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Chapter 1 

Introduction 

The importance of mathematical models in science and engineering cannot be over­

phrased. Mathematical models are essential for the representation and generalization 

of physical phenomena and systems. In practice, mathematical models can be used 

for simulation and prediction as well as system design and analysis. 

On the other hand, obtaining a mathematical model is quite a demanding job that 

may require empirical testing, mathematical intuition and physical insights, coupled 

with well-developed as well as understood laws of physics. In engineering applica­

tions, the development of a "perfect" model is prohibitive because of the complexity 

of the systems, limitations in cost and time, noise in measurements and disturbances 

or immeasurable variables. Therefore, models for engineering applications are often 

compromised between the practical constraints and the accuracy. Mechanistic mod­

elling, which is a conventional approach, is mainly based on expert knowledge and 

application of the understood physics of a system, and often results in unsolvable 

complex partial differential equations. On the contrary, system identification is to 

develop models by fitting data into model structure that is inferred from physical 

intuition, data analysis or for specific application needs. Bear this in mind, system 

identification is an attractive alternative to the conventional mechanistic modelling. 

However, direct application of identified models to model based technologies can 

be troublesome. Since model structures and parameters are inferred and/ or esti-
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mated from finite noisy data in system identification, the model is bound to contain 

high degree of modelling errors, especially for nonlinear systems. Also, since system 

identification and model based technologies such as model based control have been 

evolved in parallel, the models in these two disciplines do not necessarily compatible. 

For example, model based technologies are mostly developed for state space mod­

els, in which mechanistic models are derived, while identification models are usually 

developed in i/ o forms. 

This work is motivated to narrow the gap between model based technologies and 

system identifications for nonlinear systems, by extending relatively well developed 

linear system identification methods into nonlinear systems by multiple models ap­

proach. Linear system identification models also have better connection with model 

based technologies. 

The rest of this chapter is organized as follows. In Section 1.1, we overview 

system identification, emphasizing the differences between linear and nonlinear system 

identification and the difficulties of application of global nonlinear models to model 

based technologies. In Section 1.2, an overview of multiple models identification is 

presented. In Section 1.3, we illustrate the motivations of multimodels based system 

identification for control, followed by formal problem formulation in Section 1.4. In 

Section 1.5, the contributions from this study is summarized. 

1.1 Overview of system identification 

System identification is a subject, theoretical as well as empirical, to build math­

ematical models of dynamical systems, based on observed data from the systems. 

The general procedure of system identification consists of: (I) experiment design and 

data collection, (II) model set or model structure selection, (III) model parameter 

estimation and (IV) model determination and validation. The most difficult step in 

system identification is procedure (II). In the choice of model structure, system iden-
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tification can be categorized into: (i) gray/black box, (ii) continuous/discrete and 

(iii) linear/ nonlinear. 

The categorization of (i) is according to a prior knowledge of model structures and 

the physical significance of model parameters. In gray box identification, the model 

structure is obtained from physical intuitions and application of physical laws (Chap­

pell and Godfrey, 1990; Chappell et al., 1999) or to satisfy known properties of the 

dynamic system such as Lyapunov exponents or equilibrium points (Aguirre, 2000). 

In contrast to gray box identification, in black box identification, model structures 

are selected to represent the observations in an efficient way, that is, with least model 

complexity because of bias and variance tradeoffs (Juditsky et al., 1995). Since gray 

box identification is system dependent and requires a fair amount of knowledge, we 

focus on black box identification in this study. 

The categorization of (ii) does not necessarily imply the use of continuous time 

data for identification. Rather, the distinction depends on the original model forms. 

Indeed, discrete time data outweigh continuous time data in their advantages with 

the modern advancement of digital data acquisition, storage and computation tech­

nologies. The need of continuous time system identification is from the fact that a 

great deal of mechanistic models is derived in continuous time with physically signif­

icant but unknown parameters. One intuitive method to estimate the parameters for 

continuous time models is either to obtain approximate discrete time model by ap­

plying numerical integration formula or to numerically differentiate the data (Zhang 

and Rymer, 1997). In (Johansson et al., 1999), continuous time model is transformed 

into pseudo-discrete time form by using an operator. However, since we are interested 

in black box identification, we only focus on discrete time models. 

The categorization of (iii) is according to model structures and the subsequent 

differences in estimation and analysis methods. The conventional generic transfer 
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function model for a given linear system is represented as (Ljung, 1999): 

B(q) C(q) 
A(q)y(t) = F(q) u(t) + D(q) e(t) (1.1) 

where q-1 is a backward shift operator such that q-1u(t) = u(t - 1), e(t) is white 

noise and A ( q), B ( q), C ( q), D ( q), F ( q) are polynomials of q-1 . This transfer function 

model has close relation with following model structures: 

1. input-output or nonparametric model: 

2. regression model: 

3. state space model: 

y(t) G(q, B)u(t) + H(q, B)e(t) 

x(t + 1) 

y(t) 

00 

L9(T)u(t - T) + v(t) 
T=O 

y(t) = cp(t, ef e 

Ax(t) + Bu(t) + Wx(t) 

Cx(t) + Du(t) + wy(t) 

In input-output model, g(T) is an impulse response of the linear system, v(t) is ad­

ditive disturbance and usually represented as v(t) = I:'.;:0 h(T)e(t - T) where e(t) 

is independent random variables with zero mean. Estimation of parameters of the 

input-output model can be done by truncating the infinite sum to finite terms, which 

then is equivalent to FIR model identification. This estimation can be achieved effi­

ciently and is robust against noise, however, requires many parameters especially for 

the identification of lightly-damped systems. 

Compared to input-output model, regression model is much more efficient model 

structure and is closely related to statistical estimation and model building. The 
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regression model can be also named as a recursive input-output model since the 

regression vector r,p(t) usually consists of past inputs and outputs such as r,p(t) = 

[y(t-1), ... , y(t-ny), u(t-nk), ... , u(t-nu)f. The regression vector may also contain 

parameters since regressor of linear models may not be represented as linear regression 

form even if the model is linear. 

State space model is the most closely related to physical systems since many 

mechanistic models are derived in state space form. wx(t) and wy(t) can be viewed as 

the representations of disturbance and measurement noise, respectively. In general, 

wx(t) and wy(t) are assumed to be sequences of independent random variables with 

zero mean and constant covariance. For colored disturbance/noise case, the distur­

bances/noise can be represented as additional state space model excited by white 

noise and augmented to the original state space model. 

The model structures for nonlinear system identification can be represented in sim­

ilar ways but in more generalized forms. A nonlinear i/o model structure is Volterra 

. . 
senes expansion 

00 00 n 

Apparently, the application of Volterra models is very difficult in practice since these 

models require excessive number of parameters even if the symmetry of the kernels 

is utilized (Unbehauen, 1996). 

Nonlinear state space system can be represented as 

x(t + 1) 

y(t) 

J(x(t), u(t)), 

g(x(t), u(t)) 

where f and g are general functions. The most popular model structure for the 

representation of nonlinear state space system is Dynamic Recurrent Neural Networks 
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(DRNN) ( Jin and Gupta, 1995) and is represented as 

x(t + 1) - -ax(t) + h(A, x(t), B, u(t)) 

y(t) Cx(t) 

where h(.) can be one of the following forms 

h(t) - Aa(x(t)) + Bu(t) 

a(Ax(t) + Bu(t)) 

a(Ax(t)) + Bu(t). 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Here, a(.) is a differentiable sigmoid function. In (Jin and Gupta, 1995), discrete 

time DRNN is shown to be able to approximate a discrete-time state-space trajec­

tory uniformly. Funahashi and Nakamura (1993) show that continuous time DRNN 

can approximate continuous autonomous system. All these proofs are based on the 

approximation property of feedforward networks using sigmodial functions. Hence, 

the convergence of DRNN to state space trajectory is only asymptotic, therefore, the 

dimension of state space of the recurrent networks is much higher than the dimension 

of state space of the original systems. 

The equivalent form of recursive i/ o in nonlinear system identification is 

y(t) = f(<p(t); 0) 

where f(.) is a function mapping regression space <p(t) E cl> to output space y(t) E Y. 

To represent dynamics, the regression usually consists of past inputs and outputs, 

e.g. <p(t) = [y(t-1), ... , y(t-ny), u(t), u(t- l), ... , u(t- nu)f. This form of nonlinear 

system model is most popular especially because of neural networks and radial basis 

functions in recent years. 

In a strict sense, it is best to infer model structures from the analysis of the 

measured data using methods summarized in (Haber, 1985; Haber and Unbehauen, 
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1990). However, identification of nonlinear model structures from data is not trivial, 

which may be reflected from the popularity of neural networks. Hence, major efforts 

in nonlinear system identification is currently concentrated on utilizing general model 

structures having universal function approximation capability. By utilizing this type 

of model structures, we can reduce the design of nonlinearities of the models into 

the determination of model size. The problem of this approach is in the asymptotic 

approximate nature of the models, hence, usually requires very large structure of the 

model. This makes it difficult to derive inference from the model, to assess the model 

quality and to select the proper size of the model. 

1.2 Overview of multimodel system identification 

In Section 1.1, we pointed out some of the problems of global nonlinear system iden­

tification such as large model structure and high dimension of parameters, which 

make identification process inefficient and the analysis of the model difficult. Our 

major motivation of using multiple models is to overcome these limitations of global 

nonlinear system identification. 

Even though many literatures denote multiple models as divide-and-conquer ap­

proach, there is no strict definition of multiple models. Rather, any system described 

by more than one model can be denoted as multiple models. There are several reasons 

of using more than one models for system representation as listed in the following: 

(i) unevenly distributed data, (ii) identification of switching/hybrid/time-varying sys­

tems, (iii) incorporation of a prior knowledge or mechanistic models, (iv) numerical 

constraints or limitations of model structure and (v) alternative to global system 

identification. 

The case (i) is quite common in practice, especially for nonlinear dynamic systems 

unless the data are collected in closed loop, since nonlinear dynamic systems can 

have several stable and unstable regions in the region of interest. It is intuitive that 
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we cannot develop reliable models for the regions with insufficient data. Fitting a 

global model for this data set can degrade the overall accuracy of the model. In 

this sense, using multiple models for case (ii) is natural (Andersson, 1985; Skeppstedt 

et al., 1992). The case (iii) is the major motivation of the so called operating regime 

based identification and control method (Johansen, 1994). The transparency from 

the simplicity of local models enables the realization of hybrid models supporting 

mechanistic models as well as empirical models. The case (iv) is abundant even in 

linear system identification. For example, for numerical reasons, it may be difficult 

to adequately describe more than two to three decades of the frequency range within 

one model (Ljung, 1999, See Chap. 16). The case (v) is probably the major reason 

to consider multiple model approach, as is considered in fuzzy identification (Jang 

et al., 1997). 

System identification methods by multimodels generally involve the following pro­

cedures: ( a) partition global data or define locality criterion, (b) identification of local 

models and ( c) coordination of local models for a given operating conditions. These 

procedures can be approached from deterministic or statistic ways. 

Statistical approach to multimodels identification is basically to place models with 

some hypothesis, modify the parameters of the models iteratively and generate the 

probability of each hypothesis, conditioned on the residue and a given probability 

of transition. In (Jordan and Jacobs, 1994), a hierarchical structure is proposed, 

which is composed of expert networks and gating networks. Expert networks are 

corresponding to local models, while gating networks are equivalent to coordination 

rules in multimodel frameworks. Expectation-Maximization (EM) algorithm is used 

to adjust the parameters of the architecture. In (Skeppstedt et al., 1992), a sequential 

multimodel identification algorithm is presented. The algorithm consists of three main 

parts: an estimation algorithm to update parameters by multiple Kalman filters, a 

classification algorithm based on Bayes' decision rule and a procedure for building 
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the set of partial models to describe the process. 

Deterministic approach to (a) can be divided into unsupervised and supervised 

partitioning. Unsupervised methods are based on clustering algorithms such as SOM 

or fuzzy clustering. SOM performs unsupervised clustering of input data to the 

network (Hagan et al., 1996). For system identification purpose, the input to the 

SOM network can be selected as 1.p(t), the regression vector, by assuming that the 

unknown system is smooth, that is, the outputs are close as long as regression vectors 

are close (Principe et al., 1998). A better approach is to use an output augmented 

vector, [1.p(tf, y(t)f (Ge et al., 1999). SOM using this augmented vector as an input 

to SOM, combined with some visualization methods such as Umatrix, can be used to 

identify discontinuity nonlinearities such as backlash and friction (Witkowski et al., 

1997). C-means clustering method is another unsupervised clustering algorithm to 

minimize the cost function of 

C 

J = L L llx(t) -wilJ2 (1.7) 
i=l x(t)E!1i 

where ni is defined as 

ni = {x(t)I llx(t) - will < llx(t) - will, for all j E {1, ... , c}, j # i}. (1.8) 

Here x(t) is the feature vector, which is composed of 1.p(t) or [1.p(t)T,y(t)f similarly 

with SOM based clustering. C-mean clustering is an iterative method utilizing the 

necessary condition of optimality condition. Since it utilizes necessary condition, 

there is no guarantee that the iterative procedure converges to the optimal (Jang 

et al., 1997). 

Fuzzy clustering is considered to work better than hard clustering such as SOM 

or c-means methods because of better statistical properties. Fuzzy c-mean clustering 

method is to minimize the cost function of 

C N 

1 = I: I: µi(t)mdi(t) 2 (1.9) 
i=l t=l 
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where di(t)2 = JJx(t) - wiJJ~ and m > 1 is a parameter that controls fuzziness of 

the clusters. The higher values of m is, the more clusters overlap. µi(t) is the soft 

boundary function between O and 1 which satisfies the property of 
C 

L µi(t) = l, for all t. (1.10) 
i=l 

Since this clustering is based on unweighted 2-norm, the clusters are limited to be 

hyper-balls. Improved performance can be achieved by using weighted 2-norm, that 

lS, 

(1.11) 

In (Gustafson and Kessel, 1979), necessary conditions for optimal Mi, µi(t), and 

wi are derived. In clustering based partition methods, the number of clusters must 

be specified beforehand. For fixed local model structures, the number of clusters 

for system representation is a function of the type of nonlinearity of the unknown 

system. Without a prior knowledge of the nonlinearity of the systems, the number of 

clusters is usually set to be large and is reduced iteratively combined with local model 

identification, by using validity measure (Rojas et al., 2000), cluster merging (Murray­

Smith and Johansen, 1997, see chap. 5), or considering the significance of individual 

fuzzy clusters (Setnes, 2000). 

One possible problem of the clustering based partition is that the partition is only 

based on the density of the training data, while local model structure is not considered. 

An alternative partitioning method is to recursively partition the training data or the 

region of interest, in order to minimize a certain cost function that is a function of 

the model error. CART (Classification And Regression Tree) is a binary tree method 

to minimize a cost function, e.g. 
m 

(y(t) - f/(t)) 2 (1.12) 
i=l (y(t),u(t))EOi 

where y(t) is the measured output and il(t) is ith local model output. t = 0, ... , N - l 

where N is the number of training samples. ni is the set of (u(t),y(t)), which is 
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decomposed to fit ith local model. m is the number of local model that has to 

be estimated by recursively partitioning the region of interest and re-estimation of 

local models using the re-partitioned data. Even though CART try to decompose 

the global data set into proper local data set to find the optimal local model, the 

decomposition of continuum space with binary trees will lead to infinite number of 

combinatorial problem (Jang et al., 1997). Some heuristics have been suggested as a 

remedy in (Johansen and Foss, 1995). 

We can see from the overview of partitioning algorithms for multimodels identifi­

cation that partitioning of data without a prior knowledge of the system is not trivial. 

The tree algorithms, however, do not necessarily lead to isolate good local dynamics 

which is proper for the local model structure since the partitioning rules are heuristic 

in nature to avoid the infinite combinatorial problem. Clustering algorithms have 

advantages over tree algorithms when it is used iteratively with actual identification 

of model. 

The procedure (b) has not been treated seriously, especially for off-line identifi­

cation. Since multimodel approach is usually taken to take advantage of linear or 

linear-in-the-parameters model structures, linear recursive i/o model or affine recur­

sive i/ o model is used in general. Once the global data are properly assigned, local 

models can be estimated by well-known linear least squares. However, local model 

identification can be tricky with overlapping data over multiple local regions, and 

can fail to represent the local dynamics (Murray-Smith and Johansen, 1997, Chap. 

7). Indeed, identification of multimodels has the nature of a multi-objective prob­

lem to tradeoff between global and local model accuracy (Yen et al., 1998). Another 

interesting method is to find the parameters of a local model such that 

(1.13) 

where ~ is the eigenvector of the smallest eigenvalue of the ith cluster's covariance 
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matrix and wi is the center of the cluster (Murray-Smith and Johansen, 1997, Chap. 

2). The idea of this method is that clustering the data, spread around the regression 

surface, results in flat hyperellipsoids that can be seen locally as hyperplanes. 

The procedure (c) can be achieved in many different ways. The most intuitive 

method would be switching to the local model that minimizes certain criterion, which 

is a function ofresidue, given an i/o data or operating conditions (Narendra and Bal­

akrishnan, 1997). For the models based on SOM clustering, the weights of SOM net­

work can be used to achieve soft (Ge et al., 1999) as well as hard switching (Principe 

et al., 1998). Coordination of local models is natural in fuzzy identification and 

modelling, however, improper selection of interpolation rules can have adverse ef­

fects (Murray-Smith and Johansen, 1997, Chap. 8). 

As is clear from the overview of multimodel identification, the decomposition or 

localization process is quite heuristic in the sense that the process is based on the 

distribution of data or heuristic decomposition instead of local dynamics that the 

local models may represent. Also, local model structures have never been taken 

seriously, but some conjectures from linear system identification or static function 

approximation are used to infer local model structures. 

1.3 Motivation of multimodels identification for 
control 

The goals of automatic control can be categorized into three: (i) automation, (ii) dis­

turbance/fault rejection and (iii) performance/stability enhancement. Even though 

a great majority of automatic control is nothing but algorithms implemented in com­

puter codes, the development of control algorithms is highly demanding and requires 

extensive knowledge about the physics of the system to be controlled as well as math­

ematics for the controller design, since these algorithms interact with real physical 

systems. 
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The conventional and most popular control methodology is so called model based 

control (Slotine and Li, 1991; Khalil, 1995; Ogata, 1995). In this methodology, phys­

ical systems are thoroughly analyzed and controllers are developed to have at least 

theoretically guaranteed stability and performance, based on mathematical models of 

the systems. This type of controllers even provides robustness against uncertainties 

from modelling errors and unknown disturbances by explicitly considering the degree 

of model error or disturbances (Zhou and Doyle, 1998; Green and Limebeer, 1995). 

The major limitation of this method is on the heavy dependence on mathematical 

models of the system, while the development of mathematical models for control is 

not trivial and often poses the bottle neck in the control system development. 

The difficulties of model development for model based control are attributed by 

several reasons as follows: (i) obtaining mathematical models for a system requires 

thorough knowledge about the system, (ii) mathematical models from physics are 

usually complex high order partial differential equation, (iii) empirical models in 

various science and engineering disciplines are usually focused only on steady-state 

phenomena and (iv) mathematical model for control must be simple enough for math­

ematical analysis and controller design while it must contain the essential dynamics 

of the system. 

The difficulty of model development for model based control spurred different con­

trol system development methodology. This methodology is named as input-output 

based or intelligent or model-free control (Narendra and Parthasarathy, 1990; Hunt 

et al., 1992; Narendra, 1996). The basic idea of intelligent control is to learn con­

troller or system model by adjusting parameters of a selected model structure by 

solving minimization of certain error criterion. The major approaches can be di­

vided into direct and indirect control. In indirect control, the generation of controller 

is by utilizing the model of the system. The motivation of indirect control is that 

the popular backpropagation algorithm cannot be applied to directly identify the 
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controller, since the closed loop error is not directly linked to the controller. By 

identifying models for the system, the controller can be trained by backpropagation 

method (Narendra and Parthasarathy, 1990). On the other hand, the direct control 

is to generate controller without the help of mathematical models of the system. One 

example of direct control is by extending the model based adaptive control to radial 

basis function networks (Sanner and Slotine, 1992). 

Even though intelligent control has been flourishing in literatures, the practical 

implication of this methodology is questionable. The problem is contributed from 

the difficulty of identifying general nonlinear system with large and highly nonlinear 

models, lack of theoretical tools in the analysis of the system for essential properties 

such as stability, and the robustness against model uncertainty or disturbances. There 

have been intensive efforts to overcome the criticism of lack of systematic theories, 

however, most of works are mere applications of nonlinear model based control to 

the identified models. To see that nonlinear model based control is still an evolving 

discipline, the extension to learning systems must be considered immature. 

On the other hand, the difficulty of nonlinear model based control has been well 

taken and some alternative approaches have been emerging such as hybrid control 

or gain scheduling (Antsaklis, 1998; Apkarian et al., 1995). The conventional gain 

scheduling is motivated to extend linear control into nonlinear systems by divide­

and-conquer, that is, closely related to multiple model approach. The problem of 

the conventional gain scheduling is in the heuristic connection of the linearly de­

signed controllers and lack of analysis of the overall performance of the closed-loop 

system. In recent years, different approaches have been proposed in the context of 

gain-scheduling design (Apkarian and Adams, 1998). These approaches reformulate a 

nonlinear system into linear time or linear parameter varying systems, instead of con­

sidering a family of linearized models. In contrast to the conventional gain scheduling, 

these approaches are based on sound theoretical analyses. However, these approaches 
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involve conservativeness and restrictions on the systems. 

Hybrid system is the recently flourishing subject to handle heterogeneous systems 

including switching system, digital control systems and discrete-event systems with 

automaton (Antsaklis, 1998). Hence, the difficulty of nonlinear system is not the sole 

motivation of the hybrid system. However, the sound theories of supervisory control 

or switching systems can be considered as an effort to extend the conventional control 

to cover wider and sometimes discontinuous nonlinear regions. 

Intelligent control is not an exception to this new trend. Similar approaches 

have also been proposed in intelligent control literatures utilizing the famous LMI 

approach (Kiriakidis et al., 1998; Kiriakidis, 1998). 

From the overview of the current control literatures, it is obvious that there are 

great efforts to develop theoretically sound control methodologies for systems repre­

sented by multiple models. Hence, the motivation of our work is to provide useful 

modelling tools for these new trend of control by system identification. Multiple 

model identification algorithms, in combination with control methods, are expected 

to be strong and handy tools for practical as well theoretical purposes for control 

system development. 

1.4 Problem formulation and report overview 

The main body of this dissertation are divided into two parts. Part I is for the 

identification of linear time varying systems using multimodels and Part II is for the 

local model identification of general nonlinear systems in state space for multimodels. 

The order of the presentation of the two seemingly different topics are in accordance 

with how our understanding of multimodels identification for control has been evolved 

through this project. Part I was originally motivated from the so called multiple 

model approaches to control, which is usually used to refer some heuristic divide-and­

conquer type control (Karimi and Landau, 2000; Murray-Smith and Johansen, 1997). 
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Based on the conjecture that some nonlinear system can be adequately represented 

by adapting linear models efficiently, we try to extend the results in linear system 

identification for control to linear time varying systems by multimodels. However, 

because of the heuristic of multiple model control and the difficulty of designing 

controller with adaptive models, we turn our attention to off-line system identification 

for the design of model based controllers in Part II. In this section, we present the 

problem formulations of each part. 

1.4.1 Problem formulation for Part I 

Consider a system which can be represented by a set of linear systems as 

y(t) = Gw(q)u(t) (1.14) 

where the system set n is defined as 

n = {Gw(q)I w: condition of system validity}. (1.15) 

The conditions of validity are for switching the operating system to the most repre­

sentative system in the system set. We may easily find physical plants that can be 

modelled by this linear model set, e.g. flexible transmission with varying loading con­

ditions (Karimi and Landau, 2000), set point control of chemical process in (Nystom 

et al., 1999), etc. 

Suppose that the system is unknown. Our ultimate objective as control engineers 

would be to identify the system such that we can design a robust controller for the 

uncertain system. The robustness of controller is essential in order to increase the 

confidence of the control system as well as to reduce the tuning procedure. In linear 

robust control, model uncertainty description is represented as 

y(t) = (G(q) + D.G(q))u(t) (1.16) 

where D-G(q) is the model uncertainty that is unknown but with known bounds. 

While the uncertainty bounds can be obtained from physical knowledge about the 
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system and the model, estimation of the model uncertainty is not trivial for uncertain 

systems. 

In system identification, the most popular approach is to adopt basis functions 

approach that can be represented as 

(1.17) 

Because of the linear-in-the-parameters structure of the model, analysis of the esti­

mated model is facilitated, which is essential for reliable model development. Also, 

because of the completeness of basis functions in linear space, model uncertain bounds 

can be obtained from the difference between an infinite series representing the 'true' 

system and a truncated series representing the nominal model (Hakvoort, 1994; 

Toffner-Clausen, 1996). 

Motivated from system identification for control and literatures in multiple model 

control, we try to extend the basis function based system identification to the system 

described by (1.14). We consider Laguerre basis functions, one of the simplest but 

useful basis functions, for the purpose. Therefore, the problem that is dealt with in 

Part I is to develop a system identification methodology by multiple Laguerre basis 

functions for the identification of system that can be described by (1.14). 

