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Abstract 

 A challenge for all living organisms is to offset the fitness associated risks of 

environmental uncertainty. Bet-hedging strategies are adaptive in unpredictable 

environments and are documented in a wide range of taxa spanning all kingdoms 

(Simons 2011, see Appendix A). There are two general types of bet-hedging strategies, 

a conservative strategy exemplified by the phrase "a jack of all trades and master of 

none" and the more common diversified strategy best described by the phrase "don't put 

all your eggs in one basket" (Seger and Brockman, 1987; Simons, 2011, see Appendix 

A). Although there are differences between them, both are based on the principle that 

mean geometric fitness increases by reducing fitness variation among years (Cohen, 

1966; Gillespie, 1974; Philippi and Seger, 1989, see Appendix A).  

 In annual plants, small germination fractions and high seed survival in the seed 

bank are adaptive when good years occur unpredictably or in a low frequency. The 

opposite is true for environments when the probability of a good year is high. 

Mathematical models have derived these theoretical predictions (Cohen 1966; Levin et 

al. 1984; Venable and Brown, 1988; Venable and Lawlor 1980, see Appendix A), but 

empirical tests of these models remains problematic, primarily because documentation 

of changes in geometric mean fitness are not realized until different environmental 

conditions are experienced by the study organism. Since bet-hedging strategies are 

adapted on an evolutionary time scale, environmental conditions to hedge against may 

not be experienced in a human lifetime, or longer. Thus, field experiments are not 

optimal for testing bet-hedging theory. However a few long term observational studies 

support theoretical expectations (see Pake and Venable 1996; Venable, 2007, see 
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Appendix A), and long-term manipulative experiments that alter environmental 

conditions (e.g. precipitation frequency) are feasible approaches (Petru and Tielboerger 

2008, see Appendix A). Modeling is another method for testing theoretical predictions, 

specifically by combining demographic models that are coupled with environmental 

models that alter soil temperature and soil water content. Demographic models have 

been applied to estimate population growth rates in desert annuals by deriving 

parameters such as reproductive output, recruitment from the seed bank, and 

survivorship in response to simulated precipitation regimes (Gremer and Venable 2014; 

Salguero-Gomez et al. 2012, see Appendix A).  

 Bet-hedging literature consists of a mixture of results that support and reject 

theoretical predictions, particularly in regard to seed germination and dormancy. This is 

due, in part, to the inability to incorporate mechanisms such as phenotypic plasticity and 

maternal effects that confound observations of demographic traits  (i.e., seed production 

and seed dormancy) in natural populations. Another shortcoming is that comparisons of 

demographic traits at the population level are not incorporated into predictive models, 

resulting in hampered understanding of underlying genetic differences in the expression 

of bet hedging strategies, which are important variables determining population 

persistence and range dynamics. Lastly, and potentially the greatest shortcoming, is that 

risk avoidance from alternative selection agents (i.e., herbivores) are almost entirely 

non-existent. For example, frequent pre and post dispersal seed predation (i.e., 

granivory) may favor adaptations that reduce the risk of predation, such as increased 

lignification, or accumulation of tannins and similar defense compounds in fruit or seed 

coats (i.e., pericarp, and testa), that simultaneously alter germination or dormancy. 
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Since plant-animal interactions are ubiquitous, and because the selective pressure 

animals impose on plant fitness can be extremely strong, we cannot truly understand 

plant bet hedging strategies without accounting this selective force.  

 Chapter one is an explanation of why the Cox Proportional Hazard (CPH) model 

is an excellent choice for analyzing germination data. Historically, germination data 

was analyzed by analysis of variance, however the nature of germination data requires 

more complicated statistical analysis. The CPH is a suitable choice, but certain 

shortcomings in the standard CPH were identified (Ritz et al. 2013, see Appendix A). 

This chapter presents the use of the extended CPH (Kleinbaum and Klein 2012, see 

Appendix A), and demonstrates its ability to overcome the shortcomings of the standard 

CPH. The major strength of the extended CPH is the flexibility to statistically compare 

time intervals of interest to the user. 

Chapter two presents an investigation into the variability in germination and dormancy 

among G. ciliata populations in Oklahoma. The germination trends that were observed 

in chapter one are explained in chapter two and it is shown that significant differences 

in dormancy exist among populations. Such variation may strongly affect how seedbank 

and population dynamics.   

Chapter three is an investigation of how reproductive bet-hedging in an Oklahoma 

native forb Grindelia ciliata (Asteraceae), is affected by the seed herbivore Schinia 

mortua (Noctuidae). Female S. mortua moths determine the time, location, and 

abundance of S. mortua larvae that will consume the G. ciliata seeds. By manipulating 

location, timing, and abundance of larvae I evaluate the impact that this herbivore has 

on plant fitness. 
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Chapter 1: Application of the extended Cox Proportional Hazards 

Model to analyze seed germination data in R 

 

Michael Kistenmacher, University of Oklahoma, Department of Microbiology and Plant 

Biology 770 Van Vleet Oval, Norman, Oklahoma 73019 USA 

J. Phil Gibson, University of Oklahoma, Department of Biology, 730 Van Vleet Oval, 

Norman, Oklahoma 73019 USA 

 

Key Words: Cox Proportional Hazard; Germination; Hazard Ratio; Heaviside function  

To be submitted to American Journal of Botany Applications  

Chapter 1: Abstract 

Premise of the study: The experimental design of seed germination studies are 

well standardized. However, appropriate statistical analysis is not. Survival analyses, 

such as the Cox-Proportional Hazards model (CPH), are appropriate for analyzing 

germination data, but they are not commonly used because the biological interpretation 

of the statistical output (the Hazard Ratio) is not straightforward. We present code in R 

comparing a standard CPH to an extended CPH to demonstrate that the biological 

interpretation of the extended CPH output is superior to the standard CPH output.  

Methods: Germination data were obtained from a study conducted at the University of 

Oklahoma. We present the nature of our germination experiment, data formatting, and 

preparation for analysis. We then present code for the standard CPH followed by the 

extended CPH, and review interpretation of each statistical output.  
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Results: The standard CPH derives a Hazard Ratio (HR) and germination probability for 

the two compared groups that is representative of the entire germination experiment. In 

contrast, the extended CPH derives HR and germination probabilities at specific time 

intervals, defined by the user, during the germination experiment.    

Discussion: The extended CPH allows the user to define which time intervals to 

statistically compare, which is not possible using the standard CPH. This ability allows 

users to extract or omit information from time intervals of their choosing, such as lag 

periods, periods of rapid germination, or the interval during which 50% germination 

occurred. Therefore, researchers are able to increase description precision of temporal 

patterns of germination.  

 

Chapter 1: Introduction 

Seed germination studies are commonly conducted for a variety of educational 

levels and research purposes. Most technical experimental design issues, such as sample 

size, stratification treatment, or light cycles, have been established and standardized to 

ensure quality data recovery (Baskin and Baskin 2014). However, statistical analysis of 

germination data is less standardized across studies. A wide range of statistical 

techniques, such as analysis of variance, nonlinear regression, and generalized linear 

mixed models (Scott et al 1984) are typically used. However, not all of these methods 

are statistically appropriate in many instances because germination data include 

repeated measures on the same individuals (seeds), and observations are censored 

because of the time intervals between observations and the fraction of viable seeds that 
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are left ungerminated at the completion of the germination trial (Onofri 2010, McNair et 

al 2012).  

Similar challenges were identified in medical studies where techniques called 

“survival analyses” have been developed to account for these critical statistical issues. 

Although multiple studies have indicated the usefulness of this method for germination 

studies (Scott et al 1984, Onofri 2010, McNair et al 2012), the application of survival 

analyses to germination studies has still not taken a strong foothold. There are a variety 

of survival analyses methods and approached, each having specific strengths and 

weakness (Kleinbaum and Klein 2012, McNair 2012), but the semi-parametric Cox 

Proportional Hazard model (CPH) (Cox 1984) is an ideal candidate when the desired 

goal is to compare the temporal pattern of germination or to compare time specific 

germination patterns among different groups (McNair et al 2012). Unfortunately, minor 

shortcomings of the CPH have prevented wide spread adoption. The primary complaint 

is the lack of convenient biological interpretation of the primary statistic, the Hazard 

Ratio (HR) (Ritz et al 2012). Additionally, the HR generated by the standard CPH 

reflects germination rates from the entire germination curve, which lumps together 

critical information, such as times of rapid germination and lag periods, about different 

stages of the germination curve. However, the extended CPH can eliminate this problem 

through the use of Heaviside functions, which enhances interpretation and accuracy by 

allowing the user to generate HR’s for specific time intervals from the germination 

curve. The use of the extended CPH is described in Kleinbaum and Klein (2012). 

However that example demonstrates limited use of the Heaviside functions and does not 

explain the application of this technique to germination data (Kistenmacher and Gibson 
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2016). The goal of this paper is to demonstrate the use, advantages, and flexibility the 

extended CPH model has over the standard CPH for analyzing germination data in R 

programming software.  

 

Chapter 1: Methods 

 The extended CPH model utilizes Heaviside functions to calculate the 

conditional probability of germination occurring through calculation of HR within a 

specified time-interval of each germination trial (Cox 1984, Kleinbaum and Klein 

2012). The HR-value is the ratio between the germination rates h() of seeds in different 

treatments (A = Treatment and B = Control) so that, 

   

(1) 𝐻𝑅 = ℎ(𝐴)/ℎ(𝐵)  

 

HR indicates the conditional probability of germination for one achene type or treatment 

relative to another during that time interval given that germination had not happened 

previously (Kleinbaum and Klein, 2012; Kistenmacher and Gibson 2016). For example, 

if h(A) = 1 and h(B) =1 then HR = 1, indicating no difference in the likelihood of seed 

germination during that time interval between the two groups. However, when h(A) = 3 

and h(B) = 1, then HR = 3, then the rate of germination in the treatment group h(A) is 

larger than that of the control group h(B). This indicates a higher rate of germination in 

the treatment group. Interpretation of the HR statistic can be clarified by converting it 

into the probability of germination in the stored group relative to the control over a 
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given time period (Spruance et al 2004). Conditional probability of germination (P) is 

calculated as,  

   

(2) 𝑃 =  𝐻𝑅/(1+ 𝐻𝑅)  

 

Thus, if HR = 1, then P = 0.50 or even probability of germination for the control and 

treatment group during that time interval. If h(A) = 3 and h(B) = 1, then HR = 3 and P = 

0.75 indicating a 75% probability of the treatment group germinating before the control 

during that time interval. It is important to note that HR-values and P-values indicate 

conditional probability of germination during a given period of time, and neither reports 

time to germination or number of seeds germinating. 

Study species and experimental design 

In developing this application of the extended CPH model, we used data from 

Grindelia squarrosa (Asteraceae) achenes that were collected from a populations North 

of Boulder, Colorado, 40°06'16.9"N 105°16'52.0"W. Grindelia squarrosa exhibits 

cryptic heterocarpy, where each individual produces two fruit types (achenes) that are 

similar morphologically, but differ in germination and dormancy. Like most members 

of the Asteraceae, G. squarrosa individuals produce capitula containing centrally 

located disc florets and peripherally located ray florets. Disc floret ovaries develop into 

single seeded disc achenes, whereas ray floret ovaries develop into single seeded ray 

achenes. Typically, disc achenes are less dormant, and have a larger seed and thinner 

pericarp than ray achenes (McDonough 1975).   



6 

 Achenes were collected from 20 individuals on September 2012. Achenes were 

returned to the lab, pooled, and sorted according to type. Germination trials consisted of 

three petri dishes for each achene type, containing 50 achenes of a single type that were 

placed on one Whatman 9 cm filter paper, were watered with 3 mL double-distilled 

water, and achenes were placed in a Precision Model 818 Low Temperature Illuminated 

Incubator (Thermo Electron Corporation®, Marietta, OH) under a decreasing 

temperature temperature regime (Washitani 1989, Battla and Benech-Arnold 2003), that 

started at 32°C, and the temperature was reduced by 4°C every 4 days for a total of 32 

days (32°C, 28°C, 24°C, 20°C, 16°C, 12°C, 8°C, 4°C). Germination was scored every 

four days. At the end of the regime, all petri dishes were placed at 20°C for 4 days to 

check if non-dormant achenes remained. Germinated seeds, defined by radicle 

protrusion through the pericarp, were removed from the petri dishes after counting. Petri 

dishes were re-sealed with Parafin after each inspection. Seed viability was tested at the 

end of each germination trial in each ungerminated achene by removing the seed from 

the pericarp using a razor blade. A seed was scored as viable if the seed was white and 

plump (Baskin and Baskin 2014). If achenes contained nonviable seeds or no seed at the 

end of the germination trial, they were removed from statistical analysis. 

Data format 

To run an extended Cox Proportional Hazard model in R, each observation must 

be recorded using the start (Day1), stop (Day2), and event format (Table 1). In this 

example we are comparing disc and ray achenes. Because these are categorical 

variables, they are coded into two separate columns. In contrast, continuous variables 

should be assigned a unique numerical value in a single column. The “Disc” column 
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contains only 0’s and is therefore considered as an informal control that the other group 

is compared against. The “Ray” column contains 0’s for rows that correspond to disc 

achene observations, and 1’s in rows that correspond to ray achene observations. An 

“Individual” and “replicate” columns are included to track each individual achene and 

petri-dish replicate. The “Event” column is where information regarding germination is 

recorded. During time intervals when no germination occurred, the event column is 

coded as 0. When germination did occur, the time interval is coded as 1. Therefore, a 

disc achene that germinated between days 4 and 8 will have two lines in the data set 

since there are only two observations, between days 0 and 4 and between days 4 and 8, 

for this particular seed (Table 1).  In contrast, a ray achene that remained ungerminated 

through the end of the experiment will have nine lines in the data set (Table 1). Thus, 

each line of data refers to an observation made at a particular time interval. 

 

#R code for comparing disc and ray achenes 

#Required packages  

library(survival) 

library(Hmisc) 

library(plotrix) 

library(MASS) 

#Read-in data file  

germ<-read.table("SquarrosaData",header=TRUE) 

#Run Kaplan-meier test to derive germination percent at each time interval.  

surv.SQ<-survfit(Surv(Day1,Day2,Event)~Ray,data=germ) 
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#review data  

summary(surv.SQ)  

#code for visualizing disc versus ray achene comparison in supplemental material. 

