
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SON: PREDICTING THE NATURE OF SERVICE DISRUPTIONS IN CELLULAR

NETWORKS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN TELECOMMUNICATIONS ENGINEERING

By

HEMANTH MADABUSHI

 Norman, Oklahoma

2016

SON: PREDICTING THE NATURE OF SERVICE DISRUPTIONS IN CELLULAR

NETWORKS

A THESIS APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Pramode Verma, Chair

Dr. Gregory Macdonald

Dr. Robert Huck

© Copyright by HEMANTH MADABUSHI 2016

All Rights Reserved.

iv

Acknowledgements

The satisfaction that accomplishing and completing of any task would be

incomplete without naming the people who made it possible and whose constant

guidance and encouragement made the author seek perfection.

I would like to express my sincere gratitude to my thesis guide Dr. Gregory

MacDonald, Professor, Department of Telecommunications Engineering, OU for

assisting and guiding me throughout the thesis work and also for his valuable teachings

in machine earning and networking, suggestions, and comments.

I am also deeply thankful to my thesis advisor Dr. Pramode Verma, Director

and Professor, Department of Telecommunications Engineering, OU for giving me an

opportunity to pursue my master‟s degree and without whose constant encouragement,

the completion of the work would not have been possible.

I am thankful to Dr. Ali Imran, professor, Department of Telecommunications

Engineering, OU for helping me choose this research and also for his teachings in

cellular technologies, which were helpful in the development of this thesis.

I am thankful to Dr. Robert Huck, professor, Department of

Telecommunications Engineering, OU who agreed to be on my defense committee and

for his valuable teachings in networking.

I‟m thankful to the researchers whose papers and works have served as

resources for me to understand the concerned topic and that motivated me to carry out

the thesis work. I wish to express my deep sense of gratitude to my parents for their

constant encouragement and support. Finally, I thank my friends who helped me during

the course of work.

v

Table of Contents

Acknowledgements ... iv

List of Tables .. vii

List of Figures .. viii

Abstract .. ix

Chapter 1: Introduction ... 1

1.1 Genesis of Self-Organizing Networks .. 1

1.2 Genesis of Machine Learning ... 3

Chapter 2: Self Organizing Networks (SON) ... 6

2.1 Understanding SON .. 6

2.1.1 Scalability .. 6

2.1.2 Stability .. 6

2.1.3 Agility .. 6

2.2 Self Configuration .. 7

2.3 Self Optimization .. 8

2.4 Self Healing .. 9

Chapter 3: Machine Learning ... 11

Chapter 4: Thesis Description and Data Preparation ... 16

4.1 Problem Statement Description .. 16

4.2 Data Pre-Processing using Python .. 17

4.2.1 Program ... 18

Chapter 5: Algorithms – Analysis and Implementation ... 21

5.1 Support Vector Machines (SVM) ... 21

vi

5.1.1 How it works? .. 22

5.1.2 Log-Loss Calculation .. 30

5.2 Naïve Bayes .. 33

5.2.1 How it works? .. 33

5.2.2 Log-Loss Calculation .. 35

5.3 Random Forest .. 46

5.3.1 How it works? .. 46

5.3.2 Log loss Calculation .. 47

Chapter 6: Conclusion and Future work ... 53

6.1 Conclusion .. 53

6.1.1 Detailed accuracy by class ... 53

6.2 Future Work .. 56

References .. 57

vii

List of Tables

Table 1. Overview of the SON functions ... 10

Table 2. Data Files .. 16

Table 3. Example - Online Dating Data ... 33

Table 4. Naive Bayes detailed accuracy ... 54

Table 5. Random Forest detailed accuracy ... 55

Table 6. Support Vector Machines detailed accuracy .. 55

viii

List of Figures

Figure 1. Machine Learning Tree Diagram .. 13

Figure 2. Separable Linear SVM .. 23

Figure 3. Non-Separable SVM ... 26

Figure 4. Non-linear SVM .. 28

Figure 5. Nonlinear decision boundary obtained by SVM using polynomial kernel

function ... 30

Figure 6. Sample data for SVM .. 31

Figure 7. Sample of the dataset for Naive Bayes ... 36

Figure 8. Sample Dataset for Random Forest - Smoted data ... 49

ix

Abstract

An important aspect of communication is involved in its cellular network. To

meet the demands, communication requires the next generation cellular network, i.e.,

self organizing networks (SON). In order to implement a self-organizing network, its

subsections have to be known and optimized using certain rules. The objective of this

document is to deal with one of the subsections called “Self-healing: Fault

identification,” in particular by conducting analysis on the Telstra cellular network and

predicting its disruptions. First, the prediction of the disruptions can be determined by

establishing the machine learning algorithms upon Telstra data. Thus, the classification

of faults could be used for finding the nature of the disruptions. Because the appropriate

algorithm is chosen by the trial-and-error method, there is no one particular algorithm

that fits particular data. Thus, data has to be pre-processed for the algorithms to be

applied. Here, the Python Sci-kit module was used as a tool for developing the

predictive model. As a note, there are many other tools like R, MATLAB, Rattle,

KNIME, etc. that can be used for machine learning. Then, the nature of the faults was

identified and investigated to drive customer advocacy.

1

Chapter 1: Introduction

Let us first take a look at how self-organizing networks (SON) came into

existence in 5G cellular networks and how machine learning came into existence. Then

I‟ll proceed to discussing them.

1.1 Genesis of Self-Organizing Networks

Previously, self-organization was used in wireless sensor networks and

autonomous computer networks but not in the cellular networks. Self-organization for

any system means to have its own intelligence, adaptability, agility, and scalability.

Self-organization is present in not only the communication field but also in other fields

such as mathematics, science, and engineering. Self-organizing proactively is going to

be extensively used and will serve as the heart of the future fifth generation (5G)

cellular networks.

Ever wonder what is/was life of the legacy networks without self-organization?

It probably included more time consumption, more Capex and Opex, more human

labor, etc. This is not what people wanted. With growing technology and growing

needs, hunger began to make the systems better and better. People wanted the systems

to be smart, take commands, and perform the tasks in a much less time. Without self-

organization, configuring a base station (BS) parameters to optimize the configured

parameters, makes changes in any existing services, detect the faults in cellular network

and rectify them requires much time and effort. The systems did not have even the

slightest intelligence, and all the tasks had to be done manually. This method could not

satisfy people and proved tedious as well.

2

The quality of service from these was very low compared to the present systems.

The travelling distance of control signals between nodes in a cellular network was great.

The BS had to wait for the command from the BSC for handover and other processes.

Inter-networks and intra-networks cannot cooperate with each other. At least now in

LTE systems, there is flat architecture with a limited number of nodes, but before that in

GSM, UMTS networks suffered latency issues. There were very limited data services

available due to the bitrate constraint. When that type of network failed, fixing the

problem required days of waiting. In the future, problem resolution will occur in just a

matter of minutes to rectify.

If we go a few years further back, there were no traces of self-organizing even in

wireless sensory and computer networks. However, for the 1G, 2G and 3G cellular

networks, if we take a look at the 1G or analog networks, they were used only for voice

communication. That was sufficient in the previous decades, but, as said earlier, it could

not satisfy human needs. The speeds provided by these networks were also a reason for

poor quality of service. 2G GSM provided speeds of 14.4 kbps; where as in UMTS, the

speed was 2 Mbps on 5 MHz bandwidth. Nevertheless, this is not as bad as it looks

since both voice and data were shared on the 5 MHz bandwidth. UMTS failed to

provide feature rich multimedia service.

Structural limitation of legacy networks and lack of available resources were the

main reasons for not having the self-organization in these networks. In between there

were GPRS and EDGE networks for the sole purpose of improving data services. They

provided data rates of around 160 kbps and 400 kbps, respectively, which were still

insufficient. Currently, HSPA+ and LTE networks are providing competition and

3

acting as the ground work for the full development of an autonomous intelligent 5G

cellular network. Here in LTE networks the number of nodes have been decreased,

thereby decreasing the signaling distance and, eventually, latency. It has been reduced

to 100 ms to 10 ms in present LTE networks. There are things like time transmission

interval (TTI) and grant requests that can be reduced. So, we can say that there is little

intelligence or self-organization in LTE. We can say that this is the introduction phase

for the SON in 5G.

