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Chapter 1 - Introduction 

 Trace amounts of many anthropogenic compounds are present in the 

environment in which we live and thrive.  Of great concern is the impact of developed 

nations’ wastewater treatment plant effluent on receiving waters.  The low removal 

efficiency of recalcitrant compounds, such as triclosan, produces residual amounts of 

pharmaceuticals, personal care products, and industrial chemicals that are frequently 

below detection thresholds of common methods of analysis. Although some of these 

compounds degrade rapidly in the aqueous state, many can mechanistically accumulate 

onto carbon rich sediments and avoid degradation.  The mobility and recalcitrance of 

anthropogenic chemicals within saturated sediments is of great concern in regards to the 

public health and safety of communities downstream of treated effluents.  It is equally 

important in regards to environmental stewardship, since the more recalcitrant 

chemicals have the potential to be persistently rereleased into the surrounding water 

column.   

 Triclosan, also named as Irgasan as well as 5-Chloro-2-(2,4-

dichlorophenoxy)phenol, is a commonly used chemical in many household products 

such as disinfecting handsoaps, cosmetics, and dental products in the United States.  

Triclosan is a highly studied endocrine disrupting compound due to its prolific use and 

subsequent detection in wastewater treatment plant effluent, riverine systems, 

sediments, and estuaries.   

The need to further understand emerging contaminants of concern (ECC) 

adsorption and dissolution mechanics in river sands is of mounting concern in the 

scientific community.  Adsorption-dissolution kinetics are paramount to ascertaining 



2 

 

anthropogenic impacts on human health, the environment, and water quality of our river 

systems.  The properties of any ECC to solubilize in water and partition onto organic 

carbon directly affects how mobile or stationary a compound is in the aquatic 

environment.  The rate at which adsorption-dissolution occurs for a given compound 

can be described as its kinetics and is directly related to its fate and transport.  This 

study examines the dissolution kinetics of triclosan from amended F-65 Ottawa sand.   

F-65 Ottawa sand is a high-purity silica sand originating from Ottawa, Illinois.  It is 

used for this work as a model river sand. Two sources of triclosan were analyzed, 

originating from both a high-purity triclosan compound, Irgasan, and from Bac-Down, a 

triclosan-based antimicrobial hand soap that contains both nonionic and anionic 

surfactants.   

This research produces data that delineates the effects that additives found in 

personal care products have on dissolution kinetics.  Consequently, it adds to the current 

knowledge of  triclosan and provides data in support of models that predict ECC fate in 

the environment.  This thesis also adds to the current body of research on the disolution 

potential of triclosan in riverine systems.  The research goals of this thesis are to: 1)  

quantify the dissolution kinetic rates of triclosan from amended sand; 2)  assess the 

impact that drought has on the fate and transport of triclosan compounds by examining 

the dissolution of sand-adsorbed triclosan that has been placed under high, evaporative 

temperatures; 3)  quantify and characterize the effects that additives in personal care 

products have on the dynamics of triclosan dissolution.    

The southwestern United States has a long-standing history of being 

encumbered by periods of severe drought.  Flooding events are also becoming 
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increasingly disastrous and have recently broken all records in our documented history.  

To study and ascertain ECC and their mechanisms in the natural systems in which they 

are placed, under the stressed conditions they are now subjected to, is to invest in our 

state’s mitigation and adaptation strategies involving water reuse, micropollutants, and 

impacted ecosystems.  This body of work proposes potential implications for the 

utilization of naturally occurring alluvium for attenuation of wastewater treatment plant 

residuals.  Critical periods where a riverine system may be most sensitive and 

susceptible to endocrine disrupting activity are highlighted.  In addition, the use of 

tertiary treatment systems for reclaimed water reuse is evaluated within the context of 

this research.  

Chapter 2 - Background 

2.1 Endocrine Disrupting Compounds 

 A subcategory of emerging contaminants of concern that have a significant 

ecological impact are those compounds that disrupt an organism’s endocrine system, 

thereby interfering with normal hormone synthesis and function.  Endocrine-disrupting 

compounds undermine the endocrine system by mimicking or antagonizing (i.e., 

blocking) endogenous hormones, or by interfering with hormone synthesis, metabolism, 

or transport (Barrett 2014).  An EDC can have a cumulative effect with other varieties 

of EDCs, observed as an additive whole compounding the biological effect of endocrine 

disruption (WHO/UNEP 2013). Endocrine disrupting compounds are within the 

umbrella of ECCs and include a wide range of pharmaceuticals, personal care products, 

and industrial chemicals. Many of these anthropogenic chemicals are recalcitrant and 

thus present in publicly owned treatment works (POTW) effluent despite the current 
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age’s great advancement of wastewater treatment processes.  These chemical 

compounds commonly survive in residual amounts and upon reaching a POTW’s 

effluent adsorb to colloidal particles and stream sediments, thus effectively escaping 

mechanisms of degradation such as photodegradation.     

