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Abstract 

An important aspect of communication is involved in its cellular network. To 

meet the demands, communication requires the next generation cellular network, i.e., 

self organizing networks (SON). In order to implement a self-organizing network, its 

subsections have to be known and optimized using certain rules. The objective of this 

document is to deal with one of the subsections called “Self-healing: Fault 

identification,” in particular by conducting analysis on the Telstra cellular network and 

predicting its disruptions. First, the prediction of the disruptions can be determined by 

establishing the machine learning algorithms upon Telstra data. Thus, the classification 

of faults could be used for finding the nature of the disruptions. Because the appropriate 

algorithm is chosen by the trial-and-error method, there is no one particular algorithm 

that fits particular data. Thus, data has to be pre-processed for the algorithms to be 

applied. Here, the Python Sci-kit module was used as a tool for developing the 

predictive model. As a note, there are many other tools like R, MATLAB, Rattle, 

KNIME, etc. that can be used for machine learning. Then, the nature of the faults was 

identified and investigated to drive customer advocacy.  
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Chapter 1: Introduction 

Let us first take a look at how self-organizing networks (SON) came into 

existence in 5G cellular networks and how machine learning came into existence. Then 

I‟ll proceed to discussing them. 

 

1.1 Genesis of Self-Organizing Networks 

Previously, self-organization was used in wireless sensor networks and 

autonomous computer networks but not in the cellular networks. Self-organization for 

any system means to have its own intelligence, adaptability, agility, and scalability. 

Self-organization is present in not only the communication field but also in other fields 

such as mathematics, science, and engineering. Self-organizing proactively is going to 

be extensively used and will serve as the heart of the future fifth generation (5G) 

cellular networks.  

Ever wonder what is/was life of the legacy networks without self-organization? 

It probably included more time consumption, more Capex and Opex, more human 

labor, etc. This is not what people wanted. With growing technology and growing 

needs, hunger began to make the systems better and better. People wanted the systems 

to be smart, take commands, and perform the tasks in a much less time. Without self-

organization, configuring a base station (BS) parameters to optimize the configured 

parameters, makes changes in any existing services, detect the faults in cellular network 

and rectify them requires much time and effort. The systems did not have even the 

slightest intelligence, and all the tasks had to be done manually. This method could not 

satisfy people and proved tedious as well.  



2 

The quality of service from these was very low compared to the present systems. 

The travelling distance of control signals between nodes in a cellular network was great. 

The BS had to wait for the command from the BSC for handover and other processes. 

Inter-networks and intra-networks cannot cooperate with each other. At least now in 

LTE systems, there is flat architecture with a limited number of nodes, but before that in 

GSM, UMTS networks suffered latency issues. There were very limited data services 

available due to the bitrate constraint. When that type of network failed, fixing the 

problem required days of waiting. In the future, problem resolution will occur in just a 

matter of minutes to rectify.  

If we go a few years further back, there were no traces of self-organizing even in 

wireless sensory and computer networks. However, for the 1G, 2G and 3G cellular 

networks, if we take a look at the 1G or analog networks, they were used only for voice 

communication. That was sufficient in the previous decades, but, as said earlier, it could 

not satisfy human needs. The speeds provided by these networks were also a reason for 

poor quality of service. 2G GSM provided speeds of 14.4 kbps; where as in UMTS, the 

speed was 2 Mbps on 5 MHz bandwidth. Nevertheless, this is not as bad as it looks 

since both voice and data were shared on the 5 MHz bandwidth. UMTS failed to 

provide feature rich multimedia service.  

Structural limitation of legacy networks and lack of available resources were the 

main reasons for not having the self-organization in these networks. In between there 

were GPRS and EDGE networks for the sole purpose of improving data services. They 

provided data rates of around 160 kbps and 400 kbps, respectively, which were still 

insufficient.  Currently, HSPA+ and LTE networks are providing competition and 
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acting as the ground work for the full development of an autonomous intelligent 5G 

cellular network. Here in LTE networks the number of nodes have been decreased, 

thereby decreasing the signaling distance and, eventually, latency. It has been reduced 

to 100 ms to 10 ms in present LTE networks. There are things like time transmission 

interval (TTI) and grant requests that can be reduced. So, we can say that there is little 

intelligence or self-organization in LTE. We can say that this is the introduction phase 

for the SON in 5G.  

In legacy networks things were completely manual, and now in LTE it is still 

manual labor with little introduction of the self–0rganisation intelligence. The old 

systems were weak and fragile. The systems like LTE are in reactive state, which needs 

to shift to the proactive state with agility. The next chapter discusses these 

characteristics of SON in detail. But these are the scenarios that led to the development 

of intelligent self-organizing systems in cellular networks apart from sensory and 

computer networks. 

 

1.2 Genesis of Machine Learning 

We saw that the main reason for the SON‟s existence was the growing need for 

multimedia services. In this section, the pillar for Machine learning is data. Along with 

the growing population, data also began increasing tremendously in a way that no one 

could ever imagine. Statistics of International Data Corporation (IDC) shows that there 

were 1.8 zettabytes of data in the year 2011 itself. Facebook takes up approximately 1 

petabyte of storage, Large Hadron Collider near Geneva, Switzerland, which is the 

world‟s largest and most powerful particle accelerator produces approximately 15 
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petabytes of data/year. The list goes on… So, we collect the data to find the interesting 

and hidden facts in it. For this sole purpose, there are many platforms and analytics, 

e.g., Hadoop, Spark, Machine Learning, SQL queries.  

“We are drowning in data, but starving for knowledge.” 

- John Naisbitt 

The collected data cannot be used readily for analysis purposes. It has to be 

transformed and cleaned. This is called as data pre-processing. Once it has been 

processed, it is loaded into the above-referenced platforms and obtain the required 

results. You might be wondering what we do analyzing all this data? It can be used for 

various purposes such as to predict the customers and grow the business. Social media 

can look at the data models and introduce new features to grow business. It is used in 

almost every field like medicine, engineering, banking, etc. In this situation, collecting 

data means not collect the actual information so there is no violation of human privacy. 

Just the statistical numbers are collected to satisfy the objective of growing the business. 

So, data analysis is a win-win situation for both producers and consumers. Each and 

every field has some form of data requested and collected from people. Similarly, 

knowingly or unknowingly, everyone is contributing data through a medium called the 

internet. These are stored in the form of internet archives in the cloud services and 

servers.  

There are a lot of security protocols in practice that preserve people‟s privacy. 

The negative side of that fact is that hackers who try to steal data misuse the security 

protocols. Hackers‟ purpose is to try and break the security algorithms.  However, 

another strong algorithm will be developed to counter the hackers‟ efforts. So, there‟s a 
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tug-of-war going on between good and bad between internet hackers and security 

developers. No need to worry because current algorithms have been developed that are 

so strong that it is almost impossible to break them. Even with the help of super 

computers, it would take more than a lifetime. So, there are both positive and negative 

aspects of this data. But, it can serve as a very powerful tool once harnessed. 

Previously, there was big data to analyze these huge amounts of data. But again, human 

hunger came into action and there was need for something more than just analysis. They 

needed predictions and for this we need artificial intelligence-based algorithms and 

machines. Therefore, algorithms also began to become complex or, in other terms, we 

can say that the analysis maturity level increased from raw data to predictive modelling. 

