes reduced the maximum error from IxlO'^m to 2xl0‘̂ m. This was considered a 

significant enough improvement to justify the added complication in the model.
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The modal coordinate vector for either reduced order model, z, can be expressed

as

z=T%g (2.21)

where T is the appropriate transformation matrix for each model and both will be given in 

an Appendix to this chapter. Rewriting the system of equations in terms o f these modal 

coordinates gives

z = TAgT z + T B g/(f)=  Az + B/(t)
(2.22)

ÿ  = C_T z = C z

The new state matrix A for each model is in block diagonal form with At along the 
diagonal.

Ai = Pi
- P i  ^ i

(2.23)

where ai=^i Oi and /?, = «a, ̂ 1 -^?  . co, is the natural frequency in radians o f the mode and

4i is the damping ratio. ^i=0.02 for all i=l,7.

The bridge models described above are each used in a different phase of the truck 

identification problem. The truck models used with each bridge models and the solution 

methods employed to solve each coupled system are discussed in the following two 

chapters.

2.12 Sensor Locations

The locations o f the measurements used in this work were selected based on their 

information content and the use o f symmetry. First, consider the deflection at each o f the 

seven interior nodes (not at the supports) for the static beam. Since static beam bending is
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the dominant behavior of the beam, the sensor locations are chosen using the static beam 

model. The midpoint deflection has the largest magnitude so it is an obvious choice for 

one sensor location. The deflection over time at each node for a moving point force is 

shown below in Figure 2.7.

qX10 Deflection Profile at Each Node

0 ^ ^
;

-2 \

II -at
-10̂  

-1 2 r

-141

\ -  
\  •

0) \Q \  /
/

U2U4
3L/4
3U8
5U8
7U8
L/8

■16o bis 1 1.5
Time (sec)

Figure 2.7 Deflection at Each Node Due to a Moving Point Force

Clearly, the midpoint deflection profile has the largest magnitude for the same 

weight, so it was chosen as the first sensor location. The static deflection of the beam is

given by Equation (2.11). The
V* /

s in ^ ^  term in Equation (2.11) determines the

magnitude o f the response based on the measurement location. This expression can be 

rewritten in terms of the locations of the nodes as [ - 1 s in ^ ^  where n is the node
l U  8

number, and / is the mode number. A plot o f the absolute value o f  this term is shown for 

the first three modes below in Figure 2.8. The magnitude of the sine term is scaled by
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i for the i*** mode. For the first mode, the midpoint (n=4) has the largest magnitude.

The next largest responses for the first mode are at n=3, 5 (x=3L/8, 5L/8). For the second 

mode, n=2, 6 (x=L/4, 3 L/4) have the largest responses. Although it is small, the 

magnitude of the sine term tor the third mode is larger for the n=2, 6 (x=L/4, 3 L/4) than 

for the n=3, 5 (x=3L/8, 5L/8). Based on the magnitudes of the deflection at each node due 

to each of the first three modes, the quarter-point and the three-quarter-point (x=L/4, 3 L/4 

or n=2, 6) were selected for the locations o f the other two sensors. This sensor 

combination also provided an evenly distributed, symmetric arrangement of sensors.

Sine Term Evaluated at Each Node

0.9 

^  0.8'
>  0.7

+  i=l. Istmode 
1=2. 2nd mode 

.. 1=3. 3rd mode
t  0.6r

Î
I  0.4r 

0.3FI 0.2L 
0.1 :

L/4 3L/4
U2

) 1 2 3 4 5 6 7
Node Numtier n (n*L/8)

Figure 2.8 Sine Term at Each Node For Three Modes

t

The magnitudes o f the s in ^ ^  term for each sensor location for the first eight

modes are given in the table below. Neither o f three sensor location reflects the fourth or 

the eighth modes. This was not considered significant since the magnitude o f each mode
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decreases by i'*, and the contribution to the deflection by higher modes decreases rapidly.

1The magnitude -
V h

was 0.0039 for the fourth mode and 0.0123 for the third mode.

Table 2.2 Sine Term For Each Mode

Sensor Location Sine Term i=l i=2 i=3 i=5 i=6 i=7

x=L/2
. i/r sm—  

2
0 -1 0 -I

x=L/4 sm ITT
/K /2 -1 -  1

x=3L/4
. î TT sm----- -1 _ I

2.13 Chapter Conclusions

The bridge models and sensor equations described in sections 2.4-2.12 are used 

throughout the rest o f this work in combination with two truck models that are described 

in Chapter 3. The static bridge model is used in Chapters 6 and 7 to examine the static 

bridge/static truck and static bridge/dynamic truck systems. The combined bridge/truck 

models will be used to identify important truck parameters from the deflection profiles at 

the sensor locations.
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2.14 Bridge Modek Appendix

The matrices shown on the following pages are used to form the transformation matrices 

used in the reduced order model of the dynamic bridge model. The first, Ts?\ selects the first 

seven modes o f the full-scale bridge model. The second, Ts4^  selects the first four odd modes of 

the bridge model. The complete transformation matrices are formed by

^  ~ V s j  ^nxiej 

where j  is the number of modes used in the model.
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Seven Modes (1-7)
Ts7̂ =
-9.7E-01 1.9E-02 -9.3E-01 1.9E-02 8.4E-01 -1.7E-02 -7.2E-01 1.4E-02 -5.7E-01 1.1E-02 -4.2E-01 8.5E-03 2.8E-15 4.0E-01
-1.3E-01 2.6E-03 -2.6E-01 5. IE-03 3.6E-01 -7.3E-03 -4.3E-01 8.6E-03 -4.3E-01 8.6E-03 -3.7E-01 7.4E-03 2.4E-15 3> 8E-01
1.8E+00 -3.6E-02 1.3E+00 -2.6E-02 -6.4E-01 1.3E-02 -1.1E-14 -1.3E-15 -4.4E-01 8.8E-03 -e.OE-01 1.2E-02 3.8E-15 7.4E-01
2.4E-01 -4.8E-03 3.6E-01 -7.2E-03 -2.8E-01 5.6E-03 -6.7E-15 -8.1E-16 -3.3E-01 6.6E-03 -5.2E-01 1.0E-02 3.2E-15 7. IE-01

-1.4E+00 2.7E-02 1.5E-15 -2.1E-15 -1.2E+00 2.4E-02
3.0E-03

1.4E+00 -2.9E-02 8.1E-01 -1.6E-02 3.5E-14 -7.4E-15 -6.6E-16 5.7E-01
-3.1E-01 6.3E-03 -2.6E-01 5.1E-03 -1.5E-01 4.3E-01 -8.6E-03 1.8E-01 -3.6E-03 -3.7E-01 7.4E-03 1.8E-15 9.3E-01

7.4E-01 -1.5E-02 -1.3E+00 2.6E-02 1.5E+00 -3.1E-02 1.8E-14 4.4E-15 1.1E+00 -2.1E-02 6.0E-01 -1.2E-02 -4.8E-15 3. IE-01
3.4E-01 -6.8E-03 1.7E-15 ^.5E-16 3.9E-01 -7.9E-03 4.9E-15 3.1E-15 4.7E-01 -9.3E-03 8.2E-14 -1.3E-14 -7.4E-16 1.0E+00

-6.0E-15 -9.2E-15 1.9E+00 -3.7E-02 -6.1E-16 -3.4E-15
3.0E-03

-1.4E+00
-4.3E-01

2.9E-02 -2.1E-15 1.2E-14 8.5E-01 -1.7E-02 -5.1E-15 -1.3E-13
-3.1E-01 6.3E-03 2.6E-01 -5. IE-03 -1.5E-01 8.6E-03 1.8E-01 -3.6E-03 3.7E-01 -7.4E-03 -2.8E-15 9.3E-01
-7.4E-01 1.5E-02 -1.3E+00 2.6E-02 -1.5E+00 3.1E-02 -3.6E-14 -3.9E-15 -1.1E+00 2.1E-02 6.0E-01 -1.2E-02 -3.0E-15 -3.1E-01
2.4E-01 -4.8E-03 -3.6E-01 7.2E-03 -2.8E-01 5.6E-03 -1.6E-14 6.3E-16 -3.3E-01 6.6E-03 5.2E-01 -1.0E-02 -3.6E-15 7.1E-01
1.4E+00 -2.7E-02 4.2E-15 -1.5E-15 1.2E+00 -2.4È-02 1.4E+00 -2.9E-02 -8.1E-01 1.6E-02 -7.5E-14 5.4E-15 -6.0E-17 -5.7E-01
-1.3E-01 2.6E-03 2.6E-01 -5.1E-03 3.6E-0^ -7.3E-03 4.3E-01 -8.6E-03 -4.3E-01 86543 3.7E-01 -7.4E-03 -2.6E-15 3.8E-01

-1.8E+00 3.6E-02 1.3E+00 -2.6E-02 6.4E-01 -1.3E-02 2.3E-14 -2.8E-16 4.4E-01 -8.8E-03 -6.0E-01 1.2E-02 4.0E-15 -7.4E-01
9.7E-01 -1.9E-02 -9.3E-01 1.9E-02 -8.4E-01 1.7E-02 -7.2E-01 1.4E-02 5.7E-01 -1.1E-02 -4.2E-01 8.5E-03 3. IE-15 -4.0E-01

39



Four Modes
Ts/=

-9.7E-01 1.9E-02 8.4E-01 -1.7E-02 -5.7E-01 1.1E42 2.8E-15 4.0E41
-1.3E-01 2.6E-03 3.6E-01 -7.3E-03 -4.3E-01 86543 2.4E-15 38541
1.8E+00 -3.6E-02 -6.4E-01 1.3E-02 -4.4E-01 88543 3.8E-15 7.4E41
2.4E-01 -4.8E-03 -2.8E-01 5.6E-03 -3.3E-01 66543 3.2E-15 71541

-1.4E+00 2.7E-02 -1.2E+00 2.4E-02 8. IE-01 -1.6E42 4.6E-16 57541
-3. IE-01 6.3E-03 -1.5E-01 3.0E-03 1.8E-01 -3.6E43 1.8E-15 9.3E41
7.4E-01 -1.5E-02 1.5E+00 -3. IE-02 1.1E+00 -2.1E42 -4.8E-15 31541
3.4E-01 -6.8E-03 3.9E-01 -7.9E-03 4.7E-01 -9.3E43 -7.4E-16 10E+00

-6.0E-15 -9.2E-15 -6. IE-16 -3.4E-15 -2. IE-15 1.2E-14 -5.1E-15 -1.3E-13
-3. IE-01 6.3E-03 -1.5E-01 3.0E-03 1.8E-01 -3.6E43 -2.8E-15 93541
-7.4E-01 1.5E-02 -1.5E+00 3. IE-02 -1.1E+00 2.1E42 -3.0E-15 -3.1E41
2.4E-01 -4.8E-03 -2.8E-01 5.6E-03 -3.3E-01 6.6E43 -3.6E-15 7.1E41
1.4E+00 -2.7E-02 1.2E+00 -2.4E-02 -8. IE-01 16542 -6.0E-17 -5.7E41
-1.3E-01 2.8E-03 3.6E-01 -7.3E-03 -4.3E-01 86543 -2.6E-15 3.8E41

-1.8E+00 3.6E-02 6.4E-01 -1.3E-02 4.4E-01 -8.8E43 4.0E-15 -7.4E41
9.7E-01 -1.9E-02 -8.4E-01 1.7E-02 57541 -1.1 E42 3.1E-15 -4.0E-01
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Chapter 3 

Truck Models and Dynamics

Another important aspect to modeling the response of a bridge to a truck is the 

model o f the truck used. Existing models vary in complexity and in the truck properties 

they include. A chart outlining many of the authors developing truck models is given 

below in Figure 3.1.
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3D 
(bounce, 
pitch, roll)

2D
(bounce,
pitch)

ID
(bounce)

Static
Weight

Cebon, Cole 
(1992, 1995)>•

Cebon(book)

Patten (1999)

Law (1999)

Cebon (book)

Cebon (book)

Yang, Y.B (1995)

Tan (1998)Chatteijee ( 1994)

Patten(1996) Vlasek (1999)

Yang, F. (1997)

Forsen (1999)

Fafard (1997, 
1998 a,b)

Cebon, Green 
(1997)

Law (1997, 
1999, 2001)

Cebon, Cole 
(1992, 1995)

Chompooming
(1995)

Chompooming
(1995)

Chompooming
(1995)

Pesterev, 
Bergman (1999, 

2000)

Pesterev,
Bergman

2000)

Truck Models

Figure 3.1 Flowchart of Truck Models in the Literature
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3.13D Truck Models

Many o f the existing truck models are quite complex and include the vertical 

displacement (bounce) of the truck’s tractor and/or trailer, as well as the pitch and roll o f 

the truck. These models typically represent each wheel pair on an axle and are three- 

dimensional representations. One such model is described by Fafard (Fafard and Bennur, 

1997). It is an 18 DCF three-dimensional model that includes the tractor (cab) and two 

trailers. It assumes that each body o f the model is a rigid mass connected to linear 

suspension systems. For each of the two trailers, a rigid mass is connected to four 

spring/damper sets that represent the linear behavior of a multileaf suspension system. At 

each of these four points, the tire is represented by another mass and spring/damper set 

approximating the stifhess and damping of the tire pairs. The tractor is a rigid mass with 

two spring/damper sets and two tire assemblies to represent the single axle common to 

most vehicles o f this type. It was also assumed that each tire remained in contact with the 

bridge or road and all times. This model included the bounce, pitch and roll of all three of 

the truck’s bodies. A similar model that included only one trailer was also described in 

another work (Fafard et al., 1998). The numerical values for the stiffiiesses and dampings 

were determined experimentally from a fully instrumented test truck.

In another work, the Fafard and Henchi describe a similar model of simpler truck 

that also included the bounce, pitch and roll (Henchi et al., 1998). The truck was a dump 

truck that had a trailer and cab attached as one body. Three axles, one under the cab and 

two under the rear of the trailer, were again modeled using the appropriate linear 

properties o f a multileaf suspension system. The entire truck was modeled as one mass
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connected to four spring/damper systems for the suspension systems at each tire. Four tire 

assemblies were also included and were the points of contact to the road surface. The 

properties of the two rear axles were combined and modeled as two rear suspension and 

tire assemblies on either side of the truck. The model had seven DOF in total and 

described the bounce, pitch and roll o f the vehicle.

Another three-dimensional model is described by Forsen (Forsen, 1999). A solid 

modeling and finite element package is used to model the truck as 23 bodies connected 

by joints, springs and dampers for a total of 74 DOF. The tires of this truck were modeled 

as three-dimensional rigid rings that included sidewall stiffness and belt mass. The 

stiffness, damping and mass parameters were verified 6om data collected from a fully 

instrumented test truck passing over several types of obstacles and various speeds. After 

proper tuning, it was found that this model very closely represented the motion of the test 

truck although it was computationally quite complex.

3.2 2D Truck Models

Cole and Cebon (Cole and Cebon, 1992) developed two models of a tractor and 

single trailer combination and compared the contributions from bounce, roll, and pitch for 

a variety of conditions. The first model was three-dimensional and similar in structure to 

the single trailer model described by Fafard and included 21 DOF. The model was 

validated experimentally and found to accurately represent the tire force applied by the 

test truck.

Several conclusions were drawn by the authors regarding the relative 

contributions o f the components of the truck motion. Truck motion can typically be
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described by two modes, the “sprung mass mode” which have frequencies o f 1-4 Hz, and 

the ‘̂ msprung mass mode” of frequency 10-15 Hz. The authors found that, for the sprung 

mass mode, the contribution to the tire force due to the roll was negligible compared to 

the bounce. For the higher unsprung mass mode, the bounce and roll had similar 

magnitudes. It was also found that, for the majority o f trucks, the contribution to the tire 

force by the unsprung mass mode is typically small compared to the sprung mass mode. 

This led to the conclusion that the roll component o f the motion could be neglected for 

most trucks, making a two-dimensional model adequate.

Cole and Cebon then investigated the use o f a two-dimensional model similar to 

“half’ the three-dimensional one. Instead of representing each tire pair o f each axle 

separately, each axle was condensed into a single suspension and tire assembly. It was 

found that two- and three-dimensional models compared favorably in the sprung mass 

mode (1-4 Hz) where the majority of the tire force originates, but differed for the 

unsprung mass mode (10-15 Hz) due to the omission of the roll component o f the motion. 

It was also found that, at highway speeds, the three-dimensional model showed less 

excitation o f the roll modes than at lower ones, indicating that the two-dimensional model 

was sufficient for representing trucks traveling at higher speeds. The authors concluded 

that the two-dimensional model gave an adequate representation o f the tire force for the 

majority o f trucks and required approximately one-tenth the computation time of the 

three-dimensional model, making it desirable for any type o f real-time study.

Other authors have also used two-dimensional truck models in their work. Patten 

(Patten et al., 1999) used a model similar in structure to Cole and Cebon’s with 

parameters determined experimentally from a test truck. Chompooming (Chompooming
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and Yener, 1995) described a four DOF two-dimensional model to examine bridge/truck 

interaction. This model consists of a rigid mass connected to two suspension and tires 

assemblies, allowing for bounce and pitch. The suspension is represented by a spring and 

a damper, and each tire is a mass/spring/damper assembly. The tire assembly’s spring and 

damper are assumed to remain in contact with the bridge or road at all times. Yang 

(Yang, F. and Fonder, 1996) reduced the complexity of the two-dimensional model even 

hirther, combining each suspension and tire assembly into a single spring and damper.

3.3 ID Truck Modek

In another work by Cebon (Cebon, 1999) two models were compared that 

represented the majority of truck dynamics. One was a two-dimensional, three DGF 

model termed the ‘walking-beam model’. It consisted of a rigid mass connected by a 

spring and damper to a rigid beam. The rigid beam Joined the two axles and contacted the 

surface with two spring/damper assemblies. The mass was allowed vertical displacement, 

while the beam was given vertical displacement and rotation. The walking-beam model 

displayed a large pitching vibration in the frequency range of 8-15 Hz, which is 

representative of only a small percentage o f typical truck suspensions. The second model 

is a one-dimensional, two DOF 'quarter car’ model. This model consisted of a large 

sprung mass representative of the load on an axle and a smaller unsprung mass typical of 

tires. The two masses were connected by a spring and a damper with properties 

representative of a typical suspension. The unsprung mass was connected to the surface 

by a spring and a damper corresponding to the tire properties. This model generated its 

main tire force due to the low-frequency sprung mass motion (1.5-4 Hz), which made it
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representative of the axle properties o f the majority o f trucks in use. The author cited this 

model as very representative o f the behavior of each axle in the majority o f trucks and 

indicated that multiple quarter-car models could be used in series to represent the 

multiple axles of a larger truck.

Cebon’s ‘quarter-car’ model is similar to the model cited by Patten (Patten, et al. 

1996). This model is also given the name ‘quarter-car’ model. This version o f the 

‘quarter-car’ model is depicted in Figure 3.2 and will be used throughout the remainder 

o f this work. Any number of these quarter-car models can be combined to represent the 

axles of a given truck configuration.

The equations of motion for the /'* quarter car are given below where yaCx.j) is the

vertical deflection under the axle at the axle’s lateral position x., and x„ and Xj are the

vertical displacements o f the unsprung and sprung masses. The equilibrium positions are 

taken relative to zero bridge displacement.

(3.1)
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Figure 3.2 'Quarter-Car* Model Used in This Work

The total force applied to the bridge or road by each axle is given by

F.(/) = -fF. + ku.{xu.{t) -  yg (%.,/)) (3.2)

This model is used throughout this work to illustrate the effect of the weight o f the truck 

and the coupling between the bridge deflection and the truck. Details of this interaction 

will be discussed in the following chapter.

It became necessary throughout this work to examine the homogeneous solution 

of the differential equations of motion of the truck; in other words, to examine the truck’s 

behavior without the bridge interaction termyg in Equation (3.1). This would be the case 

if the truck were traveling across a roadway or “infinitely stiff’ bridge.

Because the dynamic portion o f the force is determined by the motion o f the 

unsprung mass, Xu, this quantity is o f the greatest interest in this work. The homogenous 

solutions for Xu o f both axles have the form o f two damped oscillatory modes as given in 

Equation (3.3) below.
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Xu^ = A^^e - r , ) + ^ , , ) + / 4, , e  ''^sin (^ ,, (r - / j ) + ^ , ,  )

Xu 2 = -  (%)+ )+  A^e  “- ( '  'z^sin " 2̂ )^  ^2 2 )
(3.3)

The time shifts in each expression, // and /?, are the times at which each axle 

enters the bridge. The constants Ay and <|>ij depend on the initial conditions of each axle 

upon entering the bridge. The constants ay and Pij determine the damping and frequency 

of oscillation of the axle and can be related to the more familiar quantities % and cOn 

through the following relations, where ^ is the damping coefficient of each mode and cOn 

is the natural frequency of the mode.

ûf=^û>^ and - 4 ^ (3.4)

It is often useful to write the second order differential equations of motion for such a 

system in terms of multiple first order differential equations. The truck system given in 

Equation (3.1) for both axles could therefore be written as

Xj, = Aj.Xj. +

> 'r=® u^r =

where

xu.
,xu^

= x

^ « 4  |[4i4 
^ d . ^ d  =

-Ms-'C Ms 'C 
Mu 'C -Mu 'C

(3.5)

(3.6a, b)

Mu

^Ts -

-I _

- M s - ‘Ks Ms 'Ks 
Mu 'Ks -M u  '(Ks + Ku)

1 I ■
mû

0

0

I > Ks —
f a ,

0
0 ■ 

^2.
,Ms"‘ = mŝ

0

0

I
mû my.

(3.6c)

(3.6d)
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Mu Ku
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.-h for 2 axles, =
0

ku,
3i2

mu,
for the i* axle (3.6e)

where Xy z» * ̂ « 2  * i » 2 * ̂ ui * ̂ wz]^ -

The quantities ay and Py are the real and imaginary parts of the eigenvalues of the 

matrix A t- As shown later in this work, expressing the truck state matrices in terms of the 

quantities ay and Py was found to be useful. The transformation to this form will be 

discussed here, but the importance of this form will become apparent in later chapters. 

For the remainder of this discussion, the transformation from the physical quantities 

discussed above to the modal properties a y  and Py will be applied to only one axle, 

although the state matrix for both axles (like Equation (3.6a)) would be of the same form.

