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ABSTRACT 

In this work, we will examine practically encoding information in the state of 

polarization using M- POLSK. We employ polarization-shift keying (POLSK) to 

generate an expected pattern of changing states of polarization (SOPs). We generate 

a random sequence of voltages that represents a random sequence of bits, then we 

encode this sequence in the state of polarization. we apply the sequence of voltages 

-using the DAQ assistant- to the polarization modulator to embed this random 

sequence of bits in the state of polarization. At the far end, we collect the Stokes 

parameters data of the encoded file using polarization detector. Then, we reduce 

the dimensions of the collected data to one dimension using a Matlab code. In the 

final stage of the data recovery, we process the data and discriminate bits using both 

averaging and machine learning techniques to recover the random sequence that 

has been sent. Finally, by comparing the sent data set with the recovered data set. 

We can calculate the efficiency of data recovery process or the bit error rate of the 

received file. These POLSK symbols will be encoded in a fully polarized light. We 

will encode binary POLSK, 4-POLSK and 8-POLSK symbols in the SOPs of light 

in different runs. Also, we will propose the use of averaging to process the Stokes 

parameters that result from encoding binary POLSK and machine learning 

techniques to analyze the process of the Stokes parameters that belong  to 4-POLSK 

and 8-POLSK. The state of polarization is presented by five variables. Three of 

them are the Stokes parameters S1, S2, and S3. The other two are the angles 2γ, 2β. 

The final dimension is going to be the horizontal angle in the Poincare Sphere 



 

xi 

 

representation. Then, we are going to predict the class (symbol) that belongs to each 

part of processed data. The length of the data points that represent each symbol is 

dominated by the sampling rate at the receiver. Symbol prediction will be 

accomplished using the classification learner’s techniques called K-Nearest 

Neighbor and Support Vector Machine. Basically, these techniques predict the class 

of the data based on the model built using guided data (row data and its class). 

Finally, we match the predicted class with the original symbol file to measure the 

accuracy of the prediction models. In other words, the number of symbols that has 

been predicted successfully. 
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Chapter 1: Introduction 

 

1.1 Background & Scope 

There are many encoding schemes that have been used to send information over a 

single mode fiber. These schemes were based on altering amplitude, frequency, 

phase and the polarization of the light wave. As a potential replacement or dual use 

of the standard coherent modulation techniques like ASK, FSK, PSK and DPSK to 

coherent optical communications, modulation methods exploiting the vector 

characteristics of the propagating light radiation have been proposed. The use of 

the state of polarization (SOP) of a fully polarized light wave as the information 

carrier parameter exploits the two orthogonal channels available in single-mode 

fiber propagation. In single-mode fibers fed by a monochromatic light source, 

orthogonal SOP pairs at the input lead to orthogonal output SOP pairs although the 

input state of polarization is not maintained in general [1]. 

The modulation of the state-of-polarization (SOP) of a light wave has been 

attractive for digital optical transmission systems [1]. Polarization-shift keying 

(POLSK) is one of the proposed modulation schemes for practical transmission 

systems [2]. The use of POLSK have been theoretically analyzed and 

experimentally demonstrated for Coherent and direct detection systems [1]. 

Because of the previous extensive research work, many research outcomes have 

shown that depolarization phenomena or polarization dependent losses are of little 

importance even after relatively long fiber spans. The most effective phenomena is 



 

2 

 

the rigid rotation of the constellation of signal points on the Poincare sphere. In the 

meanwhile, signal points will keep the spatial relationship between them [1]. The 

advantages of POLSK over other modulation schemes are: it is a constant-power 

modulation, it is less vulnerable to nonlinear fiber effects and multilevel POLSK 

shows a good sensitivity because the minimum distance between signal points of 

the constellation can be kept large by exploiting the three-dimensional Stokes 

space. For these reasons, POLSK seems to be promising for long-haul 

communications [3][4].  

There are different approaches that have been proposed to apply POLSK. Some 

research has proposed the conversion of wavelengths of multichannel polarization 

shift keying by using four wave- mixing [5]. Others, proposed to use the modulate 

the state of polarization and the optical power to send more constellation [6]. Also, 

the combination of altering both polarizations and phase of light wave was one of 

the suggested way to apply the POLSK [7]. In the addition to the way that POLSK 

was applied, many works investigated the way how the constellation recovered. 

Most of them were focused on separating the Stokes parameters using complicated 

receivers [8]. The use of machine learning techniques was proposed for the first 

time to compensate the fiber nonlinearity and phase noise last year in the Journal 

of Light Wave Technology [9]. But it has never been proposed to handle the 

affection of birefringence and rigid rotation when we use POLSK. 
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1.2 Thesis Statement and Contribution    

The research community has been talking about polarization shift keying for 

decades as the innovative approach of the encoding schemes in optical 

communications. There were many ways that have been used to recover 

information encoded using POLSK schemes. Since we need to track the 

polarization due to the rigid rotation, we propose to use machine learning 

techniques to learn the channel behavior as an alternative approach to the available 

depolarization methods. Because machine learning offers huge capabilities to learn 

and model the behavior of the fiber and the rigid rotation effect, we propose to use 

a machine learning classification learner to learn the channel behavior by creating 

a model that eventually will be used to classify the processed Stokes parameters to 

recover the bit sequence. This model can be continuously updated with the channel 

behavior by using supervised training periodically in the data stream. Updating the 

model periodically prevents the miss classification of the Stokes parameters after 

being processed.    

