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Abstract 

Modern communities heavily depend on critical infrastructure networks such as power, 

water, transportation, telecommunications, gas, etc. Since daily life requires these networks 

to be operational, it is important that they are able to withstand or recover quickly from a 

disruption, a term known as resilience.  These infrastructure networks are often dependent 

on each other for operation. The interdependency of infrastructure networks makes them 

more vulnerable to disruptive events such as malevolent attacks, natural disasters, and 

random failures. The operability of these networks may be compromised following a 

disruptive event such that demand in any given network is not met. To return the networks 

to some desired level of resilience, work crews must be scheduled to restore certain 

disrupted elements. The proposed model is a multi-objective mixed-integer programming 

model that seeks to minimize the total cost of restoration while maximizing the combined 

resilience of interdependent infrastructure networks. The model may be used to determine 

where each work crew should originate from following a disruptive event as well as 

schedule the work crews to restore disrupted network elements over a finite time horizon. 

This work demonstrates the use of the model through an illustrative example of two 

interdependent infrastructure networks. Considering four disruption scenarios, this 

illustrative example shows how recovery may change by varying the number of facilities 

established for work crews in each network. 
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Chapter 1.0 Introduction 

1.1 Motivation 

Following the attack on the World Trade Center in New York City on September 11, 2001, 

government officials began focusing on the assistance provided following a disastrous 

event. In August 2006, President George W. Bush issued an executive order to improve the 

quality of response to non-routine disasters including malevolent attacks, natural disasters, 

and other failures (Exec. Order No. 13411, 2006). Since 9/11 there have been several 

natural disasters and terrorist threats that have compromised our nation’s infrastructure. 

These events have evoked the issuing of the Presidential Policy Directive (PPD) on Critical 

Infrastructure Security and Resilience in 2013 and other similar governmental actions. The 

PPD recognizes the federal responsibility toward maintaining “secure, functioning, and 

resilient critical infrastructure (Executive Office of the President, 2013).” 

 
1.2 Critical Infrastructure Networks 

Critical infrastructure networks, as defined by the USA PATRIOT Act of 2001, are 

“systems and assets, whether physical or virtual, so vital to the United States that the 

incapacity or destruction of such systems and assets would have a debilitating impact on 

security, national economic security, national public health or safety, or any combination of 

those matters (United States. Cong., 2001).” More explicitly, a critical infrastructure 

network is used to distribute resources that are necessary for our daily lives. Common 

examples of critical infrastructure networks are water, electricity, gas, communications, and 

transportation. Anything that causes these networks to be inoperable impacts the health 

and safety of the affected community. 

 



2 

As daily life has become more dependent on critical infrastructure, it is increasingly 

important to not only protect current infrastructure networks, but to be able to rebuild 

portions of a network that have been disrupted. Infrastructure resilience, specifically, 

“depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a 

potentially disruptive event (National Infrastructure Advisory Council, 2009).” The 

Department of Homeland Security has focused largely on resilience in terms of 

withstanding and recovering from deliberate attacks that may affect multiple critical 

infrastructures networks. 

Not only do critical infrastructure networks influence society, but also affect the 

operation and resilience of other critical infrastructure networks. Interdependency is 

defined as “a bidirectional relationship between two infrastructures through which the state 

of each infrastructure influences or is correlated to the state of the other (Rinaldi et al., 

2001).” The interconnectedness of critical infrastructures is becoming increasingly 

prevalent and complex. Interdependencies of infrastructure networks may cause them to 

be more vulnerable to a disruptive event. If a disruption compromises the operability of a 

certain network, the functionality of any dependent network may also be affected. Decision 

makers must take this into consideration when recovering after an extreme event affecting 

multiple critical infrastructures. An increase in interdependency also increases the 

complexity of planning for recovery.   

The goal of this work is to help decision makers plan for recovery after a disruptive 

event; it addresses the restoration of interdependent infrastructure networks by solving a 

facilities location model to determine where work crews should be stationed following a 

disruption and scheduling those work crews to repair disrupted elements to attain a desired 

level of resilience.  
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The remainder of this paper is organized as follows: Chapter 2 considers literature 

relevant to the problem of facilities location and interdependent infrastructure recovery. 

Chapter 3 gives background to resilience-driven methodology. Chapter 4 details the 

proposed model. The proposed model will be illustrated in an example using a set of two 

interdependent infrastructure networks in Chapter 5. Concluding remarks and future work 

will be addressed in Chapter 6. 
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Chapter 2.0 Literature Review 

This chapter discusses the literature critical to developing the methodology addressed in 

the remainder of the paper.  

2.1 Interdependent Infrastructure Restoration 

There has been significant research in the area of critical infrastructure restoration. This 

work focuses primarily on the restoration of interdependent critical infrastructure 

networks. Lee et al. (2007) recognizes the complexities involved in the interdependency of 

critical infrastructure networks.  The authors also define multiple types of interdependence 

including mutual dependence. Mutual dependence may be described by a scenario where all 

networks in a set of critical infrastructure networks require the output of another network 

to be operational. This work primarily proposes a model to restore disrupted elements in a 

set of interdependent infrastructure networks by minimizing the cost associated with 

unmet demand. The model, however, does not consider the cost associated with the 

restoration process and it is not time dependent. As a result, there is no fixed restoration 

time associated with disrupted components. Moreover, the model does not associate work 

crews with the restoration process and, therefore, cannot schedule specific work crews to 

restore the disrupted elements.  

Gong et al. (2009) on the other hand, proposes a multi-objective optimization 

model to schedule emergency work crews for restoration of interdependent networks. This 

model assumes that all restoration tasks have a defined due time and is thus a time-

dependent model. The objectives are to minimize the cost, time to restoration, and delay in 

restoration time. The main purpose of this work is to consider when each task should be 

completed and create a schedule for restoration. The model also assigns available work 

crews to each restoration task. Although this work does not actually restore the disrupted 
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elements, the scheduling of work crews and associating time with restoration tasks are 

important contributions.  

Cavdaroglu et al. (2013) combine the work of Lee et al. (2007) and Gong et al. 

(2009) by specifically accounting for the interdependencies that exist between critical 

infrastructure networks. An important consideration is that the operability of one network 

is dependent on the functionality of certain elements in another; further, any change to one 

network may affect another, whether positive or negative. This work specifically uses a 

network flow model to determine which disrupted elements should be restored, create a 

schedule for restoration, and assign restoration to tasks to available work crews. The 

objective is to minimize the total cost including flow cost, restoration cost, and cost of 

unmet demand. 

Almoghathawi et al. (2016) propose a recovery model for interdependent infrastructure 

much like Cavdaoglu et al. However, instead of a single-objective mixed-integer 

programming model, the authors propose a multi-objective model. Here the objectives are 

to minimize the total cost of restoration (i.e. fixed restoration costs, flow cost, and cost of 

unmet demand) while also maximizing the combined resilience of the interdependent 

infrastructure network system. It is recognized by Almoghathawi et al. that the resilience of 

one network is dependent on another due to the interdependencies between them; these 

interdependencies are considered bi-directional, meaning the output of each network is 

dependent on the output of another. In this work 4 disruption scenarios are modeled: 2 

malevolent attack scenarios, a random failure scenario, and a spatial disruption scenario. 

For each scenario, disrupted elements must be scheduled to be restored. Restoration 

processes are time-dependent and require a work crew for completion. Thus, the model 
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also model accounts for the availability of work crews during each time period and 

schedules them to restoration processes. 

2.2 Facilities Location 

Part of the proposed model to be discussed in Chapter 4 is to determine where work crews 

in each network should dispatch from. As a result, the following literature discusses 

facilities location models in the context of emergency response. 

Batta and Mannur (1990) propose a model for emergency response related to the 

service coverage of a given set of demand points. The objective of the mdoel is to 

maximize the coverage provided by 𝑀 facilites. In this model, 𝑀 is a parameter that must 

be defined by decision makers. The value of 𝑀 may also be defined by the number of work 

crews available to service a given network. An important finding of this work is that 

positioning more than one work crew at any given facility does not improve the objective 

of maximizing service coverage for a given set of demand points. 

Jia et al. (2007) address the problem of facilities location for emergency 

response to large-scale problems. Specifically, the authors propose a facility location that 

may be used in the event of a terrorist attack or natural disaster: events that most first 

responders are not regularly accustomed to. An important contribution from this work is 

that quality of service from a facility is dependent on its proximity to a demand point. 

Thus, the closer a facility is to a demand location, the better that facility may be.  

Afacan and McLay (2016) propose a model for emergency response specific to the 

context of critical infrastructure recovery. This work discusses the interdependency of 

critical infrastructures and emergency responders. Following a disruptive event, portions of 

critical infrastructure networks become unusable, which makes the job of first responders 

much more difficult. The model thus accounts for work crews restoring disrupted network 
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elements and solves a P-median facilities location model for the dispatch of those work 

crews. In addition to dispatching work crews, the model also schedules network recovery 

by assigning work crews to restoration tasks over a finite time horizon. Multiple case 

studies are examined in the work to fully assess the usability of the model. Interdependency 

is considered in this work, but in the context of work crews and first responders rather 

than the interdependency of infrastructure. 