#Visual check for crossing of germination curves is an important way to check the 

#proportional hazard assumption 

 

#Running a standard Cox Proportional Hazard model  

Y30=Surv(germ$Day1, germ$Day2, germ$Event) 

Cox.SQ<-coxph(Y30 ~ Ray+cluster(Individual)+cluster(Rep), data=germ) 

#check the proportional hazard assumption using a statistical test.  

cox.zph(Cox.SQ,transform=rank) 

#call statistical output 

summary(Cox.SQ) 

 

#Running the extended Cox Proportional Hazard model with Heaviside functions 

every 4 days. 

pops.cph30=survSplit(Surv(Day1,Day2,Event)~Ray,germ,cut=c(4,8,12,16,20,24,28,32)

,end="Day2", event="Event",start="Day1") 

pops.cph30$hvR32=pops.cph30$Ray*(pops.cph30$Day1<=2)  

pops.cph30$hvR28=pops.cph30$Ray*(pops.cph30$Day1>2&pops.cph30$Day1<=6)  

pops.cph30$hvR24=pops.cph30$Ray*(pops.cph30$Day1>6&pops.cph30$Day1<=10)  

pops.cph30$hvR20=pops.cph30$Ray*(pops.cph30$Day1>10&pops.cph30$Day1<=14

)  
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pops.cph30$hvR16=pops.cph30$Ray*(pops.cph30$Day1>14&pops.cph30$Day1<=18

)  

pops.cph30$hvR12=pops.cph30$Ray*(pops.cph30$Day1>18&pops.cph30$Day1<=22

)  

pops.cph30$hvR8=pops.cph30$Ray*(pops.cph30$Day1>22&pops.cph30$Day1<=26)  

pops.cph30$hvR4=pops.cph30$Ray*(pops.cph30$Day1>26&pops.cph30$Day1<=30)  

pops.cph30$hvRe20=pops.cph30$Ray*(pops.cph30$Day1>30) 

pops.cph30[,14]<-germ[,1] 

pops.cph30[,15]<-germ[,2] 

colnames(pops.cph30)=c("Ray","Day1","Day2","Event","hvR32","hvR28","hvR24","hv

R20","hvR16","hvR12","hvR8","hvR4","hvRe20","Individual","Rep") 

Y30=Surv(pops.cph30$Day1,pops.cph30$Day2, pops.cph30$Event) 

Cox.H.SQ<-coxph(Y30 ~ hvR32 + hvR28 + hvR24 + hvR20 + hvR16 + hvR12 + hvR8 

+ hvR4 + hvRe20 + cluster(Rep) + cluster(Individual), data=pops.cph30) 

 summary(Cox.H.SQ) 

 

Chapter 1: Results 

The statistical output generated in R (Figure 1 and Figure 2), was modified to 

show only essential components. Table 2 and Table 3 also contain column identifiers to 

simplify explanation. Column A (Table 2) contains the HR. For the standard model, HR 

= 0.2739, which indicates that the germination rate of ray achenes is lower than that of 

disc achenes. This HR is used to derive P, and clarifies the conditional probability of a 

ray achene germinating before a disc achene. In this case, ray achenes have a 21.5% 
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probability (P = 0.215) of germinating before disc achenes. Columns B and C provide 

the 95% confidence intervals (CI) of the HR value (Table 2). These 95% CI’s can also 

be converted to P and if these probability confidence intervals do not cross 0.5, then the 

germination rates are significantly different. Column D contains the inverse of the HR 

from column A (Table 2), in other words, the HR representing the likelihood that disc 

achenes will germinate before ray achenes. The P calculated from the HR in column D 

equals 0.785 (i.e., 1 minus the P calculated from the HR in column A). The z-score and 

p-values are in columns E and F, respectively (Table 2).  

  The output of the extended CPH model contains the same variables as the 

standard CPH, but now each variable is available for each of the Heaviside function 

time intervals (Table 3). Note that all HR’s in column A are less than 1 which indicates 

that the germination likelihood of ray achenes is lower in comparison to disc achenes in 

all time periods. However, not all time periods were significantly lower (Table 3). Only 

hvR32, hvR24, hvR20, hvR12, hvRe20 were significantly lower, but hvR28, hvR16, 

hvR8, and hvR4 were not significantly different (Table 3 column F). For hvR32, HR = 

1.253-7 (Table 3), which converts to P < 0.0001, which means that ray achene 

germination during that period is extremely unlikely to occur before disc achenes. This 

result is driven by a small fraction of germinated disc achenes in comparison to zero ray 

achenes (Figure 3). For hvR28, the probability of ray achene germination was P = 0.29, 

which was not significantly different from disc achenes (Table 3, Figure 3). On the 

other hand, during hvR24 and hvR20 the probability of ray achenes germinating before 

disc achenes were P = 0.09 and P = 0.22, respectively. The mean germination percent 

during hvR24 was 30% for disc and 4% for ray achenes, and during hvR20 were 21% 
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for disc and 10% for ray achenes. Ray achene germination rates were significantly 

lower in comparison to disc achenes during both hvR24 and hvR20 (Table 3, Figure 3). 

Large germination fractions occurred in disc and ray achenes during hvR16, which 

resulted in a non-significant difference between the two groups. During hvR12, disc and 

ray achene germination began to plateau, although the ray achene germination 

probability was significantly lower (Table 3). During hvR8 and hvR4 disc and ray 

achene germination continued to plateau although germination occurred at about equal 

rates (Table 3, Figure 3). During the hvRe20 interval, the probability of ray achene 

germination was significantly lower than disc achenes with a probability of P = 0.12 

(Table 3). 

 

Chapter 1: Discussion 

We demonstrate that the extended Cox Proportional Hazard (CPH) model is 

more versatile and powerful for the analysis of seed germination data in comparison to 

the more commonly used standard CPH model. In our example, both the standard and 

extended CPH models show that the probability of germination was lower for ray 

achenes compared to disc achenes (Figure 1). However the amount of information 

obtained from the extended cox model far exceeds the standard CPH model. A 

particular strength of the extended CPH is the flexibility to specify Heaviside functions 

that span time intervals of interest to the researcher. In our case the Heaviside functions 

reflected 4-day time intervals due to our experimental design, however other studies 

may chose different time interval durations. These Heaviside functions enabled us to 

determine exactly at which temperatures significant differences in germination percent 
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occurred, and better understand how these two achene types may differ physiologically 

and ecologically.   

 To alter Heaviside function intervals, users can modify the code containing the 

survSplit() function, and the code thereafter. In survSplit(), the user must select other 

time intervals at which to cut the dataset (A). Then, the user must create new Heaviside 

objects in the new dataset created by survSplit() (Appendix A). 

  There are three challenges that are important to consider when applying CPH 

models to analyze germination data. The first challenge occurs when more than two 

groups are compared and none of those groups serve the role of a control. For example, 

when comparing populations, the goal is often to compare all populations to each other 

and not to only compare them to one (control) population. However, the CPH model 

always treats the group with 0’s in each row of the raw data file as the comparative 

standard (i.e., control) and compares all other groups to it. Therefore, to compare the 

populations that did not contain only 0’s in their rows, the raw data file has to be edited 

so that all rows for one of those populations contain only 0’s. This adds additional data 

management time to the process of data analysis. The second challenge is when a CPH 

model is comparing three or more groups. In that case, users must always include all 

groups or Heaviside functions on the right side of ~ in the coxph() function. Otherwise, 

the observations that belong to the group that is not referenced will be included as 

observations belonging to the group that is coded as all 0’s. The third challenge is the 

recognition that HR and P by themselves do not convey any information about 

germination percentages. For example, the probability of ray achenes germinating 

before disc achenes during HvR4 was P= 0.31 whereas during HvRe20 P = 0.12 (Table 
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3). This may lead to the incorrect conclusion that a larger percent of ray achenes 

germinated during HvR4 than during HvRe20. Actually, the percent of ray achenes that 

germinated during hvR4 was lower (1.8%) in comparison to hvRe20 (3.7%). This 

occurs because the derivation of P is dependent on disc achene germination during that 

time interval. In this case, the disc achene germination percent was lower during hvR4 

(4.1%) than in hvRe20 (23.9%).   

 The HR generated by the CPH is not easily interpretable for germination studies, 

however after converting it to P interpretation becomes clear. The usefulness of P 

increases when using the extended CPH, because users are able to calculate P for time 

intervals of their choosing. For example, a user can specify and compare the time 

interval during which germination was most rapid or during the lag periods before or 

after rapid germination. In addition, the extended CHP allows the user to define the time 

period during which a particular percentage of germination occurred and determine if 

the probability of germination during that time period differs for different seed lots, 

species, or populations. This technique can be applied to any germination study and the 

R-code provided in this paper provides the framework for creating custom Heaviside 

functions and implementing them in the extended CPH to meet the needs defined by the 

user.  
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Chapter 1: Tables 

 

Table 1. The required data format for running an extended Cox 

Proportional Hazard Model in R. The grey shaded region shows 

two observations of one Grindelia squarrosa (Asteraceae) disc 

achene and the nonshaded region shows nine observations of a G. 

squarrosa ray achene.  

Individual Replicate Ray Disc Day1 Day2 Event 

      2038 34 0 0 0 4 0 

2038 34 0 0 4 8 1 

1776 15 1 0 0 4 0 

1776 15 1 0 4 8 0 

1776 15 1 0 8 12 0 

1776 15 1 0 12 16 0 

1776 15 1 0 16 20 0 

1776 15 1 0 20 24 0 

1776 15 1 0 24 28 0 

1776 15 1 0 28 32 0 

1776 15 1 0 32 36 0 

 
 
 
 
 
 
 
 



16 

 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

Table 2. Modified statistical output format of the standard Cox Proportional 

Hazard model run in R-Programming. Column A contains the Hazard Ratio (HR), 

columns B and C the upper and lower 95% confidence intervals, column D the 

inverse of the HR, column E the z-score, and column F the p-value.   

 
A 

exp(coef) 

B 

lower .95 

C 

upper .95 

D 

exp(-coef) 

E 

z 

F 

Pr(>|z|) 

Ray 0.2739 0.2121 0.3537 3.651 -9.926 <2e-16 *** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 3. Modified statistical output format of the extended Cox Proportional Hazard 

model run with 9 Heaviside functions in R-Programming. Column A contains the 

Hazard Ratio (HR), columns B and C the upper and lower 95% confidence intervals, 

column D the inverse of the HR, column E the z-score, and column F the p-value.   

 
A 

exp(coef) 

B 

lower .95 

C 

upper .95 

D 

exp(-coef) 

E 

z 

F 

Pr(>|z|) 

hvR32 1.253e-07 5.896e-08 2.662e-07 7.982e+06 -41.326 < 2e-16 *** 

hvR28 4.054e-01 1.497e-01 1.098e+00 2.466 -1.776 0.075748 . 

hvR24 1.006e-01 4.639e-02 2.181e-01 9.941 -5.817 5.99e-09 *** 

hvR20 2.814e-01 1.646e-01 4.809e-01 3.554 -4.637 3.53e-06 *** 

hvR16 6.331e-01 3.843e-01 1.043e+00 1.579 -1.795 0.072674 . 

hvR12 1.379e-01 4.617e-02 4.121e-01 7.249 -3.547 0.000389 *** 

hvR8 4.131e-01 1.504e-01 1.135e+00 2.421 -1.715 0.086416 . 

hvR4 4.457e-01 6.325e-02 3.141e+00 2.244 -0.811 0.417268 

hvRe20 1.408e-01 4.496e-02 4.409e-01 7.103 -3.366 0.000762 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Chapter 1: Figures 

 

Figure 1. Statistical output generated from the standard Cox Proportional Hazard model 

in R-programming. The test compares Grindelia squarrosa (Asteraceae) disc and ray 

achenes.  
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Figure 2. Statistical output generated from the extended Cox Proportional Hazard model 

in R-programming. The test compares Grindelia squarrosa (Asteraceae) disc and ray 

achenes germination rates at 4-day intervals. Each HvR represents a Heaviside function 

for a different 4-day time interval.  
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Figure 3. Mean percent germination of Grindelia squarrosa (Asteraceae) disc (open 

circle) and ray (open triangle) achenes during a decreasing temperature regime. Error 

bars indicate 95% confidence intervals. All ungerminated achenes at the end of the 

germination trial were viable.  
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Chapter 2: Abstract 

Heterocarpy is an adaptive bet-hedging strategy that has evolved several times 

in the Asteraceae. Although the role of morphological features has been studied for 

several species, the dormancy changes that seeds inside the achenes undergo while 

ungerminated in the seedbank are not understood. Dormancy changes after dispersal 

may further enhance the benefits and drive evolution of bet-hedging via heterocarpy In 

this study we investigate the dormancy states of three achene morphs produced by 

Grindelia ciliata (Asteraceae) when fresh and after storage for 30-days and 60-days in 

simulated winter and summer soil temperatures to compare dormancy changes among 

their seeds. We found that disc achenes are almost completely nondormant and their 

dormancy state remained unchanged after 30 and 60 days of storage. In contrast, 
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intermediate and ray achenes were conditionally dormant and showed enhanced 

germination after exposure to warm temperatures and induced dormancy after exposure 

to cold temperatures. Significant differences in achene dormancy and germination 

behavior were detected among populations. This study shows that in addition to 

differences is seed protection and dispersal due to structural variation among achene 

morphs, G. ciliata achieves additional benefits of bet-hedging via germination cueing. 

This provides a mechanism for multiple flushes of germination from the seed bank 

throughout the year in response to changing environmental conditions. 

  

Chapter 2: Introduction 

 Heterocarpy is a reproductive bet-hedging life-history strategy that results when 

one plant produces two or more dissimilar fruits with different dispersal and 

germination features (reviewed in Imbert 2002). Although relatively uncommon in 

flowering plants, heterocarpy has evolved several times in the Asteraceae due to 

developmental and structural features of the capitulum (Burtt 1977).  In the Asteraceae, 

heterocarpy typically occurs between the single-seeded achenes produced by florets in 

central versus peripheral positions on the capitulum. Achenes from florets in the central 

position are characteristically nondormant and often retain functioning dispersal 

structures such as a pappus. In contrast, achenes produced in more peripheral locations 

are dormant and do not retain a functioning pappus. These differences are typically 

between central disc and peripheral ray florets, but heterocarpy also occurs in species 

that produce a single floret morph.  
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Structural differences between heterocarpic achenes result in bet-hedging that offsets 

mortality due to different predictable and unpredictable herbivory, dormancy, and 

dispersal risks (Forsyth and Brown 1982; Tanowitz et al 1987; McEvoy 1984; Flint and 

Palmbald 1978; McDonough 1975; Venable 1985b; Venable and Levin 1985; Gibson 

2001; Baskin and Baskin 2013; Kistenmacher and Gibson 2016). However, there is not 

a clear consensus on whether germination differences among achene morphs are due to 

structural variation alone or differences in dormancy status of their seeds. Likewise, it is 

not known whether dormancy status of seeds in different achene morphs is constant or 

varies among achene morphs after dispersal (Baskin and Baskin 1976, Hensen 1999, 

Brändel 2007, Sun et al 2009, Aguado et al 2011, Puglia et al 2015). Studies of 

heterocarpic species native to desert environment have shown that a fraction of the 

dormant achene morphs and can germinate immediately when conditions become 

favorable thereby employing an opportunistic dormancy strategy (Venable 1987, Imbert 

et al 1996, Sun et al 2009, Baskin et al 2014). However, the fraction of achenes that are 

in such an opportunistic state vary among populations, and populations from more xeric 

environments tend to have smaller fractions of opportunistic achenes than populations 

from mesic environments (Philippi 1993). This study examines five populations located 

along a natural precipitation gradient in the short and mixed grass prairies of the South-

central United States of America to test whether dormancy and germination features of 

seeds in the dramatically different achene morphs are uniform or whether they vary 

among achene morphs, populations, and seasons.   

 We investigated dormancy of heterocarpic Grindelia ciliata (Astereae, 

Asteraceae) achenes. In each capitulum, this species produces two or three achene 
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morphs that display extreme morphological variation among them (Gibson 2001; 

Kistenmacher and Gibson, 2016). Disc achenes, produced by centrally located disc 

florets, have large seeds, thin pericarps, and retain a functioning pappus for dispersal 

(Gibson 2001, Kistenmacher and Gibson 2016). In contrast, ray florets produced around 

the periphery of the capitulum produce ray achenes that have smaller seeds than disc 

florets but produce a thick lignified pericarp and lack a functional pappus (Gibson 2001, 

Kistenmacher and Gibson 2016). In some instances, several ranks of disc florets in 

positions adjacent to ray florets produce a third morph we designate as intermediate 

achenes. This morph has small seeds and a thick pericarp like ray achenes, but retain a 

functional pappus like disc achenes. Because the pericarp and seed function as a single, 

dispersal and germination diaspore, we use the term achene to collectively refer to the 

pericarp and the seed within it (Kistenmacher and Gibson 2016). Achenes mature and 

disperse in autumn. All disc achenes germinate readily after dispersal in late summer 

and autumn, whereas a majority of intermediate and ray achenes remain dormant in the 

seed bank and germinate in summer and autumn approximately one year after 

maturation and dispersal (Kistenmacher and Gibson 2016). In this study we test whether 

disc, intermediate, and ray achenes remain in a steady state of dormancy or if they 

undergo dormancy cycling. If G. ciliata achenes undergo dormancy cycling, exposure 

to cold soil temperatures should induce dormancy and prevent germination whereas 

exposure to warm soil temperatures will break dormancy or otherwise promote seed 

germination.  
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Chapter 2: Methods 

 Achene collection and germination –– We collected capitula from 15 

Grindelia ciliata individuals in each of five populations on October 31, 2012 (Table 1). 

