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Abstract 

Phased-array radar is being considered as a potential future replacement 

technology for the current operational Weather Surveillance Radar 1988 Doppler system. 

One of the most notable differences in these weather radar systems is the temporal 

resolution. With phased-array radar collecting volumetric updates 4–6 times more 

frequently, the operational impacts of rapidly-updating radar data on forecasters’ warning 

decision processes must be assessed. The Phased Array Radar Innovative Sensing 

Experiment (PARISE) was therefore designed to examine forecasters’ warning 

performance and related warning decision processes during use of ~1-min radar updates 

in simulated real-time warning operation scenarios. While the 2010, 2012, and 2013 

PARISE studies reported encouraging findings for forecasters’ use of these data, each of 

these studies were limited in terms of sample size and the chosen methods. Additionally, 

important research questions that had not yet been explored remained unanswered. To 

address these limitations and investigate new research questions, thirty National Weather 

Service forecasters were invited to the NOAA Hazardous Weather Testbed to participate 

in the 2015 PARISE. Participating forecasters completed three components of this study: 

1) the traditional experiment, 2) an eye-tracking experiment, and 3) a focus group.  

The first component was designed to build on previous work by assessing and 

comparing forecasters’ warning performance and related cognitive workload when using 

1-min, 2-min, and 5-min phased-array radar updates during simulated warning 

operations. This traditional experiment was comprised of nine weather events that varied 

in terms of weather threat. Next, forecasters’ eye movement data were observed as they 

each worked a single weather event with either 1-min or 5-min phased-array radar 
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updates. This work was motivated by an eye-tracking pilot study, in which a forecaster’s 

eye movement data was found to correspond meaningfully to their retrospective recall 

data that described their warning decision process. The 2015 PARISE eye-tracking 

experiment allowed for an objective analysis of how forecasters interacted with a radar 

display and warning interface for a single weather event, and more specifically, supported 

an investigation of whether radar update speed impacts how forecasters distribute their 

attention. Lastly, six focus groups were conducted to enable forecasters to share their 

experiences on their use of rapidly-updating phased-array radar data during the 

experiment. The findings from the focus groups provide motivation for the integration of 

rapidly-updating radar data into the forecast office and highlight some important 

considerations for successful use of these data during warning operations. The work 

presented in this dissertation was approved by the University of Oklahoma’s Office of 

Human Research Participant Protection Institutional Review Board under projects #5226 

and #5580.
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Chapter 1 

Introduction 

1.1 Weather Warnings 

Today, the official agency charged with issuing weather warnings in the United 

States is the National Weather Service (NWS). Comprised of 122 Weather Forecast 

Offices (WFOs), the NWS is responsible for collecting and processing billions of 

atmospheric observations and issuing approximately 1.5 million forecasts and 50,000 

weather warnings each year (NOAA 2017a). Of these weather warnings, the past decade 

has seen the NWS issue a yearly average of 3,400 tornado warnings and 22,800 severe 

thunderstorm warnings (Harrison and Karstens 2017). Forecasters’ decisions to issue 

weather warnings are based on their assessments of observations in real-time and their 

anticipation of severe weather in the near future (Brotzge and Donner 2013). A 

forecaster’s attention during warning operations is therefore largely given to weather 

radar data because it provides observations of how storms are evolving in time and space. 

While interrogating radar data, forecasters apply conceptual models that are developed 

through education, training, and experience to interpret weather radar signatures and 

understand their importance.  

Radar was first used for weather surveillance during World War II, and since, 

weather radar coverage across the United States has increased substantially and 

technological advancements have enhanced the observing capabilities of these systems. 

Notably, the installation of the Weather Surveillance Radar 1998 Doppler (WSR-88D) 

system contributed to past improvements in forecasters’ abilities to detect severe weather 

hazards (Friday 1994). In 1986, prior to the installation of the WRS-88D, the average 
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warning lead time for tornadoes was approximately 5 minutes and only 25% of tornado 

events were warned on (Brotzge and Donner 2013). After the WSR-88D network was 

installed, the proportion of tornadoes warned on increased to 75% and the average tornado 

warning lead time increased to 13 minutes (Erickson and Brooks 2006). These results, 

however, are influenced by the fact that the NWS assigns a warning lead time of zero 

minutes to unwarned tornado events. If these missed events are removed from the 

analysis, average tornado warning lead time remained steady throughout 1986–2004 at 

approximately 18.5 minutes (Erickson and Brooks 2006). This finding demonstrates that 

the longer average tornado warning lead time that followed the WSR-88D installation 

was due to fewer tornado events being missed and an improvement in the probability of 

detection.  

1.2 Radar Observing Limitations 

In more recent years, improvements in warning performance have plateaued and 

unwarned instances of severe weather hazards remain. In an effort to understand why 

these unwarned instances still occur, Quoetone et al. (2009) carried out a root cause 

analysis of 146 unwarned tornadoes that occurred during 2004–2009. Consulting NWS 

forecasters, Quoetone et al. (2009) found that in over two thirds of these cases, missed 

tornado events were due to radar-related issues such as sampling limitations and not 

detecting radar signatures indicative of tornadogenesis. Both NWS forecasters and 

broadcast meteorologists have also reported that unwarned tornado and severe weather 

events often occur due to insufficient information (LaDue et al. 2010). Specifically, the 

4–6 minute volumetric update rate of the WSR-88D was reported as a limitation for 

observing storms transitioning into tornadic states. Furthermore, operational 
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meteorologists reported that these temporal limitations can make interrogation of 

nontornadic severe thunderstorm threats challenging too. The onset of a downburst in 

which mid and upper-level precursor signatures are difficult to detect is just one example 

of this challenge (LaDue et al. 2010).   

To address the temporal sampling limitations of the WSR-88D, new dynamic 

scanning methods have been developed and implemented into NWS operations, including 

Automated Volume Scan Evaluation and Termination (AVSET; Chrisman et al. 2009) 

and Supplemental Adaptive Intravolume Low-Level Scan (SAILS; Crum et al. 2013). 

The AVSET method terminates a volume scan and returns to the lowest elevation once 

the radar beam reaches the top of the precipitating cloud, meaning that storms that are 

shallower or farther from the radar will have faster volumetric updates. However, this 

method does not guarantee faster volumetric updates for storms that are deeper or closer 

to the radar. The SAILS method uses a scanning pattern that returns to the lowest level in 

the middle of the volume to provide one supplemental scan of the lowest elevation. More 

recently, the Multiple Elevation Scan Option-SAILS (MESO-SAILS; Chrisman 2014) 

was designed so that the operator can select two, three, or four supplemental scans of the 

lowest elevation during a volumetric update. The tradeoff for these more frequent low-

level scans is an increase in overall volumetric update time, which in turn reduces the 

temporal sampling of mid and upper-level radar signatures.  

An evaluation of forecasters’ use of AVSET, SAILS, and MESO-SAILS has not 

been completed following their implementation into NWS operations, and their impact 

on warning lead time is therefore unknown. However, given that these scanning methods 

cannot address radar temporal sampling issues for all weather scenarios, limitations of 
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the WSR-88D system continue to hinder detection of rapidly-evolving severe weather. 

Furthermore, the initial improvement in warning performance owing to the 

implementation of the WSR-88D has not continued in recent years. This plateauing trend 

in lead time limits the NWS’s ability to serve a rapidly growing and changing user 

community that, as described in a recent National Academy of Sciences (2012) report, 

expects “continuous improvement in public safety and property protection related to 

severe weather.”  

Addressing the limitations of the current radar system is one way to improve 

warning performance beyond today’s capability. Given the age of the WSR-88D network 

and the lengthy process required for the development, testing, and deployment of a new 

system, considerations for a next generation radar network are already underway. Efforts 

have been largely focused towards phased-array radar (PAR) technology, which through 

electronic beam steering can scan the atmosphere with greater versatility than the WSR-

88D. While the National Oceanic and Atmospheric Administration (NOAA) National 

Severe Storms Laboratory is investigating the feasibility of a multifunction S-band PAR 

network that will simultaneously meet both aircraft and weather surveillance needs (Zrnić 

et al. 2007; Stailey and Hondl 2016), the Engineering Research Center for Collaborative 

Adaptive Sensing of the Atmosphere is exploring the possibility of replacing the WSR-

88D system with a dense network of ~10,000 X-band PARs that would be positioned on 

already-existing infrastructure across the contiguous United States (McLaughin et al. 

2009).  
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1.3       Integrating New Technology 

Upon review of the NWS Modernization and Associated Restructuring, the 

National Academy of Sciences (2012) outlined some of today’s key challenges for 

providing outstanding weather service to the United States. One of these key challenges 

is to keep pace with quickly changing scientific and technological advancements. In 

response to this challenge, the National Academy of Sciences (2012) identified the need 

for operations-related research as a priority, with both research to operations and 

operations to research activities leading the way. This research, for example, would focus 

on the expected increase in the types and amounts of data that forecasters will receive 

(e.g., from radar, satellites, and numerical models) that need to be integrated effectively 

for successful communication of weather hazards. With PAR being a likely candidate for 

replacement of the current WSR-88D system, research to understand how rapid radar 

temporal sampling capabilities will impact forecasters’ warning decision processes is 

essential. Forecasters will likely need to adapt how they process information and make 

warning decisions, and to guide this adaptation we must work to understand how 

forecasters will interact with the data.  

1.4 The Phased Array Radar Innovative Sensing Experiment: Past 

Findings, Limitations, and Unanswered Questions 

The NOAA National Severe Storms Laboratory’s research PAR, which was 

located at the National Weather Radar Testbed in Norman, Oklahoma until May 2016 

(Fig. 1.1) (Forsyth et al. 2005), has provided the opportunity to conduct behavioral 

research focused on NWS forecasters’ use of PAR data. Loaned from the United States’ 

Navy and adapted for weather use, this military PAR has collected radar data on 



6 

 

numerous severe and tornadic thunderstorms in central Oklahoma. These archived 

weather cases have been used to assess impacts of rapidly-updating PAR data on NWS 

warning performance and related warning decision processes during the Phased Array 

Radar Innovative Sensing Experiment (PARISE).  

 
Figure 1.1. The NOAA National Severe Storms Laboratory research PAR located at the 

National Weather Radar Testbed in Norman, Oklahoma (Photo courtesy of NOAA 

National Severe Storms Laboratory). 

 

Prior to the work presented in this dissertation, the 2010, 2012, and 2013 PARISE 

studies investigated the impacts of rapidly-updating PAR data for specific weather 

scenarios. In each of these studies, twelve NWS forecasters were invited to visit the 

NOAA Hazardous Weather Testbed to participate in simplified warning operation tasks 

in simulated real-time. During these tasks, only reflectivity, velocity, and spectrum width 

PAR data were made available, and forecasters were asked to work these events like they 

would if they were in their WFOs. In each study, forecasters’ warning lead time and 

verification statistics were calculated, and a variety of qualitative research methods were 

used to learn about their warning decision processes. 

1.4.1 Warning Performance 

Given that a known challenge within the NWS is providing warning lead time for 

weak and short-lived tornadoes, the first PARISE focused on paired forecasters’ warning 

decisions for an event comprised of two supercells, of which one produced an EF1-rated 
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tornado lasting only 3 minutes. This experiment found that forecasters using 43-s updates 

achieved longer tornado warning lead times than those using 4.5-min updates, but use of 

these 43-s data also resulted in a higher number of false alarms (Heinselman et al. 2012). 

The 2012 PARISE participants worked four weather events independently with 1-min 

PAR volumetric updates. Two of these events produced weak tornadoes, while the other 

two were null with respect to tornadoes and were chosen to further examine possible 

issuance of false alarm warnings. Forecasters’ warning performance results during this 

study included a 20-min median tornado warning lead time (which exceeded the national 

average lead time for EF0/EF1 tornadoes by 7 min), and a probability of false alarm score 

better than chance (i.e., <0.5) for all but one forecaster (Heinselman et al. 2015). The 

efforts of PARISE were extended to severe hail and wind events in the 2015 PARISE, 

where forecasters’ severe thunderstorm warning lead time was found to be statistically 

significantly longer during use of 1-min PAR updates compared to 5-min PAR updates 

(21.5 min vs. 17.3 min) (Bowden et al. 2015).  

Improvements in forecasters’ warning performance during use of rapidly-

updating PAR data during the 2010, 2012, and 2013 PARISE studies are promising. 

However, to build on these earlier efforts, limitations in the chosen experimental designs 

of these past studies need to be addressed and research questions that have gone 

unanswered must be investigated. A limitation in each of these studies is sample size, 

both in terms of the number of participating forecasters and the number of cases that were 

worked. Additionally, the cases worked in each study focused on specific weather threats, 

which is unlike real-world operations where forecasters observe a variety of weather 

threats and storm types. To improve the generalizability of findings, the sample size of 
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participants and the sample size of cases worked were increased in the traditional 

experiment component of the 2015 PARISE (Chapter 3; Wilson et al. 2017). The increase 

in the number of cases worked allowed for a variety of weather events to be introduced 

in the 2015 PARISE experimental design. In addition to the sample size limitation, prior 

studies only exposed forecasters to one of two temporal resolutions of radar data. 

However, forecasters have expressed interest in viewing 2-min PAR updates (Bowden 

and Heinselman 2016). Since forecasters’ needs should drive radar requirements, use of 

this temporal resolution was also tested. Finally, the impact of rapidly-updating radar data 

on forecasters’ cognitive workload is an important research topic that has not been 

previously considered. Addressing this topic is particularly important for ensuring that an 

increase in available radar data will not be detrimental to forecasters’ warning 

performance and overall well-being. Therefore, the Instantaneous Self-Assessment tool 

was used to obtain forecasters’ subjective ratings of their experienced cognitive 

workload.  

1.4.2  Warning Decision Process 

Learning about forecasters’ warning decision processes has been a goal of 

PARISE from the very beginning. In the 2010 PARISE, audio and video recording of 

paired forecasters’ activities and interactions captured the complex nature of their 

decision making due to different levels of experience, use of conceptual models, 

confidence, tolerance of missed events, perceived threats, and software issues 

(Heinselman et al. 2012). However, the accuracy of the observational data and the 

subjectivity inherent in the analysis process limited the reliability of the qualitative 

findings. Therefore, a cognitive task analysis method was applied in the 2012 and 2013 
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PARISE studies (Heinselman et al. 2015; Bowden and Heinselman 2016). Following the 

Recent Case Walkthrough procedure (Hoffman 2005), forecasters watched a playback 

video of their onscreen activity from a case they had just worked and recalled each minute 

what they were seeing, thinking and doing. An important finding from the recall data 

collected in the 2012 PARISE was that forecasters achieving above average tornado 

warning lead time applied conceptual models dependent on observations of mesocyclone 

trends seen in 1-min PAR update scans (Heinselman et al. 2015). Had these forecasters 

been using conventional ~5-min radar updates, these trends would have been difficult to 

observe and warning decision would likely have been delayed.  

The recall data collected in the 2013 PARISE was analyzed within a situational 

awareness framework and thematically coded for perception, comprehension, and 

projection (Endsley 1995; Bowden and Heinselman 2016), and the frequency of these 

codes across the control (5-min PAR updates) and experimental (1-min PAR updates) 

groups was compared. While the groups did not differ in projection, the experimental 

group made statements of comprehension more often and recalled statistically 

significantly more perceptions than the control group (Bowden and Heinselman 2016). 

Given the superior warning performance of the experimental group in this study, we 

hypothesize that their higher number of perceptions resulted in the improved quality of 

their comprehensions and projections. This hypothesis is supported by evidence of 

experimental participants making more mastery decisions (i.e., confident and correct) 

than control participants during this study (Bowden et al. 2015). 

Large amounts of qualitative data have been collected through use of the Recent 

Case Walkthrough procedure, and these data have provided new insight into forecasters’ 



10 

 

warning decision processes during use of rapidly-updating radar data. Although these 

data have proved to be valuable for developing an understanding and appreciation of 

forecasters’ approaches to warning operations, the chosen method has notable limitations 

related to both data collection and data analysis. First, forecasters’ retrospective recalls 

are subject to inaccuracies, incompleteness, and biases. Second, making sense of the 

masses of qualitative data that forecasters provide is extremely challenging and labor 

intensive. 

With these limitations in mind, a method to collect accurate and objective data on 

forecasters’ cognitive processes during simulated real-time experiments was sought. 

Since many research domains (e.g., medicine and aviation) have successfully used eye 

tracking as a means for studying experts’ cognitive processes during complex tasks, the 

possibility of using this method within the PARISE setting to better understand 

forecasters’ cognitive processes through their distribution of visual attention was 

explored. A pilot study was first conducted to test whether a single NWS forecaster’s eye 

movement data could be collected within the desired experimental set up and to examine 

whether the eye movement data makes sense given what we have already learned about 

forecasters’ warning decision processes (Chapter 4; Wilson et al. 2016). Eye-tracking 

methods applied in the pilot study were then extended to a larger-scale experiment, where 

differences in forecasters’ visual attention across a radar data display and warning 

interface were analyzed both in terms of individual differences and with respect to 

forecasters’ use of 1-min vs. 5-min PAR updates (Chapter 5). Both retrospective recall 

and onscreen video data were also collected during the eye-tracking experiment to 

provide contextual understanding when interpreting forecasters’ eye movement analyses.  
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1.4.3 Forecasters’ Feedback  

The impacts of rapidly-updating radar data on forecasters’ warning decision 

processes have been studied extensively in prior studies. However, of these studies, only 

the 2013 PARISE obtained forecaster feedback following completion of all tasks, and 

this feedback was based on their use of a single temporal resolution of radar data (Bowden 

and Heinselman 2016). The 2015 PARISE was unique in that forecasters were exposed 

to 1-min, 2-min, and 5-min PAR updates for a variety of weather events, and were thus 

positioned to provide balanced feedback on these three temporal resolutions. Focus 

groups were therefore conducted during the 2015 PARISE to gather forecasters’ 

reflections and opinions on their use of rapidly-updating PAR data for different types of 

weather events (Chapter 6). Findings from these focus groups also highlight what 

considerations and concerns forecasters have for use of these data in future warning 

operations, which help to inform future research, training, and implementation guidelines.  

1.5  Dissertation Outline 

This dissertation begins with a background section that covers topics including 

weather radar, studying decision making in weather forecasting, measuring mental 

workload, and eye-tracking research methods (Chapter 2). Since the latter two topics are 

unfamiliar to the everyday meteorologist, this background section is intended to prepare 

the reader for applications of these new concepts in later chapters. Chapter 3 reports on 

the traditional experiment component of the 2015 PARISE, which was designed to build 

directly on the efforts of the 2010, 2012, and 2013 studies. Initial exploration of eye-

tracking research methods within meteorology is presented in Chapter 4, with the large-

scale eye-tracking experiment of the 2015 PARISE following in Chapter 5. The final 
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research portion of this dissertation describes the focus group component of the 2015 

PARISE, which provides forecasters with an opportunity to voice their opinions as an end 

user, and in turn allows the operational community to inform research (Chapter 6). 

Chapter 7 brings together each of the research components of this dissertation to 

summarize the work that has been completed, present final conclusions, and identify 

unanswered questions and future research opportunities. 
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Chapter 2 

Background 

2.1 Radar  

2.1.1  The Beginnings of Weather Radar 

The history of weather radar is rooted in the World War II era, in which 

applications of radar were intended to serve the purpose of detecting enemy aircraft. With 

the development of the cavity magnetron, military personnel soon realized that in addition 

to observing aircraft, microwave radar (with S-band and X-band wavelength) could sense 

precipitation (Fletcher 1990; Atlas and Ulbrich 1990). Although weather echoes were 

considered a nuisance throughout much of the war, some efforts were made to understand 

how they related to atmospheric phenomena. The first known publication of this topic 

examined weather radar observations from 1942–1943 and qualitatively described 

different types of precipitation sampled as well as how echoes differed for S-band and X-

band observations (Bent 1943). Furthermore, the Air Weather Service recognized the 

usefulness of radar for making flight decisions, and therefore began collecting routine 

radar observations to save time and money by cancelling or redirecting flights during 

hazardous weather conditions (Best 1973). Owing to the realized benefits of radar for 

tracking weather, training programs specializing in radar meteorology were developed 

and completed by approximately 7,000 officers at the Air Corps School and within 

universities (Byers 1970; Hitschfield 1986).  

Interest in using radar for meteorological applications increased post-World War 

II, leading to the formation of several organized projects in the 1940s. The United States 

Air Force’s All Weather Flying Division developed a weather radar program in 1945 to 
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examine how airborne weather radar can be used to avoid hazardous weather (Metcalf 

and Glover 1990). In the next year, the Department of Meteorology at the Massachusetts 

Institute of Technology set out to learn more about radar for understanding the scattering 

nature of hydrometeors, how radar signatures relate to weather, and to develop knowledge 

of meteorological processes (Austin and Geotis 1990). Simultaneously, the University of 

Chicago coordinated the Thunderstorm Project to investigate the structure of 

thunderstorms following a number of weather-related aircraft accidents. The timing of 

this multiagency effort at the end of World War II was extremely beneficial to the project 

due to the increased availability of equipment and trained personnel (Fig. 2.1). A three-

dimensional analysis of aircraft data led to the development of the three-stage (cumulus, 

mature, and dissipating) model of thunderstorms (Braham 1948; Byers and Braham 

1949), which continues to be foundational to our understanding of thunderstorm 

lifecycles today. Additionally, with radar and airplanes being at the core of a weather 

research project for the first time, another important outcome of the Thunderstorm Project 

was the successful use of radar for observing dangerous portions of thunderstorms and 

being able to safely direct airplanes within the vicinity of them.  

The first Weather Radar Conference was held at the Massachusetts Institute of 

Technology in March of 1947, marking the establishment of a weather radar community. 

At this same time, the Weather Bureau began to acquire and modify military radars for a 

Basic Weather Radar Network. In 1956, Congress agreed to fund 31 WSR-57s following 

the landfall of hurricanes along the United States east coast where radars were not located, 

eventually expanding to 66 locations (Whiton et al. 1998a). By 1974, radars were 

deployed to an additional 83 locations (Whiton et al. 1998a).  
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Figure 2.1. Photos from the Thunderstorm Project showing airplanes flying through 

thunderstorms, personnel operating a mobile radar unit, and the installation of a 

camera platform to observe cloud development. (Photos courtesy of NWS 

Wilmington, OH). 

 

2.1.2  Advancements in Weather Radar 

While reflectivity returns from the WSR-57s and WSR-74s provided data on 

storm structure and intensity, they did not provide information on storm motion. In turn, 

tracking radar signatures indicative of dangerous weather such as tornadoes and 

downbursts, as well as other meteorological phenomena, was not possible (Lemon et al. 

1977; Brown et al. 1978; Wilson et al. 1980). While the application of the Doppler Effect 

to measure radial wind velocities was first proposed in the 1950s (Smith and Holmes 

1961; Kessler 1990), it was not fully explored for operational purposes until the Joint 

Doppler Operation Project (JDOP) that took place during the spring seasons of 1977–

1979 (Burgess et al. 1979; Brown and Lewis 2005). Improved detection of severe 

thunderstorms and increased tornado warning lead time were two important findings from 

JDOP that motivated the Doppler upgrade of the United States’ national radar network 

(Atlas 1976). This network upgrade deployed 158 WSR-88Ds across the United States, 

forming the current operational next generation radar network (Whiton et al. 1998b). As 

discussed in the introduction, forecasters’ improved ability to view radial velocity data 



16 

 

positively impacted the detection of tornadogenesis and related tornado warnings. The 

WSR-88D has since continued to provide forecasters with a means to observe and 

interrogate thunderstorms, and has become an essential instrument to warning operations 

(Crum and Alberty 1993). 

The most notable enhancement to the WSR-88D since its installment is the 

polarimetric upgrade (Istok et al. 2009). Up until recently, the single-polarization WSR-

88D transmitted and received pulses of horizontally polarized electromagnetic radiation. 

Assessing the culmination of polarimetric weather radar research, a group of scientists 

and engineers recommended the need for an operationally-focused study to evaluate 

forecasters’ use of polarimetric weather radar in real-time operations. The Joint 

Polarization Experiment (JPOLE) was therefore conducted to evaluate forecasters’ use of 

polarimetric weather radar data for a variety of weather events (Ryzhkov et al. 2005; 

Scharfenberg et al. 2005). Forecasters reported that the polarimetric quantitative 

precipitation estimation algorithm was especially useful during rain events (Schuur et al. 

2003). Furthermore, Zrnić and Ryzhkov (1999) identified the operational value of 

polarimetric weather radar data for improving rainfall estimation, hydrometeor 

classification, and discrimination of non-meteorological targets. These and other related 

studies motivated the polarimetric upgrade of the WSR-88Ds, and since 2013, these 

radars have transmitted and received both horizontally and vertically polarized 

electromagnetic waves. Both the amplitude and phase of signals returned in each 

polarization can now be compared to provide detailed information about the 

characteristics of targets in the atmosphere (Kumjian 2013).  
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2.1.3 Temporal Sampling Limitations of the WSR-88D 

In a survey examining forecaster needs, the Radar Operations Center found that 

62% of NWS forecasters felt they would benefit from faster-updating radar scans 

(Steadham 2008). Of these forecasters, 37% wanted these more frequent scans in the 

lower elevations, whereas 25% wanted these faster updates of the entire volume 

(Steadham 2008). As described in the introduction, efforts have been made to increase 

the frequency of radar data through the application of new scanning techniques such as 

AVSET, SAILS, and MESO-SAILS (Chrisman et al. 2009; Crum et al. 2013; Chrisman 

2014). However, depending on the weather conditions and the distance of the storm from 

the radar, these new techniques do not always provide an ideal solution. Furthermore, 

while forecasters may benefit from the more frequent lower-level scans for monitoring 

tornado potential of storms, this improvement comes with a cost of slower overall 

volumetric updates. Unfortunately, increasing the rotation rate of the radar antenna to 

overcome the sampling trade-offs is not an option because of the detrimental impacts to 

data quality and the hardware of the system (Chrisman 2009). Therefore, the temporal 

sampling limitations of the WSR-88D is constrained to volumetric updates of 4–7 

minutes during severe weather, which is known to hinder forecasters’ abilities to detect 

the onset of weather threats including tornadoes and downbursts (Quoetone et al. 2009; 

LaDue et al. 2010).   

The Doppler benefits of the WSR-88D for better detecting severe weather have 

been realized in operations, but in recent years improvements in warning performance 

have plateaued. Given the known temporal sampling limitations of the WSR-88D to 

warning operations, a next step to advancing warning lead time is to therefore address 
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this technical constraint of weather radar. With this next step in mind, the future of the 

WSR-88D is under consideration, and while upgrades and maintenance keep these 

systems functioning beyond their expected 20-year lifetime, they will eventually need to 

be replaced (Saffle et al. 2009; Crum et al. 2013). Scientists have therefore been 

considering a future replacement technology to the WSR-88D, and the NOAA National 

Severe Storms Laboratory has identified PAR as a leading candidate (Weber et al. 2007; 

Zrnić et al. 2007).  

2.1.4  Phased-Array Radar for Weather Observation 

2.1.4.1  Technical Overview 

 The United States’ Navy has successfully used PAR on their cruiser ships for 

missile defense and aircraft detection purposes since the mid-1970s (Dranidis 2003). The 

antenna of a PAR system consists of numerous transmit-receive elements that allow for 

electronic steering of the radar beam (Zrnić et al. 2007). By controlling the timing (and 

therefore phase) of pulses transmitted in each element, the radar beam can be repositioned 

to any chosen azimuth or elevation almost instantaneously. This design differs 

substantially to the WSR-88D, in which a parabolic dish antenna is used to form a beam 

of energy that is then transmitted into the atmosphere. Unlike PAR, the WSR-88D steers 

the radar beam mechanically through rotation of the antenna. Because of this mechanical 

dependence, to collect one volume scan the WSR-88D antenna must rotate fully through 

360° for a sequence of predetermined elevations. 

The non-contiguous and versatile scanning abilities of PAR means that this 

technology does not have the temporal sampling limitations of the WSR-88D, thus 

making PAR a promising replacement candidate for future weather radar. Also notable is 
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the potential for PAR to serve as an observing instrument for multiple federal agencies 

within the United States. A multifunction PAR network has been proposed to combine 

the currently 510 government-owned weather and aircraft surveillance radars in the 

United States (Fig. 2.2) to 334 multifunction PAR systems (Weber et al. 2007). Given 

that PAR can concentrate data collection in areas that are of interest while also being able 

to reposition focus quickly, the observing needs of multiple agencies may be met 

simultaneously. The replacement of these multiple independent networks to a 

consolidated network would provide the required radar coverage for each agency’s 

mission while also reducing the required training, maintenance, and operation costs.   

