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CHAPTERl 

INTRODUCTION 

Microwave scattering from the ocean surface is of great interest in both military and 

civilian applications [2,6-12,99,100]. Radar scattering from the surface is usually 

considered "clutter" which can mask targets of interest on or near the surface. 

Understanding the surface scattering process will aid in the development of methods to 

detect target signals from within the clutter. In other applications, the sea scatter itself is 

used to extract useful information. Sea scatter can be used to measure surface waves, 

internal waves, current boundaries, temperature gradients, and biological and man-made 

slicks. The first civilian high-resolution spacebome synthetic aperture imaging radar, 

SEASAT, was launched specifically for sea surface remote sensing applications [99]. 

With the increasing resolution and the development of multi-band and multi-polarization 

SAR systems, remote sensing radar images are becoming more useful in both military 

and civilian application [100]. No matter what the application, the mechanisms that lead 

to backscattering energy when microwave interacts with sea surface must be thoroughly 

understood. 

Sea surface backscattering is reasonably well understood when the radar signal is 

incident on the surface at moderate incidence angles ( 30° - 60° ). The scattering is 

dominated by the Bragg resonance effect at moderate angles [2]. However as the 
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incidence angle approaches grazmg (low grazmg angle, or LGA illumination), the 

character of the backscattering changes. In particular, it is characterized by brief bursts of 

backscatter known as "sea spikes". Sometimes, this gives rise to "super events", where 

HH backscatter exceeds VV [7-9, 74-75]. (HH means that both the transmitted and 

received polarization is horizontal, while VV indicates vertical polarization in each case.) 

This behavior is not consistent with the Bragg mechanism, which predicts approximately 

constant scattering over time with VV significantly exceeding HH [2]. Strong sea spikes 

can raise the HH backscatter to 10 dB or more above VV [ 45]. The HH sea spike echoes 

typically have de-correlation times of several hundred milliseconds, while at VV the 

order is only of ten milliseconds. Sea spikes can last up to a few hundred milliseconds. 

The scattering from the sea surface at low grazing angle has been characterized by 

the "Doppler splitting" effect in studies [86,87]. The Doppler spectra of both vertical and 

horizontal backscattering are almost the same at small and moderate incidence angles. 

When the incidence angle tends to grazing, the spectral peak of VV appears at a lower 

Doppler frequency than that of HH. The "slow peak" of HH gradually disappears from 

the HH spectrum while the "fast peak" dominates. Conversely, the fast peak diminishes 

and slow peak dominates in VV. The higher Doppler-shifted energy has sometimes been 

called "fast"· scattering associated with "fast" surface scatterers while the lower shifted 

energy has been referred to as "slow" scattering. 

1.1 Breaking Wave Scattering 

Breaking waves have been suggested as a strong contributor to the backscattering from 

the sea surface at low-grazing-angle (LGA) (high incidence) illumination [43-45, 78, 79, 

82, 83], and particularly are thought to be responsible for strong sea spikes. Specular 
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reflection from very steep features on the crest of breaking waves has also been suggested 

as the cause of fast-scatterer signals faster than that expected from Bragg scattering [85]. 

For this reason, most theoretical and numerical studies of the scattering from breakers 

have focused primarily on the steep features and the multipath interference that may give 

rise to the sea-spike phenomena [78,79,82]. 

There are several models to explain sea spikes. The most popular theory is multipath 

scattering that scatters off the crest and then reflects from the front surface of wave. 

Wetzel [78] proposed steep features on the crest of breaking wave as the dominant 

scatterers. Some energy scatters directly back to the radar from the front face, while some 

scatters toward the front face of the wave and reflects toward the radar. Interference 

between the direct and multipath scattering leads to the HH > VV signatures typical of 

sea spikes. Trizna [79] refined this model to include the effects of the finite conductivity 

of the surface, which tends to dampen the VV multipath through Brewster angle effects. 

Plant [86] introduced a "bound-Bragg" model to explain the fast scattering signals. 

In this theory, it assumed that small waves that are Bragg-resonant with the incident 

electromagnetic energy are bound to the front face of steep, large~amplitude waves. The 

local incidence angle for these Bragg scatterers is greatly reduced due to the tilt of the 

front face. The HH scattering cross-section , predicted by Bragg theory increases 

dramatically as the local incidence angle decreases. Thus, the scattering from the bound 

waves would dominate that from untilted roughness. As the bound waves do not freely 

propagate but move with the much higher velocity large waves, this gives the fast-scatter 

signal. VV Bragg scatter is much less sensitive to the local tilt, so the bound-wave 

signatures do not dominate and the fast scatter signal does not appear. 
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Numerical studies of rough surface scattering have typically been performed 

statistically. Numerous samples of rough surfaces are generated numerically from the 

same roughness spectrum and the scattering from the individual surfaces are combined to 

estimate the scattering statistics. This is known as Monte-Carlo analysis. The 

disadvantage of this technique is that it is difficult to distinguish the contributions of 

individual scatterers. This work will therefore rely upon deterministic treatment of 

breaking wave profiles. 

1.1.1 Definition of 2-D and 3-D Surfaces 

In this paper, two kinds of surfaces are considered. One is a surface that is uniform in one 

dimension. The surface height can be expressed as z = f(x). As it is a function of only x, 

this is sometimes referred to as a one-dimensionally (1-D) rough surface. However, this 

surface type yields a two-dimensional (2-D) radar-cross section, and requires a 2-D 

electromagnetic analysis. Thus, it is sometimes termed a 2-D surface. To avoid 

confusion, this paper refers to this type of surface as a two-dimensional scattering 

problem throughout. This is particularly important since overturning surfaces are 

considered, where the term "one-dimensionally rough" loses its meaning. The second 

type of surface is not uniform in one dimension. It can be described by z = f(x,y) in the 

absence of overturning. This surface type leads to three-dimensional (3-D) scattering 

cross-sections and requires a 3-D electromagnetic analysis. For consistency, this is 

termed a "3-D surface" and "3-D problem", although it may sometimes be termed as a 

"2-D rough" surface in the literature in the absence of overturning. 
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1.1.2 Previous Work 

Numerical investigation of breaking waves has been performed by Ja [43], Ja et al. [44] 

and West and Ja [17]. A 2-D electromagnetic technique, moment method/geometrical 

theory of diffraction (MM/GTD), was applied to 2-D surfaces representing the time 

evolution of breaking waves measured in the University of Maryland wave tank [88]. Ja 

et al. used a time-dependent Fourier analysis technique to relate calculated scattering 

signatures to specific features on the wave surface [ 44]. As the wave steepens and a bulge 

forms on the forward face of the crest prior to breaking, horizontal-to-vertical 

polarization backscattering (HHNV) ratios up to O dB appeared with gently spilling 

breakers. With more energetic plunging breakers, HHNV as high as 20 dB was observed 

when jetting features appeared on the crest [ 45]. The time-dependent Fourier analysis 

also revealed differences in the Doppler signatures at the two polarizations. The HH 

spectra sJiowed strong signals at the higher frequencies associated with the phase velocity 

of the wave, but much weaker signals at lower Doppler shifts. At VV the signals at higher 

and lower shifts were approximately equal. The highest shifts observed were associated 

with the jetting features, while lower shifts were correlated with the turbulent "scar" that 

remains on the surface after breaking. 

West and Ja [17] applied the two-scale scattering model to the wave tank breakers at 

low grazing angles. They found that two-scale-model (TSM) was unable to consistently 

predict the scattering from the very steep and/or multivalued features that form on the 

wave crest immediately before breaking. After the initial breaking, the accuracy of TSM 

depended upon the nature of the roughness in the turbulent scar left behind on the crest. 

TSM gave a fairly good prediction of the backscattering while the scar roughness 
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appeared primarily on the front face of the wave, but accuracy was quickly lost as the 

wave overtook the scar and the roughness moved to the top of the crest and the back face 

of the wave. 

As mentioned, the previous numerical work was limited to scattering from 2-D 

waves. This significantly limits the analysis of the scattering. In the work that follows a 

full 3-D scattering code will be applied to 3-D profiles that were synthesized from the 

measured 2-D wave tank profiles. The measured wave profiles are therefore reviewed 

here. 

1.1.3 Spilling Breaker Water Wave 

Fig. 1.1 shows the measured time history plot of the spilling wave that was considered by 

J a and West [ 44]. The wave was mechanically generated by a vertical oscillating wedge 

at the end of a 14.8 m long, 1.22 m wide and 1.0 m deep wave tank [88]. A video camera 

was mounted on a carriage that moved along the tank at the same speed as the wave crest. 

The camera viewed the wave crest from the side, looking down at 5° from horizontal. 

Two light-emitting diodes were attached to the carriage which illuminated a florescent 

dye on the surface that was imaged. The camera operated at a sampling ratio of 472 

frames/second. 

The consecutive profiles were stacked vertically to form Fig. 1.1. The vertical axis 

therefore gives increasing time. Since the camera was moving at the long wave phase 

velocity, a surface feature shifting toward left or right with increasing time indicates that 

it moves faster or slower than the camera, respectively. 329 frames were measured for 

this wave, corresponding to a time duration of 697 ms. The measured surface profiles are 

117 mm long in range direction (left to right in the figure). Initially, the surface is 
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relatively smooth, with the crest then steepening. The height reaches a maximum of 35 

mm at 190 ms (profile 90). A plume starts to appear around 210 ms (profile 99). Parasitic 

capillary waves of about 5 mm in length form just below the "toe" of the plume from 210 

ms to 310 ms. This waves breaks at 370 ms (profile 175). After breaking, the plume 

collapses and turbulent regions are generated on the front face of the wave. The 

turbulence is carried by the orbital motion of the long wave, so is passed by the crest. 

New turbulent regions then form continuously. Fig. 1.2 shows individual sample surface 

profiles from the complete spilling breaker history. · 

1.1.4 Plunging Breaker Water Wave 

Fig. 1.3 shows a plunging breaker wave that was generated under similar conditions to 

previous the spilling wave. However, a high concentration of a soluble surfactant, Triton 

X-100, was added to the water. Surfactants reduce the surface tension of the water, 

changing the behavior of the breaking. In particular, the breaking is more energetic than 

in the previous spilling case, giving intervals where jets form. This wave has 222 frames 

(profile 90 to profile 311 ), corresponding to a time history from 190 ms to 659 ms. This 

surface has two overturning points, occurring at 370 ms and 460 ms. This breaker was 

used in [45]. Super-events were identified during the two overturning points, giving HH

to-VV ratios of 20 dB and 10 dB, respectively. Fig. 1.4 shows sample individual surface 

profiles of this plunging breaker. 

1.2 Existing Scattering Models 

Wave scattering from rough surfaces was first examined theoretically by Rayleigh in 

1907, and has been intensely studied since the development of radar and sonar in the 
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middle of the 20th century. Initially the approaches were limited to analytical models that 

include various approximations to allow closed-form approximate solutions to Maxwell's 

equations. Unfortunately, the approximations introduce limitations in the conditions 

under which the models are valid. The ranges of validity are not always obvious from the 

development. As computer technology has developed, the analytical studies have been 

supplemented by numerical scattering studies. , Numerical scattering approaches, when 

properly implemented, yield the "exact" solution to which the .models can be compared 

and tested. However, they tend to be computationally very expensive. Their primary use 

is therefore to test the models under controlled conditions to identify their ranges of 

validity, so that the models may be used to construct computationally efficient algorithms 

that are valid under all ranges of conditions. 

1.2.1 Analytical Models 

The two "classical" rough surface scattering models are the Kirchhoff approximation 

(KA) [2] and the small-perturbation method (SPM) [10, 14]. KA uses the physical optics 

(PO) current on planes tangent to the scattering surface to approximate the true induced 

current. This current is then re-radiated to give the scattered field. KA has several 

approximations that limit its application. First, KA assumes that the radius of curvature of 

the surface is large compared with the radar wavelength. This is required for the tangent 

plane approximation to be valid. It also uses the optical shadowing approximation, so 

ignores diffraction and multipath scattering into shadow regions at small grazing angles. 

It therefore is valid only for gently undulating surfaces, although the surface 

displacement can be large compared to the electromagnetic wavelength. Thorsos [35] and 

Chen et al. [39] have numerically examined KA, and showed it is accurate only for for-
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ward scattering near the specular direction. It performs poorly for backscattering. 

Perturbation theory was first introduced by Rayleigh [6], and was formulated as the 

small-perturbation method (SPM) by Rice in 1951 [ 1 O]. It has been thoroughly studied by 

others since the 1960s [2,11-15]. SPM assumes that the surface roughness is small 

compared to the electromagnetic wavelength. SPM predicts "Bragg resonant" scattering, 

which results from a resonance between the electromagnetic energy and short surface 

waves roughness at about the same wavelength [2]. 

The two-scale-model (TSM) is a combination of the KA and SPM models that 

retains the advantages of both. Introduced by Wright [12], TSM separates the surface 

roughness into two different components. Ideally the small-scale component is 

sufficiently small in displacement that SPM applies. The other component of the 

roughness is considered large-scale, meaning that the KA model will apply. TSM 

therefore requires that the actual surface be separated into the large- and small- scale 

components. It is not always possible to define a criterion where both the small-scale and 

large-scale surface requirements are met. The results may therefore depend upon the 

separation scheme used. TSM also suffers from the same limitations as KA when surface 

self-shadowing occurs. Wright [12] showed that TSM can describe most sea surface 

backscattering at small and moderate incidence angles. 

Recently two models have been introduced that are variations on standard 

perturbation theory: the small slope approximation (SSA) [6] and the phase perturbation 

technique (PPT) [32, 33]. These methods have the advantage of not requiring a scale 

separation of the surface roughness, which is regarded· as the main drawback of TSM. 

SSA was introduced by Voronovich [6]. It represents an expansion of the scattered field 

13 



in terms of the roughness slope rather than height. SSA is therefore appropriate for 

scattering from large-scale (the Kirchhoff regime), intermediate-scale and small-scale 

(the Bragg regime) roughness. The slopes of sea surface roughness are generally small 

except at the crest of steep breaking waves. Berman [26] has numerically demonstrated 

the effectiveness of SSA for both deterministic and statistical 2-D rough random surfaces. 

Broschat and Thorsos applied SSA to 2-D rough surfaces that approximate the sea 

surface without steep breaking waves using a "Pierson-Moskowitz" (PM) sea surface 

spectrum [27-28]. They found that SSA works well over a broad range of scattering 

angles for small to moderate slopes. Ewe et al [30] compared SSA with numerical 

calculations for 3-D Gaussian correlated surfaces. They found that the computationally 

simple 1st order SSA is correct only for low incidence angles. 2nd order SSA appeared 

accurate up to 70° incidence angles at the expense of much greater computational load. 

Voronovich and Zavorotony [22] compared statistical SSA (both 1st order and 2nd order) 

results with experimental scattering from rough sea surfaces at Ku- and C-bands. Good 

agreement was obtained at moderated angles for 2nd order SSA. Soriano et al [25] 

compared SSA and KA with reference moment method results. SSA proved the superior 

to KA for surfaces with Gaussian spectra and single valued, moderate slope for all the 

incidence angles at both statistical and deterministic cases. For more complicated 

surfaces, higher order was suggested. To date, no SSA results for scattering from 3-D 

breaking wave surfaces have been reported. 

The phase perturbation technique (PPT) was first suggested by Winebrener and 

Ishimaru [32, 33]. It is based on a perturbation expansion of the phase of the filed. This 

technique was derived by only using Dirichlet boundary condition, so it is only suitable 
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for horizontal polarization (HH) backscattering from perfectly conducting surfaces. 

Broschat [34] applied it to scattering from 3-D rough statistical surfaces following the 

Pierson-Moskowitz wave height spectrum [37]. 

Another recently introduced model is EGO/GTD [91-96]. Geometrical optics (GO) 

and the geometrical theory of diffraction (GTD) are high frequency methods. They can 

only be applied to structures whose features are large compared to wavelength. Voltmer 

[94] demonstrated that with a modification of GO it can be applied to reflection from 

surfaces with radii of curvature as small as 1/31. This was termed extended GO (EGO) 

by West [91]. West [91] also showed that EGO corrections could be applied to GTD 

diffraction coefficients, and applied EGO/GTD to a numerically generated 2-D time 

history of a plunging breaker. EGO is useful in modeling the scattering from steep and 

jetting surfaces. 

1.2.2 Numerical Methods 

The analytical models mentioned above can provide a good approximation for wave 

scattering only under certain conditions. Numerical methods provide the opportunity to 

test the ranges of validity of the models, and to allow the treatment of multivalued 

overturning surfaces. 

The moment method (MM) is typically used to find the reference scattering in rough 

surface scattering studies. Introductions to MM for electromagnetic problems are given 

by Harrington [3] and Bancroft [ 4]. MM is used to discretize continuous integral 

equations into forms easily solvable by computer. Two integral equations commonly used 

in electromagnetic scattering problems are the electric field integral equation (EFIE) and 

the magnetic field integral equation (MFIE). MM discretizes these equations to produce a 
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linear matrix equation that can be easily solved to give the surface current. Once the 

unknown surface current density is found, the scattered field can be calculated by 

evaluating radiation integrals. MM was first used with perfectly conducting surfaces. It 

has been further applied to imperfectly conducting surfaces by Senior and Volakis [84] 

using the concept of impedance boundaries. West et al. [41], Johnson et al [15] and 

Holliday et al. [8] have implemented impedance boundary moment methods for sea 

surface scattering. 