  The study of the behavior, fate, and transport of endocrine disrupting 

compounds have been of paramount concern to the scientific community and many 

scientists have laid the foundations for future research.  Endocrine disrupting 

compounds are ubiquitous with environmental exposure to EDCs and is viewed to be 

inevitable for the global population (Fuhrman, Tal and Arnon 2015).  Furthermore, 

endocrine-related diseases and disorders are becoming increasingly observed around the 

world such as low fertility, genital malformations, thyroid disorders, and endocrine-

related cancers.  (Freidrich 2013; WHO/UNEP 2013).  These health problems are 

occurring at a rapid rate indicative of non-genetic factors, including anthropogenic 

chemical exposures (WHO/UNEP 2013).   

2.2  Triclosan 

 Triclosan has been identified as an endocrine disrupting compound that closely 

resembles anthropogenic estrogens and is known to disrupt and influence the 

reproductive endocrine system in mammals and aquatic species via three potential 

mechanisms: disruption of hormones, the displacement of hormones from receptors, and 

the disruption of steroidogenic enzyme activity (Wang and Tian 2015).  Triclosan (5-

chloro-2-(2,4-dichlorophenoxy)phenol) is a synthesized chlorinated phenoxyphenol 

(Figure 2.1) that is used as an antimicrobial agent because it inhibits fatty acid synthase 

in bacteria and has been increasingly used since the 1980’s in many personal care 
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products (Vandhana, et al. 2010).  Triclosan is used in formulations of hand soaps, 

dental care products, cosmetics, detergents and other household products, added at 

levels typically between 0.1% and 0.3% by weight (Cantwell, et al. 2009).  Previous 

estimations of the combined inputs of triclosan and triclocarban into the U.S. 

environment has exceeded 600,000 kg/year and has been estimated to approach 

10,000,000 kg/year (Miller, et al. 2008).     

 

Figure 2.1 Triclosan Chemical Structure 

 

Triclosan is predominantly hydrophobic (log Kow = 4.76) and has low solubility 

(Sw = 10 mg/L) in water; however, it is still frequently detected in wastewaters and 

surface waters (Cho, Huang and Schwab 2011).  The hydrophobic attribute of triclosan 

makes it a prime candidate for sorptive processes out of a water matrix and onto solid 

phases with favorable surfaces such as riverine sediments and colloidal particles.  

Although pure triclosan solubility is relatively low, observed environmental 

concentrations of triclosan post-POTW effluent are considerably lower.  This implies 

that even at some of the highest POTW effluent concentrations (5.37 µg/L) all triclosan 

that enters into a riverine system has the potential to remain in the water matrix without 

precipitation occurring (Montaseri & Forbes 2016).  Given a pKa of 8.1, aqueous pH 

influences Triclosan’s speciation, fate, and its affinity to stay or remain in the aqueous 

phase (Singer, et al. 2002).  Lower pH values than triclosan’s pKa constitute hydrogen 
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ion activity that is strong enough to keep triclosan protonated; therefore, any pH higher 

than this pKa would dissociate triclosan’s critical hydrogen ion, changing this 

compounds polarity and affinity for sorptive mechanisms.   

Many studies have indicated that triclosan is retained and recalcitrant in soils 

and sediments. An outdoor mesocosm study of 72 PPCPs, which included triclosan, 

Walters et al. (2010) indicated that although degradation of PPCPs occur over time 

many of the compounds persist in agricultural soils years after biosolid application and 

triclosan remained detectable for 858 days.  It is then apparent that triclosan can remain 

preserved in soils with adequate organic fractions for well over two years.  

Research has also shown triclosan is mobile once in riverine systems, most of 

which ultimately end up depositing their waters into an oceanic system.  Sediment core 

samples of multiple urbanized estuaries in the United States were studied by Cantwell et 

al. (2010) to assess spatial and temporal triclosan concentrations.  The study concluded 

that triclosan has long-term stability in estuary sediments, a marked increase of triclosan 

in sediments since its 1964 patent was issued, and unique site variability dependent on 

industrial activity and wastewater treatment technology.  Marine sediment column 

mesocosm studies were also performed by Ho et al. (2012) that noted the negative 

impact of increasing triclosan concentrations on marine benthic organisms and gave 

warning to the increasing usage and subsequent discharge of triclosan.  Sangster et al. 

(2014) suggested the possibility of aquatic organisms’ absorbing biologically active 

steroids (i.e. estrogenic compounds) that were associated with colloidal material. It can 

then be seen there is a lack of knowledge regarding the dissolution mechanisms 

involving the relationship of triclosan and riverine sediments. 
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 The occurrence and fate of triclosan in wastewater, wastewater treatment sludge, 

effluent receiving surface water, and lake sediments was observed by Singer et al. 

(2002).  It was found that that although surface waters had triclosan levels (50 ng/L) 

below a predicted no-effect concentration, the concentrations detected in lake sediments 

indicated the persistence of triclosan in the aquatic environment.   It expressly warned 

of the increasing urban use of triclosan despite advancements in WWTP technology that 

occurred in the mid-1970s.  

