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Abstract 

Strong scientific evidence supports that anthropogenic activities since industrialization 

have caused instability in earth’s climate, featured by increasing global surface 

temperature, increasing greenhouse gas concentration in the atmosphere. Climate 

change has then caused a series of changes in the earth’s ecosystems, which can have 

significant impacts on the biosphere and our human being. Although huge efforts have 

been put into the research in climate science since the past century, due to the 

complexity of the climate system and its broad and long-lasting influence, there are still 

countless question marks and uncertainties in our understanding of climate change and 

its influence on earth and human society. Microorganisms are among the tiniest groups 

of life, but play important roles in the cycling of carbon and other nutrient elements in 

the biosphere. However, their response and feedback to climate warming in different 

ecosystems is still difficult to predict, limited by the lack of mechanistic understanding 

of the complex microbial community, their functions, their interactions among 

themselves and under warming perturbation. With the fast advance of high-throughput 

metagenomic technologies and the development of environmental microbiology, deep 

and detailed characterization of microbial diversity and functions became available, 

which provided great chances in promoting our insights into the mechanisms by which 

microbial communities mediate the carbon balance in a warmer world. This dissertation 

applied several metagenomic technologies to probe the soil microbial community 

responses to warming and permafrost thaw based on field observations and experiments 

in two ecosystems, a permafrost underlain Alaska tundra, and a temperate tall grass 

prairie in Oklahoma. Microbial decomposition of soil carbon in high latitude tundra 
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underlain with permafrost is one of the most important, but poorly understood, potential 

positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the 

atmosphere in a warmer world. On the other hand, temperate grassland provided a 

contrast to the cold weather and huge soil carbon storage in the tundra, allowing the 

comparison of different ecosystems in terms of their sensitivity and vulnerability to 

warming. 

In the beginning of this work, we sought answers to the question that how microbial 

functional diversity was affected by regional warming induced long-term permafrost 

thaw. Soil columns were collected from a tundra site where three locations with 

different lengths of permafrost degradation history were on record. A functional gene 

array (i.e. GeoChip 4.2) was used to analyze the functional capacities of soil microbial 

communities in these samples. Compared with the minimally thawed site, the number of 

detected functional gene probes across the 15-65 cm depth profile at the moderately and 

extensively thawed sites decreased by 25 % and 5 %, while the community functional 

gene β-diversity increased by 34% and 45%, respectively, revealing decreased 

functional gene richness but increased community heterogeneity along the thaw 

progression. Particularly, the moderately thawed site contained microbial communities 

with the highest abundances of many genes involved in prokaryotic C degradation, 

ammonification, and nitrification processes, but lower abundances of fungal C 

decomposition and anaerobic-related genes. Significant correlations were observed 

between functional gene abundance and vascular plant primary productivity, suggesting 

that plant growth and species composition could be co-evolving traits together with 

microbial community composition. This study reveals the complex responses of 
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microbial functional potentials to thaw related soil and plant changes, and provides 

information on potential microbially mediated biogeochemical cycles in tundra 

ecosystems. 

Next, a field warming experiment was set up to increase the winter soil temperature in 

tundra by snow cover coupled with spring snow removal. Using integrated 

metagenomic technologies, we showed that the microbial functional community 

structure in the active layer of tundra soil was significantly altered after only 1.5 years 

of warming, a rapid response demonstrating the high sensitivity of this ecosystem to 

warming. The abundance of microbial functional genes involved in both aerobic and 

anaerobic C decomposition was also markedly increased by this short-term warming. 

Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, 

warming enhanced genes involved in nutrient cycling, which likely contributed to an 

observed increase (30%) in gross primary productivity (GPP). However, the GPP 

increase did not offset the extra Reco, resulting in significantly more net C loss in 

warmed plots compared to control plots. Altogether, our results demonstrate the 

vulnerability of active layer soil C in this permafrost-based tundra ecosystem to climate 

warming and the importance of microbial communities in mediating such vulnerability. 

Then, we conducted quantitative comparisons of the responses of soil microbial 

communities to warming at tundra and the prairie ecosystems. Climate warming has 

been differentially increasing the global surface temperature, with the greatest 

temperature elevation observed in the northern high-latitude regions. Although tundra 

and underlain permafrost in those areas were predicted vulnerable to climate warming, 

few quantitative comparisons were reported between tundra and other grassland 



xviii 

 

ecosystems, especially of the composition and structure of soil microbial communities 

and their functional diversity. We compared the early responses of soil microbial 

composition and functional gene abundance to experimental warming between a tundra 

site and a temperate tall grass prairie using several metagenomic technologies, including 

functional gene microarray, amplicon sequencing, and metagenomic shotgun 

sequencing. Despite distinct species and functional gene pools in soils from the two 

ecosystems, genes involved in carbon and nitrogen cycling showed positive responses 

to warming at both sites, but with 36% more significantly responding genes and a 

greater magnitude of response for 10 genes at the tundra site. The functional gene 

compositions were correlated with temperature, moisture, ecosystem respiration and 

gross primary production at the tundra sites, but mostly with substrate related variables, 

plant biomass and nitrate concentration, at the prairie, implying different limiting 

factors in microbial growth and functions. These results revealed the higher sensitivity 

of tundra soil microbial communities to warming, compared with those from 

temperature prairie, and provided field evidence in supporting that northern high-

latitude regions might be more vulnerable to climate warming. 

At last, we extended our exploration of the warming influence on the microbial 

community to the interaction of microorganism in the community by constructing co-

occurrence networks for a time series sample set from the temperate prairie. Although 

intensive reports have shown that warming can influence the soil microbial community 

composition and structure, little is clear about how the microbial interactions among 

themselves would be influenced. Here, soil microbial co-occurrence networks were 

constructed using 16S rRNA gene amplicon sequences extracted from monthly samples 
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collected in a long-term field warming experiment on a Central Oklahoma grassland. 

We observed substantially larger and more connected networks for warmed 

communities compared with control, despite huge variation in network structures along 

season. The increase in network complexity under warming was concurrent to 

decreased phylogenetic diversity, reflecting environmental filtering and increased 

functional association in altered soil and vegetation conditions. A portion of identified 

keystone taxa, which play important roles in network topology, reoccur in different 

networks, representing a preserved prominent group in grassland soils across the season 

and under warming. The structure of microbial networks introduced a dimension 

beyond species abundance, which revealed more complicated responses of microbial 

communities to climate warming. 

Overall, this work provided valuable field evidence on microbial community’s response 

to climate warming, revealed different sensitivities of these responses in tundra and 

prairie, and captured the seasonal dynamics of soil microbial interactions under 

warming influence. Many of these findings represent novel insights into our 

understanding of the microbial-mediated carbon cycle in a warmer world, from which 

new hypothesis could be formulated, tested, and generate knowledge essential for 

including the microbial contributions to earth system models, eventually a better 

prediction of the future climate. 

 

Keywords: climate warming, soil microbial community, metagenomics, tundra, 

permafrost, temperate grassland, diversity, ecosystem function, microbial interaction, 

microarray, GeoChip, high-throughput sequencing
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Chapter 1: Introduction 

1.1 Global warming and its impact on the Earth system 

The increasing earth surface mean temperature of 0.2 °C per decade in the past 30 years 

(Hansen et al 2010), and the reoccurrence of historically warmest years on record since 

the beginning of this century (NOAA National Centers for Environmental Information 

2017) directly evidenced accelerating recent global warming. Other observations, 

including rising sea level, thawing permafrost, retreating glacier, melting arctic ice, and 

increasing oceanic heat content, are together consolidating the fact that the climate of 

the Earth system is undergoing potentially unprecedented changes (Stocker 2014). 

Despite the huge natural variability in the Earth climate system (Wigley and Raper 

1990), these recent changes are considered unusual based on estimates of historical 

climate changes, and cannot be explained by natural factors alone, such as external 

forcing of the solar radiation (IPCC 2007). Current explanation agreed that recent 

global warming is a result of a small positive energy imbalance in the radiative budget 

of the Earth system, and the anthropogenic emission of greenhouse gases (e.g. carbon 

dioxide, CO2) has been the dominant cause of the imbalance (IPCC 2007). The main 

plausible explanation is that greenhouse gases are capable of absorbing and emitting 

infrared radiation, and the Earth’s atmosphere has been trapping more heat due to the 

substantial increase in the atmospheric concentrations of the greenhouse gases stemmed 

from human activities since the Industrial Revolution, as early as the 1830s (Abram et 

al 2016). This notion was also backed by the unequivocal evidence from ice core 

studies, which showed that the atmospheric concentrations of CO2 and methane (CH4) 
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were much lower during the past 420,000 years than current (Blasing and Smith 2006, 

Petit et al 1999).  

The recent global warming can have tremendous impacts on natural systems and human 

society on the planet (IPCC 2007, Stocker 2014). These impacts included changes in 

precipitation, melting ice and retreating glacier, alteration in hydrological system, 

permafrost thawing, and changes in the frequency or strength of extremes events, such 

as droughts, floods, hurricanes, and wildfires. Meanwhile, impacts on biosphere are also 

broad and vast, including shifts in ecosystems, changes in activities and interactions of 

biological species, biodiversity loss, species extinction, reductions in crop yields, and 

alteration in pathogen distribution and disease spreading. Based on a wide range of 

studies assessing these impacts, as summarized in a few reviews (McMichael 2003, Patz 

et al 2005, Pecl et al 2017), direct and indirect negative impacts on human society were 

overwhelmingly predicted. If not curbed successfully, climate change may further lead 

to more severe stresses in drinking water quality, food security, public health and 

socioeconomic inequality. 

1.2 Responses of terrestrial carbon cycling to climate warming 

Due to deep and especially negative impacts of global warming on natural systems and 

human society, huge international efforts have been seeking to predict the trend of 

climate warming in the past few decades (IPCC 2007, Stocker 2014). Since the cause of 

the warming is closely related to atmospheric concentrations of greenhouse gases, 

especially CO2, understanding the response of the Earth system carbon cycling to 

continuing climate warming is vital for making predictions, because the increasing 
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temperature will affect major aspects of the carbon processes (e.g. photosynthesis and 

respiration) that contribute to determining the atmospheric concentrations of CO2.  

Terrestrial, oceanic and atmospheric carbon reservoirs are in dynamic equilibriums 

(Stocker 2014). The terrestrial carbon reservoir, the second largest carbon reservoir of 

the Earth, exchanges carbon mostly with the atmosphere, and mainly through 

photosynthesis and respiration in natural systems. In a warmer world, both the carbon 

uptake by photosynthesis and the carbon loss through respiration are likely to be 

enhanced, but unlikely equally, thus force the balance of the carbon equilibrium to a 

new state. Generally, two scenarios could happen. If respiration increase more than 

photosynthesis and a net carbon loss from the land occurs, more greenhouse gases will 

intensify the warming condition and there will be a positive feedback of terrestrial 

ecosystem to warming. On the other hand, if more carbon can be fixed from the 

atmosphere through photosynthetic activity than respiration releases, a negative 

feedback will happen (Luo 2007, Zhou et al 2012). Contradictory experimental results, 

as well as model predictions, were reported, debating on whether the terrestrial-

atmospheric carbon exchange was positive or negative feedback to warming (Luo 

2007). For example, climate warming could trigger abrupt changes in ecosystems in the 

northern high-latitude regions of the northern hemisphere, where the temperature has 

increased at rates twice the global average (Comiso et al 2008, Hansen et al 2006, 

Kortsch et al 2012), and enhance the positive feedbacks to warming (Dufresne et al 

2002, Friedlingstein et al 2001, Kirschbaum 2004, Scheffer et al 2006, Walter et al 

2006). Many ecosystems in these regions are predicted as tipping elements in the 

Earth’s climate system (Duarte et al 2012, Lenton et al 2008). However, other 
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ecosystems, such as temperate grasslands and forests, were much less reported to 

respond similarly in terms of the feedback type and the magnitude of responses to 

warming (Lenton et al 2008). And whether the acclimation of soil respiration, reported 

in some studies (Chen et al 2003, Luo et al 2001, Tucker et al 2013), in the long run 

could mitigate the carbon loss from those ecosystems remains unclear. Currently, the 

debates on the responses of global carbon cycling are still ongoing, therefore leave one 

central question in climate warming studies open: will the continuing warming cause 

more carbon to be trapped by the terrestrial carbon reservoir or more carbon from the 

reservoir to be released the atmosphere (Luo 2007)?  

Answer this central question requires quantifying the size of carbon pools and modeling 

the processes that transfer the carbon among pools. While the mechanism of 

photosynthesis and respiration related to plant physiology and their control factors are 

well understood (Bardgett et al 2008), and the plant community composition and 

succession are relatively easy to survey, belowground processes mediated by microbial 

communities are difficult to characterize and disentangle. Therefore, current ecosystem 

models simplify the microbial decomposition to a temperature and moisture regulated 

first-order equation or its variants but do not include microbial physiology. The efforts 

of modeling microbial enzymatic processes were often oversimplified for field 

application. The first-order decomposition model can accurately predict heterotrophic 

respiration in laboratory microcosms in many cases, but is limited in capturing the 

acclimation of microbial respirations, including the changes in the temperature 

sensitivity (Q10, the rate of change of respiration for every 10 °C temperature increase) 

and substrate depletion in field settings without intensive data parameterization for each 
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study site. In fact, the changes in Q10 under environmental perturbations reflected the 

overall effect of very detailed and complicated responses of each species in the 

microbial community. Without unraveling the black box of microbial community 

composition, structure, functional potential and responses to environmental changes, it 

is difficult to explain the wide range, and sometimes contradictory observations on Q10 

even if accounted for methodological issues and biome differences (Boone et al 1998, 

Chen and Tian 2005, Davidson et al 2006, Janssens and Pilegaard 2003, Zhou et al 

2009), the coarse estimate of microbial adaptation. Hence, it is important to integrate 

microbial responses to model the carbon cycle and future climate conditions, in which 

detailed and mechanistic understanding of the soil microbial community upon warming 

should be the first step. 

1.3 Microbial communities influenced by climate warming 

In the entire biosphere, microbial communities carry out integral and unique roles in 

mediating many biogeochemical and ecological processes. The decomposition of 

organic materials and the cycling of nutrient elements represent fundamental processes 

that microorganisms play and influence the global carbon cycle in different ecosystems 

(Bardgett et al 2008). Understanding how soil microbial communities perform under 

diverse types of disturbance related to climate change is a critical component of climate 

change biology. With the development of high-throughput metagenomic technologies, 

our understanding of microbial diversity in the environment has been greatly improved. 

Rich literatures have reported and discussed the compositional, structural and functional 

change of soil microbial communities in response to warming (Bradford 2013, Deng et 

al 2015, Hartley et al 2007, Jassey et al 2013, Nie et al 2013, Pailler et al 2014, 
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Peltoniemi et al 2015, Rousk et al 2013, Semenova et al 2015, Streit et al 2014, Tucker 

et al 2013, Wang et al 2014, Yoshitake et al 2015, Zhang et al 2013, Zhang et al 2005, 

Ziegler et al 2013). The responses depend on ecosystem and climate regime under 

study, and the interaction of warming with a wide range of other factors (Castro et al 

2010, Cavaleri et al 2015, Docherty et al 2012, Walter et al 2013), such as precipitation 

(Liu et al 2016, Zhang et al 2013), moisture (A'Bear et al 2014, Rousk et al 2013), 

nutrition level (Hines et al 2014, Melle et al 2015), and the intensity of disturbances like 

clipping or grazing (Crowther et al 2015, Steven et al 2015, Walter et al 2013, Zhang et 

al 2005). These studies provided valuable insights into our understanding of soil 

microbial communities under warming. 

However, the massive reports still left knowledge gaps in this complex, and large-scale 

question. First, although northern high-latitude regions were referred to climate 

change’s hot spot (Schuur et al 2008), the field characterization of microbial 

communities in those remote areas, and their changes upon warming, are still very 

limited. Second, very few reports compared the warming influence across different 

ecosystems and evaluated the relative importance of different ecosystems in 

contributing to the future carbon cycle. Third, compared with the abundant information 

on the taxonomic composition of the studied soil microbial communities, much less can 

be inferred about their function, or functional potentials, which are critical for climate 

change studies. Fourth, as the importance of microbial interactions in performing 

ecosystem functions were emphasized in more and more studies (Fuhrman 2009), the 

influence of warming on these interactions has never been characterized. Thus, the 

ongoing and future researches are still urgent and necessary in this cross section of 
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climate change biology and microbial ecology, as our understanding of the microbial 

system are yet basic compared with that of macro-ecological systems. 

1.4 High latitude regions under climate warming 

Northern permafrost regions are often considered “hot spot” in the changing climate 

(Lenton et al 2008, Schuur et al 2008). Their responses to the climate warming are 

extremely important and have been received extra attention. One reason is that these 

regions stored an enormous size of carbon, which accounts for nearly 50% of the global 

soil organic carbon, although they cover only 16% of the global terrestrial area (Schuur 

et al 2008). A second reason is that the high latitude regions were warmed the most 

intensely, with an increase in surface temperature twice of global average (Hansen et al 

2010), causing the already vulnerable ecosystems becoming more fragile. Climate 

warming has caused substantial regional permafrost thaw (Jorgenson et al 2010, 

Lawrence and Slater 2005, Osterkamp 2007, Romanovsky et al 2010), which could 

promote the frozen soil become biologically active. With microbial decomposition 

resulting in massive ecosystem carbon loss, the permafrost under the warming will 

potentially be a vast carbon source to the rise of atmospheric concentrations of 

greenhouse gases, and aggravate the climate warming (Abbott et al 2016, Schuur et al 

2013, Schuur et al 2015).  

As soil microorganisms are pivotal mediators of the carbon cycle, monitoring their 

responses to thaw is crucial for predicting carbon sequestration in permafrost regions. 

There are a few laboratory incubations (Coolen and Orsi 2015, Mackelprang et al 

2011), and field studies (Lipson et al 2015, Taş et al 2014) reported the permafrost 

region microbial response to thaw, fire, and redox potential changes caused by 
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hydrology reformation. However, field warming experiments are limited and long-term 

observations on the microbial responses to permafrost thaw are unclear. 

1.5 Scope and objectives of this work 

This dissertation aimed at addressing how soil microbial communities respond to 

climate warming, and what environmental factors influence their assemblage and 

functions in a warmer world. Samples from field observations and field experiments 

were collected and combined with the most state-of-the-art high throughput 

metagenomic technologies to characterize the composition and structure of microbial 

communities in terms of their taxonomy, functional potential, and interactions. Two 

ecosystems were studied, the northern high-latitude tundra, one of the most vulnerable 

ecosystems upon climate warming, and the temperate tall grass prairie, a less 

understood but important component of the North America landscape. The following 

summarized the research focus of each chapter. 

Chapter 2 focused on evaluating the microbial responses to regional warming induced 

permafrost thaw and related ecosystem changes at a naturally degrading permafrost site. 

Field observations were carried out at a moist acidic tundra site, the Eight Mile Lake 

(EML), where permafrost degradation was recorded for several years to several 

decades. Soil fractions from the active layer and top permafrost layers sampled across 

the thawing gradient were analyzed using GeoChip 4.2, a comprehensive functional 

gene microarray. With a focus on detecting and analyzing the functional gene 

abundances in these soils, the following questions were addressed: 1) How do natural 

permafrost thaw and varying thaw histories impact microbial community functional 

gene composition and abundance? 2) what are the environmental factors influencing 
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these compositional and abundance-based changes? The study in this chapter targeted to 

provide detailed microbial functional gene responses due to the influence of long-term 

and naturally occurring permafrost thaw, leading towards a mechanistic understanding 

of the future carbon balance of tussock tundra. 

Based on knowledge gained from observations of the natural system, field experiments 

were designed and carried out, as presented in Chapters 3 to 5, to manipulate 

temperature increase to mimic climate warming conditions. Chapter 3 aimed at 

revealing the vulnerability of the active layer tundra soil, and the high sensitivity of 

microbial communities, to experimental warming. The Carbon in Permafrost 

Experimental Heating Research (CiPEHR) experiment, a nearby tundra site to EML, 

used snow piles as an insulator to warm soils in winter. It was the first field warming 

experiment to degrade surface permafrost without delaying spring snow melt. Since soil 

physical-chemical properties and plant communities were both influenced by warming 

treatment after only 1.5 years, we predicted that short-term warming would result in 

selective microbial growth, which would be detected as a shift in the active layer 

microbial community structure and accompanying gene content, especially in those 

populations and traits important to both aerobic and anaerobic carbon decomposition 

and nutrient cycling. To test our hypothesis, soils were collected after two winters of 

treatment for geochemical and microbial analyses. Several high-throughput 

metagenomic technologies were used, including microarray, amplicon sequencing and 

shotgun sequencing of the metagenome. The study presented in this chapter represented 

one of the earliest comprehensive field studies to demonstrate the early responses of the 

permafrost microbial communities to climate warming. 
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The emphasis of Chapter 4 laid in the comparison of the tundra and the prairie 

ecosystems in terms of their soil microbial responses to experimental warming. Since 

climate warming has increased the temperature more at high-latitudes, and the carbon 

storage in permafrost was estimated as twice as the current atmospheric amount, tundra 

and underlain permafrost were predicted more vulnerable to climate warming. 

However, few quantitative comparisons were reported between tundra and other 

grassland ecosystems, especially of the composition and structure of soil microbial 

communities and their functional diversity. Thus, we analyzed soils samples from a 

temperate prairie field warming experiment, where a similar degree of temperature 

increase and time frame of treatment operation were implemented as the tundra 

experiment presented in Chapter 3. We hypothesized that the microbial community in 

tundra soils is more sensitive to warming, and imposes greater responses than the prairie 

communities. To test this hypothesis, species recovered from functional gene array, 

amplicon sequencing, and shotgun sequencing were analyzed and compared between 

the two ecosystems in terms of their direction and magnitude of response under 

warming treatment. This study provided field evidence in supporting that the tundra 

ecosystem in northern high-latitude region harbored more responsive soil microbial 

communities than temperate prairie did to short-term climate warming. It also implied 

the importance of considering the ecosystem type when discussing climate impact on 

the soil and the carbon cycle. 

Chapter 5 extended our current knowledge on the warming influence on soil microbial 

community beyond the perspective of composition and structure. This chapter tackled 

the question of how the interactions among microbial species would be influenced by 
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warming. Microorganisms interact intensively with each other to survive in the 

environment and perform functions that we observe, including those critical in carbon 

and nutrient cycling. Despite rich literature reporting the influence of warming on 

microbial community composition, structure, and functions, whether and how warming 

would change the interactions among microorganisms remain unclear. In this chapter, 

soil microbial co-occurrence networks were constructed using 16S rRNA gene 

amplicon sequences extracted from monthly samples collected in a long-term field 

warming experiment on a Central Oklahoma grassland to infer the quantity, form, and 

structures of microbial interactions from network topological structures. Seasonal 

dynamics of these networks were also captured to compare warming effect on microbial 

interactions in different time of a year. The networks were analyzed and compared to 

address the following questions: 1) Are soil microbial networks differ along season 

alternation? 2) Does warming have an impact on the network structure? 3) Are there 

potential keystone taxa that are particularly important in network topology? If yes, do 

they change along the season or by warming? 4) How do the environmental conditions 

relate to the network structure? The results captured the change of microbial network 

complexity across the season, and discovered that warming facilitated the 

interconnection of microbial communities in grassland soils. 

The summary chapter highlighted the major results and conclusions from each study 

presented, illustrated their significance in filling our current knowledge gaps, indicated 

their implications for future research and contributions to our society. Overall, the 

exploration in this dissertation provided field evidence on microbial community’s 

response to climate warming, from which many hypotheses could be formulated for 
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testing towards a mechanistic understanding of these responses, and from which better 

projections of future climate conditions could be made by implementing the discoveries 

in this work. 
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Chapter 2: Microbial functional diversity covaries with permafrost 

thaw-induced environmental heterogeneity in tundra soil 

2.1 Abstract 

Permafrost soil in high latitude tundra is one of the largest terrestrial carbon stocks and 

is highly sensitive to climate warming. Understanding microbial responses to warming 

induced environmental changes are critical to evaluating their influences on soil 

biogeochemical cycles. In this study, a functional gene array (i.e. GeoChip 4.2) was 

used to analyze the functional capacities of soil microbial communities collected from a 

naturally degrading permafrost region in Central Alaska. Varied thaw history was 

reported to be the main driver of soil and plant differences across a gradient of 

minimally, moderately and extensively thawed sites. Compared with the minimally 

thawed site, the number of detected functional gene probes across the 15-65 cm depth 

profile at the moderately and extensively thawed sites decreased by 25 % and 5 %, 

while the community functional gene β-diversity increased by 34% and 45%, 

respectively, revealing decreased functional gene richness but increased community 

heterogeneity along the thaw progression. Particularly, the moderately thawed site 

contained microbial communities with the highest abundances of many genes involved 

in prokaryotic carbon degradation, ammonification, and nitrification processes, but 

lower abundances of fungal carbon decomposition and anaerobic-related genes. 

Significant correlations were observed between functional gene abundance and vascular 

plant primary productivity, suggesting that plant growth and species composition could 

be co-evolving traits together with microbial community composition. Altogether, this 

study reveals the complex responses of microbial functional potentials to thaw related 



14 

 

soil and plant changes and provides information on potential microbially mediated 

biogeochemical cycles in tundra ecosystems.  
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1.1 Introduction 

Northern permafrost regions have accumulated approximately 1,700 Pg carbon, 

representing about 50 % of global belowground carbon (Ciais et al 2013, Tarnocai et al 

2009). Most of this carbon has been preserved frozen for thousands of years (Schuur et 

al 2008). Nonetheless, climate warming has caused substantial regional permafrost thaw 

(Jorgenson et al 2001, Lawrence and Slater 2005, Osterkamp 2007, Romanovsky et al 

2010), thickened the seasonally melted active layer and created more unfrozen taliks in 

recent decades (Chapin et al 2005, Euskirchen et al 2006, Natali et al 2011). Thus, this 

permafrost carbon pool can potentially be converted into a significant carbon source to 

the atmosphere by the end of this century through the release of large amounts of 

greenhouse gases, primarily CO2 and CH4, that serve as a positive feedback to climate 

warming (Abbott et al 2016, Schuur et al 2013, Schuur et al 2015). 

As soil microorganisms are pivotal mediators of the carbon cycle in terrestrial 

ecosystems, monitoring microbial responses to thaw is crucial for predicting carbon 

sequestration in permafrost regions. They play a fundamental role in soil organic carbon 

decomposition and impact plant carbon fixation through nutrient exchange with 

aboveground ecosystems (Van Der Heijden et al 2008). Recently, a few studies have 

provided evidence of tundra microbial functional potential shifts in response to 

warming or fire (Taş et al 2014, Xue et al 2016a), which may alter carbon allocation 

and cycling. Lipson et al (2015) showed that soil redox conditions were the dominant 

force in shaping microbial communities in a polygonised tundra landscape, and that 

higher redox potentials allowed for greater microbial diversity. Two independent 

studies by Mackelprang et al (2011) and (Coolen and Orsi 2015) both incubated 
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permafrost soil and discovered rapid shifts in microbial functional genes and 

transcriptomes within two weeks upon thaw. Thus, temperature and redox conditions 

both play a role in tundra soil dynamics, and may be critical in shaping microbial 

community composition, function and ultimately, tundra carbon cycling upon 

permafrost thaw. Yet observations matching the time scale of long-term and naturally 

occurring permafrost thaw is still lacking, coupled with a limited understanding of 

detailed influences of such environmental perturbation on microbial functional genes 

(Mackelprang et al 2016). 

In the past two decades, a series of studies have characterized an acidic tundra study site 

near Eight Mile Lake (EML) in Healy, Alaska. Three locations in this site were 

identified as minimal (Mi), moderate (Mo) and extensive (Ex) thaw based on both 

historical records and environmental observations (Osterkamp and Romanovsky 1999, 

Osterkamp 2007, Schuur et al 2009). The Mi site represents the early stage of 

permafrost degradation in tussock tundra. The Mo site has documented thawing and 

ground subsidence since 1985. Thawing at the Ex site, where substantial ground 

subsidence and periodical thermokarst formation was observed, is estimated to have 

started in the 1950s (Schuur et al 2009). The differences of thaw extent among the three 

sites are caused by spatially randomized positive feedbacks between temperature 

alteration, ground subsidence, hydrological movements, and further thawing. Thus, the 

divergence in plant communities and soil properties observed presently are mainly due 

to permafrost thaw (Schuur et al 2009). This site provided a unique opportunity to study 

the effects of decadal-long permafrost thaw on the ecosystem. Plant community 

succession in response to thaw exhibited larger plant biomass and aboveground net 
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primary productivity (ANPP), as well as the replacement of dominant graminoid species 

with increased abundances of deciduous and evergreen shrubs (Schuur et al 2007). 

Despite the greater carbon fixation by plants, radiocarbon analysis suggested that this 

area was transformed to a carbon source from a historical carbon sink, due to recent 

warming-induced increases in respiration (Hicks Pries et al 2012, Hicks Pries et al 

2013a, Schuur et al 2009). Although the carbon storage was similar among sites, the Ex 

thaw site showed a 2-3 fold increase of old carbon loss, and old carbon comprised 8% 

more of the ecosystem respiration, compared with that of the Mi thaw site (Schuur et al 

2009).  

Recently, amplicon sequencing of the 16S rRNA genes and nifH genes revealed that the 

microbial phylogeny as well as the nifH harboring communities in the EML site soils 

were distinct along soil depth profiles, and responded to thaw differently in varied 

layers corresponding to thaw depth and water table (Deng et al 2015, Penton et al 

2016). Here, we specifically focused on detecting and analyzing functional gene 

abundances in these soils using a functional gene array, GeoChip 4.2, to address the 

following questions: 1) How do natural permafrost thaw and varying thaw histories 

impact microbial community functional gene composition and abundance? 2) what are 

the environmental factors influencing these compositional and abundance-based 

changes? This study provides detailed microbial functional gene responses due to the 

influence of long-term and naturally occurring permafrost thaw, which serve as a 

reference for a mechanistic understanding of the future carbon balance of tussock 

tundra. 
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2.2 Materials and methods 

2.2.1 Site and sample description 

The thaw gradient sites are located on a moist acidic tundra in the discontinuous 

permafrost region (63º52’42”N, 149º15’12”W, 660-700 m elevation) (Lee et al 2010, 

Schuur et al 2009, Trucco et al 2012, Vogel et al 2009). Distances between Ex and Mo, 

Mo and Mi, and Ex and Mi sites were about 150 m, 380 m, and 530 m, respectively. 

The thaw depth, or the thickness of unfrozen surface soil, was measured every 1 to 10 

days from May to September 2004, (corresponding to the year when microbial samples 

were taken), and at the time of soil sampling. A metal rod was inserted into the ground 

until the frozen layer was reached, and the length of insertion was recorded as thaw 

depth. The active layer depth, referring to the length from the deepest thawed soil in the 

summer time to the ground surface, was the largest thaw depth recorded during the 

growing season (Schuur et al 2009). Soil temperature was recorded every 2 hours at 

depths of 10 cm, 20 cm, 30 cm and 40 cm by a copper/constantan thermocouple 

(Schuur et al 2009). The ground surface microtopography for each site was estimated as 

the standard deviation of local scale elevation measurements, with the effect of overall 

hillslope statistically removed. The microtopography is a measure of ground surface 

unevenness caused by thermokarst depressions, a topological sign of permafrost thaw 

that reforms the tundra landscape (Osterkamp et al 2009).  

Replicate sampling cores in each site were located within 50 m of one another. Soil 

sampling for physiochemical and microbial analyses was described previously (Hicks 

Pries et al 2012). Briefly, 6 soil cores were collected at each of the 3 thawing sites at the 

beginning of the growing season (May 2004). Half of the 18 cores reached permafrost, 
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which ranged in depth from 50-130 cm below surface. All cores avoided tussocks. 

Layers of each soil column were separated by depth using the following 7 categories; 0-

15 cm, 15-25 cm, 25-35 cm, 35-45 cm, 45- 55 cm, 55-65 cm, and below 65 cm. In some 

cases, cores did not extend into the full profile. Altogether, 107 samples were obtained, 

32 from Mi, 26 from Mo, and 39 from Ex sites. Among them, 93 samples were from 

active layers and 14 from permafrost layers. The number of samples acquired for each 

depth was shown in Table S1. At the time of sampling (spring), 23 fractions were 

already seasonally thawed while 84 remained frozen. Samples were transferred frozen 

from the field to the laboratory where they were stored at -20 °C until further 

processing. Soil moisture was calculated as the percentage weight loss after drying the 

samples at 60 °C. The bulk density was determined by the ratio of soil dry weight and 

bulk volume determined at the time of sampling (Hicks Pries et al 2012). Dried samples 

were used to analyze soil nitrogen, carbon content, and δ15N and δ13C ratios on a 

Costech (ECS4010) Elemental Analyzer coupled with an isotope ratio mass 

spectrometer (Hicks Pries et al 2012). 

2.2.2 DNA extraction  

Genomic DNA was extracted and purified from 5 g of soil for each sample using a 

PowerMax Soil DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). 

The concentration of DNA was quantified using Quant-iT PicoGreen dsDNA Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) on an FLUOstar OPTIMA 

fluorescence plate reader (BMG LabTech, Jena, Germany). DNA quality was checked 

on a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., now 

NanoDrop Products by Thermo Fisher Scientific). The spectrometry absorbance ratios 
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at 260/280 nm were between 1.7 and 2.2, and the 260/230 nm ratios were greater than 

1.8.  

2.2.3 Labeling and GeoChip hybridization 

GeoChip version 4.2 is a NimbleGen format comprehensive gene array containing 

107,950 different 50-mer probes and covering 790 microbial functional genes that 

encode enzymes for biochemical reactions, including carbon, nitrogen, phosphorus, 

sulfur cycling and seven other major categories (Tu et al 2014). From each sample, 1 µg 

DNA was fluorescently labeled for hybridization. The labeling, hybridization, and 

scanning were processed following the protocols previously described (Xue et al 

2016a).  

2.2.4 GeoChip data pre-processing 

Data normalization was completed on a web-based pipeline 

(http://ieg.ou.edu/microarray/) as follows. First, the raw probe signals, calculated based 

on the average pixel intensity of each probe, were adjusted based on control dye 

intensity and sample set total intensity. Second, signals were filtered by removing the 

spots with a signal to noise ratio less than 2, and the spots with signal intensity less than 

2 times background. Third, probes that generated positive signals in less than 10 % of 

the samples from a given thaw site (all replicates from within each field site and along 

the depth profile) were considered low abundance genes and removed from that site for 

downstream analyses. We identified low abundance genes on a site basis instead of 

globally to retain functional gene probes unique to one site. Fourth, the probe signals 

were then normalized to represent relative abundance of genes in each sample. Unless 

otherwise specified, all gene abundance data reported in this manuscript represent 

http://ieg.ou.edu/microarray/
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relative abundance estimations based on the normalized signal intensities of probes 

targeting said gene. A subset of 70 samples, 23 from Mi, 24 from Mo, and 23 from Ex 

sites, from depth ranges of 15-65 cm that exhibited a greater variation between sites in 

regard to functional genes detected with GeoChip were the most responsive to thaw. 

