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Abstract

An atom-based approach is presented to detect absolute microwave (MW) electric

fields (E-fields). The approach uses Rydberg atoms in vapor cells at room tempera-

ture. The MW E-field measurements utilize a bright resonance prepared within an

electromagnetically induced transparency (EIT) window. The large transition dipole

moments between energetically adjacent Rydberg states enable this method to make

traceable E-field measurements with a sensitivity that is several orders of magnitude

higher than the current standard for MW E-field measurements. The method can be

used to image MW E-field in the near field regime with a subwavelength resolution

of λMW/650, where λMW is the wavelength of the MW E-field. A high accuracy of

1% has been reached by minimizing the effects of the vapor cell geometry on the

measured MW E-field. The dissertation also presents an alternative technique to

perform the MW E-field measurement using dispersive properties of the EIT spectrum

with a prism vapor cell. Recently, we applied a homodyne detection technique with a

Mach Zehnder interferometer to achieve a new sensitivity limit for the MW E-field

measurement, ∼ 3 μVcm−1Hz−1/2. The new sensitivity is one order of magnitude

better than our prior best sensitivity presented in Ref. [Nat. Phys. 8, 819 (2012)].

The Rydberg atom-based method is promising to be a new standard for MW E-field

measurements and to develop into portable devices in the field of MW technologies.
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Chapter 1

Intoduction

1.1 Precision measurement and atom-based sensing

Atomic spectroscopy is essential for many precision measurements of physical

quantities. The high performance of these measurements comes from the fact that

precision atomic spectroscopy relates atomic structure to physical quantities [1] such as

time, length, magnetic field etc. For example, magnetic field detection using properties

of valence electron spin has reached a sensitivity below 1 fT Hz−1/2 [2, 3]. By analysing

the abundances of noble-gas isotopes (e.g. 39Ar and 81Kr) using the isotope energy

shifts, a technique called atom trap trace analysis has been developed to identify the

age of ancient glaciers and aquifers. This technique was able to accurately identify

120,000-year-old ice in Antarctica [4, 5]. By controlling atomic momentum transfer

with stimulated Raman transitions, matterwave interferometry with ultracold atoms

has been proposed to build highly sensitive gyroscopes, keeping a bias stability of

< 70 μdeg h−1 with short-term noise of ∼ 3 μdeg h−1/2 [6, 7]. Such measurements are

often referred to as atom-based sensing because properties of atoms are fundamentally

involved in the measurements [1].

Besides its high performance, atom-based sensing provides an effective way to

study the structure of atoms and molecules. In the process of atom-based sensing, the

target physical quantities affect the spectral signal by modifying the atomic structure.

For example, a magnetic field causes a Larmor procession of the valence electron of
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alkali atoms. The Larmor procession leads to changes in the spectrum and can be

used to determine the amplitude of the magnetic field with a high sensitivity [3]. The

rigorous spectroscopic investigations through atom-based sensing may deepen the

understanding of fundamental laws of physics. The valence electron in a polarized

diatomic molecule has been proposed as a means to detect the potentially existing

permanent electron electric diploe moment (eEDM) [8, 9]. The existence of a permanent

eEDM would have profound implications on both fundamental symmetry violations

and physics beyond the standard model. In the pursuit of searching for the permanent

eEDM, new technologies, such as direct cooling and trapping diatomic molecules [10],

have been under development to study the precision spectroscopy of cold molecules.

Atomic and molecular precision spectroscopy can significantly improve atom-based

sensing.

In addition, the definitions of certain physical quantities should be universal

and standardized. As human activities are tightly connected around the globe in

modern society, it is necessary for the measurements of certain physical quantities to

be the same all over the world. In this way, international commerce and trade are

facilitated without converting between diverse units of measurement; and standard

units of physical quantities improve the efficiencies of scientific research activities.

The most important physical quantities are defined as the international standard

of units (SI units) such as length, mass, time, electric current,amount of substance,

etc. Atomic spectroscopy is a good candidate to define some SI units because the

properties of atoms or molecules enable measurements of these physical quantities to
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be not only universal but also extremely precise. For example, time and frequency

standards defined by the hyperfine transition of the ground state of the Cs atom

are accepted as the definition of seconds. To support the the definitions of SI units,

the committee on data for science and technology (CODATA) recommends values

of fundamental physical constants [11, 12, 13], most of which are closely related to

precision measurements with atomic spectroscopy.

Atom-based sensors benefit multiple aspects in human lives, such as environment,

health care, communication, and entertainment. Thus, precision measurements using

atoms and molecules attract the interest of people in different areas of academia

and industry. Atomic clocks are used as primary standards for international time

distribution services [1]. Atomic magnetometers are applied in health care to detect

weak magnetic fields produced by the brain and heart, providing valuable information

for diagnostics and research[14]. Atomic gyroscopes have been proposed as the core

part of a sensitive inertial navigation system [15]. These atom-based sensing methods

have surpassed the precision of conventional methods. Such atom-based sensors require

either atoms in vapor cells at room temperature or cold atoms/molecules cooled and

trapped by laser fields in high vacuum. Thus, these atom-based sensors rely on physics,

especially atomic, molecular and optical (AMO) physics, and laser technologies.

The work presented in this dissertation applies atomic spectroscopy to measure

microwave electric fields (MW E-fields). A Rydberg atom-based sensing method

is demonstrated to measure the amplitude of MW E-fields. The method utilizes

electromagnetically induced transparency (EIT) with Rydberg atoms in vapor cells at

3



room temperature. Owing to the huge transition dipole moment between Rydberg

states, the Rydberg atom-based method leads to orders higher of magnitude greater

sensitivity compared to conventional MW E-field probes. The method promises to be

a revolutionary standard for MW E-field measurements.

1.2 Microwave electric field sensing

1.2.1 Motivation

The accurate measurement of MW E-fields is important for a wide range of

applications, such as communication, meteorology, radar, entertainment, and medical

care. These applications result in commodities and services valued over 1 trillion

dollars each year. According to electromagnetic theory, the MW magnetic field (B-

field) and electric field (E-field) are “born” together. The Maxwell equations reveal

the relation between the B-field and E-field showing that the E-field can be calculated

if the B-field is known. This relation is rather straightforward in free space, but not

always simple in many cases. For example, in the near-field regime of a conducting

material (typically a piece of metal), the E-field can be disturbed or distorted by

the metal, while the B-field is barely affected by the metal, except for magnetic field

shielding metals, such as nickel, cobalt and iron. In addition, the widespread use of

magnetometry is limited by its detectable frequency range. A typical magnetometer

detects magnetic fields at low frequencies, in the range of < kHz, while measurements

at high frequencies, e.g. in the GHz range are challenging [3]. Therefore, direct

measurements of the MW E-fields are as important as the B-field measurements.
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MW E-field sensing has been an active area of research since the electromagnetic

wave was discovered. In the 1880s, Heinrich R. Hertz implemented dipole antennas to

demonstrate the existence of electromagnetic waves [16]. Since then, dipole antennas

have been a standard way to detect MW E-fields. The dipole antenna detects the

MW E-field radiation and converts it into a direct current (DC) by applying resistive

termination and filters. The amplitude or the power of the MW E-field is determined

by measuring the value of the resulting voltage. This is the fundamental concept for

measuring MW E-fields and to build traceable standards to calibrate those devices.

The current traceable standards for MW E-field measurement are called the ‘standard

antenna’ or ‘standard field’ methods [17, 18]. MW E-fields can be calibrated and

determined to ∼ 1 mVcm−1 [19, 20, 21, 22]. Modern variations on sensing MW E-fields

for traceable standards are based on optical measurements for the electro-magnetic

fields converted by the dipole antenna. These configurations can sense the MW E-field

strengths down to ∼ 30 μV cm−1 [23] with a sensitivity of ∼ 1 mV cm−1Hz−1/2 [17].

The accuracy of the measurement is in the range of 4%− 20%. The exact percentage

depends on the frequency of the target MW E-fields and the exact method used for

the standard.

Despite these achievements, the dipole antenna has several limitations. First,

the probes of dipole antennas are made of metal and use metal transmission lines.

Thus, the target MW E-fields are disturbed by the conducting material involved in the

measurement. Second, although the spatial resolution has been improved by reducing

the size of the probes, there are no subwavelength measurements for MW E-fields.
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Third, complex and accurate design of antenna geometry is required for standard

antennas. Due to the geometry and construction methods of the standard antenna,

the system is subject to aging and manufacturing variations. Antenna variation in

construction can reduce the reproducibility. Thus, it takes extra effort to maintain

the accuracy and precision of the standard antenna. Fourth, there is currently no

analytic solution for the MW E-field measurements, causing people to spend increasing

effort on numerical calculations, which complicates the calibration process of standard

antennas. Fifth, the minimum detectable E-field is relatively large because the probe

needs substantial strength of field to make an accurate measurement. The combination

of these limitations impacts the ability to conduct traceable measurements for MW

E-fields. As a result, usually a few large laboratories have the resources and time to

build and maintain standard antennas for MW E-field measurements, such as the

National Institute of Science and Technology (NIST) in the United States.

In addition, it is difficult for dipole antenna to detect a MW E-field in the far-

infrared (FIR) regime. The shape of a dipole antenna, or a probe, changes for different

applications and frequencies. This is because the size of the probe depends on the

target frequency. The size of a typical antenna is half of the wavelength of the MW

E-field. When the target MW E-field is in FIR regime, the required antenna to probe

the MW E-field is too small to practically produce. This leaves a critical gap in one

of the most rapidly developing bands of the electromagnetic spectrum. Considering

the advantages of precision measurements using atomic spectroscopy, MW E-field

measurements can potentially be substantially improved by using atom-based sensing.
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1.2.2 Background of atom-based sensing on E-fields

B-field measurements have been motivated by atom-based sensing, where it is

now possible to achieve a sensitivity in the fT Hz−1/2 regime. In contrast, atom-based

methods for absolute E-field measurement has changed little over the same period of

time, creating a great desire to the current E-field standard and measurements with an

atom-based method. Precise, atom-based methods for absolute E-field measurement

are clearly of scientific and practical interests. The work in the dissertation is to

explore the possibility using Rydberg atoms to perform such measurements for E-fields.

Compared to previous E-field standards using atoms [24, 25, 26, 27], this method

measures E-fields using Rydberg atoms rather than ground-state atoms. Due to

the large polarizability, Rydberg atoms are highly sensitive to E-fields. That is, a

response to E-field for Rydberg atoms is comparably stronger than ground-state

atoms, because a Rydberg electron is relatively weakly bound, compared to a valence

electron for ground-state atoms. Different methods involving Rydberg atoms have

been proposed to measure DC E-fields by utilizing the large polarizabilities of Rydberg

atoms. For example, Herrmann et al. experimentally proposed a spurious E-field

measurement as small as ∼ 80 mVcm−1 using Cs atomic beams [28]; a minimum DC

E-field measurement of 20 μVcm−1 has been achieved by using krypton atoms in

Rydberg states [29]; by utilizing the fluorescence imaging technique, DC E-fields are

measured around 10 Vcm−1 [30]. The large polarizabilities of Rydberg atoms have also

been used for RF modulation via a giant electro-optic effect that is Kerr non-linearity

[31]. For MW E-fields in the millimeter regime, resonant transitions have been used
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to detect small AC E-fields in atomic beams and masers [32, 33].

These methods open the way to atom-based E-field sensing, but an atom-based

E-field standard remains challenging. First, such works have focused on DC E-field or

low frequency AC E-field that have not reached to the MW regime, ∼ GHz regime.

The first AC E-field measurement using Rydberg atoms detected an E-field as large

as ∼ 7 Vcm−1, at the frequency of 15 MHz [34], which in principle measures a DC

field with modulation in the MHz regime. Second, the methods described above, such

as Rydberg atom masers and atomic beam methods, require an ultrahigh vacuum

system and even coupling of the radiation into a high-Q millimeter wave cavity in the

apparatus. Consequently, although Rydberg atom masers and atomic beam methods

are very sensitive and accurate, they are complex and hard implement for many

practical applications [32, 33]. Third, these methods also rely on an antenna that

converts the millimeter wave field, transferring the signal to the atoms, in order to be

read out. The antenna pick-up method reintroduces the problems of the conventional

antenna into the sensor.

The impediment to widely applying many of the atom-based methods listed here

to electrometry is the technical complexity of the setups. To build an atom-based

standard that is practically applicable for MW electrometry, more improvements on

the simplicity and sensitivity are needed. In this dissertation, a Rydberg atom-based

method is described to detect MW E-fields in thermal vapor cells. The method is

free of ultrahigh vacuum, significantly reducing the volume of the setup. The setup

can perform MW E-field measurements with several orders of magnitude higher in
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Figure 1.1: (color online) (a) The typical experimental setup for MW

E-field measurement. The MW E-field is generated by a horn antenna.

The probe and coupling lasers are in a counter-propagating gemometry

interacting in a vapor cell filled with Cs atoms. The signal of the probe

laser is captured by an photodiode detector. (b) The transition diagram

of 133Cs used for the MW E-field measurement. The probe and coupling

lasers excite the atom into a Rydberg state, while the MW E-field couples

two adjacent Rydberg levels.
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sensitivity and accuracy than the current MW E-field standard. The atom-based

measurement will calibrate MW E-fields to the spectral properties of Rydberg atoms,

enhancing stability and reproducibility. Thus, the setup of the method can be

developed into portable and self-calibrated devices for MW E-field standards.

1.2.3 MW E-field sensing using Rydberg atoms at room temperature

The MW E-field measurement described in this dissertation relies on two features

of Rydberg atoms. One is resonant transitions between Rydberg states, while the

other is the associated large transition dipole moments between neighboring, or nearby,

Rydberg states that scales as n2. For the Rydberg atom-based eletrometry, the

amplitude of a MW E-field is determined by the MW coupling strength between two

closely lying Rydberg states,

ΩMW =
�E · �μMW

�
. (1.1)

The coupling to the MW E-field, ΩMW , known as Rabi frequency, will cause a splitting

in the EIT window. The splitting is the Autler-Townes splitting (AT splitting) that

is proportional to the Rabi frequency of the MW E-field, ΩMW . MW dressing of

interaction potentials and AT splitting in Rydberg EIT was demonstrated in an

ultracold gas [35]. Here, with Rydberg EIT in vapor cells at room temperature, the

target MW E-field couples two adjacent Rydberg states, generating an observable AT

splitting in spectrum.

In this dissertation, the atom-based standard and probe for MW E-fields are

performed with one type of heavy alkali atom, 133Cs atoms in vapor cells. With a
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modest experimental setup, the alkali atoms are prepared partially in Rydberg states

in a vapor cell. Due to the presence of a strong resonant coupling laser beam, the probe

laser beam is transmitted through a normally absorbing atomic vapor, resulting in an

EIT window in the absorption of the probe beam [36, 31]. If the coupling laser beam

is in a counter-propagating direction of the probe laser beam, a spectrally narrow EIT

window can be created in an atomic vapor because the counter-propagation geometry

greatly reduces the Doppler broadening. When a MW E-field is on resonance with an

adjacent Rydberg state, a narrow absorption feature is induced, causing AT splitting in

the transmission lineshape that can be observed as a function of probe laser frequency.

The strength of MW E-fields on the EIT lineshape is determined by equation 1.1.

The Rydberg atom-based MW E-field measurement uses each gaseous Rydberg

atom in the vapor cell as a probe for the MW E-field. This atom-based method can

at least overcome several shortcomings of conventional dipole antennas. The atom

probe is free of metal that leads to disturbance to the target MW E-fields. The atomic

probe will not suffer from aging or construction variations because the atoms are the

same everywhere and all the time. The amplitude of the MW E-field is calibrated

by the property of Rydberg atoms that are stable and extensively studied. There is

no need to build another probe to calibrate the MW E-field as the conventional MW

standard does. This is the reason why the atom-based method is self-calibrated for

MW E-field measurements.

Due to the large transition dipole moments between neighboring Rydberg states,

the sensitivity of the Rydberg atom-based MW E-field sensing is high. For the atomic
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spectrum, the AT splitting can be large even when the MW E-field is weak. As an

example to demonstrate the sensitivity of the MW E-field measurement using this

method, let us consider the case when a MW E-field is on resonance with the transition

of 133Cs 52D5/2 ↔ 53P3/2. This transition is in the C band of the microwave spectrum

and has the frequency of 5.05 GHz. A Rabi frequency, ΩMW, of 1 MHz is induced by a

MW E-field amplitude of only ∼ 450 μVcm−1 or an intensity of only ∼ 0.26 nWcm−2.

This is equivalent to 1 nW of MW E-field shining on an area as large as an US quarter

coin. This small amount of the MW E-field power is usually hard to observe by a

dipole antenna. However, one can utilize the Rydberg EIT method to detect the AT

splitting of the transition caused by this small MW E-field. With stabilized diode

lasers and vapor cells at room temperature, the MW E-field results in a signal that is

technologically easy to observe in the atomic spectroscopy.

Despite the high sensitivity to MW E-fields, there are several factors that limit

the ability to detect a lineshape change of the EIT transmission window. These factors

include the laser linewidths, transit time broadening, Doppler mismatch between the

probe and coupling lasers, and dephasing rates of the Rydberg states involved in the

EIT process. The dephasing rates are mostly due to collisions, blackbody radiation

and spontaneous emission. The details of these limiting factors are discussed later in

the dissertation. By carefully studying these limiting factors, it is possible to reach

the shot noise limit where MW E-field can be detected as small as ≤ 10 pV cm−1.

The previous work in our lab has shown that the MW E-field can be measured

with an angular resolution of 0.5o for a vector MW E-field [37] and a high sensitivity
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8 μVcm−1Hz−1/2 [38]. The measurement barely disturbs the MW E-field because the

probe is a dilute gas of atoms in a vapor cell. This feature is promising to perform

MW E-field subwavelength measurements in near field regime. We show that MW

E-field spatial distributions can be mapped in near field regime with a high resolution,

∼ λMW/650 [39, 40], where λMW is the wavelength of the MW E-field. The dissertation

will also show the method to measure MW E-fields with a sensitivity an order higher

in amplitude ∼ 3 μVcm−1Hz−1/2. The dissertation will present that the accuracy of

the MW E-field measurement is less than 1%. Moveover, the Rydberg atom-based

method can cover a large frequency range, 1 GHz ∼ 1 THz. Considering the property

of self-calibration, the high sensitivity, the high accuracy, and the coverage of a large

frequency range, this Rydberg atom-based MW E-field sensing is a promising candidate

for a new standard for MW E-fields.

1.3 Thesis outline

In chapter 2, the basic theory that is important to understand the work described

in this thesis is presented. First, the EIT theory and calculations involving Rydberg

atoms and MW E-field is presented. The theory of EIT includes the Doppler effect

because the atoms that are involved in the interaction are in a Maxwell distribution in

velocity in a vapor cell at room temperature. Next, the properties of Rydberg atoms

are summarized, including the scaling properties of Rydberg atoms, the quantum

defect that can be used to calculate the transition wavelengths of MW E-field, and

the transition dipole moments which are calculated using the electronic wavefunctions
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of Rydberg atoms.

In chapter 3, the prerequisites of the experiment are described in detail. This

includes the manufacture of vapor cells and the frequency stabilization of the probe and

coupling lasers. Most of the vapor cells used in the experiment were made in the glass

workshop at the University of Oklahoma (OU) because of the unique requirements of

the experiments, such as geometry, size and composition of the vapor cells. There are

two types of frequency stabilization used for the lasers. One is the spectral locking

involving the absorption of Cs D2 transition and Rydberg EIT. The other is the

Pound-Drever-Hall method that enables both the probe and coupling lasers to lock to

an ultra-low expansion reference cavity.