1.4.2 Problem formulation for Part II 

Inspired by system theories, the most general description of a system can be given 

as (Liu and Moog, 1994) 

F (y(t), y(t), ... , y<n)(t), u(t), u(t), ... , u<s)(t)) = 0 (1.18) 

where u(t) is the input and y(t) is the output. For ease of exposition, we only consider 

Single Input Single Output (SISO) system in this report. The objective of system 

identification is generally to develop a model, given i/ o data, { u( kT), y( kT)}, k = 

0, ... , N -1, where N is the number of data and considered to be finite for a practical 
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reason. T is the sampling period. Since only i/o discrete-time data is available, the 

natural as well as most common system identification model structure is given as the 

. regression form 

(1.19) 

The use of i/o history for regression vector is inferred from observations of dynamical 

systems, which is interpreted as systems with memory. It is obvious that finding a 

link between (1.18) and (1.19) is very unclear. 

To find a link between the continuous time system and discrete-time data, we may 

discretize (1.18). However, there is no discretization method available for high order 

differential equations to the author's knowledge. Numerical integration method may 

be used for the purpose but may require extremely high sampling rate for reasonably 

accurate model. High sampling is problematic for system identification since sampled 

data system at high sampling rate appears to be a slowly changing system, e.g. poles 

converging to 1 on the unit circle for linear systems. 

Instead, we obtain state realization of (1.18) as 

x(t) 

y(t) 

fc(x(t), u(t)) 

hc(x( t), u(t)). 

(1.20) 

(1.21) 

with c implies continuous time system. It is known that state realization of the 

above form does not necessarily exist for (1.18) (Liu and Moog, 1994). We restrict 

the system set to have the conventional state realization of (1.20)-(1.21). Also, we 

suppose that the state realization is not redundant, that is, minimal. The definition 

of minimal realization is given in later chapters. (1.20)-(1.21) is the most common 

model form considered in control theories. As a matter of fact, input-affine state 

space form that is usually considered for differential-geometry setting (Isidori, 1995) 
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as 

x(t) 

y(t) 

fi(x(t)) + h(x(t))u(t) 

h1 (x(t)) 

(1.22) 

(1.23) 

is only a special form of (1.20)-(1.21). Hence, (1.20)-(1.21) can be considered as quite 

a general model to represent nonlinear dynamics. 

Now, the discretization of continuous time high order system is much facilitated. 

By proper sampling, it is reasonable to consider the resulting discrete time state space 

system as the data-generating system. The resulting discrete-time system is given as 

x((k + l)T) - f(x(kT), u(kT)) 

y(kT) h(x(kT), u(kT)) 

{1.24) 

(1.25) 

In this report, kT is replaced with t, which is the commonly used notation in system 

identification literatures. 

Another motivation of considering (1.24)-(1.25) as the data generating system is 

that this conventional state space form is the model form that has been extensively 

studied in control theories. Since we are interested in making clear connection with 

control, it is reasonable to develop models closely related to this model form. 

In general, system identification for control has the following meanings: (i) model 

must be simple enough, (ii) model has to contain enough information and dynam­

ics, and, furthermore, (iii) model is equipped with model uncertainty description for 

robust control. However, it is not trivial to identify (1.24)-(1.25) with reasonable 

simplicity as well as accuracy. Global nonlinear model structures, to cope with the 

complexity of global nonlinear dynamics, has to be a complex nonlinear function con­

taining large number of parameters. The reliable estimation of the large parameter 

vector also requires huge training data set that requires excessive load of computation 

and storage. 
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In order to facilitate the problems of global nonlinear model structures, we investi­

gate the multimodel based nonlinear system identification, with local model structures 

in state space. Hence, the objectives of the study are: (i) to investigate the feasi­

bility of identifying (1.24)-(1.25) with multimodels approach, and (ii) to develop a 

multimodel identification methodology for control. 

1.5 Contributions 

We summarize the contribution from this dissertation in this section. 

Chapter 2: Multiple Laguerre models for the identification of linear time 

varying systems Laguerre basis functions and Laguerre models are reviewed. The 

proof for the optimality of Laguerre basis functions is given and the incorrect re­

sult in literatures is corrected. A formula for optimal pole estimation by numerical 

search is given, and heuristic idea of realizing adaptive multiple Laguerre models is 

presented. Irregular grid generation for multiple Laguerre models is proposed by 

utilizing a property of Laguerre basis functions. Switching/parameter estimation al­

gorithm using recursive orthogonal least squares is developed. 

Chapter 3: On the local interpretation of Takagi-Sugeno fuzzy models from 

a dynamical systems view. The problem of Takagi-Sugeno (TS) fuzzy models 

for dynamical interpretation is identified. Analysis is given to reveal the misleading 

information of the TS fuzzy models and the problem of TS fuzzy model based control 

is identified. 

Chapter 4: Identification of a deterministic constant-affine state space 

model with known initial conditions. Constant-affine state space (CASS) model 

is proposed as a proper model for model based fuzzy control. Clear notion of the 

equivalence of CASS models is proposed. Analysis shows that CASS model is not 
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structurally identifiable. This identifiability property of CASS model is interpreted in 

several ways by considering the conventional as well as non-conventional estimation 

methods. In the course, two different discrete-time sliding controllers are derived in 

constructive ways. 

Chapter 5: Identification of a CASS model by nonlinear state realization. 

A data based state realization method is proposed for linear systems for the identi­

fication of state space models. This idea is attempted to be extended into nonlinear 

systems for the identification of CASS model. State realization and recursive i/ o 

model structure for state realization are reviewed, emphasized on data based ap­

proaches. 
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Part I 

Multimodels for the identification 
of linear time varying systems 
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Chapter 2 

Multiple Laguerre models for the 
identification of linear time varying 
systems 

2.1 Introduction 

Laguerre basis functions are one of the simplest but useful orthonormal basis functions 

to approximate linear dynamical systems and have nice recursive structures. In the 

last decade, there have been considerable interests and developments in using Laguerre 

basis functions, as well as more general orthonormal functions, in approximation and 

identification of linear systems, especially for control. 

These interests in orthonormal basis functions are due to the nice properties of 

orthonormal basis functions such as: (i) Orthonormal basis functions are complete 

in some Banach space of time-invariant systems, that is, the subspace spanned by 

orthonormal basis functions asymptotically converges to the Banach space. Hence, 

orthonormal basis functions can be used to obtain quantitative model errors in terms 

of the difference between an infinite series representing the 'true' system and a trun­

cated series representing nominal model (Hakvoort, 1994; T¢ffner-Clausen, 1996). (ii) 

Orthonormal basis functions are proven to be optimal basis functions in n-width sense 

for linear systems belonging to H 2 or H 00 , that is, have optimal convergence rate and 

requires least number of parameters for approximation of the system (Pinkus, 1985; 
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Makilii and Partington, "1993). (iii) Models incorporating orthonormal basis func­

tions are linear-in-the-parameters once basis functions are determined, and statistical 

properties of the models can be easily analyzed from linear estimation theory. (iv) 

A prior knowledge of the system can be easily incorporated in terms of dominant 

poles or time constant since the poles of basis functions are closely related to the 

system poles (Makila and Partington, 1993; Wahlberg, 1994). The incorporation of 

a prior knowledge in terms of basis function poles makes the basis function approach 

much more efficient than FIR models. The incorporation of a prior knowledge can re­

sult in impressively accurate model identification. (v) Nonparametric nature of basis 

function models is more forgiving to structural mismatch such as input delay, model 

order and fast sampling rate than the conventional regression models such as ARX 

model (Wahlberg, 1991). 

The success of orthonormal basis functions in linear system identification has moti­

vated the extension to nonlinear system identification. In (Kalkkuhl and Kate bi, 1993; 

Sbarbaro and Johansen, 1997), Laguerre basis functions are used for extended Wiener 

models. Simple delay operator sequences z- 1 in the conventional Wiener models are 

replaced with Laguerre basis functions, and gate functions or local weighting functions 

are used to resolve the problem of excessive parameterization of conventional Wiener 

models. These models can also be interpreted as spatially decomposed multiple mod­

els using local weighting functions, while the linear models are replaced with Laguerre 

basis functions with single basis pole, to take advantage of mainly (ii),(iii) and (v) 

of the basis functions properties discussed above. This extended Wiener model is 

used for multiple model based nonlinear predictive control in (Murray-Smith and Jo­

hansen, 1997, see chap. 10). The use of orthonormal basis functions for nonlinear 

system identification in the existing literatures claims improved model performance 

for systems with unknown input delays and changing system orders. However, several 

limitations can be identified. 
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One shortcoming is that the relationship between system poles and basis func­

tions pole (property iv) have never been exploited by fixing basis function pole to 

a single pole. If the system is nonlinear, it is not feasible to estimate a single basis 

function pole, which is a pole for a linear system. Another shortcoming is in the 

spatial decomposition using local weighting functions. This type of decomposition 

combined with simple local model structures such as linear models requires excessive 

number of local models to achieve reasonable accuracy and is bound to the curse of 

dimensionality (Narendra and Balakrishnan, 1997). 

The major goal of this chapter is to extend Laguerre based identification to time 

varying systems, possibly rapidly changing linear systems, which may contain non­

linear systems. The basic idea is to adaptively identify Laguerre models for the 

corresponding operating dynamics of the system. Each Laguerre model represents 

different dynamics optimally, hence, this approach can represent the changing dy­

namics in an efficient manner. A motivating example is given in Section 2.2. In 

Section 2.3, Laguerre basis functions and Laguerre models are reviewed and impor­

tant properties of Laguerre basis functions are illustrated. · In Section 2.4, heuristic 

implementation of the idea is presented. More systematic algorithm is presented in 

Section 2.5. The proposed algorithms are compared with a fixed pole Laguerre model 

in Section 2.6. 

2.2 Problem formulation 

The objective is to identify a linear discrete-time, time-varying system from input­

output measurements (u(t), y(t)), t = 0, 1, .... Specifically, we assume that the linear 

system is stable, well-damped and strictly proper. These assumptions are made since 

this study considers Laguerre basis functions, which are suitable for the approximation 

of stable well-damped linear systems. 

The identification of this type of systems usually involves with adaptive identifica-
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tion algorithms using recursive least or mean squares method, however, the variation 

of the system must be slow enough (Haykin, 1996). To improve the transient per­

formance as well as convergence, multiple models method using linear local models 

combined with an adaptive identification can be used (Narendra et al., 1995). How­

ever, this method requires excessive number of local models and is bound to suffer 

from "curse of dimensionality." 

On the other hand, system identification using Laguerre model is an approximate 

method since Laguerre model asymptotically converge to the space that linear systems 

are belong to. Hence, only a finite number of Laguerre models are enough to obtain 

reasonable accuracy of the model and may be able to avoid the curse of dimensionality 

problem. 

The accuracy of Laguerre models depends on three factors: (i) the order of La­

guerre model, (ii) Laguerre pole and (iii) linearly parameterized weights. For adap­

tive filter, the factor (iii) enables the efficient estimation of weights by recursive least 

squares. Adaptive Laguerre models utilizing (i) have already proposed (Fejzo and 

Lev-Ari, 1997; Merched and Sayed, 2000). The importance of Laguerre pole is well 

understood in several literatures, however, the adaptation of Laguerre pole is not 

trivial since Laguerre pole is nonlinearly-parameterized. In (Belt and Brinker, 1996), 

LMS algorithm is used to realize adaptive Laguerre model with adaptive pole. How­

ever, the convergence of the model is quite slow and the model can become unstable 

during the adaptation. 

In this work, we are motivated to realize adaptive Laguerre model to utilize the 

factor (ii) by multiple Laguerre models. Since Laguerre basis functions have domi­

nance over other Laguerre basis functions, depending on the system poles, multiple 

Laguerre models equipped with a switching algorithm can identify rapidly changing 

dynamics. We conclude this subsection by giving a motivating example regarding 

utilizing Laguerre pole adaptation. 
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Figure 2.1: Effects of Laguerre pole and order on the accuracy of the 
Laguerre model: we can observe much sharper curve with respect to the 
Laguerre poles while the error curve become smoother and the decay 
of error become flat as the order of the Laguerre model increases 

Example 2.1 Consider a discrete time system 

Y(z) 1 

U(z) z - 0.9 

Use Laguerre models with Laguerre poles at {-0.5, -0.1, 0.3, 0.8} to identify the sys­

tem. Vary the order of each Laguerre models from 1 to 10. Monte-Carlo simulation 

is performed and the averaged SSE of the model is shown in Fig. 2.1. As can be seen 

easily, the effects of Laguerre poles are more significant than the order of the Laguerre 

model. 

2.3 Laguerre functions and Laguerre model 

Laguerre basis functions and exponential functions are closely related. Exponential 

functions are the eigen functions of linear time invariant systems, therefore, it is 
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natural to use exponential functions as basis functions for the representation of linear 

systems. The system representation using basis functions is 

y(t) = (t. e.B,(q)) u(t) (2.1) 

where y(t) is output, u(t) is input, {Bk(q)} basis functions with forward shift operator 

q, {Bk} are parameters to be estimated. For continuous time models, differential 

operators replaces q. tis nonnegative integers for discrete time case and nonnegative 

real for continuous time case. From (2.1), impulse response is 

00 
h(t) = L Bkbk(t) (2.2) 

k=l 

where bk(t) = Bk(q)6(t) with Kronecker delta function 6(t). 

The analysis as well as the evaluation of optimal coefficients Bk will be facilitated 

if basis functions are orthonormal. The orthonormality of basis functions for the 

discrete time case can be investigated via the standard inner product on H2 (T) with 

T = {z: lzl = 1} as 

< Bn,Bm >= ~bn(t)b;,,(t) = 2~ f Bn(Jw)B;.(Jw)dw (2.3) 

or the inner product as a contour integral around the unit circle T by using the change 

of variable z = eiw 

< Bn, Bm >= 2
1 . J Bn(z)B:n(z) dz 
7rJ JT Z 

(2.4) 

where B*(z) is the complex conjugate. For continuous time case, the standard inner 

product on H2 with functions analytic in the closed right half complex plane, Re(s) 2:: 

0, is 

100 1 100 < Bn, Bm >= bn(t)b:ri(t)dt = - Bn(jw)Bm(jw)*dw. 
0 21r -oo 

(2.5) 

Then the optimal coefficients to minimize the squared error between h( t) and the 

approximate for discrete time system is given as 

00 1 i d Bn = L h(t)bn(t) = -. H(z)B~(z)_!_ 
t=O 27rJ T Z 

(2.6) 
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and for continuous time system 

100 1 100 Bn = h(t)bn(t)dt = - H(jw)B~(jw)dw. 
0 27!" -oo 

(2.7) 

The orthonormalization of exponential functions may be realized by the classi­

cal Gram-Schmidt process, but, it is cumbersome. Instead, a set of exponentials 

e-ait, e-azt, ... , e-ant with positive real exponents can be represented orthonormally 

by Laplace transforms as (Lai, 1985), 

Bn(s) = ~(s - a1)(s - a2) ... (s - an-1) 
(s + a1)(s + a2) ... (s + an) · 

(2.8) 

For discrete time case, similar formula is available (Ninness and Gustafsson, 1997), 

Bn(q) = J1 - iani2 nrr-i 1 - akq 
q - an k=O q - ak 

(2.9) 

where lakl < 1. Laguerre basis functions are obtained from these formulae, as special 

cases of repeated exponents. That is, the discrete time Laguerre basis functions are 

defined as 

Jl - a2 (1- aq)n-l 
Ln ( q) = , n = 1, 2, ... 

q-a q-a 
(2.10) 

with iai < 1, while continuous time Laguerre basis functions are defined as 

J2a (s - a)n-1 Ln(s) = -- -- ,n = 1,2, ... 
s+a s+a 

(2.11) 

with a> 0. 

Even though orthonormality of Laguerre basis functions facilitates analysis of 

the model, it is not so useful in system identification since it is based on the inner 

product in H2 sense. The major motivation of using Laguerre basis functions is their 

optimality in approximating analytic functions, such as transfer functions, in n-width 

sense. The formal definition of n-width is given as follows (Pinkus, 1985). 

Definition 2.1 (n-width measures) Assume that the system G belongs to a given 

bounded set S, that is, G E S, then n-width measure is defined as, 

dn(S; B) = inf sup inf IIG - GnllB 
il?nEMn(B) GES GnEiJ?n 

(2.12) 
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where B denotes some Banach space with norm 11-IIB, e.g. H 2 or H00 , Mn(B) denotes 

the collection of all n-dimensional linear subspaces of B, q>n = span{ B1 , B 2 , ... , Bn}. 

Remark 2.1 The inner most term, e;(G) = infanE<I>n IIG-GnllB is the distance be­

tween the system G and q>n, a subspace spanned by n bases. Hence, n-width measures 

the smallest approximation error, for the worst possible system in a given system set, 

using the best possible n-dimensional subspace. 

The optimality of Laguerre basis functions is proved by utilizing the optimality 

of FIR models for exponentially stable discrete-time system. First, introduce the 

optimality of FIR model. 

Theorem 2.1 ((Makila and Partington, 1993)) Let R 2:'. 1, K > 0, m = 0, 1, ... 

then 

d (A (m K)· H (lzl < R)) -{00 if n < m, (2 13) 
n R ' ' P - KRm-n(n - m)!/n! if n 2:'. m · 

and span{l, z, z 2 , •.. , zn-l} is an optimal subspace for dn(AR(m, K); Hp(lzl < R)), 

where AR(m, K) = {G: GE Hp(lzl < R), IIG(m)IIHp(lzl<R) < K}. Here, Hp(lzl < R) 

denote the Hardy space of bounded analytic functions in an open disk of radius R > 0. 

Theorem 2.1 is proved for a system analytic inside lzl < R. However, a stable 

linear system is analytic outside of the disk lzl < R for R:::; 1 or in lzl > R. Hence, 

the theorem can be modified by replacing z with w-1 and we can easily derive the 

following corollary. We consider m = 0 as a special case for later use. 

Corollary 2.1 (Optimality of causal FIR model) Let R:::; 1, K > 0 then 

(2.14) 

and span{l, w-1 , w-2 , ••. , w-(n-l)} is an optimal subspace for dn(Ak(O, K); Hp(lwl > 

R)), where Ak(O, K) = {G: GE Hp(lwl > R), IIGIIHp(lwl>R) < K}. Here, Hp(lwl > 

30 



R) denote the Hardy space of bounded analytic functions, that is, analytic function 

and Lebesgue integrable along the boundary of an open disk of radius R > 0. 

Based on Theorem 2 .1 and the bilinear transformation w = ( z - a)/ ( 1 - az) map­

ping the disk D(c, r), that is centered at c with radius of r in the z-plane conformally 

onto the disk D(O, R) in the w-plane, the optimality of rational basis function is 

proved in the following Theorem. 

Theorem 2.2 ((Makila and Partington, 1993)) Let K > 0, c =JO and r >lei+ 
l be given. Then 

where 

[ 2 ( )2 ]-n/2 r - a-c 
dn(A~(K); H 00 (iz - cl < r)) = K ( )2 · 2 2 , n ~ 0 

1-ac -r a 

1 
a= -(l + c2 - r2 + [(1 + c2 - r 2 ) 2 - 4c2]112) 

2c 

so that O < iai < 1. Furthermore, 

span { 1, ( z - a ) ' ... ' ( z - a ) n-1} 
l - az l - az 

is an optimal subspace for dn(A~(K); A(D)). Here 

A~(K) = {G: GE Hoo(D(c,r)), IIGIIH00 (D(c,r)) ~ K}. 

(2.15) 

(2.16) 

(2.17) 

Remark 2.2 Theorem 2.2 in (Makila and Partington, 1993) stated in terms of H00 

norm. But, the results hold for general p-norm including Hrnorm (Pinkus, 1985). 

Similarly, using the Corollary 2 .1 and the bilinear transformation w = ( z - a)/ ( l -

az), we can derive more useful result for stable linear systems. The following corollary 

lists the result. 

Corollary 2.2 (Optimality of stable Laguerre basis functions) Let K > 0, 

c =J 0, r + lei < 1, then 

(2.18) 
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where 

such that iai < 1 and 

{ v'l-a2 v'l-a2 (1-az) v'l-a2 (1-az)n-l} span , , ... , 
z-a z-a z-a z-a z-a 

is the optimal subspace. Here, 

and 

[ 
r2 - ( c - a )2 ] 1/2 

R = (1 - ac)2 - r 2a2 

A/(k) ={GE H2(iz - c/ > r) : I/GI/H2 (1z-cl>r) :SK} 

Proof: The bilinear transformation 

w = (z - a)/(1 - az) 

(2.19) 

(2.20) 

(2.21) 

, (2.22) 

(2.23) 

is a special form of the most general bilinear transformation w = k(z - a)/(az - 1) 

that maps the disk /z/ < 1 onto the disk /w/ < 1, with the arbitrary point a in the 

disk /zl < 1 to the center of the disk /w/ = 1, where lkl = 1 and iai < 1 (Jeffrey, 1992, 

Theorem 2 .10). 

We use this bilinear transformation to determine a such that ial < 1 and map 

iz - al < r, r + lei < 1 onto lwl < R, R < 1. If a is real, (2.23) maps real points in 

z onto real points in w-plane. The choice of a will move the center of the circle in 

the w-plane along the real axis in that plane. So, a must be chosen to map c + r and 

c - r symmetric to the origin in w-plane, that is, 

Solve for a and we obtain 

c+r-a 
1-a(c+r) 

c-r-a 
1 - a(c - r)' 

1 
a= -[(1 + c2 - r 2) ± y'(l + c2 - r2)2 - 4c2]. 

2c 
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Now choose a such that lal < 1. Since we assume that r + lei < 1, a is real. Consider 

the positive case first. If 

(2.26) 

then 

(1 + c2 - r2) + J(l + c2 - r 2)2 - 4c2 < l2cl. (2.27) 

since the l.h.s is positive because r + I cl < 1 and equivalently -1 < c - r < c + r < 1. 

For c > 0, 

J (1 + c2 - r2)2 - 4c2 < 2c - (1 + c2 - r2) (2.28) 

and 

(c - 1)2 - r2 = (c - 1 + r)(c - 1 - r) < -J(i + c2 - r2)2 - 4c2 (2.29) 

Since c - r < c + r < 1, the left hand side is positive and it contradicts since right 

hand side is negative. Hence, it can be easily seen that 

1 
a= -[(1 + c2 - r2) - J(l + c2 - r2)2 - 4c2]. 

2c 

The radius of disk lwl > R is 

Therefore, 

R2 _ [ c+r-a] [ c-r-a] 
=ww=- 1-a(c+r) 1-a(c-r) · 

[ 
r2-(c-a)2 ]1/2 

R = (1 - ac)2 - r2a2 

Now, use the Corollary 2.1 and we can conclude that 

for 
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and the optimal subspace is 

1- az 1- az { ( ) ( )n-1} 
span 1, z - a ' ... ' . z - a (2.35) 

However, the bilinear transformation changes the H2-norm since the corresponding 

measure is changed as 

dw 

w 

1 - a2 dz 

(1 - az)(z - a) z 

.J1 - a2 .J1 - a 2 dz 

z-a 1/z-a z · 

Hence, the inner product is defined as 

~ J Gn(w)Gm(l/w) dw 
21rJ fr w 

~ J Hn(z)Hm(l/z) v~l---a~2 .JI=a2 dz. 
21rJ fr z - a 1/ z - a z 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

Therefore, basis functions must be multiplied by vl - a2 /(z - a). This implies that 

{ v1 - a2 v1 - a2 (1- az) v1 - a2 (1- az)n-l} span , , ... , 
z-a z-a z-a z-a z-a 

(2.40) 

is the optimal subspace. 0 

Remark 2.3 This corollary has been commented in several literatures and the proof 

is illustrated in (Wahlberg, 1994, 1999). However, no formal proof is given and often 

the n-width measure is not considered. We presented the complete results scattered in 

the literatures and make a correction on the optimal pole equation in this corollary. 

2.4 Heuristic adaptive multiple Laguerre models 

From the previous section, it is obvious that the optimal pole of Laguerre function 

and the weighting parameters change as the system changes. While the estimation 

of weighting parameters is trivial since it is linear-in-the-parameters structure, de­

termination of Laguerre pole requires to solve a nonlinear optimization problem. In 
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literatures, the difficulty of estimating optimal poles of orthonormal basis functions is 

clearly illustrated. In (Fu and Dumont, 1993), analytical solution for optimal Laguerre 

pole for discrete time Laguerre basis functions is given, when the impulse response of 

the system is available. To facilitate the determination of Laguerre pole, the condi­

tion of optimal Laguerre pole for truncated Laguerre models is given in (Wang and 

Cluettt, 1994) for continuous time case and in (Masnadi-Shirazi and Ahmed, 1991) 

for discrete time case when the input to the system is impulse. Optimality condition 

for truncated Laguerre model for an arbitrary input case is given in (Oliveira e Silva, 

1994). It is interesting to see that the optimality condition for truncated Laguerre 

model is 

(2.41) 

for truncated nth order Laguerre models for all the cases. In (Oliveira e Silva, 1995), 

this optimality condition is used for the estimation of optimal Laguerre pole. However, 

this work is only limited for local search since interpolation/ extrapolation functions 

based on series approximation of 0( a) is used to solve for the optimality condition. 