The main limitation of the moment 11?-ethod is that the computational complexity 

grows dramatically as the size of the scattering surface increases. The order of the 

solution time increases by N 2 when iterative solution is used, and N 3 when direct 

solution is used, where N is the number of unknowns in the discretization. This is 

clearly the limiting factor when three-dimensional problems are considered, where 

doubling the dimensions of the surface gives a four-fold increase in the number of 

unknowns. The basic moment method must be refined to allow application to general, 

large rough surfaces. 

Rokhlin developed a method to rapidly solve integral equations (IE) that arise in 

classical potential theory known as the fast multipole method (FMM). This was then 

adapted to treat acoustical wave scattering problems [53], and 2-D electromagnetic 

scattering problems. It was extended to the full 3-D EM scattering problem by Rokhlin 

[55]. FMM can be seen as an extension of the moment method that uses a multipole 

expansion of the MM interaction matrix to accelerate the matrix-vector multiplications 

that are needed in an iterative solution. The computational cost of FMM is of order 

O(Nl.5). A multi-level extension of FMM was applied by Lu and Chew [58] to 3-D 
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electromagnetic problems. Termed the multi-level fast multipole algorithm (MLFMA), it 

reduces the computational complexity of iterative solution to O(NlogN). MLFMA has 

been applied to numerous EM problems [59-67]. 

Other algorithms that have been developed to accelerate the standard moment 

method are the banded matrix iterative approach/canonical grid (BMIA/CGA) introduced 

by Tsang et al [ 68,69] and the novel spectral acceleration technique introduced by Chou 

and Johnson [90]. These approaches are limited to single valued surfaces, so are less 

general than FMM/MLFMA. 

1.3 Edge Treatment in Numerical Methods 

When numerically modeling the electromagnetic scattering from surface, the surface 

must be artificially truncated due to finite computer resources. The truncated edges 

introduce non-physical diffraction that can mask the scattering from the actual surface 

features if the edge is not properly treated. Several approaches have been used to treat the 

edges in moment method based method, including illumination windowing [35], a hybrid 

technique combining the moment method with geometrical theory of diffraction 

(MM/GTD) [43-45], and resistive loading of the edges [74-77]. The Thorsos illumination 

window has proven quite popular [35]. However, as the incidence angle tends to grazing, 

the surface must be very large to give realistic illumination. This approach becomes quite 

expensive at LGA, particularly for arbitrary 3-D surfaces. MM/GTD on the other hand 

can be applied at arbitrarily small grazing angles, but is limited to 2-D surfaces. 

Compared with other methods, resistive loading of the edges has the advantage of 

very low computational overhead, while not requiring the surface to be modified at low 

grazing angle. It appears to be a promising approach for treating scattering from arbitrary 
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3-D rough surfaces. West [76] showed that a resistive taper introduced by Haupt and 

Liepa [74] was effective in reducing the edge effects in scattering from 2-D surfaces that 

approximate breaking water waves. 

1.4 Overview 

The purpose of this work is to study the scattering from rough surfaces representing the 

crests of breaking water waves at low grazing angle illumination. A full 3-D MLFMA 

with impedance boundary conditions and resistive edge treatment has been implemented 

to provide the reference scattering calculations. The test 3-D breaking crests are 

synthesized from the existing 2-D wave measurements. The predictions of the existing 

scattering models are compared with the reference scattering under various conditions, 

identifying the ranges of validity under the specific test conditions. 

Chapter 2 gives a review of the numerical MM/GTD technique used in previous 2-D 

breaking wave studies. This technique will be used to calculate reference 2-D scattering, 

which will be compared with 3-D results. Different analytical scattering models, 

including KA, SPM, TSM, and EGO/GTD are reviewed in Chapter 3. Details of the 

implementation of the MLFMA numerical code are presented in Chapter 4. In chapter 5, 

the treatment of edges using resistive loading in general 3-D surface scattering will be 

considered. In Chapters 6 and 7, the scattering from 3-D surfaces modeling breaking 

wave crests will be examined. The effectiveness of the analytical models is evaluated, as 

is the potential use of 2-D results to synthesize the 3-D scattering. Chapter 6 focuses on 

the gently spilling breaker while Chapter 7 considers the more energetic plunging crest. 
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CHAPTER2 

REVIEW OF NUMERICAL TECHNIQUE FOR 2-D 
SURFACES 

The numerical scattering code used by Ja et al [ 43,44] and West and Ja [17] for scattering 

from two-dimensional surfaces will be used as a reference to which the three-dimensional 

surface techniques will eventually be compared. A brief review of this approach, known 

as the hybrid moment-method/geometrical-theory-of-diffraction technique (MM/GTD) is 

given here. A complete description of the code is given in West et al [41] and Sturm and 

West [42]. 

2.1 Moment Method for Perfectly Conducting Surfaces [1,3] 

The core of the MM/GTD 2-D scattering code is based on the moment method. The 

moment method was developed in the 1960's as a technique to solve linear integral 

equations (IE) through a discretization process. When used for electromagnetic 

scattering, the moment method is first used to solve an integral equation derived from the 

field boundary conditions, giving the surface current. The surface current is then re

radiated into space to give the scattered field. 

The geometry for scattering from a 2-D surface when the incident illumination is 

horizontally polarized is shown in Fig. 2.1 a. Since the magnetic field is everywhere 

orthogonal to the z dimension, this is often referred to as transverse magnetic (TM) 

19 



polarization. When the surface is a perfectly electric conducting (PEC), a true surface 

current density will be induced on the surface that has only a z component, designated by 

J z. The boundary condition ( ~x (Ei +Es)= 0) can be used in the TM case to give 

where p' is the vector from the origin to a source point on the surface, p is the vector 

from the origin to an observation point on the surface, k is the electromagnetic wave 

number, T/ is the intrinsic impedance of medium above the surface (T/ = T/o = 120,ir Q for 

free space), l is the distance along the arc-length of the surface, and Ha2) () is the Hankel 

function of the second kind of order zero. (2.1) is known as an electric field integral 

equation (EFIE) since the electric field boundary conditions are met. 

y 

z X 

a) Horizontal polarization 

y 

z X 

b) Vertical polarization 

Fig. 2.1: Geometry of 2-D surface. 
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Fig. 2.lb shows the geometry for the vertically (or transverse electric (TE)) polarized 

case. In this case, the surface current on a PEC surface is along the arclength of the 

surface, designated by J1 (/) . In this case, the magnetic field boundary condition 

~x (Hi+ H8 )= J can be used to derive the magnetic field integral equation (MFIE), 

given by 

I\ 

where n' is the unit vector normal to the surface at the source point, and H}2) () is the 

Hankel function of the second kind of order 1. 

Both the TM EFIE and the TE MFIE can be written in the generic form. 

(2.3) 

where F is either the electric field E or magnetic field H, X is either E or M, and s is 

either z or l. To discretize this equation, the surface current is first approximated by a 

finite series 

I\ N 

Js = 2Jnfn, (2.4) 
n=l 

where the fn 's are basis (or expansion) functions and the In's are unknown coefficients 

to be found. This expansion is substituted into (2.3) to give the residual 

(2.5) 

The last step makes use of the fact that the field integral equations use linear operators. 

Since (2.4) uses a finite basis expansion, the residual in (2.5) is non-zero. The moment 
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method minimizes the residual by defining N weighted residuals as 

N , 

Rm(Z) = (wm(Z),R(l)) = \ Wm(Z),Fj(l))- Lin( Wm(Z),Lxl/n(l)]), (2.6) 
n=l 

where wm (l) is a weighting function and (Wm(/), g(Z)) is the inner product defined by 

(wm(Z),g(l)) = Jwm(Z)g(l)dl, 

Setting the weighted residual equal to zero gives 

N 

Lin(wm(Z), Lx[fn(Z)]) = \ Wm(Z), Fj(l)). 
n=l 

(2.7) 

(2.8) 

(2.8) represents a linear algebraic system of N equations and Nunknowns (In's), which 

can be written as 

(2.9) 

[zmnl is often termed as the MM interaction matrix. The unknown [In] vector can be 

found using standard linear algebra techniques, completing the moment-method solution. 

The usual approach for scattering from 2-D surfaces is to use sub-domain pulse basis 

functions. The sub-domain approach involves subdivision of the surface current into N 

non- overlapping segments. The basis function ( fn) in each subdivision is 

ln-1 5, l 5, Zn 

elsewhere 
(2.10) 

Dirac delta functions are typically used as weighting functions applied at the center of 

each basis function. This choice forces the residuals to be exactly zero at discrete points, 

so is often referred to as "point matching". 

Pulse basis functions yield piecewise constant approximations of the current, as 

shown in Fig. 2.2. The far field scattering is found by integrating the current, so the 
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piecewise constant approximation does not give significant error, and accuracy improves 

with decreasing segment lengths. Segment lengths of 0.05J have been shown to give 

sufficiently accurate results even at the small scattering cross-sections [ 43]. 

' ~ ___. 
Match points 

Fig. 2.2: Current approximation using pulse basis functions. 

The far field scattering is found by using, 

Es = - :T/ L Jz(l')H~2)(klp -p'l)dl', for HH polarization. (2.1 la) 

HS = j k f Jz(l')(~'. r-p' 1JHf2)(kl p -p'l)dl'' for vv polarization. (2.1 lb) 
4 C p-p' 

The 2-D radar cross-section of scattering from 2-D surface is defined as [1] 

(2.12) 

2.2 Moment Method for Imperfectly Conducting Surfaces [1] 

When the scattering surface is perfectly conducting, a true surface current is induced on 

the surface which the moment method finds directly. With finite conductivity media such 

as seawater, however, the field penetrates the surface and a volume current is induced. 

Treating volume currents directly with the moment method is very expensive. Instead, an 

equivalent problem may be solved since the scattering medium is homogeneous. Fig. 2.3 

shows the application of the equivalence principle to an arbitrary scatterer [3]. Both the 
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Fig.2.3: Equivalent principle with high loss dielectric scatter. 

electric equivalent surface current density J and a magnetic surface current density M 

must be found by the moment method. This may be accomplished by expanding both the 

electric surface current J and magnetic surface current density M in finite series of the 

form in (2.5) [ 42]. This doubles the number of unknowns to be found compared to the 

perfectly conducting case. However, if the conditions 

!Fri>> l, (2.13) 

are met, where &r is the complex dielectric constant and pz is the radius of curvature of 

the interface, the problem may be, simplified. In this case, the field transmitted into the 

scattering medium will be refracted to nearly normal to the interface, and the magnetic 

current can be accurately represented by the impedance boundary condition [ 49,84] 

I\ 

M =-ZsnxJ, (2.14) 

where Zs is the intrinsic impedance of the scatterer. For seawater at 10 GHz, 

&r /::;j 56.26- )37.47, so the conditions of (2.13) are satisfied for all test conditions to be 

considered. Impedance boundary conditions are therefore used throughout. 

For horizontal polarization (TM), the magnetic current will be induced along the 

surface arclength, so is designated M1. The scattered field will include contributions 

from both Jz and Mi. 
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(2.15) 

Es (Jz) is given by (2. lla). Es (Mz) is obtained by applying duality [3] to (2.2), 

yielding 

Es(Mz) = Mz(l') + jk f Mz(l')(~'• p-p' JH}2)(kl p-p' l)dl' 
2 4 c I p - p' I . (2.16) 

=LM[M(l)] 

Using the impedance boundary condition of (2.14) in (2.16) gives 

(2.17) 

Applying the field boundary condition and using (2.15), gives the impedance boundary 

EFIE: 

(2.18) 

The impedance boundary MFIE for vertically polarized scattering is found by 

applying duality to (2.18), yielding 

Hi= LM[Jz(l')]+ z; LE[Jz(l')]. 
TJo 

(2.19) 

Equations (2.18) and (2.19) require only Jz be discretized, so applying the moment 

method to the large, but finite conductivity case is only slightly more expensive than the 

PEC case. In particular, the size of the linear system that must be solved, the most 

expensive step, is unchanged. The MM solution follows the same steps followed in 

Section 2.1. 
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2.3 Hybrid MM/GTD Technique [ 40-42] 

The impedance boundary integral equations in (2.18) and (2.19) apply only to closed 

surfaces or infinitely extending open surfaces. Due to finite computer resources, the 

infinite surface must be truncated in the moment method treatment. If the surface was 

simply truncated with no further treatment, this would introduce artificial edges that 

would affect the scattering. One technique for edge diffraction suppression is the hybrid 

MM/GTD that was developed by Burnside et al [ 40] and numerically implemented for 

rough surface scattering by West et al [41] and Sturm and West [42]. The MM/GTD 

approach avoids the edge effects by infinitely extending the truncated surface as shown in 

Fig. 2.4. 

B .............................................. ··· ··············································· 

;2:.~on . 
To 

infinite 

/ ·~~ 
To 

infinite 

Fig. 2.4: Illustration for MM/GTD technique. 

The dotted line shows the actual (truncated) rough surface, while the solid line is the 

extension. The surface is rounded off at each side and extended planarly to infinity. With 

the infinite extensions the impedance boundary integral equations may be used. However, 

attempting to apply the moment method directly to the full infinite surface would have 

the same limitations as the original surface. Instead, the geometrical theory of diffraction 

(GTD) is used to limit the number of unknowns that must be determined. The extensions 

outside of point B on the left and point C on the right are ideally planar. Moreover, the 

angles of the planar sections to horizontal are chosen so that all points on the extension 
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are shadowed from all points on the rough surface. The field at the face of the planar 

section is therefore fully described by the incident field (if the section is not shadowed), 

plus a field diffracted from the connection point B or C. Sufficiently far from the 

diffraction point (beyond points A or D) the diffracted field is ray optical, so may be 

described by GTD. The MM/GTD approach therefore uses a single basis function derived 

from the GTD field to describe the unknown current everywhere on the infinite 

extensions beyond points A and D. Traditional pulse basis functions are used between A 

and D. Thus, a finite number of basis functions are used to represent the current on the 

infinite surface, so the system may be treated with finite computer resources. 

The electric current in the GTD region can be written as 

{
Jd +JKA 

JGTD = 
0 

I\ e-Jkp 
azJo-1_5_ 

p· 
I\ e-Jkp 

azJo fp 

I\ . 

JKA = (1-r)n xH1 , 

GTDregion 

otherwise 

HH 

vv 

(2.20a) 

(2.20b) 

(2.20c) 

where J d is the current induced by the diffracted field, J KA is the known Kirchoff 

approximation current due to the directly incident field Hi , JO is an unknown coefficient 

to be found using the moment method, and r is the reflection coefficient at the interface. 

The surface current between A and D is expanded using standard MM technique. 

Therefore A to D can be regarded as the standard MM region. The current on the entire 

surface can be expressed as 
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{

/\N I\ I\ 

J = a L.Jnfn, forHH a= az, 
n=l 

JGTD = Jd +JKA 

I\ I\ 

forVV a= az MM region 

GTDregion 

(2.21) 

The moment method is used to find the unknown In and J O coefficients. The 

additional cost of the MM/GTD approach over the standard moment method is modest. 

2.4 2-D Scattering 

Fig. 2.5 and Fig. 2.6 show the scattering from the time histories of the spilling and 

plunging breaker waves shown in Fig. 1.1 and Fig. 1.3, respectively, found using 

MM/GTD. The incidence angle was set at 80°, and the frequency was 10 GHz. This is 

duplicated from Ja [ 43] and Ja et al [ 44]. The GTD planar extensions were angled 30° 

from horizontal. Pulse basis functions of width 0.031 were used. The figures were 

generated by applying MM/GTD to the individual profiles in Figs. 1.1 and 1.3 and 

plotting with the profile number as the abscissa. VV backscattering is plotted as a solid 

line and HH is shown as a dashed line. 

2.4.1 Spilling Breaker 

Fig. 2.5 shows the scattering from the spilling breaker. Initially the profiles are quite 

round, up to profile 50. The scattering is therefore very small. The crest steepens and a 

plume forms from profile 50 to profile 175. The scattering increases at both polarizations 

in this time. The wave breaks after profile 175. At this point, the plume collapses and the 

surface becomes more random. This is reflected by oscillating scattering with increasing 

profile number. After breaking, the scattering is primarily due to the Bragg mechanism. 

The peaks of the VV scattering therefore remain approximately constant after breaking, 
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HH however decreases as the roughness moves across the crest to the backside of the 

wave, increasing the local incidence angle. No super event is evident in the spilling 

breaker backscattering. 
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Fig. 2.5: Backscattering of spilling breaker water wave using MM/GTD. 

