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Abstract 

 

The objectives of this study include: (1) investigation of the chemical and 

thermodynamic mechanisms of scale formation in porous media and its impact on 

formation damage; (2) development of a model to predict  permeability and porosity 

reduction resulting from scale deposition in porous media; (3) quantification of the 

impact of scale formation within reservoir on oil recovery and injectivity loss; (4) 

examining the impact of scale formation on water flooding efficiency in terms of water 

saturation profiles and evaluating the effect of composite scale formation in porous 

media on reservoir properties.    

Scale formation in oil fields has been repeatedly reported as the main issue affecting 

water flooding projects. Scale formation occurs both in reservoir porous media and 

within the operation facilities. In porous media, permeability and porosity tend to 

change because of scale formation. In oil fields, water injection can drop from 

thousands barrel per day to zero in one day because of scale formation during field 

operations. Therefore, prediction of scale formation and evaluating its impact on 

production performance is of vital importance for the oil industry. 

In this research, scale formation in reservoir porous media and its impact on reservoir 

performance during water flooding are investigated. First, mineral deposition is studied 

from a micro scale (pore scale) standpoint and next, the impact of deposition on 

reservoir performance is studied on a macro scale basis.  

A robust model is developed to predict permeability damage resulting from scale 

deposition in porous media. Results indicate that the solubility of minerals and the 
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amount of fluid that is injected into porous media have the most impact on formation 

damage of a reservoir.  

In addition, a synthetic field operation is simulated in this work to study the impact of 

scale formation on injection and production performance during water flooding. The 

simulation results show that scale formation leads in the loss of injectivity and a 

reduction in the ultimate oil recovery. Moreover, saturation profiles indicate that scaling 

issue within reservoir leads in non-ideal displacement for water flooding.
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Chapter 1: Introduction 

1.1: Introduction to scale formation in oil fields 

 

Scale formation is a common issue in oil and gas industry and it usually occurs during 

water flooding processes. When the injected water is not compatible with the formation 

water, scale formation would occur. For example, seawaters are usually rich in anions 

such as sulfate and carbonate while formation waters are usually rich in cations such as 

barium and calcium. Mixing these waters may lead to mineral scale deposition such as 

barium sulfate and calcium carbonate. Other types of scaling which have been observed 

in oil fields include calcium sulfate, strontium sulfate, Strontium Sulfate, Zinc/Lead and 

Iron Sulfide Scales.  

Different parameters have been known to impact mineral nucleation and scale 

formation. Temperature, pressure, the rate of injected water, solubility, the properties of 

porous media and molality of ions are among these parameters. 

Scale formation has been mainly studied in wellbores where engineers can observe the 

depositions. However, scale formation starts to occur in the reservoir porous media 

where the depositions plug the pore bodies and throats, which results in reservoir 

storability and transmissibility reduction. The mechanism of scale formation from 

supersaturated fluids and scale deposition in wellbore and facilities have been well 

studied while fewer studies have been focused on scaling in reservoir formation.  

Development of models as well as designing experiments to study scale deposition in 

reservoir porous media and investigating its impact on reservoir performance is of vital 

importance. Microscopic study of scale formation in porous media is vital. Mineral 
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nucleation and precipitation highly depends on the size of the pore bodies and throats 

where the chemical reaction is occurring. It is more probable for the ions to collide in 

smaller pores while there are fewer collisions in the larger pores and therefore, fewer 

chances for scale nucleation and formation. In addition, the thickness of scales in pore 

bodies and throats defines the amount of damage on the storability and transmissibility 

of the pore network.  

On the other hand, the impact of scale formation in porous media on oil fields can be 

captured from a macroscopic standpoint. Scale formation significantly affects the 

success of a water flooding project. Field cases have shown that ignoring the scaling 

issue can lead in significant losses of injectivity and productivity and therefore, care 

should be taken before designing water flooding projects. 

1.2: Research Objectives 

This research attempts to study in-situ scale formation by addressing the following 

objectives: 

 Development of a model for predicting permeability impairment resulting from 

scale formation in porous media 

 Modification of Carman-Kozeny equation for developing a pore scale 

relationship between porosity and permeability when mineral deposition has 

occurred in porous media 

 Quantification of the impact of scale formation on water saturation profiles and 

water flooding efficiency  

 Investigation of the impact of single barite and composite barite/calcium sulfate 

scaling on injectivity and oil recovery 
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1.3: Layout of Chapters 

 

Chapter 2 presents the fundamentals of scale formation and reviews related literature. 

Various types of scale are introduced and relevant parameters are defined and 

discussed. In addition, various models and experimental procedures and their results as 

well as a few field cases are presented in this chapter. 

Chapter 3 describes micro scale modeling of scale formation in porous media. Various 

parameters that affect scale deposition are studied and multivariate regression analysis 

is utilized to develop a model for predicting the permeability damage resulting from 

mineral scale formation in reservoir porous media. In order to validate the model, 

experimental data from the literature along with various statistical and graphical 

analyses are employed. In addition, Carman-Kozeny model is used to develop a 

modified model for representing the relationship between porosity and permeability 

when the porous medium is affected by scaling issue. 

Chapter 4 investigates the injection of seawater rich in sulfate into a reservoir rich in 

barium to simulate a synthetic oil field affected by barium sulfate (barite) scale 

deposition within the reservoir. The impacts of barite scale formation on reservoir 

porosity and permeability are investigated in this chapter. This chapter also presents the 

impact of barite scale formation on injection performance and oil recovery. In addition, 

sensitivity analysis is performed based on the reactive surface area of barite. Moreover, 

calcium sulfate scale is added to barite scale to investigate the impact of composite 

scale formation on reservoir properties and injection performance. 
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The impact of scale formation on water flooding efficiency is presented in this chapter 

as well. Water saturation profiles are employed to quantify the effect of mineral 

deposition on the displacement behavior of water injection. In addition, a brief 

description of barite scale formation and reactive surface area of minerals is provided in 

this chapter. 

Chapter 5 briefly summarizes the key points of the research along with the 

corresponding conclusions. In addition, a few recommendations are suggested for future 

works. 
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Chapter 2: Scale Formation in Oil Fields- Fundamentals and 

Literature Review 

 

Waterflooding is one the the most widely used methods to maintain the depleted 

reservoir pressure and enhance oil recovery. However, inorganic scale formation occurs 

when the injected and formation waters are incompatible. Incompatibility means that 

while chemically interacting with each other, the waters precipitate minerals. Scale 

formation occurs all the way from the reservoir porous media up to the surface through 

pipelines and facilities. The different locations where scale formation occurs and the 

main reasons for each of them are reported in the literature [1]. 

Seawaters as the main sources for injection have high concentrations of anions such as 

SO4
-2

 while formation waters are usually rich in cations such as Ca
2+

, Ba
2+

 and Sr
2+

. 

Mixing these incompatible or chemically different waters leads to precipitation of 

minerals such as CaSO4, BaSO4 and SrSO4 during water flooding processes. A 

complete list of the composition of seawaters and formation waters are reported in the 

literature [2]. Precipitation of minerals occurs when the concentration of solute exceeds 

its solubility under specific thermodynamic condition. 

2.1: Various Types of Scale Formation 

 

Several types of scales form in oil fields. These scales include calcium carbonate 

(CaCO3), calcium sulfate (CaSO4), barium sulfate (BaSO4) and strontium sulfate 

(SrSO4). The most common oilfield scales and their causes have been reported in the 

literature [2]. Here, a brief summary about these scales is provided. 
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2.1.1: Calcium Carbonate Scales 

When pressure drops, CO2 comes out of the produced water and causes water pH and 

saturation index of carbonate minerals to increase and thus precipitation occurs. 

The most common calcium carbonate scale type, which occurs in oilfield production 

operations, is calcite because it is more stable than other types of calcium carbonate 

such as aragonite and vaterite. The governing equation for calcium carbonate 

precipitation is as follows: 

Ca
2+

 + CO3
2-

 ⇔ CaCO3            (1) 

Carbonate ion is rarely present in waters and thus most of the calcium carbonate scales 

result from decomposition of calcium bicarbonate based on the following reaction: 

Ca (HCO3)2 ⇔ CaCO3 + CO2 + H2O           (2) 

Since CO2 is released from the water as a result of pressure reduction (in chokes and 

separators), the above reaction proceeds to the right and thus calcium carbonate 

precipitates once its amount becomes more than what the water can dissolve. 

2.1.2: Calcium Sulfate Scales 

 

Another type of scale formation that causes severe formation damage and flow 

assurance issues is calcium sulfate. It has three different crystalized forms known as 

gypsum (CaSO4.2H2O), hemihydrate (CaSO4.1/2H2O) and anhydrate (CaSO4). Gypsum 

is the most common calcium sulfate scale type at low temperatures. At temperatures 

above 100ºC, anhydrate is the stable form of calcium sulfate scale. Hemihydrate scale 

formation occurs at temperatures between 100 to 121ºC in brines with high ionic 
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strength and in non-turbulent environments. The general reaction for calcium sulfate 

precipitation is as follows: 

Ca
2+

 + SO4
2-

 ⇔ CaSO4             (3) 

Calcium sulfate scales have been reported to have a decreasing solubility trend when 

temperature increases. In addition, they precipitate more in acidic environments. 

Injection of two incompatible waters including calcium and sulfate into the Berea 

sandstones has shown that pressure has a small impact on CaSO4 precipitation while at 

higher flow velocities, brine supersaturation and temperature have large impacts on the 

CaSO4 precipitation. In addition, a model has been developed for predicting 

precipitation in the Berea sandstones at given temperature, injection velocity and brine 

supersaturation [3]. Figure 2- 1 shows the impact of temperature on the solubility of 

CaSO4 as well as other important scales. 
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Figure 2- 1: Solubility of various scales as a function of temperature. Most scales are less 

soluble as temperature increases while barium sulfate is more soluble by increasing temperature 

[2]. 