In the present generation, both big data and machine learning are used together to find 

the insights. We shall discuss about Machine Learning and the applications involved in 

detail later in the chapter 3. The terms machine learning or data mining or advanced 

analytics mean the same mining of interesting or previously unknown knowledge. The 

SQL tools can be used for surface analysis of the data, Statistical methods can be used 

for the shallow data analysis, whereas machine learning should be used for hidden data 

analysis. Hence, machine learning and its algorithms came into existence. This is not 

data warehousing, query processing. They need to be implemented on technologies like 

Python, R, etc. Some of the machine learning tools are Weka, Knime, Orange, Rapid 

Miner, Rattle, Mahout, etc. So, now it may seem obvious how powerful this c data can 

be when transformed with proper intelligence-based algorithms. 
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Chapter 2: Self Organizing Networks (SON) 

Self Organizing makes the networks flexible and Quality of Service (QOS) 

achievable. The other technologies such as Densification, Control Data Separation 

Architecture (CDSA) help SON to increase capacity and energy efficiency. SON will be 

able to reduce the OPEX, eliminating human labor.  

 

2.1 Understanding SON 

2.1.1 Scalability 

For example, consider an algorithm that can change the antenna tilts for Load 

Balancing (LB) and Coverage and Capacity Optimization (CCO). As the number of 

antennas (or of antenna tilts?) increases, the complexity of the system increases for the 

co-ordination. This does not make the network Self Organizing. So, for a system to 

satisfy this scalability property, the increase in the size of system should be inversely 

proportional to the complexity. 

2.1.2 Stability  

A system should change itself from one state to another in a finite number of 

times and come back to being stable. If it does not satisfy the finite condition and keeps 

oscillating infinitely, then it cannot be considered stable. 

2.1.3 Agility 

As much as agility is important for self organizing systems, it is also important 

to have moderate or correct agility. These changes should neither be too fast nor too 

slow. Hence, this state is somewhat difficult to achieve.  
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There are different types in the Self Organizing Networks. They are: 

i. Self-Configuration 

ii. Self-Optimization  

iii. Self-Healing 

This research work comes under the subtype, Self-Healing, which predicts errors 

proactively. 

 

2.2 Self Configuration 

In 5G networks, the SON feature is expected to possess self-configuration. The 

cells will automatically configure the radio parameters, IP address, and a neighbor cell 

list, which is needed whenever a new cell is added or an existing cell has an issue. 

Configuring eNodeBs (eNB) requires small cells at the time of deployment or upgrade 

of the network or when there are any faults in the network. This self-configuration 

replaces manual configuration and saves lot of time. The Next Generation Mobile 

Network (NGMN) group of 2006 determined many use cases for SON. Instead of PDN-

GW assigning the IP address, the UEs can request the DHCP servers and get their IP 

address. This saves the initial configuration time in future networks. By communicating 

and co-operating with neighboring cells, the eNB will be able to compute its own 

physical cell ID. In the same process, it can add/delete any number of neighbors. The 

RF parameters such as interference, tilt, frequency, propagation, and transmitted power 

to the UE will be configured by the UE on its own in the 5G networks. Researchers are 

investigating whether the eNBs can support the self-test mechanism, leaving the 

validation work for humans. The future eNBs will be able to authenticate themselves 
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with the MME instead of piggybacking the NAS messages with RRC messages. In this 

self-configuration, there are parameters that influence neighboring cells as well their 

own cells. The policies for these configurations will be set by the operators such as 

ATT, Verizon, etc. The operators present a framework which is important and serves as 

the basis for all configuration changes. 

 

2.3 Self Optimization 

With the increase in technologies, optimizing and maintaining high quality 

networks for customers has never been more difficult. Sometimes we need to choose 

between maintaining high level of quality and being cost-effective. This Self- 

Optimization in the networks translates into little improvement. Otherwise, Self-

Optimization automatically restores the original parameters and tries something else. 

Self-Configuration has to be followed by the Self-Optimization for the systems to 

perform efficiently. In this, Load Balancing (LB) and Coverage and Capacity 

Optimization (CCO) are the primary focus. Optimum distribution of users among cells 

based on cells throughput is called load balancing. Whereas, when the received 

minimum downlink power of each user is above a certain threshold, that state is called 

CCO. These both can be formulized using the Shannon capacity equation by 

substituting tilts and cell individual offsets (CIO) in the SINR model. Load balancing 

can be achieved with antenna adaption, power adaption, and hybrid of both antenna and 

power. Neighbor Optimization includes automatic detection and deletion of neighboring 

cells. Followed by this the eNB computes its cell ID (part of self-configuration). By 

coordinating with neighboring cells on their power levels, interference can be reduced. 
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Handoff optimization can be achieved by monitoring the KPIs, which promote 

automatic inter and intra handoffs. Energy savings can be automated using the cell-on-

demand approach, which turns the base stations on only when they are needed. So, self-

optimization all boils down to the optimization of antenna parameters, transmit power, 

and frequency reuse.  

 

2.4 Self Healing 

Self-healing involves automatic fault detection by diagnosis and fault correction 

by recovery actions. This research is based mainly on the automatic fault detection 

subpart of self-healing, which, in turn, is a subtype of the self-organizing networks. For 

self-healing to occur, we need artificial intelligence algorithms, which machine learning 

provides and is discussed in the next chapter. So, focusing on the self-healing, it 

performs network maintenance and updates.  

The following are the recommendations of the Next Generation Mobile 

Networks (NGMN) group. The faults, or outage, in the cells should be detected 

instantly. The network should then reconfigure the neighboring cells to compensate for 

the failed cell for the radio resources. Performing equipment traces is a troubleshooting 

activity. Many self-healing functions are coming into picture at a very slow rate. The 

relay stations were being used as self-healing agents at the starting stages of self-

healing. They were robust and reliable. They can route traffic to neighboring cells‟ 

eNBs when the existing eNB fails. We detect the outages when there is a drop in the 

performance of the network or its components. These outages can be categorized as 

little, medium, or critical faults (where the network is completely down). Bayesian 
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analysis predicts the fault probability in the system using other features‟ values. The 

accuracy of the algorithm will depend on the training of the data and the number of 

classifications of the fault severity.  

Another way of classifying network faults is the pattern recognition method. But 

whatever may be the method, there still might be a few outliers undetected because of 

the working conditions and complexity of the algorithms. Compensation time depends 

on the severity of the faults detected. The neighboring cells would take reconfiguration 

steps to increase/decrease antenna tilts, transmission power, etc.  Table 1 summarizes 

the tasks of the Self Organizing Network (SON) types: 

Table 1. Overview of the SON functions 

Self-Configuration Self-Optimization Self-Healing 

Cell ID Neighbor Optimization Fault detection 

RF Parameters Handoff Fault Compensation 

Self-test Interference Equipment traces 

Self-authentication Energy Savings Analysis 
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Chapter 3: Machine Learning 

With the development of modern society and the increase in population, data is 

growing tremendously, causing cellular networks to be prone to faults. There is a need 

for artificial intelligence in cellular networks. This can be achieved through machine 

learning algorithms and optimization. One of the famous machine learning definitions is 

a computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. An algorithm is a sequence of instructions given to a 

computer to solve a problem. However, there are no algorithms for some tasks.  

 For example, differentiating spam e-mails from legitimate e-mails does not have 

a ready-made algorithm for sorting that type of data. In this case, we would like the 

computer to learn and extract output automatically.  

With the increase in stored data from terabytes and petabytes to zettabytes and 

exabytes, computer technology to access to huge amounts of data stored long distances 

from the user is available. Also, we have technology to store and process large amounts 

of data. Application of machine learning to large databases is known as data mining. 