2.4.2 Plunging Breaker 

Fig. 2.6 shows the scattering from the plunging breaker. The plunging breaker is more 

energetic than spilling breaker, with two large overturnings. One is around profile 190, 

the other is around profile 206. The crest of the surface is overall steeper, giving larger 

backscattering at both polarizations. Initially the wave crest is round and the cross

sections are small. The cross-section increases as the crest steepens. HH exceeds VV 

beginning around profile 140, giving a super event through profile 172. HH exceeds VV 

by as much as 20 dB in this time. The second overturning is centered at profile 206. This 

gives a lower magnitude super event. VV exceeds HH with all profiles after 220. The 
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surface is more random after breaking than the spilling breaker, giving more rapid 

oscillation. 
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Fig. 2.6: Backscattering of plunging breaker water wave using MM/GTD. 
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CHAPTER3 

REVIEW OF SCATTERING MODELS 

Radar scattering from rough surfaces is typically modeled usmg analytically based 

techniques that use different approximations in their development. Analytical models 

provide direct physical insight into the scattering mechanisms, and can be applied very 

rapidly. This gives a large advantage in real time applications. However, the 

approximations used in developing the models limit the ranges of accuracy. These 

limitations must be fully understood for the models to be used effectively. Numerical 

methods provide a tool to check these analytical models. 

The most commonly used models to describe sea-surface scattering are the two

scale-model (TSM), the small slope approximation (SSA) and the phase perturbation 

technique (PPT). TSM is a combination of the Kirchhoff approximation (KA) and the 

small-perturbation model (SPM). These models will be briefly reviewed in this chapter. 

Although the scattering models will be ultimately applied to the deterministic breaking 

wave profiles of Fig. 1.1 and Fig. 1.3, they are typically used to find the scattering from 

statistically rough surfaces that can be described by linear wave spectra. Sample cases 

will therefore first be tested using the approximate Pierson-Moskowitz wave spectrum 

and presented in this chapter. Issues related to application to deterministic surfaces will 

be considered in later chapters. 
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Extended geometrical optics/geometrical theory of diffraction (EGO/GTD) is 

another useful and simple mode in analyzing the scattering mechanisms. It was recently 

introduced for use in overturning cases [91]. 

3.1 Random Surface Generation--Pierson-Moskowitz (PM) Spectrum 

The Pierson-Moskowitz surface model was developed as a method to describe the sea 

surface roughness statistically. It assumes that the roughness is an ideal, linear, stationary, 

two-dimensional random process, so can be described by a simple linear power spectral 

density (typically termed the "Pierson-Moskowitz spectrum"). Being linear, it ignores 

wave-wave interactions, and can not predict overturning or breaking waves. It also does 

not include the effects of surface tension on the smallest scale features. However, it does 

include a dependence on wind speed, allowing the generation of surfaces with both small 

and large RMS roughness that approximates the roughness of the actual sea. Moreover, 

the temporal changes of the surface can be predicted using wave dispersion relations. It 

therefore has proven to be useful in generating test cases where analytical scattering may 

be tested under controlled conditions. Note that the one-dimensional Pierson-Moskowitz 

yields a two-dimensional profile under the nomenclature adopted in this paper while the 

two-dimensional spectrum yields a three-dimensional profile. 

3.1.1 Pierson-Moskowitz Spectrum [37,15] 

The one-dimensional Pierson-Moskowitz wave number spectrum is given by 

[ 2] a -pg 
Wi(K) = --3 exp 2 4 ' 4IKI KU 

(3.1) 
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where a and p are dimensionless constants given by 8.lxl0-3 and 0.74, respectively, 

g is the gravitational acceleration constant (g=9.81m/s2 ), U is the wind speed 

measured at 19.5m above the mean sea surface and K is the surface-wave spatial wave 

number (which is different than the radar wave number k ). This wave number spectrum 

is found by applying the deep-water wave dispersion relation to the original P-M 

frequency spectrum [37]. The variance of surface height h of the surface is therefore 

+oo u4 
< h2 >= f Wi. ( K)dK = ~ , 

-00 4/Jg 
(3.2) 

and the peak in the spectrum occurs at 

(3.3) 

Equation (3.1) gives a one-dimensional spectrum that assumes all wave energy on 

the surface is propagating in the same direction. This is not realistic for a real sea. The 

directional dependence can be added by forming a two-dimensional spectrum: 

W2(K,¢) = <D(K,q})Wi_(K)I K, (3.4) 

I\ I\ I\ I\ 

where K=axKx+ayKy =axKcos¢+ayKsin¢, K=IKl,and <l>(K,¢) describes the 

azimuthal dependence. It is normalized such that 

2,r 

f <D(K,¢)d¢ = 1, 
0 

2,r 

so the one-dimensional spectrum is recovered from Wi. ( K) = J W2 (K, ¢ )Kd ¢ . 
0 

(3.5) 

Assuming a uniform azimuthal dependence, the isotropic 2-D Pierson-Moskowitz 

distribution is 
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[ 2] a -pg 
W2 (K) = 4 exp 2 4 . 

8JrlKI K U 
(3.6) 

3.1.2 Generation of Sample Surfaces 

The analytical models are applied to sample surfaces generated from the PM spectrum. 

The surface generation is accomplished using the procedure shown in Fig. 3.1. First, the 

data array that will contain the surface height is filled with Gaussian white noise that has 

a variance of 1.0. The noise is then passed through a filter whose transfer function is 

given by (3.6). The filtering is usually performed using FFT's as shown in the figure. 

1-D or 2-D 
Gaussian noise 

1-D or 2:..0 
FFT 

1-D or 2-D PM 
spectrum 

1-D or 2-D 

IFFT PM surface 

----
Fig. 3.1: Schematic of PM surface generation. 

The RMS height of the resulting surface can be set by using a proper wind speed. For 

the 2-D case, the sampling interval in the Fourier-transformed wave number domain is 

2" in x direction, and is 2" in they direction, where ~x, ~Y are sampling 
Nx~x Ny~y 

intervals in the spatial domain and N x, Ny are the number of samples. The discrete 

Jr Jr Jr Jr 
wavenumbers range over - - < K x ~ - and - - < Ky ~ -

~x ~x ~y ~y 

3.2 Two Scale Model 

The two-scale scattering model (TSM) is the combination of two simple scattering 

models. It consists of a small-scale perturbation of the Kirchhoff-approximation scattered 
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field, so is a combination of the SPM and KA models. It was introduced in the 1960s and 

has been widely used to describe ocean surface scattering at small and moderate 

incidence angles. It has been extensively applied to scattering from statistical surfaces, 

and recently was applied to 2-D rough deterministic breaking waves by West and Ja [17]. 

3.2.1 Kirchhoff's Approximation 

The Kirchhoff approximation (KA) uses the tangent plane approximation to estimate the 

currents on the scattering surface, which are then reradiated to give the scattered field. 

The equivalent electric current and magnetic surface currents are approximated as 

illuminated area 

shadowed area 

illuminated area 

shadowed area 

(3.7a) 

(3.7b) 

in which r is the surface reflection coefficient. For a perfectly conducting surface, 

r = -1. Once the KA current is found, the far-field scattering can be calculated 

numerically via the radiation equations. 

KA has serious inherent limitations. First, it assumes that the radius of curvature of 

surface is everywhere large relative to the radar wavelength. Only then may the currents 

be found from (3.7a) and (3.7b), which assumes the incident field illuminates on an 

infinite flat plate. Second, surface self-shadowing can only be modeled by setting the 

currents in the shadowed areas to exactly zero. This is not ideal due to diffraction and 

multipath scattering of the incident energy into the shadow area. Therefore KA is only a 

coarse approximation. Thorsos [35] has investigated the validity of KA for random one

dimensional rough surfaces with Gaussian roughness spectra. KA proved to have good 
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performance around specular scattering angles, but has very poor performance at large 

incident (small grazing) angles even with shadowing corrections. For backscattering, KA 

is only valid when the incident angle is very small and the surface is relatively smooth. 

3.2.2 Small Perturbation Model 

The small perturbation model (SPM) was introduced by Rice [ 1 O] for scattering from 

slightly rough planar surfaces. SPM is suitable for surfaces that have electromagneticly 

small height displacement. The fields can be expanded in a perturbation series in the 

surface wave number domain. SPM directly gives the field scattered, and then an 

ensemble average is performed to give the backscattering coefficient. More details are 

described in section 12.5 of [2] and [14]. The ensemble averaged scattering coefficient is 

(3.8a) 

where 0 is the incident angle and <p is the azimuth look angle with respect to x-axis. p 

and p' represent the polarizations of incident and scattered fields respectively. They can 

be either H polarization or V polarization. r;p• is a polarization dependent coefficient 

given by 

{ 
0, 

2 4 
rpp' = cos 0, 2 

( 1+sin20) , 

p = H,p' = V or p = V,p' = H 

a=H,/J=H 

a= V,/J = V 

(3.8b) 

Note that after ensemble averaging first-order SPM predicts that the backscatter 

depends only on the surface roughness energy at K - 2k sin 0(; x cos¢ + ; y sin¢)- This 

roughness energy resonates with the incident field giving the backscatter. This is known 
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as Bragg-resonant scattering. The perturbational analysis used in developing SPM fails 

when the surface roughness height is significant compared to the electromagnetic 

wavelength. 

3.2.3 Two Scale Model (TSM) 

TSM was formulated to bridge the gap between SPM and KA. First the surface is 

separated into large-scale and small-scale roughness components. KA is first applied to 

the large-scale roughness, while SPM is used to perturb the KA fields using the small

scale roughness. Usually TSM is implemented statistically. The approach is to 

incoherently add the scattering due to the large-scale roughness using the Kirchhoff 

approximation to the scattering from first order SPM applied to the small-scale 

roughness. The local angle of incidence in the SPM application is adjusted to account for 

the tilt of the surface by the large-scale roughness [12]. However, Brown gave an explicit 

expression for the deterministic TSM field for perfectly conducting rough surfaces prior 

to ensemble averaging that can be directly compared with a numerically calculated field 

[14]. 

The deterministic TSM field can be regarded as the coherent summation of the large

scale and the small-scale fields. The two-scale model is applied by first dividing the 

surface roughness into large-scale and small-scale components, given by sz(x,y) and 

ss(x,y) respectively. The full roughness is recovered by simple addition: 

((x,y) = Ss(x,y) + sz(x,y). The large-scale scattered field is given by 

o . Eoko8 , f' r. - -
8 Epp'= -j 21CrPP exp(- Jkor) fXP(-2}ki •ro)dxdy, (3.9a) 
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while the first order SPM field is 

(3.9b) 

exp(-2} ki • ;o )s's (1 + s Ix 2 + Sly 2 )112 dxdy, 

I\ 

where nz 1s the unit vector normal to the unperturbed large-scale surface, and 

- I\ I\ I\ -

ro = ax x + a y y + ax sz. ki is the incident wave vector given by 

- 2TC [/\ . /\ /\ ] 
ki = T ax(-sin0cos¢}+ ay(-sin0sin¢}+ az(-cos0} , (3.10) 

I\ I\ 

e p and e p' are polarization vectors that may be either 

I\ I\ I\ 

e H = -ax sin¢ + a y cos¢ (3.lla) 

for horizontal polarization or 

I\ I\ I\ I\ 

ev = -ax cos0cos¢-ay cos0sin¢ + az sin0 (3.llb) 

I\ I\ 

for vertical polarization. e p and e p' will be different for cross-polarized scattering. 

opp'= l (p = p') or O ( p * p' ), 

(3.9) gives the expression for a PEC surface. For imperfectly conducting surfaces, 

the field can be expressed as 

Eunpedance = EpEca pp'· (3.12a) 

a pp' is a polarization dependent coefficient given by [2, 97] 

38 



_ -( -l) sin2 0; - &r (1+sin2 0;) cos2 0; 
avv - 5 r ,----- 2 2 ' 

[ J . 2 J 1 + sin 0 
&r cos0; +&r - sm 0; 

(3.12b) 

cos0· -J & -sin2 0-1 r 1 
aHH = - ------;=====, 

cos0· + J & - sin2 0-1 r 1 

(3.12c) 

. where 0i is the local incident angle with respect to the external normal vector of the large 

I\ I\ 

surface, defined by cos0; = -nz• k;. 

SPM has the same shadowing limitations as KA. Usually shadowing is incorporated 

by assuming the scattering from surface sections that are shadowed is zero. Some studies 

have investigated shadowing from two-scale statistical surfaces [18-21]. These results 

cannot be directly applied to deterministic scatting due the averaging that may mask 

shadow region scattering. 

As noted, TSM requires that the surface roughness be divided into small-scale and 

large-scale components. This is typically accomplished by defining a wave number 

threshold Kr in the roughness spectrum. All energy below the threshold is considered 

large-scale and all energy above is considered small-scale. The threshold must be 

carefully chosen so that both the small- and large-scale components meet the limitations 

of SPM and KA respectively. Often it is not possible to ideally satisfy both conditions, 

and the scattering predicted will depend on the exact threshold Kr used. This is a 

primary limitation of TSM. 

Performing the separation can also prove difficult. Simply using a numerical "brick

wall" filter at the threshold Kr would lead to Gibb's phenomenon ringing. Instead, the 

approach used by West and J a [ 43 ,44] is used. In this, N passes of the three point moving 
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average are applied to filter out the small-scale energy and yield the large-scale surface. 

This weighted moving average (MA) filter can be described as 

(3.13) 

where hm(n) is the height at the nth sample point after m filter passes. This requires the 

surface be sampled evenly in the horizontal dimension. The small-scale roughness is 

obtained by subtracting the large-scale surface from the original surface. The effective 

threshold wave number for this procedure is [ 43,44] 

Kr~ }!+;•Kr dK/8. (3.14) 

where I'!!. is the horizontal sampling step size. The filter is applied along one dimension 

first, and then along the other with 3-D surfaces. 

3.2.4 Application 

Use of SPM is now demonstrated through the application to statistically rough surfaces 

generated from the Pierson-Moskowitz wave height spectrum. The RMS height of 

surface was set to 0.005A . The · sample surfaces were therefore electromagnetically 

slightly rough, so the SPM results may be directly compared to analytically averaged 

cross-sections in (3.8a). There is no large-scale effect. 200 sample surfaces 128 by 128 

points generated numerically using the procedure in Section 3.1.2. The sampling was 

O.U in both directions. The field scattered from each surface was then found using 

equations (3.9) through (3.12). Finally, the fields from all 200 surfaces were averaged 

and normalized by illuminated area Am . This gives a scattering coefficient defined by 

[14]. 
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(3.15) 

This is known as a Monte-Carlo study. The comparison of the Monte-Carlo simulations 

with the analytically averaged cross-sections is shown in Fig. 3.2. Excellent agreement is 

obtained above 15° incidence. Below 15° there is small scattering that cannot predicted 

by first-order SPM. This could be better represented using second-order SPM [6] and the 

Kirchhoff approximation [2]. However, we are concerned only with large incidence 

scattering, so this was not considered. 
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Fig. 3.2: Statistic results of small perturbation model. 

3.3 Small Slope Approximation (SSA) 

90 

The small-slope approximation (SSA) was introduced by Voronovich [6] to avoid the 

artificial scale-separation required by TSM. As suggested by the name, the field 
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equations are expanded in surface slope rather than height and therefore a scale 

separation is not needed. SSA may therefore be applied directly to multiscale surfaces. 

SSA can be shown to reduce to SPM or KA in the proper small- or large-scale roughness 

limits. Broschat and Thorsos [28] investigated SSA when applied to surfaces whose 

roughness spectra were described by Gaussian envelopes, and correlated the accuracy to 

the RMS surface slope and incidence angle. Full details of the development of SSA are 

given in [6]. Recently SSA was applied to the 2-D profiles and performed more poorly 

than TSM at large incidence, even considering the TSM thresholding problem [98]. 

Therefore it was not considered further for the 3-D rough case. 

3.4 Extended Geometrical Optics/Geometrical Theory of Diffraction 

Geometrical Optics (GO) and the geometrical theory of diffraction (GTD) are 

approximate high-frequency methods. GO is based on ray tracing. It is an optical model 

that only gives specular reflection, and it can only be used to find the reflection from the 

structures with large radii of curvature. However a modificatiop., GO can be applied to 

reflection from surfaces with radii of curvature as small as J/3 [94]. This approach was 

termed as extended GO (EGO) in [91]. GTD can be used to predict the diffractive 

scattering of discontinuities in surface derivatives [1]. Standard GTD also expects the 

surface curvature to be large compared to the wavelength. West [91] showed that the 

EGO correction term can also be applied to GTD diffraction terms to extend its 

usefulness to smaller surface radii. It was used to find the scattering from steep and 

jetting surfaces. The details ofEGO/GTD are reviewed now. 
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normal direction 

0· 0 l r 

Fig. 3 .3: Reflection from a curved surface. 

The geometry of a reflection from a curved surface is illustrated in Fig. 3.3. QR is 

reflection point, and 0i and 0r are the local incident and reflection angle with respect to 

the normal direction, respectively. 0i = 0r. The reflected field Er (r) at a distance r from 

QR can be expressed as [ 1] 

(3.16) 

where Ei (QR) is the field at the reflection point, I' is the reflection coefficient at the 

reflection point, and p[ and p2 are the principal radii of curvature of the reflected wave 

front at the point of reflection. The principal radii of curvature are related to the curvature 

of the reflecting surface at QR and the principal radii of curvature of the incident wave 

front. For plane wave incidence, the principal radii of curvature of the incident wave front 

are infinite. Therefore, p~ can therefore be written as 

Pa cos0i 
p~ = n 2 n=l,2, (3.17) 
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where Pa is the radius of curvature of the reflecting surface at QR. For specular 
n 

backscatter, Br = Bi = 0. Pa is defined to be positive for convex curvature and negative 
n 

for concave curvature at the reflecting point. 