 
Figure 2.2. Weather and aircraft surveillance radar locations in the continental United 

States (Weber et al. 2007). 

 

  

Scientists at the NOAA National Severe Storms Laboratory have collaborated 

with other government, academic, and private sector entities to examine the suitability of 

PAR technology specifically for weather observation. Important to this collaboration was 
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the formation of the National Weather Radar Testbed in Norman, Oklahoma, which 

houses a phased array SPY-1A antenna loaned from the United States Navy (Fig. 2.3) 

(Forsyth et al. 2005). Since the original purpose of this military radar was to detect aircraft 

and missiles, it was first modified for weather observation before beginning data 

collection in the spring of 2004. Many characteristics of this research PAR are similar to 

the WSR-88D, in that it operates at S-band and with a comparable range and range 

resolution. However, whereas the WSR-88D operates with a 1° beamwidth, PAR operates 

with a non-conformal transmit beamwidth that gradually increases from 1.5° to 2.1° as 

the beam moves from boresight to ±45° (Zrnić et al. 2007). This difference is due to the 

flat-panel array design of the PAR. 

The greatest difference between the WSR-88D and the PAR is that the former 

steers the beam mechanically while the latter uses its 4352 transmit-receive elements to 

steer the beam electronically. The electronic steering also has the advantage of removing 

beam smearing effects during data collection. Given that the PAR consists of one single 

panel that observes a 90° sector at one time, it takes less than a quarter of the time to 

obtain a volume update compared to the WSR-88D. To achieve this higher-temporal 

resolution for a full 360° coverage, a future operational PAR system of this design would 

be comprised of four flat-panel arrays that each observe a 90° sector (Brown and Wood 

2012).  
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Figure 2.3. Installation of the PAR SPY-1A antenna at the National Weather Radar 

Testbed (Photo courtesy of A. Zahrai). 

 

 In addition to reducing the volumetric update time through sampling only a 90° 

sector, adaptive scanning strategies are employed to further control the temporal 

resolution of PAR. The Adaptive Digital Signal Processing Algorithm for PAR Timely 

Scans (ADAPTS) is used to trade spatial resolution and/or data quality to provide faster 

radar updates (Heinselman and Torres 2011). ADAPTS uses a criteria that determines 

whether beam positions should be active or inactive to enforce weather-focused scanning 

(Fig. 2.4a) (Heinselman and Torres 2011). The significance criteria for activating a beam 

position depends on whether reflectivity values have met a pre-defined threshold and 

whether these reflectivity values have sufficient spatial coverage. Next, beam positions 

that are within close proximity to those that meet the significance criteria are considered 

to have neighborhood significance and are also activated. Unlike conventional scanning 

methods where regions without weather are sampled (Fig. 2.4b), adaptive scanning 

methods allow for weather-focused observations as well as the sampling of other targets 

of interest such as aircraft (Fig. 2.4c). 
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Figure 2.4. An example of a) the ADAPTS real-time display showing inactive 

(white), active (green), and neighboring (orange) beam positions (Heinselman and 

Torres 2011; Torres et al. 2012), along with an illustration comparing the locations 

sampled (red circles) using b) conventional scanning techniques and c) ADAPTS 

electronic scanning techniques for the same time period (Figure courtesy of Chris 

Curtis). 
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2.1.4.2  Improving Scientific Understanding of Storm Processes 

 Since the spring of 2004, the National Weather Radar Testbed PAR has collected 

data on a variety of weather events. Scientists have examined these rapidly-updating radar 

data to examine the finer temporal detail of weather phenomena and improve scientific 

understanding of storm processes. Heinselman et al. (2008) completed a first 

investigation into what adaptively-scanning higher-temporal resolution S-band radar data 

can observe compared to conventional WSR-88D data. Analysis of PAR and WSR-88D 

reflectivity and velocity data showed that the higher-temporal sampling of three 

convective storms allowed for a better depiction of their structures and evolutions. The 

velocity signatures of a reintensifying supercell were better captured, including the 

storm’s inflow, convergence trends, and rotation, while the updraft development, 

descending high-reflectivity core, midlevel-altitude radial convergence, and low-level 

convergence associated with a microburst were observed successfully and with more 

temporal detail (Heinselman et al. 2008). Additionally, higher-temporal resolution 

reflectivity signatures associated with the reintensification of a hailstorm allowed for a 

more detailed analysis of its related storm structure, including the development of a 

bounded weak echo region, a high-reflectivity core, and a related three-body scatter spike 

(Heinselman et al. 2008).  

Being able to observe storm features with improved temporal detail also aided in 

the identification of damaging wind mechanisms that were associated with a quasi-linear 

convective system (Newman and Heinselman 2012). Through the use of 1-min PAR 

updates, the evolution of mesovortex circulations, azimuthal shear, and descending 

reflectivity core were depicted more clearly, while the increased spatial resolution of 
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PAR’s vertical sampling proved useful for viewing the full structure of the midlevel jet 

(Newman and Heinselman 2012). Trends in 1-min PAR data have also proven important 

for capturing severe downburst precursor signatures that are evident only several minutes 

prior to downburst maximum intensity (Kuster et al. 2016). Furthermore, 26-s PAR 

updates have been used to compare reflectivity and velocity radar data to the lightning 

data of a hail storm (Emersic et al. 2011). This comparison was important for assessing 

how lightning activity relates to storm kinematics and related storm intensity (Emersic et 

al. 2011).  

In addition to observational case study analyses, rapidly-updating PAR data have 

been used in numerical modeling studies. Tanamachi and Heinselman (2015) assimilated 

1-min PAR updates into a numerical cloud model to create three-dimensional cloud-scale 

analyses. These analyses were used to better understand storm merger processes through 

objective identification of storm updrafts and vortices that were analyzed prior to, during, 

and after the storm merger event. Observing system simulation experiments have also 

demonstrated that the assimilation of rapidly-updating radar observations results in more 

realistic analyses and ensemble forecasts of convective storms than when conventional 

WSR-88D observations are used (Xue and Droegemeier 2006; Yussouf and Stensrud 

2010). Furthermore, these more realistic depictions of storms can result in an improved 

alignment between the locations of high probability low-level vorticity with radar-derived 

storm rotation (Supinie et al. 2017). 

Case study analyses have established that higher-temporal resolution radar data 

provide enhanced observations of storm features, structures, and evolutions that are 

otherwise unobservable in traditional WSR-88D data. These data help to identify the 
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complex nature of storms and the dynamic interactions that occur within them. Given that 

forecasters have expressed a need to observe these temporal details during operations 

(Steadham 2008; LaDue et al. 2010), applications of these enhanced observations within 

the decision making environment is therefore also important to investigate. 

2.2  Studying Decision Making in Weather Forecasting 

2.2.1 Learning through Surveys 

Forecasters provide both a crucial and complex human element to the process of 

weather forecasting. The dissemination of surveys have been useful for gathering 

information on the forecaster decision making process for many decades. A substantial 

advantage of this research method is its far reach; forecasters from all across the United 

States can contribute their perspectives at a relatively low cost to the research group. Early 

studies using this method began exploring some of the subjective aspects associated with 

forecasters’ judgment calls. For example, a nationwide survey tested NWS forecasters on 

different aspects of precipitation probability forecasting (Murphy and Winkler 1971; 

Murphy and Winkler 1974). Findings from this survey recognized several challenges 

related to the subjective influences on probability-based judgments, such as forecasters’ 

confusion over probabilistic concepts and their tendency to hedge when stating their 

degree of belief. The inherent uncertainty in meteorology means that forecasters’ abilities 

to make informed assessments of it is essential to weather prediction. More recently, 

Novak et al. (2008) surveyed NWS forecasters on their assessments of uncertainty with 

use of various guidance and products, the training that is available to support these 

assessments, and what operational challenges forecasters currently face in expressing 

uncertainty information in forecasts. The finding that operational forecasters believe that 
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they should play a significant role in communicating uncertainty, but that there is not yet 

agreement on the degree to which forecasters should modify objective ensemble 

guidance, demonstrates that the development of uncertainty information must be a 

collaborative effort between forecasters, model developers, and its users (Novak et al. 

2008). 

Abilities to communicate other weather hazards effectively have also been 

explored through the dissemination of surveys. Given the increasing cost associated with 

ice storm impacts, Call (2008) surveyed warning coordination meteorologists on their 

understanding of ice storm hazards, their related warning procedures, and how they 

communicate information about the hazard to members of the community. Additionally, 

with the projected frequency of extreme heat events expected to increase, Hawkins et al. 

(2017) completed an internal assessment with WFOs to document current decision 

making related to the issuance of heat-based products and to develop ideas for better 

communicating extreme heat risks. The various NWS-focused research questions that 

surveys have successfully answered demonstrate that they are an effective method for 

learning about the current state of forecasters’ knowledge and procedures within the 

WFO. An important outcome of findings from these surveys is the generation of ideas 

that need to be explored further and the suggested recommendations that will support 

improvements to forecast operations.   

2.2.2 Activities in the Testbed 

The benefits of incorporating forecasters into the research and development 

process of new technologies and resulting data have been demonstrated in the JDOP and 

JPOLE studies discussed in the previous section. Taking this “end-to-end-to-end” 
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approach (Morss et al. 2005), effective collaboration between researchers, forecasters, 

and software developers will result in the implementation of advancements that are both 

scientifically sound and operationally relevant. The emergence of numerous NOAA 

testbeds across the United States have made these collaborations possible (Ralph et al. 

2013). The NOAA Hazardous Weather Testbed, located in Norman, Oklahoma focuses 

on severe weather prediction in a quasi-operational environment. This testbed is home to 

both the Experimental Forecast Program and the Experimental Warning Program. The 

Experimental Forecast Program hosts an annual Spring Forecasting Experiment that 

focuses on the use of numerical model guidance for producing outlook products beyond 

those that are currently issued operationally (e.g., Kain et al. 2003; Clark et al. 2012; 

Gallo et al. 2017). Some participants attending the Spring Forecasting Experiment are 

operational meteorologists, though the majority of participants are research scientists 

actively working in model development.  

The Experimental Warning Program functions separately to the Experimental 

Forecast Program, and focuses on nowcasting capability and the warning decision 

process. The annual activities of the Experimental Warning Program are comprised of 

numerous projects each guided by separate research groups. These projects have focused 

on NWS forecasters’ use of: numerical weather prediction analyses during severe 

thunderstorm and tornado events (Calhoun et al. 2014), a prototype probabilistic hazard 

information tool (Karstens et al. 2015, 2016), products developed from the new Multi-

Radar Multi-Sensor system (Smith et al. 2016), and rapidly-updating satellite (Line et al. 

2014) and PAR (e.g., Heinselman et al. 2015; Wilson et al. 2017) data during the warning 

decision process. Additionally, integrated warning teams consisting of NWS forecasters, 
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broadcast meteorologists, and emergency managers have been studied in the testbed to 

better understand the interactions and relationships necessary for preparing for and 

responding to high-impact weather events successfully (e.g., LaDue et al. 2017; 

Obermeier et al. 2017).  

While forecaster performance with respect to predictive skill is often assessed for 

testbed activities, a substantial effort has been made to ensure that new products, tools, 

and data are also evaluated from the perspectives of participating forecasters. Researchers 

conducting studies within the testbed have used a variety of qualitative methods to obtain 

data on forecasters’ perspectives, including observations, group discussions, interviews, 

surveys, and blog posts. Cognitive task analysis methods have also been used to elicit 

detailed retrospective recalls of forecasters’ warning decision processes during their use 

of rapidly-updating PAR data (Heinselman et al. 2015; Bowden et al. 2016). Additionally, 

human factors specialists have conducted usability studies of new decision-support 

systems for weather forecasters within the Hazardous Weather Testbed (Ling et al. 2015; 

Argyle et al. 2016). These studies have proven important for identifying usability issues 

and providing recommendations for improved operational meteorology software. 

2.2.3 Activities in a Naturalistic Setting 

Although testbeds are designed to simulate aspects of a real operational setting, 

the ability to control for external factors can limit the realism of the decision making 

environment. Therefore, researchers have also completed naturalistic studies within the 

WFO. Here, forecasters’ cognitive processes and skills are applied to tasks in real time 

and to complex problems that have genuine consequences (Lipshitz 2001; Klein 2008; 

Gore et al. 2015). Studies within WFOs can be short and focused, or they may be lengthy 
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and broad. For example, soon after the implementation of the WSR-88D at the Raleigh, 

North Carolina WFO, forecasters’ warning decision processes were examined (Hoium et 

al. 1997). Researchers from North Carolina State University logged forecasters’ use of 

reflectivity, velocity, and ground truth data for a variety of weather events. To assume a 

participant-observer role and to blend into the WFO, these researchers also contributed 

to routine tasks such as analyzing surface charts. Morss and Ralph (2007) also took a 

participant-observer role in their analysis of forecaster use of additional meteorological 

information during the California Land-falling Jets and Pacific Land-falling Jets 

experiments. Additional data including wind, melting level, surface, dropsonde, and radar 

observations were made available to WFOs located on the west coast of the United States 

in real time. These data were expected to aid forecast decisions during flooding and winter 

storm events. Morss and Ralph (2007) mainly used observation and semi-structured 

interviews to understand how forecasters used these additional information in their 

forecasts, but informal discussions and interviews were also carried out when possible.  

Unlike the focused studies described above, Daipha (2015) completed an 

ethnography within a single WFO that required a multiple-year-long effort. Rather than 

studying one aspect of the forecaster decision making process, Daipha (2015) immersed 

herself into the complex system of a northeastern WFO, observing the office culture, use 

of ground truth, data, and technology, and chosen methods of communication. More 

recently, Henderson et al.’s (2017) ethnography has also considered some of the social, 

political, and ethical challenges that forecasters face during the warning decision process. 

Finally, while most ethnographic studies in WFOs have been contained to a single 

location, Friedman et al.’s (2015) ethnography involved visits to 11 WFOs, during which 
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forecasters’ use of social media within an uncertain decision making environment was 

observed and documented. Different to studies conducted through the means of surveys 

and testbeds, researchers’ time spent in WFOs allow them to build meaningful 

relationships with forecasters and develop a deeper understanding of the interconnecting 

factors and nuisances governing forecasters’ everyday work activity. Though completing 

studies in this manner can be time intensive and logistically challenging for researchers, 

the knowledge gained from these experiences can be invaluable.  

2.3 Measuring Mental Workload 

2.3.1 Introduction to Mental Workload 

With the continued development and integration of new technology into the work 

place, mental workload is an ever growing topic of interest (Wickens and McCarley 

2008). To optimize system performance in human-machine systems, the mental workload 

of an operator is an important consideration. Mental workload refers to the amount of 

attention resources required to meet the desired performance criteria of a system, and is 

influenced by task demands and past experience of the operator (Young and Stanton, 

2005). In the past, much of the mental workload research has focused on transport-related 

systems, such as air traffic control, aviation, and especially driving (Da Silva 2014; 

Young et al. 2015). Applications of this research have also been useful within military 

and medical professions, and more recently for evaluating operator use of modern-day 

technology such as computers and smartphones (Hart 2006).  

Assessing the cognitive demands of a system helps ensure both the well-being of 

the operator and that optimal system performance is achievable. If an operator’s cognitive 
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load is too low or too high, their performance can suffer, potentially resulting in 

undesirable outcomes (Cain 2007; Mehta and Parasuraman 2013). Figure 2.5 illustrates 

this relationship between mental workload, task demands, and performance (De Waard 

1996; Young and Stanton 2015). As task demands increase, the operator’s mental 

workload also increases. A corresponding improvement is observed in performance 

during this initial increase, which plateaus at an optimum level while task demands 

continue to climb and mental workload increases accordingly. However, when task 

demands begin to exceed the operator’s available attention resources, mental workload 

becomes unmanageable, and performance consequently deteriorates. This state is referred 

to as overload, and occurs when the operator is unable to process all presented stimuli. In 

this instance, the operator can become distracted, and the use of selective attention to 

acquire and process information can be insufficient (Young and Stanton 2005; Young et 

al. 2015).  

Poor performance can also be observed when mental workload levels are too low. 

This state is referred to as underload and occurs when the task does not provide enough 

stimulation to keep the operator engaged. Rather, a lack of stimuli results in lower levels 

of alertness and attention, and the operator thus lacks vigilance when monitoring the 

situation at hand (Young and Stanton 2005, 2015). A decoupling of performance and 

mental workload is therefore evident (Fig. 2.5), such that increases in mental workload is 

beneficial to performance when the task demands are lower and resources necessary to 

meet the increasing demand are available, but once the task demands exceed available 

resources, the increasing levels of mental workload become damaging to performance 

(Young et al. 2015). 
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Figure 2.5. The relationship between (physiological) activation level, mental workload 

(task demands) and performance (taken from Young et al. 2015; originally adapted 

from De Waard 1996). 

2.3.2 Performance 

Researchers have developed a variety of methods to measure mental workload, 

and these can be classified into three types: 1) performance, 2) physiological conditions, 

and 3) subjective ratings. Performance can be analyzed using either the primary task or a 

secondary task. For both primary and secondary tasks, if an undesirable level of mental 

workload is imposed on an operator, their performance is expected to suffer (Proctor and 

Zandt 2008). Assessments of performance during the primary task is possible using 

metrics such as response time, accuracy, and root mean square error. The choice of metric 

depends on the nature of the primary task. For example, response time and accuracy 

would be suitable measures for a vigilance task, where an operator may be tasked with 

identifying a specific feature within a noisy image. The root mean square error might be 

useful in measuring the operator’s deviation from the center lane position during a driving 

task. Performance of a secondary task is useful when trying to measure the operator’s 
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spare capacity. Compared to when the operator completes the primary and secondary 

tasks separately, the change in performance during the dual-task scenario indicates the 

additional cognitive demand on the operator and their related mental workload. The types 

of secondary tasks given to operators include mental math activities, estimations of 

elapsed time, and reaction times to other visual stimuli. For example, the peripheral 

detection task requires an operator to wear a headband that positions a light within their 

peripheral and acts as a secondary visual stimulus during a driving simulation (Schapp 

2013). The operator is asked to press a button attached to their index finger whenever 

they see this light flash. Their response time and the number of missed flashes indicate 

the operator’s spare visual attention resources and their associated mental workload. If 

the operator is overloaded, they will not be able to complete the secondary task 

successfully.  

Degradations in performance for both the primary and secondary tasks indicate 

that the cognitive demands of the task exceeded the operator’s available resources, and 

was thus overloaded. However, a limitation of this approach is that changes in mental 

workload are difficult to detect during times when performance is not impacted. The 

performance of an operator during a highly demanding task may be comparable to that of 

a task with lower demands if they are motivated and choose to exert greater effort. 

Individual motivation is an important factor in the observed dissociation between 

performance and subjective measures of mental workload (Vidulich and Wickens 1986; 

Yeh and Wickens 1988). An additional limitation of the secondary task is that it may be 

disruptive to the primary task, and practice of the dual-task scenario is required before 

stable performance is established (Proctor and Zandt 2008).  
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2.3.3 Physiological Conditions 

With increased levels of workload, an operator’s brain activity and general level 

of arousal is expected to increase (Roscoe 1992; Proctor and Zandt 2008; Young et al. 

2015). As a result, this increase in physiological activation can signal when suboptimal 

levels of workload are experienced. Unlike with performance or subjective rating 

methods, continuous monitoring of physiological conditions during a task is possible, 

meaning that an operator’s workload can be assessed on a much finer temporal scale, and 

transient fluctuations in workload that would usually go undetected can be observed 

(Mehta and Parasuraman 2013). Also, individual biases do not influence these measures 

of workload like they can do with subjective ratings.  

A variety of methods have been used to study operators’ physiological conditions 

and associated workload. One example is the field of neuroergonomics, an 

interdisciplinary research approach that brings together neurology, ergonomics, and 

human factors to understand how the human brain functions within work settings as well 

as in natural settings (Parasuraman 2011; Mehta and Parasuraman 2013). Neuroimaging 

techniques, such as electroencephalography, is used to monitor the electrical activity of 

an operator’s brain during a task. Past studies have shown significant correlations 

between electroencephalography indices and cognitive states during tasks performed in 

real-time and in simulation mode (Wilson and Eggemeier 1991; Sterman and Mann 1995; 

Berka et al. 2004, 2007). These data can therefore be used to better understand the 

cognitive state and associated mental workload of an operator as they respond to stimuli. 
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Measurements of cardiovascular responses to stimuli, such as heart rate, heart rate 

variability, and blood pressure, have also proved useful for the study of workload. Roscoe 

(1992) describes early applications of this approach for evaluating first military pilots’ 

and then civilian pilots’ responses to stressful situations. Higher levels of mental 

workload have been related to increased heart rates, suppressed heart rate variability, and 

increased blood pressure (Roscoe 1992; Wilson 2002). Evidence of these physiological 

responses to higher levels of mental workload have also been observed on the ground. In 

high-traffic conditions, when air traffic controllers must be alert and monitoring the 

situation with high levels of attention, studies have shown that heart rate and blood 

pressure become statistically significantly higher (Vogt et al. 2006) and heart rate 

variability decreases (Hilburn 2003).  

Other physiological observations that are indicators of mental workload include 

pupillary response, blinking activity, galvanic skin response, and cortisol levels. Eye-

tracking methods are used to monitor pupillary response and blinking activity. Studies 

have shown that under conditions in which higher levels of mental workload are required, 

an operator’s pupil dilates (Jorna 1997; Beatty 1982; Neumann and Lipp 2002; Hilburn 

2003), and the time between two successive eye blinks increases while the duration of 

each eye blink decreases, especially for visually demanding tasks (Veltman and Gaillard 

1998; Wilson 2002; Marquart et al. 2015). Galvanic skin response data provides a 

measure of skin conductance and thus psychological or physiological arousal, and have 

been shown to vary with changes in mental workload (Nourbakhsh et al. 2012). Finally, 

higher levels of mental workload can be exhibited in an operator’s cortisol (also known 

as the “stress hormone”) levels. Biochemical analysis of air traffic controllers’ saliva 
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samples showed increased cortisol levels during busier working periods in which mental 

workload was higher (Farmer et al. 1991). These results were also reflected in an 

everyday office-work environment (Cinaz et al. 2013).  

Although physiological measurements can track the cognitive state of an operator 

in an objective manner and on a much finer temporal scale than performance measures or 

subjective ratings, this approach does have its limitations. One of the most notable 

limitations is the likely contamination of these physiological data. Contamination may 

come from the ambient environment (e.g., light sources will impact pupil size), or it may 

come from within the operator. Furthermore, an operator’s body movements as well as 

their emotional states can confound these measures; it is difficult to separate external 

influences from the influence of workload itself. Additionally, many of these methods 

require careful calibration of instruments to individual operators, and the large signal to 

noise ratio often found in these data can make them difficult to analyze. Aside from these 

limitations, some of these methods require costly equipment and therefore may be 

unavailable to the researcher.  

2.3.4 Subjective Ratings 

An operator is able to provide their own valuable insight into their experienced 

mental workload that is unobtainable with alternative methods. Hart and Staveland (1988) 

suggested that “… subjective ratings may come closest to tapping the essence of mental 

workload.” Many subjective rating tools have been designed for a range of purposes, 

though there is no agreement within the human factors community on which of these tools 

is best (Farmer and Brownson 2003). The complexity and intrusiveness of subjective 
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workload scales varies, partly depending on whether they are multidimensional or 

unidimensional. Winter (2014) completed a literature search on workload to analyze 

which subjective workload rating tools have been used most frequently. The post popular 

tool was the multidiemsional NASA-Task Load Index (TLX), which evaluates an 

operator’s mental demand, physical demand, temporal demand, performance, effort, and 

frustration levels on a continuous scale of 1–100, which together can be combined and 

weighted to give an overall workload level (Hart and Staveland 1988; Winter 2014). 

Winter (2014) argues that the popularity of the NASA-TLX does not necessarily stem 

from it being the best, but because it has become synonymous with workload due to the 

Matthew effect (Merton 1968). This effect is based on the idea that the “rich get richer 

and the poor get poorer”; popularity is gained through increased awareness which 

reinforces its use and eventually becomes the accepted standard. The comparable quality 

and sensitivity of other workload tools supports this argument, as well as the fact that 

limitations in the NASA-TLX design have not been addressed despite many years of use. 

These limitations include the anchor effect (i.e., participants tend to use only part of the 

scale), that the tool is being used differently across studies (e.g., some weight the 

subscales while others do not), and that no “redline” is defined for identifying when an 

operator’s workload becomes too high (Hart 2006). Furthermore, the strong correlation 

between the subscales brings to question how well an operator is able to discriminate 

between the different types of workload described in this tool (Hart 2006).  

Another multidimensional tool that has been used frequently is the Subjective 

Workload Assessment Tool (SWAT), which uses a card sorting procedure to allow 

operators to provide feedback on which tasks have higher demands (Reid and Nygren 
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1988). These cards describe three categories: time load (how limited time is and how 

many tasks must be completed), mental effort load (attentional demands of tasks), and 

psychological stress load (fatigue, emotional state, anxiety). Each category has three 

levels of intensity: low, medium, and high. Operators then do pairwise-comparisons of 

these 27 cards to rate overall mental workload (Luximon and Goonetilleke 2001). 

However, this multidimensional tool is complex and time intensive, and would certainly 

be intrusive if it were completed during a task. While the NASA-TLX has higher operator 

acceptance than the SWAT, it too can be time intensive. 

Subjective rating tools with unidimensional scales have also been used in research 

studies. The modified Cooper-Harper scale was first designed to measure pilots’ 

workload when handling aircraft (Cooper and Harper 1969), and since has been modified 

to suit other types of scenarios in which operators have to make decisions (Wierwille and 

Casali 1983). Operators follow a decision tree to determine their overall level of workload 

on a scale of 1–10, with 1 indicating that the task is easy to complete and the desired 

performance is easy to attain, and 10 indicating that the task is impossible and cannot be 

completed reliably (Proctor and Zandt 2008). Even simpler is the Instantaneous Self-

Assessment (ISA) tool, which was designed to collect overall workload ratings quickly 

during a task (Jordan and Brennan 1992). Based on a rating scale of 1–5 (from 

“underutilized” to “excessive”), operators report how busy they are according to their 

perceived spare capacity. Ratings can be provided using a keypad specifically designed 

to collect ISA ratings (Hering and Coatleven 1996), or records can be kept more simply 

with a pen and paper. The ISA tool can be used to address workload in a variety of 

research areas, such as for assessing drivers’ mental workload during different traffic 
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volume conditions (Girard et al. 2005) and in driving scenarios when distractive thoughts 

are introduced (Lemercier et al. 2014). Sensitivity to changes in task demand, and thus 

mental workload, has been demonstrated in both these driving studies and when 

compared to physiological measures of workload (Tattersall and Foord 1996). 

Additionally, ISA ratings have shown to correlate well with NASA-TLX ratings as well 

as those from other workload tools (Farmer and Brownson 2003). However, an evaluation 

of the ISA tool found that primary-task performance decreased in conditions where ISA 

ratings were requested from operators during tasks (Tattersall and Foord 1996). Given 

that the ISA tool is considered one of the least intrusive subjective rating tools (Miller 

2001; Farmer and Brownson 2003), the effect that more complex, multidimensional tools 

such as NASA-TLX and SWAT could have on primary-task performance is therefore 

concerning. This point reinforces the importance of choosing a tool that not only measures 

aspects of workload that are of interest to the researcher, but that also does not act to 

confound experimental data.  

2.3.5 Choice of Method 

When choosing a method for measuring mental workload, a number of 

considerations must be made (Miller 2001; Proctor and Zandt 2008). First, the method 

must be sensitive enough to detect changes in workload due to increased task demand. If 

the researcher wants to measure how much workload is imposed on different types of 

resources, then the method should also have good diagnostic skill. To ensure that different 

levels of workload are represented accurately and consistently, the method should provide 

valid and reliable data. The interval of data collection is also important; if observing 

transient fluctuations in workload is important to the research question, monitoring 
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physiological conditions may be most appropriate. If overall workload is more useful to 

the research question, then performance measures or subjective rating tools capturing 

workload at the end of a task could be more suitable. However, Jansen et al. (2016) noted 

the importance of capturing changes in workload during a simulation rather than just at 

the end. In this instance, a simple unidimensional subjective workload rating tool may be 

preferred over the more time-intensive, multidimensional subjective workload tools. The 

intrusiveness of all methods should also be considered; the nature of intrusiveness will 

vary depending on the method, but may be in the form of disruption during a task (e.g., 

subjective workload ratings), or due to requirements for the operator to wear a monitoring 

device (e.g., physiological measures). This consideration relates to the importance of 

operator acceptance in the chosen method—researchers should ensure that operators are 

willing to use the chosen method in a correct manner. Additionally, the implementation 

of the chosen method to the overall experiment is key, such that it should practically make 

sense and support data collection rather than hinder it. For example, if a study wants to 

assess workload in a dynamic environment over a long period of time, it would not be 

possible for an operator to wear a head mounted eye-tracker or electrolyte sensors for this 

entire time. Finally, some of these methods require expensive equipment, most notably 

for measuring physiological conditions. The availability of such equipment may therefore 

limit the choice of method. 