Thesis Statement: it is possible to use machine learning models to recover 

data points that have been encoded in the state of polarization using (POLSK) 

for short distance communication. 
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1.3 Thesis Outline 

The rest of the thesis is organized as follows: Chapter 2 addresses the theoretical 

foundation of light where the author introduces the nature of light, polarization, 

Poincare sphere and birefringence. In Chapter 3, the author discussed the relevant 

works in literature focused on polarization shift keying and the modulation scheme 

that has been used to encode information in the state of polarization. Also, the 

author discussed some machine learning techniques that has have been used in the 

data processing of the experimental work. In Chapter 4, the author illustrated in 

detail the experiment setup, experiment procedures, Stokes parameters processing, 

information recovery and the observations of using 4-POLSk and 8-POLSK 

modulation schemes.   
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Chapter 2: Theoretical Foundation 

2.1 Nature of Light  

Light is an electromagnetic radiation that consists of oscillating electric and 

magnetic fields.  The main components of this wave are the electric field E and 

magnetic field H vectors which are mutually perpendicular and are both orthogonal 

to the direction of propagation S (also called the Poynting vector).  When we talk 

about the polarization, we usually consider only the direction of the electric field 

vector E [10].  

The figure below (Figure 1) shows the Cartesian coordinates. If we assumed that 

the direction of propagation S is along the positive z-axis (towards the reader), we 

can write the electric field E vector (for a quasi-monochromatic source) as the sum 

of two orthogonal components. 

E0 = îE0x + iĵE0y 

 

 

  

 

 

                  Figure 1 Cartesian presentation of Electric field. 
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The light wave is represented by the following function: 

E = 𝐸0ⅇ
ⅈ(𝑘𝑧−𝜔𝑡) 

where, k is the propagation constant, z is the distance in the direction of 

propagation, and ω is the angular frequency [11].                 

2.2 Polarization  

Polarization is a parameter applying to transverse waves that specifies the 

geometrical orientation of the oscillations. In electromagnetic waves, polarization 

refers to the direction of the electric field. There are three polarization 

classifications: linear polarization, circular polarization and elliptical polarization. 

The light is linearly polarized, if 𝐸0 is real. The light is elliptically polarized, if 𝐸0 

is complex. The light is circularly polarized if the real and imaginary parts of 𝐸0 

are equal.  The result of the combination of both perpendicular components with 

different amplitudes and phases dominate the trace of the electric field E with 

respect to time which is called state of polarization. In the case of circular 

polarization and elliptical polarization, the direction of rotation of the electric field 

can be clockwise, the polarization state is called right-handed, or direction of 

rotation is counterclockwise, the polarization state is called left-handed [10]. 
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2.3 Poincare Sphere 

 The Poincare sphere is a graphical tool in real, three-dimensional space that allows 

convenient description of polarized signals and polarization transformations caused 

by propagation through devices. Any state of polarization can be uniquely 

represented by a point on or within a unit sphere centered on a rectangular (x,y,z) 

coordinate system. The coordinates of the point are three normalized Stokes 

parameters describing the state of polarization [12].  

Even though the polarization is usually described by the electric field of the light 

wave, there are other methods used to measure the polarization. It is common to 

use the Stokes parameters components as measurement to state  polarization. Stokes 

parameters are determined by a set of intensity measurements taken when light is 

passed through several types of polarizers. Stokes  parameters can be used mutually 

with Poincare sphere to represent the state of polarization [11]. 

The value of each parameter is a function of measured intensity levels.  The four 

Stokes parameters are defined as follows [13]:  

     𝑠0= total power (polarized + un polarized) 

      𝑠1 = 𝑠0 𝑐𝑜𝑠 2𝛾 ⋅ 𝑐𝑜𝑠 2𝛽    

   𝑠2 = 𝑠0 𝑐𝑜𝑠 2𝛾 ⋅ 𝑠𝑖𝑛 2𝛽                                  

      𝑠3 = 𝑠0 𝑠𝑖𝑛 2𝛾 
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Figure 2 Stokes Parameters and the Poincare Sphere [11]. 

 

The physical interpretation of the above is as follows: 

𝑠0 = Total power of the received signal (polarized + unpolarized) 

𝑠1= Power received through a horizontal linear polarizer – Power received 

through a vertical linear polarizer 

𝑠2= Power received through a 45-degree linear polarizer –Power receive through 

a – 45-degree linear polarizer 

𝑠3 = Power received through right hand circular polarizer –Power received 

through a left hand circular polarizer 

The “normalized” Stokes parameters are given by: 

𝑠1 = 𝑠1/𝑠0 

𝑠2 = 𝑠2/𝑠0 

S1 

S3 

S2 

X 

S0 

2γ 

Y 

2β 
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𝑠3 = 𝑠3/𝑠0 

where for fully polarized light, 

𝑠0 = √(𝑠1)2 + (𝑠2)2 + (𝑠3)2 

2.4 Birefringence Phenomena  

Birefringence is the optical phenomena which happens when  a material having 

a refractive index that changes with respect to the polarization and propagation 

direction of light wave [14]. These optically anisotropic materials are said to 

be birefringent (or birefractive). The birefringence is often quantified as the 

maximum difference between refractive indices exhibited by the material. 

There is also a slow time-varying birefringence component that is random and 

unpredictable. The result is that the original state of polarization at launch is 

transformed as it propagates through the fiber [11].   The good news is that   if two 

mutually orthogonal light signals are launched into a fiber, they emerge at the 

receiver with their orthogonality preserved [15].   