Chapter 4 discusses our investigation of subwavelength imaging with a spatial

resolution of λMW/650 or 66 μm at 6.9 GHz. We show the ability for Rydberg atoms

to image MW E-field at subwavelength regime by mapping in a standing wave and

a near-field region above a coplanar waveguide (CPW). The MW E-field resolutions

are ∼ 50 μVcm−1. Our experimental results agree with finite element calculations of

test E-field patterns. The results we demonstrate here show the promise of a wide

range of applications for the Rydberg atom-based MW E-field detection, particularly

in characterizing metamaterials and small MW circuits, including antennas.

Chapter 5 presents a systematic investigation on the effect of vapor cell geometry

on Rydberg atom-based measurements of MW E-fields. The accuracy of the MW

E-field measurement depends on the geometry of the vapor cell which is the ratio

of the vapor cell size D of the cubic Pyrex vapor cells used for the measurements
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to the MW E-field wavelength λMW, i.e. D/λMW. We experimentally show that the

accuracy is greater than the current methods in the frequency range 10-30 GHz and is

not currently limited by the vapor cell geometry provided D/λMW < 0.1.

Chapter 6 introduces a method to measure MW E-fields using atoms in a prism-

shaped vapor cell using Rydberg EIT. The MW E-field induces changes in the index

of refraction of the vapor resulting in deflection of the probe laser beam as it passes

through the prism-shaped vapor cell. The deflection angle is measured by a position

sensitive detector. We measured a minimum MW E-field of 8.25μVcm−1 with a

sensitivity of ∼ 46.5 μVcm−1Hz−1/2. The experimental results agree with a numerical

model that includes dephasing effects. We also discuss possible improvements to

obtain higher sensitivity for MW E-field measurements as well as the applications for

the index of reflection measurements which is MW E-field induced.

Chapter 7 reports the MW E-field measurements aiming at eliminating one of

the main factors limiting sensitivity of MW E-field using Rydberg atoms in vapor

cells, the noise of the probe laser. We apply a homodyne detection technique using a

Mach-Zehnder interferometer to achieve a new sensitivity limit for the measurement

of MW E-fields, 3− 5μVcm−1Hz−1/2. The new sensitivity is almost one order of

magnitude higher than the previous results reported in Ref. [41]. We also report

on the homogeneous dephasing effects caused by transit time broadening, collision

broadening, and the lifetime of Rydberg atoms which we can now directly observe. We

show that these dephasing effects are the fundamental limiting factors that determine

the shot noise limit.
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In Chapter 8, we summarized the work in the dissertation and discuss the

shot noise limit for the atom-based MW E-field sensing. The sensitivity can be

several pV cm−1 Hz−1/2 with shot noise limited performance. These factors are

basically dephasing rates in the measurement including collisions between transit time

broadening, lifetime of Rydberg atoms, and etc. The outlook is also given in this

chapter.
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Chapter 2

Theory on EIT and Rydberg Atoms

2.1 Introduction

In this chapter, the theoretical basis for MW E-field sensing with Rydberg atoms is

described in detail. First, the theory of electromagnetically induced transparency (EIT)

is presented for a 4-level ladder-type system, in which the Doppler effect and dephasing

factors are included. Next, the properties of Rydberg atoms are presented, including

the quantum defect that is crucial to determine the energy levels of Rydberg atoms.

Then, calculations for transition dipole moments are described. The wavefunctions of

the Rydberg states are numerically calculated using an empirical potential model.

2.2 Electromagnetically induced transparency

2.2.1 Introduction to typical EIT systems

EIT, firstly termed by S. E. Harris and co-workers in 1990 [42], describes a

phenomenon of quantum interference where an initially opaque atomic media is

rendered to be transparent to probe laser light in the presence of a coupling laser

that modifies the probe absorption. This phenomenon usually takes place in 3-level

systems. Fig. 2.1 shows two types of EIT systems; one is Λ-type and the other is

ladder-type or Ξ-type. In such EIT systems, there are two long-lived energy levels

and one intermediate energy level with a relatively short lifetime. The Λ-type EIT is
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frequently studied, in which the two long-lived states are typically two components

of the ground state, e.g., hyperfine levels of an alkali atom. The other EIT system

is the ladder-type EIT system (Ξ-type system) that usually has a Rydberg state as

one of the long-lived levels. Such an EIT system is also called Rydberg EIT. Through

the EIT process, the atomic media is coherently prepared in a dark state that usually

takes place with a weak probe field and a strong coupling field.

The full width half maximum (FWHM) of an EIT window is determined by

the coherence relaxation time between the two long-lived states rather than the

spontaneous decay of the relatively short-lived state. The transition between the two

long-lived states is dipole forbidden, leading to a long coherence relaxation time. Thus,

the FWHM of an EIT window can be orders of magnitude narrower in frequency

compared to the natural linewidth of the probe transition. Such an EIT system is a

good candidate to perform sensitive frequency measurements with a high resolution

because of its narrow transmissive spectral features [27]. One of the successful examples

is the atomic clock. A technique called coherent population trapping (CPT) has been

developed to build atomic clocks using alkali atoms as absolute frequency references

[43]. An advantage of the CPT technique is that the width of the transition can be as

narrow as 1×10−3 Hz for a cesium CPT clock, resulting in a stability of < 1×10−12 [44].

In addition, the CPT setup of atomic clocks is free of large vacuum systems; therefore,

its size can be minimized. A CPT atomic clock has been fabricated as small as 1 cm3

while keeping a long term stability with less than 30 mW electrical power [45], leading

to a wide variety of commercial and military systems with portable, battery-powered
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Figure 2.1: The energy levels of two typical electromagnetically induced

transparency (EIT) systems (a) The Λ-type system. g and g′ are the

hyperfine levels of the ground state which are coupled to an excited state

e by two laser fields. The ground states are stable and have a longer

lifetime than the excited state. A weak probe beam is on resonance with

the g↔ e transition, while a strong coupling beam is on resonance with

the g′ ↔ e transition. (b) The ladder-type (or Ξ-type) EIT system. It

consists of a ground state, g, an excited state, e, and an higher excited

state which usually is a Rydberg state, r. The g and r states are long-lived

compared to the state e. The weak probe laser field is on resonance with

the g↔ e transition and the strong coupling laser field is on resonance

with the e↔ r transition.
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units for atomic-level timekeeping. Given the advantages and achievements of using

EIT to perform atom-based measurements, this dissertation describes how to apply

an EIT system to perform absolute MW E-field measurements using Rydberg atoms

in vapor cells at room temperature.

2.2.2 The calculation of 4-level EIT-like system

The MW E-field sensing described in this dissertation is performed with a ladder-

type EIT system. The system has two features that are different from typical EIT

systems described in Section 2.2.1. One feature is that there is one more energy level

compared to a typical 3-level EIT system. Coupling a fourth level to the EIT system

with a MW E-field induces the probe laser beam to be absorbed on resonance, resulting

in a “bright state”. The bright state causes AT splitting in the probe absorption

spectrum. The other feature is that the probe laser is relatively strong compared to

the coupling laser. The transition dipole moment for the coupling transition is < 1%

of the transition dipole moment for the probe transition. To obtain an EIT window

with a high enough signal-to-noise ratio (SNR) for the MW E-field measurements, the

power of the probe laser is relatively strong compared to the power of the coupling

laser, which drives the EIT system out of the weak probe regime.

With the two features described above, a full calculation for the 4-level EIT

system is performed to simulate the results of MW E-field measurements without

applying the weak probe approximation as in a typical EIT system. Fig. 2.2(a) shows

the energy levels of a typical 4-level EIT system. For generality, |i〉 = |1〉, |2〉, |3〉
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and |4〉 represent the ground state, the intermediate state and two Rydberg states,

respectively. The probe beam is on resonance with the |1〉 ↔ |2〉 transition, and the

coupling beam is on resonance with the |2〉 ↔ |3〉 transition. The MW E-field is

on resonance with the transition between the two Rydberg states, |3〉 ↔ |4〉. The

Hamiltonian of the system is expressed as

H = H0 +HI . (2.1)

H0 is the unperturbed Hamiltonian,

H0 =
∑
i

�ωi|i〉〈i|, (2.2)

where ωi =ωP , ωC , and ωMW represent the angular frequencies of the probe laser, the

coupling laser, and the MW E-field, respectively. HI is the interaction Hamiltonian

involving the probe, the coupling, and the MW transitions. It is described as,

HI =
�

2
[(ΩP e

−iωpt |1〉 〈2|+ ΩCe
−iωct |2〉 〈3|+ ΩMW e−iωMW t |3〉 〈4|) + h.c.], (2.3)

where ΩP, ΩC, and ΩMW are Rabi frequencies of the probe, the coupling, and the MW

E-field, respectively. With the standard rotating wave approximation, the Hamiltonian

is,

H =
�

2
[2ΔP |2〉 〈2|+ 2(ΔP +ΔC) |3〉 〈3|+ 2(ΔP +ΔC +ΔMW ) |4〉 〈4|]

− �

2
[(ΩP |1〉 〈2|+ ΩC |2〉 〈3|+ ΩMW |3〉 〈4|) + h.c.],

(2.4)

where ΔP , ΔC , and ΔMW are the detunings of the probe, the coupling and the MW

E-field, respectively. The Hamiltonian can be written in matrix form,

H =
�

2

⎛
⎜⎜⎜⎝

0 −Ωp 0 0

−Ωp 2Δc −Ωc 0

0 −Ωc 2(Δc +Δp) −ΩMW

0 0 −ΩMW 2(Δc +Δp +ΔMW )

⎞
⎟⎟⎟⎠ . (2.5)
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The time evolution of the density matrix operator, in the presence of decay, is obtained

from the Liouville equation,

d

dt
ρ = − i

�
[H,ρ] + L, (2.6)

where ρ is the density operator and the L is the Liouville-von Neumann matrix related

to the decay or decoherence of the system. It can be described as

Lij =
Γij

2
(2σjiρσij − σiiρ− ρσii), (2.7)

where Γij is the decay rate from state |i〉 to state |j〉; σij is the projection operator from

state |j〉 to state |i〉 [46]. For example, in an EIT system, 6S1/2 ↔ 6P3/2 ↔ 52D5/2 of

a 133Cs atom with a MW E-field coupling the 52D5/2 ↔ 53P3/2 transition, the primary

sources of relaxation are the spontaneous emission of the intermediate state, 6P3/2,

Γ12 = 2π × 5.2 MHz, and the Rydberg state spontaneous decay including blackbody

radiation for 52D5/2, Γ23 ≈ 2π × 3.4 kHz and Γ34 ≈ 2π × 1.6 kHz for 53P3/2 [47]. The

dephasing factors that depend on the experimental setup are also considered in

the simulation, including transit time broadening (Γt), Rydberg-ground state atom

collisional decay (Γcoll), laser dephasing (Γe), and magnetic field dephasing (Γm).

The transit time broadening, Γt, and laser dephasing, Γe, contribute to Γ12 and Γ23;

Rydberg-ground state atom collisions, Γcoll, contributes to the decoherence between

the Rydberg state and the ground state, Γ13; and magnetic field dephasing, Γm,

contributes to dephasing of the two Rydberg states, Γ23 and Γ34.

The transit time broadening rate Γt and the collision rate Γcoll play particularly

important roles in the MW E-Field measurements. The atoms see the lasers as a
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pulse of light whose temporal width is determined by the time it takes the atoms to

pass through the laser beams. This leads to a broadening of the spectroscopic signals,

referred as transit time broadening. It can be described by,

Γt ∼ 0.225
v

d
, (2.8)

where v is the velocity of the atoms and d is the diameter of the laser beam [48].

Collisions between atoms in the vapor cell are one of the most important contributions

to the dephasing rate. Collisions involve Rydberg atoms, ground state atoms and

intermediate state atoms. The collisional rate, Γc, is determined by the cross section

for these collisions, σ, velocity of the atoms in the gas, v, and the density of the

collision particles, ρ. Γc can be written in terms of these variables as,

Γc = σvρ, (2.9)

where σ depends on the long range interaction potential through its appropriate

leading order multipolar coefficient and the kinetic energy of the collision [49]. In

addition, the diagonal elements of transition matrix satisfy the condition,

ρ11 + ρ22 + ρ33 + ρ44 = 1. (2.10)

To evaluate the steady state solutions, the right hand side of Equation. 2.6, is set to

equal to zero, dρ/dt = 0.

In the MW E-field sensing experiment, the probe and coupling laser beams are

in a counter-propagating geometry to minimize the effect of Doppler broadening for

the Rydberg EIT. The atoms are contained in a vapor cell at room temperature.
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Probe
Laser
~852 nm

Coupling
Laser
~509 nm

MW E-field
GHz-THz

6S1/2

6P3/2

nD

(n+1) P(a) (b)

Figure 2.2: (a) The diagram of a typical excitation scheme for atom-based

MW E-field sensing using Cs Rydberg atoms in vapor cells. (b) The

lower panel shows the absorption spectrum of the D2 transition with no

coupling laser or MW E-field present. The middle panel is the spectrum

with a resonant coupling laser. An EIT windows appears at the center

of the absorption spectrum. The upper panel shows the spectrum in the

presence of a MW E-field coupling two adjacent Rydberg levels. A narrow

absorption feature appears at the center of the EIT window.
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There is still a residual Doppler effect because the lasers have different wavelengths,

forming a wavelength mismatch condition [50]. The residual Doppler effect results in

a broadening in the spectrum, (kC − kP )μ ∼ 2π × 3.5 MHz, where kC and kP are the

wave vectors of the coupling and probe lasers, respectively; and μ =
√

2kBT/M is the

most probable velocity of the atoms, in which M is the mass of one atom, T is the

temperature, and kB is the Boltzmann constant. In the counter-propagating scheme

of probe and coupling laser beams, the detunings of the probe and the coupling lasers

are modified as,

ΔP → ΔP + kPv,

ΔC → ΔC − kCv.

(2.11)

The moving atoms in the vapor cell have a Maxwell-Boltzmann distribution of

velocities. The Maxwell-Boltzmann distribution is

f(v) =
1

μ
√
π
e
− v2

μ2 , (2.12)

where f(v) is the fraction of atoms with velocity v. When the Doppler effect is applied

in the calculation, the matrix element of ρ12 is expressed as,

ρ12 =

∫
ρ12(v)

1

μ
√
π
e
− v2

μ2 dv. (2.13)

where ρ12(v) is obtained by solving the steady state condition of Equation 2.6 that

includes the residual Doppler effect. The integration over the whole velocity range will

give ρ12. The transmission of the probe laser is proportional to the imaginary part

of ρ12. The dielectric response of the atomic media to the probe field is determined

by the electric polarization, P. The linear polarization is related to the amplitude
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(E0) of the probe field and can be expressed as P = ε0χE0, where ε0 is the electric

permittivity of free space and χ is the electric susceptibility of the atomic media. The

susceptibility is given by,

χ =
Nμ2

12

ε0�
ρ12 = χ′ + iχ′′, (2.14)

where N is the number of atoms participating in the interaction, χ′ and χ′′ are the real

and imaginary part of the complex susceptibility respectively. χ′ gives the dispersive

response of the atomic media while χ′′ gives the absorptive response. The absorption

relates to the transmission spectrum while the dispersion relates to the index of

refraction. Both of the absorptive and the dispersive properties are used to measure

amplitudes of MW E-fields in this dissertation.

Fig. 2.2 (b) shows the calculated transmission of the 4 level system of Cs atoms in

a vapor cell with ΩP = 2π × 1 MHz, ΩC = 2π × 0.5 MHz, and ΩMW = 2π × 0.7 MHz.

The calculation includes the sources of relaxation described in this section. To

demonstrate the differences between the one-photon, two-photon, and three-photon

processes, the transmission spectrum is calculated in the presence of of one-photon, two-

photon, and three-photon fields, respectively. A single field, ΩP , gives an absorption

spectrum, while an EIT window appears in the presence of a two-photon field, ΩP

and ΩC . When a MW E-field is on resonance with two neighbouring Rydberg states

as the third photon, ΩMW , an AT splitting is generated, which is determined by the

amplitude of the MW E-field.
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2.3 Rydberg atoms

2.3.1 Fundamental properties of Rydberg atoms

Rydberg atoms refer to atoms in which at least one electron is excited into a high

energy state, i.e., a state of high principal quantum number n. The term “Rydberg

atom” is in honor of J. R. Rydberg, who introduced an empirical formula to determine

the energy levels of highly excited atoms [51]. The general interest of Rydberg atoms

originates from the fact that Rydberg atoms have exaggerated properties. For example,

Rydberg blockade effects, which result from energy shifts due to long-range interactions

between Rydberg atoms, can be utilized for quantum information processing using

collective states of mesoscopic atomic ensembles [52, 53]. A trilobite Rydberg molecule

dimer, consisting of a ground state atom and a Rydberg atom, has a thousand-Debye

permanent electric dipole moment [54]. Because the highly excited electron of an

Rydberg atom is loosely-bounded to the ionic core, Rydberg atoms are extremely

sensitive to external E-fields compared to valence states, which makes them promising

for electrometry [29].

The properties of Rydberg atoms generally scale with the principal quantum

number n. Table 2.3.1 shows Rydberg atom properties including binding energy, level

spacing, orbital radius, transition dipole moment, spontaneous decay, etc. These

scaling properties are beneficial for MW E-field measurements. The transition dipole

moment scales as n2, leading to a high sensitivity for MW E-field detection by utilizing

large n of Rydberg states. In addition, high-lying Rydberg atoms have narrow natural
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Quantity Expression Scaling

Binding energy En = −R0cn
−2 n∗−2

Radius 〈r〉 = a0n
2 n∗2

Level spacing Δ = En − En−1 n∗−3

Dipole moment d = 〈nl | er |nl′〉 n∗2

Radiative lifetime τr = 1.43n3 n∗3

Table 2.1: The properties of Rydberg atoms that are used in this disser-

tation and the scaling with the effective principal quantum number, n∗.

The expression is taken from Ref [51]. The physical quantities are in SI

units. (R0 is the Rydberg constant, c is the speed of light in vacuum, and

l is the quantum number of angular momentum.)

linewidth because the lifetime of Rydberg atoms scales as n3. In an ideal case, when

the spectrum is free of the Doppler effect and an atom is put into a superposition

of the ground state and a Rydberg state, a dark state is formed in the absorption

spectrum with a spectral linewidth of the Rydberg atoms <10 kHz at n=50 for a Cs

atom. This linewidth is much narrower than the D1 or D2 transition of alkali atoms

(∼5.2 MHz for D2 transition of Cs atoms [55]). The large transition dipole moment

and the narrow natural linewidth lead to a high resolution for MW E-field sensing.

In the MW E-field sensing experiment, the most important features are the

Rydberg energy levels and the transition dipole moments between Rydberg states.

To estimate the wavelengths of MW E-fields, it is necessary to study the energies of

Rydberg levels. The energy levels can be calculated using the quantum defect. In

addition, the transition dipole moment between Rydberg states is crucial to estimate

the sensitivity of the MW E-field measurement. In order to calculate the transition
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dipole moments, the wavefunctions of Rydberg states are calculated using a numerical

model coded with FORTRAN. The following sections give the details of calculations

for Rydberg energy levels and transition dipole moments between Rydberg states.

Ionic Core

Valence electron 

Figure 2.3: A diagram of an atom in a Rydberg state. The center is the

ionic core and the highly excited electron orbits around the core.