The terms machine learning, predictive analytics, advanced analytics and data science 

are sometimes used interchangeably, which is okay. So, machine learning can be said to 

be a database problem combined with artificial intelligence. SQL queries are used for 

simple queries and reporting. Machine learning is used to dig deep into data stores to 

find hidden patterns that maybe were unknown. What can be hidden in data? Examples 

are associations, sequences, classifications, forecasts, anomalies, grouping/clustering. 
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 The environments or inputs/outputs keep changing constantly, and the machines 

that can adapt to these changes reduce the need for re-design. Machine learning is more 

like an on-the-job improvement. Hence, machine learning can be said to be the 

collection of various studies like statistics, brain models, artificial intelligence, control 

theory, etc. Basically, the machine learns the structure of some sort. Some of the tasks 

involved in machine learning are prediction, diagnosis, grouping, etc. How does 

machine learning work? The computer analyzes data, finds patterns, and performs 

predictions. These activities can be called categories of machine learning models. 

Predictive methods use some of data features to predict some unknown or future 

value of other features. We are trying to predict some value of interest like fault 

severity. Some of features might be descriptors as well.  The machine learning function 

finds human interpretable patterns that can describe the data. We can look at this model 

and gain knowledge of its characterization or how it is getting some of its general 

properties. Some of the algorithms might have both properties.  

Other interesting topics of discussion in machine learning is supervised learning, 

unsupervised learning, reinforcement learning. The classification and regression belong 

to the supervised learning category, predictive methods.  
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Figure 1. Machine Learning Tree Diagram 

  

Classification means predicting yes/no. In a banking, when the bank loans an 

amount to a customer, the bank has to predict the risks associated with the customer‟s 

ability to repay the loan. The bank analyzes the credit score of the customer to see if he 

will repay the amount promptly within the given timeline. These predictions are based 

on the information stored about the customer, namely past payment history, income 

earned, savings amount, etc. This is called training the algorithm using past data. 

Predicted output here will be either 1/0. Sometimes we might have to calculate 

probabilities given the attributes of the customer.  

Like the banking system, other examples for classification analysis could be 

pattern recognition, face recognition, speech recognition, medical diagnosis, biometrics 

used to authenticate people based on their physical characteristics. Training gives us 

knowledge about the data. In turn, the data can be compressed or normalized according 

to one‟s situation.  
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Regression means the output is a number, for example, predicting the price of 

cars. In predictive methods, a training dataset is typically provided with labeled 

examples. Like a teacher correcting student answers, we use that training data to train 

our models and find patterns. So our input features are provided along with the target 

class feature, and our goal is to predict the target class.  

Clustering belongs to the unsupervised learning category, descriptive methods. 

Here there is no teacher. The data is provided with no knowledge of any information 

except the data itself. So, we have no information about the hidden patterns contained 

within the data. There are no target values provided for each of our instances, so we say 

the data is unlabeled. The goal here is to find naturally occurring patterns or groupings 

or clustering or segmentations. After these groupings are made, it is easy to assign 

policies, provide services and, thereby, improve business strategies. Examples of 

Clustering could be image clustering, document compression, molecular biology, and 

biometrics.  

In Reinforcement learning, the output is a series of actions, rather than a single 

action, for example, playing a chess game. The game has simple rules but complex 

possibilities. A single move by itself is not important. What matters is a sequence of 

moves. Robot navigation could be another example of this reinforcement learning.  

There are lots of new algorithms in the machine learning subsections, as 

previously discussed, that make machine learning a trial–and-error method of analysis.  

That is, there is no way to tell which algorithm best fits specific data. However, one can 

decide whether the data belongs to Supervised or Unsupervised category. But, after 

determining the data‟s category, one needs to know how the algorithm works, and then 
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prepare the data has to fit the algorithm. Even at this stage, we might learn that the 

algorithm is not performing as expected. That is the disadvantage of using machine 

learning. Once an algorithm fails to deliver the expected results, the algorithm must be 

modified, or a new algorithm developed and tried, or the dataset must be reformatted.  

 Machine learning is applied in science, including chemistry, physics, medicine, 

pharmaceuticals, health care, energy, smart city, financial industry, E-commerce, 

market analysis, risk analysis, and sports and entertainment. In hospitals, it is used to 

classify and treat cancer, tumors, and diseases. Banks use it to determine loan risk. Call 

centers use to apply inferred relationships to prevent churn. Telecommunications use it 

to analyze call records to optimize the network and improve the quality of service to the 

customers. Airlines use it to predict passengers who are likely to miss their flights to 

predict an overbooking number in hopes of increasing revenue. 
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Chapter 4: Thesis Description and Data Preparation 

4.1 Problem Statement Description 

Telstra is one of the Australia‟s largest telecom network operators. The goal is to 

predict the severity of service disruptions on its network using a dataset of features from 

its service logs. We need to determine whether the disruption is a momentary glitch or 

total interruption of network connectivity. By predicting the faults beforehand, Telstra 

will be able to serve its customers more reliably.  

Fault severity is divided into three categories: 0, 1, and 2., i.e., 0 meaning no 

fault, 1 meaning only a few faults, and 2 meaning many faults. There are two main 

datasets provided namely train.csv and test.csv. We need to use the train data to train 

our predictive machine learning algorithms and then test the model on the provided test 

data. So, as said earlier in chapter 3, this train data acts as a teacher guiding the students 

(test data). 

Different data files and their descriptions are provided in Table 2. 

Table 2. Data Files 

File Name Description 

severity_type.csv Severity warning message from logs 

train.csv Training set for fault severity 

test.csv Test set for fault severity 

log_feature.csv Features extracted from log files 

resource_type.csv Type of resource related to main data (train, test) 

event_type.csv Events related to main data 
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4.2 Data Pre-Processing using Python 

The foremost step before applying whatever the given data, the data needs to be 

changed into a form suitable for the algorithm. This can be done only once, so we have 

a thorough understanding of how the algorithm works. In this section, this paper deals 

with the data preprocessing used and the „Sci-kit‟ module for machine learning in 

Python. Some of the essential Python libraries used in data preprocessing are numerical 

Python or Numpy – Package for scientific computing and deals with arrays, Pandas. 

Another package of Python used mainly for data frames and series, Matplotlib that 

produces 2D plots and visualizations, Scipy that performs statistical analysis, and 

Seaborn that si another data visualization library. In this work with Telstra data with 

SVM, Interactive Python, or IPython, was used for coding in Python 2.7. 

 Preparation means cleaning, combining, normalizing, reshaping, slicing of data 

for data analysis. The Telstra data consisted of 6 different datasets in total along with 

the Train and Test datasets. There were no any NULL items which did not require 

cleaning but in case if they do in your data, then they might require cleaning. All these 

data sets had „id‟ column as primary key in them. So, first step I did was to combine or 

merge them on „id‟ primary key with „left‟ join. There is a concept of „Feature Scaling‟ 

in machine learning. The idea is that if we have a problem with multiple features make 

sure that the features have similar range of values. This will be useful for gradient 

descent to converge more quickly to the minimum of optimization problem. This can be 

achieved in data preprocessing by normalization which is given by: 

     
                  

                
 

Where,                                



18 

                       –                

Reshaping of the data in python can be done either by using pivot, dummies etc. where 

the instances are reshaped into features and transformed into binary values of 0 or 1. i.e. 

value „1‟ for the corresponding „id‟ and „0‟ elsewhere. This is also called as 

binarization. This idea will be highly useful for Regression algorithms and sometimes 

categorical values. 

The library which includes all the methods for preprocessing is sklearn. 

preprocessing. These are some of the things used in my data processing model. But, 

these will be different for different data and algorithms. So, this should serve as an idea 

to kick start while you work with your own data sets and algorithms.  