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Optics
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Anisotropic
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Chapter 3: Literature Review 

Many approaches have been used to modulate and demodulate data in the SOPs of 

light  using the POLSK scheme [16] [17] [18] [19] [24]. All these methods were 

aiming to achieve efficient reception of data with minimum cost and highest 

spectral efficiency [23]. Moreover, these demodulation techniques tended to save 

the power consumption as well as include as maximum as possible symbols in the 

polarization channel.  

3.1 POLSK  

The use of the state of polarization (SOP) of light wave as a carrier of the 

information, taking advantage of the two orthogonal components of the electrical 

field of light in both free space or in single-mode fiber is called polarization shift 

keying (POLSK). Orthogonal SOP pair in the input will result orthogonal SOP pair 

in the output, even though the out state is not the same as the input state of 

polarization. In other words, the spacing between the two SOP will be kept fixed 

[1]. The detection of the encoded information is done by the analysis of the state of 

polarization. The main representation of the SOP in the Poincare sphere is the  

Stokes parameters. By processing the  Stokes parameters at the output side, the 

encoded information can be recovered. There are two ways of encoding information 

in the two electrical field components: one way is encoding the information 

dependently and this is what happened in the case of using the POLSK. The other 
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way is to encode information independently and that occurred  in the case of 

multiplexing.  

3.1.1 2-POLSK  

The binary POLSK is a modulation scheme that switches  two linear orthogonal 

SOPs to represent the information. In the three-dimension space, these two SOPs  

are represented by two antipodal points. To detect the information of binary 

POLSK, a reference vector is needed to decide which SOP has been received. Based 

on the sign of the scalar product of the received SOP vector and the reference 

vector, a decision can be easily taken in the absence of the noise. In the case of the 

noise, the reference vector need to track to overcome the induced changes done by 

the fiber and this is the reason why SOPs of 2-POLSK systems need to be tracked 

[1]. 

3.1.2 M -POLSK  

In M-POLSK modulation scheme, SOP of the input light wave is being changed in 

such a way that the corresponding SOP point in the Stokes space is moved onto one 

of the M points  belonging to the signal constellation. The transmission of 

multilevel POLSK seems to be more efficient in the three-dimensional Stokes 

space. There are many ways to transmit multilevel in POLSK. But there is one 

common issue between all ways that the power is constant [1]. In case of 4-POLSK 

systems. schemes differ in signal geometry: in one case, we have four signals lying 

on a maximum circle over the Poincare sphere as in figure 3. 
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Figure 3  Four signal points  on one circle. 

 Figure 4 shows signals are the vertices of a tetrahedron inscribed into the 

Poincare sphere  

 

 

 

 

 

 

 

Figure 4 Signals lying  on tetrahedron inside the Poincare sphere. 

 

For 8-POLSK scheme, the signal set is made up by the vertices of a cube 

inscribed into the Poincare sphere [2] [22] as in  Figure 5. 
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Figure 5 Signals  on the cube inside the sphere. 

 

 

Also, the signals can be on the great circle on the Poincare sphere as in  Figure 6. 

  

 

 

 

 

 

 

 

 

Figure 6  Eight signal points  on one maximum circuit.  
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3.2 Classification Models  

Classification models predict categorical class labels. Usually classification models 

are used to perform two types of predictions. These two prediction types are a 

continuous valued prediction, in this case the prediction is the probability of 

membership to a certain class and its value between 0 and 1. In addition to a 

continuous prediction, classification models provide a predicted class; in this case 

the prediction is one of discrete categories [20]. In this thesis, we are going to use 

a discrete category prediction to classify the data processed to one of the original 

categories (symbols). The two main classifiers that have been used are K-Nearest 

Neighbors and Support Vector Machines. 

 

3.2.1 K-Nearest Neighbors  

 
In the K-nearest neighbor classification model, a new sample is predicted based on 

the K-closest data points in the training set. The classification is performed by using 

a sample’s geographic neighborhood to predict the sample’s classification. KNN 

for classification predicts a new sample using the K-closest samples from the 

training set. “Closeness” is determined by a distance metric. For example, a 5-

nearest neighbor model is shown in Figure 7.  In this example, two new samples 

are going to be predicted. The first sample is indicated by the symbol (●)  near a 

set of mixed classes. Since three out of the five neighbors are class one, then it is 

classified to class one. The other sample (▲) has all five points; neighbors are from 

the second class. So, it is predicted as second class [20]. The number of neighbor’s 

K should be selected in a way that avoid ties. In other words, if the number of 
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classes are even, then K should be an odd number as in the example below K = 5 

for two classes case. If two or more classes are tied for the highest estimate, then 

the tie is broken at random or by looking ahead to the K + 1 closest neighbor [20] 

[21]. 

 
Figure 7 The K-nearest neighbor classification model. Two new points, symbolized 

by filled triangle and solid dot, are predicted using the training set [20]. 

  3.2.2 Support Vector Machines 

Support vector machines are a class of statistical models first developed in the mid-

1960s by Vladimir Vapnik. In later years, the model has evolved considerably into 

one of the most flexible and effective machine learning tools available. Initially, 

the model was developed in the classification setting. In 2010, Vapnik developed 

the regression version of Support Vector Machine which was the extension of the 

classification model. The example of data set that has two classes is shown in the 

left side of Figure 8. It is clear that the two classes are separate. Also, there are an 

infinite number of boundaries that separate the two classes. The question here is 
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what is the best optimum boundary between all these boundaries? And what are the 

measures that can be considered to evaluate these boundaries?  