It was necessary to rewrite the truck state matrices A r and Bt in terms o f the 

quantities a y  and py rather than the physical properties in Equation (3.6d). The 

development o f Equations (3.7)-(3.12) were provided by Stalford (Stalford, October, 

2002). To do this, let us first define the quantities

(3.7)
The single subscript on each quantity is because the following derivation is for 

one axle only. The nomenclature would be similar to that used above for both axles. The 

quantities a i, oi, and Pi, P2 are the absolute values of the real and imaginary parts of the 

eigenvalues of the state matrix To further the development of the transformed truck 

system, let us also define the following quantities.
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Cg =a^ +«2

c, = + ̂ 2^ + 4ûrjûT2

C, + « , ^ 2 ^

^ : 0 = 4 V

(3.8)

The following four equations can be solved for a i, at, 6 | \  and 8|^ in terms o f cj, ct, ci, 

and Co.

(Tj + (T2  = Cg

+^2^ =C2 

<r,02  ̂-0-2^,^ = Cl (3.9)

The solutions to the equations in Equation (3.9) are given below. These values are used 

to form the transformed representation of the At matrix.

<T2=Cg-<T,

^ 2 " = C 2 -a /

(3.10)

The above quantities are now in terms of the known quantities a i, at, and Pi, P2 . The Ar 

and Br matrices can now be written in terms of these quantities as

A— =

02x2 2x2

- 0 .

A2^2
-2er^ 2a•̂

- e ^  2a  ̂  - 2 a ^
and B~ =

« 3X.

(3.11)
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This transformation has been repeatedly verified and is an equivalent representation of 

the A t &dA Br matrices given in Equations (3.6a) and (3.6e).

A relationship between kui and Wi using the quantities described above was also 

developed and used in Chapter 9. This expression is given below.

=W.
f  \

2 ^2e~ -e l (3.12)

This expression was used to eliminate ^  as an optimization parameter in Chapter 9.

3.4 Static Weight

The simplest model of a truck crossing a bridge is a static weight. Many authors, 

including the ones listed in Figure 3.1, have examined the problem o f a point force 

moving across a bridge. In two sections o f this work, the truck is modeled as a point force 

o f magnitude equal to the axle weight of a truck traveling at a constant speed across the 

beam bridge model. Details o f this problem will be discussed in a later chapter.

3.5 Numerical Parameters Used in the Static Truck Models

Below is a table giving the numerical parameters of the trucks used in the two 

chapters describing the use of the static truck models (Chapters 6 and 7). Table 3.1 only 

gives the parameters for the trucks whose results are shown in this work although the 

algorithms were tested using many other truck configurations.
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Table 3.1 Numerical Static Truck Parameters

Static Truck 
No.

Front Axle Weight 
{Wd

Rear Axle Weight
(f%)

Axle
Spacing Speed

1 4.96x10'* N 1.38x10: N 5 m 25 m/s
2 4.96x10'* N 2.3xlO^N 7m 30 m/s
3 4.96x10'* N 1.59x10: N 7 m 25 m/s
4 4.96x10'* N 2.72x10: N 5 m 35 m/s
5 7.01x10^ N 1.38x10: N 5 m 25 m/s
6 7.01x10'* N 2.3x10:N 7 m 30 m/s
7 7.01x10'* N 1.59x10: N 7 m 25 m/s
8 7.01x10'* N 2.72x10: N 5 m 35 m/s
9 8.48x10'* N 1.38x10: N 5 m 25 m/s
10 8.48x10'* N 2.3x10" N 7 m 30 m/s
11 8.48x10'* N 1.59x10: N 7 m 25 m/s
12 8.48x10“* N 2.72x10: N 5 m 35 m/s
13 1.2x10^ N 1.38x10: N 5 m 25 m/s
14 1.2x10^ N 2.3x10" N 7 m 30 m/s
15 1.2x10^ N 1.59x10: N 7 m 25 m/s
16 1.2x10^ N 2.72x10: N 5 m 35 m/s

3.6 Numerical Parameters Used in the Dynamic Truck Models

Below is a table o f the parameters used in the dynamic truck models discussed in 

this work. The parameters are given in terms of their physical values (stiffiiess, damping, 

mass) as shown in Figure 3.2 as well as the equivalent natural frequencies and damping 

ratios. The initial conditions for each axle, XOi, are also given in the table. The notation

used is a vector o f the truck states equal to Xy,=[x^ The natural

frequencies and damping ratios are given in terms of the axle number i and the mode 

number j \  as tonsj and îj.
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Table 3.2 Numerical Parameters for Dynamic Truck Models

Parameter 1 2 3 4 5 6 7 8 9 10
W1(N) 9.8E4 9.8E4 9.8E4 9.8E4 9.8E4 1.15E5 1.24E5 1.24E5 1.19E5 1.18E5

Kul (N/m) 3.5E6 3.5E6 3.5E6 3.5E6 3.5E6 4.2E6 4.2E6 4.9E6 10.1E6 3.5E6
Ksl (N/m) 2E6 2E6 2E6 2E6 2E6 2.4E6 2.4E6 1.8E6 4.2E6 2.6E6
Msl (kg) 8,900 8,900 8,900 8,900 8,900 10,680 11,570 11,570 11,125 11,125
Mul (kg) 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100

Csi (Ns/m) 4E4 4E4 4E4 4E4 4E4 4E4 4E4 4E4 4E4 8E4
conn (Hz) 1.91 1.91 1.91 1.91 1.91 1.89 1.82 1.70 2.59 1.62

1̂1 (%) 7.2 7.2 7.2 7.2 7.2 6.1 5.9 8.5 5.4 16.7
con,2 (Hz) 11.27 11.27 11.27 11.27 11.27 12.35 12.35 12.39 18.20 11.09

Çl2(%) 27.6 27.6 27.6 27.6 27.6 24.9 24.8 24.4 16.7 50.0
X0| -0.01 -0.01 - -0.01 - -0.01 - -0.01 - -.05 -.05 -.05 -.05 -.05

(m, m, m/s. -0.01 0.01 0.01 0.01 0.01 -.15 -.15 -.15 -.15 -.15
m/s) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
a 5 5 5 5 6 6 6 4 4 4
V 25 25 30 30 25 25 35 35 30 25

W2(N) 9.8E4 1.24E5 1.50E5 9.8E4 1.42E5 1.68E5 1.93E5 1.91E5 1.41E5 1.74E5
Ku2 (N/m) 3.5E6 3.5E6 3.5E6 3.5E6 7E6 8.4E6 8.4E6 9.3E6 7.1E6 4.5E6
Ks2 (N/m) 2E6 2E6 2E6 3E6 4E6 4.8E6 4.8E6 2.3E6 5E6 2.6E6
Ms2 (kg) 8,900 13,350 14,240 8,900 13,353 16,020 18,512 18,512 13,350 16,688
Mu2(kg) 1,100 1,100 1,100 1,100 1,100 1,100 1,200 1,000 1,100 1,100

Cs2 (Ns/m) 4E4 4E4 4E4 4.8E4 4.8E4 6E4 6E4 6.8E4 5.6E4 6E4
con2 t (Hz) 1.91 1.67 1.50 2.12 2.19 2.19 2.04 1.60 2.36 1.58

^i(% ) 7.2 6.4 5.9 6.2 5.6 6.4 5.9 12.9 5.6 5.8
(on22 (Hz) 11.27 11.27 11.27 12.35 15.95 17.48 16.72 17.12 16.79 12.76

%22(%) 27.6 27.1 26.9 25.9 19.2 17.5 16.7 19.1 18.4 46.8

VA -.01 -.01 -.01 -.01 -.01 -.05 -.05 -.05 -.05 -.01
AU2 -.01 -.01 -.01 -.01 -.01 -.15 -.15 -.15 -.15 -.05

(m, m, m/s.
0 0 0 0 0 0 0 0 0 0

m/s)
0 0 1 0 0 0 0 0 0 0 0
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Parameter 11 12 13 14 15 16 17 18 19 20
W1(N) 9.7E4 9.8E4 9.9E4 1.32E5 1.32E5 1.5E5 9.8E4 1.06E5 9.7E4 9.8E4

Kul (N/m) 4.5E6 4.5E6 3.5E6 3.5E6 3.5E6 3.5E6 3.5E6 3.2E6 3.2E6 2.6E6
K sl (N/m) 2.6E6 2.6E6 2.6E6 2.6E6 2.6E6 7E6 2E6 2E6 3E6 2E6
M sl (kg) 8900 8900 8900 12460 12460 14240 8900 9790 8900 8900
M ul (kg) 1000 1100 1300 1100 1100 1100 1100 1000 1000 1100

Csl (Ns/m) 6E4 6E4 3E4 4E4 4E4 6E4 6E4 4E4 7.2E4 4E4
rauii (Hz) 2.18 2.18 1.89 1.61 1.61 1.66 1.91 1.78 2.09 1.79

1̂1 (%) 9.6 9.5 5.4 6.2 6.2 5.9 10.9 6.6 7.4 6.0
muiz (Hz) 13.39 12.78 10.41 11.27 11.27 12.06 11.16 11.44 12.49 10.38

1̂2 (%) 38.0 36.5 19.2 27.1 27.1 37.9 41.8 29.7 49.8 30.3

XOi
(m, m, m/s.

-0.01 0.05 0.05 -0.05 -0.05 0 -0.01 -0.01 -0.01 0.01
-0.05 0.05 0.05 0.05 0.05 0 -0.01 -0.01 -0.01 0.01

m/s)
0 0 0 -0.01 -0.01 -0.01 0 0 0 0
0 -0.01 -0.01 0.01 0.01 -0.01 0 0 0 0

a 4 6 8 10 10 8 5 6 5 5
V 25 25 25 30 25 35 25 25 35 35

W2(N) 9.8E4 1.17E5 1.17E5 1.45E5 1.57E5 1.78E5 9.8E4 1.47E5 1.52E5 1.24E5
Ku2 (N/m) 3.6E6 3.6E6 3.5E6 3.5E6 8.7E6 7.0E6 7.0E6 6.6E6 6.6E6 3.9E6
Ks2 (N/m) 2.1E6 2.1E6 2E6 2E6 8E6 8.1E6 3.2E6 2.6E6 2.6E6 2.6E6
Ms2 (kg) 8900 10675 10675 13781 14952 17110 8900 13721 14234 11629
Mu2 (kg) 1100 1300 1300 1100 1100 1100 1100 1300 1300 1100

Cs2 (Ns/m) 6E4 6E4 3.2E4 4E4 8.4E4 12E4 6E4 8E4 4.8E4 4E4
(D U 2I (Hz) 1.95 1.78 1.72 1.53 2.64 2.35 2.50 1.87 1.83 1.70

^ i ( % ) 10.7 9.7 5.5 5.9 6.6 7.7 9.8 12.3 5.9 6.9
(DU 22 (Hz) 11.39 10.51 10.40 11.26 19.75 18.74 15.27 13.34 13.38 11.69

^ ( % ) 40.9 37.5 19.0 26.9 16.0 25.1 30.3 19.7 34.1 26.1

XO2 

(m, m, m/s, 
m/s)

-0.01
-0.05

0
0

0.05
0.05

0
-0.01

0.05
0.05

0
-0.01

0.05
0.05
-0.05
-0.05

0.05
0.05
-0.05
-0.05

0
0

0.01
-0.01

-0.01
-.01

0
0

-0.01
-.01

0
0

-0.01
-.01

0
0

-0.01
-.01

0
0
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Chapter 4 

Bridge/Truck Interaction

Different methods are commonly used to examine the interaction effects between 

a truck and a bridge depending on the types of models used and the desired efficiency of 

the computations. Below is a chart outlining the methods in the literature to be discussed.

Bridge/Truck Interaction

Iterative Solutions

Green (1995, 1997)

Pesterev (2001 )

Direct Integration

Fafard(1997, 1998)

Leming (2003)

O ther Methods

Pesterev (2000)

Figure 4.1 Flowchart of Bridge/Truck interaction Literature

4.1 Iterative Solutions

A common method o f treating the interaction between the bridge and the truck is 

the use of an iterative solution. Green (Green and Cebon, 1995, Green et. al, 1997) used 

one such iterative solution to solve the coupled bridge/truck system. At each time step, 

the vehicle response was calculated and the resulting force due to the weight and 

displacement of the individual masses applied to the bridge. The bridge response was 

then calcidated and applied back into the truck model to recalculate the force due to the 

truck. This procedure was repeated at each time step until a convergence tolerance was
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reached. Pesterev (Pesterev and Bergman, 2001) used another iterative method to solve 

the coupled system. The solution of the bridge response was broken into two parts-the 

eigenvalue expansion, which did not contain a discontinuity and one function that 

contained the moving discontinuity due to the moving force from the truck. The response 

o f the beam from the eigenvalue expansion was then substituted back into the truck 

model to get the interaction forces. The resulting motion of the truck was then used to 

formulate a new total force due to the truck, which was then applied to the bridge. The 

process was repeated until the portion o f the solution that contained the discontinuity 

converged to a solution. The total bridge response was then the sum of the eigenvalue 

expansion and the iterative solution. Methods such as these are supposed to be faster than 

directly integrating the equations.

4.2 Other Methods

Pesterev also proposed another method for solving the coupled system (Pesterev 

and Bergman, 2000). The homogeneous solution of the bridge differential equation was 

found with the use o f  static Green functions. A second term in the solution resulted from 

directly integrating the truck equations to find the truck response. The homogeneous 

solution and the integrated truck response were then combined to give the total bridge 

response.

4.3 Direct Integration

The most straightforward method for solving the coupled bridge/truck system is 

to numerically integrate the differential equations of the system. This has been done by 

many authors, although their methods o f integration vary slightly. In the work described
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in this dissertation, two methods are used to solve the coupled bridge/truck differential 

equations. In the first, the coupled bridge/truck differential equations are integrated 

directly. In the second, only the truck differential equations are integrated using an 

analytic expression for the bridge deflection. The common features o f both methods will 

now be discussed.

4.4 Truck Crossing the Bridge

To discuss the interaction between the truck and the bridge, it is first necessary to 

describe the truck’s motion across the beam. The following text applies to all four 

combinations of truck and bridge models used in this work, but is used in this context to 

examine the bridge/truck interaction solution.

For a two-axle truck model, the time that it takes for the truck to cross the bridge 

can be divided into three intervals. A schematic o f these three intervals is shown in 

Figure 4.2. The distance between the two axles is a, v is the constant speed at which they 

move, and L is length of the beam.

During each o f the three time frames given in Figure 4.2, different descriptions of 

the interaction due to the bridge deflection apply and will be discussed in the following 

sections.
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Figure 4.2 Time intervals for the Truck Crossing the Bridge

Each of the following four sections contains details of the interaction 

present with each pair of bridge and truck models. In the cases involving the static truck 

(or moving point force), the interaction is not what is classically considered ‘bridge/truck 

interaction’-the excitation of the dynamics of the truck by bridge deflection-but rather a 

discussion on the effect on the beam due to the applied forces.

59



4.5 Static Bridge/Static Truck

In this case, the static bridge model from Chapter 2 is deflected due to two 

moving point forces. The total force applied by each axle is of constant magnitude equal 

to the weight of the axle and moves across the beam with a constant speed v. Therefore, 

the total force applied by each axle is given by Fi=-Wi.

The deflections due to each force at a given location is found using the standard 

expressions for the inverse o f beam stiflhess found in Gere (Gere, 1997) and are given 

below. Hi is used if  the x<b, and H2 is used if x>b, where x  is the location of the applied 

force along the beam.

(a -  -  2aL + { L - x f \ L -  x)
'  6EIL

(4.1)

where 6,=A-jc„ and ai+bi=L.

When only one axle is on the beam, the deflection along the beam is due only to 

the force applied by that axle. While both axles are on the beam, the deflection of the 

entire beam is the sum of the deflection to the front axle and the deflection due to the rear 

axle. This is simply a superposition of the solutions o f the differential equation of 

bending for the static beam discussed in Chapter 2. The total deflection of the beam can 

be written as

w{x,t)=-H.(x,b^)v^

M.X, t ) = -H .(x, b̂  )v^-Hj(x, b^) 

w {x,t)= -H .(x ,b2^2

when 0 < / < —
V

when — < t<  —

when —< / < -------

(4.2)
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where the subscripts / and j  on H  are determined by the location o f the measurement 

relative to the location of the force. An upward deflection o f the beam is defined as 

positive.

4.6 Static Bridge/Dynamic Truck

In this case, the static model o f the bridge described in Chapter 2 is driven by two 

quarter-car models described in Chapter 3. As discussed in Chapter 3, the total force 

applied by each quarter car is given by

F.(/) = -W. + ku^{xu.{t) -  yg(x .,0) (4-3)

To calculate this force, it is necessary to determine yB(x,t). As discussed above, 

when only one axle is on the beam, the deflection under that axle yB(Xi,0 is due only to 

the force applied by that axle and can be called 8» (deflection at the i*** axle due to the i"* 

axle). While both axles are on the beam, the deflection under the first axle yb(xi,0, is due 

to both the force applied by the first axle, Ôu and to the force applied by the second axle, 

Ô/2 (deflection at 1 due to 2). The total deflection at x/ is the sum of ôu  and «5/2. The same 

is true for the deflection at X2-

Each deflection is given by

=^12^2
« 5 2 , = / f , ( X 2 , 6 j ) F ,  = ^ 2 1 ^ 1

where H(x,b) is defined above.
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During the first time interval, t = 0,—, depicted in Figure 4.2, the deflection under
V

the first axle is due only to the force applied by the first axle. The deflection is

therefore given by

yg(x^,t)=  (x,,6,) / j (/) wherex, = a, (4.5)

where x/ is the horizontal location of the front axle along the beam, and Fi is the force

imparted by the front axle at the given time. A similar expression is true during the third

time interval, t = — — , when only the rear axle is on the beam.
V V

where X2 =fl2 (4 6)

During the middle time interval, both axles are on the beam and the
V V

deflection under each axle is the sum of the deflection due to that axle and the deflection 

due to the other axle. In matrix form, this can be expressed as

= Ih ]F (4.7)

Throughout the rest of the text, these inverse stiffiiesses will be expressed as H,y, where 

0ij=HijFj. The subscript / on Hj(x,b) relating to the relative locations o f the force and 

measurement has been dropped for clarity but are still calculated as described above. 

These expressions are similar to Equations (4.2) in the previous section but depend on the 

total force from the truck rather than just the static weight.

Substituting Equation (4.7) into Equation (4.3) leads to a vector representation of 

the force imparted by the axles to the beam given by
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F  = ç{K uX u+W) whereQ = [l + HKu]"‘,

Ku =
kû  0 
0 ku.2J

, Xu =
xu.
xu^ , w  = fr,

L^ZJ
(4.8)

The parameters kui and ku2 are the unsprung mass stîfiSiesses shown in Chapter 3, Wi and 

W2 are the total weights o f the front and rear axles respectively, and xui and xu2 are the 

positions o f the unsprung masses at a given time.

F  can be rewritten as

F -  W =iQ -  + KuXu + {Q -  I)KuXu
= K uiX u-Yg)

(4.9)

The equations of motion for each axle are given in Chapter 3, but are restated here for 

simplicity.

(4.10)

Substituting the expression given in Equation (4.9) for Ku{Xu -  Kg) into Equation (4.10)

and rewriting the second order differential equations of motion as eight first order 

differential equations gives the following representation o f the truck system.

X =  [a  + AA(t)]r + B(t)fF (4.11)

whereX —

A = ®4s4 *4*4

L 4 , V ^ d =
Ms 'C Ms 'C 

Mu-'C -Mu 'C
(4.12a,b)

At, =
- M s- ‘Ks Ms^Ks 
Mu~‘Ks -  Mu"*(Ks + Ku)

(4.12c)
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1
0

I
0

M u"‘ =
OTM,

0

0 ■
,M s-‘ =

ms. , w =
1

mu^

,K s =
0

I

0
1 _ - ^ 2 j

(4.12d-g)

AA(t) =
0

0
4x4 

0.2*2 ''2*2 
-li

L«2*2 -M u  '(I-Q )K u

'4 :4

04x4
(4.13)

B(t) =
0

>^“ ■'(*2x2-Q )
6x2 (4.14)

These equations are integrated over time to determine Xu and the force applied by 

the truck. The equations given in Equations (4.11-4.14) represent the system only at the 

times at which both axles are on the beam. The system is modified to include only the 

appropriate axles during the other two time intervals, but maintains the same form.

4.7 Dynamic Bridge/Static Truck

The dynamic bridge/static truck is similar to the static bridge/static truck case in 

that the deflection of the bridge is due to the sum of the deflections due to the individual 

truck weights. This is apparent from the system of equations of motion for the dynamic 

bridge case given in Chapter 2 and restated here.

(4.15)

where
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®16xl6 *16x16

•MgK g ~*^g .
Bb(0=

0
M

16x16
-1 R(s,z)

7 W = - ^1
L^2,

(4.16)

(4.17)

For the times when only one axle is on the bridge, R(s^) contains one column 

representing the force and moment distribution due to the weight to the appropriate nodes 

and one column of zeros since the effect of the axle that is not on the bridge is zero. 

When both axles are on the bridge, R(s^) contains two nonzero columns that result in an 

input into the system that is a weighted sum of the two axle weights. It is through the 

matrix R(s^) that the superposition of the effects o f the weights enters the system.

4.8 Dynamic Bridge/Dynamic Truck

In this section, we examine the coupled differential equations of the dynamic 

bridge model from Chapter 2 and the quarter-car model from Chapter 3. The derivation 

of the coupled differential equations (4.18-4.24) discussed in this section were provided 

by Stafford (Stalford, September, 2002). The coupled bridge/truck equations are 

integrated over time to give the motion of the coupled system.

Referring back to Chapter 2, the first order system o f equations for the dynamic 

bridge model is given by

(4.18)

where x/, and X2 are the positions of the front and rear axles as a frmction of time, F(t) is 

the force imparted by the truck, and all B subscripted variables are properties o f the
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bridge given in Chapter 2. ye  is the deflection o f the bridge under each axle, and 

c(xj,X2 )=  R{s ,zY  where the elements and form of R(s,z) are given in Chapter 2.

A similar system of equations can be written for the truck.

Xy, =  A.pXy. +  B.p_yg

y-r -  -
xu.
xu2J

(4.19)
= x

where /fy is given by the expression for A in Equation (4.12a) above. The nomenclature 

has been modified in this section for clarity. Expressions for Bt and Bu are given below in 

Equations (4.20a) and (4.20b).

■ 0,
Bn 0«u 

Mu Ku
for 2 axles, B^ = ku.

'3*2

mu.
for the i* axle (4.20a)

®u 0 I 1 0 0 0 O] for 2 axles and 
Bjj =[0 1 0 O] for I axle

(4.20b)

The force due to the truck is given by the expression in Equation (4.3) above. 