2.3  Publicly Owned Treatment Works 

 In the United States pharmaceuticals, personal care products, and industrial 

chemicals are mostly removed from wastewater through a series of biological processes 

that occur in publicly owned treatment waterworks (i.e. POTWs).  The reduction and/or 

transformation, of these contaminants vary, from the type of treatment technology 

implemented to the physicochemical properties of an individual ECC (Stanley 2014) 

such as that of triclosan.  

The conventional wastewater treatment process is defined in this work as 

consisting of one or more series of coagulation, flocculation, sedimentation, and 

operational units, including biological digestion.  Key removal mechanisms of triclosan 

include adsorption to activated sludge, biological degradation, and advanced treatment 

technologies (e.g. Ozonation/H2O2) (Ahmed et al. 2016). Advanced treatment 

technologies are more scarcely seen due to the cost associated with improving existing 

POTWs within municipalities across the United States.  
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With the lack of widespread use of advanced and hybrid treatment technologies, 

mass loadings of residual triclosan into riverine systems occur on a regular basis.  These 

concentrations in the water column (up to 86 µg/L) are often below common, simple 

methods of detection and require advanced, expensive analyses to quantify (Salvatierra-

Stamp et al. 2015). The continual loading of residual ECC from conventional 

wastewater treatment plants (i.e. lacking advanced or hybrid treatment technology) into 

riverine sediments of commonly dry, low precipitation regions, such as the 

southwestern United States, frames an issue that continual augmentation of rivers 

allows for the accumulation and mobility of triclosan (from 0.1 - 53.0 mg/L) in riverine 

sediment (Montaseri & Forbes 2016).  

2.4  Adsorption 

 Triclosan concentrates onto riverine sediments by way of adsorption.  Triclosan 

in the aqueous form is protonated below a pH value equivalent to its pKa value (pKa = 

8.1).  Under these conditions, triclosan can adsorb onto riverine sediments at the outfalls 

of a POTW by accumulating on the surface of the sediments and forming a film.  The 

adsorption process is limited by the extent of particle exposure through agitation and the 

available surface area that is effective in partitioning triclosan out of the water column. 

Adsorption of this kind would occur from ion exchange between aqueous triclosan and 

sediment particles, as well as Van der Waals electrostatic forces (Zaghtiti 2009). 

During periods of drought, riverine systems are altered and placed under greater 

amounts of stress from human activity.  Water flows are minimized due to less 

precipitation and higher evapotranspiration rates.  Larger surface areas of river banks 

are dried and expose large tracts of riverine sediments.  The input of POTW effluent 
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into riverine systems becomes a greater portion of a river’s volumetric flow rate during 

these periods.  This decreases the typical dilution of trace ECC that enter the natural 

environment when mean river flows are present.  Studies performed germane to the 

impact of drought on wastewater contaminants in Lake Mead, which lies on the state 

borders of Arizona and Nevada, by Benotti et al. (2010) illustrated that drought would 

cause an increase in wastewater treatment residual contaminants due to a marked 

decrease in dilution capacity of the receiving rivers.  These sediments become largely 

unsaturated over the period of the drought and have a greater affinity to adsorb trace 

ECC from POTWs at effluent concentrations.  Therefore, times of drought are seen as 

critical periods to the saturation and preservation of ECC, including triclosan, in 

riverine systems.   

2.5  Dissolution  

Dissolution occurs when sediment particles that have interacted with a 

contaminant come into nonequilibrium with the surrounding environment and the 

aqueous chemical species are formed (Zhao 2014).  Likewise, once triclosan is 

associated with a sand grain it will continuously attempt to maintain equilibrium with 

the surrounding water column.  The dissolution process is driven by undersaturation 

within a water matrix and begins to slow as saturation is approached (Cornell 2004).  

Rate limiting mass transfer between an aqueous phase and an insoluble compound can 

dampen the dissolution process (Soerens 1998).  

Dissolution and desorption are two distinct processes that are worth contrasting 

in this body of work.  Desorption is the process by which a compound is detached from 

an available, active site of a solid particle.  Dissolution occurs when a compound 
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transitions from a solid phase to a liquid phase, typically moving through a diffuse layer 

that is driven by a concentration gradient between that of the solid phase’s surface 

concentration and that of the surrounding bulk solution.  In the context of this research 

the dissolution process is observed and quantified. 

The dissolution process can be depicted by graphing the change of a compound 

of concern’s concentration in solvent through time.  Dissolution from a solid compound 

is governed by the Noyes-Whitney equation (1) which states that the dissolution kinetic 

rate is first-order and proportional to the difference of the dissolved concentration at a 

given time to that of the compounds ultimate solubility concentration (Dokoumetzidis et 

al. 2006).   

𝑑𝐶

𝑑𝑡
= 𝑘(𝐶𝑠 − 𝐶)        (1) 

The Noyes-Whitney equation presented is based on Fick’s Law of Diffusion.  