2.4 Eye Tracking 

2.4.1 Early Discoveries of the Eye 

Scientists first became intrigued by the role of eye movements during reading in 

the late 19th century and early 20th century (Jacob and Karn 2003). In this early pioneering 
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work, a French scientist, Professor Emile Javal, reported that “…there is practically no 

reading, or rather no direct seeing of the words and letters, except during the pauses.” 

From these observations, Javal was the first to report two basic eye movements that occur 

during reading: fixations and saccades (Huey 1908). Fixations occur when the eyes focus 

on a specific point and refer to the pauses that Javal observed. Although the eye appears 

still during fixations, slight movements still occur due to nystagmus and tendencies for 

the eye to drift away from and return to a point in very small and quick movements 

(Rayner 1998). Fixations generally last on the order of 250 𝑚𝑠, but reading studies have 

shown these durations to vary from as short as 50 𝑚𝑠 to as long as 600 𝑚𝑠 (Rayner 

1998). Saccades, on the other hand, are much faster eye movements that can travel at a 

velocity of 500 °𝑠−1 (Rayner 1998). They occur as the eye traverses between fixations, 

and are named after the French word for “jump.” The rapidity of saccades result in 

saccadic suppression, meaning that a person is unable to acquire and process information 

adequately during these eye movements (Matin 1974). 

 The early discovery that eye movements relate to reading activity opened up a 

world in which human attention could be studied. The mental resource capacity of 

humans is limited, and attention is therefore used to direct resources to information that 

is most useful. Eye movements provide a representation of how visual attention is 

distributed (Duchowski 2007). While three regions of the eye characterize the visual field, 

it is within the foveal region that visual attention is greatest. This region extends up to 

2° from the visual center and is made up of predominantly cone receptors (Fig. 2.6). 

These receptors allow details to be seen on a fine scale and make images appear more 

sharp and colorful, meaning that information placed within this region is viewed with 
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high visual acuity (Rayner et al. 2012; Bojko 2013). The parafoveal region (2°–5°) 

extends farther out from the fovea and is where cone density decreases and rod density 

increases (Fig. 2.6). Rods are the dominant receptor in the peripheral region (beyond 5° 

from visual center) and are important for detecting motion and observing different levels 

of brightness (Rayner et al. 2012; Bojko 2013). Reading studies have therefore shown 

that the ability to discriminate text is best in the fovea region, and diminishes substantially 

as you move farther out in the visual field until it can no longer be read at all in the 

peripheral region (Fig. 2.6) (Rayner et al. 2012). Hence, it is fair to assume that our visual 

attention is given predominantly to the material we choose to fixate on within our fovea 

region. 

 Though the study of eye movements during reading emerged over 100 years ago, 

growth in this research area was slow. The psychology field moved away from cognitive 

research and focused more on behavioral observations. Acknowledging that cognitive 

processes cannot be directly observed, psychologists believed that the study of 

behaviorism would be a good approach for learning about language processing. This 

approach, however, did not come to fruition, and the importance of cognition to language 

processes, as well as many other mental processes, was accepted (Rayner et al. 2012). 

Interest in cognition was revived in the 1970s, which resulted in developments in both 

eye-tracking technology as well as theoretical understanding of the relationship between 

eye movements and cognitive processes (Poole and Ball 2006).  
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Figure 2.6. The relative density of cones (solid) and rods (dashed) and word 

identification accuracy (dotted) across the visual field (taken from Rayner et al. 2012). 

 

2.4.2 Theoretical Advancements  

The surge of interest in cognitive psychology in the 1960s and 1970s motivated 

scientists to build on basic relationships discovered between eye movements and visual 

stimuli, and consider the complex cognitive processes that they represent (Jacob and Karn 

2003). The study of eye movements during reading tasks continued, and notable 

contributions from psychologists Marcel Just and Patricia Carpenter were made. 

Knowing that eye movements during reading consist of pauses (fixations) and jumps 

(saccades), Just and Carpenter (1976a, 1976b) investigated how these pauses related to 

cognitive processes. Their research led to the development of the eye-mind hypothesis, 

which was a major theoretical advancement within eye-tracking research. This 

assumption states that “…there is no appreciable lag between what is being fixated and 

what is being processed” (Just and Carpenter 1976b). Using this hypothesis, Just and 

Carpenter suggested other ways to utilize measures of eye fixations for studying cognitive 
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processes, including: problem solving, spatial information processing, and real-world 

scene processing (Just and Carpenter 1976b).  

While the eye-mind hypothesis has been supported extensively within the eye-

tracking research community, its limitations are important to consider. One limitation is 

that laboratory research has shown attention to precede fixations slightly, such that 

attention shifts approximately 250 𝑚𝑠 before the eye moves (Deubel 2008). Although 

studies have not confirmed whether this lag also exists in more natural settings, we cannot 

expect the entire duration of a fixation to be representative of the information that is being 

acquired and processed (Holmqvist et al. 2011). Despite this observed short lag, though, 

scientists believe that eye movements and attention are still tightly coupled, and we can 

expect the eye to follow where attention is redirected to (Holmqvist et al. 2011). Another 

notable limitation is that information can be processed for some time after it has been 

fixated. Just and Carpenter (1976b) explained that the eye-mind hypothesis describes the 

processing of fixations that are “…at the top of the stack in active memory” (Just and 

Carpenter 1976b). This statement supports that we may have additional items in our 

active memory, although they may not be the focal of our attention.  

2.4.3 Technology Advancements  

Eye-tracking technology in the late 19th and early 20th centuries was very basic. 

While some types of equipment were invasive and required direct mechanical contact 

with the eye, others made use of motion picture photography techniques. For example, 

Judd et al. (1905) inserted a small white particle into the eye before taking a series of 

photographs of it. Geometrical illustrations using points of reference from worn 

spectacles and the white particle were drawn from photograms to determine eye 
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movement. Methods using corneal reflections from light source and motion pictures were 

later developed (Mackworth and Mackworth 1958). While these methods were far less 

invasive, restraining movement was still important; participants were therefore asked to 

bite on a plastic mold and use a rigid head and cheek bone support to prevent movement 

(Fig. 2.7) (Mackworth and Mackworth 1958). 

 
Figure 2.7. Eye tracking setup using corneal reflections, a camera, and movement 

restraint (taken from Mackworth and Mackworth 1958). 

 

Modern day eye-tracking systems have improved substantially compared to the 

invasive and uncomfortable equipment used in the beginning stages of eye-tracking 

research. Today’s systems use pupil center corneal reflection methods. The use of 

infrared light to illuminate the eye is advantageous because it is not visible to the person 

whose eyes are being illuminated. Depending on the selected system, video-based 

cameras capture images of a person’s eyes and their corneal reflections at a sampling rate 

of 25 − 2000 𝐻𝑧 (Bojko 2013). With the use of image-processing algorithms and a three 

dimensional model of the eye, the location of a person’s gaze can be determined. A 

sampling rate of 250 𝐻𝑧 is sufficient for detection of very small eye movements (such as 

saccades) and for measuring the duration of eye movements within ±2 𝑚𝑠 (Bojko 2013).  
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Diodes that emit infrared light can be positioned in the camera in two ways: either 

in line with the optical axis of the camera (bright-pupil eye tracking), or away from the 

optical axis of the camera (dark-pupil eye tracking) (Bojko 2013). Bright-pupil eye 

tracking causes the pupil to appear brighter than the iris because the reflected infrared 

light from the retina is in line with the camera. Conversely, dark-pupil eye tracking causes 

the infrared light to be reflected away from the camera, and thus the pupil appears darker 

than the surrounding iris. Though both approaches are designed to illuminate the eyes and 

create contrast between the iris and pupil, they perform differently depending on the 

ambient lightning conditions and physical characteristics of the eye. Bright-pupil eye 

tracking is best suited in darker environments when the pupil tends to be less dilated, and 

is more effective at tracking people with bright colored eyes (i.e., blue). Dark-pupil 

tracking, on the other hand, works well in most lightning conditions and is more effective 

at detecting the pupil in dark colored eyes (i.e., green and brown). However, one caveat 

to dark-pupil eye tracking is that surrounding dark features can disrupt pupil detection 

(such as eye lashes and the use of dark makeup).  

Both head-mounted and remote-based eye-tracking systems are available for 

research use (Goldberg and Wichansky 2003). Head-mounted systems are worn, and 

while some devices are bulky and obstruct a person’s view, others have simpler designs 

that resemble a pair of glasses (Fig. 2.8a). While these systems allow for large head 

movements during data collection and provide a way for observing eye behavior in 

natural settings, they can be uncomfortable and do not allow participants to engage in 

tasks without being fully aware that their eyes are being observed. Remote-based systems 

are typically positioned beneath or within a computer monitor that display the task at hand 
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(Fig. 2.8b). Advancements in this technology now allow for some head movement, which 

makes this method less invasive because the use of chin rests to stabilize participants 

during observation is not necessary. An additional advantage to remote-based eye-

tracking systems is that the observed visual scene stays within the same boundaries for 

the duration of an experiment; these set boundaries make data analysis much more 

straightforward. With head-mounted systems, content within a participant’s gaze position 

is constantly changing, which can make data analysis challenging and time consuming.  
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Figure 2.8. Illustrations of eye gaze position determination using a) a head-mounted 

eye-tracking system and b) a remote-based eye-tracking system (Tobii 2017). 

 

In the work presented in this dissertation, a remote video-based Tobii TX300 eye-

tracking system was used with dark-pupil methods (Fig. 2.9). The sampling frequency 

was 300 𝐻𝑧. It allowed for head movement, meaning that a chin rest or other form of 

restraint was not required. Seated at a distance of 65 𝑐𝑚 from the eye-tracking system, 
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participants could move 37 𝑐𝑚 in width and 17 𝑐𝑚 in height. Within these bounds, the 

eye tracker could detect at least one eye. The gaze accuracy, referring to the possible 

angular distance error from actual to observed point of gaze, is on average 0.4 ° (Tobii 

2014). This accuracy corresponds to a 4.8 𝑚𝑚 possible error in gaze location on the 

computer screen. The gaze precision of this system, referring to the spatial angular 

variation between gaze samples, is 0.07° (Tobii 2014). 

 
Figure 2.9. Front display of the Tobii TX300 system (Tobii 2014). 

 

2.4.4 Making Sense of Eye-Movement Data 

The technological and theoretical advancements related to eye-tracking research 

have led to tremendous growth in applications of this technology to a variety of research 

domains. In turn, this growth has resulted in the development of numerous analysis 

approaches to making sense of eye-movement data. The early discovery that information 

is acquired and processed during eye fixations continues to be central to data analysis 
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today. The majority of results that are reported in research studies describe fixation 

activity, such as how often and for how long a person looks at a piece of information. 

Most eye-tracking system software provide algorithms that can identify different types of 

eye activity, including fixations and saccades, and these results can be presented in either 

a qualitative or quantitative manner.  

Qualitative representations of eye activity can be visualized in a number of 

different ways (Bojko 2013). Heatmaps illustrate aggregate eye movements over a set 

time, and depict the spatial distribution of visual attention in a static image. Spatial 

distributions of both the frequency and the absolute and relative duration of fixations can 

be plotted. However, heatmaps do not provide temporal information about fixation 

behavior. Gaze plots, on the other hand, can depict a series of individual fixations with 

the linking saccades in a static image. Additionally, in these plots, the size of each dot 

indicates the duration of each fixation. Taken a step further, gaze plots can be turned into 

videos, and the order of fixations relative to the background content can be replayed. 

While qualitative representations of eye movements give insight into how a 

person distributes their visual attention, quantitative representations are more useful for 

providing measures of that behavior. In an analysis of the measures reported in 21 

usability studies, Jacob and Karn (2003) found that the overall number of fixations 

(count), gaze percent (proportion of time), and the overall mean fixation duration were 

used most frequently. Areas of interest describe different portions of a scene and semantic 

content usually determines the area borders. Interpretation of fixation measures depends 

on the task at hand, but typically, information that is fixated on more frequently is 

considered more important or noticeable to the viewer, and information that is fixated on 
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for a longer duration is considered more engaging or more difficult to process (Poole and 

Ball 2006; Bojko 2013). Summaries of these measures can be presented in graphical 

forms, and inferential statistics can be used to test for statistical significant differences 

between treatment conditions.  

Many of the quantitative measures provide bulk summaries of fixation behavior, 

but they do not capture how fixations evolve over time. The temporal aspects of eye 

movements are important because they represent underlying cognitive processes driving 

the ways in which attention is focused. Therefore, scientists have developed methods that 

consider and compare sequences of fixations. Noton and Stark (1971) first termed these 

sequences a scanpath, which more recently was given the physical definition of “the route 

of oculomotor events through space within a certain timespan” (Holmqvist et al. 2011). 

A variety of methods to compare different aspects of scanpaths have been developed, and 

each have their own advantages and limitations (Anderson et al. 2015). Some of these 

methods include the String Edit Distance (Levenshtein 1966), ScanMatch (Cristino et al. 

2010), and MultiMatch (Jarodzka et al. 2010) algorithms. The latter of these may be 

considered the most comprehensive method given that it compares five characteristics of 

scanpaths (vector, length, direction, position, and duration), whereas other methods 

compare just one or two characteristics (Anderson et al. 2015). Scanpath comparison 

algorithms output results in terms of similarity scores; these scores can be used to 

determine how well-mapped the underlying cognitive processes represented by two 

scanpaths are. 
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2.4.5 Broadening the Research Applications 

Eye-tracking research originates in the study of reading and the desire to 

understand language processing mechanisms. However, scientists recognized that eye 

movement observations could be useful for other types of tasks. Fitts et al. (1950) was 

the first to apply eye-tracking methods to a usability study in an aircraft landing approach 

task. In this study, a motion-picture camera was used to capture pilots’ eye movements 

during flight, and these film records were analyzed to determine the importance of 

different instruments in the cockpit, how difficult it was to interpret the instrument 

readouts, and how well the instruments were arranged relative to one another based on 

the spatial order of pilots’ fixations. Despite this demonstration of a successful eye-

tracking application in a usability study, this type of research was slow to take off because 

of technological and practical challenges (Jacob and Karn 2003). Eye-tracking systems 

were not easy to use and the algorithms that identify different types of eye activity were 

not yet developed. Furthermore, the dynamic scenes captured in usability studies made 

for more labor-intensive analyses and difficulties in interpretation (Jacob and Karn 2003).  

Advancements in technology and theoretical understanding of eye movements 

coincided with the dramatic increase in computer use in the workplace, and a new 

research avenue was identified: human-computer interaction. This new research 

opportunity meant that applications of eye tracking to usability studies was a natural next 

step that many scientists embraced (Duchowski 2002; Jacob and Karn 2003). One area in 

which eye tracking was first applied to usability studies was in assessing how pull-down 

menus on computer screens are used (e.g., Card 1984; Hendrickson 1989; Aaltonen et al 

1998; Byrne et al. 1999). Observing the ways in which users interact with these menus 
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and make choices is helpful for improving the design of graphical interfaces so that they 

are easier and more efficient to navigate. Using eye tracking to observe how people search 

web pages either freely or with a goal in mind has also helped inform design 

recommendations for the layout of websites (Benel et al. 1991; Ellis et al. 1998; Goldberg 

et al. 2002).  

The use of eye tracking to test how people interact with computer displays was 

not constrained to the office environment. Following from Fitts et al.’s (1950) first 

application of eye tracking in a pilot usability study, other researchers adopted similar 

methods to tap into the cognitive processes of pilots. In a study examining the impacts of 

information complexity on combat pilots, Svensson et al. (1997) found that eye 

movements were sensitive to the amount of information available. Furthermore, Flemisch 

and Onken (2000) observed six military pilots’ eyes while they completed a navigation 

task in a flight simulator with different types of information displays. The pilots’ eye 

movement data were useful for evaluating their distributions of visual attention across the 

different displays and for considering the best way to provide technical support (Flemisch 

and Onken 2000). Tracking pilots’ eyes in the cockpit has continued over the years, and 

has more recently provided insight into pilots’ situational awareness during a malfunction 

in a simulated flight scenario (Van De Merwe et al. 2012), and for observing differences 

in expert and novice pilots’ distributions of attention and related eye movements during 

flight (Sullivan et al. 2011; Yu et al. 2016).  

Eye-tracking applications within the aviation domain have not been reserved to 

just the cockpit; eye tracking has also been an effective tool for studying air traffic 

controllers. For example, Hauland (2008) used eye tracking to determine air traffic 



54 

 

controller students’ situational awareness during a flight simulation based on how their 

attention was distributed across the display and how they acquired information. 

Differences in novice and experts’ sequences of fixations was also of interest in a conflict 

detection task (Kang and Landry 2014). Additionally, Kang and Landry (2014) showed 

that after novices viewed how experts’ eye movement sequences on the air traffic control 

display, their number of false alarms reduced. Use of these sequences was therefore 

considered effective for training purposes.  

In addition to air traffic control, another research area that has recognized 

opportunities for applying eye-tracking methods is the medical field. Due to practical 

matters, many of these applications have focused on medical imaging studies, in which 

the visual search behavior of medical professionals is analyzed (Al-Moteri et al. 2017). 

Such observations have allowed researchers to determine whether incorrect diagnoses of 

abnormalities in medical images occur at the detection or decision stage (Mannging et al. 

2014). Furthermore, a popular use of eye tracking within the medical community has been 

to examine differences in novices and more experienced radiographers’ visual search 

behavior when tasked with detecting abnormalities in medical images (Wood et al. 2013; 

Giovinco et al. 2015; Bertram et al. 2016). For example, Wood et al. (2013) tracked the 

visual search behavior of radiologists tasked with detecting and diagnosing fractures in 

radiographs. In this study, the more experienced radiographers were found to fixate on 

fractures more quickly and spent more time fixating on the fracture area than less 

experienced radiographers (Wood et al. 2013). Though not as common, differences in 

novice and experienced surgeons’ eye movements during simulated and live operations 

have also been investigated (Tien et al. 2010; Zheng et al. 2011; Khan et al. 2012; Tien 
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et al. 2015). The knowledge developed from these types of research efforts in both the 

aviation and medical fields are important for the development of training material that 

will promote a safer, more efficient, and better performing workforce. Researchers within 

education have also more recently recognized the possibilities of using eye movement 

data from experts as a training tool for teaching and learning (Jarodzka et al. 2017).  

Eye tracking has also been used in marketing research, which presents a less 

stressful and consequential decision environment than aviation or medicine. One example 

of a topic in marketing that eye tracking has been useful for understanding is banner 

blindness. This term refers to the tendency to ignore advertisements that pop up on web 

pages. Eye tracking has shown that the types of tasks that users engage in online as well 

as the location of advertisements on web pages modifies the extent to which banner 

blindness exists (Albert 2002; Hervet et al. 2011; Resnick and Albert 2013). Eye-tracking 

results have shown that people are less likely to observe advertisements when completing 

goal-oriented tasks or when the banner is positioned on the right hand side of the web 

page (Albert 2002). Additionally, eye-tracking studies within supermarkets have 

provided insight into the ways in which package design influence shoppers’ visual 

attention and how shoppers choose products (Clement et al. 2013; Gidlöf et al. 2013). 

2.4.6 Eye Tracking for Meteorology 

With the majority of meteorology research focusing on physical aspects of the 

atmosphere, it is unsurprising to learn that eye tracking has been used on very few 

occasions in this field. The earliest reported application of eye tracking in meteorology 

was for learning more about how humans extract implicit and explicit information from 

complex visualizations. In this study, Trafton et al. (2002) presented meteorological 
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visualizations that varied in terms of completeness to United States’ Navy weather 

forecasters and tracked their eye movements as they answered basic quantitative and 

qualitative questions. The findings showed how forecasters use spatial representations to 

interpolate between lines (i.e., isobars) and that even experienced users of these 

visualizations refer to legends often (Trafton et al. 2002). More recently, Sherman-Morris 

et al. (2015) used eye tracking to investigate how altering meteorological visualizations 

impacts users’ graph comprehension. Eye movement data showed that both the shading 

color and the units used in the graph’s legend affected participants’ abilities to interpret 

hurricane storm surge graphical information correctly (Sherman-Morris et al. 2015). 

Furthermore, Drost et al. (2015) applied eye tracking in a recent broadcast meteorology 

research project to learn about how a weathercaster’s gesturing can affect viewers’ 

attention during a televised weather forecast. Viewers’ eye movement data showed that 

the weathercasters’ gesturing affected where their attention was directed but not their 

retention of information. 

These listed studies in meteorology show that eye-tracking methods have been 

useful for learning about graph comprehension and assessing how well presentations of 

meteorological information are conveyed to users. However, studies have not utilized 

eye-tracking technology to learn more about NWS forecasters and their warning decision 

processes. The wide ranging applications of eye tracking across the medical, aviation, 

and marketing worlds, as well as the rare but successful uses within meteorology, suggest 

that eye tracking has strong potential for use in this field of research. Research questions 

that eye tracking has helped answer in medical imaging studies are certainly analogous 

to those we may ask in meteorology. For example, visual search tasks requiring 
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radiographers to detect fractures in x-rays is analogous to requiring forecasters to detect 

radar signatures indicative of a specific weather threat. Drawing on these effective uses 

of eye tracking, research methods can be adapted and applied within the PARISE setting 

to better observe and learn about forecasters’ warning decision processes as they 

interrogate, process, and act on radar data.   
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Chapter 3 

Forecaster Performance and Workload: Does Radar Update Time 

Matter? 

Taken in full from: Wilson, K. A., P. L. Heinselman, C. M. Kuster, and D. M. Kingfield, 

2017: Forecaster performance and workload: Does radar update time matter? Wea. 

Forecasting, 32, 253–274. 

Abstract 

 Impacts of radar update time on forecasters’ warning decision processes were 

analyzed in the 2015 PARISE. Thirty NWS forecasters worked nine archived PAR cases 

in simulated real time. These cases presented nonsevere, severe hail and/or wind, and 

tornadic events. Forecasters worked each type of event with approximately 5-min 

(quarter-speed), 2-min (half-speed), and 1-min (full-speed) PAR updates. Warning 

performance was analyzed with respect to lead time and verification. Combining all 

cases, forecasters’ median warning lead times when using full-, half-, and quarter-speed 

PAR updates were 17, 14.5, and 13.6 min, respectively. The use of faster PAR updates 

also resulted in higher Probability of Detection and lower False Alarm Ratio scores. 

Radar update speed did not impact warning duration or size.  

Analysis of forecaster performance on a case-by-case basis showed that the 

impact of PAR update speed varied depending on the situation. This impact was most 

noticeable during the tornadic cases, where radar update speed positively impacted 

tornado warning lead time during two supercell events, but not for a short-lived tornado 
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occurring within a bowing line segment. Forecasters’ improved ability to correctly 

discriminate the severe weather threat during a nontornadic supercell event with faster 

PAR updates was also demonstrated. Forecasters provided subjective assessments of their 

cognitive workload in all nine cases. On average, forecasters were not cognitively 

overloaded, but some participants did experience higher levels of cognitive workload at 

times. A qualitative explanation of these particular instances is provided.  

3.1 Introduction 

During convective warning operations, NWS forecasters rely primarily on 

weather radar to monitor storms and make warning decisions. The WSR-88D network 

currently provides forecasters with volumetric updates every 4–6 min. However, given 

that PAR may likely become the next generation of weather radar, this technology is 

being tested and considered for weather applications (Forsyth et al. 2005; Zrnić et al. 

2007). Located in Norman, Oklahoma, the National Weather Radar Testbed PAR 

(hereafter PAR) demonstrates how electronic beam steering can be used to adaptively 

scan the atmosphere and collect rapid-update (~1 min) volume scans of a 90° azimuthal 

sector (Heinselman and Torres 2011).  

In a continued effort to improve the timeliness and accuracy of warnings, it is vital 

that the potential impacts of higher-temporal resolution radar data on NWS forecasters’ 

warning decision processes are understood. Since 2010, PARISE has been addressing a 

variety of research questions to examine this issue (Heinselman et al. 2012, 2015; 

Bowden et al. 2015; Bowden and Heinselman 2016). Applications of behavioral science 

methods (e.g., cognitive task analysis) have resulted in a better understanding of 
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forecasters’ thought processes as they interrogate radar data and make warning decisions. 

This analysis has provided important insight into aspects of forecasters’ performance, 

such as lead time and verification, which itself has been a consistent focus throughout 

PARISE. Impacts of 1-min PAR updates on forecasters’ performance during a variety of 

scenarios was assessed in the 2010, 2012, and 2013 PARISE. 

The 2010 PARISE focused on a known challenge within the NWS: being able to 

provide warning lead time on weak, short-lived tornadoes. Comparing forecasters’ 

decisions when using 43-s versus 4.5-min volumetric PAR updates, this experiment found 

that participants using faster updates achieved longer tornado warning lead times 

(Heinselman et al. 2012). However, forecasters using these faster updates also had a 

higher False Alarm Ratio (FAR). Due to the small sample size in the first experiment and 

the concern that faster PAR updates could lead to a higher number of false alarms, the 

experimental design was modified in the 2012 PARISE and the number of cases that 

participants worked was increased (Heinselman et al. 2015). This time, forecasters 

worked a total of four events (two tornadic and two nontornadic) independently, each 

with 1-min updates. The participants achieved a median tornado warning lead time of 20 

min, which exceeded the EF0/EF1 tornado warning lead time of the participants’ 

respective forecast offices (7 min) and NWS regions (8 min; Heinselman et al. 2015). All 

but one forecaster also achieved a probability of false alarm score <0.5, indicating that 

warning accuracy was better than chance during this experiment (Heinselman et al. 2015).  

Although the 2010 and 2012 PARISE results demonstrated positive impacts of 

higher-temporal resolution radar data on forecasters’ warning decisions during weak 

tornado events, a question that remained was whether the same benefits would be 
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observed during events that only produced severe hail and/or wind. The 2013 PARISE 

aimed to answer this question using a two-independent group design, such that half of the 

participants were each assigned to a control group (5-min updates) while the other half 

was assigned to an experimental group (1-min updates). Performance of the experimental 

group during these cases was superior to that of the control group, as demonstrated by 

their statistically significant longer median warning lead time (21.5 min) compared to the 

control group’s (17.3 min), and their more accurate warning decisions (Bowden et al. 

2015).  

Previous PARISE studies have contributed substantially to our understanding of 

the potential impacts of higher-temporal resolution radar data on forecasters’ warning 

decision processes. However, there have been some key limitations preventing the 

generalizability of our findings about forecasters’ performance. The most notable 

limitation is the sample size; in each PARISE, only twelve forecasters were recruited for 

participation and only 1–4 cases were worked. In each experiment, these cases focused 

on a specific weather threat (i.e., weak tornado or severe hail/wind), and as a result they 

did not provide the variety of weather events typical in a forecast office. Furthermore, 

while impacts of 1-min and 5-min PAR updates have been explored, we have not assessed 

how forecasters would perform with 2-min PAR updates. Finally, forecasters’ cognitive 

burden resulting from a greater influx of data was not examined in these previous 

experiments, and therefore the effects of rapidly-updating PAR data on forecasters’ 

cognitive workload was still unknown.    

The 2015 PARISE was therefore designed to address these limitations, while 

continuing to deepen understanding of forecasters’ warning decision processes and target 
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new research questions. Based on findings from previous experiments, we expected 

forecasters with faster PAR updates to perform better, most notably with respect to 

warning lead time. We also expected forecasters with faster PAR updates to discriminate 

between weather threats more successfully. Given that forecaster cognitive workload had 

not been studied in detail in the literature, we were hopeful that our assessment would 

provide new insight into forecasters’ mental efforts during warning operations. Our 

expectation was that faster PAR updates would lead to increased cognitive workload, 

especially during more demanding weather scenarios. In this paper, we provide an 

overview of the experimental design and methods applied in the 2015 PARISE. We focus 

our analysis on how forecasters’ performance, warning characteristics, and perceived 

cognitive workload relate to the temporal resolution of radar data and the type of weather 

threat presented in each case. Finally, we bring together findings from this most recent 

study and from previous studies to give an overall assessment of what higher-temporal 

resolution radar data will mean for NWS forecasters during warning operations.  

3.2 Methodology 

The 2015 PARISE took place over six weeks during August and September 2015. 