Substituting the expression for yB(t) in Equation (4.18), and the expression for x^ in 

Equation (4.19), the force can be written in vector form as

F ( 0 = - r + K u(B .îr -c(x,,*j^j) (4.21)

Substituting Equation (4.21) into Equation (4.18) for the bridge dynamics gives

={a ,  -B ,( t)K u C (x ,,x ,)^ , - B g ( t ) r  + B ,(t)Ki.B / , .  (4.22)

Similarly, substituting the expression for ye given in Equation (4.18) into Equation (4.19) 

gives the system o f equations representing the dynamics of the truck.

Xy. = A.|.Xy. + B.|.c(xj, (4.23)
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Writing Equations (4.22) and (4.23) in matrix form gives the final coupled differential 

equations o f motion of the bridge/truck system.

Xt _

X n f r o m ) = ^  t < 0 O T t > -

a
^T{rear) =  0 t  <  — O T t >  

V

+
Xt

L

V
L> +  Cl

B,(«)
08x2

W (4.24a)

(4.24b)

(4.24c)

It is important to note that the matrices and dimensions above referring to the 

truck are modified depending on which axles are on the bridge at a given time. The 

dimensions in Equation (4.24) refer specifically to the middle time frame when both axles 

are on the bridge. The system is modified during the other two time periods to reflect 

only the appropriate individual axle on the beam, but maintains the same form.

The “A” and “B” matrices o f Equation (4.24a) are time-varying due to the truck’s 

moving across the bridge. As a result, one might conclude that the system described by 

Equations (4.24a-c) is a linear system with time-varying coefficients. This would be true 

for the case o f a single axle moving across the bridge, although not so when two axles are 

considered. This is because the states o f each axle are zero when that axle is off the 

bridge. We note that the states o f the front axle jump from a nonzero state to a zero state 

upon leaving the bridge, and that the rear axle states jump from a zero state to a nonzero 

state when that axle enters the bridge. Consequently, since the truck states are making 

such jumps, the system described by Equations (4.24a-c) is a nonlinear system for the 

two-axle case treated in this dissertation.
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Chapter 5 

Optimization and Probiem Statement

The optimization routine used to identify the truck parameters is a function in the 

MATLAB Optimization Toolbox called finincon. It is a standard nonlinear, constrained 

optimization routine in which the user defines the form of the scalar objective function 

and constraints of the problem. A brief description of the algorithm used by the function 

is discussed in this chapter, although in-depth mathematical details are not given since 

they are not the focus of this work.

5.1 The Optimization Routine

A flowchart of the general method used by finincon is given on the following page 

in Figure 5.1. The objective function / ( x )  used in this work is a quadratic o f a least- 

squares form, and x is a vector of optimization parameters. The algorithm finincon uses 

a Sequential Quadratic Programming (SQP) method to minimize the quadratic objective 

function. The equality and inequality constraints G.{x) are linear functions of the

optimization parameters and include the lower and upper bounds of all parameters.
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Formulate a new QP objective function in terms of the subspace of 
feasible QP solutions and the estimate of the Hessian

Find the QP solution to give a new SQP search direction

Solve SQP by solving a series of 
Quadratic Programming (QP) Subproblems

Formulate the Optimization Problem (OP)

Formulate the Sequential Quadratic Programming (SQP) Problem 
to minimize the Lagrangian

Evaluate OP objective function and constraints at new iterate.

Update the Hessian

Initially estimate the Hessian matrix

Choose SQP step length a  to give a sufficient decrease in merit
function

Calculate new SQP iterate 6om QP solution (search direction) and
step length a

Figure 5.1 General Outline of Optimization Routine
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The general procedure o f SQP is to formulate a Quadratic Programming (QP) 

problem at each iteration of the optimization routine. This QP problem is then solved to 

determine the search direction and step size for the next iteration o f the SQP problem. In 

the chart above in Figure 5.1, a brief description o f the steps used to solve the general 

optimization problem (OP) is given. The chart is color-coded to represent the three 

different stages of the routine. The general optimization problem (OP) is given in black, 

the sequential quadratic programming (SQP) steps are shown in blue, and the quadratic 

programming (QP) problem steps are in red.

The formulation of the general optimization problem (OP) is given below where 

m« is the number of equality constraints, and m is the total number o f constraints.

min f{ x )
xeR"
G.(x)=0 i = l..m^ ^ 5

G .(x)<0  i = m^ + 1..JM

X i< x< x^

Many standard methods o f solving constrained optimization problems revolve 

around the solution of the Kuhn-Tucker equations, which are necessary conditions for 

optimality for such a problem. The Kuhn-Tucker equations are stated below. The solution 

for the Lagrange multipliers X, which make Equation (5.2) true are the basis for the SQP 

method used by finincon.

m

<=I
VG.(x*)=0 i = l...m^ (5.2)
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The SQP problem solution is based on the Kuhn-Tucker equations. Its goal is to 

find a set of optimization parameters x  which minimize the Lagrangian given below.

m
i  = (5.3)

1=1

To do this, a QP subproblem is formulated at each iteration using second order 

information about the Lagrangian. The solution o f the QP subproblem is used to form a 

new iterate in the SQP.

The objective fimction for the QP subproblem is given below.

min q{d)=^-d^Hi^d + V f ( x J 'd  
deR" 2

+ : = l -“ c (5.4)

) -  ® ‘ = m...m

where Hk is the Hessian of the Lagrangian for the A/* iteration, and d  is the new search 

direction for the SQP. In the first iteration, an estimate of the Hessian is made by the 

routine, although it is possible to use a user-given form. In subsequent iterations, the 

routine updates the Hessian based on the latest set of optimization parameters. This 

updating method will be briefly described later.

The solution method for the QP problem is an active-set method, since it is based 

upon an estimate of the active constraints at each solution point. The search direction is 

calculated to minimize the QP problem objective fimction and remain on the active 

constraint boundaries. A basis o f a feasible subspace, Z*, for the QP problem search

direction is found which is orthogonal to the gradients of the active constraints. This

means that a linear combination o f the columns of Zt would remain on the constraint
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boundaries as required by the QP solution method. The QP search direction is a linear

combination o f the columns of Z* given by = Z ^p .

The QP problem objective function Is rewritten in terms o fp  as given below.

q { p > \ p ^ Z l H Z l p  + V f ( x J z ,^ p  (5.5)

Since it is required that the Hessian H  be positive definite, the minimum of the objective 

function q(p) occurs when Vqi(p*)=0. Thus, the new search direction for the SQP 

problem is given by

d^= Zi^p*  (5.6)

The new SQP iterate is then given by Xk+i=X|c+adk, where a  is the search step 

length. The step length is chosen to produce a sufficient decrease in a merit function 

defined below in Equation (5.7). The magnitude constituting a ‘sufficient decrease’ in the 

merit hmction is either defined by the user or predetermined by the routine based on the 

magnitude o f the objective function. This merit function is a combination o f the value of 

the objective function and penalty functions on all active constraints. The constraint 

penalties can also be prescribed by the user or determined by a predetermined method 

that will not be described here. Details can be found in the ‘Line Search and Merit 

Function’ documentation for MATLAB’s Optimization Toolbox.

)=  / k  )+ Z  )+ (5.7)
j= l l=me+l

Based on the new SQP iterate, an update of the Hessian to be used in the next 

iteration is then obtained using the BEGS (Broyden, Fletcher, Goldfarb, Shanno) method. 

This is a common steepest-descent method for updating the Hessian and will not be
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described in detail here. Additional information on this method can be found in the 

‘Updating the Hessian' section o f the Optimization Toolbox documentation or in works 

by its namesakes, Broyden, (Broyden, 1970), Fletcher, (Fletcher, 1970), Goldfarb, 

(Goldfarb, 1970), and Shanno (Shanno, 1970).

This process is repeated until a sufficiently small value of the general 

optimization problem (OP) objective function is foimd. This value is either prescribed by 

the user or defined automatically by the routine. It was found through extensive use o f the 

finincon function that appropriate scaling o f the magnitude o f the objective function could 

dramatically improve the performance o f the routine due to the automatic scaling o f step 

size and convergence values.

5.2 Problem Statement

Using the bridge and truck models described in the previous two chapters and the 

optimization routine described in section 5.1, the method used to identify truck 

parameters discussed in the rest of this work is developed. The goal of this work is to 

develop a bridge weigh-in-motion (WIM) algorithm that is capable of estimating truck 

axle weights to within 1% o f their true values from measured deflection profiles with 1 

micron measurement errors. The measurement error is also increased from 1 micron to 

100 microns to assess the algorithm’s ability to estimate axle weights with imperfect 

measurements. To accurately identify axle weights, we found it necessary to determine 

other truck parameters such as natural frequency and damping ratios as well.

In both the static and dynamic truck models, axle spacing and speed are both 

needed to define the force applied by the truck. A relationship between these two

73



parameters is given based on the assumption that the entrance and exit times of each axle 

are known and used to determine the truck’s total time on the bridge. As shown in Figure 

4.2, the truck’s total time on the bridge is given by

(5.8)
V

where a is axle spacing and v is the truck speed. It is assumed that this total time, (/-, was

L+ âknown, so an estimate o f v is found from each estimate of à and is given by v =
f f

This relationship is used throughout the rest of this work to determine an estimate of 

speed from an estimate o f axle spacing.

The other truck parameters o f interest changed depending on the complexity of 

the model used. When the dynamic truck model is used to simulate the bridge response, it 

became necessary to estimate the dynamic properties of each axle, including natural 

frequencies, damping ratios, and bridge interaction effects. It is found that the dynamic 

characteristics of the truck could be accurately estimated using this method and provided 

a more complete description o f the effect of the truck on the bridge. While these 

properties of the truck are not the primary focus o f this work, determining them was 

necessary to obtain accurate axle weight estimates.

Different combinations o f the bridge and truck models described in the previous 

chapters are used to simulate the bridge/truck system. To begin to understand the 

bridge/truck system and formulate the optimization routine, the static bridge and static 

truck models are combined to generate the deflection profiles. This is the simplest system 

approximating the bridge/truck system and is used initially to examine this problem, as 

described in Chapter 6.
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In Chapter 7, the dynamic bridge model, which included the inertial effects o f the 

bridge, is used with the static truck model to represent the system. The addition o f the 

bridge dynamics complicates the problem somewhat and allows the formulation o f a 

reduced-order bridge model to be used in the optimization routine.

To better approximate the actual bridge/truck system, the dynamic truck model is 

used with the static and dynamic bridge models in Chapters 8 and 9 respectively. The use 

of the dynamic truck model required additional parameters to accurately describe the 

force imparted by the truck. In both Chapters 8 and 9, identification of the dynamic 

characteristics o f  each axle is required to accurately predict axle weights. Axle spacing is 

also still required to describe the truck, and the relationship between the speed and the 

axle spacing given in Equation (5.8) is used. In Chapter 8, the static bridge is excited by 

the dynamic truck. For this system, the truck’s axle weights, axle spacing and dynamic 

properties are found, as well as the bridge/truck interaction effects. Two optimization 

parameters relating to the interaction effects are necessary to describe each axle. In 

Chapter 9, the dynamic bridge/dynamic truck system is examined. The axle weights, axle 

spacing, and dynamic characteristics o f the truck are again found. In this chapter, 

however, the bridge/truck interaction effects are found directly from integrating the 

equations of motion and are not optimization parameters.

Chapters 6-9 describe the development o f the weigh-in-motion algorithm in 

stages. The complexity of the models was increased in each stage to incorporate another 

aspect of the coupled bridge/truck system, until finally, the dynamic bridge/dynamic 

truck model was completed. Approaching the problem in this manner allowed each facet
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o f the coupled system to be examined individually and the appropriate modifications in 

the optimization routine made to accurately predict the truck axle weights.
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Chapter 6 

Static Bridge/Static Truck

First, we consider the simplest WIM problem-a static truck crossing a static 

bridge. The bridge is modeled as a static beam (neglecting inertial effects) as described in 

Chapter 2. Each axle o f the truck is modeled as a moving point force with a constant 

speed and separated by a given axle spacing. The optimization routine described in 

Chapter 5 is used to minimize the difference between a measured deflection profile and 

one generated using the estimated truck parameters. Discontinuities in the derivative of 

the objective function with respect to the optimization parameter axle spacing require a 

modified sampling routine to be developed that uses random rather than the usual 

uniform sampling. This sampling method and the discontinuities are discussed.

6.1 Static Bridge/Static Truck Problem

The finite element model of a static beam described in Chapter 2 is used to 

initially simulate the truck crossing the bridge and obtain a profile of the midpoint 

deflection. Two moving point forces are used to represent the two axles of the truck. 

Because o f the simplicity of the truck model, there are four unknown truck parameters to 

be identified: two axle weights, fF/ and IFj, axle spacing a, and speed, v, although only 

three o f these are used as optimization parameters. It is assumed that the truck’s total time 

on the bridge is known, and the relationship between axle spacing and speed given in 

Equation (5.8) is used to determine speed. The total truck weight, IF), is the sum o f the
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two axle weights. The deflection of the bridge due to the moving truck is calculated every 

0.001 sec (1000 Hz sampling rate) in a series o f static beam bending calculations based 

on the position of each axle at each point in time.

An optimization routine was used to minimize the difference between the 

measured deflection profile and the one generated using the estimated truck parameters. 

Two sampling methods for selecting the measured deflections were used to formulate the 

objective function in the optimization routine. A description of these sampling methods is 

in the following sections.

At each iteration of the optimization routine, a deflection profile due to the 

approximate truck parameters was generated using the series solution of the differential 

equation stated in Equation (2.10). This solution was the sum of the deflections due to 

each of the axle weights as given below. The deflection measurement was taken at the 

span midpoint x=L/2.

(6.1)

In Equation (6.1), the position of the front axle x.{t) is given by x.{f) = vt where

V is the speed of the truck. The position o f the rear axle is given by x.{f)—a since the two

axles are separated by a constant axle spacing a. It was found that five terms in the series 

above were sufficient to accurately represent the deflection profile. There were three 

solutions available to solve the static beam problem-the finite element model, the series 

solution to the differential equation, and the expression for static beam bending given in 

Chapter 4. The series solution was used in the optimization routine rather than the finite 

element routine.
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The objective function is then formulated using a least-squares difference between 

the measured and estimated deflections and is given below

y  = f;(w ,-w ,(p ))?  (6.2)
/=l

where w. is the measured midpoint deflection at the i*** time step, and w^ip) is the 

midpoint deflection generated using the estimated truck parameters, p .

The optimization parameters contained in pare  the front and rear axle weights 

and the axle spacing. The relationship between axle spacing, a, and speed, v, determines 

the estimate of speed from each axle spacing estimate. A table of the upper and lower 

bounds of the remaining three optimization parameters is given below.

Table 6.1 Upper and Lower Bounds for Optimization Parameters

Minimum Value Maximum Value
a 2 m 15 m

W| (front) ON 500,000 N
W2 (rear) ON 500,000 N

An inequality constraint regarding the weight distribution between the axles is also used 

to constrain the optimization routine. This inequality constraint comes from typical truck 

configurations and is given below.

OA0W:,<fV^<O.9W, (6.3)

It is important to note that the optimization was also used without this constraint and 

results similar to those described in the following sections were obtained. This indicates 

that the optimization routine was not sensitive to this constraint, although this was not 

known during the initial formulation of this problem.
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The two sampling methods used to select the time steps to be used in the 

optimization routine are discussed in the following sections.

6.2 Uniform Sampling Method

The first method o f selecting points to use in the objective function was a 

uniform sampling method. Every tenth time step (100 Hz sampling rate) was used to 

formulate the objective function. The midpoint deflection at each o f the selected time 

steps was calculated using the analytic expression given in Equation (6.1). Unacceptably 

large errors in estimated truck parameters, up to 320% in axle weight, were obtained 

using this method. This poor performance can be explained by the discontinuities in the 

derivatives o f the deflection profile. These discontinuities are discussed in the following 

section.

6.3 Discontinuities in the Derivatives

As the truck passes over the bridge, three different force configurations occur. 

This is illustrated in Figure 4.2, which is repeated here for clarity.

Rear Front 
Axle Axle

777^

Rear Front 
Axle Axle

AT
J  \ \ \ \ \  77777C
7\ K

Rear Frot 
Axle Axle

t = o , -
a L
V V

L L + a
r =  — , ----------

V V

Figure 6.1 Time Frames for the Truck Crossing the Bridge
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In the first time frame only the front axle is on the beam. In the second, both 

forces are acting on the beam, and, in the third time firame, only the rear axle is on the 

beam. A sample deflection profile is given below in Figure 6.2. The time at which the

rear axle enters the bridge, f = —, is labeled T1 in the figure. The time at which the front
V

axle exits the bridge, r = —, is labeled 72. At both of these times, the force on the bridge
V

changes abruptly due to the addition or subtraction o f one of the forces. This is the cause 

of the discontinuities in the derivatives with respect to time of the deflection profile 

shown in Figure 6.2. These discontinuities in the derivative result in problems for the 

optimization routine.

Time Profile of Midpoint 
Deflection

xIO

•0.2
T2

0.4

I
0.8

-1.2

-1.4 0.2 0.4 0.6 0.8
Time

1.2 1.4

(»)

Figure 6.2 Midpoint Deflection Profile for the Static Bridge/Static Truck

The search method used by this and most optimization methods depends on the 

derivatives o f the objective function with respect to the optimization parameters, . It

will be shown that the discontinuities in the derivatives o f the deflection profile with
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, j  5 h { x , / )  . ôw{x,t) , . ^respect to the optimization parameters a and v, — -— -  and — -— -, lead to
da dv

discontinuities in the objective function with respect to the optimization parameters a and 

V as well.

To understand these discontinuities better, it is necessary to recall the relationship 

between points in time and axle location along the beam. The front axle’s position is 

given by x.{t)= vt and the rear axle’s position is related by x .{ t) -a .  Using these

relations, each point in time can then be related to a point in space for each axle.

The optimization routine selects values for the optimization parameters by making 

small changes in each parameter and calculating the value o f the objective function and 

its derivatives using these parameters. Let us now consider the point in time of one of 

these discontinuities, TI. This is the time at which the rear axle, a distance Oo from the 

front axle, enters the beam. The actual axle spacing will be termed Oo for the remainder 

of this discussion for clarity. Assuming the speed parameter is fixed. Figure 6.3 shows 

the two different force conditions that could occur for small changes in the estimated axle 

spacing. The figure is not drawn to scale and is intentionally exaggerated for effect. The 

red arrow in Figure 6.3 indicates an increase in axle spacing of Aa. The blue arrow 

indicates a decrease o f Aa. Clearly the force conditions resulting from these small 

changes are entirely different. For the increase in a, the rear axle is not on the beam and 

does not contribute to its deflection. For the decrease in a, the rear axle is on the beam 

and does contribute to the deflection. Recalling the relationship between time and space 

o f the two axles, this would be equivalent to being to the left o f 77 (smaller time) in 

Figure 6.2 for the +da case, and to the right of it in the -da case. The derivatives o f the
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deflection profile are different in the two sections o f the deflection curve (red and green 

in Figure 6.2) since the forcing conditions are different.

3o+Aa ao 3o-Aa

r r y t  y r

/ / / / /
A A

Figure Changes in Force Position Tor Variations in Axle Spacing For a Fixed Speed at TI

Since the objective function is formulated using the midpoint deflection, it is now 

necessary to examine how these different forcing conditions result in a discontinuity in

at these points.

In the case of a=ao+àa, the rear axle is not on the beam and the midpoint 

deflection is due only to the force applied by the front axle. Reverting to the static beam 

bending expressions given in Chapter 4, this deflection is given by

(6.4)

where H2(x,ai) is given below. a/=vr and bi=L-bi. This derivation assumes that the axle 

spacing Oo is less than half the span length, although a similar derivation could be 

developed if a o > L / 2 .

r ( +  { L - x ) ^ ) ( L - x ) (6.5)

Substituting the measurement location, x=L/2 into Equation (6.5), leads to
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H.

2 '
—U ; JUJ

6EIL
(6.6)

The derivative of vvf—
u  .

with respect to a is given by 

L
K f’'

da
:-W,

da
(6.7)

Since ai does not depend on axle spacing a.  ^ ---- ^ = 0 ,so  — y - =  0 ,
da da

In the case o f a= ao-^, the deflection at the midpoint is due to the forces applied 

by both the axles.

L  ̂ „  fL ‘L  ̂
2 ’^

(6.8)

where at is defined above and a2=ai-a. The derivative of the deflection with respect to a 

is then given by

K t’'" dH.
I ' " '

da da
(6.9)

As before. L  —
da

= 0 , but
da

# 0 ,  since 02  depends on axle spacing a.

The derivative o f / / , L ^
Y '" :

with respect to axle spacing a is then given by

=12 ' 2 ; 1
da 12E/

^ ? da.
3a,

V da ~ da 4 da
(6 .10)
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da.
Recalling that a2=vt-a, — -  = —1. Substituting this expression into Equation (6.10) leads

da

to

da \2EI
9L— 3ût- + 6a.L  H-----

 ̂ 4
(6.11)

The derivative of the deflection with respect to axle spacing for a=ao-àa, is therefore 

given by

aw ,
£ _ Z = o - i r , ------ —

da da
— —( -  3(vr -  a) + 6(v/ -  a)L +12£/1^ V / V / 4 (6 .12)

Clearly, the derivatives of deflection with respect to axle spacing for the two force 

conditions generated by the small changes in axle spacing are not equal. For the first case

described, a=ao+Aa, —  -----  = 0 , but for the second where a=ao-éa,
da

Kf-')
da

# 0 ,

but is given by Equation (6.12).

The fact that there is this discontinuity in the derivatives o f the deflection with 

respect to axle spacing for small changes in a prevents the optimization routine from 

converging to the proper solution.

A similar condition occurs for points in time near T2 with the same problem. A 

schematic o f this scenario is given in Figure 6.4.
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1f  ' f  1r 1 r

/ / / / /
A A

Figure 6.4 Changes in Force Position for Variations in Axle Spacing For a Fixed Speed at T2

At times near either TI ov T2, the slope of the deflection profile changes with a 

change in axle spacing. Physically, this is equivalent to changing the forcing conditions 

on the bridge at a given time. Since there are discontinuities in the derivatives of the

deflection profile with respect to axle spacing.

dJ

dw{x,t)
da

, there are also discontinuities in

the objective function with respect to a, — . Mathematically, this can be expressed as
da

(6.13)

The optimization routine requires that the derivatives of the objective function with

ÔJ
respect to the optimization parameters, — , be continuous, so these points in time

dp.

prevent the routine from converging.

A situation similar to the one described above occurs if  speed were to be treated 

as an optimization parameter as well. Although v is not used explicitly as an optimization 

parameter in this section, we show below that the derivatives of the objective function
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with respect to v would be discontinuous. In this case, discontinuities in the derivatives of 

the objective function with respect to v would result in convergence problems similar to 

those described above for axle spacing. These discontinuities are described below.