Detailed analyses on these layers were performed separately where indicated. The raw 

and normalized data can be accessed through the series accession number GSE97107 in 

the Gene Expression Omnibus (GEO) database. 

2.2.5 Statistical analysis 

Normalized GeoChip signals, as well as soil and plant data, were used in the following 

analyses. (i) Microbial functional gene α-diversity was estimated using positive probe 

numbers and Shannon-Weiner, Simpson and Piedou’s evenness (J) were calculated 

(Hill 1973). The β-diversities of functional genes among sites were compared using the 

multivariate homogeneity of group dispersion (Anderson et al 2006), based on the 

Sørensen index. The relationship between β-diversity and site surface microtopography 

was determined using Pearson’s product moment correlation. (ii) Welsh permutational 

t-tests were used to compare the diversity indices between each pair of two sites. P 

values were adjusted based on false discovery rate for the three comparisons. (iii) One-

way ANOVAs followed by Fisher’s LSD tests were used to test the difference of means 

among sites for the soil physical-chemical variables, DNA yields, and gene abundances. 

P values of F tests on gene abundance were corrected among all the detected genes 

based on false discovery rates, and P values from the LSD test for each individual gene 

were adjusted using Holm’s method. (iv) Repeated measures ANOVAs were carried out 

to compare soil temperatures among sites. (v) Non-parametric multivariate statistical 
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analyses, including Multi-response Permutation Procedures (MRPP) (Van Sickle 1997), 

Analysis of Similarity (ANOSIM) (Clarke 1993), and Permutational Multivariate 

Analysis of Variance Using Distance Matrices (Adonis) (Anderson 2001), were used to 

determine the dissimilarity of microbial functional gene profiles among sites and/or 

depth profiles. Pairwise distances among samples were calculated based on Bray-Curtis 

indices. When applicable, observations are permuted within the strata of hybridization 

slide (11-12 samples per slide) to eliminate potential slide effects; (vi) Mantel tests and 

canonical correspondence analyses (CCA) (Legendre and Legendre 2012) were 

performed to test correlations between microbial functional composition and soil and 

plant variables. One set of plant properties was used for each site when performing 

correlation analysis, which sufficed given the low within site plant variability compared 

to variability among sites. Samples containing missing soil data were removed from 

Mantel tests or CCA model construction. The soil and plant variable set in the CCA 

model was determined by forward selection. All statistical analyses were performed 

with R program version 3.0.1 (Team 2014) using the packages vegan (Oksanen et al 

2013) and agricolae (De Mendiburu 2014).  

2.3 Results 

2.3.1 Impacts of thaw on microbial functional gene composition and structure 

The highest DNA yield originated from 25-35 cm while the lowest was isolated from 

the top 15 cm and below 65 cm. No significant differences in DNA yield among sites 

were observed (Figure S 1). Microbial functional gene composition was distinct among 

sites, specifically in the active layer (P = 0.001), but only marginally significant (p< 0.1) 

with depth (Table S 1). Comparing the communities among sites within depth fractions 
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resulted in detectable differences only in the middle layers (15-65 cm) rather than 

surface and deep soils (Table S 1). Notably, this middle fraction of soil represents 

depths that were frozen at the time of sampling, but which are still portions of the active 

layer (Figure S 2).  

Table 2.1 Non-parametric multivariate dissimilarity tests of functional gene profiles 

among the three sites, and between any two sites. Distinct functional gene profiles were 

detected in the three sites. MRPP, multi-response permutation procedures; Adonis, 

permutational multivariate analysis of variance using distance matrices; ANOSIM, 

analysis of similarity. Results presented are based on distance matrices calculated with 

Bray-Curtis index. Horn, Euclidean, and binomial distances were also used, and 

generated similar outcomes (all tests significant), thus results not shown. P values <0.05 

are in bold. 

 MRPP Adonis ANOSIM 
 δ p F p R p 

Among three sites 0.250 0.001 11.136 0.001 0.234 0.001 

Mi vs Mo 0.234 0.001 24.750 0.001 0.452 0.001 

Mi vs Ex 0.244 0.005 5.837 0.006 0.109 0.006 

Mo vs Ex 0.273 0.002 5.195 0.003 0.117 0.008 

 

Functional gene composition from the 70 subsurface samples significantly (p<0.05) 

differed among sites (Table 2.1), indicating a substantial impact of thaw on these 

communities. More unique probes in the Mi site (7.07%, 3298 probes) were detected 

than in the Ex site (1.50%, 697 probes) and the Mo site (0.11%, 52 probes, Figure 

2.1a), rendering the functional gene α-diversity the highest in the Mi site, followed by 

the Ex site, and lowest at Mo (p<0.05, Table S 2). Evenness exhibited an opposite 

trend, highest in Mo and lowest in Mi (p<0.05, Table S 2). The site-unique functional 

gene probes were analyzed by the functional categories they belonged to, and compared 

with the portion of probes designed on GeoChip (Figure 2.1b). The functional category 

composition for these site-unique probes was similar in Mi and Ex sites, but different 

from the Mo site. A smaller portion (4%) of the Mo site unique probes belonged to the 
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carbon cycling category, compared with Mi (12%) and Ex (12%) sites. Larger portions 

of Mo site unique probes belonged to nitrogen (17%) and sulfur (8%) categories, 

compared with the other two sites (both 9% for nitrogen, and 5% and 3% for sulfur in 

Mi and Ex sites). 

 

Figure 2.1 (a) Unique and shared probe number detected in the three thawing sites and 

(b) the categories those unique probes belonged to. Category “others” includes genes 

gyrB, and those of energy processes, bacteria phages, bioleaching, metal resistance, 

organic remediation and virulence categories. 

Despite the similar physical distances among replicate cores within site and similar 

sampling depth profiles, the functional gene β-diversity increased at both the Mo and Ex 

sites, in contrast with the Mi site (Figure 2.2a, p<0.05), as indicated by the larger 

average distance from samples to each of their group centroids. The sparseness of 

microbial functional community composition was strongly correlated (R2=0.98, P=0.14, 

n=3 sites, Figure 2.2b) with the surface microtopography of the tundra. Together, both 

the α- and β-diversity of the soil microbial functional genes were affected by thaw 

extent. 
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Figure 2.2 (a) The functional gene β-diversity at each site, and (b) its relationship with 

surface microtopography. (a) Pairwise distances among samples were calculated using 

Sørensen index, and processed through multivariate homogeneity of group dispersions 

procedure to compare the β-diversities among sites. The level of dispersion of samples 

(represented by circular dots) within each site were measured by the distance of each 

sample to the site centroid (outlined triangles) in the principle coordinates (PCo) plot. 

Percentiles in parentheses were the portion of community variation explained by each of 

the two axes. (b) The means and standard errors of the distances to centroid at each site 

in (a), in correlation with ground surface microtopography. Surface microtopography 

was a measure of the unevenness of ground surface. Significant (p<0.05, asterisks 

showed) larger distances to centroid were observed for Mo and Ex sites compared with 

Mi site by Tukey’s test. Linear regression line is shown for n=3 sites. #Surface 

microtopography data are adopted from Schuur 2009. 

2.3.2 Effects of permafrost thaw on the abundances of important functional genes  

A total of 34,017 functional gene probes were detected, 49.1 % of which showed 

significantly (p<0.05) different abundances among sites (Table S 3). These probes 

belonged to 692 functional genes. Below are the detailed results for selected categories 

of functional genes that are important in biogeochemical cycles and ecosystem 

functioning, including those in carbon cycling, nitrogen, phosphorous, sulfur and plant 

beneficial categories. 

C cycling genes 
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Figure 2.3 Normalized relative abundance of detected carbon degradation genes 

derived from bacteria and archaea. Only significantly different abundance among sites 

were illustrated using bars. The order of genes is organized based on the lability of their 

targeted carbon substrate. The numbers in the parenthesis following the gene 

subcategory (substrate type) indicates the number of total detected genes in that 

subcategory. In the subcategory of pectin, only one gene is detected (pectinase) and is 

not significantly different among sites, so it is not shown in the figure. Significant 

differences of the means are marked by different letters, based on ANOVA model 

followed by Fisher’s LSD test. Full annotation information of the genes is presented in 

Table S5. 

A total of 3,305 bacterial and archaeal probes, representing 30 genes associated with 

metabolizing various carbon compounds, were detected. Twelve of these genes were 

significantly (p<0.05) different in abundance between at least two of the three sites 

(Figure 2.3). Eight of these genes (out of 12, 67 %) had the highest abundance at the 

Mo site. For fungal communities, 2,052 probes belonging to 51 genes were detected, 

and 28 of these genes differed (p<0.05) in abundance at least between two sites (Figure 
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S 3). A majority of these genes (23, 82 %) exhibited the lowest abundance at the Mo 

site.  

Four carbon fixation genes, targeted by 1,019 probes, were detected across all samples 

(Figure S 4). Specifically, aclB gene, an indicator for reductive tricarboxylic acid cycle, 

and the Calvin cycle rubisco gene were at the lowest abundance in the Mo thaw site. 

The abundance of the pcc gene, involved in the 3-hydroxypropionate/4-hydroxybutyrate 

cycle, was highest in the Mo thaw site.  

Three CH4 cycling genes were detected (Figure S 4) with 218, 134 and 196 probes 

showing positive hybridization signals in the Mi, Mo and Ex sites, respectively. The 

abundances of all three genes, including the CH4 oxidation genes mmoX and pmoA, and 

methanogenesis gene mcrA, had the lowest abundance in Mo site (p<0.001). The mcrA 

gene exhibited a lower abundance at the Ex site compared with the Mi site, though the 

two CH4 oxidation genes did not. 

N cycling genes 

Eighteen of the 23 detected nitrogen cycling genes significantly (p<0.05) differed in 

abundances among the three sites (Figure S 5). Under Ex thaw conditions, the nitrogen 

cycling functional potentials were more similar to the Mi site. While the detected 

ammonification gene gdh abundances decreased with thaw progression, the ureC gene, 

responsible for conversion of urea to ammonia, was detected in the highest abundance 

at the Mo site. Yet, probes targeting nifH genes, involved in nitrogen fixation, another 

ammonium-producing pathway, showed the lowest abundances at the Mo thaw site. The 

napA gene, involved in nitrate reduction to nitrite, was also lowest in abundance at Mo 

site. For the ammonia oxidizing gene amoA, 112 detected probes belonged to archaea, 



28 

 

and 417 belonged to bacteria. There were greater abundances of bacterial and source-

organism-unspecified amoA genes, but lower abundances of archaeal amoA genes in the 

Mo and the Ex site compared with the Mi site. The abundances of all 8 detected 

denitrification genes were impacted by thaw. Except for narG (involved in the first step 

of denitrification, the reduction of nitrate to nitrite) and a fungal gene p450nor, 

encoding a cytochrome p450 nitric oxide reductase, the six other denitrification genes, 

including nirK for both denitrifying and nitrifying pathways, norB, nirS, nosZ, and nirZ, 

all exhibited the lowest abundances at the Mo site. Assimilatory nitrogen reduction 

genes nirA, nitrate reductase and nir showed the highest abundance in the Mo site. 

Overall, microbial functional potentials for organic nitrogen ammonification, ammonia 

oxidation, and assimilatory processes were higher, while nitrogen fixation, 

denitrification and nitrogen mineralization potentials were lower at the Mi site.  

Other functional categories 

GeoChip detected abundance differences of genes among the three sites in many other 

functional categories, and the numbers and portions of those probes are summarized in 

Table S 3. All of the S assimilation (ATP sulfurylase, PAPS reductase, and sulfate 

transporter) and sulfite reduction (dsrA/B) genes showed the lowest abundance in the 

Mo site (Figure S 6). A phosphorus utilization gene, ppx, was decreased in both the Mo 

and Ex thaw sites, compared to the Mi site (Figure S 6). For plant beneficial genes, 12 

of the 32 (37.5 %) detected had the highest abundances at the Mo site, including genes 

encoding the enzymes for antibiotic (pcbC, imbA, phzF and prnB), antioxidant (cat) and 

hormone (sped and spe) biosynthesis, pathogen resistance (sid), and plant hormone 

signaling (acdS) (Figure S 7). 
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2.3.3 Linkages between microbial functional potentials and soil and plant properties 

Table 2.2 Values (mean ± standard error) of soil physical-chemical variables and plant 

biomass. n = 23, 20, and 16 samples for Mi, Mo and Ex sites for nitrogen and carbon 

contents, δ15N, δ13C and bulk density, and n = 17, 23, 22 for Mi, Mo, and Ex sites for 

soil moisture, respectively. For plant biomass, n=12 observations per location. For soil 

temperature, n=6 observations for each site. Differences of means among sites were 

tested using ANOVA followed by LSD test (repeated measures ANOVA was used for 

daily averaged temperatures data). Different letters denote significant difference of the 

means. P values <0.05 are in bold.  

Variable Unit Mi Mo Ex F p 

Gravimetric water content % 62.1±4.5 66.1±3.5 69.4±3.4 0.91 0.408 

‡Growing season temperature °C 3.1±0.3 b 3.0±0.1 c 3.4±0.4 a 979.00 <0.001 
‡Winter temperature °C -0.1±0.1 b -0.1±0.1 c 0.0±0.1 a 1148.00 <0.001 

†N content % 1.1±0.1  1.3±0.1 1.2±0.1 1.02 0.368 

†C content % 26.7±2.7  30.6±2.7 28.9±2.6 0.58 0.561 

†δ15N ‰ 0.9±0.1 0.7±0.1 0.9±0.1 1.26 0.292 

†δ13C ‰ -26.2±0.2 -26.4±0.2 -26.3±0.1 0.52 0.597 

†Bulk Density g/cm3 0.4±0.1 0.4±0.1 0.3±0.1 0.26 0.776 

*ANPP from vascular plant  g/m2 187.2±4.1 b 271.9±9.2 a 203.6±5.1 ab 3.96 0.029 
*Vascular plant biomass g/m2 248.9±3.6 b 370.5±10.9 a 330.9±5.0 ab 6.13 0.005 

*ANPP from non-vascular plant  g/m2 23.9±1.7 b 53.2±4.1 ab 154.9±13.6 a 5.77 0.007 

*Non-vascular plant biomass g/m2 112.1±4.0 b 117.3±3.1 ab 154.8±2.9 a 3.89 0.030 

†Reanalyzed from data presented in Hicks Pries 2012. 

*Reanalyzed from Schuur 2007. 

‡Reanalyzed from Schuur 2009.  

 

A summary of reported plant and soil characteristics are shown in Table 2.2. Soil 

temperatures in different depths are presented in Figure S 8. Canonical correspondence 

analysis (CCA) was performed to establish the linkages of microbial functional gene 

compositions to plant and soil properties. Variables suggested by forward selection to 

include in the model consisted of sampling depth, soil moisture, soil carbon and 

nitrogen content, δ15N, bulk density, vascular plant ANPP and graminoid ANPP. Mo 

and Ex site communities were separated from those in the Mi site (P = 0.005, Figure 

2.4a). The Mi site community functional gene potentials exhibited a negative 

correlation with vascular plant ANPP, the most influential factor in the model, and a 
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positive correlation with δ15N. The Mo site functional gene composition was related 

most to high soil bulk density and graminoid ANPP, and that of the Ex site was 

positively correlated with soil moisture, as well as carbon and nitrogen content. The 

model explained 30% of the total variation in microbial functional gene composition. 

 

Figure 2.4 (a) Canonical correspondence analysis (CCA) and (b) variation partitioning 

analysis (VPA) on microbial functional gene profiles and forward selection determined 

plant and soil variables. 57 sample points (after removing samples having missing soil 

variable measurements) from the three thawing sites and eight plant and soil 

geochemical variables were included. Numbers on CCA axis and in VPA diagram show 

the percentages of explained variations in the microbial functional gene profile. Lower 

and left axes show scales for microbial functional gene profiles, and the upper and right 

axes show scales for plant and soil variables. V-ANPP, vascular plant aboveground net 

primary productivity; Gr-ANPP, graminoid ANPP. In VPA, plant variables include Gr-

ANPP and V-ANPP, soil physical properties include moisture, and bulk density, and 

sampling depth; soil chemical variables include soil nitrogen, carbon, and δ15N 

contents.  

Variation-partitioning analysis (VPA) was performed to identify individual and 

interactive contributions of different categories of CCA variables to the variances of 

microbial community structure (Figure 2.4b). The three categories of variables, plant 
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(vascular plant ANPP and graminoid ANPP), soil physical property (depth, moisture, 

and bulk density) and soil chemistry (nitrogen and carbon contents, δ15N), explained 

14%, 6% and 5% of the total variance, respectively. Interactions between the three 

groups contributed 5% of the total variance. The majority of the community variations 

(70 %) could not be explained by the plant and soil variables measured. 

Mantel tests were used to examine the relationships between microbial functional gene 

composition and plant and soil variables (Table S 4). Microbial functional gene 

composition was only significantly (p<0.05) correlated with vascular plant and 

graminoid biomass and ANPP. Non-vascular plant variables and soil geochemical 

variables were not correlated to microbial functional gene profiles. Controlling for the 

variations caused by depth did not reveal any significant correlations between soil 

variables and microbial functional gene composition. 

2.4 Discussion 

As one of the most vulnerable terrestrial carbon pools, decomposition of organic carbon 

in thawing permafrost may serve as a positive feedback to global climate change 

(Schuur and Abbott 2011), but also difficult to predict owing to the complexity of 

belowground microbial activities. This study observed the tundra microbial functional 

potentials in sites exposed to varied intensity of permafrost thaw. We found shifts in 

microbial functional gene profiles from minimally to extensively thawed sites at 15-65 

cm, with lower α-diversity and higher β-diversity at the two more severally thawed sites 

compared with minimal thaw. This is more or less consistent with previous studies at 

the same site (Deng et al 2015, Penton et al 2016), as well as with other studies which 

showed thaw related perturbations affected the tundra microbial communities in lab 
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microcosms (Mackelprang et al 2011, Taş et al 2014), field experiments (Xue et al 

2016a), and field observations (Lipson et al 2015). Microbial diversity is expected to 

increase as permafrost thaws because more substrates become available (Jansson and 

Taş 2014), yet field evidence is lacking, possibly due to insufficient survey efforts (e.g., 

sequencing depth) to detect such difference. Conspicuously, difference in microbial 

functional gene profile was not observed in the surface (0-15 cm) and permafrost (>65 

cm) layers. Passive dispersal of microorganism through air or animal carrier (Martiny et 

al 2006) might easily homogenize the species pool in top soils within the area of our 

study site. While in continuously frozen permafrost, harsh condition caused limited 

growth and activity (Rivkina et al 2004) might be the reason of slow microbial 

succession upon disturbance. The increase of the functional gene β-diversity with thaw 

is an intriguing finding highlighted by this study. The level of divergence of functional 

gene potentials from communities within a similar physical distance was strongly 

correlated with the surface microtopography, a measure of the unevenness of ground 

surface created by thermokarst depressions (Schuur et al 2009). This indicated that 

thaw-induced topographical reformation and thus increased versatility of soil 

environment may be the primary reason for the increase in the heterogeneity in 

microbial functional gene compositions. 

As thaw progressed, a large portion of detected functional genes that are involved in 

carbon, nitrogen, and other biogeochemical cycling changed in abundances, most of 

which were not merely increase or decrease from the least to the most thawed sites, but 

rather showed extreme values at the moderate thaw. On the other hand, vascular plant 

biomass and ANPP both peaked at moderate thaw, before shrubs took over graminoids 
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under warmer and extensively thawed conditions (Schuur et al 2007). Tundra soil is 

carbon rich, but with a large portion being slow carbon (Schuur et al 2008), whose 

decomposition was primarily stimulated by inputs of fresh and labile carbon, mainly 

from succeeding plants (Grogan et al 2001). Both the composition and abundance of 

plant species can affect the belowground microbial assemblages (Bais et al 2006). At 

moderate thaw, the most abundant carbon degrading genes harbored by bacteria and 

archaea versus the least abundance of those genes carried by fungi might reflect 

variations in the amount of litter- and root exudate-derived carbon substrates among 

sites. Grass-dominance and larger plant biomass at moderate thaw might provide more 

high-quality litter as well as root exudates for bacteria. In contrast, shrub dominance at 

the extensively thawed site possibly led to low quality, standing litter (Gavazov 2010, 

Hobbie 1996), thus supporting a higher fungal abundance, known to be more efficient at 

attacking recalcitrant substrates than bacteria (Hieber and Gessner 2002, Romaní et al 

2006). In fact, the close relation between vascular plant community and the entire 

detected microbial functional gene profile was reflected in the high percentage variation 

in microbial community that was explained by plant variables in contract to soil 

variables. On the contrary, non-vascular plant (e.g., moss and lichen) biomass and 

productivity were not correlated with microbial functional gene profiles, possibly 

because their short root systems could not reach deeper soil layers where the microbial 

samples were collected. These results echoed many studies (De Long et al 2016, 

DeMarco et al 2014, Jonasson et al 1999, Lipson and Monson 1998, Suding et al 2008) 

showing that permafrost thaw affects soil microbial communities through above- and 

belowground biotic interactions.  
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We observed greater abundances of genes for ammonification and ammonia oxidation 

in the two sites with greater thaw, especially in the moderately thawed site. As a few 

studies reported significant correlations between nitrogen cycling process rates and 

corresponding gene/enzyme abundance (Liu et al 2015, Morales et al 2010, Trivedi et al 

2016, Wang et al 2015, Xue et al 2016b), the higher abundances of ureC and amoA 

genes might indicate faster nitrogen turnover in thawed soils. This supports the finding 

that thaw tended to increase plant nitrogen availability, as indicated by higher total 

canopy nitrogen in the moderate and extensively thawed sites (Schuur et al 2007), 

which could be associated with faster carbon decomposition and an increased nitrogen 

limitation after more permafrost is thawed for a longer period of time (Jonasson et al 

1999). The relatively low denitrification gene abundance under moderate thaw signaled 

less mineral nitrogen loss through direct reduction, which was supported by the soil 

stable isotopic nitrogen content. When there was no difference in δ15N input to soil from 

the plant (Schuur et al 2007), the lower δ15N in the moderately and extensively thawed 

sites compared with the minimally thawed site potentially indicated lower fractions of 

ecosystem nitrogen loss through 15N-depleted forms (NO3
-, N2O, etc.) (Amundson et al 

2003). Considering the high abundance of nitrogen assimilation genes nirA and nitrate 

reductase at the moderate and extensive thaw, the mineralized nitrogen was likely 

utilized by both plants and microbes. Yet, further studies are needed to directly measure 

functional processes to confirm these discussions. 

We consistently detected the lowest abundances of genes involved in anaerobic 

processes under moderate thaw, including those involved in methanogenesis (mcrA), 

nitrogen fixation (nifH), denitrification (nirK, norB, nirS, and nosZ), dissimilatory 
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nitrogen reduction (napA), and sulfite reduction (dsrA/B). This indicated that functional 

potentials for anaerobic reactions were more suppressed here, compared with minimally 

and extensively thawed sites. As contradictory it may seem with reported observations 

that thaw-induced saturated soil mosaics promote anoxic microbial processes (Coolen 

and Orsi 2015, Lipson et al 2015, Mackelprang et al 2011, Waldrop et al 2010), the 

EML study site is located at a well-drained mild slope with short period of visible water 

bogs only at the Ex sites in early summer. Only when the full soil depth profile is 

considered, waterlogging impacts deep soils for different lengths of time at the three 

sites. Thus, such topologic and hydrologic conditions did not result in a detectable 

increase in soil water content among our sites from our single time-point sampling. 

Conversely, ground subsidence could facilitate oxygen diffusion into areas below water 

table and plant roots also transport oxygen to the rhizosphere and the surrounding bulk 

soil (Husson 2013, Ponnamperuma 1972). At moderate thaw, these processes may have 

more thoroughly supported aerobic decomposition. Although the extensively thawed 

site had a greater maximum depression depth and higher plant biomass than the 

minimal site, soils here may remain saturated for a longer period of time than the other 

two sites. As thaw continues at EML, we may observe more severe water saturation 

and, subsequently, decreased oxidative potentials. 

Notably, the explained variation in microbial functional potentials by the available plant 

and soil variables was low, probably because these measured environmental variables 

represent the conditions at the time of sampling rather than those spanning the sites’ 

histories, which deterministically shape the microbial communities. Low temperatures 

in permafrost regions tend to preserve a large diversity of historical seed banks (Steven 
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et al 2006, Willerslev et al 2004) or dormant microbes (Lennon and Jones 2011), that 

can be captured by DNA-based metagenomic techniques. In addition, stochastic 

processes (Stegen et al 2012, Zhou et al 2013, Zhou et al 2014) may contribute to the 

diversity and succession of microbial communities, leading to the existence of rare and 

opportunistic species, which were captured by the closed-format, highly sensitive 

microarray (Zhou et al 2015).  

In summary, by analyzing the abundances of up to 40,000 functional genes probes in 

soils collected at EML across a gradient of naturally thawing permafrost, we found 

substantial differences in the profile of microbial functional potentials at the three stages 

of thaw. Genes involved in carbon and nitrogen cycling, as well as anaerobic processes, 

appeared to be most different at the moderately thawed site, potentially resulting from 

microbial interactions with plant communities, and ground subsidence upon thaw. 

Although the functional gene abundances were similar at minimally and extensively 

thawed sites, the later possessed a more divergent functional profile, which was likely 

related to a more heterogeneous microclimate after thaw intensified. Whether this 

divergent profile in Ex site will continue, or further developed thaw will serve to 

converge the communities to a new steady state, remains to be tested. Related studies on 

multiple functional process rates are still needed to reveal the mechanisms behind the 

complex responses of the microbial functional genes to long-term permafrost thaw.  
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Chapter 3: Rapid microbial feedbacks reveal vulnerability of tundra 

soil carbon to climate warming 

3.1 Abstract 

Microbial decomposition of soil carbon in high latitude tundra underlain with 

permafrost is one of the most important, but poorly understood, potential positive 

feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere 

in a warmer world (Graham et al 2012, Schuur et al 2008, Schuur et al 2013, Zhou et al 

2012). Using integrated metagenomic technologies, we showed that the microbial 

functional community structure in the active layer of tundra soil was significantly 

altered after only 1.5 years of warming, a rapid response demonstrating the high 

sensitivity of this ecosystem to warming. The abundance of microbial functional genes 

involved in both aerobic and anaerobic carbon decomposition were also markedly 

increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) 

increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, 

which likely contributed to an observed increase (30%) in gross primary productivity 

(GPP). However, the GPP increase did not offset the extra Reco, resulting in 

significantly more net carbon loss in warmed plots compared to control plots. 

Altogether, our results demonstrate the vulnerability of active layer soil carbon in this 

permafrost-based tundra ecosystem to climate warming and the importance of microbial 

communities in mediating such vulnerability. 
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3.2 Introduction 

Permafrost, defined as “subsurface earth materials remaining below 0 °C for two 

consecutive years” (Schuur et al 2008), is a unique characteristic of Polar Regions and 

high mountains. In permafrost underlain high latitude tundra, plant-derived carbon has 

accumulated over hundreds to thousands of years because low temperatures and 

saturated soils reduce microbial decomposition of soil organic carbon (Hicks Pries et al 

2012, Lee et al 2012). As a result, nearly 50% of the global soil organic carbon is stored 

in northern hemisphere permafrost and the active layer soils above, although they cover 

only 16% of the global terrestrial area (Tarnocai et al 2009). High latitude tundra has 

long been recognized as being highly responsive to climate change (Grosse et al 2011). 

Recent accelerated warming in the northern high-latitude region (ACIA 2004) has 

resulted in rapid permafrost degradation, and studies suggest that permafrost could 

decline by 30-70% by the end of the 21st century (Lawrence et al 2012, Schuur and 

Abbott 2011). During permafrost degradation, frozen soil becomes biologically active, 

with microbial decomposition resulting in massive ecosystem carbon loss, which will 

likely dominate the overall net carbon exchange in permafrost regions (Schuur et al 

2008). While plant responses to climate warming in the active layer of the tundra soil 

have been intensively studied (Natali et al 2012, Walker et al 2006), microbial 

responses have not been examined until very recently (Coolen and Orsi 2015, Graham 

et al 2012, Hultman et al 2015, Mackelprang et al 2011, Yergeau et al 2012).  

Although various observational studies have documented the responses of tundra 

ecosystems to natural warming (Sturm et al 2001), and some incubation studies 

revealed microbial community changes upon permafrost thaw in laboratory settings 



39 

 

(Coolen and Orsi 2015, Mackelprang et al 2011), very few studies examined microbial 

responses to climate warming in tundra ecosystems in the field. Since field 

experimental warming can directly examine the impacts of temperature increases on the 

microbial community in situ (Walker et al 2006), an ecosystem warming experiment, 

Carbon in Permafrost Experimental Heating Research (CiPEHR), was established in 

September, 2008, in Interior Alaska. The experiment is located in typical moist acidic 

tussock tundra (Walker et al 2005), a dominant tundra type, on permafrost that is close 

to the freezing point and thus especially vulnerable to thaw in a warming climate 

(Schuur et al 2009). In this experiment, snow fences (i.e. increased snow pack for 

insulation) were used in the soil warming treatment to increase soil temperature, 

coupled with early spring snow removal to control snow-water equivalents in both 

warmed and control plots. Soil warming and control treatments were arranged in six 

replicates, providing sufficient statistical power. This is the first warming experiment to 

degrade surface permafrost without delaying spring snow melt (Natali et al 2011). To 

understand how vulnerable the active layer of the tundra soil is to climate warming, a 

total of 12 subsurface soil samples from a representative depth of 15-25 cm were 

collected from both warmed and control plots after short-term (1.5 years) warming for 

geochemical and microbial analyses. These samples represented active layer soil that 

freezes in winter and thaws in the growing season, and were within the organic horizon 

along the depth profile. Because soil microbial community structure is tightly linked to 

changes in the aboveground plant community and soil environmental conditions (Zhao 

et al 2014), we predicted that short-term warming would result in selective microbial 

growth, which would be seen as a shift in the active layer microbial community 
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structure and accompanying gene content, especially in those populations and traits 

important to both aerobic and anaerobic carbon decomposition and nutrient cycling. 

Consequently, soil carbon in this tundra ecosystem would be highly vulnerable to 

climate warming.  

3.3 Materials and methods 

3.3.1 Site Description and Sampling 

The Carbon in Permafrost Experimental Heating Research (CiPEHR) site was 

established in September 2008 at a moist acidic tundra area of Interior Alaska near the 

Denali National Park in the Eight Mile Lake region (63º52’59’’N, 149º13’32’’W). The 

experimental plots were located in the discontinuous permafrost region where 

permafrost thaw has been observed in the past several decades. Experimental design 

and site description were described in detail previously (Natali et al 2011). Briefly, 

three experimental blocks were located approximately 100 m away from each other. In 

each block, two snow fences were erected in the winter of each year (October to April) 

about 5 m apart. The soil warming treatment plots were located 5 m back from the 

leeward side of the snow fences, while the paired control plots were at the windward 

side of the snow fences. Soil temperature was increased in the warmed plots due to 

thicker snow cover on the soil surface and lower wind strength. Snow fences were 

removed in the spring before snow melt to provide uniform hydraulic conditions in both 

winter warming and control treatments. From 1976 to 2009, mean monthly temperature 

in the field ranged from -16 °C in December to 15 °C in July, with an annual mean 

temperature of -1.0 °C. The average annual precipitation was 378 mm. Only C3 plant 

species were observed in this area. Dominant species include Eriophorum vaginatum, 
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Vaccinium uliginosum, some other vascular species, nonvascular feather moss and 

lichen.  In the experimental plots, soil from the ground surface to a depth of 45-65 cm, 

depending on sampling cores, was rich in organic carbon materials; below that depth 

was mineral soil with a mixture of glacial till and windblown loess. The active layer 

depth was about 50 cm. 

Twelve soil cores, six from treatment and six from control plots, were taken using 

electric drills in destructive sampling plots at the six snow fences in the beginning of the 

2010 growing season (May), one and one-half years after the initiation of the winter 

warming treatment. Our analysis provides a snapshot of the soil microbial community 

response to early stage soil warming.  The 15-25 cm depth soil fractions were analyzed 

in this study.  

3.3.2 Environmental and soil chemical measurements 

Thaw depth was measured weekly during the growing season (May to September 2010) 

using a metal depth probe (Natali et al 2011). The thaw depth data presented in this 

study were the average values for the 2010 growing season. 

Constantan-copper thermocouples and CR1000 data loggers (Campbell Scientific) were 

used to measure and record soil temperature and moisture content at 5, 10, 20 and 40 

cm every half hour in flux bases installed in each plot (Natali et al 2011). The soil 

temperatures in Figure 3.1 were reanalyzed from previously published data (Natali et al 

2012), which represents either growing season or wintertime (December 2009 to March 

2010) temperatures averaged over 5-40 cm soil depth. To represent the microclimate of 

the soil where and when the microbial communities were sampled, the soil temperature 

data used in canonical correspondence analysis (CCA) (Figure S 10) was the average 
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values at 20 cm depth from December 2009 to May 2010. Volumetric water content 

from the soil surface to 15 cm depth was measured using site-calibrated Campbell 

CS616 water content reflectometer probes (Natali et al 2011). Soil moisture data 

presented in this study were averaged over the 2010 growing season. 

To prepare soils for microbial and chemical analyses, visible roots and stones were 

removed by metal forceps. To measure soil carbon and nitrogen, soil samples (5g) were 

dried at 70 °C until constant weight, ground to powder, encapsulated in silver foil and 

fumigated with HCl for 24 hours at room temperature to remove soil inorganic carbon 

(carbonates). Soil carbon and nitrogen concentrations were analyzed in the Colorado 

Plateau Stable Isotope Laboratory at the Northern Arizona University on a DELTA V 

Advantage isotope ratio mass spectrometer (Thermo Fisher Scientific), configured 

through a Finnigan CONFLO III (Thermo Fisher Scientific) and using a Carlo Erba 

NC2100 Elemental Analyzer (CE Elantech). The total organic carbon (TOC) and soil 

nitrogen content of each sample was calculated as the percentage mass of carbon or 

nitrogen (Avramidis et al 2015).  

To measure soil carbon pools, soil samples were processed with a two-step hydrolysis 

procedure to separate the labile and recalcitrant carbon pools(Rovira and Vallejo 2002). 