Classical GO is valid when the curvature of the surface is large compared with the 

incident wavelength. An extended GO (EGO) was given by Voltmer [94]. In EGO, the 

scattered field of (3.16) is multiplied by a correction termM. For back-reflection [95], 

M= 

1 . 11 353 
+1--------

l6(kpa) 5l2(kpa)2 ' 

1 . 5 127 
-1---+----

l6(kpa) 5l2(kpa)2 ' 

vv 
(3.18) 

HH 

Voltmer [94] and Stutzman and Theile [95] showed that EGO yields accurate cross 

sections for reflection from circular cylinders with radii as small as 1 / 3A . 

As GO is limited to specular reflection, it does not predict diffractive scattering from 

surface discontinuities. The geometrical theory of diffraction (GTD) was introduced by 

Keller [92] to add the diffracted field component. Since then, numerous diffraction 

coefficients have been introduced to treat edges [91], creeping waves [93], curvature 

discontinuities [96], and other diffraction mechanisms [96]. Here we are concerned with 

diffraction from surface curvature discontinuities. An illustration of the diffraction point 

is shown in Fig. 3.4. Qv is the diffraction point and R1 and R2 are the surface radii to 

either side of Qv . The diffracted field can be represent by 

(3.19) 

where E i (Qv) 1s the incident field at the diffraction point, D is the diffraction 

coefficient and A is a spatial attenuation factor. For plane wave incidence and a 2-D 
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profile, A= _J;. The uniform theory of diffraction (UTD) diffraction coefficient can be 

obtained from equations (4.55) through (4.59) of McNamara [96]. The diffraction 

coefficients were derived from the uniform GTD for curved-face edges introduced by 

Kouyoumjian and Pathak [93]. At the diffraction point, discontinuous curvature was 

treated as a wedge with 180° internal angle, giving a wedge-angle parameter of n = l . 

EGO is applied to individual diffraction fields associated with reflection from the two 

faces. Full details were described in West [91]. 

Diffraction point 

Fig. 3.4: Geometry for diffraction by a curved edge. 

The complete EGO/GTD scattered field is obtained from the coherent summation of 

the reflected and diffracted fields. 
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CHAPTER4 

NUMERICAL CODE FOR 3-D SURFACE SCATTERING 

The numerical scattering code described in Chapter 2 was limited to the 2-D problem. In 

this chapter the development of a numerical technique for scattering from arbitrary 3-D 

surfaces will be described. The foundation of the technique is the Rao-Wilton-Glisson 

(RWG) basis function that was developed by Rao et al. for scattering from arbitrary 3-D 

closed scatterers [47,48]. The theory of the RWG-based moment method is reviewed for 

both perfectly conducting and impedance boundary surfaces. The solution of the RWG 

moment method is accelerated using the multi-level fast multipole algorithm (MLFMA), 

which allows a very large number of unknowns to be considered [52-67]. MLFMA is 

also reviewed, and the performances of two different iterative solution methods are 

compared. Some test cases are given to demonstrate the implementation ofMLFMA. The 

initial scalar MLFMA code was written by James C. West. This was extended to the full 

vector code using RWG basis functions and impedance boundary conditions by the 

author. 

4.1 Review ofRWG Basis 

RWG basis functions are specialized sub-domain basic functions that were developed to 

describe the current on pairs of adjacent triangular patches. Because arbitrarily shaped 3-
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D surfaces can be accurately modeled using triangular patches, RWG basis functions are 

well suited to scattering from arbitrary surfaces. Note that because the current is not 

limited to flowing in a specific direction, the RWG basis function is a vector basis 

function. 

4.1.1 Perfectly Conducting Surfaces 

When an incident electric field Ei impinges on a perfectly conducting (PEC) surface, the 

scattered electric field Es can be expressed as 

Es= -jmA-V<I>, (4.1) 

in which A is the magnetic vector potential and <I> is the electric scalar potential. The 

vector potential is given by 

and the scalar potential is 

-jkR 
A(r)=.1!_ r J(r')-e-ds', 

41r .Is R 

<I>(r) = j-1-V •A, 
mµs 

(4.2) 

(4.3) 

where r is the vector from the origin to the observation point, r' is the vector from the 

origin to the source, and R = Ir - r'I · Note that J is a surface current. For a perfectly 

I\ • 

conducting surface, the boundary condition is n x (E1 +Es)= 0 on the interface S, giving 

(4.4) 

where Eian is the tangential component of the incident field. 

Equation (4.4) is referred to as the electric field integral equation (EFIE). Rao et al 

employed a special vector basis function set fn (the "RWG" basis set) to solve the 
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equation with the moment method. Fig. 4.1 shows two arbitrary adjacent triangles, Tn+ 

and Tn- . p ! is the vector from the free vertex of T/ to the position vector r on Tn+ and 

p; is the vector from the position vector r to the free vertex of Tn-. Their common edge 

n is the nth interior edge on the surface. The RWG vector basis function associated with 

edge n is defined as 

' r 

, r m T~ (4.5) 

0, otherwise 

where ln is the length of the edge and A; is the area of triangle Tn±. This definition 

forces the component of current normal to the nth edge to be constant and continuous 

across the edge. 

Fig. 4.1: Triangle pair and geometrical 
parameters associate with interior edge. 

0 

Fig. 4.2: Relationship between source triangle 
Tq and observation point in triangle TP. 

The complete current on S can be approximated in terms of an expansion of the 

RWG basis functions for all internal edges: 
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N 

J ::::! L)nfn (r)' (4.6) 
n=I 

where N is the total number of interior edges of the complete surface S. Each coefficient 

In can be interpreted as the normal component of current density flowing across the nth 

edge. The current tangential to the edge is obtained from the basis functions associated 

with the other two edges of the patch. The In 's found using the moment method 

therefore describe the vector current everywhere on the surface. Note that the total 

current on a single triangular patch is the sum of three different basis function 

components. 

The moment method is applied using Galerkin's method, where the testing functions 

are the same set f0 (r) as the basis functions. Setting the weighted residuals to zero as 

described in Section 2.1, yields 

(4.7) 

The inner product represents surface integration over the two triangles in which fm (r) is 

defined. ( 4. 7) gives N equations with N unknowns, which can be represented as 

(4.8) 

where [zmnl is an NxN matrix and [In] and [vm] are column vectors of length N. 

Using the approximate relation 

(4.9) 

the elements of Z and V are given as 

(4.10a) 

49 



where 

- kR± 
± µ1 ,elm' 

A mn= - f0 (r )---dS , 
4JZ" R± 

m 

- kR± 
± µ 1' ,elm' <I> mn = . Vs •f0 (r )---dS , 

47gm& R± 
m 

R- = re_ -r + I + ·1 m m , 

+ -~ +) E- = E1 re_ mn m , 

(4.10b) 

(4.10c) 

(4.10d) 

(4. lOe) 

(4.10±) 

r~± is the centroid vector of triangle Tn± with respect to the coordinate origin, and p~± 

is the vector P!(r) when r is located at r~±. Ei (r~±) is the incident electrical field at 

r e± 
m· 

4.1.2 Numerical Implementation 

Evaluation of each Zmn associated with edge m and n involves integrations over 

triangles Tn± with observation points located at the centroids of triangles r:. Assuming 

that edge i lies on the same triangle as edge m and edge j lies on the same triangle as edge 

n, as shown in Fig. 4.2, calculation of Z iJ will obviously repeat an integration used in the 

formation of Z mn . Thus, instead of performing the integrations for each edge 

individually, the face-pair approach of Rao et al [ 4 7,48], where the integral giving the . 

interactions between each face pair are first found, and then linearly combined to form 
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the Zmn 's. This procedure saves a factor of approximately 8 in the workloads to form the 

elements. 

The integrations over the triangular faces are formed using the approach of Rao 

[ 4 7 ,48]. The arbitrary triangular patches are first mapped into a regular triangular area, 

and the integration is performed using multi-point quadrature. The singularity in the self

interaction where the source and the observation faces are the same was treated as in Rao 

[47]. For numerical accuracy, a 7-point quadrature was used for non-self-interactions, 

while 16 points were used for self-interactions [5,47,48]. Use of higher order quadrature 

did not improve accuracy significantly. 

Once the excitation vector [vm] and interaction matrix [Zmn1 elements have been 

found, ( 4.8) may be solved using standard linear algebra techniques. 

4.1.3 Imperfectly Conducting Surfaces [ 49] 

As in the 2-D case, when a finite conductivity scatterer is considered, an equivalent 

problem including a magnetic surface current must be treated. Adding the field radiated 

by the magnetic current to ( 4.1) and applying the boundary condition, yields the EFIE 

E!an =(jmA+V<l>+_!_VxF) , 
& tan 

(4.11) 

where F is the electric vector potential associated with M. 

The numerical treatment of E!an and the first two parts of the right hand side of 

( 4.11) have already been considered. The new term is found from 

1 1 e-jkR , 
-VxF=-Vx rM--dS. 
& 41r .Is' R 

(4.12) 

As r ~ s-, (4.12) becomes 
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( 1 ) 1"' 1 ( e - jkR J 1 

lim -VxF =-nxM--1MxV -- dS. 
r~s- s 2 4n R 

(4.13) 

Once again, the magnetic current may be related to the electric current through 

I\ I\ 

nxM =-Zs nxJ (4.14) 

when the scatterer meets the conditions of (2.13). 

Substituting (4.14) and (4.13) into (4.12), the EFIE for an impedance surface is 

[ u u ] i µ e-1 , l e-1 , 
Etan= - f J--dS +- f a--dS 

4n t R 4ns t R 
tan 

(4.15) 

Equation (4.15) can also be discretized using the moment method with RWG basis 

functions. Substituting in the basis expansion (4.6) and applying Galerkin's method 

weighting gives additional terms in the interaction matrix (beyond those for perfect 

conductivity). The final moment method system of linear equations is 

(4.16a) 

1 N[ A ] [e-jkRJ +-1- 1L InZs n'xfn xv -- as' •fmdS 
4n- m n=l R 

(4.16b) 

Note that (4.16a) is zero unless the basis function f0 and testing function fm overlap 

on a common triangular face. The double integral in ( 4.16b) can be approximated in the 

same manner as in the PEC EFIE, giving 
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(4.17) 

The far-field scattered electric field due to A and F can be written as 

(4.18) 

where Ao, A</J and F0, F</J are the components of A and F in the 0 and ¢ direction 

respectively. This can be rewritten as 

(4.19a) 

(4.19b) 

Once the scattered field is known, the polarization-depended scattering cross section is 

given by 

(4.20) 

where a and pare 0 or </J . The integrations in (4.19) are performed numerically using 

the final MM current solution. 
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4.1.4 Implementation Testing 

The implementation of the RWG-based MM was tested with sample scatterer geometries. 

The first considered was a flat plate as shown in Fig. 4.3a. The plate is assumed to be 

perfectly conducting, and is a U by U square. It was divided into a grid, and each grid 

cell was bisected to yield the triangular patches. The stars denote the centers of interior 

edges. 

Fig. 4.3b shows the calculated current with different grid sizes. The incident 

direction was perpendicular to the flat plate, and the incident field has only an x 

I\ 

component (Einc = axl.O). The starred-dashed line in Fig. 4.3b corresponds to,a 6 by 7 

grid used in the moment method, the solid-circle line with a 6 by 9 grid, the solid-cross 

line with a 6 by 11 grid, the dashed-circle line with an 8 by 7 grid, and the dashed-crossed 

line with a 10 by 7 grid. The solid lines show the currents along the cut from point A to 

A' in Fig. 4.3a, and the dashed lines show the current along the cut from B to B'. The 

current clearly converges as the discretization of the surface is made finer. Moreover, the 

6 by 7 grid results show excellent agreement with Fig. 6 of [ 48]. 

!A 
I 

y I;., , 
0.8 

0.6 
B 

0.4 

0.2 

0.2 0.4 ! 0.6 0.8 , 
lA' x/)., 

Fig. 4.3a: Segmentation of flat plate. (Nx=6, Ny=7) 
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Fig. 4.3b: Results of a PEC square with different segmentation numbers. 

The second test case considered was the disk shown in Fig. 4.4a. The 56 triangular 

patches used are shown, with the interior edges marked by stars. The incident direction 

was perpendicular to the disk, and the incident field again had only an x component 

I\ 

( Einc = ax l .O ). Fig. 4.4b shows the numerically found current from point A to point A'. 

The circled line represents a U radius disk, the crossed line a O. lA radius, and the 

starred line a 0.05),, radius. Again, excellent agreement is achieved with Fig. 9 of [ 48]. 

lA 

ns ij o.s 
!A' 

Fig. 4.4a: Segmentation of a disk. 
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Fig. 4.4 b: Results of PEC disk with different radius. 

The final test cases were based on a spherical scatterer, as shown in Fig. 4.5a. Shown 

is the triangular segmentation used, consisting of 120 patches. The sampling used in </J is 

independent of 0, so the polar regions are more finely sampled. Note that all edges are 

interior edges. Fig. 4.5b shows the results with a perfectly conducting sphere. Plotted is 

the normalized monostatic radar cross-section (RCS) ( a I ;i,2 ) versus the free space wave 

number times the sphere radius ( ka ). The solid line shows the exact RCS that was 

calculated according to a Mie series solution [1], while the dashed line shows the RWG 

MM results. The results compare well with Fig. 5 of [ 49]. Note that at small radii the 

agreement between the exact and MM result is very good. However, as ka exceeds about 

3, the positions of the relative maximum and minima are shifted. This results because the 

sampling of the surface is insufficient at the larger radii. At ka = 3.5, the average length 

of the patches is about 0.25A . This is too large for fine accuracy [ 49]. In all following 
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cases the maximum dimensions of the patches will be limited to a maximum of 0. U to 

maintain accuracy. 
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Fig. 4.5a: Segmentation of a sphere. 
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Fig. 4.5b: Monostatic scattering cross section for PEC spheres as a function of ka. 
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Fig. 4.5c: Monostatic scattering cross 
section for impedance spheres as a 
function of ka using 120 patches. 
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Fig. 4.5d: Monostatic scattering cross 
section for purely imaginary impedance 
spheres as a function of ka using 120 
patches. 

The impedance boundary implementation of the RWG moment method was tested 

by considering spheres with different surface impedances. The results are shown in Fig. 

4.5c and 4.5d. In Fig. 4.5c, the Zs = 0 case is denoted by the solid line, Zs = 0.25170 

with the starred line, Zs = 0.5170 with the circled line, and Zs = 0.75170 with the crossed 

line. Fig 4.5d is the results when purely imaginary surface impedances were used. Here, 

the solid line indicates Zs = 0, the starred line is Zs = J0.25170, the circled line is 

Zs = J0.5170 , and the crossed line is Zs = J0.75110. Very good agreement with Fig. 4 and 

Fig. 6 of [49] shows that the impedance boundary RWG MM has been properly 

implemented. 
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4.2 Fast Multipole Method (FMM) [52-57] 

Direct application of the moment method to 3-D surfaces quickly becomes cost 

prohibitive as the scattering surface increases in size. Doubling the dimensions of the 

scatterer gives a factor of 4 increases in the number of unknowns N that must be found 

using the same sampling size. The size of the interaction matrix is N 2 , so doubling the 

physical dimensions increases the size of the interaction matrix by a factor of 16. Finally, 

direct solution of the linear system using matrix factorization is order of O(N3), so 

doubling the dimensions gives a 64-fold computational increase. Iterative solution is 

O(N2 ), so still gives a 16-fold increase. 

The fast multipole method (FMM) was introduced to decrease the computational 

expense of the moment method, both in terms of storage and computation. It 

accomplishes this by dividing the surface elements into groups. The interactions between 

elements in nearby groups are found directly using the standard moment method. 

However, the interactions between groups that are sufficiently separated are found 

simultaneously. Group-to-group interactions are found using a plane wave expansion of 

the radiation of all elements within the source group. The field at the center of the 

observation group is then shifted to the individual elements. 

The foundation of FMM is two identities. The first is the expansion of the free space 

Green's function using Gegenbauer's addition theorem. As shown in Fig. 4.6, 

\r-r'\ = lx+dl. (4.21) 

Assuming lxl is much larger than ldl, the Green's function 
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Fig. 4.6: Relationship between vector r', r, x and d. 

Jklr-r'I Jklx+dl , e e 
G(r,r ) = Ir - r'I = -\x_+_d_\ (4.22) 

can be expanded by Gegenbauer's addition theorem as 

Jklx+dl oo /\ /\ 
G(r,r)=el I =ikL(-l)1(2l+l)jz(kd)hf1)(k\x\)~(d•x), (4.23) 

x+d l=O . 

where jz ( ) is the first kind spherical Bessel function, hp) ( ) is the first kind spherical 

Hankel function, and ~( ) is the Legendre polynomial. 