For a fixed axle spacing, a small change in the speed parameter results in the 

situations shown in Figure 6.5 and Figure 6.6. An argument akin to the one given for axle 

spacing can be made for the discontinuities due to the derivatives with respect to speed. 

For clarity, the true value of speed has been subscripted Vo.

V o - A v  V o V o + A

r r 1r ^r

/ / / / /
Figure 6.5 Changes in Force Position for Variations in Speed For a Fixed Axle Spacing at TI

Vo-Av Vo Vo+Av

f ' f 1 f

/ / / / /
A A

Figure 6.6 Changes in Force Position for Variations in Speed For a Fixed Axle Spacing at T2

As shown in Figure 6.5, a small change in v, v=Vo-Av, can place the rear axle off 

the beam (red). The midpoint deflection for this case can then be given by

\  r T \
(6.14)
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where a/=vr. The derivative of the deflection with respect to speed is given by

or

ÔH.

dv
(6.15)

dH^

dv \2EJy dv dv 4 dv J
(6.16)

In this case, however, the derivative of Hj with respect to v is not equal to zero since ai 

depends on v. It is given by

dv dv dv 4 dvMEI
(6.17)

where a, = v /so — - = t .  Substituting this expression into Equation (6.17) and then 
dv

substituting the result into Equation (6.15) leads to an expression for the derivative o f the 

deflection for the case o f v=Vo~Av.

4 i''
dv

-W . r  2 .  r 91^ ^3a. t —6a.Lt 4------ /I 4
1

12£ / V

(6.18)

For the case shown in Figure 6.6 where v=Vo-Av (blue), both axles are on the 

beam, so both forces contribute to the deflection.

T '" :
(6.19)

The derivative of the deflection for this case would be given by
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av ' av dv
(6.20)

ÔH,
An expression for 1 ’“'

dv
is given in Equation (6.17) and would still apply here. A

similar expression fo r   -------  can be expressed as
dv

dv \2EI ~ dv “ 5v 4 5v
(6.21)

da~ da.
The parameter ü2=ai-a, so — -  = — - = t ,so

dv dv

5 / / 2 I “ > ^ 2
L  ̂
2 '

dv U E I
-J 9Lr3a~~t —6a..Lt 4-------1

2  2  4
(6.22)

The total derivative. . .  4i-')
dv

is therefore given by Equation (6.20) where

dv

expressions for

dv
are given Equations (6.17) and (6.22). The two

dv
for both small changes is speed, v=Vo4-.dv and v=Vo-zlv are not

equal. If  speed is treated as an optimization parameter, this discontinui^ in the derivative 

results in a discontinuity in the objective function given in Equation (6.13), similar to the 

axle spacing case.
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Because the objective hinction contains discontinuities in the derivatives with 

respect to both a and v, the optimization routine may have convergence problems when 

points in time near these discontinuities are used in the objective function. Using the 

uniform sampling routine, measurements could be taken at or near these points in time 

and used to formulate the objective function. In this case, the discontinuities appear in the 

objective function derivatives and prevent the optimization routine from converging 

properly. To avoid this, an alternate sampling method was developed.

6.4 Random Sampling Method

To reduce the effect of the discontinuities in the objective function, a modified 

sampling method is adopted based on the idea of using randomly chosen inputs to 

identify unknown processes (Stafford, 1973). One half the number of time points as used 

in the original uniform sampling method (one-twentieth of the total sampled points, 

equivalent to a SO Hz sampling rate) are chosen randomly to formulate the objective 

function. Each axle’s location and the midpoint deflection are calculated at these time 

points using the analytic expression given in Equation (6.1). These randomly chosen 

points are used to formulate the objective function and compared to the corresponding 

time points of the measured deflection profile. The optimization procedure is repeated 

independently using six sets of randomly chosen time points. The truck parameters 

corresponding to the smallest final value of the objective function are selected as the best 

approximation.
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The estimates o f the truck parameters improved dramatically using the random 

sampling method for a variety of truck configurations. With zero measurement noise, the 

error in all three parameters is essentially zero (10'^%). Uniform random noise was then 

added to the data to examine its effect on the performance of the algorithm. The 

amplitude o f the noise is described as a percentage of the typical peak magnitude o f the 

deflection profile, which was on the order of 10'  ̂ m. Noise to signal ratios of 0, 0.1%, 

1%, and 10% (±0 m, lO’̂ m, lO'^m, I0"*m) were used to test the algorithm. Examples of 

estimated truck axle weights are shown in Figure 6.7 and Figure 6.8. The use o f a random 

sampling method improved the results of the optimization routine by reducing the 

probability that a point used in the objective function would be at or near the 

discontinuities in the derivatives of the function. The truck configurations shown in the 

figures are given in Table 3.1.

91



Weight 1 Estimates

4 5 6 7 8 9 10 11 12 13
Actual Weight (N) x lâ

Figure 6.7 Front Axle Weight Estimates With Noise (Random Sampling)
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Figure 6.8 Rear Axle Weight Estimates With Noise (Random Sampling Method)
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The average and maximum magnitudes o f the error in each parameter are given in 

the following tables. It is important to note that the ‘average percent error’ is the average 

magnitude o f the percent error in each parameter.

The average magnitude of the error in all truck parameters is less than 1% until 

the amplitude o f the noise was ±10"^m (10%). The table below gives the average error 

magnitude obtained for each parameter for the various noise levels using the random 

sampling method. The total weight is the sum of the two axle weights.

Table 6.2 Average Error Magnitude in Truck Parameters Using the Random Sampling Method

Parameter 0 10-^m lO'^m lO^m

Front Axle Weight lO'-’% 0.036% 0.2% 2.7%

Rear Axle Weight lO'Vo 0.040% 0.25% 3.1%

The maximum error magnitude in each truck parameter is given below in Table 6.3. 

Table 6.3 Maximum Error Magnitude in Truck Parameters Using the Random Sampling Method

Parameter 0 10*m lO'^m 10-^m

Front Axle Weight 4.5x10‘Vo 0.057% 0.33% 4.1%

Rear Axle Weight 4.9x10-3% 0.062% 0.35% 4.9%

Figure 6.9 and Figure 6.10 below show the percent error in front axle weight estimates 

for the different noise levels. There is negligible error (~10'^%) in the axle spacing 

estimates for all noise levels, so no figures are given for these results. The x-axis in the
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figures is the truck case numbers given in Table 3.1. The x-axis in Figures 6.10-6.20 is 

the truck case numbers.
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Figure 6.9 Percent Error in Front Axle Weight Estimates (Random Sampling Method)
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Figure 6.11 and Figure 6.12 show the percent error in the rear axle weight estimates. 

Again, the x-axis is the truck case number from Table 3.1.
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Figure 6.11 Percent Error in Rear Axle Weight
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Another representation o f the percent error data is shown below. The x-axes of 

Figures 6.13-6.20 represent the truck cases given in Table 3.1. The y-axes give the 

percent error in the weight estimates.
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Percent Error in Rear Axle Weight
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We verified that the noise in the random set o f data points that minimized the 

objective fimction has the same noise distribution as the noise over the whole data set. 

The mean amplitude o f the noise in the sampled set was always within 7% o f the mean of 

the total noise distribution and sometimes had a larger average value (worse) than that of 

the total set. The standard deviations of the noise in both the sampled sets and the entire 

profile are within 1% of each other.

The random sampling method proved very effective in eliminating the 

convergence problems observed with the uniform sampling method cause by the 

discontinuities in the derivatives. We found that using six random samples virtually 

ensured that one o f them would not contain points at or near the discontinuities. It gave 

the optimization a suitable form of the objective function that avoided the discontinuous 

derivative problem.

6.5 Chapter Conclusions and Contributions

In this chapter, the static bridge finite element model and the moving point force 

truck model were used to simulate the static bridge/static truck system. An optimization 

routine was used to minimize the difference between the “measured” deflection profile 

and the one generated using the approximate truck parameters in order to identify the 

truck’s axle weights and axle spacing. The relationship between the truck’s total time on 

the bridge, tf, and the speed given in Equation (5.8) was used to obtain a speed estimate 

based on the axle spacing estimate. Because of the geometric properties o f the truck and 

bridge models, discontinuities in the derivatives o f the objective function with respect to 

the optimization parameter a existed which prevented the optimization routine fiom
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converging. A random sampling method was employed to reduce the likelihood that a 

point used in the objective function would be at or near the discontinuities.

The static truck configurations given in Table 3.1 were used to assess the 

performance o f the identification algorithm. Sixteen trucks with front axle weights 

ranging from 4.96xlO‘*N to l.2xlO^N and rear axle weights from 1.38x10^ to 

2 .72x10^  were examined. The axle spacings varied from 5-7m and speeds varied from 

25-35 m/s.

The average and maximum magnitudes o f the percent error in front and rear axle 

weight estimates are given in Tables 6.2 and 6.3. For zero measurement noise, the 

average magnitude of the error in the axle weight estimates was 10‘̂ % with a maximum 

error o f 4.5x10'^%. Measurement noise was then added to the deflection profrles. For 

measurement noise of ±1x10"^ m, the maximum error in axle weight estimates was 

0.062%. For noise of ±1x10'^ m, the maximum error was 0.35%, and for measurement 

noise of ±1x10"^ m, the maximum error was 4.9%. Error in the estimates o f axle spacing 

was negligible (~10‘̂ %) for all noise levels used.
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Chapter 7 

Dynamic Bridge/Static Truck

Next, we consider the case o f a static truck crossing a dynamic bridge. A method 

similar to that described in Chapter 6 is used to estimate the truck parameters. An 

optimization routine is again used to minimize the difference between a measured 

deflection profile and the estimated one. The bridge model, however, includes the 

dynamic effects of the bridge. Two different scenarios are compared-one which uses one 

deflection measurement and assumes that speed and axle spacing are known and one 

which uses three sensors and assumes that only the truck’s total time on the bridge is 

known. This leaves axle spacing and axle weights to be found by the optimization 

routine. The performance of the two methods with the addition of noise is also examined.

7.1 1*' Scenario-Speed and Axle Spacing Known

The reduced order dynamic bridge model described in Chapter 2 is used to 

represent the beam response. This model includes the first four odd numbered modes, 

which represent 99.5% o f the midpoint deflection. One deflection measurement is made 

at the span midpoint and is used to formulate the objective function.

In the first scenario, it is assumed that the speed and axle spacing are known from 

an independent sensor. This is a reasonable assumption since both quantities would be 

easy to measure in a variety o f ways. One proposed method of obtaining both speed and
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axle spacing is to place sensors at the entrance and exit o f the bridge that would be 

activated by the passage o f each axle. These sensors could be tape switches, piezoelectric 

sensors or any other similar surface-mounted sensor that would be installed in the wheel 

path of the vehicle. These sensors would record the times at which each axle crossed 

them, and would allow speed and axle spacing to be easily calculated. Since the length of 

the bridge is known, the difference in time between the entrance and exit of the front axle 

would yield the speed. The difference in time between the crossing of subsequent axles 

combined with the speed would give both the number of axles and their spacing. While 

the installation and use o f such sensors is not the focus of this work, it is relevant to 

illustrate the ease with which speed and axle spacing could be obtained and can, 

therefore, be considered known for the remainder of section 7.1.

Because axle spacing and speed are known, only two optimization parameters 

remain-the two axle weights. The total weight is found from the sum of the axle weights. 

The midpoint deflection profile is first generated by integrating the fiill-order model of 

the bridge with two constantly moving point forces separated by a constant distance a. 

This profile is referred to as the “measured” profile throughout this work since it is used 

to represent the response of the actual bridge. The bridge parameters used are given in 

Chapter 2. The optimization routine is given upper and lower bounds for the weight 

estimates. These are given below in Table 7.1. The lower bound for axle weight is set to 

zero so the algorithm could eventually be expanded to include more axles. Nonexistent 

axles would, therefore, have an axle weight o f zero. The optimization routine is given an 

initial value of250,000N (the midpoint o f the two bounds) for each axle.
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Table 7.1 Upper and Lower Bounds for Optimization Parameters

Minimum Value Maximum Value
Wi (firont) ON 500,000 N
W2  (rear) ON 500,000 N

An inequality constraint is also used to bound the weights o f the axles relative to 

each other. This constraint is based on standard truck weight distributions and is given 

below.

O.lOlTz <FK, <0.9Pfq (7.1)

At each iteration of the optimization routine, the reduced-order model o f the 

bridge described in Chapter 2 is integrated with the estimates o f axle weights and the 

known speed and axle spacing as the input. The reduced-order bridge response is then 

transformed back into the physical states o f deflection and rotation at the nodes. The 

midpoint deflection as a function of time is then compared to the measured profile in the 

objective function. The objective function is o f the same form as in Chapter 6 and is 

given below where N  is the total number o f measured points, w. is the measured

midpoint deflection at the i"* time step, w (p), is the estimated midpoint deflection, and

p  are the optimization parameters, Wi and Wi.

J  = 'Z ( v , - v , ( p ) f  (7.2)
/=l

With zero measurement noise, the optimization routine is able to estimate both 

axle weights to within 0.3% o f their actual values for a variety o f weight distributions. 

Uniform random noise is then added to the measured profile to examine the algorithm’s 

ability to estimate weights firom a noisy signal. Noise to signal ratios o f 0.5%, 5%, 50%,

and 250% are used (equivalent to errors o f ± lO'^m, lO'^m, lO^m, and 0.5xl0'^m). The
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maximum midpoint deflection is on the order of 0.3mm. Estimates o f the axle weights 

for the different noise levels are shown below in Figure 7.1 and Figure 7.2. The truck 

configurations corresponding to the results in Figure 7.1 and Figure 7.2 are given in 

Table 3.1.
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Figure 7.1 Weight I (Front) Estimates With Noise Using I Measurement
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Figure 7.2 Weight 2 (Rear) Estimates With Noise Using 1 Measurement

Another representation of the same results is given below. The percent error in the 

axle weights and total weights are shown in Figure 7.3 and Figure 7.4 for various noise 

levels. With larger noise levels, the percent error increases.
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Figure 7.4 Percent Error in Rear Axle Weight Estimate Using 1 Sensor

The table below shows the average magnitude of the percent error in axle weight 

estimates for the noise levels given above. As in Chapter 6, the averages given below are 

the average magnitudes o f the percent error rather than the average o f the true error.

Table 7.2 Average Errors in Axle Weight Estimates With Noise- 
Axle Spacing and Speed Known

Noise to Signal Ratio (± m) Average Axle Weight Error
0 (0 m ) 0.03%

0.5% (lO-** m) 0.3%
5% (10"m ) 1.7%

50% (10-^ m) 6.1%

7.2 2"** Scenario-Speed and Axle Spacing Unknown

It was found that by using more deflection measurements, the need for an 

independent measurement o f speed and axle spacing is eliminated, although the 

assumption that the truck’s total time on the bridge tf is still made. Three sensor locations 

are chosen to provide the most information on the deflection based on the static beam
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mode shapes. The four mode shapes used in the reduced-order model are shown below in 

Figure 7.5. It is important to note that the mode shapes depicted in Figure 7.5 are not to 

scale as to their relative contribution to the beam bending. The mode shapes of a static 

beam are used because the dominant behavior of the beam for this case is static beam 

bending. The contribution to the deflection from the inclusion of the dynamics is small in

comparison.

Beam Mode Shapes

^  - 0 - 5  0

=1
=3
=5
=7

Position Along Beam (x/L)

Figure 7.5 Static Beam Mode Shapes

The four modes used in the reduced order model were originally chosen because 

their maximum absolute values occur at the midpoint There is no other point along the 

beam at which these four modes have a maximum, but they all have values greater than 

half o f their maximums at the quarter (L/4) and three-quarter (3L/4) points. As discussed 

in Section 2.12, these two points are added as sensor locations, bringing the total number 

o f measurement locations to three.
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Because axle spacing is unknown in this case, it becomes an optimization 

parameter. The relationship between axle spacing and speed given in Equation (5.8) is 

still used to determine an estimate of the speed from an estimate o f the axle spacing and 

the truck’s total time on the bridge. The upper and lower bounds for the optimization 

parameters are given in Table 7.3. The weight inequality constraint given in Equation 

(7.1) is used in this case as well.

Table 7 J  Upper and Lower Bounds for Optimization Parameters- 
Speed and Axle Spacing Unknown

Minimum Value Maximum Value
a 2 m 15 m

Wi (front) ON 500,000 N
W2 (rear) ON 500,000 N

The form of the objective function is also modified slightly to include the three 

sensor measurements. It contains the same squared differences between measured and 

approximated profiles as before but for three sensor locations rather than one. The 

subscripts L/2, L/4, and 3L/4 denote the sensor locations. The weights for each of the 

sensor measurements were determined iteratively.

/- \2  /  \2
N

/  =  ^ 3
/= i V 2 ’' 2 ’̂  y V 4*' 4’* .

{ P )

(4)

The use of three sensors dramatically improves the truck parameter estimates. 

With zero measiurement noise, estimates of axle weights and axle spacing are essentially 

zero. The estimates found with the addition of noise are much better than with one 

measurement as well. Errors o f less than 0.1% in axle weight estimates result with noise
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levels o f ± lO'^m (noise to signal ratio o f 5%), and errors remain less than 3.5% for noise 

levels of ± lO^m (noise to signal ratio o f 50%). A table outlining the average magnitudes 

o f the error for the multiple measurement case is given below.

Table 7.4 Average Magnitudes of the Percent Error in Axle Weight Estimates Using Multiple
Sensors*Speed and Axle Spacing Unknown

Noise to Signal Ratio 
(±m ) Average Axle Weight Error

0 (0 m) 0%
0.5% (10"  ̂m) 0.005%
5% (10'" m) 0.04%
50% ( W  m) 1.7%

The maximum error in axle weight estimates is given for each measurement noise 

level in Table 7.5.

Table 7.5 Maximum Magnitudes of the Percent Error in Axle Weight Estimates Using Multiple
Sensors-Speed and Axle Spacing Unknown

Noise to Signal Ratio 
(±m) Maximum Axle Weight Error

0 (0m ) 0.003%
0.5% (10^ m) 0.008%
5% (10*  ̂m) 0.08%

50% (10-^ m) 3.1%

Figures displaying the estimates of all parameters using the three measurement 

locations are shown below. The truck configurations shown are given in Table 3.1.
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The percent error in the axle weight and total weight estimates for the different 

noise levels are shown in Figure 7.8 and Figure 7.9.
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Figure 7.9 Percent Error in the Rear Axle Weight Estimates Using 3 Measurements

112



Another representation o f the percent error in axle weight estimates is shown in the 

following figures. In Figures 7,10-7.17, the x-axis represents the individual truck cases 

in Table 3.1. The y-axis is the percent error in axle weight for each truck case.
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The use o f three measurements greatly improved the estimates o f axle weights and total 

weight. Even with noise to signal ratios o f 5% (±10'® m), the magnitude of the percent 

error in the axle weight estimates remained less than 0.08%. Axle spacing and, therefore, 

speed could be accurately obtained using either method for all noise levels.

7 J  Chapter Conclusions

In this chapter the use of the dynamic bridge and static truck models to identify 

the truck’s axle weights is examined. The sixteen truck configurations given in Table 3.1 

are used to test the identification algorithm. The firont axle weights of the trucks varied 

from 4.9x10‘*N to 1.2x10^. The rear axle weights ranged from 1.38x10^ to 

2.72x10^. The axle spacings varied from 5-7m and speeds varied from 25-35 m/s.

Two scenarios using different numbers of deflection measurement locations are 

used to formulate the objective function in the optimization routine. In the first scenario, 

only one deflection measurement is made, and it is assumed that the speed and axle 

spacing are measured independently and are known precisely. Therefore, firont and rear 

axle weights are the only unknown truck parameters. The percent error in axle weights 

for different levels o f measurement noise is shown in Table 7.2 and Figures 7.3 and 7.4. 

Using only one deflection measurement and zero measurement noise, the maximum error 

in axle weight estimates was 0.045%. For measurement noise o f ±lxlO*^m, the maximum 

error in axle weight was 0.5%, and for measurement noise of ±lxlO'^m, the maximum 

error was 2.2%. With noise of ± lxl0^m , the maximum error increased to 8.5%.

In the second scenario, the deflection was measured at three locations along the 

length o f the beam, the midpoint, quarter-point, and three-quarter-point. Using multiple
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deflection measurement locations eliminated the need to measure axle spacing and speed 

independently and allowed them to be identified by the optimization routine and the 

relationship between total time on the bridge and axle spacing in Equation (5.8). The 

average and maximum magnitudes o f the percent error in the axle weight estimates are 

given in Tables 7.4 and 7.5. For zero measurement noise, the maximum error in axle 

weight was 0.003%. With measurement noise of ±lxlO"^m, the maximum error was 

0.008%. With measurement noise o f ±lxlO'®m, the maximum error in axle weight 

estimates was 0.08% and for measurement noise of ± lxl0^m , the maximum error was 

3.1%. Estimates of axle spacing were also determined for all noise levels with negligible 

error.
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Chapter 8 

Static Bridge/Dynamic Truck

In this chapter we begin to examine the dynamic truck model and its coupling with 

the bridge. The dynamic nature of the truck causes a different bridge response than the 

static truck model and, therefore, requires more parameters to identify it than simply axle 

weight. To avoid identifying all o f the physical parameters individually, it became 

necessary to develop an approximate model o f the force applied to the bridge and optimize 

the parameters in that model to obtain the best fit to the measured deflection profile. This 

is done by first determining a homogeneous solution to the differential equations of 

motion and then adding the effects o f the bridge/truck interaction. The assumption that the 

truck's total time on the bridge is known is again used to relate the axle spacing to the 

speed.

8.1 The Measured Profile

To generate the measured deflection profile, each axle is given a set o f initial 

conditions to represent the truck entering the bridge. A variety of initial conditions are 

used with a variety o f truck configurations that will be described in more detail later in 

this chapter. The deflection under each axle is calculated and the differential equations o f 

motion for the truck given in Equations (4.11-4.14) (coupled bridge/truck model) are 

integrated over time to determine the truck’s motion. The resulting motion of the unspnmg 

mass, xu-which includes the interaction with the bridge-is then used to formulate the force
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applied by the truck to the static bridge using the expression given in Chapter 3 which is 

repeated here for clarity.

F.iO = -fV. + ku.ixu.it) -  ygix .,t))  (8.1)

This force is then applied to the finite element model o f the bridge described in 

Chapter 2. The resulting deflection profiles are the “measured” profiles used for 

comparison inside the optimization routine.