Each week, five NWS forecasters visited the NOAA Hazardous Weather Testbed in 

Norman, Oklahoma, and completed three experimental components of this study. These 

components were the traditional experiment, eye-tracking experiment, and focus group. 

The traditional experiment built directly on earlier PARISE studies, aiming to improve 

the generalizability of PARISE findings through increased sample size of participants and 

cases worked. Additionally, the traditional experiment explored the concept of cognitive 
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workload for the first time in PARISE. This paper discusses findings from the traditional 

experiment only.  

 

 3.2.1 Recruitment 

 Thirty NWS forecasters were recruited for the 2015 PARISE. Since forecasters 

would be working archived weather events from central Oklahoma, those most likely to 

have encountered similar storm types during their own warning operations were targeted. 

The 30 participating forecasters represented 25 NWS WFOs located across eleven states 

in the Great Plains (Fig. 3.1). Of these forecasters, 5 were female and 25 were male, and 

experience ranged from 1–27 years (mean=12 years, SD=7 years). Prior to participating 

in this study, all forecasters completed a multiple choice survey that was comprised of 48 

questions drawn from forecaster training material designed by the NOAA Warning 

Decision Training Division. This survey queried forecasters’ knowledge of severe 

weather definitions and their understanding of conceptual models and weather radar. The 

purpose of this survey was to obtain a simplistic assessment of forecasters’ general 

knowledge of severe weather warning operations, which when represented as survey 

scores, could be used as a measure for comparison. The survey scores ranged from 28–

41 out of a possible 49 points (mean=36, SD=3).   

3.2.2 Experimental Design 

 A goal of the 2015 PARISE was for all forecasters to work a variety of weather 

events and to be exposed to a variety of temporal resolutions of PAR data. In comparison, 

each previous PARISE study was confined to a single type of weather (i.e., weak tornado 

events only or severe hail and wind events only), and forecasters were assigned to work 
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with only 1-min or 5-min PAR volumetric updates (Heinselman et al. 2012, 2015; 

Bowden et al. 2015). This current study continued the assessment of forecaster use of 1-

min and 5-min PAR volumetric updates, but based on forecasters’ suggestions during the 

2013 PARISE, also tested forecasters use of 2-min PAR volumetric updates (Bowden and 

Heinselman 2016). 

 
Figure 3.1 Forecasters were recruited from the Great Plains region of the United 

States. The color bar indicates the number of forecasters participating from each of 

the eleven states. 

 

To examine forecaster use of these three temporal resolutions (full-speed [~1-

min], half-speed [~2 min], and quarter-speed [~5 min]) for different types of weather 

events, nine archived PAR cases were selected (see section 3.3). The chosen experimental 

design required random assignment of forecasters to three separate groups, and each 

group was comprised of ten forecasters. Group assignment determined the temporal 

resolution of PAR data that would be used for each case, and all participants were exposed 

to the full-, half-, and quarter-speed PAR updates for each of the three case types.  

 



65 

 

3.2.3  Methods 

3.2.3.1  Working Events 

 The majority of forecasters’ participation time was spent on the traditional 

experiment. Forecasters worked on two to three cases per day, and the nine cases were 

completed in random order to avoid order effect. Forecasters were provided with their 

own AWIPS-2 workstations and worked each case independently. They did not discuss 

details of the weather events with other participants until the end of the week. First, a 

practice case was completed to train forecasters on how to setup their cases and to ensure 

that they were comfortable loading and interrogating PAR data in AWIPS-2. During this 

initial case, forecasters practiced issuing warnings using the Warning Generation 

(WarnGen) software, practiced receiving storm reports, and personalized settings in 

AWIPS-2.  

Similar to previous PARISE studies, prior to working each case forecasters 

viewed a pre-briefing video that described the environmental conditions associated with 

the upcoming case. Mesoscale analysis, sounding information, and satellite and radar data 

were provided, and forecasters used this information to form and document their 

expectations for how the event might unfold. When working the case, forecasters were 

able to view reflectivity, velocity, and spectrum width products in simulated real time. 

Importantly, forecasters were asked to work the event in their normal forecasting style, 

and to interrogate the radar data and issue special weather statements, warnings (severe 

thunderstorm and tornado), and severe weather statements that they deemed necessary. 

All issued products were recorded in a database for performance analysis.  
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3.2.3.2  Workload Ratings 

 With an increase in data availability, the impact of higher-temporal resolution 

radar data on forecasters’ workload is of interest. Workload is defined as the level of 

attention resources required to meet the performance criteria, and is affected by task 

demands and past experience (Young and Stanton 2005). Widely used workload 

assessment methods are the NASA-TLX (Hart and Staveland 1998) and SWAT (Reid et 

al. 1981); however, both methods evaluate workload based on sub-classifications such as 

time demand, effort demand, and stress demand, which can be time consuming and 

obtrusive when workload needs to be evaluated many times during a prolonged task. 

Furthermore, given that forecasters’ work demand is predominantly cognitive, many of 

these sub-classifications are difficult for forecasters to relate to. Thus, a faster, less 

obtrusive, and more suitable method was chosen. This method was the Instantaneous 

Self-Assessment (ISA) (Kirwan et al., 1997), which is based on a unidimensional scale 

and has five qualitative ratings of mental effort, including: under-utilized (1), relaxed (2), 

comfortable (3), high (4), and excessive (5) (Miller 2001). Each level of mental effort 

was provided with a corresponding description. The ratings can also be thought of in 

terms of how much spare mental capacity one has (Table 3.1) (Kirwan et al. 1997). To 

capture variations in forecasters’ mental workload during events, ISA ratings were 

collected during a video-cued retrospective recall at 5-min intervals. Along with each 

rating, forecasters provided reasoning for their chosen mental workload level.  
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Table 3.1. The Instantaneous Self-Assessment (ISA) tool adapted from Kirwan et al. 

(1997). 

 

Level  Workload Spare 

Capacity 

Description 

1 Under-

utilized 

Very much Nothing to do. Rather boring. 

2 Relaxed Ample More time than necessary to complete 

tasks. Time passes slowly. 
 

3 Comfortable Some The controller has enough work to keep 

him/her stimulated. All tasks are under 

control.   
  

4 High Very little Certain non-essential tasks are 

postponed. Could not work at this level 

very long. Controller is working ‘at the 

limit’. Time passes quickly. 
 

5 Excessive None Some tasks are not completed. The 

controller is overloaded and does not feel 

in control.  
 

 

 

3.3 Radar Data 

For the 2015 PARISE, the nine cases selected from archived PAR data maximized 

the variety in storm types, hazard types (e.g., severe hail), and distance from the radar. 

Each case also met temporal continuity (i.e., no data gaps) and duration criteria, which 

allowed forecasters ample time to demonstrate their warning decision process in each 

case. Following these criteria, we selected three null cases, three severe hail and wind 

cases, and three tornado cases based on storm reports provided by the National Centers 

for Environmental Information Storm Data publication (NCEI 2016).  

 Of the three null cases, two (Alpha and Epsilon) were multicell thunderstorms 

that produced no severe weather reports (Fig. 3.2a, b; Table 3.2). The third case (Theta) 
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was considered null with respect to tornadoes. It contained two nontornadic supercells, 

but the supercell located about 75 km from the radar produced severe hail (Fig. 3.2c). In 

all three severe hail and wind events (Delta, Gamma and Beta), a multicell thunderstorm 

produced severe weather. In Delta, a storm produced both severe hail and wind, while 

storms in Gamma produced severe hail only and storms in Beta produced severe wind 

only (Table 3.2; Fig. 3.3). Of the three tornadic cases, Zeta contained a classic supercell 

that produced two tornadoes (one rated EF1 and the other rated EF2), Iota contained a 

supercell cluster that produced a tornado rated EF0, and Eta contained a tornadic squall 

line that produced a tornado rated EF1 (Fig. 3.4). The supercells in Zeta and Iota also 

produced severe hail and wind (Table 3.).  

In all but one of the cases (Alpha), PAR operators collected data using a modified 

volume coverage pattern 12 (Brown et al. 2005) that included five additional elevation 

angles above 19.5° (up to 52.9°). For Alpha, a unique volume coverage pattern with 22 

elevation angles between 0.51° and 52.94° was used. An adaptive scanning algorithm 

called ADAPTS (Heinselman and Torres 2011) was also used in all but three cases (Beta, 

Iota, and Alpha), which resulted in volumetric update times that varied throughout the 

cases (Table 3.2).  
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Figure 3.2. PAR 0.5° reflectivity for a) Epsilon, b) Alpha, and c) Theta (null tornado 

case). Green dots in c) are severe hail reports. Reflectivity (dBZ) color bar located at 

the top. White rings are displayed in 50-km increments. 
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Figure 3.3. PAR 0.5° reflectivity for a) Beta, b) Gamma, and c) Delta. Green dots are 

severe hail reports and yellow dots are severe wind reports. Reflectivity (dBZ) color 

bar located at the top. White rings are displayed in 50-km increments. 
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Figure 3.4. PAR 0.5° reflectivity (left) and velocity (right) for a) Eta, b) Iota, and c) 

Zeta. Green dots are severe hail reports, and yellow dots are severe wind reports. Red 

dots are tornado reports (i.e., starting point of tornado path), while red lines in c) are 

tornado paths associated with longer-lived tornadoes. Thick white circles show location 

of couplet of interest. Reflectivity (dBZ) and velocity (m s-1) color bars located at the 

top. White rings are displayed in 50-km increments. 
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3.4 Storm-Based Warning Verification 

 Recent PARISE experiments have focused on hazard-specific, storm-based 

warning verification of either tornadoes (Heinselman et al. 2012, 2015) or severe hail and 

winds (Bowden et al. 2015). In the 2015 PARISE, all three hazard types occurred in 

several of the simulation scenarios, requiring a verification framework for both severe 

thunderstorm and tornado warnings. As part of NWS Instruction 10-1601 (NWS 2015), 

two methods are used to verify these convective warnings: event specific and generic 

(Table 3.3). In the event-specific verification system, severe thunderstorm warnings are 

verified only by convective wind or hail events, and tornado warnings are verified only 

by tornado events. Because these matching hazard-to-warning combinations are only 

used to calculate hits and lead times, forecasters are neither rewarded nor penalized when 

an unmatched hazard-to-warning combination occurs. In the generic verification system, 

any convective hazard occurring in any warning type verifies the warning and allows for 

a lead time to be calculated for the hazard. Therefore, the generic verification system 

results in the possibility that a severe hail or wind event can verify a tornado warning and 

a tornado event can verify a severe thunderstorm warning.  

 For the above reasons, we decided to develop a hybrid verification system that 

adds certain components of the generic verification system to the event-specific 

verification system (Table 3.3). In this hybrid system, convective wind or hail events 

occurring within a tornado warning have their lead times calculated and count as a hit, 

but do not verify the warning. Wind or hail events occurring within a severe thunderstorm 

warning verify the warning and have event lead times tabulated, as they normally would. 

Tornado events occurring within severe thunderstorm warnings count as misses and do 
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not verify the warning, with the opposite results occurring within a tornado warning. Our 

system allows for all events and warnings to be scored for each simulation but is stricter 

regarding tornado warning issuance and verification. In conjunction with the proposed 

hybrid verification system, we used the guidance within NWS directive 10-1601 (NWS 

2015) to calculate the Probability of Detection (POD), FAR, and lead times for all 

warnings and hazards. 

3.5 Performance 

 The expectation that overall median warning lead time would increase as update 

speed increased (became faster) was realized in this study. The use of full-, half-, and 

quarter-speed PAR data resulted in overall median warning lead times of 17, 14.5, and 

13.6 min, respectively. Despite some difference in the median warning lead times, 

application of the Kruskal-Wallis test (Kruskal and Wallis 1952) showed no statistically 

significant differences between the three groups (p-value = 0.1683). This non-parametric 

test was chosen because the collected data did not meet normality assumptions. Overall 

POD and FAR scores were similar, with slight improvements as updates became more 

rapid (Table 3.4). Broken down by event type, the greatest differences are found for 

tornado warning POD and FAR scores (Table. 3.4). The full-, half-, and quarter-speed 

POD (FAR) scores were 0.78 (0.29), 0.74 (0.45), and 0.62 (0.44), respectively.   
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Table 3.4. The POD and FAR scores across all severe (SVR) and all tornado 

(TOR) warnings by update speed for all cases; severe cases Gamma, Beta, and 

Delta; and tornado cases Eta, Iota, and Zeta. 

 

 

These big-picture findings indicate that of the three update times used, full-speed 

data was most beneficial to forecasters’ ability to issue more accurate warnings with 

longer lead times. However, of interest is how representative these findings are for each 

case worked. While examining this question, we found that the results were sensitive to 

the situation presented. For example, the temporal resolution used during Gamma and Eta 

had little impact on warning lead times, whereas differences were found in the other 

severe and tornado cases. Furthermore, in cases containing multiple reports, such as Delta 
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and Zeta, we found the use of faster updates particularly improved warning lead times for 

the first report of the event. These longer initial warning lead times are an encouraging 

result, as warnings verified for the first report of the day tend to be the most challenging 

(e.g., Andra et al. 2002; Brotzge and Erickson 2009).  

 Given these situational dependencies, we expected that overall median warning 

lead times computed using only first reports from each case, and excluding Gamma and 

Eta, would show more improvement in warning lead time when using faster updates. 

Applying these criteria, the median lead times for full-, half- and quarter-speed were 14.5, 

10.5, and 5.5 min, respectively (N=120 for each update-speed group). In this case, the 

application of the Kruskal-Wallis test did indicate statistically significant differences 

between the three groups (p-value = 0.0013). A post-hoc Wilcoxon-Mann-Whitney rank-

sum test (e.g., Wilks 2006) indicates between which groups these statistically significant 

differences occurred (p-value<0.0170). Again, this non-parametric test was chosen 

because the data collected did not meet normality assumptions. Comparing the three 

groups, the full-speed group’s median lead time distribution for this subset of the data 

was most different to that of the quarter-speed group’s (p-value=0.0003), and provided 

additional confidence that the use of full-speed data did extend warning lead times 

compared to the use of quarter-speed data, in these cases. Further examination of first 

reports by case type revealed that the statistical significance found above was more so 

due to differences in tornado warning lead times between the three groups (Kruskal-

Wallis p-value = 0.0380), rather than difference in severe thunderstorm warning lead 

times (Kruskal-Wallis p-value = 0.1162). The remainder of this section discusses the 

performance results by case type. 
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3.5.1 Performance: Severe Cases 

 The overall severe median warning lead times for the full-, half-, and quarter-

speed cases were very similar: 21, 22.5, and 20 min, respectively (N=150 per group). As 

noted earlier, the most similar severe warning lead times occurred during Gamma, the 

hail-only case (Fig. 3.5a). Hence this case contributed to the overall similarity in median 

severe warning lead times found. To aid qualitative comparison between groups, in each 

case the median severe warning lead time for the full distribution (N=30) was computed. 

For Gamma, the full distribution lies near the 24.5-min median severe warning lead time. 

All groups achieved a perfect severe POD and FAR score (Table 3.4).  

 The most dissimilar severe warning lead times between the full-speed group and 

the quarter-speed group occurred during Beta, the wind-only event (Fig. 3.5b). Therein, 

both full- and half-speed groups achieved severe-warning lead times located mostly near 

or above the overall 18-min median lead time (N=30; Fig. 3.5b). In contrast, more than 

half of the quarter-speed group achieved severe-warning lead times at least 6-min under 

the 18-min median. The median severe warning lead times for full-, half-, and quarter-

speed groups were 19.5, 18.0, and 10.5 min, respectively. The quarter-speed group’s POD 

score was slightly lower and FAR score slightly higher compared to the full-speed group 

(Table 3.4). In this wind-only case, the use of half- and full-speed data was overall more 

advantageous to forecasters’ ability to issue warnings with longer lead times than the use 

of quarter-speed data.    

 Unlike the other two cases, Delta contained both severe hail and wind reports. 

Because multiple storm reports were received as forecasters worked the case, warning 
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lead times associated with the first report provided the clearest measure of the impact of 

temporal resolution on the warning decision process. As in Beta, groups using full- and 

half-speed data tended to issue warnings earlier (medians: 10 and 11 min, respectively) 

than the quarter-speed group (median: 6.5 min) (Fig. 3.5c). However, overall, the half-

speed group outperformed the full-speed group, as the former produced the highest 

number of initial, second, and third severe warning lead times above the overall median 

warning lead times (10.5, 21.5, and 24.5 min, respectively) (Fig. 3.5c). One outlier was 

P29 of the half-speed group, who missed the first hail event; P9 of the quarter-speed group 

also missed the first event. The use of higher-temporal resolution data also resulted in 

slightly higher FARs compared to forecasters using quarter-speed data (Table 3.4).  

3.5.2 Performance: Tornadic Cases 

 The overall median tornado warning lead times for the full-, half-, and quarter-

speed cases were 12.7, 8, and 9 min, respectively (N=150 per group). Like the severe 

cases, performance for tornado cases was determined by the situation presented to 

forecasters. The most challenging tornado case for all groups was Eta, in which a short-

lived EF1-rated tornado was produced on the north end of a bowing line segment 

approximately 75 km northwest of the PAR (Fig. 3.4a; Table 3.2). In this case, only 5 of 

30 forecasters decided to issue tornado warnings prior to tornado occurrence: three were 

in the full-speed group (P11, P14, P15), and two were in the half-speed group (P22 and 

P27). Of these five forecasters, tornado warnings verified only for P14, P15, and P22 with 

associated tornado warning lead times of zero, two, and six min, respectively (Fig. 3.6a).  
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 Sixteen forecasters decided to issue their first (and only) tornado warning 

reactively, a few minutes after they received the tornado report. Four of the forecasters 

were in the full-speed group, whereas six were in the half- and quarter-speed groups. The 

remaining nine forecasters decided not to issue tornado warnings following the report. As 

most forecasters issued unverified tornado warnings, the median tornado lead time was 

zero min, and the majority of POD and FAR scores were poor (Table 3.4). In this case, 

radar update speed had little to no discernable impact on forecasters’ performance.  

The use of full-speed data was most advantageous during Iota, the case containing 

a cluster of supercells, one of which produced an EF0-rated tornado (Fig. 3.4b; Table 

3.2). In this case, the majority of the full-speed groups’ tornado warning lead times were 

longer than the overall median warning lead time of 0.25 min, which is in stark contrast 

to the quarter-speed group (Fig. 3.6b). Of the eight in the full-speed group with non-zero 

tornado warning lead times, half achieved lead times between 25 and 36 min, while the 

other half achieved lead times under 10 min. Six of 10 participants in the half-speed group 

achieved non-zero tornado warning lead times; five were five min or less, whereas one 

was 35 min. The median tornado warning lead times for full-, half-, and quarter-speed 

groups were 7.5, 3.5, and 0.0 min, respectively. Besides increasing tornado warning lead 

time, the use of full-speed data in Iota resulted in fewer tornado misses and false alarms 

(Table 3.4). About 30 min prior to Iota’s EF0 tornado, 4.5-in hail and a 61-kt wind were 

reported (Table 3.2). For these reports, the distributions of severe warning lead times 

between groups were relatively similar, with a tendency for lower lead times for members 

of the quarter-speed group (not shown).  
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 Unlike the previous two tornado cases, Zeta presented a classic cyclic supercell 

that produced several tornadoes, including two rated EF1 and one rated EF2 (Table 3.2). 

As in the severe case, Delta, of particular interest was whether the use of increasingly 

rapid updates would enhance the tornado warning lead time for the first tornado 

occurrence, which in operations tends to be the most difficult to forewarn (e.g., Andra et 

al. 2002; Brotzge and Erickson 2009). In this case, the full-speed group performed best 

with about twice as many full-speed participants producing first tornado-warning lead 

times above the overall median of 12 min (median tornado warning lead time = 14.5 min), 

compared to the half- and quarter-speed groups (median tornado warning lead times: 9 

and 11 min, respectively) (Fig. 3.6c). A few forecasters in the full- and half-speed groups 

issued tornado warnings with comparatively long lead times ranging from 25–35 min 

(Fig. 3.6c). These results indicate that the full-speed group and a few forecasters in the 

half-speed group gained situational awareness unavailable in the 4-min volume updates 

used by the quarter-speed group. The overall median tornado warning lead times for the 

second and third tornadoes were similar: 16.5 and 17.5 min, respectively (Fig. 3.6c). Also 

similar were the lead time distributions associated with these warnings, with a slight 

tendency for lower lead times for the half-speed group. Regardless of the observed 

differences in tornado warning lead times between groups, no unverified tornado 

warnings were issued (Table 3.4).     
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Figure 3.5. Distribution of forecasters’ severe warning lead times (min) for 

each case: a) Gamma, b) Beta, and c) Delta, organized by update speed. First, 

second, and third severe reports are denoted by numbers 1, 2, and 3 (magenta, 

blue, and red). For each report, the median severe warning lead time (min) for 

the full distribution is given by a dotted and annotated line (magenta, red, and 

blue). 
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Figure 3.6. Distribution of forecasters’ tornado warning lead times (min) for each 

case: a) Eta, b) Iota, and c) Zeta, organized by update speed. First, second, and third 

severe reports are denoted by numbers 1, 2, and 3 (magenta, blue, and red). For each 

report, the median severe warning lead time (min) for the full distribution is given by 

a dotted and annotated line (magenta, red, and blue). 
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3.5.3 Performance: Null Cases 

 Epsilon and Alpha presented forecasters with null multicell events (Fig. 3.2a,b; 

Table 3.2). Of the two cases, the results indicate that the use of full-speed data was most 

advantageous during Epsilon, as only 16 of 30 forecasters decided to issue severe 

thunderstorm warnings. Of the 16 forecasters who issued warnings, three were in the full-

speed group, compared to six and seven in the half- and quarter-speed groups. In contrast, 

while working Alpha (Fig. 3.2b), most forecasters (26 of 30) decided to issue severe 

thunderstorm warnings. Of the four that did not issue severe thunderstorm warnings, one 

each used full- and half-speed data, while two used quarter-speed data.  

 During Theta (Fig. 3.2c; Table 3.2), the nontornadic supercell case, most 

forecasters (24 of 30) issued severe thunderstorm warnings, and one third issued tornado 

warnings. To assess severe and tornado warning false alarms separately, the FAR was 

computed with respect to each warning type (Fig. 3.7). Although the distribution of severe 

thunderstorm warning FAR scores is fairly similar across update speeds, a few more 

forecasters achieved severe FAR scores lower than 0.5 using quarter-speed data (N=5) 

than when using full- or half-speed data (N=3). In contrast, more forecasters using 

quarter- and half-speed data issued tornado warnings (N=5 and N=4, respectively) than 

those using full-speed data (N=1). Hence, in this case, the use of full-speed data appeared 

to be most advantageous in reducing the number of tornado false alarms. 
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Figure 3.7. The False Alarm Ratio (FAR) for severe (black S) and tornado (red T) 

warnings by participant during Theta, plotted by update-speed group. 

 

3.6 Warning Polygon Size and Duration 

 While analyzing forecaster performance, multiple questions arose about whether 

warning characteristics (i.e., size and duration) depended on storm mode or radar-update 

speed. We found that the largest differences in warning characteristics were related to 

each case’s storm mode. For example, the largest severe thunderstorm warnings were 

issued during the squall-line case (Eta; Table 3.5, Fig. 3.8a), which is not surprising given 

that squall lines can stretch over 100 km in length and can produce widespread severe 

weather (e.g., Funk et al. 1999; Trapp et al. 2005). Various warning strategies employed 

by 2015 PARISE participants likely resulted in these very large severe thunderstorm 

warnings. For example, P15 explained the need for a large warning size during Eta. They 

stated that their main objective was to warn for the deepest reflectivity core, but that the 
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warning should also capture new deep reflectivity cores and potential severe-weather 

threats that might develop anywhere along the line.  
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 Tornado warning size and duration also varied most based on storm mode. 

Tornado warnings issued during the squall-line case (Eta) were the largest, but the 

duration of these warnings was the shortest of the three tornado cases (Table 3.5, Fig. 

3.9). While working Eta, 12 participants expressed uncertainty in issuing a tornado 

warning based on radar data alone. In total, 18 participants issued a tornado warning only 

after receiving a tornado report. Based on performance (section 3.5), Eta was a 

challenging case and the higher uncertainty expressed by the participants likely 

influenced the size and duration of their warnings. In addition, 11 participants explicitly 

stated that squall line tornadoes tend to be short-lived, which likely resulted in shorter-

duration tornado warnings. The participants’ perception that squall-line tornadoes tend to 

be short-lived was accurate for this case, as the tornado in Eta lasted one minute (Table 

3.2). Studies of tornadoes relative to storm mode also align with the participants’ 

perceptions (e.g., Trapp et al. 2005; Davis and Parker 2014). During the other two tornado 

cases, environmental conditions alerted participants to a heightened potential for strong 

supercells that can produce long-lived tornadoes, thereby requiring longer warnings. The 

classic supercell case (Zeta) had the longest tornado warnings, although these warnings 

were only one minute longer than those issued during the supercell cluster case (Iota; 

Table 3.5). During Zeta, participants also received multiple tornado reports throughout 

the case. Knowledge of a confirmed tornado may explain why 17 of the 30 participants 

issued a second tornado warning that was longer than the first tornado warning.  

 While differences in warning size and duration were observed for cases with 

differing storm modes, it is worth noting that these characteristics did not change 

substantially when radar update speed changed. In addition, when looking at the cases 
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individually, no clear patterns emerged in terms of warning characteristics and radar 

update speed (Figs. 3.8, 3.9). Since radar update speed did affect lead time (section 3.5) 

but not warning characteristics, it is possible that changes in radar update speed affects 

when, not how, a forecaster designs and issues a warning. 

 

Figure 3.8. Median severe thunderstorm warning a) size and b) duration for each 

participant group. Median values are included near the top of each bar. Radar-update 

speed (F=Full, H=Half, and Q=Quarter) worked by each group for each case is 

included near the bottom of each bar. 
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Figure 3.9. Median tornado warning a) size and b) duration for each participant 

group. Median values are included near the top of each bar. Radar-update speed 

(F=Full, H=Half, and Q=Quarter) worked by each group for each case is included 

near the bottom of each bar. 
 

3.7 Cognitive Workload 

3.7.1 Workload Distributions and Profiles 

The ISA workload analysis is based on forecasters’ ratings chosen at 5-min 

intervals during the video-cued retrospective recall. The number of ratings in each case 

ranged from 6–13 depending on case duration. In total, 24 ISA ratings were missed, 8 of 
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which each belonged to the quarter-, half-, and full-speed groups. Over half of these 

missed ratings occurred during the tornado cases, possibly due to the higher demand of 

this case type. Given that these workload reports were incomplete, they were removed 

from the analysis.  

Each group’s median 5-min workload rating for the nine cases was either a level 

2 or a level 3 (Fig. 3.10). This result suggests that on average, forecasters were not 

cognitively overloaded during this experiment. However, a difference in cognitive 

workload based on temporal resolution is evident. While the quarter-speed group was on 

average a level 2 (relaxed) for all of the null and severe hail/wind cases, the full-speed 

group was a level 3 (comfortable) for half of these (Fig. 3.10a-f). The half-speed group 

was a level 3 for only one of these cases (Theta), which although classified as null, 

presented a nontornadic supercell that produced severe hail. The median workload rating 

for the tornado cases was a level 3 for all groups (Fig. 3.10g-i), suggesting that aside from 

temporal resolution, the increased weather threat contributed to the overall higher levels 

of workload.  

Despite some similarities in the median 5-min workload ratings, a Kruskal-Wallis 

test (Kruskal and Wallis 1952) showed statistically significant differences in ISA ratings 

between the three groups in all but two cases (p-values<0.05; Table 6). One of these cases, 

Gamma, was when forecasters’ performance was most similar (Fig. 3.5a). A post-hoc 

Wilcoxon-Mann-Whitney rank-sum test (e.g., Wilks 2006) indicates between which 

groups these statistically significant differences occurred (p-value<0.017; Table 6). 

Comparing the three groups, the quarter-speed group’s ISA rating distribution was most 
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different to that of the full-speed group’s, while the half- and full-speed groups’ ISA 

rating distributions were most similar (Table 3.6). 

 

Figure 3.10. Boxplots of 5-min workload ratings for quarter-, half-, and full-speed 

groups for the null (a, b, c), severe (d, e, f), and tornadic (g, h, i) cases. The solid 

middle line indicates the median value and the box edges indicate the lower and upper 

quartiles (i.e., interquartile range). Minimum and maximum values are identified with 

whiskers and outliers are either less than 1.5 times the lower quartile or greater than 

1.5 times the upper quartile. 