I\ I\ 

The second identity used by FMM is the expansion of jz(kd)~(d• x) m an 

integration of propagating plane waves: 

/\/\ 1 /\/\ 
jz(kd)~(d• x) = 41ti1 f e1"k.•d ~(k• x)d2k. (4.24) 

(4.24) is in fact a 2-D Fourier transform. Substitution of (4.24) into (4.23) yields 

. I\ I\ 

The summation on the right hand side of ( 4.25) is a function of k\x\ and k • x . It is 

denoted by the translation operator 

I\ I\ 00 /\ /\ 

T(k\x\,k• x) = L(i)1 (21 + 1)hf1)(k\x\)~(k• x). (4.26a) 
l=O 
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Obviously, it will not be realistic to perform infinite summations in a numerical 

implementation, so the series in (4.26a) must be truncated. Fortunately, the convergence 

of the series is well behaved and guidelines for the accuracy required versus the upper 

limit L used exist (and will be summarized later). The notation Tr(), indicating that the 

series has been truncated at l = L , will be used hereafter: 

/\/\ r 1 AA 

Tr(k\x\,k•x) = I(i/(2l+l)hf )(k\x\)Pz(k•x). (4.26b) 
l=O 

The benefit of FMM is that the translation operators Tr () between groups can be pre

computed before the iterative solution. 

Assuming for now that the interactions between elements can be fully described by 

the scalar Green's function, the interaction elements become 

Zmn = A f drfm(r) f dr'/n(r')G(r,r 1
), (4.27) 

where A is a constant and fm(r) and fn(r') are the weighting function and testing 

functions respectively (assumed to be the same for RWG basis functions). Using (4.25) 

and (4.26b), (4.27) can be approximated as 

(4.28) 

where B is a constant. 

The approximate equality in ( 4.28) is due to the finite number of terms L in Tr () . 

The required L for adequate accuracy depends on the size of \d\ with respect to \x\. \x\ is 

assumed to be the distance between the centers of groups in which the source and 

observation points are located. \d\ is the distance from the group center to the individual 
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elements. The value of L therefore determines whether the groups must be considered 

near or far. 

Using (4.28), (4.8) may now be rewritten in a form suitable for iterative solution: 

· A A 

Vm = LZmnln + LlnB fdrfm(r) fdr'fn(r') fd 2kik•dTL(klxl,k• x). (4.29) 
near far 

elements elements 

Setting 

I 

d = r-r'-x = r-r'-(rcA -rcB) = (r-rcA)-(r -rcB), (4.30) 

where r falls within the group whose center is rcA , r' is within the group whose center is 

rcB , and x = rcA - rcB = r AB , ( 4.29) can be rewritten as 

vm = Lzmnln + LlnB J d 2 k[f dr(tm (r)eik•(r-rcA) )][J dr'(tn (r')e-ik•(r'-rcB) )}rL (kir ABl,k• r:B) 
nis nis not 
neaby neamy 

(4.31) 

The first part of the right hand side of ( 4.31) gives the interactions between elements in 

nearby groups. These interactions are stored in a sparse matrix. The second term of the 

right hand side includes three steps, i.e. shifting the references of the source elements 

radiation to the group center, translating the complete group radiation to other groups 

using the operator TL , and shifting the group interactions from the observation group 

center to the individual observation elements. More details will be given in the 

description of the implementation. 

( 4.31) is still in a form that can be iteratively solved. At first glance, it appears that 

( 4.31) is much more complicated than ( 4.8). But in fact, it allows a dramatic 

computational savings. If elements m and m' fall within the same group and n and n' 
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fall in another (far) group, Zmn, Zmn', Zm'n and Zm'n' all use the same translation 

operator TL () , which need only be applied once. 

4.3 Implementation of Fast Multipole Method (FMM) [56] 

4.3.1 Implementation Steps of FMM 

The FMM is implemented in five steps: 

1) Grouping 

An element-grouping scheme is shown in Fig. 4. 7a. For convenience, a flat plate is 

shown here although the surface can be arbitrary as in Fig. 4. 7b. First, the surface is 

approximated by triangular patches using a segmentation length of about 0. l,1., . The 

edges are then collected into M separate groups. The "radii" of the groups are then found 

from the maximum distance a triangle within the group is from the centroid of the group. 

Now, the number of terms L that are maintained in the translation operator of ( 4.26b) is 

determined from [ 64] 

D 
L = 2kPmax + -ln(2kPmax + ff), 

1.6 
(4.32) 

where Pmax is the maximum "radius" among all the groups and D is the number of 

significant digits to which accuracy is desired. (4.32) was determined empirically by 

Rokhlin [55]. The effect of D will be considered in the following test cases. The criteria 

for setting near or far groups is expressed as 

{ 
~ L, ~ group A and group B are far groups 

k~-~ . I I < L, ~ group A and group B are near groups 
(4.33) 

where rcA and rcB are the centers of groups A and B respectively. 
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Fig. 4.7a: Relationship between groups and edges. 

groupm 

Fig. 4.7b: Groups for 3-D arbitrary surface. 

The size of each group will affect the computation load. The larger the group size, 

the fewer the total number of groups, reduce the computation load in calculating TL ( ) . 

However, more edges will be included in nearby groups, increasing the number of entries 

in the first term of the right hand side of (4.31) (the sparse matrix). On the other hand, 

too small a group size will result in a large number of groups for which TL () must be 

found. [56] showed that the optimal scaling is achieved when M ~ .JN, where Mis the 

64 



number of groups and N is the total number of unknowns. The system scales as O(Nl.5) 

in this case. Fig. 4.7b shows a sample 3-D grouping. 

2) Sparse Matrix Filling 

The interactions matrix entries between elements that are within nearby groups are 

calculated and stored. This is accomplished by directly evaluating ( 4.10) or ( 4.15). The 

entries are stored in a sparse matrix format to save memory. This implementation uses the 

compressed row storage (CRS) format [70]. 

3) Translation Operators TL ( ) 

The translation operators between the far groups are then found. From ( 4.26), x 1s 

first replaced by rmm' = rem - rem', where rem is the center of observation group m and 

I\ 

rem' is the center of source group m'. TL () is a function of wave number k , over which 

a continuous integral must be computed in ( 4.31 ). TL () is therefore computed at a 

I\ I\ 

discrete number of k values. The k values are uniformly spaced in the <p coordinate. In 

I\ 

the 0 coordinate, the k vectors are non-uniformly spaced, corresponding to the nodes of 

a Gauss-Legendre quadrature [55]. This allows the integral in (4.31) to be accurately 

I\ 

evaluated from the discrete k values. Sampling theory shows that K = 2L2 samples 

should be used in both 0 and <p directions [ 64]. The final translation operations are 

therefore 

(4.34) 
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This translation operator Ti () occupies considerable memory. In theory, there are 

2M(M -1) rmm' vectors, but using uniform grouping the translation operators may be 

reused. If rmm' = rij, the same Ti() is used even though, m -::f. i, m'-::f. j. This technique 

substantially reduces the memory needed to store Ti () . 

4) Shifting Operators 

The second term of the right hand side of ( 4.31) includes two shifting operators 

written as 

(4.35a) 

and 

I\ * 
Vsma(k) = CVrma) · (4.35b) 

These were derived using a scalar Green's function. Since the electric field and 

surface current are vectors, Vrma and Vsma are vector operators. With RWG basis 

functions with a PEC surface, the scalar Green's function G(r,r') is replaced by 

( G- : 2 '17 • G )- Using this, ( 4.35a) is replaced by 

Vrma(k) = f dr f0 (r)-k(k• f0 (r)) ezk•(r-rcm). /\ ( /\/\ /\ J· (4.36) 

( 4.35b) is still valid. 

Shift operators are similarly derived for finite conductivity surfaces from (4.15), 

g1vmg 
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(4.37a) 

I\ 

where n is the external normal to the surface of the triangle over which the integration is 

being performed. 

The translation operator TL ( ) is unchanged for PEC and impedance surfaces. 

5) Solution 

( 4.8) can now be written as 

(4.38) 

in which Bm denotes all groups near group m. Gm' stands for group m'. (4.38) is a form 

that can be iteratively solved. 

Computational cost of FMM analysis 

When the total number of unknowns is N, it can be shown that FMM is most 

efficient with number of groups M ~ ../ii. There are therefore approximately ../ii 

unknowns in each group. This leads to L = ..Jii/4 and K = ¾ . Step (2) therefore 

requires O(N) operations, step (3) requires O(N¼ ~ N 312 ) operations, and step (4) 

requires order O(N312 ) operations. FMM is therefore O(N312 ) overall, versus O(N2 ) 

for direct iterative solution of ( 4.8). 
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4.3.2 Iterative Algorithm 

Sultan and Mittra [89] first applied conjugate gradient iterative solution to MM based 

scattering. West and Sturm [73] then applied several more modem conjugate gradient 

based schemes for non-Hermitian, complex matrix systems to rough surface scattering. 

Two of the more promising schemes from that study were considered for use with FMM: 

the generalized minimal residual (GMRES) and bi-conjugate gradient-stable 

(BICGST AB) algorithms. These are especially appropriate for FMM since they do not 

require the transpose of the interaction matrix, which is not available with FMM. The 

convergence history of each when applied to scattering from a flat-plate ( 4 by 4 groups, 

20 by 20 grids with 0. U segmentation) is shown in Fig. 4.8. The solid line was found 

using BICGSTAB and the dashed line was found with GMRES. Both algorithms show 

good convergence properties, although GMRES converges more uniformly and more 

quickly. The primary disadvantage of GMRES is that it requires more work per iteration 

and larger storage. However, these are small compared to the workload and storage of 

FMM itself. GMRES is therefore used for the remainder of this work. 

4.3.3 Test Cases for FMM 

The FMM implementation with RWG basis functions was first tested through an 

application to a PEC flat-plate. The segmentation is similar to Fig. 4.3a, except that the 

size is enlarged to 2;t, by 2l, the grid length is still O. ll in both directions. The 

incoming field was the same as in Fig. 4.3a. 

The results are shown in Fig. 4.9. The solid line shows the current along the segment 

AA' in Fig. 4.3a when the moment method system was solved directly using matrix 
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Fig. 4.8. Comparison between BICGSTAB and GMRES. 

180 

factorizations. This can be treated as the exact solution. The circle-dashed line shows the 

FMM current when D = 3 in ( 4.32), and D = 2 is shown as the starred line. The 

agreement is very good in all cases. The slight error in D = 2 at element 5 will not lead 

to significant errors in the far field scattering since the scattered field is an integration of 

the current. D = 2 is therefore adequate for the remainder of the calculations. 

The second test case was a PEC sphere of radius 0.5A. A segmentation of 30 in both 

the 0 and rjJ coordinates was used, giving 1740 triangular patches. The calculated current 

is shown in Fig. 4.9b. For convenience, the results only show the currents for first 120 

edges. The solid line shows the reference MM current using matrix factorization, while 

the circled and starred lines correspond to FMM with D = 3 and D = 2 respectively. 

Excellent agreement is achieved at all but the lowest current levels. Again,. this will have 

negligible effects on the far field scattering. 
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Fig. 4.9a: Results with different D for a flat plate. 
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Fig. 4.9b: Results of PEC sphere by using FMM. 
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4.4 Multilevel Fast Multipole Algorithm (MLFMA) [58-67] 

The multi-level fast multipole algorithm (MLFMA) further expands upon the FMM 

concept to give even greater computational efficiency. It accomplishes this by sub

dividing the FMM groups into smaller groups, and independently applying FMM at the 

finer level. The basic scheme is shown in Fig. 4.10. Fig. 4.10 illustrates 3 levels, but it is 

straight forward to extend to an arbitrary number oflevels. The top level (level Lg ) is the 

coarsest level, while the lowest level (level 1) is the finest level. Each group in level l 

includes a number of children groups from level l -1. The number of groups that are 

included in the parent group is determined by the grouping size at each level. The figure 

shows four children groups per parent group, but the number is arbitrary. The upward tree 

is defined from the finest level to the coarsest (1 to Lg), while Lg to level 1 is the 

downward tree. Because the number of moment method triangles in the groups is 

different at each level, the L and K associated with each level is also different. The values 

for level l are specified by Lz and Kz . 

The grouping is largest at the top level, so the maximum number of elements 

translate at once through a TL () . However, large numbers of elements would be left in 

nearby groups if only the highest level were used. Instead, the children groups that are in 

nearby groups at parent level l are treated in their own child level /-1 FMM expansion. 

This continues down to level 1. 

A different number of plane waves Kz are used in the FMM expansion at each level. 

, The lower level groups must therefore be combined into larger groups and the plane wave 

expansion interpolated into large expansions in an aggregation step. After the translations 
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are performed, the groups must then be divided into the lower levels, and the plane waves 

filtered to fewer samples. This is the dis-aggregation step. These are briefly described 

below. 

Levell 

Fig. 4.10: Tree structure of multi-level groupin~. 

4.4.1 Implementation of MLFMA 

Compared with FMM, MLFMA has two main additional steps: the aggregation step and 

the dis-aggregation step. 

1) Aggregation Step 

The aggregation step combines the K1-t plane waves in the children groups into K1 

I\ 

plane waves in the corresponding parent group. To demonstrate this, the term sm,1 (k) is 

introduced: 
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A A 

Sm• (k1)= '°'Vsm' "'' (kz)Im' a' I L..J I"/ I I 
a 1'EGm'1 for m'z = 1,2, ... , M1. ( 4.39) 

A 

where Mz is the number of groups in level l. Sm• (kt) is therefore the plane wave in the 
I 

A A 

direction kt due to all elements within the group Gm'!. The Sm• (kt) 's are translated to 
I 

an observation group in level l via TL1 () • 

A 

Direct calculation of Sm• (kt) from the individual elements in the group would be 
I 

A 

inefficient. Instead, Sm• (kt) is formed as a sum of plane waves from the children groups, 
I 

shifted to the appropriate phase reference at the center of the parent group. Examining a 

single child group, the contribution to the parent group is 

OS (k ) _ -Jk•(rcm't -rcm't-1 )( (k )J 
m'1 l - e Sm'1-1 l . (4.40) 

The contributions from all children groups are added to give the complete plane wave 

A 

expansion. It is noted that equation ( 4.40) requires that a plane wave in the kt direction 

be known in l - l level. As mentioned above, fewer plane waves are stored at level l - l 

than at level l. The level / -1 plane wave expansion must therefore be interpolated from 

A A 

the kt-l directions to the kt directions. Mathematically, this can be written as 

A jk•(r r ) ( A J Sm'1 (kt) = L e- cm't - cm't-1 I Wz-l,l Sm'1-1 (kt-1) 
child 1 to K1_1 , (4.41) 
groups 

for l = 2,3, ... ,Lg 
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where rcm'i is the centroid vector of the group m' at level l. Wz-l,l are interpolation 

coefficients from level 1-1 to level l. This interpolation and shifting [64] can be 

illustrated by using Fig. 4.11. 

Level l 

Interpolate 

Filter 

Level l+l 

@w --. 
-+ Shift ._ 

Fig. 4.11: The interpolation and shifting step for moving up tree, 
and the inverse shifting and filtering step for moving down tree. 

In practice, ( 4.41) is not explicitly evaluated. Instead, interpolation m the rjJ 

coordinate is achieved using fast Fourier transforms (FFTs). The 0 interpolation requires 

a discrete Legendre transform. A fast algorithm does not exist for the Legendre 

transform, so interpolation coefficients are found initially and stored. The procedure is 

explained in detail in [64]. Note that (4.39) is explicitly evaluated at the lowest (finest) 

level. 

2) Dis-aggregation Step 

At the highest level, the plane wave expansion of a group 1s translated to an 

observation group using 

I\ I\ 

T(m,m',kL )sm (kL ) 
g Lg g 

(4.42) 

I\ 

The gm (kL ) then must be dis-aggregated to the children groups. The process is 
L g g 

similar to the aggregation step, although as fewer plane waves result that it is typically 
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referred to as a filtering rather than an interpolation. Mathematically, the dis-aggregation 

from level l to level l - l is 

I\ 

gm (kz-1) = 1-1 
~ - jk•(rcm'1-1 -rcm'z) ·~ W ( (k )J 
~ e ~ Z,l-1 gm'1 l 

m'1EDm1 ltoK1 • (4.43) 

forl=Lg, ... ,3,2 

Wz 1 _ 1 are filtering coefficients from level l to level l -1. Dm denotes all groups far 
' l 

from group m at level l -1 but not far at the parent level (level l). This again includes a 

shifting as well as a filtering. It can be illustrated in Fig. 4.11, (from right side to the left). 

The filtering is also implemented using an FFT in the rp direction and a Legendre 

transform in the 0 dimension. 

At the finest level (level 1 ), the final expression for MLFMA can be rewritten as 

(4.44) 

MLFMA is a O(NlogN) method, as outlined in [69]. As mentioned, FMM is 

O(N312 ). For small N, the overhead of MLFMA (interpolation, filtering) can lead to a 

less efficient algorithm than FMM, but with large N, MLFMA has a significant 

advantage. 

4.4.2 Test Cases for MLFMA 

Fig. 4.12 shows the results of applying MLFMA to a perfectly conducting sphere of 

radius 0.5A. The segmentation in both 0 and rp directions was 40, so there are 3120 

triangular patches. Only the first 160 current values are displayed here. D = 2 was used 
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at all levels. The solid line shows the results when only one level was used (FMM), while 

the starred line shows two levels. Excellent agreement is achieved. 
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0 20 40 60 80 100 120 140 160 

Variable number 

Fig. 4.12: Testing results of PEC sphere by using MLFMA. 