 

Figure 8 Left: A data set with completely separable classes. An infinite number of 

linear class boundaries would produce zero errors. Right: The class boundary 

associated with the linear maximum margin classifier. The solid black points 

indicate the support vectors [20]. 

 

 

A metric was defined called the margin. Basically, the margin is the distance 

between the classification boundary and the closest training set point. The right side 

of Figure 8  shows one possible classification boundary as a solid line.  The distance 

between the dashed lines and the boundary is the margin in this example and it’s 

the maximum between the training data set and the classification margin. In this 

example, the solid triangle and circle points in the right side of  Figure 8  are equally 

closest to the classification boundary.  The quantity of the margin can be used to 

evaluate the classification models. For SVM, the slope and the intercept that 
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achieve the maximum distance between the classification boundary and the nearest 

training data set is known as the maximum classification margin [20]. 
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Chapter 4: Experimental Work 

 

4.1 Experiment Setup   

A simple block diagram of the experiment setup is shown in  Figure 9.  We have 

used the Agilent 8509c as a light source (Agilent 8509C is a polarization modulator, 

but we use it as a light source in this set up. The  wavelength range is from 1310 

nm to 1550 nm). The light source is connected to the input of Versawave - 

Versawave Technologies currently a division of Optelian - polarization modulator 

(40Gb/s bandwidth, Bias Voltage -12Vto 12V, Wavelength range 1530nm – 

1610nm). The wavelength that was used in this experiment is 1550nm. When the 

light passes through the polarization modulator, the polarization changes as 

function of the applied DC voltage on the modulator. The output of the Versawave 

polarization modulator is connected to the POD-201 Polarimeter (manufactured by 

General Photonics- monitoring and logging SOPs up to 1 billion points, sampling 

rate 4Msamples/s). The POD-201 – Polarimeter works as a receiver in this diagram 

where  it collects and stores the Stokes parameters that carries the encoded 

information. The light is sent from the light source to the POD through the 

polarization modulator. When the light passes through the polarization modulator, 

a piece of Lab View code at PC1 applies voltages at a certain speed. These voltages 

correspond to a sequence of random bits that was created using a math lab code. 

POD samples the  Stokes parameters with a rate that is at least double of the speed 

of the applied voltages (Nyquist Rate). 
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Figure 9 Experiment setup diagram. 

 

 

4.2 Experiment work  

This experiment aims to prove the possibility of encoding information using M-

POLSK and recover the information at the far end using machine learning 

techniques. The distance between the transmitter and receiver is a short distance (2 

Meters). We generated a sequence of bits using a piece of code in math lab (code#1- 

Appendix A). These bits are mapped to voltages based on the POLSK scheme used. 

2-POLSK, 4-POLSK and 8- POLSK were examined during this experiment. In 2-

POLSK scheme two voltages were used to represent one bit as in Table-1. In 4-

POLSK, four voltages were mapped to two bits (each one voltage or symbol 

presents two bits at a time) as in Table-2. In 8-POLSK scheme each symbol presents 

three bits (see Table-3). The author applied all the voltages between (-10V,10V) 

with 0.5V increment to the polarization modulator to examine the behavior of each 

Light Source 

Agilent 8509C  

Polarization 

Modulator  

DAQ 

Assistant 

POD-201 
PC2 (POD) 

PC1 Running 

LabVIEW 
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individual voltage. He selected the optimal voltages that achieves the best 

resolution between the state of polarization and voltages.  

Voltage(V) Bit 

2.5 0 

-2.5 1 

                         Table-1 2-POLSK Voltage Mapping 

Voltage (V) Bits 

4 00 

6 01 

8 10 

10 11 

                       Table-1. 4-POLSK Voltage Mapping 

Voltage (V) Bits 

-4  000 

-2  001 

0  010 

2 011 

4 100 

6 101 

8 110 

10 111 

                              Table-3. 8-POLSK Voltage Mapping 
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4.3 Stokes Parameters Processing 

The information is encoded in the  Stokes parameters S1, S2 and S3. We used 

voltages to express this information. Each symbol (voltage) is represented by one 

state of polarization in the three-dimension space (Poincare sphere). This SOP can 

be represented by S1, S2, S3 and the angles 2γ, 2β. The polarization modulator has 

in the input side a linear polarizer. This linear polarizer results that all SOPs  are on 

one great circle. To recover this  information, we need to reduce the dimension of 

the SOP presentation to only one dimension. This dimension can be used to 

discriminate between the symbols that are encoded. In the POD software, a visual 

presentation shows the SOP track in a great circle. Since we are sampling five times 

of the encoding rate at the receiver (POD) (sampling rate = 5 * encoding speed), 

the receiver will detect some points in transit as in  Figure 10. 

 

Figure 10 Pola View Screenshot shows the SOP great circle for 8-POLSK. 
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A Matlab code (code#2- Appendix A) was developed to project the great circle that 

has been performed by sampling different symbols (Voltages) at higher speed. That 

means every single point is going to be projected on X-Y plane. The benefit of this 

projection is to reduce the dimension of the SOP representation to one dimension 

which is the angle 2β in this case. In other words, based on the values of the angle 

2β, we will be able to decide which symbol was sent. The mathematical explanation 

behind the projection process is as following: 

i- we find three sets of points on the great circuit for each  Stoke parameter 

and take the mean of each of the three sets. We make sure that these sets 

are apart by applying some conditions.  

ii- We normalize the mean of the three reference points. 

iii- We create vector using the three  Stokes S1, S2 and S3. The Vectors are 

SV1, SV2 and SV3. 