Although there has been significant work done in the areas of interdependent 

infrastructure restoration and facilities location models for emergency response, there is a 

gap in literature to combine to the two topics. This work develops a model to determine 

where work crews should be stationed in an emergency such that a set of critical 

infrastructure networks are able to return to full resilience. 
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Chapter 3.0 Methodological Background 

This section gives a background on the framework of resilience and describes how 

resilience is quantified. There are 4 disruption scenarios (malevolent attacks--degree-based 

and capacity-based, random failures, and spatial failures) introduced in this section as well. 

3.1 Network Resilience 

Resilience in literature has been quantified in a variety of ways. In this work, resilience is 

considered the performance of a system of networks before, during, and after a disruptive 

event. The framework of network resilience is adapted from Henry and Ramirez-Marquez 

(2012) and shown in Figure 1. This framework focuses on two phases of system 

performance: vulnerability and recoverability. Vulnerability is considered the susceptibility 

of system components to a disruptive event (Jönsson et al., 2008). Initially, the system 

exists at some stable performance level. At the time of a disruption, though, the system 

becomes vulnerable to failures, leading to a loss in system performance. At this point, the 

system exists at a disrupted state until it can be recovered. The recoverability of a system is 

defined by how quickly it can be restored to some desired level of resilience after a 

disruption (Rose, 2007). As the system is recovered, its performance is improved until it 

reaches a desired state of recovery. These phases of system performance are depicted in 

Figure 1. 
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Figure 1: Network performance, 𝜑(𝑡), as a function of time 
 

System performance as a function of time, 𝜑(𝑡), may be used to mathematically 

represent resilience. Network resilience, Я, may be described as the ratio of time-dependent 

recovery to loss (i.e. Я t = )*+,-*./ 0
1,22 0

 ) (Henry and Ramirez-Marquez, 2012). This 

relationship is defined more explicitly in Equation 1. 

Я3 𝑡|𝑒6 =
𝜑 𝑡 𝑒6 − 𝜑 𝑡8 𝑒6

𝜑(𝑡9) − 𝜑 𝑡8 𝑒6
,					∀	𝑡	𝜖(𝑡2, 𝑡>) (1) 

𝜑 𝑡 𝑒6  is the system performance at time 𝑡 following disruptive event 𝑒6 , 𝜑 𝑡8 𝑒6  is the 

system performance immediately following a disruption, and 𝜑(𝑡9) is the system 

performance prior to a disruption. Я3 𝑡|𝑒6  may range between 0 and 1, where 1 means 

the system is fully resilient. 

3.2 Disruption Scenarios 

Interdependent infrastructure networks are susceptible to several different types of 

disruptions. These disruptions may be divided in to 3 distinct groups: malevolent attacks, 

random failures, and spatial failures (Wang et al., 2013). Malevolent attacks are intentional 
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disruptions caused as an act of terrorism against specific infrastructure components. These 

attacks can be separated into 2 groups: capacity-based attacks and degree-based attacks. In 

a capacity-based attack, network elements with higher capacity are targeted. A link’s 

capacity is defined as a network parameter, 𝑢@6A , and indicates the maximum flow across 

each link. The capacity of a node is defined by the minimum of the sum of incoming and 

outgoing links associated with that node (𝑢@A = min	( 𝑢6@A6,@ E1F , 𝑢@GA@,G E1F ). In a 

degree-based attack, network elements with the greatest connectivity to other network 

elements (i.e. highest degree) are targeted. The degree of a node is defined by the number 

of bi-directional links that are connected to it; the degree of a link is the average of the 

degree of the two nodes it connects (i.e. 𝑑𝑒𝑔𝑟𝑒𝑒@6 =
K
L
(𝑑𝑒𝑔𝑟𝑒𝑒@ + 𝑑𝑒𝑔𝑟𝑒𝑒6)). A random 

disruption may include any man-made failure, a failure due to the age of a network 

component, etc. In this work, all network components are considered to have an equal 

probability of failure for random disruptions. Finally, all natural disasters such as 

hurricanes, earthquakes, or any other failure related to the physical location of network 

components are captured by the spatial disruption scenario (Almoghathawi et al., 2016).  
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Chapter 4.0 Proposed Model 

In this section, the methodology for the proposed model will be discussed. Previous work 

by Almoghathawi et al. (2016) will first be described, followed by the proposed additions to 

define work crew placement. 

4.1 Resilience-Driven Recovery of Interdependent Infrastructure Networks 

Almoghathawi et al. (2016) describes a model that may be used to restore a set of disrupted 

elements in interdependent infrastructure networks. The model is formulated as a mixed-

integer programming (MIP) model. It is a multi-objective optimization model with 

competing objectives. Generally, the objectives are to maximize resilience while minimizing 

the total restoration cost. There are three sets of constraints: network flow constraints, 

interdependency constraints, and assignment and scheduling constraints for work crews. 

This model contains a set of networks, 𝐾, and a set of time periods, 𝑇. In each 

network 𝑘	𝜖	𝐾 there is a set of nodes, 𝑁A, and a set of links between nodes, 𝐿A . Each 

network 𝑘	𝜖	𝐾 has a set of source nodes, 𝑁2A 	⊆ 𝑁A , and a set of demand nodes, 𝑁8A ⊆

𝑁A . There is a set of disrupted nodes 𝑁TA ⊆ 𝑁A and disrupted links 𝐿TA ⊆ 𝐿TA for each 

network 𝑘	𝜖	𝐾 following a disruption. 

Supply for each node 𝑖	𝜖	𝑁2A in network 𝑘	𝜖	𝐾 is denoted by 𝑏@A . Supply 𝑏@A is 

considered to be the maximum flow from node 𝑖	𝜖	𝑁2A to node 𝑖	𝜖	𝑁8A and is considered 

independent of time. Unmet demand for network 𝑘	𝜖	𝐾 during time 𝑡	𝜖	𝑇 in node 𝑖	𝜖	𝑁8A 

is represented as slack, 𝑠@0A .  Slack may be described as the extent to which demand is not 

being met; thus, it is, in part, used to represent resilience (Almoghathawi et al., 2016). 

Resilience can be described as the loss of maximum flow in a network. Equation 

(2) quantifies resilience as the proportion of slack in the time periods following a disruption 
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to the original slack in the set of interdependent networks. Each network 𝑘	𝜖	𝐾 has a 

weight 𝜇A such that 𝜇AY
AZK = 1. The total slack prior to a disruption and immediately 

following a disruption in network 𝑘	𝜖	𝐾 are represented by 𝑆9A and 𝑆8A , respectively. 

𝜇A
𝑡 𝑆8A − 𝑠@0A@	E	]^

F − (𝑡 − 1)(𝑆8A − 𝑠@ 0_K
A

@	E	]^
F )0	E	`

𝑇(𝑆8A − 𝑆9A)A	E	Y

	 (2) 

 
In addition to maximizing the resilience in the set of interdependent networks, a 

competing objective is to minimize the total cost of restoration. Total cost of restoration is 

a function of fixed restoration costs, unitary flow cost, and the cost of unmet demand; it is 

captured by Equation (3). In this work, 𝑓𝑛@A and 𝑓𝑙@6A  are the fixed restoration costs for 

node 𝑖	𝜖	𝑁TA and link 𝑖, 𝑗 	𝜖	𝐿TA for network 𝑘	𝜖	𝐾, respectively. The decision variable 𝑧@A 

is a binary variable that equals 1 if node 𝑖	𝜖	𝑁TA in network 𝑘	𝜖	𝐾 is chosen for restoration 

and 0 otherwise. Similarly, 𝑦@6A  is a binary decision variable that equals 1 if link 𝑖, 𝑗 	𝜖	𝐿TA in 

network 𝑘	𝜖	𝐾 is chosen for restoration and 0 otherwise. There are also per-unit costs 

associated with flow and unmet demand. Let 𝑐@6A  be the unitary cost of flow on link 

𝑖, 𝑗 	𝜖	𝐿A and let 𝑝@A be the cost of unmet demand at node 𝑖	𝜖	𝑁8A in network 𝑘	𝜖	𝐾. Flow 

across link 𝑖, 𝑗 	𝜖	𝐿A in network 𝑘	𝜖	𝐾 in period 𝑡	𝜖	𝑇 is represented by the continuous 

decision variable 𝑥@60A . As before, unmet demand is equated to slack and represented by 𝑠@0A  

for node 𝑖	𝜖	𝑁TA in network 𝑘	𝜖	𝐾	in period 𝑡	𝜖	𝑇. 

min 𝑓𝑛@A𝑧@A

@	E	]kF
+ 𝑓𝑙@6A 𝑦@6A

(@,6)	E	1kF
+ 𝑐@6A 𝑥@60A + 𝑝@A𝑠@0A

@	E	]F@,6 	E	1F0	E	`A	E	Y

	 (3) 

 
Each disrupted element has a fixed restoration time that must be elapsed before an 

element may be considered operational. The restoration times for node 𝑖	𝜖	𝑁TA and link 
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𝑖, 𝑗 	𝜖	𝐿TA are denoted by 𝑑𝑛@A and 𝑑𝑙@6A , respectively. Once a disrupted element has been 

selected for restoration and has completed its restoration time, it becomes operational. 