 

4.2.1 Program 

#Imports 

import numpy as np 

import pandas as pd 

from pandas import Series, DataFrame 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

#Load data 

train = pd.read_csv('dataset/train.csv')  

test = pd.read_csv('dataset/test.csv') 

event_type = pd.read_csv('dataset/event_type.csv') 
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log_feature = pd.read_csv('dataset/log_feature.csv') 

resource_type = pd.read_csv('dataset/resource_type.csv') 

severity_type = pd.read_csv('dataset/severity_type.csv') 

train.head() 

#Concatenate test and train 

train['source'] = 'train' 

test['source'] = 'test' 

data = pd.concat([train,test],ignore_index=True) 

data.head() 

print data.shape 

data.describe() 

#Count of each category 

data['fault_severity'].value_counts() 

# Now we merge the dataframes 

# We can choose which DataFrame's column to use, this will choose left  

data1 = pd.merge(data,event_type, on='id', how='left') 

data1.head() 

print data1.shape 

data2 = pd.merge(data1,log_feature, on='id', how='left') 

data2.head() 

print data2.shape 

data3 = pd.merge(data2,resource_type, on='id', how='left') 

data3.head() 
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print data3.shape 

data4 = pd.merge(data3,severity_type, on='id', how='left') 

data4.head() 

print data4.shape 

# We now drop duplicates and rearrange columns 

data5 = data4.drop_duplicates() 

data5 = 

DataFrame(data5,columns=['id','location','source','event_type','log_feature','volume','res

ource_type','severity_type','fault_severity']) 

data5 = data5.drop('source',axis=1) 

data5.head() 

 

data5.to_csv(path_or_buf='dataset/mergedData1.csv') 
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Chapter 5: Algorithms – Analysis and Implementation 

5.1 Support Vector Machines (SVM) 

One of the most popular classification algorithms is the Support Vector Machine 

(SVM). This is the algorithm which was used on the Telstra data to classify the faults. 

So, going forward, we will discuss about this algorithm in this paper. SVM has many 

applications such as the digit recognition, pattern recognition, text classification etc. 

SVM consists of two cases namely Separable case and Non-Separable case. As the 

name, itself indicates, Separable data is the one which can be linearly separated. Let us 

imagine that, we need to classify our data into two types and separate them. This 

separation is called Margins and they need to be as large as possible (Wide road). We 

call this concept as Maximal Margin Hyperplane. In 2-D this margin is just a line and in 

multi dimension this is called Hyperplane. Non-Separable data is the one which cannot 

be separated linearly. In such cases, we use „Kernel‟ trick where the trick is to transform 

them into another space and slice the data with hyperplane. 

 Before we get into the details of SVM there are few concepts which needs to be 

understood like Hypothesis, Cost function, Optimization etc. These are concepts are 

almost similar to Regression algorithms also. Firstly, we take our training data, apply 

our learning algorithm. Then it is the duty of the learning algorithm to output a function 

„h‟ called the hypothesis. This hypothesis takes the input variables or features (x) and 

output the estimate value of the target class (y). It can also be called as mapping 

function from x‟s to y‟s. In simple linear case this is represented as below: 

             

Where,                 . Imagine this as a line equation       .  
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To formalize this, we need the difference between the expected value, h(x) and actual 

vale, y to be small. Then we sum this difference over all the instances (rows) of the 

training set. This gives us the cost function and mathematically this can be represented 

as below: 

 (     )  
 

  
∑           

 

 

   

 

Where,                                       . We will denote 

  
    

                         

   
     

                              

Minimizing cost function over these parameters is called the optimization. If we are 

going to find the extremum of a function, then we have to use Lagrange multipliers. 

This gives us new expression to maximize or minimize without thinking about 

constraints. Another interesting concept to know is about bias vs variance and 

overfitting vs under fitting. If the margin does not fit the training data very well, then 

we call it as „under fitting‟ or having „high bias‟. This usually appears in data with less 

parameters and features. If the margin fits through all our training instances, then it is 

called as „overfitting‟ or having „high variance‟. This case appears in higher order 

polynomials where the parameters and features are high.  

 

5.1.1 How it works? 

(i) Linear SVM: Separable case 
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 In our SVM algorithm let us denote these parameters      with b, w. Also, 

      
    

     
      {    }. The decision boundary for classification can be 

written as: 

        

As mentioned earlier in introduction, classification algorithms output either 1/0 or 

yes/no or positive/negative. Let us consider two points namely      for positive and 

negative points present in our training data. If any two points      are present on the 

boundary, then they can be written as: 

                                   

                                 

Figure 2. Separable Linear SVM 

 

For the points, above or below the decision boundary line, these equations become 
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The width of the boundary is given by the distance between the two hyperplanes. Let us 

consider a point    on equation (1) and a point    on equation (2). Subtracting (1) and 

(2) we get 

  (     )    

‖ ‖     

        
 

‖ ‖
                                           

The train phase of the SVM is where the algorithm learns. This involves estimating the 

parameters w and b of the boundary from train data. The conditions for choosing these 

parameters are given below: 

                   

                     

These equations mean that all the instances belonging to category y = 1 must be on or 

above the decision boundary        . All the instances belonging to category y = -

1 must be on or below the boundary         . Both these conditions can be 

summarized as: 

                                           

Additionally, SVM has another condition that the margins should be maximized which 

is equal to minimizing the below function by Lagrange. 

     
‖ ‖ 

 
                        

Optimizing this function gives us the Lagrange dual optimization solution for SVM. We 

write the objective function by substituting equation (3) and the constraint into 

Lagrange 
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‖ ‖  ∑   

 

   

                                

Where,                        

                                     

To find the extremum, we have to take the derivative with respect to w and b and set 

them to zero. Doing so, we get the below equations: 

  

  
   ∑  

 

   

          ∑  

 

   

                        

  

  
  ∑      

 

   

   ∑      

 

   

                        

Substituting equations (6) and (7) in equation (5) and simplifying we get 

   ∑  

 

   

 
 

 
∑∑                                

  

 

This is the final Dual Lagrange solution for SVM. The difference between the primal 

and dual Lagrangians is that the dual Lagrangian consists of Lagrange multiplier,   and 

the train data. Whereas the primary Lagrangian consists of Lagrange multiplier and the 

decision boundary parameters. 

 

(ii) Linear SVM: Non-Separable case 

 Previous case is applicable to error-free case. In this section, SVM constructs the 

decision boundary where there are little errors (not linearly separable) as shown in the 

below figure. The margin should be tolerable to small training errors and is called Soft 

margin.  
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Figure 3. Non-Separable SVM 

 

Here, we can see that there are few samples of squares and circles lying in the decision 

boundary. In such cases, there will be a tradeoff between width and the training errors 

in the boundary. While the objective function in eq. (4) still is applicable, the 

constraints in eq. (3) no longer satisfies the given condition. Therefore, a slack variable 

    is introduced into the constraints to relax the inequality and this is of positive value. 

The conditions now become: 

                     

                       

Where         

The modified objective function is given by: 

     
‖ ‖ 

 
   ∑  

 

   

                    

Let k=1 for simplification, C is user specific parameter and can be chosen according to 

the performance of the model. 
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The Lagrangian for the constrained optimization can be written as: 

   
 

 
‖ ‖   ∑  

 

   

 ∑   

 

   

                 ∑    

 

   

          

Here, the first two terms are objective function to be minimized. Third term is the 

inequality constraint consisting slack variables. Fourth term is the non-negative 

requirement of  . The third term, inequality constraints can be transformed into equality 

constraints by using KKT conditions.  