First, 5 N H2SO4 was used to hydrolyze dried soil at 105 ºC for 30 min, from which the 

hydrolysate and wash-offs were collected after centrifugation as labile pool 1, 

containing mainly polysaccharides. Second, the residue was then shaken continuously 

overnight at room temperature with 26 N H2SO4, followed by hydrolysis at 105 ºC for 3 

hours with acid diluted to 2 N. The hydrolysate and wash-offs were recovered as labile 

pool 2, containing mostly cellulose. The recalcitrant carbon pool consisted of the 
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remaining organic C. The organic carbon in Labile pools 1 and 2 was analyzed using a 

Shimadzu TOC-V CPH PC-Controlled TOC Analyzer (Shimadzu Corporation) and the 

organic carbon in the recalcitrant carbon pool was analyzed using a PerkinElmer 

Optima 2000DV ICP-OES spectroscopy (PerkinElmer) in the Environmental and 

Agricultural Testing Service laboratory at North Carolina State University.  

3.3.3  Aboveground plant communities 

Aboveground plant community investigations were conducted as described previously 

(Natali et al 2011, Natali et al 2012). In brief, above ground biomass and net primary 

productivity (ANPP) were determined by a nondestructive point-frame method using a 

60×60 cm point frame with a grid size of 8×8 cm (Walker 1996). At each of the 49 

intersecting grid points, a metal rod (1 mm diameter) was placed vertically through the 

plant canopy. Species identity and tissue type (leaf, stem or fruit) were recorded for 

every “hit” with the rod. Above-ground live biomass for each vascular plant species, 

moss and lichen was estimated by applying allometric equations developed for this site 

to the average number of pointframe “hits” per plot (Schuur et al 2007). Vascular plant 

ANPP was estimated as the sum of the current year’s apical growth (leaves, stems, 

flowers and fruits) and secondary growth. The ratio of biomass between each tissue type 

and total plant was determined from destructive harvesting of a site adjacent to CiPEHR 

(Shaver et al 2001). Secondary growth was evaluated using growth rates determined 

from tussock tundra at Toolik Lake, Alaska (Shaver et al 2001). Moss NPP was 

measured by the cranked wire method, which measures vertical growth of moss using a 

stainless-steel reference wire inserted at the moss surface (Clymo 1970, Schuur et al 

2007). Three to five cranked wires were placed in four moss types in each treatment at 
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all fences to measure the growth from mid-May to mid-September. Feather moss NPP 

was estimated as the product of linear growth per stem, stem density, biomass per unit 

stem growth and percent cover. Allometric equations developed for EML watershed 

(Schuur et al 2007) as well as percent cover was used to convert the vertical growth of 

other types of moss into biomass. Moss NPP was the sum of all types of moss NPP. 

Current year’s fully formed green leaves from six vascular plants found across plots 

were collected at peak biomass (mid-July) for measuring foliar nitrogen and at the end 

of the growing season (late September) for senescent nitrogen (Natali et al 2011). At 

least three leaves from two to three individuals in each plot were collected each time. 

Leaves were dried at 60 °C, finely ground, and analyzed on a continuous flow isotope 

ratio mass spectrometer (Thermo Fisher Scientific) coupled with a Costech elemental 

analyzer (Valencia, CA, USA). 

3.3.4 Decomposition 

Weighed cellulose filter paper (Fisher brand P8 09-802-1B) were placed into fiberglass 

mesh bags and placed vertically at 0-10 cm in the field soils in September 2009 and 

collected in September 2010. The bags were rinsed and dried at 60 °C for weighing. 

The percent mass loss was calculated to represent decomposition rate. 

3.3.5 Ecosystem carbon flow 

Ecosystem carbon flux measurements were described previously (Natali et al 2011, 

Natali et al 2014). Growing season net ecosystem exchange (NEE) and ecosystem 

respiration (Reco) were measured from May to September 2010 using an automated CO2 

flux system coupled to the flux chambers (Natali et al 2011). Reco was determined with 

night measurements. Gross primary productivity (GPP) was estimated as the difference 
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between NEE and Reco (values are positive for carbon flowing from atmosphere to 

terrain and vice versa). Winter respiration was estimated based on a parameterized 

winter respiration model, adjusted using in-plot winter respiration measurements in 

March and April 2009 using an infrared gas analyzer in a portable CO2 flux system. In 

winter, there was no photosynthetic activity and Reco represents mainly microbial 

respiration. The carbon flux data used for analysis in this study were reanalyzed from 

previous published datasets (Natali et al 2014).   

3.3.6 Soil DNA extraction 

Soil DNA was extracted using a PowerMax Soil DNA Isolation Kit (MO BIO), and the 

quality was assessed based on spectrometry absorbance at wavelengths of 230 nm, 260 

nm and 280 nm (ratios of absorbance at 260/280 nm around 1.8, and 260/230 nm > 1.7) 

detected by a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies). Then 

it was quantified with Pico Green using a FLUOstar OPTIMA fluorescence plate reader 

(BMG LabTec) before used for gene array labeling and sequencing library preparation.  

3.3.7 GeoChip analysis 

GeoChip 4.2 is a comprehensive gene array containing 107,950 probes designed for 

covering 792 functional gene families from 11 major functional categories including 

carbon, nitrogen, phosphorus and sulfur cycling (He et al 2007, Tu et al 2014). 1µg 

DNA from each sample was mixed with random primers and denatured before dNTP, 

fluorescent dye Cy-3 dUTP and DNA polymerase were added for labeling at 37°C for 6 

hours, followed by heating at 95°C for 3 min. Labeled DNA was purified and dried up. 

For hybridization, DNA was resuspended in hybridization solution containing sample 

tracking control, formamide, SSC, SDS, Cy3-labeled alignment oligo, Cy5-labeled 
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alignment oligo and Cy5-labeled common oligonucleotide reference standard target. 

After denaturing, the mixtures were deposited onto the glass microarray and hybridized 

at 42 °C for 16 hours. Then the arrays were washed and dried, and scanned by a MS 200 

Microarray Scanner (NimbleGen) at 532 nm and 635 nm. NimbleScan software version 

2.5 (NimbleGen) was used to grid and process the images to transform them into signal 

intensity. The raw signals from NimbleScan were submitted to the Microarray Data 

Manager on our website (http://ieg.ou.edu/microarray/), cleaned, normalized and 

analyzed using the data analysis pipeline. Briefly, spot signal to noise ratio (SNR) and 

minimum intensity cutoff was used as standard to remove unreliable spots. Both the 

universal standard and functional gene spot intensities are used to normalize the signals 

among arrays. Data were log transformed after cleaning and normalization. A total of 

48,188 functional gene probes were detected across all samples in this study. 

3.3.8 Illumina MiSeq sequencing of 16S rRNA gene amplicons 

DNAs were amplified for the V4 region of 16S rRNA genes using primer set 515F and 

806R, and sequenced in one run on a MiSeq using 2 x 150 pair end format (Wu et al 

2015). Raw sequences were assembled using RDP’s paired-end reads Assembler. Any 

assembled sequences with any ambiguous bases (“N”) were discarded. 5.28% of the 

remaining reads were identified as chimeras using Uchime (Edgar et al 2011) and 

removed. The remaining sequences were clustered into OTUs using Uclust (Edgar 

2010) at 97% identity, and randomly resampled to the depth of 42,684 reads per sample. 

Representative sequences chosen by Uclust from each OTU were annotated 

taxonomically using the RDP Classifier (Wang et al 2007) with the confidence cutoff 

0.5. Finally, 512,208 sequences in 23,677 OTUs were obtained. 
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3.3.9 454 pyrosequencing of nifH gene amplicons 

nifH genes from the DNA samples were amplified using the primer pair nifH Poly F 

(5’- TGCGAYCCSAARGCBGACTC -3’) and Poly R (5’ - 

ATSGCCATCATYTCRCCGGA -3’) and sequenced on the 454 GSFLX Titanium 

platform at Macrogen, Inc. (Seoul, Korea) (Huse et al 2007, Meyer et al 2008, Ronaghi 

et al 1998). After trimming primers, the sequences were cleaned using LUCY (Chou 

and Holmes 2001). Sequences with “N”, those containing frameshift(s) detected by 

FrameBot (Wang et al 2013), and those indendified as chimera by Uchime (Edgar et al 

2011) based on the Zehr nifH Database (Zehr et al 2003) were all removed from 

downstream analyses. The remaining 162,523 sequences were clustered into 2,643 non-

singleton OTUs using CD-HIT (Li and Godzik 2006) at 0.95 identity, which was an 

arbitrary but strict enough cut-off to identify different species based on previous studies 

on nifH and other nitrogen cycling related genes (Mao et al 2011, Palmer et al 2009, 

Pereira e Silva et al 2013). Finally, 2,643 non-singleton OTUs were normalized to 

relative abundance (scale all the sample sequence numbers to the largest one) for 

statistical analyses. The representative sequence for each OTU was assigned taxonomic 

information based on the FrameBot (Wang et al 2013) nearest neighbor match with an 

identity cut-off of 0.5. 

3.3.10 Shotgun metagenome sequencing analysis 

Each soil metagenome was prepared using the TruSeq Kit and sequenced at the Los 

Alamos National Laboratory Genome Facility using the Illumina HiSeq 2000 in one 

flow cell lane with a 2 × 150 bp paired-end kit (Wu et al 2015). A total of 3.24 billion 

reads were generated from the 12 samples, with both phylogenetic and functional 
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information extracted. After data processing, it was found that one of the samples from 

the control (C1) did not produce enough useful sequence during shotgun sequencing 

and thus this sample was removed from all subsequent analyses. For phylogenetic 

analysis, the metagenome reads were trimmed (Luo et al 2011) and searched against 

representative OTU sequences from GreenGenes (DeSantis et al 2006) using BLAT 

(Kent 2002). Paired reads that both matched GreenGenes reference sequences were 

identified as 16S reads and were extracted for further analyses. These 16S reads were 

subsequently searched against the 99%-clustered GreenGenes OTU sequences. The 

reads were assigned to the taxon that was the lowest common ancestor of the two reads 

in a pair. 797,898 reads were assigned to 23,167 OTUs in total. For functional 

subsystem analysis, 25 million reads were randomly resampled from each sample. Open 

reading frames (ORFs) were predicted on non-16S encoding reads using FragGeneScan 

(Rho et al 2010). The translated amino acid sequences were then searched against the 

M5NR database (Wilke et al 2012) using BLAT. Reads matching genes incorporated in 

the SEED database (Overbeek et al 2005) were assigned to the corresponding best-

matched subsystem(s). The numbers of assigned reads were taken as a proxy of 

abundance of the SEED subsystem(s). An approach combining re-sampling techniques, 

the DESeq package (Anders and Huber 2010), and binomial testing with adjusted p-

values (Benjamini and Hochberg 1995) was then applied to identify significantly 

differentially abundant subsystems (pathways) under warming vs. control plots, as 

described previously (Luo et al 2013a). 
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3.3.11 Annotating shotgun sequences based on GeoChip genes 

An ecological functional gene-oriented metagenomic analysis pipeline (EcoFun-MAP), 

has been developed to fish out sequence reads of important environmental functional 

genes from shotgun metagenome sequence data. EcoFun-MAP is a method designed for 

annotating metagenomic sequences by comparing them with functional genes used to 

fabricate GeoChip. In the preparation of the reference databases, keyword queries were 

submitted to the NCBI (Geer et al 2010) online GenBank for 308 functional genes to 

retrieve candidate reference sequences, from which 5 to 200 distinct representative 

sequences from each gene were manually selected functional gene seed sequences 

(FGSS’s). The selected FGSS’s were aligned using both global and local algorithms in 

ClustalW (Larkin et al 2007), and the resulting alignments were used as input for 

another program HMMBUILD (Eddy 1998) to build both global and local HMMER64 

models (FGSS-HMM). Next, the candidate reference sequences for each gene were 

searched back against corresponding FGSS-HMM using HMMSEARCH (Eddy 1998). 

The output sequences, termed “functional gene reference sequences” (FGRS’s), were 

clustered into OTUs for each gene using CD-HIT at the similarity threshold of 95%. In 

addition, BLAST databases were constructed on the FGRS’s with MAKEBLASTDB 

(Camacho et al 2009). To this end, two reference databases involved in the method were 

established: FGSS-HMM and FGRS-BLAST. For annotation, sequences from HighSeq 

were resampled to the minimal number of reads in a sample, and were quality trimmed 

by Btrim (Kong 2011). All trimmed nucleotide sequences were translated into protein 

sequences using FragGeneScan (Rho et al 2010). HMMSEARCH was used for 

annotating the predicted protein sequences with the FGSS-HMM database, and both 
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global and local model hits were counted as valid results. Also, all FGSS-HMM 

confirmed sequences were compared together against the FGRS-BLAST database with 

BLASTN (Camacho et al 2009). Only best hits (Rank No. 1 in BLAST results) between 

probes and sequences were kept as final processing results. 

3.3.12 Statistical analysis 

Statistical analyses were carried out using R software version 2.15.1 using the package 

vegan (v.2.0-6) (Oksanen et al 2013) when not specified. Detrended correspondence 

analysis (Oksanen et al 2013) was performed to visualize the overall microbial 

community composition among samples. Three complementary non-parametric 

multivariate analyses, non-parametric multivariate analysis of variance (Adonis) 

(Zapala and Schork 2006), analysis of similarity (ANOSIM) (Clarke 1993), and multi-

response permutation procedure (MRPP) (Van Sickle 1997), were used to test the 

differences in soil microbial communities between warming and control treatments. 

CCA (Hotelling 1992) was performed to determine the linkage between environmental 

variables and microbial community composition. For selecting environmental variables, 

those containing redundant information were reduced to minimum number, keeping 

only the variables distinct the most among samples. Also, the final sets of variables 

should have the variance inflation factors (VIF) all < 20. Finally, soil temperature, soil 

moisture and GPP remained in the CCA model (Figure S 10a) based on GeoChip data. 

Labile carbon pool 1 and 2 (%), and soil nitrogen content (%) were selected for 16S 

rRNA gene-based analysis (Figure S 10b). The significance of the CCA model was 

tested by analysis of variance (ANOVA). Based on CCA results, variation partitioning 

analysis (VPA) was performed to determine the contribution of each individual variable 
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or groups of variables to total variations in soil microbial community compositions. 

CCA was also used to determine correlations between abundance of subcategories of 

functional genes and the individual environmental variables (Table S 9). Two-tailed t-

tests were performed to examine whether the differences between warming and control 

treatments were significant based on various variables (i.e., soil carbon contents, 

aboveground biomass, and total bacteria, archaea and fungi abundance) using Microsoft 

Excel 2010. ANOVA (Chambers et al 1992) was performed to test the treatment effect 

on the abundance of each functional gene involved in carbon and nitrogen cycling for 

GeoChip or relative abundances of OTUs of certain genus or phylum groups. In 

addition to the warming treatment effect, the probe or OTU also factored into the model 

for partitioning the variance of probes within each functional gene. Response ratio (RR) 

was used to compute the effects of warming on functional genes relevant to GeoChip 

probes from shotgun sequences using formula described by Luo et al (2006). Raw 

shotgun metagenome, 16S rRNA and nifH amplicon gene sequences are available in the 

European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study no. PRJEB10725. 

GeoChip raw and normalized signal intensities can be accessed through the Gene 

Expression Omnibus (GEO) database under Series GSE77866. 
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3.4 Results and Discussion 

3.4.1 Warming influence on plant and soil, and ecosystem carbon fluxes 

 

Figure 3.1 Warming effects on soil variables and ecosystem carbon fluxes. Gray bars 

represent control plots and black bars represent warmed treatment plots. (a) Soil 

temperature in both growing season (May to September 2010) and wintertime 

(December 2009 to March 2010) averaged across 5, 10, 20 and 40 cm; (b) soil moisture; 

(c) Maximum thaw depth; (d) Standard cellulose filter paper decomposition rate (mass 

loss) in the field; (e) Proportion of soil carbon pools in total organic carbon, including 

labile carbon pool 1 (LCP1, mainly polysaccharides) and 2 (LCP2, mostly cellulose), 

and recalcitrant carbon pool (RCP); (f) Growing season (May to September 2010), 

wintertime (October 2009 to April 2010) and annual ecosystem carbon fluxes. Positive 

values indicate carbon sink, and negative values represent carbon source. Error bars 

represent standard error of the mean. The differences between warmed and control plots 

were tested using two-tailed t tests, indicated by ** when p<0.05, or * when p<0.10. 

Panels a, b, c, d, and f were reanalyzed from previously published data (Hicks Pries et al 

2013b, Natali et al 2012, Natali et al 2014). 



53 

 

Short-term soil warming altered several environmental attributes (e.g., plant, soil 

microclimate and soil properties) of the tundra (Natali et al 2011, Natali et al 2012, 

Natali et al 2014). First, soil temperature (5-40 cm) increased by 2.3 °C (from -6.2 °C to 

-4.0 °C) in response to warming in wintertime and by 0.6 °C (from 3.8 °C to 4.4 °C) 

during the growing season in 2010 (Figure 3.1a), which led to a substantial surface 

permafrost thaw as indicated by an increased thaw depth (8.8%, p<0.001; Figure 3.1c). 

Similarly, soil moisture increased in response to warming (over 10%, p=0.03; Figure 

3.1b). Second, GPP increased (30.3%, p=0.02; Figure 3.1f), mainly due to enhanced 

growth of graminoids (57.5% increase in biomass, p=0.05). Warming also extended the 

growing season length through earlier bud break and delayed senescence (Natali et al 

2012). In addition, the percentage of mostly-cellulose fraction of the labile carbon pool 

(Rovira and Vallejo 2002) in total soil organic carbon was higher (36.1%, p=0.06) in 

warmed than control soils (Figure 3.1e). The carbon amount of this pool under 

warming tended to increase as well, but not statistically significant (Figure S 13). 

Together, these results indicated that environmental attributes of the tundra soil were 

altered rapidly by short-term warming.  

3.4.2 Warming influence on microbial communities and functional genes 

The observed alterations in the soil microclimate (temperature, moisture, thawing 

depth), soil carbon, and GPP in response to warming would be expected to cause 

significant changes in the microbial communities in the active layer of tundra soil. 

Consistent with this expectation, the microbial community functional gene structure 

was markedly different between warmed and control plots as revealed by the detrended 

correspondence analysis (DCA) of the GeoChip data (Figure S 9a), indicating increases 
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in certain genes and possibly the organisms that host these. Three different non-

parametric multivariate statistical tests (ANOSIM, Adonis, and MRPP) showed that the 

functional community structure differed substantially between warmed and control plots 

(Table 3.1).  

Table 3.1 Significance tests on the effects of warming on the microbial community 

functional structure detected by GeoChip hybridization. Three different permutation 

tests were performed, including multiple response permutation procedure (MRPP), 

analysis of similarity (ANOSIM) and permutational multivariate analysis of variance 

(Adonis), based on Euclidean, Horn or Bray distance. Bold values indicate p<0.05. 

 MRPP ANOSIM Adonis 

δ p R p F p 

Euclidean 69.02 0.04 0.38 0.02 1.69 0.04 

Horn 0.06 0.04 0.36 0.02 1.20 0.23 

Bray 0.09 0.03 0.30 0.02 1.28 0.21 

 

However, significant differences in the overall community structure were not detected 

with 16S rRNA gene-based amplicon and shotgun metagenomic sequencing approaches 

(Figure S 9b and c). This is most likely due to the high heterogeneity of soil 

environments, low taxonomic resolution of the experimental approaches, and/or high 

noise associated with random sampling (Zhou et al 2015). Canonical correspondence 

analysis (CCA) revealed that soil temperature, moisture and plant GPP were the main 

significant variables related to the microbial community functional structure (F=1.68, 

p=0.005; Figure S 10a). This is also consistent with our central hypothesis that 

warming-induced changes in plant productivity and soil microclimate significantly alter 

the soil microbial community structure. In addition, soil community DNAs were 

shotgun sequenced and a total of 3.24 billion raw sequences were obtained for these 

samples (Table S 6). Although the overall metagenome structures were not separable 

into warmed vs control groups (Figure S 9c, Figure S 11 and Table S 5), a small 
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portion (7.4%) of total subsystems, genes associated with microbial physiological 

attributes and ecosystem processes, were significantly different between warmed and 

control plots (p<0.05; Figure 3.2d). In particular, warmed plots were enriched in genes 

associated with pathways related to labile carbon utilization (Table S 7). Our above 

results indicated that the microbial communities in the active layer of tundra soil were 

responsive to warming.  

Soil warming also significantly impacted a number of microbial functional and 

phylogenetic groups important for carbon decomposition. First, more than half (54.5%) 

of the detected carbon decomposition genes were increased by warming based on 

GeoChip signal intensities (p<0.05; Figure 3.2a), including those involved in degrading 

starch (e.g. amyA encoding α-amylase), hemicellulose (e.g. ara encoding 

arabinofuranosidase), cellulose (e.g. cellobiase), chitin (e.g. endochitinase), aromatics 

(e.g. vdh encoding vanillin dehydrogenase) and lignin (e.g. glyoxal oxidase, phenol 

oxidase). Also, the total fungal functional gene intensity detected by GeoChip was more 

abundant in warmed plots than control plots (4.7%, p<0.001; Figure S 12a). Increases 

of the genes involved in recalcitrant carbon decomposition (Figure 3.2a) suggest the 

possible degradation of old recalcitrant carbon and thus a potential positive feedback to 

climate warming. In addition, shotgun metagenome sequence data revealed that a 

substantial portion (19.5%, 8 of 41) of carbon degradation pathways was increased by 

warming (p<0.05; Figure 3.2d, Table S 7), including those for cellulose, mannose 

metabolism, carbohydrate hydrolases, fructooligosaccharides and raffinose utilization, 

lactose and galactose uptake and utilization, L-fructose utilization, xylose utilization, 

chitin utilization, and N-acetylglucosamine utilization. More specifically, many 
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individual genes involved in labile carbon degradation (e.g. starch, hemicellulose and 

cellulose), which were identified from metagenome sequences using GeoChip genes as 

queries, were increased (95% confidence interval; Figure 3.2e). Overall, since these 

functional genes directly participate in aerobic carbon degradation, their higher 

abundance could enhance carbon decomposition and hence contribute to positive 

climate feedback.  

The potential for accelerated carbon decomposition was supported by several 

independent pieces of evidence. First, the cellulose decomposition rate measured by 

adding external cellulose substrate was higher under warming (Figure 3.1d). Also, both 

winter Reco, derived almost exclusively from heterotrophic soil respiration, and growing 

season Reco, including both autotrophic (from plants) and heterotrophic soil respiration, 

increased with warming (100% and 24%, p<0.05; Figure 3.1f) (Natali et al 2014) . In 

addition, strong correlations were observed between both growing season and 

wintertime Reco and the functional gene groups involved in degrading almost all carbon 

compounds targeted by GeoChip, including starch, hemicellulose, cellulose, chitin, 

aromatics and lignin (Table S 9), suggesting that changes in abundance of these genes 

could be important in mediating Reco (Lau et al 2015). 
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Figure 3.2 Warming effects on functional genes involved in biogeochemical cycling 

processes. (a) Carbon degradation based on GeoChip data. The targeted substrates were 

arranged in order from labile to recalcitrant C. GeoChip data is presented as the signal 

difference between warmed and control plots (Warmed-Control). Error bars represent 

standard error. Significance is indicated by ** when p<0.05. (b) Anaerobic processes 

from GeoChip data; (c) Nitrogen processes based on GeoChip hybridization. The 

percent change in nitrogen gene abundance in response to warming is indicated in 

parenthesis. Genes where change in abundance was significant (p<0.05) are labeled in 

red. Gray-colored genes were not targeted by the version of GeoChip used here, not 

detected or not applicable. (d) Abundance of subsystems involved in carbon, nitrogen, 

phosphorus and sulfur cycling from metagenomic shotgun sequence data. Changes in 

subsystems are indicated as fold change (log2 (warmed/control)) in abundance. 

Significant differences between warmed and control plots are highlighted with green 

boxes. (e) Response ratios showing significant changes in abundance of gene clusters 

involved in carbon and nitrogen cycling in the metagenomic shotgun sequence data. 

These gene clusters were identified by searching the shotgun sequence datasets using 

GeoChip genes as queries. Each cluster on the x-axis represents a group of sequences 

among which the similarities are ≤ 95%. Error bars indicate 95% confidence intervals of 

abundance differences between warmed and control groups. The full names of the genes 

in this figure are listed in Table S 11. 
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Permafrost thawing induced by warming often increases soil water content and creates a 

mosaic of flooded areas interspersed within dry areas, which may potentially enhance 

anaerobic carbon decomposition (Coolen and Orsi 2015, Schuur et al 2008). Since 

water is heterogeneously distributed spatially and temporally, oxygen would also be 

expected to be unevenly distributed in the soil (Natali et al 2011). GeoChip 

hybridization-based analysis revealed that genes involved in several important 

anaerobic respiration processes, such as denitrification, methanogenesis and sulfate 

reduction, were increased by warming (p<0.05; Figure 3.2b). Shotgun metagenome 

sequence analysis also revealed that the pathway for denitrification (marginally) 

increased in response to warming (p=0.08; Table S 10). These results were consistent 

with laboratory incubation studies, where methanogenic pathways were increased 

within several days after permafrost thaw (Coolen and Orsi 2015, Mackelprang et al 

2011). Although some upland permafrost areas were observed to be CH4 sinks (Lau et 

al 2015), for our studied site, significantly increased CH4 emission rates after several 

years of warming have been reported (Natali et al 2015). Since CH4 and N2O have 25 

and 298 times the warming potential of CO2 per mole (IPCC 2007), respectively, 

anaerobic microbial responses are most likely of considerable importance. 

Estimates show that CH4 emission in northern wetlands, including tundra, accounts for 

25% of the global CH4 release from natural sources (Liebner and Wagner 2007). 

GeoChip analysis revealed that warming increased the gene encoding methyl coenzyme 

M reductase A (mcrA), a key enzyme in methanogenesis (p<0.01; Figure S 12b). While 

16S rRNA sequence analysis detected two methanogens (Methanobacteria and 

Methanomicrobia; Figure S 12d), the relative abundance between warmed and control 
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plots was not significantly different for either methanogen. Warming, however, resulted 

in a greater abundance of pmoA, a gene encoding particulate CH4 monooxygenase 

subunit A (p=0.01; Figure S 12b), suggesting that more of the CH4 produced could be 

oxidized in the aerobic upper soil horizon at the warmed plots. Similar findings were 

reported in recent studies on both incubated permafrost soils (Mackelprang et al 2011) 

and active layer samples in situ (Hultman et al 2015, Lau et al 2015). 

Warming also increased genes involved in nitrogen cycling (Figure 3.2c and e), 

microbial phosphorus utilization and sulfur metabolism (Figure S 12c). Most (82.4%) 

of the GeoChip-detected functional genes involved in nitrogen cycling were increased 

in response to warming (p<0.05; Figure 3.2c), consistent with the previous finding that 

warming enhances nutrient cycling (Zhou et al 2012). For example, the abundance of 

N2-fixing bacteria was higher in response to warming (p<0.05; Figure 3.2c), and two 

bacterial Classes (Opitutae and Deltaproteobacteria) detected by PCR amplification of 

the nifH gene had higher abundance in warmed samples (p<0.05; Figure S 12e). Also, 

the abundance of key genes (e.g. gdh and ureC) in nitrogen mineralization was higher in 

warmed than control soil (p<0.05 or 95% confidence interval; Figure 3.2c and e). In 

addition, warming appeared to increase nitrification and denitrification processes as 

indicated by increased nirK and amoA genes based on GeoChip data (Figure 3.2c). The 

increase in amoA could potentially lead to higher nitrate concentrations, which is also 

supported by the greater abundance of genes for various reductive processes that use 

nitrate as an electron acceptor, such as narG, nirS/nirK and nosZ for denitrification, 

napA and nrfA for dissimilatory nitrate reduction to ammonium, and nasA, nirA and 

nirB for assimilatory nitrate reduction (Figure 3.2c and e). Microbial phosphorus 
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utilization genes (phytase and ppx) and eight of the 11 detected sulfur metabolic genes 

had higher abundance in warmed than in control plots (Figure S 12c). Although the 

significant increase in abundance of the genes involved in nutrient cycling processes 

observed in warmed plots may potentially enhance the rates of nutrient cycling, more 

in-depth studies are necessary to determine the rates and extent of stimulation of 

different nutrient-cycling processes. 

The increased abundance of nitrogen cycling genes (particularly those involved in 

nitrogen mineralization, nitrogen fixation and nitrification) and other nutrient cycling 

genes could increase nutrient (especially nitrogen) availability in soil, which is 

important for ecosystem carbon dynamics because nitrogen is a limiting factor for plant 

growth in most tundra ecosystems12. That warming enhanced plant nitrogen uptake is 

supported by the observation that from 2009 to 2010 plant foliar nitrogen mass 

increased in warmed plots (35%, p<0.01), while remaining unchanged in control plots 

(Natali et al 2012). The enhanced plant nitrogen uptake could in turn affect GPP, which 

increased in response to warming (p<0.05; Figure 3.1f). Moreover, almost all genes 

involved in nitrogen cycling (18 of 19) and most carbon degradation genes (22 of 33) 

showed significant correlations with GPP (p<0.05; Table S 9). Increased N2-fixation, 

mineralization and nitrification could counteract the potential higher nitrogen loss from 

soil due to increased plant nitrogen uptake, denitrification and nitrate leaching. As a net 

result, the soil nitrogen availability appeared not to be affected by warming (Natali et al 

2011). 
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3.4.3 Summary, importance and implication 

In summary, our results highlight the importance of microbial community mediated 

feedbacks of the active layer to warming, as illustrated in a conceptual model (Figure 

3.3). In response to warming, deeper thaw depth increased the amount of carbon 

accessible for decomposition. Within the active layer, soil carbon is also more 

vulnerable to degradation through the following mechanisms: First, short-term soil 

warming altered the active layer microbial community structure, demonstrating rapid 

responses by these communities; annual Reco released 127 g more carbon m-2 from 

warmed plots compared with controls, resulting in 38.6% more carbon loss from soil.  

Also, warming increased the abundance of functional genes involved in anaerobic 

processes, which could lead to a greater positive feedback by releasing more CO2, CH4 

and N2O (Figure 3.3). In contrast, the potentially higher nutrient availability resulting 

from the increased abundance of nutrient cycling genes would also stimulate plant 

growth (Figure 3.3). In this study, increased GPP did not completely offset the carbon 

loss from the warming-induced Reco increase. The net carbon loss from warmed plots 

doubled in 2010 (Figure 3.1f), and was estimated to increase more in actual climate 

warming scenario (Natali et al 2014).  However, it should be noted that the 

experimental results reported in this study were derived from the active layer of the 

Alaskan tundra soil. To generalize whether the results observed are applicable to 

permafrost requires further analyses with actual permafrost. 

Overall, whether the tundra soil acts as a carbon source or sink depends on plant and 

microbial responses to climate warming. Our results indicate that the soil carbon is 

highly vulnerable to climate warming and this vulnerability is determined by a set of 
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complex microbial feedbacks to the temperature increase. Improved predictions by 

ecosystem models to climate warming (Friedlingstein et al 2006) may be possible 

through better assessment of microbial functional capacities and their responses. 

 

Figure 3.3 A conceptual model of the impact of warming on the active layer of tundra 

ecosystem processes. Greenhouse gas pools are represented by green square frames, 

material pools by yellow square frames, and biological processes by frames in a shape 

of blue punched tape. Material flows are indicated by thicker black arrows. Impacts of 

environmental attributes (e.g. soil temperature) and microbial community are marked by 

narrow arrows in black and red, respectively, and labeled with a “+” if increases in gene 

abundance were observed in this study. 
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Chapter 4: Differential microbial sensitivity to experimental warming: 

a comparative metagenomic analysis of soils from two ecosystems 

4.1 Abstract: 

Climate warming has been differentially increasing the global surface temperature, with 

the greatest temperature elevation observed in the northern high-latitude regions. 

Although tundra and underlain permafrost in those areas were predicted vulnerable to 

climate warming, few quantitative comparisons were reported between tundra and other 

grassland ecosystems, especially of the composition and structure of soil microbial 

communities and their functional diversity. Here, we compared the early responses of 

soil microbial composition and functional gene abundance to experimental warming 

between a tundra site and a temperate tall grass prairie using several metagenomic 

technologies, including functional gene microarray, amplicon sequencing, and 

metagenomic shotgun sequencing. Despite distinct species and functional gene pools in 

soils from the two ecosystems, genes involved in carbon and nitrogen cycling showed 

positive responses to warming at both sites, but with 36% more significantly responding 

genes and a greater magnitude of response for 10 genes at the tundra site. The 

functional gene compositions were correlated with temperature, moisture, ecosystem 

respiration and gross primary production at the tundra sites, but mostly with substrate 

related variables, plant biomass and nitrate concentration, at the prairie, implying 

different limiting factors in microbial growth and functions. Our results revealed the 

higher sensitivity of tundra soil microbial communities to warming, compared with 

those from temperature prairie, and provided field evidence in supporting that northern 

high-latitude regions might be more vulnerable to climate warming.  
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4.2 Introduction 

Climate warming has increased global surface temperature 0.15 to 0.2 °C per decade on 

average during the past four decades, but unevenly heated different regions of earth’s 

surface (Hansen et al 2010). The greatest temperature changes were observed in the 

northern high-latitude regions of the northern hemisphere (Hansen et al 2006), where 

the temperature has increased at rates twice the global average (Comiso et al 2008, 

Kortsch et al 2012). Climate warming could trigger abrupt changes in ecosystems in 

those regions (Kortsch et al 2012), accelerated by their positive feedbacks to the 

warming effect (Dufresne et al 2002, Friedlingstein et al 2001, Scheffer et al 2006, 

Walter et al 2006). Therefore, many ecosystems in the Arctic and subarctic, including 

sea ice, boreal forest, permafrost and tundra, are predicted as tipping elements, or 

potential tipping elements in the Earth’s climate system (Duarte et al 2012, Lenton et al 

2008). Current trend of climate change, if not reversed or slow down, is evaluated to 

have immense potential to push these tippling elements of the Earth system to pass their 

tipping points, the critical thresholds at which small perturbations can qualitatively shift 

the state of the system to one with distinctive characteristics, within the next century 

(Lenton et al 2008, Lenton 2011, Lenton 2012). On the other hand, many other 

ecosystems, such as temperate grassland and forest, has not been considered as tipping 

elements so far based on current thoughts (Lenton et al 2008). For example, compared 

with greatly changed landscapes (Serreze et al 2000) caused by shrinking permafrost 

and tundra loss in the northern high-latitude regions, including ground subsidence 

(Nelson et al 2001), thermokarst formation (Jones et al 2011), and expansion of the 

shrubland (Sturm et al 2001), the natural grassland ecosystems in temperate regions 
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worldwide were much less reported under significant succession during the past century 

with recorded global temperature and CO2 level increases. The difference of ecosystem 

sensitivity to climate warming could be due to both the difference in the observed 

temperature increase regime, and varied level of sensitivity and resilience of the 

ecosystem per se. 