This equation is derived from the Fickian diffusion concept that concentration gradients 

drive the flux of dissolution from high concentrations to lower concentrations in the 

natural order of establishing dynamic equilibrium. This can be substituted into the 

equation yielding the following equation (2) that solves for the dissolved concentration 

of a substance in dissolution at a given time: 

𝐶(𝑡) = 𝐶𝑠(1 − 𝑒(−𝑘𝑡))       (2) 

Where k represents the kinetic dissolution rate constant which shall remain constant, as 

long as the system is under the conditions of constant temperature, solvent volume, and 

agitation (Hattori et al. 2013). 
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Surfactants are additives commonly used in household products, such as soaps 

and detergents.  Surfactants can increase the solubility of hydrophobic organic 

compounds or lower the interfacial tension to enhance the mobility of hydrophobic 

organic compounds (Zhang 2013).  Accordingly, surfactants are used to increase the 

solubility of triclosan in antibacterial hand soaps. Similarly, many additives that 

currently are in use for these products can enhance or slow the dissolution process. 

Although the solubility of the compound is affected by the surfactant, this described 

change in physical kinetics can cause alterations in a compound’s dissolution, which 

could be reflected in changes to its dissolution rates. 

In the natural environment, the aquatic chemistry is rarely at an equilibrium.  

Many hydrological inputs and outputs are constantly changing; therefore, riverine water 

column and sediment concentrations would rarely see physicochemical equilibrium.  

Intense precipitation overburdens urban infrastructure, POTWs, and the natural 

environment alike.  The current trend of increasing storm intensity has caused larger 

storm water runoff volumes from urban developments and can overload POTW systems 

to the point where they must bypass untreated water into a riverine system.  Wilson et 

al. (2015) observed and tested the Rio Grande River during a large flooding event and 

indicated that flooding can cause WWTP effluent residuals to contaminate floodwaters 

and infiltrate bank sediments, most noticeably through particle adsorption and 

deposition, and that PPCPs can persist in riparian soils post-flooding.  Unfortunately, 

the occurrence of these severe storms during periods of prolonged severe drought do 

little to salve the situation.  Penetration of rainwater into the ground’s water table is a 

slow process that causes a large majority of intense storm waters to become runoff, 
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increasing a watershed’s volumetric flows, and ultimately causing flooding of urban 

areas, floodplains, and river systems.  Of highest concern in this body of work is the 

agitation of triclosan contaminated river alluvium, dissolution of desiccated, preserved 

triclosan within river sands, and the subsequent transport of triclosan throughout the 

natural environment from these “desiccation-saturation cycles”.  Triclosan is 

continuously released into the environment as a result of incomplete removal 

efficiencies at POTWs. Thus, triclosan is believed to pose the risk to be transported in 

floodwaters during flooding events, potentially impacting floodplains (Wilson, Addo-

Mensah and Mendez 2015).   

Chapter 3 - Methodology 

3.1  Research Overview 

 This study examines and quantifies the dissolution process of triclosan in 

amended F-65 Ottawa sand.  This study looked at three concerns regarding the 

dissolution process triclosan: 1.) the quantification of dissolution kinetic rates of 

triclosan amended in the sand with and without surfactant addition; 2.) the 

quantification and characterization of the effects that increasing amounts of triclosan 

mass loadings and surfactants have on triclosan’s dissolution kinetics; 3.) the correlation 

between triclosan’s dissolution kinetic rate and triclosan’s aqueous solubility. 

 The dissolution process was observed through UV-photospectroscopy and 

statistical analysis. F-65 was washed and the dried under high evaporative temperatures. 

F-65 was then amended with triclosan stock solutions and allowed to dry at varying 

temperatures. Each sample was weighed and then allowed to dissolve through agitation 
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within the water column of a nylon cell.  Light absorbance was measured for each 

sample across a range of wavelengths during the dissolution process through UV-

photospectroscopy.  Prior to dissolution, standards were made for both the effect of F-

65 agitation in deionized water and for a known concentration of triclosan stock 

solution. Each individual triclosan dissolution was statistically fitted to the known 

standards and a dissolution curve was produced with aqueous concentration versus time. 

By solving the Noyes-Whitney equation, triclosan dissolution kinetic rates and triclosan 

aqueous solubility concentration were obtained for each sample. 

 Dissolution kinetics were quantified and characterized for pure triclosan and 

surfactant-based triclosan samples. Samples were performed in triplicates.  Samples that 

were amended with pure triclosan were compared to samples amended with surfactant-

based triclosan of equivalent concentrations. Samples with surfactant-based triclosan 

were also performed with a range of concentrations obtained through stock dilution. 

The results of these samples were compared with one another to observe the effect of 

increased surfactant concentration and mass loadings. The kinetic dissolution rates of 

these samples were compared with the initial concentrations of the stock solutions used 

to amend the sands to evaluate the possibility of correlation.  Triclosan dissolution rates 

were also compared with observed aqueous saturation concentrations better quantify the 

correlation between the two. 