Two binary decision variables--𝛽@0A  and 𝛼@60A —indicate the status of node 𝑖	𝜖	𝑁TA and link 

𝑖, 𝑗 	𝜖	𝐿TA , respectively. 𝛽@0A  equals 1 if node 𝑖	𝜖	𝑁TA in network 𝑘	𝜖	𝐾 is operational during 

time 𝑡	𝜖	𝑇 and is 0 otherwise. Similarly, 𝛼@60A  equals 1 if link 𝑖, 𝑗 	𝜖	𝐿TA in network 𝑘	𝜖	𝐾 is 

operational during time 𝑡	𝜖	𝑇 and is 0 otherwise. Each network 𝑘	𝜖	𝐾 has a set of work 

crews 𝑅A dedicated to restoring its disrupted elements. There are two decision variables 

associated with scheduling work crews to restore disrupted elements, 𝛾@0A. and 𝛿@60A. . 𝛾@0A. 

equals 1 if work crew 𝑟	𝜖	𝑅A in network 𝑘	𝜖	𝐾 is selected to restore node 𝑖	𝜖	𝑁TA during 

time 𝑡	𝜖	𝑇 and 0 otherwise. In the same way, if work crew 𝑟	𝜖	𝑅A in network 𝑘	𝜖	𝐾 is 

chosen to restore link 𝑖, 𝑗 	𝜖	𝐿TA during time 𝑡	𝜖	𝑇, 𝛿@60A. equals 1 and is 0 otherwise. 

Finally, each network contains nodes that are dependent on specific nodes from another 

network being operational. In this work, Ψ is used to represent interdependence such that 

𝑖, 𝑘 , 𝚤, 𝑘 	𝜖	Ψ indicates that node 𝚤	𝜖𝑁A in network 𝑘	𝜖	𝐾 requires node 𝑖	𝜖	𝑁A in 

network 𝑘	𝜖	𝐾 to be operational. 

 
4.1.1 Mathematical Model 

max 𝜇A
𝑡 𝑆8A − 𝑠@0A@	E	]^

F − (𝑡 − 1)(𝑆8A − 𝑠@ 0_K
A

@	E	]^
F )0	E	`

𝑇(𝑆8A − 𝑆9A)A	E	Y

	 (4) 

min 𝑓𝑛@A𝑧@A

@	E	]kF
+ 𝑓𝑙@6A 𝑦@6A

(@,6)	E	1kF
+ 𝑐@6A 𝑥@60A + 𝑝@A𝑠@0A

@	E	]F@,6 	E	1F0	E	`A	E	Y

	 (5) 
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Subject to: 

𝑥@60A ≤ 𝑏@A,					∀𝑖	𝜖	𝑁2A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇
@,6 E1F

	 (6) 

𝑥@60A

@,6 	E	1F
− 𝑥6@0A

6,@ 	E	1F
= 0,					∀𝑖	𝜖	𝑁A{𝑁2A, 𝑁8A}, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (7) 

𝑥6@0A

6,@ 	E	1F
+ 𝑠@0A = 𝑏@A,					∀	𝑖	𝜖	𝑁8A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇 (8) 

𝑥@60A − 𝑢@6A ≤ 0,					∀ 𝑖, 𝑗 	𝜖	𝐿A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇 (9) 

𝑥@60A − 𝑢@6A 𝛽@0A ≤ 0,					∀ 𝑖, 𝑗 	𝜖	𝐿A, 𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇 (10) 

𝑥@60A − 𝑢@6A 𝛼@60A ≤ 0,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (11) 

𝛽y0A − 𝛽@0A ≤ 0,					∀ 𝑖, 𝑘 , 𝚤, 𝑘 	𝜖	Ψ, 𝑡	𝜖	𝑇	 (12) 

𝑦@6A = 𝛿@60A.
0	E	`.	E	)F

,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾 (13) 

𝑧@A = 𝛾@0A.
0	E	`.	E	)

,					∀𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾 (14) 

𝛿@6GA.
z{|{`,0}8G~�

F _K}

GZ0@,6 	E	1kF
+ 𝛾@GA.

z{|{`,0}8�~
F_K}

GZ0

≤ 1
@,6 	E	]kF

,					∀	𝑘	𝜖	𝐾, 𝑟	𝜖	𝑅A (15) 

𝛼@60A ≤ 𝛿@60k
A.

0

0kZK.	E	)F
,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇 (16) 

𝛽@0A ≤ 𝛾@0k
A.

0

0kZK.	E	)F
,					∀𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇 (17) 
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𝛼@60A
8G~�
F _K

0ZK

= 0,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾	 (18) 

𝛽@0A
8�~

F_K

0ZK

= 0,					∀𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾	 (19) 

𝛿@60A.
8G~�
F _K

0ZK.	E	)F
= 0,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾	 (20) 

𝛾@0A.
8�~

F_K

0ZK.	E	)F
= 0,					∀𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾	 (21) 

𝑠@0A ≥ 0,					∀𝑖	𝜖	𝑁A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (22) 

𝑥@60A ≥ 0,					∀ 𝑖, 𝑗 	𝜖	𝐿A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (23) 

𝑦@6A 	𝜖	 0,1 ,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾	 (24) 

𝑧@A	𝜖	 0,1 ,					∀𝑖	𝜖	𝑁A, 𝑘	𝜖	𝐾	 (25) 

𝛼@60A 	𝜖	 0,1 ,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (26) 

𝛽@0A 	𝜖	 0,1 ,					∀𝑖	𝜖	𝑁A, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇	 (27) 

𝛿@60A.	𝜖	 0,1 ,					∀ 𝑖, 𝑗 	𝜖	𝐿TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇, 𝑟	𝜖	𝑅A	 (28) 

𝛾@0A.	𝜖	 0,1 ,					∀𝑖	𝜖	𝑁TA, 𝑘	𝜖	𝐾, 𝑡	𝜖	𝑇, 𝑟	𝜖	𝑅A	 (29) 
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The objectives of this model are to maximize resilience of the interdependent 

infrastructure networks 𝐾 while minimizing the total cost of restoration. These objectives 

are represented mathematically in Equations (4) and (5). The rest of the model is broken 

into three sets of constraints which help describe network flow, the interdependency of 

networks, and work group scheduling for restoration. 

Constraints (6) – (11) are dedicated to network flow. Specifically, constraints (6) 

specify that each source node 𝑖	𝜖	𝑁2A in network 𝑘	𝜖	𝐾 for each time 𝑡	𝜖	𝑇	cannot output 

more than its supply, 𝑏@A . Flow must be conserved into and out of node 𝑖	𝜖	𝑁A . This is 

accounted for by constraints (7). The combination of flow into all demand nodes 𝑖	𝜖	𝑁8A 

and the unmet demand at those nodes must equal the demand in network 𝑘	𝜖	𝐾 during 

time 𝑡	𝜖	𝑇, as described in constraints (8). Each link 𝑖, 𝑗 	𝜖	𝐿A in network 𝑘	𝜖	𝐾 has a 

capacity that is described by 𝑢@6A . As such, the flow across each link, 𝑥@6A , for all 𝑖, 𝑗 	𝜖	𝐿A in 

network 𝑘	𝜖	𝐾 cannot exceed that link’s capacity. This is dictated by constraints (9)-(11). 

Interdependency of networks is described by constraints (12) such that node 𝚤	𝜖	𝑁A in 

network 𝑘	𝜖	𝐾	may not be operational unless its interdependent node, 𝑖	𝜖	𝑁A in network 

𝑘	𝜖	𝐾, is also operational. 

Constraints (13)-(23) are in place for the scheduling of work crews to restore disrupted 

elements. Constraints (13) and (14) state that a work crew must be assigned to repair all 

elements that have been selected for restoration. Constraints (15) ensure that work crew 

𝑟	𝜖	𝑅A for network 𝑘	𝜖	𝐾 can only restore one disrupted element during time 𝑡	𝜖	𝑇.  A 

disrupted element cannot be operational unless a work crew has been assigned to it; thus 

constraints (16) and (17) are put in place. Constraints (18)-(21) exist so that a disrupted 

element cannot be considered operational until it has completed its restoration time. The 
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remaining constraints, (22)-(29) are used to describe the nature of all decision variables i.e. 

whether they are continuous or binary. 

 
4.2 Facilities Location and Work Crew Assignment 

Each work crew 𝑟	𝜖	𝑅A	must dispatch from an assigned location. Work crews must be 

assigned to origin locations such that the fixed cost of establishment and the distance 

travelled is minimized. Thus, in addition to the model presented in Section 4.1, there is a 

set of candidate sites, 𝑀, where work crews must be assigned prior to a disruptive event. 