In legacy networks things were completely manual, and now in LTE it is still

manual labor with little introduction of the self–0rganisation intelligence. The old

systems were weak and fragile. The systems like LTE are in reactive state, which needs

to shift to the proactive state with agility. The next chapter discusses these

characteristics of SON in detail. But these are the scenarios that led to the development

of intelligent self-organizing systems in cellular networks apart from sensory and

computer networks.

1.2 Genesis of Machine Learning

We saw that the main reason for the SON‟s existence was the growing need for

multimedia services. In this section, the pillar for Machine learning is data. Along with

the growing population, data also began increasing tremendously in a way that no one

could ever imagine. Statistics of International Data Corporation (IDC) shows that there

were 1.8 zettabytes of data in the year 2011 itself. Facebook takes up approximately 1

petabyte of storage, Large Hadron Collider near Geneva, Switzerland, which is the

world‟s largest and most powerful particle accelerator produces approximately 15

4

petabytes of data/year. The list goes on… So, we collect the data to find the interesting

and hidden facts in it. For this sole purpose, there are many platforms and analytics,

e.g., Hadoop, Spark, Machine Learning, SQL queries.

“We are drowning in data, but starving for knowledge.”

- John Naisbitt

The collected data cannot be used readily for analysis purposes. It has to be

transformed and cleaned. This is called as data pre-processing. Once it has been

processed, it is loaded into the above-referenced platforms and obtain the required

results. You might be wondering what we do analyzing all this data? It can be used for

various purposes such as to predict the customers and grow the business. Social media

can look at the data models and introduce new features to grow business. It is used in

almost every field like medicine, engineering, banking, etc. In this situation, collecting

data means not collect the actual information so there is no violation of human privacy.

Just the statistical numbers are collected to satisfy the objective of growing the business.

So, data analysis is a win-win situation for both producers and consumers. Each and

every field has some form of data requested and collected from people. Similarly,

knowingly or unknowingly, everyone is contributing data through a medium called the

internet. These are stored in the form of internet archives in the cloud services and

servers.

There are a lot of security protocols in practice that preserve people‟s privacy.

The negative side of that fact is that hackers who try to steal data misuse the security

protocols. Hackers‟ purpose is to try and break the security algorithms. However,

another strong algorithm will be developed to counter the hackers‟ efforts. So, there‟s a

5

tug-of-war going on between good and bad between internet hackers and security

developers. No need to worry because current algorithms have been developed that are

so strong that it is almost impossible to break them. Even with the help of super

computers, it would take more than a lifetime. So, there are both positive and negative

aspects of this data. But, it can serve as a very powerful tool once harnessed.

Previously, there was big data to analyze these huge amounts of data. But again, human

hunger came into action and there was need for something more than just analysis. They

needed predictions and for this we need artificial intelligence-based algorithms and

machines. Therefore, algorithms also began to become complex or, in other terms, we

can say that the analysis maturity level increased from raw data to predictive modelling.

In the present generation, both big data and machine learning are used together to find

the insights. We shall discuss about Machine Learning and the applications involved in

detail later in the chapter 3. The terms machine learning or data mining or advanced

analytics mean the same mining of interesting or previously unknown knowledge. The

SQL tools can be used for surface analysis of the data, Statistical methods can be used

for the shallow data analysis, whereas machine learning should be used for hidden data

analysis. Hence, machine learning and its algorithms came into existence. This is not

data warehousing, query processing. They need to be implemented on technologies like

Python, R, etc. Some of the machine learning tools are Weka, Knime, Orange, Rapid

Miner, Rattle, Mahout, etc. So, now it may seem obvious how powerful this c data can

be when transformed with proper intelligence-based algorithms.

6

Chapter 2: Self Organizing Networks (SON)

Self Organizing makes the networks flexible and Quality of Service (QOS)

achievable. The other technologies such as Densification, Control Data Separation

Architecture (CDSA) help SON to increase capacity and energy efficiency. SON will be

able to reduce the OPEX, eliminating human labor.

2.1 Understanding SON

2.1.1 Scalability

For example, consider an algorithm that can change the antenna tilts for Load

Balancing (LB) and Coverage and Capacity Optimization (CCO). As the number of

antennas (or of antenna tilts?) increases, the complexity of the system increases for the

co-ordination. This does not make the network Self Organizing. So, for a system to

satisfy this scalability property, the increase in the size of system should be inversely

proportional to the complexity.

2.1.2 Stability

A system should change itself from one state to another in a finite number of

times and come back to being stable. If it does not satisfy the finite condition and keeps

oscillating infinitely, then it cannot be considered stable.

2.1.3 Agility

As much as agility is important for self organizing systems, it is also important

to have moderate or correct agility. These changes should neither be too fast nor too

slow. Hence, this state is somewhat difficult to achieve.

7

There are different types in the Self Organizing Networks. They are:

i. Self-Configuration

ii. Self-Optimization

iii. Self-Healing

This research work comes under the subtype, Self-Healing, which predicts errors

proactively.

2.2 Self Configuration

In 5G networks, the SON feature is expected to possess self-configuration. The

cells will automatically configure the radio parameters, IP address, and a neighbor cell

list, which is needed whenever a new cell is added or an existing cell has an issue.

Configuring eNodeBs (eNB) requires small cells at the time of deployment or upgrade

of the network or when there are any faults in the network. This self-configuration

replaces manual configuration and saves lot of time. The Next Generation Mobile

Network (NGMN) group of 2006 determined many use cases for SON. Instead of PDN-

GW assigning the IP address, the UEs can request the DHCP servers and get their IP

address. This saves the initial configuration time in future networks. By communicating

and co-operating with neighboring cells, the eNB will be able to compute its own

physical cell ID. In the same process, it can add/delete any number of neighbors. The

RF parameters such as interference, tilt, frequency, propagation, and transmitted power

to the UE will be configured by the UE on its own in the 5G networks. Researchers are

investigating whether the eNBs can support the self-test mechanism, leaving the

validation work for humans. The future eNBs will be able to authenticate themselves

8

with the MME instead of piggybacking the NAS messages with RRC messages. In this

self-configuration, there are parameters that influence neighboring cells as well their

own cells. The policies for these configurations will be set by the operators such as

ATT, Verizon, etc. The operators present a framework which is important and serves as

the basis for all configuration changes.

2.3 Self Optimization

With the increase in technologies, optimizing and maintaining high quality

networks for customers has never been more difficult. Sometimes we need to choose

between maintaining high level of quality and being cost-effective. This Self-

Optimization in the networks translates into little improvement. Otherwise, Self-

Optimization automatically restores the original parameters and tries something else.

Self-Configuration has to be followed by the Self-Optimization for the systems to

perform efficiently. In this, Load Balancing (LB) and Coverage and Capacity

Optimization (CCO) are the primary focus. Optimum distribution of users among cells

based on cells throughput is called load balancing. Whereas, when the received

minimum downlink power of each user is above a certain threshold, that state is called

CCO. These both can be formulized using the Shannon capacity equation by

substituting tilts and cell individual offsets (CIO) in the SINR model. Load balancing

can be achieved with antenna adaption, power adaption, and hybrid of both antenna and

power. Neighbor Optimization includes automatic detection and deletion of neighboring

cells. Followed by this the eNB computes its cell ID (part of self-configuration). By

coordinating with neighboring cells on their power levels, interference can be reduced.

9

Handoff optimization can be achieved by monitoring the KPIs, which promote

automatic inter and intra handoffs. Energy savings can be automated using the cell-on-

demand approach, which turns the base stations on only when they are needed. So, self-

optimization all boils down to the optimization of antenna parameters, transmit power,

and frequency reuse.

2.4 Self Healing

Self-healing involves automatic fault detection by diagnosis and fault correction

by recovery actions. This research is based mainly on the automatic fault detection

subpart of self-healing, which, in turn, is a subtype of the self-organizing networks. For

self-healing to occur, we need artificial intelligence algorithms, which machine learning

provides and is discussed in the next chapter. So, focusing on the self-healing, it

performs network maintenance and updates.