3.2  F-65 Washing Methods 

The model sediment selected for this study is F-65 Ottawa sand.  F-65 is a 

quarry Ottawa, Illinois supplied by US Silica.   As a high-purity silica sand, F-65 was 

selected with the purpose of studying the dissolution process in a model sand with a low 
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organic fraction.  F-65 is known to have a net negative surface charge at a range pH 

values that are common in riverine systems, and has been observed to retain a negative 

zeta potential from a pH range of 4.5 up to 10 (Fujita & Kobayashi 2016).  F-65 was 

first washed to remove fine particles that have settling velocities small enough to 

remain suspended in solution.  F-65 was washed and drained with tap water in a 1 L 

graduated cylinder ten times.  This was followed with 15 rinses with deionized water.  

The F-65 was then placed in an aluminum foil vessel and dried at 110°C in a Blue-M 

OV-12A Stabil-Therm Gravity Oven for 24 hours.  The and was then removed from the 

oven and covered while being allowed to cool prior to use. 

3.3  Triclosan Stock Preparation 

Pure triclosan stock solution was created by dissolving Irgasan, ≥97.0%, as 

determined by HPLC, (Sigma Aldrich) in Acetonitrile, HPLC-ACS-grade (Fisher 

Scientific).  A 100 mL stock solution of acetonitrile was prepared in a 100 mL 

Erlenmeyer flask to a concentration of 500 mg/L Irgasan.  Stock solution was securely 

sealed and agitated for 24 hours by use of a Barnstead Thermolyne M49235 Orbital Lab 

Rotator.  When not in use the stock solution was completely covered in aluminum foil 

during storage in order to eliminate any possible photodegradation. 

Bac-Down stock solution was created by dissolving Bac-Down antimicrobial 

handsoap (0.5% w/w) in deionized water.  A 250 mL stock solution was prepared in a 

250 mL erlenmeyer flask to a concentration of 500 mg/L.  Stock solution was securely 

sealed and agitated for 24 hours by use of the orbital lab rotator.  This stock solution 

was also completely covered in aluminum foil during storage order to eliminate any 

possible photodegradation. 
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The pH of stock dilutions were measured with an AR60 dual channel 

pH/ION/Conductivity/DO meter (Fisher Scientific).  The pH of the stock dilutions were 

observed due to the pKa of triclosan (8.1). 

3.4  Sample Preparation 

Pure triclosan experimental samples were prepared by weighing 16 g of F-65 

sand into a 1 and 3/8 fl. Oz fluted aluminum weighing dish (Fisher) in triplicates. The 

500 mg/L stock solution was diluted to 250 mg/L. Each sample was amended with 4 

mL of this solution in order to saturate the sand.  Each sample was then mixed in order 

to ensure homogenous cover. The samples were then placed into a fume hood to dry at 

room temperature (20~22oC) for 24 hours prior to use. 

Bac-Down triclosan samples prepared by weighing 56 g of F-65 Sand into a 

fluted aluminum weighing dish in triplicates. The 500 mg/L stock solution was diluted 

to concentrations of 333 mg/L, 250 mg/L, and 167 mg/L. Sample triplicates were 

amended with 14 mL of either 500 mg/L, 300 mg/L, 250 mg/L, or 167 mg/L.  These 

samples were placed in a IS-41 American gold series Incubator (American scientific 

products) to dry at 60°C for 24 hours prior to use. 

3.5  Dissolution in Nylon Cell with Fiber Optic UV-spectrophotometer 

Dissolution experiments were performed in a custom-made nylon cell that was 

fashioned to hold and seal a fiber optic spectrometer while creating a continuously 

stirred tank reactor.  The cell is cylindrical in shape with two flat surfaces cut into the 

cylinder parallel to each other (Figure 3.2).  On both sides of these surfaces are threaded 

holes fashioned to hold and seal the fiber optic needles 1.52 cm from the top of the cell. 
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In the center of the cell is a well that is 3.81 cm in diameter 3.81 cm in depth.  The total 

height of the cell is 4.45 cm.   

 

Figure  3.1 Nylon Cell with Fiber Optic UV-spectrophotometer 

 

To gather and collect data during for these experiments a PX-2 pulsed xenon 

light source (Ocean Optics Inc.) and a SD 2000 fiber optic spectrometer (Ocean Optics 

Inc.) was fastened and sealed to the nylon cell’s threaded holes.  The fiber optic needles 

were aligned to face each other for proper calibration and function.  One fiber optic 

cable was aligned and measured to extend 0.585” from the well’s inner circumference.  

The other fiber optic cable was aligned and measured to extend 0.883” from the well’s 

inner circumference as well.  These measurements were checked prior to each 

dissolution experiment in order to ensure accuracy and precision of data collection. 

A calibration was performed for the fiber optic system prior to each dissolution 

experiment.  The calibrations were performed on the PcS_Scan ver. 4.8.4 (Chen et al. 