 

2.1.3: Barium Sulfate Scales 

 

Barium Sulfate is probably the most insoluble type of scales. Barium sulfate scale 

occurs both in porous media and wellbore. Once it precipitates and forms scale, its 

removal is very difficult. Therefore, care should be taken prior to its crystallizations and 

scale formation by using squeeze inhibitors. The governing equation for barium sulfate 

is as follows: 

Ba
2+

 + SO4
2-

 ⇔ BaSO4             (4) 
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Experimental tests on barite scaling in both beakers and sandpacks have shown that the 

permeability reduction is mainly influenced by the crystal growth of barite instead of 

flow blockage and particle transport. Moreover, the precipitation process in porous 

media is dominated by the heterogeneous nucleation while the barium concentration in 

sandpack tests is less than that of beaker tests. In addition, it has been observed that the 

first contact point of incompatible brines consists of the highest amount of precipitation 

[4]. 

Core flooding tests on the West Africa offshore reservoir samples at atmospheric 

pressure and ambient temperature and constant injection velocity have shown that by 

evaluating the amount of barite precipitation by means of sulfate and barium profiles, 

for a seawater containing less sulfate, the scaling tendency tends to reduce which has 

been verified by the results of SEM analysis [5]. 

In addition to the single barite scaling, the impact of various parameters including 

calcium ion concentration, temperature and the size of deposited scales on composite 

CaSO4-BaSO4 scale deposition has been studied. It has been shown that by increasing 

temperature, co-precipitation of CaSO4 and BaSO4 increases and thus, more 

permeability reduction will occur. However, temperature has an opposite effect on 

single BaSO4 precipitation. It has been proposed that small amounts of CaSO4 along 

with BaSO4 significantly reduce the permeability compared with the case in which only 

single CaSO4 scale exists [6]. 

2.1.4: Strontium Sulfate Scales 
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Strontium sulfate has a similar behavior to barium sulfate but is more soluble and thus 

causes less severe scales. In most of oilfields, whenever barium sulfate scale occurs, 

strontium sulfate scaling is present as well. The governing equation for strontium 

sulfate is as follows: 

Sr
2+

 + SO4
2-

 ⇔ BaSO4             (5) 

Moreover, prediction of different sulfate scales including barium, calcium and strontium 

sulfates has been studied by considering the impact of temperature, pressure and water 

composition. The results indicate that the least soluble scales such as barium sulfate 

precipitate first and remove some sulfate ions from the solution leaving less anions for 

other cations to react with. Because of this phenomenon, the activity product required 

for forming the new scales should be modified [7]. 

2.1.5: Zinc/Lead and Iron Sulfide Scales 

 

Zinc sulfide scale occurs when the formation water containing zinc mixes with the H2S 

gas in wells and causes this type of precipitation. Several sources have been reported for 

zinc and lead ions, including precipitations that occur when connate water and aquifer 

water mix and the zinc ions that are introduced to the formation from the completion 

fluid during drilling and work over processes. Reservoir H2S gas has been reported to 

be the main source of sulfide ion.  

When the injected water containing dissolved H2S reacts with formation water 

containing iron (specially, in sandstone formations), iron sulfide is precipitated based on 

the following equation: 
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Fe
2+

 + H2S ⇔ FeS + 2H
+
                       (6) 

Another source of iron is well tubular. Iron sulfide has been reported to occur in oil and 

gas wells, sour wells and water injectors where there are high amounts of sulfate in the 

water.  

2.2: Important Parameters Affecting Scale Formation 

 

Several reasons have been reported in the literature for scale formation [8]. The most 

important parameters include: pressure, temperature, cumulative volume of injection 

fluid, the concentration of ions in the injected fluid, precipitation reaction rate and 

crystal growth rate, pore size distribution, fluid dynamics in porous media, porous 

media surface properties. Crystallization induction time, initial porosity and 

permeability of the media, velocity of the injected fluid, physical changes in fluid 

properties due to crystallization, diffusion and mass transfer have been known as other 

important factors for scale formation. 

In the following section, a brief description of the impact of some of the mentioned 

parameters on different types of scale precipitation is summarized [2]: 

2.2.1: Effect of Supersaturation 

 

Once the concentration of minerals in a solution exceeds the equilibrium concentration, 

precipitation starts to take place and as a result, different types of scales form in both 

porous media and wellbore tubing. In fact, supersaturation condition is dependent on 

several other parameters including pressure, temperature, concentration of ions, pH, etc. 
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Scaling index is the criterion for evaluating the scaling tendency, which will be 

discussed later. 

2.2.2: Effect of Pore Size Distribution and Upscaling Chemical Reactions 

 

Scale formation is highly influenced by the scale of medium in which it is studied. 

These medium scales vary from pore scales to field scales. Three main reasons that 

inhibit nucleation in small pores are summarized as follow:  

1: Nucleation is a stochastic process in which the random collisions of the ions lead in 

formation of clusters. In the smaller pores, the probability of these collisions is less as 

the number of ions present in the smaller pores is less.  

2: The crystal growth is limited by the small size of the pore and also, there is a 

possibility that a supersaturated solution in larger pores could be undersaturated in 

smaller pores.  

3: The pore surface plays an important role in precipitation proposing that a favorable 

surface chemistry can promote the nucleation process [9]. 

By using scanning electron microscopy (SEM) and conducting experimental tests on 

sandstone and limestone samples, it has been found that precipitations mainly plugs the 

pore throats especially in limestone samples. Also, a linear relationship exists between 

the permeability reduction and the precipitations occupying the pore throats [10]. It has 

been found that the large crystals of scales plug the pores while being perpendicular to 

the rock surface [11]. Researchers are now able to observe the scaling phenomenon 



13 

 

from the nucleation stage to the complete pore plugging stage as can be observed in 

Figure 2- 2.   

 

Figure 2- 2: Different stages of CaSO4 precipitation [12] 
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Chemical reaction rates are usually measured in lab and then used in the reactive 

transport models for predicting the reaction and transport of species in porous media. 

However, the heterogeneities in porous media cause some errors when using these 

experimentally measured reaction rates for predications. Therefore, upscaling the 

reaction rates are of importance. The impact of scaling is small when the concentrations 

of species are small in pores. However, simulations show that where the pore scale 

concentrations of reactive species and the reaction rates vary spatially, the impact of 

scaling is large. Therefore, appropriate scaling approaches are vital for effectively 

capturing the impact of porous media heterogeneities on chemical reaction properties 

involved in mineral deposition [13]. 

2.2.3: Effect of Temperature 

 

Temperature has different impacts on different scaling as shown in Figure 2- 1. Calcium 

sulfate and calcium carbonate scaling tendency increases by increasing temperature.  

Strontium sulfate has a similar behavior when temperature increases. Barium sulfate 

shows a different behavior when temperature varies. An increase in temperature leads to 

a stronger ionic strength of barium sulfate brine and thus, a decrease in scaling tendency 

of barium sulfate. 

Studies show that the impact of temperature on salt precipitation resulting from CO2 

injection into reservoirs is small compared to the impacts of pressure and salinity. At 

higher pressures (up to 24 MPa), salt precipitation increases by increasing temperature 

(35-60
0
C) while at lower pressures (8.5 MPa), this trend is opposite. Therefore, the 

impact of temperature on salt precipitation during CO2 injection is pressure dependent. 
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However, the impact of temperature on salt precipitation is small compared to the 

impact of brine salinity and the relative permeability of the aqueous phase [14].  

2.2.4: Effect of Pressure 

 

The solubility of calcium, barium and strontium sulfates increases by increasing 

pressure and therefore, scale formation occurs more likely when pressure drops. This 

condition considerably occurs in perforations and in chokes as well as the production 

tubing. Calcium carbonate solubility is highly affected by the CO2 content of water. An 

increase in CO2 partial pressure reduces calcium carbonate precipitation. 

2.3: Thermodynamics and Chemistry of Scale Formation 

 

Scale formation tendency is evaluated by saturation index defined as follows [15]: 

10

eq

activityproduct
SI Log

K

 
  

  

           (7) 

As an example, for calcite, which forms based on the following reaction: 

Ca
2+

 + CO3
2-

 → CaCO3                (8) 

the saturation index would be: 

SICalcite  = Log10 [
(a

Ca2+) ( a
CO3

2−)

K𝑒𝑞
] = Log10 [

[Ca2+][CO3
2−](γ

𝐶𝑎2+)(γ
CO3

2−)

K𝑒𝑞

]      (9)

                

In this equation [Ca
2+

] stands for molality of calcium in mol/kg. Keq is the equilibrium 

constant of calcite as a function of temperature and pressure. γCa
2+

 is the calcium 

activity coefficient which is a function of ionic strength, temperature and pressure and is 
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determined by B-dot model and aCa
2+ 

is the calcium ion activity. Kan et. al [15] 

suggested different scenarios for barite scale formation in wellbore based on different 

values of SI which can be summarized as follow: 

A: If SI value is greater than 1.5 (at 120
0
C) in the perforation zone at the bottom of 

well, precipitation occurs on the tubing walls and a large amount of crystals will form. 

In addition, it causes the SI value to decrease. Chemical inhibition at this stage is not 

efficient. 

B: If SI value is between 0.3 and 1.5 in the perforation zone, scale formation occurs on 

the tubing walls at the bottom of well but the mass of barite scale per unit brine is 

negligible and thus is not a lasting problem. 

C: If SI is less than 0.3 in the perforation zone, scale formation does not occur at the 

bottom of well and it may occur near the surface because of pressure and temperature 

change. 

As it was mentioned, γ in Eq. 9 is the activity coefficient, which can be calculated based 

on B-dot model for the species as follows: 

Log γi = - 
𝐴𝑦𝑧𝑖

2√𝐼

1+ 𝑎𝑖𝐵𝑦√𝐼
 + BI           (10) 

where ai is the ion size parameter, Aγ, Bγ and B are functions of temperature and I is the 

ionic strength calculated as follows:  

I = 
1

2
∑ 𝑚𝑘𝑧𝑘

2𝑛𝑎𝑞

𝑘=1             (11) 

where zk is the ionic charge of the kth ion and mk is the molality of the kth ion. 
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2.4: Developed Models for Scaling Prediction 

 

OSPMod was developed for prediction of scaling tendency based on the kinetic and 

thermodynamic data. By determining the critical saturation indices, this model first 

predicts the possibility of scale formation and then predicts the amount of scale 

formation in terms of scale profiles as a function of time and location [16]. This model, 

however, is limited to the well and surface locations. In other words, this model is not 

able to model scaling in reservoir.  