2.3.2 Quantum defect

The energy levels of Rydberg atoms are calculated using quantum defect theory

[51]. When the valence electron is far away from the ionic core, the atom is similar to

a hydrogen atom with a net electric charge of +1 e, where e is the elementary charge.

Because of the existence of the electrons surrounding the ionic core, the binding energy

of alkali Rydberg atoms are modified from those of hydrogen atoms. As shown in

Figure 2.3, a typical Rydberg atom consists of an ionic core and a highly-excited

valence electron. The nuclear charge of the core is screened by the electron cloud of

the core, such that the ionic core acts as an effective nucleus for the valence electron.

For example, an ionic core of a 133Cs atom in Rydberg states contains 55 protons,
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Table 2.2: Quantum Defect of Cesium atoms.

S1/2 P3/2 D3/2 D5/2

δ0 4.0493527 3.5589599 2.4754562 2.4663091

δ2 0.238100 0.392469 0.009320 0.014964

δ4 0.24688 -0.67431 -0.43498 0.45828

δ6 0.06785 22.3531 -0.76358 0.25489

δ8 0.1135 -92.289 -18.0061 -19.6900

78 neutrons and 54 electrons. Thus, a 133Cs Rydberg atom is expected to behave

similarly to a hydrogen atom except for the ionic core that causes the quantum defect.

The inner electrons of the ionic core do not perfectly screen the nuclear charge. The

valence electron has a small possibility to penetrate the electron cloud around the

nucleus. The orbit can penetrate into the core. Because of the core penetration of the

valence electron, the wavefunction shifts towards the ionic core. The shift leads to a

modification of the binding potential. Therefore, the energy levels of Rydberg atoms

are shifted and can be characterized by a modified hydrogen energy formula known as

Rydberg-Ritz formula,

Enlj = −hc RCs

(n− δnlj)2
, (2.15)

where RCs is the Rydberg constant for Cs atoms, δnlj is the quantum defect, and

n∗ = n− δnlj is the effective principal quantum number. This empirical formula leads

to Rydberg energy levels with an accuracy of ≤ 1 MHz [53].

In the calculation of the quantum defects δnlj, the following empirical formula is

applied,

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+
δ6

(n− δ0)6
+

δ8
(n− δ0)8

+ · · ·. (2.16)
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In this equation, δ0, δ2... are dependent on l, and j. For Cs atoms, these parameters

have been measured and listed in Ref. [56]. Table 2.2 shows the values of the quantum

defects for the states used in the experiments that were used to determine the transition

wavelength for both coupling laser and MW E-fields. The values of the quantum

defect, δ0, decrease when the angular momentum, l, increases.

The orbit of the valence electron becomes more and more circular when increasing

the angular momentum, l, because the overlap with the inner-electron wavefunction

becomes less when increasing l [57]. This leads to less probability to find the valence

electron penetrating the ionic core with larger orbital angular momentum, l. Therefore,

the energy shift due to the quantum defect decreases with increasing orbital angular

momentum, l, of the Rydberg states. That is, the orbits with higher angular momentum

of Rydberg atoms are closer to those of hydrogen atoms. In Table 2.2, the value of

quantum defect is the largest for S1/2, where the quantum number of orbital angular

momentum is l = 0. In the MW E-field sensing experiment, wavefunctions for S(l = 0),

P(l = 1), D(l = 2), and F(l = 3) are needed. The higher orders of quantum defect

are much smaller than the zeroth order. To maintain the precision of wavefunctions

for these states (l ≤ 3), the calculation keeps the orders of the quantum defect up

to eight. For states with l ≥ 4, hydrogenic wavefunctions can be directly used for

Rydberg transitions.
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2.3.3 Wavelength of Rydberg transitions

In the experiment, the MW E-field measurement is performed with 133Cs atoms

in thermal vapor cells. The probe laser, 852 nm, excites the atoms from 6S1/2 to 6P3/2,

the exact wavelength, ∼ 852.347275 nm, can be found in Ref [55]. The coupling laser,

approximately 509 nm, excites the atoms from 6P3/2 to Rydberg states (n∼50). The

exact wavelengths of the coupling laser and the MW need to be calculated in order to

tune the frequencies at resonances. The quantum defect described above can be used

to accurately calculate the transition wavelength of the coupling laser and the MW

frequencies between Rydberg states. Using the exact quantum defect parameter found

in Ref. [56], the transition wavelength of the coupling laser and MW E-fields can be

calculated as shown in Table 2.3. The table shows the wavelength of the coupling

laser that is on resonance with the 6P3/2 ↔ nD5/2 transition. It also shows the MW

frequencies that are on resonance with the nD5/2 ↔ (n+ 1)P3/2 transitions, which is

crucial to determine frequencies of target MW E-fields.

2.3.4 Calculation of transition dipole moments

In the MW E-field sensing experiment, one of the goals is to obtain MW E-field

amplitude through the spectrum of 4-level EIT system. The Rabi frequency of the MW

applied between Rydberg states, ΩMW , is proportional to the MW E-field amplitude,

E, and the transition dipole moment, �μkj. The relation between the MW E-field

amplitude and the Rabi frequency of the MW E-field is given by Equation. 1.1 in
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Table 2.3: The calculated wavelength of the coupling laser 6P3/2 ↔ nD5/2

and the MW frequency coupling the transition nD5/2 ↔ (n+1)P3/2 using

quantum defect.

n λC (nm) fMW (MHz) n λC (nm) fMW (MHz)

30 512.0483 29545.98 46 509.7812 7441.35

31 511.7870 26534.31 47 509.7144 6950.20

32 511.5521 23918.67 48 509.6520 6501.34

33 511.3401 21636.01 49 509.5935 6090.33

34 511.1481 19634.96 50 509.5388 5713.25

35 510.9736 17873.37 51 509.4873 5366.67

36 510.8146 16316.46 52 509.4390 5047.58

37 510.6693 14935.32 53 509.3935 4753.30

38 510.5362 13705.83 54 509.3507 4481.46

39 510.4139 12607.73 55 509.3102 4229.96

40 510.3013 11623.90 56 509.2721 3996.94

41 510.1974 10739.88 57 509.2360 3780.72

42 510.1013 9943.29 58 509.2018 3579.83

43 510.0123 9223.61 59 509.1695 3392.93

44 509.9297 8571.75 60 509.1388 3218.81

45 509.8528 7979.92
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Chapter 1, while the transition dipole moment �μkj is determined by

�μkj = 〈k | ê · �r | j〉 , (2.17)

where ê is the polarization vector of the electromagnet wave, �r is the displacement

vector of the valence electron, and 〈k| and |j〉 are the wavefunctions of the Rydberg

states. The transition dipole moment includes angular and radial parts that are treated

separately. If the value of the integral is zero, it means the transition is forbidden. In

practice, it is the symmetry of the transition that determines the possibility of the

transition. Therefore, the formula of the transition dipole moment is [58],

〈k | ê · �r | j〉 = TangD12. (2.18)

The radial part D12 is,

D12 =

∫ ∞

0

Rn,lrRn′,l′r
2dr, (2.19)

where Rn,l is the radial wavefunction. The angular part Tang is,

Tang =

∫ 2π

0

∫ π

0

Y ∗
lk,mk

(θ, φ)ê · r̂0Ylj ,mj
(θ, φ)dθdφ, (2.20)

where r̂0 = �r/r. The details of the calculation of the angular part of the transition

dipole moments can be found in Ref. [59]. For example, the transition between

Rydberg states nD5/2 ↔ (n + 1)P3/2 leads to the change of the orbital angular

momentum, Δl = 1. Specifically, when the MW E-field is a linear polarized field, the

transition is directed to mF → m′
F + 1 and mF → m′

F − 1 with an equal possibility,

where F is the projection or magnetic quantum number and mF is the hyperfine

quantum number. mF and m′
F are the hyperfine sublevels of nD5/2 and (n+ 1)P3/2,
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Table 2.4: The fitting parameters for the radial charge Zl(r).

Cs a1 a2 a3 a4 rc

l = 0 3.49546309 1.47533800 -9.72143084 0.02629242 1.92046930

l = 1 4.69366096 1.71398344 -24.65624280 -0.09543125 2.13383095

l = 2 4.32466196 1.61365288 -6.70128850 -0.74095193 0.93007296

l = 3 3.01048361 1.40000001 -3.20036138 0.00034538 1.99969677

respectively. This configuration gives the angular amplitude of the transition dipole

moment, 0.49. The radial part of the transition dipole moment can be calculated

using the radial wavefunctions of the Rydberg states which are n and l dependent.

2.3.5 Rydberg radial wavefunction

It is known that the wavefunction of the Rydberg electron satisfies the Schrödinger

equation,

[− 1

2μ
∇2 + V (r)]ψ(r, θ, φ) = Eψ(r, θ, φ), (2.21)

where V (r) is the Coulomb potential that has no angular dependence, E is the

energy of the particle. Because the potential V (r) has no angular dependence, the

wavefunction is separable, ψ(r, θ, φ) = R(r)Ψ(θ, φ), where R(r) is the radial part and

Ψ(θ, φ) is the angular part. The radial part of the Schrödinger equation is,

[− 1

2μ
(
d2

dr2
+

2

r

d

dr
) +

l(l + 1)

2μr2
+ Veff (r)]R(r) = ER(r). (2.22)

To calculate the radial wavefunction, it is necessary to find a model for the radial

dependent potential Veff (r), which empirically matches the energy levels of Rydberg

atoms. The model for Veff (r) is [51],

Veff (r) = −Zl(r)

r
− α

2r4
(1− e−(r/rc)6), (2.23)

35



in which α is the static dipole polarizability of the nucleus, and rc is the cutoff radius

set by the potential fitting model to truncate the range of the core polarization term.

The first term of the potential, Veff (r) describes the Coulomb potential for a radially

dependent charge, Zl(r). Zl(r) is defined as,

Zl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.24)

where Z is the nuclear charge; and a1, a2, a3 and a4 are fitting parameters for the

potential model. The fitting parameters and the cutoff radius are tabulated in Table.

2.4. The parameters are determined empirically by fitting Veff(r) to Rydberg state

energies [60]. With this model potential, the wavefunction for each state can be

calculated using the Schrödinger equation 2.22. A FORTRAN program package called

RADIAL is used to perform the calculation [61]. The RADIAL package uses the

potential Veff (r) that includes those optimized fit parameters. The 1D Schrödinger

equation can be numerically solved to obtain the wavefunctions of any Rydberg state

of interest.

The wavefunction of a Rydberg state is highly oscillatory near the ionic core and

less oscillatory near the outer turning point where is far away from the ionic core.

To ensure the accuracy of the calculation, a non-uniform logarithmic grid is used in

the RADIAL package for the potential and the wavefunction. For principal quantum

number n < 50, the accuracy of the wavefunction is obtained with a grid of 1000

points. For larger n, more points are needed to obtain accurate a wavefunction. For

example, when n is 100, a grid of 50000 points is applied in the calculation.

The wavefunctions for Rydberg states are obtained for the principal number n
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Figure 2.4: (a) shows the principal quantum number versus the microwave

frequency of different transitions (b) shows the calculated transition dipole

moment at different transition frequencies. The black line is the value of

D2 transition dipole moment of Cs.
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between 20 to 100 and the orbital angular momentum quantum number l from 0 to

3. Then the transition dipole moments between Rydberg states can be evaluated

according to equation 2.18. Using the RADIAL package, the numerical wavefunctions

of Rydberg states are calculated with a resolution of < 1 a0 to resolve the oscillation

near the ionic core, which leads to accuracy of < 1% for the transition dipole moments.

Fig. 2.4 shows the calculated transition dipole moments between Rydberg transitions

that correspond to deviations of principal quantum numbers k = 1, 2, 3, 4, and 5. The

black line in the Fig. 2.4(b) is the transition dipole moment for the Cs D2 transition.

The comparison in the figure shows that transition dipole moments between Rydberg

states can be 3 orders of magnitude larger than that of D2 transition. The large

transition dipole moment results in a large AT splitting even with a small MW E-field,

so that the sensitivity for the MW E-field measurement is high.

2.3.6 Discussion

This chapter describes the theory basis for MW E-field sensing that is based on

the effect of the optical transitions between the two Rydberg states of Cs atoms. The

atoms act as quantum interferometer using a 4-level EIT-like system. A full calculation

without a weak probe approximation is needed because MW E-field sensing requires

a relatively strong probe to maintain a high SNR signal. By simply changing the

principal quantum number, n, this atom-based method can cover a large frequency

range, from the GHz range to the THz range as shown in Fig. 2.4(a). This chapter

also presents calculations for transition dipole moments between Rydberg states and
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briefly describes a FORTRAN program package to calculate wavefunctions of Rydberg

states. The transition dipole moments between Rydberg states are calculated with

an accuracy of < 1%. The transition dipole moments can be determined even more

accurately with modern spectroscopy of Rydberg atoms [62]. The huge transition

dipole moment between two Rydberg states ensures a high sensitivity for MW E-field

sensing. The ability for Rydberg atoms to convert a small MW E-field to a large Rabi

frequency makes them to be good candidates for MW electrometry.
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Chapter 3

Experimental Setup

3.1 Introduction

MW E-field sensing depends on an EIT window with Rydberg atoms in vapor

cells. As discussed in Chapter 1, the Rydberg EIT window is generated with atoms in

a vapor cell by a probe laser and a coupling laser. The two lasers are in a counter-

propagating geometry to reduce the Doppler broadening. With a MW E-field resonant

with two adjacent Rydberg states, an Autler-Townes (AT) splitting is induced in the

probe transmission. A photodiode captures the probe signal. The signal is sent to an

oscilloscope to record the data. Therefore, vapor cells and the lasers generating the

EIT window are essential for the experiment.

This chapter describes the experimental setup including vapor cells and laser

locking systems. First, a conventional glass blowing method is presented to manufacture

vapor cells which fulfill the requirements of generating narrow bandwidth Rydberg EIT

for MW E-field measurements. Then, two laser stabilization systems are introduced.

One stabilization system uses atomic energy levels as frequency references. This

system uses dichroic atomic vapor laser lock (DAVLL) to lock the probe laser on

the D2 transition of a Cs atom, and an EIT signal to lock the coupling laser on the

6D5/2 ↔ nP3/2 transition. The other stabilization system uses a high finesse optical

cavity as a frequency reference via a Pound-Drever-Hall (PDH) technique.
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3.2 Vapor cells

Due to the high performance in precision atomic spectroscopy, atomic vapor cells

are crucial for many atom-based sensors, such as atomic clocks [63], magnetometers [3],

and gyroscopes [64]. The advantage of using vapor cells for atom-based sensors is that

precision measurements of physical quantities are performed with atoms avoiding the

use of cryogenic techniques. This advantage allows a significant reduction of volume

and power consumption. Thus, such atom-based sensors can be highly miniaturized

and directly used in many applications. Different fabrication techniques of vapor

cells have been developed to meet requirements of such atom-based sensors. These

techniques include conventional glass blowing [65], gluing [66], glass frit bonding [67],

anodic bonding [68, 69], direct bonding and hollow core fibers [70]. This section

describes a conventional glass blowing method to manufacture vapor cells for the MW

E-field sensing experiment.

3.2.1 Vapor cell manufacturing process

The MW E-field sensing has several requirements on the vapor cells. First, the

material of vapor cells should be optically transparent for the involved lasers and

chemically inert for the alkali atoms. Pyrex and quartz are good choices for the current

experiments. Second, it is necessary to produce tight sealing vapor cells that are free

of leaking. Because alkali atoms in vapor cells react with many materials, the leaking

of the vapor cells increases the chemical instability of the alkali atoms contained in the

vapor cell. In addition, Rydberg atoms are sensitive to perturbations. The collisions
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between Rydberg atoms and gas leaking into the vapor cell will broaden or even

destroy the Rydberg EIT signal. Moreover, there are additional specific requirements

for the geometry of vapor cells in the MW E-field sensing experiment. For example,

in Chapter 5, different sizes of vapor cells are used to study the effect of the geometry

of vapor cells to MW E-field measurement. To fulfill the above requirements, most of

the vapor cells in the experiment are manufactured using a conventional glass blowing

method.

The setup to manufacture vapor cells is shown in Fig. 3.1. The setup basically is

a manifold with glass cells attached to it. The manifold consists of a pyrex tube, a

liquid Cs container, an empty ampoule, empty vapor cells, and an iron hammer. The

left end of the pyrex tube has an adaptor to connect to a vacuum pump. The right

end of the pyrex tube is filled with liquid Cs, containing 1 gram of Cs. Empty vapor

cells are connected to the pyrex tube. The vapor cells are made of pyrex or quartz.

The leftmost cell in Fig. 3.1 is an ampoule to recycle the residual liquid Cs. An iron

hammer sealed in a small pyrex tube is placed inside the manifold on the left side.

The position of the iron hammer is controlled by a magnet. The iron hammer smashes

the ampoule on the right when the vacuum of the manifold is down to 10−9 Torr.

When the ampoule of the liquid Cs is smashed, the pyrex tube can be slowly tilted

so that the liquid Cs can be filled into glass cells. For the amount of atoms in glass

cells, a small droplet of liquid Cs is enough to perform the MW E-field sensing. The

residual liquid Cs can be recycled in the empty container attached to the pyrex tube.

The vapor cells used in the MW E-field sensing are sealed by flame in order to
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Figure 3.1: (color online) The glass manifold for manufacturing Cs vapor

cells. The left side of the manifold has the adaptor to connect to vacuum

pump. The right side of the manifold is the liquid Cs container with 1 g

Cs atoms. The center is pyrex or quartz cells to be filled with Cs atoms.

The right one is a container to recycle to residual liquid Cs atoms.
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Reservoir Glass cell

Sealing point

Figure 3.2: A typical vapor cell for the MW E-field sensing experiment.

The reservoir is long to minimize the temperature of glass cell during

sealing process.

tightly maintain the high vacuum after sealing. To determine if there is leaking in

the vapor cells produced by the glass blowing method, Rydberg EIT spectroscopy

was carried out with these vapor cells. A broadened Rydberg EIT window is the

signature of leaking. The surface of vapor cells can be distorted because the high

temperature of the sealing process can melt the glass. To minimize the distortion

of the cell surfaces, the reservoir of a typical vapor cell is made longer compared to

commercial vapor cells so that the temperature of the glass cell can be significantly

lower than the tip of the reservoir during the sealing process. Fig. 3.2 shows one of

the vapor cells manufactured for MW E-field measurement.

To improve the MW E-field measurements, efforts are ongoing to develop alterna-

tive manufacturing methods to construct vapor cells for the MW electrometry. One

possible and promising approach is anodic bonding. The approach avoids melting glass
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so vapor cells constructed using anodic bonding can be much smaller than those using

the glass blowing method. Millimeter-sized vapor cells have been fabricated using

the anodic bonding technique [71]. Unlike the gluing technique that requires careful

choice of glue [66], anodic bonding uses triple stack glass-to-glass bonding in order to

attach two glass plate to a center glass frame at 300 oC [69]. Thin film electrodes can

be added between the glass-to-glass bonding layer. The small electrodes can be used

to heat the vapor cells, apply DC E-fields and cancel stray magnetic fields.

The laser locking system is another important part of the experimental setup. The

Rydberg atom-based MW electrometry is dependent on an EIT window that needs a

probe laser and a coupling laser. Both of the lasers need to be frequency stabilized

with narrow linewidths to resolve the AT splitting in the MHz regime. Moreover, the

data for the MW E-field measurements are usually collected over long periods of time,

especially when estimating the sensitivity of the MW measurements. Therefore, the

lasers are required to have both narrow linewidths and long term stability.