Hence, there is no clear advantage of utilizing the analytically obtained optimality 

conditions for system identification purpose. 

Rather, the optimal Laguerre pole is found by solving nonlinear programming. 

In (Sabatini, 2000), genetic algorithm in the combination with gradient based algo­

rithm is used to search for the global optimal Laguerre pole for impulse response 

case. We present Newton-Raphson's iteration method for.discrete time Laguerre pole 

estimation for an arbitrary input in Section 2.4.1. Similar derivation of the analytical 

Gradient and Hessian is presented in (Malti et al., 1998). Their derivation is based 

on Laguerre states and matrix structure while the presented derivation is by utilizing 

the filter structure for the easy of MATLAB implementation. 
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2.4.1 Optimal Laguerre pole estimation 

The m-th order truncated Lag1erre model is represented as 

m 

y(t) = G(q)u(t) = L ()iLi(q)u(t) (2.42) 
i=l 

( )
i-1 

where Li(q) is the ith Laguerre function, that is, Li(q) = v:~:2 1q-_:q , i = 1, ... , m 

and JaJ < 1. a is the pole of Laguerre basis. Consider summed squared cost function 

J= !ETE 
2 

where E = Y - Y = Y - XO, Y = [y(l), y(2), ... , y(N)JT, 

(2.43) 

X = [u(l), u(2), ... , u(N)f[L1(q), L2(q), ... , Lm(q)] = U[L1(q), L2(q), ... , Lm(q)] 

The modified Newton-Raphson's method is: 

(2.44) 

where 8J(an)/8a and 82 J(an)/8a2 are the first and second partial derivative of J 

with respect to a, evaluated at an. µn is the step size. The derivative of J with 

respect to a is 

(2.45) 

The parameter vector () can be written in a closed form solution, the so called normal 

equation: 

(2.46) 

The partial derivative of the normal equation can be written as: 

8() = (XT Xtl [axr y - (axr X + xr8X) e] . (2.47) 
oa oa oa oa 

The second term of (2.45), ETX~!, becomes zero since (xrx)- 1XTE is zero because 

of the well known orthogonality property of Least square estimation. Hence, (2.45) 
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simply reduces to 

aJ = -ETax o. 
aa aa (2.48) 

The second derivative of J with respect to a is: 

a2 J = (oT axT + aoT xT) ax o - ET ( a2 x o + ax ao) . 
aa2 aa aa aa aa2 aa aa (2.49) 

So, the remaining equations to be derived are the first and second partial derivatives 

of X. The derivation is done by the following Laguerre filter property (Wang and 

Cluettt, 1994): 

aLi _ iLi+1 (a) - (i - l)Li-1(a) . _ l 2 
!'.:I - 2 ,i- , , ... ,m. 
ua 1-a 

(2.50) 

Therefore, the first partial derivative of X is: 

ax(· ') = U (iLH1(a) - (i- l)Li-1(a)) . = l 2 !'.:I .,i 2 ,i , , ... ,m 
ua 1-a 

(2.51) 

where (:, i) means the i-th column of a matrix. 

The second partial derivative of X is the following: 

a2 X (· .) = U (i(i + l)LH2(a) + 2aiLi+I(a) - (2i2 - 2i + l)Li(a) 
aa2 ., i (1 - a2)2 

-2a(i - l)Li_1(a) + (i- l)(i- 2)Li-2(a)) . _ 1 2 + (1 - a2)2 'i - ' ' ... , m. 

(2.52) 

The algorithm is a combination of linear (2.46) and nonlinear least squares method 

(2.44), that is the so called separable least squares (Ljung, 1999). This method gives 

numerically well-conditioned calculations. 

Since the objective function (2.43) is highly nonlinear multimodal function of the 

Laguerre pole a as shown in (Oliveira e Silva, 1994), the initial a must be close to the 

global minimum. Several trials are necessary to obtain a satisfying estimate of a. 

2.4.2 Heuristic implementation by recursive LS with multi­
ple Laguerre models 

The numerical search algorithm derived in the previous section is a batch method. It 

is certainly not impossible to use the algorithm for adaptive pole estimation, however, 
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the multimodality of the objective function with respect to Laguerre pole can cause 

severe problems when the solution converges to local minima. Indeed, the estimation 

of proper Laguerre poles for a given i/ o measurements must be repeated several times 

with different initial conditions, combined with visual inspection to verify the quality 

of the estimated Laguerre poles. 

Instead, we use the pole estimation off-line only using the training data by seg­

menting the data set and apply the numerical search at each data segment. The 

estimated pole at each data segment is compared with the estimated poles with the 

previous data segments and is accepted as new Laguerre pole if the difference is 

reasonably large. Multiple Laguerre models can be generated in this manner. 

For the structural adaptation of linear models, additional terms to improve the 

model accuracy are ordered. Therefore, there is no problem to choose the best ad­

ditional term from overwhelming combinations of possible terms. The online imple­

mentation of multiple Laguerre models is not trivial since Laguerre models are not 

ordered even if individual Laguerre model has ordered terms. 

In this section, our approach is simply to utilize recursive least squares to up­

date parameters of all the identified Laguerre models off-line without on-line model 

selection process. The well-known recursive least square with forgetting factor is the 

following: 

(h + akPkX(k + l)(Y(k + 1) - X(k + lf (h) 

1 

,\ + X(k + l)T PkX(k + 1) 
Pk - PkX(k + l)a;;1X(k + lf Pk 

,\ 

(2.53) 

(2.54) 

where,\ is a forgetting factor, X(k+l) is a regression vector at k+l sequence, Y(k+l) 

is a output at k + l sequence and (A is the estimated parameter at k sequence. Pk is 

, a initially large number. 
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2.5 Adaptive multiple Laguerre models using re­
cursive orthogonal LS with Laguerre poles in 
irregular grid 

Since estimation of optimal Laguerre poles by nonlinear programming can be prob­

lematic because of multimodality of the cost function with respect to Laguerre pole, 

and Laguerre poles are only distributed in a real axis in the range of lal < 1, de­

termination of Laguerre poles in grid is feasible. One intuitive idea can be regular 

grid, however, this may requires more local models than irregular grid utilizing data 

or model properties. In addition, the performance of Laguerre models depends on 

two factor: the order of Laguerre model and Laguerre pole. Therefore, regular grid 

may require different model orders for different Laguerre models. In this section, 

we propose multiple Laguerre models with irregular grid utilizing the approxima­

tion property of Laguerre functions. Recursive orthonormal least squares method is 

used to recursively estimate parameters of the model as well as to identify dominant 

Laguerre models from incoming i/ o measurements. 

2.5.1 Multiple Laguerre models using irregular grid 

From Corollary 2.2, we see that the Laguerre basis model of a proper Laguerre pole 

can be superior to other Laguerre models, given a system with poles inside a disk. 

This is the motivation of using multiple Laguerre models with different poles. In this 

subsection, we utilize Corollary 2.2 to obtain Laguerre poles distributed in irregular 

grids. 

For a finite dimensional system G0 (z) with simple poles Pi, the asymptotic decay 

rate of the impulse response is defined as maxilPil· From Corollary 2.2, R is the 

boundary of the disk centered at the origin. Since Laguerre basis functions are trans­

formed to the disk with center at the origin, R can represent the slowest decay rate 

of the Laguerre model in the transformed domain, therefore, is a good indicator of 
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the performance of Laguerre models. Hence, we utilize this factor to obtain irregular 

grids. 

From Corollary 2.2, 
r2 - (a - c)2 

R=-----­
(1 - ac)2 - r2a2 

with the Laguerre optimal pole for a disk lz - cl < r 

1 
a= -(1 + c2 - r2 - [(1 + c2 - r 2) 2 - 4c2]112). 

2c 

(2.55) 

(2.56) 

We want to cover -1 < real(z) < 1 of the real axis of z-domain with finite number 

of open disk lz - cil < ri, i E N with corresponding Laguerre poles for each disk. 

The algorithm is simply to generate disks sequentially starting form the origin while 

solving nonlinear equations (2.55) and (2.56) for ci, ri and ai where i denotes the ith 

Laguerre model and i E {1, ... , np, np + 1, ... , np + nn} where np and nn implies the 

number of Laguerre poles at the positive and negative real axis, respectively. 

Experimental works show that solving nonlinear equations (2.55) and (2.56) is 

problematic near 1 and -1, because of numerical problems. One remedy can be to 

cover the regions near these points with disks with decaying radius as they approach 

the unity points. Hence, the reduction rate of the disks f3 has the effect of ri+1 = f3ri. 

Another problem is caused by the condition that the Laguerre basis functions 

have to satisfy, that is, lail < 1. The disk is to cover the last circle 1 or -1 at the 

boundary results in a = 1. This is remedied by placing some small margin such 

that the boundary of the last circle does not contain the unity point. This factor 

is controlled by the variable 'Y in the algorithm. The irregular grid generation is 

illustrated in Fig. 2.2. The algorithm is listed as follows. 

Design parameter R in the range of O < R < 1, f3 and 'Y 

step 1 For i = 1, set c1 = r 1 and a1 with (2.56). Solve (2.55) for c1 . Update r 1 = c1 

and a1 by (2.56). 
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Multiple Laguerre poles by Irregular grids (R=0.2) 

0.8 

0.6 

0.4 

-0.4 

-0.6 

-0.8 

-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-1 -0.8 -0.6 -0.4 -0.2 0 

Real 
0.2 0.4 _ 0.6 0.8 

Figure 2.2: Irregular grid for multiple Laguerre models. 

step 2 For i ~ 2, let c; = ri + 2 I::~:i rj and ai with (2.56). Solve the nonlinear 

equation (2.55). 

step 3 Check if icil + ri < 1. If it is, update ri = Ci - 2 I::~:i rj and ai by (2.56) and 

continue with step 2. If not or solving the nonlinear equations fails, go to step 

4. 

step 4 Generate disk with radius ri = /3ri-l, center at Ci = ri + 2 I::~:i rj until 

2 L~=l ri < l - 'Y· Generate the last disk by rn = (l - "( - I:;::} rj)/2 and 

2 '°'n-1 
Cn = rn + L.,j=l rj, 

step 5 Repeat step 1 through 4 on the negative axis with c1 = -rnp+l in·step 1, 

(2 "i-1 ) . 2 2 "i-1 . 3 d Ci = - L.,j=np+l rj + ri m step , ri = -c; - L.,j=np+l rj m step , an 

Remark 2.4 The covering of negative real axis is indeed symmetric to the positive 
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real axis. The covering of negative real axis with different R may sometimes be nec­

essary to reduce oscillation of model output. 

2.5.2 Review of orthogonal least squares methods 

Least squares. estimation is commonly used to estimate model parameters for linear 

models. This method has advantages of fast estimation and the existence of closed 

form solution to facilitate analysis of the estimate. The classical least squares method 

is a batch form while the recursive form can be obtained from matrix inversion lemma 

in a straight forward manner (Mendel, 1995). One limitation of recursive least squares 

in this form is that the model structure, that is, the number of parameters ( or the 

order of the model) is fixed and inclusion of more model parameters requires starting 

over the estimation. 

Orthogonalization of the estimate can circumvent this problem. For models that 

have recursive structures, efficient order update algorithm has already been developed 

based on orthogonalization of least squares estimate by the so called lattice struc­

ture (Haykin, 1996; Merched and Sayed, 2000). Orthogonal least squares method is 

still beneficial in non-lattice structures since efficient QR decomposition can provide 

better numerical stability than the conventional recursive LS estimate. We give a brief 

review of orthogonal least squares in this subsection. The presentation follows (Stark, 

1997). 

Least square estimate is used to solve linear equations such as 

AB=Y (2.57) 

to minimize 

IIAB- Yll 2 = (AO - Yf(AO- Y) (2.58) 

where A, Y and Oare matrices with N x m, N x 1 and m x 1 sizes. Orthogonalization 

of A matrix can be done by QR decomposition as A = QR where Q is a N x m 
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matrix with orthogonal columns and R is a m x m upper triangular matrix. Define 

an augmented matrix .A = [A, Y] then the decomposition A = QR. If we write 

Q = [Q,q] and 

then A matrix is 

Then the square of norm of residue can be rewritten as 

IIAB- Yll 2 (QRO - Qr - qrf (QRO - Qr - qr) 

IIQ(RO - r)ll 2 + f 2 llqll2 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

by utilizing the orthogonality of columns of Q matrix. Then, the least squares solution 

is RO - r = 0 and this can be easily computed by methods such as back-substitution. 

To show the recursive QR least squares, we present a( t + 1), a new row of the 

matrix A and a new value y(t + 1). Define A(t) = [a(lf,a(2f, ... ,a(tff and 

y(t) = [y(l), ... , y(t)f. Then A matrix with an additional row is 

A(t+l) = [ A(t) J = [ Q(t)R(t) ] = [ Q(t) 
a(t+l) a(t+l) o 

o J [ R(t) J - -
1 a(t + l) = Q(t+l)R(t+l). 

The orthogonal decomposition of R(t + 1) is 

R(t + 1) = Q'(t + l)R'(t + 1) 

and then A(t + 1) = Q(t + l)R(t + 1) where Q(t + 1) 

(2.63) 

(2.64) 

Q(t + l)Q'(t + 1) and 

R(t + 1) = R'(t + 1). Notice that Q(t + 1) is again orthogonal and R(t + 1) is upper 

triangular, which results into a QR decomposition again. 

The nice orthogonal property of QR least squares facilitates the error analysis. Let 

ms be the columns of A that are selected and ignore the remaining m - ms columns. 

Then A = [As, Ad] where Ad is the deselected columns. Similarly, partitioning Q = 
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[Qs, Qd] and the orthogonal decomposition of A becomes 

(2.65) 

and similarly with (2.62) we can write 

If we ignore the last m - ms columns, ed = 0 and solve the least square equation, 

which results in 

(2.67) 

and for the orthonormal Q, we have 

m 

[[AO- Y[[ 2 = L r; + r2 . (2.68) 
i=ms+l 

Notice that for error computation as well as LS solution, we only require the fixed 

sized upper triangular matrix, R. This is an important property of orthogonal LS 

estimate to be used for recursive estimation. 

By permutating the columns of A, we may partition the matrix into [As, Ad] 

easily. The permutation does not change the LS solution Y = A101 + A202 , since the 

permutation of the columns of A matrix, e.g. 

(2.69) 

results in 

(2.70) 

where II is a permutation matrix that switch columns. R' can be QR decomposed 

again by R' = Q2R, hence, Q' R' = Q'Q2R is again orthogonalized form. The LS 

estimation of the permutated matrix is to solve 

(2.71) 
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where R~, R; and R; are block matrices of R' matrix as (2.69). Hence, the permutation 

A requires only the permutation of R, reorthogonalization and the LS solution. This 

results in the permutation of corresponding rows of e. 

2.5.3 Adaptive Laguerre model selection using orthogonal 
least squares methods 

The review of orthogonal LS estimation clearly shows its advantage in the recursive 

application of the estimation method. The time update of the estimate only requires 

updating the smaller fixed sized upper triangular matrix R. The order update is 

equivalent to adding additional columns in the R matrix for increasing the order, 

and deleting or ignoring existing columns for decreasing. From (2.68), we can easily 

compute the residue of the estimated model with selected parameters, which can be 

used for selecting the proper subspace of the model efficiently. 

In order to utilize the orthogonal LS recursively for adaptive multiple Laguerre 

models, we need to consider several factors. Since individual Laguerre models are not 

ordered, the best or proper Laguerre models must be selected based on the residue 

of individual models. This gives rise to huge combinational problem. This problem 

has been the major issue in nonlinear system identification using radial basis func­

tions (Stark, 1997; Chen et al., 1991). These works are concentrated on relieving 

the computational load by computing the change of error by keeping or removing 

individual basis without estimating the model parameters. 

One difference between multiple Laguerre models in this study and radial basis 

functions is that individual Laguerre model is consist of Laguerre basis functions with 

certain order while basis of radial basis functions is coII1pletely independent. There­

fore, the A matrix for multiple Laguerre models actually consists of block columns 

that correspond to each Laguerre model characterized by different Laguerre poles. 
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Hence, A= [A1 , A2 , ... , Am] and A consists of (') l ... x;: /0) 
x~\t) 

(2.72) 

where xii) (t) is the kth state of the ith Laguerre model at time t and i = 1, ... , m for 

m-multiple Laguerre models. The Laguerre states can be recursively calculated as 

if k = 1 

for 2:::; k:::; n 
(2.73) 

where n is the order of a Laguerre model. 

Another difference is in that in radial basis functions, the goal is to add or remove 

individual basis sequentially. In multiple Laguerre models, the goal is to identify the 

best combination of Laguerre models at each data sequence. For m Laguerre models, 

the possible combination is 
m I 

L (m :i~)!k! · 
k=l 

(2.74) 

One problem of using residue to select the best model is that the residue is a decreasing 

function of the number of models. This is because auxiliary models are fitted to noise 

or insignificant information. As a result, the best combination of models that generate 

the smallest error is the one with largest size. Hence, the proper model selection 

method is to find models at the knee of the decreasing error curve with respect to 

number of models. However, generating the error curve and selecting the proper 

model subset are not feasible for online applications. We handle this problem by 

setting the upper limit in the number of Laguerre models that can exist concurrently. 

By setting this limit, the combinational cases reduce to 

m! 
(2.75) 

where nm is the upper limit of the number of concurrent Laguerre models. 

The second issue to consider is the forgetting factor. Since recursive LS estimate is 

equivalent to the batch LS estimate without forgetting factor, the changing dynamics 
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cannot be identified without forgetting factor. Indeed, forgetting factor is the key 

component to decide the performance of recursive LS estimate. It is intuitive that the 

forgetting factor has to be large for rapidly changing dynamics, while it has to be small 

to obtain unbiased estimate for stationary signals. In (Andersson, 1985), adaptive 

forgetting algorithm is derived by multiple Kalman filters based on the assumption 

of known probability of parameter jumps. Since we only consider deterministic case 

in this study, we use a simple adaptation rule of the forgetting factor such as 

>. = 1 - Y.x(t) (2.76) 

where >. is the forgetting factor, and y is an adaptation variable defined as 

y.x(t) = a.xy.x(t - 1) + b.xe(t - 1)2. (2.77) 

a.x and b.x can be used as tuning variables. e(t-1) is the residue at time t-1. Notice 

that y(t) ~ 0 at all t. Since too small >. is undesirable, it is safe to set some upper 

limit on y(t). Hence, the resulting adaptation variable becomes 

( ) {
a.xy.x(t - 1) + b.xe(t - 1)2 if Y.x(t) < Y>.u 

Y>. t = 
Y>.u otherwise 

(2.78) 

Because of noise in the measurement or numerical errors, improperly fast switching 

or chattering may occur. One way to resolve chattering is to consider weighted error 

history as well as the current error (Narendra and Mukhopadhyay, 1997), 

t 

Ji(t) = o:e~(t) + f3 L >.(t-i)e~(j) 
j=l 

(2.79) 

where ei is the error of the ith model, o: and /3 are tuning parameters accounting 

for the instantaneous and weighted average residue, respectively. The problem of 

applying this strategy for multiple Laguerre models is that orthogonal LS does not 

explicitly calculate ei(t). Rather, the upper triangular matrix R contains the infor­

mation of averaged error, which is equivalent to the second term of (2.79) combined 
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with forgetting factor. The computation of explicit ei(t) will requires additional com­

putational burden. Instead, we are directed to hysteresis switching. In (Morse et al., 

1992), it is proven that hysteresis switching converges in a finite time. Hysteresis 

switching can be represented as 

a(t) = </J(a(t - 1), <5(8-(t)), a(O) = i0 (2.80) 

where 

</J(a(t _ l) <5(8-(t))) = {a(t - 1) if 6(8-(t)) < <5(p(t)) + h (2_81) 
' p(t) if 6(8-(t)) ~ 6(p(t)) + h 

Here, a(t) is the index of selected model at t, a(t) is the tentative index of the selected 

model and is a(t) = a(t - 1), p(t) is the index of the best local model at t, 6(t) is a 

value function of each local model such as residue. Hence, 6(8-(t)) can be considered 

as the residue of the currently selected model while <5(p(t)) is the smallest residue. h 

is the threshold value. 

The adaptive multiple Laguerre model identification is given as follows. 

Design parameters the variables for irregular grid generation in Section 2.5.1, n the 

order of Laguerre models, nm the maximum number of concurrent local Laguerre 

models that can exist at the same time, a>. and b>. for adaptive forgetting, Y>.u 

the upper bound of adaptation variable for adaptive forgetting, h the threshold 

value for hysteresis switching 

step 1 Generate m multiple Laguerre models using the algorithm from Sec. 2.5.1 

step 2 initialize a(O) in (2.80) 

step 3 compute Laguerre states of all the local models by (2. 73) 

step 4 update forgetting factor .X(t) by (2.76) and (2.78) 

step 5 time update by augmenting R(t - 1) with x(t) and y(t) as 

[ R(t - 1) ] 
R(t) = [xT(t), y(t)] (2.82) 
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and take QR decomposition of R(t) 

step 6 compute the error of the tentatively current model, that is, c5(8-(t)) in (2.81) 

by (2.68) 

step 7 compute c5(p(t)) by permutating R(t) and compute residue by (2.68) 

step 8 decide the proper model and update CJ(t) by hysteresis switching 

step 9 update the parameters O(t) and residue for the selected model c5(CJ(t)} from 

R(t), by solving orthogonal least squares 

step 10 go to step 3 

2.6 Example 

We consider a rapidly switching linear system described as the following. 

{ 

1 
(z-0. 7)(z-0.3) 

G(z) = (z+o.st(z-0.3) 

(z-0.3)(z-0.9) 

0 ~ t < 50 

50 ~ t < 100 

100 ~ t < 150 

(2.83) 

Generate normal random input u with N(O, 1). Set the Laguerre order n = 3 and the 

maximum concurrent number of models nm = 2. 8 Laguerre models are generated 

when the design variables are chosen to be R = 0.3, f3 = 0.3 and 'Y = 10-3 • Initial 

y.x(O) = 0.2. a.x = 0.4 and b.x = l. Threshold variable h = 10-3 _ Initially, CJ(O) = 1, 

that is, initial model is selected to be the first one. The performance of resulting 

multiple Laguerre model is shown in Fig. 2.3 compared with adaptive Laguerre model 

with a fixed pole at 0.3. As can be seen, the multiple Laguerre model has improved 

response. 

2. 7 Discussion 

In this chapter, we developed adaptive multiple Laguerre filters to identify rapidly 

changing linear dynamics. The use of orthogonal least squares in combination with 
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the response of single Laguerre model 
and multiple Laguerre models with switching 
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Figure 2.3: Adaptive multiple Laguerre model for rapidly switching 
system identification: ( top figure) dotted line represents the error of 
single Laguerre model and solid line represents the residue of multi­
ple Laguerre model. (bottom figure) the indices of multiple Laguerre 
models 
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multiple Laguerre models that have optimally representing individual regions resulted 

in improved representation of linear stable systems with reduced model complexity. 

The question at this moment would probably be 'what is from now?' 

The stability condition of linear system can certainly be the limiting factor to 

identify general nonlinear systems. Stochastic effects to the identification algorithm 

has to be analyzed. However, most of all, the adaptive character of the algorithm is the 

most deciding factor to limit the application of the model to control problems. One 

possibility with control can be predictive type controller, which utilizes the prediction 

capability of the model and obtains controller by solving optimization problem to 

reduce the set point error. The problem of this application of the model is the lack 

of analytical guarantee of stability and performance. The problem is raised from 

the asymptotic nature of optimality of Laguerre models while recursive least squares 

is with only finite number of data. The data for recursive least squares are finite 

because of forgetting factor, which is used to adapt to changing dynamics. Even 

though the proof of asymptotic convergence of Laugerre model to a single linear 

system is possible, it is far from practical use of the model for nonlinear control. 

For this reason, we redirect our focus of research from online extension of linear 

system identification for control to off-line system identification for multimodel based 

control. We expect that the significance of off-line modelling must be great in order 

to support reliable controller design. Also, off-line identification is a prior step to 

online identification since online identification is usually only a recursive version of 

off-line identification with more difficult conditions to meet. 
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Part II 

Study on the local model for 
multimodel-based nonlinear system 

identification 
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Chapter 3 

On the local interpretation of 
Takagi-Sugeno fuzzy models from a 
dynamical systems point of view 

3.1 Introduction 

The Takagi-Sugeno (TS) fuzzy model was initially proposed as a method for static 

function approximation by decomposing input space by premise and representing the 

consequence by constant-affine input-output equations (Takagi and Sugeno, 1985). 

The output y for the input vector x = [x1 , x2 , ... , xnJT with input dimension n is 

represented by m local models as follows: 

y = 
m 

L wi(x)yi(x), 
i=l 

and locally by 

where the fuzzy membership function for the ith model, Pi(.), is a tensor product 

as Pi(x) = Pil(x1) x Pi2(x2) x ... x Pin(xn). wi(x) is a normalized fuzzy membership 

function as wi(x) = Pi(x)/ r:,7=1 Pi(x). 