AGIPS is a finite difference numerical model that was developed through coupling a 

chemical equilibrium code with a fluid flow simulator. This model is able to capture the 

impact of temperature and incompatible injection on the scaling issue in reservoir and 

wells. It also matched the results of experimental measurements on different water 

compositions taken from the North African oil fields [17]. 

FROCKI is another predictive model in which the impact of rock-fluid interactions on 

permeability impairment during production and injection in oil fields is investigated. In 

this model, the rock fluid interactions are related to the changes in temperature, ionic 

strength, pH and the hydro mechanical processes within reservoir [18]. 

2.5: Field Cases 

 

Although the objective of water flooding operations is to increase the hydrocarbon 

recovery, in most cases the production because of water injection decreases 

dramatically after a short time if no scale inhibition action is taken. In this section, some 

real field cases of production decline because of scale formation are presented: 
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The first field case is Siri offshore oil field with four platforms which is located in 

Persian Gulf [19]. The oil field was discovered in 1970 and the drilling process started 

in 1975. A total number of 33 wells were drilled and 24 of them were chosen to be 

producer, seven were selected to be injectors and two to be producer/injector wells and 

production started in 1978. The total amount of cumulative oil production after the 

primary production was 13 MMSTB, which was about 2.3% of the oil in place. After 

the primary production, existence of appropriate conditions including an active aquifer 

leaded to operation of a waterflooding project in the oil field. With an objective of 

reservoir pressure maintenance and oil production increase, the water flooding process 

started in 1984 with an initial injection rate of 9100 bbl/day. However, after six years of 

injection and production, the water injection rate decreased to only 2200 bbl/day (7000 

bbl/day reduction) as a result of scale formation and consequently the water flooding 

project was stopped. Figure 2- 3 shows the history of water injection in Siri oil field: 
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Figure 2- 3: Water injection rate of Siri oil field. After six years of injection, the water injection 

rate decreased from 9100 bbl/day to only 2200 bbl/day (7000 bbl/day reduction) as a result of 

scale formation [19]. 

 

Another severe case of oil field scale formation took place in a well in North Sea in 

Miller field. Oil production decreased from 30000 bbl/day to zero in 24 hours [20].  

2.6: Permeability Impairment in Porous Media Resulting from Scale Formation 

 

In the case of scale formation in porous media, the corresponding formation damage is 

evaluated in terms of permeability impairment. Models have been developed for 

predicting permeability reduction because of scaling issue with a mean absolute error of 

11.16% compared with the experimental observations [12]. The detailed description of 

formation damage models have been reported in the literature [21]. Intelligent methods 

have been widely used in various fields of science and engineering [22-28]. In addition 
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to the analytical models, several researchers have attempted to employ intelligent 

models for studying scale formation [29, 30].  

Extensive studies of scaling issue in the Iranian oil fields and production equipment 

resulted from incompatible water flooding projects have shown that the accuracy of 

results is mainly governed by the accuracy of the ions concentrations. The important 

parameters have been found to be pressure, the ions concentrations and the ratio of 

injected water to reservoir water. In addition, it has been demonstrated that the 

permeability reduction is larger at higher flow rates as more cations and anions react 

leading to larger saturation indices. Moreover, experimental works on the samples of 

the same filed have shown that permeability decreases up to 90% of the initial 

permeability depending on temperature, flow rate, injection period, initial permeability 

and the solution composition. In addition, it has been observed that the initial scale 

deposition rate is fast followed by a relatively slower ultimate deposition rate [1, 19, 31-

34]. 

Formation damage has been studied in terms of a combination of mineral precipitation, 

clay swelling and fine migration in reservoirs as well. Multivariate numerical regression 

on experimental data has shown that by considering only the dominating chemical 

components, the impact of pore volume reduction on permeability impairment can be 

captured without including all the geochemical reactions involved in the process [35]. 

Studies on the impact of various ratios of injected water to formation water have shown 

that the largest permeability reduction occurs for the blends consisting of 90% 

formation water and 10% seawater. Moreover, it has been shown that more scales will 
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form when the injected seawater reaches the production wells and some studies have 

proposed that the permeability near the wellbore region can decrease up to 60%  [11, 

36]. 

2.7: Summary 

 

The fundamentals of scale formation as well as the related literature were reviewed in 

this chapter. Various modeling and experimental approaches performed by the previous 

researchers were examined and a few field cases were presented.  

A brief description of different types of scale including barium sulfate, calcium sulfate, 

strontium sulfate and calcium carbonate was provided. Some of the parameters that 

affect scale formation were found to be pressure, temperature, cumulative volume of 

injection fluid, the concentration of ions in the injected fluid, precipitation reaction rate 

and crystal growth rate, pore size distribution, fluid dynamics in porous media, porous 

media surface properties.  
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Chapter 3: Microscale Modeling of Mineral Deposition in Porous 

Media 

 

Few studies have been carried out to study the impact of scaling issue on formation 

damage. Therefore, development of comprehensive models between the mechanisms of 

scaling tendency and porous media properties related to fluids conductivity and 

storativity is vital. In this chapter, a model based on multivariate regression analysis is 

developed for determining the permeability reduction in reservoir resulting from 

mineral scale deposition. To achieve this objective, 216 experimental data points 

covering a wide range of thermodynamic and reservoir conditions were collected from 

the literature [2]. Barium sulfate was considered as the main candidate of scale 

formation. The proposed model is considered to be a function of fluid pressure and 

reservoir temperature change, rate and time period of fluid injection, pore volume of the 

medium and solubility of BaSO4. The statistical description of experimental data used 

in this study is illustrated in Table 3- 1. 

 

Table 3- 1: Statistical description of the experimental dataset 

Inputs/Outputs Min Max Mean SD 

Injection rate, ft
3
/min 3.02*10

-4
 10

-3
  6.31*10

-4
 1.87*10

-4
 

Reservoir Temperature, °F 211 176 152 11220 

Fluid Pressure Gradient, psi 100 200 150 40.90 

Time, min 10 120 65 34.60 

Barite Solubility, ppm 137 1620 758 636 

Pore Volume, ft
3
 3.98*10

-4
 5.28*10

-4 
4.66*10

-4 
3214*10

-5
 

Kf/Ki 0.812 0.999 0.94 0.04 
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Additionally, various statistical and graphical analyses were employed to evaluate the 

accuracy and validity of the developed model. Moreover, Carman-Kozeny equation was 

incorporated into the model to find a modified model for porosity-permeability 

relationship in porous media when affected by scale formation. 

3.1: Model Development- Multivariate Regression Analysis 

 

In order to obtain an accurate predictive model, multivariate regression using least 

square error method was utilized [37-41]. The description of multivariate regression 

methodology is as follows: 

It is assumed that the following relationship exists between the experimental data 

outputs and inputs 

 Y AX e               (1) 

Where, Y represents the experimental outputs, X represents the experimental input 

data, A is the coefficients of the proposed model and e  stands for the residuals between 

model predictions and the corresponding experimental values. This equation can be 

written in a more general matrix form as follows: 

[

𝑦1

𝑦2

⋮
𝑦𝑛1

] = [

𝑥11   𝑥12    …   𝑥1𝑘

𝑥21   𝑥22    …   𝑥2𝑘

⋮         ⋱         ⋱         ⋮
𝑥𝑛1   𝑥𝑛2    …   𝑥𝑛𝑘

] ∗ [

𝑎1

𝑎2

⋮
𝑎𝑛

] + [

𝑒1

𝑒2

⋮
𝑒𝑛

]         (2) 

Least square estimator defines the matrix of A in such a way that the summation of 

square residuals becomes as small as possible. This means that the following 

summation should be minimized: 



24 

 

∑ 𝑒𝑖
2𝑛

𝑖=1                (3) 

which can be written in a matrix form as follows: 

e'e = [𝑒1   𝑒2 ⋯  𝑒𝑛] [

𝑒1

𝑒2

⋮
𝑒𝑛

] = ∑ 𝑒𝑖
2𝑛

𝑖=1             (4) 

Thus, in order to estimate the coefficient matrix A, the term ee' =(Y-XA)'(Y-XA) 

should be minimized which can be written as follows: 

e'e = (Y - XA)'(Y - XA)             (5) 

e'e = (Y' – A'X')(Y - XA)            (6) 

e'e = YY' – A'X'Y – Y'XA+A'X'XA            (7) 

Hence, the above expression should be minimized as written below: 

min [e'e = YY' – 2A'X'Y +A'X'XA]            (8) 

In order to minimize the last equation, one is required to take a derivative with respect 

to A and equate it to zero. The following statement can be used for this purpose: 

A'X'Y = (A'X'Y)' = Y'XA             (9) 

then the derivation terms are as follow: 

∂(A′X′Y)

∂A
 = X'Y            (10) 

∂(A′X′XA)

∂A
 = 2X'XA            (11) 



25 

 

thus, the derivative of Eq. 7 becomes: 

∂(e′e)

∂A
 = -2X'Y + 2X'XA = 0           (12) 

which leads to the following equation: 

X'XA = X'Y             (13) 

finally, A can be obtained by a simple manipulation as follows: 

A = (X'X)
-1

X'Y             (14) 

This is the general formula for multivariate regression when there are many parameters 

(variables) affecting the output. 