3.3 DAVLL and EIT stabilization systems

The common method of frequency stabilization of lasers is dependent on a

dispersive signal with a zero-crossing at the lock point. The signal is sent to a

proportional-integral-derivative (PID) circuit to provide a feedback to stabilize the

frequency of the laser. The lasers used for the MW E-field measurement have PID

circuits integrated in Digilock 110 from Toptica. This section discusses how to generate

a dispersive signal to stabilize the frequency of the lasers at an atomic transition,
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which is an absolute atomic frequency reference and ensures both short-term and

long-term stability. The probe laser is stabilized using the hyperfine structure of the

D2 transition of Cs atoms, while the coupling laser is stabilized using the resonance

of an EIT window. The method for stabilizing the probe laser adapts sub-Doppler

dichroism in a Cs vapor cell based on the Zeeman effect, known as DAVLL [72].

The setup is simple and fulfills the needs of the experiment in terms of stability and

linewidth. The method for stabilizing the coupling laser is an EIT locking scheme.

The EIT locking scheme involves frequency modulation (FM) spectroscopy to derive

a dispersive signal with a two-photon process. The FM spectroscopy is widely used

in laser-locking schemes because of the ability to provide high signal-to-noise ratio

signals.

3.3.1 DAVLL locking system

The probe laser in the MW E-field sensing experiment is a diode laser (TOPTICA

DL-pro) working at a wavelength of 852 nm. The laser is stabilized using a DAVLL

technique [73]. This technique uses a magnetic field to separate the Zeeman components

of an absorption signal. A linearly polarized incident laser beam consists of two circular

orthogonal polarized components with equal amplitudes, σ+ and σ−. In the presence of

a magnetic field, the absorptions of the two components are different due to the energy

splitting caused by the Zeeman effect. For an atomic state with angular momentum

of J = 1 in a magnetic field, the mJ = +1 state are shifted to a higher frequency

absorbing the σ+ component, while the mJ = −1 state are shifted to a lower frequency
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absorbing the σ− component. A subtraction of the two components gives a dispersive

signal with the center of the signal being at the degenerate atomic state without the

presence of the magnetic field.

The setup of the DAVLL stabilization system is shown in Fig. 3.3(a), where

the probe laser, 852 nm, is locked to the hyperfine structure of the D2 transition

of Cs atoms. To resolve the hyperfine structure of the excited state 6P3/2, counter-

propagating beams are used to generate Lamb dips. As shown in Fig. 3.3(a), the

transverse linear polarized beam, transmitted through the vapor cell, is considered

as a pump beam while the reflected beam is considered as a probe beam. A quarter

waveplate is placed in front of the mirror to shift the polarization of the probe beam

perpendicular to the the pump beam so that the probe beam can be captured by a

photodiode placed at the other side of a polarized beam splitter (PBS). A Faraday

coil surrounding the Cs vapor cell generates a magnetic field that shifts the target

degenerate state. The amplitude of the magnetic field is applied to atoms of the vapor

cell in a way that the Zeeman shift is about the linewidth of the two sub-levels. Then,

the beam carrying the information of two hyperfine components of D2 transition is

separated by a quarter waveplate and another PBS. The two hyperfine components

are captured by two photodiodes respectively and sent to a subtraction circuit where

a dispersive signal is obtained.

By measuring the root-mean-square value of the locking signal, an instantaneous

linewidth of ∼ 100 kHz for the probe laser is obtained using the DAVLL stabilization

method. The long term stability of DAVLL is strongly dependent on the environment,

47



852 nm laser PBS

AOM-1

Vapor Cell

Vapor Cell

λ/4 λ/4

λ/2λ/2

λ/2
λ/4

λ/4

PBS

EOM

Block

Block

Detector

Mirror

Mirror

Mirror

-

50
9 

nm
 la

se
r

To Experiment

To
 E

xp
er

im
en

t

PID Lock

PI
D

 L
oc

k

Lens Lens λ/2

PBS

PBS

Mirror

D
ic

hr
oi

c 
M

irr
or

Subtraction

AOM-2

oroooooororrrrroor

(a)

(b)

Figure 3.3: EIT locking setup scheme. The locking system consists of

two parts. (a) Dichroic atomic vapor laser locking (DAVLL) for 852 nm

with two acoustic-optical modulators (AOM) that are used to shift the

frequency of the probe laser; (b) EIT laser stabilization for the 509 nm

laser. The coupling beam, 509 nm, counter-propagates with the probe

beam, 852 nm. The two lasers interact with Cs atoms in a vapor cell.

The probe beam is phase-modulated through an EOM and detected by a

photodetector.
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especially the thermal fluctuations. The DAVLL system is placed in a plastic box to

minimize the thermal fluctuations from the environment. A temperature stabilization

of the vapor cell of the DAVLL setup is an effective method to improve the long term

stability. Given the linewidth and the stability of the probe laser, the DAVLL locking

scheme demonstrated in this section is adequate to perform MW E-field measurements.

The frequency-stabilized laser at 852 nm plays two important roles in the MW

E-field experiment. One is to work as a probe laser in the MW E-field measurements.

The other role is to generate a two-photon EIT signal to stabilize the frequency of the

coupling laser at 509 nm. These two important roles are carried out in two different

vapor cells, respectively. Therefore, the 852 nm laser beam is split by a PBS, and two

acoustic-optical modulators (AOM) are implemented in the two paths of the probe

beam respectively. Both of the AOMs are tunable in frequency and shift the frequency

of the probe laser beams about 250 MHz away from the locking point of the DAVLL.

The DAVLL system is set to lock at the 6S1/2 (F = 4)↔6P3/2 (F′ = 4) transition

in the experiment. Thus, the frequency of the two laser beams passing through

the two AOMs are frequency-shifted to the 6S1/2 (F = 4)↔6P3/2 (F′ = 5) transition,

where both of the MW E-field sensing and the EIT locking for the coupling laser are

performed. To minimize intensity fluctuations of the probe laser in the MW E-field

sensing experiment, a PID loop is implemented to stabilize the intensity of the probe

beam.
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3.3.2 EIT locking system

The coupling laser at a wavelength of 509 nm is stabilized through an EIT signal.

The EIT signal for the stabilization system is generated by a two-photon cascade tran-

sition, 6S1/2 (F = 4)↔6P3/2 (F′ = 5) for the 852 nm laser and 6P3/2 (F′ = 5)↔nD5/2

for the 509 nm laser. The two-photon frequency-stabilization scheme uses the probe

laser signal to stabilize the coupling laser that is at a completely different wavelength.

Through an intermediate state, 6P3/2 (F′ = 5), the information of the coupling laser

at 509 nm is transferred to the probe laser at 852 nm via the two-photon EIT signal.

Therefore, the two-photon stabilization scheme, in principle, is applicable to a large

number of applications for optical frequency stabilization involving a highly-excited

state transition. The EIT locking system described here is limited by the residual

Doppler effect. The residual Doppler effect is due to the wavelength mismatch between

the probe laser and the coupling laser. Compared to the DAVLL technique which

relies on the population in the states involved, the EIT locking scheme allows for no

population in the intermediate state or the Rydberg state. In an ideal case, the the

EIT locking scheme enables the width of the EIT signal to be free of the natural

linewidth of the intermediate state, 6P3/2 (F′ = 5). Thus the width of the stabilization

can be substantially reduced.

The two laser beams counter-propagate with each other in order to minimize the

Doppler effect. The residual Doppler effect in the setup broadens the EIT signal to

MHz regime. The vapor cell is shielded with μ-metal to reduce the effect of stray

magnetic and electric fields. The transition dipole moment for the coupling laser is
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two or three orders lower than that of the probe laser, so a suitable power for 509

nm laser is chosen in order to obtain a strong EIT signal that is not broadened by

the coupling laser power. The typical full-width-half-maximum (FWHM) of the EIT

signal for locking is around 4 MHz. The beams of both lasers are shaped as Gaussian

beams with lenses to ensure maximum overlapping in the vapor cell.

In order to generate a dispersive signal from the cascade EIT transition, a FM

spectroscopy technique is used for the laser stabilization. The probe laser is frequency

modulated using an electro-optical modulator (EOM). A high speed photodiode

captures the signal that is demodulated in a mixer. The signal from the output of

the mixer is sent to the PID circuit to lock the frequency of 509 nm laser. Just by

changing the principal quantum number of Rydberg states, the scheme can lock the

coupling laser in a large wavelength range, from 508 to 512 nm.

The linewidth of the coupling laser obtained using the EIT stabilization scheme

is ∼500 kHz. The transit time broadening contributes to the linewidth ∼ 30 kHz.

The locking information of the coupling laser is transferred through the two-photon

EIT signal. The stability of the EIT signal is dependent on that of the probe laser.

Thus, the stability of the probe laser is evaluated to be ∼ 100 kHz. Despite of these

limitations, the linewidth for the coupling laser is narrow enough to resolve the MW

E-field features through an AT splitting. The EIT locking method for the coupling

laser is adequate to perform several experiments described in later chapters, including

the subwavelength E-field imaging and the geometry study of the vapor cells in the

presence of MW E-fields.
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3.4 Cavity locking

To measure MW E-fields with a higher sensitivity than what has been already

achieved [38], the MW E-field sensing experiment requires spectrally narrower lasers

than obtained with the DAVLL and EIT locking methods. A high-finesse reference

cavity with a narrow resonance linewidth is a good candidate to stabilize both the

probe and coupling lasers. The stabilization scheme utilizes a Pound-Drever-Hall

(PDH) technique that is a common method to stabilize lasers using a reference cavity

[74]. The method was initially developed by P. V. Pound to stabilize the frequency of

a microwave oscillator [75], and was later extended to the optical regime by R. Drever

and J. L. Hall [76]. Owing to its ability to control and decrease the laser’s linewidth,

the PDH technique has wide applications in atomic physics, especially in precision

atomic spectroscopy, e.g., optical frequency standards [77]. The technique can also be

used in a reverse way to lock a cavity to a laser. The benefit of doing this is that one

can measure extremely small changes in the length of cavity at a high precision [74].

The PDH technique basically works as described in Ref. [74]. A laser beam

is phase modulated with an EOM and sent to a high finesse cavity. A high speed

photodiode captures the reflection of the modulated light from the cavity. The signal

detected by the photodiode contains a phase modulated carrier component along with

two sidebands at the modulation frequency. By mixing the signal with a local oscillator,

an error signal is generated and sent to a PID circuit to stabilize the frequency of the

laser. This technique is widely applied for laser frequency stabilization because of its

high stability and ultranarrow linewidth. This section presents several important parts
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for a PDH locking system, such as the reference cavity, temperature stabilization, mode

matching, and experimental setup including the optical alignment and electronics.

3.4.1 Reference cavity

For the MW E-field sensing experiment, both the probe laser and coupling laser

are locked at a high finesse reference cavity. The two mirrors of the cavity are fixed on

the two ends of a 100 mm long ultralow expansion (ULE) solid cylindrical rod with a

hollow center. The condition for a stable cavity is,

0 <

(
1− L

R1

)(
1− L

R2

)
< 1, (3.1)

where L∼100 mm, is the distance between the two mirrors of the cavity, R1 and R2

are the radius of curvature (ROC) of the two mirrors. One mirror of the reference

cavity is a flat mirror, R1 → ∞, while the other is concave mirror with the ROC,

R2 = 500 mm. Therefore, a simple calculation will show the cavity fulfills the stable

condition. The free spectral range (FSR) is estimated by,

FSR =
c

2nL
, (3.2)

where c is the speed of light, and n is index of refraction. The cavity is placed in a

vacuum system [78], giving n = 1. As a result, the FSR is ∼1.5 GHz. The mirrors of

the reference cavity are coated for both 852 nm and 1018 nm laser with high reflectivity.

The reflectivity of both mirrors is > 99.9%, resulting in a finesse around 12000-16000.

The cavity is loaded into a cylindrical aluminium chamber. The cavity is pumped

down to 10−7 Torr by a mechanical pump; and then, an ion pump connected to the

cavity is turned on to maintain the vacuum.
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3.4.2 Temperature stability

The temperature variation is an important factor to the stability of the cavity.

The thermal expansion of the ULE material is minimum at a certain temperature,

Tc. Tc is also called the zero-expansion temperature. Although the use of such a ULE

material as a spacer considerably reduces the thermal drift, the relative length of the

ULE material has a quadratic dependence on temperature as follows,

ΔL/L ∝ (T − Tc)
2, (3.3)

where ΔL is the length variation, and T is the temperature of the ULE material. To

minimize the length variation, the temperature should be stabilized around Tc.

The zero-expansion temperature of the ULE material, Tc = 29 oC, is above

room temperature. The value of Tc allows the ULE material to be heated to the

zero-expansion temperature. A precise solid state temperature sensor with a precision

of ±0.05 oC is used to detect the temperature of the ULE material. An active

temperature stabilization system is built to stabilize the temperature of the cavity by

using a PID circuit. The PID circuit controls the electric current of heaters inside the

cavity according to the comparison of the set temperature and the value read by the

temperature sensor.

3.4.3 Mode matching

The laser beam inside the cavity is described by Hermite-Gaussian modes.

Hermite-Gaussian modes (TEMlm modes) have wavefronts represented by mode

order (l,m). l and m refer to the x and y direction of the beam profile in a cartesian
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Figure 3.4: The alignment of the cavity. The cavity consists of a plano

mirror and a convex mirror. The laser beam propagates in z direction.

To obtain the mode matching condition, a lens is used to adjust the

parameters of the laser beam. Under the mode matching condition, the

waist of the beam should be at the 0 point where the flat mirror of the

cavity is; and the radius of curvature (ROC) of laser beam at l point

should be equal to that of the concave mirror.

coordinate. A Gaussian beam is a special Hermite-Gaussian beam with the mode

order of (0,0), i.e., TEM00 mode. A proper alignment is required to largely reduce

the excitation of higher orders of modes and keep only the Gaussian mode (TEM00

mode). This is called mode matching.

For a reference cavity that is composed of a flat mirror and a concave mirror, the

expected alignment with proper mode matching is shown in Fig. 3.4. A Gaussian

beam propagates in z direction. The flat mirror should sit at point 0 where the beam

waist is. The concave mirror is placed at point l. The ROC of the Gaussian beam

at point l should be equal to that of the concave mirror. In this case, the TEM00

mode of Hermite-Gaussian beam will be in resonance with the cavity. As shown in
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Figure 3.5: Pound-Drever-Hall transfer cavity locking setup. The two

lasers are locked on one cavity coated for 852 nm and 1018 nm with high

reflectivity. 852 nm is the probe laser while the 1018 nm laser is the

seeding laser for coupling laser, 509 nm which is frequency doubled in a

bowtie cavity.
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Fig. 3.4, one lens is placed in front of the cavity. The lens changes the waist and ROC

of the Gaussian laser beam to fulfil the mode matching condition. The focal length

and the location of the lenses can be accurately estimated using ABCD matrix, which

describes the propagation of a Gaussian beam in an optical system.

3.4.4 ABCD matrix

The property of a Gaussian beam is easily represented by the q-parameter, q(z).

The q-parameter is a complex valued parameter that describes both the size and

curvature of the Gaussian beam, i.e.,

q(z) = z + iz0, (3.4)

where q(z) is also called the complex ROC because the inverse of q(z) relates to the

ROC as,

1

q(z)
=

1

z + iz0
=

z

z2 + z20
+ i

z0
z2 + z20

=
1

R(z)
− i

λ0

πnr(z)2
, (3.5)

where R(z) is the ROC at point z, and r(z) is the beam radius at the point z. If the

initial value of q(0) is specified, the values of R(z) and r(z) at point z in the beam

propagation direction can be calculated. The property of the Gaussian beam can be

estimated using ABCD matrix when propagating in an optical system.

When the beam propagates in free space with a distance d from the position z0,

the complex radius of curvature is,

q2(z) = q(z0) + d. (3.6)

The equation is the free space propagation law for a Gaussian beam. It can also be
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written as,

q2(z) =
Aq(z0) + B

Cq(z0) +D
, (3.7)

where (
A B

C D

)
=

(
1 d

0 1

)
. (3.8)

The expression 3.8 is the ABCD matrix in free space. Similarly, the ABCD matrix is

given for a Gaussian beam propagating through a thin lens with focal length f,

(
1 0

−2/f 1

)
. (3.9)

When a Gaussian beam propagates in an optical system with multiple optical

elements, the q-parameter can be calculated by multiplying the ABCD matrices for

each optical element. For example, if a thin lens is placed with the focal length f ,

at a distance d, in the beam propagation direction, the overall ABCD matrix simply

becomes, (
A B

C D

)
=

(
1 0

−2/f 1

)(
1 d

0 1

)
. (3.10)

With equation 3.10, the focal length of a lens and suitable place for the lens can

be calculated to fulfil the mode matching condition of the cavity. For example, the

beam waist of the 852 nm laser is ∼1 mm and located 600 mm away from the cavity.

The calculation shows that the focal length of the lens is around +500 mm, and the

lens should be placed ∼300 mm away from the flat mirror of the cavity. With the

calculated parameters, the mode matching is easily realized in the experiment.
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Figure 3.6: (color online) The C++ program to control the RF generator

using RS-232 port of the computer. There are two channels there, the

right side is the channels for 852 nm laser while the leftside is the channel

for 1018 nm laser.

3.4.5 Experimental setup for PDH locking system

Fig. 3.5 shows the experimental setup for PDH locking. The probe laser and

the coupling laser are stabilized through one ULE cavity. The output beam of the

probe laser is directly sent to the reference cavity for stabilization. The coupling

laser is a frequency doubled laser seeded by a near-infrared laser at a wavelength of

1018 nm. To avoid the noise from the frequency-doubling procedure, the seed laser is

sent directly to the ULE cavity for stabilization. The two laser beams are coupled into

two fiber-based EOMs respectively. After being mode matched to the reference cavity

using lenses, the two laser beams are on resonance with the cavity mode, TEM00.

The two lasers are aligned together via a dichroic mirror in front of the cavity. The

transmitted beam through the cavity is captured by a photodiode for monitoring.
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The reflected beam is polarization-rotated by a quarter waveplate to send to a fast

photodiode.
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Figure 3.7: The lineshape of the resonance signal with sidebands generated

by the the modulation through an EOM. The inset is the PDH signal of

one of the sideband whose center peak is the locking point.

The function of an EOM is to tune the frequency as well as to modulate the

phase of the laser. The EOM receives radio-frequency (RF) signals from a function

generator. The function generator is the source for both the frequency detuning and

phase modulation. The function generator is controlled using a C++ program via

a RS-232 interface in a desktop computer. The program panel is shown in Fig. 3.6.

The left side is for the RF source of the probe laser while the right side is for the

RF source of the coupling laser. The linewidth of the cavity is less than 100 kHz. A

typical PDH signal detected by a photodiode is shown in Fig. 3.7. Peak 1 is the cavity
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resonant peak while peak 2 and peak 3 are the sidebands where the lasers are locked.

The inset is the PDH signal that is used to lock the laser with a PID loop.

3.4.6 Discussion

This section describes how to stabilize the frequencies of the probe and coupling

lasers using a high-finesse cavity as a frequency reference employing a PDH technique.