The influence of warming were contrasted across different ecosystems in some reports 

for soil physical-chemical properties, soil and ecosystem functional process rates (i.e., 

respiration, primary production, nitrogen mineralization, CH4 uptake, and nitrous oxide 

emission), distribution of nutrients in plants and microbes, and aboveground plant 

growth (Beier et al 2008, Lu et al 2013, Luo et al 2013b, Peñuelas et al 2004, Rustad et 

al 2001, Schmidt et al 2002), but rarely, especially quantitatively, for the composition 

and structure of soil microbial communities. Soil microbial communities play 

fundamental roles in the functions of terrestrial ecosystems, and are critical drivers of 

the carbon cycle between land and the atmosphere. Intensive literatures reported the 

responses of soil microbial community to climate warming through physiological 

adaptation, community compositional changes, biomass increase or decrease, with 

evidences derived from both observations on functions, such as reparation rate, 

temperature sensitivity and enzyme activity, and molecular techniques like genomics 

and transcriptomics profiling (Bradford 2013, Deng et al 2015, Hartley et al 2007, 

Jassey et al 2013, Nie et al 2013, Pailler et al 2014, Peltoniemi et al 2015, Rousk et al 

2013, Semenova et al 2015, Streit et al 2014, Tucker et al 2013, Wang et al 2014, 

Yoshitake et al 2015, Zhang et al 2013, Zhang et al 2005, Ziegler et al 2013). Yet, how 
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the influence of warming on the microbial community differs across terrestrial 

ecosystems, and what causes such difference, are less tested and summarized. 

In this study, we quantitatively compared the soil microbial communities in two 

contrast ecosystems, a high latitude tundra and a temperate tall grass prairie, of their 

early responses to experimental warming. According to predictions of the Earth’s 

tipping element, the subarctic tundra will be more vulnerable in response to temperature 

changes than the temperate grassland. We hereby hypothesize that the microbial 

community in tundra soils is also more sensitive to warming, and imposes greater 

responses than the prairie communities. A previous publication (Xue et al 2016a) has 

metagenomically characterized the rapid responses of the microbial functional genes, 

along with greatly altered soil physical-chemical properties and ecosystem carbon flux, 

in the tundra soils after only two winters of warming treatment. Here we presented 

results from similar microbial analyses of soils collected also after one and half years of 

warming, with a similar level of temperature increase, from an Oklahoma tall grass 

prairie. We applied several metagenomic techniques, including functional gene array 

hybridization, amplicon sequencing of 16S, 28S and nifH genes, and metagenomic 

shotgun sequencing, and quantified the magnitude of difference in the responses of the 

microbial functional genes to warming at sites representing the two ecosystems. Our 

results indicated that although the background community composition differed in the 

two sites, warming increased the abundance of functional genes involved in carbon and 

nitrogen in both sites, but with a greater magnitude and more influenced genes in the 

tundra site. Functional gene composition in the two sites might be driven by varied 

environmental factors, which lead to their differed responses to warming. Our study 
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provided field evidence in supporting that the tundra ecosystem in northern high-

latitude region harbors more responsive soil microbial communities than temperate 

prairie does to climate warming.  

4.3 Material and methods 

4.3.1 Sites Description and Sampling 

This study analyzed soil microbial communities from two field warming experiments, 

one in the Carbon in Permafrost Experimental Heating Research site (CiPEHR, 

63º52’59’’N, 149º13’32’’W) in Healy, Alaska (AK site), and the other in the Kessler 

Atmospheric and Ecological Field Station (KAEFS, 34°58'54"N, 97°31'14"W) in 

central Oklahoma (OK site). The AK site (Natali et al 2011, Xue et al 2016a) 

represented a cool moist acidic tundra ecosystem underlain with discontinuous 

permafrost at the depth of >1 m, with an annual mean temperature of ‒1.0 °C (monthly 

averages ranged from ‒16 °C in December to 15 °C in July) and average annual 

precipitation of 378 mm. This area was covered only by C3 plant species, dominated by 

Eriophorum vaginatum, Vaccinium uliginosum, moss and lichen. The top 0.45-0.65 m 

soil was carbon-rich, below which was mineral soil with a mixture of glacial till and 

windblown loess. The OK site (Li et al 2013, Xu et al 2013, Xu et al 2016) was located 

on an herbivore grazing-excluded temperate tall grass prairie, with the mean annual 

temperature of 16.3ºC (monthly averages ranged from 3.3ºC in January to 28.1ºC in 

July), and average annual precipitation of 967mm. The plots were dominated by C3 

forbs and grasses in spring, and by C4 grasses in Fall. The soil was sandy loam texture 

with a water holding capacity of 37%.   
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The experimental setting of AK CiPEHR experiment was detailed in previous 

publications (Natali et al 2011, Xue et al 2016a). Briefly, there were six field-replicated 

sets of control and warmed plots. The winter warming treatment was achieved by 

setting up snow fences in between each control and warmed plot pair, and let more 

snow accumulate on the warmed plot to insulate heat transfer from ground to the 

atmosphere. Before the snow started to melt in spring, excessive snow was removed 

from above the warmed plots to ambient cover depth, to prevent a difference in 

hydrological conditions between treatment and control. The snow fences were placed 

every winter starting from late 2008. Twelve soil cores, one from each plot, were 

sampled in May 2010, the beginning of growing season, after two winters (1.5 years) of 

warming treatment. Soils from 15-25cm were analyzed in this study. At OK site, there 

were four pairs of field replicated control and warmed plots. The warming treatment 

was achieved by infrared radiators hung at 1.5m above the plot. The radiators were 

powered and working non-stop since spring 2009. In control plots, wood “dummy” 

heaters were used to simulate shading effect in warmed plots. Eight surface (0-15cm) 

soils cores, one from each plot, were sampled in Oct 2010, after about 1.5 years of 

warming treatment. Samples from both sites were transported to the laboratory and 

stored at -80 °C immediately until analyses. Any observable plant root materials were 

picked out before the soil was processed. 

The AK and OK sites represented very different grassland ecosystems in terms of 

ambient temperature, soil physical-chemical properties, and vegetation type. They made 

a valid comparison with regard to answering our question on how different ecosystems 

respond initially to climate warming because of three reasons. First, both sites were 
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located in areas that no human activities other than site maintenance occurred, allowing 

the study of natural responses of ecosystems under climate change. Second, although 

warmed through different approaches, the temperatures in warmed plots were increased 

by similar levels at the two sites. Third, both sites were operated for a similar length of 

time at sampling. Although AK plots were not artificially warmed in the growing 

season, the winter warming effect was observed to linger during the summer (Natali et 

al 2011). We used surface/subsurface soils for analysis because these layers contain 

more organic carbon, and are the depths in which microbes interact intensively with 

plants in mediating carbon cycling. At AK, top 0-5 cm layers of soils were mostly under 

decomposed plant debris, thus subsurface fractions were used in the analysis. 

4.3.2 Field observations 

The field measurements at AK site were described in detail in Xue et al (2016a). Here 

we summarize the environmental observations in OK site. 

Temperature and moisture. Soil temperature was continuously monitored by 

thermocouples installed at the depth of 7.5cm in the center of each plot. The hourly 

average data was stored in an SM19 Storage Module (Campbell Scientific). Soil 

volumetric water content was measured once or twice every month between 10 am and 

3 pm using a manual time domain reflectometry (Soil Moisture Equipment Corp., Santa 

Barbara, CA, USA) at 10 cm depth. The soil temperature and moisture data at the OK 

site presented in this study were the annual average for 2010.  

Plant biomass. The peak aboveground plant biomass was estimated by a simplified pin-

contact method (Frank and McNaughton 1990, Sherry et al 2008) at the peak biomass 

season in fall (Luo et al 2009). A 0.5m x 1m frame, containing 5x10 10cm by 10cm 
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cells, was held at 0.7m (this height covered all the plants) above the ground surface. A 

pin was held perpendicular to the ground at the corner of each cell to record green (live 

plant) and brown (standing litter) hits with the pins. This process was also done in 

biomass harvested plots (samples not included in this study) before the plants were 

clipped at 10 cm above the soil surface. The clipped plants were separated into C3 and 

C4 plants and oven-dried at 65 °C for 48 h for biomass. With the regression relationship 

between pin-hits and the directly weighed biomass in clipped plots, we estimated the 

biomass in the unclipped (warmed and control) plots.  

Ecosystem carbon fluxes. Ecosystem gas exchange was measured with a transparent 

cubic chamber (0.5 m in length) attached to an infrared gas analyzer (IRGA; LI-6400, 

Li-Corp.) once or twice a month on clear, sunny days between 10 am and 3 pm  (Niu et 

al 2008). Two small fans ran continuously to mix the air inside the sealed chamber 

during the 90-s measurement periods. Nine consecutive recordings of CO2 

concentration were taken at 10-s intervals. CO2 and H2O flux rates were determined 

from the time-courses of the concentrations to calculate the NEE (Steduto et al 2002). 

Following the measurements of NEE, the chamber was vented and sealed again, and 

covered with an opaque cloth to avoid light and thus photosynthesis. After the CO2 

concentration in the chamber began to steadily increase (usually 0.5 min after the 

chamber was covered), the CO2 exchange measurements were repeated to estimate 

ecosystem respiration (Reco). Gross primary productivity (GPP) was estimated as the 

difference between NEE and Reco. The NEE, Reco and GPP data at the OK site presented 

in this study were the annual average in 2010.  
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Soil respirations. Soil respiration (Rs) and heterotrophic respiration (Rh) were measured 

using an LI-8100 portable soil CO2 fluxes system attached to a 10-cm survey chamber 

once or twice a month, avoiding days immediately after rainfall events. Rh was 

estimated by setting the chamber on top of a shallow PVC collar (10 cm in diameter and 

5 cm in height) installed at 2-3 cm deep in the soil (Zhou et al 2007) and measure the 

CO2 concentration inside. Small living plants inside the PVC collars were clipped at the 

soil surface to eliminate leaf respiration. Rh measurements took place on a deep collar 

(70 cm in height) that were inserted at 70 cm below the soil surface to prevent new 

roots from going in. After old root inside of the collar died and being decomposed, CO2 

efflux from the deep collars represented Rh (Zhou et al 2007). Autotrophic respiration 

(Ra) is calculated as the difference between Rs and Rh. 

4.3.3 Soil geochemical and microbial analysis 

After sampling, soils from both AK and OK sites were processed together using the 

same methods for soil geochemical and microbial analyses. Soil geochemical analyses 

included soil carbon, nitrogen, δ13C and δ15N stable isotope analysis and soil labile and 

recalcitrant carbon pool fractionation. Microbial analyses included DNA extraction, 

functional gene array (GeoChip 4.2) hybridization, amplicon sequencing of 16S rRNA 

genes, and nifH genes, and metagenomic shotgun sequencing. Methods used in those 

analyses, downstream data processing procedures, and data processing results for AK 

site were described in detail in Xue et al (2016a). Here we summarized the results for 

OK communities. After data cleaning and processing, a total of 44,736 functional gene 

probes were detected by GeoChip hybridization, 198,520 sequences in 12,516 OTUs 

were recovered from 16S rRNA gene sequences, and 250,844 sequences in 5,185 OTUs 



72 

 

were retrieved from nifH sequences. Statistics for metagenomic shotgun sequences 

were summarized in Table S 5. 

In addition to the above analysis, we also performed 454 pyrosequencing of 28S rRNA 

gene amplicons to investigate the fungal communities in the two sites. Primer pair 

LR0R (5’- ACCCGCTGAACTTAAGC -3’) and LR3 (5’- CCGTGTTTCAAGACGGG 

-3’) (the 28S rRNA gene position in Saccharomyces Cerevisiae)(Vilgalys and Hester 

1990), combined with sample-identifying 8-mer tag sequences by the 2 bp spacer 

sequences, was used to amplify the 28S rRNA genes of the community DNA samples. 

The primers were synthesized by Eurofins. The PCR system, containing 50 mM KCl, 

10 mM Tris-HCl at pH 8.3, 0.1% Triton X-100, 2.5 mM MgCl2, 200 µM dNTPs 

(Invitrogen), 5 units of Taq polymerase, 0.1µg BSA (New England Biolabs Inc., 

Ipswich, MA, USA), 0.4 µM each primer and 12.5 ng DNA template in a volume of 

100 µL, was kept under the following thermocycling conditions: 3 min at 94°C for 

initialization; then 35 cycles of 1 min at 94°C for denaturation, 45 s at 53°C for 

annealing, and 1 min at 72°C for extension; and 15 min at 72°C for final elongation. 

Five to ten 100 µL PCR reactions were performed for each sample, and the products 

were pooled together, purified by agarose gel electrophoresis, recovered using 

QIAquick Gel Extraction Kit (Qiagen), and quantified with PicoGreen using an 

FLUOstar Optima (BMG Labtech, Jena, Germany). Equimolar uniquely-tagged 

amplicons from each sample were then combined into one library for 454 

pyrosequencing at Macrogen, Inc. (Seoul, Korea) using 454 GSFLX Titanium platform. 

Raw sequences were split by tags and trimmed to remove primers. The sequences were 

then cleaned using LUCY (Chou and Holmes 2001) by setting the following 
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parameters: the maximum average error at 0.01, the maximum error at the ends at 0.01, 

the minimum score at 21, window size at 50, minimum length at 200 and allowed N 

number at 10. Sequences containing unidentified base N and detected by UCHIME to 

possibly generate chimeras were removed (Edgar et al 2011). A total of 326,245 

qualified sequences for AK samples and 255,760 qualified sequences for OK samples 

were obtained and clustered to OTUs at a similarity of 0.97 using CD-HIT (Li and 

Godzik 2006). The OTU singletons were removed. The representative sequence of each 

OTU was identified phylogenetically in RDP Classifier (Wang et al 2007) with the 

confidence cutoff 0.5. Finally, 325,636 sequences in 1,172 non-singleton OTUs for AK 

samples and 250,844 sequences in 5,185 non-singleton OTUs for OK samples were 

normalized to relative abundance and included in statistical analyses. 

Notably, for 16S rRNA genes sequencing and metagenomic shotgun results, sequences 

from AK and OK were processed as one sequence pool and annotated to species (OTUs 

or functional guilds) together, thus in downstream analysis, we were able to line up 

same species in the two sites by their OTU or functional guild IDs. The 28S and nifH 

sequences were annotated separately for AK and OK, thus we only compared the 

community response to warming within each site, but did not compare sequences 

between sites.  

4.3.4 Statistical analysis 

We performed the following statistical analysis to test the warming effect on microbial 

communities and environmental variables. (i) Multi-response permutation procedure 

(MRPP) (Van Sickle 1997), a non-parametric analysis for multivariate data, was used to 

test the differences of soil microbial communities between warming and control 
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treatments, and between AK and OK sites with the distance matrix constructed using 

Bray-Curtis distance (Bray and Curtis 1957). (ii) Two-tailed t tests were performed to 

test the significance of differences between warming and control treatments for the 

environmental variables (i.e., soil geochemistry, plant biomass, and ecosystem carbon 

fluxes). For environmental variables measured at multiple time points (temperature, 

moisture, GPP, Reco, and NEE), repeated measure ANOVA was performed. (iii) 

Analysis of variance (ANOVA) (Chambers et al 1992) was performed to test the 

treatment effect on abundances of each function gene involved in carbon and nitrogen 

cycling for GeoChip or relative abundances of OTUs of certain genus or phylum 

groups. Other than warming treatment effect, the probe or OTU was also considered a 

factor in the employed model for partitioning the variance from various probes within 

each gene catalog. (iv) Canonical correspondence analysis (CCA) (Hotelling 1992) was 

performed to determine the linkage between each environmental variable and the 

microbial community composition in various functional categories. (v) Response ratio 

(Hedges et al 1999) was used to determine the magnitude and direction of warming 

induced change for each microbial species (OTU for sequencing data, probe for 

GeoChip data, functional clusters for EcoFun-MAP processed shotgun sequencing data, 

and subsystems) that were present in both warming and control samples. (vi) To 

quantitatively compare the magnitude of functional gene abundance changes between 

AK and OK sites, we introduced the ratio of response ratios as follows, based on the 

calculation of response ratio.  

The response ratio of a functional gene abundance to treatment, as introduced by 

(Hedges et al 1999), was calculated as  
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𝐿 = ln(𝑋̅𝑊) − ln(𝑋̅𝐶) 

where 𝑋̅𝑊 and 𝑋̅𝐶 are the sample mean of probe signal intensities in warmed and control 

groups, respectively. Variance of L is calculated as 

𝑣 =
(𝑠𝑊)

2

𝑛𝑊𝑋̅𝑊
2 +

(𝑠𝐶)
2

𝑛𝐶𝑋̅𝐶
2 

where 𝑛𝑊 and 𝑠𝑊 denotes the samples size (the product of probe number in each gene 

and the number of biological replicates) and the standard deviation of probe signal 

intensities in warming group. 𝑛𝐶  and 𝑠𝐶 denote sample size and intensity standard 

deviation of the control group. So, the standard error of each response ratio L is 

𝑆𝐸𝐿 = √𝑣 (1) 

And the 95% confident interval λ satisfies 

𝐿 − 𝑧0.025√𝑣 ≤ 𝜆 ≤ 𝐿 + 𝑧0.025√𝑣 (2) 

where 𝑧0.025 = 1.96 is the point lower than which 97.5% of the total area was included 

in standard normal distribution. 

To compare the magnitude of warming effect in AK with that in OK site, we calculated 

the ratio of response ratios as 

𝑅 = ln

(

 
 

𝑋̅𝑊𝐴𝐾
𝑋̅𝐶𝐴𝐾
𝑋̅𝑊𝑂𝐾
𝑋̅𝐶𝑂𝐾 )

 
 
= ln(

𝑋̅𝑊𝐴𝐾
𝑋̅𝐶𝐴𝐾

) − ln(
𝑋̅𝑊𝑂𝐾
𝑋̅𝐶𝑂𝐾

) = 𝐿𝐴𝐾 − 𝐿𝑂𝐾 

Standard errors of  𝐿𝐴𝐾 and 𝐿𝑂𝐾 are calculated using equation (1). The standard 

deviation is calculated as 

𝑆𝐷𝐿 = 𝑆𝐸𝐿 √𝑛 

where n is the sample size of each gene for each site. The pooled variance of R is 
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𝑠𝑝
2 =

(𝑛𝐴𝐾 − 1)𝑠𝐿𝐴𝐾
2 + (𝑛𝑂𝐾 − 1)𝑠𝐿𝑂𝐾

2

𝑛𝐴𝐾 + 𝑛𝑂𝐾 − 2
 

The standard error for R is estimated as 

𝑆𝐸𝑝 = 𝑠𝑝√
1

𝑛𝐴𝐾
+
1

𝑛𝑂𝐾
 

Then the 95% confidence interval is calculated with equation (2). 

4.4 Results 

4.4.1 Soil property, plant and ecosystem responses to by warming  

Table 4.1 Summary of soil and plant attributes at the OK site (mean ± standard error). 

Significance was tested by two-tailed t test to compare control and warming samples or 

repeated measure ANOVA for soil microclimate and ecosystem carbon exchange 

variables. The significance was tested by two tailed t test, labeled with * when p<0.05. 

 Soil and ecosystem 

attribute 
Control Warming 

p 

Soil Microclimate Soil Temperature (°C) 16.17±0.12 18.51±0.18 ** 

Soil Moisture (%) 10.59±0.56 9.17±0.55 ** 

Soil C and N 

Labile C pool 1 (%) 35.25±5.27 25.97±1.36  

Labile C pool 2 (%) 21.74±1.08 30.21±2.26 ** 

Recalcitrant C pool (%) 43.02±4.62 43.82±1.77  

TOC (mg C g-1 dry soil) 9.09±1.71 12.85±1.68  

δ13C (‰) -22.28±0.79  -22.38±0.63  

Total N (%) 0.07±0.01 0.08±0.01  

NH4
+ (mg N g-1 dry soil) 38.35±5.15 52.20±4.86  

NO3
- (mg N g-1 dry soil) 8.69±2.98 6.26±0.36  

δ15N (‰) 5.14±0.34 4.38±0.35  

Plant biomass 

(g m-2) 

C3 451.1±57.4 395.3±39.2  

C4 110.8±26.0 91.0±16.6  

Total 561.90±39.66 486.26±48.68  

Ecosystem C 

exchange 

(g-C m-2 month-1) 

Net ecosystem exchange 20.10±5.66 55.58±7.39 ** 

Ecosystem respiration -135.77±4.47 -117.15±10.82  

Gross primary productivity 155.87±7.44 172.73±13.16  

 

The AK soil and ecosystem properties were presented in (Xue et al 2016a). Here we 

presented data in OK and compare the changes in the two sites (Table 4.1). Observed 

soil temperature during the one and half years of warming increased similar degrees 
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(2.3 °C, -6.2 °C to -4.0 °C, in winter at AK, and 2.3 °C, 16.2 to 18.5 °C, averaged 

across the entire year at OK, p<0.01). Moisture was increased at AK for 10% (47.8 to 

52.7%, p<0.01) but decreased at OK for 13% (10.59 to 9.17%, p<0.01). Both sites had 

increased portion of the labile carbon pool that consisted mainly of cellulose in the total 

soil organic carbon (36.1% in AK, 39% in OK). AK warming resulted in the 

significantly altered pattern of ecosystem carbon flow, including increased plant 

productivity and ecosystem respiration. While no significant changes in these 

parameters were observed in OK, although slightly increased GPP and decreased Reco 

resulted in a larger amount of carbon being sequestrated, as indicated by increased NEE 

under warming (176.5%, p=0.01). While the two ecosystems were subjected to a similar 

level of artificial warming for a comparable length of time, soil and plant properties 

were differentially affected. 

4.4.2 Microbial community responses to warming 

Table 4.2 Summary of permutation tests to investigate warming effects on soil 

microbial community composition based on GeoChip hybridization, OTUs for 16S 

rRNA, 28S rRNA and nifH genes detected by amplicon sequencing, and genes or 

subsystems detected by metagenomic shotgun sequencing. Bray-Curtis distance was 

used in the multiple response permutation procedure (MRPP). nifH and 28S sequences 

were separately processed for AK and OK, thus no comparison was performed between 

sites. 

Detection 

approaches 

Targeted 

genes/groups 

Warming vs. 

Control in AK * 

Warming vs. 

Control in OK 
AK vs. OK 

δ P δ P δ P 

Microarray GeoChip probes 0.09 0.03 0.04 0.52 0.07 0.001 

Amplicon 

sequencing 

16S sequences 0.63 0.26 0.53 0.08 0.60 0.001 

nifH sequences 0.40 0.70 0.66 0.59 - - 

28S sequences 0.76 0.73 0.66 0.04 - - 

Metagenomic 

shotgun 

sequencing 

EcoFun-MAP 0.34 0.55 0.30 0.77 0.32 0.001 

Subsystems from 

shotgun sequences 
0.05 0.77 0.02 0.41 0.03 0.001 

* Data published in Xue et al (2016a). 
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Overall, all four techniques revealed fundamentally different microbial community 

taxonomic and functional composition in AK and OK sites (Table 4.2), with higher 

diversity in OK samples than in AK (Table S 13, Figure 4.1b, d, e, and f). Warming 

altered the microarray detected functional gene composition in AK (Xue, M. Yuan et al. 

2016), while changed the fungal community composition, and marginally affected 

bacterial and archaeal taxonomy in OK (Table 4.2).  

 

Figure 4.1 Percentage of species that were uniquely present in control or warmed 

samples, and those shared but with response ratios significantly differed from zero. The 

dark grey bars in AKC and OKC groups represent species with negative response ratios, 

or decreased in abundance in response to warming. The dark grey bars in AKW and 

OKW denote the species with increased abundance under warming. 

In the open-format detections (i.e., 16S, 28S and nifH sequencing), species that were 

uniquely present in either control or warmed samples consisted of a significant portion 
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all the detected species (Figure 4.1d, e, and f). This is also true for the EcoFun-MAP 

processed shotgun sequences (Figure 4.1b). Notably, using the same technique, the 

GeoChip functional gene array, AK samples had much larger portions of unique probes 

than OK samples (Figure 4.1a). In five of the six data sets for AK, control samples had 

more unique probes than warming (Figure 4.1a, b, c, e, and f). For OK, unique OTUs 

were much less in control samples compared with warming only in 28S community 

(Figure 4.1e), while in other data sets, similar portions of unique OTUs were detected 

for control and warming. 

Detailed changes of species detected by different techniques in response to warming 

were presented in Figure 4.2Figure 4.2. In all the datasets, species responded both 

positively and negatively to warming treatment, and the responding species distributed 

across the entire detected functional or taxonomic spectrums. In 16S data, differential 

responses of certain groups were observed (Figure 4.2d). For example, subgroups from 

Acidobacteria and Proteobacteria tended to only increase when warmed. Figure 4.2g 

and Figure 4.3 summarized the values of response ratios that were confidently different 

from zero. For all the three function-related datasets and 16S community, AK species 

had a larger positive response than OK (Figure 4.3a, b, c, and d). Negative responses of 

species were also larger in EcoFun-Map and 16S data (Figure 4.3b, d). NifH OTUs, in 

the opposite, tend to have larger response ratios at OK compared with AK (Figure 

4.3f).  
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Figure 4.2 Response ratios of all the species to warming in the two sites detected by six 

different metagenomic techniques. Panels (a)-(f) present response ratios of GeoChip 

functional gene probes, EcoFun-MAP fished out functional gene clusters from shotgun 

sequences, shotgun sequences annotated subsystems against the GreenGene database, 

16S amplicon sequences, 28S amplicon sequences, and nifH amplicon sequences, 

respectively. In each plot, negative response ratios mean decreased abundance by 

warming, and vice versa. If the 95% confidence interval of a response ratio does not 

overlap with zero, the value is marked with a red dot. Grey dots therefore mean that the 

response ratios are not confidently differed from zero. Red dots sitting on the upper and 

lower frame of the plots denote the species uniquely present in control and warmed 

plots, respectively. For (a) through (d), identical species are at the same location on x-

axes for AK and OK. (a), (b), and (d) have the annotation of major functions and 

taxonomic groups underneath the plots. In (c), around 1500 subsystems of functions 

were not categorized into a higher level. In (e) and (f), species were separately plotted 

for AK and OK, with their own annotations. (g) summarized the response ratios of 

common species in AK and OK, with the 1:1 line plotted in order to compare the 

response ratios of species in the two sites. Those at the edge of plots were species 

uniquely present in control or warmed group. 
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Figure 4.3 Means and standard deviations of the response ratios significantly differed 

from zero. Positive and negative response ratios were separately calculated. Asteroids 

mark significant (p<0.05) difference of the means in AK compared with in OK by 

student T-test.  

4.4.3 Responses of functional genes related to carbon decomposition, anaerobic 

respiration, and nitrogen cycling 

Warming tended to increase the abundance of carbon degradation related genes in both 

sites ((Xue et al 2016a), Figure S 14). While more than half of the detected carbon 

degradation genes were increased in abundance after only one and half years of 

warming in AK, Only 18.2% (6 of 33) of detected carbon decomposition genes based 

GeoChip data were increased by warming (p<0.05, Figure S 14a), including amyA gene 

encoding α-amylase for starch degradation, ara gene encoding arabinofuranosidase and 

the gene encoding mannanase for hemicellulose degradation, the gene encoding 

endochitinase for chitin degradation, vanA gene encoding vanillate O-demethylase 
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oxygenase for aromatics degradation and the gene encoding phenol oxidase for lignin 

degradation. Moreover, the magnitudes of changes between warming and controls were 

much greater at AK than OK, demonstrated by the ratio of response ratios analysis 

(Figure 4.4a).  

 

Figure 4.4 The ratio of response ratios between AK and OK sites for (a) carbon 

degradation genes and (b) anaerobic respiration genes. Asteroids indicate significant 

different of the ratio of response ratios as the 95% confident interval had no overlap 

with zero. In (a), the functional genes were arranged so that the targeted substrates are 

from labile to recalcitrant for decomposition. 

Regarding genes involved in anaerobic processes, no more than half of the detected 

genes (45.5%, 5 of 11) were significantly stimulated by warming at the OK site 

(p<0.05; Figure S 14b), including narG, nirS and nosZ genes for denitrification, dsrA 

and dsrB genes for sulfite reduction, and 9 of those genes significantly increased in 

abundance at AK site (Xue 2016). Moreover, the magnitudes of changes between 
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warming and controls for nirS, dsrA and dsrB were significantly greater at AK than OK 

site (Figure 4.4b).  

Warming also increased gene involved in nitrogen cycling at both sites. In nitrogen 

cycling, nearly half of genes (47.1%, 8 of 17) were increased in abundance by warming 

at the OK site (p<0.05; Figure S 15), including ureC gene for ammonification, amoA 

gene from bacteria for nitrification, napA and nrfA gene for dissimilatory nitrogen 

reduction, narG, nirS and nosZ genes for denitrification, and nifH gene for nitrogen 

fixation. Compared with AK site, genes for the assimilatory nitrogen reduction pathway 

(nasA and nir) did not change in abundance at OK site. The magnitudes of warming-

augmented nitrogen gene abundance changes for nirS and nifH were significantly 

greater at the AK than OK (Figure S 15). 

4.4.4 Microbial functional guilds in correlation with environmental conditions 

Many of the AK microbial functional attributes related to carbon degradation, nitrogen, 

phosphorus and sulfur cycling were correlated with soil temperature and moisture (Xue 

et al 2016a). While for the OK functional gene composition of the 19 functional 

subcategories, none was correlated with soil temperature, despite detected functional 

gene abundance changes under warming (Figure S 14 and Figure S 15). Only the 

functional gene composition for anammox pathway was correlated to soil moisture 

(Table 4.3). Instead, the functional structure of a majority of these functional 

subcategories were significantly or marginally significantly correlated with soil 

substrate related variables: 18 with the C4 plant biomass, 15 with the C3 and C4 biomass 

ratio, and 16 with nitrate concentration (Table 4.3). The mass correlations of microbial 

functional structures with soil and ecosystem respirations at AK site were not observed 
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at OK (Table 4.3). This indicated that different environmental factors cast major 

impacts on the microbial functional community at the two sites. 

Table 4.3 CCA between the structure of each functional gene group involved in 

C/N/P/S cycling and each environmental attribute for the OK site. The functional 

community structure was determined by GeoChip hybridization. The significance is 

represented by ** when p<0.05 and * when p<0.10. Environmental attributes without 

significant correlation to any of the functional gene groups are not listed. A similar table 

for AK site was presented in Xue et al (2016a). 

Category Subcategory 
aEnvironmental atributes 

Moist. NEE Ra C4 C3:C4 LP1% LP2% LP3% NO3
- NH4

+ 

C 

degradation 

Starch       ** **       **   

Hemicellulose       ** **       *   

Cellulose       ** *       *   

Chitin       ** **       * * 

pectinase                 **   

Others       ** *       *   

Lignin       ** **       **   

N 

Ammonification       **         *   

Anammox * *   **   ** *     ** 

Assimilatory N 

reduction       ** **       *   

Denitrification       ** **       **   

Dissimilatory N 

reduction       ** **       *   

Nitrification       ** **       *   

nifH       ** **       **   

P 
Phosphorus 

utilization       ** **       *   

S 

Adenylylsulfate 

reductase     * ** **       *   

Sulfide 

oxidation       *       *     

Sulfite 

reductase       ** **       *   

Sulfur oxidation       ** **       *   
aEnvironmental attributes include soil moisture (Moist.), net ecosystem exchange 

(NEE), autotrophic (root) respiration (Ra), peak biomass of C4 species (C4), ratio 

between C3 and C4-biomass (C3:C4), soil labile carbon pool 1 (LP1%), soil labile carbon 

pool 2 (LP2%), soil labile carbon pool 3 (LP3%), soil nitrate (NO3
-) and ammonia 

(NH4
+) contents. 

4.5 Discussion 

Findings from several metagenomic techniques were synthesized in this study to 

investigate the soil microbial community’s early responses to climate warming in two 

contrast ecosystems, a sub-arctic moist acidic tundra and a temperate tall grass prairie. 
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Although soils in the two ecosystems bore pronouncedly distinct species pools and 

functional potentials, functional genes involved in carbon degradation, anaerobic 

respiration and nitrogen cycling were detected with increased abundance at both sites. 

However, more functional genes were significantly increased, with a larger magnitude 

of response, were observed at the tundra site compared with the prairie, under a similar 

level of temperature elevation after the same length of time of warming treatment. Soil 

temperature and moisture were strongly correlated with functional gene compositions in 

the tundra site, while substrate-related variables were major covariates with the 

community structure at the prairie. Our results indicated that soil microbial communities 

were differentially affected by temperature increase in distinct ecosystems, and that 

contrasting plant or edaphic factors might play a role in influencing the sensitivity of the 

microbial functional genes in response to warming. 

The ratio of response ratios revealed larger magnitudes of functional gene changes in 

the tundra compared with the prairie by direct quantification of the responses between 

the two sites. Northern permafrost region received extensive attention in climate change 

research due to its enormous size of carbon storage, and the vulnerability of this carbon 

to decomposition upon warming (Schuur et al 2008). The tundra and permafrost loss 

were evaluated as potential “tipping elements” of the earth’s climate system (Lenton et 

al 2008). Many studies have documented altered tundra and permafrost microbial 

community composition, functional potential, and biochemical pathway under 

conditions of climate change related thaw (Coolen and Orsi 2015, Mackelprang et al 

2011), hydrological reformation (Lipson et al 2015), temperature increase (Mikan, 

Schimel et al. 2002, Schimel, Bilbrough et al. 2004, Allison and Treseder 2008), plant 
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community succession (Sturm, Racine et al. 2001, Schuur, Crummer et al. 2007, Lantz, 

Kokelj et al. 2009), and fire (Taş, Prestat et al. 2014). While warming effect on 

temperate grassland microbial communities were also investigated in many field 

experiments (Zogg, Zak et al. 1997, Zhang, Parker et al. 2005, Briones, Ostle et al. 

2009, Castro, Classen et al. 2010, Ma, Lü et al. 2011, Hayden, Mele et al. 2012, Nie, 

Pendall et al. 2013, Luo, Rodriguez-R et al. 2014), direct and quantitative contrast of 

the tundra to other ecosystems in terms of soil microbial responses to climate change 

factors is limited. Here, we provided field evidence in supporting that at the early phase 

of warming, microbial community in tundra soils was more sensitive, and imposed 

larger scales of changes in the abundances of responding species as well as functional 

genes in comparison with those from the temperate prairie. (Rustad, Campbell et al. 