The following are the recommendations of the Next Generation Mobile

Networks (NGMN) group. The faults, or outage, in the cells should be detected

instantly. The network should then reconfigure the neighboring cells to compensate for

the failed cell for the radio resources. Performing equipment traces is a troubleshooting

activity. Many self-healing functions are coming into picture at a very slow rate. The

relay stations were being used as self-healing agents at the starting stages of self-

healing. They were robust and reliable. They can route traffic to neighboring cells‟

eNBs when the existing eNB fails. We detect the outages when there is a drop in the

performance of the network or its components. These outages can be categorized as

little, medium, or critical faults (where the network is completely down). Bayesian

10

analysis predicts the fault probability in the system using other features‟ values. The

accuracy of the algorithm will depend on the training of the data and the number of

classifications of the fault severity.

Another way of classifying network faults is the pattern recognition method. But

whatever may be the method, there still might be a few outliers undetected because of

the working conditions and complexity of the algorithms. Compensation time depends

on the severity of the faults detected. The neighboring cells would take reconfiguration

steps to increase/decrease antenna tilts, transmission power, etc. Table 1 summarizes

the tasks of the Self Organizing Network (SON) types:

Table 1. Overview of the SON functions

Self-Configuration Self-Optimization Self-Healing

Cell ID Neighbor Optimization Fault detection

RF Parameters Handoff Fault Compensation

Self-test Interference Equipment traces

Self-authentication Energy Savings Analysis

11

Chapter 3: Machine Learning

With the development of modern society and the increase in population, data is

growing tremendously, causing cellular networks to be prone to faults. There is a need

for artificial intelligence in cellular networks. This can be achieved through machine

learning algorithms and optimization. One of the famous machine learning definitions is

a computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E. An algorithm is a sequence of instructions given to a

computer to solve a problem. However, there are no algorithms for some tasks.

 For example, differentiating spam e-mails from legitimate e-mails does not have

a ready-made algorithm for sorting that type of data. In this case, we would like the

computer to learn and extract output automatically.

With the increase in stored data from terabytes and petabytes to zettabytes and

exabytes, computer technology to access to huge amounts of data stored long distances

from the user is available. Also, we have technology to store and process large amounts

of data. Application of machine learning to large databases is known as data mining.

The terms machine learning, predictive analytics, advanced analytics and data science

are sometimes used interchangeably, which is okay. So, machine learning can be said to

be a database problem combined with artificial intelligence. SQL queries are used for

simple queries and reporting. Machine learning is used to dig deep into data stores to

find hidden patterns that maybe were unknown. What can be hidden in data? Examples

are associations, sequences, classifications, forecasts, anomalies, grouping/clustering.

12

 The environments or inputs/outputs keep changing constantly, and the machines

that can adapt to these changes reduce the need for re-design. Machine learning is more

like an on-the-job improvement. Hence, machine learning can be said to be the

collection of various studies like statistics, brain models, artificial intelligence, control

theory, etc. Basically, the machine learns the structure of some sort. Some of the tasks

involved in machine learning are prediction, diagnosis, grouping, etc. How does

machine learning work? The computer analyzes data, finds patterns, and performs

predictions. These activities can be called categories of machine learning models.

Predictive methods use some of data features to predict some unknown or future

value of other features. We are trying to predict some value of interest like fault

severity. Some of features might be descriptors as well. The machine learning function

finds human interpretable patterns that can describe the data. We can look at this model

and gain knowledge of its characterization or how it is getting some of its general

properties. Some of the algorithms might have both properties.

Other interesting topics of discussion in machine learning is supervised learning,

unsupervised learning, reinforcement learning. The classification and regression belong

to the supervised learning category, predictive methods.

13

Figure 1. Machine Learning Tree Diagram

Classification means predicting yes/no. In a banking, when the bank loans an

amount to a customer, the bank has to predict the risks associated with the customer‟s

ability to repay the loan. The bank analyzes the credit score of the customer to see if he

will repay the amount promptly within the given timeline. These predictions are based

on the information stored about the customer, namely past payment history, income

earned, savings amount, etc. This is called training the algorithm using past data.

Predicted output here will be either 1/0. Sometimes we might have to calculate

probabilities given the attributes of the customer.

Like the banking system, other examples for classification analysis could be

pattern recognition, face recognition, speech recognition, medical diagnosis, biometrics

used to authenticate people based on their physical characteristics. Training gives us

knowledge about the data. In turn, the data can be compressed or normalized according

to one‟s situation.

14

Regression means the output is a number, for example, predicting the price of

cars. In predictive methods, a training dataset is typically provided with labeled

examples. Like a teacher correcting student answers, we use that training data to train

our models and find patterns. So our input features are provided along with the target

class feature, and our goal is to predict the target class.

Clustering belongs to the unsupervised learning category, descriptive methods.

Here there is no teacher. The data is provided with no knowledge of any information

except the data itself. So, we have no information about the hidden patterns contained

within the data. There are no target values provided for each of our instances, so we say

the data is unlabeled. The goal here is to find naturally occurring patterns or groupings

or clustering or segmentations. After these groupings are made, it is easy to assign

policies, provide services and, thereby, improve business strategies. Examples of

Clustering could be image clustering, document compression, molecular biology, and

biometrics.

In Reinforcement learning, the output is a series of actions, rather than a single

action, for example, playing a chess game. The game has simple rules but complex

possibilities. A single move by itself is not important. What matters is a sequence of

moves. Robot navigation could be another example of this reinforcement learning.

There are lots of new algorithms in the machine learning subsections, as

previously discussed, that make machine learning a trial–and-error method of analysis.

That is, there is no way to tell which algorithm best fits specific data. However, one can

decide whether the data belongs to Supervised or Unsupervised category. But, after

determining the data‟s category, one needs to know how the algorithm works, and then

15

prepare the data has to fit the algorithm. Even at this stage, we might learn that the

algorithm is not performing as expected. That is the disadvantage of using machine

learning. Once an algorithm fails to deliver the expected results, the algorithm must be

modified, or a new algorithm developed and tried, or the dataset must be reformatted.

 Machine learning is applied in science, including chemistry, physics, medicine,

pharmaceuticals, health care, energy, smart city, financial industry, E-commerce,

market analysis, risk analysis, and sports and entertainment. In hospitals, it is used to

classify and treat cancer, tumors, and diseases. Banks use it to determine loan risk. Call

centers use to apply inferred relationships to prevent churn. Telecommunications use it

to analyze call records to optimize the network and improve the quality of service to the

customers. Airlines use it to predict passengers who are likely to miss their flights to

predict an overbooking number in hopes of increasing revenue.

16

Chapter 4: Thesis Description and Data Preparation

4.1 Problem Statement Description

Telstra is one of the Australia‟s largest telecom network operators. The goal is to

predict the severity of service disruptions on its network using a dataset of features from

its service logs. We need to determine whether the disruption is a momentary glitch or

total interruption of network connectivity. By predicting the faults beforehand, Telstra

will be able to serve its customers more reliably.

Fault severity is divided into three categories: 0, 1, and 2., i.e., 0 meaning no

fault, 1 meaning only a few faults, and 2 meaning many faults. There are two main

datasets provided namely train.csv and test.csv. We need to use the train data to train

our predictive machine learning algorithms and then test the model on the provided test

data. So, as said earlier in chapter 3, this train data acts as a teacher guiding the students

(test data).

Different data files and their descriptions are provided in Table 2.

Table 2. Data Files

File Name Description

severity_type.csv Severity warning message from logs

train.csv Training set for fault severity

test.csv Test set for fault severity

log_feature.csv Features extracted from log files

resource_type.csv Type of resource related to main data (train, test)

event_type.csv Events related to main data

17

4.2 Data Pre-Processing using Python

The foremost step before applying whatever the given data, the data needs to be

changed into a form suitable for the algorithm. This can be done only once, so we have

a thorough understanding of how the algorithm works. In this section, this paper deals

with the data preprocessing used and the „Sci-kit‟ module for machine learning in

Python. Some of the essential Python libraries used in data preprocessing are numerical

Python or Numpy – Package for scientific computing and deals with arrays, Pandas.

Another package of Python used mainly for data frames and series, Matplotlib that

produces 2D plots and visualizations, Scipy that performs statistical analysis, and

Seaborn that si another data visualization library. In this work with Telstra data with

SVM, Interactive Python, or IPython, was used for coding in Python 2.7.