iv- Form a triangle using the vectors SV1, SV2, SV3. Since all the SV 

points lie on the plane of the triangle, and it is in general not necessary 

that the origin also lie on this plane, therefore, we can construct the 

normal vectors using the v1 and v2 defined below. 

v1 = SV1 - SV3                           v2 = SV2 - SV3 

v- Then, we find out the perpendicular vectors to the vectors v1 and v2 as 

following:  

                  ⅇ1⃗⃗  ⃗ = 𝑣1⃗⃗⃗⃗ /|𝑣1| 

ⅇ2⃗⃗  ⃗ = 𝑣2⃗⃗⃗⃗ − ⅇ1⃗⃗  ⃗. (ⅇ1⃗⃗  ⃗′. 𝑣2⃗⃗⃗⃗ ) 
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ⅇ2⃗⃗  ⃗ = ⅇ2⃗⃗  ⃗/|ⅇ1| 

ⅇ3⃗⃗  ⃗ = ⅇ1⃗⃗  ⃗×ⅇ2⃗⃗  ⃗ 

ⅇ3⃗⃗  ⃗ = ⅇ3⃗⃗  ⃗ /|ⅇ3| 

vi- Now, we can find the transformation matrix for the projection. 

 

 (
1
0
0
) = 𝑀. ⅇ1⃗⃗  ⃗    

(
0
1
0
) = 𝑀. ⅇ2⃗⃗  ⃗ 

(
0
0
1
) = 𝑀. ⅇ3⃗⃗  ⃗ 

𝐼 = (
1 0 0
0 1 0
0 0 1

) = 𝑀. (ⅇ1 ⅇ2 ⅇ3) 

                                              M = (ⅇ1 ⅇ2 ⅇ3)^-1 

4.4 Information Recovery 

The experiment was run for different POLSK schemes with different encoding 

speeds and information recovered by different information recovery methods. We 

applied number of random bit sequences of 2-POLSK, 4-POLSK and 8- POLSK to 

the polarization modulator. For 2-POLSK, we mainly used the averaging approach. 

Although averaging might be the easiest way to recover the information, it cannot 

be maintained for a long time since the mapping between the voltages and SOP is 

not fixed because of birefringence phenomena. First, we pick two voltages that 

corresponds to two SOPs separated with enough distance to distinguish in the 

Poincare sphere space. Second, we apply the sequence of voltages that represents a 
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random sequence of bits one and zero. Simultaneously, we collect the  Stokes 

parameters that presents the encoded sequence. Third, we take the average of the 

angle 2β points that belong  to each symbol after SOP being projected to the X-Y 

plane. Finally, we run a code to decide which symbol was sent based of the SOP 

position in the sphere. The other methods that we used to recover information were   

machine learning technique. We used K – nearest neighbors and support vector 

machine algorithms to recover information that has been encoded using 4-POLSK 

and 8-POLSK. These algorithms were found in the Matlab application called 

Classification Learner. Initially, we apply the sequence of voltages that presents 2 

or 3 bits (4 Voltages for 2 bits and 8 Voltages for 3 bits). At the same time, we 

collect the  Stokes parameters that belong  to this sequence. Then, we process the 

Stokes parameters by reducing the dimension to one dimension (symbol is function 

in 2β). Also, we find out the start point of samples that represent  the symbols. By 

knowing the sampling rate at the POD, we can associate the samples points with 

the correspondent symbol. After we organize the angle and voltage, we build our 

model classifier by providing training data set to software. This data set is organized 

in columns and rows in a way that shows each voltage (bits) and the associated 

angle values. Finally, we use this model to classify raw data. The classifier will 

predict the voltage associated with each set of samples. Then, author calculate the 

accuracy by comparing the predicted voltages with initial sequence of voltages.   
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4.4.1 2-POLSK Observations 

This section will describe the 2-POLSK results. For 2-POLSK, we used the 

averaging method to recover encoded data. After the generation of a random binary 

sequence of 1Kbit size, we used two voltages to express the bits 0 and 1. The bit 0 

is mapped to 2.5V and the bit 1 is mapped to -2.5V. This voltage file was applied 

to the polarization modulator. At  the same time, the  Stokes parameters were 

collected at the far end (POD-201). Figure (11) a, b, c shows the  Stokes parameters 

vs the time. The collected  Stokes parameters in 3D space are shown in  Figure 12a. 

These  Stokes parameters were processed and projected to the X-Y plane as in  

Figure 12b to make the voltages (Symbols) function in one variable which is the 

angle as shown in  Figure 12c.  We averaged the five points that represent  each 

voltage. Based on this value, the decision has been taken if it is 2.5V or -2.5V or 

not. Finally, we matched the recovered file with the initial file. The accuracy of 

data recovery was 100%. That means we could recover back all the encoded 1Kbits 

file.  

 

Figure 11a S1 vs Time for 2-POLSK. 
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Figure 11b S2 vs Time for 2-POLSK. 

 

Figure 11c  S3 vs Time for 2-POLSK. 

 

Figure 12a Stokes Parameters in 3D Space. 
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Figure 12b Projected Coordinates and SOP in 3D space. 

 

 

Figure 12c The Angle 2β vs Time for 2-POLSK. 
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4.4.2 4-POLSK Observations 

First, we generated the file of random N Kbits. We mapped each two-different 

possible bit combination to one of the four voltage steps as in Table-1. The final 

size of voltage file is N/2 Kbits. We apply this file to the polarization modulator 

using the LabView code to encode the mapped bits in the polarization of the passing 

light. We collected the s Stokes parameters that belong  to the encoded bits at (POD-

201). Figure 13 a, b, c, d. shows the stokes parameters S1, S2, S3, the angle 2β vs 

time. 