Before a work crew can be assigned to a facility, the facility must be established in a 

candidate location. Binary decision variable 𝑣� equals 1 if candidate site 𝑚	𝜖	𝑀 is 

established and is 0 otherwise. There is a fixed cost associated with establishing a resource 

facility; this cost is represented by 𝑐𝑠� for site 𝑚	𝜖	𝑀. Further, if work crew 𝑟	𝜖	𝑅A in 

network 𝑘	𝜖	𝐾 is stationed at site 𝑚	𝜖	𝑀, the binary decision variable 𝑤�.A  equals 1 and is 0 

otherwise. Of course, each candidate site is positioned some distance from all disrupted 

elements in network 𝑘	𝜖	𝐾. For nodes, this distance is the Euclidean distance from 

candidate site 𝑚	𝜖	𝑀 to node 𝑖	𝜖	𝑁TA in network 𝑘	𝜖	𝐾 and is represented by 𝑛𝑠@�A . For 

links, the Euclidean distance from candidate site 𝑚	𝜖	𝑀 to the midpoint of link 𝑖, 𝑗 	𝜖	𝐿TA 

in network 𝑘	𝜖	𝐾 is represented by 𝑙𝑠@6�A . There is also a unitary cost associated with the 

distance a work group must travel from each candidate site to a disrupted element. This 

cost is captured by 𝐷𝐶� for site 𝑚	𝜖	𝑀. Both 𝑐𝑠� and 𝐷𝐶� are incorporated into the cost 

objective as shown in Equation (30). 
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min 𝑓𝑛@A𝑧@A

@	E	]kF
+ 𝑓𝑙@6A 𝑦@6A

(@,6)	E	1kF
+ 𝑐@6A 𝑥@60A + 𝑝@A𝑠@0A

@	E	]F@,6 	E	1F0	E	`A	E	Y

+ 𝑐𝑠�𝑣�
�	E	�

+ 	 𝑛𝑠@�A 𝐷𝐶�𝑤.�𝛾�A.

@	E	]kF
+ 𝑙𝑠@6�A 𝐷𝐶�𝑤.�𝛿@60A.

@,6 	E	1kF.	E	)F0	E	`

	

(30) 

 
When deciding where work groups should originate from, there must be constraints added 
to those described by Almoghathawi et al. (2016).  Constraints (31)-(40) are defined as 
follows: 
 

𝑤�.A ≤ 1
.	E	)FA	E	Y

,					∀	𝑚	𝜖	𝑀	 (31) 

𝑣� ≥ 𝑤�.A ,					∀	𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (32) 

𝑤�.A = 1,					∀	𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾
�	E	�

	 (33) 

𝑣�	𝜖	 0,1 ,					∀	𝑚	𝜖	𝑀	 (34) 

𝑤�.A 	𝜖	 0,1 ,					∀	𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (35) 

 
Constraints (31) state that candidate site 𝑚	𝜖	𝑀 may be assigned at most one work crew 

𝑟	𝜖	𝑅A in network 𝑘	𝜖	𝐾. This also implies that there may not be work crews from 

different networks assigned the same site. It is also important to consider the fact that a 

workgroup cannot be assigned to a site that is not established; thus, constraints (32) are in 

place so that work crew 𝑟	𝜖	𝑅A for network 𝑘	𝜖	𝐾 may not be assigned to site 𝑚	𝜖	𝑀 

unless it has been selected to be established. It should be noted that  a work crew may not 

change locations. Therefore, each work group 𝑟	𝜖	𝑅A in network 𝑘	𝜖	𝐾 may only be 
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assigned to one selected site, as described by constraints (33). Constraints (34) and (35) 

define 𝑣� and 𝑤�.A  as binary variables. 

4.2.1 Addressing Non-Linearity of Cost Objective 

Because two decision variables are multiplied together in the objective presented in 

Equation (30), the model is non-linear. To continue using a linear solver, Equation (36) is 

included as a substitute for objective function (30).  

min 𝑓𝑛@A𝑧@A

@	E	]kF
+ 𝑓𝑙@6A 𝑦@6A

(@,6)	E	1kF
+ 𝑐@6A 𝑥@60A + 𝑝@A𝑠@0A

@	E	]F@,6 	E	1F0	E	`A	E	Y

+ 𝑐𝑠�𝑣� +	 𝐺@�0A.

@	E	]kF
+ 𝐻@6�0A.

@,6 	E	1kF.	E	)F0	E	`�	E	�

	

(36) 

𝐺@�0A. ≥ 𝑛𝑠@�A 𝐷𝐶� 𝛾@0A. + 𝑤�. − 1 ,					∀	𝑖	𝜖	𝑁TA, 𝑡	𝜖	𝑇,𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (37) 

𝐻@6�0A. ≥ 𝑛𝑠@�A 𝐷𝐶� 𝛿@60A. + 𝑤�. − 1 ,					∀	(𝑖, 𝑗)	𝜖	𝐿TA, 𝑡	𝜖	𝑇,𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (38) 

𝐺@�0A. ≥ 0,					∀	𝑖	𝜖	𝑁TA, 𝑡	𝜖	𝑇,𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (39) 

𝐻@6�0A. ≥ 0,					∀	(𝑖, 𝑗)	𝜖	𝐿TA, 𝑡	𝜖	𝑇,𝑚	𝜖	𝑀, 𝑟	𝜖	𝑅A, 𝑘	𝜖	𝐾	 (40) 

 
Constraints (37)-(40) must also be added to the model to maintain the significance of 

objective function (30).  

4.2.2 Model Simplification 

As previously noted, the proposed model is a multi-objective optimization problem. As 

such, there are several trade-off solutions to be considered. To simplify the solution 

process, the 𝜀-constraint method is used in this work (Haimes et al., 1971). The 𝜀-

constraint method treats one objective as the primary objective while the other is 
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constrained to a specified target value. Using this method, objective function (36) is 

minimized and objective function (4) is substituted for constraint (41). Constraint (41) is 

bound by a minimum level of resilience as determined by decision makers of the 

interdependent networks. Since resilience is continuous between 0 and 1, 𝜀	𝜖	[0,1]. 

𝜇A
𝑡 𝑆8A − 𝑠@0A@	E	]^

F − (𝑡 − 1)(𝑆8A − 𝑠@ 0_K
A

@	E	]^
F )0	E	`

𝑇(𝑆8A − 𝑆9A)A	E	Y

≥ 𝜀	 (41) 
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Chapter 5.0 Illustrative Example 

5.1 Data 

Real data related to existing infrastructure networks is often difficult to find to protect 

against the risk of malevolent attacks. As such, to test the proposed model, a network with 

randomly generated components is used. This set of simulated interdependent 

infrastructure networks is created in R Studio using the method originally described by 

Casey (2005). The network itself is generated by first establishing the random networks 

then creating interdependencies between them. Once the network is in place, the candidate 

sites for work groups is added to the graph. 

First, the independent networks must be established. The coordinates of the nodes 

in each network are random and uniformly distributed between 0 and 1. Source nodes are 

the first to be added for each network. At this point, they are considered independent of 

each other, so there are no links established between them. As each demand node is added 

to the network, it is connected to the nearest existing node from the same network in the 

graph. Each link is considered undirected (i.e. there may be flow in either direction). 

“Nearness” is determined by smallest Euclidean distance.  

Next, the interdependencies between networks must be established. The source 

and demand nodes from each network are considered to be dependent on nodes from the 

other network. Thus, a link is established between each supply and demand node and the 

nearest source or demand node from another network. Again, nearness is defined as the 

smallest Euclidean distance. 

Finally, candidate sites must be incorporated into the graph. In this work, candidate 

sites are placed on the graph in a 5x5 grid resulting in a total of 25 candidate sites. The 
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candidate locations are equally spaced in the vertical and horizontal directions. Figure 2 

shows the final graph used in this illustration. 

 

 
Figure 2: Interdependent Network Graph with 25 Candidate sites 

 
As described by Almoghathawi et al. (2016), the two interdependent infrastructure 

networks present in this work simulate a water (red nodes and links) and a power network 

(blue nodes and links). The water network depends on the power network to pump and 

distribute water; the power network depends on the water network for cooling and to 

reduce emissions. In Figure 2, these interdependencies are shown by green arcs. Power 

generators and substations act as supply and demand nodes, respectively, in the power 

network; power lines act as the links between them. In the water network, supply nodes 

represent water pumps and demand nodes represent storage tanks. The links between them 

represent pipelines. Candidate locations for work group facilities are indicated by gray 

squares in Figure 2. 
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5.2 Example 

For each disruption scenario described in Chapter 3, there is a certain number of elements 

removed to simulate a disruption. For random, capacity-based, and degree-based 

disruptions, 21% of components are disrupted (5 nodes and 7 links from each network). 

For spatial disruption scenarios, however, the disrupted elements are confined to a specific 

area. As a result, demand in other nodes may still be met through other channels. To 

combat this phenomenon, the special disruption scenario requires a greater number of 

elements to be disrupted for the same loss in network flow efficiency as the other 

disruption scenarios. For this scenario, 32% of network components are disrupted (9 

nodes and 12 links from the power network; 6 nodes and 9 links from the water network) 

(Almoghathawi et al., 2016).  