2001) et al reported in a meta-analysis that plant productivity had a larger positive 

response to warming in cooler ecosystems, but soil respiration and net nitrogen 

mineralization in tundra and grasslands showed no significant difference in the 

magnitude of response to warming. Yet (Beier, Emmett et al. 2008) concluded that in 

short term, the aboveground processes were more sensitive to warming than 

belowground processes by observing European shrublands with a temperature gradient. 

Our study observed larger positive responses of both plant productivity and soil 

microbial functional genes. We could capture the rapid response of belowground 

community composition to warming potentially because the high sensitivity of 

microarray to targeted sequences (Zhou, He et al. 2015), as by amplicon or shotgun 

sequencing, warming influence was not reflected on the entire detected community. 

This consequently implies that northern permafrost region might be more vulnerable 
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and contributable to future climate conditions over some other ecosystems. 

Furthermore, since observations here were based on temperature manipulations of a 

similar level at the two sites, the warming influence on tundra ecosystem might be even 

larger compared with the prairie in real climate scenarios, for the predicted global 

temperature increase will be larger at northern latitudes (Hansen, Ruedy et al. 2010).  

Multiple mechanisms may explain the differences in the sensitivity and the magnitudes 

of microbial responses to warming in the two ecosystems. Different limiting 

environmental factors might exist for microbial growth and function at the two 

locations. The tundra site was featured with an annual average temperature below 

freezing point, even much lower than the optimal growth temperature for most 

psychrophiles (D'Amico, Collins et al. 2006), but with abundant soil organic materials 

and high nitrogen availability. Upon warming treatment, communities in the tundra 

likely directly responded to raised temperature, and covaried with other variables that 

closely related to temperature, such as moisture. Strong correlations between the 

community structure with soil and ecosystem respirations could resulted from either 

covariation of temperature with respiration rate, or direct increase in microbial biomass. 

In tundra soil, substantial portions of organic carbon and nitrogen pools remain 

inaccessible to microbial consumption (Schuur, Bockheim et al. 2008), thus no 

correlations were observed between them and the community structure. Oklahoma 

prairie, on the other hand, had comfortable temperatures for most microorganisms, 

temporally highly variable amount of moisture, but limited soil substrate, especially soil 

nitrogen, similar as reported for many grassland ecosystems (Vitousek and Howarth 

1991, LeBauer and Treseder 2008). As major microbial substrates came from plant-
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derived organic materials, the community structure varied with plant biomass, but not 

soil temperature, the increase of which did not significantly alter the plant biomass. 

During the first 1.5 years of operation, increased carbon sequestration (indicated by 

NEE) at the prairie site was consistent with the increase in cellulose fraction of the 

carbon pool. Whether the increase in soil substrate and available nutrient in response to 

warming will continue, and whether soil microbial communities will indirectly respond 

to the substrate change, are to be answered with future observations.  

In summary, by the quantitative comparison of the magnitude of warming influence on 

soil microbial community composition and functional gene abundances in two different 

ecosystems, we reported more sensitive and stronger responses of the tundra 

communities at the early phase of the warming experiment. The difference in the 

limiting environmental factors at the tundra and prairie sites, and whether warming 

treatment altered these limitations for the microbial community, might be important 

mechanisms driving the observed difference in community succession in both 

ecosystems. Admittedly, whether the significant community shifts after only one and 

half years of warming at the tundra site would continue or acclimate in the long term 

remains elusive. However, given the rapid initial response and high sensitivity of the 

tundra soil communities to warming, and the huge amount of carbon storage suspected 

to be accessible to these microbes, the tundra ecosystem might be more contributable 

than other ecosystems to future climate condition and carbon cycle, such as the 

temperate prairie.  
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Chapter 5: Warming facilitates the interconnection of grassland soil 

microbial communities  

5.1 Abstract 

Soil microbial community is a critical component of terrestrial ecosystems, whose 

response to climate change could potentially alter the global carbon balance. Although 

intensive reports have shown that warming can influence the soil microbial community 

composition and structure, little is clear about how the microbial interactions among 

themselves would be influenced. Here, soil microbial co-occurrence networks were 

constructed using 16S rRNA gene amplicon sequences extracted from monthly samples 

collected in a long-term field warming experiment on a Central Oklahoma grassland. 

We observed substantially larger and more connected networks for warmed 

communities compared with control, despite huge variation in network structures along 

season. The increase in network complexity under warming was concurrent to 

decreased phylogenetic diversity, reflecting environmental filtering and increased 

functional association in altered soil and vegetation conditions. A portion of identified 

keystone taxa, which play important roles in network topology, reoccur in different 

networks, representing a preserved prominent group in grassland soils across the season 

and under warming. The structure of microbial networks introduced a dimension 

beyond species abundance, which revealed more complicated responses of microbial 

communities to climate warming. 
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5.2 Introduction 

The global temperature increases and warming related climate changes have become 

not only a scientific, but also political and economic concern globally (Pachauri et al 

2014). A huge amount of carbon, an order of magnitude larger than released by human 

society, is cycled among the land, ocean, and atmosphere, where the even larger amount 

of carbon is stored (Stocker 2014). The disturbance from the changing climate could 

lead to changes in carbon cycles, either releasing more carbon into the atmosphere and 

create a positive feedback, or sequestrate more carbon into land and ocean to mitigate 

greenhouse effect (Hansen et al 2013, Kirschbaum 2000, Luo 2007, Soden and Held 

2006). The scenarios of carbon sequestration depend on the responses and interactions 

of ecosystem components to climate change. Soil microbial communities were found to 

be critical mediators in terrestrial carbon cycles in different terrestrial ecosystems 

(Bardgett et al 2008, Davidson and Janssens 2006). On the one hand, soil microbes 

perform major activities of organic matter decomposition; on the other hand, they also 

transform organic materials into soil nutrients need by the plant to fix carbon, and 

involve in carbon mineralization processes. Understanding how soil microbial 

communities perform under diverse types of disturbance related to climate change is a 

critical component of climate change biology.  

Rich literatures have reported and discussed the compositional, structural and functional 

change of soil microbial communities in response to warming (Bradford 2013, Deng et 

al 2015, Hartley et al 2007, Jassey et al 2013, Nie et al 2013, Pailler et al 2014, 

Peltoniemi et al 2015, Rousk et al 2013, Semenova et al 2015, Streit et al 2014, Tucker 

et al 2013, Wang et al 2014, Yoshitake et al 2015, Zhang et al 2013, Zhang et al 2005, 
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Ziegler et al 2013). The responses depend on ecosystem and climate regime under 

study, and the interaction of warming with a wide range of other factors (Castro et al 

2010, Cavaleri et al 2015, Docherty et al 2012, Walter et al 2013), such as precipitation 

(Liu et al 2016, Zhang et al 2013), moisture (A'Bear et al 2014, Rousk et al 2013), 

nutrition level (Hines et al 2014, Melle et al 2015), and the intensity of disturbances like 

clipping or grazing (Crowther et al 2015, Steven et al 2015, Walter et al 2013, Zhang et 

al 2005). Furthermore, seasonality is one of the most common characteristics of 

terrestrial ecosystems, and is often related to dramatic variations in the soil 

environment, including temperature, moisture, and the life cycles of vegetation. Studies 

found that warming could influence plant and animal phenology, such as flowering 

time, migration, etc., by altering the patterns of seasonal environmental changes 

(Hughes 2000, Körner and Basler 2010, Sherry et al 2007). Microbial communities 

were also found subject to great seasonal variation (Contosta et al 2015, Dumbrell et al 

2011, Edwards and Jefferies 2013, Gilbert et al 2012, Giovannoni and Vergin 2012, 

Gou et al 2015, Kuffner et al 2012, Lara et al 2011, Mironova et al 2012, Schadt et al 

2003, Slaughter et al 2015, Takahashi and Hada 2012, Yu et al 2016), and likely 

influenced by warming through altered seasonality of the environmental factors (Baer et 

al 2014, Baldrian et al 2013, Jassey et al 2011, Lv et al 2014, Puissant et al 2015). 

These studies provided valuable information on how warming may influence soil 

microbial community’s diversity, composition, and dynamics by altering the seasonality 

of terrestrial ecosystems. However, little is known about how the interactions among 

different microbial species and populations change in response to warming and across 

seasons.  
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In the environment, microorganisms exist in constant interactions with each other, only 

through which they can survive and perform ecosystem functions critical to the entire 

biosphere (Bassler and Losick 2006, Fuhrman 2009, Hallam and McCutcheon 2015, 

Keller and Surette 2006, Konopka 2009). In recent years, the analysis of complex 

microbial communities realized by high-throughput meta omics technologies has gone 

beyond the richness, abundance, and composition of the community assemblage. 

Network analysis has become a computational tool to infer the massive potential 

interactions among microbial species from abundance observations, skipping the 

seemingly impossible task to directly search for interacting microbial species from a 

vast pool of possibilities. Studies of microbial networks from human microbiome 

(Duran-Pinedo et al 2011, Faust et al 2012), soil (Barberan et al 2012, Lupatini et al 

2014, Zhou et al 2010, Zhou et al 2011), rhizobiome (Shi et al 2016), groundwater 

(Deng et al 2016) and ocean (Gilbert et al 2012, Lima-Mendez et al 2015, Steele et al 

2011) revealed that the microbial communities are highly organized and interactive in 

responding to environmental perturbation and performing ecological functions. The 

depiction of their interactions or niche sharing patterns greatly promoted our 

understanding of microbial community assemblage. 

To characterize the soil microbial interactome in different seasons, and reveal how 

warming could influence these interactions, we built microbial co-occurrence networks 

based on 16S rRNA genes amplicon sequences from soil samples collected monthly in a 

long-term grassland warming experiment. Networks were constructed using a random 

matrix theory (RMT)-based network inference approach (Deng et al 2012) for different 

seasons under both control and warming. These networks were then analyzed and 
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compared to address the following questions: (1) Are soil microbial networks differ 

along the season alternation? (2) Does warming have an impact on the network 

structure? (3) Are there potential keystone taxa that are particularly important in 

network topology? If yes, do they change along the season or by warming? (4) How do 

the environmental conditions relate to the network structure? Our results captured the 

change of microbial network complexity along the season, and discovered that warming 

facilitate the interconnection of microbial communities in grassland soils. 

5.3 Materials and Methods 

5.3.1 Study site and experimental design 

As described previously (Li et al 2013, Xu et al 2013, Xu et al 2016), the field 

experiment (ca. 34º59’N, 97º31’W) is part of the Kessler Atmospheric and Ecological 

Field Station (KAEFS), located in central Oklahoma on a tall grass prairie with grazing 

excluded for decades. Local mean annual temperature from 1948 to 2012 was 16.3 ºC, 

with monthly means ranging from 3.5 ºC in January to 28.1 ºC in July. Annual 

precipitation was 895 mm, with monthly totals 33 mm in January to 126 mm in May 

(Oklahoma Climatological Survey). The soil is 51% sand, 35% silt, and 13% clay with 

a water holding capacity of 37%. The site has two peaks of plant biomass, usually in 

late April/early May and late August/early September. Spring dominant species are C3 

grass Bromus arvensis, and C3 forbs Solanum dimidiatum, Croton glandulosus, and 

Vicia sativa. Summer dominant species are and C4 grasses Tridens flavus and Sorghum 

halepense. From July 2009, the temperature of experimental plots was manipulated to 

simulate climate warming. Each of the four biological replicate blocks contained a pair 

of 2.5 × 1.75 m plots, one for experimental warming and the other was complementary 
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control. Two infrared heaters (165 × 9 × 15 cm; Kalglo Electronics, Bethlehem, PA, 

USA) were installed at about 1.5 m above the warmed plots to achieve whole ecosystem 

warming, each working for an area of 2.5 m × 1.75 m. In control plots, two wood bars 

of the same dimensions were installed as “dummy” heaters to mimic the shading effect.  

5.3.2 Field measurements, soil sampling and physical-chemical analysis  

Soil Temperatures at 7.5cm were recorded every 15 min by thermocouples (T-type; 

Campbell Science Inst., Logan, UT, USA) installed at the center of each plot. Soil 

volumetric water contents (VWC) for 0-15 cm were measured every 30 min by TDR 

meters (ESI Environmental Sensors Inc., Sidney, BC, Canada) installed in each plot. All 

data were stored and transferred using the CR10X data loggers (Campbell Scientific). In 

correspondence to the monthly soil sampling, both monthly averages of temperatures 

and the three-day averaged temperatures before sampling time were calculated. Soil 

respiration and heterotrophic respiration were measured monthly between 10:00 and 

15:00 local time using a LI-8100 Portable Soil CO2 Fluxes System (LI-COR. Inc., 

Lincoln, NE, USA) attached to either a shallow (5 cm) or a deep (70 cm) PVC collar 

(80 cm2 in area) chamber installed in each plot (Li et al 2013). The CO2 flux from the 

shallow collar represents soil respiration from both plant root and soil microorganism, 

and that from the deep collar only consists of heterotrophic respiration due to root 

exclusion. Ecosystem carbon exchange (Xu et al 2013) was measured monthly between 

10:00 and 15:00 local time on sunny days using an LI-6400 (LI-COR) Portable 

Photosynthesis System attached to a transparent chamber (0.5 m × 0.5 m × 0.7 m, with 

fans circulating the air inside). The chamber was placed and sealed on a metal frame in 

the plot, and covered all the vegetation inside the frame. Carbon flux measured with the 
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chamber exposed to sunlight was used to calculate NEE and that when the chamber was 

completely covered with a light-prove cover was estimated as ecosystem respiration 

(Reco). The difference between NEE and Reco was considered instantaneous gross 

primary productivity (GPP) of the covered vegetation. Peak aboveground plant biomass 

was estimated based on a point-frame method coupled with direct biomass collection in 

clipped plots (Luo et al 2009). The point-frame method was used to survey each plant 

species and litter coverage at both clipped and unclipped plots. Afterward, the 

aboveground biomass in clipped plots was collected, completely dried at 65 ºC and 

weighed. The regression relationship developed between point-frame hits and weighed 

biomass in clipped plots was then applied to unclipped plots for biomass estimation.  

Every month in 2012, one surface (0-15cm) soil sample core (2.5 cm diameter) was 

taken from each of the eight warmed and control plots for soil physical-chemical and 

microbial analysis. Samples were put on ice and transferred to -80 ºC freezers within 3 

hours until process. Visible roots were picked out from soil samples before processing. 

Soil gravimetric water content (GWC) was estimated by drying about 10 g of soil at 65 

ºC until constant weight, and calculate the percentage of water weight in wet soil 

weight. Soil pH was estimated by measuring the pH of a 1:5 soil-to-water mass ratio 

(dried soil equivalent weight) mixture using an Accumet Excel XL15 pH Meter (Fisher 

Scientific) with a combined calibrated electrode. The oven-dried soil was ground and 

analyzed for soil total carbon, total nitrogen, ammonia NH4
+ and nitrate NO3

- 

concentration in the Soil, Water and Forage Analytical Laboratory at Oklahoma State 

University. For determining soil total carbon and nitrogen, samples were treated with 1 

N HCl for 24 hours to remove soil inorganic carbon (carbonates), and applied to a dry 



96 

 

combustion carbon and nitrogen analyzer (LECO, St. Joesph, MI, USA). For soil NH4
+ 

and NO3
-, samples were kept shaking with 1 M KCl for 30 min, filtered through a 

Fisher P4 qualitative filter (Fisher Scientific) and applied on a Lachat 8000 flow-

injection analyzer (Lachat, Milwaukee, WI, USA). 

5.3.3 Microbial community analysis 

Soil total DNA was obtained using a freeze-grinding method followed by the SDS-

based lysis and phenol-chloroform extraction (Zhou et al 1996), and purified through 

the columns provided in the MoBio PowerSoil DNA isolation kit (MoBio Laboratories, 

Carlsbad, CA, USA). The quality and purity of DNA were controlled by measuring the 

spectrometry absorbance at wavelengths of 230 nm, 260 nm and 280 nm using a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., now NanoDrop 

Products by Thermo Fisher Scientific), and ensuring that A260/280 ≈1.8, and A260/230 

≥ 1.7. The quantity of DNA was analyzed with the PicoGreen using an FLUOstar 

OPTIMA fluorescence plate reader (BMG LabTech, Jena, Germany). 

To determine the microbial taxonomic composition, 16S rRNA gene amplicon library 

was prepared and sequenced on an Illumina MiSeq platform in 2 × 250 bp pair-end 

format (Wu et al 2015). DNAs were PCR amplified for the V4 region of 16S rRNA 

genes using the Illumina adapted primer set 515F and 806R according to a previous 

protocol (Caporaso et al 2011). One hundred ng of amplicons from each sample were 

combined, run on 1 % agarose gel at 100V for 45 min, collected and purified through 

the QIAquick Gel Extraction Kit (Qiagen) column. The purified amplicons were further 

quantified with triplicates through PicoGreen and diluted to 2 nM, and used to prepare 
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the sequencing library following the protocol provided by Illumina. The library was 

then sequenced on an Illumina MiSeq.  

An in-house data processing pipeline on the Galaxy platform was used to pre-treat the 

16S rRNA sequences. More than 8 million raw sequences were retrieved by matching 

the sample barcode with zero error base. After using Btrim (Kong 2011) to remove low 

quality and short sequences, more than 6 million sequences were combined from 

forward and reverse reads through FLASH (Magoč and Salzberg 2011). Then, all 

combined sequences containing ambiguous base N, or were out of the length range of 

247 to 258 bases were removed. Uchime (Edgar et al 2011) was used to detect and 

remove chimera. Then, Uclast (Edgar 2010) was used to generate the OTU (operational 

taxonomic unit) table by tagging the sequences with a similarity of >97% to the same 

OTU. The OTU with only one sequence in all the samples (singletons) were removed 

from the downstream analysis. Finally, the OTU table was randomly subsampled so that 

the total sequence number in every sample was 17,297. 70,022 OTUs were left after 

subsampling. The representative sequence for each OTU was searched against the RDP 

classifier (Wang et al 2007) to give each OTU a taxonomic information. The cutoff of 

the phylogenetic assignment confidence level was set to 0.5. A phylogenetic tree was 

constructed to calculate the phylogenetic diversity of the community. All the 70,022 

representative sequences, one for each detected OTU in the whole data set, were applied 

to PyNAST (Caporaso et al 2010) for alignment with reference to the GreenGene 16S 

database (DeSantis et al 2006). The 68,846 successfully aligned sequences were then 

used to build a phylogenetic tree using FastTree (Price et al 2010). 
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5.3.4 Molecular Ecological Network (MEN) analysis  

Molecular ecological networks were constructed using the 16S rRNA sequences from 

the above samples using the methods and MENA pipeline described in (Deng et al 

2012). First, two all-timepoint (AT) networks, one for control and one for warming 

treatment, were constructed, each using 48 samples from all replicates and time points. 

Only OTUs that were present in 29 or more (>60%) samples were included in each 

network construction to obtain robust data association estimations. Then, to study the 

dynamics of microbial interactions along time, eight separate-season (SS) networks 

were constructed, each containing 12 samples from 4 field replicates and 3 time points 

of each season. The 3 time points were combined to acquire enough sample for reliable 

data association calculations. Samples from different months were grouped as follows. 

Spring, summer, and fall referred to February to April, May to July, and August to 

October, respectively. Winter is represented by sampling time points of January, 

November, and December in the same calendar year (2012). For the SS networks, 

OTUs with >75% (9 samples) occurrence were used for construction. 

Before network construction, the data association matrices were calculated based on 

Spearman’s rank. An improved Random Matrix Theory (RMT)-based approach (Deng 

et al 2012) were applied to detect a range of acceptable data association strength cutoffs 

(similarity thresholds, St) for each network. St defines the minimum data association 

strength between two nodes in a network. For the ten data sets, different ranges of 

acceptable St’s were detected. However, for network comparison purpose, the same 

cutoff was adopted for AT or SS networks. The cutoff value was determined as the 

midpoint value of the overlapped St ranges (Table S 14). 
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The network topological properties, module separation, key-stone taxa identification, 

and eigengene analysis were all performed according to Deng et al (2012) using the 

MENA (http://ieg2.ou.edu/MENA/) pipeline. Networks were visualized using Gephi 

0.9.1 and Cytoscape 3.5.0. The nodes in each network were separated into modules 

using the Greedy modularity optimization algorithm (Newman 2006b). Modularity 

measures how connected the nodes are within a network. For each node, its within-

module connectivity (Zi) and among module connectivity (Pi) were calculated (Guimera 

and Nunes Amaral 2005), and based on which its topological role in the network was 

interpreted based on classification introduced in pollination networks (Olesen et al 

2006). Nodes with Pi>0.62 and Zi>2.5, highly connected to the entire network, were 

identified as network hubs; those with Pi>0.62 were connectors; those with Zi>2.5, 

highly connected within modules, were assigned module hubs. Nodes with Pi<0.62 and 

Zi<2.5 were peripherals that had moderate connectivity both within and among 

modules. Network hubs, module hubs, and connectors were identified as keystone 

species that played important roles in the network topological structure, and potentially 

also in the biological interactome. 

For each of the modules containing ≥8 nodes, an eigengene was calculated based on 

methods introduced in Deng et al (2012) to summarize the species abundance 

information from this module as a centroid. Eigengenes from the same network were 

then clustered based on their distance matrix to reveal the organization or relationship 

of different modules. Furthermore, the correlation of each eigengene-environmental 

variable pair was calculated as Pearson’s product-moment to reveal the potential links 

between the environment and each module. 
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5.3.5 Statistical analysis 

To reveal the differences of environmental conditions, microbial communities and their 

network properties between treatments and among seasons, as well as to discover the 

links amongst the three aspects, the following analyses were performed. 1) Analysis of 

variance (ANOVA) was performed to test the difference of means between treatment, 

among months, and among the two combined for the following dependent variables: 

soil, plant, and ecosystem fluxes variables, microbial taxonomic and phylogenetic hill 

numbers, the distances of microbial communities to their centroids in the PCoA space, 

and the abundances of different microbial taxa. For temperature data, repeated measures 

ANOVA was used to control the variation caused by different observation time points. 

2) A multivariate permutational procedure, the permutational multivariate analysis of 

variance (Adonis) (Anderson 2001) was used to test how different the entire microbial 

communities’ composition was under different treatment and sampling time. Bray-

Curtis distance (Bray and Curtis 1957) was used to calculate the distance matrix in this 

test. 3) Paired student t-tests were applied to test whether the network properties, as well 

as soil, plant, and ecosystem fluxes variables were significantly different in warmed and 

control conditions. 4) The test of multivariate homogeneity of groups variances 

(Anderson et al 2006) was used to calculate the distances of microbial samples to their 

group centroids based on treatment, sampling month, as well as sampling season. The 

difference of the average distances to group centroids indicates varied beta-diversity, or 

heterogeneity, of samples among groups. 5) Microbial community’s taxonomic 

diversity was estimated as the hill number (Hill 1973), or the effective number of 

species, for q=1, based on species composition and abundance. This estimation was a 
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near approach to Shannon entropy. 6) Microbial community’s phylogenetic diversity 

was also estimated as the hill number for q=1, but based on the phylogenetic tree 

constructed using the OTUs’ representative sequences. 7) Hierarchical clustering was 

used to calculate the distances between any pairs of module eigengenes within a 

network. 8) Pearson correlation was used to compute the strengths and significance of 

links between module eigengenes and climate, soil, plant, and ecosystem fluxes 

variables. All the statistical analyses were performed using R version 3.4.0 (Team 2014) 

with packages vegan version 2.4-3 (Oksanen et al 2013), agricolae version 1.2-4 (De 

Mendiburu 2014), and ieggr version 2.2. 

5.4 Results 

5.4.1 The seasonality of and warming effect on ecosystem and soil microbial 

communities 

The environmental conditions showed strong seasonal fluctuations and influences by 

warming treatment (Figure 5.1). Except for soil total nitrogen content, all other 

variables, including soil temperature, moisture, total carbon content, nitrate and 

ammonia nitrogen contents, pH, respiration fractions, and ecosystem carbon exchange 

fractions, all significantly differ (p<0.05) by sampling month. Warming increased soil 

temperature at 7.5cm constantly during the entire year by an average of 4.3 °C (t11, paired 

=19.03, p<0.001), and decreased soil moisture by 0.02 (20.7%, t11, paired =3.01, p=0.001) 

on average, though more obviously in winter and early spring, when there was little 

vegetation or litter cover. Warmed soils had greater nitrate on average (4.5 mg-N kg-

soil-1, 71.2%, t11, paired =2.82, p=0.017) than control, mostly contributed by their higher 

nitrate concentrations in the second half of year. Soil respiration peaked in spring and 
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was similar from warmed and control soils, resulted from the counteraction of increased 

heterotrophic respiration (0.43 µmol-C m-2 s-1, 54.4%, t11, paired =3.19, p=0.009) and 

decreased autotrophic/root respiration (0.74 µmol-C m-2 s-1, 33.4%, t11, paired =4.34, 

p=0.001) by warming. Although not significantly different throughout the entire year, 

ecosystem respiration and gross primary productivity were lower in warmed than 

control plots in March and September, the two months in which plant biomass peaked, 

due to the negative impact of warming on plant biomass (Figure S 16). 

The soil prokaryotic community composition echoed the seasonal fluctuation of and 

warming effect on the environment, and was significantly different both between 

warming and control, and among sampling months (Table 5.1). Month as a main effect 

explained a substantial portion (16%) of community variance. The β-diversity, or 

heterogeneity within treatment, was higher for warmed communities (Figure S 17a, b). 

As for the relative abundance of microbial taxa, warming tends to increase 

Actinobacteria in April, Gemmatimonadetes in May, Euryarchaeota in Jun, and BCR1 

in October. Warming decreased the relative abundance of a few taxa in February 

through April and September through December. More taxa (7 known taxa and 

unclassified bacteria in warming, 3 taxa in control) had significant (p<0.05) different 

relative abundance across time in warmed than control soils (Figure S 18). Warming 

and season had differential effects on the microbial taxonomic and phylogenetic 

diversities, indicated by the Hill numbers (Figure 5.3 and Table 5.2). Taxonomically, 

the microbial communities were most diverse in fall, and least diverse in winter, but not 

significantly different between warming and control. On the contrary, the microbial 
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phylogenetic diversity only differed between treatments but not among seasons, with a 

lower diversity in warmed plots. 
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Figure 5.1 Environmental variables, soil physical-chemical properties, and ecosystem 

carbon fluxes. Dots represent accumulative precipitation in each calendar month in the 

year of soil sampling in (a), monthly averaged temperature in replicated plots in (b), and 

averaged values for measurements in replicated plots (n=4) in (c) through (n). Blue and 

red colors denote control and warming, respectively. In (b), daily average temperatures 

are marked with blue squares for control plots, and red diamonds for warmed plots. 

Error bars are standard errors. At the upper right corner for (b) through (n), W, M, or 

WM indicate that observations are significantly different by warming treatment, 

sampling month, or their interaction, respectively, tested using ANOVA. Total carbon, 

NO3
-, NH4

+, and total nitrogen refer to corresponding substrate concentrations measured 

from soil samples. Rs, Rh, and Ra denote soil total respiration, heterotrophic soil 

respiration majorly from microbes, and autotrophic soil respiration derived from plant 

roots. Reco, ecosystem respiration that included both aboveground and belowground, 

plant and soil microbial respirations. GPP, gross primary productivity. NEE, net 

ecosystem exchange, the difference between GPP and Reco. For GPP and NEE, negative 

values meant carbon gain for soil, and vice versa.  
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Table 5.1 Dissimilarities of microbial community compositions by warming treatment, 

sampling months, and their interaction, tested using Permutational Multivariate 

Analysis of Variance (Adonis) with Bray-Curtis distance. 

 F R2 Pr(>F) 

Warming 2.81 0.03 0.001 

Month 1.54 0.16 0.001 

Warming × Month 0.98 0.10 0.628 

 

Table 5.2 ANOVA and LSD test results on community diversities based on the model: 

Hill number (taxonomic or phylogenetic) ~ Season*Treatment. Means and standard 

errors are shown. Significant differences between groups are indicated by different 

letters following the standard errors. The interaction of season and warming has no 

considerable influence on both taxonomic and phylogenetic hill numbers (p>0.05). 

By season (n=24) 
 Spring Summer Fall Winter F3,88 p 

Tax. 2211±116 ab 2481±132 ab 2587±122 a 2124±95 b 3.486 0.019 

Phyl. 10.59±0.19 10.73±0.22 11.04±0.19 10.44±0.24 1.583 0.199 

By treatment (n=48) 
 Control Warming F1,88 p 

Tax. 2437±90 2265±81 2.138 0.147 

Phyl. 10.98±0.14 a 10.43±0.15 b 7.276 0.008 

 

5.4.2 Characteristics of networks 

Eight separate season (SS), and two all-time point (AT) networks were constructed to 

explore the co-occurrence features of microbial members under warmed condition, and 

along seasonal environmental changes (Figure 5.2). The SS networks were constructed 

with St=0.8925. Network sizes (n) ranged from 392 to 575 in node numbers, and link 

numbers ranged from 288 to 1067. The AT networks for control and warmed 

communities were built with St=0.6305, with 661 and 903 nodes, and 1717 and 4104 

links, respectively. All networks were scale-free, as indicated by the good fit of the 

node degree distributions to power-law functions (R2 from 0.880 to 0.968). They were 

also modular, as indicated by high modularity (M). By retaining the numbers of nodes 
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and links in each network, the randomly rewired networks are significantly different 

from the corresponding empirical ones, indicating that the empirical networks are 

unlikely formed as such by chance. The empirical networks had much higher average 

clustering coefficients (avgCC), meaning they are highly clustered. The average path 

lengths (GD) and harmonic geodesic distances (HD) of empirical networks tended to be 

lower in control group, and higher in the warmed group, than random networks in SS 

networks. Modularity showed the opposite trend. In AT networks, all these four 

network properties were higher in empirical than random networks. 

 

Figure 5.2 Co-occurrence networks for microbes in warmed and control soils from 

separate seasons and all-time points. Modules separated using Greedy algorithm are 

uniquely colored in each network for modules with >6 nodes, and in gray for modules 

with ≤6 nodes. Topological properties of each network are presented in Table 5.3. 
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5.4.3 Warming and season affected network topology 

Despite the lower numbers of OTUs (9% for both SS and AT) selected for network 

construction, networks for warmed samples were always larger (n 19% more for SS, 

and 37% more for AT) compared with corresponding control. This indicated that the 

abundances of more species covaried in the warmed communities compared with 

control. In addition, compared with control, warming networks had 0.88 (50%) more 

links on average in SS networks, and 3.9 (75%) more links in AT networks. The higher 

average degree (avgK) in warming networks showed that the microbial communities 

there had a more complex structure of interconnections. Warming also led to networks 

with larger average clustering coefficient (37% for SS, 33% for AT), fewer modules 

(18% for SS, 38% for AT) and lower modularity (10% for both SS and AT), which 

together meant that species in warmed communities were more likely to form a few 

highly interconnected groups. For SS networks, the average path distance and harmonic 

geodesic distance were 57% and 65% higher under warming, but in all-timepoint 

networks, those values were 18% and 14% lower under warming, as the warming 

network formed much fewer but larger modules than control (Figure 5.2 and Figure 

5.4). 
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Figure 5.3 The properties of separate seasons networks plotted against the taxonomic or 

phylogenetic diversity, indicated by hill number of q=1. Average K, average node 

degree; Average CC, average clustering coefficient; HD, harmonic geodesic distance. 

Filled circles represent control, and open triangles denote warmed communities or 

networks. The differences of diversities among groups were tested by ANOVA as 

shown in Table 5.2. T-tests were performed to test the difference of means for network 

properties in  

Season also affected both the size and complexity of the SS networks. Smaller and 

simpler networks were obtained from spring and winter communities, while the largest 

and most complex networks were for fall in both warmed and control plots. Notably, 

under warming, spring and winter networks reached comparable sizes and complexity 

with the fall network under control.  
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Warmed and control networks had distinguished relationships with the diversity of the 

microbial communities that they represented, as the two group clearly separated when 

their network properties were plotted against the community Hill numbers (Figure 5.3). 

Compared with control, warmed networks had a higher average degree, average 

clustering coefficient, harmonic geodesic distance, lower modularity, while the 

communities had lower taxonomic and phylogenetic diversities. The community 

diversity and network properties defined samples by treatments better than along the 

seasons. 

5.4.4 Network modularity in microbial communities 

To further identify the groups of species within which intensive interactions or strong 

covariations occurred, each network described above was separated into modules. The 

larger modules with more than 7 nodes were illustrated in Figure 5.4. Generally, 

species tended to co-occur rather than co-exclude, as positive links accounted for 87-

92% of all links in these networks (Figure 5.4). Similar to the overall network structure 

(Figure 5.2), warming networks had larger modules, and formed more links both inside 

and among modules. Fall networks module structures were also more complicated than 

other seasons.  
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Figure 5.4 Network modules separated using Greedy algorithm. In each network, 

modules with ≥8 nodes are represented by circularly arranged nodes. Small modules 

with <8 nodes are only shown if they are linked to larger modules. Nodes within a 

module are highly connected, and those between modules are less linked. Nodes are 

colored based on their taxa, and their sizes are proportional to log-transformed 

abundance (scales different for separate-season and all-timepoint networks). Module 

hubs are moved to the center of modules and in black lined boxes. Module connectors 

are boxed in red. Positive links are in black and negative links are in red. The IDs of 

modules in each network are assigned based on module sizes. 
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The membership of modules had an obvious phylogenetic signature, as seen in the 

dominance of taxa in many major modules (Figure 5.4). The taxonomy of members in 

major modules changed over time, and differed between treatment. For example, in 

spring, Acidobacteria dominated the largest three modules (modules 1, 2, and 3) in 

control network, but Actinobacteria, and Verrucomicrobia dominated the largest and 

third largest modules (modules 1 and 3) in the warming network, while Acidobacteria 

only occurred more in smaller modules (modules 6 and 8). In summer, there was less 

dominance of any taxa. Interestingly, Firmicutes tended to occur and form large 

modules only in winter. They occurred or form small modules in spring control (module 

7), spring warming (module 1 and 2), and summer control (module 8) networks, and 

nearly disappeared in summer warming and fall networks. The AT networks preserved 

such phenomenon and both consisted of one Firmicutes-dominant module (module 4 

and 5 in control and warming networks, respectively). Generally, Actinobacteria, 

Acidobacteria and Verrucomicrobia tended to dominate large modules, while 

Proteobacteria only sparsely occurred in different modules, although they were the most 

abundant phylum in every month (Figure S 18). 