 Preparation means cleaning, combining, normalizing, reshaping, slicing of data

for data analysis. The Telstra data consisted of 6 different datasets in total along with

the Train and Test datasets. There were no any NULL items which did not require

cleaning but in case if they do in your data, then they might require cleaning. All these

data sets had „id‟ column as primary key in them. So, first step I did was to combine or

merge them on „id‟ primary key with „left‟ join. There is a concept of „Feature Scaling‟

in machine learning. The idea is that if we have a problem with multiple features make

sure that the features have similar range of values. This will be useful for gradient

descent to converge more quickly to the minimum of optimization problem. This can be

achieved in data preprocessing by normalization which is given by:

Where,

18

 –

Reshaping of the data in python can be done either by using pivot, dummies etc. where

the instances are reshaped into features and transformed into binary values of 0 or 1. i.e.

value „1‟ for the corresponding „id‟ and „0‟ elsewhere. This is also called as

binarization. This idea will be highly useful for Regression algorithms and sometimes

categorical values.

The library which includes all the methods for preprocessing is sklearn.

preprocessing. These are some of the things used in my data processing model. But,

these will be different for different data and algorithms. So, this should serve as an idea

to kick start while you work with your own data sets and algorithms.

4.2.1 Program

#Imports

import numpy as np

import pandas as pd

from pandas import Series, DataFrame

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

#Load data

train = pd.read_csv('dataset/train.csv')

test = pd.read_csv('dataset/test.csv')

event_type = pd.read_csv('dataset/event_type.csv')

19

log_feature = pd.read_csv('dataset/log_feature.csv')

resource_type = pd.read_csv('dataset/resource_type.csv')

severity_type = pd.read_csv('dataset/severity_type.csv')

train.head()

#Concatenate test and train

train['source'] = 'train'

test['source'] = 'test'

data = pd.concat([train,test],ignore_index=True)

data.head()

print data.shape

data.describe()

#Count of each category

data['fault_severity'].value_counts()

Now we merge the dataframes

We can choose which DataFrame's column to use, this will choose left

data1 = pd.merge(data,event_type, on='id', how='left')

data1.head()

print data1.shape

data2 = pd.merge(data1,log_feature, on='id', how='left')

data2.head()

print data2.shape

data3 = pd.merge(data2,resource_type, on='id', how='left')

data3.head()

20

print data3.shape

data4 = pd.merge(data3,severity_type, on='id', how='left')

data4.head()

print data4.shape

We now drop duplicates and rearrange columns

data5 = data4.drop_duplicates()

data5 =

DataFrame(data5,columns=['id','location','source','event_type','log_feature','volume','res

ource_type','severity_type','fault_severity'])

data5 = data5.drop('source',axis=1)

data5.head()

data5.to_csv(path_or_buf='dataset/mergedData1.csv')

21

Chapter 5: Algorithms – Analysis and Implementation

5.1 Support Vector Machines (SVM)

One of the most popular classification algorithms is the Support Vector Machine

(SVM). This is the algorithm which was used on the Telstra data to classify the faults.

So, going forward, we will discuss about this algorithm in this paper. SVM has many

applications such as the digit recognition, pattern recognition, text classification etc.

SVM consists of two cases namely Separable case and Non-Separable case. As the

name, itself indicates, Separable data is the one which can be linearly separated. Let us

imagine that, we need to classify our data into two types and separate them. This

separation is called Margins and they need to be as large as possible (Wide road). We

call this concept as Maximal Margin Hyperplane. In 2-D this margin is just a line and in

multi dimension this is called Hyperplane. Non-Separable data is the one which cannot

be separated linearly. In such cases, we use „Kernel‟ trick where the trick is to transform

them into another space and slice the data with hyperplane.

 Before we get into the details of SVM there are few concepts which needs to be

understood like Hypothesis, Cost function, Optimization etc. These are concepts are

almost similar to Regression algorithms also. Firstly, we take our training data, apply

our learning algorithm. Then it is the duty of the learning algorithm to output a function

„h‟ called the hypothesis. This hypothesis takes the input variables or features (x) and

output the estimate value of the target class (y). It can also be called as mapping

function from x‟s to y‟s. In simple linear case this is represented as below:

Where, . Imagine this as a line equation .

22

To formalize this, we need the difference between the expected value, h(x) and actual

vale, y to be small. Then we sum this difference over all the instances (rows) of the

training set. This gives us the cost function and mathematically this can be represented

as below:

 ()

∑

Where, . We will denote

Minimizing cost function over these parameters is called the optimization. If we are

going to find the extremum of a function, then we have to use Lagrange multipliers.

This gives us new expression to maximize or minimize without thinking about

constraints. Another interesting concept to know is about bias vs variance and

overfitting vs under fitting. If the margin does not fit the training data very well, then

we call it as „under fitting‟ or having „high bias‟. This usually appears in data with less

parameters and features. If the margin fits through all our training instances, then it is

called as „overfitting‟ or having „high variance‟. This case appears in higher order

polynomials where the parameters and features are high.

5.1.1 How it works?

(i) Linear SVM: Separable case

23

 In our SVM algorithm let us denote these parameters with b, w. Also,

 { }. The decision boundary for classification can be

written as:

As mentioned earlier in introduction, classification algorithms output either 1/0 or

yes/no or positive/negative. Let us consider two points namely for positive and

negative points present in our training data. If any two points are present on the

boundary, then they can be written as:

Figure 2. Separable Linear SVM

For the points, above or below the decision boundary line, these equations become

24

The width of the boundary is given by the distance between the two hyperplanes. Let us

consider a point on equation (1) and a point on equation (2). Subtracting (1) and

(2) we get

 ()

‖ ‖

‖ ‖

The train phase of the SVM is where the algorithm learns. This involves estimating the

parameters w and b of the boundary from train data. The conditions for choosing these

parameters are given below:

These equations mean that all the instances belonging to category y = 1 must be on or

above the decision boundary . All the instances belonging to category y = -

1 must be on or below the boundary . Both these conditions can be

summarized as:

Additionally, SVM has another condition that the margins should be maximized which

is equal to minimizing the below function by Lagrange.

‖ ‖

Optimizing this function gives us the Lagrange dual optimization solution for SVM. We

write the objective function by substituting equation (3) and the constraint into

Lagrange

25

‖ ‖ ∑

Where,

To find the extremum, we have to take the derivative with respect to w and b and set

them to zero. Doing so, we get the below equations:

 ∑

 ∑

 ∑

 ∑

Substituting equations (6) and (7) in equation (5) and simplifying we get

 ∑

∑∑

This is the final Dual Lagrange solution for SVM. The difference between the primal

and dual Lagrangians is that the dual Lagrangian consists of Lagrange multiplier, and

the train data. Whereas the primary Lagrangian consists of Lagrange multiplier and the

decision boundary parameters.

(ii) Linear SVM: Non-Separable case

 Previous case is applicable to error-free case. In this section, SVM constructs the

decision boundary where there are little errors (not linearly separable) as shown in the

below figure. The margin should be tolerable to small training errors and is called Soft

margin.

26

Figure 3. Non-Separable SVM

Here, we can see that there are few samples of squares and circles lying in the decision

boundary. In such cases, there will be a tradeoff between width and the training errors

in the boundary. While the objective function in eq. (4) still is applicable, the

constraints in eq. (3) no longer satisfies the given condition. Therefore, a slack variable

 is introduced into the constraints to relax the inequality and this is of positive value.

The conditions now become:

Where

The modified objective function is given by:

‖ ‖

 ∑

Let k=1 for simplification, C is user specific parameter and can be chosen according to

the performance of the model.

27

The Lagrangian for the constrained optimization can be written as:

‖ ‖ ∑

 ∑

 ∑

Here, the first two terms are objective function to be minimized. Third term is the

inequality constraint consisting slack variables. Fourth term is the non-negative

requirement of . The third term, inequality constraints can be transformed into equality

constraints by using KKT conditions.