8.2 Approximating the Force

To begin to identify the truck, it is necessary to first examine the homogeneous 

solution of each axle’s differential equations of motion. Referring back to Chapter 3, the 

differential equations of motion for each axle of the truck are given by

The force applied by the truck has two components. The first, the static weight, is 

exactly like the static bridge/static truck case in Chapter 6. The second depends on the 

motion o f the unsprung mass xu and the bridge deflection under each axle yg. Since the 

motion of the unsprung mass is the quantity of interest for the dynamic analysis of the 

truck, it will be the only degree o f freedom considered for the remainder o f this section.

Neglecting the bridge interaction term in Equation (8.1), the homogeneous 

solution of XU is given by

Xu^ = ( g j )
(r -  )+  ~ <f>̂ )
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as shown in Chapter 3. This solution represents two damped oscillatory modes for each 

axle. Since the force applied by the truck and, hence, the deflection o f the bridge, depend 

on X U , it is necessary to identify the unknown quantities in this solution. It is assumed that 

nothing is known about the truck at the time it enters the bridge, so all of the 16 

subscripted variables in Equation (8.3) are considered to be unknown and are treated as 

optimization parameters. The truck's total time on the bridge is considered to be known 

and used to relate the axle spacing to the speed. Essentially, the static axle weights plus 

the homogeneous solution for xu were considered to be unknown in this development.

It should be noted here that, because of the bridge interaction represented by AA 

in Equation (4.11) (the time dependent portion of the state matrix for the coupled 

bridge/truck system in this case), the natural frequencies and damping ratios of the truck 

change slightly as the truck travels across the bridge due to the change in stiffness o f the 

bridge at the location of each force. It was found that the maximum change in the truck 

modal frequencies during transit of the span is less than 0.5% of the original values (0.1 

Hz maximum) and has little effect on xu(t). The damping ratios of the modes are found to 

change by less than 0.002 from their true values; the true damping ratio values range 

from 0.07-0.30. Consequently, Equation (8.3) provides a good approximation o f the 

homogeneous solution to Equation (8.2).

Because of the truck’s interaction with the bridge, the particular (or driven) 

solution o f xu varies from the homogeneous one and has to be included in the 

approximate force model used in the optimization routine. A plot of the homogeneous 

solution (without bridge interaction) and the total solution (homogeneous plus bridge 

interaction effects) is shown in Figure 8.1 for the rear axle of one truck. As the truck
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moves farther away from the supports towards the middle o f the beam, the deflection 

becomes larger, and the effect of the interaction is more apparent. To accurately identify 

the force applied by the truck, it is necessary to represent this interaction effect in the 

approximate force model.

^x10 
5 ------

o Dynamic Truck Response With and Without Interaction

\

\ J

With Interaction 
Without Interaction

- 10:
0.2  0.4 0.6 0.8 1 1.2 1.4

Time
Figure 8.1 Truck Response With and Without Interaction Eflects

The “driving effect” o f the bridge deflection under each axle is examined to 

determine an appropriate approximate form to be incorporated into the force 

approximation. Four terms o f the equations o f motion o f the coupled bridge/truck system 

given in Equation (4.11) are examined to determine their contribution to xu. These terms 

are fll=B(7,l)*W ,,fl2=B(7,2)*W 2. f21=B(8,l)*W,, f22=B(8,I)*Wi, where B is B(t) in
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Equation (4.11). These correspond to the effect on each axle’s xu due to the deflection 

under that axle. The nomenclature used represents the effect on an axle by an axle-%/71 is 

the effect o f  axle 1 (front) on axle \ , f l 2  is the effect o f  axle 2 (rear) on axle 1 (front) and 

vice versa for axle 2.

It is found that the forcing function produced by each of the terms can be 

approximated using the solution to the general bending equation for a beam subjected to a 

moving point load, P.

El = S{x -  x{t))P (8.4)

The solution to this differential equation is

si n— s i n (8.5)

where all constants are defined in Chapter 2.

The forcing functions due to the beam deflection in the B(t)W  term can be 

approximated using this series representation of the deflection under each axle. It is 

important to note that these expressions are not the formal solution to the differential 

equation (Equation (8.4)) for the coupled truck/bridge system, but rather an 

approximation. It was found, however, that the forcing functions given below in Equation 

(8.6) are reasonable approximations to the actual interaction effects. The variable N f\s  

the number of terms used in the series expansion. Using only two terms in each of these 

series results in less than 0.1% (approximately 10 N) error in the forcing function 

estimates.
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/?, ='2> m„2

x =  :

iTTvt . i 7 t ( y t - a )  - s in ---------------

E I L ^ / J
(8.6)

Determination of the forcing functions due to the bridge interaction allows an 

approximate model for each axle’s unsprung mass motion xu to be formulated. This 

expression is the sum of the homogeneous solution for each axle and the effects of the 

forcing functions given above. The approximate model for xu of the i*** axle is given 

below

= Xu^. + A..X/.. + A..Xf.j (8.7)

where Xf.. =— - Xf.. = — -f..,XuH i is the homogeneous solution o f the i“’ axle, and
" ku. " ku.

Ajj are unknown amplitudes due to the bridge deflection. The total solution is a 

superposition of the homogeneous solution and two interaction terms that represent the 

deflection due to both axles.

Once an expression for the unsprung mass motion xu is found, the force applied 

by the truck can be found via Equation (4.8) and given below

F  = ̂ K uXu + W) whereQ = [l + HKu]"‘ (8.8)

H  is the matrix o f inverse beam stiffiiesses based on the location o f each force, and Xu  is 

the approximate unsprung mass motion given in Equation (8.7).
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The above formulation specifically addresses the case when both axles are on the 

beam. For the times when an axle is not on the beam, its contribution to the force and 

dynamics is zero.

Once the force from the truck is calculated, three equations are used to calculate 

the deflection at the three sensor locations, x=L/2, L/4, 3 L/4. These equations are given 

below.

z(x,0=[//,(x,A,(0) //,(x,02(0 ) t ,(0  F̂ (t)f
, L L 3L  ̂ ^wherex =

8.3 Parameter Identification-Optimization Routine

To identify the unknown truck parameters, the optimization routine discussed in 

previous chapters is used, although the number o f optimization parameters grows 

significantly. Below is a list o f the optimization parameters for each axle and their upper 

and lower bounds. It is once again assumed that the truck’s total time on the bridge is 

known and is used to calculate speed from axle spacing. The bounds for a  and P are 

chosen from typical values of the natural frequencies and damping ratios o f the two 

modes. For the lower frequency mode, frequencies typically range from 1.5-4.5 Hz and 

damping ratios from l%-30%. For the higher mode, frequencies typically range from 10- 

20 Hz with damping between 5% and 50%. The bounds for a  and p are determined from

these values using the relationships nr and .
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Table 8.1 Upper and Lower Bounds for Optimization Parameters

Parameter Lower Upper
Axle Weight 2.5E3 N 10E5N

Rnflow mode amplitude) -0.1m 0.1m
Rjafhigh mode amplitude) -0.5m 0.5 m

an 0.16 8.48
ttQ 3.14 62.83
3 i. 5.99 28.27
P a 54.5 125.51
(Pii 0 7t

<Pa 0 Jl
ku IE5 N/m 5E7 N/m
Aii .1 3
Aii .1 3

There are twelve optimization parameters per axle not including a, for a total of 

25 parameters relating to the truck as a whole.

8.4 Parameter Identification-Force Objective Function

The optimization routine in MATLAB described previously is used to minimize 

the objective function J. For the static bridge/dynamic truck case, the force applied by the 

truck is a superposition of the static weight, the free vibration solution of the truck’s 

dynamics, and the driven solution. Since this is a more complicated system than the 

previous static truck cases, two different formulations o f the objective function are 

individually examined to better imderstand the model. The simpler of these two used the 

force applied by each axle to formulate the objective function. The objective function is 

formulated by comparing the difference between the “measured” applied force and the 

approximate one. This would be equivalent to having a moving force sensor underneath 

each axle of the truck as it passed across the bridge. Although this has no realistic 

physical realization, it was found to be a useful tool in perfecting the optimization routine
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and approximate truck model. A figure illustrating a sample “measured” force profile is 

shown below in Figure 8.2. Clearly, the force is a superposition o f each axle’s static 

weight and dynamic behavior. During the times when each axle is not on the beam, the 

applied force is zero.

Applied Force by Both Axles-Static Bridge/Dynamic Truck
x10

-0.5

Front Axle 
R ear Axlei

-1 .5 h

-2r

-2 .5!
0.2 0.4 0.6 0.8 

Time

Figure 8.2 Truck Axle Forces

The objective fimction for this formulation is given below.

1.2 1.4

(8.10)

where F„^is the force applied by the n*** actual axle at the i'*’ time step. F„j{p) is the 

approximate force from the n"’ axle using the optimization parameters p . It is important 

to note that the vector o f truck parameters pdoes not contain the physical parameters
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(stiffîiess, damping, mass, etc.) given in the original description of the truck model. It 

contains the variables given in Table 8.1 which are related to the physical parameters but 

are not them expressly. This objective function is minimized using the optimization 

routine in Chapter 5.

Estimates o f the truck parameters using the force formulation o f the objective 

function are quite accurate. With no noise added to the measured force profile, average 

errors in axle weight o f 0.014% were obtained. Random white noise is then added to the 

measured force profiles. Noise is added to the force profiles to examine the algorithm’s 

ability to accurately identify the truck parameters from a noisy signal, despite the fact that 

there is really no realistic counterpart to measuring the tire force underneath each axle. It 

was suspected that the addition of noise would quickly deteriorate the estimates o f the 

truck’s dynamic properties, so the effect on the weight estimates needed to be examined. 

The noise to signal ratios used were 0.1%, 1%, and 10% (100 N, 10̂  N, and 10  ̂N).

Table 8.2 below shows the average magnitude of the percent error in axle weight 

estimates for the different noise levels. The results show that the addition o f noise to the 

force profiles did little to degrade the estimates of truck weight, indicating that the 

method o f optimizing the approximate force model was robust to the addition o f noise. 

Estimates o f axle spacing are also very accurate using this method with errors less than 

10'^% for all noise levels. Note that the speed is determined using the relationship 

between axle spacing and total time given in Equation (5.8).
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Table 8.2 Average Magnitude of Percent Error in Axle Weight Estimates Using the Force Objective
Function

Noise Level Average Percent Error in 
Axle Weights

0 0.0088%
0.1% (100 N) 0.048%

1% (10^ N) 0.385%
10%(10^N) 0.889%

The figures below show the estimated axle weights using the objective function 

formulated using the measured force. Negligible error is obtained in axle spacing for all 

noise levels, so the results will not be given here. The total weight was found from the 

sum of the two axle weights. The configurations o f the trucks shown in the figures below 

are given in trucks I, 7, 14, 16, 18 in Table 3.2.

129



Front Axle Weight Estimates Using the Force Objective Function
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Estimates of the other optimization parameters relating to the truck’s dynamic 

properties and the bridge/truck interaction are also obtained. Next to axle weights, the 

natural frequencies and damping ratios of each o f the truck’s modes are of the greatest 

interest in this work, so their estimates will be the only ones given here. It is important to 

note that the actual optimization parameters are a  and P and not frequency and damping, 

but, for the sake of clarity, the results will be given in terms of o>n and

Natural frequencies and damping ratios are estimated quite accurately from the 

force profile, as well. The tables below show the estimates of frequency and damping 

ratio for each truck configuration.

Table 8̂ 3 Front Axle Frequency Estimates (Force Objective Function)

Frequency (Hz) 
(Low Mode, Front) 0 m Noise 10̂  N Noise 10  ̂N Noise 10̂  N Noise

1.91 1.93 1.86 2.05 2.09
1.82 1.88 1.92 1.62 1.52
1.61 1.69 1.82 2.12 1.51
1.66 1.59 1.72 1.92 1.96
1.78 1.71 1.85 1.97 2.32

Frequent (Hz) 
(High Mode, Front) 0 m Noise 10̂  N Noise 10  ̂N Noise 10̂  N Noise

11.27 11.39 11.52 10.02 13.86
12.35 12.51 12.74 13.78 10.43
11.27 11.71 11.97 10.12 15.35
12.06 12.91 13.56 15.03 16.01
11.44 11.16 10.31 10.22 15.82

131



Table 8.4 Front Axle Damping Ratio Estimates (Force Objective Function)

Damping (%) 
(Low Mode, Front) 0 m Noise 10  ̂N Noise 10̂  N Noise 10̂  N Noise

7.2 6.9 7.6 6.2 8.1
5.9 5.8 5.2 6.2 7.5
6.2 6.1 6.4 5.6 8.1
5.9 5.0 5.1 5.0 7.4
6.6 6.9 7.3 5.8 7.9

Damping (%) 
(High Mode, Front) 0 m Noise 10̂  N Noise 10̂  N Noise 10̂  N Noise

29.7 26.1 25.7 33.8 34.9
37.9 34.2 39.8 45.2 49.6
27.1 25.2 21.4 34.8 20.8
24.8 26.9 30.1 34.6 36.3
27.6 28.1 30.6 21.6 38.1

Table 8.5 Rear Axle Frequency Estimates (Force Objective Function)

Frequency (Hz) 
(Low Mode, Rear) 0 m Noise 10̂  N Noise 10̂  N Noise 10̂  N Noise

1.91 1.94 2.12 1.71 2.10
2.04 1.92 1.80 2.53 1.50
1.53 1.58 1.88 2.62 3.06
2.35 2.42 2.94 1.54 3.02
1.87 1.79 1.89 2.12 2.49

Frequency (Hz) 
(High Mode, Rear) 0 m Noise 10̂  N Noise 10̂  N Noise 10̂  N Noise

11.27 11.76 11.98 12.82 14.98
16.72 16.27 15.85 12.34 12.83
11.26 11.41 12.16 14.24 15.19
18.74 18.21 18.10 15.91 15.02
13.34 13.57 13.87 12.02 15.45
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Table 8.6 Rear Axle Damping Ratio Estimates (Force Objective Function)

Damping (%) 
(Low Mode, Rear) 0 m Noise 10* N Noise 10* N Noise 10  ̂N Noise

7.2 7.4 7.8 5.9 6.0
5.9 5.5 5.4 6.6 4.3
6.2 6.2 6.8 7.9 3.9
5.9 6.0 6.2 6.7 7.8
6.6 6.6 6.2 5.1 7.8

Damping (%) 
(High Mode, Rear) 0 m Noise 10* N Noise 10* N Noise 10  ̂N Noise

27.6 22.1 29.8 33.8 37.2
16.7 18.4 20.1 21.0 15.0
27.1 28.1 24.9 30.2 31.8
37.9 38.7 34.9 42.1 45.9
29.7 28.0 27.1 22.2 20.4

8.5 Parameter Identification-Deflection Objective Function

The second formulation of the objective function used in this chapter is based on 

the measured deflection profiles. Sample midpoint deflection profiles of the static beam 

using both the dynamic and static truck models are shown below in Figure 8.5. The 

profiles are very similar for the static bridge/static truck case, although the effects o f the 

truck dynamics do result in slight differences between the two.
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Figure 8.5 Midpoint Deflection Profile for Static and Dynamic Truck Models

The objective function used in this section is given below. It is the square of error 

between the measured deflection profiles and the estimated ones. The subscripts L/2, L/4, 

and 3L/4 in Equation (8.11) below denote the sensor locations. The weights for each of 

the sensor measurements were determined iteratively.

N 

1=1 V 2’' 2*' .

+

V 4 ’'  4 ’'  .

+

(8.11)

The optimization routine is first tested using zero measurement error in the data. 

Deflection profiles are generated by simulating trucks with a range of parameter values to 

represent the actual truck configurations passing over the bridge. The minimization 

routine is the used to estimate each truck’s parameters. The truck configurations 

examined are given by truck numbers 1, 7,14, 16, and 18 in Table 3.2.
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With zero measurement noise, the truck weights are determined to within an 

average magnitude of 0.003%. Axle spacing is determined to within 10'^%. Uniform 

random noise is then added to the data to examine its effect on the performance o f  the 

algorithm. The amplitude of the noise is expressed as a fraction of the maximum 

deflection, which was on the order of lO^m. Noise to signal ratios of 0, 1% and 5% (0, 

IxlO^m, 5xlO"^m) were examined. For each of them, axle weights could be determined 

to within 1.3%. Noise had little effect on the estimates o f axle spacing and speed, 

resulting in less than 10'^% error for all noise levels. The average and maximum 

m ^nitudes of the percent error for the different noise levels are given in Table 8.7 and 

Table 8.8.

Table 8.7 Average Magnitude of the Percent Error in Axle Weight Using the Deflection Objective
Function

Noise Level Average Percent Error 
in Axle Weights

0 0.0035%
0.11%

5x10"^ m 0.63

Table 8.8 Maximum Magnitude of the Percent Error in Axle Weights Using the Deflection Objective
Function

Noise Level Maximum Percent Error 
in Axle Weights

0 0.018%
10-^m 0.25%

5x10*® m 1.3%
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Another representation o f the axle weight percent error is given in the following 

figures. In Figures 8.10-8.17, the x-axis is the truck case number corresponding to truck
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cases I, 7, 14, 16, and 18 in Table 3.2. The y-axis is the percent error in axle weight 

estimates for each truck case.
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The dynamic properties o f each axle are also obtained from the optimization routine. 

Below are the estimates of natural frequencies and damping ratios obtained from the 

deflection objective function.

Table 8.9 Front Axle Frequency Estimates (Deflection Objective Function)

Frequency (Hz) 
(Low Mode, Front) 0 m Noise 10^ m Noise SxlO"* m Noise 10'̂  m Noise

1.91 1.81 2.04 2.22 1.53
1.82 1.68 1.99 2.39 2.42
1.61 1.58 1.91 2.03 1.50
1.66 1.61 1.88 1.95 1.50
1.78 1.85 2.16 2.63 2.81

Frequency (Hz) 
(High Mode, Front) 0 m Noise 10^ m Noise 5x10"  ̂m Noise 10'̂  m Noise

11.27 11.54 12.83 13.10 10.12
12.35 12.92 10.20 17.02 16.21
11.27 11.94 12.03 13.61 18.27
12.06 12.71 13.94 14.12 19.16
11.44 10.92 13.17 13.94 16.21

Table 8.10 Front Axle Damping Ratio Estimates (Deflection Objective Function)

Damping (%) 
(Low Mode, Front) 0 m Noise 10^ m Noise 5x10^ m Noise 10'̂  m Noise

7.2 6.7 7.8 5.6 5.0
5.9 6.2 5.0 7.8 8.8
6.2 5.7 5.4 5.0 7.9
5.9 5.2 5.0 6.9 8.3
6.6 5.7 6.0 8.4 9.4

Damping (%) 
(High Mode, Front) 0 m Noise 10^ m Noise 5x10^ m Noise 10'* m Noise

29.7 25.7 19.9 36.3 37.3
37.9 35.1 40.2 52.8 19.4
27.1 23.8 36.1 36.2 40.6
24.8 26.7 19.6 33.8 37.7
27.6 29.7 38.5 41.0 40.6
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Table 8.11 Rear Axle Frequency Estimates (Deflection Objective Function)

Frequency (Hz) 
(Low Mode, Rear) 0 m Noise 10^ m Noise 5x10^ m Noise 10'̂  m Noise

1.91 1.72 1.51 2.31 2.72
2.04 1.81 1.65 2.89 1.50
1.53 1.61 1.77 1.50 2.62
2.35 2.01 2.83 2.91 1.50
1.87 1.62 1.58 2.24 2.39

Frequency (Hz) 
(High Mode, Rear) 0 m Noise 10^ m Noise 5x10*  ̂m Noise 10*̂  m Noise

11.27 13.02 14.02 16.10 18.26
16.72 15.87 15.29 15.00 12.71
11.26 10.92 13.92 17.27 17.01
18.74 18.95 16.96 15.20 12.84
13.34 12.15 10.07 10.51 22.86

Table 8.12 Rear Axle Damping Ratio Estimates (Deflection Objective Function)

Damping (%) 
(Low Mode, Rear) 0 m Noise 10^ m Noise 5x10^ m Noise 10'* m Noise

7.2 7.7 6.1 5.4 9.5
5.9 4.9 6.3 7.5 8.1
6.2 6.8 7.0 8.3 8.6
5.9 6.1 6.8 5.0 5.0
6.6 6.2 5.0 7.5 7.7

Damping (%) 
(High Mode, Rear) 0 m Noise lO"* m Noise 5x10*  ̂m Noise 10* m Noise

27.6 24.6 30.1 34.6 39.5
16.7 17.9 19.7 14.2 10.6
27.1 28.7 22.6 20.7 38.3
37.9 35.1 34.8 45.8 18.6
29.7 28.3 18.8 23.7 17.4

8.6 Chapter Conclusions

In this chapter, we describe the identification of truck parameters using the 

dynamic truck and static bridge models. The deflection o f the beam under each axle is 

calculated using the static beam bending expressions and is used as the input into the
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system of equations o f each quarter-car truck model. The truck equations are then 

integrated over time to determine the truck’s motion and the beam deflection at the sensor 

locations. Inside the optimization routine, an approximate truck force model is developed 

that is the superposition of each axle’s static weight, homogeneous solution, and the 

effect o f the bridge interaction. The homogeneous solution is a superposition of two 

damped oscillatory modes for each axle. The amplitudes, phases, damping ratios and 

natural frequencies o f each mode are unknown optimization parameters identified by the 

algorithm. The interaction term is the truncated series solution of the beam bending 

equation. Two weighting parameters are used as optimization parameters to determine the 

magnitude o f the interaction effects.

The truck configurations used to test the identifrcation routine are given in truck 

numbers 1, 7, 14,16, and 18 in Table 3.2. They had front axle weights ranging from 

9.8xlO‘*N to l.SxlO^N and rear axle weights from 9.8xlO'*N to 1.93x10^. The front and 

rear axles were given independent suspension properties as shown in Table 3.2. The 

lower modes of the axles had natural frequencies ranging from 1.6 Hz to 2.35 Hz and 

damping ratios from 5.1% to 12.1% of their critical damping. The high modes ranged in 

frequency from 11.2 Hz to 18.7 Hz and from 16.7% to 27.6% in damping ratio. A variety 

of initial conditions for each axle were also used.