Since this model is linear-in-the-parameters, once fuzzy membership functions are 

fixed, the coefficients, a1, i = 1, ... , m, l = 1, ... , n + 1 can be efficiently estimated by 
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linear least squares (LS) as 

m 

y(k) L aiwix1(k) + atwix2(k) + ... + a~wixn(k) + a~+iWi, 
i=l 

- [w1[x1(k), ... , Xn(k), 1], ... , Wm[x1(k), ... , Xn(k), 1]]. 

[ 1 1 m m ]T a1, ···, an+I, ... , al , ···, an+I , 

z(kf {3, k = 1, ... ,N 

and linear LS estimation is 

where Z = [z(l)T, z(2)T, ... , z(N)TJT and Y = [y(l), y(2), ... , y(N)JT. N is the number 

of data available. In the original formation, the premise is chosen by reasoning or 

tree structure (hierarchical) search by minimizing an error criterion. 

This structure is later adopted in the so called Multiple-Model (MM) frameworks 

for approximation of nonlinear dynamical systems and shown to be optimal in the 

sense of minimizing the criterion 

J = t 1. llf(x) - fi(x)ll~Pi(x) dx, 
i=l xEX 

where f (.) is a global model, and Ji(.) is the ith local model (Johansen, 1994). For 

the approximation of dynamical systems instead of static functions, input space X 

is replaced with regressor space If/. In general, we choose cp(t) = [y(t - 1), y(t -

2), ... , y(t- ny), u(t), u(t-1), ... , u(t- nu)JT E If/, where tis a time index with input 

u(t) and output y(t). Then the constant-affine recursive i/o equation is as 

(3.1) 

where d0 is a constant. 

The adoption of the TS fuzzy model structure for dynamical systems is justified by 

considering the nonlinear systems as the Nonlinear ARMAX (NARMAX) model rep­

resentation and linearization of it to obtain the TS fuzzy model structure (Johansen, 
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1994). Models by multimodels system identification using the TS fuzzy model struc­

ture for system analysis and controller design is, however, problematic. 

One problem is in the identification process. The identification of model parame­

ters based on global criterion is suggested by (Takagi and Sugeno, 1985) as 

N-1 

1 = I:(y(t)-11(t))2, 
t=O 

~ (y(t) - t, w,(t)Y,(t)) 
2 

which can be rewritten as 

N-1 ( m ) 2 
J = ~ ~ wi(t)(y(t) - Yi(t)) , (3.2) 

because ~:1 wi(t) = 1 for all t. The estimation based on this error criterion does not 

necessarily produce local models representing local characteristics. In (Murray-Smith 

and Johansen, 1997, see chap. 7 and chap. 8), this phenomena is shown by simulations. 

However, it is not difficult to see the problem of local dynamics identification. Con­

sider a linear-in-the-parameters local model as Yi(t) = cp(tf (Ji with a global objective 

function (3.2). The least square estimator is derived from the condition 

8J 
8()k 

N-1 ( m ) a ( m ) ~ 2 ~ wi(t)(y(t) - cp(tf Bi) B()k ~ wi(t)(y(t) - cpT(t)Bi) , 

N-1 m 

-2 LL wi(t)wk(t)(y(t) - cpT(t)Bi)cp(t) = 0, k = 1, 2, ... , m. (3.3) 
t=O i=l 

Hence the parameters of local models are coupled, and the LS estimator is to minimize 

the global prediction error. 

In contrast, the local objective criterion is given as 

N-1 

Ji = L (wi(t)y(t) - wi(t)cpT(t)Bi) 2 , 

t=O 
N-1 

- L w;(t)(y(t) - cpT(t)Bi)2, 
t=O 
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and the summation of the local criteria is given as 
m 

(3.5) 
i=l 

The LS estimation of (3.5) is given as 

N-1 :i = -2 L w~(t)(y(t) - r.pT(t)(Jk)r.p(t) = 0, k = 1, 2, ... , m, (3.6) 
t=O 

which is simply weighted least square estimator. By choosing wk(t) to localize the 

data, local dynamics can be identified. We can see that the parameter estimate using 

global error criterion (3.3) is same as the one with local criterion (3.6) if wi(t) is 

orthogonal. This is the adverse effect of interpolation or overlapping weighting func­

tions on local model identification. As is clear from (3.3), the local models estimated 

by minimizing the global error criterion cannot represent local dynamics. 

Another problem, and the subject of this Chapter, is in the interpretation of the 

model in terms of dynamical systems. The additional offset term in the constant­

affine local model is a reasonable choice for function approximation, however, the 

dynamical interpretation of it is not clear. There has been some effort devoted to this 

problem ( Johansen, 2000; Shorten et al., 1999). The main approach is to consider 

nonlinear state space representation and interpret the TS fuzzy model as a linearized 

system. That is, given a nonlinear dynamic system as 

x(t) 

y(t) 

f(x(t),u(t)), 

g(x(t), u(t)), 

(3.7) 

(3.8) 

dynamic linearization (linearization along a trajectory) using Taylor series is given as 

XL (t) = f (xo(t), uo(t)) + :~ lo (xL(t) - xo(t)) 

+ :~t (u(t) - u0(t)), 

:; lo xL(t) + :~ lo u(t) 

+ f (x0(t), u0(t)) - :; lo xo(t) - :~ lo uo(t). 
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In result, 

:h(t) = A(xo, uo)xL(t) + B(xo, uo)u(t) + do(xo, uo), (3.9) 

where xL(t) is a state vector of the linearized system, and [x5, u0JI' is the trajectory 

satisfying x0 (t) = f(x 0 (t), u0 (t)). Equation (3.9) is similar to constant-affine equa­

tion (3.1) but not exact since (3.1) is a i/o equation while (3.9) is a state equation. 

Therefore, there is a gap between this approach of interpretation and TS fuzzy mod­

els. In addition, the analysis of linear time varying systems is different from linear 

time invariant systems. In (Johansen, 2000; Shorten et al., 1999), state information 

is assumed to be available, however, it is very restrictive to make such an assump­

tion. In most system identification problems, only the i/o information is available. 

Therefore, interpretation of dynamical systems must be pursued in i/ o form. 

In spite of the fuzziness in the interpretation of TS fuzzy models, TS fuzzy mod­

els have been popularly used for model based controller design by transforming the 

constant-affine i/o model (or linear i/o model) into state-space form by state realiza­

tion (Kiriakidis et al., 1998; Cao et al., 1995). However, it is reasonable to understand 

what the model indeed represents ahead of the model based controller design since 

this type of controllers is bound to be limited by the quality of the model. 

The main goal of this Chapter is to demonstrate the limitations of TS fuzzy 

models for the local representation of dynamical systems from model structures point 

of view. We treat dynamical systems as nonlinear state space representation, and 

local dynamics are obtained by linearization. A recursive i/ o equation is derived by 

transforming this local dynamics. The resulting recursive i/ o equation is turned out 

inexact with local TS fuzzy models. However, the difference is shown to be small 

in terms of i/ o behaviors as far as the regression vector is properly chosen. A more 

serious problem surfaces in state space realization of TS fuzzy models. It is shown 

that the local state space cannot be recovered from TS fuzzy models; i.e. local state 

space is not identifiable by TS fuzzy models. In Section 3.2, dynamical systems in 

57 



state space are compared with TS fuzzy models, and the quality of TS fuzzy models 

for dynamic system identification is analyzed. A numerical example is presented in 

Section 3.3 to illustrate the concepts of this Chapter. 

3.2 The relation between TS fuzzy models and dy­
namical systems 

Consider the continuous time dynamical systems represented by (3.7) and (3.8). Our 

interest of dynamical systems in this representation is motivated by rich theories 

in controller design and system analysis in state space for the possible use of the 

identified models. By proper sampling, this system can be represented in discrete 

state space as 

x(t + 1) 

y(t) 

fd(x(t), u(t)), 

gd(x(t), u(t)), 

where t is in N0 = {O, 1, 2, ... } rather than nonnegative real as in continuous time. 

Linearization of the discrete time nonlinear systems by Taylor series at an arbitrary 

point (x0 , u0 ) gives 

XL(t + 1) - A(xo, uo)xL(t) + B(xo, uo)u(t) + F, 

y(t) C(xo, uo)xL(t) + D(xo, uo)u(t) + G, 

(3.10) 

(3.11) 

where XL is the state of the linearized system, and F and Gare offset terms caused 

by nonzero or off equilibriums. We assume that the linearized dynamics without the 

offset terms, F and G, is controllable as well as observable. Hereinafter, x instead of 

x L will be used by ignoring the high order terms in the linearized dynamics. 

It is tempting to relate (3.10) and (3.11) with local TS fuzzy models (3.1), however, 

the direct relation between these equations and TS fuzzy models cannot be established 

and will be shown in the following. Before that, we need to clarify the definition of 

the equivalence between models. 
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Definition 3.1 (Model equivalence) Two systems y1(t) = fi(u(t)) and y2(t) = 

h(u(t)) are equivalent if and only if Y1(t) = Y2(t) for all t E N0 with zero initial 

conditions. 

In the above definition, zero initial conditions are necessary since the same dy­

namical systems can have different outputs depending on the initial conditions. Zero 

initial conditions for systems in state space implies x(O) = 0 while <p(t) = 0, t ~ 0 

for regression type representations. The definition of equivalence is given since in­

finitely many dynamic systems can have the same i/o data pairs (Hammer, 1984). 

One simple example is that the dynamic system x(t + 1) = f(x(t), u(t)) is equal to 

x(t + 1) = f(f (x(t - 1), u(t - 1)), u(t)). In general, we want minimal i/o equations. 

Proposition 3.1 (Non-equivalence of local dynamics and affine regression 

model) Suppose that Cadj(zJ - A)F + Gdet(zl - A) is not a constant. Then the 

system represented by (3.10) and (3.11) is not equivalent to constant-affine time 

invariant recursive i/o equation (3.1). 

Proof: We prove it by transforming the state space representation into a recursive 

i/o form and compare it with (3.1). 

Take the z-transformation of (3.10), we obtain 

z 
(zl - A)X(z) = BU(z) + F z _ 1 . 

Then, with z-transformation of equation (3.11), the i/o equation in z-domain is given 

as 

Y(z) ( C(zl - At1 B + D) U(z) 

z + ( C(zl - A)-1 F + G) z _ 1 . 

To realize a recursive i/o equation, multiply both sides with z-n M(z) then 

z 
+z-n M(z) ( C(zl - A)-1 F + G) z _ 1, 
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where M(z) is a polynomial function in z and n is the order of M(z). z-n is an 

additional multiplication factor to make y(t) the most forwarded term in time. For 

the above equation to be constant-affine recursive i/ o form, 

z z 
z-nM(z) (C(zl -Ar1F + G)- = do--, 

z-1 z-1 

where d0 is a constant. The above equation is satisfied if and only if 

M(z) = 
C(zl -A)-lF + G' 

d0zndet(zl - A) 
Cadj(zl - A)F + Gdet(zl - A)' 

(3.12) 

which is not a polynomial function unless the denominator is a nonzero constant. 

D 

The proof of the proposition shows that the offset term of the recursive i/ o equa­

tion of linearized dynamics is indeed a function of time instead of a constant. A 

typical choice of M(z) is >.(z)p(z), where >.(z) is the characteristic equation and p(z) 

is an arbitrary polynomial function. From (3.12), we can see that left hand side of 

the equation is actually a time varying term, not a constant. Since the term is a 

polynomial of z-1 with finite order divided by z / ( z - 1) = 1 - z-1 , it only has finite 

duration in addition to a constant. If M(z) has z - 1 as a factor, this term can last 

at most n steps. 

Since the proposition shows that the local TS fuzzy model is not an exact rep­

resentation of local linear dynamics, it is interesting to see how TS fuzzy models 

behave in system identification of the local dynamics. For this purpose, consider the 

linearized system as 

y(t) a1y(t - 1) + ... + anyY(t - ny) 

+bou(t) + ... + bnuu(t - nu)+ do+ d(t), 

--,?(t)ee, 
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where ()e = [a1, ... , any, bo, ... , bnu, do, ljT = [()T, do, l]T and ,'(t) = [y(t - 1), ... , y(t -

ny), u(t), ... , u(t - nu), 1, d(t)JT = [cpT(t), 1, d(t)JT. d0 is a constant, and d(t) is a time 

varying offset term with finite duration. In the following Property 3.1, the estimation 

error is shown in case that the system is approximated by the constant-affine i/ o 

model as (3.1). Another popular local structure for the TS fuzzy model is a linear 

model without the constant offset term. In Property 3.2, the behavior of linear models 

for the approximation of local dynamics is shown. 

Property 3.1 (Local model error of affine recursive i/o model) Suppose the 

parameters are estimated by LS and cpT (NI :.__ 11 T) <P is nonsingular, then 

Y - Y = (NI - llT) (<P(<PT(NI -11T)<P)-l<PT(NI -11T) - I) n;. (3.15) 

where <P = [cp(l), cp(2), ... , cp(N)JT, DN = [d(l), d(2), ... , d(N)JT, 1 is N x 1 vector with 

1' s as the elements of the vector. Y denotes the estimated model output vector. 

Proof: In a matrix-vector form, the estimate 

y = I ii> j 1 I DN I [ ; ] = I ii> j 1 I [ ! l + DN (3.16) 

and 

(3.17) 

Then 

(3.18) 

where <Pe= [<P 1], Be= [()T doJT and Be= Be - Be. 

Normal equation for the LS estimate is 

[ <P 11 f [ <P 11 ] [ J0 ] = [ <P 11 fY. 

Replace Yin the normal equation with (3.16), the normal equation in block matrices 

IS 
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Define O = 0 - () and do= do - do, 

Instead of using the matrix inversion lemma, we can directly obtain 

From (3.20), 

then with (3.19), 

Solve for 0 

<I>T <I>O + <I>Tld0 <I>T DN, 

1 T <I>O + d0N - 1 r D N. 

do= 1 DN - 1 <I>() /N, - ( T T -) 

O (<I>T<I> - <I>T11T<I>/N)-1<I>T(I -11T /N)DN, 

(<I>T(NI -11T)<I>)-1<I>T(NI - llT) DN, 

Use this equation and (3.20), we get 

Replace Oe in (3.18) with (3.21) and (3.22), and we obtain 

(3.19) 

(3.20) 

(3.21) 

D 

Remark 3.1 From the Property 3.1, we can see that residue of the constant affine 

i/o model can be kept small with proper regression vector since DN has only a few 

nonzero terms. 
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The number of training data N does not have influence on the residues. This can 

be easily seen by considering the singular value decomposition of NI - 11 T. Since 

N - 1 singular values of the matrix is N and the last singular value is 0, the singular 

value decomposition is 

Therefore, 

Y-Y 

NI -11T - [ X1 x] [~II~] [~I] 
- NX1Xf. 

NX1Xf (cf>(Ncf>TX1Xfcf>t1cf>TNX1Xf -I) n; 
X1Xf (cf>(cf>TX1Xfcf>)-1cf>TX1Xf -I) DN, 

(3.23) 

(3.24) 

Property 3.2 (Local model error of linear recursive i/o model} Suppose the 

same assumptions that was made in Property 3.1. For a linear model in regression 

form as 

y(t) = cpT(t)O, 

then the residue vector is 

where all the notations are followed from Property 3.1. 

Proof: The output vector can be rewritten as 

Y = cf>O + (DN + ldo) 

while the model output vector is in matrix-vector form as 

y = cf>(). 

Using the solution of normal equation and the matrix-vector form of outputs, 

0 ( q,T cf> )-lq,TY, 

- (cf>Tcp)-1cf>T(cf>O + DN + ldo), 

0 + (cf>Tcf>t1cf>T(DN + ldo). 
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Hence, 

Y-Y cI>(O - 0) - (DN + ldo) 

(cI>(cI>TcI>)-1cI>T - I)(DN + ldo), 

D 

Remark 3.2 Property 3.2 shows that residue for the linear local models does not 

converge to zero, that is, the estimation is biased. This shows that linear TS fuzzy 

local model cannot even approximate the local i/ o behavior of the system and the use 

of this local model must be cautiously made. 

Remark 3.3 It is worthy of mentioning that TS fuzzy models with linear local models 

are originated from continuous time domain with nonlinear model available (Tanaka 

et al., 1998). It is certainly possible to obtain accurate linear local models by for­

mulating model nonlinearities as fuzzy premises. However, as shown in the property, 

it is dangerous to extend the approach to discrete-time domain that involves system 

identification. It is also difficult to define accurate premise to validate linear local 

models without the knowledge of the system. 

It is also interesting to see how the constant-affine model is transformed to state 

space. One popular approach is to completely ignore the offset term, that is, consider 

a local model as the one in Property 3.2 (Cao et al., 1995). The state realization of 

this linear i/ o equation is trivial, however, the interpretation of the model is vague. 

Constant-affine model (3.1) may be transformed into the form similar to (3.10) 

and (3.11) by choosing F and G to satisfy the condition (3.12). A simple realization 

can be obtained by first getting state realization of the linear part and solving the 

above condition to determine F and G. In (Kiriakidis et al., 1998), observable canon­

ical form is used for the realization and G = d and F = [a1 , a2 , ... , any? dare selected, 
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where ai are from (3.13). However, this choice of offset terms is rather arbitrary and 

the physical interpretation is misleading as well. 

Our investigation of the relationship between the constant-affine state model and 

the constant-affine i/o model, indeed, reveals that a model with (3.10) and (3.11) 

is not identifiable by (3.1). Before presenting the result, we extend the definition 

of model identifiability in (Ljung, 1999) by combining with the concept of model 

equivalence in Definition 3.1. The definition focuses on one-to-one mapping between 

parameters of two different model structures. 

Definition 3.2 (Extended identifiability between different model structures) 

A model structure M1 is identifiable at B1 by M2 at B2 if and only if there is a func­

tion f(.), such that 81 = 1-1 (82 ) and M 1 (B1) and M2 (B2 ) are equivalent according to 

Definition 3.1. 

Proposition 3.2 (U nidentifiability of local dynamics by affine recursive i/ o 

model) Suppose the linearized system, (3.10) and (3.11), is locally controllable and 

observable, that is, (A, C) is observable and (A, B) is controllable. Then, the local 

dynamics is not identifiable by constant-affine recursive i/o models as (3.1). 

Proof: We prove by induction. Consider the constant-affine state equation repre­

sented by (3.10) and (3.11). First, consider a 2nd order system. Since the local 

dynamics is assumed to be controllable and observable, it is convenient to convert the 

model into canonical form whose system matrices are defined as 

x(t + 1) = [ a1 1 ] x(t) 
a2 0 

+ [ ~~ ] u(t) + [ ~~ ] , 
y(t) [ 1 0 ]x(t) + du(t) + g. 
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Realize recursive i/o form by utilizing z-transform and we obtain 

The time domain realization of the affine term is 

and can be rewritten as 

where u 8 (t) is the unit step function, and c5(t) is the unit impulse function. Since the 

time varying offset terms last finitely, the LS estimation results in 

(3.25) 

Then the estimated output becomes 

Y(z) 

(3.26) 

Since (3.25) is an underdetermined equation, there is an infinite number of solutions 

for (!1 , 12, g). We generalize this result to a nth order system and we get 

n n 

do= Lfi + (1- Lai)g, 
i=l i=l 

and this proves that the constant-affine state equation is not identifiable by the 

constant-affine recursive i/ o model. 

D 
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Remark 3.4 The above proposition is rather intuitive since state equation has more 

parameters than i/o equation, and one-to-one mapping between these parameters can­

not be established. We made the assumption of canonical system to show that the 

unidentifiability of the model is not caused by state matrices. The proposition is con­

sidered since TS fuzzy models have been used without discretion to obtain state space 

representation in literatures. 

To further investigate TS models used in fuzzy model based control literatures, 

consider the model suggested by (Kiriakidis et al., 1998) used for proving the stability 

of model-based controller. Consider the 2nd order system in the proof of Proposi­

tion 3.2. Since d = (!1 + h + (1 - a1 - a2 )g), the selection of g = d, Ji = a1d and 

h = a2d satisfies (3.25). Ignore the parametric estimation error and only consider 

the output error between the system and the model, then 

~Y(z) Y(z) - Y(z), 
2 A 

z(gz + (!1 - a1g)z + (h - a2g) - d) 

(z2 - a1z- a2)(z - 1) 
z(gz2 + (!1 - a1g)z + (h - a2g)) - (!1 + h + (1 - a1 - a2)g) 

(z2 - a1z - a2)(z - 1) 

Use the final value theorem 

lim ~y(t) 
t--->oo 

lim(l - z-1)~Y(z), 
z--->l 

g + (!1 - a1g) + (h - a2g) - (!1 + h + (1 - a1 - a2)g) 
1 - a1 - a2 

0. 

From the equation, we can see that the output error becomes zero even if the offset 

terms are incorrect. To see how states behave, take z-transform of the state equations 

of the 2nd order system. Similarly, only consider state error ~X(z) = X(z) - X(z) 
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caused by the incorrect affine term, which is given by 

~X(z) = 

Use the final value theorem 

lim ~x(t) 
t---+oo 

1 [ 1 1 ] 
1 - a1 - a2 a2 1 - a1 · 

( [ j~ ] - [ :~ ] (!1 + h + (1 - a1 - a2)g)) , 

-/= 0 

This example clearly demonstrates the misleading information of the unidentifiable 

model structure and suggests the need of a new system identification scheme to iden­

tify the system. 

3.3 Example 

In this section, we illustrate the identification of local dynamics by an example. 

Consider a nonlinear system given by the following nonlinear state space equations 

X1(t) X2(t), 

i:2(t) -10sin(x1(t)) - 0.5x2(t) + u(t), 

y(t) e-x1(t). 

In general, a numerical integration method is used to discretize continuous time sys­

tems. Even though the Euler method is the simplest, it requires extremely small 

integration steps and dynamics of the system is not representative. We consider the 

modified Euler method (second order Runge-Kutta method) to discretize the system. 
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Then the system is represented in discrete state space by 

x1(t + 1) = x1(t) - 5T2sin(x1(t)) + Tx2(t) 

-0.25T2x2(t) + T 2 /2u(t), 

-5Tsin(x1(t)) - 0.5Tx2(t) + Tu(t), 

-5Tsin(x1(t) + x2(t)T) + 2.5T2sin(x1(t)) 

+.125x2(t)T2 - .25T2u(t) + x2(t), 

y(t) = 

where Tis the sampling period (integration step). Choose T = 0.1, and linearize the 

system at an arbitrary point (x 10 ,x20 ,uo) = (1r/4,0, 7), and we obtain 

x(t + 1) 

y(t) 

Ax(t) + Bu(t) + F 

Cx(t) + Du(t) + G, 

h ( ) [ ( ) ( )] T A [ 0.965 0.0975 ] [ 0.005 ] C [ 
w ere x t = X1 t x2 t ' = -0.689 0.916 ' B = 0.0975 ' = -0.456 

[ -0.00791 ] 
D = 0, F = _0.1483 and G = 0.814. 

In order to obtain a recursive i/o equation, take z-transform, 

Y(z) = -2.28 x 10-3z - 2.25 x 10-3 U(z) 
z2 - l.881z + 0.951 

3.61 X 10-3z + 3.29 X 10-3 Z Z 
+ -- + --0.814. 

z2 - l.881z + 0.951 z - 1 z - 1 

Choose the multiplying polynomial to be M(z) = det(zl - A) and multiply the 

above equation by z-2 M(z) and we get 

(1 - l.88lz-1 + 0.951z-2)Y(z) 

= (-2.28 x 10-3[ 1 - 2.25 x 10-3z-2)U(z) 

0.0640 -1 
+ 1 - 0.775z + 0.75. 

1- z-
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Hence, the recursive i/o equation is 

y(t) - 1.88ly(t - 1) + 0.95ly(t - 2) 

= -2.28 x 10-3u(t - 1) - 2.25 x 10-3u(t - 2) 

+ 0.75o(t) - 0.775o(t - 1) + 0.0640us(t). 

If we choose M(z) = det(zl - A)(z - 1), then the i/o equation in z-domain is 

(1 - 2.88z-1 + 2.83z-2 - 0.95lz-3 )Y(z) 

= (-2.28 x 10-3z-1 + 3.36 x 10-5z-2 + 2.25 x 10-3z-3 )U(z) 

+ 0.814 - 1.528z-1 + 0.777z-2 , 

and the recursive i/ o form is 

y(t) - 2.88y(t - 1) + 2.83y(t - 2) - 0.95ly(t - 3) 

= -2.28 x 10-3u(t - 1) + 3.36 x 10-5u(t - 2) + 2.25 x 10-3u(t - 3) 

+ o.814o(t) - 1.528o(t - 1) + o.111o(t - 2). 

Excite the system with Gaussian random input, with mean 7 and unit variance. 

The input is chosen such that the system is excited around the domain that we are 

interested in. Choose the regression vector to be 

cp(t) = [y(t - 1), y(t - 2), u(t - 1), u(t - 2), 1ir. 

The estimated parameter is 

B = [1.881, -0.951, -2.28 X 10-3 , -2.25 X 10-3 , 0.0640]. 