 

Comparisons of ISA rating distributions give an overall impression for the level 

of cognitive workload experienced within a case. However, given the dynamic nature of 

weather, the change in workload as cases evolved (i.e., workload profile) was also of 

interest. We observed that regardless of temporal resolution or case type, 21 of the 30 

participants’ workload rating patterns were either flat (i.e., little or no change in 
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workload) or fluctuating (i.e., multiple increases and decreases in workload) in the 

majority of cases worked. Although we did not analyze personality traits during PARISE 

2015, these workload behavior tendencies suggest that forecaster personality was also 

likely an important factor in perceived cognitive workload during the simulations. It is 

possible that personality traits may have influenced forecasters’ coping strategies and 

approaches to the simulations, thus influencing their ISA ratings. Past studies support this 

suggestion; personality traits and perceived subjective workload have been found to 

correlate during vigilance tasks (e.g., Rose et al. 2002; Szalama 2002; Guastello et al. 

2015). The influence of personality would also explain differences in forecasters’ level 

of boredom versus excitement during cases and why some forecasters were more 

sensitive to changes in task demand than others.  

 

Table 3.6. Kruskal-Wallis rank-sum test and Wilcoxon-Mann-Whitney rank-sum test 

p-values for differences in cognitive workload distributions across groups with 

differing temporal resolution. 

 

 

3.7.2    Reasoning for Higher Levels of Cognitive Workload 

3.7.2.1 Categories 

Forecasters’ reasoning associated with each ISA rating gives insight into the 

chosen ratings for perceived cognitive workload. Although the average ISA ratings show 
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that forecasters were generally relaxed and comfortable during the nine cases, many ISA 

ratings extended to a level 4 (high workload), and there are numerous outliers rated at a 

level 5 (excessive workload) (Fig. 3.10). The reasoning provided for all level 4 and level 

5 ISA ratings were analyzed (N=183), and six categories were identified. In order of 

prevalence, these categories are 1) storm characteristics, 2) warnings, 3) case startup, 4) 

temporal resolution, 5) technical frustrations, and 6) personal (Fig. 3.11a). Storm 

characteristics causing higher cognitive workload included the number of storms in the 

sector, expected threat, and evidence of intensification. The warning category is 

associated with higher cognitive workload due to the extra task of issuing products, 

sacrificing interrogation time, having concern about polygon placement relative to 

storms, and the unfortunate realization that warnings were not panning out as expected. 

Case startup describes increased workload that was experienced within the first 5–10 min 

of a case. During this time, higher cognitive workload was experienced because 

forecasters felt an urgency to load their data, assess the situation, and possibly make 

warning decisions. The temporal resolution of radar data was associated with higher 

workload, such that forecasters felt the need to monitor the data quickly so that they could 

keep up with trends. Oftentimes forecasters reported higher levels of workload because 

they did not have enough time to look at all the data and were not able to pinpoint the 

important signals. Technical frustrations caused increases in workload typically because 

WarnGen/AWIPS-2 did not function as it should, which sometimes caused delays in 

product issuance. Finally, one forecaster reported three ISA ratings of level 5 due to 

requiring a bathroom break while monitoring the weather. 
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3.7.2.2 Temporal Resolution 

 Forecasters using full-speed PAR data reported approximately twice as many 

level 4 and 5 ISA ratings than those using quarter- and half-speed PAR data (Fig. 3.11b). 

The largest reasoning category for the full-speed group’s higher ISA ratings was storm 

characteristics, followed by temporal resolution (Fig. 3.11b). In comparison, only a small 

portion of the half-speed participants reported higher ISA ratings due to temporal 

resolution, and no quarter-speed participants’ reasoning related to temporal resolution 

(Fig. 3.11b). Storm characteristics and warning categories accounted for more than half 

of the reasoning for the quarter- and half-speed groups (Fig. 3.11b). Technical frustrations 

also accounted for a large portion of the quarter-speed group’s higher ISA ratings, while 

case startup accounted for a quarter of the half-speed group’s (Fig. 3.11b).  

Only a small fraction of the higher cognitive workload ratings were a level 5 

(N=26). However, these ratings cause most concern because they describe a mental state 

that is cognitively overloaded. Forecasters using full-speed data gave over half of these 

ratings (N=16), and related these ratings to every category except for technical 

frustrations. In comparison, almost all of the level 5 ratings given by quarter-speed 

participants were due to technical frustrations (N=5 of 7). The remaining level 5 ratings 

given by quarter- and half-speed participants were associated with case startup and 

warning reasoning. Excessive workload due to temporal resolution, storm characteristics, 

and personal matters only occurred with full-speed participants.  
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Figure 3.11. Reasoning categories for ISA ratings given at levels 4 and 5 for a) all 

groups combined, b) each temporal resolution, and c) each case type. 
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3.7.2.3 Storm Type 

Of all the case types, forecasters reporting level 4 and level 5 ISA ratings did so 

most during the tornado cases (Fig. 3.11c). Reasoning for this increase in cognitive 

workload was mostly associated with the storm characteristics and warning categories. 

Monitoring multiple threats for one supercell, dealing with uncertainty in storm evolution, 

and feeling overwhelmed with the number of warning products needing to be issued were 

all factors leading to these higher levels of experienced cognitive workload. Although 

temporal resolution was not a large contributor to the higher cognitive workload reported 

during the tornado cases, it was the largest category for why forecasters reported these 

higher ISA ratings during the severe hail/wind cases (Fig. 3.11c). The temporal resolution 

reasoning was mostly associated with Delta, and occurred due to forecasters not being 

able to examine the data closely as updates were coming in, having difficulty 

comprehending the structure and evolution of the storm due to the fast updates, and 

needing to adapt to a different type of interrogation strategy. It is worth noting that update 

speeds were quickest in Delta compared to the other cases (Table 3.2). The different 

reasoning driving level 4 and 5 ISA ratings for tornado and severe hail/wind cases 

supports that higher cognitive workload is not only a function of temporal resolution, but 

also of storm type, as suggested earlier. 

3.8 Discussion 

 Based on the performance analysis, we found that forecasters’ ability to increase 

severe and tornado warning lead times when using increasingly higher-temporal 

resolution data depended on the weather situation presented. Distributions of positive 

warning lead times were most comparable during Gamma (Fig. 3.5a); this result suggests 
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that similar situational awareness was gained by forecasters in all three groups. While 

working the two other severe cases, the use of increasingly higher-temporal resolution 

data most aided forecasters’ ability to issue verified warnings earlier during Beta, the 

severe wind event (Fig. 3.5b). A tendency for longer initial warning lead times when 

using increasingly higher-temporal resolution data was also found during Delta, the hail 

and wind event (Fig. 3.5c). These findings are consistent with Bowden et al. (2015), who 

in PARISE 2013 found the use of full-speed PAR data, compared to quarter-speed PAR 

data, increased median severe thunderstorm warning lead times by 5 min in two severe 

(large hail and/or damaging wind) cases. In a follow-on study by Bowden and 

Heinselman (2016), their analyses of forecasters’ situational awareness determined that 

longer severe thunderstorm warning lead times were driven by forecasters’ ability to 

observe rapid changes in radar-based hail and wind precursors earlier when using 1-min 

vs 5-min radar volume scans. More frequent sampling of specific hail and wind events 

by PAR was also found to improve scientific understanding of radar-based severe storm 

precursors in several case studies, including Heinselman et al. (2008), Emersic et al. 

(2011), Newman and Heinselman (2012), and Kuster et al. (2016). The advantage of 

frequent updates in the analysis of severe storms, and in particular downbursts, has been 

demonstrated in prior studies using rapid-scan data from other radar platforms (e.g., 

Roberts and Wilson 1989).  

 This PARISE was the first in the series of former experiments to explore the 

ability of forecasters to issue verified tornado warnings with lead time in advance of a 

short-lived tornado within a bowing line segment. During this event (Eta), the overall 

lack of verified tornado warnings with positive lead time, especially when using full-
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speed data, is somewhat discouraging (Fig. 3.6a). Our expectation for a more positive 

result was supported by the regional radar climatology of tornadic and nontornadic 

vortices within nonsupercell storms by Davis and Parker (2014), who found statistically 

significant differences in their azimuthal shear magnitudes (0.006𝑠−1 or higher) when 

located within 60 km of a WSR-88D. The velocity couplet associated with the Eta tornado 

was located 15 km outside of this ideal radar range. Davis and Parker (2014) also found 

the median detection lead time for these nonsupercell tornadic vortices was 10 min, which 

suggests that the use of 1- or 2-min volume updates has the potential to improve 

forecasters’ detection lead time for such events. While future analyses of participants’ 

retrospective data will provide insight into this finding, anecdotal conversations with 

NWS forecasters reveal that some forecasters either do not issue tornado warnings during 

these types of events or wait for confirmation of a first event, owing to the potential for 

high false alarm rates. Additionally, when bowing lines (like this one) are fast moving, 

some forecasters discern the impact of the storm’s translational motion as a more 

significant threat than the embedded circulation, and therefore issue severe thunderstorm 

warnings instead.  

 In contrast, for the two tornadic supercell cases (Zeta and Iota), forecasters’ ability 

to issue verified and timely tornado warnings on the first tornado event improved when 

using full- and half-speed PAR data (Fig. 3.6). Zeta, a “classic” tornadic supercell event, 

appeared to be the more straight-forward event since all issued tornado warnings verified. 

Iota, a tornadic supercell cluster, appeared more challenging, as full- or half-speed data 

were needed to achieve verified tornado warnings with lead time. Additionally, during 

the nontornadic supercell case (Theta), the use of full-speed data aided forecasters’ ability 
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to discriminate correctly the severe weather threat, resulting in fewer false alarms (Fig. 

3.7). Together these results are consistent with the 2010 and 2012 PARISE findings of 

Heinselman et al. (2012, 2015), where the use of higher-temporal resolution also resulted 

in longer tornado warning lead times. However, FAR results were mixed, as FAR was 

impacted negatively in PARISE 2010 and positively in PARISE 2012 when using faster 

radar updates (Heinselman et al. 2012, 2015, respectively). The PARISE 2015 FAR 

results are most consistent with the PARISE 2012 FAR findings. The advantage of 

frequent updates in the analysis of a potentially tornadic supercell’s storm evolution, 

including specificity of tornado movement, has been demonstrated in prior studies using 

PAR data (e.g., Kuster et al. 2015) as well as data from other weather radars (e.g., Vasiloff 

2001; Wurman et al. 2012; e.g., Isom et al. 2013; Pazmany et al. 2013; Kurdzo et al. 

2015).   

3.9 Conclusions and Future Work  

The purpose of this paper was to focus on the traditional experiment component 

of the 2015 PARISE and share performance, warning characteristics, and cognitive 

workload results. The increased number of participants and cases worked compared to 

earlier experiments improves the generalizability of our work. The overall finding that 

median warning lead time increased with increasing update speed is in line with our 

findings from previous studies. Earlier warnings were provided in two severe hail/wind 

and two tornado cases, and the use of full-speed data for discriminating the weather threat 

was particularly useful to forecasters during Theta. However, longer warning lead time 

with faster update speeds was not observed in all cases, most notably during Eta. This 

finding suggests that specific training and guidance may be required to fully realize the 
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benefits of full-speed PAR data to forecasters’ warning decision processes during more 

challenging events. Making use of dynamic scanning methods that are already available 

(e.g., Chrisman et al. 2009, 2014) will be a helpful first step to developing the skills 

necessary for processing rapidly-updating radar data during warning operations.  

While the update speed impacted when warnings were issued, it did not influence 

the size or duration of warning polygons (Figs. 3.8, 3.9). Therefore, further improvements 

to warning metrics (such as the false alarm area) may require a change in the warning 

paradigm. This change may be possible through modernization of the current NWS 

warning system. A move towards probabilistic hazard information via the FACETs 

(Forecasting a Continuum of Environmental Threats) framework is expected to address 

multiple aspects of warning characteristics (e.g., Stumpf et al. 2008 and Karstens et al. 

2015).  

Forecasters’ subjective assessments of cognitive workload within the PARISE 

setting suggest that cognitive workload will rarely reach excessive, and when it does, it 

could be due to a variety of reasons that are not necessarily tied to the temporal resolution 

of radar data. Our data also suggests that perceived cognitive workload may relate to 

forecasters’ personality. Although we have not yet explored this relationship 

scientifically, investigating this hypothesis would be beneficial to a number of testbed 

experiments that may also observe effects of individual differences on forecasters’ 

approaches, performance, and perceived workload. 

Despite increasing our sample size and the variety of cases worked, we must be 

mindful of the limitations that still remain in this experiment. In these simulations, 



101 

 

forecasters’ warning decision processes were isolated to their independent thought; unlike 

in the forecast office, forecasters did not work in teams and therefore the data collected 

is not an accurate reflection of what could be expected in real warning operations. 

Additionally, forecasters’ limited access to radar products and the absence of dual-

polarization radar data simplified their warning decision processes even further. 

Considerations of these missing elements and how a future operational PAR system might 

impact convective warning operations will be addressed in the PARISE 2015 focus group 

analysis.  
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Chapter 4 

Exploring Applications of Eye Tracking in Operational Meteorology 

Taken in full from: Wilson, K. A., P. L. Heinselman, and Z. Kang, 2016: Exploring 

applications of eye tracking in operational meteorology research. Bull. Amer. Meteor. 

Soc., 97, 2019–2025.  

Abstract 

Eye-tracking technology can observe where and how someone’s eye gaze is 

directed, and therefore provides information about one’s attention and related cognitive 

processes in real time. The use of eye-tracking methods is evident in a variety of research 

domains, and has been used on few occasions within the meteorology community. With 

the goals of Weather Ready Nation in mind, eye-tracking applications in meteorology 

have so far supported the need to address how people interpret meteorological 

information through televised forecasts and graphics. However, eye-tracking has not yet 

been applied to learning about forecaster behavior and decision processes. In this article, 

we consider what current methods are being used to study forecasters and why we believe 

eye-tracking is a method that should be incorporated into our efforts. We share our first 

data collection of an NWS forecaster’s eye gaze data, and explore the types of information 

that this data provides about the forecaster’s cognitive processes. We also discuss how 

eye-tracking methods could be applied to other aspects of operational meteorology 

research in the future and provide motivation for further exploration on this topic.  
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4.1 Background 

 Recently, eye-tracking has been used within the meteorology community to assess 

communications of weather information to the public. Drost et al. (2013) used eye-

tracking to study the impact of a weathercaster’s gesturing during a televised weather 

forecast on viewers’ attention. Their analysis revealed that while gesturing did not impact 

viewers’ retention of information, it did redirect viewers’ attention to different elements 

on the screen. Eye-tracking was also used by Sherman-Morris et al. (2015) to investigate 

the effectiveness of different legend colors and content in hurricane storm surge graphics 

on participants’ ability to accurately interpret threat levels. Although significant 

differences in accuracy were not found across legends of different color and content, 

participants’ eye-tracking data indicated they struggled most when the legend color was 

shades of blue and the values were in feet. Studies such as these are helping the United 

States work towards becoming a Weather Ready Nation. A Weather Ready Nation is one 

that builds community resilience to increasing vulnerability of extreme weather and water 

events (NOAA 2015). Lindell and Brooks (2013) summarized a number of major issues 

that a Weather Ready Nation workshop in 2012 identified as requiring attention. 

Conducting cognitive research in laboratory experiments to understand users’ 

interpretation of forecasts and warnings was one identified issue (Lindell and Brooks 

2013). The studies described by Drost et al. (2013) and Sherman-Morris et al. (2015) 

demonstrate ways in which eye-tracking is being used to help address this issue.  

 Another issue identified in the 2012 Weather Ready Nation workshop was the 

need to study forecasters through behavioral research (Lindell and Brooks 2013). 

Highlighted was the need for research to develop an understanding of forecasters’ 
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decision making processes and how they differ between individuals and the NWS regions. 

To date, forecaster decision making processes have been examined using a variety of 

qualitative methods. For example, an ethnographic approach was used by Daipha (2015) 

to observe and study how forecasters collect and use information in the forecast office. 

Root Cause Analysis is also performed by forecasters after an event has occurred so that 

they can evaluate their own warning decisions (Quoetone 2009). Root Cause Analysis 

encourages forecasters to reflect on their decision making processes and helps uncover 

reasons for why problems occur. The Critical Incident Technique has also been used in 

research to gather stories of forecasters’ descriptions of past events and what their 

associated behaviors were (LaDue et al. 2010). Furthermore, research in the NOAA 

Hazardous Weather Testbed has used surveys and blogs to collect forecasters’ feedback 

of new products tested during warning operations (Calhoun et al. 2014). A retrospective 

recall method has also been used in the Hazardous Weather Testbed to study individual 

forecaster’s cognition associated with radar data interrogation (Heinselman et al. 2015 

and Bowden et al. 2015). This method collects video-cued recall information while 

forecasters watch a playback video of their onscreen activity and verbalize their past 

thought processes. Specifically, this method yields detailed information about what 

forecasters see, think, and do while interrogating radar data. Although retrospective recall 

data have been incredibly insightful, the complexity of forecasters’ decision processes 

means that the use of qualitative methods alone do not fully capture the intricate cognitive 

processes of forecasters.  

 To our knowledge, eye-tracking has not been applied to study NWS forecasters’ 

decision making and related cognitive processes. However, applications of eye-tracking 
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in a variety of research domains, including the studies carried out by Drost et al. (2013) 

and Sherman-Morris et al. (2015), suggest that this tool could enrich our understanding 

of how forecasters use information to make decisions. Studies in research domains such 

as air traffic control and medicine demonstrate how eye-tracking can be used to ask 

questions that—in an analogous sense—we may wish to answer in operational 

meteorology. For example, Kang and Landry (2014) used eye-tracking to analyze how 

novice and expert air traffic controllers’ eyes scanned a radar display during aircraft 

conflict detection tasks. Kang and Landry (2014) found that training novices with experts’ 

scanpaths reduced novices’ number of false alarms. We may wonder in operational 

meteorology how low- and high-performing forecasters’ scanpaths of weather radar data 

differs, and whether such information may be helpful during training. Wood et al.’s 

(2013) study on visual expertise of radiologists during detection and diagnosis of skeletal 

fractures is also relatable to operational meteorology. After all, forecasters use radar data 

to detect the potential for severe weather and then correctly diagnose what type of threat 

they expect. In Wood et al.’s (2013) study, radiologists’ eye gaze data were used to 

measure their accuracy and speed, which are also measures used to analyze forecaster 

performance. 

4.2 Example: Understanding a Forecaster’s Decision Process 

 To explore how forecasters’ eye gaze data may enrich our current understanding 

of their decision processes, we collected an NWS forecaster’s eye gaze data as he 

interrogated radar data from one weather event, and subsequently obtained his 

retrospective recall. Eye-tracking research is built on the foundation of the eye-mind 

hypothesis, such that we assume a person’s eye gaze indicates where their attention is and 
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what is at the “top of the stack” of their cognitive processes (Just and Carpenter 1976b). 

Therefore, measuring forecasters’ eye gaze behavior may provide a way for us to learn 

about their cognition at a deeper level. The goal of this short study was not to draw 

conclusions about forecaster cognitive processes, but to think about what type of 

information eye-tracking methods can provide for learning about cognitive processes that 

our current qualitative methods do not.  

 During this short study, the forecaster viewed a 39-min long severe hail and wind 

event from 16 July 2009 in displaced real time and was asked to make warning decisions 

as he saw necessary. During this event, a nonsevere northern storm and severe southern 

storm moved south towards Oklahoma City, Oklahoma. The nonsevere northern storm 

was well developed at the beginning of the case, while the southern storm was captured 

from early in its initiation. The forecaster viewed 1-min base velocity and reflectivity 

PAR updates (Zrnić et al. 2007 and Heinselman and Torres 2011) using the Warning 

Decision Support System-Integrated Information (WDSS-II; Fig. 4.1). The forecaster was 

able to loop through radar data, navigate in time and by elevation using function keys, 

and zoom in and out. Warnings were issued using a polygon tool located in the control 

panel. 

 Throughout the simulation, the forecaster’s eye gaze data were collected using the 

Tobii TX300 eye-tracking system (Fig. 4.1). This system sat below the forecaster’s 

computer monitor from which an infrared camera detected the location of his pupils and 

corresponding eye movement on the screen. We viewed the forecaster’s eye gaze data 

using the Tobii Studio 3.3.0 software, and used a velocity-threshold filter algorithm to 

identify when and where the forecaster’s eye fixations occurred (Olsen 2002). The 
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forecaster’s fixations describe times when his eye gaze momentarily focused on a specific 

location. The focus is long enough such that he was able to encode and process 

information (Poole and Ball 2006). The fixation algorithm provided timestamp, duration, 

and x and y position information for each fixation that the forecaster made. Additionally, 

we were able to see whether his fixations were made within the reflectivity, velocity, or 

control panels by creating three separate areas of interest (AOIs; Fig. 4.2a). Defining 

AOIs in eye-tracking analysis is common practice as this method allows for different 

types of information presented on the same screen to be distinguished from one another. 

While the reflectivity and velocity panels presented information about the storms, the 

control panel provided a polygon tool for issuing warnings.  

 

Figure 4.1. Forecaster interrogating 1-min base velocity and reflectivity PAR data 

using the Warning Decision Support System-Integrated Information. The Tobii 

TX300 eye-tracker is positioned below the monitor. 
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 We looked at two measures of fixation during this study: fixation count and 

fixation duration. Higher numbers of fixation count on a particular AOI indicates that the 

information was either more noticeable or important, whereas longer durations of 

fixations on a particular AOI indicate that the information was either more engaging or 

that a greater mental effort was required to extract the information (Poole and Ball 2006). 

Unlike retrospective recall information, the forecaster’s eye gaze data can be used to 

obtain detailed information about the spatial distribution and temporal trends of these 

fixation measures in each of the three AOIs. We were interested to see how these fixation 

measures compared across the three AOIs for the full simulation and how their values 

changed as the weather scenario evolved. Additionally, we looked at how the forecaster’s 

fixation measures corresponded to the information provided in his retrospective recall, 

and whether together these two data sets offer a more holistic and accurate understanding 

of his decision process.  

4.3 Counts and Durations of Eye Fixations 

 Heatmaps are visualizations of the overall spatial distribution of eye fixations 

within specified AOIs (Fig. 4.2). In Fig. 4.2b, we see that the forecaster fixated most often 

on the Reflectivity and Velocity AOIs, and least often within the Controls AOI, indicating 

focus on data interrogation and limited use of the control panel to issue warning polygons 

(Figs. 4.2b and 4.2c). The distributions of 1-min fixation count and mean duration support 

this interpretation (Fig. 4.3). Applying the Wilcoxon rank sum test, statistical significance 

(p<0.05) was established for the difference in median values of 1-min fixation counts and 

1-min mean fixation durations across all three AOIs (Figs. 4.3a and 4.3b). Variations in 

the spatial patterns of total fixation count seen in the Reflectivity and Velocity AOIs 
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suggest the forecaster interrogated these fields differently. A comparison of these 

heatmaps to the most typical positioning of radar data on the WDSS-II display during the 

simulation (Fig. 4.2a) indicates that the forecaster fixated nearly equally on the northern 

and southern storms in the Reflectivity AOI, whereas he fixated more on the southern 

storm in the Velocity AOI (Figs. 4.2a and 4.2b). In Fig. 4.2c, we see small pockets of 

longer absolute fixation duration focused on the two storms of interest, however these 

pockets are more evident in the Velocity AOI. These pockets of longer absolute fixation 

duration indicate periods of data interrogation focused on specific radar signatures and 

that the longest fixation duration was on signatures within the Velocity AOI. Differences 

in fixation measures between the Reflectivity and Velocity AOIs suggest that the 

forecaster used reflectivity data to interrogate both storms and maintain situational 

awareness of weather within the entire sector, whereas his interrogation of the velocity 

data was more directed and focused on regions of storms that were of greatest interest. 
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Figure 4.2 a) The Warning Decision Support System-Integrated Information display 

divided into three areas of interest: reflectivity (left panel, orange box), velocity (right 

panel, green box), and controls (bottom panel, blue box). Heatmaps were created for 

the b) total fixation count and c) absolute fixation duration for the entire case. Within 

the heatmaps, red values indicate a higher fixation count and absolute fixation 

duration, and blue colors indicate a lower fixation count and shorter absolute fixation 

duration. 
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Figure 4.3. Boxplots showing the distribution of a) the 1-min fixation count and b) 

the 1-min mean fixation duration for the reflectivity, velocity, and controls AOIs. 

Boxplot whiskers indicate minimum and maximum values, the solid middle line 

indicates the median value, and lower and upper box edges indicate the interquartile 

range. Outliers are either less than 3/2 times the lower quartile or greater than 3/2 

times the upper quartile. Strong evidence of differing medians is indicated by non-

overlapping notches. 

 

4.4 Fixation Trends 

 Trends in the forecaster’s fixation counts and mean fixation durations were seen 

in the 39-min simulation as the weather scenario unfolded (Fig. 4.4). The interpretation 

of these trends is aided by computing fixation counts at five-min intervals, resulting in 

eight periods (with the final period being four min). These trends are of interest because 

they indicate variations in the forecaster’s cognitive activity. While the forecaster fixated 

most frequently within the Reflectivity AOI, the peak fixation count occurred during the 

fourth period (Fig. 4.4a). In contrast, the peak fixation count in the Velocity AOI occurred 

in the seventh period and exceeded the corresponding Reflectivity AOI fixation count. 
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While in most periods the durations of five-min Velocity AOI fixations were longest, a 

minimum in Velocity AOI fixation duration occurred in period four when fixation 

duration and fixation counts in the Reflectivity AOI were longer and higher (Fig. 4.4). 

Like fixation counts in the Control AOI, the associated fixation durations were 

intermittent and tended to be shorter than those in the other two AOIs (Fig. 4.4).   

 

Figure 4.4. a) Total fixation counts and b) mean fixation durations within the 

reflectivity (orange), velocity (green), and controls (blue) AOIs per period. 

 

 To provide context on how these trends in cognitive activity related to different 

stages of the forecaster’s warning decision process, we created a timeline that summarizes 

the forecaster’s retrospective recall during each period (Fig. 4.5). The initial high number 

of Reflectivity AOI fixation counts in period one resulted from using these data to assess 

storm intensity. After monitoring trends in the height and intensity of the northern and 

southern storms’ reflectivity cores, the forecaster’s decision to issue a severe warning on 

the northern storm coincided with the highest peak in the Controls AOI fixation count 
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and relatively long fixation durations (Fig. 4.4a). Similarly, the two other peaks in the 

Controls AOI fixation counts and durations (Fig. 4.4b) coincided with the issuance of 

severe weather warnings (Fig. 4.5). The increasing trend in Reflectivity AOI fixation 

count from a relative minimum in period two to its highest peak in period four 

corresponded with the forecaster’s observations of the intensifying southern storm, which 

he warned on by period three, and by period four he interpreted as being “pretty 

impressive” with reflectivity values of 70 dBZ up to 25 kft. His focus on reflectivity data 

also increased because the intensity of the northern storm was diminishing rather than 

increasing as he had anticipated. 

 As the southern storm evolved, the downburst potential became apparent to the 

forecaster and a change in his cognitive process was noticeable in both his fixation trends 

and retrospective recall. During periods five through seven, the forecaster’s fixation count 

in the Reflectivity AOI decreased and mean fixation duration in the Velocity AOI 

increased (Figs. 4.4a and 4.4b). Concurrently, he began to observe more interesting 

signatures in the velocity data (Fig. 4.5). In period five he saw a spatial increase in 

“downdraft air” in the southern storm as well as the presence of “strong cloud-top 

divergence” (Fig. 4.5). Although low-level radial winds in the southern storm were only 

30–40 kts, the forecaster thought it was “only a matter of time before it really [got] going.” 

His expectation was confirmed in period seven when he saw “intense winds becoming 

concentrated along the highway.” It was also this period that marked the only time that 

the forecaster’s fixation count in the Velocity AOI was higher than in the Reflectivity 

AOI, and the mean fixation duration in the Velocity AOI was at a maximum. Following 

from his observation in the velocity data, he decided to issue a second warning on the 



114 

 

southern storm, which corresponds with the third peak in fixation count for the Controls 

AOI (Fig. 4.4a).  
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4.5 Future Applications 

 The short study presented in this article demonstrates how a forecaster’s eye gaze 

data can be used to understand in greater detail where a forecaster’s attention is pointed 

to and how their attention changed with time. In this instance, we found that the 

forecaster’s fixations changed as a function of the stimulus. We were able to capture his 

different styles of interrogation of reflectivity and velocity data, and understand how the 

changing weather scenario impacted the counts and durations of his fixations. Important 

to our interpretation of trends observed in the fixation measures was the retrospective 

recall. Together, the eye gaze data and retrospective recall quantified and contextualized 

the forecaster’s cognitive processes, providing a full picture of what, how, and why he 

was looking at certain points on the screen. The importance of collecting qualitative data 

to answering the “why” question remains.  