Two populations were located in the North-western Panhandle state division of 

Oklahoma, which experience significantly lower precipitation and soil moisture levels 

than the statewide average, and three populations in the north-central state division 

(Figure 1), which typically experience soil moisture levels equal to the state average 

(Illston et al 2004). We chose populations at similar latitude to minimize any effects of 

photoperiod that have potentially shaped population seed germination characteristics 

(Baskin and Baskin 2014). On the same day as collection, achenes were returned to the 

lab, pooled by population, and sorted by achene type. The following day, fresh achenes 

were immediately placed into incubators to start the initial germination trial and 

establish the baseline level of dormancy and germination response to increasing and 

decreasing temperatures.  

 Germination trials were conducted in Precision Model 818 Low Temperature 

Illuminated Incubators (Thermo Electron Corporation®, Marietta, OH) at temperatures 

mimicking increasing spring soil temperatures and decreasing autumn soil temperatures 

of autumn to recreate an ecologically relevant range of temperatures that reflect average 

Oklahoma soil temperatures following summer and winter (McPherson et al 2007, 

Brock et al 1995, Figure 2). Initial germination trials for each achene type from each 

population consisted of six petri dishes containing 25 achenes each of a single morph. 

Achenes were placed on a single disc of Whatman 9 cm filter paper and hydrated with 3 

mL double-distilled water. Three dishes were placed in an increasing temperature 
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regime (ITR) and three were places in a decreasing temperature regime (DTR) 

(Washitani 1989, Battla and Benech-Arnold 2003). The DTR started at 32°C, and the 

temperature was reduced by 4°C every 4 days for a total of 32 days until reaching a 

final temperature of 4°C (32°C, 28°C, 24°C, 20°C, 16°C, 12°C, 8°C, 4°C). The ITR 

started at 4°C, and the temperature was increased by 4°C every 4 days for a total of 32 

days until reaching a final temperature of 32°C (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 

28°C, 32°C). Germination, defined by radicle protrusion through the pericarp, was 

scored on the second and fourth day at each temperature. Germinated seeds were 

removed from the petri dishes after counting and petri dishes were re-sealed with 

Parafin after each inspection. Seed viability of each ungerminated achene was tested at 

the end of each germination trial by removing the seed from the pericarp using a razor 

blade. A seed was scored as viable if the seed was white and plump (Baskin and Baskin 

2014). Achenes containing nonviable seeds or no seed at the end of the germination 

trial, they were removed from statistical analysis. 

 The remaining G. ciliata achenes were dry-stored in manila coin envelopes 

for 30 and 60 days under either a constant 5°C to replicate cold dry after-ripening 

(CDAR) under cold winter soil temperatures or under a constant 27.5°C in a Precision 

Model 818 Low Temperature Illuminated Incubator (Thermo Electron Corporation®, 

Marietta, OH) to replicate warm dry after-ripening (WDAR) under warm summer soil 

temperatures. Achenes were dry-stored because disc achenes germinate immediately 

once hydrated. After storage, we conducted germination trials on WDAR achenes under 

DTR conditions to simulate germination and dormancy under decreasing soil 

temperatures following exposure to warm soil seedbank temperatures in late summer 
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and autumn. Conversely, CDAR achenes were placed in a germination trial under ITR 

conditions to simulate their dormancy and germination in response to increasing soil 

temperatures after overwintering in the soil seed bank.  These scenarios replicate natural 

soil temperature conditions (Figure 2). Due to unexpected problems during the 

experiment, 30-day storage treatment data are not available for P1 disc, intermediate, 

and ray achenes, and for NC1 intermediate achenes in the DTR. 

   

 Statistical Analysis––We calculated the Hazard Ratio (HR) through an Extended 

Cox Proportional Hazard Model (CPH) with Heaviside functions to compare 

germination among achene types, populations, and storage treatments, (McNair et al. 

2013, Kistenmacher and Gibson 2016) using R version 3.1.0 (R Development Core 

Team 2014). The extended CPH model utilizes heaviside functions to calculate the 

conditional probability of germination occurring within a specified time-interval of a 

germination trial through calculation of HR (Cox 1984, Kleinbaum and Klein 2012). 

The HR-value is the ratio between the germination rates of seeds in different treatments, 

and, therefore, indicates the conditional probability of germination for one achene type 

or treatment relative to another during that time interval given that germination had not 

happened previously (Kleinbaum and Klein, 2012; Kistenmacher and Gibson 2016). In 

this paper, we always present the HR so that the control germination rate (i.e., fresh 

seeds) is always in the denominator and treatment group germination rate is always in 

the numerator. For example, if only one stored and one fresh seed germinate over a 

given time interval, then HR = 1 and there is no difference in the likelihood of seed 

germination during that time interval between the two groups. However, if 20 stored 
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seeds and only one fresh seed germinates, then HR > 1 which indicates that stored seeds 

are more likely to germinate than fresh seeds. Interpretation of the HR statistic is clearer 

when it is converted into the probability of germination (Spruance 2004). The 

probability of germination (P) is calculated as,  

  (1) 𝑃 =  𝐻𝑅/(1+ 𝐻𝑅)  

where HR  is the hazard ratio calculated between treatment and fresh (control) achenes 

over a given time period.  Thus, if HR =1, then P = 0.50 and there is an even probability 

of germination for the control and treatment group during that time interval. If HR = 2, 

then P = 0.67 indicating a 67% probability of the treatment group germinating before 

the control during that time interval. Correspondingly, the probability that a seed in the 

control group germinates before the treatment group is 33%. It is important to note that 

HR-values and P-values indicate conditional probability of germination during a given 

period of time, and neither reports time to germination or number of seeds germinating. 

 

Chapter 2: Results 

Increasing temperature regime  

Fresh disc achenes— Fresh disc achenes rapidly initiated germination at 8°C in 

all populations and overall, 69.7% ± 2.4 (mean ±standard error) of all disc achenes 

germinated by the end of the 8°C period (Figure 3, Figure 4). This was significantly 

higher than intermediate achene (P = 1.0, p > 0.001) and ray achene germination at 8°C 

(P = 1.0, p > 0.001). Significant differences in mean disc germination occurred among 

populations at 8°C (Figure 3). Probability of disc achene germination at 8°C was 

significantly higher in NC2 than NC3 (P = 2.4, p < 0.001), NC1 (P = 2.9, p < 0.001), P2 
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(P = 1.6, p = 0.007), and P1 (P = 1.9, p < 0.001). The probability of fresh disc achene 

germination was also significantly lower for NC1 disc achenes than in P2 (P =0.58, 

p=0.006, Figure 3). There were no interpopulation differences in germination of 

remaining achenes at higher temperatures, and all populations achieved 100% 

germination by the end of the fourth day at 16°C (Figure 3, Figure 4).  

Fresh intermediate achenes— Fresh intermediate achene germination reached 

an average of only 13.7% ± 1.8 across all populations (Figure 3, Figure 4). The largest 

mean total germination occurred in P1 (30% ± 5.5), followed by NC3 (20.3% ± 4.8), 

NC2 (17.2% ± 4.7), P2 (1.4% ± 1.4), and lastly NC1 (0%) achenes (Figure 3). 

Germination initiated at 12°C in P1 and at 16°C in P2, NC2, and NC3 (Figure 3). Mean 

germination at 16°C, 20°C, and 24°C was significantly more likely in P1, NC2, and 

NC3 achenes in comparison to NC1 and P2 achenes (Figure 3). No significant 

differences in mean germination were detected among P1, NC2, and NC3 achenes at 

16°C, 20°C, and 24°C (Figure 3).  

Fresh ray achenes— Ray achene germination was lowest of the three achene 

morphs. Mean total germination across all populations only reached 5.7% ± 1.3 (Figure 

4).  The highest mean germination occurred in NC2 (19% ± 5.1), followed by NC1 

(5.6% ± 2.7), P1 (3.4% ± 2.4), NC3 (2.9% ± 1.9), and lastly P2 (0%) (Figure 3). Ray 

achene germination initiated at 16°C in P1 and NC2 achenes and at 20°C in populations 

NC3 and NC1 (Figure 3). Ray achene germination initiated and had similar germination 

behavior to NC2 ray achenes at this temperature. A total of eight ray achenes 

germinated among P1, NC2, and NC3 at 24°C, and one final ray achene germinated in 

population NC2 at 28°C (Figure 3).  
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Decreasing temperature regime (DTR) 

Fresh disc achenes— Mean total disc achene germination rapidly reached 95% 

± 1.2 (mean ±standard error) within the first 4 days, at 32°C and achieved 100% in all 

populations shortly thereafter (Figure 3, Figure 8). All P1 disc achenes germinated at 

32°C, which was significantly higher than in NC1 (P = 0.59, p < 0.001) and P2 (P = 

0.55, p = 0.03) achenes (Figure 3). No significant differences in germination were 

detected at 28°C. P2 disc achenes finished germinating by the end of the 28°C 

treatment, and disc achenes from NC1 and NC2 finished germinating at 24°C. NC3 disc 

achenes finished germination at 20°C (Figure 3).  

Fresh intermediate achenes— Mean total intermediate achene germination in 

the DTR was 62.8% ± 2.8 across populations (Figure 8). Intermediate achene 

germination was highest in population P1 (72.9% ± 6.4), followed by NC2 (66.7% ± 

5.8), NC1 (55.4% ± 6.2), NC3 (45% ± 6.6), and lastly P2 achenes (42% ± 5.9). 

Although germination occurred at all temperatures, only NC3 intermediate achenes 

initiated germination at 32°C, whereas NC2 and NC1 intermediate achenes initiated 

germination at 28°C. Intermediate achenes from P1 and P2 achenes did not initiate 

germination until 24°C (Figure 3). P1 intermediate achene germination was 

significantly more likely at 24°C than intermediate achene germination in populations 

NC3 (P = 0.89, p = 0.04), NC2 (P = 0.83, p = 0.04), and P2 (P = 0.84, p = 0.03), but not 

NC1 (P = 0.76, p = 0.09, Figure 3). Similarly, P1 intermediate achenes were also 

significantly more likely to germinate at 20°C than NC3 (P = 0.80, p = 0.02), NC1 (P = 

0.78, p = 0.02), and P2 (P = 0.77, p = 0.02), and at 16°C than all other populations 
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(Figure 3). At 12°C and 8°C, zero achenes from P1 germinated which was significantly 

fewer than in all other populations (Figure 3).  

Fresh ray achenes—Mean total germination of fresh ray achenes reached 53.9% 

± 2.7 across populations (Figure 8), and was highest in NC2 (46.6% ± 6.5) achenes, 

followed by P1 (46.4% ± 6), NC1 (40.8% ± 5.8), P2 (27.4% ± 5.2), and lastly NC3 

achenes (19% ± 4.6). Germination initiated at 20°C in all populations except for NC3, 

whose ray achenes did not initiate germination until temperatures decreased to 12°C 

(Figure 3). Of the populations that initiated ray germination at 20°C the only significant 

difference was that P1 germination was larger than P2 germination (Figure 3). Also, 

significantly fewer P2 achenes germinated at 16°C in comparison to P1, NC1, and NC2 

achenes (Figure 3).   

 

ITR after cold dry after-ripening (CDAR)  

CDAR disc achenes—As with fresh achenes, all cold stratified disc achenes 

initiated germination at 8°C and germination reached 100% for all populations by 16°C 

(Figure 4). Similarly, for each population 30-day or 60-day CDAR stored achene 

germination was not significantly different than fresh achenes with the exception of 

NC2 achenes at 8°C and 16°C (Figure 5). Fresh NC2 disc achenes had greater 

germination at 8°C than 30-day or 60-day CDAR, although this difference was no 

longer evident at the next higher temperature, 12°C (Figure 5). All fresh achenes 

germinated at 12°C, and a small fraction of 30-day and 60-day stored achenes 

germinated at 16°C.  
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CDAR intermediate achenes— Mean total intermediate achene germination 

across all populations was lower after 30-day CDAR than in fresh achenes with 

significant differences in germination detected at 16°C and 20°C (Figure 4). The mean 

intermediate achene germination was also low within populations, reaching only 1.5% ± 

1.5 in P2, 1.3% ± 1.3 in NC1, 5.3% ± 2.3 in NC2, and 8% ± 3.1 in NC3 (Figure 6). 

Significant reduction in intermediate achene germination after CDAR occurred in P1, 

NC2, and NC3 achenes (Figure 6). Across all populations, 60-day CDAR also 

significantly lowered the mean germination probability at 16°C and 20°C (Figure 4). 

Mean total percent germination was also lower than fresh achene germination in each 

population, reaching 0% for P2 and NC1, 4.2% ± 2.3 for NC3, 4.4% ± 2.5 for NC2, and 

4.7% ± 2.6 for P1 achenes (Figure 6). Significant reductions in germination were most 

distinct in P1 achenes at 12°C, 16°C, 24°C, and 28°C (Figure 6).  

CDAR ray achenes— Ray achene germination was significantly reduced after 

30-day CDAR (Figure 4). Mean total percent germination was 0% for NC1 and P2 

achenes, 2.7% ± 1.9 for NC3, and 2.7% ± 1.8 for NC2 achenes (Figure 7). Significant 

reductions in ray achene germination after 30-day CDAR occurred in NC2 ray achenes 

at 20°C, 24°C and 28°C, and in NC1 achenes at 20°C and 24°C (Figure 7). Significant 

reduction in ray achene germination also occurred after 60-day CDAR (P = 0.17, p = 

0.004). Mean total percent ray achene germination after 60-day CDAR was 0% for P1, 

P2, and NC1 achenes, 5.7% ± 3.2 for NC2, and 1.4% ± 1.4 for NC3. Significant 

reductions in ray achene germination occurred P1 achenes at 16°C and 24°C, in NC1 

achenes at 20°C and 24°C, in NC2 achenes at 16°C, 24°C, and 28°C, and in NC3 at 

24°C  (Figure 7). 
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DTR after warm dry after-ripening (WDAR) 

WDAR disc achenes - Germination of disc achenes after 30-day and 60-day 

WDAR was not significantly different from germination of fresh achenes (Figure 8). 

Germination of 30-day and 60-day WDAR disc achenes reached 100% in all 

populations by the end of the 20°C interval. No significant differences were observed 

between stored and fresh achenes in any population during the 32°C interval, when over 

80% of achenes germinated (Figure 9). Thereafter, some significant differences were 

observed but they were all due to germination in one group being compared to zero 

germination in the other group (Figure 9). For example, P2 disc achene germination was 

significantly higher at 24°C and 20°C in the 60-day WDAR group because germination 

had finished in fresh achenes at 28°C (Figure 9). 