5.2.1 Pareto-Optimal Solutions 

The experiment is performed using LINGO 16.0. The problem is solved for varying values 

of 𝜀 to assess how the total cost of restoration changes for different levels of resilience and 

create the Pareto frontier of non-dominated solutions for each disruption scenario. Pareto-

optimal solutions are only available when the cost of restoration, 𝑓𝑛@A , is greater than the 

cost of unmet demand, 𝑝@A , for node 𝑖	𝜖	𝑁TA . Because both objectives are focused on 

minimizing the unmet demand, if 𝑓𝑛@A < 𝑝@A , given there is enough time to restore essential 

disrupted elements, resilience will always reach 1 (Almoghathawi et al., 2016). Therefore, to 

create the Pareto frontier, unmet demand is under-penalized. Figure 3 shows the set of 

Pareto optimal solutions for the capacity-based, degree-based, random, and spatial 

disruption scenarios with 𝜀 = 	 [0.5,1]. 
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Figure 3: Pareto-optimal frontier for competing objectives cost and resilience 

 
The lowest cost is observed when resilience = 0.5 and the highest cost occurs for resilience 

= 1 for all disruption scenarios. The capacity-based disruption scenario results in the 

highest total restoration cost while the spatial disruption scenario has the lowest total 

restoration cost, regardless of level of resilience. 

5.2.2 Assessment of Varying the Number of Established Facilities  

For the remainder of the experiment, the parameters are set as follows: 𝜇A = K
Y

, 𝑇 = 50, 

𝑓𝑛@A , 𝑓𝑙@6A , 𝑢@6A , 𝑐𝑠�	~	𝑈 20,50 , 𝑐@6A , 𝐷𝐶�	~	𝑈	 1,10 , 𝑝@A = 60 and 𝑑𝑛@A , 𝑑𝑙@6A 	~	𝑈(1,5). 

Figures 4, 5, 6 and 7 show the resilience across the available time periods for restoration 

given the selection of 1, 2, and 3 sites for work groups in each network. 
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(a)  
 

(b)  
 

Figure 4: Resilience vs. time for a capacity-based disruption for (a) power network and (b) water network 
considering a different number of established facilities 
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(a)  
 

(b)  
 

Figure 5: Resilience vs. time for a degree-based disruption for (a) power network and (b) water network 
considering a different number of established facilities 
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(a)  
 

(b)  
 

Figure 6: Resilience vs. time for a spatial disruption for (a) power network and (b) water network considering 
a different number of established facilities 
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(a)  
 

(b)  
 

Figure 7: Resilience vs. time for a random disruption for (a) power network and (b) water network 
considering a different number of established facilities 

 
As shown in Figures 3-6 above, increasing the number of facilities and, in turn, increasing 

the number of work crews in each network, reduces the time to full resilience. It should 

also be noted that because of the interdependencies between the two networks, one 

network may reach full resilience before the other. The model inherently prioritizes the 

recovery of interdependent nodes, but one network may take longer to reach full resilience. 
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There is a tradeoff that occurs when increasing the number of facilities. As the 

number of established facilities increases, additional fixed facilities costs are incurred. There 

may exist some benefits to increasing the number of facilities, though. By establising 

additional facilities, the distance each work crew must travel to repair a disrupted element 

and the number of time periods with unmet demand are decreased. So, determining the 

number of facilities to establish is dependent on the cost parameters associated with these 

decision variables. In the case of this experiment, increasing the number of established 

facilities decreases the total cost of restoration because the fixed cost of establishing a 

facility is small compared to the cost of unmet demand.  
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Chapter 6.0 Concluding Remarks 

6.1 Summary 

Modern society heavily depends on critical infrastructure networks, such as electricity, 

water, transportation, and telecommunications, for everyday activities. Just as we are 

dependent on these networks, these networks also depend on each other for operation. 

There exist several complex relationships between each of these critical infrastructures that 

make them highly vulnerable in the event of a malevolent attack, natural disaster, or 

random failure. As such, it has become increasingly important to not only protect these 

networks, but also create a plan for restoring them.  

 This work proposes a model that can be used following a disruptive event to 

restore interdependent infrastructure networks to some desired level of resilience while 

minimizing the total cost of restoration. The model not only schedules work crews to 

restore disrupted elements, but also determines where work crews should originate from, 

given a set of candidate locations.   

6.2 Future work 

This model should be applied to a larger scale to illustrate its usability in a real-world 

scenario. Affiliates of Rice University have created a graphical representation of supply and 

demand nodes associated with the interdependent gas, power, and water networks of 

Shelby County, Tennessee. Shelby County is highly susceptible to earthquakes, so the 

model could be primarily used to determine where recovery crews should be stationed 

prior to a spatial disruption. However, the data could also be used to demonstrate the other 

disruption scenarios discussed in this work. 

 To improve the solution of this model, it may be important to introduce a 

clustering of network nodes. In so doing, candidate sites could be located at the center of 
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these clusters to minimize the distance a work crew would need to travel to restore 

disrupted elements. It is important to note that although candidate sites may exist at the 

center of these clusters, it may not be optimal to position a work crew in those locations. 

Additionally, the proposed model assumes that only one network may use an established 

facility. However, it may be more economical to allow work crews from different networks 

to be stationed at the same facility.  

A robust decision approach to account for several possible disruptions is also an 

important extension of this work.  Since the model is so dependent on a specific disruption 

scenario, by considering the probability of different spatial disruptions a more intelligent 

solution may be available with this approach.  Similarly, incorporating game theory to try to 

predict the malevolent actions could result in a better solution. 

Finally, infrastructure resilience is not the only component of community resilience. 

As such, in future applications of this work, it will be important to consider the 

vulnerability of different groups of people affected by a disruption.
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Appendix A Network Generation 

This section includes all code generated in R Studio used to generate the two 

interdependent infrastructure networks used in the illustration of this model. The following 

code is adapted from the network generation proposed by Almoghathawi et al., 2016.  

library(igraph) 

library(gdata) 

library(hierarchicalDS) 

 

#n = total nodes in network 1 and network 2 

#n1 = nodes in network 1 

#n2 = nodes in network 2 

#s1 = source nodes in network 1 

#s2 = source nodes in network 2 

#N  = overall number of nodes including all candidate sites (n + 25) 

 

#Network 1 = Power 

#Network 2 = Water 

 

two.graph.CS <- function(n, n1, s1, s2) { 

   

  #Number of actual nodes in the graph 

  n2=n1-n 

  #Number of nodes including all candidate sites 

#  N=n+100 

  N=n+25 

   

  #to fix the values of the random coordinates unless n is changed 

  set.seed(n)  

   

  #generate random coordinates and candidate sites 

  xy <- rbind(cbind(runif(n), runif(n)), 

              cbind(0,seq(0,1,.25)), 

              cbind(.25,seq(0,1,.25)), 

              cbind(.5,seq(0,1,.25)), 

              cbind(.75,seq(0,1,.25)), 

              cbind(1,seq(0,1,.25)))  
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  distMat <- as.matrix(dist(xy, method = 'euclidean', upper = T, diag = T)) 

  distmat <- distMat[1:n,1:n] 

   

  #set a large value for the lower trainagle so they won't be selected as min distance 

b/w nodes 

  lowerTriangle(distMat[1:n1,1:n1], diag=TRUE) <- 10  

  lowerTriangle(distMat[(n1+1):n,(n1+1):n], diag=TRUE) <- 10 

   

  #create the adjacency matrix 

  adjMat <- matrix(0, nr = N, nc = N)  

 

   

  #ADD LINKS OF NETWORK 1: 

  #----------------------- 

   

  #min of each column 

  for (j in 1:n1){ 

    for(i in 1:n1){ 

      #ifelse(distMat[i,j] == min(distMat[1:n1,j]), adjMat[i,j] <- 1 , adjMat[i,j] <- 0) 

      ifelse(distMat[i,j] == min(distMat[1:n1,j]), adjMat[i,j] <- 1 , adjMat[i,j]) 

    } } 

   

  #min of each row   

  for (j in 1:n1){ 

    for(i in 1:n1){ 

      ifelse(distMat[i,j] == min(distMat[i,1:n1]) , adjMat[i,j] <- 1, adjMat[i,j]) 

    } } 

   

  #connect each source to the nearest node (not source) 

  for (j in (s1+1):n1){ 

    for(i in 1:s1){ 

      ifelse(distMat[i,j] == min(distMat[i,(s1+1):n1]), adjMat[i,j] <- 1 , adjMat[i,j]) 

    } } 

   

  #ADD LINKS OF NETWORK 2: 

  #----------------------- 

   

  #min of each column 

  for (j in (n1+1):n){ 

    for(i in (n1+1):n){ 
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      ifelse(distMat[i,j] == min(distMat[(n1+1):n,j]), adjMat[i,j] <- 1 , adjMat[i,j] <- 

0) 

    } } 

   

  #min of each row 

  for (j in (n1+1):n){ 

    for(i in (n1+1):n){ 

      ifelse(distMat[i,j] == min(distMat[i,(n1+1):n]) , adjMat[i,j] <- 1 , adjMat[i,j]) 