 The “what” and “how” questions associated with forecasters’ decision processes 

can be answered with more exactness and certainty through eye-tracking. Using eye-

tracking to obtain this more informed knowledge about forecaster decision processes may 

be useful in a variety of applications within operational meteorology. This informed 

knowledge will become especially important as efforts to become a Weather Ready 

Nation continue. For example, FACETS is a concept designed to reinvent the watch and 

warning paradigm from a traditionally deterministic system to one that provides a 

continuum of probabilistic hazard information (Rothfusz et al. 2014). This change in the 

watch and warning paradigm requires the development and testing of new tools that will 

meet forecaster needs (Karstens et al. 2015). The widespread application of eye-tracking 

methods in usability studies (Jacob and Karn 2003) suggests that eye-tracking will be 
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useful for learning about forecaster-computer interactions and for successfully designing 

suitable tools.  

 Eye-tracking may also help determine differences in experienced and expert 

forecasters’ data interrogation strategies and cognitive processes to those of the less-

experienced forecaster. Understanding these differences would help in the design of 

effective training for intern and journeymen forecasters. Furthermore, using eye-tracking 

to develop a deeper understanding of forecasters’ cognitive processes would be helpful 

in determining whether new types of data and products support or hinder their warning 

decision processes. For example, the impact of higher-temporal resolution radar data on 

forecasters’ warning decision processes has been studied in the Hazardous Weather 

Testbed (e.g., Heinselman et al. 2015 and Bowden et al. 2015). Recently, eye-tracking 

was used in the 2015 PARISE to understand better what these impacts are on forecasters’ 

cognitive processes and their related warning decisions. We expect that collecting 

forecasters’ eye gaze data in addition to their retrospective recalls will better inform us 

on the specifics of how rapidly-updating radar data affects their data interrogation 

strategies. For example, we will be able to compare trends in fixation measures between 

forecasters using radar data of differing temporal resolution, analyze their visual scanning 

patterns, and develop a more complete picture of their decision processes from start to 

finish. Finally, introducing eye-tracking research methods to operational meteorology 

studies provides an opportunity for mutual interdisciplinary knowledge growth between 

the human factor and meteorology research fields, which can only push the boundaries of 

our current knowledge. 
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Chapter 5 

Comparing Forecaster Eye Movement Behavior during the Warning 

Decision Process 

Taken in full from: Wilson, K. A., P. L. Heinselman, and Z. Kang, 2016: Comparing 

forecaster eye movement behavior during the warning decision process. Submitted to 

Wea. Forecasting, August 2017. 

 

Abstract 

An eye-tracking experiment was conducted to objectively observe how National 

Weather Service forecasters distribute their attention and interact with a radar display and 

warning interface during use of 1-min (experimental group) and 5-min (control group) 

PAR updates. In addition to demonstrating a new research method for addressing 

operationally-focused research questions, this experiment was specifically interested in 

whether forecasters’ eye movement behavior can provide further insight into how rapidly-

updating radar data impacts the warning decision process. Differences in forecasters’ eye 

movements were therefore analyzed with respect to fixation measures (i.e., count and 

duration) and visual scanpath dimensions (i.e., vector, direction, length, position, and 

duration). These analyses were completed for four stages of the warning decision process: 

the first five minutes of the case, two minutes prior to warning decisions, the warning 

issuance process, and updates to warnings. While the control and experimental groups’ 

fixation measures were generally similar throughout the four stages, comparisons of the 

scanpath dimensions detected differences in forecasters’ eye movements. Video footage 
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and retrospective recall data were examined to illustrate how forecasters’ interactions 

with the radar display and warning interface, encounters with technological challenges, 

and varying approaches to similar tasks resulted in a group’s statistically significant (p-

value<0.05) lower scanpath similarity scores compared to the other group. The findings 

of this study support the use of eye-tracking research methods for detecting individual 

differences in forecasters’ distributions of visual attention. These individual differences 

can then be used to better understand why variations in forecasters’ warning decision 

processes occur. 

5.1 Introduction 

Understanding the forecaster warning decision process is a complex task that has 

been at the forefront of PARISE since 2010. Learning about potential impacts of rapidly-

updating PAR data on forecasters’ warning decision processes requires not only an 

assessment of performance, but an in-depth analysis of how forecasters acquire, make 

sense of, and use information to provide the best possible warnings (Heinselman et al. 

2012; Heinselman et al. 2015; Bowden et al. 2015; Bowden and Heinselman 2016). Other 

studies within the NOAA Hazardous Weather Testbed have evaluated forecasters’ use of 

the Geostationary Operational Environmental Satellite R (GOES-R) series observing 

capabilities (Goodman et al. 2012), real-time numerical model analyses (Smith et al. 

2014; Calhoun et al. 2014), a probabilistic hazard information tool (Karstens et al. 2015), 

and newly developed Multi-Radar Multi-Sensor products (Smith et al. 2016). To carry 

out these evaluations, qualitative methods including observations, surveys, discussions, 

interviews, and blog posts have been used. Furthermore, in PARISE, cognitive task 

analysis methods have been applied to obtain detailed insight into what forecasters see, 
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think, and do when presented with radar data of different update speeds (e.g., Heinselman 

et al. 2015; Bowden and Heinselman 2016). Referred to as the Recent Case Walkthrough 

(Hoffman 2005), this method requires forecasters to retrospectively recall their thought 

processes as they watch a playback video of their onscreen activity that was recorded 

during simulated warning operations. Additionally, as forecasters recall their thought 

processes step-by-step, they are asked probing questions that tend to focus on times when 

warning decisions were made. 

Much has been learned from retrospective recall data about how faster radar 

updates can impact forecasters’ warning decision processes during different types of 

severe weather scenarios. However, these data have also brought to light how complex 

forecasters’ warning decision processes can be, and that the use of qualitative methods 

alone is an insufficient approach for obtaining detailed observations and a comprehensive 

understanding of forecasters’ cognition. Therefore, a more objective method was sought 

that could both better capture the intricate activity occurring within a forecaster’s mind, 

and address some of the limitations inherent in qualitative methods (i.e., accuracy and 

completeness of retrospective recall data).  

Research studies have shown that our attention is primarily directed to what we 

are looking at. Also known as the eye-mind hypothesis (Just and Carpenter 1976b; 1980), 

this connection between our thoughts and our eye movements means that eye tracking 

can be used to better understand what is happening inside a forecaster’s mind when they 

are presented with radar data. The use of eye-tracking methods was first applied in 

reading studies (Rayner 1998; Duchowski 2002; Henderson and Ferreira 2004). These 

initial studies identified two types of eye movement behavior: fixations and saccades. 
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Fixations describe times when the eye is relatively still and saccades describe the very 

fast eye movements that occur between fixations. Saccadic suppression effects mean that 

information is only acquired and processed during fixations (Henderson and Ferreira 

2004). Given that reading studies found fixation and saccadic activity to depend on the 

text that is being read, eye tracking was identified as a useful method for learning about 

how language is processed.  

Applications of eye tracking to study other human cognition was also 

demonstrated in free-viewing tasks, in which static images rather than text were presented 

as the stimulus. Early studies used free-viewing tasks to prove that the location of 

fixations was not random. Rather, fixations occurred more frequently in the most 

semantically and visually rich regions of an image (e.g., Buswell 1935; Yarbus 1967). 

This observation was important because it provided evidence that visual processing 

behavior, as observed through eye movements, is an important representation for 

attention. More recently, eye tracking has been used in a variety of visual search tasks. 

For example, research studies focused on web design and marketing have learned much 

about how the general population attend to and gather information from computer 

displays, advertisements, and package designs (e.g., Djamasbi et al. 2010; Hervet et al. 

2011; Clement et al. 2013; Gidlöf et al. 2013; Qang et al. 2014). Additionally, eye 

tracking has been used to better understand the visual and cognitive processes of 

professionals that make life-saving decisions. Within the medical field, many studies have 

examined the visual search behavior of radiologists tasked with detecting abnormalities 

and diagnosing medical conditions (e.g., Wood et al. 2013; Manning et al. 2014; Giovinco 

et al. 2015; Bertram et al. 2016). A review of decision-making research within the medical 
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field found that eye tracking was most frequently used in medical imaging studies, since 

it is more practical to collect eye movement data during inspection of static scenes 

compared to within dynamic settings such as an operating theatre (Al-Moteri et al. 2017). 

In aviation research, eye tracking has been used to study they eye movements of pilots in 

the cockpit and air traffic controllers on the ground (e.g., Hauland 2008; Sullivan et al. 

2011; Van de Merwe et al. 2012; Kang and Landry 2014, 2015; Yu et al. 2016). A 

common interest in these medical and aviation studies is how visual scanning patterns 

compare between novice and expert professionals, and whether observed differences can 

inform training material to improve performance. 

Despite the growing popularity of eye-tracking methods in other research 

domains, eye movement data has been collected in only a handful of meteorology studies. 

Drost et al. (2015) used eye movement data to analyze what impact a weathercaster’s 

gesturing would have on viewers during a televised weather forecast, and found that while 

the gesturing influenced where viewers looked, it did not affect what they remembered. 

Eye tracking was also used to assess the impact of legend color and content on 

participants’ abilities to correctly interpret hurricane storm surge graphical information 

(Sherman-Morris et al. 2015). While statistically significant differences were not found 

in performance for use of legends differing in color and content, participants’ eye 

movement data indicated that they struggled most when legends were presented in shades 

of blue and with values in feet (Sherman-Morris et al. 2015). In an exploratory sense, 

Wilson et al. (2016) assessed the feasibility of eye tracking as a research method for 

improving and building upon the current understanding of forecasters’ warning decision 

processes. Without previous examples of NWS forecasters’ eye movement data, a simple 
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question was whether such eye movement data would make sense and be representative 

of a forecaster’s experienced cognitive activity. In this short study, Wilson et al. (2016) 

collected a single NWS forecaster’s eye movement data as they interrogated radar data 

during simulated warning operations. This participant’s retrospective recall was also 

collected following the simulated event, just as in previous PARISE studies (Heinselman 

et al. 2015; Bowden and Heinselman 2016). Comparing trends in these eye movement 

data to the participant’s retrospective recall, this study concluded that the eye movement 

data were able to successfully capture important events during the simulation (e.g., 

change in expected threat and the subsequent redistribution of attention), and were 

therefore representative of the forecaster’s warning decision process (Wilson et al. 2016).  

The findings from Wilson et al.’s (2016) study supported the use of eye tracking 

as a method for observing the visual attention of a forecaster in an objective manner, in 

real time, and with greater temporal detail and accuracy than what has been observed 

before. These findings motivated a larger-scale study that we present in this paper. Of 

particular interest is how forecasters’ eye movement behavior compare with respect to 1) 

fixation measures and 2) overall visual scanning patterns during use of different radar 

update speeds. Given that previous studies have shown that the use of 1-min, 2-min, and 

5-min radar update speeds can impact performance and overall situational awareness 

(Heinselman et al. 2015; Bowden et al. 2015; Bowden and Heinselman 2016; Wilson et 

al. 2017), we were specifically interested in whether differences in forecasters’ related 

warning decision processes would be evident in their eye movement behavior. This study 

explores what, if any, differences existed between forecasters’ eye movements while they 

worked a single weather event using 1-min or 5-min PAR updates. Retrospective recall 
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and video data are used to understand these differences in the broader context of the 

warning decision process. Moreover, the findings from this research contribute to our 

current limited knowledge of how eye tracking can be applied to address operational 

meteorology research questions and what forecasters’ eye movement data can teach us 

about the human component of weather forecasting.  

5.2 Methodology  

5.2.1 Experimental Design 

Over six weeks in the summer of 2015, 30 NWS forecasters from 25 WFOs visited 

the NOAA Hazardous Weather Testbed in Norman, Oklahoma to participate in the 2015 

PARISE (Wilson et al. 2017). The largest of its kind, this most recent PARISE was 

comprised of three studies: the traditional experiment (Wilson et al. 2017), the eye-

tracking experiment, and the focus group. This paper presents results related to the eye-

tracking experiment only. In this eye-tracking experiment, forecasters worked a one-hour 

long event independently in simulated real time. Forecasters were randomly assigned to 

either a control or an experimental group, which determined whether they were presented 

with 5-min or 1-min PAR updates, respectively. Both groups had an equal number of 

participants. During the case, forecasters were provided with reflectivity and velocity 

base products only, and were able to display these data using the WDSS-II software 

(Lakshmanan et al. 2007). Given that not all forecasters were familiar with WDSS-II, 

training on how to setup and navigate through the radar data and issue warning products 

was provided. A warning generation (WarnGen) tool similar to what forecasters use in 

operations was developed for WDSS-II, and all issued warning products were recorded 

in an electronic database. As in previous PARISE studies, a pre-briefing video lasting 
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several minutes was provided prior to working the case to allow forecasters to form 

expectations for how the weather event may unfold. This video described the 

environmental conditions associated with the upcoming weather event, and showed prior 

radar and satellite data leading up to the case start time. Once forecasters had watched the 

pre-briefing video, they were asked to work the weather event with their normal approach 

and to make warning decisions if considered necessary.  

5.2.2 Weather Scenario 

The chosen weather scenario included a multicell severe hail and wind event that 

occurred during 2230–2330 UTC 8 July 2014. In addition to meeting a suitability criteria 

for experimental testing (i.e., uninterrupted radar observations for a sufficient duration), 

discussions with the NWS forecaster that worked the event in real time influenced the 

case selection. After viewing 1-min PAR updates of this event, the forecaster reported 

being able to better track cycling trends in rapid core development aloft compared to 

when he had used the 5.1 min WSR-88D volume updates (personal communication, 

Charles Kuster). We therefore anticipated that this case would present forecasters with an 

opportunity to demonstrate differences in their warning decision processes when using 1-

min or 5-min PAR volumetric updates. 

In this scenario, the 90° PAR sector scanned towards the southeast and 

encompassed two areas of storms (Fig. 5.1). The storm in the western portion of the sector 

is referred to as the McClain storm, and the storm in the eastern portion of the sector is 

referred to as the Pontotoc storm. The discreet nature of these storms further encouraged 

the selection of this case, since it allowed for a clear-cut analysis of how attention was 

distributed between the storms. According to the official NWS Storm Data records 
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(https://verification.nws.noaa.gov), only the McClain storm was associated with severe 

hail (at 2304 UTC and 2328 UTC) and wind (at 2325 UTC) reports. Although the 

Pontotoc storm was not associated with severe weather reports in Storm Data, this storm 

presented more impressive characteristics in radar data and had higher values of 

Maximum Estimated Size of Hail (Witt et al. 1998) than the McClain storm. Therefore, 

it is possible that the Pontotoc storm also produced severe weather, but that it was not 

observed nor reported. 

 

 

Figure 5.1. Snapshot of the 0.5° reflectivity data at 2314 UTC 8 July 2014. 
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5.2.3 Data Collection 

The Tobii TX300 eye-tracking system was used to collect forecasters’ eye gaze 

data. This remote video-based system uses infrared illumination to track pupil and corneal 

reflection. More specifically, dark-pupil eye-tracking methods were used, such that the 

infrared illumination was positioned away from the optical axis, causing the pupil to 

appear darker than the iris. The video camera in the eye-tracking system acquired an 

image of the eye at a sampling rate of 300 Hz. Through the use of image processing 

algorithms, the dark pupil and corneal reflection were identified, and geometrical 

calculations, as well as information from each forecaster’s calibration, were used to map 

the point of vision to x and y coordinates on the computer screen.  

The calibration procedure each forecaster completed prior to beginning the case 

required them to watch the computer screen and follow a series of dots as they appeared. 

To ensure calibration was completed successfully, we also asked each forecaster to spend 

a short time browsing a webpage. We used this sample of eye gaze data to ensure that the 

eye-tracker captured their point of vision accurately. Once calibration was completed, the 

Tobii TX300 was used to collect each forecaster’s eye gaze data for the full duration of 

the weather scenario. The remote eye-tracking system was positioned beneath the 

computer screen, and although forecasters had to remain relatively still while working the 

case, some gentle head movements were allowed.  

At the end of the case, the collected eye gaze data was checked to ensure that the 

gaze sample was sufficient. The gaze sample is a measure that indicates the proportion of 

samples that were collected successfully, is given as a percentage, and is considered 
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acceptable for values of at least 75% (Hvelplund 2014). Data loss resulting in gaze 

samples below this value can occur due to difficulty in detecting the pupil and corneal 

reflection, possibly due to a person’s eye color, eye shape, use of eyewear, or use of 

makeup. Furthermore, visual inspection of the overlaid eye gaze data on the screen 

recording was important for ensuring sufficient accuracy and precision of forecasters’ eye 

gaze data. Based on these data quality checks, six data sets were removed from the 

analysis, and the results presented in this paper are therefore based on eye gaze data 

belonging to twelve participants in each group.  

Each forecaster also provided a retrospective recall of their warning decision 

process using the Recent Case Walkthrough method. As described in the introduction, 

this method has also been used extensively in the 2012 and 2013 PARISE studies 

(Heinselman et al. 2015; Bowden et al. 2016). We asked forecasters to verbalize their 

thought processes while watching a playback video of their onscreen activity. 

Concurrently, the assisting researcher typed these verbalizations into a timeline. Probing 

questions were used to gather further insight into why forecasters made warning 

decisions.  

5.2.3 Data Analysis 

5.2.3.1 Fixation Identification 

Fixation events are of most interest because it is during these times when humans 

process information (Henderson and Ferreira 2004). To identify fixation events, the raw 

eye gaze data was parsed through a velocity-threshold identification (I-VT) algorithm 

using the Tobii Studio 3.3.0 software (Komogortsev et al. 2010; Olsen 2012; Tobii 2017). 

This algorithm’s output lists the timestamp, duration, and x and y position for each 
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fixation. The x and y positions are based on a pixel grid system of the computer screen 

(1920 pixels by 1080 pixels). Eye gaze velocity is described in terms of visual angle 

(°𝑠−1) and is calculated as the angle between two samples divided by their separation in 

time. To reduce measurement noise effects, angular velocity is calculated for a 20ms 

window which is centered on the sample of interest (Olsen 2012). The timestamp and 

position information of the first and last sample of the window determine the angular 

velocity of the center sample. Samples having an angular velocity below the default 

velocity threshold parameter (30°𝑠−1) are classified as fixations (Olsen 2012; Bojko 

2013). Adjacent fixations may either remain separate or be merged into a single longer 

fixation depending on the time and visual angle between them.  The “max time between 

fixations” parameter is given as 75ms (allowing for blink events), and the “max angle 

between fixations” parameter is set at 0.5° (Komogortsev et al. 2010). Two adjacent 

fixations become merged if the time and angle between them is less than or equal to these 

parameter values. Finally, a minimum fixation duration parameter of 60ms was chosen. 

This minimum fixation duration was chosen because fixations during reading studies 

have shown to last between 60ms –500ms (Liversedge and Findlay 2000). All fixations 

with durations shorter than 60ms were discarded.  

5.2.3.2 Areas of Interest and Fixation Measures 

In addition to identifying eye fixation events, the Tobii Studio 3.3.0 was used to 

manually draw AOIs that define separate spaces on the computer display (Holmqvist et 

al. 2011; Bojko 2013). These AOIs represent different semantic content, including: 

reflectivity data, velocity data, control icons, radar scan information, and the WarnGen 

interface (Fig. 5.2). The two control icon areas were combined in the analysis. All 
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identified fixations were tagged with the AOI in which they occurred. The AOI-based 

labelling of fixations is useful for comparing forecasters’ visual processing behaviors 

within these spaces for different portions of the warning decision process. While many 

different types of fixation measures exist, two of the most commonly used measures are 

count and duration (Jacob and Karn 2003). We can assess within each AOI how many 

times forecasters fixated (count) and on average how long those fixations lasted 

(duration). Higher fixation counts within an AOI indicate that the information was more 

noticeable or important to the participant, while an AOI associated with longer fixation 

durations indicates that the information was either more difficult to extract or more 

engaging to the participant (Poole and Ball 2006; Bojko 2013). 

 

 

Figure 5.2. Areas of interest are identified for the reflectivity data (“R”, orange), 

velocity data (“V”, green), control icons (“C”, yellow), radar scan information (“S”, 

grey), and the WarnGen interface (“W”, blue). Note that the WarnGen interface 

appeared only when the forecaster selected to use it. 
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5.2.3.3 Scanpath Comparisons 

Fixation measures are useful for obtaining an overall impression of how visual 

attention is distributed across AOIs for a given timeframe. These measures can be used 

to indicate whether the control and experimental groups visually attended to the different 

AOIs in a similar manner or not. This type of analysis was useful during Wilson et al.’s 

(2016) initial eye-tracking study, where differences in the participating forecaster’s 

fixation measures across the Reflectivity and Velocity AOIs corresponded to an 

anticipated change in the weather threat and alteration of attention resources accordingly. 

However, these bulk measures are not good at representing how attention is distributed 

over time. Additionally, the spatial resolution of fixations is reduced to the size of the 

AOIs, meaning that the spatial distribution of fixations within an AOI is not represented 

either. How fixation behavior changes in time and space is an important consideration if 

forecasters’ underlying cognitive processes during this simulation are to be understood. 

Therefore, in addition to average AOI fixation measures, the sequence of fixations in time 

and space is examined with AOI boundaries removed. 

Noton and Stark (1971) first described these sequences in an abstract sense as the 

viewing patterns of a person, and termed this idea a “scanpath.” Today, the term scanpath 

is given the physical definition of “the route of oculomotor events through space within 

a certain timespan” (Holmqvist et al. 2011). Early applications of scanpath analysis 

required visual inspection of the temporal and spatial ordering of fixations. However, 

analysis methods have since developed and there is now a variety of ways to compare 

and quantify scanpath data (e.g., Anderson et al. 2015). Comparisons of scanpaths 

become especially important when trying to understand similarities or differences in 
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visual processing behaviors of multiple people or of the same person but at different 

times. The variety of comparison methods differ in how they treat a sequence of fixations 

and what aspects of the scanpaths they are able to measure. In our study, it is essential to 

maintain temporal ordering of the entire sequence of fixations. Of the many scanpath 

comparison methods described in Anderson et al. (2015), only three met this requirement: 

String Edit Distance, ScanMatch, and MultiMatch. Still, both String Edit Distance 

(Levenshtein 1966) and ScanMatch (Cristino et al. 2010) rely on AOI-base methods, 

meaning that spatial resolution of fixation position is lost. This reduction in spatial 

information means that the shape of scanpaths cannot be represented adequately in 

similarity calculations (Jarodzka et al. 2010). 

Acknowledging this limitation, Jarodzka et al. (2010) developed a new scanpath 

comparison method called MultiMatch. This method is based on vector representations 

of scanpaths (i.e., in x and y space) and preserves a number of aspects, including: the 

position and duration of fixations, the shape of scanpaths, and the length and direction of 

scanpath saccades. The MultiMatch scanpath comparison method first simplifies 

participants’ scanpaths using amplitude- and direction-based clustering, causing 

clustering of very short vectors within the same local space and of consecutive vectors 

with very similar direction (Jarodzka et al. 2010; Dewhurst et al. 2012). Following the 

simplification of two scanpaths, approximate temporal alignment of vector saccades and 

fixations is determined using vector shape information and the Dijkstra (1959) algorithm. 

A more detailed description of this alignment method is given in Jarodzka et al. (2010) 

and Dewhurst et al. (2012). Once scanpath alignment has been determined, five similarity 

measures are computed for the paired fixation and saccade vectors of two given 
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scanpaths, and these measures are then averaged to give five similarity scores. These five 

MultiMatch measures compare the vector, length, direction, position, and duration of two 

scanpaths (Fig. 5.3). Since the similarity score is calculated differently for each of the 

five measures, absolute score values cannot be compared across measures. However, the 

distributions of these similarity scores within the same measure for the control and 

experimental groups will indicate whether one group has more variable scanpath behavior 

than the other. Video and retrospective recall data will provide context and explanation 

for the observed results.  
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Figure 5.3. The a) five MultiMatch measures with corresponding examples of 

scanpaths that have b) relatively higher similarity scores and c) relatively lower 

similarity scores for two control participants. Adapted from Dewhurst et al. (2012). 

 



134 

 

5.2.3.4 Defined Stages 

Previous PARISE studies have observed that when working weather events in 

simulated real time, there are clear stages in the warning decision process that are 

common among all forecasters. To better understand similarities and differences in 

forecasters’ cognitive processes during times in which they are engaged in the same task, 

we chose to focus our analysis of the eye movement data on four stages: 1) the first five 

minutes of the case, 2) two minutes prior to warning decisions, 3) the warning issuance 

process, and 4) the first update on the McClain and Pontotoc storms. The timing of these 

stages for all 24 participants was identified using video and retrospective recall data (Fig. 

5.4), and their corresponding eye movement data was extracted for analysis. For each of 

these stages, participants’ fixation count and mean fixation duration were calculated, and 

the five MultiMatch measures were computed for all possible participant scanpath 

combinations within each group.  

In this study, all forecasters issued a severe thunderstorm warning at least once on 

the McClain storm and once on the Pontotoc storm (Fig. 5.5). Eleven control and ten 

experimental participants also issued a second severe thunderstorm warning on the 

McClain storm (Fig. 5.5). Given that these were major warning decisions across both 

groups, the warning issuance process for each of these three decisions is included in the 

analysis. Finally, updates to these warnings were completed through the issuance of 

severe weather statements (SVSs). Some forecasters issued many more SVSs than others, 

but eleven experimental and all control participants issued at least one SVS on the 

McClain storm, and six participants in each group issued at least one SVS on the Pontotoc 
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storm (Fig. 5.5). For the fourth stage, we therefore focus on the first SVS issuance for 

each of these storms.  
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Figure 5.5. Control (top) and experimental (bottom) participants’ warning products 

issued during the weather scenario. Markers are the same as in Figure 5.4. Vertical 

dashed lines indicate the timing of the severe weather reports associated with the 

McClain storm. 

 

5.3     Results 

5.3.1 First Five Minutes 

The first five minutes characterizes a time in which forecasters were busy loading 

their radar data and familiarizing themselves with the weather scenario. Video and 

retrospective recall data show that forecasters in both groups spent much of their time 

sampling the reflectivity profiles of the McClain and Pontotoc storms, frequently moving 

back and forth between the two storms while climbing in elevation for vertical 

comparison. The eye fixation measures of the control (5-min PAR updates) and 

experimental (1-min PAR updates) groups reflect this observed behavior. Attention was 
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given primarily to the Reflectivity AOI, with the median fixation count in this AOI 

exceeding that of any other AOI (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) = 404 (34) and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) =

367 (77)). The second highest median fixation count for both groups occurred within the 

Velocity AOI (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) = 111 (69) and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) = 94 (53)). Only the 

deeper McClain storm was visible at higher elevations, and for most forecasters a choice 

was made to prioritize attention on this storm. These observations led one participant in 

each group to issue a severe thunderstorm warning on the McClain storm (C15 and E15), 

while one additional experimental participant (E5) also prepared a similar warning (Fig. 

5.5). All other forecasters, however, did not visit the WarnGen AOI during this time. 

Both groups’ scanpaths were relatively more similar during these first five 

minutes compared to the later defined stages (Fig. 5.6). Differences in the groups’ 

similarity scores for four of the five MultiMatch dimensions were not statistically 

significant, indicating a comparable level of variability in forecasters’ scanpath behavior 

within each group. However, the groups did differ with respect to fixation duration (p-

value<0.001), with the experimental group’s lower similarity scores indicating more 

differences in their processing of these data (Fig. 5.6e). The experimental group’s larger 

variation in fixation duration was most evident within the Reflectivity and especially 

Velocity (𝐷𝑢𝑟𝑐𝑜𝑛(𝑆𝐷) = 397𝑚𝑠 (48 𝑚𝑠) and 𝐷𝑢𝑟𝑒𝑥𝑝(𝑆𝐷) = 443𝑚𝑠 (132 𝑚𝑠)) AOIs, 

where the experimental group’s spread in fixation duration is notably greater than the 

control group’s. 
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Figure 5.6. Boxplot distributions of similarity scores for the five MultiMatch 

measures a) vector, b) direction, c) length, d) position, and e) duration for the control 

group (left position, black) and experimental group (right position, blue). Red boxes 

indicate distributions that are significantly different according to the Wilcoxon-Mann-

Whitney rank-sum test (*p-value<0.05, **p-value<0.01, and ***p-value<0.001). Red 

crosses (+) indicate outlier values that are less (greater) than 1.5 times the lower 

(upper) quartile. 
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5.3.2 Two Minutes Prior to Warning Decision 

Forecasters’ eye movement behavior in the two minutes proceeding a warning 

decision were analyzed for three occasions. No differences in fixation measures or any of 

the five MultiMatch similarity scores were found to be statistically significant between 

the groups prior to the first warning on the McClain storm (Fig. 5.6). For most 

participants, interrogation continued in a manner similar to the first five minutes, such 

that fixations in the Reflectivity AOI were three to four times as frequent as those in the 

Velocity AOI. However, forecasters’ relative lack of references to the Pontotoc storm in 

the retrospective recall and video data show that forecasters shifted their attention more 

so to the McClain storm in the two minutes leading up to their decisions to warn. 