The cavity is on resonance with the TEM00 mode of laser beams. The lasers are

phase-modulated and frequency-detuned by EOMs. The lasers are locked PDH signals

generated at one of the sidebands of the cavity mode. For a cavity with a FSR of 1.5

GHz and a finesse of ∼15000, the corresponding FWHM of the transmission peak is

∼100 kHz. Therefore, the instantaneous linewidth of both lasers are less than 100

kHz. By using a temperature stabilization loop, the reference cavity is operated at

the zero-expansion temperature Tc. At the temperature of Tc, the length of the cavity

is least sensitive to temperature instabilities. Thus, the temperature stabilization

ensures the long term stability of both lasers. The long term stability is a necessity for

a long time integration to estimate the sensitivity of the MW electrometry. The PDH

method has been used for locking diode lasers in many different applications, including

precision metrology, high resolution atomic spectroscopy, and quantum information

and communication [79]. An ultra-narrow linewidth at sub-Hz scale can be achieved

by improving the stability of the ULE cavity and electronic locking loops [80].
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3.5 Summary

This chapter describes some important and unique aspects of the experimental

setup for the MW E-field measurements. The vapor cells for the MW electrometry

are constructed using a conventional glass blowing method. The high temperature

in the process of the construction sometimes distorts the surfaces of the vapor cells.

The effort is ongoing to construct better vapor cells to improve the MW electrometry.

For example, the anodic bonding method, which can be utilized to construct vapor

cells with better surfaces, smaller sizes, and electrodes attached between the bonding

layers.

The chapter also describes laser stabilization schemes using atomic transitions as

absolute frequency references. A DAVLL technique is adapted to stabilize the frequency

of the probe laser while an EIT scheme is demonstrated to stabilize the coupling laser

to a Rydberg state via a two-photon transition. Both of the DAVLL and the EIT

stabilization schemes are reliable and simple in implementation. A micro-DAVLL of

9-mm long is implemented using a 3-mm vapor cell [81]. Such a small-sized laser device

can facilitate the miniaturization for atom-based MW electrometers. Although the

current linewidth for the EIT stabilization scheme is limited by the residual Doppler

effect, the EIT window determined by the spontaneous decay rate of Rydberg states

can be orders of magnitude smaller than the that of Cs D2 transition. Thus, the

EIT stabilization scheme has the potential to reduce the width of the coupling laser

down to several kHz, which is essential to improve the sensitivity of the MW E-field

measurements.
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In addition, to obtain better stability and narrower linewidth of the lasers for

MW electrometry, both the probe laser and the coupling laser are stabilized to a

high-finesse cavity by a PDH technique. The linewidths of the probe laser and coupling

laser are below 100 kHz due to the high-finesse of the cavity. Both the probe and the

coupling lasers can be locked for days without observable drifting by stabilizing the

temperature of the cavity. The narrow linewidths and the long term stability is the

prerequisite to pursue higher sensitivity of the MW E-field measurements.
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Chapter 4

Subwavelength Imaging of MW E-fields Using

Rydberg Atoms in Vapor Cells

4.1 Introduction

In this chapter, the subwavelength MW E-field imaging is demonstrated using

Rydberg atoms in vapor cells at room temperature. A standing wave pattern is created

to image MW E-field as a test. The experiment achieved a high spatial resolution,

66μm or λMW/650 at 6.9 GHz, where λMW is the wavelength of the MW E-field in free

space. Using the atom-based approach, the near-field imaging is also demonstrated

above a coplanar waveguide.

4.2 Motivation

In prior work [38, 37], it has been demonstrated that with atoms contained in a

thermal vapor cell, Rydberg atom-based MW E-field sensing is able to detect a mini-

mum MW E-field amplitude of ∼ 8μV cm−1 with a sensitivity of ∼ 30μV cm−1 Hz−1/2

[38]. This method is also capable of detecting a vecter MW E-field with an angu-

lar resolution of 0.5◦ [37]. The accurate measurement of MW E-field strength and

polarization can lead to advances in applications such as antenna design, device

development, characterization of electro-magnetic interference, advanced radar ap-

plications, and materials characterization including metamaterials characterization

[18, 20, 21, 82, 83, 84, 85, 86].
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The absolute measurement of MW E-fields at sub-wavelength resolutions and in

the near field regime is necessary for many MW applications. However, as discussed in

Chapter 1, there are two problems for sub-wavelength MW E-field measurement using

conventional antennas. One problem is that the size of a typical MW E field antenna

is λMW/2. Using such an antenna as a MW E-field probe, the measurements of MW

E-fields require integration and averaging over the length of the probe. Therefore, it is

quite problematic to measure a MW E-field with a subwavelength resolution. The other

problem is that the probes are all made of metal, so they disturb the incident MW

E-field. The precision of the measurement can be significantly reduced because of the

metal material in the presence of the incident field. Rydberg atom-based MW E-field

sensing uses gaseous alkali atoms in Rydberg states as MW E-field probes. Therefore,

the MW E-field measurement is free of solid metal material and independent of the

probe size. At present, there is no other work on imaging MW E-fields with atoms in

vapor cells. Even for B-fields, where atom-based magnetometry is playing a crucial part

[87], it is only recently that absorptive imaging for MW B-field has been implemented

in vapor cells [88, 89]. Although a rather straightforward connection exists between

an E-field and a B-field in free space, there is not always a simple relation between

them in the near field. Moreover, because the methods for electrometry are different

from magnetometry, many of the technical issues of imaging a MW E-field are also

quite different from imaging a B-field. Thus, studies of imaging both E-fields and

B-fields are important.

To meet the need for the subwavelength imaging of MW E-fields, an experimental
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Figure 4.1: Setup and energy level diagram for the experiments on sub-

wavelength imaging. (a) Ωp and Ωc are the Rabi frequencies for the probe

and coupling transitions, respectively. MW labels the transition between

two Rydberg states used for the standing wave E-field measurements. (b)

The MWs generated by the horn antenna form a standing wave pattern

between the aluminum plate and the horn antenna. The standing wave is

sampled by the atoms in the Cs vapor cell and imaged by a 2f imaging

configuration with a lens onto a CCD cameara, where f is the focus length

of the lens. The horn antenna and plate are moved together to change

the position of the vapor cell in the standing wave MW E-field.
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scheme is demonstrated in this chapter for sub-wavelength MW electrometry using

Rydberg atom EIT [90, 36] in Cesium (Cs) atomic vapor cells at room temperature.

Comparing to other imaging methods, such as scanning probe technology [91, 92], the

approach described here avoids cryogenics and eliminates the presence of conducting

materials near the sample, therefore, field disturbances are minimized. In this chapter,

2-dimensional MW E-fields are imaged with a spatial resolution of ∼ λMW/650,

∼ 66μm at ∼ 6.9GHz. A test MW E-field in the form of a standing wave and a MW

E-field in the near field regime of a CPW are used to demonstrate the sub-wavelength.

The E-field resolution is ∼ 50μVcm−1, which is limited by the detection system.

4.3 Methods for MW E-field imaging

The transmission signal of the probe laser is captured by a CCD camera (Pco

Pixelfly). As shown in Fig. 4.1, the probe beam is imaged onto the CCD camera

using a single lens with a focal length of f = 400mm. The vapor cell is placed at a

position, 2f , in front of the lens and the camera is located at a distance of 2f behind

the lens. The depth of the focus is ∼ 9mm and the diameter of the Airy disk for the

imaging system is ∼ 65μm.

Fig. 4.2 is a diagram showing how to convert the images of the probe profile

to MW E-field distribution. The CCD takes images by recording the intensity of

the probe profile when scanning the probe laser frequency, ΔP . An AOM is used

as a shutter to switch the coupling laser on and off. The MW E-field information

is contained in the images when the coupling laser is on, while the background of
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Figure 4.2: A diagram showing how to convert the pictures of probe

profile to MW E-field distribution. (a) images showing the intensity of

the probe profile at different probe detunings ΔP ; (b) the spectrum of AT

splitting taken from one of the pixels in the images shown in (a); (c) MW

E-field distrubution converted from the images in (a).

the transmission is obtained when the coupling laser is off. Images shown in 4.2(a)

are those of the probe transmission after the subtraction of the probe background.

These images show the spatial-dependent absorption with the CCD camera detuning

ΔP in discrete steps. The exposure time is longer than the lifetime of the Rydberg

states, ∼ 50μs, so that the steady-state condition of the EIT spectrum is reached.

An exposure time of 1 ms is chosen in the experiment. Each image consists of 40

averaged pictures to minimize the intensity fluctuations of the probe laser. The spatial

dependence of the MW E-field is obtained by averaging the probe laser transmission

over small patches of each image. That is, for each patch in the images, the values of

the profile intensities are recorded with the detuning of the probe laser. Then, the

lineshape of the four-level EIT signal is formed with AT splitting at each patch. The
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AT splitting is recorded to calculate the MW E-field amplitude of this patch. The

dimension of the patches is 66μm×66μm. The amplitude of the MW E-field can be

acquired across the overlap region of the probe and coupling laser beams. With this

method, the images of intensities of the probe profile are converted to MW E-field

distribution.

4.4 Numerical simulation with the finite element method

In the subwavelength imaging experiment, it is necessary to estimate the accuracy

of the MW E-field measurement. To do this, a numerical model is needed to simulate

the E-field distribution of the standing wave between the horn antenna and the

aluminum plate. In this chapter, the target MW E-field is numerically simulated

with a finite element (FE) method. The FE method [93] is a numerical technique

for approximate solutions of MW E-fields through Maxwell equations with boundary

conditions. The FE method requires large problems to be divided into smaller, and

simpler parts, called finite elements (FEs). After using simple equations to solve these

FEs, the solutions are combined together to model the entire problem. Variational

methods are applied to minimizing the error of the numerical solutions. High frequency

structural simulator (HFSS) is a commercial software that simulates MW fields using

the FE method. The numerical results simulated in this chapter are generated by this

software.
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4.5 Imaging a standing wave MW E-field

4.5.1 Experimental setup

To demonstrate the subwavelength MW E-field imaging, a standing wave field is

generated in the experimental setup as shown in Fig. 4.1(b). The MW E-field is emitted

out of a horn antenna and reflected by an aluminum plate. The incident field and the

reflected field interfere with each other, forming a standing wave pattern between the

horn antenna and the aluminum plate. The frequency of the MW E-field is ∼6.9 GHz.

To image the standing wave E-field at ∼ 6.9GHz, the method uses the Cs level system

shown in Fig. 4.1a. Through a 3-level Rydberg EIT system, 6S1/2 − 6P3/2 − 47D5/2,

a “dark state” is created by a probe laser with a Rabi frequency, ΩP, and a coupling

laser with a Rabi frequency, ΩC. By coupling a fourth level to the Rydberg EIT

system, 48P3/2, with a MW E-field, a “bright state” is created, which leads the probe

light to be absorbed again on resonance [38, 94, 95, 96]. The bright state induced

by the MW E-field causes an AT splitting in the EIT spectrum for large enough

MW electric amplitudes [38]. The AT splitting of the spectrum is proportional to

the Rabi frequency of the MW E-field, ΩMW = μMW EMW/�, where EMW is the MW

E-field amplitude and μMW is the transition dipole moment for the 47D5/2 ←→ 48P3/2

transition. In the experiments presented here, the probe and coupling lasers have

opposite circular polarizations.

The setup configured for the experiment is shown in Fig. 4.1b. The probe laser

light that drives the 6S1/2(F = 4)→ 6P3/2(F = 5) transition at 852 nm is generated
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by a frequency stabilized diode laser. The frequency of the probe laser is stabilized

using a DAVLL scheme as described in Chapter 3. The coupling laser at 509 nm is

supplied by an amplified diode laser at 1018 nm that is doubled in a ring cavity. The

coupling laser is frequency stabilized and tuned to the 6P3/2 → 47D5/2 transition of

Cs. The EIT locking scheme in Chapter 3 is used to lock the coupling laser. The

probe laser power is 50μW resulting in ΩP = 2.03MHz. The coupling laser power is

34mW, corresponding to a Rabi frequency of ΩC = 1.12MHz. The diameter of the

probe (coupling) laser beam is 2.78± 0.01mm (2.47± 0.01mm). The transition dipole

moment of the MW E-field is μMW = 2938.5 e a0, which is 1000 times larger than the

Cs D2 transition dipole moment [55]. The probe and coupling lasers are configured in

a counter-propagating geometry. An HP 8340B is used for the MW source.

The MW E-field pattern that is investigated first is created by placing the

reflecting aluminum plate, 3λMW away from a horn antenna to create a standing wave

pattern of the MW E-field. As shown in Fig. 4.1(b), a standing wave is formed with a

spatial period of λMW/2 as predicted by the FE calculation using HFSS. The horn

antenna generates an MW E-field with the wavelength of λMW = 4.3187099 cm, or the

frequency of 6.9465189GHz. To measure the standing wave of the MW E-field, the

horn antenna and the reflective aluminum plate are attached to a translation stage

such that they can be moved together to scan the position of the vapor cell along the

standing wave pattern of the MW E-field.

The transition dipole moment of the 6P3/2 → 47D5/2 transition is two orders

smaller than that of the 6S1/2(F = 4)→ 6P3/2(F = 5) transition. Rydberg state
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population results in Rydberg atom collisions and absorption of MWs as they pass

through the laser beam overlap region. Absorption can be accounted for using Beer’s

law for the MW powers in our experiments. To lower the absorption of the MW

E-field and collision effects, Rydberg state population should be low. On the other

hand, the low Rydberg state population leads to low signal-to-noise ratio for the EIT

window. The Rabi frequencies of the probe, ΩP, and the coupling, ΩC, are chosen to

reduce the Rydberg state population, yet still obtain EIT signals that facilitate the

MW E-field measurement in a reasonably large spatial area. As a result, the probe

and the coupling laser powers result in the MW E-field measurements taking place in

the intermediate regime of EIT.

4.5.2 Results

Fig. 4.3(a) shows the data of the subwavelength imaging experiment extracted

along the center of the MW E-field pattern with the comparison to the FE calculation.

The spatial resolution is 66μm. The range of the data covers one half wavelength.

The images are taken every 1mm along the axis of the standing wave pattern, i.e.

the x direction in Fig. 4.1(b). According to the comparison of the image data

and the FE calculation, good agreement between the two traces is observed. The

differences between the image data and the FE calculation can be attributed to the

finite calculation regions, the presence of the cell walls, and the modeling of the horn

antenna used for the FE calculation. Fig. 4.3(b) shows the 2-dimensional image data

of a standing wave pattern, in which the plot is composed of 26 images, each offset by
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1mm in the x direction. The center of the transverse axis is on the y symmetry plane

of the cell and the MW cavity, as shown in Fig. 4.1(b).

To test the accuracy of the subwavelength imaging technique, an iris is placed at

the center of the probe beam. A photodiode is placed behind the iris to observe the

spectrum of the probe laser, similar to experiments found in Refs. [38, 37]. Fig. 4.3(a)

shows this measurement in comparison with the data obtained from the CCD camera

and the numerical results using the FE method. The differences between the photodiode

measurement and the subwavelength imaging measurement are analyzed for different

traces along x. From the analysis, the standard deviation is 0.25MHz at a spatial

resolution of 66μm. This uncertainty translates to a deviation of the MW E-field

amplitude ∼ 67μVcm−1 and the associated spatial resolution is ∼ λMW/650. With

the current optical setup, a better spatial resolution can be obtained at the cost of

uncertainty in the MW E-field and at a reduced depth of field. These values, including

the spatial resolution, standard deviation, and the sensitivity, are all limited by the

CCD camera and the imaging system. The sensitivity is additionally limited by the

CCD camera readout time. Large improvements can be obtained with a more sensitive

and faster CCD camera or a multichannel spatially sensitive detector. Thus, the

proof-of-principle measurements of the Rydberg atom-based subwavelength imaging

technique can be significantly better with more engineering of the detection system.

Within the uncertainty of the experiments, the subwavelength imaging requires

the experiment setup to be free of the geometry of the vapor cells. To meet this

requirement, two room temperature Cs vapor cells are used for the experiment. One
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Figure 4.3: (a) Measurement of the EIT dark state splitting versus distance

from the horn antenna. The theoretical FE calculation (blue), photodiode

measurement (red) and image measurement data (black) are shown for a

trace taken along the centerline of the image. The right hand axis shows

the MW E-field amplitude that corresponds to the EIT dark state splitting

(b) Two-dimensional image of the MW E-field. The data is composed of

26 images with a step size of 1mm in the direction along the cavity axis,

x. In the transverse, y, direction, a 2mm cross-section with the zero point

at the center of the probe beam is displayed. The legend shows the EIT

dark state splitting in MHz. The error bars show the standard deviation

between the photodiode and imaging measurements.
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vapor cell is made of quartz with a square cross-section, 1 cm×1 cm×3 cm; the second

vapor cell is made of pyrex with a cylindrical cross-section, 2.5 cm diameter and 4 cm

long. Each cell was evacuated to < 3× 10−9Torr before it is filled with a Cs vapor.

A 3-dimensional Helmholtz coil is utilized in the experiment setup to cancel residual

magnetic fields, which disturbs the MW E-field measurements. An anechoic box is

placed around the setup to reduce reflections and stray MW E-fields. For all the

measurements, the vapor cell is placed in a region of the test MW E-field where the

field is maximally uniform along the length of the vapor cell, i.e. the propagating

direction of the probe laser.
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Figure 4.4: Photodiode measurement of the EIT splitting versus distance

at different positions of the probe beam for square (blue) and cylindrical

(black) cells compared to the FE calculations (red). The representative

error bars are the standard deviation of the measurement from the theory.

To further check the measurements of the standing wave pattern with the two
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vapor cells, an iris is used in front of a photodiode to filter the probe signal and the

AT splitting are recorded at three different horizontal positions across the square and

cylindrical vapor cells. The size of the probe beam is ∼ 500μm. The spots of the

measurement were spaced horizontally by a separation of 1mm along the x-direction

on the centerline of the vapor cells. The data obtained for the measurement using

the iris is compared to the results of the FE calculation as shown in Fig. 4.4. The

results obtained for the two different vapor cells show that the signal, within the

uncertainty of subwavelength imaging, is independent of the size and the composition

of vapor cells. To explain the observation to a great extent, the wavelength of the

MW E-field, λMW, should be longer than the dimensions of either vapor cell as used

in this experiment and the dielectric constant of vapor cell walls should be as close to

that of vacuum as possible. The primary observable effect caused by the presence of

the vapor cells is an increase in the optical path length of the MW cavity, which can

be observed as a shift in the fringe of the standing wave pattern. This effect has been

removed from the plot shown in Fig. 4.4. As shown in Fig. 4.4, the field variations

where the low vs. high MW E-field measurements corresponding to the two vapor

cells invert themselves over the extent of the scan. This observation indicates that the

MW E-field errors in the measurement are not correlated with a particular vapor cell.

4.6 Near-field imaging

The experiments described here show that the Rydberg atom-based method

has the ability to detect subwavelength MW E-fields with a high spatial resolution,
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Substrate

(a)

(b)

Center line Ground

Ground

Ground

Ground Center line

Figure 4.5: The profiles for two kinds of CPW (a) a conductor-backed

CPW; (b) a conventional CPW.

∼ λMW/650. This ability offers the possibility to measure MW E-field distributions in

near-field regime of arbitrary electric structures without significantly distorting the

target field. Although the ability to measure near-field MW E-fields is necessary for

many MW applications, there is no direct near-field measurements for conventional

dipole antennas because the conducting material of the probe disturbs MW E-fields.

This section will show that the Rydberg atom-based method can measure the MW

E-field distribution near a stripline waveguide on a printed circuit board, known as

coplanar waveguide (CPW).

4.6.1 Experiment setup with Coplanar waveguide

A CPW is a type of electrical transmission line that can convey MW signals. A

conventional CPW is fabricated on a dielectric substrate with a center strip conductor

and semi-infinite ground planes on either side. There is also other kinds of CPW, such

as conductor-backed CPWs whose conductor on the back is grounded as shown in Fig.
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4.5(a). In this chapter, a conventional CPW is fabricated. The conventional CPW

minimizes the reflection of the MW E-fields because there is no conductor at the back

of the substrate.