    } } 

   

   

  #connect each source to the nearest node (not source) 

  for (j in (n1+s2+1):n){ 

    for(i in (n1+1):(n1+s2)){ 

      ifelse(distMat[i,j] == min(distMat[i,(n1+s2+1):n]), adjMat[i,j] <- 1 , 

adjMat[i,j]) 

    } } 

   

  #ADD DEPENDENCY LINKS: 

  #--------------------- 

  #from water to power: 

  for (j in 1:s1){ 

    for(i in (n1+s2+1):n){ 

      ifelse(distMat[i,j] == min(distMat[(n1+s2+1):n,j]), adjMat[i,j] <- 1 , 

adjMat[i,j]) 

    }  } 

   

  #from power to water: 

  for (j in (n1+1):n){ 

    for(i in (s1+1):n1){ 

      ifelse(distMat[i,j] == min(distMat[(s1+1):n1,j]), adjMat[i,j] <- 1 , adjMat[i,j] 

<- 0) 

    }  } 

   

  #Creating the adjacency for the candidate sites 

  adjMat[(n+1):(N),(n+1):(N)] <- square_adj(5) 

   

  #set the lower traiangle of the adjacenecy matrix to 0: 

  lowerTriangle(adjMat[1:n1,1:n1], diag=TRUE) <- 0 

  lowerTriangle(adjMat[(n1+1):n,(n1+1):n], diag=TRUE) <- 0  
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  #isolate the source nodes of Network 1 (i.e. no links b/w them): 

  adjMat[1:s1, 1:s1] <- 0 

  #isolate the source nodes of Network 2 (i.e. no links b/w them): 

  adjMat[(n1+1):(n1+s2), (n1+1):(n1+s2)] <- 0 

   

  #return: xy coordinates, distance matrix, and adjacency matrix: 

  return(list(xy, distMat, adjMat)) 

   

} 

#Create a network of 50 total nodes. 25 in each network with 5 source nodes. 

g <- two.graph.CS(50, 25, 5, 5) 

 

distances <- g[[2]] 

 

 

n=50 

n1=25 

N=n+25 

 

#getting the xy coordinates for all nodes 

COORD <- g[[1]] 

#just the coordinates for the network 

coordNet <- g[[1]][1:n,] 

#just the coordinates for the candidate locations 

coordGrid <-g[[1]][(n+1):N,] 

 

#recalling the adjacency matrix 

mat = g[[3]] 

 

#Create a graph from the adjacency matrix 

net = graph.adjacency(mat, mode="undirected") 

 

#labelling each node 

V(net)$label <- c(1:N) 

 

#NAME the nodes based on which network they belong to 

for (i in 1:N){      

  ifelse (0 < V(net)$label[i] & V(net)$label[i] <= n1, V(net)$name[i] <- "Network1",  

          ifelse(n1 < V(net)$label[i] & V(net)$label[i] <= n, V(net)$name[i] <- 

"Network2", 

            V(net)$name[i] <- "CandidateLocations")) 
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} 

 

#COLOR the NODES based on their network 

V(net)$color <- ifelse(V(net)$name == "Network1", "cornflowerblue",  

                       ifelse(V(net)$name == "Network2","brown2", 

                              "gray")) 

#change the lable's  font size 

V(net)$label.cex[V(net)$name == "Network1"] <- 0.9  

V(net)$label.cex[V(net)$name == "Network2"] <- 0.9  

V(net)$label.cex[V(net)$name == "CandidateLocations"] <- 0.6 

 

#get the two end nodes of all edges 

edge.ends <- ends(net, es=E(net), names=T) 

k=0 

for (i in 1:nrow(edge.ends)){ 

  if(edge.ends[i,1] == "Network1" & edge.ends[i,2] == "Network1"){ 

    k=k+1} 

  else if(edge.ends[i,1] == "Network2" & edge.ends[i,2] == "Network2"){ 

    k=k+1} 

} 

 

#just the ends for the network nodes 

NNedge.ends <- edge.ends[1:k,] 

 

#EDGES: 

for (i in 1:nrow(edge.ends)){ 

  if(edge.ends[i,1] == "Network1" & edge.ends[i,2] == "Network1"){ 

    E(net)$color[i] <- "cornflowerblue" 

    E(net)$lty[i]   <- 1 

    E(net)$width[i] <- "1.5"} 

  else if(edge.ends[i,1] == "Network2" & edge.ends[i,2] == "Network2"){ 

    E(net)$color[i] <- "brown2" 

    E(net)$lty[i]   <- 1 

    E(net)$width[i] <- "1.5"} 

  else if(edge.ends[i,1] == "Network1" & edge.ends[i,2] == "Network2"){ 

    E(net)$color[i] <- "green3" 

    E(net)$lty[i]   <- 1 

    E(net)$width[i] <- "1.5"} 

   

  else{ 

    if(edge.ends[i,1] == "CandidateLocations" & edge.ends[i,2] == "CandidateLocations"){ 
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      E(net)$color[i] <- "white"} 

  }} 

 

#NODES: 

for (i in 1:max(V(net)$label)){ 

  if(V(net)$name[i] == "Network1" | V(net)$name[i] == "Network2"){ 

    V(net)$shape[i] <- "circle" 

    V(net)$size[i]  <- 8 

    V(net)$label.cex <- 0.9} 

   

   

  else{ 

    V(net)$shape[i] <- "square" 

    V(net)$size[i]  <- 4 

    V(net)$label.cex <- 0.6} 

} 

 

#plot(layout_with_kk(net,COORD)) 

# To make them spaced more evenly 

 

plot(net,layout=COORD) 

 

 

#Create the distance matrix between all points 

N2CS <- as.matrix(dist(COORD)) 

#Trims the matrix so it only shows the distance between all network nodes and each 

candidate location 

N2CS <- N2CS[1:n,(n+1):N] 

View(N2CS) 

 

#write to csv 

write.csv(N2CS,file='NodetoCSv3.csv') 

 

 

#function to find the midpoint of 2 coordinates 

midcoord <- function(x1,x2) { 

   

  mid <- (x1+x2)/2 

   

  return(mid) 
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} 

 

#finding the endpoints of each link 

edge.ends2 <- ends(net, es=E(net), names=F) 

#Trims that matrix to just the links between actual network nodes (excludes candidat 

site adjacency) 

midpoints <- edge.ends2[1:102,] 

 

#Creating vectors for the midpoints 

x <- c(1:nrow(midpoints)) 

y <- c(1:nrow(midpoints)) 

 

#Calculates the x and y components of the midpoint between linked nodes 

for (i in 1:nrow(midpoints)){ 

   

  a <- midpoints[i,1] 

  b <- midpoints[i,2] 

   

  x[i] <- midcoord(COORD[a,1],COORD[b,1]) 

  y[i] <- midcoord(COORD[a,2],COORD[b,2]) 

   

} 

 

#Combines the matrix of endpoints and the two vectors with the coordinates of the 

midpoint 

midpoints <- cbind(midpoints, x) 

midpoints <- cbind(midpoints, y) 

View(midpoints) 

 

#Write to csv 

write.csv(midpoints,file='Linksv3.csv') 

 

#Creates a matrix of the x and y coordiates for the midpoints of links and the candidate 

locations 

LinkCSCoords <- rbind(midpoints[,3:4],COORD[(n+1):N,]) 

 

#finds the distance between all midpoints and candidate sites 

distMatLinkCS <- as.matrix(dist(LinkCSCoords, method = 'euclidean', upper = T, diag = 

T)) 

#trims the matrix to contain the midpoints on the vertical portion and candidate sites 

on the horizontal portion 
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distMatLinkCS <- distMatLinkCS[1:nrow(midpoints),(nrow(midpoints)+1):nrow(LinkCSCoords)] 

 

#write to csv 

write.csv(distMatLinkCS,file='LinktoCSv3.csv') 

View(distMatLinkCS) 
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Appendix B Network Restoration Model with Location Selection 

This section details the proposed model presented in Chapter 4. The model is written using 

LINGO 16.0. 