WDAR intermediate achenes— Mean intermediate achene germination was 

significantly lower after 30-day WDAR than in fresh achenes during the 12°C, 8°C, and 

4°C temperature intervals (Figure 8). However, the germination reductions were only 

significant in P2 achenes at 12°C and 4°C, and in NC2 achenes at 4°C (Figure 10). In 

contrast, achenes from NC3 showed no significant changes in germination after 30-day 

WDAR (Figure 10). Sixty-day WDAR significantly increased the overall probability of 

intermediate achene germination, at 20°C, 12°C, and 8°C (Figure 8). In comparison to 

fresh achenes, populations P2, NC2, and NC3 had significantly increased mean 

germination after the 60-day WDAR treatment (Figure 10). Intermediate achenes from 

population P2 showed a significant increased in germination at 24°C, 16°C, and 4°C, 
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NC2 achenes had increased germination at 20°C, and NC3 achenes had increased 

germination at 20°C, 12°C, and 8°C (Figure 10).   

WDAR ray achenes— Overall ray achene germination after 30-day WDAR was 

not significantly more likely than fresh ray achene germination (Figure 8). In contrast, 

60-day WDAR significantly increased the ray achene germination (P = 0.67, p < 0.001) 

at 24°C, 20°C, 16°C, 12°C, and 8°C (Figure 8). No differences in germination were 

detected between fresh and 30-day or 60-day WDAR ray achene germination in 

population P1. In contrast, 60-day WDAR significantly increased probability of ray 

achene germination in population P2 at 24°C, 20°C, 16°C, 12°C, 8°C (Figure 11). After 

60-day WDAR, germination probability was significantly higher than for fresh ray 

achenes in NC1 and NC2 at 24°C, NC1 at 20°C, and NC3 at 20°C and 16°C (Figure 

11).  

 

Chapter 2: Discussion and Conclusion 

 In addition to extreme morphological and anatomical differences among achene 

morphs, we found evidence that Grindelia ciliata achieves further advantages of 

reproductive bet-hedging through differences in germination cueing among achene 

morphs. Bet-hedging via heterocarpy is known to be adaptive in unpredictable 

environments such as deserts (Venable 1985b), however in more mesic and seasonally 

predictable environments such as prairies, the evolution of germination cueing is 

adaptive and can provide further benefits in a heterocarpic system (Baskin and Baskin 

1976, Brändel 2007, Donohue et al 2010). We found that G. ciliata disc achenes from 

all populations were unaffected by storage at average winter (CDAR) or summer 
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(WDAR) soil temperatures. These achenes do not undergo germination cueing and 

function to germinate immediately upon experiencing favorable temperature and 

moisture conditions. In contrast, fresh intermediate and ray achenes are in a conditional 

state of dormancy and experience reduced germination after CDAR, indicating the 

induction into a deeper state of conditional dormancy. For G. ciliata, increase of 

conditional dormancy in intermediate and ray achenes due to CDAR is likely a 

mechanism to prevent germination during winter and spring, which are potentially 

unfavorable seasons for seedling survival. In contrast intermediate and ray achenes 

showed increased germination after WDAR, indicating loss of conditional dormancy. 

For G. ciliata, loss of conditional dormancy in intermediate and ray achenes due to 

WDAR increases the likelihood that achenes germinate in autumn in the same year as 

dispersal, and possibly one year after dispersal. If germination does not occur in 

autumn, it is likely that achenes regain a deeper state of conditional dormancy while 

experiencing winter temperatures. Therefore, all G. ciliata achene types are cued to 

germinate in autumn, which is a strong indication this is the most adaptive time for 

germination. It is likely that autumn germination is adaptive because seedlings 

experience longer exposure to elevated soil moisture conditions prior to rapid soil 

drying in early summer (Illston et al 2004).  

 A fraction of fresh intermediate (40-75%) and ray (20-50%) achenes are capable 

of germinating along with disc achenes in the same season as dispersal. This fraction 

could potentially increase in early-dispersed achenes, which may experience soil 

temperatures similar to the WDAR treatment (Figure 2). This strategy may be adaptive 

because it provides a safer recruitment opportunity in the same season as dispersal than 
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disc achenes due of narrower germination-inducing temperatures and more stable soil 

moisture level requirements. Disc achenes are a very high-risk germination strategy, 

because given adequate water availability, 100% of disc achenes germinate at 

temperatures ranging from 8°C to 32°C and possibly above 32°C. Due to thin pericarps, 

disc seeds imbibe rapidly and do not require prolonged elevated soil moisture levels to 

germinate, leaving recently germinated disc seedlings vulnerable to rapidly declining 

soil moisture conditions. Rapid soil drying occurs during the beginning of G. ciliata 

achene dispersal in Oklahoma (August-October) when soil temperatures are still high 

and soil moisture levels have not recharged following the enhanced soil drying phase 

that occurs during summer (Illston et al 2004). Soil moisture levels near the surface can 

quickly decline after precipitation events if soil moisture at greater depths is low and 

surface temperature is high. Intermediate and ray achenes may remain ungerminated 

during such highly variable soil moisture conditions because more sustained elevated 

soil moisture conditions may be required for germination induction since the thick 

pericarps reduce the rate of imbibition, as was shown in the closely related G. squarrosa 

(McDonough 1975) that exhibits a less extreme achene heteromorphism. The sustained 

elevated soil moisture levels required for intermediate and ray achene germination may 

be associated with more suitable post-germination growing conditions, which could 

select for the evolution of conditional dormancy in fresh intermediate and ray achenes.  

 The conditional dormancy of intermediate and ray achenes is an important 

aspect to understanding the evolutionary ecology of heterocarpy in G. ciliata, because 

conditionally dormant achenes are morphologically similar as fully dormant achenes but 

differ significantly in ecology. Dormant intermediate and ray achenes will likely not 
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germinate under any conditions in the same season as dispersal and will therefore join 

the longterm seedbank. The difference between conditional dormancy and full 

dormancy can lead to these achenes experiencing drastically different mortality risks 

and survival probabilities. Thus, merely counting the proportion of disc, intermediate, 

and ray achenes does not adequately capture the degree of risk spreading in heterocarpic 

species, because conditionally dormant and dormant intermediate and ray achenes are 

combined into the same category, and therefore overestimates the proportion of achenes 

allocated to the longterm seedbank or underestimates the fraction that can emerge in the 

same season as dispersal.  

 In addition to producing fresh conditionally dormant intermediate and ray 

achenes, G. ciliata individuals can offset the high disc achene mortality risks shortly 

after germination by spreading dispersal events over time through staggering multiple 

flowering events in time (Ritland 1983). Producing capitula that disperse disc achenes 

during early autumn, G. ciliata individuals can capitalize on early season germination 

opportunities, which can result in larger seedlings and increase seedling fitness (Lu et al 

2014). Whereas, dispersing disc achenes during late autumn can avoid the uncertain soil 

moisture conditions of early autumn that could result in the loss of all germinated 

seedlings. However, G. ciliata individuals are not guaranteed the resources required for 

the production of more than one capitulum or the longevity to produce sequentially 

flowering capitula. Therefore, producing conditionally dormant intermediate and ray 

achenes in the same capitulum as disc achenes provides a same-season-as-dispersal 

recruitment opportunity during more favorable post-germination survival conditions, in 

the case that a G. ciliata individual only produces one capitulum.  
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 Intermediate and ray G. ciliata achenes that do not germinate in the same year as 

dispersal likely remain ungermianted in the seedbank until spring because average 

winter soil temperatures are below minimum temperatures at which we observed 

germination initiation (8°C). In the spring, when soil temperatures increase to 16°C - 

20°C, a small percent of intermediate and ray achenes could germinate, as was seen in 

some populations tested in this study (Figure 5 and 6), as well as field tested achenes 

(Kistenmacher and Gibson 2016). It is unlikely, however, that intermediate and ray 

achene germination occurs after soil temperatures rise above 24°C (Figure 5, Figure 6). 

These achenes remain ungerminated in the seedbank and consequentially experience 

summer soil temperatures in the seedbank. It is likely that during summer soil 

temperatures, these achenes enter a state of lower conditional dormancy, similar to 

WDAR achenes, increasing the likelihood of germinating in the fall as soil temperatures 

decline. The average duration of days above 25°C in Oklahoma is approximately 90 

days (McPherson et al 2007, Brock et al 1995), which may relieve dormancy in all ray 

and intermediate achenes.  

 The dormancy states of fresh, and warm stored achenes varied among the 

sampled populations, but no clear trend between the degree of dormancy and 

differences in mean annual precipitation or longitude. Variability in fresh achene 

dormancy (Figure 3) and loss of dormancy via WDAR, suggest that these populations 

differ in seedbank allocations and seedling emergence dynamics, which may affect 

short and long term consequences of these populations. For example, a larger portion of 

P1 fresh intermediate and ray achenes could germinate soon after dispersal in 

comparison to NC3 achenes, which would result in a larger seedbank of NC3 achenes. 
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The consequences of allocating fewer intermediate and ray achenes to the seedbank 

may increase the population extinction risk or could result in more competition among 

related seedlings.  

 Many species evolve germination cueing (Baskin and Baskin 1983a, 1984a, 

Baskin et al 1993), however, most of them do not exhibit extreme morphological 

variation among fruits. Therefore, in nonheterocarpic species germination cueing is 

caused solely by physiological changes inside seeds (Footitt et al 2011). However for G. 

ciliata, it is not clear if germination cueing in intermediate and ray achenes is caused in 

part by physiological and physical factors. Other members of the Asteraceae show 

physiological changes in seeds during warm dry after-ripening (Baskin and Baskin 

2014), suggesting that G. ciliata dormancy changes after WDAR are at least in part 

physiologically induced. The physiological condition inside intermediate and ray 

achenes may explain differences between fully dormant and conditionally dormant 

achenes, but also differences among populations. However, we are unable to determine 

if physiological differences in intermediate and ray achenes are caused by genetic 

differences among populations, environmental factors, or a combination of both.  

Genetically, G. ciliata populations are known to differ significantly (Gibson 2001), 

which may indicate that selection has selected for the observed dormancy 

characteristics in these populations. However, germination is also a very plastic trait, 

and is under strong influence from environmental factors (Clauss and Venable 2000, 

Galloway 2005, Schmitt et al 1992, Munir et al 2001, Donohue et al 2005; 2010). 

Therefore more controlled investigations are needed to determine to what extent genetic 

differentiation among populations is influencing achene dormancy. Our study shows 
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that although the fundamentals of heterocarpic systems are well studied, there are 

several aspects that are yet to be fully understood.  
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Chapter 2: Tables 

 
Table 1. Geographical description of sampled Grindelia ciliata (Asteraceae) 

populations 

Population Latitude Longitude Climate division 

P1 36.9066 -100.5122 Panhandle 

P2 

 

36.8108 -99.8919 Panhandle 

NC1 

 

36.7979 

 

-98.9357 

 

North-central 

NC2 

 

36.8111 -98.0326 North-central 

NC3 

 

36.7626 -96.8111 North-central 
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Figure 1. Locations of Grindelia ciliata populations (filled circles) sampled for achene 

dormancy. Open triangles indicate the nearest location of Oklahoma Mesonet stations. 

Mean Annual, spring, summer, fall, and winter precipitation between 2001-2015 is 

shown. 
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Figure 2. Average annual daily maximum and minimum Oklahoma soil temperatures 

(solid lines, McPherson et al 2007, Brock et al 1995). Also shown are dispersal timings 

of Grindelia ciliata (Asteraceae) achenes (dashed lines).  
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Figure 3. Mean percent germination of fresh Grindelia ciliata disc (triangle), 

intermediate (square), and ray (circle) achenes collected from 5 populations during 

increasing (ITR, left column) and decreasing (DTR, right column) temperature regimes, 

during which temperatures were changed by 4°C every 4 days. Error bars indicate 95% 

confidence intervals. All ungerminated achenes at the end of the germination trial were 

viable.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



52 

 

 

 

Percent germination

02040608010
0 0

0.
2

0.
4

0.
6

0.
81

4
8
12
16
20
24
28
32

Te
m

pe
ra

tu
re

 (°
C

)

P

60
-D
ay
	

Fr
es
h	

30
-D
ay
	

Di
sc
	

In
te
r	

Ra
y	

4
8
12
16
20
24
28
32

Te
m

pe
ra

tu
re

 (°
C

)

†
†

†
†

*
*

*

4
8
12
16
20
24
28
32

Te
m

pe
ra

tu
re

 (°
C

)

†
†

†
*

*
*



53 

Figure 4. Top row shows mean percent germination of fresh (open circle), 30-day 

CDAR (filled triangle) and 60-day CDAR (open triangle) Grindelia ciliata disc, 

intermediate (inter), and ray achenes during increasing temperature regimes. Bottom 

row shows mean conditional probability of germination at each temperature relative to 

fresh achenes. Mean germination probability of 0.5 (solid line) indicates equal 

probability of germinating for fresh and stored achenes. Probability values above 0.5 

indicate a higher probability of germination in stored achenes. Statistical significance 

(p≤0.05) is indicated by daggers (†) for 30-day stored achenes, and by double daggers 

(*) for 60-day stored achenes. Error bars indicate 95% confidence intervals. All 

ungerminated achenes at the end of the germination trial were viable.  
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Figure 5. Top row shows mean percent germination of fresh (open circle), 30-day 

CDAR (filled triangle) and 60-day CDAR (open triangle) Grindelia ciliata disc achenes 

during increasing temperature regimes. Bottom row shows mean conditional probability 

of germination at each temperature relative to fresh achenes. Mean germination 

probability of 0.5 (solid line) indicates equal probability of germinating for fresh and 

stored achenes. Probability values above 0.5 indicate a higher probability of 

germination in stored achenes. Statistical significance (p≤0.05) is indicated by daggers 

(†) for 30-day stored achenes, and by double daggers (*) for 60-day stored achenes. 

Error bars indicate 95% confidence intervals. All ungerminated achenes at the end of 

the germination trial were viable.  
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Figure 6. Mean percent germination of fresh (open circle), 30-day CDAR (filled 

triangle) and 60-day CDAR (open triangle) Grindelia ciliata intermediate achenes 

during increasing temperature regimes. Bottom row shows mean conditional probability 

of germination at each temperature relative to fresh achenes. Mean germination 

probability of 0.5 (solid line) indicates equal probability of germinating for fresh and 

stored achenes. Probability values above 0.5 indicate a higher probability of 

germination in stored achenes. Statistical significance (p≤0.05) is indicated by daggers 

(†) for 30-day stored achenes, and by double daggers (*) for 60-day stored achenes. 

Error bars indicate 95% confidence intervals. All ungerminated achenes at the end of 

the germination trial were viable.  
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Figure 7. Mean percent germination of fresh (open circle), 30-day CDAR (filled 

triangle) and 60-day CDAR (open triangle) Grindelia ciliata ray achenes during 

increasing temperature regimes. Bottom row shows mean conditional probability of 

germination at each temperature relative to fresh achenes. Mean germination probability 

of 0.5 (solid line) indicates equal probability of germinating for fresh and stored 

achenes. Probability values above 0.5 indicate a higher probability of germination in 

stored achenes. Statistical significance (p≤0.05) is indicated by daggers (†) for 30-day 

stored achenes, and by double daggers (*) for 60-day stored achenes. Error bars indicate 

95% confidence intervals. All ungerminated achenes at the end of the germination trial 

were viable.  
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Figure 8. Top row shows mean percent germination of fresh (open circle), 30-day 

WDAR (filled triangle) and 60-day WDAR (open triangle) Grindelia ciliata disc, 

intermediate (inter), and ray achenes during decreasing temperature regimes. Bottom 

row shows mean conditional probability of germination at each temperature relative to 

fresh achenes. Mean germination probability of 0.5 (solid line) indicates equal 

probability of germinating for fresh and stored achenes. Probability values above 0.5 

indicate a higher probability of germination in stored achenes. Statistical significance 

(p≤0.05) is indicated by daggers (†) for 30-day stored achenes, and by double daggers 

(*) for 60-day stored achenes. Error bars indicate 95% confidence intervals. All 

ungerminated achenes at the end of the germination trial were viable.  
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Figure 9. Top row shows mean percent germination of fresh (open circle), 30-day 

WDAR (filled triangle) and 60-day WDAR (open triangle) Grindelia ciliata disc 

achenes during decreasing temperature regimes. Bottom row shows mean conditional 

probability of germination at each temperature relative to fresh achenes. Mean 

germination probability of 0.5 (solid line) indicates equal probability of germinating for 

fresh and stored achenes. Probability values above 0.5 indicate a higher probability of 

germination in stored achenes. Statistical significance (p≤0.05) is indicated by daggers 

(†) for 30-day stored achenes, and by double daggers (*) for 60-day stored achenes. 