 ,

Taking first-order derivative with respect to , b, and setting it to zero, we get

 ∑

∑

 ∑

Substituting eq. (11), (12) and (13) in Lagrangian eq. (10) we get

∑∑

 ∑ ∑ { (∑

) }

 ∑

 ∑

∑∑

28

The above equation which we got is similar to the eq. (8). In linear separable case,

Lagrange multipliers Whereas, in non-Separable case,

(iii) Nonlinear SVM:

In this section, we will see how to apply SVM to nonlinear decision boundaries. The

trick is to transform the data from x to a new space called such that model can be

simplified and a linear decision boundary can be applied. The data from original feature

space is mapped onto a new space.

Figure 4. Non-linear SVM

Nonlinear SVM can be formalized as the below optimization problem:

‖ ‖

subject to

The main difference here is that instead of taking attribute x, learning is performed on

the transformed . So, based on the previous approach taken for linear case, writing

primal Lagrangian and setting the derivative to zero, the parameters w and b can be

derived using the following eqns.

29

 ∑

 { (∑

) }

we can derive Dual Lagrangian as

 ∑

∑∑

Dot product between the vectors in the transformed space could be difficult as we move

to higher dimensions and the solution is kernel trick.

The Kernel trick is a method of computing similarity in the transformed space using the

original attributes. For example, the dot product between vectors u, v in the transformed

space can be written as:

 (

 √ √) (

 √ √)

Mercer‟s principle ensures that kernel functions can be always expressed as dot product

between two input vectors in some high dimensional space

Mercer’s Theorem:

 A kernel function K can be expressed as

 if and only if, for any function of such that ∫ is finite, then

30

∫

Figure 5. Nonlinear decision boundary obtained by SVM using polynomial kernel

function

5.1.2 Log-Loss Calculation

Log loss is called as Logarithmic likelihood function of a Bernoulli random distribution.

This is an error metric used when the constraints have to predict something as

True/False with probability (likelihood) of 1 (true) to 0.5 (equally true) to 0 (false).

If a prediction is true (1) when it is actually false (0) i.e., for wrong prediction the

punishment will add ∞ (large number) to your error score. So, log loss closer to zero

means more accurate is your prediction. This can be formulated in a mathematical way

as below:

31

∑ ∑

Where, N = Number of observations

M = Number of class labels

 {

 = Predicted probability that observation i is in class j

The SVM model was run in “WEKA”, popular suite of machine learning software

written in Java. The data set was sent through the pre-process stage. Then in the

classification algorithms SVM is selected and run as 66-34 % split because we need to

train the data on 66% split and test the data to check and calculate our log loss.

Figure 6. Sample data for SVM

Using SVM our output and confusion matrix looks like below:

=== Run information ===

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W

1 -K "weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007"

Instances: 61839

Attributes: 7

Correctly Classified Instances 15966 75.9382 %

Incorrectly Classified Instances 5059 24.0618 %

id location event_type log_feature volume resource_type severity_type fault_severity

14121 L118 E34 F312 19 R2 S2 One

14121 L118 E34 F232 19 R2 S2 One

14121 L118 E35 F312 19 R2 S2 One

14121 L118 E35 F232 19 R2 S2 One

9320 L91 E34 F315 200 R2 S2 Zero

9320 L91 E34 F235 116 R2 S2 Zero

32

a b c Classified as

3466 1519 671 a = Zero

1384 10447 586 b = One

590 309 2053 c = Two

We predicted 3466+1384+590 = 5440 to be fault severity = 0.

Out of this set, the probability of being correct is 3466/5440 = 0.637

Inner log loss for this piece = 3466 log (0.637) = -678.54

Similarly, we predicted 1519+10447+309 = 12275 to be fault severity = 1

Out of this set, the probability of being correct is 10447/12275 = 0.851

Inner log loss for this piece = 10447 log (0.851) = -731.60

We predicted 671+586+2053 = 3310 to be fault severity = 2

Out of this set, the probability of being correct is 2053/3310 = 0.620

Inner log loss for this piece = 2053 log (0.620) = -425.872



33

5.2 Naïve Bayes

5.2.1 How it works?

Bayes Theorem:

Let A, B be two random variables. Bayes theorem states that probability of A can be

calculated given the probability of B or vice-versa. This is called conditional

probability.

 |

 |

According to our data set let us consider variables X and Y. Where, X = instance set

(rows) and Y = Class (column to be predicted). Here, | is called Conditional

probability or Posterior probability where we have to predict the class based on

different row values. This can be done by Bayes Theorem. Whereas, | is called

Class-Conditional probability where the class is given and rows are to be predicted. For

this we have two types of Bayesian Classification methods: Naïve Bayes and Bayesian

Belief Network. We are going to look into the Naïve Bayes method.

Example Illustration:

Let us use an online dating data to explain conditional probability and Bayes theorem.

Table 3. Example - Online Dating Data

Age

18-29 30-49 50-64 65+ Total

Used online
dating

Yes 50 82 55 20 207

No 200 522 400 350 1472

Total 250 604 455 370 1679

Using these data, we can calculate the percent of 30 to 49-year-olds use online dating

sites = 82/604 0.14

34

Formally this is P (use online dating site | 30-49 year old). We calculated this

Conditional probability as simply a ratio of two frequencies, but we can formalize

things a bit more. Let event A represent using an online dating site. And event B

represent being 30 to 49 years old. The frequency in the numerator corresponds to the

number of times events A and B happened at the same time. And the denominator

corresponds to the number of times event B happened. Probability of A given B is equal

to probability of A and B divided by probability of B,

 . This is Bayes' rule.

So why is this formula called Bayes' rule? Thomas Bayes, who lived between 1702 and

1761, was a mathematician who established a mathematical basis for probability

inference, that is, a means of calculating from the number of times an event has not

occurred. Let‟s recalculate that same probability using Bayes' rule.

 |

(

)

(

)
 which is same as above.

Naïve Bayes Classifier:

Let us assume that the attributes (columns) are independent to each other.

 | ∏ |

Where, each instance set { } up to d attributes or features or variables

(columns).

The working principle behind Naïve Bayes is that instead of computing Class-

Conditional probability for every combination of X, we have to estimate the conditional

35

probability of each of the given the class Y. Therefore, we are converting a Class-

Conditional probability to Conditional probability and using the Bayes theorem for

simplification. It can be mathematically formulated as given below:

 |
 ∏ |

The denominator is always constant and can be ignored. Conditional probability

can be computed for both categorical and continuous data. For categorical values, the

conditional probability is just the normal fraction, which is simple. Whereas, Gaussian

distribution is used for the continuous features. Our data set belongs to categorical case.

5.2.2 Log-Loss Calculation

Program:

Program to compute Naïve Bayes using R

 library(e1071)

data<-read.csv(file="C:/Users/Hemanth/Anaconda2/IPython

Notes/dataset/Data1_training.csv")

data$id<-as.factor(data$id)

data$location<-as.factor(data$location)

data$event_type<-as.factor(data$event_type)

data$log_feature<-as.factor(data$log_feature)

data$resource_type<-as.factor(data$resource_type)

data$severity_type<-as.factor(data$severity_type)

data$fault_severity<-as.factor(data$fault_severity)

data$volume<-as.numeric(data$volume)

36

numObs<-dim(data)

samps<-floor(0.80*numObs[1])

set.seed(350)

theSample<-runif(samps,1,numObs[1])

trainingDS<-data[theSample,]

testDS<-data[-theSample,]

nbM<-naiveBayes(fault_severity ~ .,trainingDS,laplace=0.25)

predictions<-predict(nbM,testDS)

table(testDS$fault_severity,predictions)

Figure 7. Sample of the dataset for Naive Bayes

a. Three confusion matrices are obtained for each “laplace” value and different

“seed” values.

b. Then, the average of the log loss at each laplace is computed and plotted in the

graph.

Using Naïve Bayes algorithm our output and confusion matrix looks like below:

id location event_type log_feature volume resource_type severity_type fault_severity

14121 L118 E34 F312 19 R2 S2 1

14121 L118 E34 F232 19 R2 S2 1

14121 L118 E35 F312 19 R2 S2 1

14121 L118 E35 F232 19 R2 S2 1

9320 L91 E34 F315 200 R2 S2 0

9320 L91 E34 F235 116 R2 S2 0

37

Laplace =1 and seed = 50

 predictions
 0 1 2
 0 13770 1205 1560
 1 736 5782 727
 2 2 46 3878

We predicted 13770+736+2 = 14508 to be fault severity = 0.