 

Figure 13a S1 vs Time for 4-POLSK. 

 

 

Figure 13b S2 vs Time for 4-POLSK. 
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Figure 13c  S3 vs Time for 4-POLSK. 

 

The  Stokes processing starts by projecting the  Stokes parameters on the X-Y plane 

to reduce the dimension. Figure 14 a, b show the great circle that was created by 

encoding the voltages (2V,4V,6V,8V) and the projected coordinates and SOP 

respectively.  

 

Figure 14a  The SOP of Four Voltages in 3D Space. 
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Figure 14b  The Projected Coordinates and SOP. 

 A new attribute that presents the 4 voltage steps has been created. This new 

attribute is the angle 2β as shown in  Figure (15).  Since the sampling rate at the 

(POD-201) was five times of the encoding speed (sampling rate = 10KS/s for 

2Kbit/s, sampling rate = 20Ks/s for 4Kbit/s, sampling rate = 30KS/s for 6Kbit/s), 

the angle data was reorganized in a way that each voltage chunked to have five 

points in each row. Author built a classification model using Matlab classification 

learner applications. Author tried multiple techniques for classification, the most 

effective two techniques were SVM and KNN. Each run, author used different data 

sequence, he used either SVM or KNN to classify data. Then based on model 

accuracy, author approved the results. The  model was built using first 1Kbits where 

the angle points of the first 1Kbits were put in one table with respective voltage. 

The first five columns were the inputs to the classifier learner and the sixth one was 
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the response. After building the classifier model, the model was used to classify the 

data points for the following 15Kbits. In other words, we input the angle data points 

that belong  to the bits next to the first 1Kbits and the model classifies each five 

points to one of the initial voltage steps. This process has been applied to ten 

different random bits of 40Kbits length. The accuracy  of our model- which 

represents the bit error rate - has been calculated to the ten different random 

sequences and plotted together in one graph. Figure (16) shows the mean and 

standard deviation of classification accuracy of the built models for each following 

1Kbits of the following data in the sequence for different encoding speeds. 

 

 

Figure 15 The Angle 2 β vs Time for 4-POLSK. 
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Figure 16 The Mean and Standard Deviation of Classification Accuracy for 10 Random Sequences 

using 4-POLSK at Different Speeds 2Kb/s,4Kb/s and 6Kb/s. 

.  

4.4.3 8-POLSK Observations 

The procedures for the 8-POLSK is very similar to that for the 4-POLSK. We 

generated the file of random N Kbits. We mapped each three-different bit 

combination to one of the eight step voltages as in Table-2. The final size of voltage 

file is N/3 Kbits. We apply this file to the polarization modulator using the LabView 

code. That is to encode the mapped bits in the polarization of the passing light. As 

usual, we collect the  Stokes parameters that belong  to the encoded bits at (POD-

201). Figure (17 a, b, c, d) shows the stokes parameters and angle 2β vs time.   
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Figure 17a S1 vs Time for 8-POLSK. 

 

Figure 17b S2 vs Time for 8-POLSK. 

 

Figure 17c S3 vs Time for 8-POLSK. 



 

34 

 

 

Figure 17d The Angle 2 β vs Time for 8-POLSK. 

 

The  Stokes processing starts by projecting the  Stokes parameters on the X-Y plane 

to reduce the dimension. Figure (18 a, b) shows the great circle that was created by 

encoding the voltages (-4V, -2V, 0V, 2V,4V,6V,8V,10V) and the projected 

coordinates and SOP respectively.  



 

35 

 

 

 Figure 18a. The SOP of Eight Voltages in 3D Space. 

 

Figure 18b The Projected Coordinates and SOP for 8-POLSK. 
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The new attribute that presents the 8 voltage steps that we have is the angle 2β. 

Since the sampling rate at the (POD-201) was five times of the encoding speed 

(sampling rate = 10KS/s for 2Kbit/s, sampling rate = 20Ks/s for 4Kbit/s, sampling 

rate = 30KS/s for 6Kbit/s), the angle data was reorganized in a way that each 

voltage will be divided to have five points in each row. We built a classification 

model using math lab applications. The  model was built using first 1Kbits where 

the angle points of the first 1Kbits were put in one table with respective voltage. 

The first five columns were the inputs to the classifier learner and the sixth one was 

the response. After building the classifier model, the model was used to classify the 

data points for the following 15Kbits. In other words, we input the angle data points 

that belong  to the bits next to the first 1Kbits and the model classifies each five 

points to one of the initial voltage steps.  

This process has been applied to ten different random bits of 60Kbits length. The 

accuracy  of the  model- which represents the bit error rate - has been calculated to 

the ten different random sequences and plotted together in one graph. Figure (19) 

shows the mean and standard deviation of classification accuracy of the built 

models for each following 1Kbits of the following data in the sequence for different 

encoding speeds: 
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Figure 19 The Mean and Standard Deviation of Classification Accuracy for 10 Random Sequences 

using 8-POLSK at Different Speeds 2Kb/s,4Kb/s and 6Kb/s. 