Error bars indicate 95% confidence intervals. All ungerminated achenes at the end of 

the germination trial were viable.  
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Figure 10. Mean percent germination of fresh (open circle), 30-day WDAR (filled 

triangle) and 60-day WDAR (open triangle) Grindelia ciliata intermediate achenes 

during decreasing temperature regimes. Bottom row shows mean conditional 

probability of germination at each temperature relative to fresh achenes. Mean 

germination probability of 0.5 (solid line) indicates equal probability of germinating for 

fresh and stored achenes. Probability values above 0.5 indicate a higher probability of 

germination in stored achenes. Statistical significance (p≤0.05) is indicated by daggers 

(†) for 30-day stored achenes, and by double daggers (*) for 60-day stored achenes. 

Error bars indicate 95% confidence intervals. All ungerminated achenes at the end of 

the germination trial were viable.  
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Figure 11. Mean percent germination of fresh (open circle), 30-day WDAR (filled 

triangle) and 60-day WDAR (open triangle) Grindelia ciliata ray achenes during 

decreasing temperature regimes. Bottom row shows mean conditional probability of 

germination at each temperature relative to fresh achenes. Mean germination probability 

of 0.5 (solid line) indicates equal probability of germinating for fresh and stored 

achenes. Probability values above 0.5 indicate a higher probability of germination in 

stored achenes. Statistical significance (p≤0.05) is indicated by daggers (†) for 30-day 

stored achenes, and by double daggers (*) for 60-day stored achenes. Error bars indicate 

95% confidence intervals. All ungerminated achenes at the end of the germination trial 

were viable.  
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Chapter 3: Abstract 

PREMISE OF THE STUDY— Bet-hedging strategies maximize long-term geometric 

fitness at the cost of reduced arithmetic fitness by offsetting different mortality 

risks. Heterocarpic systems accomplish bet-hedging through the production of 

two or more fruit types that vary in dormancy and dispersal ability. It is 

unknown whether heterocarpy also offsets predispersal mortality risks. To 
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address this question, we investigated whether heterocarpy in Grindelia ciliata 

(Asteraceae) also offsets mortality risks posed by a seed predator Schinia 

mortua (Noctuidae) to increase plant fitness. 

METHODS—We conducted two manipulative experiments to quantify critical life 

history components of this plant–insect interaction. We measured predispersal 

achene mortality from herbivory, postdispersal achene mortality in the seed 

bank, and seedling emergence. These measurements were then used in 

deterministic models to evaluate evolutionary consequences of predispersal seed 

mortality in G. ciliata. 

KEY RESULTS—Dormant achene types were less vulnerable to herbivory but 

more susceptible to mortality in the seed bank due to delayed seed emergence. 

Nondormant achene types experienced high predispersal mortality but low seed 

bank mortality due to rapid germination. Our herbivore-dependent model 

improved fit between observed and expected proportions of dormant and 

nondormant G. ciliata achenes and showed that heterocarpy could evolve in the 

absence of postgermination mortality. 

CONCLUSIONS—Our study provides empirical support of how predispersal 

herbivory can be equally important to postdispersal seed mortality risks in the 

evolution and maintenance of a heterocarpic reproductive system and expands 

understanding of how bet-hedging theory can be used to understand this unique 

reproductive strategy. 
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Chapter 3: Introduction 

A universal risk for plants is the possibility that seedlings will not survive to 

reproduce. Bet-hedging reproductive strategies can increase the likelihood of 

successfully producing offspring in environments where favorable conditions for 

establishment and survival are temporally or spatially variable because, although 

arithmetic mean fitness is lower, they increase geometric mean fitness by spreading 

mortality risks among dissimilar offspring, thereby reducing variation in fitness among 

years (Cohen, 1966; Gillespie, 1974; Seger and Brockmann, 1987; Roff, 2002).  

Heterocarpy is a reproductive bet-hedging strategy in which plants produce two 

or more types of fruits that are ecologically distinct from one another. Because of their 

differences, seeds have dissimilar dispersal and germination responses, which allows 

them to increase the probability of establishing seedlings despite spatial and temporal 

variation in “good” and “bad” conditions. Most studies have evaluated bet-hedging 

through heterocarpy in arid environments where bad years refer to those with high 

drought-induced seedling mortality (Venable, 1985a; Venable and Levin, 1985; Brown 

and Venable, 1986; Venable et al., 1987; Philippi, 1993a; Clauss and Venable, 2000; 

reviewed by Evans and Dennehy, 2005). However, other postdispersal mortality factors, 

such as sibling competition, can also shape evolution of heterocarpic systems (Ellner, 

1986; Ellner, 1987). What has not been explored is whether bet-hedging is also adaptive 

for offsetting predispersal seed mortality risks. In this study, we tested Imbert’s (2002) 

idea that predispersal herbivory can pose a significant risk with the capacity to drive the 

evolution of a bet-hedging strategy. 
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There are two types of bet-hedging strategies. A conservative bet-hedging 

strategy (i.e., “a jack of all trades but master of none”) uses one generalist phenotype 

that is equally good in favorable and unfavorable conditions. In contrast, a diversified 

bet-hedging strategy (i.e., “Don’t put all your eggs in one basket.”) produces multiple 

distinct phenotypes that are specialists for different conditions (Cohen, 1966; Slatkin, 

1974; Cooper and Kaplan, 1982; Seger and Brockmann, 1987; Philippi and Seger, 

1989; Starrfelt and Kokko, 2012). Our study focuses on the diversified bet-hedging 

strategies of heterocarpy, in which resources are allocated among multiple 

morphologically and ecologically distinct fruits (Harper, 1977; Philippi, 1993b; de 

Clavijo, 1994; Imbert, 2002; Mandák and Pyšek, 2001a; Evans and Dennehy, 2005; 

Crean and Marshall, 2009; Childs et al., 2010). Heterocarpy has evolved independently 

in multiple plant families, but is particularly common in the Asteraceae (Venable, 

1985a, b; Venable et al., 1995; Imbert, 2002).  Heterocarpic members of this family 

typically produce ray and disc florets that develop single-seeded fruits (achenes) that 

differ in seed size and mass (Ellner and Shmida, 1984; Maxwell et al., 1994), seed and 

pericarp composition (Venable and Levin, 1985; Gutterman, 1994a; Jaimand and 

Rezaee, 1996), or the presence or absence of dispersal structures (Baker and O’Dowd, 

1982). Morphological differences between achene types can be discrete or show 

continuous variation in features, resulting in multiple achene types that share different 

combinations of traits (Zohary, 1950; Pomplitz, 1956; Bachmann et al., 1984). 

Venable (1985b) described heterocarpy as a high-risk–low-risk bet-hedging 

strategy because the dissimilar achene types offset different seed and seedling mortality 

risks. One achene type represents investment in high-risk propagules that disperse away 
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from the parental plant and germinate immediately. The alternate achene type reflects 

investment in low-risk propagules that disperse locally, are dormant, and consequently 

contributes to a soil seed bank. High-risk achenes are adaptive due to high arithmetic 

mean fitness experienced through them during favorable years when there is a high 

probability of postgermination survival because each seed germinates soon after 

dispersal and establishes a new individual that has the potential to produce many 

offspring. However, high-risk achenes can experience high seedling mortality due to 

unpredictability of spatial dispersal or when their lack of dormancy exposes seedlings to 

unfavorable conditions immediately following germination. Although low-risk achenes 

have lower arithmetic mean fitness during favorable years (Brown and Venable, 1986; 

Venable, 1985b), they offset the risks of distant dispersal and immediate germination by 

remaining dormant in the seed bank around the maternal plant and by delaying 

germination. However, this strategy comes at the risk of mortality in the seed bank. 

Producing multiple achene types with dissimilar features may be adaptive in 

unpredictable environments because the plant is able to produce seeds that can colonize 

new locations and immediately take advantage of favorable conditions, as well as seeds 

that can contribute to a local seed bank, germinate at a later time, and consequently 

minimize the risk of local extinction. In monocarpic plants, this life history strategy 

substitutes for the adaptive benefits of iteroparity by staggering emergence of offspring 

produced in one clutch (Murphy, 1968). 

Although different aspects of the evolutionary ecology of heterocarpic bet-

hedging strategies have been described for a number of species, the optimal ratio(s) of 

nondormant to dormant achenes has not been resolved. Determining a single optimal 
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ratio for particular environments is challenging because mortality risks vary at different 

life stages and can be affected by a variety of stochastic biotic (i.e., competition, 

herbivory) or abiotic (i.e., water availability, fire) factors that may occur unpredictably. 

The delayed germination model of Cohen (1966) predicts that the ratio of dormant to 

nondormant seeds is directly related to the probability of experiencing years with high 

seedling mortality (i.e., bad years). In this model, allocation strategies with large 

proportions of dormant seeds are correlated with environments that experience a high 

probability of bad years, whereas allocation strategies with large proportions of 

nondormant seeds are correlated with environments that experience a low probability of 

bad years (Childs et al., 2010). Most empirical evaluations of bet-hedging theory related 

the probability of mortality in the seed bank or drought-induced seedling mortality with 

optimal achene allocations strategies. However, other sources of mortality such as 

predispersal seed predation could be equally important (Imbert, 2002). Predispersal seed 

predation influences the evolution of a variety of plant traits (Kolb et al., 2007, Fenner 

et al. 2002), causes severe seed loss (Salisbury, 1942; Janzen, 1971; Louda, 1978, 

1982b), and limits plant recruitment, abundance, and distribution (Huffaker and 

Kennett, 1959; Harper, 1969; Goeden and Ricker, 1977; Goeden and Ricker, 1978; 

Louda, 1982b). 

To study the evolutionary consequences of predispersal herbivory in a 

heterocarpic system, we included predispersal seed predation in a bet-hedging model 

(Cohen, 1966). We derived pre- and postdispersal mortality values used in this model 

from field measurements of plants of Grindelia ciliata (Asteraceae, Spanish gold, wax 

goldenweed) with achenes that have been subject to herbivory by Schinia mortua 
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(Noctuidae) larvae. This naturally occurring plant–insect system provides an 

exceptional case for studying the influence of predispersal mortality risks on 

heterocarpy. Grindelia ciliata produces disc, intermediate, and ray achenes. Disc 

achenes germinate quickly, have a thin pericarp, large seed, and retain a functional 

pappus (Fig. 1), whereas ray and intermediate achene germination is delayed (Gibson, 

2001), have a thick lignified pericarp, and a small seed. Intermediate achenes retain a 

functional dispersal pappus, whereas ray achenes do not (Fig. 1). Schinia mortua 

females oviposit into G. ciliata capitula and hatched larvae feed on immature and 

mature achenes (J. P. Gibson). Much of the life histories of G. ciliata and S. mortua are 

unknown. Therefore, we gather basic information about their life history stages and 

interactions through two experiments. 

In the first experiment, we measured predispersal risks by studying the 

consequences of S. mortua oviposition selectivity, which is commonly debated as a 

mechanism for plant–insect coevolution, sympatric speciation, and patterns of attack on 

host plants (Thompson and Pellmyr, 1991). We specifically tested how the timing of 

larval hatching in G. ciliata capitula affects both larval and achene mortality. We 

predicted that heterocarpy in G. ciliata will offset predispersal achene mortality caused 

by larval herbivory because the thick, lignified pericarp of intermediate and ray achenes 

should provide protection from consumption by S. mortua larvae. The thin pericarp of 

disc achenes should provide less protection and render them more susceptible to 

consumption by S. mortua larvae. However, we expected the susceptibility of each 

achene type and, consequently, larval survival, to vary depending on the 

synchronization between larval and achene development. A mismatch in 
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synchronization (e.g., early-instar larvae attempting to feed on achenes in the final 

stages of development) may result in high larval but low achene mortality due to achene 

pericarps beginning to lignify and harden. In contrast, early instars feeding on young 

achenes could increase both larval survival and achene mortality due to the pericarps 

not yet being lignified and, therefore, being vulnerable to feeding larvae. 

Our second experiment focused on determining postdispersal achene mortality 

risks. We measured seedling emergence, achene mortality, and achene longevity in the 

seed bank to evaluate how heterocarpy in G. ciliata could offset these risks. 

Nondormant disc achenes should germinate immediately, offsetting mortality risks 

faced by dormant seeds in the seed bank. In contrast, dormant achenes should contribute 

to a persistent soil seed bank, which offsets the risks of immediate germination 

following dispersal. Because we did not know what conditions break dormancy or when 

seedlings naturally emerge from the seed bank, we tested two common dormancy-

breaking mechanisms, stratification and scarification, to determine whether winter soil 

temperatures or physical abrasion of the pericarp could reduce dormancy and lead to 

spring seedling emergence. 

In the final component of the study, we used data from the previous two 

experiments to model the evolutionary consequences of predispersal mortality in this 

bet-hedging system. We combine the results using the case of two outcomes model 

(Cohen, 1966) to simulate theoretical environments that vary in both the frequency of 

good and bad years (i.e., drought and nondrought years) and the intensity of herbivory 

to predict the ratio of achene types that maximize geometric mean fitness. We compared 

those predictions to achene ratios observed in field and greenhouse plants to evaluate 
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the role of predispersal mortality in this species. These studies not only provide insights 

on the Grindelia–Schinia system but also investigated aspects of plant reproductive bet-

hedging theory that have not been fully explored. 

 

Chapter 3: Materials and Methods 

Study species— 

Grindelia ciliata (Nutt.) Nutt. (Astereae, Asteraceae) is a widely distributed 

short-lived herbaceous annual native to the southwestern United States and northward 

through the Great Plains (Steyermark, 1934). It typically grows along roadsides, 

agricultural areas, and disturbed sites. Individuals are monocarpic, and juveniles grow 

as a rosette that bolts between May and June to form a single stem or multiple stems 

that will each typically produce one to six capitula that flower between August and 

October. Capitula contain ray and disc florets (Fig. 1). Ray florets are pistillate and 

produce ray achenes (Fig. 1) that are small (ca. 2 mm long), epappose, glabrous, slightly 

globose, and have a thick, lignified pericarp (Gibson, 2001). Disc florets are 

hermaphroditic and produce intermediate or disc achenes (Fig. 1) from peripherally and 

centrally located disc florets, respectively (Gibson, 2001). Intermediate achenes are 

similar to ray achenes in size, shape, and pericarp thickness, but similar to disc achenes 

in that they produce a prominent pappus of stiff capillary bristles (Fig. 1). Disc achenes 

are glabrous, almost twice as long (4 mm) as ray and intermediate achenes, have a thin 

pericarp, and produce a pappus of stiff capillary bristles (Gibson, 2001, Fig. 1). Here we 

use the word achene to refer to the collective dispersal unit of the seed and pericarp. 
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Ray and intermediate achene dormancy is physically imposed by the pericarp, as in 

Grindelia squarrosa (McDonough, 1975). 