Although fixation measures between the control and experimental groups were 

also not statistically significantly different in the two minutes prior to the Pontotoc 

warning, greater variability in the control group’s scanpath behavior was observed in the 

vector and length MultiMatch dimensions (Fig. 5.6a, c). The lower vector similarity 

scores were due to C12’s chosen method for navigating through the radar data. While 

C12 preferred to click on icons located in the Control AOIs (Fig. 5.7a), all other 

forecasters followed the taught method of toggling with computer keys. C15 was 

responsible for the lower length similarity scores because of their decision to focus 

interrogation only on the Reflectivity AOI to “Find hail cores aloft” (Fig. 5.7b). The 

overall shape of C12’s scanpath and the shorter saccades belonging to C15’s scanpath 

prior to the Pontotoc storm warning decision was visibly different than that of C10’s. 

Participant C10’s scanpath (Fig. 5.7c) is a more typical representation of how forecasters 

spent their time prior to the Pontotoc warning decision. As this representative gaze plot 



140 

 

shows, although forecasters’ attention was distributed heavily within the Reflectivity AOI 

prior to the Pontotoc storm warning, they also tended to check the Velocity AOI to 

analyze storm top divergence, midlevel rotation, and low-level wind signatures (Fig. 

5.7c). 

 
 

Figure 5.7. Gaze plots depicting the scanpaths of participants a) C12, b) C15, and c) 

C10 in the two minutes prior to the Pontotoc storm warning decision. Circles 

represent fixations, the circle center identifies the fixation location, and the circle size 

characterizes the fixation duration. Lines between fixations represent the 

corresponding saccades. The background screenshot is the final frame from the 

period depicted. 
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While two participants’ unusual fixation behavior explained the control group’s 

lower scanpath similarity prior to the Pontotoc warning, more prominent group 

differences occurred prior to the second McClain warning decision. On average, 

experimental participants fixated twice as often in the WarnGen AOI than control 

participants (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) = 16 (37) and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) = 34 (81)), while control 

participants fixated more frequently within the Velocity AOI (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) = 44 (31) 

and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) = 28 (29)) but for a statistically significant shorter mean duration 

(𝐷𝑢𝑟𝑐𝑜𝑛(𝑆𝐷) = 367 𝑚𝑠 (81 𝑚𝑠) and 𝐷𝑢𝑟𝑒𝑥𝑝(𝑆𝐷) = 450 𝑚𝑠 (49 𝑚𝑠)) (p-value= 

0.0133). Whereas the higher Velocity AOI fixation count corresponds to control 

participants’ more frequent observations of the McClain storm’s strengthening low-level 

wind signatures, experimental participants’ greater use of WarnGen largely explains their 

statistically significant lower similarity scores for four of the five MultiMatch dimensions 

(Fig. 5.6). For example, E11’s low similarity scores were due to spending much of these 

two minutes issuing a cancellation on the first McClain warning having previously seen 

a downward trend in the reflectivity core (Fig. 5.8a). Following this cancellation, he 

“Noticed a gigantic three body scatter spike coming off that core that had 50dBZ at 

32kft,” and quickly decided to issue a second warning on this storm. In addition to E11’s 

cancellation, observations of increasing reflectivity values aloft (and an associated 

updraft pulse) coupled with a storm report prompted E6 (Fig. 5.8b) and E8 to update the 

first McClain storm warning during these two minutes. E15’s use of WarnGen during this 

time was because of his decision to issue a warning on storm development to the west of 

the McClain storm given the strengthening 1-min trends in its reflectivity core. Unlike 

these four experimental participants, others within this group used their time to focus only 
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on the radar data and produced a scanpath evidently different to those that carried out 

WarnGen-based tasks (e.g., E14, Fig. 5.8c). Although these other experimental 

participants checked the Pontotoc storm intermittently, most of their time was spent on 

the McClain storm “because it had various reports and the warning [was] coming close 

to expiration” (E14).  

 
Figure 5.8. Gaze plots depicting the scanpaths of participants a) E11, b) E6, and c) 

E14 in the two minutes prior to the second McClain storm warning decision. Note 

that the WarnGen tool could be toggled on and off at any time and sometimes did not 

appear in the final screen capture. 
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5.3.3 Warning Issuance Process 

The warning issuance process usually took 1–3 minutes to complete, and the video 

data show that most forecasters followed a typical routine. This routine involved 

forecasters: loading WarnGen, using the “drag me to storm” icon to set their polygon, 

adjusting polygon vertices, looping reflectivity data (usually at 0.51°), readjusting 

vertices to better account for storm development and motion, choosing call to actions, 

creating and scanning the text, and lastly signing and sending the warning. The majority 

of forecasters’ scanpath patterns were thus mostly confined to the Reflectivity and 

WarnGen AOIs. 

Although forecasters’ fixation measures were comparable across both groups 

during the issuance of the first McClain warning, several participants’ deviation from the 

typical issuance routine resulted in statistically significant lower scanpath similarity 

scores within the experimental group for all five MultiMatch dimensions (Fig. 5.6). For 

example, E2 did not feel the urgency to warn given that the “Situation was not rapidly 

evolving” and he could “Afford to spend time on [the] warning product [to get a] good 

handle on what’s going on” (Fig. 5.9a). While issuing the first McClain storm warning, 

E2 spent considerably more time than other forecasters watching storm trends, ensuring 

that the Pontotoc storm did not require his attention, and as he reported, “Nitpicking small 

details.” Similarly, E12 used time while designing the warning to analyze trends in radar 

data and carefully consider what threats to include in the warning, which call to actions 

to select, and for how long the warning should be issued (Fig. 5.9b). Additionally, two 

forecasters struggled with technical disruptions when issuing the warning. E11 struggled 

to set the polygon correctly because he “[Couldn’t] fine tune counties as much as [he 
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would] like,” while E14 found that the polygon “Kept snapping around on [him],” causing 

him to switch between the Reflectivity and WarnGen AOIs frequently and have more 

broadly distributed fixations across the Reflectivity AOI after repeatedly readjusting the 

vertices (Fig. 5.9c).   

 
Figure 5.9. Gaze plots depicting the scanpaths of participants a) E2, b) E12, and c) 

E14 during the issuance of the first McClain storm warning. 
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The few technical challenges observed during the issuance of the first McClain 

warning did not arise during the Pontotoc warning issuance and thus did not reduce 

scanpath similarity among participants. Furthermore, the majority of participants’ 

decisions to issue this warning were prompted within 5–10 minutes of receiving the first 

hail report, and the timing and reasoning of the Pontotoc storm warning was therefore 

much more similar than for the first McClain storm warning (Fig. 5.5). It is then 

unsurprising that forecasters followed the routine warning issuance process for the 

Pontotoc storm and no statistically significant differences between the control and 

experimental groups’ fixation measures or MultiMatch dimensions were observed (Fig. 

5.6).  

For most participants, the final warning was issued again on the McClain storm 

(Fig. 5.5). Unlike the first McClain warning, experimental participants’ scanpaths during 

this second issuance were more similar to one another than the control participants’ (Fig. 

5.6). The unusual scanpath behavior of three control participants explain why the vector 

and position similarity scores were statistically significantly lower for this group. First, 

despite most other participants thinking that the McClain storm continued to pose a severe 

weather threat, C4 was “Not impressed with the storm” and “reluctantly” decided to issue 

the second McClain storm warning after receiving all storm reports (Fig. 5.5). He zoomed 

into the McClain storm during this issuance and transitioned between the Reflectivity and 

WarnGen AOIs only once (Fig. 5.10a). This single transition is an important aspect of 

C4’s scanpath because it was more typical for forecasters to transition between these two 

AOIs multiple times during warning issuance. Like C4, C2 also “Did not think the storm 

was severe enough to warn on again.” However, the first hail report associated with the 
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McClain storm prompted C2 to hesitantly issue a second warning given that his first 

McClain storm warning was issued early in the case and would soon be expiring (Fig. 

5.5). C2’s hesitance was evident in his numerous revisits to the Reflectivity AOI to 

sample the magnitude of the high-reflectivity core while creating the warning.  

 
Figure 5.10. Gaze plots depicting the scanpaths of participants a) C4, b) C2, and c) 

C10 during the issuance of the second McClain storm warning. 
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This behavior resulted in many more transitions between the Reflectivity and WarnGen 

AOIs than what was typical of other participants (Fig. 5.10b). The third control 

participant that presented an unusual scanpath was C10. While the issuance of the second 

McClain warning was a quick process for this participant, he had previously noted 

stronger inbound velocities, and therefore visited the Velocity AOI to monitor these data 

while designing the warning (Fig. 5.10c). If at all, most other participants only glanced 

in the Velocity AOI during this warning issuance.  

5.3.4 Warning Update Process 

The timing and reasoning of the first update to the McClain storm warning was 

more varied among experimental participants than control participants. Whereas a storm 

report drove more than half of the control participants’ decision to issue this SVS, most 

experimental participants issued this update to provide “maintenance” to the warning by 

altering the expected weather threat based on radar observations, trimming areas of the 

warning polygon, or simply providing a continuation of the warning. The experimental 

group’s greater spread in fixation counts within the Reflectivity (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) =

38 (30) and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) = 17 (40)) and WarnGen (𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑛(𝑆𝐷) = 104 (59) 

and 𝐶𝑜𝑢𝑛𝑡𝑒𝑥𝑝(𝑆𝐷) = 109 (96)) AOIs, along with their statistically significant lower 

direction similarity scores (Fig. 5.6), illustrates their more variable scanpath behavior 

during this warning update compared to the control group. The experimental group’s 

lower direction similarity scores occurred due to participants that either updated the 

warning with an unusually quick or an unusually extended process. For example, while a 

couple of experimental participants issued the SVS without changing any aspect of the 

warning (e.g., E10, Fig. 5.11a), others spent considerable time assessing the radar data, 
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updating the expected weather threat, and carefully adjusting the polygon vertices (e.g., 

E5, Fig. 5.11b). These contrasting warning update processes were not observed in the 

control group; rather, all control participants changed at least one aspect of the warning.  

Half of the participants in each group chose to issue an SVS on the Pontotoc storm 

(Fig. 5.5), and since no severe weather was reported for this storm, all updates were based 

only on maintenance reasons. The experimental group’s statistically significant lower 

direction similarity scores were primarily because of E15’s more careful adjustment of 

the warning polygon vertices and lack of editing within the text portion of the WarnGen 

AOI compared to other experimental participants. While the control group were more 

similar with respect to scanpath direction, they were statistically significantly less similar 

than the experimental group in the length and position MultiMatch dimensions (Fig. 5.6). 

The lower length similarity scores were due to participants C4 (Fig. 5.11c) and C15 (Fig. 

5.11d) focusing their attention predominantly in the Reflectivity and WarnGen AOIs, 

respectively. C4 issued this update to trim the warning polygon, while C15 wanted to add 

text in the warning to communicate the expected hail threat. This result corresponds to 

C4 and C15 having the least fixations in the WarnGen and Reflectivity AOIs out of the 

control group, respectively. Finally, the statistically significant lower position scores in 

the control group were a result of participant C5’s sporadically placed fixations that were 

likely caused due to his eye gaze darting between the keyboard and computer screen while 

editing warning text.  
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Figure 5.11. Gaze plots depicting the scanpaths of participants a) E10 and b) E5 

during the first McClain storm warning update, and of participants c) C4 and d) C15 

during the first Pontotoc storm warning update. 
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5.3.5 Differences in Duration 

Unlike the vector, direction, length, and position MultiMatch measures, similarity 

in fixation duration is difficult to visualize in gaze plots and thus challenging to compare 

between forecasters. When focused on a piece of information, a person’s fixation duration 

is indicative of their level of engagement and effort in extracting and processing it (Poole 

and Ball 2006; Bojko 2013). In each of the four defined stages, the difference in fixation 

duration similarity scores among control participants and among experimental 

participants was statistically significant at least once (Fig. 5.6e). However, in only one of 

these instances did the group with statistically significant lower duration similarity scores 

also have statistically significant lower similarity scores in other MultiMatch dimensions 

(Fig. 5.6). In the other instances, either no statistically significant difference was found 

for the vector, direction, length, or position dimensions, or the group that experienced 

statistically significantly more variation in duration was the one to experience statistically 

significantly less variation in other dimensions (Fig. 5.6). This result demonstrates that 

even when forecasters’ placement of and transition between fixations is similar, how 

intently they focus on information can still vary. 

5.4 Discussion and Summary 

 The hour-long scenario presented during this eye-tracking experiment provided 

an opportunity to collect forecasters’ eye gaze data in a simplified warning scenario so 

that similarities and differences in their warning decision processes could be better 

identified. In this simplified warning scenario, the fixation measures of the control and 

experimental groups were generally similar throughout the four defined stages, with only 

a few statistically significant differences in mean fixation duration. The high degree of 
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similarity in these measures is likely a result of two factors. First, all forecasters were 

asked to maintain focus on the screen throughout the event, and the comparable totals in 

fixation measures is therefore somewhat expected. However, forecasters still had the 

freedom to distribute their attention wherever they chose. We saw that the distribution of 

attention was generally similar among most participants regardless of whether 1-min or 

5-min PAR updates were used. In retrospect, we believe that the chosen weather scenario 

strongly influenced this result. Prior to beginning the case, the majority of forecasters 

believed that the expected weather threat was primarily hail and secondarily wind. Given 

the minimal data available for interrogation, it is then unsurprising that forecasters 

focused predominantly in the Reflectivity AOI, switching often between the persistent 

McClain and Pontotoc storms, with more intermittent checking in the Velocity AOI. The 

threat expectation for these slow-moving multicell storms did not change throughout the 

case, and this interrogation pattern was thus maintained for much of the hour.  

It remains to be seen whether differences in the fixation measures of forecasters 

using 1-min and 5-min PAR data would be greater if presented with a more complex 

weather event. The pilot study that motivated the use of eye tracking in this larger 

experiment observed a response in a forecaster’s eye gaze data when the expected weather 

threat switched from severe hail to severe downburst winds (Wilson et al. 2016). 

Furthermore, the traditional experiment component of the 2015 PARISE showed that the 

impact of using rapidly-updating PAR data depends on the type of weather event 

presented (Wilson et al. 2017). For the case chosen in this study, while control 

participants expressed that faster PAR updates would have been useful to observe trends 

in more detail, their general attitude was that “…the storm changed slowly enough that 
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not having the rapid update data wasn’t a killer” (C2). It is possible then that a more 

dynamically evolving weather event may yield different results. 

 Forecasters’ interrogation behaviors were further analyzed using the MultiMatch 

scanpath comparison algorithm (Jarodzka et al. 2010). Given that this algorithm considers 

eye movements on a much finer scale than the AOI-based fixation measures, this method 

better captured similarities and differences between how forecasters’ fixations traversed 

the screen. Variability in scanpath behavior was found to be comparable within the two 

groups for all five MultiMatch dimensions only prior to the first McClain storm warning 

and during the issuance of the Pontotoc storm warning. For all other portions of the 

defined stages, either the control or experimental group was found to have statistically 

significantly more variation in at least one of the five MultiMatch dimensions. 

Examination of the video footage and forecasters’ retrospective recall, as well as closer 

inspection of the similarity scores, revealed why this greater variability occurred. We did 

not find evidence that supported a direct link between scanpath similarity scores and 

participants’ use of 1-min or 5-min PAR updates for this case. However, examples 

illustrated that the scanpath comparison results were useful for identifying participants 

who deviated away from the normal tendencies of a group. These deviations occurred 

because of how participants interacted with the user interface, tackled technological 

glitches in the WarnGen system, or approached tasks differently based on their 

understanding and expectations of the weather event. 

 The sensitivity of the MultiMatch scanpath comparison algorithm to differences 

in forecasters’ behavior suggests that application of eye-tracking methods could be useful 

for exploring other avenues of operational meteorology research. In addition to testing 
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forecasters’ interactions with rapidly-updating radar data for other weather scenarios, eye 

tracking could be used to investigate how forecasters acquire and integrate other types of 

information into warning operations. With the fairly recent polarimetric upgrade to the 

WSR-88D network and the launch of the GOES-R series (Schmit et al. 2017), there are 

plenty of new data and experimental products to be tested through the lens of a weather 

forecaster. Eye movement data could also be used to validate models of forecasters’ 

attention systems that are specifically designed to support their allocation of limited 

perceptual and cognitive resources when interrogating meteorological information 

(Schvartzman et al. 2017). Furthermore, given the successful applications of eye tracking 

in usability studies, these methods could be used to support the development and testing 

of user-friendly interfaces that display information in an efficient and effective manner 

to forecasters. 

This study demonstrates how eye-tracking methods can be used to address 

operational meteorology research questions and will help inform future work that also 

intends to explore this research avenue. Based on this study alone we have learned that 

analyzing eye gaze data beyond the bulk measures of fixation count and duration is 

necessary for detecting differences in eye movement behavior. As we found in this study, 

analysis of participants’ scanpaths are especially beneficial in scenarios that constrain the 

amount of content available to the participant and collect eye gaze data for a fixed 

duration (which can force similar fixation measure totals). The scanpath comparisons 

computed with the MultiMatch algorithm were well-suited for determining if, and in what 

ways, forecasters’ sequences of fixations differed. Also noteworthy is that without 

examination of the qualitative data, making sense of the scanpath similarity scores would 
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have been extremely difficult. We therefore emphasize the importance of collecting these 

data (i.e., video or retrospective recall) alongside the eye gaze data to aid contextual 

interpretation of forecasters’ behaviors. Finally, through carefully designed experiments 

that obtain interpretable and meaningful data, we are hopeful that future eye tracking 

studies will expand our understanding of forecasters’ cognition and act to support their 

important role within the weather enterprise.  

 

  

 

 

 

 

 

 

 

 

 

 



155 

 

Chapter 6 

Considerations for Phased-Array Radar Data Use within the National 

Weather Service  

Taken in full from: Wilson, K. A., P. L. Heinselman, and C. M. Kuster, 2017: 

Considerations for phased-array radar data use within the National Weather Service. Wea. 

Forecasting, in press. 

Abstract 

Thirty NWS forecasters worked with 1-min, 2-min, and 5-min PAR volumetric 

updates for a variety of weather events during the 2015 PARISE. Exposure to each of 

these temporal resolutions during simulated warning operations meant that these 

forecasters could provide valuable feedback on how rapidly-updating PAR data impacts 

their warning decision processes. To capture this feedback, forecasters participated in one 

of six focus groups. A series of open-ended questions guided focus group discussions, 

and forecasters were encouraged to share their experiences and opinions from the 

experiment. Transcriptions of focus group discussions were thematically analyzed and 

themes belonging to one of two groups were identified: 1) forecasters’ use of rapidly-

updating PAR data during the experiment, and 2) how forecasters envision rapidly-

updating PAR data being integrated into warning operations. Findings from this thematic 

analysis are presented in this paper, and to illustrate these findings from forecasters’ 

perspectives, dialogue that captures the essence of their discussions is shared. The 

identified themes provide motivation to integrate rapidly-updating radar data into 
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warning operations, and highlight important factors that need to be addressed for 

successful integration of these data. 

6.1 Introduction 

 PARISE has completed four main studies to measure the impacts of rapidly-

updating PAR volume scans on NWS forecasters’ warning performance and related 

warning decision processes during a variety of weather events (Heinselman et al. 2012; 

Heinselman et al. 2015; Bowden et al. 2015; Bowden and Heinselman 2016; Wilson et 

al. 2017). In previous studies, forecasters were exposed to only 1-min or 5-min PAR 

updates. Although these studies demonstrated positive impacts of 1-min PAR update use 

on forecasters’ situational awareness, applications of conceptual models, and accuracy 

and timeliness of warnings (e.g., Heinselman et al. 2015; Bowden et al. 2015), 

forecasters’ experiences were constrained to a single temporal resolution of radar data.  

The 2015 PARISE was unique in that all 30 participating NWS forecasters were 

exposed to three temporal resolutions of PAR volumetric updates. The opportunity to 

actively work with multiple radar update speeds meant that these forecasters were 

positioned to provide well-balanced feedback on what they considered to be the 

operational impacts of rapidly-updating PAR data. This feedback is important for 

informing future technology decisions and ensuring that their needs as users will be met 

should rapidly-updating radar data become a reality in future warning operations. Six 

focus groups were therefore conducted to enable forecasters to share their feedback and 

offer valuable insight from the 2015 PARISE. 
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6.1.1 Experiment Description 

In the most recent PARISE, 30 NWS forecasters were each invited to participate 

in one week of the experiment, which took place in the NOAA Hazardous Weather 

Testbed over six weeks during August and September 2015. The experiment week that 

participants were assigned to only depended on their availability. The participants were 

recruited from 25 forecast offices located in the Great Plains and their forecasting 

experience ranged from 1 to 27 yr (mean = 12 yr, standard deviation = 7 yr). Throughout 

the week, forecasters worked a series of nine weather events, of which three were 

considered null, three presented severe hail and/or wind threats, and three presented 

tornado threats. The duration of each simulation ranged from 19–65 minutes. Forecasters 

were asked to independently interrogate reflectivity, velocity, and spectrum width 

products in simulated real-time and issue severe thunderstorm and tornado warning 

products as they considered them necessary. For each case, forecasters were provided 

with either 1-min, 2-min, or 5-min PAR volumetric updates depending on their random 

assignment to one of three groups. All groups rotated through each temporal resolution 

for the three null events, three severe hail and/or wind events, and three tornado events 

(see Wilson et al. 2017 for further details).  

6.1.2 Focus Group Description 

At the end of each of the six experiment weeks, a focus group was conducted that 

consisted of five participating forecasters, all of whom were from different forecast 

offices. Given that the focus group was the final activity of the week, both forecasters and 

researchers had already established rapport, thus encouraging honest and fruitful 

discussions. The focus groups were guided with a set of predetermined open-ended 
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questions so that forecasters’ responses were unconstrained (Lazar et al. 2010). These 

questions were specifically designed with a goal to elicit feedback on: forecasters’ 

reactions and responses to the three temporal resolutions of PAR data, how these data 

affected their conceptual understanding of different weather events, and how they 

envision using these data in a real-time operational environment (see Appendix A for list 

of questions). Although the flow of discussion differed for each focus group, all 

participants were asked the same set of questions and discussions lasted between 1.5 to 2 

hours. An advantage of collecting forecasters’ feedback within a focus group setting was 

that interactions between participants helped create a synergistic effect, which in turn 

promoted the sharing of opinions and generation of ideas (Cameron 2010; Krueger and 

Casey 2015). 

In this article, we present the findings from the analysis of forecasters’ feedback. 

Transcriptions of the six focus group discussions were thematically analyzed according 

to their semantic content (Clarke et al. 2015). A list of codes was first developed to 

describe the content, and these codes were then reduced to a set of themes that belonged 

to one of two groups (Fig. 6.1). Given the qualitative nature of focus groups, findings 

related to the identified themes are expressed in impressionistic terms and are based solely 

on the viewpoints of forecasters participating in this study (Cameron 2010). To ensure 

anonymity in direct quotes, forecasters were assigned participant numbers P1–P30. This 

article describes each of the identified themes and shares the most inclusive and pertinent 

topics that forecasters discussed. 
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Figure 6.1. Two groups of themes identified in transcriptions from forecasters' 

discussions during focus groups. 

 

6.2 Using Rapidly-Updating PAR Data during the Experiment 

6.2.1 Reactions to Radar Update Times 

For all participating forecasters, their first opportunity to use rapidly-updating 

PAR data to make warning decisions was during this experiment. Describing their initial 

reactions to these data, forecasters focused on 1-min PAR updates and exhibited positive 

and upbeat attitudes because of their ability to now view how storms were evolving on 
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shorter timescales. General statements were made, such as “It was awesome. I know this 

is happening, but I can’t see it with the 88D data. You miss everything in between” (P21). 

Some forecasters also likened these data to textbook examples of storm processes, and 

pointed out that “With the one-minute data it looks more like what you see when you are 

out in the field” (P5).  

Forecasters viewed these faster updates for three of nine cases that were worked 

in a randomized order and became used to the additional radar data very quickly. As P27 

reported, their randomized case order meant that they worked three weather events with 

1-min PAR updates first. P27 noted that that they “…got used to the fast data fast,” such 

that returning to 5-min PAR updates “…Killed me…. It was like walking through wet 

cement and I wanted faster data.” Though the case order for other forecasters did not 

accentuate the difference between 1-min to 5-min PAR updates as much, they still became 

accustomed to the faster updates quickly, making statements that they were “…waiting 

for data when I had slower data”(P8), which “…was like watching paint dry” (P24). 

Thinking about their return to the forecast office, P27 said that they “…can already tell 

that this is going to kill me during my first radar shift. I will just want the [faster] data!”   

Another point of discussion regarding forecasters’ reactions to faster radar 

updates was how their sense of time became skewed. One participant pointed out that 

“You see a new scan and think it has been five minutes,” (P27) while another noted that 

“With one-minute [updates], time seemed like it was going faster than it actually was” 

(P9). Forecasters evidently use radar updates as an external cue for time progression 

during warning operations, and were either unaware of how strong this external influence 
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is on their sense of time or were not actively prepared to shift their sense of time during 

this experiment. 

6.2.2 The Need to Adapt 

Despite forecasters being excited about the use of 1-min PAR updates to make 

warning decisions, approximately one third of participants reported feeling overwhelmed 

at first. This feeling resulted from trying to “…keep up with everything coming in” (P19) 

and “…look at all tilts of everything” (P15) at the same rate that the faster updates were 

being received. These participants reported that they soon realized interrogating faster 

updates in this manner “…was not going to be possible” (P15). P8 explained that “It was 

nice to see all of the data, but to not become overwhelmed you had to quickly go through 

stuff and decide what you actually wanted to look at.” Forecasters therefore described 

needing to use a “mental filter” (P11) that was dependent on “…the threat type and what 

your expectations are” (P25) to better manage the increased amount of radar data. 

Applying a mental filter was most necessary during weather events that posed a tornado 

risk. Like many other forecasters, P2 explained that they “Pushed hail aside and just 

watched 0.5 velocity like a hawk” believing that it was “…worth the trade off since you 

need to know about the tornado.” However, several participants cautiously added that 

this prioritization in attention should depend on the seriousness and location of threats. 

For example, P3 pointed out that “If there is softball size hail over a town, you need to 

be looking aloft for the hail cores. Especially if the tornado is weak and in a rural area 

and the big hail or wind is in a town.” Therefore, focusing interrogation according to the 

primary threat may not always be an ideal solution for comfortably managing faster radar 

updates.  
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6.2.3 Storm Trends  

When discussing the specifics of cases worked, forecasters focused heavily on 

their newfound ability to observe storm trends in much greater temporal detail when using 

faster radar updates. These forecasters explained that they “Have more confidence when 

you can see evolutionary changes [because] you see what you are expecting to see, or 

maybe what you were not expecting to see” (P20). Many of their shared examples from 

the experiment corroborated findings from earlier PARISE studies and drew on some of 

the previously reported sampling limitations of the WSR-88D (LaDue et al. 2010). For 

example, in pulse-type storm environments, forecasters appreciated being able to better 

observe the persistence of updrafts as well as track the development and location of high-

reflectivity cores. Like others, P27 thought that “…it was really cool to see the new 

updrafts form aloft. It was awesome to have fast data there. With five minute data a storm 

could pulse up and you won’t even see it. So you could see your conceptual model evolve 

over time instead of making assumptions.” Similarly, P9 said that “You can see so many 

more features. You can see the high reflectivity cores grow elevation scan to elevation 

scan. With the 88D it just shoots up, you know it increases, but you don’t get to see it 

happen.” Additionally, being able to see hail cores “descend minute by minute down to 

the surface” aided forecasters in modifying the expected weather threat after a warning 

was issued, allowing them to “put out an update and call for bigger hail” (P23).  