Vapor Cell

Lens

Dichroic  
Mirror

CCD

P

C

CPW Profile
(a)

(b)
(c)

Figure 4.6: The experiment setup for near-field imaging. (a) The lasers

and imaging system in near-field regime of a CPW; (b) the profile of the

vapor cell and the CPW; (c) a picture of the vapor cell and CPW in

experiment.

The experiment setup is shown in Fig. 4.6 (a). The lasers, the vapor cell and the

imaging system are the same as the standing wave experiment described in Section

4.3. A CPW replaces the horn antenna and is placed near the vapor cell. The profile

of the vapor cell and the CPW is shown in Fig. 4.6 (b). The geometry of the CPW

can be easily constructed in HFSS to simulate the near-field pattern with FE method.

Fig. 4.6 (c) is a picture showing the CPW near a vapor cell in experiment.
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4.6.2 Results

To check the accuracy of the near-field measurement, the experimental data of the

MW E-field right above a CPW are shown with a comparison to the numerical results

of the FE calculation. The CPW was operated at a frequency of 12.602001GHz,

λMW = 2.3805743 cm. The MW E-field drives the 39D5/2 ←→ 40P3/2 transition.

The Rabi frequencies of the probe and coupling lasers were 2.03MHz and 1.52MHz,

respectively. Fig. 4.7 shows the results along with the FE calculation of the cell above

the waveguide. The FE calculation included the vapor cell.

The spatial resolution is 66μm. The minimum distance where the MW E-field

can be imaged is 2.7 mm above the centerline of the CPW. The MW E-field amplitude

decreases when increasing the distance from the CPW. Specifically, the image data

also fits with the analytic near-field pattern, A exp(−2πz/λMW), where A is a constant

determined by a fit to the data. From the comparison of the data to the calculation,

a statistical variation in the field is 120μVcm−1. The subwavelength imaging based

on Rydberg EIT in a vapor cell is successfully demonstrated in the near-field regime

of the CPW. The ability to measure MW E-field in the near-field regime can benefit

applications of MW technologies, such as the characterization of metamaterials and

small high frequency circuits.

4.7 Conclusion

In conclusion, this chapter presented a method to image MW E-fields using

Rydberg atom EIT in a Cs vapor cell at room temperature. Unlike conventional dipole
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Figure 4.7: (a) This figure shows the FE calculation directly above the

microwave coplanar waveguide (CPW) where the MW E-field was sampled.

(b) This figure shows the imaging data corresponding to (a). (c) This

plot shows a comparison between the data and the FE calculation along

the z-axis at x = 0. x = 0 is at the center of the CPW. Solid circles

(black) are the imaging data while the solid squares (blue) are the FE

calculation. The line (red) is a plot of A exp(−2πz/λMW), where A is a

constant determined by a fit to the data. The geometry is shown in the

inset of (c).
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antennas that are made of conducting materials, the probe for MW E-fields is an

atomic vapor in a dielectric cell that barely disturbs the target field. By mapping a

MW E-field standing wave and the near field region above a CPW, very high spatial

resolution has been demonstrated at MW E-field resolutions similar to the best so far

achieved in absolute measurements. The resolution of the subwavelength imaging is

limited by the optical detection system. This MW E-field imaging method promises a

wide range of applications, particularly in the area of characterizing metamaterials and

small MW circuits. The method can be improved by using better imaging detectors

and smaller vapor cells [97]. It may be possible to measure much smaller MW E-fields

at higher sensitivity, determined by the Rydberg state lifetime. Achievement of

this objective could allow MW E-field imaging at field strengths < 10 nV cm−1 with

< 10μm spatial resolution.
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Chapter 5

Effect of Vapor Cell Geometry on Rydberg

Atom-based MW E-Field Measurements

5.1 Introduction

This chapter presents the experimental investigation on how the vapor cell

geometry affects the accuracy of the absolute MW E-field measurements. One of

the important factors affecting the accuracy of the MW E-field measurement is the

Fabry-Perot effect. The Fabry-Perot effect is dependent on the ratio of vapor cell size,

D, to the MW E-field wavelength, λMW, i.e. D/λMW. By making the ratio of vapor

cell size to wavelength small, the experiment shows that the accuracy is greater than

current methods in the frequency range, 10-30 GHz, and is not limited by the vapor

cell geometry provided D/λMW < 0.1.

5.2 Motivation

To apply Rydberg atom-based MW E-field detection in practice, the accuracy of

the method needs to be studied. The vapor cell is one of the factors that determines

the accuracy. Atoms are confined in a vapor cell which is typically made of pyrex

or quartz. MW E-fields can be absorbed or reflected by the walls of the vapor cells.

Although the reflection and absorption can be made to be small by choosing suitable

materials, variation of the MW E-field can arise from the Fabry-Perot (FP) effect,

absorption by the vapor cell surface as the MW E-field passes through to interact
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with the atoms and polarization of the vapor cell. The FP effect is due to reflections

of the MW wave inside the vapor cell. When a MW wave is incident into a hollow

glass vapor cell, standing waves can develop inside the vapor cell due to reflections

from the glass walls, forming a MW FP cavity. The distribution of the E-field inside

the vapor cell will vary depending on the frequency of the MW E-field and on the

size of the vapor cell. The FP effect can result in the measured E-field being different

from the incident field, or the desired quantity. The corners and imperfections of a

vapor cell can also re-scatter and re-radiate the MW E-field. Such effects also cause

the measured MW E-field to be different from the incident E-field signal.

5.3 Experiment

5.3.1 The configuration of lasers

The experimental setup is shown in Fig. 5.1(a) and the energy level diagram is

shown in Fig. 5.1(b). The experimental setup is similar to those described in Chapter

4, 5. The probe laser and the coupling laser are in a counter-propagate geometry.

The two laser beams overlap inside the vapor cell with beam waist at the center of

the vapor cell. The transitions are the same as those described in Chapter 4, 5. The

probe laser, ∼ 852 nm, is set to the Cs 6S1/2(F = 4) to 6P3/2(F = 5) transition, while

the coupling laser, ∼ 508− 510 nm, is set to the Cs 6P3/2(F = 5)↔ nD5/2 transition

shown in Fig. 5.1(b). Both lasers are locked to a high-finesse FP cavity with the

linewidth of ≤ 100 kHz as described in Chapter 3. The beam radii are 156 μm for

the probe laser and 210 μm for the coupling laser. Both laser beams are shaped as
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Figure 5.1: Setup and energy level diagram for the experiments. (a) The

experimental setup. The probe and coupling lasers are overlapped inside

the vapor cell and the MW horn antenna is placed in the far field limit.

(b) The energy level diagram. The 852 nm and 508− 510 nm lasers are

the EIT probe and coupling lasers, respectively. The MW E-field couples

to the nD5/2 ↔ (n+ 1)P3/2 transitions.

84



Figure 5.2: The vapor cells used in the experiment. (a) The vapor cell

with 8 mm inner diameter and 1 mm wall thickness. (b) The vapor cell

with 9 mm inner diameter and 1.25 mm wall thickness.

Gaussian beams using optical fibers. A horn antenna generates MW E-fields driven

by a MW signal generator.

The experiment will study the MW E-field variation at different D/λMW ratios.

The size of the vapor cell, D, and the wavelength of the MW E-field, λMW, are

the two important factors in the experiment. For the factor λMW, MW E-fields at

different wavelengths are needed in the experiment. The MW E-field couples to

the nD5/2 ↔ (n + 1)P3/2 transition and the horn antenna is placed in the far field

regime. By changing the principal quantum number n, the 4-level EIT system will

be on resonance with MW E-fields at different frequencies or wavelengths. In the

experiment, the involved MW frequencies are 23.91 GHz for n = 32, 19.64 GHz for

n = 34 , 17.84 GHz for n = 35, 12.06 GHz for n = 39, 8.57 GHz for n = 44, 6.49 GHz

for n = 48, 3.06 GHz for n = 61, and 2.08 GHz for n = 69, respectively. The different

frequencies of the MW E-fields relate to different wavelengths of the MW E-field,
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λMW.

5.3.2 Vapor cells

To study the MW E-field variation at different D/λMW ratios, the other important

factor is the size of the vapor cell, D. In this chapter, the size of a vapor cell is defined

as the inner diameter of the vapor cell. Two cubic vapor cells are manufactured and

the material of the vapor cells is pyrex, as shown in Fig. 5.2. Fig. 5.2(a) shows a

vapor cell with a size of 8 mm and a wall thickness of 1 mm. So the size-to-wavelength

ratios are, D/λMW, of 0.64, 0.52, 0.48, 0.34, 0.23, 0.17, 0.08, and 0.05. The size of

the other vapor cell, as shown in Fig. 5.2(b), is 9 mm with 1.25 mm wall thickness,

leading to size-to-wavelength ratios of 0.72, 0.59, 0.53, 0.36, 0.26, 0.19, 0.09, and 0.06.

The range of D/λMW ratios is chosen according the wavelengths of the MW E-fields

which vary from 1.25 cm, around the size of the vapor cells to 14.42 cm, around 10

times of magnitude more than the size of the vapor cells.

The vapor cells are placed on a translation stage and mounted on a teflon block.

This allows the cross-section of vapor cell to be scanned across the lasers in order

to map the field variability and distribution inside the vapor cell, similar to the

experimental setups used in Chapter 4. The precision of of the translation stage is

0.01 mm. Thus, the precision of the position scanning of the vapor cells relative to

the laser beams is 0.01 mm. MW absorbers are placed around the interaction area to

avoid the effect of MW E-field reflections from the apparatus.
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5.3.3 Data processing

To obtain high signal-to-noise ratios, the experiment applies the lock-in technique

to acquire the signal. The coupling laser is amplitude-modulated with an AOM at 50

kHz. The transmitted probe signal is recorded by a photodiode and demodulated using

a lock-in-amplifier. The demodulated signal from the lock-in amplifier is recorded on

a digital oscilloscope.

The AT splitting, Δ, is recorded to calculate the MW E-field amplitude, E, while

varying the power of the MW signal generator at the different MW E-field frequencies

used for the vapor cell geometry experiments. Fig. 5.3 shows the square root of the MW

power, PSG, versus the measured amplitudes of the MW E-fields. PSG is directly taken

from the MW signal generator and the amplitudes of the MW E-fields are determined

by the AT splitting. To calculate the Amplitudes of MW E-fields, the transition

dipole moments between the Rydberg states, μMW , are needed. The details for the

calculation of μMW are discussed in Chapter 2. Here is the values of μMW at different

transitions: μMW = 3221.5 e ao for the 69D5/2 ↔ 70P3/2 transition at 2.08 GHz,

μMW = 1508.9 e ao for the 48D5/2 ↔ 49P3/2 transition at 6.49 GHz; μMW = 971.2 e ao

for the 39D5/2 ↔ 40P3/2 transition at 12.60 GHz; and μMW = 770.0 e ao for the

35D5/2 ↔ 36P3/2 transition at 17.84 GHz. The numerical fit shows the MW E-field

amplitudes are proportional to the square root of PSG. This validates the method for

measuring the amplitudes of the MW E-fields in the vapor cells.
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Figure 5.3: Experimental data for MW E-field amplitude with a cubic

vapor cell with 8 mm inner diameter as a function of the square-root

of power at the MW signal generator. The MW E-field amplitudes are

linearly increased with
√
PSG at different MW frequencies. The linear

relationship between E and
√
PSG validates the measurement of MW

E-fields in vapor cells. The inset shows raw data for 2.08 GHz.
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5.4 Results

5.4.1 MW absorption by the material of vapor cells

When a MW E-field passes through a vapor cell, a fraction of the MW power

is absorbed by the dielectric material that the walls of the vapor cell are made of.

The absorption of the MW needs to be quantitatively calculated. Specifically, the

interaction between the MW E-field and a dielectric material is dependent on the

complex permittivity of the dielectric material [98],

ε = ε′ + iε′′, (5.1)

where ε is the relative permittivity of the dielectric material, and ε′, ε′′ are the real and

imaginary parts of complex permittivity, respectively. When a MW field incidents on

the surface of the dielectric material, the dispersion of the MW E-field can be described

by the real part of complex permittivity, ε′, while the absorption is proportional to

the imaginary part, ε′′. Specifically, at a certain wavelength of a MW field, the loss

tangent,

Tan(δ) =
ε
′′

ε′
, (5.2)

determines the absorption fraction of the MW field. As a rule of thumb, materials

with Tan(δ) ≥ 0.1 are considered as good absorbers; while those with the loss tangent

Tan(δ) ≤ 0.01 are considered transparent to MW E-fields.

For the pyrex vapor cells involved in the MW E-field sensing experiment, the

real part of the permittivity, ε′, is ∼ 4.6 and the imaginary part, ε′′, is ∼ 0.023 in the

GHz MW frequency range. These yield a loss tangent of Tan(δ) = 0.005 for pyrex
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[99]. Precisely, the MW E-field loss with propagation distance, d, inside a dielectric

material is determined by,

E = E0Exp
[
− 2π

λMW

(δd
2

)]
, (5.3)

where E0 is the incident MW E-field amplitude and E is the transmitted MW E-field

amplitude. For a MW E-field at a frequency of 12.6 GHz, the absorption by 1 mm of

pyrex is 0.066%. Thus, the absorption effects of the MW by the vapor cell walls are

small and can be ignored in this experiment.

5.4.2 Fabry-Perot effect of MW inside vapor cells

Given the absorption of the MW E-field is negligible, the dominant effect in the

Chapter is the FP effect caused by the reflection of the MW E-field by the vapor

cell walls. Fig. 5.4. shows the experimental data indicating the variation of the

MW E-field inside the vapor cells for different D/λMW ratios. The results show that

the variation of the MW E-field reduces when decreasing the D/λMW ratio. This

observation is consistent with the theory of a FP cavity as discussed in the Motivation

section. The interference between the incident MW and reflected MW is produced

when the wavelength of the MW E-field is comparable to the size of the vapor cells,

D. When D is smaller than ∼ λMW/4, the interference inside the vapor cell is greatly

reduced in magnitude because the vapor cell is not large enough support a resonance.

The cross section for MW scattering also is decreased as the vapor cell size is smaller

than λMW. To quantify the interference effect of the MW E-field, the data at different

D/λMW ratio was fit using a Taylor expansion of the MW E-field. Assumed the
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Figure 5.4: Data generated by scanning the position of the EIT detection

beams through the vapor cells at different D/λMW ratios where D is the

size of the vapor cells and λMW is the wavelength of MW E-field. The

experiment involves two vapor cells both of which show the same effect.

The black dots represent the 8 mm inner diameter vapor cell, and the

hollow circles represent the 9 mm inner diameter vapor cell. The red lines

are a quadratic fit. The variation becomes smaller as D/λMW decreases.

The distance is measured from the vapor cell wall where the MW E-field is

incident, while the vertical axis is the AT splitting caused by MW E-field.
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incident MW E-field is a plane wave, the Taylor expansion of the MW E-field should

be a constant if there is no FP effect caused by the reflection of the vapor cell walls.

Higher order terms of the Taylor expansion indicate variation of the MW E-field in

the vapor cell. For example, the quadratic term indicates the curvature of the MW

E-field.

The fits show that the field variation is ∼ 1% when the D/λMW ratio is smaller

than 0.1. The 1% variation mostly arises from the measurement uncertainties of

the AT splitting that determines the MW E-field amplitude. For example, when

fitting the data for D/λMW = 0.09 as shown in Fig. 5.4, the average value of the

AT splitting is 20.51 MHz and the standard variation of the fitting is ±0.14 MHz.

This gives a variation of ≤ ±0.7% for the measured amplitudes of MW E-fields. The

average MW E-field variation of the linear term is ∼ 1% across the vapor cell while

the average variation of the quadratic term across the vapor cell is ∼ 0.3%. Higher

order terms than the quadratic one are much smaller than ∼ 0.3%. Therefore, the

experimental results indicate that under the condition of D/λMW ≤ 0.1, the MW

E-field across the vapor cell is approximately constant. Moreover, it is difficult to

distinguish the variation of the MW E-field at the level of ∼ 1%, which is also the level

of the statistical uncertainty of the measurement. The fact that higher order terms are

much smaller indicates that, under the condition of D/λMW ≤ 0.1, the MW E-fields

are barely perturbed by the vapor cell at the level of the statistical measurement error.
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Figure 5.5: 1D model results for the E-field variability between two 1 mm

thick glass walls separated by 8 mm for different dielectric constants at

23.93 GHz.

5.4.3 Comparison of the experimental results to calculations

Two different theoretical models are used to further support the experimental

results. There are two effects when a MW E-field is incident onto a glass vapor cell.

One effect is the MW FP effect described above and the other is MW polarization

change caused by the vapor cell walls which leads to MW energy scattering, particularly

at the corners of the vapor cell. The experimental results show that the FP effect is

the dominating one. To numerically simulate the effect, the two theoretical models

are a full 3-dimensional (3D) finite element (FE) model of the vapor cell and a simple

analytic 1-dimensional (1D) 5-layer material model. Given the FE method uses a full

3D model, the geometry of the vapor cell is modeled to determine the field variation

inside the vapor cell, which includes both the FP cavity effect and the scattering
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effects of MW inside the vapor cell.

The 1D 5-layer analytical model is more straightforward compared to the FE

calculations and can be used to isolate the MW FP cavity effects. In the 5-layer

model, the field variation inside the vapor cell can be approximately estimated with

five different regions: the region inside the vapor cell, the two glass walls and the

surrounding free-space. The glass walls are 1 mm thick. The vapor cell walls extend

to infinity such that the vapor cell in the model has no corners. Therefore, the E-field

variation between the two glass walls can be easily determined analytically with a

layered media approach [100]. The MW E-field is normally incident into the vapor

cell. The two glass walls are separated by a distance D effectively forming a planar

FP cavity.

Fig. 5.5 shows calculations of the amplitude variation of the MW E-field inside the

vapor cells for different dielectric constants of vapor cell walls using the 1D analytical

model. The experimental data is also shown in Fig. 5.5 for the 32D5/2 ↔ 33P3/2

transition at 23.93 GHz. The separation between the walls is D = 8 mm. Fig. 5.6

shows the variation of the MW E-field for a pyrex vapor cell at different frequencies.

Because the dielectric constant can vary from the manufacturing process, the results

are simulated for dielectric constant ε = 3.0− 5.0. The overall thickness of the vapor

cell and the walls make it difficult to determine ε for the simulations. The results for

the different dielectric constants are qualitatively the same as shown in Fig. 5.6. The

results of the 1D analytical model show the same type of FP resonances as observed in

the experimental data. The comparison of the 1D model results and the experimental
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Figure 5.6: 1D model results for the E-field variability between two 1 mm

thick pyrex walls separated by 8 mm for different frequencies.

data suggest that the variation of the MW E-field is primarily due to the FP effect,

thus can be reduced by using vapor cells with smaller D/λMW ratios.

Both the FP effect and the polarization change of the vapor cell due to the

scattering are taken into account in the 3D FE model, which is a detailed model that

allows for better comparison to the experimental data. Fig. 5.7 shows a comparison

between the calculation using the FE model and the experimental data for the variation

of the MW E-field inside the vapor cell at different frequencies. The results of the 3D

FE calculation are similar to those obtained with the 1D analytic model as shown in

Fig. 5.6. The similarity again indicates that the dominate effect causing the E-field

variation inside the vapor cell is the FP cavity effect rather than the scattering effect

caused by the vapor cell corners.