The average and maximum magnitudes o f the percent error in axle weights are 

given in Tables 8.7 and 8.8. For zero measurement noise, the error in axle weight 

estimates remained below 0.018%. With measurement noise of ±lxlO"^m, the error in 

axle weight remained below 0.25%, and for noise o f ±5xlO"^m, error was less than 1.3%.
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Estimates o f the natural frequencies and damping ratios of each axle were also 

made using the optimization routine. Tables 8.9-8.12 give the estimates of the high and 

low mode frequencies and damping ratio estimates for each truck examined. For zero 

measurement noise, the natural frequency of the low mode could be determined within 

0.35 Hz, and the damping ratio could be determined within 0.9% of critical. The natural 

frequency of the high mode could be determined within 1.75 Hz and the damping ratio 

within 4% o f critical. For measurement noise o f ±5xl0"^m, the natural frequency and 

damping ratio of the low mode could be determined with 0.5 Hz and 3% of critical. For 

the same noise level, the frequency of the high mode could be determined within 9.5 Hz 

and the damping ratio within 11%. With measurement noise o f ±lxlO ’̂ m, the natural 

frequency and damping ratio of the low mode could be determined within 1.15 Hz and 

10% of critical. The frequency of the high mode could be determined within 9.5 Hz and 

the damping ratio within 20%. Axle spacing was again determined very accurately for all 

noise levels.
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Chapter 9 

Dynamic Bridge/Dynamic Truck

Finally, we treat the main problem o f this dissertation. In this chapter, the use of 

the dynamic bridge and dynamic truck models to simulate and identify the truck is 

discussed. The identification procedure uses the same optimization routine described in 

previous chapters, but the models are both dynamic. The dynamic beam model described 

in Chapter 2 is used to model the bridge, and the quarter-car model described in Chapter 

3 is used to represent the truck. The interaction between the two models is included in 

both the initial simulation o f the system and in the method to identify the truck 

parameters. The assumption that the truck’s total time on the bridge is known still applies 

and is used to calculate speed from the axle spacing.

9.1 Simulating the Truck and Bridge-Full Model

In this chapter, the bridge is modeled using the finite element model, including 

inertial effects, described in Chapter 2. Each axle o f the truck is modeled as a quarter-car 

as described in Chapter 3. The interaction due to each axle’s contact with the bridge is 

included in the simulation. The equations o f motion for the coupled bridge/truck system 

are derived in Chapter 4 and are restated here for clarity. All quantities are defined in 

section 4.8 o f this work.

W  (9.1)
A ,-B ,( t )K « d x ,,x ,)  B,(t)KiiB T xj- [» .(•)]

A . ^  JL^r. .« .12.
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These equations of motion include the interaction between the truck and the 

bridge and are integrated in three time intervals to yield the deflection profiles o f the 

bridge. The three time intervals result from the three force conditions due to the entrance 

and exit o f each axle. The truck is given some initial conditions to represent the 

roughness at the entrance to the bridge. Different sets o f initial conditions are used to test 

the optimization routine’s ability to determine them. Three deflection measurement 

locations are selected on the beam. They are located at the midpoint, quarter-point, and 

three-quarter-point (x=L/2, L/4, 3 L/4).

A sample midpoint deflection profile of the dynamic bridge/dynamic truck 

coupled system is shown below in Figure 9.1. It is compared to a static bridge/static truck 

profile due to a truck o f the same axle weights. From the figure, it is obvious that the 

static beam bending due to the static weight o f the truck is the primary component o f the 

deflection profile, but the bridge and truck dynamics contribute a great deal as well. The 

first natural frequency o f the beam is approximately 2.5 Hz. The axles used in Figure 9.1 

both have their first mode at 1.9 Hz.

147



Dynamic Bridge/Dynamic Truck and Static Bridge/State Truck
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Figure 9.1 Dynamic Bridge/Dynamic Truck and Static Bridge/Static Truck Deflection Profiles
(diBkrent bridge and truck frequencies)

Another sample midpoint deflection profile is shown in Figure 9.2. This one also 

shows a dynamic bridge/dynamic truck profile and a static bridge/static truck profile for a 

truck of the same static weight, but the natural fi%quencies o f the axles are different than 

in Figure 9.1. In Figure 9.1, the natural frequencies o f the axles are relatively far from the 

natural frequency o f the bridge. In Figure 9.2, the natural frequency of the rear axle is 2.5 

Hz, which is equal to the first mode of the bridge. Since the driving force of the rear axle 

is near the first mode o f  the bridge, the dynamic response o f the beam is greater than in 

Figure 9.1, where the bridge and truck frequencies are not as close together. These two 

figures are shown to illustrate the effect o f the dynamic coupling between the bridge and 

the truck and its influence on the deflection profiles. It should be noted that the natural 

decay of the fi«e vibration o f the bridge is not included in the deflection profiles used in
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the optimization routine. The times at which the fiee vibration begins correspond to the 

times at which the truck exits the bridge.

Dynamic Bridge/Dynamic Truck and Static Bridge/Static Truck 

,x10^

A L

Ax e 1=1. 96 Hz

Axl e 2 = 2 . 5 Hz
■ Bit l g e - 2 9 HZ

1

Dynamic Bridge/Dynamic Truck
Static Bridge/Static Truck 

~ ~ i —

2.5 3.51.5 2
Time (sec)

Figure 9.2 Dynamic Bridge/Dynamic Truck and Static Bridge/Static Truck Deflection Profiles
(truck and bridge frequencies close together)

9.2 Approximate Force Model

As in the static bridge/dynamic truck case described in Chapter 8, we develop an 

approximate model for the force due to the truck. In the case of the static beam, the 

solution o f the differential equation of motion is found easily and used to approximate the 

effect o f the interaction. Such a  solution is not apparent for the dynamic bridge/dynamic 

truck case. Like the static bridge case, the solution for the dynamic bridge subject to a 

moving point force can be found, but it does not include the coupling between the bridge 

and the truck. In the static bridge case, an approximation o f the interaction force is 

accurate enough to approximate the force, but this is not the case for the dynamic bridge.
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As shown in Figure 9.1 and Figure 9.2, because the truck and the bridge can have similar 

natural frequencies, the interaction is quite important. Therefore, the force due to the 

truck has to be found using a more direct method.

In the dynamic bridge/dynamic truck case, it is assumed that the truck has a 

homogeneous solution with two damped oscillatory modes as discussed previously. Since 

no approximate solution for the dynamic bridge deflection can be obtained, it is necessary 

to integrate the differential equations o f motion for the bridge to obtain the deflection 

profiles inside the optimization routine. The driving force due to the bridge deflection is 

found directly during the integration of the differential equations through the direct 

integration of the truck differential equations as well.

The need to directly integrate the differential equations of motion of the truck 

presents a new problem. It is desirable to keep the number o f optimization parameters as 

small as possible, and the truck system has many unknowns. The stif&esses, damping 

ratios, and masses in the quarter-car model are all unknown, as are the initial conditions 

o f the truck as it entered the bridge. Having had good success with the assumption of a 

homogeneous solution to the truck equations, we decide to stay with this method. The 

homogeneous solution of the unsprung mass motion o f each axle is given in Chapter 3 

and is repeated here.

Xu^ = <!-2)si„(S j,^  )+ ( - 'j 's in

(9.2)

Although they are expressed in terms o f different parameters, the homogeneous 

solution in Equation (9.2) and the state matrices given in Equations (3.5-3.6e), which are
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in terms o f the stifhiess, damping, and mass of the quarter-car model, describe the same 

system. The parameters in Equation (9.2) are found in the optimization routine, but the 

physical parameters o f the truck are not. Thus, to write the truck’s system of equations, a 

transformation o f the differential equations in terms o f the parameters in Equation (9.2) is 

needed. The state matrices resulting from this transformation are discussed in Chapter 3, 

but are given again here.

A - =

02s2 I2x2

- 0,
2^2

-  2<t, 2(T,
20̂ 2 — 2<T2

and =
®3xl

(9.3)

The variables 6 and o  are defined in Chapter 3, but are all given in terms of the a  s and 

P’s in Equation (9.2). This transformation allows the assumption of the homogeneous 

solution in Equation (9.2), but still allows the state matrices o f the truck to be formed and 

used in the integration routine.

The coupled differential equations o f the bridge/truck system are stated below. 

Their derivation is given in Chapter 4. The state matrices o f the truck A t and Br are in the 

transformed form in Equation (9.3).

À .

A g -B ,(t )K u C (.,,x ,)  B ,( t )K iiB .p g [ » . ( » ) ]
•4*

- * . . 2 .
Fif) (9.4)

The term F{t) is the sum of the total axle weight and the homogeneous solution given in 

Equation (9.2). This expression is given below.

-fF.

2J
+ Ku

xu^{t)

'2 '
(9.5)
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The truck is given zero initial conditions in this integration routine since the initial 

conditions are incorporated into the homogeneous solution xu(t). The coupled system o f 

equations is then integrated over time to obtain the deflection profiles to be used in the 

optimization routine.

93  WIM Algorithm

The bridge WIM algorithm consists o f three parts. First, an initial estimate o f each 

o f the optimization parameters is made. The midpoint between the upper and lower 

bounds o f each of the optimization parameters given in Table 8.1 are used as the starting 

point. These parameters are the unknowns in approximate truck force model, which is the 

superposition of the static axle weights and the homogeneous solution given in Equation

(9.2). The transformed truck system in Equation (3.11) is made up of these estimated 

values o f the unknowns and is combined with the bridge system in Equation (9.4) and 

integrated over time. From this integration, the deflection profiles at each sensor location 

are found and compared to the measured profiles. The objective function is made up o f 

the sum of the differences in the estimated and measured profiles. At each iteration of the 

optimization routine, the optimization parameters are varied to obtain the smallest value 

of the objective function. Each truck case requires approximately 7,000 iterations, and 

each iteration requires approximately five seconds to integrate the bridge/truck equations.

9.4 Parameter Identification

To identify the truck parameters, the optimization routine discussed previously is 

again used to minimize the difference between the measured and estimated deflection
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profiles. Three measurements are made at the midpoint, quarter-point, and three-quarter- 

point of the beam and used to formulate the objective fimction. The optimization 

parameters and their upper and lower bounds are given in Table 8.1 o f  Chapter 8 with a 

few omissions. The parameters An and Aÿ are not needed since they referred only to the 

approximation o f the interaction between the truck and the bridge. Since this interaction 

is calculated directly, there is no need for these parameters. We determined through the 

course o f this work that an expression for ku could be found in terms of existing 

optimization parameters, which would reduce the number per axle by one more. This 

expression comes fiom the manipulation o f the transformation discussed in Chapter 4 and 

is given by

e t - e i (9.6)

The relationship between speed and axle spacing discussed in previous chapters and 

given in Equation (5.8) is also used to eliminate speed as an optimization parameter. 

Therefore, the total number of optimization parameters for both axles, including axle 

spacing is 19. The objective function is the least-squares difference between the three 

measured and estimated deflection profiles described in Chapter 8.

The optimization routine is tested using the various truck configurations given in 

Chapter 3. These configurations are chosen to cover a wide range o f truck types. The 

upper limit on the number of iterations performed by the optimization routine is set high 

enough that the routine is certain to converge before it performs the maximum number of 

iterations. It is found that the optimization routine typically converges after 

approximately 1,000 iterations, so the maximum number o f iterations was set at 5,000.
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The optimization procedure is repeated for three levels o f measurement noise of ±10 m, 

lO'^m, and lO^m for each truck configuration.

9.5 Optimization Results

The error found in the optimization parameters is very small (~ 1 0 '^  for all 

parameters) for zero measurement noise. The average magnitude of the percent error in 

axle weight estimates for each of the noise levels is given below in Table 9.1. As in the 

previous chapters, this average is the average of the magnitude of the percent error.

Table 9.1 Average Error In Axle Weights Using Unlimited Optimization Iterations

Parameter 0 Noise 10"* m Noise 10'  ̂m Noise 10~* m Noise
Front Axle Weight 0.007% 0.029% 0.391% 1.144%
Rear Axle Weight 0.005% 0.024% 0.604% 1.146%

The figures below show estimates of the axle weights for trucks 1-10 in Table 3.2.

Rat/MeWHdtEaferaiBB,K10
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1.1 iz ia 1 51.4
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Figure 9 3  Front Axle Weight Estimates With Noise (Trucks 1-20)
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Figure 9.4 Rear Axle Weight Estimates With Noise (Trucks 1-20)

The percent error in each of the axle weight estimates are shown in the figures 

below. In Figures 9.5-9.12, the x-axis is the truck case number of the twenty trucks given 

in Table 3.2. The y-axis is the percent error in axle weight estimates of each of the trucks.
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Figure 9.6 Percent Error in Front Axle Weight (b)
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Figure 9.8 Percent Error in Front Axle Weight (d)
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Percent Error in Rear Axle Weight
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Figure 9.9 Percent Error in Rear Axle Weight (a)
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Figure 9.10 Percent Error in Rear Axle Weight (b)
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Although they are not the primary focus o f this work, the other parameters 

relating to the dynamic properties o f  the truck are also estimated very accurately. In the 

following section, the parameter estimates for the different truck configurations with 

varying noise levels are given. Figures showing the true and estimated values o f the 

natural frequency and damping ratio for each mode o f each axle are given below. In each 

of the figures, the x-axis represents the first ten truck case numbers in Table 3.2. The y- 

axis represents the frequency or damping ratio estimate of each truck. True values of 

these parameters are given in truck cases 1-10 in Table 3.2. Tables o f the estimated truck 

parameters are then given to more clearly illustrate the numerical precision o f this 

routine.

Front Axle, Low Mode, Frequency Estimates
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Figure 9.13 Front Axle, Low Mode, Frequency Estimate (a)
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Figure 9.14 Front Axle, Low Mode, Frequency Estimate (b)
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Figure 9.15 Front Axle, Low Mode, Frequency Estimate (c)
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Figure 9.16 Front Axle, Low Mode, Frequency Estimate (d)
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Figure 9.17 Front Axle, Low Mode, Damping Ratio Estimate (a)
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Figure 9.18 Front Axle, Low Mode, Damping Ratio Estimate (b)
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Figure 9.19 Front Axle, Low Mode, Damping Ratio Estimate (c)
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Figure 9.20 Front Axle, Low Mode, Damping Ratio Estimate (d)

Front Axle, High Mode, Frequency Estimates
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Figure 9.21 Front Axle, High Mode, Frequency Estimate (a)
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Figure 9.22 Front Axle, High Mode, Frequency Estimate (b)
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Figure 9.23 Front Axle, High Mode, Frequency Estimate (c)
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Figure 9.24 Front Axle, High Mode, Frequency Estimate (d)

Front Axle, High Mode, Damping Ratios
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Figure 9 Front Axle, H^h Mode, Damping Ratio Estimate (a)
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Figure 9.26 Front Axle, High Mode, Damping Ratio Estimate (b)
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Figure 9.27 Front Axle, High Mode, Damping Ratio Estimate (c)
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Figure 9.28 Front Axle, High Mode, Damping Ratio Estimate (d)

Rear Axle, Low Mode, Frequency Estimates
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Figure 9.29 Rear Axle, Low Mode, Frequency Estimate (a)
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In the following section, numerical results for the optimization parameters 

associated with each of the twenty sample trucks are given.
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9.6 Numerical Results

Table 9.2 Truck 1 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10'* m 
Noise

10"* m 
Noise

Front Axle Weight 98,000 N 97,999 N 98,002 N 97,527 N 99,020 N
Rear Axle Weight 98,OOON 97,999 N 97,529 N 98,602 N 97,831 N

Speed 25 m/s 25 m/s 24.9 m/s 24.9 m/s 25.2 m/s
Axle Spacing 5 m 5 m 5 m 5.1 m 4.8 m

Rn
(low mode 

amplitude, front)
2.36x10^

m
2.42x10']

m
2.01x10']

m
3.63x10']

m
1.87x10*]

m

R i2 
(high mode 

amplitude, front)
l.OlxlO'^

m
1.12x10']

m
1.31x10']

m
1.81x10']

m
2.11x10']

m

Oil (low mode, 
front) 1.91 Hz 1.90 Hz 1.81 Hz 2.09 Hz 2.41 Hz

4ii (low mode, 
front) 7.2% 7.0% 7.6% 8.3% 9.1%

0) 12 (high mode, 
front) 11.27 Hz 11.15 Hz 12.04 Hz 10.04 Hz 15.92 Hz

^ 1 2  (high mode, 
front) 27.6% 27.4% 26.7% 25.4% 21.9%

R21 
(low mode 

amplitude, rear)
2.36x10’̂

m
2.48x10']

m
1.94x10']

m
3.83x10']

m
1.65x10']

m

R22 
(high mode 

amplitude, rear)
1.01x10'^

m
1.31x10'^

m
1.43x10']

m
1.91x10']

m
2.95x10']

m

0)21 (low mode, rear) 1.91 Hz 1.89 Hz 1.83 Hz 2.14 Hz 2.16 Hz
Ç21 (low mode, rear) 7.2% 7.0% 6.7% 8.5% 8.9%

0 )2 2  (high mode, 
rear) 11.27 Hz 11.43 Hz 11.59 Hz 12.12 Hz 10.03 Hz

4 2 2 (high mode, rear) 27.6% 27.1% 28.4% 29.2% 29.6%
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Table Track 2 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10'm 
Noise

10"* m 
Noise

Front Axle Weight 98,000 N 97,997 N 98,012 N 97,654 N 98,662 N
Rear Axle Weight 124,160N 124,174 N 124,104 N 125,143 N 126,738 N

Speed 25 m/s 25 m/s 25.2 m/s 24.8 m/s 25.1 m/s
Axle Spacing 5 m 4.9 m 4.9 m 5 m 4.9 m

Rn 
(low mode 

amplitude, front)

2.36x10*^
m

2.12x10'^
m

2.61x10'^
m

3.53x10^
m

3.97x10'^
m

R i2 
(high mode 

amplitude, front)
1.01x10'^

m
1.09x10'^

m
1.14x10'^

m
1.97x10'^

m
2.22x10'^

m

Oil (low mode, 
front) 1.91 Hz 1.89 Hz 1.77 Hz 2.29 Hz 1.56 Hz

4 n  (low mode, 
front) 7.2% 7.1% 7.8% 8.8% 9.6%

0 1 2  (high mode, 
front) 11.27 Hz 11.39 Hz 11.01 Hz 13.03 Hz 12.97 Hz

^ 1 2  (high mode, 
front) 27.6% 27.3% 25.7% 25.3% 30.6%

R21 
(low mode 

amplitude, rear)
2.45x10*^

m
2.49x10^

m
2.94x10'^

m
1.52x10'^

m
1.15x10'^

m

R22
(high mode 

amplitude, rear)

1.08x10*^
m

1.28x10'^
m

1.66x10*^
m

0.61x10'^
m

1.99x10’̂
m

© 2 1  (low mode, rear) 1.67 Hz 1.80 Hz 1.46 Hz 2.24 Hz 2.82 Hz
^ 2 1  (low mode, rear) 6.5% 6.8% 7.7% 8.2% 9.4%

© 2 2  (high mode, 
rear) 11.27 Hz 11.36 Hz 12.02 Hz 10.02 Hz 10.01 Hz

^ 2 2  (high mode, rear) 27.1% 26.8% 28.5% 30.0% 30.6%
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Tabic 9.4 Truck 3 Estimates

Parameter True
Value 0 Noise

10^ m 
Noise

10-® m 
Noise

10^ m 
Noise

Front Axle Weight 98,000 N 98,011 N 98,027 N 97,866 N 99,546 N
Rear Axle Weight 150,332N 150,343 N 150,264 N 149,249 N 148,291 N

Speed 30 m/s 30 m/s 30.1 m/s 29.8 m/s 29.7 m/s
Axle Spacing 5 m 5 m 4.9 m 5 m 5.3 m

Ri.
(low mode 

amplitude, front)
2.36x10*^ 2.16x10-3 2.11x10-3 2.98x10-3 3.17x10-3

m m m m m

R i2
(high mode 

amplitude, front)
1.01x10'^ 1.14x10'^ 1.16x10*^ 2.07x10-^ 2.92x10-^

m m m m m

0 )1 1  (low mode, 
front) 1.91 Hz 1.90 Hz 1.88 Hz 2.30 Hz 3.01 Hz

4ii (low mode, 
front) 7.2% 6.9% 6.8% 7.9% 8.7%

m 12 (high mode, 
front) 11.27 Hz 11.34 Hz 11.41 Hz 12.93 Hz 14.09 Hz

4 12 (high mode, 
front) 27.6% 26.9% 26.3% 28.9% 31.0%

Rzi
(low mode 

amplitude, rear)
2.64x10-3 2.69x10-3 2.78x10-3 3.02x10-3 3.32x10-3

m m m m m

R22
(high mode 

amplitude, rear)
1.15x10-^ l.llxlO-3 1.06x10-^ 2.01x10-^ 2.69x10-^

m m m m m

© 2 1  (low mode, rear) 1.51 Hz 1.54 Hz 1.58 Hz 1.99 Hz 3.01 Hz
^ 2 1  (low mode, rear) 5.9% 6.3% 6.5% 7.3% 8.2%

© 2 2  (high mode, 
rear) 11.26 Hz 11.36 Hz 11.51 Hz 10.11 Hz 14.21 Hz

^ (h ig h  mode, rear) 26.9% 26.1% 25.9% 25.2% 32.2%
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Table 9.5 Truck 4 Estimates

Parameter True
Value 0 Noise

10^ m 
Noise

10* m 
Noise

10^ m 
Noise

Front Axle Weight 98,000 N 98,012 N 98,029 N 97,758 N 97,088 N
Rear Axle Weight 98,000 N 97,999 N 97,954 N 98,583 N 97,771 N

Speed 30 m/s 29.9 m/s 30 m/s 29.9 m/s 30.4 m/s
Axle Spacing 5 m 5 m 4.9 m 5.1 m 4.9 m

Rii
(low mode 

amplitude, front)

2 36x10^ 
m

2.46x10'^
m

2.01x10*^
m

2.76x10-3
m

3.23x10-3
m

R i2 
(high mode 

amplitude, front)
1.01x10'^

m
1.20x10*^

m
0.91x10'^

m
2.13x10-3

m
2.55x10-3

m

0 )1 1  (low mode, 
front) 1.91 Hz 1.83 Hz 1.98 Hz 1.48 Hz 3.21Hz

I (low mode, 
front) 7.2% 7.0% 6.6% 8.1% 9.0%

( 0 1 2  (high mode, 
front) 11.27 Hz 11.11 Hz 10.91 Hz 12.45 Hz 10.02 Hz

^ 1 2  (high mode, 
front) 27.6% 27.0% 25.6% 29.5% 30.7%

R21 
(low mode 

amplitude, rear)
2.71x10*^

m
2.69x10^

m
2.78x10-^

m
3.02x10-3

m
3.32x10-3

m

R22
(high mode 

amplitude, rear)
1.10x10'^

m
1.11x10'^

m
1.06x10*^

m
2.01x10-3

m
2.69x10-3

m

0 )2 1 (low mode, rear) 2.12 Hz 2.53 Hz 1.78 Hz 2.68 Hz 3.11 Hz
^ 2 1  (low mode, rear) 6.2% 6.5% 7.2% 5.1% 8.0%