 

4.5 Observations Discussion  

The results of both 4-POLSK and 8-POLSK have similar patterns. The modulator 

could map voltages to the state of polarizations with acceptable resolution at speed 

2Kb/s and 4Kb/s. When voltages applied at 6Kb/s speed in both cases 4-POLSK 

and 8-POLSK, the modulator map the voltages to the state of polarizations with 

less resolution quality. Because of this low resolution, two or more voltages 

mapped to the same state of polarization. That lead to build models with over lapped 

boundaries and low accuracy predictions. While at 2Kb/s and 4Kb/s speeds, the 

prediction accuracy of predicting the 5Kbits following Kbits of the 1Kbits training 

set was very good in both 4-POLSK and 8-POLSK. 
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Chapter 5: Conclusion and Future Work  

 

5.1 Conclusion  

In this work, we have suggested a novel frame work to extract data that have 

been modulated in the polarization of light. We proposed to use the machine 

learning algorithms to model the behavior of the polarization channel. First, we 

applied a sequence of voltages to the polarization modulator using DAQ assistant 

via LabView code. These sequences were encoded in the polarization channel of a 

fully linearly polarized light. At the receiver, we collected the  Stokes parameters 

using a POD (Polarimeter).  The  Stokes parameters were processed to reduce their 

dimension to one dimension. This dimension presented the encoded symbols and it 

was successfully used to discriminate between symbols and recover original 

sequences. The initial results show that we can use machine learning algorithms 

like K- Nearest Neighbors and Support Vector Machines to recover data from the  

Stokes parameters. Also, the results show that models were able to recover more 

than %97 of data in the 5Kbits following the 1Kbit data set.These models must be 

updated regularly to handle the changes that results from birefringence and rigid 

rotation. Even though the distance between the transmitter and receiver was very 

short and with low encoding speed, we believe that we have approved the 

possibility of exploiting the huge capabilities that have been offered by machine 

learning in classifying data in optical communication applications. To perform a 

communication protocol that use the machine learning algorithms to recover data 

at the reception side, we need to add some overhead as supervised bits to refresh 
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the model each period. Based on the results, up to 20%  overhead should be added 

to the payload. We return this to the limitation that we faced in the lab because of 

the polarization modulator that we used. It was not mapping voltages with the same 

state of polarizations after a certain encoding speed. i.e. there is no clear transfer 

function between the applied voltages and the correspondent state of polarization.   

5.2 Future Work 

The proposed work is expandable towards encoding and recovering data in the state 

of polarization in the real time. A complete modulation scheme needs to be 

developed. In other words, raw data should be mapped to voltages in the real time. 

Then, the mapped voltages can be applied to a polarization modulator in real time, 

too. This scheme should be able to update the classification models at the receiver 

periodically. That means supervised learning date sets should be included in the 

payload. A precise polarization modulator must be used to achieve better results. 

Some specifications need to be met in the polarization modulator like high 

resolution mapping between applied voltages and the state of polarization. 

Moreover, the polarization modulator should be able to switch the state of 

polarization with a higher speed with limited transitions between the states of 

polarization. Finally, we advise to include more symbols like 16-POLSK, 32-

POLSK and 64-POLSK. That might be done using different degrees of polarization 

in the addition to different states of polarization. 
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APPENDIX: Math Lab Codes 

Code#1: Generating random bits 

rand_bits= round(rand(1,60000)); 
y = []; 
for i = 1:3:length(rand_bits) 
    if rand_bits(i) == 0 && rand_bits(i+1)== 0 && 

rand_bits(i+2)== 0 
        y = [y,-4];    
    elseif rand_bits(i) == 0 && rand_bits(i+1)== 0 && 

rand_bits(i+2)== 1 
        y= [y,-2]; 
    elseif rand_bits(i) == 0 && rand_bits(i+1)== 1 && 

rand_bits(i+2)== 0 
        y = [y,0]; 
    elseif  rand_bits(i) == 0 && rand_bits(i+1)== 1 && 

rand_bits(i+2)== 1 
        y = [y,2]; 
    elseif  rand_bits(i) == 1 && rand_bits(i+1)== 0 && 

rand_bits(i+2)== 0 
        y = [y,4]; 
    elseif  rand_bits(i) == 1 && rand_bits(i+1)== 0 && 

rand_bits(i+2)== 1 
        y = [y,6]; 
    elseif  rand_bits(i) == 1 && rand_bits(i+1)== 1 && 

rand_bits(i+2)== 0 
        y = [y,8]; 
    elseif  rand_bits(i) == 1 && rand_bits(i+1)== 1 && 

rand_bits(i+2)== 1 
        y = [y,10]; 

     
    end  
end  
y = y'; 

 

Code#2: SOP points projection 

% set(0,'DefaultFigureWindowStyle','docked'); 
%set(0,'DefaultFigureWindowStyle','normal'); 
start_index = 1000; 
stop_index = 200000; 
t = VarName1(start_index:stop_index); 
S0 = VarName2(start_index:stop_index); 
S1 = VarName3(start_index:stop_index); 
S2 = VarName4(start_index:stop_index); 
S3 = VarName5(start_index:stop_index); 

  
orig = [0;0;0]; %%% Default origin 

  
figure(1) 
plot(1:size(t,1), S1, 'b', 1:size(t,1), S2, 'r', 1:size(t,1), S3, 

'g'); 
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SV = [S1, S2, S3]'; 
figure(2) 
scatter3(S1, S2, S3, 1, 'filled'); 
hold on 
%%%%% Reference mean data point 1 %%%%% 
S1_m1 = mean(S1(S2<0.6)); 
S2_m1 = mean(S2(S2<0.6)); 
S3_m1 = mean(S3(S2<0.6)); 
norm_m1 = sqrt(S1_m1^2 + S2_m1^2 + S3_m1^2); 
S1_m1 = S1_m1 / norm_m1; 
S2_m1 = S2_m1 / norm_m1; 
S3_m1 = S3_m1 / norm_m1; 