The estimate with a higher regression vector cp(t) = [y(t -1), y(t - 2), y(t - 3), u(t -

1), u(t - 2), u(t - 3)] is given as 

B = [2.88, -2.83, 0.0951, -2.28 X 10-3 , 3.36 X 10-5 , 2.25 X 10-3]. 
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In this estimation, N = 1000. As expected, the estimate is quite accurate if the 

regression vector is properly chosen. 

Now, we show how the state space representation, which is obtained from the 

TS model, behaves. From the estimated recursive i/ o equation, we can obtain an 

observable canonical form with offset terms as 

A [ 1.881 
-0.9511 ~ ] 

B [ -0.00228 -0.002246 f 

C [ 1 0 ] 

F [ 1.2033 X 10-l -6.08 X 10-2 f 

G 0.06397. 

[ -2.19 0 ] Using the similarity transformation, T = _20_6 _ 22_5 , compare the true offset 

terms with the estimated offset terms 

F TF, 

[ -2.64 X 10-l -1.11 f, 

G 6.397 X 10-2 ' 

which are different from the true offset terms. This bias causes the estimated states to 

drift from true states, while estimated outputs converge to the true output as shown 

in Fig. 3.1. 

3.4 Discussion 

In this chapter, we analyzed the significance of TS fuzzy models with recursive i/ o 

model structure from dynamical systems point of view, which is the common forms 

in fuzzy identification and control. Our analysis shows that recursive i/ o form is 

ambiguous in representing local dynamics and it is too arbitrary to obtain state space 

model from recursive i/ o form. The problem is caused because algebraic condition 
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Estimation error of TS fuzzy model 
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Figure 3.1: Error of the TS fuzzy model; the output error decays to zero (Top figure), 
while state errors drift (Bottom figure). 
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to obtain states bias is not satisfied. It is surprising that this problem has never 

been taken seriously. We suspect this ignorance of problem may be caused by the 

general attitude of system identification as 'input-output mapping.' We believe that 

considering system identification as only an i/ o mapping problem can be dangerous for 

critical applications such as control and cannot justify its claim as the identification of 

dynamical systems. Because of this problem, we investigate different model structure 

and attempt to develop system identification methods in the next chapter. 
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Chapter 4 

On the local identification of a 
Takagi-Sugeno fuzzy model in state 
space 

4.1 Introduction 

In Chapter 3, we pointed out the problem of TS fuzzy models in terms of the ambiguity 

of representing local dynamics. The argument is based on the assumption that 'true 

system' is in state space and the comparison of linearized state space form is used to 

point out the problems of TS fuzzy models in recursive i/ o form. In this chapter, we 

further this argument by proposing Constant Affine State Space ( CASS) model as a 

proper local model form because of its clear interpretation as local pseudo-linearized 

form. Also, we review some of the current development in multimodel based control, 

in order to support CASS model structure. Then, we investigate the CASS model 

structure for identification purpose. Unfortunately, CASS model structure is turned 

out to be unidentifiable in the presence of unknown initial states. We investigate the 

implication of unidentifiability of CASS model in various ways. 

This chapter is organized as follows. In Section 4.2, we introduce CASS model and 

present issues to support this model structure for control. In Section 4.3, properties 

of CASS model are investigated from the perspective of system identification. In 

Section 4.4, we investigate the implication of unidentifiability of CASS model from 
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several different perspectives in estimation. 

4.2 Constant-affine state space model for control 

While linear system identification has been developed extensively in various model 

structures such as state space, recursive i/ o, as well as transfer functions, and the 

relationships among them are well-established, nonlinear system identification is not 

the case. A popular approach in black-box nonlinear system identification is to replace 

the input space with regression space and treat nonlinear dynamical systems as a 

mapping from the regression space into output space (Sjoberg et al., 1995). Hence, 

the regression type identification is a mere extension of static function identification. 

The validation of the model is usually to compare the measured i/ o data with the 

simulated or predicted outputs of the model. Since only finite data are available 

in practice, the validity of the model is very limited and it is hard to build enough 

confidence for real applications. For these problems, the application of the nonlinear 

model is quite limited to, e.g. prediction or simulation. 

In addition to the confidence problem, the regression models have limitations in 

model based system analysis or controller design, since most of model based methods 

are based on state space models. To overcome the limitations of regression type mod­

els, some efforts were taken to derive a state space model from the regression model 

by nonlinear state realization (Sadegh, 1998). However, this equation based nonlinear 

state realization algorithm requires to find nonlinear mapping in order to obtain min­

imal state realization. Also, regression type models, such as nonlinear ARMAX, are 

only capable of representing nonlinear state space system locally (Srinivasan et al., 

1994). On the other hand, recurrent neural networks with inner state dynamics have 

been proposed to emulate dynamical systems more closely (Jin and Gupta, 1995). 

However, the complex model structure of the recurrent neural networks hinders the 

model-based applications. 
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This motivates us to explore multimodel frameworks to cover global nonlinear 

systems with simpler local models. As pointed out in Chapter 3, the typical constant­

affine recursive i/ o model is not transparent for the interpretation of dynamical 

systems. Therefore, we are focused on local models in state space, especially, the 

constant-affine state space (CASS) model. 

Constant-affine state space models naturally arise from the linearization of non­

linear state space models. Hence, this model structure can be utilized for the local 

representation of global nonlinear dynamics. We consider a SISO nonlinear system 

in state space as 

x(t + 1) f(x(t), u(t)), 

y(t) - g(x(t), u(t)), 

(4.1) 

(4.2) 

where x(t), u(t) and y(t) are state, input and output, respectively. tis the time index, 

and t E N0 , the set of nonnegative integers. Linearization of the above equations, 

(4.1) and (4.2), at an arbitrary point (x0 ,u0 ) results in 

x(t + 1) = \7 xflo (x(t) - xo) 

+ Vuflo (u(t) - uo) + f(xo,uo) 

\7 xflo x(t) + \7 uflo u(t) 

+ f (xo, uo) - \7 xflo Xo - \7 uflo Uo 

y(t) - \7 x9lo (x(t) - xo) 

+ \7 u9lo (u(t) - uo) + g(xo, uo) 

Vxgl 0 x(t) + Vugl 0 u(t) 

+g(xo, uo) - \7 x9lo Xo - \7 u9lo uo, 

where \7 xflo represents ~! at (xo, uo). Collect the constant matrices and vectors, and 
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we obtain the CASS model as 

x(t + 1) 

y(t) 

A(B)x(t) + B(B)u(t) + F(B), 

C(B)x(t) + D(B)u(t) + G(B), 

(4.3) 

( 4.4) 

where A, B, C, D, F, G matrices are with proper dimensions. These matrices are pa­

rameterized by a parameter vector B. The signals x(t), u(t), y(t) are not perturbation 

variables as are used in the conventional linearization models. The use of unperturbed 

signals facilitates model based analysis and the integration of multiple models into a 

global model. 

Another motivation of considering CASS model as the local model structure for 

multimodels is the recent trends of controller design methods. The most natural 

place to find CASS model structure is in gain-scheduling control by off-equilibrium 

linearizations (Johansen et al., 1998). In contrast to the conventional gain-scheduling 

based on linearization about a set of equilibrium points, off-equilibrium scheduling is 

used to improve the transient performance as well as stability. Despite the improved 

results of off-equilibrium linearization, the design of the controller is still arbitrary 

and no analytical guarantee is presented. 

In recent years, there have been increasing efforts to develop model based fuzzy 

control, in order to provide systematic controller design methods rather than heuristic 

ones using fuzzy inference. Since state space model has been the main stream in model 

based control, model based fuzzy control has also taken this approach. In (Kroll 

et al., 2000), fuzzy model based controller is proposed. The affine i/o TS fuzzy model 

is transformed into state space by defining the states as x(t) = [y(t - 1), ... , y(t -

ny), u(t - 2), ... , u(t - nu)f. The state feedback controller is designed using pole­

placement technique by considering the obtained state model as linear time-variant 

model. The steady state error caused from bias terms is compensated by adjusting 

the set-point by a set-point filter. However, placing all the poles of the closed-loop 
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system for time-varying systems does not necessarily guarantee the stability since 

stability is guaranteed only for slowly time varying systems (Shamma and Athans, 

1990). 

More theoretically sound approach is to utilize the extension of Lyapunov stability 

theorems to the multimodel framework (Tanaka and Sano, 1994). Basic approach is 

to find a positive definite matrix such that the quadratic Lyapunov candidate satisfies 

the stability conditions for the fuzzy model. That is, consider a fuzzy model without 

external input as 
m 

x(t + 1) = L wi(<p(t))Ax(t) (4.5) 
i=l 

and it is shown that finding P > 0 satisfying 

(4.6) 

is a sufficient condition for the stability of the origin (Tanaka and Sano, 1994). Just 

like Lyapunov theorem for nonlinear systems, this condition can be used for controller 

design with state feedback. In (Tanaka et al., 1996), similar approach is extended for 

fuzzy model with uncertainty model. Finding of positive definite matrices are solved 

by LMI (linear matrix inequality). However, all these works are based on linear fuzzy 

model such as (4.5) and only used for the controller design with available nonlinear 

models. The nonlinear model is converted into fuzzy models by adopting complex 

nonlinear fuzzy membership functions. Therefore, their works can only be used as an 

alternative to global nonlinear controller design. The problem of fuzzy model with 

linear local models is obvious for uncertain systems without an accurate nonlinear 

model available since identification of the complex nonlinear fuzzy membership func­

tions that guarantee the validity of linear local models will be extremely difficult. 

Model based fuzzy controller design for uncertain systems reported in ( Cao et al., 

1995, 1997a) are also based on linear local models. Interestingly, Cao et al. (1997b), 

the first part of (Cao et al., 1997a) regarding system identification for controller de-
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sign, used affine model, however, the affine term disappears in the controller design 

without any explanation. The first work considering affine models for controller de­

sign is reported in (Kiriakidis et al., 1998), which takes the similar approach, i.e. 

extended Lyapunov stability and LMI based design. However, the affine state space 

model is obtained in a heuristic way, as pointed out in Chapter 3. 

From the overview of the current model based fuzzy control literatures, we can 

see the demand of identification of CASS model as a local model. Justification of 

using linear models in the literatures is to adopt complex nonlinear fuzzy membership 

functions which is hard to find in system identification. 

4.3 CASS model structure for identification 

From the previous section, the motivation of CASS model for control is clear. In 

this section, we investigate the CASS model structure from system identification 

perspectives. 

Before the estimation of parameters, it is essential to examine if the free param­

eters of the model can be uniquely recovered from measurements unless our interest 

of the model is only in the duplication of i/o relationship of the system in the train­

ing data set. This uniqueness of parameterization is called structural identifiability. 

Great emphasis has been placed on the structural identifiability related to the gray 

box type identification in biological or chemical applications, whose model parameters 

have physical interpretations (Walter and Pronzato, 1990). The formal definition of 

identifiability is given as follows (Ljung, 1999). 

Definition 4.1 (Global structural identifiability) A model structure Mis glob­

ally identifiable at B* if the equivalence of a model structure 

M(B) = M(B*), 
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implies 

e = e*. 

Definition 4.2 (Local structural identifiability) The model structure is locally 

identifiable if for B* there exists a neighborhood B(B*, E) such that 

M(B) = M(B*), e E B(B*, E) 

implies 

e = e*. 

In (Ljung, 1999), the equivalence of a model structure implies the equivalence 

of transfer functions. This is only possible for linear systems, since the system is 

separable from signals in transformed space. For nonlinear systems, the equivalence 

implies for the whole output space as the definition given in Chapter 3. Among the 

same model structures, the definition of equivalence given in Chapter 3 can be relaxed 

since the concept of initial conditions is clear. We adopt the definition of equivalence 

from (Vajda et al., 1989) and modify it for a discrete time system. 

Definition 4.3 (Equivalence of systems in state space (Vajda et al., 1989)) 

Consider a system given in (4.1)-(4.2) and denote the input-output map as 

where e is the parameter vector and x0 is the initial condition. We define that the 

systems are equivalent if and only if 

(4.7) 

Using the Definition 4.3, we can obtain the following result for CASS model. 
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Proposition 4.1 (Necessary condition of equivalence of CASS model) Con­

sider the CASS models given as follows: 

~: x(t + 1) = Ax(t) + Bu(t) + F 
y(t) = Cx(t) + Du(t) + G 

f: : x(t + 1) = Ax(t) + Bu(t) + P 
y(t) = Cx(t) + 15u(t) + G 

(4.8) 

(4.9) 

x, x E IRn, u E IR and y E Y C IR. The system matrices have proper dimensions 

accordingly. The necessary condition for equivalence is the existence of affine trans­

formation between x(t) and x(t) such that 

x(t) = Tx(t) + w 

where 

T 

w 

where ()t denotes pseudo-inverse. The matrices in w is defined as 

with some positive integer r ~ n. 

Proof: 

C 
CA 

0 
C 

CA+C 

CAr-2 + CAr-3 + ... + C 

1 
1 

1 

81 

(4.10) 

(4.11) 
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(4.15) 



Construct an augmented output vector of E as 

y(O) 

Yr 
y(l) 

y(r - 1) 

C 
CA 

x(O) 

CAr-1 

D u(O) 
CB 

+ 
D u(l) 

CAr-2B D u(r - 1) 

0 
G 

C 
G 

+ CA+C F+ 

CAr-2 + CAr-3 + ... + C G 

r rx(O) + Hr Ur + ArF + lrG 

Similarly, the augmented output vector of t is given as, 

(4.16) 

The equivalence of the two systems implies Y;. = Yr. Since u(t) is arbitrary, Hr = Hr 

and therefore, 

( 4.17) 

Since the coordinate of x(t) is fixed by this initial state transformation, 

x(t) = Tx(t) + w (4.18) 

where 

T t-rrrr (4.19) 

w 
t - - -

rr(ArF + lrG-ArF- lrG). ( 4.20) 
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D 

Since state space representation is not unique, we consider the CASS model in the 

canonical observable form in order to reduce the dimension of parameter vector for the 

facilitation of analysis. Conjectured from linear systems, we propose the similarity 

transformation matrix to obtain the observable canonical form such as x(t) = Tx(t). 

The following proposition shows that the i/o relations are invariant to linear similarity 

transformation. 

Proposition 4.2 (Sufficient condition of equivalence of CASS model) Con­

sider the CASS model represented as (4.3)-(4.4). Then the i/o relationships are 

invariant to the similarity transformation x(t) = Tx(t) with invertible matrix T. 

That is, the existence of linear similarity transformation is the sufficient condition of 

equivalence of two CASS models. 

Proof: Replace x(t) with Tx(t) where x(t) is the newly defined coordinates by sim­

ilarity transformation matrix. Then, the CASS model becomes 

x(t + 1) 

y(t) 

r-1 ATx(t) + r-1 Bu(t) + r-1 F 

- CTx(t) + Du(t) + G 

(4.21) 

( 4.22) 

with new initial condition of x(O) = r-1x(O). Define the new CASS model matrices 

as A= r-1AT, B = r-1s, P = r-1F, C = CT, D = D, and G = G. Then the i/o 

relationship of transformed states can be represented as 

y(O) Cx(O) + Du(O) + G 

CTT-1x(O) + Du(O) + G 

Cx(O) + Du(O) + G 
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at t = 0. Hence, ( u(O), y(O)) is not changed. For an arbitrary t, 

t-I t-I 
y(t) = c.At-1:c(O) + L c.Ai-I Bu(t - i) + Du(t) + L c.Ai-I F' + G. ( 4.26) 

i=I i=I 

It is obvious that the similarity transformations of linear portion cancel out. For the 

affine terms, 
t-I t-I L c.Ai-I P +a= L err-I Ai-Irr-IF+ a ( 4.27) 
i=I i=I 

Hence, we can see that the affine terms also do not change through similarity trans-

formation matrix. D 

The realization of canonical form is always possible if the system states are mini­

mal. Also, Proposition 4.2 guarantees the existence of transformation to the observ­

able canonical form. The definition of minimal state realization of nonlinear systems 

varies depending on the use of the model. In this dissertation, we adopt a strong 

minimality condition as follows. 

Definition 4.4 (Minimal state space) The nonlinear system given in (4.1)-(4.2) 

is minimal if (A, C) is observable and (A, B) is controllable. 

Hence, the minimality of nonlinear state space equation is completely determined 

by the minimality of linear portion of local model, i.e. CASS model. The CASS 
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model in the observable canonical form has the parameterization as 

A(O) 

B(O) 

C(O) 

D(O) 

F(O) 

a1 
a2 

an-I 
an 

[ b1 b2 

[ 1 0 

[ d l 

[ Ii h 

G(O) - [ g] 

1 
0 1 

0 0 1 
0 0 0 

". bn f 

". 0 ] 

". fn f 

(4.28) 

(4.29) 

( 4.30) 

(4.31) 

(4.32) 

(4.33) 

In general, it is difficult to verify the identifiability of a model structure by the 

definition. For linear systems, similarity transformation approach is given in (Walter 

and Pronzato, 1990) for state space models. For nonlinear systems, structural iden­

tifiability is based on the unique solvability of the parameters. General i/ o equation 

is reduced by using Ritt's algorithm in order to single out parameters in terms of i/o 

and their derivatives (Ljung and Glad, 1994). Among various methods, Taylor series 

approach, utilizing the uniqueness of the coefficients of Taylor series, and extended 

similarity transformation, which is an extension of the similarity transformation re­

sults in linear systems by local/ global isomorphism, are promising methods ( Chappell 

et al., 1999; Chappell and Godfrey, 1990). Now, the dilemma that we face is that 

CASS model structure is too simple to be considered as nonlinear model structure 

while we cannot apply linear techniques since it is not linear model structure. We 

propose a method to check the identifiability of CASS model. The method is an ex­

tension of similarity transformation method in linear systems rather than the ones in 

nonlinear systems. First, we adopt a more clear definition of identifiability and mod­

ify it for a discrete time system, since the formal definitions given by (Ljung, 1999) 

is too abstract. Structural identifiability is similar to equivalence, except that the 
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uniqueness of parameters has to be satisfied as well as the uniqueness of i/ o relation. 

Definition 4.5 (Modified structural identifiability (Vajda et al., 1989)) A 

model is globally identifiable at (} E 8 if and only if 

(4.34) 

for all u E [O, t1] implies (} = 11. It is locally identifiable at (} E 8 if there is some 

neighborhood 11 E 8 C 8 such that (4.34) implies(}= 11. 

Theorem 4.1 (Identifiability condition of CASS model) CASS model in ob­

servable form is identifiable if 

(4.35) 

is not singular. 

Proof: Suppose two CASS models in observable canonical form are equivalent. Then, 

from Proposition 4.1, it implies that there is an affine transformation as 

x(t) = Tx(t) + w. (4.36) 

Therefore, we have to show that ~;o(O) = t!~(O*), where ~ and 'E are related by the 

affine transformation, implies (} = (}*. 

Replace x(t) with (4.36) and we obtain 

Tx(t + 1) + w = A(Tx(t) + w) + Bu(t) + F 

which can be simplified as 

x(t + 1) r-1 ATx(t) + r-1 Bu(t) + r-1 (F + (A - I)w) 

Ax(t) + Bu(t) + P. 
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The transformed output is 

y(t) C(Tx(t) + w) + Du(t) + G 

CTx(t) + Du(t) + G + Cw 

Cx(t) + Du(t) + G. 

Hence, it is obvious that the following holds 

p 

(J 

T- 1 (F + (A - I)w) 

G+Cw 

(4.40) 

( 4.41) 

( 4.42) 

(4.43) 

( 4.44) 

in addition to the usual linear portion with similarity transformation A = T-1 AT, 

B = T-1 B, C = CT, and [J = D. 

Consider a 2nd order CASS system as 

where A( 0) = [ ai 
a2 

x(t + 1) A(B)x(t) + B(B)u(t) + F(B) 

y(t) C(B)x(t) + D(B)u(t) + G(B) 

~ ] , B(B) = [ ~: ] , F(O) = [ ;: ] , C(B) = [ 1 0 ] , D(B) = d, 

and G(B) = g. Suppose that there is another parameter vector B*, such that A(B*) = 

T-1 A(B)T, B(B*) = T-1 B(B), F(B*) = T-1 F(B), C(B*) = C(B)T, and D(B*) = D(B) 

for a similarity transformation matrix T. 

Since C(B*) = C(B)T, 

[ l O ] = [ l O ] [ t1,1 ti,2 ] ' 
t2,1 t2,2 

( 4.45) 

which results in t 1,1 = 1 and t 1,2 = 0. With T A(B*) = A(B)T, 

( 4.46) 

the resulting matrix is 
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Hence, t 2,1 = 0 and t 2,2 = 1, and therefore T = 12 , where / 2 is the 2 x 2 identity 

matrix, and it implies () = ()*. Therefore, we can see that the similarity transformation 

is uniquely determined by A and C matrices, and F, G matrices do not influence T. 

Extend this result to the general nth order system. By the generalization of (4.45), 

it is clear that t 1,1 = 1, t 1,i = 0, i = 2, ... , n. From the generalization of (4.46), 

a* 1 1 0 0 a1 + t2,1 t2,2 t2,3 t2,n 
Lt2,ia: t2,1 t2,2 t2,n-l a2 + t3,1 t3,2 t3,3 t3,n 
Lt3,ia: t3,1 t3,2 t3,n-l a3 + t4,1 t4,2 t4,3 t4,n 

Ltn-1,iai tn-1,l tn-1,2 tn-1,n-l an-I+ tn,1 tn,2 tn,3 tn,n 
Ltn,iai tn,l tn,2 tn,n-1 an 0 0 0 

where i = 1, ... , n. Solve the above equation for the elements of T, and we obtain 

T = In. Therefore, () = ()* for linear matrices A, B, C, D. Since T = In, the bias 

conditions can also be simplified as 

p 

(J 

F + (A - J)rt(A(P - F) + l(G - G)) 

G + crt(A(P - F) + l(G - G)). 

Simplify the above equations, then 

[ In - (A - J)rt A (In - A)rt1 ] [ ~ - F ] = O 
-crt A 1 - crt1 a - a 

Hence if the matrix in the l.h.s. is not singular, then 

P-F=OG-G=O 
' 

( 4.47) 

(4.48) 

(4.49) 

( 4.50) 

which implies structural identifiability of CASS model in observable canonical form. 

D 

Even though the theorem results in a simple condition to check the structural 

identifiability, pseudo-inverse of r necessitates the use of symbolic computational 

software. Simpler method can be derived by extending the transfer function method 

for linear systems to affine systems. 
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Proposition 4.3 (Structural Identifiability of CASS model) CASS model is 

not identifiable from input-output. 

Proof: From the sufficient condition of the equivalence of CASS model, we can trans­

form any CASS model into observable form. Then, by taking the z-transformation 

of the CASS model with parameterization ( 4.28) through ( 4.33) in addition to the 

parameterized initial states. The transfer function becomes 

Y(z) = 

Combine and simplify the equation 

Y(z) = [dzn + (bi - a1d)zn-l + ... + (bn - and)] U(z) 
zn - a1zn-l - a2zn-2 - ... - an 

+ [(g + x01)zn + (/1 - a1g + Xo2 - Xo1)zn-l 
zn - a1zn-l - a2zn-2 

+ ... +Un - ang - Xon)] _z_ 
- ... - an z - l 

z 
G(z; O)U(z) + H(z; 0) z _ l 

Similarly, the i/ o relation of parameter vector O can also be represented as 

- - - z 
Y(z) = G(z; O)U(z) + H(z; 0)-. 

z-l 

(4.51) 

(4.52) 

(4.53) 

Since U(z) is arbitrary, G(z; 0) = G(z; 0) and this implies H(z; 0) = H(z; 0). Since the 

denominator of H(z; 0) is same as H(z; 0) and the numerators of H(z; 0) and H(z; 0) 

are polynomial functions, the numerators must be same. Since the numerators are nth 

order polynomials with 2n + 1 coefficients, observable CASS model is not structurally 

identifiable. D 
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Remark 4.1 In some literatures, initial conditions are not explicitly considered in the 

definition of structural identifiability (Van Den Hof, 1998). This may be contributed 

by the fact that the effect of initial states decays away for stable systems, and structural 

identifiability has been usually considered for gray box identification, which implies a 

fair amount of a prior knowledge about the system. In the above proposition, CASS 

model is structurally identifiable without initial states. However, assuming known 

initial states in multimodels can be a very restrictive assumption. 

4.4 Significance of unidentifiability of CASS model 

The unidentifiability property of CASS model shown in the previous section is quite 

a discouraging result. Without identifiability, the model cannot be recovered uniqely, 

which results in the failure of identification. Hence, with the problem of recurisve 

i/o model noticed in Chapter 3 and problem of unidentifiability of state space fuzzy 

model, the chance of justifying multimodel approaches to identification and con­

trol by rigorous way is slim. In this section, we investigate the significance of the 

unidentifiability from different perspectives by considering several popular identifica­

tion methods. 

4.4.1 Optimization method 

In linear as well as nonlinear system identification, optimization based approach is the 

most popular one because of its general applicabilities regardless of model structures, 

and good convergence of model i/ o to the measured i/ o data. In this subsection, 

we consider the identification of CASS model by solving nonlinear least squares. We 

derive sensitivity functions of the model such that nonlinear least squares can be 

used. We illustrate the porblem of blindly applying optimization method for the 

identification without verifying the identifiability of the model. 