Forecasters also described the usefulness of faster radar updates for making 

tornado-related warning decisions during this experiment. In simulated warning 

operations, viewing radar indicated evidence of tornadogenesis in finer temporal detail 

has resulted in the issuance of earlier warnings by up to 7.5 minutes, especially during 
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classic supercell events (Heinselman et al. 2015; Wilson et al. 2017). In the 2012 

PARISE, forecasters achieving above-average tornado warning lead time applied 

conceptual models that depended on trends only observable in 1-min PAR updates 

(Heinselman et al. 2015). P13 emphasized the importance of these trends, reporting that 

“I’ve never seen such a clear example of tornadogenesis in radar data before. You see 

the rear-flank downdraft kicking out, the midlevel meso dropping down. You saw what 

you would expect to see based on the textbook conceptual model. You could not see that 

with five minute data. I am confident that this allowed me to put a warning out sooner 

than with five minute data.” Despite these encouraging results, the most recent PARISE 

also found that extending tornado warning lead time through the use of faster radar 

updates was difficult to achieve for a weak and short-lived tornado that developed in a 

quasi-linear convective system (Wilson et al. 2017). Based on their use of rapidly-

updating radar data for this single event, some participants explained that while 1-min 

PAR updates allowed them to observe brief circulations, it was unlikely that they would 

issue a tornado warning. Some forecasters reasoned that “The fastest you can issue a 

warning is a minute or so, and by then the warning is out and not much is happening” 

(P18). Nevertheless, forecasters did state that being able to observe these circulations was 

still beneficial for providing additional threat information in a severe thunderstorm 

warning. 

Observing more-detailed storm trends was also helpful in preventing the issuance 

of warnings on storms that did not become severe. Forecasters reported being able to see 

that storms “Never really got a great updraft for what I would think is needed to get a 

good downburst” (P10) and that cores “…Were not sustaining themselves for very long” 
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(P7). While these observations did help reduce the number of false alarms in the 2015 

PARISE (Wilson et al. 2017), a handful of forecasters noted that “You have to be careful 

with how quickly you react to the one-minute data too” (P11). Several forecasters using 

faster radar updates were disappointed in impulsive warning decisions made after viewing 

intensifications in storm trends that were only transient, and therefore recommended 

waiting to view consistency in trends before acting on them.  

6.3 Integrating Rapidly-Updating PAR Data into Warning 

Operations 

6.3.1 Visualizations  

To create a mental image of storm structure and trends, forecasters currently 

analyze the vertical profile of storms in separate elevation scans and step back and forth 

in time to assess the temporal changes. This approach was found to be time consuming 

when using 1-min PAR updates during the experiment, leaving some forecasters feeling 

overwhelmed and many needing to limit their attention to portions of the storm that they 

believed posed the greatest threat. Forecasters identified that “The answer to data 

overload might be integration in a 3D display, like GR or FSI… With the 5-minute data, 

I don’t feel like cross sections or volume data is really that helpful, but with this data I 

could really see myself using those types of tools” (P27). Furthermore, forecasters want 

trends to be monitored using an automated technique. P18 suggested that “If AWIPS 

could somehow track a core and tell you how much the reflectivity is changing from scan 

to scan, you don’t have to look and calculate for yourself. Something could tell you that 

the reflectivity has increased by 40 dBZ.” This idea would reduce the manual search 

efforts and corresponding demand on working memory for tracking trends, and could be 
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extended to monitoring additional aspects of reflectivity cores, as well as the evolution of 

other precursor signatures.  

6.3.2 Training 

 Forecasters drew on their experience of using faster radar updates to make 

recommendations for the type of training they would find most helpful, and unanimously 

agreed that hands-on experience is most valuable. Though not possible in PARISE, 

forecasters felt it would be advantageous to work weather events multiple times with 

different temporal resolutions of radar data. This activity would allow them to better 

assess how faster radar updates can benefit their warning decision process. As P25 

pointed out, “I don’t know what I missed between scans.” Given that you “Can see a lot 

of new processes” (P2) that were previously unobservable, some forecasters suggested 

that providing a list for when faster radar updates are most beneficial to the warning 

decision process would also be helpful. Furthermore, forecasters noted that the greater 

temporal detail in storm processes will require them to revisit and possibly modify their 

conceptual models. One forecaster suggested that showing “…Video of the storm 

alongside the radar so people can get used to seeing how the storm evolves and what that 

looks like on radar” (P25) would aid this process, while another noted the importance of 

interrogating faster radar updates using “Only base data without algorithms [to]…force 

you to go back to conceptual models” (P8). Forecasters suggested completing hands-on 

training away from the forecast office in a set-up similar to the Warning Decisions 

Training Division’s Radar Applications Course. This idea was preferable to within-office 

training because “There are many more distractions” (P29) within the forecast office and 

“Sometimes it takes two months just to get everyone in the office through one case” (P3). 
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Recognizing that resource limitations may make this idea difficult to execute, one feasible 

suggestion was that “…You need to train the trainer. Bring one person from each office 

and then have them go back and teach the office” (P4). The NWS Training Center 

recently adopted this strategy for the GOES-R preparation course, in which Science and 

Operations Officers and Development and Operations Hydrologists developed 

knowledge and experience that could then be shared with forecasters at the local level 

(personal communication, Brian Carcione).  

 In addition to receiving hands-on training, forecasters thought that step-by-step 

reviews of their own warning decision processes would be a useful training activity. As 

part of this experiment, forecasters were asked to watch a playback video of their 

onscreen activity and recall what they were seeing, thinking, and doing. P22 suggested 

“What if at every office you sat people down and asked them what they were thinking 

minute by minute. Maybe we can improve what you are doing… That was helpful for me, 

since I have never been asked this before.”  While most other forecasters agreed with this 

statement, a few felt that reviewing onscreen activity in this manner might make others 

feel as though their warning decisions are being judged. Importantly though, P25 

emphasized that “We need to be more thick skinned as a weather community with case 

reviews. What we have done this week is one step away from what an NFL team does 

each Monday when they dissect game film.” Forecasters therefore recognized that this 

review procedure would be a useful training approach for strengthening the performance 

of both the radar operator and forecast team as they learn to integrate faster radar updates 

into warning operations. 
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6.3.3 Fatigue and Staffing 

 Ensuring that humans are operating within their optimum working conditions is 

important for both their well-being and their performance. While cognitive workload 

associated with the use of rapidly-updating PAR data has been assessed within the 

PARISE setting (Wilson et al. 2017), it has not been measured in live operations where 

forecasters are part of a team and are exposed to many other data sources. Some 

forecasters expressed their concern of the “fatigue factor,” where “It would be a bigger 

factor with rapid-update data since you are interrogating more data… We are already 

concerned about that. We talk about it every spring. How long are we going to let 

someone look at radar data? With new types of radar data, that conversation is important 

again” (P21). Reflecting on this matter, forecasters stressed that to work efficiently with 

faster radar updates and to ensure smooth function of warnings operations, they would 

need to redistribute responsibilities within their teams. Forecasters expect that "There will 

be an increasing need to sectorize” (P17), meaning that “There will need to be more 

radar operators” (P9). Additionally, forecasters recommended sharing the task of 

updating warnings so that the radar operator could focus on issuing warnings only.  

6.4 Discussion and Conclusions  

Communicating findings from the focus group discussions gives forecasters a 

voice in the research process and allows for an evaluation of rapidly-updating PAR data 

from their specialized perspectives. The six focus group discussions brought to attention 

the ways in which forecasters felt these data benefited their warning decision processes 

and highlighted some important considerations that need be addressed should these data 

be implemented operationally.  
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The consensus among forecasters was that 1-min PAR updates are preferable to 

2-min and 5-min PAR updates. This preference was further evident in their choice to 

emphasize and share experiences that were predominantly related to their use of 1-min 

PAR updates during the experiment, with only little to no attention given to their use of 

2-min PAR updates. Forecasters’ lack of comments regarding 2-min PAR updates was 

surprising given other forecasters’ suggestions in earlier studies that it would be helpful 

to show 2-min PAR updates in addition to 1-min PAR updates (Bowden and Heinselman 

2016). However, capturing the feelings of others, P25 summarized that “At the end of the 

day, radar data is at the heart and soul of warning operations. If it stops, you are severely 

handicapped. So, it is critically valuable, especially if it is one minute, because it is giving 

you a constant idea of what the storms are doing and where the storm is and where it is 

moving and where it has been. It has to be integrated in some way, shape, or form.”  

Despite strong consensus that forecasters preferred the use of 1-min PAR updates, 

some disagreement in how to manage these data emerged in the focus group discussions. 

First, while numerous forecasters thought that the development of new algorithms could 

provide a solution to the increased levels of workload associated with tracking 1-min 

trends in radar signature, others expressed concern that forecasters might become 

dependent on these algorithms and lose their sense of conceptual understanding. Second, 

many forecasters found that prioritizing attention to the primary severe weather threat 

helped counteract high levels of workload. However, several forecasters thought that this 

approach was not suitable for dealing with scenarios that presented multiple weather 

threats. Future research efforts should examine the feasibility of these suggested solutions 
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in an experimental setting where the impacts of algorithm use and prioritization of 

attention on forecasters’ warning decision processes can be assessed independently.  

In addition to forecasters’ suggestions of employing new strategies for viewing 1-

min radar updates, being able to successfully alleviate the inevitable increase in radar 

operator demands will depend on the ability of forecast office staff to redistribute 

responsibilities. During the 2015 PARISE, forecasters reported experiencing levels of 

high and excessive workload more frequently when using 1-min PAR updates during 

events that presented a tornadic threat (Wilson et al. 2017). Oftentimes, this spike in 

cognitive workload occurred during times in which forecasters were issuing or updating 

a warning, which led to forecasters’ recommendation that sharing product issuance tasks 

among multiple radar operators would be one helpful approach to decreasing cognitive 

load. Furthermore, during weather events that are more demanding on forecasters’ 

attention, the presence of multiple radar operators would be beneficial for sectorizing 

warning area and reducing individual forecaster’s overall task load. 

Forecasters’ positive attitudes and outlooks of using rapidly-updating PAR data 

within the forecast office are encouraging. Successful implementation of rapidly-

updating radar data will first require the delivery of hands-on training. Because logistical 

limitations will likely prevent all forecasters from completing a course at a training center 

location, an approach similar to the GOES-R preparation course is recommended. In this 

instance, specific individuals from forecast offices receive specialized training and 

transfer their learned knowledge and skills to other forecasters upon their return. 

Additionally, given that many forecasters commented on the usefulness of completing 

retrospective recalls during the 2015 PARISE, we believe that adopting this practice as a 
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form of training will enhance forecasters’ capacities to understand and improve upon their 

own warning decision making behavior. Although some forecasters expressed frustration 

at finding time to complete training during work hours, in-house training must become a 

priority to ensure a smooth transition to using rapidly-updating radar data in warning 

operations.  

Although forecasters have not yet used 1-min PAR volumetric updates during real 

warning operations, their use of the recently implemented MESO-SAILS scanning 

strategy could provide some interesting insight for the potential integration of PAR data 

in the future (Chrisman 2014). MESO-SAILS allows forecasters to receive up to three 

additional interspersed 0.5° elevation scans during a volumetric update. While this 

scanning strategy does not mimic the rapid updates that PAR obtains for the entire volume 

scan, a review of the initial impact of these more frequent low-level observations on 

forecasters’ warning performance should be completed. This review would be a first step 

to investigating some of the focus group findings in real-time operations. Forecasters 

indicated that responding too quickly to transient trends in radar signatures could 

negatively affect their warning decisions. Assessing forecasters’ use of MESO-SAILS 

within operations with respect to their reactions to trends viewed in the 0.5° elevation 

scan would thus be worthwhile. Additionally, given that forecasters in the focus group 

described experiencing a skewed sense of time while interrogating 1-min PAR updates, 

it would be interesting to explore whether forecasters using MESO-SAILS within the 

naturalistic environment also need to modify their sense of time when consistently 

tracking the 0.5° elevation updates. Finally, important lessons could be gained from 

investigating the overall implementation of MESO-SAILS into the forecast office, the 
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preparations that forecasters found helpful prior to their use of these additional data, and 

how they adapted their interrogation styles to effectively incorporate these data into their 

warning decisions processes. 
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Chapter 7 

Conclusions, Implications, and Future Work  

Weather radar data, as one NWS forecaster described during the 2015 PARISE, 

“is at the heart and soul of warning operations.” Radar allows forecasters to observe the 

dynamic nature of potentially hazardous weather and to alert those at risk through the 

issuance of weather warnings. Since PAR technology, which can provide faster 

volumetric updates, is being considered as a potential replacement for the current WSR-

88D system (Zrnić et al. 2007; Stailey and Hondl 2016), examining the potential impacts 

of rapidly-updating radar data on forecasters’ warning performance and related warning 

decision processes is essential. 

The 2010, 2012, and 2013 PARISE studies reported that forecasters’ use of 

rapidly-updating radar data resulted in predominantly positive impacts on their 

application of conceptual models, their overall situational awareness of weather events, 

and on their warning lead time and accuracy statistics (e.g., Heinselman et al. 2012, 2015; 

Bowden et al. 2015). However, the chosen methodologies limited the generalizability of 

these findings and important research questions remained unexplored. The 2015 PARISE 

traditional experiment addressed the sample size limitations of earlier PARISE studies. 

With an increased number of participating forecasters and an increased number of cases 

worked, forecasters’ overall performance in the 2015 PARISE supports previous findings 

that median warning lead time increases with use of increasing radar update speed 

(Wilson et al. 2017). Additionally, forecasters’ use of these data resulted in fewer false 

alarms and an enhanced ability to discriminate correctly between weather threats 

compared to forecasters who were provided traditional 5-min radar updates.  
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Despite these encouraging results, the use of rapidly-updating radar data did not 

improve warning performance in all cases. The most surprising result was that almost all 

forecasters failed to achieve positive warning lead time for a short-lived tornado that 

occurred within a bowing line segment. Although these events are notoriously difficult to 

warn for, our expectation was that forecasters’ use of 1-min or 2-min PAR updates would 

improve their ability to provide warning lead time for this tornado. Given that only a 

single case of this event type was analyzed during the 2015 PARISE, future research 

should investigate how benefits of rapidly-updating radar data can be realized for 

improving warnings for nonsupercell tornadoes. Discussions with forecasters suggest that 

this research should analyze both their radar interrogation strategies and the associated 

warning philosophies that are ingrained into forecast office practices for these event 

types. 

 In addition to analyzing forecasters’ warning performance during the traditional 

experiment, forecasters’ cognitive workload was assessed during the 2015 PARISE to 

investigate whether use of rapidly-updating radar data increases their susceptibility to 

experiencing excessive cognitive workload (i.e., “overload”). The results showed that, in 

general, forecasters’ subjective ISA ratings were skewed towards higher levels of 

cognitive workload with use of faster radar updates, but that experiences of cognitive 

overload were rare (Wilson et al. 2017). Forecasters provided reasoning along with the 

ISA ratings that brought to light why, aside from their use of rapidly-updating radar data, 

their cognitive workload increased to high and excessive levels. Forecasters’ reasoning 

revealed that storm characteristics, warning tasks, beginning a case in experimental 

conditions, technical frustrations, and personal needs led to increased levels of cognitive 
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workload. Understanding the interplay of these influencing factors during warning 

operations will help identify strategies that support a radar operator’s use of additional 

radar data, thus stabilizing their cognitive workload and ensuring their optimal 

performance.  

Aside from PARISE, the 2016 Probabilistic Hazard Information experiment is the 

only other known research project that has specifically examined forecaster cognitive 

workload (Ling et al. 2017). Given that introducing other types of additional data and 

products to forecasters will likely modulate their cognitive workload, it would be valuable 

if researchers conducting forecaster-oriented experiments also considered documenting 

this aspect of forecasters’ experiences. For research meteorologists unfamiliar with 

human factors methods, the cognitive workload assessments presented in the 2015 

PARISE and the 2016 Probabilistic Hazard Information experiment provide helpful 

guidance on how to address this type of research question. 

The second component of the 2015 PARISE successfully implemented eye-

tracking research methods in a large-scale simulated real-time experiment for the first 

time. Given the limitations of the retrospective recall method (i.e., inaccuracies, 

incompleteness, and biases), an eye-tracking system was used to collect objective data on 

the distribution of forecasters’ visual attention and related warning decision processes. 

These data were used to assess differences in how forecasters interacted with the radar 

display and warning interface. The MultiMatch algorithm proved to be useful for 

identifying and quantifying differences in forecasters’ visual scanpaths, and the video and 

retrospective recall data were important for determining why these differences occurred. 

Forecasters deviating from their group’s typical scanpath patterns were found to approach 
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tasks differently, encounter more technological problems, or have greater variation in 

how they interacted with the user interface. However, differences in forecasters’ 

scanpaths and related warning decision processes were not found to be directly associated 

with the temporal resolution of radar data that they used.  

In hindsight, it is possible that the chosen weather scenario resulted in an overall 

lack of dissimilarity between the visual scanpaths of forecasters using 1-min radar 

updates and forecasters using 5-min radar updates. Most forecasters began working the 

case with an expectation that the weather threat was primarily hail and secondarily wind, 

and forecasters therefore applied a typical interrogation strategy that focused mostly in 

the Reflectivity AOI. Given that this eye-tracking experiment was the first of its kind, 

additional cases need to be tested in future work to assess whether the temporal resolution 

of radar data impacts forecasters’ visual scanpaths during more challenging weather 

events. Furthermore, simplifying the design of the eye-tracking experiment presented in 

this dissertation would allow for analysis of basic forecaster eye movement behavior. 

Simplification could be achieved, for example, by reducing the duration of the experiment 

substantially, removing forecasters’ abilities to zoom and pan data within AOIs, and 

restricting when radar scans of different times and elevations can be viewed. Results from 

a simplified experiment of this nature could aid in the interpretation of forecasters’ eye 

movements in more complex scenarios.  

Importantly, the eye-tracking experiment provides an example of how to integrate 

eye-tracking technology into a testbed experiment design in the context of an operational 

meteorology study. The eye-tracking experiment also demonstrated what processes are 

required to collect eye movement data and what types of analyses are useful for 
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meaningfully interpreting the data. Hopefully, the successful implementation of eye-

tracking research methods during the 2015 PARISE will encourage other scientists 

studying the human aspect of weather forecasting to explore eye-tracking applications 

within their areas of specialty and contribute towards an improved understanding of 

forecasters’ cognition. For example, eye-tracking research methods could be applied to 

learn about forecasters’ use of other types of meteorological data, such as satellite data, 

numerical weather prediction, or probabilistic hazard information. Using a similar 

approach to the 2015 PARISE eye-tracking experiment, tracing how forecasters acquire 

and then use this information would result in an improved understanding for how to most 

effectively integrate these data into the warning decision process. These eye-tracking data 

can also be used to validate and score models of forecasters’ attention systems (e.g., 

Schvartzman et al. 2017), such that the most salient-rich features identified in 

presentations of meteorological data can be compared to forecasters’ actual distributions 

of attention. Additionally, forecasters’ eye movements can be analyzed during goal-

oriented tasks to test the usability of newly developed display interfaces, which can lead 

to recommendations that improve human-computer interactions for operational 

meteorologists (Jacob and Karn 2003). 

 In addition to eye-tracking, focus groups were also used for the first time in 

PARISE during the 2015 study. The focus groups gave forecasters a voice in the research 

process so that they could share how rapidly-updating radar data impacted their warning 

decision processes during the experiment and how they envision these data being 

integrated into future warning operations. Forecasters were in agreement that of the 1-

min, 2-min, and 5-min radar updates used during the 2015 PARISE, 1-min PAR updates 
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were always preferable. Recommendations were provided for ways to manage the 

increase in available data assuming 1-min radar updates become operational. Some 

recommendations include redistributing responsibilities within the forecast office, 

prioritizing attention, and using algorithms. While forecasters were in agreement with the 

first recommendation, it is important to acknowledge that successfully redistributing 

responsibilities will depend on the availability, willingness, and flexibility of staff within 

a forecast office — a luxury that can be difficult to come by in offices that are operating 

with limited resources and personnel. Although the latter two recommendations for 

reducing workload can be achieved without redistributing responsibilities, forecasters did 

not express complete agreement with these ideas. Some forecasters were concerned that 

prioritizing attention would result in forecasters missing the potential of a secondary 

weather threat, while others were worried that the use of algorithms would reduce 

forecasters’ conceptual understanding of weather events. This disagreement highlights an 

area for future research that would assess the individual impacts of prioritizing attention 

and algorithm use on warning performance when forecasters are provided 1-min radar 

updates. Findings from this research would help determine whether these 

recommendations provide feasible solutions for managing additional radar data, or 

whether making adjustments to the work flow of an integrated warning team will be most 

effective for reducing the radar operator’s workload.  

Forecasters’ feedback during the focus groups provided an operational 

perspective that was difficult to obtain within the traditional and eye-tracking 

experiments. Since the specific research questions investigated in these experiments 

could only be answered in simplified, controlled, and simulated warning operations, 
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removing the normal functions, interactions, and nuisances of a forecast office was 

necessary. Although findings from the focus group discussions gave some insight into 

what could be expected upon initial implementation of rapidly-updating radar data into 

the forecast office, extending the work of PARISE to the naturalistic setting will be an 

important step for learning about the impacts of faster radar updates on everyday warning 

operations. The success of NWS WFOs’ participation in past naturalistic studies (e.g., 

Hoium et al. 1997; Morss and Ralph 2007; Henderson et al. 2017) suggest that conducting 

research of this nature to further the efforts of PARISE would be a feasible and 

worthwhile endeavor. However, to successfully execute real-time use of new 

meteorological data in an NWS WFO, specific instrumentation, technical infrastructure, 

and data display capability is required.  

While meeting real-time experiment requirements can prove challenging, ongoing 

projects within the meteorological community are well-positioned to begin exploring this 

research avenue. For example, the Engineering Research Center for Collaborative 

Adaptive Sensing of the Atmosphere’s Urban Testbed Project is already working to 

provide and demonstrate the usefulness of higher-temporal resolution radar products to 

local stakeholders, including NWS forecasters (e.g., Chen and Chandrasekar 2015). 

Additionally, the Verification of the Origins of Rotation in Tornadoes Experiment-

Southeast research program has set out to improve analysis and forecast systems, better 

understand how forecasters warn for southeastern tornadoes, and study how end users 

respond to forecast information (Rasmussen 2015). In addition to the use of mobile radars 

and other instruments during this research program, the existing collaborative effort 



179 

 

between researchers, social scientists, and meteorologists makes this research program 

ideal for conducting naturalistic studies in local forecast offices.  

In addition to analyzing rapidly-updating radar data within the operational 

environment, there are several other future research opportunities that have not yet been 

discussed. First, the anticipated installation of the Advanced Technology Demonstrator 

at the National Weather Radar Testbed in 2018 will be an important step towards 

developing a modern weather radar system that, like the WSR-88D, will have dual-

polarization capability. The Advanced Technology Demonstrator will allow engineers to 

investigate the errors of PAR polarimetric variable estimates that are caused by 

differences in copolar antenna patterns between the horizontal and vertical polarizations 

(Ivìc 2017). Through this research and development, the analysis of rapidly-updating 

polarimetric radar signatures will be possible, and the knowledge gained from these 

analyses will help to inform scientific conceptual models of storms processes (Kuster et 

al. 2017a). 

Although WSR-88D polarimetric data have shown to provide additional 

information about storm processes (Kumjian 2013), discussions with forecasters suggest 

that their current use of these data during the warning decision process is mostly confined 

to instances in which a confirmation of hazardous weather is sought (e.g., a tornado debris 

signature; Kumjian and Ryzhkov 2008; Bodine et al. 2014). These discussions therefore 

bring to question whether forecasters are utilizing the full benefits of polarimetric radar 

data during warning operation. A combination of observations through naturalistic study, 

interviews, and surveys with NWS forecasters would be useful for learning about how 

their understanding of these data, chosen strategies for analyzing information during the 
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warning decision process, and training experience have influenced their current level of 

engagement with polarimetric radar data. Creating an awareness of the challenges that 

forecasters currently face when attempting to integrate polarimetric radar data into their 

warning decision processes will give guidance on how to ensure that these data can be of 

use to forecasters both prior to and after the issuance of a warning.  

A second area for future PAR research relates to numerical weather prediction. 

Data assimilation experiments have shown that the use of higher-temporal resolution 

PAR data in convective-scale models significantly improves short-term forecasts, even 

more so for adaptively-scanned PAR data (Yussouf and Stensrud 2010; Supinie et al. 

2017). While the recently funded Spectrum Efficient National Surveillance Radar 

(SENSR) program will support further data assimilation experiments with PAR data, 

these early results suggest that an operational PAR system that provides frequent updates 

has potential to improve storm-scale modeling. Furthermore, the Advanced Technology 

Demonstrator will allow for investigation into whether assimilating rapidly-updating 

polarimetric radar data further improves short-term forecasts. Given that the assimilation 

of WSR-88D polarimetric data has already shown to improve analyses and forecasts of 

convective storms (including their associated updrafts, reflectivity structures, and forecast 

updraft helicity tracks; Carlin et al. 2017), investigating how the temporal resolution of 

polarimetric data affects the outcome of data assimilation experiments will be an 

important next step. 

These research efforts in numerical weather prediction are working to support the 

success of Warn-on-Forecast, a program which is exploring the possibility of 0–3 hour 

forecasts for high-impact weather with guidance from an on-demand, storm-resolving 
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model forecast system (Stensrud et al. 2009). A major goal of Warn-on-Forecast is to use 

this probabilistic guidance to increase warning lead time out to one hour. This extended 

warning lead time is expected to be especially beneficial to end-users with specialist 

needs, such as schools and hospitals, who must actively make weather-related decisions 

ahead of when warnings are typically issued. To begin exploring how probabilistic 

guidance influences weather decisions, forecasters’ use of the NSSL Experimental Warn-

on-Forecast System for ensembles output was recently evaluated during the 2017 

Experimental Forecast Program in the NOAA Hazardous Weather Testbed. However, 

further research is required to develop a better understanding of how forecasters can best 

utilize and communicate uncertainty information to stakeholders and the general public. 

Assessing the potential value of this information to non-NWS end users will help ensure 

that its benefits are realized not just by NWS forecasters, but by all members operating 

within the weather enterprise (e.g., Kuster et al. 2017b). Findings from this research will 

support the meteorology community’s efforts to reinvent the watch and warning system 

and achieve the FACETs vision, in which a continuum of probabilistic information will 

instead drive forecasters’ and end users’ weather-related decisions.   
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Appendix A 

Focus Group Questions 

1. What was your first reaction to the 1-min, 2-min, and 5-min PAR update times? 

2. How did your reactions to the 1-min, 2-min, and 5-min update times impact your 

interrogation strategies when working what you believed to be a a) severe hail and wind 

event, b) tornado event, and c) non-severe event? 

3. Did you have a difference in understanding of what you believed to be a a) hail and 

wind event, b) tornado event, and c) non-severe event based on the temporal resolution 

of PAR data available? 

4. Imagine you are going back to your office and you have rapid-update PAR data (1-min 

or 2-min updates) like you had here. Based on your 2015 PARISE experience, what 

concerns do you specifically have about using rapid-update PAR data in an operational 

sense? 

5. Drawing from your 2015 PARISE experience, what kind of training do you think you 

would find useful in transitioning rapid-update PAR data into operations? 

6. Imagine you are going back to your office and you have rapid-update PAR data (1-min 

or 2-min updates) like you had here. Based on the 2015 PARISE experience, how do you 

envision these radar data being integrated into your fuller warning decision process where 

you have your normal available data and are working with your colleagues? 

7. What other thoughts or ideas from the week would you like to share with us? 
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Appendix B 

List of Acronyms 

ADAPTS  Adaptive Digital Signal Processing Algorithm for PAR Timely 

Scans 

 

AOI   Area of Interest 

AVSET  Automated Volume Scan Evaluation and Termination 

FACETS  Forecasting a Continuum of Environmental Threats 

FAR   False Alarm Ratio 

GOES-R  Geostationary Operational Environmental Satellite R  

ISA   Instantaneous Self-Assessment 

JDOP   Joint Doppler Operation Project 

JPOLE   Joint Polarization Experiment 

MESO-SAILS  Multiple Elevation Scan Option—Supplemental Adaptive 

    Intravolume Low-Level Scan 

 

NASA-TLX  NASA-Task Load Index 

NOAA   National Oceanic and Atmospheric Administration 

NWS   National Weather Service 

PAR   Phased-Array Radar 

PARISE  Phased Array Radar Innovative Sensing Experiment 

POD   Probability of Detection 

SAILS   Supplemental Adaptive Intravolume Low-Level Scan 

WDSS-II  Warning Decision Support System-Integrated Information  

WFO   Weather Forecast Office 

WSR-88D  Weather Surveillance Radar 1998 Doppler 