5.4.5 Module hubs and connectors as keystone taxa 

Based on the criteria described before, all the nodes were categorized based on the 

within module connectivity (Zi) and among module connectivity (Pi) into one of the 

four network topological roles: peripheral, module hub, connector, and network hub 

(Figure 5.4, Figure S 19 and Table S 15). No network hubs were present in any of our 

networks. The connectors were only present in relatively complex fall-warming, winter-

warming and AT networks, and there are more connectors in fall (4 connectors) than in 
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winter (1 connector), and in AT-warming (5 connectors) than in AT-control (7 

connectors) networks. SS warming networks always have more module hubs than 

control. Along season, fall networks had the most module hubs and connectors (Figure 

5.4). The number of connectors and module hubs was consistent with the complexity of 

networks. 

In most cases but not always, the module hubs are from the relatively abundant 

phylum/phyla in the modules (Figure 5.4 and Table S 15). For example, module 3 and 

5 in spring-warming had Verrucomicrobia and Proteobacteria as their hubs, 

respectively. However, some modules hubs were low-abundance or non-dominant 

species, such as the Bacteroidetes hub in module 1 of the fall-warming network, and the 

archaea hub in module 2 of the summer-warming network. In the AT warming network, 

the largest module 1 had mixed member phylogenetic profiles, but all its six modules 

were from Verrucomicrobia or Archaea. As for connectors, Verrucomicrobia and 

Actinobacteria were the most important for fall-warming and AT warming networks, 

respectively (Figure 5.4). The relative abundance of module hubs ranged from 0.028-

2.534%, spreading from low to high abundance in the community. Connector OTUs 

were with lower abundance, ranging from 0.011-0.686% (Figure S 20). Abundant taxa 

in the community (Figure S 19) also were more abundant in the taxonomic profile of 

the keystone taxa (Figure S 18). Notably, some OTUs occurred as keystone taxa in 

more than one networks (Table S 15). OTU_70085, belonging to the Spartobacteria 

class in the Verrucomicrobia phylum, were present in four networks, spring-warming, 

fall-warming, AT-control and AT-warming, as module hubs. OTU_90925, a GP1 

species belonging to the phylum of Acidobacteria, and OTU_132165, from 
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Spartobacteria class of Verrucomicrobia phylum, were both module hubs in three 

networks. Additional 14 OTUs, 3 Acidobacteria, 3 Actinobacteria, 3 Proteobacteria, 3 

Verrucomicrobia, 1 Firmicutes, and 1 Crenarchaeota, served as module hubs or 

connectors in two networks.  

5.4.6 Links between module eigengenes and environmental conditions 

To reveal the higher order organization of networks, each module was decomposed into 

a single representative abundance profile, the module eigengene, to compare with other 

modules in the network. The module eigengenes explained 61-82% variations in SS 

networks, and 25-62% variations in AT networks, of the module members abundance 

profiles (Table S 16). The hierarchical clustering of the eigengenes was used to 

represent the dissimilarities among modules in terms of their module members 

abundance profiles (Figure 5.5 and Figure S 21). The ten modules sizing larger than 8 

nodes in the AT-control network was clustered into two major groups. The AT-

warming network had five distinct modules, with the Firmicute-dominant module 

(module 5) being the most different one (Figure 5.5). Most of the modules in SS 

network formed clusters (Figure S 21). 

The eigengene abundance profiles were correlated to the environmental profile to reveal 

the relationship of the modules and the environmental variables (Figure 5.5 and Figure 

S 21). Generally, modules in fall networks had more significant correlations with the 

soil, plant and ecosystem carbon flux variables, while winter and spring networks had 

less. The microbial substrate-related variables (nitrate, ammonia, total nitrogen and total 

carbon contents) were significantly correlated to at least one module in all the networks, 

and to several modules in more complex networks, e.g., fall-control, fall-warming, and 
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AT networks. In fall-control and fall-warming networks, different module clusters 

correlated to these substrate-related variables in different directions (positive for one 

cluster and negative for the other). In AT-warming network, correlations with these 

variables were all negative. For the AT networks, networks in control and warming had 

different correlation profiles. Control network modules correlated to GPP and NEE, but 

warming network modules correlated to soil temperature, heterotrophic respiration, and 

rainfall. However, they both had modules correlate to plant biomass and richness, and 

one module that was negatively correlated to the soil moisture. In SS networks, soil 

moisture was significantly correlated to one or more modules in all networks except for 

winter. Rainfall only correlated to fall network modules.  

 

Figure 5.5 Module eigengenes’ correlations with environmental variables for the 

control and warming networks containing all time points. An eigengene was calculated 

for each module to represent all nodes within each module. Clusters show the 

hierarchical clustering of eigengenes for modules numbered as in Figure 5.3. The 

Pearson correlation coefficient of each eigengene-environmental variable pair is 

indicated by the color key. Numbers on top of the heatmap listed p values of all 

significant (p<0.05) correlations. Variables were defined as in the legend of Figure 5.1. 
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5.5 Discussion 

Interactions of microbial taxa in an ecosystem embody a dimension beyond species 

diversity and composition in our understanding of microbial community assemblage 

(Fuhrman 2009, Hallam and McCutcheon 2015). These interactions result in consequent 

covariation, co-existence or co-exclusion, of species abundances (Faust et al 2012). In 

this study, we revealed that networks representing such abundance covariations were 

much more complex when the soil system was exposed to long-term elevated 

temperature. In addition, although network structures succeeded along season, reaching 

the most complex state in fall and returning to the simplest in winter, warming 

facilitated the interconnection of microbial species in every season. We distinguished 

network modules that possibly formed through species interactions or similar responses 

to the fluctuation of environmental conditions, and identified potential keystone species 

that played important roles in network topological structures. These observed patterns 

gained us novel insights into the dynamics of soil microbial interactome along season 

alternation, and how climate warming may influence it.  

Network size and complexity are meaningful topological properties in reflecting the 

interactome of microbial communities (Faust et al 2012, Proulx et al 2005). The larger 

and more complex networks under warming than in control could be due to the increase 

of both direct and indirect covariations. Covaried abundances of two species may be 

resulted directly from interaction, or indirectly through responses of both to a third 

factor, such as the environmental condition (Berry and Widder 2014, Faust et al 2012, 

Lima-Mendez et al 2015). Studies reported that changes in environmental parameters, 

such as pH (Barberan et al 2012) and factors influencing the substrate or food 
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availability (Foster et al 2012, Zhou et al 2011), can alter community assemblage and 

network structures. In our study, warming treatment not only increased soil temperature, 

but also caused a series of ecosystem level adjustments, such as decreased moisture, 

increased soil nitrate availability, decreased plant biomass and altered plant species 

composition. These warming related changes acted as an environmental filter, causing 

decreased alpha diversity of the soil microbial community, as also observed in other 

field warming experiments (Sheik et al 2011, Wang et al 2017). The selectively 

preferred species under warmed condition were either more adaptable to the altered 

physical-chemical environment, such as heat or drought, or were more efficient in 

performing functions related to warming-preferred ecosystem processes, such as the 

decomposition of C-rich substrates carbon substrates (Nie et al 2013, Xue et al 2016b). 

Accordingly, warming may promote both the functional associations, and the 

covariation of microbes to the soil environment. Whether such tightened 

interconnections would continue with time, and what influence would this changed 

network of the microbial community cast on the ecosystem functions remain yet to be 

answered.  

The succession of network structure over time was more likely due to different 

mechanisms. This was reflected by that along season, higher microbial diversity 

generated larger and more complex networks. As from winter to fall, the environmental 

conditions became supportive to more species that were involved in versatile activities. 

In addition, because most plant species grow and senescent annually in our field site, 

the structure of networks observed in this study could be tangled with both 

rhizosphere’s environmental filtering and niche sharing (Shi et al 2016), and plant litter 
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provided substrate amendment (Deng et al 2016, Zhou et al 2011). Notably, Deng et al 

(2016) described that after substrate enrichment in groundwater, the competition among 

microbes significantly increased the number of negative links in the network. We also 

observed the highest portion of negative links in fall networks, when the substrate was 

the most abundant. In control plots, where plant biomass was higher than warmed plots, 

the portion of negative links in the fall network was also higher. Therefore, the network 

structure change along season was more likely resulted from differed microbial activity, 

especially substrate availability associated with the aboveground vegetation. 

In ecological networks, organisms form modules when there are intensive interactions 

among them but limited interactions to outsiders (Newman 2006a, Ravasz et al 2002). 

A module could be formed by members that are habiting similar niche, functionally 

associated, physically contacting, or phylogenetically close (Olesen et al 2007). Many 

modules in this study had a clear phylogenetic signature, reflecting common life history 

strategy, as also observed in a study on soil microbial communities in various 

ecosystems (Barberan et al 2012). This might either be due to their functional 

association, or the common physiological traits of the taxa. For example, 

Actinobacteria, a phylum containing known carbon degraders (Das et al 2007), 

dominated larger modules under warming than control, where the warmer temperature 

was more favorable to carbon decomposition activity as observed in a nearby field 

study (Nie et al 2013, Zhou et al 2012). In particular, it dominated large modules in fall, 

winter and spring under warming, while occurred only separated in modules in summer, 

coinciding the amount of litter or left-over litter amount in the field. Firmicutes, the 

well-known spore-former that stands harsh conditions (Filippidou et al 2016), nearly 
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disappeared in summer and fall, when conditions were favorable for most other taxa. It 

became abundant and form large modules in winter to occupy niches vacated by those 

who could not survive cold and drought. On the contrary, Proteobacteria, a phylum with 

versatile physiology and functions, although abundant in almost all networks, never 

dominated modules. Although the modules’ phylogenetic profiles change over time and 

differ between treatments in this study, these profiles were more distinguishable from 

those reported in other biological systems, like microcosm rhizosphere (Shi et al 2016), 

groundwater (Deng et al 2016), and ocean (Lima-Mendez et al 2015), rendering unique 

types of microbe-microbe interactions in grassland soils. 

Compared with control, the variation in module membership profiles was larger under 

warming. In other words, warming networks contained less comparable modules over 

time. For example, under control, spring, summer and winter all had Firmicutes-

dominated modules, but under warming, this only occurred in winter, with one module 

partly dominated by Firmicutes in spring. Also, under warming, the phenomenon of one 

phylum dominating a module was more common than in control. This is consistent with 

the observation that warming increased the temporal beta-diversity of community 

assemblage, and might reflect previous reports (Hagerty et al 2014) that increased 

species turnover rate in response to warming. Whether the more complex network 

structures upon warming are related to this finding will need further hypothesis-driven 

examination. 

Microbial species that are important in network topological structures are proposed also 

critical in community assemblage and ecosystem functioning (Berry and Widder 2014, 

Paine 1995). This study identified keystone species based on a node’s connectivities 
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within or between modules, as introduced in pollination network models (Olesen et al 

2006). Using the same identification criteria, one of the module hubs in rhizosphere 

microbial networks (Shi et al 2016) were found to be highly possible to have quorum 

sensing ability, which potentially drove the distribution of other microbes in that 

module. A nitrogen fixation gene, nifH, was assigned module hub, likely due to the 

importance of nitrogen fixation process in grassland soils under elevated CO2 treatment 

(Zhou et al 2011). A sulfur reducing bacteria had the highest connectivity in the 

network representing Uranium-polluted groundwater microbial community assemblage 

immediately after substrate amendment, and with time, its role as a module hub 

diminished, reflecting the anaerobic oxidation activities (Deng et al 2016). In our 

observation, there were two types of module hubs. First, most of the module hubs were 

from the dominant, or relatively abundant phyla in all the module members. This could 

represent the tight relationship, similar responses to environmental changes, and/or the 

major functions that species of close phylogeny perform. Second, a few modules were 

highly connected by taxa rare to the module, such as the Bacteroidetes hub in the fall-

warming network, and the archaea hubs in the summer-warming and AT-warming 

networks. Links from these module hubs to other nodes might reflect functional 

association and signaling. The Bacteroidetes node was a species from the class 

Sphingobacteria, which were known to produce sphingolipids, compounds important in 

signal transmission and cell recognition in plants, animals and fungi (Heung et al 2006). 

Species in the family Chitinophagaceae was also described to hydrolyze cellulose and 

degrade chitin (Rosenberg 2014), which might be an important process in the litter-rich 

fall season. Crenarchaeota consisted only small portion of sequences of the detected 
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16S genes, yet three OTUs belonging to this phylum were detected as four module 

hubs, three of which are in warming networks. The only Crenarchaeota module hub in 

SS networks was for summer-warming. Notably, all these Crenarchaeota OTUs 

belonged to the class Thermoprotei, known for resisting high temperature and also 

found in hot springs, thermo-vent, etc (Brochier-Armanet and Forterre 2006). These 

module hubs might be putative keystone taxa that influence the community structure 

and functions, from which further hypothesis could be developed about the type of 

interactions between them and other module members. While module hubs had relative 

abundances ranging from relatively low to high, connectors had lower abundances, and 

only occurred in the most complex networks in this study. In the fall-warming network, 

three of the four connectors were Verrucomicrobia, potentially indicated important roles 

and wide spread of this phylum in grassland soils (Fierer et al 2013). For AT-networks, 

connectors in control network had diverse classifications, while Actinobacteria 

accounted for most of the connectors in warming network. Since Actinobacteria also 

had higher relative abundance in warmed plots, this might imply selective growth of 

this group under warmed condition, or the higher potential for carbon degradation under 

warming. Unlike rhizosphere networks (Shi et al 2016), which had differed species but 

preserved taxa detected as module hubs or connectors, we observed many OTUs that 

occurred in more than one, and up to four networks as keystone species. Such 

consistency, in contrast with the variation in keystone taxa’s identities in different 

networks, highlighted the preserved prominent members and their potential 

functionalities in grassland soil along season and upon warming.  
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In summary, this study revealed the co-occurrence patterns of grassland soil microbial 

communities along season alternation and the influence of experimental warming on the 

microbe-microbe interaction networks. The networks were most complex in fall, and 

least complex in winter. Warming facilitated the interconnection of microbial species, 

and generated larger and more connected networks. While the seasonal succession of 

network structure may result from substrate driven changes in community 

compositions, the increased network complexity while decreased phylogenetic diversity 

in response to warming reflected environmental filtering, and functional associations 

among selectively favored species under altered ecosystem and soil conditions. 

Keystone species identified as module hubs or connectors were either representative of 

module phylogenetic compositions, or potentially important in ecosystem functioning, 

and were more preserved compared to previous reports. This work provided an 

important contrast to the rich literature on the global change biology of soil microbial 

composition and structure, and demonstrated that the quantity, density, and potential 

type of microbial interactions could also be greatly altered by warming. 
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Chapter 6: Summary and output 

This dissertation presented several lines of field evidence in supporting that the soil 

microbial community could be influenced by climate warming with changes in 

community composition and structure, functional potential, and the structures of the 

interactions among themselves. The responses of microbial communities to warming 

and permafrost thaw were closely related to soil environment and plant communities, 

and were often related to changes in the abundance of genes related to carbon and 

nutrient cycling. Different ecosystems exhibit distinct patterns of response, and soils in 

northern high-latitude tundra were more sensitive and vulnerable when the temperature 

was higher. Findings from this work could be valuable implements for earth system 

models in predicting the future climate condition and carbon cycling, and sources of 

formulating hypothesis towards the fundamental and mechanistic understanding of soil 

microbial community’s ecosystem functions. 

We first presented observations of microbial functional diversity across a natural 

gradient of degrading permafrost that was induced by regional climate warming. we 

found changed abundances of microbial functional genes related to carbon and nitrogen 

cycling, and increased community heterogeneity in tundra soils undergoing permafrost 

degradation in Alaska. These changes were likely related to both thaw-caused ground 

subsidence and plant community successions. This study provided critical information 

on the functional diversity of microbial communities in tundra soils in response to long-

term permafrost thaw, illustrated the importance of plants in shaping soil microbial 

communities during the succession of tundra above thawing permafrost, and 
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demonstrated how thaw-induced tundra topological reform affects microbial functional 

potential and diversity.  

Then, by comprehensive ecosystem and microbial analyses, findings from the CiPEHR 

experiment revealed rapid responses of the tundra soil microbial community to climate 

warming. This study also discovered several mechanisms by which the microbial 

community could feedback to warming: 1) warming stimulated not only aerobic 

respiration but also anaerobic decomposition; 2) nitrous oxide and CH4 emissions from 

anaerobic processes are likely to further amplify positive carbon feedbacks to warming; 

and 3) warming greatly enhanced nutrient cycling processes such as nitrogen 

mineralization, nitrogen fixation and phosphorus utilization, which promotes observed 

increases in plant growth and potentially dampen the positive feedbacks. These results 

demonstrated the vulnerability of the northern permafrost ecosystem to climate 

warming and the importance of microbial feedbacks in mediating such vulnerability. 

Third, we focused on the questioned of whether different ecosystems had similar or 

contrast responses to climate warming. By quantitatively comparing the magnitude of 

warming influence on soil microbial functional gene abundances in tundra and 

temperate prairie soils, we found stronger responses of the tundra communities with a 

larger magnitude of gene abundance change, and higher portions of disappeared or 

appeared species, compared with the temperate prairie at the early phase of the warming 

experiment. The difference in the limiting environmental factors for microbial growth 

and functions might be important mechanisms driving the observed difference in 

community succession in the two ecosystems. Activities of the microorganisms in the 

high-latitude tundra soils were limited by the cold temperature but not the substrate, 
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while the prairie soils were substrate limited. Warming of soil instantly alleviated the 

cold stress in the tundra, but did not affect substrate input the short-term. Analyses in 

Chapter 4 provided further evidence on the vulnerability and sensitivity of northern 

high-latitude tundra to climate warming, and implied that the tundra ecosystem might 

be more contributable than some other ecosystems, such as temperate prairie, to future 

climate condition and the carbon cycle. 

Fourth, we explored warming effect on the microbial interaction network using time 

series samples from an Oklahoma prairie. By constructing microbial co-occurrence 

networks for different seasons under both warming and control, we discovered larger 

and more complex networks for warmed samples compared with control in every 

season. This result implied that warming facilitated microbial interactions. We also 

found phylogenetic signatures in module formation, and identified potential keystone 

species in microbial functions through network topological features. Although rich 

literature reported the warming effect on microbial diversity, composition, community 

structure, and functions, the increased interconnections of microorganisms by warming 

were first captured by the study conducted in Chapter 5, which revealed a previously 

undescribed dimension of microbial community assemblage under warming effect. How 

such change in the interaction of microbial species would affect the overall function of 

soil microbial community will need further research. 

Although our understanding of the earth’s climate, its future, its influence on and its 

interaction with life on earth is still vague and uncertain, the human being will never 

stop the journey of exploration. Being a small part of the huge effort of this exploration, 
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this dissertation offered unique and novel insights into our knowledge of how the tiny 

life in the soil can make big impacts in a warmer world.  
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Appendix A: Supplementary Figures 

Figure S 1 to Figure S 8 for Chapter 2: Microbial functional diversity covaries with 

permafrost thaw-induced environmental heterogeneity in tundra soil 

 

Figure S 9  to Figure S 13 for Chapter 3: Rapid microbial feedbacks reveal 

vulnerability of tundra soil carbon to climate warming 

 

Figure S 14 and Figure S 15 for Chapter 4: Differential microbial sensitivity to 

experimental warming: a comparative metagenomic analysis of soils from two 

ecosystems 

 

Figure S 16 to Figure S 21 for Chapter 5: Warming facilitates the interconnection of 

grassland soil microbial communities 
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Figure S 1 DNA yield from 5g of soil along depth fractions in each site. The 

differences of means were tested using ANOVA followed by Fisher’s LSD tests. P 

values were corrected based on Bonferroni methods for multiple comparisons.  

  

Depth Mi Mo Ex Grouping of means by depth
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15-25cm ab
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Color code 2 5 8 11 14 18 μg DNA recovered from 5g soil
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Figure S 2 (a) Thaw depth measured at sampling time, averaged during the growing 

season, and active layer depth in 2004. (b) Thaw depth along time in growing season. 

Thaw depth were determined at sampling time by measuring the unfrozen soil layer 

depth from the soil sample cores (n=6 for each site). Separately, thaw depth was also 

periodically measured during growing the season at 36 observation wells that were 

located differently than soil sampling cores (n=180, 161, and 146 for Mi, Mo, and Ex 

site, respectively, considering replicate observation wells and repeated measures on 

different days). The active layer depth at each observation well was estimated as the 

deepest thaw depth throughout the growing season (n=12 for each site). Error bar 

denotes standard error of the mean. Data reanalyzed from Schuur 2009.  
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Figure S 3 Normalized relative abundance of detected fungal carbon degradation genes. 

The order of genes was organized based on the lability of their targeted carbon 

substrate. Significant differences of the means are marked by different letters. 
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Figure S 4 Normalized relative abundance of detected carbon fixation and CH4 genes. 

Significant differences of the means are marked by different letters. 
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Figure S 5 Normalized relative abundance of detected nitrogen cycling genes. 

Significant differences of the means are marked by different letters. nitrogen cycling 

subcategories: A. ammonification; B. nitrification; C. nitrogen fixation; D. assimilatory 

nitrogen reduction; E. dissimilatory nitrogen reduction; F. denitrification; and G. 

anammox. 
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Figure S 6 Normalized relative abundance of sulfur and phosphorus cycling genes. 

Significant differences of the means are marked by different letters.  
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Figure S 7 Normalized relative abundance of plant benefit genes. Significant 

differences of the means are marked by different letters. 
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Figure S 8 Growing season (a) and winter (b) soil temperatures from four depths in the 

three sites. Error bars represent standard errors of the means from three replicated 

observation locations in each site. Different letters denote significantly difference of the 

means among sites, tested by one-way ANOVA considering multiple observation time 

points. 
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Figure S 9 Detrended correspondence analyses (DCA) for GeoChip hybridization (a), 

16S rRNA amplicon sequences (b), and subsystems from shotgun metagenomic 

sequences (c). The microbial composition based on GeoChip hybridization separated 

clearly by treatment; while microbial composition based on 16S rRNA amplicon 

sequences and subsystems from shotgun metagenomic sequences did not. 
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Figure S 10 Canonical correspondence analyses (CCA) based on GeoChip 

hybridization (a) and 16S rRNA amplicon sequences (b). The microbial composition 

based on GeoChip hybridization was significantly shaped by soil temperature (Soil T), 

soil moisture (Soil M) and gross primary productivity (GPP), which explained 38.7% of 

microbial composition variance. The microbial composition based on 16S rRNA 

amplicon sequences was significantly shaped by soil labile carbon pool 1 (LP1%), soil 

labile carbon pool 2 (LP2%) and soil nitrogen content (N%), which explained 43.8% of 

microbial composition variance. 
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Figure S 11 The clustering of both warmed and control groups based on the normalized 

abundance of SEED subsystems in each sample. The trimmed reads were assigned to 

subsystems in the SEED database and the heatmap color-coded by subsystem relative 

abundance. Samples were clustered by hierarchical clustering based on Euclidean 

distances calculated from the SEED subsystem relative abundances. 
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Figure S 12 Effects of warming on different components of the soil microbial 

communities as detected by GeoChip hybridization or amplicon sequencing. Significant 

differences between treatments is indicated by ** when p<0.05 (two-tailed paired t-test 

for a, and ANOVA for b-e). (a) Overall abundance of bacteria, fungi and archaea based 

on GeoChip hybridization. Abundance of functional genes from bacteria, fungi and 

archaea all tended to increase, though not significantly. (b) carbon fixation and CH4 

genes based on GeoChip hybridization. The abundances of CODH genes, pcc, rubisco 

genes (carbon fixation), pmoA (CH4 oxidation), and mcrA (CH4 production) were 

significantly stimulated by warming. (c) Phosphate and sulfur genes based on GeoChip 

hybridization. Warming significantly stimulated the gene encoding phytase and the ppx 

gene for phosphorus utilization, as well as APS_AprA, APS_AprB, sqr, CysJ, dsrA, 

dsrB, sir and sox genes in sulfur cycling. (d) Methanotrophs from 16S rRNA amplicon 

sequences. (e) N-fixing populations based on nifH amplicon sequences. Warming 

significantly stimulated the abundances of Deltaproteobacteria and Opitutae, but 

inhibited Alphaproteobacteria.  
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Figure S 13 Amount of carbon pool fractions, including labile carbon pool 1 (LCP1, 

mainly polysaccharides) and 2 (LCP2, mostly cellulose), and recalcitrant carbon pool 

(RCP), and total organic carbon pool sizes in control and warmed plots. None of the 

carbon pool fractions and total organic carbon pool significantly changed in response to 

warming by two-tailed t-test. 

  



145 

 

 

Figure S 14 The abundance of (a) carbon degradation genes and (b) anaerobic 

respiration genes in OK site. Asteroids indicate significant differences between the 

mean signals in warmed versus control plots with p<0.05 by ANOVA. 
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Figure S 15 (a) Percentage change of nitrogen genes to warming at the OK site and (b) 

the ratio of response ratios between AK and OK sites. In (a), the significance for 

percentage change was indicated by * and red color of gene name when p<0.05. In (b), 

the significance for ratio of response ratios was indicated by * and red color of gene 

name when 95% confident interval did not overlap with zero. Gray-colored genes were 

not targeted by the adopted version of GeoChip or not detected. 
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Figure S 16 Plant biomass and richness (the number of plant species) at the time of 

plant survey in September 2012. Differences of means between control and warming 

were tested by paired t-test. Error bars denote standard errors for n=4 field replicate 

plots. 
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Figure S 17 Microbial community beta-diversity indicated by the multivariate 

homogeneity of groups variances. (a) The distribution of samples in a two-dimensional 

space in the Principle Coordinate Analysis (PCoA) marked differentially for control and 

warmed communities. Filled shapes represent theoretical locations of group centroids. 

(b)-(d) The distance of samples to group centroids by treatment (b), month (c) and 

season (d). Means of distances to centroids are significantly larger for warmed than 

control communities. Those among months or seasons are not significant. 
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Figure S 18 Microbial taxonomic compositions (refer to the color key) in different 

months from control (inner circle) and warmed (outer circle) plots. On the color key, 

blue and red asterisks mark phyla (classes for Proteobacteria) with significantly 

different abundance among months in control and warmed plots, respectively. Pie 

fractions indicate the relative abundances of taxa in terms of retrieved sequences 

numbers. Below the pie chart of each month, taxa listed in red or blue are those with 

significantly increased or decreased abundance, respectively, in response to warming. 
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Figure S 19 (a)-(e) Z-P plots for all the networks constructed. The numbers of module 

hubs and connectors in control/warming networks are marked in corresponding 

quadrants separated by Z=2.5 and P=0.62. No network hub is present in any network. 

(f) The phylogenetic profile of module hub and connector OTUs identified in all 

networks. Numbers below phyla names are the number of OTUs and percentage in all 

the 95 module hubs and connectors. Their detailed taxonomic information is listed in 

Table S 15. 
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Figure S 20 The relative abundances of network module hubs and connectors in the 

microbial community. 
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Figure S 21 Module eigengenes’ correlations with environmental variables for the 

separate season networks. An eigengene was calculated for each module to represent all 

nodes within each module. Clusters show the hierarchical clustering of eigengenes for 

modules numbered as in Figure 5.4. The Pearson correlation coefficient of each 

eigengene-environmental variable pair is indicated by the color key. Numbers on top of 

the heatmap listed p values of all significant (p<0.05) correlations. Variables were 

defined as in the legend of Figure 5.1.  
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Appendix B: Supplementary Tables 

Table S 1 Non-parametric multivariate dissimilarity tests of functional gene profiles 

among depth fractions, and among the three thaw sites within each depth fraction. 

MRPP, multi-response permutation procedures; Adonis, permutational multivariate 

analysis of variance using distance matrices; ANOSIM, analysis of similarity. Numbers 

in parentheses were the number of samples acquired from corresponding depth 

fractions. Results presented are based on distance matrices calculated with Bray-Curtis 

index. P values <0.1 are in bold. 

  MRPP Adonis ANOSIM 

Compare Sample set δ p F p R p 

Among 

depths  
All 107 samples 0.279 0.052 0.848 0.060 0.002 0.105 

Among 

sites 

All 107 samples  0.254 0.001 11.501 0.001 0.146 0.001 

Active layer (93 samples) 0.252 0.001 10.928 0.001 0.157 0.001 
permafrost (14 samples) 0.284 0.307 1.058 0.342 0.087 0.197 

0-15cm (18 samples) 0.278 0.595 0.934 0.436 -0.036 0.686 

15-25cm (16 samples) 0.212 0.050 2.334 0.077 0.252 0.032 

25-35cm (16 samples) 0.233 0.045 2.678 0.032 0.116 0.093 

35-45cm (17 samples) 0.267 0.012 3.900 0.019 0.236 0.032 

45-55cm (16 samples) 0.270 0.025 2.413 0.027 0.111 0.112 

55-65cm (11 samples) 0.263 0.050 2.509 0.082 0.204 0.120 

>65cm (13 samples) 0.311 0.652 0.503 0.779 -0.181 0.919 
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Table S 2 to Table S 4 for Chapter 2: Microbial functional diversity covaries with 

permafrost thaw-induced environmental heterogeneity in tundra soil 

 

Table S 5 to Table S 11 for Chapter 3: Rapid microbial feedbacks reveal vulnerability 

of tundra soil carbon to climate warming 

 

Table S 12 and Table S 13 for Chapter 4: Differential microbial sensitivity to 

experimental warming: a comparative metagenomic analysis of soils from two 

ecosystems 

 

Table S 14 to Table S 16 for Chapter 5: Warming facilitates the interconnection of 

grassland soil microbial communities 
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Table S 1 Non-parametric multivariate dissimilarity tests of functional gene profiles 

among depth fractions, and among the three thaw sites within each depth fraction. 

MRPP, multi-response permutation procedures; Adonis, permutational multivariate 

analysis of variance using distance matrices; ANOSIM, analysis of similarity. Numbers 

in parentheses were the number of samples acquired from corresponding depth 

fractions. Results presented are based on distance matrices calculated with Bray-Curtis 

index. P values <0.1 are in bold. 

  MRPP Adonis ANOSIM 

Compare Sample set δ p F p R p 

Among 

depths  
All 107 samples 0.279 0.052 0.848 0.060 0.002 0.105 

Among 

sites 

All 107 samples  0.254 0.001 11.501 0.001 0.146 0.001 

Active layer (93 samples) 0.252 0.001 10.928 0.001 0.157 0.001 
permafrost (14 samples) 0.284 0.307 1.058 0.342 0.087 0.197 

0-15cm (18 samples) 0.278 0.595 0.934 0.436 -0.036 0.686 

15-25cm (16 samples) 0.212 0.050 2.334 0.077 0.252 0.032 

25-35cm (16 samples) 0.233 0.045 2.678 0.032 0.116 0.093 

35-45cm (17 samples) 0.267 0.012 3.900 0.019 0.236 0.032 

45-55cm (16 samples) 0.270 0.025 2.413 0.027 0.111 0.112 

55-65cm (11 samples) 0.263 0.050 2.509 0.082 0.204 0.120 

>65cm (13 samples) 0.311 0.652 0.503 0.779 -0.181 0.919 
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Table S 2 α-diversity indices of microbial functional genes detected by GeoChip, and 

microbial taxonomy revealed by 16S rRNA sequencing reported in Deng et al 2015 in 

the three thawing sites. Numbers presented mean ± standard error. n=23, 24, and 23 

samples in GeoChip data, and n=32, 25, and 35 samples in 16S data for Mi, Mo and Ex 

sites, respectively. Difference of mean between each two sites was tested using 

permutational t-test. P-values were then adjusted based on false discovery rate for 

multiple comparisons. Different letters denote significant difference (adjusted p<0.05) 

of the means. 

Dataset Indices Mi Mo Ex 

GeoChip 

#of probes 33591±1071a 23394±841 c 28508±1262 b 

Shannon 10.41±0.03 a 10.04±0.04 c 10.23±0.05 b 

Simpson 0.999969±0.000001 a 0.999956±0.000002 c 0.999963±0.000002 b 

evenness 0.999745±0.000009 b 0.999794±0.000009 a 0.999766±0.000016 ab 

16S rRNA 

gene 

sequencing* 

#of OTUs 3818±207 3250±192 3710±259 

Shannon 5.78±0.14 5.50±0.13 5.79±0.13 

Simpson 0.980±0.003 0.972±0.004 0.981±0.003 

evenness 0.70±0.01 0.68±0.01 0.71±0.01 

* Reanalyzed from data published in Deng et al 2015. Means were not significant in all 

comparisons. 
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 Table S 3 The portion of functional gene probes in all probes shared by the three sites 

that were significantly different (P<0.05 by ANOVA) in abundance among sites. P 

values were corrected across all shared probes using false discovery rate. 

Functional category 

Number of 

shared probes 

among sites 

Number of probes with 

different abundance 

among sites 

Percentage of probes 

with different 

abundance (%) 

Carbon cycling 4693 2233 47.6 

Nitrogen 2793 1394 49.9 

Phosphorus 514 240 46.7 

Sulfur 1126 529 47.0 

Fungi function 226 109 48.2 

Stress 6932 3396 49.0 

Antibiotic resistance 1223 608 49.7 

Soil borne pathogen 446 201 45.1 

Bacteria phage 193 93 48.2 

Plant benefit 1302 668 51.3 

Virulence 1245 633 50.8 

Metal resistance 4001 1988 49.7 

Organic remediation 8061 4022 49.9 

Energy process 348 154 44.3 

Bioleaching 225 91 40.4 

Other category 689 335 48.6 

Grand 34017 16694 49.1 
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Table S 4 Mantel and partial Mantel tests revealed correlations between plant and soil 

physical-chemical variables and microbial functional gene composition. ANPP, annual 

net primary productivity. Bold values indicate p<0.05. 

Category Variable 
 Control depth 

r p r p 

Plant variable 

 

Vascular plant biomass 0.103 0.012 

NA 

Graminoid 0.172 0.001 

Evergreen shrub -0.008 0.556 

Deciduous shrub -0.004 0.522 

ANPP from vascular plant 0.259 0.001 

Graminoid 0.172 0.001 

Evergreen shrub -0.008 0.597 

Deciduous shrub -0.004 0.523 

Non-vascular plant biomass 0.004 0.405 

ANPP from non-vascular plant 0.002 0.438 

Soil physical-

chemical 

property 

Annual temperature 0.010 0.381 0.047 0.275 

Growing season temperature -0.008 0.522 0.013 0.439 

Winter temperature -0.110 0.975 -0.142 0.956 

Gravimetric water content 0.104 0.109 0.099 0.117 

N content (g/m2) 0.015 0.378 -0.019 0.598 

C content (g/m2) 0.051 0.239 -0.052 0.767 

δ15N 0.000 0.478 -0.008 0.492 

δ13C 0.066 0.167 0.039 0.301 

Bulk Density 0.061 0.233 0.052 0.258 
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Table S 5 Summary of permutation tests to investigate warming effects on soil 

microbial community composition based on OTUs for 16S rRNA and nifH genes 

detected by amplicon sequencing, and genes or subsystems detected by metagenomic 

shotgun sequencing. Three dissimilarity tests were performed, including multiple 

response permutation procedure (MRPP), analysis of similarity (ANOSIM) and 

permutational multivariate analysis of variance (Adonis), based on Euclidean, Horn or 

Bray-Curtis distance. 