Out of this set, the probability of being correct is 13770/14508 = 0.949

Inner log loss for this piece = 13770 log (0.949) = -312.22

Similarly, we predicted 1205+5782+46 = 7033 to be fault severity = 1

Out of this set, the probability of being correct is 5782/7033 = 0.822

Inner log loss for this piece = 5782 log (0.822) = -491.83

We predicted 1560+727+3878= 6165 to be fault severity = 2.

Out of this set, the probability of being correct is 3878/6165 = 0.629

Inner log loss for this piece = 3878 log (0.629) = -780.74



Laplace =1 and seed = 75

 predictions
 0 1 2
 0 14017 1120 1543
 1 774 5872 751
 2 6 46 3821

We predicted 14017+774+6 = 14797 to be fault severity = 0.

Out of this set, the probability of being correct is 14017/14797 = 0.947

Inner log loss for this piece = 14017 log (0.947) = -329.66

We predicted 1120+5872+46 = 7038 to be fault severity = 1.

Out of this set, the probability of being correct is 5872/7038 = 0.834

38

Inner log loss for this piece = 5872 log (0.834) = -461.91

We predicted 1543+751+3821 = 6115 to be fault severity = 2.

Out of this set, the probability of being correct is 3821/6115 = 0.625

Inner log loss for this piece = 3821 log (0.625) = -780.32

 Log loss = 0.056

Laplace =1 and seed = 100

 predictions
 0 1 2
 0 13796 1104 1524
 1 743 5884 738
 2 7 47 3918

We predicted 13796+743+7 = 14546 to be fault severity = 0.

Out of this set, the probability of being correct is 13796/14546 = 0.948

Inner log loss for this piece = 13796 log (0.948) = -317.18

We predicted 1104+5884+47 = 7035 to be fault severity = 1.

Out of this set, the probability of being correct is 5884/7035 = 0.836

Inner log loss for this piece = 5884 log (0.836) = -456.55

We predicted 1524+738+3918 = 6180 to be fault severity = 2.

Out of this set, the probability of being correct is 3918/6180 = 0.634

Inner log loss for this piece = 3918 log (0.634) = -775.47

 Log loss = 0.055

Laplace = 0.75 and seed = 125

 predictions
 0 1 2
 0 13900 1045 1536
 1 653 5937 731
 2 5 47 3886

39

We predicted 13900+653+5 = 14558 to be fault severity = 0.

Out of this set, the probability of being correct is 13900/14558 = 0.955

Inner log loss for this piece = 13900 log (0.955) = -279.21

We predicted 1045+5937+47 = 7029 to be fault severity = 1.

Out of this set, the probability of being correct is 5937/7029 = 0.845

Inner log loss for this piece = 5937 log (0.845) = -435.34

We predicted 1536+731+3886 = 6153 to be fault severity = 2.

Out of this set, the probability of being correct is 3886/6153 = 0.632

Inner log loss for this piece = 3886 log (0.632) = -775.58

 Log loss = 0.054

Laplace = 0.75 and seed = 150

 predictions
 0 1 2
 0 13836 1053 1570
 1 739 5967 685
 2 3 47 3859

We predicted 13836+739+3 = 14578 to be fault severity = 0.

Out of this set, the probability of being correct is 13836/14578 = 0.949

Inner log loss for this piece = 13836 log (0.949) = -313.90

We predicted 1053+5967+47 = 7067 to be fault severity = 1.

Out of this set, the probability of being correct is 5967/7067 = 0.844

Inner log loss for this piece = 5967 log (0.844) = -438.45

We predicted 1570+685+3859 = 6114 to be fault severity = 2.