3.2: Evaluation of the Model Performance 

 

3.2.1: Statistical Error Analysis 

  

Several statistical parameters including Average Percentage Relative Error, Average 

Absolute Percentage Relative Error, Root Mean Square Error and Coefficient of 

Determination were utilized to measure the efficiency and accuracy of the proposed 

models [42, 43]. These parameters are defined as follow:  

1. Average Percentage Relative Error (APRE). The relative deviation from the 

experimental data is calculated by this parameter and is defined based on the following 

equation: 





n

i

ir E
n

E
1

1
                 (15) 
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Where Ei is Percentage Relative Error and is the relative deviation of a predicted value 

from the corresponding experimental value. It is defined based on the following 

equation: 

niEi ,...,3,2,1100

Ki

Kf

Ki

Kf
 

Ki

Kf

exp

 rep./predexp





































          (16) 

2. Average Absolute Percentage Relative Error (AAPRE). It is a measure of relative 

absolute deviation of the predicted values from the experimental data and is defined as 

follows: 





n

i

ia E
n

E
1

||
1

           (17) 

3. Root Mean Square Error (RMSE): This parameter measures the data dispersion 

around zero deviation based on the following equation: 

2

exp rep./pred 

1

1 Kf Kf

Ki Ki

n

i

RMSE i i
n 

 
  

 
            (18) 

4. Coefficient of Determination (R
2
): This parameter is an indicator of how well the 

model predictions are close to the corresponding experimental values. The closer this 

value to unity, the better is the performance of the model in predicting experimental 

values. This parameter is calculated based on the following statement:  
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2

exp  rep./pred 
2 1

2

 rep./pred 

1

Kf Kf

Ki Ki
1

Kf Kf
  

Ki Ki

n

i

n

i

i i

R

i





 
 

  
 

 
 





           (19) 

where )
Ki

Kf
(  is the experimental data mean. 

3.2.2: Graphical Error Analysis  

 

In order to get a better vision of the performance of the developed models, graphical 

error analyses were employed. These methods are defined as follow: 

1. Crossplot: In this technique, the experimental data points are plotted versus the 

predicted values by the model. The closer the relationship of these points to the unit 

slope line, the more accurate is the model. 

2. Error Distribution: In order to investigate the possible error trend of the model, this 

technique measures data scatter around the zero error line. 

3.3: Model Validation and Results 

 

As it was mentioned earlier, barium sulfate was considered as the main source of scale 

formation in porous media resulted from incompatible water injection based on the 

following reaction: 

Ba
2+

 + SO4
2-

 ⇔ BaSO4           (20) 

Since the scaling behavior highly depends on the concentration of Ba
2+

 in the formation 

water, two different conditions including high barium concentration (2200 ppm) and 
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normal Ba
2+ 

concentration (250 ppm) were considered and two models were developed 

at these conditions. The reason for choosing two models for these specific 

concentrations was the availability of experimental data at these two conditions. 

However, if more experimental values are available, a more general model considering 

the effect of barium concentration might be developed to combine the models at 

different concentrations. 

As mentioned earlier, several parameters affect scale precipitation and deposition in 

petroleum reservoirs. In this work, the most important parameters based on the 

experimental data were considered to have direct effect on permeability reduction 

resulting from formation of mineral crystals. Temperature has a direct effect on 

dissolution reaction rate and causes an increase in barium sulfate dissolution when it is 

increased. This situation does not favor scale deposition and thus, permeability decline 

tends to decrease when temperature increases. Another important parameter affecting 

scaling tendency is the injected pore volume. Precipitation rate differs from the case in 

which fluid is moving fast over a small surface area during a specific time period to the 

case in which fluid velocity is controlled by a large surface area. Therefore, the 

following functionality was considered to exist between permeability reduction and the 

aforementioned parameters in which the power values were found empirically: 

Kf

Ki
 ~ (T

1

6,PV
inj

1

4 )            (21) 

Another important group affecting scaling behavior was found to be a combination of 

pressure, salt solubility and available pore volume of the medium. Pressure has an effect 

on the solubility product of the salt and also affects the dynamic of deposition. 
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Solubility of the mineral plays a significant role in the scaling tendency of the mixed 

fluids and can be found in the literature at different conditions [44]. Finally, the 

available pore volume of the medium has a close relationship with the amount of 

volume available for solid deposition, as it can be an indicator of the reactive surface 

area of the mineral. The following relationship was found to exit between the mentioned 

group and corresponding permeability impairment: 

Kf

Ki
 ~ Ln (ΔP.VP.SBaSO4)           (22) 

Hence, after analyzing the experimental data and performing statistical analysis, the 

following model was developed for prediction of permeability reduction in porous 

media as a result of barium sulfate scale formation at high barium concentration: 

exp (
Kf

Ki
) = A0+ A1T

1/6
 + A2(Qt)

1/4
 + A3Ln (VP) + A4Ln (SBaSO4) + A5Ln (ΔP)    (23) 

In this equation, Kf/Ki is the permeability damage ratio (Kf and Ki are the final and 

initial permeability, respectively), Q is the injection rate in ft
3
/min, t is the injection 

time in min, VP is the pore volume of the porous media in ft
3
, SBaSO4 is the solubility of 

BaSO4 in ppm and ΔP is the pressure difference in psi. A1, A2, A3, A4, and A5 are 

empirical coefficients and A0 is the model intercept that were calculated by using 

multivariate regression analysis. These values are reported in Table 3- 2.   

At normal concentration of barium (250 ppm), a similar model with different constants 

was developed in which the units for the input variables are the same as the previous 

model and the constants are shown in the same table. 
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Table 3- 2: Model Constants at high Barium concentration (2200 ppm) and normal Barium concentration 

(250 ppm) 

Constant High Barium 

concentration (2200 

ppm) 

Normal barium 

concentration (250 

ppm) 

A0 -1.69 10
2
 -1.33 10

1
 

A1 1.14 7.89 10
-1

 

A2 -1.51 -7.61 10
-2

 

A3 
1.69 10

2
 6.06 

A4 
-1.04 10

-1
 -5.45 10

-1
 

A5 1.09 10
-1

 9.40 10
-2

 

 

In order to evaluate the performance of the proposed models, various statistical analyses 

including Average Percentage Relative Error (APRE), Average Absolute Percentage 

Relative Error (AAPRE), Root Mean Square Error (RMSE) and Coefficient of 

Determination (R
2
) were performed. The results are summarized in Table 3- 3. As can 

be observed from this table, for the case of high barium concentration, the values of 

AAPRE, APRE, RMSE and R
2
 are 0.803, -0.011, 0.024 and 0.945, respectively. In 

addition, these values for the case of normal barium concentration were found to be 

0.411, -0.003, 0.014 and 0.937, respectively. These results confirm the superiority of the 

proposed model in predicting permeability alteration caused by barium sulfate scale 

formation in reservoir porous media with high accuracy and validity. 

Table 3- 3: Statistical parameters of permeability reduction models using 208 data points 

Barium Concentration Ea (%) Er (%) RMSE R
2
 

High Concentration of Barium 0.889 -0.021 0.102 0.948 

Normal Concentration of Barium 0.427 -0.005 0.056 0.941 
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In the next step, crossplots of the models were plotted to demonstrate the performance 

of the models in predicting the experimental values. Figure 3- 1 shows the crossplot of 

the high barium concentration model. As can be observed, the data points lie on the unit 

slope line with a R
2
 of 0.948 which demonstrates the high accuracy of the model in 

estimating the experimental data points.  

 

Figure 3- 1: Crossplot of the proposed model for permeability ratio at high barium 

concentration.  

 

Figure 3- 2 illustrates the crossplot of normal barium concentration model. Similarly, as 

shown in this figure, the data points lie on the unit slop line with a R
2
 value of 0.941, 

R
2
 = 0.948 
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which again verifies the robustness of the proposed model in estimating damage ratio 

when barium has a normal concentration in the solution. 

 

Figure 3- 2: Crossplot of the proposed model for permeability ratio at normal barium 

concentration.  

 

In addition, error distribution curves for both models were plotted to get a better vision 

of the error trend of the models when the experimental values tend to increase. Figure 3- 

3 shows the error distribution curve of the first model. As can be seen, the cloud of data 

points is located around the zero error line, which indicates the good performance of the 

model in matching with the experimental values. Also, it can be concluded from this 

figure that the proposed model does not have an error trend when the experimental 

damage ratio increases. 

R
2
 = 0.941 
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Figure 3- 3: Error distribution plot of the model at high barium concentration. The cloud of data 

points is located around the zero error line indicating that the proposed model for high barium 

solution does not have an error trend. 

 

Figure 3- 4 shows the error distribution curve of the second model. Similarly, this figure 

demonstrates that the second model is able to predict the experimental values with high 

accuracy and without a significant error trend. 
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Figure 3- 4: Error distribution plot of the model at normal barium concentration. The cloud of 

data points is located around the zero error line indicating that the proposed model for normal 

barium solution does not have an error trend. 

 

Additionally, relevancy factor [45] was utilized to investigate the impact of each input 

parameter on permeability impairment. A larger absolute value of relevancy factor (r) 

between an input and output means the greater impact of that input on the output. 

Relevancy factor is defined based on the following equation: 

 

 
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 
  
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 

      (24) 
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In this equation (
𝐾𝑓

𝐾𝑖
)i and (

𝐾𝑓

𝐾𝑖
)ave denote the i

th
 and average values of predicted 

permeability ratio, respectively. k denotes the input variables (injected fluid volume, 

temperature, pressure gradient, barite solubility and pore volume of the medium). inpk,i 

represents the i
th

 value of the k
th

 input and inpk,avg is the average value of the k
th

 input. 