 

Detection 

approaches 
Targeted genes/groups 

Distance 

Method 

MRPP ANOSIM Adonis 

δ P R P F P 

Amplicon 

sequencing 

16S rRNA gene OTUs 

detected by sequencing 

Euclidean 2865.01 0.23 0.03 0.21 0.99 0.35 

Horn 0.58 0.27 0.01 0.28 1.00 0.39 

Bray-Curtis 0.63 0.26 0.00 0.33 0.97 0.29 

nifH gene OTUs detected 

by sequencing 

Euclidean 2875.46 0.72 -0.07 0.82 0.85 0.49 

Horn 0.45 0.62 -0.07 0.75 0.78 0.61 

Bray-Curtis 0.40 0.70 -0.07 0.68 0.74 0.68 

Metagenom

ic shotgun 

sequencing 

Functional genes relevant 

to GeoChip probes from 

shotgun sequences 

Euclidean 929.61 0.52 -0.12 0.85 0.71 0.65 

Horn 0.13 0.57 -0.10 0.76 0.25 0.81 

Bray-Curtis 0.34 0.55 -0.10 0.75 0.78 0.68 

16S rRNA gene OTUs 

from shotgun sequences 

Euclidean 14224.50 0.66 -0.06 0.58 0.55 0.62 

Horn 0.31 0.76 -0.06 0.63 0.36 0.75 

Bray-Curtis 0.44 0.47 -0.03 0.51 0.93 0.49 

Subsystems from shotgun 

sequences 

Euclidean 16695.64 0.77 -0.12 0.97 0.32 0.77 

Horn 0.01 0.80 -0.10 0.97 -0.12 0.85 

Bray-Curtis 0.05 0.77 -0.10 0.91 0.43 0.76 
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Table S 6 Summary of metagenomic shotgun sequence statistics. M5NR, the M5 non-

redundant protein database; SEED, the SEED project database. 

 

 Control Warming 

Number of reads (raw, 106) 270.33±9.87 269.01±23.80 

Number of reads (after trimming, 106) 232.33±8.72 124.17±24.82 

Reads with M5NR hit (%) 47.83±0.65 49.00±0.97 

Reads with SEED hit (%) 16.50±0.34 16.50±0.62 
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Table S 7 Fold change (log transformed) between warming (W) and control (C) for 

subsystems involved in carbon, nitrogen, phosphorous and sulfur cycling. 

Subsystems Log2(W/C) Direction p 

C    

Cellulosome 0.662 Increase <0.01 

Mannose metabolism 0.226 Increase <0.01 

Predicted carbohydrate hydrolases 0.257 Increase 0.01 

Fructooligosaccharides (FOS) and raffinose utilization 0.191 Increase 0.01 

Lactose and galactose uptake and utilization 0.132 Increase 0.02 

L-fucose utilization 0.483 Increase 0.02 

Xylose utilization 0.167 Increase 0.03 

Chitin and N-acetylglucosamine utilization 0.192 Increase 0.04 

Soluble CH4 monooxygenase (sMMO) 0.301 Increase 0.38 

Tricarballylate utilization -0.538 Decrease 0.05 

Isobutyryl-CoA to propionyl-CoA module -0.205 Decrease 0.07 

Propionate-CoA to succinate module -0.255 Decrease 0.09 

Lactose utilization 0.527 Increase 0.11 

L-rhamnose utilization 0.112 Increase 0.13 

Unknown sugar utilization (cluster yphABCDEFG) 0.200 Increase 0.16 

Glycolate, glyoxylate interconversions -0.121 Decrease 0.19 

Inositol catabolism 0.085 Increase 0.20 

CO2 uptake, carboxysome -0.104 Decrease 0.22 

Sucrose utilization 0.398 Increase 0.35 

D-galacturonate and D-glucuronate utilization 0.067 Increase 0.35 

D-sorbitol(D-glucitol) and L-sorbose utilization 0.253 Increase 0.36 

Uncharacterized sugar kinase cluster (ygc) 0.546 Increase 0.36 

Dehydrogenase complexes -0.070 Decrease 0.36 

Entner-Doudoroff Pathway 0.069 Increase 0.44 

Fructoselysine (Amadori product) utilization pathway -0.489 Decrease 0.47 

Butanol biosynthesis 0.375 Increase 0.48 

Fructose utilization 0.066 Increase 0.49 

Unknown carbohydrate utilization containing fructose-

bisphosphate aldolase 
0.300 Increase 0.50 

Trehalose biosynthesis -0.055 Decrease 0.53 

Serine-glyoxylate cycle -0.038 Decrease 0.59 

Pentose phosphate pathway 0.050 Increase 0.61 

Trehalose uptake and utilization 0.135 Increase 0.61 

Acetyl-CoA fermentation to butyrate 0.139 Increase 0.67 

Formaldehyde assimilation: ribulose monophosphate pathway -0.117 Decrease 0.67 

Glycerate metabolism -0.035 Decrease 0.71 

Acetone butanol ethanol synthesis -0.068 Decrease 0.72 

Methylcitrate cycle -0.133 Decrease 0.79 

D-galactarate, D-glucarate and D-glycerate catabolism -0.013 Decrease 0.88 

Propionyl-CoA to succinyl-CoA module 0.031 Increase 0.88 

D-ribose utilization 0.006 Increase 0.98 

Neotrehalosadiamine (NTD) biosynthesis operon 0.103 Increase 1.00 

N    
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Allantoin utilization -0.046 Decrease 0.61 

Nitrogen fixation 0.123 Increase 0.26 

Nitrosative stress 0.021 Increase 0.65 

Ammonia assimilation -0.029 Decrease 0.89 

Nitrate and nitrite ammonification -0.077 Decrease 0.68 

Cyanate hydrolysis -0.149 Decrease 0.34 

Dissimilatory nitrite reductase -0.065 Decrease 0.62 

Nitric oxide synthase -0.236 Decrease 0.02 

Amidase clustered with urea and nitrile hydratase functions -0.110 Decrease 0.58 

Nitrilase 0.508 Increase 0.22 

Denitrification 0.162 Increase 0.08 

P    

High affinity phosphate transporter and control of PHO regulon 0.137 Increase 0.81 

Phosphoenolpyruvate phosphomutase -0.250 Decrease 0.33 

P uptake (cyanobacteria) -0.843 Decrease 0.25 

Phosphate-binding DING proteins -0.537 Decrease 0.20 

Phosphate metabolism -0.002 Decrease 0.96 

Alkylphosphonate utilization -0.169 Decrease 0.27 

Phosphonate metabolism -0.284 Decrease 0.25 

S    

Release of dimethyl sulfide (DMS) from 

dimethylsulfoniopropionate (DMSP) 
-0.325 Decrease 0.69 

L-cystine uptake and metabolism -0.299 Decrease 0.71 

Taurine utilization -0.353 Decrease 0.14 

Inorganic sulfur assimilation -0.053 Decrease 0.54 

Alkanesulfonate assimilation -0.082 Decrease 0.30 

Galactosylceramide and sulfatide metabolism -0.053 Decrease 0.38 

Sulfur oxidation -0.234 Decrease 0.05 

Sulfate reduction-associated complexes 0.018 Increase 0.69 

DMSP breakdown 0.120 Increase 0.95 

Utilization of glutathione as a sulfur source -0.495 Decrease 0.03 

Thioredoxin-disulfide reductase 0.052 Increase 0.66 

Alkanesulfonates utilization -0.120 Decrease 0.28 
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Table S 8 Fold change (log transformed) between warming (W) and control (C) for 

subsystems involved in anaerobic activities.  

  
Subsystem log2(W/C) Direction p 

Acetogene- 

sis 

Pyruvate metabolism II: acetyl-CoA, 

acetogenesis from pyruvate 
0.064 Increase 0.57 

Methano-

genesis 

Methanogenesis -0.080 Decrease 0.62 

Methanogenesis from methylated compounds 0.057 Increase 0.74 

Methanogenesis strays 0.631 Increase 0.05 

Methanopterin biosynthesis 0.319 Increase 0.43 

Methanopterin biosynthesis2 -0.159 Decrease 0.52 

Coenzyme F420-H2 dehydrogenase  0.517 Increase 0.26 

Methanophenazine hydrogenase 0.824 Increase 0.32 

N Denitrification 0.162 Increase 0.08 

Sulfate 

reduction 
Sulfate reduction-associated complexes 0.018 Increase 0.69 

Other 

Anaerobic benzoate metabolism -0.049 Decrease 0.66 

Threonine anaerobic catabolism gene cluster -0.060 Decrease 0.73 

Anaerobic toluene and ethylbenzene degradation -0.103 Decrease 0.86 

Anaerobic respiratory reductases -0.021 Decrease 0.91 

Anaerobic oxidative degradation of L-ornithine 0.435 Increase 0.36 

  



164 

 

Table S 9 CCA between the structure of each functional gene group involved in 

C/N/P/S cycling and each environmental attribute. The functional community structure 

was determined by GeoChip hybridization.  Significance is represented by ** when 

p<0.05 and * when p<0.10. Environmental attributes without significant correlation to 

any of the functional gene groups are not listed. 

 Subcategorya T M W-Reco GS-Reco GPP Bm Gm-Bm LP1% NH4
+ 

C 

degrad-

ation 

Starch ** ** ** ** **  *   

Hemicellulose ** ** ** ** **     

Cellulose ** ** ** * **     

Chitin ** ** ** * **     

pectinase        * * 

Others ** ** ** ** **     

Lignin ** ** ** ** **     

N 

Ammonification ** ** ** ** **     

Anammox ** ** **  *     

Assimilatory N 

reduction 
** ** ** ** ** * **   

Denitrification  ** ** ** **     

Dissimilatory N 

reduction 
 ** ** ** **     

Nitrification ** ** ** ** **  *   

nifH ** ** ** ** **     

P 
Phosphorus 

utilization 
** ** ** ** **  *   

S 

Adenylylsulfate 

reductase 
** ** ** ** **     

Sulfide oxidation  ** ** * *     

Sulfite reductase ** ** ** ** **     

Sulfur oxidation ** ** ** ** **     

Environmental attributes include soil temperature (T), soil moisture (M), wintertime and 

growing season ecosystem respiration (W-Reco and GS-Reco), gross primary productivity 

(GPP), peak biomass of all plant species (Bm), peak biomass of graminoid (Gm-Bm), 

soil labile carbon pool 1 (LP1%), and ammonia (NH4
+) contents.    
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Table S 10 Number of positive GeoChip probes for each gene that were significantly 

(p<0.05) or marginally significantly (p<0.10) correlated with the decomposition rate 

(mass loss % after one year by utilizing cellulose filter paper as a standard substrate) 

and its percentage to total detected probe number in each gene. The test was performed 

by Pearson correlation.  

Gene 

category 
Subcategory Gene name 

Correlated 

probe 

number 

% of total 

probe 

number 

C 

degra-

dation 

Starch amyA  29 4.9 

Starch cda  12 6.9 

Starch glucoamylase  3 4.1 

Starch nplT  4 4.3 

Starch pulA  4 2.9 

Cellulose CDH  1 2.0 

Cellulose cellobiase  4 3.2 

Cellulose endoglucanase  3 3.1 

Cellulose exoglucanase  4 4.1 

Hemicellulose ara  8 3.0 

Hemicellulose ara-fungi  4 5.0 

Hemicellulose xylA  4 2.3 

Hemicellulose xylanase  3 3.7 

Chitin acetylglucosaminidase  10 4.2 

Chitin endochitinase  17 4.4 

Chitin exochitinase  1 2.1 

Aromatics AceA  14 4.6 

Aromatics AceB  19 4.5 

Aromatics AssA  1 20.0 

Aromatics camDCAB  1 33.3 

Aromatics limEH  6 18.8 

Aromatics vanA  6 3.2 

Aromatics vdh  1 2.6 

Lignin glx  1 1.4 

Lignin lip  3 8.3 

Lignin mnp  3 7.1 

Lignin phenol_oxidase  10 3.4 

N Ammonification gdh  3 5.9 

Ammonification ureC  16 3.6 

Anammox hzo  1 8.3 

Assimilatory N reduction nasA  4 3.8 

Assimilatory N reduction NiR  2 2.6 

Assimilatory N reduction NirB  2 6.7 

Denitrification narG  22 3.1 

Denitrification nirS  8 2.3 

Denitrification norB  4 6.2 
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Denitrification nosZ  7 3.6 

Denitrification nirK  7 2.2 

Dissimilatory N reduction napA  4 2.5 

Dissimilatory N reduction nrfA  4 2.6 

Nitrification hao  1 4.3 

Nitrification amoA  17 3.2 

Nitrogen fixation nifH  32 4.5 

P Phosphorus utilization phytase  1 2.9 

Phosphorus utilization ppk  10 3.9 

Phosphorus utilization ppx  23 5.5 

S Adenylylsulfate reductase AprA  3 4.2 

Adenylylsulfate reductase APS_AprA  2 1.9 

Sulfide oxidation APS_AprB  3 5.5 

Sulfide oxidation fccAB  1 1.2 

Sulfite reductase sqr  10 76.9 

Sulfite reductase CysJ  27 8.9 

Sulfite reductase dsrA  16 2.4 

Sulfite reductase dsrB  6 1.4 

Sulfur oxidation sir  9 6.7 

Sulfur oxidation sox  9 3.0 
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Table S 11 GenBank GI numbers of the functional gene clusters’ representative 

sequences in Figure 3.2e. 

Cluster name in Fig. 2e GI number in GenBank 

glucoamylase.1 321161797 

ara.1 151362027 

ara.2 310799506 

ara.3 225792025 

ara.4 264673727 

ara.5 237686947 

ara.6 217988056 

ara.7 119947938 

ara.8 177842253 

ara.9 16079903 

ara.10 229567653 

xylA.1 116225312 

xylA.2 148371493 

xylA.3 157912302 

xylA.4 153534 

xylA.5 256800271 

xylA.6 227272193 

cellobiase.1 169016064 

cellobiase.2 296926994 

cellobiase.3 365270931 

cellobiase.4 237881831 

cellobiase.5 296092656 

gdh.1 91203647 

ureC.1 158112848 

ureC.2 108770190 

ureC.3 194343174 

ureC.4 257045343 

ureC.5 118656429 

ureC.6 124895654 

ureC.7 15807978 

nasA.1 260217376 

nasA.2 221738036 

NiR.1 225793725 

NiR.2 183580411 
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Table S 12 Summary of shotgun metagenomic sequence statistics at OK site.  

Item Control Warming 

Number of reads (after trimming, 106) 213.00±4.53 215.75±14.01 

Reads with M5NR hit (%) 46.75±1.11 49.00±0.91 

Reads with SEED hit (%) 17.00±0.41 17.00±0.41 
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Table S 13 Summary of α-diversity based on GeoChip, 16S rRNA, 28S rRNA, nifH 

sequences, GeoChip related shotgun sequences, 16S rRNA and subsystem from shotgun 

metagenomic sequences. The significance was tested by two-tailed t test for richness or 

permutation t test for diversity index, labeled with * when 0.05<p<0.10. 

Data set 
 Richness Shannon Inverse Simpson 

 Control Warming  Control Warming  Control Warming  

GeoChip 

hybridization 

AK 
41756.17 

±720.80 

43205.83 

±1964.89 
 

10.63 

±0.02 

10.66 

±0.05 
 

41273.04 

±705.40 

42686.54 

±1927.16 
 

OK 
43549.50 

±573.74 

44003.75 

±171.05 
 

10.68 

±0.01 

10.687 

±0.004 
 

43113.55 

±572.09 

43563.42 

±174.55 
 

16S amplicon 

sequences 

AK 
5462.67 

±638.29 

4651.83 

±308.79 
 

7.10 

±0.17 

6.74 

±0.21 
 

424.63 

±63.37 

263.96 

±80.57 
* 

OK 
8152.50 

±598.95 

9368.00 

±969.22 
 

7.84 

±0.19 

8.17 

±0.16 
 

790.33 

±184.17 

1242.87 

±285.32 
 

28S amplicon 

sequences 

AK 
256.67 

±31.68 

331.83 

±51.03 
 

3.53 

±0.19 

3.01 

±0.35 
 

16.80 

±2.71 

10.53 

±2.76 
* 

OK 
1984.00 

±346.49 

1400.00 

±535.09 
 

5.76 

±0.12 

5.29 

±0.23 
 

102.70 

±19.40 

58.46 

±9.54 
 

nifH amplicon 

sequences 

AK 
798.00 

±77.95 

923.67 

±88.36 
 

5.12 

±0.15 

5.15 

±0.11 
 

62.51 

±7.79 

60.78 

±6.80 
 

OK 
918.50 

±288.86 

877.75 

±335.36 
 

4.85 

±0.51 

5.20 

±0.25 
 

60.54 

±19.06 

69.45 

±6.64 
 

GeoChip related 

shotgun 

metagenomics 

sequences 

AK 
16967.83 

±1237.49 

15946.83 

±498.06 
 

8.72 

±0.08 

8.66 

±0.04 
 

2468.80 

±252.88 

2289.30 

±105.76 
 

OK 
24235 

±932.13 

24063 

±1303.68 
 

9.12 

±0.05 

9.10 

±0.06 
 

3285.85 

±150.00 

3166.47 

±142.04 
 

Subsystems 

from shotgun 

metagenomics 

sequences 

AK 
977.00 

±3.80 

972.17 

±5.78 
 

5.75 

±0.02 

5.75 

±0.01 
 

193.12 

±5.74 

190.31 

±3.01 
 

OK 
1018.50 

±1.32 

1019.25 

±3.15 
 

5.81 

±0.01 

5.81 

±0.01 
 

213.34 

±1.15 

213.17 

±1.73 
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Table S 14 Data association strength cutoff (St) ranges for SS and AT networks 

detected by the improve RMT-based approach. 

Network 
Transition start 

(minimum St) 

Transition end 

(maximum St) 
Overlapping St range Cutoff 

spring-C 0.854 0.797 

[0.852, 0.933] 0.8925 

summer-C 0.933 0.781 
fall-C 0.824 0.781 

winter-C 0.828 0.784 
spring-W 0.839 0.771 

summer-W 0.930 0.776 
fall-W 0.942 0.852 

winter-W 0.943 0.805 

C 0.508 0.698 
[0.563, 0.698] 0.6305 

W 0.563 0.760 
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Table S 15 Taxonomic information for module hubs and connectors. The superscript 

numbers before the OTU indicates the number of networks in which those OTUs are 

present as key-stone species. 

OTU 
network/ 

module 
Phylum Class Genus 

Module hubs     
2OTU_6318 spring-C/1 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_116965 spring-C/3 Acidobacteria Acidobacteria_Gp5 Gp5 

OTU_114765 spring-W/1 Actinobacteria Actinobacteria Solirubrobacter 
4OTU_70085 spring-W/3 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_119760 spring-W/5 Proteobacteria Alphaproteobacteria Unclassified 

OTU_16692 spring-W/6 Proteobacteria Alphaproteobacteria Unclassified 

OTU_80088 summer-C/4 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_89229 summer-W/1 Proteobacteria Alphaproteobacteria Unclassified 
2OTU_3308 summer-W/2 Crenarchaeota Thermoprotei Unclassified 

OTU_17125 summer-W/2 Proteobacteria Unclassified Unclassified 
3OTU_132165 summer-W/3 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
2OTU_55850 summer-W/4 Proteobacteria Alphaproteobacteria Unclassified 
2OTU_1714 summer-W/6 Actinobacteria Actinobacteria Pseudonocardia 

OTU_2778 fall-C/1 Acidobacteria Acidobacteria_Gp6 Gp6 

OTU_3667 fall-C/1 Actinobacteria Actinobacteria Conexibacter 
3OTU_90925 fall-C/2 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_29290 fall-W/1 Bacteroidetes Sphingobacteria Unclassified 
2OTU_1714 fall-W/2 Actinobacteria Actinobacteria Pseudonocardia 
4OTU_70085 fall-W/3 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_1461 fall-W/4 Proteobacteria Alphaproteobacteria Skermanella 

OTU_1167 fall-W/5 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_50262 winter-C/1 Firmicutes Bacilli Unclassified 

OTU_107273 winter-W/1 Actinobacteria Actinobacteria Unclassified 

OTU_2020 winter-W/2 Acidobacteria Acidobacteria_Gp4 Gp4 

OTU_764 winter-W/3 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_20432 winter-W/9 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_14090 C/1 Acidobacteria Acidobacteria_Gp4 Gp4 

OTU_14558 C/1 Acidobacteria Acidobacteria_Gp2 Gp2 

OTU_3477 C/1 Acidobacteria Acidobacteria_Gp13 Gp13 
3OTU_90925 C/1 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_50927 C/1 Actinobacteria Actinobacteria Solirubrobacter 
2OTU_13482 C/1 Proteobacteria Gammaproteobacteria Steroidobacter 
2OTU_90406 C/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
2OTU_115896 C/2 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
3OTU_132165 C/2 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
4OTU_70085 C/2 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_11228 C/3 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_116965 C/3 Acidobacteria Acidobacteria_Gp5 Gp5 
2OTU_87022 C/3 Actinobacteria Actinobacteria Unclassified 

OTU_49878 C/3 Proteobacteria Unclassified Unclassified 

OTU_1096 C/3 Unclassified Unclassified Unclassified 
2OTU_50262 C/4 Firmicutes Bacilli Unclassified 

OTU_120739 C/5 Crenarchaeota Thermoprotei Unclassified 

OTU_38746 C/6 Acidobacteria Acidobacteria_Gp16 Gp16 
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2OTU_125428 C/6 Proteobacteria Alphaproteobacteria Sphingosinicella 

OTU_119435 C/7 Actinobacteria Actinobacteria Unclassified 
2OTU_20432 C/8 Acidobacteria Acidobacteria_Gp1 Gp1 
2OTU_3308 W/1 Crenarchaeota Thermoprotei Unclassified 

OTU_77723 W/1 Crenarchaeota Thermoprotei Unclassified 
2OTU_115896 W/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
3OTU_132165 W/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
2OTU_26513 W/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
4OTU_70085 W/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_10156 W/2 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_14911 W/2 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_70836 W/2 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_80872 W/2 Acidobacteria Acidobacteria_Gp1 Gp1 
3OTU_90925 W/2 Acidobacteria Acidobacteria_Gp1 Gp1 

OTU_12027 W/2 Proteobacteria Alphaproteobacteria Rhizomicrobium 

OTU_27828 W/2 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_17370 W/3 Acidobacteria Acidobacteria_Gp3 Gp3 

OTU_5633 W/3 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_6318 W/3 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_125428 W/3 Proteobacteria Alphaproteobacteria Sphingosinicella 

OTU_130832 W/3 Proteobacteria Alphaproteobacteria Pseudolabrys 

OTU_3805 W/3 Proteobacteria Betaproteobacteria Unclassified 
2OTU_55850 W/3 Proteobacteria Alphaproteobacteria Unclassified 
2OTU_87022 W/4 Actinobacteria Actinobacteria Unclassified 

Connectors     
2OTU_90406 fall-W/1 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_84080 fall-W/3 Proteobacteria Betaproteobacteria Unclassified 
2OTU_26513 fall-W/3 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_49486 fall-W/8 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 
2OTU_86721 winter-W/1 Actinobacteria Actinobacteria Solirubrobacter 

OTU_3265 C/3 Unclassified Unclassified Unclassified 

OTU_91366 C/3 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_56313 C/6 Actinobacteria Actinobacteria Solirubrobacter 

OTU_4756 C/6 Proteobacteria Deltaproteobacteria Unclassified 

OTU_28445 C/6 Verrucomicrobia Spartobacteria Spartobacteria_genera_incertae_sedis 

OTU_8869 C/9 Proteobacteria Alphaproteobacteria Pseudolabrys 

OTU_33220 C/NA Acidobacteria Acidobacteria_Gp6 Gp6 

OTU_6329 W/1 Acidobacteria Acidobacteria_Gp4 Gp4 
2OTU_13482 W/1 Proteobacteria Gammaproteobacteria Steroidobacter 

OTU_5850 W/3 Actinobacteria Actinobacteria Unclassified 
2OTU_86721 W/3 Actinobacteria Actinobacteria Solirubrobacter 

OTU_97401 W/3 Actinobacteria Actinobacteria Unclassified 

OTU_98940 W/3 Actinobacteria Actinobacteria Thermoleophilum 

OTU_80507 W/3 Proteobacteria Betaproteobacteria Unclassified 

OTU_10516 W/4 Actinobacteria Actinobacteria Unclassified 

OTU_135325 W/4 Actinobacteria Actinobacteria Thermoleophilum 

OTU_143742 W/4 Actinobacteria Actinobacteria Unclassified 

OTU_17112 W/4 Actinobacteria Actinobacteria Streptosporangium 

OTU_18090 W/4 Actinobacteria Actinobacteria Solirubrobacter 

OTU_27378 W/4 Actinobacteria Actinobacteria Solirubrobacter 

OTU_146566 W/4 Firmicutes Bacilli Tumebacillus 

OTU_20861 W/4 Firmicutes Bacilli Tumebacillus 
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Table S 16 Summary of module eigengene analysis results. 

Network Modules (≥8 nodes) Variation explained by eigengene (Φ) 

spring-C 1/2/3/4/5/6/7/8/9 61/71/72/75/65/68/81/71/74 % 

summer-C 1/2/3/4/5/6/7/8/9/10 69/69/70/71/75/80/71/81/76/73 % 

fall-C 1/2/3/4/5/6/7/8 65/62/67/67/78/69/70/79 % 

winter-C 1/2/3/4/5 72/66/69/64/76 % 

spring-W 1/2/3/4/5/6/7/8/9 62/63/68/65/64/67/78/79/77 % 

summer-W 1/2/3/4/5/6/7/8/9 66/76/70/67/65/75/69/73/76 % 

fall-W 1/2/3/4/5/6/7/8/9/10 65/71/62/68/66/70/73/73/73/82 % 

winter-W 1/2/3/4/5/6/7/8/9/10 75/67/65/76/63/66/73/70/75/70 % 

C 1/2/3/4/5/6/7/8/9/10 38/43/29/49/34/26/46/48/61/45 % 

W 1/2/3/4/5 34/29/27/25/65 % 

  



174 

 

Reference 

A'Bear AD, Jones TH, Kandeler E, Boddy L (2014). Interactive effects of temperature 

and soil moisture on fungal-mediated wood decomposition and extracellular enzyme 

activity. Soil Biology and Biochemistry 70: 151-158. 

Abbott BW, Jones JB, Schuur EAG, Chapin III FS, Bowden WB, Bret-Harte MS et al 

(2016). Biomass offsets little or none of permafrost carbon release from soils, streams, 

and wildfire: an expert assessment. Environmental Research Letters 11: 034014. 

Abram NJ, McGregor HV, Tierney JE, Evans MN, McKay NP, Kaufman DS (2016). 

Early onset of industrial-era warming across the oceans and continents. Nature 536: 

411-418. 

ACIA (2004). Impacts of a Warming Arctic-Arctic Climate Impact Assessment. 

Cambridge University Press: Cambridge, UK. 

Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C et al (2003). 

Global patterns of the isotopic composition of soil and plant nitrogen. Global 

Biogeochemical Cycles 17: 1031. 

Anders S, Huber W (2010). Differential expression analysis for sequence count data. 

Genome biology 11: R106. 

Anderson MJ (2001). A new method for non-parametric multivariate analysis of 

variance. Austral Ecology 26: 32-46. 

Anderson MJ, Ellingsen KE, McArdle BH (2006). Multivariate dispersion as a measure 

of beta diversity. Ecology Letters 9: 683-693. 



175 

 

Avramidis P, Nikolaou K, Bekiari V (2015). Total organic carbon and total nitrogen in 

sediments and soils: A comparison of the wet oxidation – titration method with the 

combustion-infrared method. Agriculture and Agricultural Science Procedia 4: 425-

430. 

Baer SE, Connelly TL, Sipler RE, Yager PL, Bronk DA (2014). Effect of temperature 

on rates of ammonium uptake and nitrification in the western coastal Arctic during 

winter, spring, and summer. Global Biogeochemical Cycles 28: 1455-1466. 

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006). The role of root exudates in 

rhizosphere interactions with plants and other organisms. Annual Review of Plant 

Biology 57: 233-266. 

Baldrian P, Snajdr J, Merhautova V, Dobiasova P, Cajthaml T, Valaskova V (2013). 

Responses of the extracellular enzyme activities in hardwood forest to soil temperature 

and seasonality and the potential effects of climate change. Soil Biology & Biochemistry 

56: 60-68. 

Barberan A, Bates ST, Casamayor EO, Fierer N (2012). Using network analysis to 

explore co-occurrence patterns in soil microbial communities. ISME J 6: 343-351. 

Bardgett RD, Freeman C, Ostle NJ (2008). Microbial contributions to climate change 

through carbon cycle feedbacks. The ISME Journal 2: 805-814. 

Bassler BL, Losick R (2006). Bacterially speaking. Cell 125: 237-246. 



176 

 

Beier C, Emmett BA, Peñuelas J, Schmidt IK, Tietema A, Estiarte M et al (2008). 

Carbon and nitrogen cycles in European ecosystems respond differently to global 

warming. Science of The Total Environment 407: 692-697. 

Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 

(Methodological): 289-300. 

Berry D, Widder S (2014). Deciphering microbial interactions and detecting keystone 

species with co-occurrence networks. Frontiers in Microbiology 5. 

Blasing TJ, Smith K (2006). Recent greenhouse gas concentrations. 

http://cdiac.ornl.gov/pns/current_ghg.html. Updated April 2016. 

Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence 

on the temperature sensitivity of soil respiration. Nature 396: 570. 

Bradford MA (2013). Thermal adaptation of decomposer communities in warming 

soils. Front Microbiol 4: 333. 

Bray JR, Curtis JT (1957). An ordination of the upland forest communities of southern 

Wisconsin. Ecological monographs 27: 325-349. 

Brochier-Armanet C, Forterre P (2006). Widespread distribution of archaeal reverse 

gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and 

lateral gene transfers. Archaea 2. 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al (2009). 

BLAST+: architecture and applications. BMC Bioinformatics 10: 421. 



177 

 

Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010). 

PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 

26: 266-267. 

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et 

al (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per 

sample. Proc Natl Acad Sci U S A 108 Suppl 1: 4516-4522. 

Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010). Soil microbial 

community responses to multiple experimental climate change drivers. Applied and 

Environmental Microbiology 76: 999-1007. 

Cavaleri MA, Reed SC, Smith WK, Wood TE (2015). Urgent need for warming 

experiments in tropical forests. Glob Chang Biol 21: 2111-2121. 

Chambers JM, Freeny A, Heiberger RM (1992). Analysis of variance; designed 

experiments. In: Chambers JM, Hastie TJ (eds). Statistical Models in S. Wadsworth & 

Brooks/Cole: Pacific Grove, California. pp 145-193. 

Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH et al (2005). Role 

of land-surface changes in arctic summer warming. Science 310: 657-660. 

Chen H, Tian H-Q (2005). Does a general temperature-dependent Q10 model of soil 

respiration exist at biome and global scale? Journal of Integrative Plant Biology 47: 

1288-1302. 

Chen Q, Li L, Han X, Dong Y, Wang Z, Xiong X et al (2003). Acclimatization of soil 

respiration to warming. Acta ecologica sinica 24: 2649-2655. 



178 

 

Chou H-H, Holmes MH (2001). DNA sequence quality trimming and vector removal. 

Bioinformatics 17: 1093-1104. 

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J et al (2013). Carbon and 

other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, 

Boschung J et al (eds). Climate Change 2013: The Physical Science Basis. Contribution 

of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change: Cambridge, United Kingdom and New York, NY, USA. 

Clarke KR (1993). Non-parametric multivariate analyses of changes in community 

structure. Australian Journal of Ecology 18: 117-143. 

Clymo RS (1970). The growth of sphagnum: Methods of measurement. Journal of 

Ecology 58: 13-49. 

Comiso JC, Parkinson CL, Gersten R, Stock L (2008). Accelerated decline in the Arctic 

sea ice cover. Geophysical Research Letters 35: n/a-n/a. 

Contosta AR, Frey SD, Cooper AB (2015). Soil microbial communities vary as much 

over time as with chronic warming and nitrogen additions. Soil Biology and 

Biochemistry 88: 19-24. 

Coolen MJL, Orsi WD (2015). The transcriptional response of microbial communities 

in thawing Alaskan permafrost soils. Frontiers in Microbiology 6. 

Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD et al (2015). 

Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad 

Sci U S A 112: 7033-7038. 



179 

 

Das M, Royer TV, Leff LG (2007). Diversity of fungi, bacteria, and actinomycetes on 

leaves decomposing in a stream. Applied and Environmental Microbiology 73: 756-767. 

Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon 

decomposition and feedbacks to climate change. Nature 440: 165-173. 

Davidson EA, Janssens IA, Luo Y (2006). On the variability of respiration in terrestrial 

ecosystems: moving beyond Q10. Global Change Biology 12: 154-164. 

De Long JR, Dorrepaal E, Kardol P, Nilsson M-C, Teuber LM, Wardle DA (2016). 

Understory plant functional groups and litter species identity are stronger drivers of 

litter decomposition than warming along a boreal forest post-fire successional gradient. 

Soil Biology and Biochemistry 98: 159-170. 

De Mendiburu F (2014). Agricolae: statistical procedures for agricultural research. R 

package version 1.2-0. 

DeMarco J, Mack MC, Bret-Harte MS (2014). Effects of arctic shrub expansion on 

biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95: 1861-1875. 

Deng J, Gu Y, Zhang J, Xue K, Qin Y, Yuan M et al (2015). Shifts of tundra bacterial 

and archaeal communities along a permafrost thaw gradient in Alaska. Molecular 

Ecology 24: 222-234. 

Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012). Molecular ecological 

network analyses. BMC Bioinformatics 13: 113. 



180 

 

Deng Y, Zhang P, Qin Y, Tu Q, Yang Y, He Z et al (2016). Network succession reveals 

the importance of competition in response to emulsified vegetable oil amendment for 

uranium bioremediation. Environmental Microbiology 18: 205-218. 

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006). 

Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible 

with ARB. Applied and environmental microbiology 72: 5069-5072. 

Docherty KM, Balser TC, Bohannan BJM, Gutknecht JLM (2012). Soil microbial 

responses to fire and interacting global change factors in a California annual grassland. 

Biogeochemistry 109: 63-83. 

Duarte CM, Agustí S, Wassmann P, Arrieta JM, Alcaraz M, Coello A et al (2012). 

Tipping elements in the arctic marine ecosystem. AMBIO 41: 44-55. 

Dufresne JL, Fairhead L, Le Treut H, Berthelot M, Bopp L, Ciais P et al (2002). On the 

magnitude of positive feedback between future climate change and the carbon cycle. 