2007) program used to measure and collect the experiment data.  First, the cell was 
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filled with deionized water and the PcS_Scan program was initialized.  A dark spectrum 

reading is taken, followed by turning on the strobe light, allowing the system to 

equilibrate for 30 seconds, and then taking a reference spectrum sample to capture 

absorbance in the cells medium (deionized water).  Next the cell is emptied and 

“snapshots” were taken of solutions that were to be used as references to fit the 

dissolution curves after the dissolution experiment is performed.  Two references were 

made by taking snap shots.  The first reference was for a known stock dilution of 7 

mg/L of pure triclosan in deionized water. The second reference was an F-65 sand 

reference where 15 g of F-65 had been continuously stirred in deionized water for 80 

minutes in order to assess the impact that agitated F-65 has on the measured light 

absorbance for these experiments.  Continuous stirring is accomplished with a magnetic 

stirring bar and a Thermolyne climarec 1 magnetic stirring plate.  The two references 

created were then processed in a conversion program called Spec2Abs (Kibbey et al. 

2009).  Spec2Abs converted the .spec reference snapshots into .abs files that could then 

be utilized to fit every set of dissolution experiment data.  

Dissolutions experiments were prepared identically for each amended sand 

sample.  From each sample 15 g of amended F-65 was weighed into a fluted aluminum 

weighing dish.  After calibrating the fiber optic system and emptying the nylon cell of 

any deionized water, the amended sand is added into the cell’s well along with a 

magnetic stirring rod.  The cell is then placed on the magnetic stirring plate and is filled 

with deionized water while simultaneously initiating the data sampling sequence.  The 

magnetic stirring plate was set to its dialed labeled “1” and was recorded to at 110 

rotations per minute (rpm).  Each dissolution was allowed to run for 3,600 - 4,800 
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seconds (1 – 1.33 hours).  The mass of deionized water used for each experiment 

sample was recorded.    

3.6  Decontamination 

A process of decontamination was followed in order to ensure removal of 

triclosan from instruments, beakers, and the nylon cell.  Decontamination began with 

five deionized water rinses.  The nylon cell would then receive a Methanol, HPLC-

grade (Fisher Scientific) rinse.  Instruments and beakers utilized received a 2-Propanol, 

HPLC-grade (Fisher Scientific) rinse.  These desorption rinses were then followed by 

ten deionized water rinses.  The nylon cell and beakers would then be filled with 

deionized water which was then immediately discarded.  Items were either placed back 

into use or allowed to dry for at least 12 hours.  

Erlenmeyer flasks that were used to house Irgasan and Bac-Down stock 

solutions were soaked for 24 hours at the end of each stock’s use.  Alconox powder 

precision cleaner (Alconox Inc.) was prepared to specifications.  Flasks were then 

soaked overnight for 24 hours.  After soaking the flasks were washed 15 times with tap 

water, followed by 10 washes with deionized water.  Flasks were then placed to dry 

until further use.   

 3.7  Analysis of Dissolutions 

After each sample was analyzed with a UV-spectrophotometer to measure light 

absorbance across a spectrum of 200 to 550 nm, a program created to fit known 

references to analyzed dissolution data, SpectrumFit (Kibbey et al. 2009), was used.  

Each dissolution experiment was fit with four references.  Using PcS_Scan a dark 
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spectrum and reference spectrum was produced and used for each dissolution 

individually in the SpectrumFit analysis.  Two prior Snapshots taken for the  

F-65 sand reference and the characteristic 8 mg/L triclosan solution (Figure 3.2) in 

PcS_Scan were converted from a .spec file to a .abs file and utilized for all dissolution 

fitting in SpectrumFit.  Each dissolution was fitted for a wavelength range of 240 – 400 

nm.  This range was selected since it captured the triclosan’s characteristic curve, as 

well as removed the noise that is commonly experienced at the upper and lower ends of 

the wavelength range (i.e. ≤ 220 nm,  ≥ 450 nm). 

 

Figure 3.2  10 mg/L Pure Triclosan in Deionized Water - 240 Seconds 

 

SpectrumFit produced data that provided dissolution curves from the dissolution 

of amended F-65 sand experiments.  The concentration of triclosan detected in the water 

column was plotted versus time to produce the curves.  By solving the Noyes-Whitney 

equation, performing residual sum of squares analysis, (Eqn. 2) and optimizing 

iterations to minimize observed error in the Solver function of Excel, kinetic rates of the 
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dissolutions were calculated.  ANOVA statistical analyses were performed on this 

triplicate data to ascertain the kinetic dissolution rate average, variance, and test of 

significance producing confidence intervals. 