As mentioned in Chapter 3, SPM is very accurate at moderate incidence angles with 

small surface roughness. SPM was therefore used to check the implemented MLFMA. A 

periodic "cosine" surface was first used. The surface was defined by 

z(x,y) = Acos(KBx), (4.45) 

where A is an amplitude factor and KB is a surface wavenumber. A was set to 0.005,1., . 

For this small surface roughness, the contribution of KA is very small when the incidence 

angle is larger than 30° . The total backscattering can therefore be regarded as only due to 

SPM. KB was set to Ji. Hence, there should be a Bragg-resonant peak at a 45° 

incidence angle. To avoid edge effects, a Gaussian illumination window was applied in 

azimuthal direction and a Thorsos window (to be described in detail in Chapter 5) was 
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used in the range direction [35]. The Thorsos window requires a large modeled range 

length. The surface used was 32,1 in range and 4,1 in azimuth, giving 38,040 unknowns 

to be found. A three level MLFMA was used. The results are shown in Fig. 4.13. A 

surface impedance of Z5 ~ 44 + jl3Q for seawater at 10 GHz was used. The starred line 

and circled line represent VV and HH found using MLFMA, respectively. The solid line 

and dashed line are for VV and HH found using SPM. The MLFMA results and SPM 

results agree well around 45°. Away from the peak the MLFMA cross-sections are about 

-60 dB, showing the numerical noise floor of the technique. 
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Fig. 4.13: Comparison of SPM and MLFMA for "cosine" surface. 

Another test was performed using 3-D rough Pierson-Moskowitz surfaces. The RMS 

height of the surface was 0.05,1. The surface was 48,1 in range and 8,1 in azimuth, 

giving 114,640 unknowns. The same illumination window treatment was used as for the 

"cosine" surface, and again three MLFMA levels were used. The results using one 
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surface are shown in Fig. 4.14. The circled line and starred line are for VV and HH found 

using MLFMA, respectively. The solid line and dashed line are for VV and HH found 

using SPM. The agreement is within 1.5 dB. Fig. 4.15 was obtained by averaging the 

scattering from 12 realizations (a 12 sample Monte-Carlo test). The agreement at both 

polarizations is better than ldB. 
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Fig. 4.14: Comparison of SPM and MLFMA for one deterministic 3-D PM surface. 
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CHAPTERS 

TWO-DIMENSIONAL EDGE TREATMENT 

Fig. 4.3b showed that the current induced on a flat plate tangential to an edge is quite 

large. This large current is responsible for edge diffraction. With the flat plate this is 

physically accurate. However, when an arbitrary scattering surface is truncated to fit in 

finite computer memory, similar edge currents will be induced. This leads to non

physical diffraction that will both directly mask the backscatter from the true surface 

features, as well as affect the feature scattering through multiple interactions. In this 

chapter a method to suppress the edge effects is examined. 

5.1 Approaches 

Several approaches have been used to treat edges in moment method analyses. As 

discussed in Chapter 2, MM/GTD is a very powerful method to suppress the edge 

diffraction from 2-D surfaces that does not require substantial extra calculation. 

Unfortunately, it requires that the diffraction into the GTD region be from a distinct 

point. It therefore cannot be extended to the 3-D case. Other approaches that can be used 

in the 3-D case can be classified to two types. One is illumination-weighting windows. In 

this, the illumination is smoothly reduced to near zero at the edges. Two illumination 

windows that have been considered include the Gaussian window and the Thorsos 
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window. These are reviewed below. Another approach is to resistively load the edge, 

which also forces the current to zero. West [76,77] examined resistive edge loading in the 

2-D case, and compared the performances of this two different resistive tapers. Here the 

use of resistive loading for control of edge effects is extended to the 3-D case. 

5.1.1 Illumination Windows 

1) Gaussian window 

The simplest illumination window is the Gaussian window. When applied m the 

azimuthal (y) dimension, it is written as 

(5.1) 

where Yo is the center of the beam in the azimuthal direction and g0 is a constant that 

controls the width of the illumination beam. This window has proven adequate for 

weighting in the azimuthal direction. 

2) Thorsos window 

The Thorsos window was introduced for weighting in the range direction [35]. It has the 

advantage of providing a more exact solution to the wave equation than the simpler 

Gaussian window at non-zero incidence angles. This window can be written as 

p(r) = expvk. r[l + w(r)]-(x- ztan0)2 / g5 }, (5.2) 

where w(r) = [2(x- ztan0)2 I g5 -1]/(kgcos0)2 and 0 is the incidence angle. Note that 

the Thorsos window includes the phase of the incident wave, so the phase of Ei in (4.4) 

I\ I\ 

should be compensated. Also, k = ax kx + az k2 , so there is no phase variation in y 

direction. 
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Because the weighting affects only the incoming illumination, only equation ( 4.1 Ob) 

need be modified for implementation. The Gaussian window affects only the amplitude 

of Vm. Vm using a Gaussian window is written as 

(5.3) 

The phase of V m is also affected when the Thorsos window is used. 

The Thorsos window has proven quite popular. However, as the illumination grazing 

angle decreases, the length of the modeled surface must be increased to give a realistic 

representation of the illumination of surface features. Therefore, this approach becomes 

quite expensive at low grazing angle (LGA), particularly for 3-D surfaces. 

5.1.2 Resistive Loading of Edges 

Oh and Sarabandi [75] considered the use of resistive loading of edges to suppress 

unwanted diffraction from surface truncation points in rough surface scattering. It has the 

advantage of very low ~omputational overhead, so it appears to be a promising approach 

for treating scattering from arbitrary 3-D surfaces. West [76,77] compared the 

performance of a resistive loading based on Taylor weighting first introduced by Haupt 

and Liepa [74] with that of the power-law weighting used by Oh and Sarabandi [75]. The 

Taylor weighting proved superior, so it is used hereafter for the 3-D surfaces. 

Taylor taper window [74] 

The resistive loading R(r) for the Taylor taper takes the form 

{ 
1 1 

R(r) = J(r6 2 
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otherwise 
(5.4) 



where 

-

1 n-1 mz r r [ - ] 
J(r) - 2a 1 + 2 ~/Cn)co{ I a- 0 1) , 

f(n)= - [(n-l2!] ITl-~, - 2 [ 2 J 
(n-l + n)!(n-1-n)! w;, 

- A2 + (m - 0.5)2 
n 

Wm = A2 + (~ - 0.5)2 ' 

n, 

(5.5a) 

(5.5b) 

(5.5c) 

n is the number of sidelobes desired in the scattering pattern at a level of q dB below the 

main reflection, 

A= ~cosh-1(10q 120), 
7Z" 

(5.5d) 

a is the distance over which the loading is applied, and r0 is the position where the 

loading begins. 

The EFIE with resistive loading added is written as [75] 

[ 
- jkR l - jkR l i µ e • e , 

Etan= -f. J--dS +-. - f cr--dS 
4;r lS' R 47r& .ls' R 

tan 

[ 1 1 [ /\ J ( -jkR J ] + z(Z., +2R(r))J + 4,r 1z., n'xJ xv' T as' tan 

(5.6) 

The resistive loading can therefore be added to the RWG moment method by replacing 

(4.16a) with 

(5.7) 
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The resistive loading affects only the diagonal element of the interaction matrix. The 

overhead calculation of R(r) is trivial, so the cost of adding the resistive taper is 

negligible. West [77] showed that although resistive t~pering was introduced assuming 

perfectly conducting surfaces, it is also effective in controlling the edges with 2-D finite 

conductivity seawater surfaces. 

5.2 Preconditioning [70] 

Adding the resistive loading changes the relative . levels of the diagonals, reducing the 

conditioning of the interaction matrix and giving much slower iteration convergence. 

Point Jacobi preconditioning, where the rows are normalized to give unity diagonals, has 

therefore been used. More sophisticated preconditioning based on an incomplete LU 

factorization of the FMM sparse matrix will be considered in later work. 

5.3 Test Cases 

5.3.1 Surface Setup 

The resistive-loading edge treatment was tested by considering the scattering from a 3-D 

surface derived from a profile taken from the LON GT ANK series representing the time 

evolution of a plunging-breaker water wave [80]. The complete time history of the crest 

of the generated wave is shown in Fig. 5.la. Fig. 5.lb shows profile 9 and 13 after the 

crest areas were isolated and the profiles extended with smoothly curved sections of 

surface (radius=l o,.i) that join to planar sections of surfaces that are angled at 30° down 

from horizontal. The extensions, shown as the dashed line in the figure, are needed to 

allow a comparison of the calculated scattering with reference 2-D MM/GTD results as 
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described in Chapter 2. Profile 13 has a more developed jet than profile 9. These are the 

same as the "isolated-crest" surfaces used in West and Zhao [83]. The 3-D profile used 

for the initial tests was formed by extending the 2-D profile uniformly 4J in the 

azimuthal direction. Fig. 5.1.c shows the 3-D surface formed from profile 9. 

Two different edge-treatment approaches were used in the tests. In the first, the 

resistive loading was applied to the forward and trailing edges of the surface, while 

Gaussian illumination weighting was applied in the azimuthal (y) direction. In the second, 

resistive loading was applied to all edges. 
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Fig. 5.la: LONGTANK profiles. 
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Fig. 5.lb: Profile 9 and 13 with extension in range. 
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Fig. 5.1.c: 3-D profile with 4,1, extension in azimuth from profile 9. 

5.3.2 Gaussian Illumination Plus Resistive Loading 

In the first test case, a Gaussian illumination window was used in the azimuthal direction 

to remove the edge diffraction, while resistive loading was used in range extension area, 

as shown in Fig. 5.2. The resistive loading was applied over 3A on each end of the 

surface. In order to demonstrate the effectiveness of this technique, the results were 

compared with that of MM/GTD in the 2-D profile. The reference 2-D scattering of 

MM/GTD calculations were found using pulse basis functions of 0.025A in length, 

minimizing any possible error in the reference scattering. 
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Resistive loading 

Fig. 5.2: Resistive loading in azimuth for 3-D surface. 

Because the wave profile was extended in azimuth to give a 3-D scattering surface, 

the 2-D cross-sections ( a 2_D) yielded by the MM/GTD approach must be converted to 

3-D cross-sections ( a3-D) using [1, p578] 

(5.8) 

where lequ is the equivalent length in azimuth direction. It can be calculated by using 

_ Ly[ [- (y-Ly /2)2 JJ2 

l equ - I exp g 5 dy ' (5.9) 

where Ly is the width of the surface in the azimuthal direction. g0 = Ji Ly was used in 
2 

this test, where Ly = 4A is the azimuthal width of the surface, giving an equivalent width 

1.2532,1,. 

Fig. 5.3 and 5.4 are the backscattering from profile 9 when the surface is assumed 

both to be perfectly conducting and to have a surface impedance of Zs = 44 + j13Q 

(corresponding to seawater at 10 GHz [2]). Fig. 5.5 and 5.6 are the corresponding results 

using profile 13. The solid lines show the reference 2-D MM/GTD results, and the starred 

lines show the 3-D results with resistive loading applied to the range edges. Very good 

agreement is achieved at both polarizations above 55° incidence. For profile 9, the 
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maximum error is only 0.3 dB for both the PEC and seawater surfaces. With profile 13, 

the performance is a bit poorer, primarily due to the deep null in the VV case at 82° 

incidence. With the perfectly conducting surface, the maximum error for HH is less than 

0.5 dB, and is smaller for seawater. This is because that the edge diffraction is naturally 

smaller with finite conductivity. At vertical polarization the agreement is within ldB at 

most points, although it approaches 3 dB in the profile 13 null due to numerical noise. 

This point will contribute little to the total backscattered power, so is not of great 

concern. 

Below 55° incidence, the local angle of incidence on the planar extension of the 

front face of the surface is less than 25°. Sidelobes from the resistive loading therefore 

affect the accuracy. The same inaccuracy is observed when the edges of the 2-D surface 

are resistively loaded [76]. This is further discussed in Section 6.3.1. As we are interested 

in LGA (high incidence) backscattering, the inaccuracy at moderate and low incidence is 

of little concern. 

5.3.3 2D Resistive Taper Window 

The second test case considered is both the range and azimuthal edges treated with 

resistive loading as shown in Fig. 5.7. This approach has the advantage of allowing 

uniform plane-wave illumination of the surface in both dimensions, which is realistic of 

the open sea case. The dimension a shows the distance over which the taper was applied 

( 3,1, in this case). The tapering was added to the comers such that the dotted line shown 

has same resistance everywhere. The extension in the azimuthal direction is the same as 

in Fig. 5 .1 c, but the azimuthal width was increased to 9 A to allow the extra width need 

for the loading. · 
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Fig. 5.3: Backscattering of profile 9 (PEC, 10 GHz). 
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Fig. 5.4: Backscattering of profile 9 with impedance (SEA, 10 GHz). 
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Fig. 5.5: Backscattering of profile 13 (PEC, 10 GHz). 
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Fig. 5.6: Backscattering of profile 13 with impedance (SEA, 10 GHz). 
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Fig. 5.7: Two-dimensional resistive loading. 

An equivalent scattering azimuthal width must be found to allow comparison with 

the 2-D reference. According to [74], the reflection coefficient p from specular 

reflection points can be written as 

(5.10) 

whereR(r) was given in (5.4). The dominant scattering mechanism from the test surfaces 

is specular-like reflection from the jet, which will add coherently. The effective width is 

therefore 

(5.11) 

Ly 

For Ly = 9A, with 3A loading at both sides, the equivalent width that will be used in the 

conversion from 2-D to 3-D is about 5.4A. 

The results using both range and azimuthal loading are also shown in Figs. 5.3, 5.4 

and 5.6 as the circle lines. Above 55° the agreement with the reference 2-D results is 

slightly poorer than when azimuthal illumination weighting was used. However, the 

agreement is still within 1 dB for seawater conductivity at both polarizations everywhere 

but in the profile 13 VV null. The performance of the resistive loading is therefore 

acceptable for this approach. 
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CHAPTER6 

SPILLING BREAKER SCATTERING 

In this chapter the MLFMA numerical routine is used to examine the backscattering from 

a spilling-breaker. Because 3-D measured surfaces are not available, model 3-D breaker 

crests were synthesized from the measured 2-D time series shown in Figs. 1.1 and 1.3. 

The resulting 3-D surfaces are not likely to be entirely realistic, but give test cases for the 

models. The results are then related to the 2-D scattering results previously published by 

Ja et al [43,44] and West and Ja [17], and compared to the predictions of analytical 

scattering models. The spilling breaker is examined here, while the plunging breaker is 

considered in Chapter 7. 

6.1 Scattering Surface 

The 3-D spilling breaker profile was constructed from the measured 2-D profiles shown 

in Fig. 1.1. The 3-D profile was ·formed by aligning the individual profiles in the azimuth 

dimension at a spacing of 3 mm (corresponding to 0.12 for 10 GHz). The resulting 

surface is shown in Fig 6.1. The final geometry of the wave was influenced by several 

characteristics of the MLFMA approach and the individual 2-D wave profiles themselves, 

as now discussed. 
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The MLFMA approach used relies upon resistive loading of the edges to suppress 

unwanted edge effects. Ideally, the backscattering from the resistively loaded areas would 

be zero. This eliminates the need for the inclusion of an effective width to adjust the 

calculated scattering cross section, which may not be easily determined with arbitrary, 

distributed surface roughness. (An effective width could be found for the test cases in 

Chapter 5, but these gave specular reflection that could be easily treated using the 

reflection coefficient). The scattering from the individual 2-D profiles was shown in Fig. 

2.5. The scattering from the first profile, when the crest is still round, was quite small 

compared to the scattering at later times. This profile was therefore extended over 2J on 

the edge. The resistive loading was applied over this width, and the total backscatter from 

this region is therefore assumed to be zero. 

The last profile in the 2-D sequence, number 329, has significant roughness, which 

leads to significant backscattering relative to the other profiles. It is obviously not 

appropriate to extend this profile azimuthally and apply the loading, as it would 

dramatically affect the total scattering. Instead, the 3-D surface has been reflected on 

profile 329, giving a symmetric surface. Resistive loading is therefore also applied on the 

mirror image of the 2J extension of profile 0, suppressing the edge effects without 

affecting the scattering. 

The final required modification to the profiles was the extension of the leading and 

trailing edges for the application of the range-dimension resistive loading. The extensions 

were formed in the same manner as they were for application of the MM/GTD technique. 

This shadows the resistive loading from the actual surface roughness, avoiding any 

unrealistic multipath. Because the start · points of the profiles vary, the radius of the 
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curved sections have been adjusted for each profile to give the same x and z coordinates 

at the start points. The curved sections joining the actual surface to the planar extensions 

have a large radius of curvature. The resistive taper is applied over the ends of these 

extension areas. 

6.2 Calculated Scattering 

The scattering at 10 GHz was once again considered. The surface impedance used in the 

impedance boundary condition was therefore Z8 = 44 + j13Q, that of seawater. All 

MLFMA calculations were performed with a 0.05...1 surface sampling in the range 

direction and 0.07 A sampling in the azimuthal direction. 