Fig. 5.7 also shows that FE calculations qualitatively agree with the experimental
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Figure 5.7: MW E-field pattern in the cubic vapor cell with 8 mm inner

diameter and 1 mm wall thickness. The upper plot is the results of the

3D FE model and the lower plot is the experimental results.
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data. The main difference between the experiment results and the 3D FE calculation

is a result of surface imperfections of the vapor cell surfaces. The MW E-fields

are scattered when hitting the imperfections. The imperfections also change the

polarization of the MW E-fields. Thus, the measured values of MW E-fields are

different from the calculated MW E-fields inside vapor cells. The imperfections of

vapor cells are induced by the high temperature that is needed to seal the vapor cells

during manufacture process. The imperfections can be eliminated by using a better

fabrication process that is free of high temperature, like anodic bonding [66, 101].

By the comparison of the results from the 1D model, the FE model, and the

experimental data, it is shown that the variation of the MW E-field inside the vapor

cell is dominated by the FP cavity resonances which can affect the accuracy of an

atom-based E-field measurement. However, the results show that this E-field variation

can be reduced dramatically by making the vapor cell dimension small compared to

wavelength of the MW E-field, i.e. D/λMW � 1. When the vapor cell is designed to

eliminate FP resonances, the E-field variation is less than the statistical accuracy of

current measurements.

5.5 Conclusion

This Chapter experimentally investigated one aspect of the accuracy of the

Rydberg atom-based MW E-field measurements. The experimental results show that

the D/λMW ratio and the dielectric constant of the vapor cell affects the accuracy of

Rydberg atom-based MW E-field measurements. Specifically, the variation inside the
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vapor cell and absorption by the vapor cell walls can ultimately affect the over-all

uncertainty of a vapor cell Rydberg atom-based E-field measurement. The variation

of the MW E-field inside the vapor cell is smaller than ±0.7% when the D/λMW

ratio is less than 0.1. This value leads to ±0.03 dB uncertainties in the magnitude

of the MW E-field. By selecting a proper D/λMW value and vapor cell material, the

uncertainty due to the vapor cell can be controlled and reduced to less than current

MW E-field measurement uncertainties. The accuracy of Rydberg atom-based MW

E-field measurements are currently not limited, in principle, by the vapor cell or its

geometry.
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Chapter 6

Dispersive Radio Frequency Electrometry using

Rydberg atoms in a Prism-shaped Atomic Vapor

Cell

6.1 Introduction

In this chapter, an alternative method is introduced to measure MW E-fields

using a prism-shaped vapor cell filled with cesium (Cs). The MW E-field amplitude

is determined by observing the deflection of a probe beam. A MW E-field induces

a change in the index of refraction of the atomic media. The change in the index

of refraction results in a small displacement of the probe laser beam on a spatially

sensitive photo-detector. The method obtained a spectral angular dispersion dθ/dλ ≈

0.82 rad nm−1, at a minimum angle change of ∼ 0.0242 rad or λ/δλ ≈ 3.2 × 1010,

corresponding to a MW E-field of ∼ 8 μV/cm with a sensitivity of ∼ 46 μVcm−1Hz−1/2.

6.2 Motivation

So far, the work that has been done on Rydberg atom-based electrometry has

focused on the absorptive features of the atomic vapor [39, 37, 102]. Along with

absorption, there is always a dispersive part of the signal. The dispersive signal

corresponds to changes in the index of refraction. According to Snell’s law, the

induced change in the index of refraction can lead the probe laser beam to deflect

as it traverses a prism-shaped vapor cell [103, 104]. The MW E-field amplitude is
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determined by measuring the change in the index of refraction caused by the MW

E-field. Such a measurement can be more immune to some types of noise sources such

as the power fluctuations of the read-out lasers. Thus, the MW E-field sensing using

dispersive signals offers advantages under certain circumstances such as phase sensitive

detection [105]. There are several successful examples for applications using dispersive

signals. The properties of dispersive resonances have been used for magnetometery

due to their high sensitivity to small magnetic fields [106]. The deflection of the probe

beam in an EIT process from a prism-shaped vapor cell has been demonstrated for a

3-level EIT scheme [107] and can be used to separate pump, signal, and idler beams

in a four-wave mixing process [108].

Section 6.3 gives the theoretical description on how a MW E-field induces changes

in the index of refraction with Rydberg EIT system. Section 6.4 describes the

experiment setup for the MW E-field measurement using a prism-shaped vapor cell. In

section 6.5, the results for the MW E-field measurement is presented. The applications

of the method using dispersive signals are also discussed. A short summary is given in

section 6.7.

6.3 Theory

To understand how the displacement changes with the presence of a MW E-field,

it is necessary to understand the the behavior of the probe beam within a prism-

shaped vapor cell. Snell’s law describes how a light beam propagates through a prism.

Prism-shaped vapor cells filled with alkali atoms, known as atomic prisms, can cause
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an output beam to deflect as the index of refraction changes. Specifically, if a probe

laser is scanned in frequency in the presence of a coupling laser beam near an EIT

resonance, the probe beam will be deflected as the index of refraction changes near

the resonance. The frequency dependent deflection angle is determined by the change

in index of refraction at the probe laser frequency.

6.3.1 Theoretical model

To calculate the deflection angle induced by a MW E-field, we still consider a

4-level ladder-type EIT system as described in Chapter 2. The difference is that the

real part of the transition matrix element, Re[ρ12], is calculated. Re[ρ12] relates to

the index of refraction that causes the probe deflection. As shown in Fig. 6.1, the

probe beam excites the 6S1/2 ↔ 6P3/2 (|1〉 ↔ |2〉) transition and the coupling beam

excites the 6P3/2 ↔ 52D5/2 (|2〉 ↔ |3〉) transition. The MW E-field couples to the

Rydberg transition, 52D5/2 ↔ 53P3/2 (|3〉 ↔ |4〉). Both the probe and coupling lasers

are circularly polarized.

As described in Chapter 2, the solution for the transition matrix element, ρ12,

can be obtained by using the density matrix under the rotating wave approximation.

Thus, the complex probe susceptibility used to calculate the probe beam deflection is

given by,

χ(ωp) = −2μpN
ε0Ep

ρ12(ωp), (6.1)

where μp is the dipole matrix element for the probe transition, Ep is the probe E-field,

ωp is the probe frequency, and N is the atomic density. The motion of the atoms
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Figure 6.1: (color online) (a) Four-level cesium (Cs) atomic system coupled

to two laser fields on transitions 6S1/2 ↔ 6P3/2 and 6P3/2 ↔ 52D5/2

with Rabi frequencies ΩP and ΩC , respectively. The 52D5/2 ↔ 53P3/2

transition couples to the MW E-field at a frequency of 5.047 GHz. (b) A

picture of the prism vapor cell filled with natural abundance of Cs.
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leads to Doppler broadening. The transition matrix element ρ12(ωp) including the

Doppler effect is obtained by integrating over a Maxwellian velocity distribution at

the vapor cell temperature, T = 300 K [109]. The probe absorption and dispersion

are proportional to the imaginary and real parts of the susceptibility, respectively.

The real part of the susceptibility gives the refractive index of the medium,

n(ωp) ≈
√

1 + 4πRe[χ(ωp)]. (6.2)

As a result, the change in the index of refraction is dependent on the dispersive

part. In the experiment we observe the dispersive part of the susceptibility, but the

absorptive part of the susceptibility.

The probe laser beam passes into a prism-shaped Cs vapor cell as shown Fig. 6.2(a).

The angle of incidence θp/2 and angle of refraction θ
′
1 are also shown in Fig. 6.2(b).

At the second surface, the beam is similarly refracted. If a position sensitive detector

(PSD) is placed at distance L from the prism vapor cell, the displacement on the PSD

is given by Δx = L · tan(Δθ(ωp)), where Δθ(ωp) is the deflection angle. In the limit

of small angle, the tan(Δθ(ωp)) ≈ Δθ(ωp). Δθ(ωp) depends on the refractive index

variation in the atomic prism. The relationship between the deflection angle and the

index of refraction change is,

Δθ(ωp) ≈ 2 tan(θp/2)Δn(ωp). (6.3)

Equation (6.3) links the probe beam deflection to the index of refraction change under

the assumption that the deflection angle Δθ(ωp) is much smaller than the apex angle
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θp. Thus, the displacement measured on the PSD can be given in terms of χ(ωp),

Δx ≈ 4πL tan(θp/2)√
1 + 4πRe[χ(ωp)]

ΔRe[χ(ωp)]. (6.4)

6.3.2 Superradiance

In the calculation, superradiance is an important dephasing effect that needs to

be considered. Superradiance between Rydberg states is much stronger than for the

ground state atoms because the transition wavelength between Rydberg states is long

compared to the sample size [110, 111]. The transition wavelength between nearby

Rydberg states is usually larger than the size of the vapor cell where the Rydberg

atoms are created. As a result, superradiance can potentially play a role in decay and

dephasing process. The emission rates between the Rydberg states, 52D5/2 and 53P3/2,

can be estimated by ΓRyd = (ω3nμ2)/(3πε0�c) ≈ 2π × 0.0044 Hz, where ω is the tran-

sition frequency between the Rydberg states, 2π × 5.047 GHz, n is index of refraction,

∼ 1, μ is the transition dipole moment,∼ 1720 e a0, and ε0 is the vacuum permittivity.

In the experiment, the number of Rydberg atoms are estimated in the interaction

volume to be N ∼ 1.6× 105 corresponding to Rydberg density ∼ 3.1× 107 cm−3. The

number of thermal photons in the field of 2π × 5.047 GHz is Nv ∼ 1200. The maxi-

mum superradiance decay rate is ΓSup = ΓRyd · N · Nv ≈ 2π × 700 kHz indicating that

the superradiance is important in the experiment.

However, there is not a signature of superradiance observed in the work of this

chapter. It suggests that the picture here is considerably oversimplified. If the initial

phases of the atomic oscillators are not correlated and/or change randomly due to
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relaxation and dephasing, superradiance will be suppressed and in the extreme case

will not occur at all. In this experiment, it is important to realize that the Rydberg

states have hyperfine structure which are split in the background magnetic field.

For example, the Rydberg atom D-state have 48 sub-states with hyperfine quantum

numbers |F,mF 〉. Each transition out of these states can produce a photon with

a different energy and polarization considering the shifts and natural width of the

associated Rydberg transition. In addition, there is inhomogeneous broadening and

the effect of the laser linewidth that are also spectrally broader than the linewidths of

the Rydberg transitions. The supradiance is negligible compared to these broadening

effects. The fits to the data show that this is a valid approximation.

6.4 Experimental method

6.4.1 Experimental setup

In section 6.3, equation 6.4 gives the relation between the displacement and

the dispersive signal. This section gives the experimental setup that is used to

directly observe the displacement. The experimental setup is shown in Fig. 6.2(a).

The probe and coupling lasers are configured in a counter-propagating geometry.

Both lasers are locked to an ultra-low expansion cavity using the Pound-Drever-

Hall technique. The radius of the probe (coupling) laser beam is 0.40± 0.01 mm

(0.50± 0.01 mm) with a Rayleigh range of 1.75 m. The probe laser power is 20 μW

resulting in ΩP = 2π × 7.0 MHz. The coupling laser power is 4 mW corresponding

to ΩC = 2π × 0.5 MHz. The MW E-field at a frequency of 5.047 GHz, resonant with
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Figure 6.2: (color online) (a) Experimental setup. The two laser fields

counterpropagate through the prism vapor cell and the MW E-field is

supplied by a horn antenna perpendicular to the laser propagation di-

rection. The probe beam with a Rabi frequency ΩP passes through a

dichroic mirror and is incident on a position sensitive detector (PSD).

The detection area of the PSD is divided into four parts, as shown in the

inset. The quadrants give the PSD three channels, which can detect the

total transmission signal, and the displacement signal in the horizontal

and vertical directions. (b) A diagram for the probe beam path when it

traverses the atomic prism. The apex angle of the prism is θp, and the

incident angle of the probe beam is θp/2.
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the Rydberg transition, 52D5/2 → 53P3/2, is generated by a horn antenna driven by a

MW signal generator, HP 8340B. The homemade vapor cell is made of pyrex with an

apex angle of θp = 105o and filled with a natural abundance of Cs after being pumped

down to 10−9 Torr. The experiment is performed at room temperature, T = 300 K.

The PSD is placed 1 m away from the prism to capture to deflection signal of the

probe beam. The PSD is within the Rayleigh length of the probe laser so that the

divergence of the laser can be neglected. As the beam moves on the PSD, the signals

falling on the different quadrants can be used to measure the beam displacement. To

observe the index of refraction changes in the experiment, the probe beam is aligned to

the center of the PSD when observing Rydberg EIT without an MW E-field incident.

In this way, the probe beam will move relative to the center of the PSD as the MW

E-field is applied. The displacement of the probe beam can be calibrated by placing

the PSD on a translation stage. The displacement of the probe beam is substantially

smaller than the beam sizes, so the probe and coupling beams overlap inside the vapor

cell during the experiment.

6.4.2 Dephasing

In the experiment, the factors contributing to the dephasing rates are considered.

The transit time broadening, Γt, is one of the dominating factors. The beam size,

0.4 mm in radius and the most probable velocity, v ∼ 192 m/s give a transit time

broadening rate of Γt ≈ 2π × 36 kHz for the beam overlap region[112]. The Rydberg-

ground state collisional dephasing rate is Γcoll ≈ 2π × 10 kHz at room temperature
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Figure 6.3: (color online) AT splitting and the displacement signal with a

MW E-field. The Rabi frequency of the probe laser is ΩP = 2π × 7.0 MHz.

The Rabi frequency of the coupling laser power is ΩC = 2π × 0.5 MHz.

The top panel (a-c) is the absorptive signal with MW E-field both in

theory and experiment. The AT splittings caused by the MW E-field are

(a) 2π × 2.0 MHz (∼ 1497μV/cm), (b) 2π × 4.0 MHz (∼ 2995μV/cm),

and (c) 2π × 8.0 MHz (∼ 5990μV/cm), respectively. The frequency of

the MW E-field is tuned 0.3 MHz away from the resonant frequency to

show the the effect of frequency variation of the MW E-field. The bottom

panel (d), (e), and (f) are the displacement signals with MW E-field

amplitudes, the same as shown in (a), (b), and (c), respectively. Black

denotes numerical results, while red is experimental data. The zero point

of the probe detuning on the frequency axis is the resonance point of the

4-level EIT system.
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with ∼ 1.2× 10−6 Torr of Cs atoms in the vapor cell [113]. The laser dephasing

rate is Γl ≈ 2π × 100 kHz estimated by the error signals of the probe and coupling

lasers locked to the cavity. The inhomogeneous magnetic field dephasing rate is

Γm ≈ 2π × 100 kHz, calculated by considering the Zeeman splitting of the atomic

levels caused by the maximum magnetic field that Zeeman shifts the Rydberg sub-levels

[114]. The Earth magnetic field is compensated with a magnet down to the precision

of ∼0.1 Gauss, which is taken to be the maximum magnetic field. The coupling beam

is intensity-modulated at a frequency of 11 kHz using an acoustic-optical modulator,

so that the signal from the detector can be demodulated in a lock-in amplifier to

increase the signal to noise ratio.

6.5 Results

6.5.1 The AT splitting and the deflection measurements

The experiment firstly examines the results when the AT splitting is resolvable.

Figure 6.3 (a-c) shows the experimental data and the numerical results for AT splitting

corresponding to the deflection measurements. The AT splitting is asymmetric because

the MW E-field was detuned by ∼ 0.3 MHz from resonance for these measurements.

The top panel shows the typical AT splitting in the presence of a MW E-field measured

using the absorptive signal. As discussed in Chapter 2, the absolute MW E-field is

calculated using the AT splitting. The observation of the AT splitting validates the

MW E-field measurements using the atomic prism. The results also calibrate the MW
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Figure 6.4: The slope change, or first derivative of the displacement signal

near resonance. The experimental conditions are the same as shown in Fig.

6.3. The left panel (a), (b), (c) is the first derivative of the experimental

traces of (d), (e), (f) in Fig. 6.3, respectively. The right panel (d), (e), (f)

is the numerical simulation of (a), (b), (c) respectively. The zero point of

the frequency axis is the resonance point of the 4-level EIT system.
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E-field to the level of the variation in the measured AT splitting and uncertainty in

μMW.

According to equation 6.4 in section 6.3, the deflection of the probe beam, Δx,

is frequency-dependent and approximately proportional to the real part of the index

change around resonance. Fig. 6.3 (d− f) shows signals from the quadrant detector

measuring the displacement of the probe laser as the laser scans across the resonance

frequency. When increasing the MW E-field amplitude, the dispersive signal splits at

the resonant frequency as expected. A full numerical calculation of the 4 level EIT

system is used to generate the theoretical curves. Our experimental data is in good

agreement with the numerical simulations. Specifically, the absorptive signal with AT

splitting is accurately simulated at different MW E-field amplitudes, as shown in the

top panel of Fig. 6.3. The displacement signals also matches the numerical calculation,

as shown in the bottom panel of Fig. 6.3.

6.5.2 The slope of the deflection measurements

When the AT splitting is not resolvable at low MW E-fields, the measurement

requires analyzing the slope change of the displacement to determine the MW E-field

amplitude. The change of the dispersive slope representing the change in the index of

refraction induced by MW E-field is quite sensitive, especially when the MW E-field

amplitude is low. Figure 6.4 shows the slope of the dispersive signal as a function

of the probe laser frequency near resonance. The results are obtained by taking the

first derivative of the displacement measured when scanning the probe laser frequency.
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Taking the derivative of the displacement signal reveals the MW E-field amplitude

values more clearly because the features of the measured dispersive signals are difficult

to directly observe in the displacement signal as shown in Fig. 6.3. The left panel

(a-c) is the experimental data while the right panel (d-f) is the simulation. The

experimental results agree with the numerical simulation quite well as expected from

Fig. 6.3.

The slope, dθ(ωp)/dωp, is close to that of 3-level Rydberg EIT when the MW

E-field is weak. Therefore, the AT splitting cannot directly be resolved in the absorp-

tive EIT signal. The 3-level EIT dispersive signal for the experimental conditions

discussed in Section III, corresponds to a change of the index of refraction at the level

of dn(ωp)/dωp ≈ 7.67× 10−7 MHz−1. The index of refraction can be translated to

dθ(ωp)/dωp ≈ 0.2 μrad MHz−1 , corresponding to a displacement change on the detec-

tor of 11 μm. The MW E-field measurement performed with the minimum detectable

MW E-field induced change in the dispersive signal of 11 kHz AT splitting, corresponds

to a displacement of ∼ 0.024 μm, or a MW E-field amplitude of ∼ 8.25 μV/cm. The

sensitivity of MW E-field measurement is estimated as ∼ 46.5 μVcm−1Hz−1/2. The

sensitivity and the minimum detectable MW E-field are comparable to our previous

experiment [38]. The wavelength resolution is R = λ/δλ ≈ 3.2× 1010.

The resolution here is lower than the predicted value given in Ref. [104],

R = λ/δλ ≈ 1012, because the deflection angle for a typical ground state Λ-type

EIT is much larger than the 4-level ladder EIT-like system that includes Rydberg

states. The ground state Λ-type EIT system has a much longer coherence time.