Chapter 4 – Results & Discussion 

4.1  Irgasan Dissolution Curves 

 The SpectrumFit program was used to produce dissolution curves for 250 mg/L 

pure triclosan triplicates (Figure 4.1).  The pH of this stock dilution was observed to be 

6.60, which is below triclosan’s pKa of 8.1.  Triclosan thus stays protonated and retains 

its affinity for adsorption to F-65 sand’s negative surface charge.  The average solubility 

concentration was 9.59 mg/L which approached known triclosan aqueous solubility 

limits of 10 mg/L.  The kinetic dissolution rate was determined to be 0.0065 s-1.  Both 

descriptive characteristics were determined by optimizing the system of equations 

through minimizing the cumulative error from residual sum of squares analysis and 

allowing these two variables to change in the solver function, precisely fitting a 

dissolution curve to the data produced by the dissolution experiment (Figure 4.2).   
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Figure 4.1  250 mg/L Pure Triclosan Dissolutions in Nylon Cell - Composite 

 

Figure 4.2  250 mg/L Pure Triclosan Dissolutions in Nylon Cell Fit-curves – 

Composite 
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4.2  Bac-Down Dissolution Curves 

 Dissolution curves were created for Bac-Down amended F-65 triplicates for 

varying concentrations of 167, 250, 333, and 500 mg/L.  The pH of the 500 mg/L stock 

solution was 7.01 and the subsequent stock dilutions with deionized water retained a 

circumneutral pH.  The solubility concentration and dissolution kinetic rates were 

derived for these experiments in the same fashion as the Irgasan amended triplicates.  

The average kinetic dissolution rates and the average solubility concentration of each 

dissolution triplicate is provided in Table 4.1.  One dissolution in the 167 mg/L 

triplicates was removed from analysis due to induced error by premature addition of 

deionized water into the cell as the acting solvent.  Triplicate dissolution curves 

produced through executed dissolution experiments and dissolution fit-curves for 167, 

250, 333, and 500 mg/L concentrations of the Bac-Down amended F-65 experiments 

compiled in Appendix A.   

Table 4.1 Bac-Down Dissolution Parameters 

 

 The average kinetic dissolution fit-curves were crafted and compared (Figure 

4.3).  Increasing concentrations of Bac-Down amended F-65 sand was directly related 

to increased dissolution kinetics despite desiccation of the 56g sand samples at 60oC.  

The increase of the mass loading of Bac-Down was strongly correlated with an increase 

in dissolution kinetic rates (Figure 4.4) and was illustrated by an R2 value of 0.915.  

This establishes the foundation that some triclosan-based antimicrobial hand soaps 

Triclosan Source Cspiked (mg/L) Mass Loading (mg/kg) Csol  (mg/L) kdissolution (s
-1

) Std. Deviation

Bac-Down 500 3018.87 34.08 0.0106 0.00291

Bac-Down 333 2010.57 24.39 0.0100 0.00137

Bac-Down 250 1509.43 19.93 0.0085 0.00401

Bac-Down 167 1008.30 11.52 0.0079 0.00194
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possess the ability to persist in drying sand beds with high, desiccating temperatures.  

The implications of this evidence enhance the argument that triclosan can be drought-

tolerant in the sub-surface of river alluvium that avoids photodegradation.  

 

Figure 4.3  Bac-Down Antimicrobial Hand Soap Average Kinetic Dissolution Fit-

curves 

 

 

Figure 4.4  Bac-Down Kinetic Dissolution Rates Versus Triclosan Mass Loading 

Rates 
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Increased mass loading of Bac-Down triclosan is proportional to an increase of 

anionic and nonionic surfactant mass loading of the sample.   The concentration of the 

amended Bac-Down F-65 experiments had a strong correlation to the dissolution kinetic 

rate that was identical to its mass loading, as it is essential to view these two concepts as 

the same process.  The increase in Bac-Down mass loading of triclosan illustrated an 

even stronger correlation to the saturation concentration of detected triclosan with an R2 

value of 0.980 (Figure 4.5).  This correlation is most likely attributed to the increased 

application of Bac-down’s surfactant additive when applied to the F-65 samples.  This 

would provide evidence that an increase in concentration, or use of, a triclosan product 

that contains surfactant additives would produce a linear increase in triclosan’s aqueous 

saturation concentration equally proportional to the amount of product used for a given 

volume of water.  

 

Figure 4.5  Bac-Down Triclosan Saturation Concentration Versus Triclosan Mass 

Loading Rates 
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4.3  Surfactant Analysis 

 The effects of surfactant  in triclosan amended F-65 sand was analyzed by 

contrasting and comparing the kinetic dissolution of 250 mg/L Irgasan experiments with 

that of the kinetic dissolution of 250 mg/L Bac-Down experiments.  The comparison of 

the two sets of triplicates’ kinetic dissolution fit-curves (Figure 4.6) and the average 

kinetic dissolution fit-curves (Figure 4.7) produced significant contrast.  Since the mass 

loading of triclosan is similar in both experiments, the effects of surfactant additives 

present in Bac-Down dissolution triplicates were able to be distinguished from pure 

triclosan dissolution triplicates.   