The results of relevancy factor analysis are depicted in Figure 3- 5. As it was mentioned 

earlier, if an input variable displays a larger r value, it has a greater effect on the output 

when other parameters remain constant. As can be seen in Figure 3- 5, the injected pore 

volume has the greatest impact on permeability reduction. This is because a larger 

amount of solid crystals can be deposited and consequently, a larger portion of the pores 

and throats are plugged. Barite solubility has the next greatest impact on permeability 

reduction as more solid particles with larger reactive surface area cause more 

precipitation and hence more pore volume reduction. Temperature and pore volume of 

the medium have less impacts on permeability reduction than the mentioned parameters 

and pressure gradient has the smallest impact on permeability reduction resulting from 

barite scale formation. 
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Figure 3- 5: Relative impact of input parameters on permeability reduction. The injected pore 

volume has the largest impact on scale formation followed by barite solubility. Pressure has a 

smaller impact on scaling compared to the other parameters 

 

3.4: Modified Carman-Kozeny Model 

 

In order to model the permeability-porosity relationship in porous media, Carman-

Kozeny assumed that porous media is made of a bundle of tubes as shown in Figure 3- 

6.  
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Figure 3- 6: a: Ideal capillary tubes. b: An actual tube with tortuosity 

 

Based on Poiseuille's equation for laminar flow in a tube, fluid pressure gradient in flow 

direction can be defined as follows [46-48]: 

dp

dx
 = - 

32μul′

l D2
             (25) 

Where D is the diameter of the tube, 𝜙 is the porosity of medium, µ is the viscosity of 

fluid, u is the fluid velocity, l' is the true length of the tube and l is the layer length, all 

in SI units. Usually, 
𝑙′

𝑙
 is called tortuosity as shown in Figure 3- 6.b. Assuming that the 

pore volume is Q, Solid volume is Qs and porosity is 𝜙, the following relationship exists 

in a porous material: 

Q = 
 Qs

(1− )
             (26) 

b 

a 
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Assuming that the pore space is made of tubes with diameter D and solid space is made 

of uniform spheres with diameter Ds, the above equation ends up with the following 

equation for the pore space diameter:  

D = 
2 Ds

3(1− )
             (27) 

Substituting this equation into Poiseuille's Equation leads to the following equation: 

dp

dx
 = - 

72μul′(1− )2

lDs
3             (28) 

The Darcy's law is defined as the following equation: 

q = 
K

μ
A

ΔP

L
             (29) 

Thus, the following equation for permeability is obtained which is called Carman-

Kozeny relationship: 

k =
1

72τ


3

Ds
2

(1− )
2            (30) 

Now recall the developed models for permeability reduction resulting from scale 

formation at high barium concentration: 

exp (
Kf

Ki
) = A0+ A1T

1/6
 + A2(Qt)

1/4
 + A3Ln (VP) + A4Ln ( SBaSO4) + A5Ln (ΔP)    (31) 

This equation can be simplified to the following equations: 
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exp (
Kf

Ki
) = A0+ A1T

1/6
 + A2(Qt)

1/4
 + Ln (VP

A3
SBaSO4

A4
ΔP

A5
)       (32) 

By taking a natural log from both sides, the damage ratio Kf/Ki can be found as the 

following statement: 

Kf

Ki
 = Ln [A0+ A1T

1/6
 + A2(Qt)

1/4
 + Ln (VP

A3
SBaSO4

A4
ΔP

A5
)]           (33) 

As discussed earlier, Carman-Kozeny equation gives the following equation for 

permeability-porosity relationship: 

k =
1

72τ


3

Ds
2

(1− )
2            (34) 

Attempting to find porosity as a function of permeability from this equation, the 

following equation is obtained by using MATLAB software package: 

  = 
𝐶

3
 + M –  

𝑁

𝑀
           (35) 

In which: 

C = 
72ΓK

𝐷𝑠
2                 (36) 

M = (
𝐶

2
 + (N

2
 + (

𝐶3

27
 – 

𝐶2

3
 + 

𝐶

2
)

2
)

1/2
 – 

𝐶2

3
 + 

𝐶3

27
)

1/3
                              (37) 

N = 
6C− 𝐶2

9
             (38) 
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Finally, the damaged porosity ratio as a result of barium sulfate scale formation in 

porous media is obtained based on the following equation: 


𝑓


𝑖

 = 
𝐶′

3
+ M' – 

𝑁′

𝑀′                      (39) 

In which: 

C' = 
72Γ

Kf

𝐾𝑖

𝐷𝑠
2               (40) 

M' = (

72Γ
Kf
Ki

𝐷𝑠
2

2
 + (N

2
 + (

(
72Γ

Kf
Ki

𝐷𝑠
2 )^3

27
 – 

(
72Γ

Kf
Ki

𝐷𝑠
2 )^2

3
 + 

(
72Γ

Kf
Ki

𝐷𝑠
2 )

2
 ) 2

)
 1/2

 – 

(
72Γ

Kf
Ki

𝐷𝑠
2 )^2

3
+ 

(
72Γ

Kf
Ki

𝐷𝑠
2 )^3

27
)
1/3

    (41) 

N' = 

6
72Γ

Kf
Ki

𝐷𝑠
2 −(

72Γ
Kf
Ki

𝐷𝑠
2 )^2

9
            (42) 

And 

Kf

Ki
 = Ln [A0+ A1T

1/6
 + A2(Qt)

1/4
 + Ln (VP

A3
SBaSO4

A4
ΔP

A5
)]                             (43) 

Eq. 39 is the general form of porosity reduction based on permeability damage ratio 

resulting from barium sulfate scale formation when incompatible water is injected into 

the reservoir. 

3.5: Sensitivity Analysis 

 

In this part of the study, the results of sensitivity analysis based on the scale 

precipitation thickness are presented.  
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Let us assume that the pore volume of porous medium is made of n uniform tubes with 

radius r and length l' and the bulk volume has a length of l as shown in Figure 3- 7.  

 

Figure 3- 7: Porous medium with cylindrical tubes. There are n uniform tubes with radius r and 

length l' and the bulk volume has a length of l. 

 

If there are n cylindrical tubes in the medium, the corresponding porosity is calculated 

based on the following equation: 


1

=  
nπr2𝑙′

BV
               (44) 

In this equation, BV stands for bulk volume. Now assuming that scale formation has 

occurred as shown in Figure 3- 8, we will have reduction in porosity because of the pore 

size reduction. 
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Figure 3- 8: Porous medium with cylindrical tubes after scale formation. Porosity decreases as 

the pore sizes become smaller becaasue of scale formation. It is assumed that the pores are 

uniformly plugged. 

 

In this case, the corresponding porosity is calculated based on the new radius of the 

tubes, r', based on the following equation: 


2

=  
nπr′2𝑙′

BV
                        (45) 

Now let us assume that the following relationship exists between the old radius, r, and 

the new radius, r': 

𝑟′

𝑟
 = x              (46) 

Where, x can get any values between zero and one depending on the severity of scale 

formation. 
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Therefore, the corresponding porosity ratio is calculated based on the following 

statement: 


2


1

=  
 
nπr′2

𝑙
′

BV

nπr2𝑙′

BV

 = 
r′2

r2  = x
2
          (47) 

Thus, the porosity ratio is proportional to the radius ratio squared. 

It is worth noting that the same conclusion is drawn when a general type of pore volume 

consisting of cylindrical tubes with different radii is considered as shown in Figure 3- 9. 

 

Figure 3- 9: Porous medium with nonuniform pore size distribution. Porosity reduction resulted 

from scale formation will be the same as the case in which the pore size distribution is uniform 

 

In this case, porosity values before and after scale precipitation when the pore radius 

reduction ratio is the same can be obtained based on the following statements: 


1

=  
∑ (π𝑟𝑖

2𝑛
𝑖=1 𝑙′)

BV
            (48) 
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
2

=  
∑ (π𝑟′𝑖

2𝑛
𝑖=1 𝑙′)

BV
            (49) 


2


1

=  
∑ (π𝑟′𝑖

2𝑛
𝑖=1 l′)

BV

∑ (π𝑟𝑖
2𝑛

𝑖=1 l′)

BV

 = 
∑ (𝑥𝑟𝑖)

2𝑛
𝑖=1

∑ 𝑟𝑖
2𝑛

𝑖=1

 = x
2
         (50) 

This is the same observation obtained in the case of identical tubes. 

In the next step, in order to investigate the effect of pore size reduction on permeability 

ratio, we need to combine the above derivations with the Carman-Kozeny equation 

based on the following steps: 

Let us assume two cases for Carman-Kozeny equation as before scale formation shown 

by K1 and after scale formation shown by K2. We have: 

𝐾1 =
1

72𝜏


1

3

𝐷𝑠
2

(1−
1

)
2             (51) 

𝐾2 =
1

72𝜏


2

3

𝐷𝑠
2

(1−
2

)
2            (52) 

Assuming that the solid diameter and tortuosity remain the same, we have: 

K2

K1
=  


2

3

(1−
2

)
2


1

3

(1−
1

)
2

            (53) 

Based on Eq. 50 we can substitute 
2
with 

1
x

2
 to get the following statement: 
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K2

K1
=  𝑥6(

1−
1

1−
1

𝑥2
)2           (54) 

Based on the severity of damage, different values for pore size reduction ranging from 

0.9 to 0.1 can be assumed. Therefore, sensitivity analysis based on the radius reduction 

can be performed. The results of sensitivity analysis are illustrated in Figure 3- 10. As 

can be seen in this figure, permeability ratio decreases significantly when the thickness 

of precipitation increases. In addition, this figure states that when the thickness of scale 

precipitation is large, permeability reduction occurs more significantly compared with 

the case that pore volume reduction is not significant. Different values of porosity were 

considered for a better vision of the permeability behavior. 
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Figure 3- 10: permeability ratio decreases significantly when the thickness of precipitation 

increases 

 

3.6: Summary 

 

In this chapter, Multivariate Regression Analysis technique was employed to develop 

two models for estimating permeability reduction caused by barium sulfate scale 

formation during water flooding. To achieve this objective, 216 data sets covering a 

wide range of reservoir and thermodynamic conditions were collected from the 

literature. The main parameters affecting formation damage because of scale deposition 

were considered to be the injected fluid volume, pressure gradient of the fluid, reservoir 

temperature, solubility of barium and the available pore space.  The results of statistical 

and graphical analysis showed that the models are able to predict formation damage 
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with high accuracy and promising performance. Moreover, the models were 

incorporated into Carman-Kozeny equation to obtain a dynamic third order equation for 

porosity alteration as a function of permeability reduction.  
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Chapter 4: Macro scale Modeling of Scale Formation in Reservoir and 

its Impact on Reservoir Performance 

 

4.1: Mechanism of Barite Precipitation 

 

Bethke [49, 50] proposed the following expression for mineral precipitation (or 

dissolution) rate: 

rβ = A β k β (1- 
𝑄β

𝐾𝑒𝑞,β
) β = 1,…, Rmn                               (1) 

in Eqn. 4 , k β is the rate constant, Aβ is the reactive surface area of mineral β, Keq,β is 

the chemical equilibrium constant which can be found as a function of temperature in 

the literature [51, 52] and rβ is the reaction rate, all in SI units. The term 
𝑄β

𝐾𝑒𝑞,β
 in Eqn. 4 

is the saturation index of the reaction. If the saturation index is less than unity, mineral 

precipitation occurs. When  the saturation index is one, the reaction is at equilibrium. 