Out of this set, the probability of being correct is 3859/6114 = 0.631

Inner log loss for this piece = 3859 log (0.631) = -771.22

40

 Log loss = 0.055

Laplace = 0.75 and seed = 175

 predictions
 0 1 2
 0 13987 959 1482
 1 661 5961 807
 2 7 42 3871

We predicted 13987+661+7 = 14655 to be fault severity = 0

Out of this set, the probability of being correct is 13987/14655 = 0.954

Inner log loss for this piece = 13987 log (0.954) = -283.39

We predicted 959+5961+42 = 6962 to be fault severity = 1

Out of this set, the probability of being correct is 5961/6962 = 0.856

Inner log loss for this piece = 5961 log (0.856) = -401.86

We predicted 1482+807+3871 = 6160 to be fault severity = 2

Out of this set, the probability of being correct is 3871/6160 = 0.628

Inner log loss for this piece = 3871 log (0.628) = -781.00

 Log loss = 0.053

Laplace = 0.5 and seed = 200

 predictions
 0 1 2
 0 14105 921 1549
 1 593 6174 594
 2 1 46 3827

We predicted 14105+593+1 = 14699 to be fault severity = 0

Out of this set, the probability of being correct is 14105/14699 = 0.960

Inner log loss for this piece = 14105 log (0.960) = -252.69

We predicted 921+6174+46 = 7141 to be fault severity = 1

41

Out of this set, the probability of being correct is 6174/7141 = 0.865

Inner log loss for this piece = 6174 log (0.865) = -390.15

We predicted 1549+594+3827 = 5970 to be fault severity = 2

Out of this set, the probability of being correct is 3827/5970 = 0.641

Inner log loss for this piece = 3827 log (0.641) = -739,05

 Log loss = 0.050

Laplace = 0.5 and seed = 225

 predictions
 0 1 2
 0 13946 889 1437
 1 626 6237 575
 2 4 38 3897

We predicted 13946+626+4 = 14576 to be fault severity = 0

Out of this set, the probability of being correct is 13946/14576 = 0.957

Inner log loss for this piece = 13946 log (0.957) = -267.61

We predicted 889+6237+38 = 7164 to be fault severity = 1

Out of this set, the probability of being correct is 6237/7164 = 0.871

Inner log loss for this piece = 6237 log (0.871) = -375.34

We predicted 1437+575+3897 = 5909 to be fault severity = 2

Out of this set, the probability of being correct is 3897/5909 = 0.660

Inner log loss for this piece = 3897 log (0.660) = -704.52

 Log loss = 0.049

Laplace = 0.5 and seed = 250

 predictions
 0 1 2
 0 14098 859 1476
 1 561 6187 647
 2 3 32 3908

42

We predicted 14098+561+3 = 14662 to be fault severity = 0

Out of this set, the probability of being correct is 14098/14662 = 0.962

Inner log loss for this piece = 14098 log (0.962) = -240.17

We predicted 859+6187+32 = 7078 to be fault severity = 1

Out of this set, the probability of being correct is 6187/7078 = 0.874

Inner log loss for this piece = 6187 log (0.874) = -361.51

We predicted 1476+647+3908 = 6031 to be fault severity = 2

Out of this set, the probability of being correct is 3908/6031 = 0.648

Inner log loss for this piece = 3908 log (0.648) = -736.40

 Log loss = 0.048

Laplace = 0.25 and seed = 300

 predictions
 0 1 2
 0 14466 685 1315
 1 378 6494 491
 2 4 36 3863

We predicted 14466+378+4 = 14848 to be fault severity = 0

Out of this set, the probability of being correct is 14466/14848 = 0.974

Inner log loss for this piece = 14466 log (0.974) = -163.75

We predicted 685+6494+36 = 7215 to be fault severity = 1

Out of this set, the probability of being correct is 6494/7215 = 0.9

Inner log loss for this piece = 6494 log (0.9) = -296.93

We predicted 1315+491+3863 = 5669 to be fault severity = 2

Out of this set, the probability of being correct is 3863/5669 = 0.681

Inner log loss for this piece = 3863 log (0.681) = -643.51

43

 Log loss = 0.040

Laplace = 0.25 and seed = 325

 predictions
 0 1 2
 0 14263 743 1256
 1 426 6608 453
 2 3 38 3864

We predicted 14263+426+3 = 14792 to be fault severity = 0

Out of this set, the probability of being correct is 14263/14792 = 0.964

Inner log loss for this piece = 14263 log (0.964) = -183.57

We predicted 743+6608+38 = 7389 to be fault severity = 1

Out of this set, the probability of being correct is 6608/7389 = 0.894

Inner log loss for this piece = 6608 log (0.894) = -320.59

We predicted 1256+453+3864 = 5573 to be fault severity = 2

Out of this set, the probability of being correct is 3864/5573 = 0.693

Inner log loss for this piece = 3864 log (0.693) = -614.58

 Log loss = 0.042

Laplace = 0.25 and seed = 350

 predictions
 0 1 2
 0 14576 635 1338
 1 362 6482 498
 2 3 21 3917

We predicted 14576+362+3 = 14941 to be fault severity = 0

Out of this set, the probability of being correct is 14576/14941 = 0.976

Inner log loss for this piece = 14576 log (0.976) = -156.57

We predicted 635+6482+21 = 7138 to be fault severity = 1

44

Out of this set, the probability of being correct is 6482/7138 = 0.908

Inner log loss for this piece = 6482 log (0.908) = -271,39

We predicted 1338+498+3917 = 5753 to be fault severity = 2

Out of this set, the probability of being correct is 3917/5753 = 0.681

Inner log loss for this piece = 3917 log (0.681) = -653.91

 Log loss = 0.038

Laplace = 0.1 and seed = 400

 predictions
 0 1 2
 0 14864 504 1063
 1 248 6865 279
 2 5 26 3877

We predicted 14864+248+5 = 15117 to be fault severity = 0

Out of this set, the probability of being correct is 14864/15117 = 0.983

Inner log loss for this piece = 14864 log (0.983) = -108.95

We predicted 504+6865+26 = 7395 to be fault severity = 1

Out of this set, the probability of being correct is 6865/7395 = 0.928

Inner log loss for this piece = 7395 log (0.928) = -221.72

We predicted 1063+279+3877 = 5219 to be fault severity = 2

Out of this set, the probability of being correct is 3877/5219 = 0.743

Inner log loss for this piece = 5219 log (0.743) = -500.49

 Log loss = 0.030

Therefore, From the 3 log loss values at each “laplace”, the average log losses are:

At 1.0 = 0.056, at 0.75 = 0.054, at 0.5 = 0.049, at 0.25 = 0.040

45

Now we plot these values in the graph – laplace vs log loss.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.25 0.5 0.75 1

L
o

g
 l

o
ss

Laplace

Laplace vs Log loss

Log loss

46

5.3 Random Forest

5.3.1 How it works?

Bagging or aggregating is a technique where the samples are drawn out repeatedly from

the data set with replacement in a uniform probability distribution manner. Since it is

done with replacement, some instances may re-appear and some may not appear while

sampling. Decision trees are weak learners thereby weak predictors.

Random Forest is an ensemble algorithm which combines (bags) many decision trees to

produce a strong classifier output. They average out the output results. Uniform

probability distribution generates the random vectors which in turn generate decision

trees. Whereas, the Ada boost, another ensemble method uses adaptive instead of fixed

distribution. As said earlier, since „n‟ samples are selected randomly with replacement,

randomness is injected into the system. When there are large number of trees, the error

rate can be given by:

 ̅

Where, ̅ = Average correlation between the trees

s = Strength or number of trees in the classifier

As the dependency between the trees increases or as the number of trees decreases, the

error rate increases. More trees, less error and the classifier can be improved. Steps

involved in the implementation of Random forest are as follows:

a) From an input training data, random vectors are created (Uniform probability

distribution sampling).

b) Based on the random vectors, decisions trees are generated.

c) At the output, all these decision trees are combined and averaged out.

47

One way to introduce random vectors into the trees is to select N Features. By, doing so

the number of features to examine decreases. This is called Random Input (RI)

approach. Now, the strength and correlation among the trees depend on the number of

features N. Smaller the N value, lesser the correlation thereby lesser is the error rate

which can be deduced from eqn. (1)

Number of features, where, d = Total number of features.

Secondly, If the d is too small, then it becomes difficult to select the random vectors and

in such situations, linear combinations of features are used to increase the feature space.

This is called Random Combination (RC) approach.

Random vectors are more robust and faster than the AdaBoost ensemble method.

5.3.2 Log loss Calculation

Program 1

Program to generate Random Forest

library(randomForest)

data <- read.csv("C:/Users/Hemanth/Anaconda2/IPython

Notes/dataset/smotedData.csv")

data$id<-as.factor(data$id)

data$location<-as.factor(data$location)

data$event_type<-as.factor(data$event_type)

data$log_feature<-as.factor(data$log_feature)

data$resource_type<-as.factor(data$resource_type)

data$severity_type<-as.factor(data$severity_type)

48

data$fault_severity<-as.factor(data$fault_severity)

data$volume<-as.factor(data$volume)

numObs <- dim(data)

samples <- floor(0.50 * numObs[1])

rand.samples <- runif(samples,1,numObs[1]) #generate random deviates

trainingDS <- data[rand.samples,]

testDS <- data[-rand.samples,]

rf.model <- randomForest(fault_severity ~ ., trainingDS)

print(rf.model)

This is the Random Forest algorithm created initially to run in RStudio. But, Since R

does not support more than 33 categorical values, this dataset could not be run in R. So,

I had to move to Weka software.

Program 2

#R Program to Smote the data to solve class imbalance problem

library(DMwR)

Read in the csv file

originalData<-read.csv("C:/Users/Hemanth/Anaconda2/IPython

Notes/dataset/Data1_training_catfs.csv")

Omit any rows with missing data for now

originalData<-na.omit(originalData)

Look at the class spread (composition)

49

table(originalData$fault_severity)

Resample (play with the percentages - execution may take awhile)

smotedData<-SMOTE(fault_severity ~ ., originalData, perc.over = 400,perc.under=100)

Look at the new composition

table(smotedData$fault_severity)

Save the "smoted" data

write.csv(smotedData, file="C:/Users/Hemanth/Anaconda2/IPython

Notes/dataset/smotedData.csv")

Figure 8. Sample Dataset for Random Forest - Smoted data

The outputs and confusion matrix for Random Forest are given below along with the

log loss computations and Graph between Log loss vs No. of trees.

Number of Trees = 10:

Correctly Classified Instances 23933 89.714 %

Incorrectly Classified Instances 2744 10.286 %

a b c Classified as

7142 562 435 a = Zero

547 2768 437 b = One

358 405 14023 c = Two

We predicted 7142+547+358 = 8047 to be fault severity = 0

Out of this set, the probability of being correct is 7142/8047 = 0.888

Inner log loss for this piece = 7142 log (0.888) = -370.06

id location event_type log_feature volume resource_type severity_type fault_severity

12186 L1093 E20 F219 1 R2 S1 Zero

6443 L995 E11 F80 2 R8 S1 One

2918 L362 E11 F232 1 R8 S1 Zero

9037 L473 E35 F235 1 R2 S2 Zero

1444 L1052 E11 F82 2 R8 S1 One

50

We predicted 562+2768+405 = 3735 to be fault severity = 1

Out of this set, the probability of being correct is 2768/3735 = 0.741

Inner log loss for this piece = 2768 log (0.741) = -360.18

We predicted 435+437+14023 = 14935 to be fault severity = 2

Out of this set, the probability of being correct is 14023/14935 = 0.939

Inner log loss for this piece = 14023 log (0.939) = -362.53

 Log loss = 0.041

Number of Trees = 30:

Correctly Classified Instances 24016 90.0251 %

Incorrectly Classified Instances 2661 9.9749 %

a b c Classified as

7161 543 435 a = Zero

547 2780 425 b = One

329 382 14075 c = Two

We predicted 7161+547+329 = 8037 to be fault severity = 0

Out of this set, the probability of being correct is 7161/8037 = 0.891

Inner log loss for this piece = 7161 log (0.891) = -358.91

We predicted 543+2780+382 = 3705 to be fault severity = 1

Out of this set, the probability of being correct is 2780/3705 = 0.750

Inner log loss for this piece = 2780 log (0.750) = -346.79

We predicted 435+425+14075 = 14935 to be fault severity = 2

Out of this set, the probability of being correct is 14075/14935 = 0.942

Inner log loss for this piece = 14075 log (0.942) = -362.53

 Log loss = 0.040

51

Number of Trees = 40:

Correctly Classified Instances 24031 90.0813 %

Incorrectly Classified Instances 2646 9.9187 %

a b c Classified as

7173 543 423 a = Zero

555 2777 420 b = One

330 375 14081 c = Two

We predicted 7173+555+330 = 8058 to be fault severity = 0

Out of this set, the probability of being correct is 7173/8058 = 0.890

Inner log loss for this piece = 7173 log (0.890) = -362.43

We predicted 543+2777+375 = 3695 to be fault severity = 1

Out of this set, the probability of being correct is 2777/3695 = 0.752

Inner log loss for this piece = 2777 log (0.752) = -344.46

We predicted 423+420+14081 = 14924 to be fault severity = 2

Out of this set, the probability of being correct is 14081/14924 = 0.944

Inner log loss for this piece = 14081 log (0.944) = -355.57

 Log loss = 0.040

52

0.0394

0.0396

0.0398

0.04

0.0402

0.0404

0.0406

0.0408

0.041

0.0412

10 20 30 40

L
o

g
 l

o
ss

No. of trees

No. of trees vs Log loss

Log loss

53

Chapter 6: Conclusion and Future work

6.1 Conclusion

We have seen how Self Organizing Networks (SON) can be used along with

machine learning techniques to make powerful predictions. From the results of machine

learning algorithms, we can deduce that Naïve Bayes best suits our dataset with a

minimum log loss of < 0.04. We attain this value with lesser value of laplace parameter

(< 0.25). So, from the graph laplace vs. log loss is always a decreasing curve. The next

better algorithm would be Random Forest, which is an ensemble method that has a

minimum log loss value of 0.04. But its graph becomes constant at 0.04 after number of

trees > 30. Support Vector Machines performed poorly with a log loss value of 0.08,

resulting in low accuracy rate in terms of classification.

6.1.1 Detailed accuracy by class

Precision and recall are the two widely used metrics in the classification

problems. Precision is the fraction of actual records that are positive. It is calculated

column wise in a confusion matrix. While recall means the fraction of predicted records

that are positive, it is calculated row wise in a confusion matrix.

Mathematically they are represented as:

F Measure is the harmonic mean of precision and recall and is given by:

54

Naïve Bayes:

predictions
 0 1 2
 0 14864 504 1063
 1 248 6865 279
 2 5 26 3877

For fault severity 0,

Precision, p = 14864/15117 = 0.983

Recall, r = 14864/16431 = 0.905

For fault severity 1,

Precision, p = 6865/7395 = 0.928

Recall, r = 6865/7392 = 0.929

For fault severity 2,

Precision, p = 3877/5219 = 0.743

Recall, r = 3877/3842 = 1.009

Table 4. Naive Bayes detailed accuracy

Precision Recall F-Measure Class

0.983 0.905 0.942 Zero

0.928 0.929 0.928 One

0.743 1.009 0.856 Two

55

Random Forest:

a b c Classified as

7142 562 435 a = Zero

547 2768 437 b = One

358 405 14023 c = Two

Similarly, we get:

Table 5. Random Forest detailed accuracy

Precision Recall F-Measure Class

0.888 0.878 0.882 Zero

0.741 0.738 0.739 One

0.941 0.948 0.945 Two

Support Vector Machines:

a b c Classified as

3466 1519 671 a = Zero

1384 10447 586 b = One

590 309 2053 c = Two

Similarly, we get:

Table 6. Support Vector Machines detailed accuracy

Precision Recall F-Measure Class

0.851 0.841 0.846 Zero

0.637 0.613 0.625 One

0.620 0.695 0.656 Two

For classes 0 and 1, the performance of

For class 2, the performance of

56

6.2 Future Work

With Naïve Bayes algorithm, we can find out the exact predicted fault severity

(0 or 1 or 2) of any individual instances. But, with Random Forest, as of now, we

cannot find out what could be the fault severity of a particular 1000
th

 or 1746
th

 record.

This could be taken up as an extension of the current work in the future to build the

algorithm further. Also, with SVM performing poorly, we could research on any other

algorithms (neural networks) and try to see if they provide greater accuracy.

57

References

1. Alpaydın, E., Introduction to Machine Learning. Second ed. 2010, Cambridge,

Massachusetts: The MIT Press.

2. Mehryar Mohri, A.R.a.A.T., Foundations of Machine Learning. Thomas

Dietterich ed. 2012, Cambridge, Massachusetts: The MIT Press.

3. PANG-NING TAN, M.S.a.V.K., Introduction to Data Mining. 2006, United

States: Pearson Education, Inc.

4. R. Srikant, L.Y., Communication Networks: An Optimization, Control and

Stochastic Networks perspective. 2014, United States of America: Cambridge

University Press.

5. Rao, S.S., Engineering Optimization: Theory and Practice. Fourth ed. 2009,

United States of America: John Wiley & Sons, Inc.

6. Ajesh, A., J. Nair, and P.S. Jijin. A random forest approach for rating-based

recommender system. in 2016 International Conference on Advances in

Computing, Communications and Informatics (ICACCI). 2016.

7. Birla, S., K. Kohli, and A. Dutta. Machine Learning on imbalanced data in

Credit Risk. in 2016 IEEE 7th Annual Information Technology, Electronics and

Mobile Communication Conference (IEMCON). 2016.

8. Bousmina, A., C. Jlassi, and N. Arous. Combining ensemble methods of

Bagging, Subagging and Random Subspace for phoneme recognition. in 2016

2nd International Conference on Advanced Technologies for Signal and Image

Processing (ATSIP). 2016.

9. Li, Y., et al. Research and application of random forest model in mining

automobile insurance fraud. in 2016 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 2016.

10. Liao, Q. and S. Stanczak. Network State Awareness and Proactive Anomaly

Detection in Self-Organizing Networks. in 2015 IEEE Globecom Workshops

(GC Wkshps). 2015.

11. Ma, W., K. Tan, and P. Du. Predicting soil heavy metal based on Random Forest

model. in 2016 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS). 2016.

12. Moraes, R.M. and L.S. Machado. A Fuzzy Binomial Naive Bayes classifier for

epidemiological data. in 2016 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE). 2016.

58

13. Mrinalini, S., N.S. Abinayalakshmi, and C.V. Kumar. Wavelet feature based

SVM and NAIVE BAYES classification of glaucomatous images using PCA

and Gabor filter. in 2016 10th International Conference on Intelligent Systems

and Control (ISCO). 2016.

14. Tabassum, N. and T. Ahmed. A theoretical study on classifier ensemble

methods and its applications. in 2016 3rd International Conference on

Computing for Sustainable Global Development (INDIACom). 2016.

15. Trivedi, S.K. A study of machine learning classifiers for spam detection. in 2016

4th International Symposium on Computational and Business Intelligence

(ISCBI). 2016.

16. Wang, S., et al. The airborne hyperspectral image classification based on the

random forest algorithm. in 2016 IEEE International Geoscience and Remote

Sensing Symposium (IGARSS). 2016.

17. Ying, W., et al. Decision tree based validation of load model parameters. in

2016 IEEE Power and Energy Society General Meeting (PESGM). 2016.

18. Zhehan, Y. and A.H. Etemadi. A novel detection algorithm for Line-to-Line

faults in Photovoltaic (PV) arrays based on support vector machine (SVM). in

2016 IEEE Power and Energy Society General Meeting (PESGM). 2016.

19. Aliu, O.G., et al., A Survey of Self Organisation in Future Cellular Networks.

IEEE Communications Surveys & Tutorials, 2013. 15(1): p. 336-361.

20. Andrews, J.G., et al., What Will 5G Be? IEEE Journal on Selected Areas in

Communications, 2014. 32(6): p. 1065-1082.

21. Imran, A., A. Zoha, and A. Abu-Dayya, Challenges in 5G: how to empower

SON with big data for enabling 5G. IEEE Network, 2014. 28(6): p. 27-33.

22. Machine Learning: General Concepts. Available from:

http://www.astroml.org/sklearn_tutorial/general_concepts.html.

23. Scikit-learn in Python. Available from: http://scikit-learn.org/stable/.

24. Kolter, Z. Convex Optimization Overview. 2008; Available from:

http://cs229.stanford.edu/section/cs229-cvxopt.pdf.

25. Ng, A. Support Vector Machines Lecture Notes. Available from:

http://cs229.stanford.edu/notes/cs229-notes3.pdf.