!  Resilience-Driven Recovery Model with Origin Selection for WG; 
!  Adapted from Almoghathawi et al., 2016; 
 
SETS: 
 TIME;  !available time periods; 
 WG;    !available Work groups; 
 NETWORK; !Interdependent networks; 
 NODE;    
 
 CS:  ! Available candidate sites; 
   FB,  ! 1 if a facility is built at CS m, 0 otherwise; 
   FSC, ! Fixed site selection cost; 
   VDC; ! Variable distance cost; 
  
 CNN(NODE,NETWORK): !there is a set of nodes; 
   Q,  !unit cost of unmet demand             (parameter); 
   B,  !demand-supply (= max flow)            (parameter);  
   RN, !time when node i is operational; 
   FN, !recovery cost for a node              (parameter); 
    DN, !time periods needed to restore node i (parameter); 
   VN, !1 if node i is undisrupted and 0 o.w. (parameter); 
   Z; !1 if node i is selected to be restored and 0 o.w. (DV); 
     
 CLN(NODE,NODE,NETWORK):!there is a set of links; 
   CAP, !capacity                                 (parameter); 
   CF,  !flow unitary cost                        (parameter); 
   RL,  !time when link (i,j) is operational; 
   FL,  !recovery cost for a link                 (parameter); 
    DL,  !time periods needed to restore link (i,j)(parameter); 
   VL,  !1 if link (i,j) is disrupted and 0 o.w.  (parameter); 
   Y;  !1 if link (i,j) is selected to be restored and 0 o.w.(DV); 
    
 DEP(CNN,CNN): 
   DD;   !Dependency (parameter); 
 
 CNT(CNN, TIME): !combination of node and time period; 
   SU,  !unmet demand        (DV); 
   ZT;  !1 if node i is operational and 0 o.w. (DV); 
 
 CLT(CLN, TIME): !combination of link and time period; 
   X,   !flow                                     (DV); 
   YT;  !1 if link (i,j) is operational and 0 o.w.(DV); 
 
 CNTR(CNN, TIME, WG): !combination of node, time period and work group; 
    VT;  !1 if restored at time t by work group r and 0 o.w. (DV); 
 
 CLTR(CLN, TIME, WG): !combination of link, time period and work group; 
    WT;  !1 if restored at time t by work group r and 0 o.w. (DV); 
 
 CNCS (CNN, CS): 
   DNCS, ! distance between each node and candidate site; 
   NS;  ! 1 if candidate site m is chosen to serve disrupted node i, 0 
otherwise; 
 
 CLCS (CLN, CS): 
   DLCS, ! Distance between each link and candidate site; 
   LS;  ! 1 if candidate site m is chosen to serve disrupted link (i,j), 
0 otherwise; 
 
 CCSR (CS, WG, NETWORK): 
   SR; ! 1 if WG r is chosen to be stationed at site m, 0 otherwise; 
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 NALL (CNN, TIME, CS, WG): 
  LIN1; !decision variable to deal with non-linear nature of objective; 
 
 LALL (CLN, TIME, CS, WG): 
  LIN2; !Second decision variable to deal with non-linear nature of 
objective; 
 
ENDSETS 
 
 
DATA: 
NETWORK = 1..2; 
NODE = 1..54; 
 
CNN, VN, DN, Q, B, FN      = @OLE('C:\Users\CEC448\Dropbox\Thesis-EM\Example 6 - random 
25CS', 'CNN', 'VN', 'DN', 'Q', 'B', 'FN'); 
DEP, DD                    = @OLE('C:\Users\CEC448\Dropbox\Thesis-EM\Example 6 - random 
25CS', 'FromD', 'FROM.NET', 'ToD', 'TO.NET', 'DD'); 
CLN, CAP, VL, DL, CF, FL   = @OLE('C:\Users\CEC448\Dropbox\Thesis-EM\Example 6 - random 
25CS', 'CLN', 'CAP', 'VL', 'DL', 'CF', 'FL'); 
CS, DNCS, DLCS, FSC, VDC   = @OLE('C:\Users\CEC448\Dropbox\Thesis-EM\Example 6 - random 
25CS', 'CS', 'NODE.TO.CS', 'LINK.TO.CS', 'FSC', 'VDC'); 
 
 
FPo  = 190;   !Original Maximum flow for Power Network; 
FWo  = 280;   !Original Maximum flow for Water Network; 
FPd  = 28;    !Maximum flow after disruption for Power Network (random); 
FWd  = 0;     !Maximum flow after disruption for Water Network (random); 
!FPd  = 0;    !Maximum flow after disruption for Power Network (capacity); 
!FWd  = 0;    !Maximum flow after disruption for Water Network (capacity); 
!FPd  = 45;   !Maximum flow after disruption for Power Network (degree); 
!FWd  = 0;    !Maximum flow after disruption for Water Network (degree); 
!FPd  = 49;   !Maximum flow after disruption for Power Network (spatial); 
!FWd  = 211;  !Maximum flow after disruption for Water Network (spatial); 
TIME = 1..50; !Available time periods for restoration process; 
TT   = 50;    !Max time; 
ss1  = 51;    !supersource for network 1; 
st1  = 52;    !superterminal for network 1; 
ss2  = 53;    !supersource for network 2; 
st2  = 54;    !superterminal for network 2; 
n1   = 25;    !number of nodes in network 1; 
WG   = 1..3;  !available work groups; 
 
ENDDATA 
 
 

 !OBJECTIVE FUNCTION: 
! MAXIMIZE THE SYSTEM RESILIENCE and MINIMIZE COSTS OF (RESTORATION + FLOW + 
DISRUPTION); 
 
 MIN = OBJECTIVE2; 
 
 !OBJECTIVE 1: Maximize the resilience;  
 OBJECTIVE1 =  (SP / (2*TT*SPd)) + (SW / (2*TT*SWd)); 
 
 !OBJECTIVE 2: Minimize the cost;  
 OBJECTIVE2 = @SUM(CLN(i,j,k)| VL(i,j,k)#NE# 1:FL(i,j,k) * Y(i,j,k)) +  
    @SUM(CNN(i,k)  | VN(i,k)  #NE# 1:  FN(i,k) *   Z(i,k)) + 
      @SUM(TIME(t): 
              @SUM(CLN(i,j,k) :CF(i,j,k)* X(i,j,k,t)) + 
              @SUM(CNN(i,k)  :Q(i,k)*SU(i,k,t)) ) + 
    @SUM(CS(m): FSC(m)*FB(m)) + 
    @SUM(TIME(t): 
     @SUM(CS(m):  
      @SUM(WG(r): 
       @SUM(CNN(i,k): LIN1(i,k,t,m,r)) + 
       @SUM(CLN(i,j,k) : LIN2(i,j,k,t,m,r) 
)))); 
 
 
 SP1     = @SUM(TIME(t)| t #EQ# 1:    SPd - @SUM(CNN(i,k)| k #EQ# 1: SU(i,1,1))); 
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 SP2     = @SUM(TIME(t)| t #GE# 2: t*(SPd - @SUM(CNN(i,k)| k #EQ# 1: SU(i,1,t))) 
- (t-1)*(SPd - @SUM(CNN(i,k)| k #EQ# 1: SU(i,1,t-1)))); 
 SP      = SP1 + SP2; 
     SPd     = FPo - FPd; 
  
 SW1     = @SUM(TIME(t)| t #EQ# 1:    SWd - @SUM(CNN(i,k)| k #EQ# 2: SU(i,2,1))); 
 SW2     = @SUM(TIME(t)| t #GE# 2: t*(SWd - @SUM(CNN(i,k)| k #EQ# 2: SU(i,2,t))) 
- (t-1)*(SWd - @SUM(CNN(i,k)| k #EQ# 2: SU(i,2,t-1)))); 
 SW      = SW1 + SW2; 
 SWd     = FWo - FWd; 
 
 
 OBJECTIVE1 >= 1;   
 

 !CONSTRAINTS;: 
 
!A. NETWORK FLOW CONSTRAINTS: 
 
! A.1 CONSERVATION CONSTRAINTS OF FLOW AT NODE I:; 
 !Conservation for the super source nodes; 
 @FOR(CNN(i,k)|  B(i,k) #GT# 0: @FOR(TIME(t): @SUM(CLN(i,j,k): X(i,j,k,t)) - 
@SUM(CLN(j,i,k): X(j,i,k,t))<= B(i,k))); 
 !For all in between nodes; 
 @FOR(CNN(i,k)|  B(i,k) #EQ# 0: @FOR(TIME(t): @SUM(CLN(i,j,k): X(i,j,k,t)) - 
@SUM(CLN(j,i,k): X(j,i,k,t)) = 0)); 
 !For the super terminal nodes; 
 @FOR(CNN(i,k)|  B(i,k) #LT# 0: @FOR(TIME(t): @SUM(CLN(i,j,k): X(i,j,k,t)) - 
@SUM(CLN(j,i,k): X(j,i,k,t)) - SU(i,k,t) = B(i,k))); 
 
 
! A.2 CAPACITY CONSTRAINTS ON LINK (I,J); 
! When everything is disrupted; 
 @FOR(CLN(i,j,k)|  VL(i,j,k) #EQ# 1 #AND# VN(i,k) #EQ# 1 #AND# VN(j,k) #EQ# 1: 
     @FOR(TIME(t): X(i,j,k,t) <= CAP(i,j,k))); 
! When only the first node might be disrupted; 
  @FOR(CLN(i,j,k)| VN(i,k) #NE# 1:  
 @FOR(TIME(t): X(i,j,k,t) <= CAP(i,j,k) * ZT(i,k,t))); 
! When only the second node might be disrupted; 
  @FOR(CLN(i,j,k)| VN(j,k) #NE# 1:  
 @FOR(TIME(t): X(i,j,k,t) <= CAP(i,j,k) * ZT(j,k,t))); 
! When only the link is disrupted; 
  @FOR(CLN(i,j,k)| VL(i,j,k) #NE# 1: 
  @FOR(TIME(t): X(i,j,k,t) <= CAP(i,j,k) * YT(i,j,k,t))); 
 