0 )2 2  (high mode, 
rear) 12.35 Hz 12.02 Hz 11.72 Hz 14.83 Hz 14.98 Hz

^ 2 2  (high mode, rear) 25.9% 26.6% 28.1% 30.2% 20.5%
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Table 9.6 Truck 5 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10* m 
Noise

10"* m 
Noise

Front Axle Weight 98,000 N 97,999 N 98,043 N 97,312 N 97,681 N
Rear Axle Weight 141,610 N 141,615 N 141,574 N 142,700 N 142,727 N

Speed 25 m/s 25 m/s 24.9 m/s 24.8 m/s 25.3 m/s
Axle Spacing 6 m 6m 6 m 6.1 m 5.8 m

Rii
(low mode 

amplitude, front)
2.36x10'^

m
2.12x10’̂

m
2.70x10^

m
2.00x10'^

m
1.63x10^

m

R i2 
(high mode 

amplitude, front)
1.01x10'^

m
1.08x10^

m
0.95x10'^

m
2.83x10'^

m
3.05x10^

m

(Oil (low mode, 
front) 1.91 Hz 1.92 Hz 2.02 Hz 2.69 Hz 2.98 Hz

^ 1 1  (low mode, 
front) 7.2% 7.4% 7.9% 6.2% 4.9%

(0 1 2  (high mode, 
front) 11.27 Hz 11.12 Hz 12.31 Hz 13.05 Hz 13.92 Hz

^ 1 2  (high mode, 
front) 27.6% 27.2% 28.2% 28.9% 21.4%

R21 
(low mode 

amplitude, rear)
2.75x10^

m
2.91x10'^

m
3.07x10^

m
3.09x10"^

m
1.52x10'^

m

R22
(high mode 

amplitude, rear)
1.13x10^

m
1.26x10'^

m
1.64x10'^

m
2.02x10*^

m
3.01x10'^

m

(O21 (low mcxle, rear) 2.19 Hz 2.03 Hz 2.64 Hz 1.75 Hz 1.53 Hz
(low mode, rear) 5.6% 5.8% 5.2% 6.1% 6.9%

0 )2 2  (high mode, 
rear) 15.95 Hz 15.36 Hz 15.01 Hz 14.22 Hz 12.98 Hz

^ 2 2  (high mode, rear) 19.2% 19.5% 18.0% 16.7% 20.5%
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Table 9.7 Truck 6 Estimates

Parameter True
Value 0 Noise

10-* m 
Noise

10-’ m 
Noise

10“* m 
Noise

Front Axle Weight 115,415 N 115,467 N 115,396 N 115,218 N 114,105 N
Rear Axle Weight 167,890 N 167,814 N 167,815 N 166,729 N 171,090 N

Speed 25 m/s 25 m/s 25 m/s 24.7 m/s 25.1 m/s
Axle Spacing 6 m 6 m 6 m 6.2 m 6 m

R.1
(low mode 

amplitude, front)
5.0x10’̂  m 5.72x10-2

m
5.97x10-2

m
4.02x10-2

m
3.43x10*2

m

R|2
(high mode 

amplitude, front)
15x10-2 m 14.5x10-2

m
14.2x10-2

m
12.8x10-2

m
11.9x10*2

m

(Oil (low mode, 
front) 1.89 Hz 1.94 Hz 2.21 Hz 2.86 Hz 1.51 Hz

^ 1 1  (low mcxle, front) 6.1% 6.4% 7.3% 5.1% 5.0%
(Oi2 (high mode, 

front) 12.35 Hz 11.12 Hz 12.31 Hz 13.05 Hz 15.05 Hz

4 i2 (high mode, 
front) 24.9% 25.2% 25.0% 22.6% 21.0%

R21
(low mode 

amplitude, rear)
5.2x10-2 m 5.63x10-2

m
5.88x10-2

m
3.78x10*2

m
3.66x10*2

m

R22 
(high mode 

amplitude, rear)
15x10-^ m

13.8x10-2
m

12.9x10-2
m

17.2x10*2
m

17.9x10*2
m

(O21 (low mode, rear) 2.19 Hz 2.23 Hz 2.75 Hz 3.01 Hz 3.14 Hz
^ 2 1  (low mode, rear) 6.4% 5.7% 4.9% 7.5% 7.7%

0 )2 2  (high mode, 
rear) 16.72 Hz 16.26 Hz 16.12 Hz 15.18 Hz 14.28 Hz

^ 2 2  (high mode, rear) 17.5% 17.0% 16.2% 20.1% 21.0%
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Tabic 9.8 Track 7 Estimates

P aram eter T rue
V alue 0 N oise

10^ m 
Noise

10-* m 
Noise

10"* m 
Noise

Front Axle Weight 124,178 N 124,186 N 124,156 N 124,379 N 121,811 N
Rear Axle Weight 193,184 N 193,195 N 193,187 N 191,815 N 193,070 N

Speed 35 m/s 35 m/s 34.5 m/s 34.6 m/s 35.5 m/s
Axle Spacing 6 m 6 m 6.2 m 6.2 m 5.9 m

Ru
(low mode 

amplitude, front)
5.0x10*^ m 5.21x10^

m
5.82x10-2

m
6.10x10-2

m
6.63x10-2

m

R.2
(high mode 

amplitude, front)
15x10’̂  m 15.8x10*2

m
16.1x10-2

m
16.9x10-2

m
12.3x10-2

m

(Oil (low mode, 
front) 1.82 Hz 1.87 Hz 2.04 Hz 2.75 Hz 3.05 Hz

^ 1 1  (low mode, front) 5.9% 6.0% 6.6% 7.0% 4.7%
ooi2 (high mode, 

front) 12.35 Hz 12.19 Hz 12.01 Hz 14.03 Hz 10.87 Hz

^I2 (high mcxle, 
front) 24.8% 25.0% 25.4% 26.9% 29.2%

Rz,
(low m(xie 

amplitude, rear)
5.2x10’̂  m 5.08x10*^

m
5.64x10-2

m
6.38x10-2

m
3.71x10-2

m

R22 

(high mode 
amplitude, rear)

15x10*  ̂m
16.3x10-2

m
15.9x10-2

m
16.9x10-2

m
18.2x10-2

m

(0 2 1 (low mode, rear) 2.04 Hz 2.12 Hz 2.83 Hz 1.90 Hz 1.50 Hz
Ç21 (low m(xle, rear) 5.9% 5.6% 5.8% 5.0% 3.7%

0022 (high mode, 
rear) 16.72 Hz 16.02 Hz 15.23 Hz 15.28 Hz 15.99 Hz

^  (high mode, rear) 16.7% 17.4% 16.9% 18.3% 14.5%
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Table 9.9 Truck 8 Estimates

Parameter True
Value 0 Noise

10** m 
Noise

10** m 
Noise

10^ m 
Noise

Front Axle Weight 124,178 N 124,184 N 124,216 N 124,871 N 122,045 N
Rear Axle Weight 191,222 N 191,129 N 191,260 N 192,176 N 195,937 N

Speed 35 m/s 35 m/s 36.0 m/s 35.2 m/s 36.3 m/s
Axle Spacing 4 m 4.1 m 4.3 m 4 m 4.6 m

Rii
(low mode 

amplitude, front)
5.0x10'^ m 5.54x10*2

m
6.01x10*2

m
4.15x10*2

m
7.33x10*2

m

R i2
(high mode 

amplitude, front)
15.6x10'^

m
15.0x10*2

m
14.7x10*2

m
13.9x10*2

m
11.7x10*2

m

Oil (low mode, 
front) 1.70 Hz 1.81 Hz 1.83 Hz 2.63 Hz 1.50 Hz

4ii (low mode, 
front) 8.5% 8.8% 9.4% 8.0% 5.2%

Oi2 (high mode, 
front) 12.39 Hz 12.22 Hz 11.81 Hz 11.26 Hz 16.21 Hz

4 i2  (high mode, 
front) 24.4% 24.9% 25.3% 20.8% 18.6%

R21 
(low mode 

amplitude, rear)

5.70x10*^
m

5.32x10*2
m

5.74x10*2
m

4.67x10*2
m

4.21x10*2
m

R22  
(high mode 

amplitude, rear)

15.9x10*2
m

15.0x10*2
m

14.1x10*2
m

13.7x10*2
m

19.8x10*2
m

0 2 1  (low mode, rear) 1.60 Hz 1.72 Hz 1.89 Hz 1.50 Hz 2.83 Hz
(low mode, rear) 12.9% 12.0% 10.8% 9.9% 9.7%

0 2 2  (high mode, 
rear) 17.12 Hz 16.42 Hz 17.92 Hz 18.21 Hz 21.04 Hz

^ 2 2  (high mode, rear) 19.1% 17.9% 16.7% 17.8% 15.8%
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Table 9.10 Truck 9 Estimates

Parameter True
Value 0 Noise

IQ-^in
Noise

10-* m 
Noise

IQ-^m
Noise

Front Axle Weight 119,810 N 119,819 N 119,791 N 119,829 N 121,542 N
Rear Axle Weight 141,610 N 141,617 N 141,624 N 142,206 N 140,716 N

Speed 30 m/s 30 m/s 29.9 m/s 31.0 m/s 29.1 m/s
Axle Spacing 4m 4 m 3.8 m 4.3 m 4.5 m

Rn 
(low mode 

amplitude, front)
5.66x10'^

m
5.60x10-3

m
5.10x10-3

m
4.55x10-3

m
6.13x10-3

m

R.2
(high mode 

amplitude, front)
16.0x10*^

m
15.1x10-3

m
14.9x10-3

m
18.2x10-3

m
17.8x10-3

m

(Dll (low mode, 
front) 2.59 Hz 2.50 Hz 2.41 Hz 3.24 Hz 1.97 Hz

(low mode, 
front) 5.4% 4.8% 4.6% 3.9% 6.4%

(i>i2 (high mode, 
front) 18.20 Hz 16.14 Hz 16.05 Hz 21.83 Hz 22.51 Hz

^ 1 2  (high mode, 
front) 16.69% 17.0% 15.2% 18.5% 18.4%

R21 
(low mode 

amplitude, rear)
5.73x10'^

m
5.12x10-3

m
5.10x10-3

m
6.97x10-3

m
7.09x10-3

m

R22 
(high mode 

amplitude, rear)
15.4x10'^

m
15.9x10-3

m
16.2x10-3

m
11.8x10-3

m
12.0x10-3

m

© 2 1  (low mode, rear) 2.36 Hz 2.45 Hz 2.31 Hz 2.00 Hz 3.72 Hz
(low mode, rear) 5.6% 5.4% 5.3% 6.4% 6.9%

© 2 2  (high mode, 
rear) 16.79 Hz 16.81 Hz 17.04 Hz 14.92 Hz 20.63 Hz

Ç2 2  (high mode, rear) 18.4% 17.8% 17.1% 16.8% 12.0%
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Table 9.11 Truck 10 Estimates

Parameter True
Value 0 Noise

lO'̂ m
Noise

10** m 
Noise

lO^m
Noise

Front Axle Weight 118,835 N 118,846 N 118,890 N 119,459 N 118,060 N
Rear Axle Weight 174,326 N 174,314 N 174,338 N 174,820 N 174,601 N

Speed 25 m/s 25 m/s 25 m/s 24.9 m/s 24.9 m/s
Axle Spacing 4 m 4 m 3.8 m 4.3 m 4.5 m

Rii
(low mode 

amplitude, front)
2.16x10'^

m
2.76x10'^

m
3.02x10^

m
3.04x10*2

m
3.43x10*2

m

R i2 
(high mode 

amplitude, front)
5.1x10'^ m 5.6x10'^ m 6.3x10*2 m 7.1x10*2 m 7.3x10*2 m

û)ii (low mode, 
front) 1.62 Hz 1.54 Hz 1.83 Hz 2.20 Hz 1.98 Hz

4ii (low mode, 
front) 6.0% 6.3% 6.4% 5.2% 3.2%

0 )1 2  (high mode, 
front) 11.09 Hz 11.92 Hz 10.91 Hz 10.26 Hz 10.19 Hz

4 i2 (high mode, 
front) 16.67% 16.8% 14.7% 14.6% 12.1%

R21 
(low mode 

amplitude, rear)
2.01x10'^

m
2.15x10*^

m
2.21x10*2

m
2.85x10*2

m
3.29x10*2

m

R22 
(high mode 

amplitude, rear)
5.2x10*^ m 6.1x10'^ m 6.6x10*2 m 6.7x10*2 m 8.2x10*2 m

0)2 1  (low mode, rear) 1.58 Hz 1.46 Hz 1.62 Hz 2.12 Hz 2.24 Hz
^ 1  (low mode, rear) 5.8% 5.9% 6.1% 6.1% 7.9%

0 )2 2  (high mode, 
rear) 12.76 Hz 13.82 Hz 14.14 Hz 11.27 Hz 11.04 Hz

I 2 2  (high mode, rear) 46.8% 42.7% 42.6% 36.9% 31.1%
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Tabic 9.12 Truck 11 Estimates

Parameter True
Value 0 Noise

10-* m 
Noise

10* m 
Noise

10"* m 
Noise

Front Axle Weight 97,900 N 97,013 N 97,064 N 96,617N 97,650 N
Rear Axle Weight 98,000 N 97,991 N 97,982 N 97,590 N 99,338 N

Speed 25 m/s 25 m/s 25 m/s 25.1 m/s 25 m/s
Axle Spacing 4 m 4 m 4 m 4 m 3.9 m

Rn 
(low mode 

amplitude, front)
1.90x10'^

m
1.92x10^

m
3.15x10'^

m
3.34x10’̂

m
4.01x10'^

m

R|2
(high mode 

amplitude, front)
5.1x10'^ m 4.3x10'^ m 4.0x10'^ m 2.8x10'^ m 2.7x10*^ m

(Oil (low mode, 
front) 2.18 Hz 2.02 Hz 1.75 Hz 3.27 Hz 3.71 Hz

^ 1 1  (low mcxle, 
front) 9.6% 9.1% 7.2% 6.7% 6.2%

(Oi2 (high mode, 
front) 13.39 Hz 12.04 Hz 11.41 Hz 18.92 Hz 19.31 Hz

4 12 (high mode, 
front) 38.0% 34.25% 46.6% 21.2% 19.6%

R21 
(low mode 

amplitude, rear)

1.87x10'^
m

2.12x10*^
m

1.40x10'^
m

3.02x10'^
m

3.14x10*^
m

R22  
(high mode 

amplitude, rear)
6.3x10'^ m 5.4x10'^ m 7.9x10'^ m 8.4x10'^ m 8.9x10'^ m

ÜO21 (low m(xle, rear) 1.95 Hz 2.15 Hz 2.31 Hz 1.50 Hz 1.50 Hz
(low mode, rear) 10.7% 9.8% 12.1% 8.4% 13.5%

0 )2 2  (high mode, 
rear) 11.39 Hz 11.85 Hz 10.23 Hz 15.71 Hz 17.85 Hz

^ 2 2  (high mode, rear) 40.9% 45.0% 32.1% 48.8% 27.2%
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Table 9.13 Truck 12 Estimates

Parameter True
Value 0 Noise

10^ m 
Noise

10* m 
Noise

10^ m 
Noise

Front Axle Weight 98,000 N 98,002 N 98,052 N 98,052 N 97,463 N
Rear Axle Weight 117,400 N 117,413 N 117,385 N 117,113 N 116,708 N

Speed 25 m/s 25 m/s 24.9 m/s 25 m/s 24.9 m/s
Axle Spacing 6 m 6m 6 m 6.1 m 6.1 m

Ru 
(low mode 

amplitude, front)
2.72x10'^

m
2.48x10'^

m
3.72x10^

m
1.94x10^

m
1.72x10*^

m

r .2
(high mode 

amplitude, front)
6.8x10'^ m 5.9x10'^ m 5.1x10'^ m 8.7x10’̂  m 4.0x10*^ m

CD 11 (low mode, 
front) 2.18 Hz 2.35 Hz 1.95 Hz 1.52 Hz 4.47 Hz

4ii (low mode, 
front) 9.5% 9.9% 7.9% 6.8% 5.8%

0 )1 2  (high mode, 
front) 12.78 Hz 13.23 Hz 10.87 Hz 10.06 Hz 18.83 Hz

^ 1 2  (high mode, 
front) 36.5% 37.4% 25.5% 22.7% 48.4%

R21 
(low mode 

amplitude, rear)
3.02x10'^

m
3.93x10'^

m
3.89x10^

m
1.20x10'^

m
4.34x10'^

m

R22 

(high mode 
amplitude, rear)

7.0x10'^ m 7.6x10'^ m 6.4x10'^ m 6.0x10*^ m 4.2x10'^ m

0 )2 1  (low mode, rear) 1.78 Hz 1.64 Hz 1.54 Hz 2.86 Hz 2.91 Hz
^ 1  (low mode, rear) 9.7% 10.4% 10.5% 11.1% 11.8%

0 )2 2  (high mode, 
rear) 10.51 Hz 10.00 Hz 11.71Hz 14.17 Hz 14.91 Hz

^ (h ig h  mode, rear) 37.5% 41.1% 34.7% 46.2% 20.1%
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Table 9.14 Truck 13 Estimates

Parameter True
Value 0 Noise

10^ m 
Noise

10* m 
Noise

10^ m 
Noise

Front Axle Weight 99,900 N 99,962 N 99,943 N 99,691 N 100,243 N
Rear Axle Weight 117,400 N 117,394 N 117,453 N 116,338 N 117,064 N

Speed 25 m/s 25 m/s 25 m/s 25.1 m/s 25.1 m/s
Axle Spacing 8 m 8 m 8 m 8 m 8.1 m

Rn 
(low mode 

amplitude, front)
2.95x10*^

m
2.51x10'^

m
3.52x10*^

m
3.86x10^

m
4.59x10'^

m

R i2 
(high mode 

amplitude, front)
7.3x10'^ m 7.8x10'^ m 6.2x10'^ m 9.4x10^ m 9.9x10'^ m

(Dll (low mode, 
front) 1.89 Hz 1.65 Hz 1.51 Hz 3.16 Hz 3.85 Hz

4ii (low mode, 
front) 5.4% 5.2% 4.4% 5.0% 5.6%

(D12 (high mode, 
front) 10.41 Hz 10 .10 Hz 11.24 Hz 12.46 Hz 12.87 Hz

^ 1 2  (high mode, 
front) 19.2% 19.9% 18.0% 21.2% 24.6%

Rii
(low m(xle 

amplitude, rear)
3.64x10*^

m
3.19x10'^

m
2.74x10'^

m
4.83x10'^

m
1.72x10'^

m

R22 
(high mode 

amplitude, rear)
7.7x10'^ m 8.4x10'^ m 9.0x10'^ m 10.2x10'^

m 3.7x10 2 m

(O21 (low mcxle, rear) 1.72 Hz 1.85 Hz 1.91 Hz 1.51 Hz 1.50 Hz
^ 1  (low mode, rear) 5.5% 4.9% 4.2% 4.8% 3.1%

<^22 (high mcxle, 
rear) 10.40 Hz 10.27 Hz 10.05 Hz 14.78 Hz 17.07 Hz

^ (h ig h  mcxle, rear) 19.0% 20.3% 23.6% 23.8% 12.8%
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Table 9.15 Truck 14 Estimates

Parameter True
Value 0 Noise Noise

10* m 
Noise

10"* m 
Noise

Front Axle Weight 132,900 N 132,891 N 132,885 N 132,221 N 134,472 N
Rear Axle Weight 145,100 N 145,111 N 145,130 N 146,172 N 144,982 N

Speed 30 m/s 30 m/s 30.1 m/s 30 m/s 29.8 m/s
Axle Spacing 10 m 10 m 10 m 9.9 m 10.1 m

Ru 
(low mode 

amplitude, front)
3.02x10'^

m
3.26x10'^

m
2.28x10'^

m
4.01x10'^

m
4.74x10^

m

Ri2 
(high mode 

amplitude, front)
7.8x10*^ m 7.1x10*^ m 8.9x10’̂  m 9.0x10'^ m 5.1x10'^ m

On (low mode, 
front) 1.61 Hz 1.67 Hz 1.75 Hz 1.50 Hz 2.48 Hz

4ii (low mode, 
front) 6.2% 6.6% 5.7% 5.3% 3.2%

(D|2 (high mode, 
front) 11.27 Hz 12.12 Hz 10.58 Hz 14.03 Hz 10.00 Hz

4 i2  (high mode, 
front) 27.1% 26.3% 29.2% 29.8% 32.1%

R2.
(low mode 

amplitude, rear)
3.91x10'^

m
3.28x10^

m
4.51x10*^

m
2.50x10'^

m
2.17x10'^

m

R22 

(high mode 
amplitude, rear)

8.1x10*^ m 8.9x10'^ m 7.2x10*^ m 6.8x10'^ m 5.8x10*^ m

CÛ2 I (low mode, rear) 1.53 Hz 1.68 Hz 1.89 Hz 2.01 Hz 2.37 Hz
^ 2 1  (low mode, rear) 5.9% 5.2% 5.0% 4.7% 8.2%

0 )2 2  (high mode, 
rear) 11.26 Hz 11.60 Hz 12.28 Hz 12.64 Hz 14.86 Hz

^ (h ig h  mode, rear) 26.9% 28.0% 30.1% 21.4% 19.3%
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Table 9.16 Truck 15 Estimates

Parameter True
Value 0 Noise

10*® m 
Noise

10** m 
Noise

10“* m 
Noise

Front Axle Weight 132,900 N 132,897 N 132,878 N 132,294 N 135,501 N
Rear Axle Weight 157,200 N 157,308 N 157,271 N 158,403 N 158,173 N

Speed 25 m/s 25 m/s 25 m/s 25 m/s 25.1 m/s
Axle Spacing 10 m 10 m 9.9 m 10 m 10 m

Rii
(low mode 

amplitude, front)
3.16x10'^

m
3.51x10*2

m
3.88x10*2

m
4.15x10*2

m
2.14x10*2

m

R.2
(high mode 

amplitude, front)
7.9x10-2 m 7.6x10*2 m 6.9x10*2 m 6.2x10*2 m 10.4x10*2

m

to. I (low mode, 
front) 1.61 Hz 1.66 Hz 1.71 Hz 2.11 Hz 2.56 Hz

^ 1 1  (low mode, 
front) 6.2% 6.4% 6.7% 7.2% 7.9%

(0 . 2  (high mode, 
front) 11.27 Hz 11.76 Hz 12.26 Hz 10.02 Hz 13.71 Hz

^ 1 2  (high mode, 
front) 27.1% 26.6% 25.9% 29.2% 30.6%

R2.
(low mode 

amplitude, rear)