 

Figure 4.6  250 mg/L Pure Triclosan & Bac-Down Dissolutions - Composite 
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Figure 4.7  250 mg/L Pure Triclosan & Bac-Down Dissolutions Average Kinetic 

Fit-curves 

 

 A strong increase in triclosan’s water solubility and a moderate increase in the 

kinetic dissolution rate was observed for triclosan in the presence of the surfactant-

based Bac-Down.  The average kinetic dissolution rates and average aqueous 

solubilities for both pure and surfactant-based experiments were compared (Table 4.2).  

The observed average aqueous solubility of triclosan was doubled for Bac-Down, as 

opposed to Irgasan dissolutions.  An increase in the average kinetic dissolution rate of 

31% was also calculated, respectively.   

Table 4.2  Irgasan & Bac-Down Kinetic Dissolution Parameters 
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Triclosan Source Cspiked (mg/L) Mass Loading (mg/kg) Csol  (mg/L) kdissolution (s
-1

) Std. Deviation

Irgasan ≥97.0% HPLC 250 1509.43 9.59 0.0065 0.00085

Bac-Down 250 1509.43 19.93 0.0085 0.00401
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To assess the relationship of the dissolution kinetic rates with triclosan’s 

saturation concentration of the Irgasan amended F-65 dissolution experiment was 

compared with all Bac-Down amended F-65 experiments (Figure 4.8).  A strong 

correlation was maintained with a value for R2 of 0.916.  In this study, triclosan’s 

dissolution kinetic rate has a positive linear relationship with the saturation 

concentration.  An increase in the saturation concentration through the addition or 

increase of surfactants would therefore be likely to result in a proportional increase in 

the dissolution kinetic rates.    

 

Figure 4.8  Irgasan & Bac-Down Dissolution Kinetic Rates Versus Triclosan 

Saturation Concentration 
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concentration (i.e. mass loading).  The increase in the dissolution kinetic rates through 

the increase of triclosan mass loading appears to be likely. 

 

Figure 4.9  Irgasan & Bac-Down Kinetic Dissolution Rates Versus Triclosan Mass 

Loading Rates 
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4.4  Nylon Cell Adsorption 

 When approaching the end of this study, a phenomenon was observed in 

dissolution curves that extended beyond 3600 seconds (1 hour) and was further 

investigated.  The dissolution curves of concern experienced a slight decrease in the 

saturation concentration plateau around the 3600 second marker.  The material of the 

nylon cell was then studied to observe adsorption potential of the cell’s inner walls.   

A pure triclosan stock dilution of 7 mg/L was created to fill the nylon cell and 

observe triclosan’s concentration over time.  This concentration was selected as it was 

below the saturation concentration of Irgasan (10 mg/L) and as such would not 

precipitate out of solution.  The cell was decontaminated prior to this experiment as 

described in methods section.  It was observed that over the duration of the dissolution 

experiments of 2400 seconds a decrease of 3 mg/L in solution was observed (Figure 

4.10).   

 

Figure 4.10  Triclosan Concentration in Nylon Cell with Time 
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The nylon cell has adsorptive potential with the compound triclosan.  This 

mechanism could potentially be addressed by solving the Noyes-Whitney equation with 

a second adsorption constant (kads): 

𝑑𝐶

𝑑𝑡
= 𝑘(𝐶𝑠 − 𝐶) − 𝑘𝑎𝑑𝑠(𝐶)       (3) 

Chapter 5 – Conclusions 

The dissolution mechanisms of triclosan in a model river sand was observed and 

quantified.  Kinetic rates were formulated based on drug dissolution theory involving 

the Noyes-Whitney equation.  This study determined the effects that the saturation-

desiccation cycle has on the dissolution mechanisms of surfactant-based triclosan.  

Surfactant-based triclosan was subjected to high evapotranspiration temperatures and 

was found to have negligible effects on the compound and its dissolution mechanics.  

Surfactants that are commonly found in triclosan-based consumer hand washing 

products increase the solubility of this compound in water and the kinetic dissolution 

rate.  An increased dissolution rate could potentially lead to a greater mobility of this 

compound within the aquatic environment. 

The fate and transport of triclosan within river and soil sediments under periods 

of extreme weather such as drought, flood, and the saturation-desiccation cycle needs to 

be further studied.  Due to the relatively high cost of analyzing trace residuals in 

effluent receiving waters, this research created a low cost method of ECC observation 

and analysis by utilizing concentrations of these compounds that are higher than would 

be observed in the environment, ultimately establishing relationships with constituent 

behavior and extreme weather events.  Based on this study, the dissolution potential of 
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triclosan is great enough to persist in riverine systems and travel down-gradient from 

the point of discharge. Surface waters are jeopardized by the saturation-desiccation 

cycle and some areas of the United States are projected to have changes in precipitation 

and surface water flow patterns as a result of global climate change (Benotti, Stanford 

and Snyder 2010).  The ban on triclosan from consumer antiseptic washing products 

produced by the FDA on September 2nd, 2016 will greatly reduce the complex social, 

environmental, and economic risk from surfactant-based products containing triclosan.    
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