Qβ is the activity product for mineral β and can be determined by the following 

equation: 

Q β = ∏ 𝑎𝑘

𝑣𝑘β𝑛𝑎𝑞

𝑘=1              (2) 

where, ak is the activity of component k and vkβ is the stoichiometry coefficient. The 

following expression shows the relationship between the activity of and molality of 

components: 

ai = γi mi i=1,…, naq             (3) 
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in Eqn. 6, mi is the molality of component i and γi is the activity coefficient which can 

be calculated based on B-dot model as follows: 

Log γi = - 
𝐴𝑦𝑧𝑖

2√𝐼

1+ 𝑎𝑖̇ 𝐵𝑦√𝐼
 + BI             (4) 

where 𝑎𝑖̇  is the ion size parameter, Aγ, Bγ and B are functions of temperature and I is 

the ionic strength calculated as follows: 

I = 
1

2
∑ 𝑚𝑘𝑧𝑘

2𝑛𝑎𝑞

𝑘=1               (5) 

where zk is the ionic charge of the kth ion. 

As it was mentioned earlier, Aβ is the reactive surface area of mineral β. It is known that 

in high porosity sandstones, the accessible fraction of reactive minerals is around one 

third while this value can be as small as one fifth for shaly sandstones [53]. The 

following mole change based equation is used for calculating the reactive surface area: 

Aβ = 𝐴β
0 𝑁β

𝑁β
0                   (6) 

where Aβ is the reactive surface area of mineral β at current time, 𝐴β
0  is the reactive 

surface area at time zero, Nβ is the moles of mineral β per unit grid block volume at 

current time and 𝑁β
0 is defined at time zero. 

The following expression is used to calculate the change in porosity resulting from 

mineral dissolution/precipitation: 

𝜙̂ = 𝜙* - ∑ (
𝑁β

ƿβ
−

𝑁β
0

ƿβ
)

𝑛𝑚
β=1             (7) 
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where, 𝜙̂ is the reference porosity when dissolution/precipitation is included, 𝜙* is the 

reference porosity without mineral dissolution/precipitation and ƿ is the molar density 

of mineral β. 

Here, we examine the above equations by giving an example describing the 

mechanisms of barite precipitation used in the simulations. The parameters are chosen 

the same as the literature values used for the simulations. The reservoir formation water 

used in this research is considered rich in barium cation. The injected seawater is 

considered rich in sulfate anion. The molalities of barium and sulfate were used from 

real formation and sea waters in literature [50] to be 0.0043 m and 0.028 m, 

respectively. Barium and sulfate react with each other to form barite based on the 

following reaction: 

Ba
2+

 + SO4
2-

 ⇾ BaSO4           (8) 

Depending on the activity product and equilibrium constant of the above reaction, 

different scenarios i.e., precipitation and/or dissolution can happen. The activity product 

is defined as follows: 

1

aq i
n v

ii
Q a


             (9) 

In fact, activity product is the ratio of the multiplication of products (barite) to the 

reactants (barium and sulfate) powered by their stoichiometry coefficients. Based on 

Eq. 28, the activity product of the barite reaction is calculated as follows: 

4

2 2
4

BaSO

Ba SO

a
Q

a a 

             (10) 
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The activity of minerals is usually assumed one while the activity of the ions are 

calculated using their activity coefficients based on the following equation: 

i i ia m              (11) 

where m is the molality of the ions and γ is the activity coefficient of the ions. A simple 

formula for calculating the activity coefficients is obtained by using the Debye–Hückel 

theory based on the following expression: 

2

i iLog Az I               (12) 

where z is the charge of the ions, A is a constant (usually 0.5092) and I is the Ionic 

strength of ions calculated based on the following formula: 

21
( )

2
i iI m z              (13) 

As it was mentioned before, the activity of barite is assumed one. The activities of 

barium and sulfate are calculated using Eq. 31-33 as follows: 

2 2 21 1
( ) [0.0043 2 0.028 2 ] 0.065

2 2
i iI m z        

2 2

2 2 0.520.5092 2 0.065 0.52 10 3.29BaBa Ba
Log Az I             

2 2 2
4 4 4

2 2 0.520.5092 2 0.065 0.52 10 3.29
SO SO SO

Log Az I              

2 2 2 3.29 0.0043 0.01
Ba Ba Ba

a m        

2 2 2
4 4 4

3.29 0.028 0.09
SO SO SO

a m       
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Therefore, the activity product of barite precipitation becomes: 

4

2 2
4

1
1111.11

0.01 0.09

BaSO

Ba SO

a
Q

a a 

  


  

Equilibrium constant of a reaction is defined based on the following equation:  

0ln /eq rK G RT              (14) 

where
0

rG is the Gibbs free energy of the reaction at standard condition and is reported 

for different species in literature usually in kJ/mol, R is the gas constant and T is the 

temperature in K. This equation is used for calculating the equilibrium constant at 

standard condition (298.15 K). A similar equation is derived for determining the 

equilibrium constant at different temperatures based on the following equation: 

0

, ,298.15

1 1
ln ln ( )

298.15

r
eq T eq

H
K K

R T


            (15) 

In the above equation, 
0

rH  is the enthalpy of the reaction in kJ/mol which is also 

reported in the literature for different species. 

In order to calculate the equilibrium constant of barite at the reservoir temperature in 

this study, 161
0
F (344.817K), first the values of 

0

fG and 
0

fH of the species should be 

found from the literature. These values are reported in Table 4- 1. 
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Table 4- 1: The thermodynamic properties of barium, sulfate and barite [54] 

Property \ 

Component 

Ba
2+

 SO4
2- 

BaSO4 

0

fG (kJ/mol) -560.74 -744.63 -1362.186 

0

fH (kJ/mol) -537.64 -909.27 -1473.19 

 

0

rG and
0

rH of the reaction is calculated by subtracting the 
0

fG and
0

fH  of the 

reactants from the products multiplied by their stoichiometry coefficients. 

Based on Eq. 28, these values for barite precipitation become: 

   2 2
4 4

0 0 0 0  1362.186 –  560.74  –  74 -56.82 kJ/mol4.63r BaSo Ba SO
G G G G          

   2 2
4 4

0 0 0 0  1473.19 –  537.64 -26. –  909. 28 kJ/mol27r BaSo Ba SO
H H H H           

Therefore, the equilibrium constant of barite precipitation at standard condition 

becomes: 

3
0 -56.82 10

ln / 22.92
8.314 298.15

eq rK G RT


    


(dimensionless) 

By a simple manipulation, the log of equilibrium constant can be obtained as follows: 

ln 22.92
log 9.95

2.303 2.303

eq

eq

K
K     

This value could be directly read from a table in literature [55] as it was previously read 

in the previous sections. Depending on how the reaction is defined (on what side barite 

is and on what side barium and sulfate are), this value could have a negative sign. 
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However, since the activity product will also be reverse, the ratio of these two values 

known as the saturation ratio will represent the same result. 

For calculating 0

rG at the reservoir temperature, Eq. 35 is used as follows: 

0 3

, ,298.15

1 1 -26.28 10 1 1
ln ln ( ) 22.92 ( ) 21.48

298.15 8.314 344.817 298.15

r
eq T eq

H
K K

R T

 
         

, exp(21.48) 2131304350eq TK     

If the saturation index is less than one, which is the case here, it means that the solution 

is far from equilibrium and the activity product should increase to get closer to the 

equilibrium constant to approach equilibrium. Based on the reaction that we have 

defined in Eq. 28, for increasing the activity product, barite should precipitate. In other 

words, the reaction will proceed to the right and barite will precipitate. This is 

confirmed by the results of the numerical simulation illustrated in the following 

sections. 

4.2: Reservoir Base Case Model 

 

The reservoir properties used in in this study are summarized in Table 4- 2. The 

reservoir fluid components and compositions are shown in Table 4- 3.  
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Table 4- 2: Reservoir properties 

Grid 30*30*1 

Grid block sizes ∆x = 20 ft ∆y = 20 ft ∆z = 150 ft 

Permeability in all directions 300 mD 

Porosity 0.2 

Depth of reservoir top 9500 ft 

Reservoir temperature 161 
0
F 

Initial reservoir pressure 4800 psi at 9600 ft 

Rock compressibility 3*10
-6

 

 

Table 4- 3: Hydrocarbon components and compositions 

CO2 0.0023 

N2 0.0063 

CH4 0.3624 

C2H6 0.0279 

C3H8 0.0225 

C4H10 0.0204 

C5H12 0.0139 

C6H14 0.0166 

C7+ 0.5277 

 

Barium sulfate was considered to be the precipitating mineral in the reservoir as a result 

of incompatible water injection. The concentration of barium in the formation water and 
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the composition of sulfate in the seawater were used from bethke [50]. The mineral 

precipitation reaction properties were used from [55, 56]. These properties are all shown 

in Table 4- 4. The relative permeability curves are shown in Figure 4- 1.  