          ,      

                  

       

Taking first-order derivative with respect to  , b,    and setting it to zero, we get 

  

  
   ∑            

 

   

∑       

 

   

              

  

  
  ∑      

 

   

                      

  

   
                                         

Substituting eq. (11), (12) and (13) in Lagrangian eq. (10) we get 

   
 

 
∑∑             

  

  ∑   ∑  {  (∑          

 

)      }

  

 ∑        

 

 

 ∑   

 

   

 

 
∑∑             
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The above equation which we got is similar to the eq. (8). In linear separable case, 

Lagrange multipliers       Whereas, in non-Separable case,        

 

(iii) Nonlinear SVM: 

In this section, we will see how to apply SVM to nonlinear decision boundaries. The 

trick is to transform the data from x to a new space called      such that model can be 

simplified and a linear decision boundary can be applied. The data from original feature 

space is mapped onto a new space.  

Figure 4. Non-linear SVM 

 

Nonlinear SVM can be formalized as the below optimization problem: 

   
 

‖ ‖ 

 
 

subject to                                   

The main difference here is that instead of taking attribute x, learning is performed on 

the transformed     . So, based on the previous approach taken for linear case, writing 

primal Lagrangian and setting the derivative to zero, the parameters w and b can be 

derived using the following eqns.  
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  ∑         

 

   

              

  {  (∑                 

 

)   }              

 

we can derive Dual Lagrangian as 

   ∑   

 

   

 

 
∑∑                    

  

                            

Dot product between the vectors in the transformed space could be difficult as we move 

to higher dimensions and the solution is kernel trick. 

The Kernel trick is a method of computing similarity in the transformed space using the 

original attributes. For example, the dot product between vectors u, v in the transformed 

space can be written as: 

          (  
    

  √    √     ) (  
    

  √    √     ) 

   
   

    
   

                

                      

                                       

Mercer‟s principle ensures that kernel functions can be always expressed as dot product 

between two input vectors in some high dimensional space 

Mercer’s Theorem:  

 A kernel function K can be expressed as 

                 

 if and only if, for any function of      such that ∫        is finite, then 
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∫                       

Figure 5. Nonlinear decision boundary obtained by SVM using polynomial kernel 

function 

 

 

5.1.2 Log-Loss Calculation 

Log loss is called as Logarithmic likelihood function of a Bernoulli random distribution. 

This is an error metric used when the constraints have to predict something as 

True/False with probability (likelihood) of 1 (true) to 0.5 (equally true) to 0 (false). 

If a prediction is true (1) when it is actually false (0) i.e., for wrong prediction the 

punishment will add ∞ (large number) to your error score. So, log loss closer to zero 

means more accurate is your prediction.  This can be formulated in a mathematical way 

as below: 
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∑ ∑            

 

   

 

   

 

Where, N = Number of observations 

M = Number of class labels 

    {
                                        
           

 

    = Predicted probability that observation i is in class j 

The SVM model was run in “WEKA”, popular suite of machine learning software 

written in Java. The data set was sent through the pre-process stage. Then in the 

classification algorithms SVM is selected and run as 66-34 % split because we need to 

train the data on 66% split and test the data to check and calculate our log loss. 

Figure 6. Sample data for SVM 

 

Using SVM our output and confusion matrix looks like below: 

=== Run information === 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 

1 -K "weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" 

Instances:    61839 

Attributes:   7 

Correctly Classified Instances       15966               75.9382 % 

Incorrectly Classified Instances      5059               24.0618 % 

id location event_type log_feature volume resource_type severity_type fault_severity

14121 L118 E34 F312 19 R2 S2 One

14121 L118 E34 F232 19 R2 S2 One

14121 L118 E35 F312 19 R2 S2 One

14121 L118 E35 F232 19 R2 S2 One

9320 L91 E34 F315 200 R2 S2 Zero

9320 L91 E34 F235 116 R2 S2 Zero
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a b c Classified as 

3466 1519 671 a = Zero 

1384 10447 586 b = One 

590 309 2053 c = Two 

 

We predicted 3466+1384+590 = 5440 to be fault severity = 0. 

Out of this set, the probability of being correct is 3466/5440 = 0.637 

Inner log loss for this piece = 3466   log (0.637) = -678.54 

Similarly, we predicted 1519+10447+309 = 12275 to be fault severity = 1 

Out of this set, the probability of being correct is 10447/12275 = 0.851 

Inner log loss for this piece = 10447   log (0.851) = -731.60 

We predicted 671+586+2053 = 3310 to be fault severity = 2 

Out of this set, the probability of being correct is 2053/3310 = 0.620 

Inner log loss for this piece = 2053   log (0.620) = -425.872 

          
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5.2 Naïve Bayes 

5.2.1 How it works? 

Bayes Theorem: 

Let A, B be two random variables. Bayes theorem states that probability of A can be 

calculated given the probability of B or vice-versa. This is called conditional 

probability.  

   |   
          

    
    

   |      

    
              

According to our data set let us consider variables X and Y. Where, X = instance set 

(rows) and Y = Class (column to be predicted). Here,    |   is called Conditional 

probability or Posterior probability where we have to predict the class based on 

different row values. This can be done by Bayes Theorem. Whereas,    |   is called 

Class-Conditional probability where the class is given and rows are to be predicted. For 

this we have two types of Bayesian Classification methods: Naïve Bayes and Bayesian 

Belief Network. We are going to look into the Naïve Bayes method. 

Example Illustration: 

Let us use an online dating data to explain conditional probability and Bayes theorem. 

Table 3. Example - Online Dating Data 

  

Age 
 

  

18-29 30-49 50-64 65+ Total 

Used online 
dating 

Yes 50 82 55 20 207 

No 200 522 400 350 1472 

 
Total 250 604 455 370 1679 

 

Using these data, we can calculate the percent of 30 to 49-year-olds use online dating 

sites = 82/604   0.14 
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Formally this is P (use online dating site | 30-49 year old). We calculated this 

Conditional probability as simply a ratio of two frequencies, but we can formalize 

things a bit more. Let event A represent using an online dating site. And event B 

represent being 30 to 49 years old. The frequency in the numerator corresponds to the 

number of times events A and B happened at the same time. And the denominator 

corresponds to the number of times event B happened. Probability of A given B is equal 

to probability of A and B divided by probability of B, 
          

    
 . This is Bayes' rule.  

So why is this formula called Bayes' rule? Thomas Bayes, who lived between 1702 and 

1761, was a mathematician who established a mathematical basis for probability 

inference, that is, a means of calculating from the number of times an event has not 

occurred. Let‟s recalculate that same probability using Bayes' rule.  

                          |                 

 
                                          

                 
 

 
(

  

    
)

(
   

    
)
      which is same as above. 

Naïve Bayes Classifier: 

Let us assume that the attributes (columns) are independent to each other.  

   |     ∏    |    

 

   

 

Where, each instance set     {         } up to d attributes or features or variables 

(columns). 

The working principle behind Naïve Bayes is that instead of computing Class-

Conditional probability for every combination of X, we have to estimate the conditional 
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probability of each of the    given the class Y. Therefore, we are converting a Class-

Conditional probability to Conditional probability and using the Bayes theorem for 

simplification. It can be mathematically formulated as given below: 

   |   
    ∏     |   

   

    
            

The denominator      is always constant and can be ignored. Conditional probability 

can be computed for both categorical and continuous data. For categorical values, the 

conditional probability is just the normal fraction, which is simple. Whereas, Gaussian 

distribution is used for the continuous features. Our data set belongs to categorical case. 