 
 
! B. INTERDEPENDENCY CONSTRAINTS; 
  @FOR(TIME(t):  
   @FOR(DEP(i,k,j,l)|  DD(i,k,j,l) #EQ# 1: ZT(i,k,t)*DD(i,k,j,l)  >= ZT(j,l,t))); 
 
 
 
! C. ASSIGNMENT AND SCHEDULING CONSTRAINTS: 
 
! RESTORATION TIME CONSTRAINTS; 
! LINK CONSTRAINTS; 
 
  @FOR(CNN(i,k)| VN(i,k) #NE# 1: 
  Z(i,k) - @SUM(WG(r): @SUM(TIME(t): VT(i,k,t,r))) = 0); 
 
  @FOR(CLN(i,j,k)|  VL(i,j,k) #NE# 1: 
  Y(i,j,k) -  @SUM(WG(r): @SUM(TIME(t): WT(i,j,k,t,r))) = 0); 
 
   
 
!WORK GROUPS CONSTRAINTS; 
  @FOR (NETWORK(k) : 
 @FOR(WG(r): 
  @FOR(TIME(t):  
             @SUM(CNN(i,k)|VN(i,k) #NE# 1:  
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        @SUM(TIME(l) |l #GE# t #AND# l #LE  #@ SMIN)TT,(t+DN(i,k)-
1):( VT(i,k,l,r))) 
   + 
             @SUM(CLN(i,j,k)|VL(i,j,k) #NE# 1:  
        @SUM(TIME(l) |l #GE# t #AND# l #LE  #@ SMIN)TT,(t+DL(i,j,k)-
1):( WT(i,j,k,l,r))) <= 1))); 
 
 
  @FOR(TIME(t):  
 @FOR(CNN(i,k)  | VN(i,k)  #NE# 1:  

  ZT(i,k,t) <= @SUM(WG(r): @SUM(TIME(l) |l #GE# 1 #AND# l #LE# t :
VT(i,k,l,r))))); 
 
  @FOR(TIME(t):  
 @FOR(CLN(i,j,k)|VL(i,j,k)#NE# 1:  

  YT(i,j,k,t) <= @SUM(WG(r): @SUM(TIME(l) |l #GE# 1 #AND# l #LE# t :
WT(i,j,k,l,r))))); 
 
 
 
! A DISRUPTED NETWORK ELEMENT CANNOT BE RESTORED (FUNCTIONAL) BEFORE COMPLETING ITS 
RESTORATION TIME; 
  @FOR(CNN(i,k)| VN(i,k) #NE# 1: 
      @SUM(TIME(t) |t #GE# 1 #AND# t #LE# (DN(i,k)-1): ZT(i,k,t)) = 0); 
 
  @FOR(CLN(i,j,k)| VL(i,j,k) #NE# 1: 

      @SUM(TIME(t) |t #GE# 1 #AND# t #LE# (DL(i,j,k)-1): YT(i,j,k,t)) = 0); 
 
  @FOR(CNN(i,k)| VN(i,k) #NE# 1: 
 @SUM(WG(r):  
      @SUM(TIME(t) |t #GE# 1 #AND# t #LE# (DN(i,k)-1): VT(i,k,t,r))) = 0); 
   
  @FOR(CLN(i,j,k)| VL(i,j,k) #NE# 1: 

 @SUM(WG(r):  
      @SUM(TIME(t) |t #GE# 1 #AND# t #LE# (DL(i,j,k)-1): WT(i,j,k,t,r))) = 0); 
 
 
! TIME WHEN A COMPONENT (NODE OR LINK) IS OPERATIONAL; 
  @FOR(CNN(i,k)  | VN(i,k)   #NE# 1: RN(i,k)   = 1 + (@SUM(TIME(t): (1-ZT(i,k,t)))));  
  @FOR(CLN(i,j,k)|VL(i,j,k) #NE# 1: RL(i,j,k) = 1 + (@SUM(TIME(t): (1-YT(i,j,k,t)))));  
 
  @FOR(CNN(i,k)  | VN(i,k)   #EQ# 1: RN(i,k)   = 0);  
  @FOR(CLN(i,j,k)| VL(i,j,k) #EQ# 1: RL(i,j,k) = 0);  
 
! FACILITY LOCATION CONSTRAINTS; 
 
  ! Each chosen candidate site can be assigned at most 1 workgroup; 
  @FOR (CS(m):  
 @SUM(NETWORK(k): @SUM(WG(r): SR(m,r,k))) <= 1); 
 
  ! A work group can only be assigned to 1 chosen site; 
  @FOR (NETWORK(k): 
 @FOR (WG(r): @SUM(CS(m): SR(m,r,k)) = 1)); 
 
  ! A workgroup must be assigned to a chosen candidate site; 
  @FOR(NETWORK(k): 
   @FOR (CS(m): 
  @FOR(WG(r): FB(m) >= SR(m,r,k)))); 
 
! LINEARITY; 
 @FOR (CNN(i,k)|VN(i,k)#NE# 1: 
 @FOR(TIME(t): 
  @FOR(CS(m): 
   @FOR(WG(r): LIN1(i,k,t,m,r) >= 
DNCS(i,k,m)*VDC(m)*(VT(i,k,t,r)+SR(m,r,k)-1))))); 
  
 @FOR (CLN(i,j,k)|VL(i,j,k) #NE# 1: 
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 @FOR(TIME(t): 
  @FOR (CS(m): 
   @FOR(WG(r): LIN2(i,j,k,t,m,r) >= 
DLCS(i,j,k,m)*VDC(m)*(WT(i,j,k,t,r)+SR(m,r,k)-1))))); 
 
! D. DECISION VARIABLES NATURE CONSTRAINTS; 
  @FOR(CNT(i,k,t):  @GIN(SU(i,k,t)));  
  @FOR(CLT(i,j,k,t):@GIN(X(i,j,k,t))); 
   
  @FOR(CNN(i,k)    |VN(i,k)  #NE# 1: @BIN(Z(i,k))); 
  @FOR(CLN(i,j,k)  |VL(i,j,k)#NE# 1: @BIN(Y(i,j,k))); 
 
  @FOR(CNN(i,k)   |VN(i,k)  #EQ# 1:     Z(i,k) = 0); 
  @FOR(CLN(i,j,k)   |VL(i,j,k)#EQ# 1:     Y(i,j,k) = 0); 
 
 
  @FOR(CNT(i,k,t)     |VN(i,k)  #NE# 1: @BIN(ZT(i,k,t))); 
  @FOR(CLT(i,j,k,t)   |VL(i,j,k)#NE# 1: @BIN(YT(i,j,k,t))); 
  @FOR(CNTR(i,k,t,r)  |VN(i,k)  #NE# 1: @BIN(VT(i,k,t,r))); 
  @FOR(CLTR(i,j,k,t,r)|VL(i,j,k)#NE# 1: @BIN(WT(i,j,k,t,r))); 
 
! @FOR(CNT(i,t)     |VN(i)  #EQ# 1:     ZT(i,t) = 0); 
 @FOR(CLT(i,j,k,t)   |VL(i,j,k)#EQ# 1:   YT(i,j,k,t) = 0); 
 @FOR(CNTR(i,k,t,r)  |VN(i,k)  #EQ# 1:   VT(i,k,t,r) = 0); 
 @FOR(CLTR(i,j,k,t,r)|VL(i,j,k)#EQ# 1: WT(i,j,k,t,r) = 0); 
 
  @FOR(CS(m): @BIN(FB(m))); 
  @FOR(CCSR(m,r,k): @BIN(SR(m,r,k))); 
 
!  @FOR(CS(m) | FB(m) #NE# 1: 
   @FOR(CCSR(m,r): SR(m,r) = 0)); 
 
 
  @FOR(NALL(i,k,t,m,r): LIN1(i,k,t,m,r) >= 0); 
  @FOR(LALL(i,j,k,t,m,r): LIN2(i,j,k,t,m,r) >= 0); 
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Appendix C Locations Selected 

This section shows the locations selected for each disruption scenario. The locations 

selected for varying number of work crews will be illustrated. Sites selected for the power 

network will be highlighted by a blue star and sites selected for the water network will be 

highlighted by a red star. 

Appendix C.1 Capacity-based Disruption Scenario 

Appendix C.1.1 1 Facility 
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Appendix C.1.2 2 Facilities 

 

Appendix C.1.3 3 Facilities 
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Appendix C.2 Degree-based Disruption Scenario 

Appendix C.2.1 1 Facility 
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Appendix C.2.2 2 Facilities 

 

Appendix C.2.3 3 Facilities 
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Appendix C.3 Random Disruption Scenario 

Appendix C.3.1 1 Facility 
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Appendix C.3.2 2 Facilities 

 

Appendix C.3.3 3 Facilities 
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Appendix C.4 Spatial Disruption Scenario 

Appendix C.4.1 1 Facility 
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Appendix C.4.2 2 Facilities 

 

Appendix C.4.3 3 Facilities 

 