3.97x10-2
m

4.16x10-2
m

3.08x10*2
m

4.95x10*2
m

5.61x10*2
m

R22 

(high mode 
amplitude, rear)

8.4x10-2 m 9.0x10*2 m 9.6x10*2 m 7.0x10*2 m 10.4x10*2
m

©2 . (low mode, rear) 2.64 Hz 2.85 Hz 2.16 Hz 1.72 Hz 3.91Hz
(low mode, rear) 6.6% 6.9% 6.0% 5.6% 4.9%

© 2 2  (high mode, 
rear) 19.75 Hz 19.03 Hz 17.85 Hz 22.45 Hz 23.65 Hz

^ 2 2  (high mode, rear) 16.0% 16.9% 17.2% 19.1% 12.7%
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Table 9.17 Truck 16 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10* m 
Noise

10̂  m 
Noise

Front Axle Weight 150,100 N 150,356 N 150,276 N 150,943 N 148,192 N
Rear Axle Weight 178,174 N 178,252 N 173,344 N 177,429 N 175,367 N

Speed 35 m/s 35 m/s 34.9 m/s 34.9 m/s 34.9 m/s
Axle Spacing 8 m 8 m 8.1 m 8 m 8.2 m

Ru 
(low mode 

amplitude, front)
1.03x10*^

m
1.94x10'^

m
0.69x10'^

m
2.38x10'^

m
3.21x10^

m

R i2 
(high mode 

amplitude, front)
5.4x10'^ m 6.2x10'^ m 3.1x10'^ m 3.0x10'^ m 8.9x10*^ m

CD 11 (low mode, 
front) 1.66 Hz 1.84 Hz 2.20 Hz 1.50 Hz 2.41 Hz

4ii (low mode, 
front) 5.9% 6.2% 4.5% 7.1% 7.9%

(0 1 2  (high mode, 
front) 12.06 Hz 12.89 Hz 11.04 Hz 13.51 Hz 15.26 Hz

4 i2  (high mode, 
front) 37.9% 34.8% 30.5% 29.1% 29.0%

R21 

(low mode 
amplitude, rear)

1.28x10'^
m

2.12x10'^
m

2.86x10*^
m

0.68x10'^
m

0.53x10’̂
m

R22
(high mode 

amplitude, rear)
6.0x10 ^m 4.7x10 ^m 4.2x10'^ m 8.5x10^ m 9.7x10'^ m

t0 2 i (low mode, rear) 2.35 Hz 2.59 Hz 1.97 Hz 3.05 Hz 3.83 Hz
(low mode, rear) 7.7% 8.1% 8.3% 6.2% 5.8%

0 )2 2  (high mode, 
rear) 18.74 Hz 19.15 Hz 20.19 Hz 20.62 Hz 15.18 Hz

^ 2 2  (high mode, rear) 25.1% 23.7% 22.9% 28.7% 30.0%
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Table 9.18 Truck 17 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10* m 
Noise

10̂  m 
Noise

Front Axle Weight 98,000 N 97.990 N 97,965 N 97,647 N 99,343 N
Rear Axle Weight 98,000 N 97,994 N 98,026 N 98,135 N 95,562 N

Speed 25 m/s 25 m/s 25 m/s 25 m/s 24.9 m/s
Axle Spacing 6 m 6 m 6 m 6.1 m 6.1 m

Rii 
(low mode 

amplitude, front)

2.47x10^
m

2.89x10^
m

1.91x10'^
m

1.48x10'^
m

4.05x10^
m

R i2
(high mode 

amplitude, front)

1.26x10'^
m 2.0x10*^ m 2.2x10'^ m 0.8x10*^ m 3.1x10'^ m

Of) 11 (low mode, 
front) 1.91 Hz 1.79 Hz 1.62 Hz 2.38 Hz 2.89 Hz

^ 1 1  (low mode, 
front) 10.9% 11.3% 11.6% 8.7% 12.8%

( 0 1 2  (high mode, 
front) 11.16Hz 11.80 Hz 10.27 Hz 13.34 Hz 10.02 Hz

^ 1 2  (high mode, 
front) 41.8% 43.1% 39.6% 37.4% 48.2%

R21 
(low mode 

amplitude, rear)

2.62x10'^
m

2.22x10*^
m

3.17x10*^
m

3.54x10'^
m

1.07x10'^
m

R22 
(high mode 

amplitude, rear)

1.64x10*^
m 2.6x10*^ m 0.8x10'^ m 3.1x10'^ m 0.6x10'^ m

<021 (low mode, rear) 2.50 Hz 2.82 Hz 2.04 Hz 1.82 Hz 3.65 Hz
Ç21 (low mode, rear) 9.8% 9.2% 10.4% 10.7% 6.9%

0f)2 2 (high mode, 
rear) 15.27 Hz 14.35 Hz 13.96 Hz 19.26 Hz 10.16 Hz

^ 2 2  (high mode, rear) 30.3% 31.0% 31.7% 32.8% 25.7%
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Table 9.19 Truck 18 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10* m 
Noise

10̂  m 
Noise

Front Axle Weight 106,064 N 105,734 N 105,753 N 105,173 N 104,410 N
Rear Axle Weight 147,100 N 147.089 N 147,023 N 146,123 N 149.208 N

Speed 25 m/s 25 m/s 25 m/s 24.9 m/s 25 m/s
Axle Spacing 6 m 6 m 6 m 6.1 m 5.9 m

Ru 
(low mode 

amplitude, front)
2.28x10*^

m
2.71x10*^

m
2.82x10'^

m
3.14x10’̂

m
3.89x10'^

m

Ri2 
(high mode 

amplitude, front)
1.62x10'^

m 2.1x10*^ m 1.2x10'^ m 2.9x10'^ m 3.8x10'^ m

0 )11 (low mode, 
front) 1.78 Hz 1.64 Hz 1.91 Hz 1.50 Hz 3.20 Hz

4ii (low mode, 
front) 6.6% 6.9% 7.4% 7.8% 8.8%

0 )1 2  (high mode, 
front) 11.44 Hz 10.94 Hz 12.10 Hz 12.82 Hz 14.17 Hz

4 i2 (high mode, 
front) 29.7% 30.3% 28.2% 28.3% 34.0%

R21 
(low mode 

amplitude, rear)
2.81x10*^

m
2.42x10*^

m
1.86x10'^

m
1.72x10*^

m
4.37x10'^

m

R22 

(high mode 
amplitude, rear)

1.52x10'^
m 2.0x10'^ m 2.4x10'^ m 0.7x10 3.8x10'^ m

0 )21 (low mode, rear) 1.87 Hz 2.06 Hz 1.62 Hz 2.68 Hz 1.50 Hz
^ 2 1  (low mode, rear) 12.3% 12.0% 11.1% 10.4% 16.3%

0 )2 2  (high mode, 
rear) 13.34 Hz 13.92 Hz 12.28 Hz 14.86 Hz 10.13 Hz

^ 2 2  (high mode, rear) 19.7% 20.6% 21.3% 17.4% 24.5%
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Table 9.20 Truck 19 Estimates

Parameter True
Value 0 Noise

10^ m 
Noise

10* m 
Noise

10"* m 
Noise

Front Axle Weight 97,000 N 97,028 N 97,041 N 97,285 N 97,285 N
Rear Axle Weight 152,185 N 152,282 N 152,328 N 152,564 N 152,403 N

Speed 35 m/s 35 m/s 35 m/s 35.2 m/s 35.1 m/s
Axle Spacing 5 m 5 m 5 m 5.1 m 5.1 m

Rn
(low mode 

amplitude, front)
2.41x10*^

m
2.06x10'^

m
2.95x10'^

m
1.30x10’̂

m
0.95x10'^

m

Ri2
(high mode 

amplitude, front)
1.79x10’̂

m
2.20x10'^

m
0.86x10'^

m
3.34x10'^

m
3.81x10*^

m

(Oil (low mode, 
front) 2.09 Hz 2.37 Hz 1.68 Hz 3.26 Hz 1.50 Hz

^ 1 1  (low mcxle, 
front) 7.4% 6.8% 7.9% 6.1% 5.4%

(0 1 2  (high mcxle, 
front) 12.49 Hz 11.52 Hz 11.04 Hz 14.37 Hz 15.85 Hz

412 (high mode, 
front) 49.8% 51.1% 53.0% 53.8% 54.2%

R21 
(low mcxle 

amplitude, rear)
3.18x10'^

m
3.72x10*^

m
2.36x10*^

m
2.18x10’̂

m
5.23x10*^

m

R22  
(high mode 

amplitude, rear)
1.46x10^

m
1.85x10'^

m
0.84x10'^

m 1.0x10'^ m 0.68x10'^
m

CO21 (low mcxle, rear) 1.83 Hz 1.61 Hz 2.37 Hz 2.46 Hz 3.04 Hz
^ 2 1  (low mode, rear) 5.9% 6.3% 5.2% 4.9% 7.2%

CO2 2 (high mcxle, 
rear) 13.38 Hz 14.17 Hz 14.31 Hz 11.75 Hz 11.32 Hz

^ 2 2  (high mode, rear) 34.1% 35.7% 33.2% 32.6% 30.3%
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Table 9.21 Truck 20 Estimates

Parameter True
Value 0 Noise

10̂  m 
Noise

10'* m 
Noise

10̂  m 
Noise

Front Axle Weight 98,000 N 98,017 N 97,991 N 98,049 N 98,680 N
Rear Axle Weight 124,100 N 124,173 N 124,194 N 123,772 N 122,392 N

Speed 35 m/s 35 m/s 34.9 m/s 35 m/s 34.9 m/s
Axle Spacing 5 m 5 m 5 m 4.9 m 5.1 m

Rii
(low mode 

amplitude, front)

2.78x10'^
m

3.46x10']
m

3.61x10']
m

1.82x10']
m

1.47x10']
m

R i2 
(high mode 

amplitude, front)
2.03x10'^

m
2.82x10']

m
1.52x10']

m
3.26x10']

m
1.14x10*]

m

(Oil (low mode, 
front) 1.79 Hz 1.92 Hz 2.23 Hz 1.52 Hz 2.68 Hz

4u (low mode, 
front) 6.0% 6.4% 6.6% 5.0% 4.6%

(0 1 2  (high mode, 
front) 10.38 Hz 10.04 Hz 11.39 Hz 12.41 Hz 12.79 Hz

^ 1 2  (high mode, 
front) 30.3% 31.2% 28.6% 33.4% 26.2%

R21 
(low mode 

amplitude, rear)
3.36x10']

m
3.02x10']

m
4.26x10']

m
2.86x10']

m
2.14x10']

m

R22
(high mode 

amplitude, rear)
1.12x10']

m
1.41x10']

m
1.74x10']

m
0.45x10']

m
3.18x10']

m

(021 (low mode, rear) 1.70 Hz 1.84 Hz 1.53 Hz 2.38 Hz 2.86 Hz
^ 2 1  (low mode, rear) 6.9% 6.4% 5.5% 7.8% 8.3%

0 )2 2  (high mode, 
rear) 11.69 Hz 12.02 Hz 10.78 Hz 12.81 Hz 13.42 Hz

^ (h ig h  mode, rear) 36.1% 37.0% 37.6% 38.3% 29.5%
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9.7 Conclusions and Contributions

The identification of truck parameters using the dynamic bridge and dynamic 

truck models is the culmination o f the work described in the previous chapters. The 

algorithm described in Chapter 9 cannot only determine truck axle weights from the 

deflection profiles, but also gives accurate information about the dynamic properties o f 

the truck, including the natural fi^quencies and damping ratios of each axle. The 

transformation of the truck system to depend on the parameters in the assumed 

homogeneous solution allows the integration o f the coupled bridge/truck equations o f 

motion without the introduction o f additional optimization parameters. This 

transformation also eliminates the spring constant as an optimization parameter since 

it can be determined from the other terms in the truck model.

Twenty simulated trucks were used to evaluate the performance of the algorithm. 

Their configurations are given in Table 3.2. The front axle weights of the trucks ranged 

from 9.7xlO'*N to 1.32x10^, and the rear axle weights ranged from 9 .8x10^  to 

1.93x10^. The natural frequencies of each axle ranged fiom 1.5 Hz-2.6 Hz (low mode) 

and 10.4 Hz-18.7 Hz (high mode). The damping ratios varied from 5.4%-12.9% (low 

mode) and 16.7%-50% (high mode). Different initial conditions were also used with each 

axle.

Estimates of the axle weights for the different levels o f measurement noise are 

given in Figures 9.3-9.12 and Table 9.1. The maximum magnitude o f the percent error in 

axle weight estimate for zero measurement noise was 0.019%. With the addition o f 

measurement noise of ± lxl0^m , estimates o f  axle weights remained within 0.03%. For
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measurement noise o f ±lxlO*^m, the maximum error in axle weight estimates was 0.6%, 

and for noise o f tlx lO ^m , the error remained below 1.15%.

Estimates o f the dynamic properties of each axle were also quite accurate. For 

zero measurement noise, the natural frequency and damping ratio o f the low mode could 

be estimated to within 0.5 Hz and 0.8% (of critical damping) respectively. The properties 

of the high mode could also be estimated; the natural frequency could be determined to 

within 1.3 Hz and the damping ratio to within 3.1% (of critical damping).

These dynamic properties could also be found when measurement noise was 

added to the deflection profiles. For measurement noise o f ±lxlO*^m, the natural 

frequency and damping ratio of the low mode could be found within 0.85 Hz and 2.1% 

(of critical damping) respectively. The high mode could be identified to within 1.9 Hz 

and 3.4% (of critical damping). For measurement noise of ±lxlO'^m, the low mode could 

be foimd to within 1.8 Hz and damping to within 3% (of critical damping). The high 

mode could be identified to within 3.6 Hz and damping ratio to within 8.4%. For the 

largest measurement noise of ±lxl0^m , the low mode’s natural frequency and damping 

ratio could be determined to within 2 Hz and 3.6%, and the high mode to within 4.4 Hz 

and 14% (of critical damping).

The ability to identify not only axle weights, but also the dynamic properties of 

each axle is unique to this algorithm and provides useful information regarding the 

passing truck. Assuming a form of the homogeneous solution o f each axle and then 

transforming the truck equations of motion to depend on the parameters in this solution 

allows the integration o f the coupled system inside the optimization routine. The 

integration produces the bridge deflection profiles due to each estimate of the truck
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parameters at each iteration of the optimization routine. This transformation and 

identification technique could also be applied to other systems with similar behavior.
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Chapter 10 

Conclusions and Future Work

10.1 Conclusions

The goal of this dissertation was to develop an algorithm to estimate truck axle 

weights to within 1% using the deflection o f a bridge due to that truck. Currently there 

are bridge weigh-in-modon (WIM) systems in limited use, but they are only able to 

predict axle weights to within 10-15%. Other authors have developed algorithms to 

determine axle weights, but they do not predict the dynamic properties o f the truck or the 

interaction between the truck and the bridge. The algorithm described in this work can 

not only predict axle weights much more accurately than the other methods, but also 

provides useful information on the dynamic properties of the truck. The addition of 

measurement noise to the deflection profile is also examined to more accurately represent 

a realistic measured signal. Measurement noise of magnitude ±lxlO'^m to ± lx l0^m  was 

added to assess the algorithm’s performance using imperfect deflection measurements.

To identify the truck crossing the bridge, it was first necessary to accurately 

represent the coupled bridge/truck system, including the interaction between the two. The 

coupled bridge/truck system of equations are developed and integrated to determine the 

deflection o f the bridge due to the force o f the truck. This representation o f the 

bridge/truck system determined the interaction between the two explicitly rather than 

approximating it as is done by many other authors.
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Several assumptions were made throughout this work. First, it was assumed that 

the truck traveled at a constant speed across the bridge. It was also assumed that the 

truck’s total time on the bridge was known-that the entrance time o f the 6ont axle and the 

exit time of the rear axle were determined by another source. This allowed the truck’s 

speed to be determined from the truck’s total time on the bridge and the axle spacing and 

eliminated speed as an optimization parameter. It was also assumed that the material and 

bending properties of the bridge were known precisely.

While the accurate estimation o f the truck’s axle weights was the primary goal o f 

this work, it became necessary to estimate the dynamic properties o f  each axle as well. 

An approximate model of the force applied by each axle was assumed which consisted of 

the superposition of the truck’s static weight and the homogeneous solution of the 

differential equations of motion o f the ‘quarter-car’ model. The homogeneous solution 

was the superposition o f two damped oscillatory modes in which the natural frequencies, 

damping ratios, and initial conditions were unknown. This approximate force model was 

then applied to the coupled bridge/truck system. The system was integrated to determine 

the interaction between the two and the response o f the bridge.

Because the bridge/truck system of equations had to be integrated inside the 

optimization routine, it was necessary to transform the truck system of equations from 

depending on physical parameters (stifhiess, damping, and mass) to the modal parameters 

expressed in the homogeneous solution. This transformation allowed the integration o f 

the truck equations without adding additional optimization parameters. Using this 

transformed system, the natural frequencies, damping ratios, and initial conditions of
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each mode of each axle were unknown, as well as the static axle weight and axle spacing. 

Each of these parameters was estimated by the optimization routine.

Twenty simulated trucks were used to evaluate the optimization routine’s 

performance. The configuration of each of these trucks is given in Table 3.2. The front 

axle weights o f the trucks ranged from 9.7xlO‘*N to 1.32x10^ and the rear axle weights 

ranged from 9.8xlO'*N to 1.93x10^. The lower mode’s natural frequencies ranged from 

1.5-2.6 Hz and the damping ratios ranged fix>m 5.4%-12.9% (of critical). The higher 

mode’s natural frequencies ranged from 10.4-18.4 Hz and the damping o f this mode 

ranged from 16.7%-50%. The axle spacing varied from 4-lOm and the speed from 25-35 

m/s.

With zero measurement noise, the estimates of axle weights were very accurate. 

The average magnitude of the percent error in weight estimates was 0.007% with 

maximum errors less than 0.019%. The dynamic properties of each axle were also 

determined very accurately. The frequency and damping of the lower mode could be 

determined to within 0.5 Hz and 0.8% respectively. The high mode’s frequency and 

damping could be found to within 1.3 Hz and 3.1%.

Accurate estimates of the truck parameters could also be found when 

measurement noise was added to the deflection profile. For measurement noise of 

magnitude ± lx l0^m , the error in axle weight estimates remained below 0.029%. The 

natural frequency o f the low mode could be found to within 0.85 Hz and the damping to 

within 2.1% For the high mode, the fiequency could be found to within 1.9 Hz and the 

damping to within 3.4%. For the largest level o f measurement noise, ±lxlO"*m, the axle 

weights could be detennined to within 1.15%. The fiequency and damping o f the low
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mode could be found to within 2 Hz and 3.6%. The high mode’s frequency and damping 

could be determined to within 4.4 Hz and 14%.

One limitation o f this method is the time required to identify each truck. Inside 

the optimization routine, the coupled bridge/truck equations must be integrated with each 

set of approximate truck parameters. This integration requires approximately 5 seconds to 

complete. The optimization routine requires as many as 7,000 iterations to accurately 

identify all o f the relevant truck parameters, resulting in 10-12 hours of computation time 

per truck. This time scale makes real-time identification o f  truck parameters impossible, 

although off-line computations would still be feasible.

The final stage o f the algorithm described in Chapter 9 was developed using a 

series o f simpler models which are described in Chapters 6-8. The first treated the static 

bridge and the static, or moving point force, model o f the truck. The use o f a random 

sampling method eliminated the problems associated with the discontinuous nature o f the 

bridge/truck system and resulted in weight estimates with error less than 4.5x10"^% for 

zero measurement noise.

The second combination o f models used the dynamic bridge model and the static 

truck model. It was found in this section that the use o f three rather than one 

measurement location was necessary to estimate axle weights without prior knowledge o f 

the truck’s speed and axle spacing. Using the three deflection profiles to formulate the 

objective function resulted in less than 0.003% error in axle weight estimates.

The third combination of models was the first to use the dynamic, or quarter-car’ 

model o f the truck. The static bridge model was used to simplify the system for this stage. 

Using these models, the damped oscillatory form o f the homogeneous solution o f the
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truck motion was adopted and used to represent the force imparted by the truck. An 

approximation of the interaction effects was used to eliminate the need to integrate the 

equations o f motion. Using the three measurement locations and the approximate force 

model, the axle weights could be estimated to within 0.018%. Accurate estimates o f the 

dynamic properties o f the truck were also obtained and are given in Chapter 8.

In conclusion, the work described in this dissertation has two significant 

contributions. The first is the transformation o f the truck system from the physical 

parameters to its modal ones. This transformation allowed the integration of the coupled 

bridge/truck equations without the requiring additional optimization parameters. Not only 

was such a transformation useful in this work, the method could be applied to other 

systems with similar properties.

The second major contribution is the ability to estimate not only axle weights very 

accurately, but also to be able to gain very good estimates o f the dynamic properties of 

the truck as well. The axle weight estimates are very accurate even with the addition of 

measurement noise, but the ability to predict the natural fi-equencies and damping ratios 

of each axle is unique to this work.

10.2 Future Work

Several things could be done to expand upon the work described here. One of the 

most obvious would be to eliminate the need to measure the truck’s total time on the 

bridge. The use o f more complex models of both the truck and the bridge could also be 

explored. Plate-type bridge models which include the torsional behavior of an actual 

bridge could be useful in implementing such a  WIM system on a bridge with multiple or
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off-center lanes. Truck models which include pitch and/or roll could be used to more 

accurately represent the load-sharing properties between the axles. Three-dimensional 

truck models that model each end of each axle separately could also be used, although the 

computational complexity o f such a model could outweigh the benefit of greater detail.

Although the initial conditions of the truck entering the bridge were included in 

this work, the surface roughness o f the bridge was not. The addition of surface roughness 

to the bridge model could be explored to determine whether the superposition of 

solutions used in the approximate truck model would be adequate when the truck was 

excited by not only the bridge deflection, but also small disturbances due to the variation 

in bridge surface.

Probably the most beneficial addition to this work would be the development of 

an approximate closed form solution to the coupled dynamic bridge/dynamic truck 

system. In the static bridge/dynamic truck case, an approximate solution for the 

deflection under each axle was used to determine the driven part of the truck’s motion, 

and an analytic expression was evaluated to obtain the deflection profiles. An acceptable 

approximate solution was not found in this work for the dynamic bridge/dynamic truck 

case which could eliminate the need to integrate the coupled bridge/truck equations at 

each iteration o f the optimization routine. An approximate solution for the driven portion 

of the truck’s motion or the deflection profile due to the truck would greatly reduce the 

time required to identify each truck and make the algorithm more practical for real-time 

calculations.
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