 

5.2.2 Log-Loss Calculation 

Program: 

# Program to compute Naïve Bayes using R 

 library(e1071) 

data<-read.csv(file="C:/Users/Hemanth/Anaconda2/IPython 

Notes/dataset/Data1_training.csv") 

data$id<-as.factor(data$id) 

data$location<-as.factor(data$location) 

data$event_type<-as.factor(data$event_type) 

data$log_feature<-as.factor(data$log_feature) 

data$resource_type<-as.factor(data$resource_type) 

data$severity_type<-as.factor(data$severity_type) 

data$fault_severity<-as.factor(data$fault_severity) 

data$volume<-as.numeric(data$volume) 
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numObs<-dim(data) 

samps<-floor(0.80*numObs[1]) 

set.seed(350) 

theSample<-runif(samps,1,numObs[1]) 

trainingDS<-data[theSample,] 

testDS<-data[-theSample,] 

nbM<-naiveBayes(fault_severity ~ .,trainingDS,laplace=0.25) 

predictions<-predict(nbM,testDS) 

table(testDS$fault_severity,predictions) 

 

Figure 7. Sample of the dataset for Naive Bayes 

 

a. Three confusion matrices are obtained for each “laplace” value and different 

“seed” values.  

b. Then, the average of the log loss at each laplace is computed and plotted in the 

graph. 

Using Naïve Bayes algorithm our output and confusion matrix looks like below: 

 

 

 

 

id location event_type log_feature volume resource_type severity_type fault_severity

14121 L118 E34 F312 19 R2 S2 1

14121 L118 E34 F232 19 R2 S2 1

14121 L118 E35 F312 19 R2 S2 1

14121 L118 E35 F232 19 R2 S2 1

9320 L91 E34 F315 200 R2 S2 0

9320 L91 E34 F235 116 R2 S2 0
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Laplace =1 and seed = 50 

   predictions 
        0     1     2 
  0 13770  1205  1560 
  1   736  5782   727 
  2     2    46  3878 

 

We predicted 13770+736+2 = 14508 to be fault severity = 0. 

Out of this set, the probability of being correct is 13770/14508 = 0.949 

Inner log loss for this piece = 13770   log (0.949) = -312.22 

Similarly, we predicted 1205+5782+46 = 7033 to be fault severity = 1 

Out of this set, the probability of being correct is 5782/7033 = 0.822 

Inner log loss for this piece = 5782   log (0.822) = -491.83 

We predicted 1560+727+3878= 6165 to be fault severity = 2. 

Out of this set, the probability of being correct is 3878/6165 = 0.629 

Inner log loss for this piece = 3878   log (0.629) = -780.74 

            
                        

                 
       

Laplace =1 and seed = 75 

   predictions 
        0     1     2 
  0 14017  1120  1543 
  1   774  5872   751 
  2     6    46  3821 

 

We predicted 14017+774+6 = 14797 to be fault severity = 0. 

Out of this set, the probability of being correct is 14017/14797 = 0.947 

Inner log loss for this piece = 14017   log (0.947) = -329.66 

We predicted 1120+5872+46 = 7038 to be fault severity = 1. 

Out of this set, the probability of being correct is 5872/7038 = 0.834 
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Inner log loss for this piece = 5872   log (0.834) = -461.91 

We predicted 1543+751+3821 = 6115 to be fault severity = 2. 

Out of this set, the probability of being correct is 3821/6115 = 0.625 

Inner log loss for this piece = 3821   log (0.625) = -780.32 

 Log loss = 0.056 

Laplace =1 and seed = 100 

   predictions 
        0     1     2 
  0 13796  1104  1524 
  1   743  5884   738 
  2     7    47  3918 

 

We predicted 13796+743+7 = 14546 to be fault severity = 0. 

Out of this set, the probability of being correct is 13796/14546 = 0.948 

Inner log loss for this piece = 13796   log (0.948) = -317.18 

We predicted 1104+5884+47 = 7035 to be fault severity = 1. 

Out of this set, the probability of being correct is 5884/7035 = 0.836 

Inner log loss for this piece = 5884   log (0.836) = -456.55 

We predicted 1524+738+3918 = 6180 to be fault severity = 2. 

Out of this set, the probability of being correct is 3918/6180 = 0.634 

Inner log loss for this piece = 3918   log (0.634) = -775.47 

 Log loss = 0.055 

Laplace = 0.75 and seed = 125 

   predictions 
        0     1     2 
  0 13900  1045  1536 
  1   653  5937   731 
  2     5    47  3886 
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We predicted 13900+653+5 = 14558 to be fault severity = 0. 

Out of this set, the probability of being correct is 13900/14558 = 0.955 

Inner log loss for this piece = 13900   log (0.955) = -279.21 

We predicted 1045+5937+47 = 7029 to be fault severity = 1. 

Out of this set, the probability of being correct is 5937/7029 = 0.845 

Inner log loss for this piece = 5937   log (0.845) = -435.34 

We predicted 1536+731+3886 = 6153 to be fault severity = 2. 

Out of this set, the probability of being correct is 3886/6153 = 0.632 

Inner log loss for this piece = 3886   log (0.632) = -775.58 

 Log loss = 0.054 

Laplace = 0.75 and seed = 150 

   predictions 
        0     1     2 
  0 13836  1053  1570 
  1   739  5967   685 
  2     3    47  3859 

 

We predicted 13836+739+3 = 14578 to be fault severity = 0. 

Out of this set, the probability of being correct is 13836/14578 = 0.949 

Inner log loss for this piece = 13836   log (0.949) = -313.90 

We predicted 1053+5967+47 = 7067 to be fault severity = 1. 

Out of this set, the probability of being correct is 5967/7067 = 0.844 

Inner log loss for this piece = 5967   log (0.844) = -438.45 

We predicted 1570+685+3859 = 6114 to be fault severity = 2. 

Out of this set, the probability of being correct is 3859/6114 = 0.631 

Inner log loss for this piece = 3859   log (0.631) = -771.22 
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 Log loss = 0.055 

Laplace = 0.75 and seed = 175 

   predictions 
        0     1     2 
  0 13987   959  1482 
  1   661  5961   807 
  2     7    42  3871 

 

We predicted 13987+661+7 = 14655 to be fault severity = 0 

Out of this set, the probability of being correct is 13987/14655 = 0.954 

Inner log loss for this piece = 13987   log (0.954) = -283.39 

We predicted 959+5961+42 = 6962 to be fault severity = 1 

Out of this set, the probability of being correct is 5961/6962 = 0.856 

Inner log loss for this piece = 5961   log (0.856) = -401.86 

We predicted 1482+807+3871 = 6160 to be fault severity = 2 

Out of this set, the probability of being correct is 3871/6160 = 0.628 

Inner log loss for this piece = 3871   log (0.628) = -781.00 

 Log loss = 0.053 

Laplace = 0.5 and seed = 200 

   predictions 
        0     1     2 
  0 14105   921  1549 
  1   593  6174   594 
  2     1    46  3827 

 

We predicted 14105+593+1 = 14699 to be fault severity = 0 

Out of this set, the probability of being correct is 14105/14699 = 0.960 

Inner log loss for this piece = 14105   log (0.960) = -252.69 

We predicted 921+6174+46 = 7141 to be fault severity = 1 
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Out of this set, the probability of being correct is 6174/7141 = 0.865 

Inner log loss for this piece = 6174   log (0.865) = -390.15 

We predicted 1549+594+3827 = 5970 to be fault severity = 2 

Out of this set, the probability of being correct is 3827/5970 = 0.641 

Inner log loss for this piece = 3827   log (0.641) = -739,05 

 Log loss = 0.050 

Laplace = 0.5 and seed = 225 

   predictions 
        0     1     2 
  0 13946   889  1437 
  1   626  6237   575 
  2     4    38  3897 

 