Table 4- 4: Chemical reaction properties 

Barium molality in formation aqueous 

phase 

0.0043 m 

Sulfate molality in seawater 0.028 m 

Activation energy of barite precipitation 

reaction 

22 kJ/mol 

Barite reactive surface area 900 m
2
 / m

3
 of bulk volume of 

mineral 

log of barite Reaction rate constant at 

25
0
C 

-8 mol/m
2
s 

Log of barite chemical equilibrium 

constant 

-9.97 
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Figure 4- 1: The relative permeability curves of water and oil 

 

Two wells were considered to be actively injecting and producing at the corners of the 

reservoir as shown in Figure 4- 2 and production was continued for nine years. The 

minimum bottom hole pressure for the production well was set to 2500 psi. Also, this 

well was constrained to a maximum surface liquid rate of 300bbl/day. The injection 

well was constrained to a maximum water rate of 340 bbl/day and subjected to a large 

maximum bottom hole pressure to ensure a constant injection rate. 
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Figure 4- 2: Reservoir geometry 

 

4.3: Simulation of a Synthetic Oil Field Affected by Scale Formation 

 

In order to investigate the impact of mineral scale deposition on reservoir performance, 

barium sulfate was considered to be the scaling mineral occurring in the reservoir 

during water flooding. Investigation the impact of multiple minerals including barium 

sulfate and calcium sulfate will be the focus of the future sections.  

Figure 4- 3, Figure 4- 4 and Figure 4- 5 illustrate the amounts of barium, sulfate, barite 

and the corresponding porosity reduction after three, six and nine years of incompatible 
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water flooding, respectively. As it was mentioned earlier, barium sulfate precipitates 

based on the following reaction: 

Ba
2+

 + SO4
2-

 ⇾ BaSO4           (16) 

The stoichiometry coefficients of barium and sulfate are equal and as the concentration 

of barium in the formation water is lower than that of sulfate in the seawater (Table 3), 

barium is consumed and some sulfate ions will remain in the aqueous phase. Also, 

barite mineral which was set to be zero initially, will form and increase by continuing 

the injection as verified by Figure 4- 3, Figure 4- 4 and Figure 4- 5. As can be observed 

in these figures, the locations of porosity reduction in the reservoir are directly related 

to the mineral deposition of barite within the reservoir. In other words, wherever barite 

scaling occurs, porosity reduction is observed. Also, it can be noted that the porosity 

reduction wave is propagated in a radial manner from the injection well towards the 

production well. Also, as can be seen in some of the grid blocks porosity drops down 

from 0.2 to nearly 0.08 which significantly affects the reservoir performance.  
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Figure 4- 3: Location and amounts of barium, sulfate, barite and porosity after three years 

of flooding 
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Figure 4- 4: Location and amounts of barium, sulfate, barite and porosity after six years of 

flooding 
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Figure 4- 5: Location and amounts of barium, sulfate, barite and porosity after nine years of 

flooding 
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was considered. In the first scenario, the injection well was assigned to a large 

maximum bottom hole pressure to ensure a constant water injection of 340 bbl/day. The 

production well was constrained to a minimum bottom hole pressure of 2500 psi and a 

maximum liquid rate of 300 bbl/day. Water flooding was continued for nine years 

without including the geochemical reactions and the resulting scale formation. In the 

second scenario, the chemical reactions were included while other parameters were kept 

the same. The results are illustrated in Figure 4- 6. As can be observed, when the 

scaling issue is not considered in the flooding process, the required bottom hole 

pressure for the injection well increases from 4800 psi (initial reservoir pressure) to 

5542 psi to keep the constant injection rate. In the second case, however, this pressure 

increases up to 10246 psi which is around 5000 psi increment in the injection pressure. 

These results are in close agreement with the real oil field experience in Siri offshore oil 

field in Persian Gulf [19] where the water flooding project was stopped after six years 

as the water injection rate decreased from 9100 to 2200 bbl/day as a result of scaling 

issue. Here, we ensured a constant injection rate to determine the bottom hole pressure 

needed for this operation. These results suggest that care should be taken while water 

flooding projects are designed. Ignoring the scaling issue and impacts of mineral 

deposition in the reservoir will significantly affect the outcome of water injection 

process. 
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Figure 4- 6: The impact of scaling on well performance. Scaling leads in an increase in the 

bottom hole pressure required for a constant production rate. 

 

4.4.2: Sensitivity Analysis Based on Reactive Surface area of Barite 

 

Dissolution and precipitation rates are affected by the reactive surface area of minerals. 

One simple model for determining the dissolution/precipitation rate is as follows  [57]: 

(1 )r Ak              (17) 

where r is the dissolution/precipitation rate in mol/s, A is the reactive surface area of the 

mineral in m
2
, k is the rate constant in mol/m

2
s and   is the saturation index.  

The reactive surface area of minerals has been a question of interest among the 

researchers [57, 58]. In numerical simulations, A is usually normalized and reported in 

m
2
/m

3
 of bulk volume of rock. When the reaction is far from equilibrium (dissolution 
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and precipitation conditions), the rate is essentially dependent on the reactive surface 

area and pH. In fact, the variation in reactive surface area affect the reactive transport 

properties within a rock [57]. In addition, it has been found that the reactive surface area 

changes as the reaction proceeds. 

Reactive surface area of minerals depends on their grain size. Different methods are 

used to measure the reactive surface area of minerals such as atomic force microscopy, 

vertical scanning interferometry and laser confocal microscopy. However, these 

experimental approaches [58] provide limited information for reactive transport 

modeling as the surface area is highly affected by the scale at which the process is 

observed. In a geological carbon sequestration study, Shu et al. [58] showed that 

reactive surface has a significant impact on mineralization trapping of CO2 in saline 

aquifers. They studied seven cases including different sizes for grain diameters of 

calcite and anorthite, which leads in different reactive surface areas for these minerals. 

They concluded that because of a reduction in the surface areas of calcite and anorthite, 

the amount of dissolved anorthite and the amount of precipitated calcite and kaolinite 

decrease significantly. They also concluded that during 500 years, mineral trapping of 

CO2 decreases from 11.8% to 0.65% because of the reduction in the reactive surface 

areas of calcite and anorthite from 838 to 83.8 m
2
/m

3
. 

Here, in order to investigate the effect of amount of precipitation on well performance, a 

sensitivity analysis based on the reactive surface area of barite was studied. The inputs 

are the same as discussed in the previous section and the results are shown in Figure 4- 

7. As can be observed, an increase in the reactive surface area of barite leads in an 

increase in the required injection bottom hole pressure for maintaining the constant 
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production rate. In addition, it can be observed that by increasing the amount of 

precipitation, the injection curves deviate from a smooth trend 

 

Figure 4- 7: Impact of precipitation amount on well performance. Reactive surface area has a 

direct relationship with the amount of precipitation and a larger surface area leads in a higher 

bottom hole pressure required for injection. 
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considered: one without considering scale formation and one with including the impact 

of scaling issue. The results for the first case are illustrated in Figure 4- 8. As can be 

observed, water flooding is continued with a constant injection bottom hole pressure of 

3200 psi (the minimum pressure required for the production well) and a constant water 

rate of 300 bbl/day. The recovery factor increased to around 0.63 as shown in the figure. 

 

Figure 4- 8: Recovery factor without considering the impact of scaling. A recovery factor up to 

0.63 can be achieved when the effect of scaling issue on the reservoir formation is not included. 

 

In the second scenario, the chemical reactions during water flooding were considered 

and the results were plotted in Figure 4- 9. As can be seen, the injection pressure started 
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was constant in this duration and recovery factor increased. However, as the pressure 

reached the maximum pressure condition, water rate started to drop and as a result, 

recovery factor tended to increase with a smaller slope. The final recovery factor 

achieved in this case was around 0.35, which is less than the first case. 

 

Figure 4- 9: Recovery factor with including the impact of scale formation on reservoir porous 

media. Recovery factor decreases as a result of scaling issue. The bottom hole pressure tends to 

increase to overcome the precipitations until it reaches the maximum bottom hole pressure 

enforced on the injection well. Once the maximum bottom hole pressure is reached, the 

injection water rate starts to decrease leading in a smaller recovery factor. 

 

The maximum bottom hole pressure for the injection well was increased from 3355 psi 

to 3555 psi to see how much it will mitigate the effect of scaling on recovery factor. The 

results are shown in Figure 4- 10. As can be observed, the recovery factor has increased 
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Days after Injection

0 1000 2000 3000

B
H

P
 (

P
s
i)
- 

In
je

c
te

d
 W

a
te

r 
R

a
te

 (
b

b
l/
d

a
y
)

0

500

1000

1500

2000

2500

3000

3500

R
F

0.0

0.1

0.2

0.3

0.4

BHP
Injected Water Rate 
RF



69 

 

recovery factor as a higher injection pressure causes more production as verified by the 

results. In addition, it can be noted that the water injection drop is delayed until the later 

stages of flooding which leads in a higher recovery factor. 

 

Figure 4- 10: Impact of maximum bottom hole pressure on recovery factor. Assigning a larger 

maximum bottom hole pressure leads in a larger recovery factor when scaling causes formation 

damage. 
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kinetic information of calcium sulfate was collected from the literature [59]. Other 

parameters were the same as before. The amounts of barite precipitation and porosity 

reduction for the first case are shown in Figure 4- 11 andError! Reference source not 

found. Figure 4- 12. The results for the composite case are shown in Figure 4- 13, 

Figure 4- 14 and Figure 4- 15.  As can be observed, the composite scale has a smaller 

impact on the reservoir porosity reduction. In fact, the presence of calcium ions 

prevents the sulfate ions to completely react with barium ions and form barium sulfate. 

Therefore, some of the sulfate ions react with the calcium ions. This leads in a less 

amount of barite precipitation as shown in Figure 4- 13 and precipitation of calcium 

sulfate as shown in Figure 4- 14. Although calcium sulfate precipitation is added to 

barite precipitation, the combined scale leads in a less damage on the reservoir.  
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Figure 4- 11: Amount of barite precipitation when barite is the only scaling agent in the 

reservoir. The amount of barite precipitation is largest closer to the injection well and decreases 

by moving towards the production well. 
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Figure 4- 12: Porosity profile when only barite scaling exists in the reservoir. Porosity reduction 

is largest closer to the injection well and decreases by moving towards the production well. 
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Figure 4- 13: Amount of barite precipitation when barite and CaSO4 are the scaling agents in the 

reservoir. Barite precipitation decreases as less sulfate ions are provided for the barium cations 

when calcium ions exist in the reservoir. 
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Figure 4- 14: Amount of CaSO4 precipitation when composite BaSO4- CaSO4 occurs in the 

reservoir. Some of sulfate inions are removed from the reservoir by the calcium cations and this 

leads in an increase in the calcium sulfate precipitation while it causes a decrease in barite 

precipitation. 
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Figure 4- 15: Porosity reduction as a result of composite BaSO4- CaSO4 scaling. Porosity 

reduction is less compared to the case in which only barite precipitation exists. In addition, most 

of the reduction occurs closer to the injection well. 
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Figure 4- 16: Impact of composite BaSO4- CaSO4 scaling on well performance. Composite 

scaling has a less impact on the injection pressure required for the constant production. 