Schinia mortua (Lepidoptera, Noctuidae, Heliothentinae) is sympatric with G. 

ciliata in the southern Great Plains of North America (Grote, 1874; Lafontaine and 

Schmidt, 2010). Females of various Schinia species that use Asteraceae hosts oviposit 

between disc florets. Larvae (caterpillars) hatch and consume achenes as they mature 

and then metamorphose into pupa that overwinter in the soil (Hardwick, 1971; Zwick 

and Estes, 1981; Byers, 1989). 

Predispersal seed mortality— 

To determine achene mortality risks from S. mortua larvae, we grew a cohort of 

G. ciliata plants and exposed their capitula to S. mortua larvae. In January 2013, disc 

achenes were chosen from a pool of achenes collected from individuals grown at the 

University of Oklahoma Kessler Atmospheric and Ecological Research Station 

(KAEFS, 34.98549, −97.52351), McClain County, Oklahoma, USA. All plants for this 

experiment were grown from those achenes. The seedlings germinated in January and 

therefore were a few months behind in development as compared with seedlings 

germinated in nature. To synchronize development of our seedlings with natural 

seedlings, we grew our seedlings under a long day (16 h light/8 h dark) cycle in a 

growth chamber between January and April 2013. In April 2013, individual rosettes 

were transplanted into 3.78 L pots filled with Metro Mix Professional Growing Mix 300 

(Sun Gro, Agawam, Massachusetts, USA) and placed in a greenhouse exposed to 

natural light. Plants were watered daily and fertilized once per week with Jack’s 

Professional (20–20–20) Balanced Water Soluble Fertilizer (JR Peters, Allentown, 



78 

Pennsylvania, USA). Upon bolting in June 2013, plants were transported to KAEFS. 

Groups of six plants were placed into a Nesting Tote Box (51.4 × 38.7 × 12.7 cm 

[length × width × height], Global Equipment, Port Washington, New York, USA) in 

which a water level of 1–3 cm was maintained throughout the experiment. Nesting totes 

were placed inside a mesh cage (1.83 × 1.83 × 1.83 m, 12.6 × 12.6 threads/cm Mesh 

Lumite; Bioquip, Rancho Dominguez, California [CA], USA) exposed to natural light 

for the remainder of the experiment. 

Schinia mortua eggs were collected between August and September 2013 from 

capitula on wild plants in a population at KAEFS. However, since the date-of-hatching 

was unknown, eggs were incubated in a laboratory, and hatched larvae were transferred 

into G. ciliata capitula. Eggs were placed in a Petri dish containing one piece of 

Whatman #1 9-cm filter paper. Dishes were placed into a Precision Model 815 Low 

Temperature Illuminated Incubator (Pacific Combustion Engineering Co., Torrance, 

CA, USA) at a constant 22°C and a 12 h/12 h light/dark cycle, which is similar to the 

average daily temperature and light/dark cycles experienced by eggs in the field at 

KAEFS. Dishes were checked multiple times a day for hatched larvae. Hatching was 

scored when the eggshell was eaten and the larval head was protruding from the shell. 

Hatched larvae were transported to KAEFS in a separate Petri dish lined with one 

Whatman #1 filter paper. All larvae were moved to and from Petri dishes by an 

aspirator made of 0.64 cm polyurethane tubing, a 1000 µL pipette tip and a laboratory 

wipe (Kimwipe, Kimberly Clark) inserted into the pipette tip. 

To investigate the influence of oviposition timing on achene mortality, we 

inoculated the primary apical capitula of 77 plants at specific developmental stages with 
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a newly hatched first instar larva. We placed larvae into capitula at the 1st (D1, n = 15), 

4th (D4, n = 15), 7th (D7, n = 17), 14th (D14, n = 15), or 21st (D21, n = 15) day of 

capitulum opening. Newly hatched caterpillars were placed head-first into capitula 

between centrally located florets using an aspirator. All capitula were assigned 

treatments on their first day of flowering by drawing a number (1–5, each referring to a 

specific treatment) out of a hat. Pollen was collected from wild plants daily and was 

applied with a paintbrush to flowering capitula. 

Statistical analysis of predispersal seed mortality— 

Once matured, capitula were harvested and taken to the laboratory where 

achenes were sorted, counted, and inspected for damage. Achenes were classified as 

dead if at least 25% of the proximal end of an achene was damaged. Herbivory was 

severe in 21 capitula, which resulted in the loss of most or all achenes within those 

capitula. Therefore, the number of disc, intermediate, and ray achenes produced and 

consumed in those capitula could not be counted and was estimated. We used a linear 

regression that related the number of disc, intermediate, and ray achenes to capitulum 

diameter. We obtained these data from 65 capitula on experimental plants that had 

experienced no larval herbivory. We used this model to estimate the total number of 

disc, intermediate and ray achenes produced in capitula that experienced extreme 

herbivory using their diameters. We also used these plants to estimate yield in our 

model described below. The proportion of consumed achenes for these 21 capitula was 

calculated using the estimated totals and the number of viable (unconsumed) achenes. 

To account for the random effects of the date of capitulum opening, date of 

inoculation, and capitulum diameter in our analysis, the proportion of achenes 
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consumed within and among oviposition treatments was analyzed using a Bayesian 

linear mixed model with Markov chain Monte Carlo parameter estimation in the R 

version 3.0.2 (R Core Team, 2014) package {MCMCglmm} (Hadfield, 2010). This 

analysis is particularly useful when analyzing three or more random effects (Bolker et 

al., 2009). All proportions were arcsine-transformed before analysis (Sokal and Rohlf, 

1981). We ran each analysis for 3,000,000 iterations with a burn-in of 2,500,000 and a 

thinning interval of 100. This generated 5000 samples from each chain to calculate 

posterior mean ± SD [SD], posterior mode, and 95% credible intervals [lower CI–upper 

CI], and pMCMC probability values. Terms were considered statistically significant 

when pMCMC values calculated in MCMCglmm were less than 0.05 and 95% CIs did 

not span zero (Hadfield, 2010). We used an inverse gamma prior for random effects (V 

= 1, nu = 0.002, Hadfield, 2010). We ran each analysis three times using the Gelman-

Rubin potential scale reduction statistic (PSR) to compare within and between chain 

variance (Gelman and Rubin, 1992). Convergence is met when PSR < 1.1, and in all our 

analyses PSR was always less than or equal to 1.01. The reported posterior means, 

confidence intervals, and pMCMC values were obtained by combining posterior 

distribution of (co)variance matrices [VCV] and posterior distribution of location 

effects [Sol] from each of the three models into one model. 

Differences in larval survival after oviposition treatments were analyzed with a 

Kaplan–Meier log-rank test in R version 3.0.2 (R Core Team, 2014). 

Seed bank mortality and seedling emergence— 

To determine emergence proportions, seed bank mortality, and seed bank 

longevity, we sowed G. ciliata achenes in the field, monitored seedling emergence, and 
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retrieved ungerminated achenes from the soil at the end of the experiment. Because 

dormancy breaking requirements of intermediate and ray achenes were not known, we 

tested two durations of cold storage (stratification) and one physical manipulation 

(scarification) to determine their effects on germination. Whole, ripe primary capitula 

were collected 23 September 2010 from approximately 50 individuals located in an old 

field population north of Norman, OK (35.2482, −97.4781). Capitula were placed in 

coin envelopes and returned to the laboratory where achene morphs from all individuals 

were sorted and pooled. From each pool of achenes, 2400 achenes were randomly 

divided into four manila coin envelopes. One envelope of each achene type was 

randomly chosen as the control group and stored at room temperature until planting. A 

second envelope of each achene type was stored at 5°C for 30 d. A third envelope of 

each achene type was stored at ambient room temperature for 22 d, and then stored at 

5°C for 15 d. Achenes in remaining envelopes were scarified at the proximal end using 

a razor blade and dissecting scope. Pericarps were not pierced during the process of 

scarification. Achenes were returned to envelopes immediately after scarification and 

stored at room temperature until planting. 

All envelopes were removed from storage conditions 30 October 2010 and sown 

into buried pots filled with native soil in a rodent exclosure subplot (20 × 10 m) located 

at KAEFS. Control, scarified, and stratified achenes were randomly assigned to 15 

plastic 3.78 L pots. Assignment of pots to treatments was conducted by assigning each 

pot (60 total) a randomly drawn number, without replacement, between one and 60. The 

numbered pots were ordered sequentially from lowest to highest along two parallel 

transect lines 2 m apart. Pots were buried approximately 15 cm apart from another. 
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Forty achenes of a single type and treatment were sown into each pot. All achenes were 

lightly covered with native soil, but not completely buried, to mimic primary seed 

dispersal and minimize secondary dispersal by wind. Because we could not determine 

the exact time of germination (i.e., when the radicle protruded through the fruit wall), 

we used seedling emergence as an indirect indicator of this event. Emergence was 

defined when cotyledons completely opened above the soil surface. We observed 

seedling emergence every 3–5 d for the first 2 mo after planting, every 6–9 d for the 

next 3 mo, and once per month thereafter for a total of 558 d. After emerging, seedlings 

were removed from pots. The last measure of seedling emergence was 3 May 2012. At 

that time, the upper 8 cm of soil from each pot was taken to the laboratory, sieved, and 

ungerminated achenes were tested for viability using tetrazolium staining (Porter et al., 

1947). 

Statistical analysis of seed bank mortality and seedling emergence— 

Seed-bank mortality was calculated by subtracting the number of germinated 

seeds and viable but ungerminated achenes found in the soil after 558 d from the total 

number of sown achenes. Mean percentage achene mortality per pot was arcsine-

transformed to normalize variances (Sokal and Rohlf, 1981). Differences in percent 

achene mortality among achene types and treatments were tested through a one-way 

ANOVA using R version 3.0.2 Directional effects between achene types and treatments 

were examined using Tukey’s HSD post hoc test. 

Effects of stratification and scarification on seedling emergence were analyzed 

using Cox Proportional Hazard models (Cox and Oakes, 1984) with Heaviside functions 

in R version 3.0.2 (R Core Team, 2014). The hazard function calculates the 
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instantaneous probability of “failure” per unit of time (Kleinbaum and Klein, 2012) 

where failure is defined as a seed that emerges (i.e., “fails” to remain dormant in the 

seed bank). Treatment effects are reported through a hazard ratio (HR), which is the 

ratio of two hazard functions. For example, when the seedling emergence probability, ĥ, 

after an experimental treatment (A) is equal to ĥ of the control (B), then HR = ĥ(A) / 

ĥ(B) = 1.0, indicating no difference in emergence rates. In contrast, when ĥ(A) = 

10[ĥ(B)], and HR = ĥ(A) / ĥ(B), then HR = 10, indicating that experimental treatment 

emergence is 10 times more likely than control emergence. Conversely, if ĥ (B) = 10[ĥ 

(A)] and HR = ĥ(A) / ĥ(B), then HR = 0.1, and experimental treatment emergence is one 

tenth as likely as control emergence. 

Heaviside functions obtain separate hazard ratios for chosen time intervals 

(Kleinbaum and Klein, 2012). We divided our data set into two time periods, which 

separated Year 1 (Fall 2010 and Spring 2011) from Year 2 (Fall 2011 and Spring 2012) 

emergence. We combined spring and fall emergence events because those seedlings will 

flower together the following summer–fall. To account for multiple repeated 

measurements at the pot and seed level, we implemented cluster terms to calculate 

robust standard errors for coefficient estimates that account for nonindependence of 

observations (Kleinbaum and Klein, 2012). Germination probabilities and 95% 

confidence intervals were derived for observed emergence fractions by the Kaplan–

Meier method using the function survfit in R. 

Herbivory-independent optimal achene proportion model— 

We first tested classical predictions of bet-hedging theory for heterocarpic G. 

ciliata by calculating individual fitness under simulated environments that differed in 
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the frequency of postgermination seedling mortality. We refer to intermediate and ray 

achenes collectively as dormant achenes based on the findings regarding seedling 

emergence described above. The findings regarding seed-bank longevity presented in 

this paper suggest that very few achenes remain viable in the seed bank beyond the 

spring of year 2, therefore our model uses a 2-yr seed bank. For each simulated 

environment, we incrementally changed the proportion of dormant (intermediate and 

ray) and nondormant (disc) achenes produced in a capitulum to determine optimal 

allocation strategies that maximized geometric mean fitness for each simulated 

environment. We used predispersal and postdispersal mortality results in a discrete 

deterministic growth model to calculate the net reproductive output (R0) as it 

corresponds to the G. ciliata life cycle (Fig. 2): 

(Eq. 1) 

where the net individual reproductive output (R0) is calculated from the total yield of 

dormant (Yα) and nondormant (Yβ) achenes, the fraction of dormant and nondormant 

achenes that become inviable in the seed bank are (Dα and Dβ, respectively), the fraction 

of seedlings that emerge from dormant and nondormant achenes in the same season as 

dispersal (G1α and G1β, respectively), the fraction of seedlings that emerge from 

dormant achenes 1 year after dispersal (G2α), and 2 years after dispersal (G3α), and the 

fraction of seedlings that survive to reproduction after emergence from the seed bank 

(E). Emergence fractions G1α, G1β, and G2α represent the observed average emergence 

in the field, and G3α is the assumed emergence of the viable proportion of achenes 

R0 =
Yα (1−Dα )G1αEt⎡⎣ ⎤⎦+ Yα (1−Dα )(1−G1α )⎡⎣ ⎤⎦G2αEt+1⎡

⎣
⎤
⎦

+ Yα (1−Dα )(1−G1α )(1−G2α )⎡⎣ ⎤⎦Et+2⎡
⎣

⎤
⎦

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
+ Yβ (1−Dβ )G1βEt⎡
⎣

⎤
⎦
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recovered from the seed bank in the spring of the second year after dispersal. Following 

the methods of Cohen (1966), all seedlings that germinate in a particular year either 

survive in a favorable year (E = 1) or perish in an unfavorable year (E = 0). Individual 

reproductive output was modeled for 100 yr, and because seed bank longevity is limited 

to 2 years as described, the occurrence of consecutive unfavorable years after each 

favorable year is the worst theoretical environment (e.g., a repeating sequence of 

consecutive bad years followed by a good year 0, 0, 1). We compared 14 environments 

ranging in frequency of unfavorable years from 0 to 0.65 by increments of 0.05. 

Yield was assumed to be equal for all surviving seedlings, irrespective of achene 

type, and each surviving individual produced a fixed number of capitula (30) each 

having 40 ray florets. The total achene number per capitulum, was estimated from the 

linear relationship between ray floret number and total achenes ( , 

Multiple R2 = 0.48). This total was partitioned into a proportion of dormant (Yα) and 

nondormant (Yβ) achenes. The proportion of nondormant to dormant achenes was 

changed in increments of 0.1, starting at 0, creating 101 unique proportions. Each 

unique proportion remained constant for the 100-yr duration of each simulated 

environment, and all 101 proportions were tested for each environment. The proportion 

of dormant to nondormant achenes that maximized geometric mean fitness in a given 

environment was chosen as the optimal strategy. 