We predicted 13946+626+4 = 14576 to be fault severity = 0 

Out of this set, the probability of being correct is 13946/14576 = 0.957 

Inner log loss for this piece = 13946   log (0.957) = -267.61 

We predicted 889+6237+38 = 7164 to be fault severity = 1 

Out of this set, the probability of being correct is 6237/7164 = 0.871 

Inner log loss for this piece = 6237   log (0.871) = -375.34 

We predicted 1437+575+3897 = 5909 to be fault severity = 2 

Out of this set, the probability of being correct is 3897/5909 = 0.660 

Inner log loss for this piece = 3897   log (0.660) = -704.52 

 Log loss = 0.049 

Laplace = 0.5 and seed = 250 

   predictions 
        0     1     2 
  0 14098   859  1476 
  1   561  6187   647 
  2     3    32  3908 
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We predicted 14098+561+3 = 14662 to be fault severity = 0 

Out of this set, the probability of being correct is 14098/14662 = 0.962 

Inner log loss for this piece = 14098   log (0.962) = -240.17 

We predicted 859+6187+32 = 7078 to be fault severity = 1 

Out of this set, the probability of being correct is 6187/7078 = 0.874 

Inner log loss for this piece = 6187   log (0.874) = -361.51 

We predicted 1476+647+3908 = 6031 to be fault severity = 2 

Out of this set, the probability of being correct is 3908/6031 = 0.648 

Inner log loss for this piece = 3908   log (0.648) = -736.40 

 Log loss = 0.048 

Laplace = 0.25 and seed = 300 

   predictions 
        0     1     2 
  0 14466   685  1315 
  1   378  6494   491 
  2     4    36  3863 

 

We predicted 14466+378+4 = 14848 to be fault severity = 0 

Out of this set, the probability of being correct is 14466/14848 = 0.974 

Inner log loss for this piece = 14466   log (0.974) = -163.75 

We predicted 685+6494+36 = 7215 to be fault severity = 1 

Out of this set, the probability of being correct is 6494/7215 = 0.9 

Inner log loss for this piece = 6494   log (0.9) = -296.93 

We predicted 1315+491+3863 = 5669 to be fault severity = 2 

Out of this set, the probability of being correct is 3863/5669 = 0.681 

Inner log loss for this piece = 3863   log (0.681) = -643.51 
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 Log loss = 0.040 

Laplace = 0.25 and seed = 325 

   predictions 
        0     1     2 
  0 14263   743  1256 
  1   426  6608   453 
  2     3    38  3864 

 

We predicted 14263+426+3 = 14792 to be fault severity = 0 

Out of this set, the probability of being correct is 14263/14792 = 0.964 

Inner log loss for this piece = 14263   log (0.964) = -183.57 

We predicted 743+6608+38 = 7389 to be fault severity = 1 

Out of this set, the probability of being correct is 6608/7389 = 0.894 

Inner log loss for this piece = 6608   log (0.894) = -320.59 

We predicted 1256+453+3864 = 5573 to be fault severity = 2 

Out of this set, the probability of being correct is 3864/5573 = 0.693 

Inner log loss for this piece = 3864   log (0.693) = -614.58 

 Log loss = 0.042 

Laplace = 0.25 and seed = 350 

   predictions 
        0     1     2 
  0 14576   635  1338 
  1   362  6482   498 
  2     3    21  3917 

 

We predicted 14576+362+3 = 14941 to be fault severity = 0 

Out of this set, the probability of being correct is 14576/14941 = 0.976 

Inner log loss for this piece = 14576   log (0.976) = -156.57 

We predicted 635+6482+21 = 7138 to be fault severity = 1 
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Out of this set, the probability of being correct is 6482/7138 = 0.908 

Inner log loss for this piece = 6482   log (0.908) = -271,39 

We predicted 1338+498+3917 = 5753 to be fault severity = 2 

Out of this set, the probability of being correct is 3917/5753 = 0.681 

Inner log loss for this piece = 3917   log (0.681) = -653.91 

 Log loss = 0.038 

Laplace = 0.1 and seed = 400 

   predictions 
        0     1     2 
  0 14864   504  1063 
  1   248  6865   279 
  2     5    26  3877 

 

We predicted 14864+248+5 = 15117 to be fault severity = 0 

Out of this set, the probability of being correct is 14864/15117 = 0.983 

Inner log loss for this piece = 14864   log (0.983) = -108.95 

We predicted 504+6865+26 = 7395 to be fault severity = 1 

Out of this set, the probability of being correct is 6865/7395 = 0.928 

Inner log loss for this piece = 7395   log (0.928) = -221.72 

We predicted 1063+279+3877 = 5219 to be fault severity = 2 

Out of this set, the probability of being correct is 3877/5219 = 0.743 

Inner log loss for this piece = 5219   log (0.743) = -500.49 

 Log loss = 0.030 

 

Therefore, From the 3 log loss values at each “laplace”, the average log losses are:  

At 1.0 = 0.056, at 0.75 = 0.054, at 0.5 = 0.049, at 0.25 = 0.040 
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Now we plot these values in the graph – laplace vs log loss. 
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5.3 Random Forest 

5.3.1 How it works? 

Bagging or aggregating is a technique where the samples are drawn out repeatedly from 

the data set with replacement in a uniform probability distribution manner. Since it is 

done with replacement, some instances may re-appear and some may not appear while 

sampling. Decision trees are weak learners thereby weak predictors.  

Random Forest is an ensemble algorithm which combines (bags) many decision trees to 

produce a strong classifier output. They average out the output results. Uniform 

probability distribution generates the random vectors which in turn generate decision 

trees. Whereas, the Ada boost, another ensemble method uses adaptive instead of fixed 

distribution. As said earlier, since „n‟ samples are selected randomly with replacement, 

randomness is injected into the system. When there are large number of trees, the error 

rate can be given by: 

             
 ̅      

  
           

Where,  ̅ = Average correlation between the trees 

s = Strength or number of trees in the classifier 

As the dependency between the trees increases or as the number of trees decreases, the 

error rate increases. More trees, less error and the classifier can be improved. Steps 

involved in the implementation of Random forest are as follows: 

a) From an input training data, random vectors are created (Uniform probability 

distribution sampling). 

b) Based on the random vectors, decisions trees are generated. 

c) At the output, all these decision trees are combined and averaged out. 
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One way to introduce random vectors into the trees is to select N Features. By, doing so 

the number of features to examine decreases. This is called Random Input (RI) 

approach. Now, the strength and correlation among the trees depend on the number of 

features N. Smaller the N value, lesser the correlation thereby lesser is the error rate 

which can be deduced from eqn. (1)  

Number of features,           where, d = Total number of features. 

Secondly, If the d is too small, then it becomes difficult to select the random vectors and 

in such situations, linear combinations of features are used to increase the feature space. 

This is called Random Combination (RC) approach.  

Random vectors are more robust and faster than the AdaBoost ensemble method. 

 

5.3.2 Log loss Calculation 

Program 1 

# Program to generate Random Forest 

library(randomForest) 

data <- read.csv("C:/Users/Hemanth/Anaconda2/IPython 

Notes/dataset/smotedData.csv") 

data$id<-as.factor(data$id) 

data$location<-as.factor(data$location) 

data$event_type<-as.factor(data$event_type) 

data$log_feature<-as.factor(data$log_feature) 

data$resource_type<-as.factor(data$resource_type) 

data$severity_type<-as.factor(data$severity_type) 
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data$fault_severity<-as.factor(data$fault_severity) 

data$volume<-as.factor(data$volume) 

numObs <- dim(data) 

samples <- floor(0.50 * numObs[1]) 

rand.samples <- runif(samples,1,numObs[1]) #generate random deviates 

trainingDS <- data[rand.samples,] 

testDS <- data[-rand.samples,] 

rf.model <- randomForest(fault_severity ~ ., trainingDS) 

print(rf.model) 

 

This is the Random Forest algorithm created initially to run in RStudio. But, Since R 

does not support more than 33 categorical values, this dataset could not be run in R. So, 

I had to move to Weka software. 