Optimization problem is to find parameters that minimize a cost function. The 
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application of optimization method to system identification is by minimizing the 

differences between the system and the model. Since the system is unknown, the 

difference is usually described by the outputs of the system and the model. One of 

the most common choices of the error measure is the summed squared error such as 

V(B) = 2~ I: E(t1B)2 

t=O 

2~ I:(y(t) - y(t1B))2, 
t=O 

( 4.54) 

or in a vector form 

V(B) = 2~E(Bf E(B), ( 4.55) 

where y(t) is the measured output, y(tlB) is the model output, E(t1B) = y(t) - y(t1B), 

and E(B) = [E(OIB), E(llB), ... , E(N - llB)JT. The minimization using this measure is 

called the Least Squares (LS) problem. We summarized the basic concept of nonlinear 

least squares in the Appendix A for the completeness of the presentation. 

To update parameters using nonlinear least squares, the computation of gradi­

ent and/ or Hessian of ( 4.54) is essential. For dynamical systems, the calculation of 

these derivatives can be complicated since the effect of parameter changes propagates 

through states. One way to see this propagation effect is by considering the following 

equation with parameter B, 

z(k + l) = J(e, z(k)), k = l, 2, 3. 

In the above equation, z(3) can be rewritten as 

where Zk represents the state at k. In order to compute the first derivative of z(3) 

with respect to B, we have to apply the chain rule up to z1 . The representation of this 

process can be simplified by using the so-called ordered partial derivative defined as 

91 



in (Piche, 1994), 

OZj - o+zj I 
OZ· - OZ· ' 

i i (z0 , ... ,Z;-i) held constant 

( 4.56) 

where z0 denotes the parameter e. Then for the above exemplary equation, 

(4.57) 

where 

( 4.58) 

and 
o+z1 OZ1 
ozo ozo · 

( 4.59) 

Another way to implement the chain rule and the ordered derivatives is as 

( 4.60) 

where 
o+z3 o+z3 OZ2 
-- ----

' oz1 oz2 oz1 
(4.61) 

and 
o+z3 OZ3 

-
OZ2 OZ2 

( 4.62) 

Since the sensitivity functions propagate forward in (4.57),(4.58),(4.59), this method 

is called the forward method. The propagation by (4.60),(4.61) and (4.62) is called 

the backward method for the same reason. Now, let us represent the partials of (4.54) 

with the ordered partial derivative for the model (4.3) and (4.4) parameterized by 

(4.28) through (4.33). First, consider the forward method. 

The first partial derivatives of ( 4.54) are as 

8V(B) 
oei 

o+fJ(t, e) 
oei 

o+x(t, e) 
oei 

_I_~ ( ( ) _ A( e)) o+fJ(t, e) 
N ~ Y t Y t, oe- ' 

bO i 

ofl(t, e) ofl(t, ef o+x(t, e) 
oei + ox(t) oei ' 

ox(t, e) ox(t, e) o+x(t - 1, e) 
oei + ox(t - 1, e) oei 
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It . 1 h fJx(t,e) - A d fJfj(t,e) - er Th d d . 1 f A ( ()) f h 1s c ear t at fJx(t-l) - an fJx(t) - . e or ere partia s o x t, or t e 

parameterization by ( 4.28) through ( 4.33) is given as 

a+x(t + 1) 1 A ( ) A a+ x ( t) ( 4.66) 
oa nXl t + Oa 

a+x(t + 1) a+x(t) 
(4.67) 

8B Inu(t) + A f)B 

a+x(t + 1) 1 A a+x(t) 
(4.68) 

f)F 
- n + f)F 

a+x(t + 1) A a+x(t) 
(4.69) 

ox(O) ox(O) ' 

where In is the n x n identity matrix, a = [a1, ... , an] and x(O) = [x1(0), ... , Xn(O)]. 

fJ+x(t) _ [fJ+x(t) fJ+x(t) fJ+x(t)] Th · 1 f A( ()) · d ~ - ~' ae;:-, ... , ao;:-. e partia so y t, 1s represente as 

ag(t) 
= [ a+:a(t)] r er (4.70) 

oa 

ag( t) [ a~~t)] r er ( 4.71) = 
8B 

ag(t) [ a~,t)] r er (4.72) f)F 
-

ag(t) [ a+x(t)] r r ( 4. 73) 
ox(O) ox(O) e 
ag( t) 

u(t) (4.74) 
8D 

ag(t) 
1. (4.75) 

8G 

Here, 8i~) is the gradient vector. 

The backward method can be derived by utilizing the ordered derivatives of V ( ()) 

with respect to x(t). That is, 

av(e) = [a+v(e)] r ax(t) 
f)()i ox ( t) f)()i . 

For the least square cost function (4.54), 

a+v 
ox( t) 

av ax(t+1)r a+v 
ox(t) + ox(t) ox(t + 1) 

( A( r r a+v 
- y(t) - Y t)) e + A ax(t + 1) 
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fort= 0, ... , N - l with initial condition 

a+v 
8x(N) = O. 

For the CASS model parameters, (4.28) through (4.33), 

av 1 N-i ax(t) r a+v 

8a -L--N t=O 8a 8x(t) 

av 1 N-i ax(t) r a+v 

8B N; 8B 8x(t) 

av 1 N-l ax(t) r a+v 

BF N ~ 8F 8x(t) 

and 

av 
N-1 -! L (y(t) - y(t))u(t) 

8D 
t=O 

av 
N-1 -! L(y(t) - y(t)) -

8G 
t=O 

where 

ax(t) 
Ini:1 (t - 1) 

8a 
ax(t) 

Inu(t - 1) 
8B 

ax(t) 
In. 

BF 

(4.78) 

(4.79) 

( 4.80) 

(4.81) 

( 4.82) 

( 4.83) 

( 4.84) 

( 4.85) 

( 4.86) 

By comparing the forward method with the backward method, we have to solve 

recurrent equations for each parameter related to the state equation as shown in 

( 4.66) through ( 4.69), which are 4n x n recurrent equations. In contrast, the back­

ward method only requires the recurrent equation ( 4. 77), which are n recurrent equa­

tions. Hence, when only the efficiency of the gradient computation is considered, 

the backward method is advantageous. The problem is the forward method leads 

to the Gauss-Newton method or the Levenberg-Marquardt method, which is much 

more efficient than steepest-descent method in the convergence rate. Hence, we can 

94 



conclude that the forward method will lead to more efficient overall convergence than 

the backward method. 

It is straightforward to apply nonlinear least squares, once sensitivity functions are 

available. However, unique estimation of unknown parameters is not valid because of 

the unidentifiability of CASS model structure. We illustrate this with the following 

example. 

Example 4.1 Consider the following CASS model as the data generating system 

from Chapter 3, 

x(t + 1) 

y(t) 

Ax(t) + Bu(t) + F 

Cx(t) + Du(t) + G, 

( ) _ [ ( ) ( )]T A _ [ 0.965 0.0975 ] B _ [ 0.005 ] C _ [ O 456 where x t - x1 t X2 t , - _ 0_689 0.916 , - 0.0975 ' - - · 

[ -0.00791 ] D = 0, F = _ 0_1483 and G = 0.814. 

A data set with a length of 1000 is obtained by exciting the system with Gaussian 

random input with mean 7 and unit variance. The nonlinear LS based algorithm 

is implemented using the Levenberg-Marquardt algorithm with the simple Levenberg­

Marquardt parameter update rule by the multiplication/division factor. The trust­

region type method was also implemented (Kelley, 1999 ), however, it did not show 

much difference in the convergence rate. Initial parameters are chosen randomly. 

Instead of converging into the true parameters, the nonlinear least squares based 

algorithm converges to the parameter sets to satisfy (4.51) in Proposition 4.3. Hence, 

we can interpret the property of structural identifiability into the existence of global 

optimum. We believe that the observation of this result is important since bias terms 

are commonly used in nonlinear black box model structures. 
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I 4.4.2 Input-output based method 

From this subsection to the rest of this chapter, we only focus on the identification of 

the bias terms. This is motivated from the observation of the behavior of the optimiza­

tion based method. In the optimization based method, the model parameters of the 

linear portion are uniquely recovered from data while the bias terms are incorrectly 

estimated. The estimation of the linear portion can be easily done by introducing 

new variables as Jx(t) = x(t+ 1) -x(t), Ju(t) = u(t+ l)-u(t), Jy(t) = y(t+ l)-y(t), 

and take the differences of (4.3) and (4.4) respectively, then we obtain 

Jx(t + 1) 

Jy(t) 

AJx(t) + BJu(t), 

CJx(t) + DJu(t). 

Now, we can apply subspace method to estimate A, B, C, D matrices. Since we con­

sider a canonical form, the estimation can also be done by linear least squares. 

From (4.3)-(4.4), we can obtain i/o equation as 

(
~l ) y(t) - ~ CAi-i Bu(t - i) + Du(t) = [ I:!:i CAi-l 1 ] [ ~ ] + CAt-1x(O) 

( 4.87) 

Suppose that the parameters of linear portion of CASS model are estimated from 

the procedure described above, the l.h.s of the equation is all known and this is a 

typical linear least square problem. Even though the estimation of linear matrices 

can contain estimation errors, we ignore the effects. Denote ( 4.87) as 

z(t) = cp(tf e ( 4.88) 

wherez(t)=y(t)-(I:!:iCAi-1Bu(t-i)+Du(t)),cp(t)T= [ CAt-I I:!:iCAi-I 1 J 

and()= [x(O)T, Fr, QTJT. Then the matrix-vector representation of (4.87) is given as 

( 4.89) 
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where Zand <I> are augmented vector and matrix of z(t) and <pT(t) at t = 0, ... , N -1 

with N the number of data. In order for (4.89) to have a unique solution, <I> must 

have full column rank. We verify the condition of full column rank in the following. 

Proposition 4.4 (Rank deficiency of CASS model) <I> is rank deficient 

Proof: The <I> matrix is represented as 

<I> = 

C 
CA 
CA2 

0 
C 

C+CA 

1 
1 
1 (4.90) 

From the second row, do the row manipulation by subtracting the previous row from 

the current row and we obtain 

C 0 1 
C(A- I) C 0 

<I> = CA(A-1) CA 0 (4.91) 

CAN-2(A-I) CAN-2 0 

From Cayley-Hamilton theorem, An = a0I + ... + anAn- 1 . Hence, we can easily see 

that the rank of <I> is n + 1. D 

Remark 4.2 From the above proposition, we can see that the estimation of [F, GJ is 

not unique because of rank deficiency. 

4.4.3 Bias estimation by augmented states 

It is a common practice to augment the unknown biases as additional states and 

apply the well-known Kalman filters for the estimation of the states of a linear sys­

tem with biases (Friedland, 1969). CASS model is indeed a linear state model with 

states/output biases and it might be natural to consider the augmented Kalman filter 
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as a viable solution for the bias estimation. The augmented system can be represented 

as 

[ 
A In O l [ x(t) l [ B l 0 In O z1(t) + 0 u(t) 
0 0 1 z2 (t) 0 

( 4.92) [ 
x(t + 1) l 
z1(t+l) 
z2(t + 1) 

y(t) [ 
x(t) l 

[ C O I] z1 (t) + Du(t). 
z2(t) 

( 4.93) 

The basic property that the augmented system has to satisfy is the observability. The 

result is as follows. 

Proposition 4.5 (Observability of augmented linear model from CASS model) 

The augmented linear system is not observable. 

Proof: The observability matrix is same as 1> matrix in Proposition 4.4 and the rank 

of the matrix is shown to be n + l. D 

Remark 4.3 In (Bembenek et al., 1998), the observability of augmented linear sys­

tem for Kalman filters with state bias is shown. They also concluded that the aug­

mented system is unobservable with single output but this can be relaxed with multiple 

outputs, which can be interpreted as a method for experiment design. 

4.4.4 Bias estimation by robust observer 

By now, the significance of unidentifiability of CASS model in system identification 

must be clear. In this subsection, we adopt quite a different approach. Motivated 

from control theories, we attempt to utilize observers to estimate states and use this 

state estimates for the estimation of states/ output biases. The estimated states from 

observers are biased for affine systems since the states/output offset terms work as 

step disturbances. To reduce the bias caused by the affine terms, we investigate state 

estimation by robust observers. Since we are interested in off-line approach, we also 
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investigate if iteration of state estimation followed by offset estimation can improve 

the estimation of the offset terms. 

Firstly, consider the Luenberger observer. Since Luenberger observer does not deal 

with disturbances explicitly, we can expect that the unknown states/output offsets 

will have significant effects on the state estimates. For simplicity, let D = 0 and 

G = 0. That is, 

x(t + 1) 

y(t) 

Ax(t) + Bu(t) + F 

Cx(t). 

Then, Luenberger observer is represented as 

x\t + 1) 

yi(t) 

Axi(t) + Bu(t) + F + L(y(t) - yi(t)) 

Cxi(t). 

(4.94) 

( 4.95) 

( 4.96) 

(4.97) 

where Lis the observer gain. The superscript i in yi(t) and xi(t) is index for iteration, 

which will become clear shortly. Ignore the estimation error of A, B and C matrices 

and only consider that F is uncertain. Since F is not certain, replace F in the ( 4.96) 

with fti. Then, by subtracting ( 4.96) from ( 4.94) and by defining estimated states 

error xi(t) = x(t) - xi(t), we obtain an observer error dynamics as 

xi(t + 1) Axi(t) + fti - L(y(t) - yi(t)) 

(A - LC)xi(t) + fti. ( 4.98) 

If the observer gain L is chosen such that A - LC is stable, in steady state, the states 

estimate error is xi ( t) = xi ( oo) and 

( 4.99) 

Now, we may wonder how to improve the estimate of F from xi(t). From (4.94), a 

reasonable choice would be 

fti+1(t) = xi(t + 1) - (Axi(t) + Bu(t)). 
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As is obvious from the above equation, i denotes the index of iteration for the estimate 

of F. Now, the question is if _Fi+l is better than .fri. In order to see this, define the 

bias estimate error fti(t) = F - .fri(t). Since F is constant, it is enough to consider 

only the steady state error fti = F - .fri. Rewrite (4.100) as 

(4.101) 

Hence, the bias estimate error P can be obtained from (4.101) and (4.94) as 

(4.102) 

In steady state, ii(t) = ii(oo) and we can obtain 

(4.103) 

where I is the identity matrix. We denote fti(oo) as fti for convenience. Then from 

( 4. 99), we can obtain the error dynamics of the bias estimation as 

(4.104) 

We can simplify the equation by matrix inversion Lemma (Brogan, 1991), 

(I -A+ LC)-1 (I - A)-1 - (I - At1 L(I + C(I - A)- 1 L)-1C(I - A)- 1 

(I - A)- 1 - a(I - A)- 1 LC(I - A)- 1 (4.105) 

where a= 1/(1 + C(I - A)-1 L). Then, 

(I - A)(I - A+ LCt1 = I - aLC(I - A)-1 (4.106) 

and the bias error dynamics is simplified as 

(4.107) 

(4.107) shows that fti -, 0 as i -, oo if all the eigenvalues of I - aLC(I - At1 

is inside unit circle. However, this is not the case as can be shown in the following 

proposition. 
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Proposition 4.6 (Convergence of iterative bias estimation using Luenberger 

observer) Given the simplified CASS model in (4.94), the Luenberger observer based 

iterative bias estimation does not converge to the true bias, that is, 

poo =/ 0. (4.108) 

Proof: Consider the steady state of Fi, that is, fri = F00 , then from ( 4.107), we can 

see that 

which results in 

(I - a.LC(! - A)-1)F'00 

poo - a.LC(! - Atl poo' 

a.LC(! - A)-1 F'00 = 0. 

(4.109) 

(4.110) 

(4.111) 

However, LC ( I - A )-1 is rank 1 because 

and rk(LC) 

solution. 

rk(LC(I - At1) ::::; min(rk(LC), rk(I - At1) (4.112) 

1. Therefore, we can conclude that F'00 has nonzero steady state 

D 

Proposition 4.6 shows that Luenberger observer based iterative method does not 

provide the unbiased estimate of F. This is somewhat intuitive since Luenberger 

observer does not explicitly deal with disturbances, and fri in ( 4.98) can be interpreted 

as bounded disturbance. 

Now, we might wonder if we can find a remedy to make the bias estimation 

dynamics ( 4.107) stable. Reconsider ( 4.107) and place some extra variable to stabilize 

the dynamics as 

(4.113) 

where AF = [I - a.LC(! - A)-1] and vi is an extra variable to stabilize the error 

dynamics of the bias estimation. ( 4.113) appears to be a typical state feedback 
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control problem, however, the state feedback Pi is not available since Fis not known. 

Instead, try vi = K fi. This additional term is same as modifying observer as 

i:i(t + 1) 

f/(t) 

Ai:i(t) + Bu(t) + fi + L(y(t) - f/(t)) - K.Fi 

Ai:i(t) + Bu(t) + (I - K)Fi + L(y(t) - f/(t)) 

Cxi(t). 

(4.114) 

(4.115) 

(4.116) 

That is, the state offset estimate is multiplied by non-unity gain. Then, the new error 

dynamics becomes 

AFPi + K.Fi 

(AF - K)Fi + KF 

(4.117) 

(4.118) 

by adding and subtracting K F in the right hand side. We may decide K using any 

linear controller design method such as LQR or pole placement. Then in stead state, 

we obtain 

(I - AF+ K)F00 = KF. (4.119) 

Since F'00 = F - F00 , the above equation can be simplified as 

(I - (I-AF+ Kt1K)F = F'00 • (4.120) 

So, F can be recovered from .F00 if the matrix in the left hand side is invertible. 

Unfortunately, this is not the case, either. Since AF= [I -a.LC(! -A)-1], I -AF+K 

lS 

I-AF+K I - [I - a.LC(! - A)-1] + K 

a.LC(! - At1 + K. 

With the above equation, (4.119) becomes 

(a.LC(! - At1 + K)(F - .F00 ) = KF, 
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then 

(aLC(I - A)-1 + K)F00 = aLC(I - A)-1 F. (4.124) 

Since the matrix in the right hand side of (4.124) is not invertible because LC(I-At1 

is rank 1, F cannot be recovered from F00 • 

The above results show that Luenberger observer based method cannot recover 

the true state biases. Now, the question is 'is there any observer that can estimate 

the unknown states correctly in the presence of step disturbance?' For this purpose, 

we investigate robust observers. 

Sliding mode control is a robust variable structure control which can ensure per­

formance and stability in the presence of bounded uncertainties. Motivated from the 

robustness of sliding mode control, we try to find the counterpart in the observer area. 

Since sliding mode observer is closely related to sliding model control, we present two 

discrete-time sliding mode controller in Appendix B. Despite the similarity between 

sliding mode controller and observers, they have differences in that sliding mode con­

troller is based on state feedback while only output feedback is used in sliding mode 

observer. Because only the output feedback is available in observer design by its na­

ture, the uncertainty of the system in sliding mode observer design is usually limited 

to the canonical form, that is, 

Xn(t + 1) g(x(t), u(t)) 

where g(.) is a nonlinear/uncertainty function of state, input, and disturbances (Choi 

et al., 1999). Also, the literature is scarce about discrete time system with general 

uncertainty. The discrete time sliding mode observer reported in (Haskara and Utkin, 

1998) is only for nominal model. In the rest of this subsection, we derive a discrete­

time sliding mode observer, which is an extension of the discrete-time sliding observer 
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proposed in (Haskara and Utkin, 1998) by accounting for the bounded model uncer­

tainty. The second controller in Appendix B is used for the purpose, because of its 

simplicity compared with the first one. 

To start the derivation, reconsider the CASS model in observable form ( 4.28)­

( 4.33). Since the model is already in a canonical form, we can rewrite the equation 

as 

y(t + 1) 

Xr(t + 1) 

Auy(t) + A12Xr(t) + B1u(t) + F1 

A21Y(t) + A22Xr(t) + B2u(t) + g 

(4.125) 

(4.126) 

where Xr(t) is the remainder states, i.e. Xr(t) = [x2(t), ... , Xn(t)JT. Aj is the block 

matrix of A matrix of (4.28). That is, 

[ An A12 ] = 
A21 A22 

[ F1 I F2 ]T 

[ B1 I B2 ( 

a1 1 
a2 0 

an-I 0 
an 0 

0 
1 

0 
0 

0 
0 

1 
0 

(4.127) 

(4.128) 

(4.129) 

Then, the modified form of the observer proposed in (Haskara and Utkin, 1998) has 

the following 

i)(t + 1) 

xr(t + 1) 

Aui)(t) + A12Xr(t) + B1u(t) + Fi - v(t) 

A21i)(t) + A22xr(t) + Bru(t) + F2 + Lv(t) 

(4.130) 

( 4.131) 

and the observer error dynamics is obtained from (4.125)-(4.125) and (4.130)-(4.131) 

as 

i)(t + 1) - Ani)(t) + A12Xr(t) + Fi + v(t) 

Xr(t + 1) A21i)(t) + A22Xr(t) + A - Lv(t). 
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The sliding surface for the observer is 

s(t) = Cx(t), (4.134) 

that is, the output y(t). v(t) in the observer is an additional term to compensate the 

error caused from unknown initial conditions and/ or model uncertainties. Choose 

v(t) as 

v(t) = Veq(t) - ~v(t) (4.135) 

Veq(t) is the equivalence control term for the case without any model uncertainty, 

that is, the equivalence controller on the sliding surface. From ( 4.132), we can obtain 

Veq(t) by ignoring Fi(t). The resulting Veq(t) is 

(4.136) 

However, i\(t) is not available. Therefore, we have to rely on the estimate of Xr(t) 

instead, as 

(4.137) 

In order to obtain the estimate of Xr(t), replace v(t) in (4.133) with (4.135). And we 

obtain 

A21Y(t) + A22Xr(t) + A 

-L (- (Auy(t) + A12xr(t)) - ~v(t)) (4.138) 

(A21 + LAu)y(t) + (A22 + LA12)xr(t) +A+ L~v(t). (4.139) 

We may obtain the estimate of xr(t) from the above equation as 

(4.140) 

Define the error of the estimate of Xr(t) as e(t), that is, e(t) = Xr(t) - ir(t) and by 

subtracting (4.140) from (4.139), then we obtain 

e(t + 1) = (A22 + LA12)e(t) + A. 
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Hence, we can see that the error of state estimation error is bounded if L is chosen 

to guarantee stability. The resulting error dynamics of i)(t) is 

y(t + 1) = Ai2e(t) + Fi - ~v(t). (4.142) 

The remaining state error dynamics is obtained by replacing v(t) in (4.133) with 

(4.135) as 

ir(t + 1) (A2i + LAn)iJ(t) + A22ir(t) 

+LAi2ir(t) +A+ L~v(t). 

(4.143) 

Since e(t) = Xr(t) - ir(t), ir(t) = Xr(t) - e(t). Then, the remaining state error 

dynamics can be rewritten as 

ir(t + 1) = (A2i + L(An + a))y(t) + (A22 + LAi2)ir(t) 

+A - LAi2e(t). (4.144) 

Now, decide ~v(t). From the second controller in. the Appendix B, the sliding 

mode y(t) must satisfy the following equation in order to have attracting boundary 

layers. 

(y(t + 1) - y(t))(y(t + 1) + y(t)) < 0. (4.145) 

Then From (4.142), the above condition becomes 

(Ai2e(t) + Fi - ~v(t) - y(t))(Ai2e(t) + Fi - ~v(t) + y(t)) < 0 (4.146) 

which is satisfied if 

Ai2e(t) + Fi - y(t) < ~v(t) < Ai2e(t) +Fi+ y(t) if y(t) > o (4.147) 

Ai2e(t) +Fi+ y(t) < ~v(t) < Ai2e(t) + Fi - y(t) if y(t) > 0. (4.148) 

Because of the definition of block matrix Ai2, Ai2e(t) = ei(t). It is common to choose 

the observer gain so that observer has dead beat response. Also, for the simplicity of 
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the derivation, choose L = 0, which leads to dead beat response of the error dynamics 

(4.141). Then, from (4.141), we can see that 

(4.149) 

Therefore, it is obvious that 

n n 

IAi2e(oo) +Fil= IL hi< L lfil· (4.150) 
i i 

From Appendix B, the boundary layer can be chosen to be 

n 

<p = L lh I + Eq,. (4.151) 
i 

Therefore, we can choose Llv(t) as 

{ o if ly(t)I > <I> 

Llv( t) = ay-(t) I ( ) I if yt s</> 
(4.152) 

where <p is a boundary layer and is chosen as <p = I:; lhl + E4>. Here, Ecf> is a small 

positive constant. a must be chosen to be O < a < Ect>/ <p. 

In steady state oft - oo, the error dynamics are written as ,., 

(I - A22 - LAi2)e(oo) - F2 

(1 + a)y(oo) Ai2e(oo) + Fi 

(4.153) 

(4.154) 

(A2i + L(An + a))y(oo) - LAi2e(oo) + A{4.155) 

Simplify the error dynamics by choosing L = 0, the observer gain for dead beat 

response and compare the sliding mode observer with Luengerber observer with dead 

beat observer error dynamics in the following proposition. 