Geophysical Research Letters 29: 4341-4344. 

Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C et al (2011). Distinct 

seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel 

pyrosequencing. New Phytologist 190: 794-804. 

Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J (2011). Correlation network 

analysis applied to complex biofilm communities. PLOS ONE 6: e28438. 

Eddy SR (1998). Profile hidden Markov models. Bioinformatics 14: 755-763. 



181 

 

Edgar RC (2010). Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics 26: 2460-2461. 

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves 

sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. 

Edwards KA, Jefferies RL (2013). Inter-annual and seasonal dynamics of soil microbial 

biomass and nutrients in wet and dry low-Arctic sedge meadows. Soil Biology and 

Biochemistry 57: 83-90. 

Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ et al 

(2006). Importance of recent shifts in soil thermal dynamics on growing season length, 

productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global 

Change Biology 12: 731-750. 

Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al (2012). 

Microbial co-occurrence relationships in the human microbiome. PLOS Computational 

Biology 8: e1002606. 

Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS et al (2013). 

Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie 

soils in the United States. Science 342: 621-624. 

Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V et al (2016). A 

combination of extreme environmental conditions favor the prevalence of endospore-

forming firmicutes. Frontiers in Microbiology 7: 1707. 



182 

 

Foster EA, Franks DW, Morrell LJ, Balcomb KC, Parsons KM, van Ginneken A et al 

(2012). Social network correlates of food availability in an endangered population of 

killer whales, Orcinus orca. Animal Behaviour 83: 731-736. 

Frank DA, McNaughton SJ (1990). Aboveground biomass estimation with the canopy 

intercept method: A plant growth form caveat. Oikos 57: 57-60. 

Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H et al (2001). 

Positive feedback between future climate change and the carbon cycle. Geophysical 

Research Letters 28: 1543-1546. 

Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V et al (2006). 

Climate-carbon cycle feedback analysis: Results from the C4MIP model 

intercomparison. Journal of Climate 19: 3337-3353. 

Fuhrman JA (2009). Microbial community structure and its functional implications. 

Nature 459: 193-199. 

Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing 

climate. Plant and Soil 337: 19-32. 

Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S et al (2010). The NCBI 

BioSystems database. Nucleic Acids Research 38: D492-D496. 

Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B et al (2012). 

Defining seasonal marine microbial community dynamics. ISME J 6: 298-308. 

Giovannoni SJ, Vergin KL (2012). Seasonality in ocean microbial communities. 

Science 335: 671-676. 



183 

 

Gou X, Tan B, Wu F, Yang W, Xu Z, Li Z et al (2015). Seasonal dynamics of soil 

microbial biomass C and N along an elevational gradient on the eastern Tibetan Plateau, 

China. Plos One 10. 

Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner 

SM et al (2012). Microbes in thawing permafrost: the unknown variable in the climate 

change equation. The ISME journal 6: 709-712. 

Grogan P, Illeris L, Michelsen A, Jonasson S (2001). Respiration of recently-fixed plant 

carbon dominates mid-winter ecosystem CO2 production in sub-Arctic heath tundra. 

Climatic Change 50: 129-142. 

Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C et al (2011). 

Vulnerability of high‐latitude soil organic carbon in North America to disturbance. 

Journal of Geophysical Research: Biogeosciences (2005–2012) 116. 

Guimera R, Nunes Amaral LA (2005). Functional cartography of complex metabolic 

networks. Nature 433: 895-900. 

Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW et al 

(2014). Accelerated microbial turnover but constant growth efficiency with warming in 

soil. Nature Climate Change 4: 903-906. 

Hallam SJ, McCutcheon JP (2015). Microbes don't play solitaire: how cooperation 

trumps isolation in the microbial world. Environmental Microbiology Reports 7: 26-28. 



184 

 

Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006). Global 

temperature change. Proceedings of the National Academy of Sciences 103: 14288-

14293. 

Hansen J, Ruedy R, Sato M, Lo K (2010). Global surface temperature change. Reviews 

of Geophysics 48. 

Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I et al (2013). Climate Sensitivity: 

Analysis of Feedback Mechanisms. Climate Processes and Climate Sensitivity. 

American Geophysical Union. pp 130-163. 

Hartley IP, Heinemeyer A, Ineson P (2007). Effects of three years of soil warming and 

shading on the rate of soil respiration: substrate availability and not thermal acclimation 

mediates observed response. Global Change Biology 13: 1761-1770. 

He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007). GeoChip: a 

comprehensive microarray for investigating biogeochemical, ecological and 

environmental processes. ISME J 1: 67-77. 

Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in 

experimental ecology. Ecology 80: 1150-1156. 

Heung LJ, Luberto C, Del Poeta M (2006). Role of Sphingolipids in Microbial 

Pathogenesis. Infection and Immunity 74: 28-39. 

Hicks Pries CE, Schuur EAG, Crummer KG (2012). Holocene carbon stocks and 

carbon accumulation rates altered in soils undergoing permafrost thaw. Ecosystems 15: 

162-173. 



185 

 

Hicks Pries CE, Schuur EAG, Crummer KG (2013a). Thawing permafrost increases old 

soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C 

and ∆14C. Global Change Biology 19: 649-661. 

Hicks Pries CE, Schuur EAG, Vogel JG, Natali SM (2013b). Moisture drives surface 

decomposition in thawing tundra. Journal of Geophysical Research: Biogeosciences 

118: 1133-1143. 

Hieber M, Gessner MO (2002). Contribution of stream detrivores, fungi, and bacteria to 

leaf breakdown based on biomass estimates. Ecology 83: 1026-1038. 

Hill MO (1973). Diversity and evenness: A unifying notation and its consequences. 

Ecology 54: 427-432. 

Hines J, Reyes M, Mozder TJ, Gessner MO (2014). Genotypic trait variation modifies 

effects of climate warming and nitrogen deposition on litter mass loss and microbial 

respiration. Global Change Biology 20: 3780-3789. 

Hobbie SE (1996). Temperature and plant species control over litter decomposition in 

alaskan tundra. Ecological Monographs 66: 503-522. 

Hotelling H (1992). Relations between two sets of variates. In: Kotz S, Johnson N (eds). 

Breakthroughs in Statistics. Springer New York. pp 162-190. 

Hughes L (2000). Biological consequences of global warming: is the signal already 

apparent? Trends in Ecology & Evolution 15: 56-61. 



186 

 

Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ et al 

(2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. 

Nature 521: 208-212. 

Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007). Accuracy and 

quality of massively parallel DNA pyrosequencing. Genome biology 8: R143. 

Husson O (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism 

systems: a transdisciplinary overview pointing to integrative opportunities for 

agronomy. Plant and Soil 362: 389-417. 

IPCC (2007). Climate change 2007: Synthesis report. Contribution of working groups i, 

ii and iii to the fourth assessment report of the Intergovernmental Panel on Climate 

Change. In: Change IPoC (ed): Geneva, Switzerland. p 104. 

Janssens IA, Pilegaard KIM (2003). Large seasonal changes in Q10 of soil respiration in 

a beech forest. Global Change Biology 9: 911-918. 

Jansson JK, Taş N (2014). The microbial ecology of permafrost. Nature Reviews 

Microbiology 12: 414-425. 

Jassey VE, Chiapusio G, Binet P, Buttler A, Laggoun-Defarge F, Delarue F et al 

(2013). Above- and belowground linkages in Sphagnum peatland: climate warming 

affects plant-microbial interactions. Global Change Biololy 19: 811-823. 

Jassey VEJ, Chiapusio G, Gilbert D, Buttler A, Toussaint M-L, Binet P (2011). 

Experimental climate effect on seasonal variability of polyphenol/phenoloxidase 



187 

 

interplay along a narrow fen-bog ecological gradient in Sphagnum fallax. Global 

Change Biology 17: 2945-2957. 

Jonasson S, Michelsen A, Schmidt IK (1999). Coupling of nutrient cycling and carbon 

dynamics in the Arctic, integration of soil microbial and plant processes. Applied Soil 

Ecology 11: 135-146. 

Jones BM, Grosse G, Arp CD, Jones MC, Walter Anthony KM, Romanovsky VE 

(2011). Modern thermokarst lake dynamics in the continuous permafrost zone, northern 

Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 116. 

Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001). Permafrost degradation 

and ecological changes associated with a warming climate in central Alaska. Climatic 

Change 48: 551-579. 

Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG et al 

(2010). Resilience and vulnerability of permafrost to climate change. Canadian Journal 

of Forest Research 40: 1219-1236. 

Keller L, Surette MG (2006). Communication in bacteria: an ecological and 

evolutionary perspective. Nat Rev Micro 4: 249-258. 

Kent WJ (2002). BLAT--the BLAST-like alignment tool. Genome research 12: 656-

664. 

Kirschbaum MUF (2000). Will changes in soil organic carbon act as a positive or 

negative feedback on global warming? Biogeochemistry 48: 21-51. 



188 

 

Kirschbaum MUF (2004). Soil respiration under prolonged soil warming: are rate 

reductions caused by acclimation or substrate loss? Global Change Biology 10: 1870-

1877. 

Kong Y (2011). Btrim: A fast, lightweight adapter and quality trimming program for 

next-generation sequencing technologies. Genomics 98: 152-153. 

Konopka A (2009). What is microbial community ecology? ISME J 3: 1223-1230. 

Körner C, Basler D (2010). Phenology Under Global Warming. Science 327: 1461-

1462. 

Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ et al (2012). 

Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National 

Academy of Sciences 109: 14052-14057. 

Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S et al 

(2012). Effects of season and experimental warming on the bacterial community in a 

temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. Fems 

Microbiology Ecology 82: 551-562. 

Lara E, Mitchell EAD, Moreira D, Garcia PL (2011). Highly diverse and seasonally 

dynamic protist community in a pristine peat bog. Protist 162: 14-32. 

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al 

(2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 

Lau MCY, Stackhouse BT, Layton AC, Chauhan A, Vishnivetskaya TA, Chourey K et 

al (2015). An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 



189 

 

Lawrence DM, Slater AG (2005). A projection of severe near-surface permafrost 

degradation during the 21st century. Geophysical Research Letters 32: L24401. 

Lawrence DM, Slater AG, Swenson SC (2012). Simulation of present-day and future 

permafrost and seasonally frozen ground conditions in CCSM4. Journal of Climate 25: 

2207-2225. 

Lee H, Schuur EAG, Vogel JG (2010). Soil CO2 production in upland tundra where 

permafrost is thawing. Journal of Geophysical Research: Biogeosciences 115. 

Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012). The rate of permafrost 

carbon release under aerobic and anaerobic conditions and its potential effects on 

climate. Global Change Biology 18: 515-527. 

Legendre P, Legendre LF (2012). Numerical ecology, vol. 24. Elsevier. 

Lennon JT, Jones SE (2011). Microbial seed banks: the ecological and evolutionary 

implications of dormancy. Nature Reviews Microbiology 9: 119-130. 

Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S et al (2008). Tipping 

elements in the Earth's climate system. Proceedings of the National Academy of 

Sciences 105: 1786-1793. 

Lenton TM (2011). Early warning of climate tipping points. Nature Climate Change 1: 

201-209. 

Lenton TM (2012). Arctic climate tipping points. AMBIO 41: 10-22. 



190 

 

Li D, Zhou X, Wu L, Zhou J, Luo Y (2013). Contrasting responses of heterotrophic and 

autotrophic respiration to experimental warming in a winter annual-dominated prairie. 

Global Change Biology 19: 3553-3564. 

Li W, Godzik A (2006). Cd-hit: a fast program for clustering and comparing large sets 

of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. 

Liebner S, Wagner D (2007). Abundance, distribution and potential activity of methane 

oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environmental 

Microbiology 9: 107-117. 

Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F et al (2015). 

Determinants of community structure in the global plankton interactome. Science 348. 

Lipson DA, Monson RK (1998). Plant-microbe competition for soil amino acids in the 

alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113: 406-414. 

Lipson DA, Raab TK, Parker M, Kelley ST, Brislawn CJ, Jansson J (2015). Changes in 

microbial communities along redox gradients in polygonized Arctic wet tundra soils. 

Environmental Microbiology Reports 7: 649-657. 

Liu S, Wang F, Xue K, Sun B, Zhang Y, He Z et al (2015). The interactive effects of 

soil transplant into colder regions and cropping on soil microbiology and 

biogeochemistry. Environmental Microbiology 17: 566-576. 

Liu W, Allison SD, Xia J, Liu L, Wan S (2016). Precipitation regime drives warming 

responses of microbial biomass and activity in temperate steppe soils. Biology and 

Fertility of Soils: 1-9. 



191 

 

Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C et al (2013). Responses of ecosystem 

carbon cycle to experimental warming: a meta-analysis. Ecology 94: 726-738. 

Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT (2011). Individual genome 

assembly from complex community short-read metagenomic datasets. ISME J. 

Luo C, Rodriguez RL, Konstantinidis KT (2013a). A user's guide to quantitative and 

comparative analysis of metagenomic datasets. Methods in enzymology 531: 525-547. 

Luo GJ, Kiese R, Wolf B, Butterbach-Bahl K (2013b). Effects of soil temperature and 

moisture on methane uptake and nitrous oxide emissions across three different 

ecosystem types. Biogeosciences 10: 3205-3219. 

Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to 

warming in a tall grass prairie. Nature 413: 622-625. 

Luo Y, Hui D, Zhang D (2006). Elevated CO2 stimulates net accumulations of carbon 

and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53-63. 

Luo Y (2007). Terrestrial carbon–cycle feedback to climate warming. Annu Rev Ecol 

Evol Syst 38: 683-712. 

Luo Y, Sherry R, Zhou X, Wan S (2009). Terrestrial carbon-cycle feedback to climate 

warming: experimental evidence on plant regulation and impacts of biofuel feedstock 

harvest. GCB Bioenergy 1: 62-74. 

Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira A, 

Kuramae EE et al (2014). Network topology reveals high connectance levels and few 

key microbial genera within soils. Frontiers in Environmental Science 2. 



192 

 

Lv H, Yang J, Liu L, Yu X, Yu Z, Chiang P (2014). Temperature and nutrients are 

significant drivers of seasonal shift in phytoplankton community from a drinking water 

reservoir, subtropical China. Environmental Science and Pollution Research 21: 5917-

5928. 

Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ 

et al (2011). Metagenomic analysis of a permafrost microbial community reveals a 

rapid response to thaw. Nature 480: 368-371. 

Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Taş N (2016). Permafrost Meta-

Omics and Climate Change. Annual Review of Earth and Planetary Sciences 44: 439-

462. 

Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve 

genome assemblies. Bioinformatics 27: 2957-2963. 

Mao Y, Yannarell AC, Mackie RI (2011). Changes in N-transforming archaea and 

bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6. 

Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL et al 

(2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews 

Microbiology 4: 102-112. 

McMichael AJ (2003). Global climate change and health: an old story writ large. 

Climate change and human health: Risks and responses Geneva, Switzerland: World 

Health Organization. 



193 

 

Melle C, Wallenstein M, Darrouzet-Nardi A, Weintraub MN (2015). Microbial activity 

is not always limited by nitrogen in Arctic tundra soils. Soil Biology and Biochemistry 

90: 52-61. 

Meyer M, Stenzel U, Hofreiter M (2008). Parallel tagged sequencing on the 454 

platform. Nature Protocols 3: 267-278. 

Mironova E, Telesh I, Skarlato S (2012). Diversity and seasonality in structure of ciliate 

communities in the Neva Estuary (Baltic Sea). Journal of Plankton Research 34: 208-

220. 

Morales SE, Cosart T, Holben WE (2010). Bacterial gene abundances as indicators of 

greenhouse gas emission in soils. ISME J 4: 799-808. 

Natali SM, Schuur EAG, Trucco C, Hicks Pries CE, Crummer KG, Baron Lopez AF 

(2011). Effects of experimental warming of air, soil and permafrost on carbon balance 

in Alaskan tundra. Global Change Biology 17: 1394-1407. 

Natali SM, Schuur EAG, Rubin RL (2012). Increased plant productivity in Alaskan 

tundra as a result of experimental warming of soil and permafrost. Journal of Ecology 

100: 488-498. 

Natali SM, Schuur EAG, Webb EE, Hicks Pries CE, Crummer KG (2014). Permafrost 

degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95: 

602-608. 



194 

 

Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG et al (2015). 

Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. 

Journal of Geophysical Research: Biogeosciences 120: 525-537. 

Nelson FE, Anisimov OA, Shiklomanov NI (2001). Subsidence risk from thawing 

permafrost. Nature 410: 889-890. 

Newman MEJ (2006a). Modularity and community structure in networks. Proceedings 

of the National Academy of Sciences 103: 8577-8582. 

Newman MEJ (2006b). Finding community structure in networks using the 

eigenvectors of matrices. Physical Review E 74: 036104. 

Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S et al (2013). Positive climate 

feedbacks of soil microbial communities in a semi-arid grassland. Ecology Letters 16: 

234-241. 

Niu S, Wu M, Han Y, Xia J, Li L, Wan S (2008). Water-mediated responses of 

ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist 177: 

209-219. 

NOAA National Centers for Environmental Information (2017). State of the Climate: 

Global Climate Report for Annual 2016: Online. 

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2013). 

vegan: Community ecology package. 

Olesen JM, Bascompte J, Dupont YL, Jordano P (2006). The smallest of all worlds: 

Pollination networks. Journal of Theoretical Biology 240: 270-276. 



195 

 

Olesen JM, Bascompte J, Dupont YL, Jordano P (2007). The modularity of pollination 

networks. Proceedings of the National Academy of Sciences 104: 19891-19896. 

Osterkamp TE, Romanovsky VE (1999). Evidence for warming and thawing of 

discontinuous permafrost in Alaska. Permafrost and Periglacial Processes 10: 17-37. 

Osterkamp TE (2007). Characteristics of the recent warming of permafrost in Alaska. J 

Geophys Res 112: F02S02. 

Osterkamp TE, Jorgenson MT, Schuur EAG, Shur YL, Kanevskiy MZ, Vogel JG et al 

(2009). Physical and ecological changes associated with warming permafrost and 

thermokarst in Interior Alaska. Permafrost and Periglacial Processes 20: 235-256. 

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M et al (2005). 

The subsystems approach to genome annotation and its use in the project to annotate 

1000 genomes. Nucleic acids research 33: 5691-5702. 

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R et al (2014). 

Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to 

the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC. 

Pailler A, Vennetier M, Torre F, Ripert C, Guiral D (2014). Forest soil microbial 

functional patterns and response to a drought and warming event: Key role of climate–

plant–soil interactions at a regional scale. Soil Biology and Biochemistry 70: 1-4. 

Paine RT (1995). A conversation on refining the concept of keystone species. 

Conservation Biology 9: 962-964. 



196 

 

Palmer K, Drake HL, Horn MA (2009). Genome-derived criteria for assigning 

environmental narG and nosZ sequences to operational taxonomic units of nitrate 

reducers. Applied and Environmental Microbiology 75: 5170-5174. 

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005). Impact of regional 

climate change on human health. Nature 438: 310. 

Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C et al (2017). 

Biodiversity redistribution under climate change: Impacts on ecosystems and human 

well-being. Science 355. 

Peltoniemi K, Laiho R, Juottonen H, Kiikkila O, Makiranta P, Minkkinen K et al 

(2015). Microbial ecology in a future climate: effects of temperature and moisture on 

microbial communities of two boreal fens. FEMS Microbiol Ecology 91. 

Penton CR, Yang C, Wu L, Wang Q, Zhang J, Liu F et al (2016). nifH-harboring 

bacterial community composition across an alaskan permafrost thaw gradient. Frontiers 

in Microbiology 7. 

Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C et al (2004). 

Nonintrusive field experiments show different plant responses to warming and drought 

among sites, seasons, and species in a north–south European GRADIENT. Ecosystems 

7: 598-612. 

Pereira e Silva MC, Schloter-Hai B, Schloter M, van Elsas JD, Salles JF (2013). 

Temporal dynamics of abundance and composition of nitrogen-fixing communities 

across agricultural soils. PLoS ONE 8. 



197 

 

Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I et al (1999). Climate 

and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. 

Nature 399: 429-436. 

Ponnamperuma FN (1972). The chemistry of submerged soils. Advances in Agronomy 

24: 29-96. 

Price MN, Dehal PS, Arkin AP (2010). FastTree 2 – Approximately maximum-

likelihood trees for large alignments. PLOS ONE 5: e9490. 

Proulx SR, Promislow DEL, Phillips PC (2005). Network thinking in ecology and 

evolution. Trends in Ecology & Evolution 20: 345-353. 

Puissant J, Cecillon L, Mills RTE, Robroek BJM, Gavazov K, De Danieli S et al 

(2015). Seasonal influence of climate manipulation on microbial community structure 

and function in mountain soils. Soil Biology & Biochemistry 80: 296-305. 

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002). Hierarchical 

organization of modularity in metabolic networks. Science 297: 1551-1555. 

Rho M, Tang H, Ye Y (2010). FragGeneScan: predicting genes in short and error-prone 

reads. Nucleic Acids Research 38: e191. 

Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D 

(2004). Microbial life in permafrost. Advances in Space Research 33: 1215-1221. 

Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006). Interactions of bacteria 

and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology 

87: 2559-2569. 



198 

 

Romanovsky VE, Smith SL, Christiansen HH (2010). Permafrost thermal state in the 

polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. 

Permafrost and Periglacial Processes 21: 106-116. 

Ronaghi M, Uhlén M, Nyren P (1998). A sequencing method based on real-time 

pyrophosphate. Science 281: 363-365. 

Rosenberg E (2014). The Family Chitinophagaceae. In: Rosenberg E, DeLong EF, Lory 

S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of 

Bacteria and The Archaea. Springer Berlin Heidelberg: Berlin, Heidelberg. pp 493-495. 

Rousk J, Smith AR, Jones DL (2013). Investigating the long-term legacy of drought and 

warming on the soil microbial community across five European shrubland ecosystems. 

Glob Chang Biol 19: 3872-3884. 

Rovira P, Vallejo VR (2002). Labile and recalcitrant pools of carbon and nitrogen in 

organic matter decomposing at different depths in soil: an acid hydrolysis approach. 

Geoderma 107: 109-141. 

Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A et al (2001). A meta-

analysis of the response of soil respiration, net nitrogen mineralization, and 

aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-

562. 

Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003). Seasonal dynamics of 

previously unknown fungal lineages in tundra soils. Science 301: 1359-1361. 



199 

 

Scheffer M, Brovkin V, Cox PM (2006). Positive feedback between global warming 

and atmospheric CO2 concentration inferred from past climate change. Geophysical 

Research Letters 33. 

Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002). Mineralization 

and distribution of nutrients in plants and microbes in four arctic ecosystems: responses 

to warming. Plant and Soil 242: 93-106. 

Schuur EAG, Crummer KG, Vogel JG, Mack MC (2007). Plant species composition 

and productivity following permafrost thaw and thermokarst in alaskan tundra. 

Ecosystems 10: 280-292. 

Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV et al 

(2008). Vulnerability of permafrost carbon to climate change: Implications for the 

global carbon cycle. BioScience 58: 701-714. 

Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009). The 

effect of permafrost thaw on old carbon release and net carbon exchange from tundra. 

Nature 459: 556-559. 

Schuur EAG, Abbott B (2011). Climate change: High risk of permafrost thaw. Nature 

480: 32-33. 

Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG et al (2013). 

Expert assessment of vulnerability of permafrost carbon to climate change. Climatic 

Change 119: 359-374. 



200 

 

Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ et al (2015). 

Climate change and the permafrost carbon feedback. Nature 520: 171-179. 

Semenova TA, Morgado LN, Welker JM, Walker MD, Smets E, Geml J (2015). Long-

term experimental warming alters community composition of ascomycetes in Alaskan 

moist and dry arctic tundra. Mol Ecol 24: 424-437. 

Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V et al 

(2000). Observational evidence of recent change in the northern high-latitude 

environment. Climatic Change 46: 159-207. 

Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J et al (2001). 

Species composition interacts with fertilizer to control long-term change in tundra 

productivity. Ecology 82: 3163-3181. 

Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011). Effect of 

warming and drought on grassland microbial communities. ISME J 5: 1692-1700. 

Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS et al (2007). 

Divergence of reproductive phenology under climate warming. Proceedings of the 

National Academy of Sciences 104: 198-202. 

Sherry RA, Weng E, Arnone Iii JA, Johnson DW, Schimel DS, Verburg PS et al 

(2008). Lagged effects of experimental warming and doubled precipitation on annual 

and seasonal aboveground biomass production in a tallgrass prairie. Global Change 

Biology 14: 2923-2936. 



201 

 

Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016). The interconnected 

rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology 

Letters 19: 926-936. 

Slaughter LC, Weintraub MN, McCulley RL (2015). Seasonal Effects Stronger than 

Three-Year Climate Manipulation on Grassland Soil Microbial Community. Soil 

Science Society of America Journal 79: 1352. 

Soden BJ, Held IM (2006). An Assessment of Climate Feedbacks in Coupled Ocean–

Atmosphere Models. Journal of Climate 19: 3354-3360. 

Steduto P, Çetinkökü Ö, Albrizio R, Kanber R (2002). Automated closed-system 

canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes. 

Agricultural and Forest Meteorology 111: 171-186. 

Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY et al (2011). Marine 

bacterial, archaeal and protistan association networks reveal ecological linkages. ISME 

J 5: 1414-1425. 

Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012). Stochastic and deterministic 

assembly processes in subsurface microbial communities. ISME J 6: 1653-1664. 

Steven B, Léveillé R, Pollard W, Whyte L (2006). Microbial ecology and biodiversity 

in permafrost. Extremophiles 10: 259-267. 

Steven B, Kuske CR, Gallegos-Graves LV, Reed SC, Belnap J (2015). Climate Change 

and Physical Disturbance Manipulations Result in Distinct Biological Soil Crust 

Communities. Appl Environ Microbiol 81: 7448-7459. 



202 

 

Stocker T (2014). Climate change 2013: the physical science basis: Working Group I 

contribution to the Fifth assessment report of the Intergovernmental Panel on Climate 

Change. Cambridge University Press. 

Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N et al (2014). 

Soil warming alters microbial substrate use in alpine soils. Glob Chang Biol 20: 1327-

1338. 

Sturm M, Racine C, Tape K (2001). Climate change: increasing shrub abundance in the 

Arctic. Nature 411: 546-547. 

Suding KN, Ashton IW, Bechtold H, Bowman WD, Mobley ML, Winkleman R (2008). 

Plant and microbe contribution to community resilience in a directionally changing 

environment. Ecological Monographs 78: 313-329. 

Takahashi K, Hada Y (2012). Seasonal occurrence and distribution of myxomycetes on 

different types of leaf litter in a warm temperate forest of western Japan. Mycoscience 

53: 245-255. 

Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009). Soil 

organic carbon pools in the northern circumpolar permafrost region. Global 

biogeochemical cycles 23. 

Taş N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA et al (2014). 

Impact of fire on active layer and permafrost microbial communities and metagenomes 

in an upland Alaskan boreal forest. ISME J 8: 1904-1919. 



203 

 

Team RC (2014). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing: Vienna, Austria. 

Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC et al 

(2016). Microbial regulation of the soil carbon cycle: evidence from gene-enzyme 

relationships. ISME J. 

Trucco C, Schuur EAG, Natali SM, Belshe EF, Bracho R, Vogel JG (2012). Seven-year 

trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. 

Journal of Geophysical Research: Biogeosciences 117. 

Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD et al (2014). GeoChip 4: a 

functional gene-array-based high-throughput environmental technology for microbial 

community analysis. Molecular Ecology Resources 14: 914-928. 

Tucker CL, Bell J, Pendall E, Ogle K (2013). Does declining carbon-use efficiency 

explain thermal acclimation of soil respiration with warming? Global Change Biology 

19: 252-263. 

Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008). The unseen majority: 

soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. 

Ecology Letters 11: 296-310. 

Van Sickle J (1997). Using mean similarity dendrograms to evaluate classifications. 

Journal of Agricultural, Biological, and Environmental Statistics 2: 370-388. 



204 

 

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of 

enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of 

Bacteriology 172: 4238-4246. 

Vogel JG, Schuur EAG, Trucco C, Lee H (2009). Response of CO2 exchange in a 

tussock tundra ecosystem to permafrost thaw and thermokarst development. Journal of 

Geophysical Research: Biogeosciences 114. 

Waldrop MP, Wickland KP, White Iii R, Berhe AA, Harden JW, Romanovsky VE 

(2010). Molecular investigations into a globally important carbon pool: permafrost-

protected carbon in Alaskan soils. Global Change Biology 16: 2543-2554. 

Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA et al 

(2005). The Circumpolar Arctic vegetation map. Journal of Vegetation Science 16: 267-

282. 

Walker MD (1996). Community baseline measurements for ITEX studies. ITEX manual 

41. 

Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM et al 

(2006). Plant community responses to experimental warming across the tundra biome. 

Proceedings of the National Academy of Sciences of the United States of America 103: 

1342-1346. 

Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schädler M et al (2013). 

Combined effects of multifactor climate change and land-use on decomposition in 

temperate grassland. Soil Biology and Biochemistry 60: 10-18. 



205 

 

Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006). Methane bubbling 

from Siberian thaw lakes as a positive feedback to climate warming. Nature 443: 71-75. 

Wang CT, Zhao XQ, Zi HB, Hu L, Ade L, Wang GX et al (2017). The effect of 

simulated warming on root dynamics and soil microbial community in an alpine 

meadow of the Qinghai-Tibet Plateau. Appl Soil Ecol 116: 30-41. 

Wang M, Liu S, Wang F, Sun B, Zhou J, Yang Y (2015). Microbial responses to 

southward and northward Cambisol soil transplant. MicrobiologyOpen 4: 931-940. 

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naïve Bayesian Classifier for Rapid 

Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and 

Environmental Microbiology 73: 5261-5267. 

Wang Q, Quensen JF, Fish JA, Kwon Lee T, Sun Y, Tiedje JM et al (2013). Ecological 

patterns of nifH genes in four terrestrial climatic zones explored with targeted 

metagenomics using Framebot, a new informatics tool. mBio 4. 

Wang X, Dong S, Gao Q, Zhou H, Liu S, Su X et al (2014). Effects of short-term and 

long-term warming on soil nutrients, microbial biomass and enzyme activities in an 

alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology and Biochemistry 

76: 140-142. 

Wigley TML, Raper SCB (1990). Natural variability of the climate system and 

detection of the greenhouse effect. Nature 344: 324. 



206 

 

Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N et al (2012). The 

M5nr: a novel non-redundant database containing protein sequences and annotations 

from multiple sources and associated tools. Bmc Bioinformatics 13. 

Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C et al (2004). Long-term 

persistence of bacterial DNA. Current Biology 14: R9-R10. 

Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand J et al (2015). Phasing amplicon 

sequencing on Illumina Miseq for robust environmental microbial community analysis. 

BMC Microbiology 15: 125. 

Xu X, Sherry RA, Niu S, Li D, Luo Y (2013). Net primary productivity and rain-use 

efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass 

prairie. Global Change Biology 19: 2753-2764. 

Xu X, Shi Z, Chen X, Lin Y, Niu S, Jiang L et al (2016). Unchanged carbon balance 

driven by equivalent responses of production and respiration to climate change in a 

mixed-grass prairie. Global Change Biology 22: 1857-1866. 

Xue K, Yuan M, Shi Z, Qin Y, Deng Y, Cheng L et al (2016a). Tundra soil carbon is 

vulnerable to rapid microbial decomposition under climate warming. Nature Clim 

Change 6: 595-600. 

Xue K, Yuan M, Xie J, Li D, Qin Y, Hale LE et al (2016b). Annual removal of 

aboveground plant biomass alters soil microbial responses to warming. mBio 7. 



207 

 

Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R et al (2012). Shifts in soil 

microorganisms in response to warming are consistent across a range of Antarctic 

environments. ISME J 6: 692-702. 

Yoshitake S, Tabei N, Mizuno Y, Yoshida H, Sekine Y, Tatsumura M et al (2015). Soil 

microbial response to experimental warming in cool temperate semi-natural grassland in 

Japan. Ecological Research 30: 235-245. 

Yu Z, Liu J, Liu J, Jin J, Liu X, Wang G (2016). Responses of ammonia-oxidizing 

bacterial communities to land-use and seasonal changes in Mollisols of Northeast 

China. European Journal of Soil Biology 74: 121-127. 

Zapala MA, Schork NJ (2006). Multivariate regression analysis of distance matrices for 

testing associations between gene expression patterns and related variables. 

Proceedings of the National Academy of Sciences 103: 19430-19435. 

Zehr JP, Jenkins BD, Short SM, Steward GF (2003). Nitrogenase gene diversity and 

microbial community structure: a cross-system comparison. Environmental 

Microbiology 5: 539-554. 

Zhang N, Liu W, Yang H, Yu X, Gutknecht JM, Zhang Z et al (2013). Soil microbial 

responses to warming and increased precipitation and their implications for ecosystem 

C cycling. Oecologia 173: 1125-1142. 

Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005). Soil microbial 

responses to experimental warming and clipping in a tallgrass prairie. Global Change 

Biology 11: 266-277. 



208 

 

Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B et al (2014). Microbial mediation of 

biogeochemical cycles revealed by simulation of global changes with soil transplant and 

cropping. ISME J 8: 2045-2055. 

Zhou J, Bruns MA, Tiedje JM (1996). DNA recovery from soils of diverse composition. 

Applied and Environmental Microbiology 62: 316-322. 

Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X (2010). Functional Molecular Ecological 

Networks. mBio 1. 

Zhou J, Deng Y, Luo F, He Z, Yang Y (2011). Phylogenetic molecular ecological 

network of soil microbial communities in response to elevated CO2. mBio 2. 

Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X et al (2012). Microbial mediation of 

carbon-cycle feedbacks to climate warming. Nature Climate Change 2: 106-110. 

Zhou J, Liu W, Deng Y, Jiang Y-H, Xue K, He Z et al (2013). Stochastic assembly 

leads to alternative communities with distinct functions in a bioreactor microbial 

community. mBio 4. 

Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD et al (2014). 

Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. 

Proceedings of the National Academy of Sciences 111: E836-E845. 

Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015). High-throughput 

metagenomic technologies for complex microbial community analysis: Open and closed 

formats. mBio 6. 



209 

 

Zhou T, Shi P, Hui D, Luo Y (2009). Global pattern of temperature sensitivity of soil 

heterotrophic respiration (Q10) and its implications for carbon-climate feedback. Journal 

of Geophysical Research: Biogeosciences 114. 

Zhou X, Wan S, Luo Y (2007). Source components and interannual variability of soil 

CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global 

Change Biology 13: 761-775. 

Ziegler SE, Billings SA, Lane CS, Li J, Fogel ML (2013). Warming alters routing of 

labile and slower-turnover carbon through distinct microbial groups in boreal forest 

organic soils. Soil Biology and Biochemistry 60: 23-32. 

 

 