Fig. 6.2 shows the backscattering from the complete spilling breaker surface. VV 

backscattering is shown by the solid line and HH is shown by the dashed line. Cross

polarized backscattering is shown by the circled line for HV (where the transmitted 

energy is horizontally polarized and the received energy is vertically polarized) and by 

the starred line for VH (where the transmitted energy is vertically polarized and the 

received energy is horizontally polarized). Overall the co-polarized backscattering is 

consistent with that expected from the wave geometry and the associated 2-D results. At 

60° there is quasi-specular reflection from the steepest sections of the breaking crest, 

giving an HH-to-VV backscattering ratio of approximately O dB. At higher incidence 

there are no specular points. The VV backscatter therefore becomes considerably stronger 

than the HH breaker at higher incidence angle. Near grazing incidence (90° ), VV is 

about 10 dB larger than HH. 
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The cross-polarized backscatter is well below the co-polarized signal at all angles. 

From 60° to 70° incidence, the cross-polarization is 40 to 50 dB less than the co

polarization. As the incidence angle increases, the difference between the cross

polarization and co-polarization decreases, giving about a 25 dB to 35 dB difference 

when the incidence tends to grazing. Note that VH and HV monostatic backscattering 

should be identical, while there are some differences in the actual results. They agree to 

within 3-4 dB from 70° to 90° incidence, but lose agreement from 60° to 70° . This 

results because the scattering cross sections are quite low ( 40 to 50 below the co

polarizations ), and therefore are affected by numerical error due to the finite sampling of 

the surface. Better agreement can be obtained by using a smaller segmentation, although 

at the expense of computational efficiency. 
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Fig. 6.2: Backscattering from complete spilling breaker using MLFMA. 
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6.3 Analysis of Scattering 

6.3.1 2-D Synthesis of 3-D Results 

As mentioned in Chapter 2, the MM/GTD technique has previously been used to model 

the scattering from the individual 2-D profiles of the spilling breaker by J a et al [ 43 ,44] 

and West et al [ 45]. In this, the surface was assumed to be uniform in the azimuthal 

direction. Scattering cross sections that can be directly compared to the scattering from 

the 3-D profiles are now synthesized from the 2-D scattering. This was accomplished by 

coherently adding the scattered 2-D fields using 

(6.1) 

where Ei is the 2-D scattering of ith 2-D profile. The total 2-D field was then converted 

to a 3-D field by using equation (11-22d) ofBalanis [1, p578]: 

( 
/ej1rl 4 J 

E3n ~ E20-total .Ji , 
p p=r 

(6.2) 

where l is the azimuthal width of each 2-D profile used in forming the 3-D crest. 

(l ~ 0.017 )L at 10GHz here). The 3-D radar cross-section is then formed using the 

coherently summed field of (6.2). 

Fig. 6.3 shows the comparison of the 3-D cross-sections synthesized from the 2-D 

results with the reference MLFMA results. The solid and crossed lines are the reference 

VV and HH MLFMA scattering respectively. The starred and circled lines are the 

corresponding synthesized VV and HH cross-sections. Very good agreement is achieved 

at all incidence angles, with a maximum error of 2 dB at 65° . Agreement is within 1.5 

dB from 70° to 90° , where there is no effect from the front face loading. 
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Fig. 6.3: Comparison of2-D synthesis and 3-D MLFMA results 
of the full spilling breaker wave. 

A) Pre-breaking and post-breaking scattering 

The scattering was further analyzed by separating the full surface into pre-breaking and 

post-breaking sections. The pre-breaking surface, shown in Fig. 6.4, was formed from 

profiles O through 175 using the same method as described in Section 6.1. It is seen from 

Fig. 2.5 that profile 175 is the initial breaking point of the spilling breaker. Fig. 6.5 shows 

the backscattering from the pre-breaking surface. The strengths ofVV and HH are within 

2 dB and 1 dB respectively of those from the full surface at all incidence angles. The 

returns from the steep section of the full surface before breaking therefore dominate the 

co-polarized returns. On the other hand, the cross-polarized signals drop by about 10 to 

15 dB compared to the full surface at the largest incidence angles. (It is also more 

strongly affected by numerical error due to the lower cross-sections). The steep section is 

therefore not the dominant source of cross-polarized scatter. 
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Fig. 6.5: Backscattering from pre-breaking spilling breaker by using MLFMA. 

A post-breaking surface, shown in Fig. 6.6, was formed from profiles 175 through 

329. Because profile 175 is not entirely smooth, it gives some backscattering through 

Bragg resonance. (Although the scattering from profile 175 is small in Fig. 2.5, it 

increases at other incidence angles). It is therefore not appropriate to extend this profile 

directly for application of the resistive loading. Instead, profile 175 was gradually 

smoothed over 0.7 A to give a rounded crest with minimal scattering. The smoothed crest 

was then extended over an additional 2J , providing the area for the resistive loading. 

Fig. 6.7a shows the calculated backscattering from the post-breaking spilling surface. 

The VV scattering is about 10 dB below that with the complete surface, while the HH 

scattering is reduced by as much as 15 dB. The HH to VV ratio is consistent with the 2-

D results of Fig. 2.5, where it was shown that HH reduces more rapidly than VV after 

breaking. However, the average VV cross-section was about the same post-breaking as it 
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was in pre-breaking in the 2-D scattering. Here the post-breaking VV cross-section was 

10 dB lower than pre-breaking. This is because the post-breaking surface is due to Bragg

like scattering. The 2-D surfaces however are assumed to extend uniformly in the 

azimuthal direction. This gives an azimuthally coherent scattering surface that leads to 

strong Bragg scattering with cross-sections comparable to the overturning section. The 3-

D surface on the other hand varies randomly in the azimuthal direction. The scattering 

therefore adds incoherently in the azimuthal direction, giving a weaker cross-section. The 

pre-breaking surface, however, changes very slowly in azimuth. It therefore gives a 

coherent reflection that remains strong. 

The cross-polarized backscatter of the post-breaking part is approximately the same 

level as that observed from the complete surface. This is because the surface becomes 

more random after breaking, introducing multiple scattering that gives cross-polarized 

components [78]. 
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Fig. 6.7a: Backscattering from post-breaking spilling breaker by using MLFMA. 
(The cross-sections are valid only above 70° incidence) 
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Fig. 6. 7b: Comparison of backscattering from post-breaking spilling 
with different extension angles. 

The choice of the surface extension may have some impact on the calculated 

scattering. As mentioned in Section 5.3.2, there is a mainlobe reflection response from 

the resistively loaded surface due to the Taylor weighting used. This response can be 

significant when the local incidence angle on the loading is less than 20° [77]. To give a 

smooth 3-D surface over the area in which the resistive loading is applied, the individual 

2-D profiles were extended to the same point at the front. Because the original start points 

of the measured profiles are different, the extension angles of individual profiles are 

necessarily different. Qverall the extension angles in the post-breaking region are larger 

than that in the pre-breaking region. This phenomenon was found in the backscattering in 

Figs. 5.3 through 5.6. From 50° to 55° incidence, the local angles of incidence on the 

planar extension of the front face in Figs. 5.3 through 5.6 range from 20° to 25° 
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(relative to horizontal). The extension angles in Fig. 6.4 and Fig. 6.6 are even larger than 

that in Figs 5.3 through 5.6. To investigate the effect of the scattering in Fig. 6.2 and Fig. 

6.5, the calculations were repeated with the individual profiles extended to different 

points. In this case, the leading edge point was changed from ( x = -2.5l, z = -1.0l) to 

( x = -2.2l, z = -1.0l ), giving even larger angles with respect to horizontal for the 

extensions. For the pre-breaking surface, the change in extension affected the cross-

sections less than 0.5 dB from incidence 60° to 90°. For the complete surface, the 

change was less than 0.5 dB from incidence 70° to 90° and 1.5 dB from 60° to 70°. 

Figures 6.2 and 6.5 are therefore reliable at all angles shown. This will be further 

demonstrated in the next section. Significant changes occur with the post-breaking 

surface, however. In this case, the leading edge point was moved from 

( x = -2.5l, z = -0.8,1,) to ( x = -2.5l, z = -1.0l ). The results are shown in Fig. 6. 7b, 

VVl and HHl indicating the scattering with the original extension and VV2 and HH2 

indicating the modified surface. The agreement from 60° to 70° is poor due the 

mainlobe reflection from the resistive taper. Good agreement was found from 70° to 

90°, especially for VV. From these comparisons, itis concluded that the scattering cross

sections in Fig. 6.7a can only be considered accurate above 70° incidence. Only this 

range will be considered in the scattering from the post-breaking surface hereafter. 

It should be noted that the cross-sections of the complete surface and pre-breaking 

surface are much larger than that of the post-breaking. Moreover, the extension angle in 

the pre-breaking region is less extreme. Combined, these factors reduce the overall effect 

of the extension loading to negligible levels. 
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B) 2-D synthesis of pre-breaking and post-breaking 

3-D scattering cross-sections were again synthesized from the 2-D scattering results for 

the pre- and post-breaking surfaces. The results are shown in Figs. 6.8 and 6.9. The solid 

and crossed lines are the reference VV and HH MLFMA scattering, respectively, and the 

starred and circled lines are the corresponding synthesized VV and HH cross-sections. 

Very good agreement is achieved at all incidence. angles with the pre-breaking surface in 

Fig. 6.8, with a maximum error of 2 dB at 65° . Agreement is within 1.5 dB from 70° to 

90°. However, the agreement is very poor with the post-breaking surface in Fig. 6.9. 

This differing behavior results due to the differing surface roughness. The 2-D 

synthesis assumes that the individual profiles extend uniformly to infinity in azimuth. 

This provides a coherent reflecting surface in azimuth. With the pre-breaking surface, 

adjacent profiles change only slightly. The reflection remains coherent over a significant 

fraction of a wavelength, and can be predicted by the coherent addition of individual 

profiles. After breaking, the surface is much more random, and the profiles change 

dramatically within azimuthal widths on the order of a wavelength. There is no longer a 

coherent reflecting mechanism, so the scattering cannot be predicted by a simple coherent 

model. 
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6.3.2 Two-Scale Treatment 

As mentioned, West and Ja [17] compared the predictions of the two-scale-model (TSM) 

with the numerically calculated scattering from the 2-D measured spilling breaker. Here, 

the analysis is extended to the 3-D profiles surfaces. 

A) Surface Separation 

The two-scale model requires the separation of the surface into large- and small-scale 

rough components. This was accomplished using the procedure described in section 3.2. 

The surface was first sampled every 0.017 A in both the range and azimuth directions in 

the x-y plane projected below the surface. 850 passes of the moving average window 

therefore yield a scale-separation filter threshold of KT = k I l. 7 . The number of passes 

was varied to give different thresholds. The cases shown use thresholds thatwere chosen 

to best demonstrate the dependence of the scattering on the threshold while providing the 

most accurate results. The range extensions needed for the application of the resistive 

loading were chosen to give very little backscatter. The moving average therefore was not 

applied in this region. Fig. 6.10 shows two range cuts and one azimuth cut of the surface 

after the filtering with Kr= k/1.7. Fig. 6.10a and 6.10b are the cuts along range 

direction for profile 150 and profile 260 respectively. Fig. 6.1 Oc is the cut along the 

azimuth direction at x= 2.62A . The thin solid lines are the original profiles, the bold solid 

lines are the filtered large-scale surface, and the dashed lines are the small-scale surface. 
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Fig. 6.10: Separation of large-scale and small-scale surface in TSM. 

B) Complete spilling-breaker wave 

TSM was first applied to the complete spilling-breaker profile. Fig. 6.11 shows the results 

when the scale-separation filter threshold was set at Kr= k/1.0, while Fig. 6.12 used 

Kr = k I 2.0. The solid lines show the reference MLFMA results and the starred lines 

show the full TSM scattering. The dashed lines show only the SPM contribution to TSM. 

The HH TSM scattering matches the reference MLFMA results well when 

Kr = k /1.0. The average difference is about 1 dB. The agreement is poorer at VV. 

When the threshold is reduced to Kr= k/2.0, VV agreement improves at the expense of 

poorer HH agreement. No threshold could be found that yielded accurate results at both 

polarizations. This threshold dependence is likely due to the inclusion of the steep, pre

breaking portion of the wave. West and J a [ 17] showed that TSM is unable to treat 
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scattering from the individual 2-D profiles that included steep features. This is also 

demonstrated by the large contribution of the KA field. The KA scattering is strong for 

near-specular reflection, which would result with the steep features. West and Ja also 

showed that the two-scale model was more effective with the 2-D profiles after breaking 

when there were no longer steep features. TSM is therefore now applied to the post

breaking profile of Fig. 6. 5. 

C) Post-breaking wave 

Figs. 6.13-15 show the results ofTSM applied to the post-breaking spiller with separation 

thresholds of Kr = k I 0.8, Kr = k ll.2 and Kr = k ll.6. The results are less sensitive to 

the threshold than in the full wave case. Agreement is reasonably good at both 

polarizations with all thresholds with best overall agreement with Kr = k ll.2. In [17], 

West and Ja have shown that Kr = k I l.6 is the best choice for the 2-D case after 

breaking. Despite the good agreement that is obtained here, the need to arbitrarily choose 

a scale-separation threshold remains the most significant limitation of TSM. 

The good agreement here provides further demonstration that the scattering in Fig. 

6.7a is not significantly affected by the front-face extension above 70°. 
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Fig. 6.11: TSM scattering from complete spilling-breaker using Kr = k /1.0. 
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Fig. 6.13: TSM scattering from post-breaking spiller using KT = k I 0.8. 
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CHAPTER7 

PLUNGING BREAKER SCATTERING 

In this chapter, the MLFMA numerical routine is used to examine the backscattering 

from a 3-D profile derived from the measured 2-D wave tank history of a plunging 

breaker shown in Fig. 1.3. The calculated results are compared with the predictions of the 

EGO/GTD model as well as a 3-D cross-section synthesized from the 2-D MM/GTD 

scattering. 

7 .1 Scattering Surface 

The original plunging breaker shown in Fig.1.3 was measured under similar conditions to 

the previous spilling breaker. However, a high concentration of soluble surfactant, Triton 

X-100, was added to the water. Surfactants produce a number of changes to the 

dynamical water surface properties, leading to more energetic breaking. In particular, 

there are two overturnings near profiles 160 and 206. These corresponded to the strong 

super events seen in the 2-D scattering in Fig. 2.6. 

A 3-D plunging-breaker crest was formed from profiles 90 through 311 of the 

individual 2-D profiles of Fig. 1.3. Referring to Fig. 2.6, the 2-D scattering from profile 

90, when the crest is still round, is small compared with the scattering at later times. This 

profile was therefore extended over 2..i in the azimuthal direction. The resistive loading 
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was applied over this width, and the total backscatter from this region was therefore 

assumed to be zero. The extension in the range direction followed the same steps as the 

spilling breaker in Chapter 6. Fig. 7 .1 shows the complete of plunging-breaker surface 

with the extensions. The resistive taper was also applied over these extension areas in 

both the range and azimuthal directions. 

7.2 MLFMA Scattering 

The frequency of the following results was once again 10 GHz and the surface impedance 

was Zs = 44 + jl 3Q for seawater. The sampling step in the range direction ( along the 

arc-length) was 0.05,1,, and was 0.07 A in the azimuthal direction. In all of the following 

figures, the solid lines show VV backscattering, the dashed lines are for HH, the circled 

lines are for HV, and the starred lines stand VH. 

7.2.1 Scattering of the Complete Surface 

Fig. 7.2 shows the scattering from the plunging breaker profile of Fig. 7 .1. Although the 

azimuthal extent of this crest is less than that of the spilling breaker, it has a scattering 

cross-section that is several dB larger. This results because the breaking is more 

energetic, giving more and larger steep sections that give large cross-sections. HH is 

consistently higher than VV by approximately 2 to 4 dB above 65° incidence. However, 

the large super events observed in the 2-D scattering from individual profiles is not 

evident. This is because the overtumings were of short duration, and only form a small 

part of the complete crest. The total energy contribution at these points is therefore small, 

and HH exceeds VV for only slightly for the complete surface. The HH and VV cross-

sections show little dependence on the angle of incidence above 65° . The cross-
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polarization cross-sections show some disagreement, indicating that they are affected by 

numerical error. However, it does appear that ratio of the cross-polarized to co-polarized 

scattering is higher than for the spilling breaker. This may be because that the surface of 

plunging breaker changes more rapidly azimuthally than the spilling-breaker, giving 

more multiple scattering. 
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Fig. 7.2: Backscattering from complete plunging breaker by using MLFMA. 

7 .2.2 Initial Breaking 

The full plunging-breaker surface is unrealistic because the surface features are too 

narrow. That is, the azimuthal width of the overturning and other sections are unrealistic. 

Efforts are currently under way to synthesize a more realistic 3-D profile from the 2-D 

measurements. For now, however, a narrower profile formed from only the first 

overturning will be used to test the analytical models. The surface used is shown in Fig. 

7.3. It was formed from measured 2-D profiles 90 through 190, and therefore includes the 
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first overturning only. Profile 90 was again extended over 21 and the front and back 

faces extended as in Section 7 .1 to allow the addition of the resistive loading. 