Proposition 4. 7 (Steady state error of sliding mode observer) The proposed 

sliding mode observer has reduced effects of unknown state offsets on the first state 

Xi (t) than Luenberger observer. 
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Proof: The steady state error of Luenberger observer is from· (4.99), 

(I-A+LC)x1 = F, ( 4.156) 

where subscript l represent Luenberger observer. We omit oo in this proof to simplify 

the notation. For comparison with sliding mode observer, choose the observer gain 

so that the error dynamics has dead beat response. The dead beat response gain is 

L1 = [a1 , ... , an]T. Since the system matrices are in canonical observable form, (4.156) 

with this gain has the following special structure 

1 -1 0 
0 1 -1 0 ... 

Xl = 

0 0 0 1 

By adding all the rows, we can single out a solution for (x1) 1 as 

n 

We can solve for the rest of the steady state errors and obtain 

n 

(x2)1 - Lh 
2 
n 

(x3)1 Lh 
3 

(4.157) 

(4.158) 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

In contrast, sliding mode observer has more complex stead state error equations 

as (4.153)-(4.155). For notational convenience, we omit subscript s for the steady 

state errors of sliding mode observer. Similarly, (4.153) has with L = 0 for dead beat 
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response leads to the solution, 

n 

e1 - I:i 
2 
n 

e2 - I:i 
3 
n 

e3 I:i 
4 

where e = [e1 , ... ,en-if. From (4.154) and (4.163), we obtain 

which is simplified as 

(4.163) 

(4.164) 

(4.165) 

(4.166) 

(4.167) 

(4.168) 

(4.169) 

Compare (4.158) with (4.169) and we can see that e1 is smaller than (e1)1 since 

l+a>l. 

The rest of state observer errors can be solved from (4.155). Similar with (4.163)­

(4.167), 

(4.170) 

(4.171) 

(4.172) 

(4.173) 

Hence, even though the first observed state of sliding mode observer has reduced 

effects of unknown state offsets, the effects on the remaining states are inconclusive. 

D 
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Remark 4.4 The selection of observer gains to be dead beat response is for conve­

nience. However, it is still true for general observer gains that the first states has 

improved estimates. To see this, take the ratio between (x1)i and x1 as 

(4.174) 

Since the observer gains have to be chosen to stabilize the observer error dynamics, 

all the poles of the observer error dynamics must be inside the unit circle, that is, 

the eigenvalues of {4,141) and (4.98) must be inside the unit circle. This implies 

that l - L; li and l - L; ai + L;(li)l are positive since these two equations can be 

obtained from the characteristic equations by replacing z with l. That is, 

n l n-1 l l Z - 1Z - ... - n-1Z - n 

is the characteristic equation for sliding mode observer. By replacing z with l, we 

obtain l - L; li. Since l + a > l, we can see that we can make x1 reduced by choosing 

the sliding mode gain properly. 

To the author's knowledge, there is no robust observer that can estimate unbiased 

states in the presence of uncertainty. The best that we can do is to have bounded 

response. Similar with Luenberger observer case, we can try iteration of recursive 

states and bias estimation. The bias estimation error dynamics can be obtained as 

fi'i+l = (I - A)x(ao). (4.175) 

x ( oo) is a function of Fi, iteration process may lead to the unbiased estimate of F. 

However, numerical computations of the poles of the dynamics with several different 

systems show that the steady state equation by F'00 has only rank one. We investigate 

the cause of this rank deficiency. 
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Proposition 4.8 (Property of observer based iteration for state offset esti­

mation) Observer based iteration process for bias estimation does not converge to 

the unbiased estimate. 

Proof: Consider the original system and an observer 

x(t + 1) - Ax(t) + Bu(t) + F 

xi(t + 1) - Axi(t) + Bu(t) + fri + w(t)i 

(4.176) 

(4.177) 

where w(t)i is the additional terms in observer to compensate the model errors and 

unknown initial conditions. We can easily obtain observer dynamics by substracting 

the first equation from the second, then 

The new update of fri+l can be represented as 

xi(t + 1) = Axi(t) + Bu(t) + fri+l 

then the error dynamics can be obtained in a similar way 

i/(t + 1) = Axi(t) + fei+ 1 

Subtract (4.178) from (4.179), we obtain 

fri+1(t) = fri(t) - wi(t) 

(4.178) 

(4.179) 

(4.180) 

(4.181) 

Suppose that there is steady state in terms of i, the fri = fri+l since fri = F00 • Hence 

it implies that w(t)i = 0 in stead state, which shows that additional control from 

observer does not have influence in fri in steady state as i ---+ oo. D 

Remark 4.5 For Luenberger observer, wi(t) = Lfi(t). Lis nx l vector, which shows 

that ii will have infinite number of solutions. For the sliding mode observer, 

wi(t) = [ ~l ] v(t). (4.182) 
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4.5 Discussion 

In this chapter, we investigated direct identification of CASS model. Motivations 

of studying this type of model structures are illustrated. Even though the need of 

CASS model for control is obvious, the identification of the model is not trivial and 

revealed serious problems. Several methods from estimation and control have been 

investigated but all failed to recover the system. The question that we may wonder is 

"does it mean that multimodel approach cannot be applied in practice in a rigorous 

way?" We try to answer this question in the next chapter. 
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Chapter 5 

Identification of a CASS model by 
nonlinear state realization 

5.1 Introduction 

In the previous discussions, we show the limitations of TS fuzzy models from system 

identification point of view. An alternative model structure, so called CASS model 

was proposed, because of the problems of conventional recursive i/ o type local models. 

However, this local model structure is turned out to be unidentifiable despite the clear 

interpretation in terms of dynamic systems and the obvious demands from multimodel 

based control. The significance of unidentifiability was analyzed in several different 

model structures and estimation methods. For the original form of CASS model, the 

unidentifiability is caused because only the output is assumed to be measured. Hence, 

we can expect that the unidentifiability of the CASS model can be relaxed with full 

state measurement. Motivated from this possibility of CASS model identification 

with full state measurement, we attempt a solution from totally different perspective, 

which is to utilize state realization of intermediate nonlinear i/ o model. The i/ o model 

is only intermediate since our ultimate goal is to identify CASS model for multimodel 

composition. 

Our approach can also be considered as an alternative to use nonlinear black box 

models. In intelligent control literatures, controllers utilizing NARX type nonlinear 

113 



models are usually trained through the model instead of being designed. This is 

because the complexity as well as nonlinearity of the model make any analytical 

design approach of controller infeasible, in spite of the absence of analytical assurance 

of nominal or robust stability and performance. Our contributions in this chapter is, 

therefore, can be summarized as the proposal of nonconventional way to handle the 

unidentifiability of CASS model as well as proposing a way for the design of controllers 

using black box nonlinear i/ o models. 

This chapter is not a complete chapter. Rather, the purpose of this chapter is 

to introduce a new idea and identify problems for future research. Since data based 

state realization is still immature and there is no working solution for our needs, this 

indirect identification method is premature to be fully addressed at this moment. 

This chapter is organized as follows. We propose a data based state realization 

method for linear systems and utilize the state estimate for the identification of state 

space model in Section 5.2. In Section 5.3, we review nonlinear state realization, 

emphasized on data based state realization. In Section 5.4, recursive i/o model for 

state realization is investigated. We address issues of state realization for CASS 

model identification in Section 5.5. A simple example is used to illustrate the ideas 

and problems yet to be solved in Section 5.6. 

5.2 Data based state realization of linear system 

For linear systems, state realization is usually obtained from transforming i/o equation 

into transfer functions (Brogan, 1991). Even though this realization is straightfor­

ward, it has problems in applying to data based state realization. In this Chapter, we 

present a state realization technique that can be applied to data based state realiza­

tion in a straightforward manner. This realization is different from N erode realization 

using impulse response as in (Leontaritis and Billings, 1985) and is not found in any 

text. 
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Consider a linear state space system in observable form: 

x(t + 1) Ax(t) + Bu(t) 

y(t) - Cx(t) 

(5.1) 

(5.2) 

and the linear difference i/ o equation 

y(t) + a1y(t - 1) + ... + any(t - n) = b1u(t - 1) + ... + bnu(t - n), (5.3) 

and state realization is to transform the difference i/ o equation into state space system 

and vice versa. Firstly, consider obtaining state space from the i/o equation. 

Let 

X1(t) = y(t) (5.4) 

and from (5.3), 

y(t) = - (a1y(t - 1) + ... + any(t - n)) + (b1u(t - 1) + ... + bnu(t - n)). (5.5) 

Shift the time index t by 1 and we obtain the state equation for the first state as 

X1(t+l) y(t + 1) (5.6) 

- (a2y(t - 2) + ... + any(t - n)) 

+ (b2u(t - 1) + ... + bnu(t - n)) - a1y(t) + b1u(t) (5.7) 

- {(a2y(t - 2) + ... + any(t - n)) 

Since state equation is only a function of states by its definition, we denote the 

equation inside {} as x2(t). Increase the index oft in x2 (t) by 1 and follow the same 

procedure, then we obtain 

x2(t + 1) = - (a3y(t - 3) + ... + any(t - n)) 

+ (b3u(t - 1) + ... + bnu(t - n)) - a2y(t) + b2u(t) (5.9) 

x3(t) - a2x1(t) + b2u(t). (5.10) 
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Continue this procedure until we exhaust all the y(t) and u(t) terms as 

Xn-l (t + 1) - - (any(t - 1) + bnu(t - n)) 

-an-1Y(t) + bn-1u(t) (5.11) 

- Xn(t) - an-1X1(t) + bn-1u(t) (5.12) 

Xn(t + 1) - -any(t) + bnu(t) (5.13) 

-anx1(t) + bnu(t). (5.14) 

Rewrite the set of equations and we obtain the usual observable canonical state space 

realization, 

-a1 1 0 0 b1 
-a2 0 1 0 b2 

x(t + 1) 
0 

x(t) + u(t) (5.15) 

-an 0 0 0 0 bn 

y(t) - [ 1 0 ... 0 ] x(t) (5.16) 

From the above procedure, we can .deduce the state realization based on i/o data 

rathBr than i/o equation. That is, 

x1(t) -an -an-l -a2 -a1 y(t - n) 
X2(t) 0 -an -a3 -a2 y(t-n+l) 

-

Xn(t) 0 0 0 0 -an y(t - 1) 

bn bn-l b2 b1 u(t - n) 
0 bn b3 b2 u(t-n+l) 

+ (5.17) 

0 0 0 0 bn u(t - 1) 

Note that dimension of state space is same as the order of the regression or the 

maximum lag of the if o's. This implies that the state space that is obtained through 

this procedure is not necessarily minimal. Since minimality of state space cannot be 

verified without the state space equations, we have to identify the state space equation 

from the estimated states and the controllability and observability of the state space 

equations must be checked. The identification of state space equation from estimated 
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states is a simple linear least squares problem. We illustrate this idea in the following 

example. 

Example 5.1 Consider an arbitrary 3rd order stable linear discrete-time system 

x(t + 1) Ax(t) + Bu(t) 

y(t) - Cx(t) + Du(t) 

with system matrices as 

A= 0.2992 [ 
0.18558 0.1237 

0.23246 
0.32868 

0.35108 l 
-0.18388 

-0.22144 0.018463 

B = [ -0.85588 0 0 ( 

C = [ -0.98658 . O 0.18806 ] 

D=O. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

If x ( t) is measured, this becomes a straightforward linear least squares problem as 

(5.24) 

where the row of <I> and Y are [xT(t), uT(t)J and [xT(t + 1), y(t)], respectively. Here() 

is 

() = [ ~ ~ ]T (5.25) 

The state x(t) can be estimated from (5.17) once the intermediate i/o equation is esti-

mated. The identification of i/o equation can be done by linear least squares. Gener­

ate 1000 points of i/o data with input N(O, 1). The selection of system order is quite 

straightforward since the least squares for the identification of i/ o equation becomes 

singular if the order of regression exceeds 3. Therefore, the i/o model with nonsingu­

lar least squares solution can be considered as the minimal order of the system. The 
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estimated i/ o equation with order 3 accurately recovered the transfer function of the 

system since there is no noise in the system. The identified i/ o equation is 

y(t) = 0.4365y(t - 1) - 0.1520y(t - 2) + 0.0690y(t - 3) 

+0.8444u(t -1) - 0.1762u(t- 2) + 0.0305u(t- 3). (5.26) 

Since initial conditions are not known, it is better to use simulated outputs for the 

state estimation. Simulate the i/ o equation and the state estimate can be obtained 

from 

X1(t) y(t) 

X2(t) -0.152y(t - 1) + 0.069y(t - 2) 

-0.176u(t - 1) + 0.0305u(t - 2) 

X3(t) = 0.0690y(t - 1) + 0.0305u(t - 1). 

(5.27) 

(5.28) 

(5.29) 

This state estimates is the minimal observable state realization and we can obtain A 

and B from this state estimate using linear least squares. As expected, the matrices 

are recovered exactly as 

[ 
0.43649 1 -3.8698 X 10-15 ] 

A - -0.15202 1.0608 x 10-16 1 
0.068963 -2.7418 X 10-16 -2.8035 X 10-16 

(5.30) 

iJ = [ o.84439 -0.17623 0.030542 t. (5.31) 

Here the terms with 10-16 is caused by numerical error and can be considered as 

zero's. Compare this matrix with (5.15)-(5.16} and we can see that the linear state 

space is accurately identified. 

5.3 State realization of nonlinear recursive i/ o dif­
ference equations 

Inspired from the data based linear state realization and the use for the identification 

of state space equation, it is natural to seek the extension in nonlinear systems. 

118 



However, the state realization of nonlinear system is not as straightforward as the 

case of linear systems. The complication is caused by complex relationship between 

recursive i/o and state space equations of nonlinear systems. Also, the recursive 

definition of states are generally not possible for nonlinear systems since regression 

variables are not isolated by summation as in linear systems. In this and the following 

sections, we illustrate the complication of nonlinear state realization. 

For nonlinear systems, state realization is to construct a state equation 

x(t + 1) f(x(t), u(t)) 

y(t) - h(x(t)) 

for the i/ o difference equation 

(t) ( t-1 t-1 ) 
Y = 9 Yt-ny, ut-nu 

(5.32) 

(5.33) 

(5.34) 

such that the sequence (u(t), y(t)) generated by (5.32)-(5.33) are same as the ones 

from (5.34) with zero initial conditions, i.e. they are equivalent. Here, yt;Y = [y(t -

1), ... , y(t - ny)]T and u~=!u = [u(t - 1), .... , u(t - nu)f. Recently, the importance of 

state realization of recursive i/o difference models (5.34) has been recognized because 

of the gap between nonlinear system identification using recursive i/ o equations and 

controller design based on the description of (5.32)-(5.33) (Sadegh, 2001). 

Given recursive i/o equation like (5.34), one trivial state realization can be ob­

tained by defining state variables as x(t) = [y(t), ... , y(t - ny + 1), u(t - 1), ... , u(t -
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nu+ l)JT then 

X1(t + 1) - g(x1(t), ... , Xny(t), Xny+1(t), ... , Xny+n,,-1, u(t)) 

X2(t + 1) X1(t) 

Xny(t + 1) Xny-1(t) 

Xny+l(t + 1) u(t) 

Xny+2(t + 1) Xny+l(t) 

and the output relation is 

y(t)---: X1(t). 

However, the states of this realization are redundant. For control purpose, minimal 

realization is important. Non-redundant or minimal realization is, in general, de­

fined such that all the states are both observable and reachable (Sontag, 1979), while 

more strong conditions can be used such as controllability and observability of the 

linearized systems at every linearization point (Sadegh, 2001). In addition to the 

control purpose, minimality of state realization is important for system identification 

in state space, because minimal state realization is unique in the sense that two differ­

ent minimal realizations are isomorphic, that is, one,..to-one correspondence. In linear 

systems, the isomorphism is reduced to the mapping by similarity transformation 

matrix (Sontag, 1979). 

Most of state realizations in discrete-time domain are focused on Volterra series 

or polynomial type i/o relationships (Sontag, 1979). In (Diaz and Desrochers, 1988), 

state affine state realization from (Sontag, 1979) is used to obtain state space model 

for recursive i/o model instead of i/o model. Kotta et al. (2001) formulated the 
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state realization problem as complete integrability of differential forms. Minimal 

realization is guaranteed if the i/o equation is irreducible. However, the realization 

in these works are based on the manipulation of i/ o equations and real application of 

this state realization to general nonlinear black box model structures is not feasible 

because of the need of complex mathematical manipulations. 

More proper realization for our purpose can be found in (Sadegh, 2001). The idea 

of state realization reported by (Sadegh, 2001) is to consider a state space form such 

as (5.32)-(5.33) as the original system then derive a necessary condition for the state 

realization by utilizing collected i/ o equations such as 

y(t) 

y(t + 1) 

y(t+m-1) 

h(x(t)) 

ho f(x(t), u(t)) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

where Ji(x(t), u~+m) = fu(t+m) o fu(t+m-l)··· o fu(t)(x(t)) with function composition o. 

Here, the notation of!((.), u(t)) = fu(t)(.) is used for convenience. Suppose that the 

state space is not necessarily minimal but observable with x(t) E X C m_m. Denote 

the collected i/ o equation in the above by 

(5.39) 

where Hm is the vector function with hoji-1 as its component. Then by an application 

of implicit function theorem, we can obtain x(t) as an explicit function as 

(5.40) 

Here, x(Yi+m-I, u~+m-2 ) denotes that x(t) is a function of Yi+m-l and ui+m-2 by some 

abuse of notation. The application of implicit function theorem is possible because 

of the imposed observability condition. Now, we can obtain another state equation 
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as 

x(t + m) 

Assuming shift-invariance, we can obtain 

(t) ( t-m t-m) x = x Yt-1 ,ut-1 · 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

By replacing x(t) in (5.33) with (5.44), we obtain a recursive i/o representation from 

state space equation as 

y(t) = h(x(y!=f, u!=i)). (5.45) 

Because the implicit function theorem is only valid locally, the obtained recursive i/o 

equation is valid only locally. Collect i/ o equations as 

y(t) - h(x(y;=f, u!=i)) 

y(t + 1) - ho f(x(y!=f, u!=i), u(t)) 

y(t+m-1) h f m-1( ( t-m t-m) t ) 
0 X Yt-1 , Ut-1 , Ut+m-2 · 

Denote the above collected i/ o equation as 

t H ( ( t-m t-m) t ) Yt+m-1 = m X Yt-1 , Ut-1 , Ut+m-2 · 

From (5.50), we can see that (5.50) satisfies the following property 

( Dyt-mY!+m-i)-1 Dut-:-mY!+m-l = (Dyt-mx(t))-1 Dut-mx(t) 
t-1 t-1 t-1 t-1 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

where Dzx is the Jacobian matrix, i.e. ~~. This can be interpreted that the above 

equation is independent of u~+m- l. This property can be used as a necessary condition 

for a state realization. 
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The state realization from recursive i/ o is achieved by the following. Consider a 

recursive i/ o equation 

(t) ( t-m t-m) 
Y = 9 Yt-1 , Ut-1 · 

Increase the time index by 1 and we obtain 

y(t + 1) 

(5.52) 

(5.53) 

(5.54) 

Since (5.52) is recursive itself, replace y(t) in the above equation with (5.52) and 

define the structure as 

( t-m t-m (t)) 
91 Yt-1 ,ut-1 ,u 

(5.55) 

(5.56) 

where 91 (.) is a function that is originated from 9(.) by replacing y(t) with 9(.). We 

can obtain a collected recursive i/o from this procedure as 

y(t+m-l) ( t-m t-m t ) 
9m-1 Yt-1 'Ut-1 'ut+m-2 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

where 9i(.) is a set of functions originated by replacing y(t) with 9(.) recursively. 

Denote the above collected i/ o equation as 

t G ( t-m t-m t ) 
Yt+m-1 = m Yt-1 , Ut-1 , Ut+m-2 · (5.61) 

Consider a state vector candidate as 

(5.62) 
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where Gm(.) is a vector function that consist of 9i· For nonlinear systems, this choice 

may be contributed from (5.44) which is independent of u!+m-2 . Increment the time 

index t of (5.62) by one and we obtain 

- Gm(Y!=r+1; y(t), u~=f+1; u(t), 0) 

Gm(y;_::::r+1; g(y!=r, u~=f), u~=f+1; u(t), 0) 

Gm+(G;;:/(x(t), u~=f, 0), u~=f, u(t), 0) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

where G;;;,1(x(t), u~=f, 0) is a function that satisfies Gm(G;:;/(x(t), u~=f; 0), u~=f, 0) = 

x(t). This is obtained from the application of implicit function theorem to (5.62). 

Here, Gm+= [g1 (.), ... , 9m(.)JT. If the r.h.s of (5.67) is independent of u~=f, then the 

equation is the conventional state realization with output equation 

y(t) = x1(t). (5.68) 

Sadegh (2001) proved that (5.67) is a observable state realization if and only if (5.51) 

is satisfied. However, (5.51) is quite difficult to verify since it involves differentiation 

of block matrices and an inverse of one of them. For that reason, he also developed 

simpler formula to check the existence of observable state realization. Foley and 

Sadegh (2001) applied this result to several recursive i/o models, however, there is no 

result on the actual state realization of black box identified model, probably because 

of the complexity of the regression models. 

5.4 Identification of recursive i/o model for state 
realization 

As made clear from the previous section, the conventional state realization only exists 

for limited class of i/ o models that satisfy certain properties. As shown in previous 
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chapters, our main objective in this work is to identify the local state space. Since 

we assume that data generating system is in state space, the necessary condition for 

the existence of state space must be satisfied. 

The condition (5.51) is quite a general condition that only requires the invertibility 

of Jacobian of the collected output equations. However, the direct application of 

the condition to the design of recursive i/o model structure is difficult. Because 

of the difficulty, Sadegh (2001) also simplified the condition by taking advantage 

of the recursive nature of the collected i/ o equation and cancellation of common 

matrices in the two Jacobian. The simplified condition is that M(y;=f, u:=ri, U~+m-1) 

· · d d t f t M( t-m t-m t ) · d fi d 1s m epen en o ut+m-l · Yt-l , ut-l , Ut+m-l 1s e ne as 

M( t-m t-m t ) L ( t-m t"-m t )-1 L ( t-m t-m t ) Yt-1 , ut-1 , ut+m-1 = c, Yt-1 , ut-1 , Ut+m-1 /3 Yt-1 , Ut-1 , Ut+m-1 (5.69) 

where 
a1,1 a1,2 a1,m 

0 a2,1 a2,m-l 
Le,= (5.70) 

0 0 am,1 

and 
/31,1 /31,2 /31,m 

0 /32,1 /32,m-l 
L13 = (5.71) 

0 0 /3m,1 

Here, ai,j is the derivative of y(t + i) with respect to y(t- j) and /3i,j is the derivative 

of y(t + i) with respect to u(t - j). 

Since this is also the sufficient condition for the existence of state realization based 

on a specific definition of states from collected outputs in (5.62), we can design a 

regression model structure to guarantee the existence of state realization. In (Sadegh, 

2001), a model structure is proposed to satisfy the above condition such as 

m-1 
y(t) = L gi(y(t-m+i-1), y(t-m+i), u(t-m+i-l))+gm(y(t-1), u(t-1)) (5.72) 

i=l 
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where gi(-) is a function of the variables inside the parenthesis. As can be seen, this 

is a restricted structure of general nonlinear black box models since the regression 

variables are not fully connected inside the nonlinear model. We can see that the 

above regression model satisfies the existence condition of observable state realization. 

Closer look at (5. 72) reveals that this model structure is a limited nonlinear model 

structure that allows recursive definition of states just like linear state realization. 

However, even with this reduced model structure, state realization of the regression 

model based on the manipulation of equations is still prohibitive. To overcome the 

difficulty of equation based nonlinear state realization, we investigate data based state 

realization method using CASS model in the next section. 

5.5 CASS model identification using the state re­
alization 

With the availability of state information, identification of CASS model is a trivial 

linear squares problem as 

[ 
x(t) l 

x(t + 1) = [ A B F ] uit) (5.73) 

The problem is how to obtain minimal state realization such that the resulting 

CASS model is minimal. Since the state realization reviewed in the previous sec­

tion is only observable instead of minimal, utilization of the state realization may be 

problematic for the identification of minimal CASS model. In (Sadegh, 2001), an al­

gorithm is proposed to reduce the observable state realization to minimal by selecting 

only the controllability subspace. However, this .reduction process requires to com­

pute the controllability subspaces as well as nonlinear mapping from minimal state 

space to observable state space. Since the minimal realization is a difficult job, it is 

attractive if we can use the observable states to identify CASS model then perform 

the reduction process with the identified CASS model. However, this does not work 
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as shown in the following. 

Proposition 5.1 (Reduction of CASS model) The reduction process of CASS 

model is not same as the reduction process in nonlinear system. 