 

Program 2 

#R Program to Smote the data to solve class imbalance problem 

library(DMwR) 

# Read in the csv file 

originalData<-read.csv("C:/Users/Hemanth/Anaconda2/IPython 

Notes/dataset/Data1_training_catfs.csv") 

# Omit any rows with missing data for now 

originalData<-na.omit(originalData) 

# Look at the class spread (composition) 
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table(originalData$fault_severity) 

# Resample (play with the percentages - execution may take awhile) 

smotedData<-SMOTE(fault_severity ~ ., originalData, perc.over = 400,perc.under=100) 

# Look at the new composition 

table(smotedData$fault_severity) 

# Save the "smoted" data 

write.csv(smotedData, file="C:/Users/Hemanth/Anaconda2/IPython 

Notes/dataset/smotedData.csv") 

 

Figure 8. Sample Dataset for Random Forest - Smoted data 

 

The outputs and confusion matrix for Random Forest are given below along with the 

log loss computations and Graph between Log loss vs No. of trees. 

Number of Trees = 10: 

Correctly Classified Instances       23933               89.714  % 

Incorrectly Classified Instances      2744               10.286  % 

a b c Classified as 

7142 562 435 a = Zero 

547 2768 437 b = One 

358 405 14023 c = Two 

 

We predicted 7142+547+358 = 8047 to be fault severity = 0 

Out of this set, the probability of being correct is 7142/8047 = 0.888 

Inner log loss for this piece = 7142   log (0.888) = -370.06 

id location event_type log_feature volume resource_type severity_type fault_severity

12186 L1093 E20 F219 1 R2 S1 Zero

6443 L995 E11 F80 2 R8 S1 One

2918 L362 E11 F232 1 R8 S1 Zero

9037 L473 E35 F235 1 R2 S2 Zero

1444 L1052 E11 F82 2 R8 S1 One
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We predicted 562+2768+405 = 3735 to be fault severity = 1 

Out of this set, the probability of being correct is 2768/3735 = 0.741 

Inner log loss for this piece = 2768   log (0.741) = -360.18 

We predicted 435+437+14023 = 14935 to be fault severity = 2 

Out of this set, the probability of being correct is 14023/14935 = 0.939 

Inner log loss for this piece = 14023   log (0.939) = -362.53 

 Log loss = 0.041 

Number of Trees = 30: 

Correctly Classified Instances       24016               90.0251 % 

Incorrectly Classified Instances      2661                9.9749 % 

a b c Classified as 

7161 543 435 a = Zero 

547 2780 425 b = One 

329 382 14075 c = Two 

 

We predicted 7161+547+329 = 8037 to be fault severity = 0 

Out of this set, the probability of being correct is 7161/8037 = 0.891 

Inner log loss for this piece = 7161   log (0.891) = -358.91 

We predicted 543+2780+382 = 3705 to be fault severity = 1 

Out of this set, the probability of being correct is 2780/3705 = 0.750 

Inner log loss for this piece = 2780   log (0.750) = -346.79 

We predicted 435+425+14075 = 14935 to be fault severity = 2 

Out of this set, the probability of being correct is 14075/14935 = 0.942 

Inner log loss for this piece = 14075   log (0.942) = -362.53 

 Log loss = 0.040 
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Number of Trees = 40: 

Correctly Classified Instances       24031               90.0813 % 

Incorrectly Classified Instances      2646                9.9187 % 

a b c Classified as 

7173 543 423 a = Zero 

555 2777 420 b = One 

330 375 14081 c = Two 

 

We predicted 7173+555+330 = 8058 to be fault severity = 0 

Out of this set, the probability of being correct is 7173/8058 = 0.890 

Inner log loss for this piece = 7173   log (0.890) = -362.43 

We predicted 543+2777+375 = 3695 to be fault severity = 1 

Out of this set, the probability of being correct is 2777/3695 = 0.752 

Inner log loss for this piece = 2777   log (0.752) = -344.46 

We predicted 423+420+14081 = 14924 to be fault severity = 2 

Out of this set, the probability of being correct is 14081/14924 = 0.944 

Inner log loss for this piece = 14081   log (0.944) = -355.57 

 Log loss = 0.040 
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Chapter 6: Conclusion and Future work 

6.1 Conclusion 

We have seen how Self Organizing Networks (SON) can be used along with 

machine learning techniques to make powerful predictions. From the results of machine 

learning algorithms, we can deduce that Naïve Bayes best suits our dataset with a 

minimum log loss of < 0.04. We attain this value with lesser value of laplace parameter 

(< 0.25). So, from the graph laplace vs. log loss is always a decreasing curve. The next 

better algorithm would be Random Forest, which is an ensemble method that has a 

minimum log loss value of 0.04. But its graph becomes constant at 0.04 after number of 

trees > 30. Support Vector Machines performed poorly with a log loss value of 0.08, 

resulting in low accuracy rate in terms of classification. 

 

6.1.1 Detailed accuracy by class 

Precision and recall are the two widely used metrics in the classification 

problems. Precision is the fraction of actual records that are positive. It is calculated 

column wise in a confusion matrix. While recall means the fraction of predicted records 

that are positive, it is calculated row wise in a confusion matrix. 

Mathematically they are represented as: 

            
             

                            
    

  

     
  

         
  

                     
 

F Measure is the harmonic mean of precision and recall and is given by: 
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Naïve Bayes: 

predictions 
        0     1     2 
  0 14864   504  1063 
  1   248  6865   279 
  2     5    26  3877 

 

For fault severity 0, 

Precision, p = 14864/15117 = 0.983 

Recall, r = 14864/16431 = 0.905 

           
             

           
       

For fault severity 1, 

Precision, p = 6865/7395 = 0.928 

Recall, r = 6865/7392 = 0.929 

           
             

           
       

For fault severity 2, 

Precision, p = 3877/5219 = 0.743 

Recall, r = 3877/3842 = 1.009 

           
             

           
       

Table 4. Naive Bayes detailed accuracy 

Precision Recall F-Measure Class 

0.983 0.905 0.942 Zero 

0.928 0.929 0.928 One 

0.743 1.009 0.856 Two 
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Random Forest: 

a b c Classified as 

7142 562 435 a = Zero 

547 2768 437 b = One 

358 405 14023 c = Two 

 

Similarly, we get: 

Table 5. Random Forest detailed accuracy 

Precision Recall F-Measure Class 

0.888 0.878 0.882 Zero 

0.741 0.738 0.739 One 

0.941 0.948 0.945 Two 

 

Support Vector Machines: 

a b c Classified as 

3466 1519 671 a = Zero 

1384 10447 586 b = One 

590 309 2053 c = Two 

 

Similarly, we get: 

Table 6. Support Vector Machines detailed accuracy 

Precision Recall F-Measure Class 

0.851 0.841 0.846 Zero 

0.637 0.613 0.625 One 

0.620 0.695 0.656 Two 

 

For classes 0 and 1, the performance of              

For class 2, the performance of           
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6.2 Future Work 

With Naïve Bayes algorithm, we can find out the exact predicted fault severity 

(0 or 1 or 2) of any individual instances. But, with Random Forest, as of now, we 

cannot find out what could be the fault severity of a particular 1000
th

 or 1746
th

 record. 

This could be taken up as an extension of the current work in the future to build the 

algorithm further. Also, with SVM performing poorly, we could research on any other 

algorithms (neural networks) and try to see if they provide greater accuracy. 
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