Fig. 7.4 shows the backscattering from the initial-breaking surface. Here, there is a 

null in the W backscatter at 86° that is not matched at HH, leading to a 30 dB super 

event. Below 80° incidence both HH and VV are approximately constant at -30 dB, 

which is several dB below that in Fig. 7.2. This indicates that, unlike the spilling breaker, 

the initial overturning alone does not dominate the scattering. 
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Fig. 7.4: Backscattering from initial-breaking surface by using MLFMA. 

7.3 EGO/GTD in Breaker Water Wave 

The null in Fig. 7.4 is similar to that observed in the 2-D scattering calculations of Fig. 

2.6. Obviously with the specular-like reflection from steep features the two-scale model 

is not appropriate for examining the scatter [17]. Instead, EGO extended to 3-D surface is 
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used. Previously, 2-D EGO/GTD was used only with the numerically generated 

LONGTANK waves [91]. The EGO analysis here will therefore first treat the 2-D 

measured profiles to insure that the technique is useful with more realistic wave shapes. It 

will then be applied to the 3-D single overturning surface. The 2-D analysis is limited to 

sample profiles to compose the 3-D surface of Fig. 7.3. 

7.3.1 2-D EGO/GTD in Plunging Breaker 

Three different 2-D profiles from the initial overturning were considered in the 2-D 

EGO/GTD test, shown in Fig. 7.5. Profile 130 was taken from the initial steepening 

stage, while the jet is beginning form in profile 150. The jet is fully developed in profile 

160. Note that the jet has likely blocked the view of the video camera of the cavity under 

the jet in profile 160, leading to a distorted measurement of the cavity. The calculated 

cross-sections are unlikely to be exact. However, this surface does give an opportunity to 

test EGO under realistic conditions. 

The reference 2-D cross-sections were found using MM/GTD. Thus the surfaces 

were artificially extended in both sides by adding constant radii of curvature, concave 

downward arc sections to a slope from horizontal of 40° , and then extended to infinity 

on either side by planar sections of sloped at 40°. Fig. 7.6 shows profile 160 after the 

extensions. This extension induces two diffraction points on the front surface (the 

incidence wave is from right to left). The stars in Fig. 7.6 are two induced diffraction 

points on the front surface. The radii of the curved extensions are 20,1, to minimize the 

introduced diffractions. The diffraction points of the back surface are shadowed and 

therefore they are neglected. 
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Fig. 7.7 shows an expanded view of the jet of profile 1.60. There are two specular 

reflection points on the crest at 90° incidence, shown by the circles. These points are 

treated using EGO reflection. Also shown is the inflection point where the surface 

transitions from concave to convex, marked by an asterix. This is a source of diffraction, 

which is treated using EGO corrected GTD. The positions of the reflection points will 

change with incidence angle, while the diffraction point is fixed. 
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Fig. 7.6: Profile 160 with extensions at both sides. 
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The radius of curvature is a critical parameter in calculating EGO and GTD 

scattering. Because these profiles are taken from measured plunging-breaker, the noise of 

the measurement makes the measured surface coarser than the real surface. Therefore 

averaging should be used to the either side of the reflection points and diffraction points 

to get more realistic radii of curvature. In initial tests, the averaging length is 0.125A to 

either side of the reflection points and is O.U to either side of the diffraction points. All 

test cases are again presented with an operating frequency of 10 GHz and a surface 

impedance of Zs = 44 + jl3Q, corresponding to seawater: 

Fig. 7.8 shows the scattering from profile 130. From Fig. 7.5, this surface is just 

beginning to steepen. There are no specular reflection points when incidence angle is 

larger than 60° , so diffraction from the inflection point is the only source of scattered 

field. The solid and crossed lines show the reference MM/GTD results for VV and HH, 

respectively. The starred and circled lines are VV and HH found from EGO/GTD, 

respectively. Excellent agreement between MM/GTD and EGO/GTD is achieved at both 
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polarizations. GTD extended by EGO can therefore accurately predict the scattering from 

surfaces that include the initial plume steepening. 
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Fig. 7.8: Comparison ofMM/GTD and EGO/GTD of profile 130. 

Fig. 7.9 shows the scattering from profile 150. Here the jet has formed. There are 

two reflection points when the incidence angle is greater than 60° , one on the convex jet 

and the other on the concave cavity under the jet. There is also an inflection point 

between the convex and concave sections which gives rise to diffraction treated by GTD. 

The curvature was again averaged over 0.1251 on either side of the reflection points. The 

radii of curvature at the convex and concave reflection points after averaging are about 

1 / 51 and 1 / 41 respectively near 90° incidence. The solid lines show the reference 

MM/GTD results, the dashed lines show the GTD contributions for the diffraction from 

the inflection point, the circled lines show the EGO reflection contribution, and the 

starred lines are the combined EGO/GTD contribution. The GTD contribution is very 
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small. The main contribution of the total modeled scattering comes from the EGO 

reflection. The EGO/GTD results match well with that of MM/GTD overall, with a 

maximum error of 3 dB. The HH>VV super event is accurately predicted. 

EGO/GTD was further investigated using the more complicated profile 160. A very 

strong super event occurs with this profile (up to 20 dB). Again there are two reflection 

points and one inflection point. Because the jet of profile 160 is obviously larger than that 

of profile 150, the average lengths used to get the radii of the convex and concave 

reflection points were increased to 0.5A and 0.28A (both sides together), respectively. 

The EGO contribution again dominates the scattering. The radii at the convex and 

concave reflection points after averaging are about 1 / 4A and 1 / 7 A , respectively, near 

90° incidence. Fig. 7.10 shows the calculated scattering from profile 160. EGO/GTD 

shows good agreement with MM/GTD at HH. VV agreement is poorer above 75°. In 

particular, EGO/GTD underestimates the depth of the null at 78° , and · then 

underestimates the magnitude at higher incidence. 

The averaging length used in the previous figure is somewhat arbitrary. Because the 

results may be sensitive to the radii of curvature of the reflection points, other averaging 

lengths were used here·. Fig. 7 .11 shows the scattering when different averaging lengths 

were used on the convex reflecting surface for profile 160. The averaging length for the 

reflection point at the concave was 0.28A in all case, giving a 1/7 A radius of the 

concave near 90° incidence. The resulting radius at the convex reflection point was 

114A, 113A and 1/ 4.5A for cases 1, 2 and 3 plotted in Fig. 7.11, respectively. (Case 1 

was shown in Fig. 7 .10). Fig. 7 .11 shows that HH is almost unchanged in the three cases. 

It is not sensitive to the change in radius. VV shows strong changes around the null, how-
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ever. This results because the null is due to destructive interference in the EGO reflection 

from the two specular points. The phase of the reflection varies quickly with changing 

radius, changes the interference. 

EGO/GTD works fair well for these different profiles. The results showed that 

interference of the field reflected from the two reflection points form the nulls of profiles 

150 and 160. EGO/GTD can' predict the nulls and the super events though they are not 

very accurate. Little change of radii may bring big change in phases and big differences 

around the null. The null in profile 160 is even deeper. It is even sensitive to the radii of 

curvature. However, EGO/GTD is still useful in the analysis of dominant scattering of 

surfaces. The positive conclusion of 2-D EGO/GTD motivated us to investigate 

EGO/GTD in 3-D surfaces. 

7.3.2 3-D EGO in Plunging Breaker 

Three-dimensional EGO was applied to the initial plunging surface shown in Fig. 7.3. 

This surface was chosen because it includes a well defined breaking that should be 

treatable using quasi-specular reflection points. The later stages are quite artificial and 

not likely to represent conditions in open sea. As the 2-D study showed that the specular 

reflection overwhelmed diffraction when overturning occurs, GTD based diffraction is 

ignored. It is stressed that the 3-D EGO study presented here is preliminary. The wave 

surface is not likely to be realistic, and the results should not be applied to actual cases. It 

is simply presented as a test. 

No automated procedure was developed to apply EGO to the 3-D profile. Instead, the 

reflection points were first identified in the 2-D profiles, and those were used to identify 

the 3-D reflection points. The radii of curvature of these reflection points in the along-
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track direction were first coarsely approximated from the radii of 2-D profiles. The radii 

of curvature across-track (azimuthal) were coarsely presumed according to geometry in 

this direction. The locations and the radii of these reflection points were then manually 

adjusted. This is a somewhat arbitrary procedure. An automatic procedure is clearly 

needed in the future. Fig 7.12 shows the scattering surface with the identified reflection 

points designated numerically. Five reflection points were identified. The adjusted radii 

and locations associated with each reflection point used in the EGO calculations are list 

in Table 7.1. Pr stands for the radius of curvature in the range direction and Pa is the 

radius of curvature in the azimuth (transverse) direction. A negative value means that the 

surface curvature was concave at the reflection point in the plane of interest, and a 

positive value indicates convex curvature. 

Table 7 .1 Parameters of reflection points. 

Point number 1 2 3 4 5 

Pr (wavelength) 0.40 0.40 0.40 0.25 -0.1 

Pa (wavelength) 0.38 0.60 -0.22 0.18 0.1 

Location: X 2.60 2.905 2.68 2.33 2.30 

(wavelength) y 1.43 1.02 1.735 1.735 1.735 

z 2.43 2.85 2.575 2.248 2.135 

Fig. 7 .13 shows a companson of the modeled EGO and reference MLFMA 

scattering. The solid and dashed lines show the MLFMA VV and HH results, 

respectively. The starred and circled line~ show the EGO VV and HH results. Fig. 7.13a 

is the result with all the five reflection points, 1 through 5. Both VV and HH appear fairly 

accurate. In particular, VV EGO predicts the null at 86° . However, it should again be 
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stressed that manual adjustment of the parameters in Table 7 .1 was needed to get such 

good agreement. Without the adjustment the null depth was inaccurate, and larger 

oscillations appeared in the scattering below 80° incidence. 

Fig. 7. l 3b shows the EGO results when reflection point 2 was omitted. In this case, 

the VV null is not predicted. The scattering is dominated by the reflection from point 1, 

and therefore is approximately constant at all grazing angles. Interestingly, the 

superevents in the 2-D scattering from the individual profiles resulted in interference 

between concave and convex reflection points. The phase difference in the VV and HH 

reflections due to the EGO corrections led to differing interferences, giving the 

superevent. Here, it appears that the VV null results from interference between two 

convex reflections. Again, the EGO corrections change the phases at the two 

polarizations, however, which again leads to VV cancellation. 

As mentioned, efforts are currently underway to synthesize more realistic 3-D 

plunging breaker from the 2-D measurements. An automated EGO procedure should be 

possible with these more realistic profiles. The limited success of these preliminary 

results indicates that there is merit in continuing the EGO analysis with the more realistic 

surfaces. 
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.CHAPTERS 

SUMMARY AND CONCLUSIONS 

A numerical method to analyze the backscattering from rough water surfaces 

approximating breaking water wave has been implemented. A moment method code was 

implemented using RWG basis functions to model arbitrary, three-dimensional surfaces. 

The moment method was accelerated using the multilevel fast multipole algorithm 

(MLFMA). Impedance boundary conditions were used to represent the finite conductivity 

of the sea water. 

The resistive taper loading method of suppressmg ed.ge diffraction that was 

developed for 2-D scattering was extended to the 3-D problem in this paper. Comparison 

between the scattering from sample 3-D profiles that were uniform in one dimension with 

reference 2-D calculations confirmed the effectiveness of the resistive loading. MLFMA 

with resistive loading was then used to analyze the scattering from 3-D breaking waves 

for the first time. Some important conclusions were obtained. These 3-D MLFMA results 

were compared with 2-D results found using MM/GTD. The standard moment method is 

critically limited by the resources of computer. Especially for large 3-D surfaces, 

computer resources become a bottleneck for the numerical method. MLFMA 

dramatically reduces the computational loads allowing 3-D profiles to be treated. 

However, computational load is still a problem. On the other hand, analytical models are 
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more efficient, but are only valid under specific conditions that must be ascertained. 

MLFMA provides a tool to evaluate the effectiveness of analytical models. In this paper, 

the validities of several analytical models were investigated when applied to 3-D 

breaking waves for the first time. MLFMA was used as the reference to evaluate these 

models. It was demonstrated that a 2-D synthesis of the 3-D cross-section could be used 

to accurately predict the scattering from the pre-breaking part of the spilling breaker. 

The numerical method provided insight into the previously used analytical methods. 

TSM performed poorly with both the pre-breaking and complete spilling-breaker 

surfaces. The results proved very sensitive to the scale-separation threshold used. It 

proved more effective with the post-breaking surface. The results of TSM matched the 

MLFMA results well with a separation threshold of Kr= k/1.2. The results were not as 

sensitive to KT as with the complete surface. EGO/GTD was also applied to measured 

water waves for the first time. It was demonstrated that EGO/GTD worked reasonably 

well with the 2-D breaking profiles even when the surface radii of curvature at the 

reflection points were as small as A I 5 . Super-events were predicted using this simple 

mode. A preliminary study applying EGO/GTD to 3·D breaking crests was performed. 

The initial results demonstrated that EGO/GTD may have the potential to model the 

backscattering from realistic 3-D plunging crests, although more work is required to 

develop automated routines to find the appropriate reflection points. 

The numerical scattering code was used to find the scattering from 3-D rough surface 

profiles that represent the crests of breaking water wave. No directly measured 3-D crests 

profiles were available. Instead, 3-D profiles were synthesized by azimuthally aligning 

consecutive 2-D profiles measured from waves mechanically generated in a wave tank. 
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The profiles are therefore not expected to be entirely realistic. However, they have 

provided test cases to which the numerical technique may be applied, allowing the testing 

of existing analytical models under realistic conditions. Two different wave profiles were 

considered. The first was obtained from a low-energy spilling breaker that had minimal 

overturning. The second had more energetic plunging breaking with extensive jetting. 

The spilling breaker was naturally divided into two different regions, pre-breaking 

and post-breaking. The pre-breaking sections included a bore feature on the steep crest 

while the post-breaking region showed regions of turbulence. Separate surfaces were 

formed from the pre- and post-breaking regions, as well as from the complete surface. 

The scattering from the pre-breaking surface proved consistent with that expected from 

quasi-specular reflection from the bore feature. HH and VV backscattering were 

approximately equal at 60° incidence, with HH decreasing as the incidence angle 

increased. Little cross-polarized backscattering was observed. The post-breaking surface 

scattering, on the other hand, had no steep features to give specular-like reflection. The 

scattering was therefore Bragg-like from the turbulent roughness. VV backscatter 

exceeded HH at all incidence angles. The backscattering was 10 dB below the pre

breaking scattering at VV and 15 dB below at HH. The cross-polarized backscatter was 

stronger here indicating weak multiple scattering. The scattering from the complete 

surface agrees with that from the pre-breaking surface to within 1 or 2 dB at all incidence 

angles. The quasi-specular reflection from the pre-breaking bore therefore dominates the 

Bragg scattering from the post-breaking region. 

A 3-D spilling-breaker scattering was synthesized from the 2-D scattering found 

from the individual measured profiles. A 3-D cross-section was found from the effective 
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profile width used, and the scattered fields were added coherently to give the full 3-D 

cross-section. The synthesized cross-sections showed good agreement with the numerical 

MLFMA cross-sections for both the complete surface and the pre-breaking surface. This 

results because the bore feature gives a reflecting surface that remains coherent over an 

electromagneticlly large width. The post-breaking surface, however, is much more 

random, and loses coherence quickly. Therefore the synthesis from 2-D scattering was 

not accurate for any incidence angle. 

The two-scale model was applied to the spilling-breaker profiles. When the complete 

surface was considered, the results depended strongly upon the wavenumber threshold 

used to filter the roughness into large- and small-scale components. This is most likely 

due to the steep bore feature on the pre-breaking section. The scattering of the post

breaking-only surface was less sensitive to the threshold. Reasonably accurate results (to 

with 3 dB) could be obtained with a threshold of Kr = k /1.2 at incidence angles ranging 

from 70° to 90° . This suggests that TSM may be used to obtain reasonable scattering 

coefficients at small grazing angles with surface that include only distributed-surface 

roughness with no steep features. 

The plunging-breaker surface proved to have a scattering cross-section that was 

several dB larger than that of spilling breaker. This is because that the breaking is more 

energetic, giving several overturning that give larger cross-sections. HH is higher than 

VV by approximately 2 to 4 dB above 65° incidence. However, the large super events 

observed in the 2-D scattering from individual profiles were not evident in the 3-D 

scattering from the complete surface. The ratio of the cross-polarized to co-polarized 

backscattering was higher for the plunging breaker than it was for the spilling breaker. 
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This results since the plunging wave crest was more random overall, g1vmg more 

multiple scattering. 

As the complete plunging-breaker surface is unlikely to be realistic, a smaller surface 

was synthesized from only the first overturning. A deep null appeared in the VV 

scattering with this surface, giving a super event of 25 dB. The EGO model previously 

developed for 2-D scattering was extended to 3-D to treat this surface. 2-D EGO was first 

applied to the measured 2-D profiles to ensure its accuracy when applied to directly 

measured wave shapes. Several reflection points were identified on the 3-D surface, and 

EGO then applied. Accurate prediction of the VV null required that the parameters used 

in the EGO model be manually adjusted. However, the preliminary results show that the 

model may be useful in modeling the scattering from more realistic 3-D wave profiles 

that will be synthesized in the future. 
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