Herbivore-dependent optimal achene proportion model— 

We next examined the influence of predispersal achene predation on theoretical 

expectations of the proportions of dormant to nondormant achenes relative to 

  7.4   36.8y x= +
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environmental quality by modifying Eq. (1) so that yield of dormant achenes after 

herbivory (YHα) is 

 (2) 

and the yield of nondormant achenes after herbivory (YHβ) is 

 (3) 

where Hα and Hβ represent, respectively, the proportion of dormant and nondormant 

achenes consumed. In natural populations, the total proportion of consumed achenes 

will vary among individuals and years due to fluctuations in moth abundance, 

oviposition timing, and capitulum production. Therefore, we created scenarios that 

account for some of this natural variation. We used a moderate S. mortua influence 

scenario to mimic when females do not oviposit at times that maximize larval survival 

(Thompson, 1988c; Thompson and Pellmyr, 1991). In this herbivory scenario, Hα and Hβ 

were represented by the average of the dormant and nondormant achenes in the D4, D7, 

and D14 treatments that were consumed from capitula in which larvae consumed at least 

one achene (n = 24). The scenario that occurs when a proportion of capitula do not 

experience any herbivory is not explicitly run, but can be inferred by the difference 

between results calculated from the herbivore-independent and moderate-herbivory 

models. To mimic the scenario when all capitula experience high herbivory because few 

capitula are produced or moth abundance is high and females make optimal oviposition 

choices, we created an extreme-herbivory scenario. The values of Hα and Hβ in the 

extreme-herbivory scenario were represented by the highest average proportion of 

consumed dormant and nondormant achenes in our manipulative study (D4-inoculated 

YHα = Yα − (YαHα ),

YHβ = Yβ − (YβHβ ),
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capitula that lost at least one achene, n = 11). To evaluate the temporal variability of 

extreme herbivory, we incrementally varied the frequency of extreme herbivory, from 

0.01 to 1 by 0.01 increments, in each of the previously described environments and 

achene proportions. 

 

Chapter 3: Results  

Predispersal achene survival— 

Initial comparisons among achene types revealed a significantly higher overall 

mean percentage of consumption of disc achenes (21.9% ± 3.9, Fig. 3) than of the 

intermediate (8.9% ± 2.7, CI: 0.12–0.32, pMCMC < 0.00007) or ray achenes (6.1% ± 

2.4, 95% CI: 0.19–0.4003, pMCMC < 0.00007). Disc achenes were also consumed at 

significantly higher levels than intermediate and ray in the D4 and D7 oviposition 

treatments. In the D4 treatment, the mean percentage of consumed disc achenes (58.6% 

± 10.6) was significantly higher than the mean percentage of consumed intermediate 

(32.1% ± 9.7, CI: 0.018–0.71, pMCMC = 0.044), and ray achenes (20.4% ± 9.2, CI: 

0.232–0.956, pMCMC = 0.003, Fig. 3). In the D7 treatment, the mean percentage of 

consumed disc achenes (22% ± 6.8) was also significantly higher than for intermediate 

(1.2% ± 0.94, CI: 0.14–0.749, pMCMC = 0.009) and ray achenes (0.31% ± 0.31, CI: 

0.16–0.81, pMCMC = 0.004, Fig. 3). There were no significant differences in 

consumption among achene types in the D1, D14, and D21 treatments (Fig. 3). 

Total achene consumption among oviposition treatments was significantly 

higher in the D4 treatment (42.3% ± 9.2) than all other oviposition treatments (Table 1). 
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Total achene consumption was not significantly different among D1 (13.7% ± 7.5), D7 

(9.9% ± 3.0), D14 (6.4% ± 2.7), or D21 (0.2% ± 0.13) treatments (Table 1). Disc achene 

consumption among treatment groups was consistent with this trend. The mean 

percentage of disc achenes consumed was significantly higher in the D4 treatment 

(58.6% ± 10.6) than all other treatments (Table 1). The mean percentage of intermediate 

achenes consumed was significantly higher in the D4 treatment only (32.1% ± 9.7) than 

the D7, D14, and D21 treatments (Table 1). No significant differences were found among 

oviposition treatments in the mean percentage of consumed ray achenes (Table 1). 

Larval survival— 

The Kaplan–Meier log-rank test detected a significant difference (χ2 = 12.8, df = 

4, p = 0.012) in S. mortua larval survivorship across oviposition treatments. Mean larval 

survival was significantly higher in the D4 treatment (mean ± SE: 0.733 ± 0.114, n = 15, 

df = 1, χ2 = 12.1, p = 0.0005) than in the D21 (0.177 ± 0.093, n = 17) and D1 treatments 

(0.333 ± 0.122, n = 15, df = 1, χ2 = 4.66, p = 0.031). Mean larval survival in the D7 

(0.438 ± 0.124, n = 16) treatment was also significantly higher than D21 treatment 

(0.177 ± 0.093, n = 17, df = 1, χ2 = 4.12, p = 0.042). Other pairwise comparisons, 

including the D14 (0.400 ± 0.126, n = 15) treatment, did not differ significantly. 

Seed-bank mortality and seedling emergence— 

One-way ANOVA detected significant differences in total seed bank mortality 

among disc, intermediate, and ray achenes seeds (F2, 177 = 196.731, p < 0.0001). 

Tukey’s HSD revealed that disc achene seed bank mortality (mean ± SE: 29.3% ± 2.1) 

was significantly lower than intermediate (72.5% ± 1.6, p < 0.001) and ray (80.1% ± 
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1.5, p < 0.001) achene mortality in the seed bank. Furthermore, intermediate achene 

seed bank mortality was also significantly lower than ray achene seed mortality (p < 

0.001). No significant differences in seed mortality were detected among scarification 

and stratification treatments or for achene type × seed storage treatment interactions. 

No viable disc achenes remained in the seed bank at the end of the experiment. 

In contrast, a small fraction of viable ray (1.67% ± 0.28) and intermediate (2.3% ± 0.32) 

seeds remained in the seed bank after the spring of year 2 (558 d after sowing). No 

statistical differences in viability were found among stratification and scarification 

treatments of intermediate and ray achenes. 

The odds of intermediate and ray achene seedling emergence were significantly 

lower than disc achene seedling emergence (intermediate HR = 0.01, P < 0.0001, ray 

HR = 0.008, P < 0.001, Fig. 4A) in the fall and summer of year 1 (1–260 d after sowing 

[DAS]). No further disc achene seedlings emerged after this period. Ray and 

intermediate seedling emergence did not differ significantly in year 1 (1–260 DAS HR 

= 0.778, P = 0.067) or year 2 (261 – 558 DAS HR = 0.955, P = 0.480). The largest ray 

and intermediate seedling emergence events occurred in the fall of year 2, but smaller 

emergence events were also observed in the fall of year 1, and spring of year 1 and 2 

(Fig. 4A-E). The odds of intermediate and ray seedling emergence were significantly 

lower than disc achene seedling emergence in all treatments (Fig. 4B-E). However, ray 

achene seedlings had significantly lower odds of emergence than did intermediate 

seedling emergence before the summer of year 1 in the control (HR = 0.345, P = 

0.0045, Fig. 4B) and 15-d stratified treatment (HR = 0.559, P = 0.018, Fig. 4C). 
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In comparison to control seedling emergence, the 30-d cold stratification significantly 

reduced the odds of seedling emergence in year 2 (HR = 0.78, P = 0.007) but not in year 

1. However, mean disc seedling emergence was unaffected by stratification (15-d HR = 

0.95, P = 0.39, 30-d HR = 0.94, P = 0.38) or scarification (HR = 0.93, P = 0.28; 

Appendix B, see Supplemental Data with the online version of this article). Intermediate 

seedling emergence were mostly unchanged; however, the 30-d stratification 

significantly reduced the odds of emergence in year 1 (HR = 0.57, P = 0.04) and year 2 

(HR = 0.7, P = 0.005; see Appendix B). For ray achenes, the odds of emergence were 

higher only in year 1, after the 15-d stratification (HR = 2.11, P = 0.04), 30-d 

stratification (HR = 2.47, P = 0.01), and scarification (HR = 3.75, P = 0.0002; see 

Appendix B). 

Optimal achene proportion models— 

Optimal proportions of nondormant (disc) achenes calculated by the herbivory-

independent model were negatively and linearly related to the probability of 

unfavorable years in an environment (Fig. 5). Herbivory reduced nondormant achene 

proportions of optimal achene allocation strategies in comparison to herbivore-

independent strategies (Fig. 5). However no difference was observed in environments 

that lacked unfavorable years and experienced extreme herbivory frequencies of 0.87 or 

less, for which optimal strategies consisted of 100% nondormant achenes, as in the 

herbivore-independent model (Fig. 5). The largest difference in achene allocation 

proportion was 1.0 (i.e., 100%), in environments that lacked unfavorable years and 

experienced extreme herbivory frequencies ranging from 0.94 to 1.0 because a 100% 

dormant achene strategy maximized mean geometric fitness (Fig. 5). However, 
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homocarpy (i.e., 0% or 100% nondormant achenes) was not always an optimal strategy 

in environments that lacked unfavorable years; rather, various degrees of heterocarpy 

were optimal when the frequency of extreme herbivory ranged from 0.88 to 0.93 (Fig. 

5). Decreases in nondormant achenes in optimal allocation strategies due to predispersal 

herbivory were larger and more variable in environments with low frequencies of 

unfavorable years (i.e., ranging from 0.00 to approximately 0.35), in comparison to 

environments with unfavorable year frequencies of 0.40 or higher. In particular, in 

environments with unfavorable year frequency 0.35 or lower nondormant achene 

allocation proportions decreased by 0.0–0.11, 0.0–0.12, 0.0–0.15, 0.00–0.23, 0.0–038, 

and 0.23–1.0 under extreme herbivory frequencies of 0.0, 0.20, 0.40, 0.60, 0.80, and 1.0 

respectively (Fig. 5). In contrast, in environments with unfavorable year frequencies of 

0.40 or higher nondormant achene allocation proportions decreased by 0.03–0.07, 0.04–

0.09, 0.04–0.11, 0.06–0.12, 0.07–0.12, and 0.09–0.17 under moderate (i.e., 0.0 extreme 

herbivory), 0.20, 0.40, 0.60, 0.80, and 1.0 extreme herbivory, respectively (Fig. 5). 

 

Chapter 3: Discussion 

Heterocarpy is an adaptive bet-hedging strategy that offsets postdispersal seed 

and seedling mortality risks by producing offspring that differ in dormancy and 

dispersal ability, resulting in increased geometric mean fitness (Venable, 1985b; Imbert, 

2002). Our study provides evidence of an additional important aspect of bet-hedging in 

a heterocarpic system, offsetting predispersal seed herbivory. Nondormant (disc) G. 

ciliata achenes offset seed bank mortality risks through immediate germination after 

dispersal, but are highly susceptible to predispersal herbivory. They experience minimal 
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mortality in the seed bank due to their rapid germination, but are immediately exposed 

to potential postgermination mortality due to highly variable water availability in the 

fall (Illston et al., 2004) and low temperatures during the winter. In contrast, dormant 

(intermediate and ray) G. ciliata achenes minimize predispersal herbivory and delay 

exposure to potential postgermination mortality risks by approximately one growing 

season. However, because of this germination delay, they are more susceptible to 

mortality in the seed bank. 

In regard to specific selection agents, the vulnerability of G. ciliata achenes to 

predispersal mortality was strongly dependent on the timing of S. mortua ovipositing in 

capitula. In comparison with capitula on day 4 after opening (D4), achene consumption 

was significantly lower in the D1, D7, D14, and D21 treatments, suggesting that food 

availability for neonates and later instars is affected by the synchronization of 

oviposition, larval maturation, and capitulum development. For all instars, the 

availability and efficiency of food handling is affected by mandible development 

(Chapman, 1995). Neonates, however, mainly feed on pollen (Zalucki et al., 2002), 

which, in G. ciliata and many other composites, is released by florets that open 

centripetally on the capitulum. The S. mortua neonates placed into D1 capitula could 

likely not access their primary nutrition source for several days without neonate 

migration within a capitulum, thereby possibly causing high neonate mortality and low 

achene consumption in the D1 treatment. Neonates in the D4 and D7 treatments would 

have been exposed to fresh pollen at the time of oviposition, leading to increased 

neonate survival and total achene consumption. Neonates from the D14 and D21 would 

have limited access to fresh pollen or floral parts, possibly causing the increased 
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likelihood of larval mortality and low consumption of achenes. The optimal S. mortua 

time for neonate hatching would be at between D4 and D7, and possibly 1 or 2 days 

before D4 or after D7, when pollen is accessible to neonates. 

The synchronization between flowering and oviposition is central to the success 

of S. mortua neonates but can also affect the survival of older instars. Older instars, 

although capable of consuming pollen, typically consume developing ovaries, pericarps, 

and seeds (Louda, 1982a, 1982b,1983; Maron et al., 2002). Seeds and pericarps become 

unavailable if pericarps harden (lignify) before larval mandibles are sufficiently 

developed. Achene pericarp cells begin to harden 5 days postanthesis in Helianthus 

annuus L. (Lindström et al., 2007), suggesting that in G. ciliata, pericarp hardening had 

begun by D7 in ray and outer intermediate achenes, and by D14 in disc and centrally 

located intermediate achenes. In D1 capitula, disc, intermediate, and ray achenes are 

equally vulnerable to later instars, and larval mandible development is likely not 

lagging behind pericarp development. Still, achene consumption was low, possibly due 

to copious resin production, a prominent characteristic of developing Grindelia capitula 

(Hoffmann et al., 1984; Timmermann and Hoffmann, 1985; McLaughlin and Linker, 

1987), which could provide additional protection to developing florets. Larval mandible 

development in D4 capitula was likely synchronized with achene pericarp development, 

giving later instars access to mature seed before pericarp lignification, resulting in 

severe disc, intermediate, and ray achene consumption. By D7, ray and intermediate 

achene pericarp hardening may have been sufficiently ahead of larval mandible 

development, resulting in drastically lower consumption of intermediate and ray 

achenes. However, disc achenes likely remained vulnerable because their pericarp 
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development is delayed compared with exterior ray and intermediate achenes, and the 

disc achene pericarp is softer and composed of fewer layers of lignified cells. Larval 

and achene development was further offset in D14 capitula, resulting in the loss of only a 

few disc achenes, likely because the pericarps achenes were sufficiently hardened. 

However, by D21, even disc achenes experienced nearly no consumption, likely due to 

protection provided by mature pericarps and a reduced time for achene consumption 

due to achene dispersal approximately 2 weeks later. 

Emergence of G. ciliata seedlings from all achene types occurred predominantly 

between September and November of year 1 (2010) and year 2 (2011), suggesting that 

fall is the optimal time for G. ciliata seed germination and seedling establishment. Disc 

achenes displayed immediate opportunistic recruitment, with very few disc achenes 

remaining in the seed bank for longer than 12 d after sowing. Ray and intermediate 

seedlings offset the risks of immediate emergence by spreading emergence over the 

next year. Optimal seedling emergence times are shaped by mortality-inducing factors 

(Donohue et al., 2010), which, for seedlings, are commonly associated with severe 

drought at shallow soil depth (Kitajima and Fenner, 2000). Survival probability of G. 

ciliata seedlings is likely affected by their ability to cope with receding soil moisture 

levels, which, across Oklahoma, become most severe between August and November 

(observed G. ciliata emergence times), following an enhanced soil drying phase that 

typically lasts from mid June until late August (Illston et al., 2004). Soil moisture levels 

at shallow depths (i.e., 5 cm and 25 cm) between July and November of 1997–2002 

were highly variable (Illston et al., 2004), suggesting that all G. ciliata seedlings are at 

risk from unpredictable fall soil moisture levels. Intermediate and ray achenes can offset 
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this risk by staggering seedling emergence over several events lasting from early to late 

fall (Fig. 4; Appendix B). The mortality risks associated with immediate germination 

can also be offset by multiple flowering and achene dispersal events (Ritland, 1983), 

resulting in several disc seedling emergence events in the year of dispersal. 

Oklahoma soil moisture remains elevated throughout winter and early spring. 