 

4.7: The impact of In-Situ Scale Formation on Waterflooding Performance from 
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However, in most cases, many factors such as reservoir heterogeneity, capillarity, and 

dispersivity make the displacement non- ideal and therefore the efficiency of the water 

flooding operation is reduced. When the mobility ratio is greater than unity, the 

displacing fluid bypasses the displaced fluid and the displacement deviates from ideal 

behavior. The following figure demonstrates a typical non- ideal behavior: 

 

Figure 4- 18: Non-ideal water flooding- The tongues of the displacing fluid (water) are 

bypassing the displaced fluid (oil). 
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Figure 4- 17: Ideal water flooding - Piston like displacement of a 1D model with one injector 

on the left and on producer on the right. 
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When the displacement is not ideal, the saturation profile is predicted by the by the 

Buckley Leverett theory [60-62].  

In order to investigate the impact of chemical reactions on the saturation profile of the 

injected water, a one-dimensional model including 100 grid blocks was considered. 

Each grid block was 6 ft. in length and 150 ft. in height. The width of the reservoir was 

considered 600 ft. Other properties of the reservoir and the fluids were considered the 

same as discussed before. The reason behind selection of the 1D model is to simplify 

the process to be able to put the main focus on the saturation profiles of the injected 

water. The concentrations of barium, sulfate and barite as well as the corresponding 

porosity reduction as a result of the injection of sulfate into the 1D barium rich 

formation water are illustrated in Figure 4- 19. As can be observed, the porosity can 

decrease up to .077 in some locations.  
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In order to investigate the impact of scale formation on saturation profiles, two 

simulation scenarios were performed. In one scenario, water flooding was performed 

without considering the chemical reactions and the saturation profiles at different 

injected pore volumes are plotted in Figure 4- 20. As can be seen in this figure, the 
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Figure 4- 19: Profile of barium, sulfate and barite concentrations and the corresponding porosity 

reduction after six years of water flooding, 0.4 PV injected. Injection of sulfate into the barium 

rich formation leads in porosity reduction up to 0.077. 
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performance of the water flooding is very close to the piston like behavior during the 

water flooding operation without including the impact of in situ scale formation. In the 

second case, the scaling issue resulting from the single barite precipitation in the 

reservoir was considered during the flooding operation and the results are illustrated in 

the same figure. As can be seen from the plots, the water flooding performance is 

deviating from the piston like behavior. In addition, it can be concluded from the 

scaling plots that the chemical reactions cause earlier water breakthroughs, which is not 

favored during water flooding. The reason behind these phenomena is in fact related to 

the relative permeabilities of the water and oil phases in the fractional flow equations 

and the formation porosity that decreases because of scale deposition. Another 

conclusion can be drawn from this figure: The performance of water flooding becomes 

less efficient at the later times of flooding because of barite scale formation. From a 

quantitative standpoint, it can be observed from the figure that scaling issue leads in 

earlier water breakthroughs for up to 60 ft., which can affect the efficiency of the water-

flooding project. 
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Figure 4- 20: The impact of scale formation on the saturation profile during water flooding. The 

mineral deposition makes the saturation profiles deviate from ideal behavior and leads in an 

earlier water breakthrough. 

 

4.7.2: Sensitivity Analysis based on the Reactive Surface Area of Barite 

 

As it was mentioned before, reactive surface area plays an important role in determining 

the amount of precipitation/dissolution. Here, a sensitivity analysis based on the 

reactive surface area of the barite mineral during incompatible water flooding was 

performed.  

The sensitivity analysis was performed at different injected pore volumes to capture the 

impact of reactive surface area on the water flooding performance. In one case, the 

reactive surface area of the barite was assumed 90 m
2
/m

3
 of bulk volume of rock and in 

the second case, this value was assumed 900 m
2
/m

3
. The results of this comparison are 

illustrated in Figure 4- 21. As can be observed, a larger reactive surface area, which 

leads in more barite precipitation, causes a more non-ideal behavior and an earlier 
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breakthrough which both are not favored during water-flooding. These results infer that 

more precipitations cause displacement problems during water flooding. It should be 

pointed out that the injected pore volume and reactive surface area are independent. In 

other words, only one of the rates in Figure 4- 21 was sufficient for conducting the 

sensitivity analysis. However, we have added three different pore volumes to 

investigate the impact of scale formation and reactive surface at different stages of 

flooding. 

 

Figure 4- 21: Sensitivity analysis based on the reactive surface area of barite at different 

injected pore volumes. A larger reactive surface area leads in more precipitation and 

consequently a larger impact on the water flooding performance. 

 

4.8: Summary 

 

The principal geochemical processes that lead in scale formation and formation damage 

were presented. In addition, a brief description of barite scale deposition and reactive 

surface area of minerals was provided. Sensitivity analysis based on the reactive surface 
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area of barite shows that a larger surface area leads in a less efficient water flooding 

operation. 

A base case model was made for investigating scale formation during water flooding. 

To this end, seawater with a real water composition from the literature was considered 

for injection into a reservoir in which the formation water composition was also 

collected from a real case. Simulations were run for two scenarios: In one scenario, 

atypical water flooding process was designed and in the second case, the geochemical 

reactions that lead in scale formation within the reservoir were taken into consideration. 

The impact of scale formaton on reservoir properties was also studied. Scale formation 

can decrease the reservoir porosity from an initial value of 0.2 to a final value of 0.08. 

The impact of scale formation on injection performance and oil recovery was 

investigated in this chapter as well. The required bottom hole pressure for a constant 

production rate increases when scale forms within the reservoir. Larger reactive surface 

area leads in a higher bottom hole pressure required for constant production. Scale 

formation also leads in less oil recovery compared to the case in which the impact of 

scale formation is neglected.  

Calcium sulfate was added to barium sulfate to study the effect of composite scale 

formation on reservoir properties and injection performance. Composite barite/calcium 

sulfate scaling causes less damage on the reservoir performance compared to the case of 

single barite scale. 

The impact of barite scale formation on water flooding efficiency was studied. The 

efficiency of water flooding in terms of Ideal and non-ideal displacement behavior was 
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quantified by means of water saturation profiles. Scale formation leads in non-ideal 

water flooding displacement and the performance of water flooding becomes less 

efficient at the later times of flooding. 
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Chapter 5: Summary, Conclusions and Recommendations 

 

5.1: Summary 

 

Mineral scale formation in reservoir formation during water flooding was studied in this 

research. A robust model was developed for predicting permeability damage resulting 

from scale formation in reservoir porous media. In addition, the developed model was 

coupled with Carman-Kozeny equation to develop a modified relationship between 

porosity and permeability of porous media affected by mineral deposition. 

Barium sulfate was considered as the main scaling agent in reservoir porous media by 

injecting seawater rich in sulfate into a formation rich in barium. Detailed mechanisms 

of scale formation and formation damage were examined throughout the work and the 

impact of scale deposition inside the reservoir on reservoir performance was thoroughly 

studied.  

Water saturation profiles before and after scale formation were examined and the 

impact of scale formation on the efficiency of water flooding operation was assessed. 

Calcium sulfate was added to barium sulfate and the impact of composite scale 

formation on injection performance and reservoir properties were studied. 

 

5.2: Conclusions 

 

The following detailed conclusions can be drawn from this work: 
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 The developed model for prediction of formation damage resulting from scale 

deposition was found to be accurate and robust. The results of average absolute 

percentage relative error (AAPRE) showed that the high concentration model 

predicts permeability damage ratio with an AAPRE of 0.889% and the normal 

concentration model predicts the damage ratio at with an AAPRE of 0.427%. In 

addition, the coefficient of determination (R
2
) was found to be 0.948 and 0.941 

for the first and second model, respectively. Error distribution curves showed 

that the models are consistent in estimating permeability damage with high 

accuracy over a wide range of input parameters. Relevancy factor indicated that 

the volume of injected incompatible water has the greatest impact on 

permeability reduction caused by scaling issue. 

 Injection of seawater rich in sulfate into a formation rich in barium causes the 

mixed fluid to precipitate barite. Barite scale formation significantly affects the 

reservoir performance. Porosity can decrease from 0.2 to 0.08 because of scale 

formation.  

 Scale formation causes the water flooding behavior to deviate from ideal 

displacement to non-ideal displacement. In addition, a larger reactive surface 

area of barite leads in a less efficient injection. The impact of scale formation on 

water flooding efficiency is more severe in the later stages of flooding. 

 Scale formation leads in a higher bottom hole pressure required for injection 

when a constant production rate is favored. In addition, oil recovery drops 

because of scale formation when a larger production is favored. 
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 Composite barium sulfate/calcium sulfate scaling causes less damage to the 

reservoir properties and injection performance. The reason behind is the removal 

of sulfate anions by the calcium cations when both calcium and barium ions 

exist in the formation water. 

 

5.3: Recommendations for Future Work 

 

The following recommendations may be considered for future research: 

 A more general pore structure for the porous media and a nonuniform 

distribution for the thickness of deposition in the pore bodies can be considered 

for developing a model that captures the heterogeneity of porous media. 

 Calcium carbonate can be added to the system to investigate the impact of co-

precipitation of carbonate and sulfate scales on reservoir performance.  

 Scale formation can occur during CO2 injection and sequestration processes as 

well. The impact of scale precipitation during the mentioned operations can be 

investigated by employing a similar approach presented in this research. 

 Scale formation and its impact on reservoir performance and water injection 

have been thoroughly studied in this work. Next step should focus on 

developing a method to overcome the issues caused by scale formation that were 

mentioned in this study.  
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