  
S1_temp = S1(S2> -0.2); 
S2_temp = S2(S2> -0.2); 
S3_temp = S3(S2> -0.2); 
scatter3(S1_temp,S2_temp,S3_temp,10,'r'); 

  
%%%%% Reference mean data point 2 %%%%% 
S1_m2 = mean(S1(S1<0.2)); 
S2_m2 = mean(S2(S1<0.2)); 
S3_m2 = mean(S3(S1<0.2)); 
norm_m2 = sqrt(S1_m2^2 + S2_m2^2 + S3_m2^2); 
S1_m2 = S1_m2 / norm_m2; 
S2_m2 = S2_m2 / norm_m2; 
S3_m2 = S3_m2 / norm_m2; 

  

S1_temp = S1(S1<0.2); 
S2_temp = S2(S1<0.2); 
S3_temp = S3(S1<0.2); 
scatter3(S1_temp,S2_temp,S3_temp,10,'g'); 

  
%%%%% Reference mean data point 3 %%%%% 
S1_m3 = mean(S1((S1<0.8)&(S1>0.2))); 
S2_m3 = mean(S2((S1<0.8)&(S1>0.2))); 
S3_m3 = mean(S3((S1<0.8)&(S1>0.2))); 
norm_m3 = sqrt(S1_m3^2 + S2_m3^2 + S3_m3^2); 
S1_m3 = S1_m3 / norm_m3; 
S2_m3 = S2_m3 / norm_m3; 
S3_m3 = S3_m3 / norm_m3; 

  
S1_temp = S1((S1<0.8)&(S1>0.2)); 
S2_temp = S2((S1<0.8)&(S1>0.2)); 
S3_temp = S3((S1<0.8)&(S1>0.2)); 
scatter3(S1_temp,S2_temp,S3_temp,10,'b'); 

  
%%%%% Mean data points in vector form %%%%% 
SV1 = [S1_m1; S2_m1; S3_m1]; 
SV2 = [S1_m2; S2_m2; S3_m2]; 
SV3 = [S1_m3; S2_m3; S3_m3]; 

  
%%%%% Plot lines from origin to the mean data points %%%%% 
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pt = [orig, SV1]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'ro-'); 
pt = [orig, SV2]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'go-'); 
pt = [orig, SV3]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'bo-'); 

  
% Form a triange using the vectors SV1, SV2, SV3. Since all the  

SV points lie on the plane of the triangle, and %it is in general 

not necessary that the origin also lie on this plane, therefore, 

we can construct the normal vectors using the v1 and v2 defined 
below. 
v1 = SV1 - SV3; 
v2 = SV2 - SV3; 
e1 = v1 / norm(v1); 
e2 = v2 - e1 * (e1' * v2); 
e2 = e2 / norm(e2); 
e3 = cross(e1, e2); 
e3 = e3 / norm(e3); 

  
%%%%% O is the circumcenter of the triangle formed by SV1, SV2, 

SV3. 
O1 = (norm(SV1)^2 - norm(SV3)^2) / 2 / norm(v1); 
O2 = ((norm(SV2)^2 - norm(SV3)^2) - (norm(SV1)^2 - 

norm(SV3)^2)*(v2' * v1)) / 2 / norm(v2 - v1 * (v1' * v2)); 
O = O1 * e1 + O2 * e2; 

  
%%%%% If O = orig = [0;0;0], the SV data points center at the 

origin, as it 
%%%%% turns out to be. 
scatter3(O(1), O(2), O(3), 100, 'k', 'filled'); 

  
%%%%% Plot the three orthonormal axes. 
pt = [O, e1]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'ro--'); 
pt = [O, e2]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'go--'); 
pt = [O, e3]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'bo--'); 
axis square 
hold off 

  
%%%%% Find the rotation matrix. 
G = inv([e1,e2,e3]); 

  
%%%%% Find the SV in the rotated coordinate system. 
SV_new = G * SV; 
%%%%% Plot the SV in the rotated coordinate. 
figure(3) 
S1_new = SV_new(1,:); 
S2_new = SV_new(2,:); 
S3_new = SV_new(3,:); 
scatter3(S1_new, S2_new, S3_new, 10, 'filled'); 
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axis square; 
hold on 

  
tmp = G * e1; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'ro--'); 
tmp = G * e2; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'go--'); 
tmp = G * e3; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'bo--'); 
tmp = G * SV1; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'ro-'); 
tmp = G * SV2; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'go-'); 
tmp = G * SV3; 
pt = [O, tmp]; 
plot3(pt(1,:), pt(2,:), pt(3,:), 'bo-'); 
hold off 

  
figure(4) 
plot(S1_new); 
hold on 
plot(S2_new); 
plot(S3_new); 
hold off 

  
figure(5) 
SV_angle = angle(S1_new + 1i * S2_new); 
subplot(2,1,1) 
plot(SV_angle/pi, 'o-'); 

 

Code #3: Averaging and decision making. 

x = SV_angle; 
ss = []; 
a = []; 
ss = x(startindex:endindex); 
    for i = 1:10:length(ss) 
        a = [a, mean(ss(i:i+9))]; 
    end 
aa = []; 
for i = 1:length(a) 
    if a(i)< -0.3 || a(i)<-0.9 
        aa = [aa,2.5]; 
    else  
        aa = [aa,-2.5]; 
    end  
end  

 