However, few G. ciliata seedlings emerged in the winter and spring, suggesting that 

seeds are not cued to emerge during this time. Physiological or physical mechanisms, or 

a combination of both, may be inhibiting spring seedling emergence. The thick pericarp 

of intermediate and ray achenes functions to inhibit water uptake (J. P. Gibson 

unpublished data) and could physically restrict radicle protrusion, as was shown in ray 

achenes of Grindelia squarrosa (McDonough, 1975). Although we carefully screened 

achenes before sowing, it is also possible that some viable seeds were contained in 

pericarps that sustained S. mortua damage during development, which may have 

jeopardized the integrity of the pericarp and led to early germination in the fall or spring 

of year 1 (Koptur, 1998). On the other hand, the physiological condition of seeds might 

also have affected germination. It is possible that intermediate and ray achene 

germination was inhibited by a conditional dormancy, which prevents germination 

unless very specific germination inducing conditions (e.g., a threshold minimum or 

maximum soil temperature or moisture) were experienced (Baskin and Baskin, 1998). 

Variation in conditional dormancy among achenes is not unexpected due to genetic and 

epigenetic differences among individuals. 

It is not clear why spring conditions may not be favorable for Grindelia ciliata 

seedling emergence. Seedlings emerging in the spring may have insufficient time, in 
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comparison to fall emerged seedlings, to store energy for root growth or to establish 

deeper root systems before soil moisture levels become unsuitable for plant growth in 

the summer (fractional water index < 0.3). Soil moisture recession typically occurs in 

Oklahoma by July at shallow depths (5 – 25 cm) and by August at deeper depths (60 – 

75 cm; Illston et al., 2004). Soil water levels then rise to levels tolerable to seedlings 

after November. 

Traditional bet-hedging model predictions have had mixed support from 

experimental studies, and recent studies have revealed a great need to focus on traits not 

considered in traditional models (Wilbur and Rudolf, 2006; Ellner and Rees, 2007; 

Morris et al., 2008; Rees and Ellner, 2009; Shefferson, 2009; Rose et al., 2009, Metz et 

al., 2010, Childs et al., 2010). For example, Gremer and Venable (2014) showed that 

incorporating density dependence into a traditional bet-hedging model improved the fit 

between observed and predicted germination fractions. In that example, the traditional 

(density-independent) model overestimated predictions of optimal germination 

fractions, which is equivalent to overestimating the proportion of nondormant achenes 

in a capitulum in our study. Our traditional herbivore-independent bet-hedging model 

also overestimated the proportion of nondormant achenes in optimal strategies in almost 

all simulated predispersal mortality scenarios (Fig. 5). Furthermore, our findings 

support the hypothesis that predispersal mortality could lead to the evolution and 

maintenance of the bet-hedging strategy heterocarpy. Our study also highlights the idea 

that selective pressures have additive effects. For example, in our study predispersal and 

postgermination mortality both select for dormant achene production and the additive 
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effects strongly influenced expected optimal strategies, in particular when both selective 

pressures are moderate or weak (Fig. 5). 

Conclusion 

Our study is the first to show theoretical and empirical evidence that 

predispersal mortality is a significant factor shaping the adaptive value of heterocarpy in 

G. ciliata. However, due to the ubiquitous nature of seed mortality due to insect 

herbivory, it is likely a significant evolutionary pressure affecting reproductive bet-

hedging not only heteromorphic species but all plants. Additionally, predispersal 

mortality has not been considered in previous theoretical and empirical investigations of 

heterocarpy or other bet-hedging strategies. Therefore, further evaluations of this 

mortality risk in shaping plant reproductive ecology in other species are needed to fully 

understand the evolutionary biology and adaptive value of other reproductive bet-

hedging strategies in other environments. 
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Chapter 3: Tables 

Table 1. Consumption differences among Schinia mortua larvae in the inoculation 

treatments for all Grindelia ciliata achenes combined or separately for disc, 

intermediate, and ray achenes. 

Inoculation treatments with mean percent seeds 
consumed (±SE) Estimate Lower CI Upper CI pMCMC 

All Achenes Combined      D1 (13.7% ± 7.5) D4 (42.3% ± 9.2) −0.63 −1.2 −0.03 0.03 
 D1 D7 (9.9% ± 3.0) −0.08 −0.6 0.5 0.77 
 D1 D14 (6.4% ± 2.7) 0.01 −0.6 0.6 0.98 
 D1 D21 (0.2% ± 0.13) 0.16 −0.4 0.7 0.58 
 D4 (42.3% ± 9.2) D7 (9.9% ± 3.0) 0.55 0.04 1.2 0.05 
 D4 D14 (6.4% ± 2.7) 0.64 0.13 1.01 0.03 
 D4 D21 (0.2% ± 0.13) 0.78 0.26 1.3 0.005 
 D7 (9.9% ± 3.0) D14 (6.4% ± 2.7) 0.08 −0.42 0.56 0.74 
 D7 D21 (0.2% ± 0.13) 0.22 −0.28 0.72 0.37 
 D14 (6.4% ± 2.7) D21 (0.2% ± 0.13) 0.16 −0.33 0.61 0.57 
Disc Achenes      D1 (17.2% ± 8.7) D4 (58.6% ± 10.6) −0.77 −1.4 −0.13 0.02 
 D1 D7 (22% ± 6.8) −0.21 −0.84 0.34 0.47 
 D1 D14 (14% ± 6.7) −0.01 −0.65 0.63 0.96 
 D1 D21 (0.4% ± 0.3) 0.18 −0.43 0.78 0.55 
 D4 (58.6% ± 10.6) D7 (22% ± 6.8) 0.52 0.03 1.15 0.05 
 D4 D14 (14% ± 6.7) 0.75 0.13 1.41 0.02 
 D4 D21 (0.4% ± 0.3) 0.95 0.39 1.5 0.001 
 D7 (22% ± 6.8) D14 (14% ± 6.7) 0.19 −0.36 0.79 0.50 
 D7 D21 (0.4% ± 0.3) 0.39 −0.15 0.94 0.17 
 D14 (14% ± 6.7) D21 (0.4% ± 0.3) 0.2 −0.34 0.74 0.47 
Intermediate Achenes      D1 (11.2% ± 7.1) D4 (32.1% ± 9.7) −0.54 −1.12 0.04 0.07 
 D1 D7 (1.2% ± 0.94) 0.14 −0.34 0.68 0.57 
 D1 D14 (2.1% ± 1.5) 0.09 −0.44 0.66 0.75 
 D1 D21 (0% ± 0) 0.15 −0.36 0.75 0.59 
 D4 (32.1% ± 9.7) D7 (1.2% ± 0.94) 0.67 0.12 1.21 0.02 
 D4 D14 (2.1% ± 1.5) 0.63 0.05 1.67 0.03 
 D4 D21 (0% ± 0) 0.68 0.16 1.29 0.01 
 D7 (1.2% ± 0.94) D14 (2.1% ± 1.5) −0.05 −0.53 0.40 0.82 
 D7 D21 (0% ± 0) 0.01 −0.45 0.48 0.95 
 D14 (2.1% ± 1.5) D21 (0% ± 0) 0.06 −0.39 0.52 0.79 
Ray Achenes      D1 (10.2% ± 6.6) D4 (20.4% ± 9.2) −0.26 −0.83 0.33 0.37 
    D1 D7 (0.31% ± 0.31) 0.15 −0.34 0.66 0.56 
    D1 D14 (0.72% ± 0.72) 0.12 −0.39 0.68 0.67 
    D1 D21 (0% ± 0) 0.15 −0.38 0.67 0.57 
    D4 (20.4% ± 9.2) D7 (0.31% ± 0.31) 0.41 −0.15 0.96 0.13 
    D4 D14 (0.72% ± 0.72) 0.39 −0.21 0.93 0.17 
    D4 D21 (0% ± 0) 0.42 −0.12 0.93 0.13 
    D7 (0.31% ± 0.31) D14 (0.72% ± 0.72) −0.02 −0.47 0.44 0.92 
    D7 D21 (0% ± 0) 0.0004 −0.45 0.46 0.99 
    D14 (0.72% ± 0.72) D21 (0% ± 0) 0.03 −0.39 0.51 0.9 
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Notes: Mean consumption proportions for overall, disc, intermediate, and ray 

achene’s seeds between treatments of artificial Schinia mortua (Noctuidae) larvae 

inoculation at 1 (D1), 4 (D4), 7 (D7), 14 (D14), and 21 (D21) days after Grindelia ciliata 

(Asteraceae) capitulum opening. Displayed are the estimates of means of the posterior 

distributions (estimate) and their 95% credible intervals (CI). Significance is indicated 

by 95% CI that do not span 0 and a pMCMC less than 0.05.20 
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Chapter 3: Figures 
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Figure 1. A longitudinal section of a Grindelia ciliata (Asteraceae) capitulum, showing 

the position of ray, intermediate, and disc achenes. Also shown are entire disc, 

intermediate and ray achenes, seeds, and longitudinal section of their pericarps. 
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Figure 2. Diagram of the Grindelia ciliata (Asteraceae) life cycle (sporophyte phase). 

Arrows represent pathways through the life cycle in our models. Letters represent vital 

rates as described in Eq. 1. Adult production of dormant achenes is represented by Yα, 

dormant achene mortality in the seed bank is represented by Dα, dormant achene 

seedling emergence in the first fall and spring after dispersal is G1α, dormant achene 

seedling emergence in the fall and spring one year after dispersal is G2α, dormant 

achene seedling emergence in the fall and spring two years after dispersal is G3α. Adult 

production of nondormant achenes is represented by Yβ, nondormant achene mortality in 

the seed bank is represented by Dβ and nondormant achene seedling emergence in the 

first fall and spring after dispersal is G1β. Seedling survival after germinating during the 
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year of dispersal is represented by E τ, one year after dispersal by Eτ+1, and during two 

years after dispersal by Eτ+2. 
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Figure 3. Box and whisker plot showing median (thick horizontal black line), 

Interquartile Range (upper and lower hinge), 25th and 75th percentiles (lower and upper 

whiskers), and outliers (open circles) of consumed Grindelia ciliata (Asteraceae) disc, 

intermediate, and ray achenes from all oviposited capitula (Total, n = 78), and from 

capitula with ovipositing on the 1st (D1, n = 15), 4th (D4, n = 15), 7th (D7, n = 16), 14th 

(D14, n = 15), and 21st (D21, n = 17) day after capitulum opening. Differing letters 

indicate a significant difference among achene types (p < 0.05). 
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Figure 4. Mean field emergence proportion of Grindelia ciliata (Asteraceae) disc, 

intermediate, and ray achenes from (A) overall, (B) control, (C) 15-d stratified, (D) 30-d 

stratified, and (E) scarified storage treatments over two growing seasons (years). Error 

bar indicate 95% confidence intervals. Gray vertical line represents Heaviside cut point 

separating year 1 and year 2 seedling emergence cohorts. 
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Figure 5. Deterministic model results show the relationship between nondormant 

achene allocation of optimal strategies in environments that differ in frequency of 

unfavorable years and the frequency of extreme herbivory. The solid gray line 

represents the optimal achene allocation proportions from the herbivory-independent 

model. The dashed gray line represents the moderate herbivory model, which lacks 

extreme herbivory events. The dotted black lines from top to bottom represent 

herbivory events with extreme frequencies of 0.20, 0.40, 0.60, and 0.80, respectively. 

The dashed black lines, from top to bottom, represent frequencies of 0.88, 0.89, 0.90, 

0.91, 0.92, and 0.93 for extreme herbivory events. The solid black line represents 

constant extreme herbivory. Proportions of Grindelia ciliata (Asteraceae) nondormant 
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(disc) achenes produced by experimental plants in the larval herbivory experiment are 

shown by box plots with 25% quartile, median, 75% quartile (dark gray shade), and 

whiskers that extend to data extremes (light gray shade). 
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Chapter 4: Discussion 

Although our theoretical understanding of bet-hedging in plants is thorough, our 

documentation of the selection pressures that shape plant bet-hedging strategies is in its 

adolescence. In this dissertation, I present the first evidence that pre-dispersal herbivory 

is a significant selection pressure that influences the evolution of the bet-hedging 

strategy heterocarpy in Grindelia ciliata (Asteraceae). Pre-dispersal herbivory is well 

documented as having significant impacts on plant fitness, however it was never shown 

to be a mechanism that influences the evolution of heterocarpy. Because pre-dispersal 

herbivory is common in most ecosystems, and therefore, likely influences species in a 

similar manner as was observed in G. ciliata, there may be great opportunities to learn, 

and consequently, great deficiencies in the understanding of bet-hedging in other 

species and ecosystems. Furthermore, if such a common and strong selection factor has 

not been considered before, what other factors might we be missing?  

Seedbank mortality is another aspect that has not received thorough attention in 

most plant bet-hedging systems. Although it is well known that annual plants in 

particular can have long lived seedbanks, it is not clear how differences in propagule 

morphology and physiology affect survival in the seedbank. This lack of understanding 

is driven in part because seedbank studies are logistically difficult to conduct, especially 

when researchers are also interested in understanding when seeds will emerge from the 

seedbank naturally. Furthermore, the longevity of seedbank studies is a big limitation to 

our understanding of variability of mortality in the seedbank. For example, the seedbank 

mortality risks that are presented herein are representative for only one and a half years, 

which is not an adequate timespan to capture the variability in soil microbiome, soil 



116 

moisture, and soil temperature dynamics, and these are just a few contributing factors 

that may affect seedbank mortality.  

The timing of seed germination and its effects on individual fitness may be the 

most well studied aspect of bet-hedging in plants. However, this selection pressure is 

perhaps the least understood in G. ciliata. There is a unique and powerful resource 

available, the Oklahoma Mesonet, for studying the relationship between soil moisture 

dynamics and seedling mortality across the native range of G. ciliata in Oklahoma. This 

creates an exceptional opportunity for developing an understanding of selection acting 

on the timing of germination in G. ciliata.  
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Appendix B: Supplemental material to Chapter 1 
 

#Running the extended Cox Proportional Hazard model with two Heaviside 

functions. 

#To alter Heaviside function intervals, users must modify the code containing the 

#survSplit() function, and the code thereafter. In survSplit(), the user must select other 

#time intervals at which to cut the dataset. Then, the user must create new Heaviside 

#objects in the new dataset created by survSplit(). For example, if the aim is to create 

#two Heaviside functions, one including days prior to Day2 = 20 and another for days 

#post Day2 = 20, then, 

pops.cph30=survSplit(Surv(Day1,Day2,Event)~Ray,germ,cut=c(16),end="Day2", 

event="Event",start="Day1") 

pops.cph30$hvRpre=pops.cph30$Ray*(pops.cph30$Day1<16)  

pops.cph30$hvRpost=pops.cph30$Ray*(pops.cph30$Day1>16) 

pops.cph30[,7]<-germ[,1] 

pops.cph30[,8]<-germ[,2] 

colnames(pops.cph30)=c("Ray","Day1","Day2","Event","hvRpre","hvRpost","Individu

al","Rep") 

Y30=Surv(pops.cph30$Day1,pops.cph30$Day2, pops.cph30$Event) 

Cox.H2.SQ <-coxph(Y30 ~ hvRpre+hvRpost+cluster(Rep) +cluster(Individual), 

data=pops.cph30) 

 summary(Cox.H2.SQ) 
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Appendix C: Supplemental material to Chapter 3 
 

Appendix B. Mean Grindelia ciliata (Asteraceae) seedling emergence proportions from 

disc, intermediate, and ray seedlings in the field over two years. Control (   ), 15-day 

stratification (    ), 30-day stratification(   ) and scarification (✕) treatments and shown 

for each achene type. Error bars indicate 95% confidence intervals. Grey vertical line 

represents Heaviside cut point separating year 1 and year 2 seedling cohorts.  
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