Proof: Consider a minimal state realization 

x(t + 1) f(x(t), u(t)) (5.74) 

y(t) h(x(t)), (5.75) 

and an observable state realization 

z(t + 1) !(z(t), u(t)) (5.76) 

y(t) ±a:: h(z(t)). (5.77) 

As shown in Lemma 3 in (Sadegh, 2001), there is a smooth map¢ satisfying 

z(t) = cp(x(t)). (5.78) 

Transformation of CASS model is same as applying (5.78) locally. The local mapping 

of (5.78) can be written as a linear approximation as 

8¢ I z(t) ~ ax(t) xo (x(t) - x0 ) + ¢(x0 ). (5.79) 

Since we do not know x0 , the affine term cannot be decided and the reduction process 

is not possible. D 

Because of the reduction of CASS model to minimal does not work locally, it is 

necessary to have minimal nonlinear state realization initially. However, obtaining 

nonlinear regression model which leads to minimal realization is quite demanding as 

explained before. Also, the minimal realization result reported in (Sadegh, 2001) is 

limited only around zero equilibrium point and cannot be generalized into equilibrium 

beyond the origin. We illustrate the problem in the following section with an example. 
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5.6 Examples 

We reintroduce the nonlinear model in Chapter 3 with modification in the output. 

For simplicity, we assume a direct measurement of one of the state. Hence, the data 

generating system is 

:i:1(t) X2(t), 

±2(t) -10sin(x1(t)) - 0.5x2(t) + u(t), 

y(t) - x1(t). 

Choose the sampling time T = 0.1 and obtain data by simulating the system with 

normal u(t) with mean 7 and unit variance. In this system, the CASS model ob­

tained by linearization and application of numerical integration is a good local state 

approximation as shown in Fig. 5.1. 

We use radial basis functions without bias to identify nonlinear regression model. 

As suggested in (Sadegh, 2001), specially structured neural networks is used to iden­

tify the data generating system in order to have state realization. In this example, 

we assume that we know the minimal order, in this case, 2, even though this is not 

feasible in practice. Then, in order to have observable state realization, the regression 

model with order 2 has the form as 

y(t) = 91(y(t - 2),y(t-1),u(t -1)) + 92(y(t- l),u(t- l)). (5.80) 

where 91 (.) and 92 (.) are radial basis functions with different regressors. In Fig. 5.2 and 

Fig. 5.3, the training and validation results of regression model are given, respectively. 

The output shows that regression model identify the local dynamics of nonlinear 

system fairly well. Estimate the observable states by (5.62). Use the estimated states 

and estimate CASS model matrices using (5.73). Since the states are not minimal, 

states are biased as shown in Fig. 5.4 
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Error of linearized system 
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Figure 5.1: Error of CASS model compared with nonlinear system; 
state 1 (Top figure), state 2 (Bottom figure). The initially large error 
is because the CASS model is obtained from linearization away from 
origin. We can observe that CASS model is a good representation of 
local nonlinear systems as the states of nonlinear system reaches the 
region that the CASS model is obtained. 
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Training of nonlinear regression model 
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Figure 5.2: Training results of nonlinear regression model; output (Top 
figure), training error (Bottom figure). 
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Validation result of nonlinear regression model 
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Figure 5.3: Validation results of nonlinear regression model; output 
(Top figure), validation error (Bottom figure). 
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Estimated CASS by nonlinear state realization 
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Figure 5.4: Error of CASS model compared with nonlinear system; 
outputs (Top figure), state estimation error (Bottom figure). 
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5. 7 Discussion 

In this chapter, we illustrated state realization of nonlinear recursive i/ o equations 

and showed how the state realization can be used for the identification of minimal 

CASS model. This indirect approach is proposed to overcome the unidentifibility 

property of CASS model. However, obtaining minimal realization is demanding job 

if not impossible. We showed that the reduction of observable realization to minimal 

realization cannot be done in local level but have to be considered using nonlinear 

isomorphic function. 
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Chapter 6 

Conclusion and Future study 

6.1 Conclusions 

This study is about nonlinear system identification for control by multimodels. Our 

initial work was influenced by literatures in multimodels identification and control, 

that is, to extend linear technologies to nonlinear systems by heuristics. Later, we 

turned out interest to multimodels based identification that has more sound the­

oretical basis. Motivated from multimodels based control, we considered general 

nonlinear systems represented in state space as the data generating system and try 

to develop a system identification methodology to recover the data generating sys­

tem. This approach of attempting to interpret multimodels identification revealed 

that conventional multimodels identification methods have no clear connection with 

data generating systems in terms of model structures. In the presence of ambiguity 

of the conventional multimodels identification, applying model based control to the 

identified multimodels is bound to be at most heuristic. 

We draw the following conclusions: 

1. Extension of linear technologies to nonlinear systems is limited as shown in 

the Laguerre basis function based identification. Even though the proposed 

algorithm showed impressive response in adaptive filtering to certain type of 

systems, the general applicability must be questioned, especially for control 
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related applications. 

2. Despite the intuitive appeal of multimodel approaches to system identification 

and control, it is difficult to make clear connection between i/ o based multi­

models structure and the general nonlinear systems in the conventional state 

space 

3. Despite the definite need of CASS model identification for control, CASS model 

is not directly identifiable. Implication of this property for CASS model is quite 

serious and contradicts the claim of divide-and-conquer. 

4. The indirect approach to identification of CASS model is promising. By the in­

direct approach, we can take advantage of expressive power of the conventional 

i/ o based nonlinear system identification as well as the transparency of multi­

models. Also, this approach has clear interpretation of the model structure in 

connection with conventional system theories based on state space representa­

tion. 

5. In conclusion, we have to be cautious in implementing multimodels based control 

with multimodels identification. Model development that has close connection 

with system theories is important as the reliability of mathematical models is 

critical in order to secure theoretical reliability of model based control. This is 

also essential to extend the reliability of control system to uncertain systems, 

that is, for robust control. 

6.2 Further works 

Since this is the first work ever taken to introduce rigor to multimodel frameworks for 

system identification in connection with control to the author's knowledge, we face 

with a wealth of open topics and problems. We provide a list of the open problems 
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in the following list. 

Rigorous treatment of true systems and the implications in system identi­

fication In this study, we considered the true systems in state space. More rigorous 

study is necessary to validate this assumption since the scope of nonlinear systems 

may be too abstract and general. Without the knowledge of the data generating 

systems, which is typical for system identification problems, the implication of true 

systems might be quite difficult to be appreciated. 

Nonlinear regression model for data based minimal state realization Since 

it is shown that direct identification of local state space model is not possible, the 

identification of intermediate nonlinear regression model is essential for the estimation 

of states for CASS model identification. Even though the research on discrete-time 

state realization has been taken for a while, most of the works are focused on equation 

based state realization, i.e. transforming regression equation into state space by 

mathematical manipulations. 

Sadegh (2001) is the closest work related to state realization from nonlinear black 

box system identification. However, the condition to satisfy, for the existence of 

state realization, is quite difficult to verify and is also difficult to be used for the 
I 

design of nonlinear regression model. Since the sufficient condition for the existence 

of state space in (Sadegh, 2001) is only for a special states defined by (5.62), more 

relaxed conditions for the design of nonlinear regression model structure is possible. 

For example, inspired by the recursive definition of linear state realization, we can 

define states recursively if the regression model is a product of functions of i/o's with 

different lags. That is, if the local nonlinear dynamics can be represented by the 

model 
m 

y(t) = II 1i(y(t - i))gi(u(t - i)), (6.1) 
i=l 
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it is straightforward to have state realization as 

x1(t) y(t) 
m 

xi(t + 1) - fi(x1(t))91(u(t)) IT fi(y(t - i))9i(u(t - i)) 
i=2 

This realization is observable which can be shown by taking Jacobian of collected 

output vector and the Jacobian is not singular. That is, consider the collected output 

vector 

y(t) 

y(t + 1) 

y(t + 2) 

y(t+m-1) 

xi(t), 

xi(t + 1) 

- fi(x1(t))91(u(t))x2(t), 

fi(xi(t + l))91(u(t + l))x2(t + 1) 

Ji (Ji (xi ( t) )91 ( u( t) )x2( t) )91 ( u( t + 1) )h(x1 ( t) )92( u(t) )xa (t), 

Fm-1(x1(t), ... , Xm(t), u(t), ... , u(t + m - 1)). 

and the Jacobian matrix is 

1 0 
X Ji ( ·) 91 ( ·) 
X X 

0 
Ji (.)91 ( · )/2(. )92( ·) 

... 0 
0 

... 0 (6.2) 

where Dx(t)Yi+m-l is the Jacobian matrix, i.e. ayJ!;) 1 • This is a lower triangular 

matrix with determinant 

IDx(t)Y!+m-ll = 1 · (Ji(.)91(.)) · (/1(.)/2(.)91(.)92(.)) · ···· (6.3) 
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This determinant is not zero unless Ji(.) or 9i(.) is independent of y(t - i) or u(t -

i), respectively. However, this type of regression model is not conventional in the 

sense that they are not spanned by basis functions even though this may be more 

general function class than the one proposed by (Sadegh, 2001). Therefore, we need 

to establish clear connection between regression models for function approximation 

or system identification and the regression models for state realization. 

State realization from regression models As mentioned before, most of works 

regarding state realization are equation based, utilizing algebraic geometry or differ­

ential geometry. Interpreting these works to data based realization methods can open 

up new horizon of state realization for nonlinear black box models. 

Multi-inputs and multi-outputs In this work, we only considered SISO case 

for simplicity and ease of development of ideas. For practical problems, the need 

to handle MIMO systems is inevitable. Indeed, introduction of more measurements 

may relax the unidentifiability of CASS model as for the case of biased state estima­

tion (Chmielewski and Klata, 1995). 

Stochastic disturbances In linear system identification, the effects on parameter 

estimation and the model error of stochastic disturbances have been the major issues. 

However, the stochastic effects on model error for general nonlinear systems have 

rarely attended seriously, probably because the effect of stochastic disturbances on 

nonlinear dynamical systems is not clearly understood. The introduction of multi­

model framework may ease the problem by providing simple local model structures 

and study the effects of local stochastic disturbances. 

Experiment design for local model identification The problem of handling 

global data using multimodels have been recognized in (Shorten et al., 1999). The 
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localization of data has been handled in heuristic ways as reviewed in Section 1.2 

while only localized data is assumed in this work. Isolation of local data for local 

dynamics is the key issue in multimodel identification, which may also involve closed 

loop experiment and identification in order to control the experiment. 

Model uncertainty identification One of the most challenging as well as impor­

tant issue is to assess the model uncertainty, in order to realize a control system with 

analytically guaranteed robustness. The indirect identification of local model makes 

this process more difficult since the model uncertainty of nonlinear models is very dif­

ficult to estimate. This issue may be handled by adopting basis function approaches, 

which is popular for linear system identification, and assess the model uncertainty 

between nominal truncated model and infinite series model. 

Multirnodel based control The emerging control technologies such as hybrid 

systems and model based fuzzy control have been experiencing rapid development. 

Keeping track of the developments in control design and reshaping of the identifica­

tion area are important in order to avoid the incompatible development of the two 

disciplines. 
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Appendix A 

Overview of unconstrained 
nonlinear least squares 

We give a short overview of unconstrained nonlinear least squares in this section. The 

presentation is mainly based on (Dennis and Schnabel, 1983; Kelley, 1999). 

In contrast to linear Least Squares (LS) problems, nonlinear LS problems generally 

have no closed form solutions and have to rely on iterative search methods. The LS 

error criterion to minimize is given as 

V(B) = 2~E(Bf E(B), (A.l) 

The Newton method is derived from the second order Taylor series approximation 

of LS measure as 

and is described by 

(A.3) 

(A.4) 

Even though the Newton method has a q-quadratic convergence when it converges, 

this method requires the second partial derivative v72V(Bk) at each iteration and is 

sensitive to the initial parameter 00 for the convergence. The steepest descent method 
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is derived from the first order Taylor series and is described as 

(A.5) 

where Ak is selected to guarantee the decrease in the cost function with newly updated 

parameter or more stringently to satisfy 

with a E (0, 1) to obtain a sufficient decrease. The steepest descent method decreases 

the error at every iteration and eventually achieves a global convergence, however, is 

quite slow especially when the error surface is poorly conditioned. 

One nice feature of LS problems is that partial information of v'2V ( (h) is available 

without taking second partial derivatives. Consider the error measure by (A.l), the 

first derivative, so called gradient, and the second derivatives with respect to(), the 

so called Hessian, is 

8V 
8() 

_ _!_ ~ ( IB) 8:Q(tlB) 
NL Et 8() ' 

t=O 

~J(Bf E(B) 

_!_ ~ (8:Q(tlB) 8:Q(tlB)r _ ( IB)82:Q(tlB)) 
N L 8() 8() E t 8()2 . 

t=O 

~ (J(Bf J(B) + S(B)), 

(A.6) 

(A.7) 

where J(B) = 8E(B)/8() and S(B) = I:{:~1 E(tlB) a;~~t). In (A.7), the first term of 

r.h.s is accessible without computing second partial derivatives. By omitting S(B), 

the Gauss-Newton method is described as 

(A.8) 

Another way to the Gauss-Newton method is to consider the first order approxi­

mation of E ( 8) as 

(A.9) 
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which can be viewed as the linear LS problem by letting E(B) = 0. Since (A.9) is 

the Taylor series approximation, the validity of (A.9) depends on the radius of f::1()k· 

The Levenberg-Marquardt algorithm shares the properties of the global convergence 

of the steepest method and the rapid convergence of Gauss-Newton method. The 

algorithm is described as 

(A.10) 

With a small value of µk, the algorithm behaves like Gauss-Newton, while the al­

gorithm converges to the steepest descent with a small step as µk becomes large. 

Even though small µk is necessary for rapid convergence, large µk should be used to 

guarantee the decrease in the cost function when (A.9) is not a good approximation. 

There are several methods to adjust µkin (A.10). In (Marquardt, 1963), adjusting 

µk by multiplying or dividing it by an arbitrary factor is proposed while guaranteeing 

the decrease of the cost function at each iteration. A more sophisticated method 

would be adjusting the radius of f::1()k and solving for µk, such that f::1()k is within the 

bounded region, which is called the trust region method (Dennis and Schnabel, 1983). 

Trust region methods can be applied to the Newton method if the full Hessian is 

available with reasonable costs. The advantage of the trust region method combined 

with Newton method is in a smooth transition between the steepest descent and the 

Newton method to achieve fast global convergence. 
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Appendix B 

Discrete time sliding mode 
controller 

In this section, we consider discrete sliding mode control for the explicit compensation 

of the unknown disturbances but with known bounds. We give constructive derivation 

of discrete sliding controllers in the presence of unknown but bounded uncertainty. 

Even sliding mode control technology cannot be directly applied to sliding mode 

observer, they have close connections. Therefore, this section can be considered as a 

preliminary step for the derivation of sliding mode observer. 

Sliding mode control algorithms are now widely used due to their robustness 

against bounded uncertainties as well as the decomposition of high dimension problem 

into a set of independent subproblems of lower dimension (Drakunov and Utkin, 1992). 

The robustness against bounded uncertainties is the major motivation of considering 

sliding mode because observer error dynamics has the similarity with the control 

problem with bounded uncertainty. Sliding mode control has initially developed for 

continuous time systems (Slotine, 1984), while discrete time sliding mode controller 

has been developed as well (Furuta, 1990; Misawa, 1997). In this section, we give 

constructive proofs of stable dis'crete time controllers and compare them. Compared 

with sliding mode controllers proposed in (Furuta, 1990; Misawa, 1997), our controller 

is derived in a straightforward way, illustrating the formation of boundary layer from 

uncertainty of the model. Also, the second controller does not require discontinuous 
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action to guarantee the attraction to the boundary layer even in the presence of model 

uncertainty. 

Consider a linear discrete time system given as 

x(t + 1) = Ax(t) + Bu(t) + F (B.1) 

where x E Rn, u E R, and F E Rn. Fis a unknown disturbance vector but with 

known bound, which will be clarified shortly. We present two different methods to 

derive discrete sliding mode control. The first one is given in the following theorem. 

Theorem B .1 (Discrete sliding mode controller 1) Let the sliding mode be 

defined as 

s(t) = Gx(t) (B.2) 

where x(t) = x(t) - xd(t) with xd(t), the desired states and x(t) is the state of 

(B.l), and boundary layer </J =Fa+ E¢ with some small positive number E¢. Then a 

sliding mode controller to track the desired state within the boundary layer, that is, 

IGx(t)I <<pis given as 

u(t) = Ueq(t) - ~u(t) 

where Ueq(t) is defined as 

Ueq(t) = (GB)-1 [s(t) - G(Ax(t) + F - xd(t + 1))] 

and ~u(t) is the discontinuous controller that is defined as 

~u(t) = {Ksign(s(t)) if ls(t)I > <p 
(1 + a)s(t) if ls(t)I :::; <p 

Here, K is a positive constant satisfying 

and a is a constant satisfying 

Pa < K < 2ls(t)I - Pa 

Fa E¢ 
0 <a< 1-¢ = J· 
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Here PG is the uncertainty bound satisfying 

IGFI < Pa (B.8) 

where F = F - F. 

Proof: Define a sliding surface as 

s(t) = Gx(t) (B.9) 

where x(t) = x(t) - xd(t) with xd(t), the desired states and x(t) is the state of (B.l). 

G is a constant row vector and is selected so that it satisfies stability and performance 

specifications. 

Firstly, we can obtain an equivalent controller ueq(t) from nominal model and a 

condition of sliding mode s(t + 1) - s(t) = 0 (Young et al., 1999) as, 

s(t + 1) - s(t) Gx(t + 1) - s(t) (B.10) 

G[Ax(t) + Bu(t) + F - xd(t + 1)] - s(t) = o (B.11) 

Solve for u(t) and we obtain 

Ueq(t) = (GB)-1[s(t) - G(Ax(t) + F - xd(t + 1)] (B.12) 

where Fis a nominal of F. 

Now, for the convergence to sliding mode, sliding condition must be satisfied. The 

sliding condition can be obtained from discrete Lyapunov function such as 

V = s(t)2. 

For asymptotic stability, 

V(t + 1) < V(t) :::} 

s(t + 1)2 - s(t)2 - (s(t + 1) - s(t))(s(t + 1) + s(t)) 

- ~s(t)(~s(t) + 2s(t)) < 0. 
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where .D.s(t) = s(t + 1) - s(t) . .D.s(t) with uncertainty results in 

.D.s( t) G(F - F) - ..6.u(t) 

GF - ..6.u(t) 

(B.16) 

(B.17) 

when u(t) = Ueq(t) - (GB)- 1..6.u(t) is applied, where .D.u(t) is extra freedom to com­

pensate the uncertainty. Hence, the sliding condition becomes 

.D.s(t)(..6.s(t) + 2s(t)).= (GF - .D.u(t))(GF - .D.u(t) + 2s(t)) < 0 (B.18) 

Solve the inequality and we obtain 

Suppose that 

GF < ..6.u(t) < GF + 2s(t), if s(t) > o 

GF + 2s(t) < ..6.u(t) < GF, if s(t) < o 

-Pa< GF < Pa 

and (B.19) and (B.20) are satisfied if 

Fa < .D.u(t) < 2s(t) - Fa if s(t) > 0 

2s(t) +Fa< .D.u(t) < -Pa if s(t) < 0 

which can be simplified as 

This is satisfied if 

Fa < .D.u(t) < 2s(t) - Fa 

Fa< -..6.u(t) < -2s(t) - Fa= 2ls(t)I - Fa 

.D.u(t) = Ksgn(s(t)) 

where Fa < K < 2ls(t)I - Fa. The inequalities make sense if 

Fa < 2ls(t)I - Fa, 
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that is, 

Pa< ls(t)I. (B.28) 

Therefore, the boundary layer of 

s = {x(t) : ls(t)I ~ Pa} (B.29) 

is attractive and we may consider this as the boundary layer for our sliding mode 

controller. 

Now, check the invariance of the boundary layer, that is, if the states inside the 

boundary layer remains in side it. From (B.17), we obtain 

s(t + 1) = s(t) - llu(t) + GF (B.30) 

If we choose llu(t) simply as llu(t) = s(t), then 

s(t + 1) = GF < Pa (B.31) 

which shows that the boundary layer is invariant by the assumption of (B.21). In 

general, we want asymptotic stability or at least to minimize the effect of disturbances. 

Hence, it is more attractive to choose llu(t) = (1 + a)s(t) and we obtain 

s(t + 1) = -as(t) + GF. (B.32) 

We want -1 < a < l for the stability of (B.32) and 11 + al > 1 to reduce the effect 

of uncertainty since 

s(oo) = GFa 
l+a 

in stead state. Hence, the desired a is 

O<a<l. 

(B.33) 

(B.34) 

Now, check the invariance of boundary layer with this controller. Suppose that the 

sliding surface is inside the boundary layer, that is, 

-Pc~ s(t) ~ Pa. 
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From (B.35), (B.34), (B.32) and (B.21), we obtain 

-2Pa < s(t + 1) = (-as(t) + CF) < 2Pa (B.36) 

which clearly shows that the boundary layer ls(t)I ~ Pa is not invariant. In order to 

satisfy the invariance property, we expand the interval of boundary layer. Denote the 

enlarged boundary as¢ and suppose that s(t) ~¢,then we obtain 

-a¢- Pa< s(t + 1) = (-as(t) + CF) <a¢+ Pa 

from (B.32), (B.34) and (B.21). Since we want 

-¢ ~ s(t + 1) ~ ¢, 

we can easily see that 

a¢+Pa < ¢ 

Let ¢=Pa+ E¢ and we can obtain from (B.39) and (B.34), 

Pa E¢ 
0 <a< 1-¢ = ¢' 

(B.37) 

(B.38) 

(B.39) 

(B.40) 

Now, we can conclude that the control input .6.u(t) = (1 + a)s(t) with a satisfying 

(B.40) make the boundary layer¢= Pa+ E¢ invariant with some positive number E¢, 

D 

We can derive different sliding mode controller based on a different condition of 

sliding mode. We present the second sliding mode controller in the following theorem. 

Theorem B.2 (Discrete sliding mode controller 2) Let the sliding mode be 

defined as 

s(t) = Ci(t) (B.41) 

where i(t) = x(t) - xd(t), same as Theorem B.1. Then a sliding controller that track 

the desired states within boundary layer is given as 

u(t) = Ueq(t) + .6.u(t) 
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where 

Ueq(t) = -(GBt1G{Ax(t) + F - xd(t + 1)} (B.43) 

and 

{ o if ls(t)I > c/J 

~u(t) = as(t) if ls(t) I 5c cp (B.44) 

Here a must satisfy 
Fa Ecp 

O<a<l--=-cp cp (B.45) 

where the bound of boundary layer is defined as cp = Fa+ Ecp with some small positive 

number Ecp. 

Proof: Same as Theorem B.1, define a sliding surface as 

s(t) = Gx(t) (B.46) 

Equivalent control can be obtained with nominal model but with different condition 

of sliding mode as 

s(t + 1) = G(Ax(t) + Bu(t) + F - xd(t + 1)) = o (B.47) 

Solve for u(t) and we obtain 

Ueq(t) = -(GB)-1G{Ax(t) + F - xd(t + 1)} (B.48) 

By adding extra freedom to compensate the uncertainty as u(t) = Ueq(t)-(GBt 1~u(t) 

and we obtain 

s(t + 1) = Gx(t + 1) = G(F - F) - ~u(t) = GF - ~u(t) (B.49) 

The sliding condition given from Theorem B.1 is represented with the above equation 

as 

(s(t+l)-s(t))(s(t+l)+s(t)) = (GF-~u(t)-s(t))(GF-~u(t)+s(t)) < 0 (B.50) 
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The above inequality is satisfied if and only if 

GP - s(t) < !:m(t) < GF + s(t) if s(t) > 0 

GF + s(t) < b.u(t) < GF - s(t) if s(t) < 0 

Suppose is(t)I > GF and we obtain 

Pa - s(t) < b.u(t) < s(t) - Pa if s(t) > 0 

Pa+ s(t) < b.u(t) < -s(t) - Pa if s(t) < 0 

which is reduced to one equation as 

-(ls(t)I - Pa)< b.u(t) < is(t)I - Pa. 

(B.51) 

(B.52) 

(B.53) 

(B.54) 

(B.55) 

where the inequality makes sense if is(t)I > Pa. From (B.55), we can see that b.u(t) 

is not necessary even in the presence of model uncertainty, in order to attract the 

tracking error to the boundary layer is(t)I > Pa. 

Now, check the invariance of the boundary layer. If we select b.u(t) = 0 inside 

the boundary layer, i.e. s(t) < Pa, then 

s(t + 1) = GF < Pa (B.56) 

which shows the invariance. If we are interested in reducing the effect of uncertainty, 

we can choose nonzero b.u(t) inside the boundary layer, similar with Theorem B.1 as 

b.u(t) = as(t) (B.57) 

and the sliding dynamics becomes 

s(t + 1) = -as(t) + GF (B.58) 

For stability of the sliding surface, 

-1 <a< 1 (B.59) 
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Similarly with Theorem B.1, is(t)I ~ Fa is not invariant with this choice of b.u(t). 

Choose larger boundary layer as ¢=Fa+ E<f> with some positive number E<f> and we 

obtain 

Fa 
O<a<l--

<p 

by similar analysis with Theorem B.1. 

(B.60) 

D 

Remark B.1 We can see that the second sliding mode controller is resulted in much 

simpler controller without any discontinuity, which is a huge advantage over discon­

tinuous control. 
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