112



The maximum coherence time of the 4-level EIT-like system using Rydberg states

is determined by the lifetime of the Rydberg states, ∼ 30 μs here. The coherence

time for a Λ-type EIT that uses ground states is determined by the spin relaxation

time, which is on the order of seconds. The diffraction limit and the spectral width

of the EIT signal are also important limitations when measuring effects that depend

on a small deflection. The key factor that makes the measurement of lower MW

E-field amplitudes using Rydberg atoms difficult, is the residual Doppler broadening,

∼ 2− 3 MHz under the conditions of this work. In contrast, for the ground state

Λ-type EIT system, the wavelengths of the probe and the coupling lasers are matched,

resulting in very small residual Doppler broadening. The residual Doppler broadening

decreases the slope of the dispersive signal in the presence of a MW E-field. The

Doppler broadening effect can be reduced in future experiments by using alternative

multi-photon schemes for readout.

6.5.3 Comparison of the experimental and calculated results

The experimental results and numerical simulation of the slope change with

respect to the amplitude of the MW E-field are shown in Fig. 6.5. In the numerical

simulation, an intensity change of the probe laser is up to 10% because of the rough

surface of the prism-shaped vapor cell. The surface of the vapor cell is not perfectly

flat, as the pyrex was fused at very high temperature during construction at our

glass shop. The surface of the vapor cell can change the intensity of the probe laser

when it moves during the measurement. An optically flat surface can be obtained
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Figure 6.5: (color online) The slope at resonance versus MW E-field. A

probe power uncertainty is up to ±10% due to the rough surface of the

prism vapor cell. The unit of the slope is arbitrary unit considering its

value depends on the overall amplitude of the processed signal, which

can be normalized to the amplitude of the EIT signal with no MW E-

field present. The error bar along the x-axis is given by considering the

uncertainty of the MW E-field amplitude in the MW E-field measurement.

The error bar along the y-axis is derived from the standard deviation of

the raw data.
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by improving the vapor cell manufacturing process, for example, by using anodic

bonding to construct the prism shaped vapor cell [69]. The experimental results are

in agreement with the numerical simulations for large MW E-field amplitudes, but

the deviation grows as the MW E-field decreases. One reason for the deviation is

that the dephasing rates are difficult to accurately estimate considering the spectral

resolution of the experiment. The dephasing rates have a large influence on the

index of refraction change at low MW E-field amplitude because these rates are

approaching the MW E-field Rabi frequencies. Uncertainties in these factors are due

to effects such as polarization or intensity drift of lasers, stray electric and magnetic

fields and temperature fluctuations of the environment. A more sensitive MW E-

field measurement requires a design to reduce the residual Doppler effect and the

environmental noise. By reducing the residual Doppler effect, e.g. down to a few

kHz determined only by the lifetime of Rydberg states, the resolution of the angular

dispersion can be as large as R = λ/δλ ≈ 1012 [104]. Thus, the sensitivity can be

improved by up to two orders of magnitude. An experimental configuration reducing

environmental noise, for example, a double vapor cell setup as described in Ref. [115]

or a Sagnac interferometer configuration similar to Ref. [116], can also increase the

sensitivity of the MW E-field measurement.

6.6 Outlook

A higher sensitivity of MW E-field sensor can be used to study physics which is

hard to observe using conventional methods or even lead to discovery of new physics
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[87, 77]. Achieving a sensitivity several orders of magnitude greater than the current

limit, it is also possible to quantify and study the dephasing rates to improve the

sensor. For example, superradiance between Rydberg states, which is usually studied

with large Rydberg population [111], can be observed. With higher sensitivity, the

interactions between Rydberg atoms can cause a dephasing rate that limits the MW

E-field measurement. Thus, these interactions can be precisely quantified despite of

their small values [117]. These measurements can be useful for quantum information

applications in vapor cells [118, 119].

The experimental setup described here also has potential for several applications.

By folding the alignment of the probe beam, the experimental setup can potentially be

integrated into a compact MW electrometer. MW E-field spatial distributions can be

mapped using this setup by detecting the gradient of the index of refraction induced

by MW E-fields. In addition, it is possible to study non-linear optical phenomena

in the MW regime by manipulating the dispersive properties of the 4-level EIT-like

system with MW E-fields. The ability to deflect laser beams using MW E-fields can

also be developed as a refractive index waveguide [120], or for optical cloaking [121].

By controlling the direction of the probe laser propagation in the presence of a MW

E-field, all optical switching [122] can be accomplished. Similar to the scheme in

Ref. [123], a prism-shaped vapor cell can be implemented as a device for broadband

optical steering with MW E-field control. Modern MW technology enables encoding

complex signals in the MW E-field to control the laser beam pointing at high speed.

Thus, the experimental setup can potentially be used for information transport and
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communications.

6.7 Conclusion

In summary, the chapter has experimentally demonstrated MW E-field mea-

surements using an atomic prism in a vapor cell at room temperature by measuring

the probe beam deflection. At a transition frequency of 5.047 GHz, the minimum

MW E-field amplitude obtained in this work was 8.25 μVcm−1, with a sensitivity of

∼ 46.5 μVcm−1Hz−1/2, which is comparable to our previous efforts based upon directly

measuring the absorptive part of the EIT readout signal [38]. The experimental data

agrees well with the full calculation of the 4-level EIT system. The measurement is

limited by the spectral resolution of the experimental setup, the dephasing rates, noise

such as stray electric and magnetic fields, and the surface quality of the vapor cell.

The sensitivity of the measurement can be increased by improving the manufacturing

process of the vapor cell, and adopting a multi-photon readout which can reduce the

residual Doppler effect. The method holds promise for many applications, because

of its ability to measure the index of refraction change induced by MW E-fields and

the control of the propagation direction of the probe laser beam using a MW E-field.

In addition, it is satisfying to see that a dispersive signal approach to Rydberg atom

electrometry behaves as expected.

117



Chapter 7

Microwave Electric Field Measurements Using

Mach-Zehnder Interferometer with Cesium

Rydberg Atoms in Vapor Cells

7.1 Introduction

This chapter introduces a new method to perform Rydberg atom-based MW

E-field measurements. The method uses a Mach-Zehnder interferometer (MZI) along

with a homodyne detection technique [124, 125, 105, 126, 106, 127]. With the MZI, the

measurement is performed by observing phase difference between a probe signal and a

local oscillator (LO). The noise of the probe laser can be canceled by the subtraction

of the homodyne detection and the EIT signal is enhanced by the strong LO. The MW

E-field measurement has reached a high sensitivity, ∼ 3− 5μVcm−1Hz−1/2, which is

one order of magnitude higher than the previous result [38].

7.2 Motivation

In previous chapters, Rydberg atoms have been introduced to measure the

amplitude of MW E-fields. The Rydberg atom-based MW E-field measurement is

promising for performing traceable MW E-field measurements with a higher sensitivity

than that of the conventional antenna standard. The high sensitivity of the MW

E-field measurement is a result of the huge transition dipole moment between Rydberg

states [51]. The huge transition dipole moment makes Rydberg atoms extremely
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sensitive to MW E-fields.

One of the limiting factors for the Rydberg atom-based approach is the noise

of the probe laser. The probe laser always has small drifts in terms of power and

polarization. The noise of the probe laser reduces the signal-to-noise ratio (SNR)

of the Rydberg EIT window. Thus, the sensitivity of the MW E-field sensing is

decreased. An optical interferometer is one of the options to eliminate the noise of the

probe laser. The interferometer detects the nonlinear phase shift instead of directly

measuring transmitted probe power. A lot of experiments with atoms [128, 129],

photons [130, 125, 105, 131, 132], and electrons [133] show that interferometers have

the ability to perform physical measurements at a high sensitivity and has the potential

to reach the shot noise limit.

The increased sensitivity gives the opportunity to quantitatively study the factors

determining the shot noise limit. The factors include transit time broadening, collision

broadening and lifetime of Rydberg atoms. The experiment described in this chapter

quantitatively studies how these factors determine the shot noise limit for atom-based

MW electrometry.

7.3 Experiment

7.3.1 Mach-Zehnder interferometer

A MZI is applied in this chapter to reduce the noise of the probe laser. Fig. 7.1

shows the experimental setup using the MZI along with homodyne detection. The

probe laser, 852 nm, excites the atoms from the ground state to an intermediate state,
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Figure 7.1: Diagram of the setup for the experiment. The probe laser (red

line) is split into two branches by a 50− 50 non-polarizing beamsplitter

(NBS). One goes into the vapor cell overlapped with the coupling laser

(blue line). The other goes to a mirror with a piezoelectric transducer(PZT)

attached. These two beams overlap in the other NBS and are split into

two branches with different phases. The output probe laser signals are

captured by a homodyne detection scheme. The reference laser enters

the MZI from the output side and is overlapped with the probe laser in

the MZI. The output of the reference laser is detected by a differential

photodiode and is sent to a PID loop to stabilize the MZI.
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i.e., 6S1/2(F = 4) → 6P3/2(F
′ = 5). The probe laser beam passes through the MZI

to eliminate the noise. A 50− 50 non-polarizing beamsplitter cube (NBS) splits the

probe beam into two arms. One arm is the probe arm and the other arm is the LO.

The probe arm passes through a neutral density (ND) attenuator and then a 4-cm

long cylindrical cesium (Cs) vapor cell; the probe arm is reflected by a hot mirror

and goes to a second NBS. The LO hits a mirror where a piezo-electric transducer

(PZT) is attached and then passes the second NBS. The probe arm and the LO are

merged at the second NBS and interfere with each other. The two arms maintain

the same polarization to obtain maximum interference. The coupling laser, 509 nm,

passes through the hot mirror and overlaps with the probe arm to excite the atoms

into a Rydberg state from the intermediate state, i.e., 6P3/2(F
′ = 5) → 52D5/2. A

horn antenna radiates a MW E-field at a frequency of 5.047 GHz. The MW E-field is

resonant with the 52D5/2 ↔ 53P3/2 transition.

The homodyne detection system is implemented on the output side of the second

NBS. The two output channels of the MZI are captured by a differential photodiode.

The intensity of the LO is much higher than the probe arm. The coupling laser is

intensity-modulated using an acoustic-optical modulator (AOM). Then, the probe

signal captured by the homodyne detector is demodulated by a lock-in amplifier and

recorded by an oscilloscope. A reference laser, 795 nm, is used to lock the phase of

the interferometer. The frequency of the reference laser is far way from any transition

of Cs atoms. This reference laser enters the MZI from the output side of the probe

laser and overlapped with the probe beam in the MZI. The output of the reference
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Figure 7.2: (a). Single trace of Rydberg EIT with and without MZI. The

data is taken using the same Rabi frequencies for both probe and coupling

laser. (b). A single trace of Autler-Townes Splitting using MZI. The scan

period is 1 sec and the integration time is 1 ms.

laser is detected by a differential photodiode. The signal of the photodiode goes to a

PID loop to stabilize the MZI through the PZT. The MZI is stabilized where the EIT

signal is maximum.

7.3.2 Oven

As a part of the experiment, an oven is built to control the temperature of the

vapor cell. The size of the oven is large enough to fit the vapor cell and the heater

inside. To maintain the stability of the MZI when heating the vapor cell, the oven

is made of TPX. There are several reasons to build the oven like this. Firstly, the

dielectric constant of TPX is low, ε = 2.1. The dielectric constant of a material

determines the reflection and absorption to MW E-fields. Specifically, as discussed in

Chapter 5, the lower ε will cause less absorption and reflection to MW E-fields. The
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dielectric constant of TPX is closer to that of the air compared to other materials such

as pyrex and quartz. The reflection and absorption of the MW E-field can be negligible.

Thus, this oven is considered to be transparent to the MW E-field. Secondly, an

oven is a good isolation for the air flow or the change in index of refraction of the air

caused by the heater. The uniform temperature in the oven minimized the disturbance

to the MZI when heating the vapor cell. Thirdly, the TPX has a high soften and

melting point, ∼ 240 oC. The high soften and melting point gives the experiment

enough temperature range. The highest temperature in the MW E-field measurement

is ∼ 80 oC.

7.3.3 The signal to noise ratio of EIT

Fig.7.2(a) shows the comparison of the EIT windows with and without the MZI.

The Rabi frequencies of the probe and the coupling laser are set to be the same in

both cases. As shown in Fig. 7.2(a), the SNR of EIT is improved by at least a factor

of 20 with the MZI and homodyne detection. Fig.7.2(b) shows the Autler-Townes

(AT) Splitting at different intensities of the MW E-field. The results are obtained

from a single trace when scanning the frequency of the probe laser. The scanning

period is 1 s and the integration time is 1 ms. When the MW E-field is at the mV/cm

level, the AT splitting can be resolved and the amplitude of the MW E-field can be

determined directly by observing a single trace of the AT splitting. When the MW

E-field is lower than the mV/cm level, e.g. μV/cm level, the MW E-field amplitude is

determined by the transmission of the probe beam relative to the EIT height.

123



Figure 7.3: The results of percentage increased in transmission versus ME

electric field for three different transit time broadening. The experiment

uses 3 beam sizes, 0.32 mm, 0.50 mm and 1.1 mm, corresponding to

transit time broadening 40 kHz (black), 87 kHz (red) and 136 kHz (blue).

The dots are the measurement data and the lines are the calculation using

density matrix method.
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The high SNR enables the detection using lower power for the probe and coupling

laser beams compared to the case without MZI. Thus, the power broadening can

be reduced in the experimental setup. For example, the full-width-half-maximum

(FWHM) of Rydberg EIT window is 1.6 MHz at room temperature. The FWHW of

the EIT window is much lower than that of previous setups [38]. With the Rydberg

EIT with high SNR, the experimental setup is able to detect the dephasing effects for

the MW E-field measurement, e.g., transit time broadening and collision broadening.

7.4 Results

7.4.1 The trasit time broadening

One important dephasing factor for the MW E-field measurement is transit time

broadening. For the atoms in vapor cells, the laser is a pulse of light whose width is

determined by the time for atoms to pass through. Thus, the spectroscopic signals are

broadened. The transit time broadening is determined by the size of the laser beam

and the velocity of the atom, i.e.,

Δν =
√
2v/d, (7.1)

where Δν is the transit time broadening rate, v is the velocity of the atoms, and d is

the diameter of the interaction regime, that is, the diameter of the probe beam in the

experiment.

For the MW E-field measurement, Fig.7.3 shows the transmission difference with

different beam sizes at room temperature. The radii of the beam are 1.1 mm, 0.5 mm,
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and 0.32 mm, which give transit time broadening rates of 40 kHz, 87 kHz, and 136

kHz, respectively. The signal is calibrated as the percentage of EIT height without the

presence of the MW E-field. As the the transit time broadening rate decreases, the

percentage of transmission increases. This means the sensitivity is higher when the

beamsize is larger. The experimental results are consistent with numerical simulation

results as shown in Fig 7.3.

7.4.2 The collisional broadening

Collision broadening effects of the atoms in the vapor cell is also important. The

collision broadening rate is defined as,

Γcol = σvρ, (7.2)

where Γcol is the collision broadening rate, σ is the cross section, and ρ is the density

of atoms. The density of the Cs vapor changes at different temperatures because the

vapor pressure of Cs in the vapor cell changes [134]. In the 22 oC to 80 oC regime, the

average velocity of atoms changes little while the atomic density varies at different

temperature.

The cross section can be evaluated by observing the EIT FWHM at different

temperatures shown in Fig. 7.4 (a). In Fig. 7.4 (b), the results are converted to

density of atoms versus FWHM. A polynomial function is applied to fit the FWHM

with the change of the atom density. The results show that the FWHM changes

linearly with the change of the atom density, which validates Eq. 7.2. Thus, the

cross section for collisions can be derived as σ = 1.2× 10−11 cm2, which is consistent
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Figure 7.4: (a). The FWHM of EIT at different temperatures. the inset

is a typical EIT at room temperature. (b). The density of the atoms in

the vapor cell versus the FWHM of EIT, and the linear fit. The density

is calculated using the temperature in (a). 3.1× 1010/cm−3 is the density

at room temperature. (c). The absorptive behavior of the MW E-field

at different temperatures. Collision rate is larger at higher temperature.

This give the lower absorption when MW electric field is applied.
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with reported theoretical work [51]. The experimental results give the collision rate,

∼ 8.2 MHz ·mTorr−1. The ground-Rydberg atom collision rate, ∼ 5 MHz ·mTorr−1,

is the dominant one. In the process of MW E-field measurements, the population

of Rydberg atoms is low, ∼ 0.01% of the ground state atom density. The average

distance between the Rydberg atoms is large, > 100 μm. Therefore, the Rydberg-

Rydberg atom collision rate is much smaller, < 1 kHz . The dephasing involving

the intermediate state, 6P3/2, is dominated by the spontaneous emission ∼ 5.2 MHz.

Thus, the collisions involving the 6P3/2 state, ∼ kHz, are negligible. The cross section

for ground-ground state atom collisions is much smaller than the Rydberg-ground

state collision at the temperatures that are considered here.

Fig. 7.4 (c) shows the absorptive behavior of the MW E-field at different tempera-

tures, that is, at different collision broadening rates. When the collision broadening rate

increases, the spectral absorption of the probe beam induced by the MW E-field gets

smaller, so the sensitivity of the measurement decreases. When the density of atoms

is 10 times (usually round 56 oC) the density at room temperature, 3.1× 1010/cm−3,

the collision broadening effect dominates the MW E-field measurement.

7.4.3 Power broadening

Even with the same transit time broadening rate and collision broadening rate,

the power of both lasers affects the sensitivity of the MW electric field measurement.

Fig. 7.5 shows the effect of changing the power of the probe laser and the coupling

laser. When the MW E-field amplitude is several hundred μV/cm, the spectrum can
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vary from absorption to transmission as the laser power increases. The transmission

happens when one increases the power of both the probe and coupling laser. Because

the MW E-field measurement is not in the weak probe regime, the Rydberg EIT

window can easily be broadened by the probe or the coupling power. Thus, when a

small MW E-field is coupled between Rydberg states, the EIT window gets larger.

The power broadened case is the same as observed in Ref [38].
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Figure 7.5: Left: the absorptive behavior with MW electric field at

different powers of the probe; the power of the coupling laser is 2 mW.

Right: the absorptive behavior with MW electric field at different powers

of the coupling laser; the power of the probe laser is 35 μW

Under the broadened EIT condition [38], the sensitivity is limited, and the

minimum detectable field is larger. This is due to the fact that the population of the

intermediate state and Rydberg state are larger than those of lower laser powers. The

large Rydberg population increases the dephasing rate. For example, the increased

population of the intermediate state and Rydberg states due to the higher laser powers
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can cause more collisions between atoms. Moreover, the interactions between the

atoms and vapor cell walls are also increased. Stronger laser powers can generate more

ionized atoms. The ionized atoms in the vapor cell create inhomogeneous electric

fields. More work on Rydberg surface interactions is needed to quantify the dephasing

rates due to surface effects. Suitable power of lasers need to be selected to obtain the

best sensitivity for the MW E-field measurement.

7.4.4 Measurements at different modulation frequencies

As described in the Section 7.3, the coupling laser intensity is modulated using an

AOM to increase the SNR in the data acquisition process. However, the modulation

changes the atomic spectrum at different modulation frequencies [135]. To clearly

show the observation, we investigate the spectrum at different modulation frequencies

with the presence of MW E-fields. The results are shown in Fig. 7.6. In the left side

of Fig. 7.6, the MW frequency is scanned while the probe and coupling laser are at

resonance. The spectrum changes from transmission to absorption when increasing the

modulation frequency. On the right side of Fig. 7.6, the power of the MW is scanned

when the probe, coupling laser and MW are all at resonance. The experimental results

show the same behavior as that of the left side in Fig.7.6.

At a low modulation frequency, a period of modulation is longer than the lifetime

of Rydberg atoms. The Rydberg atoms decay to the ground state before the next

cycle of modulation. While at a higher modulation frequency, at least one modulation

cycle happens before the Rydberg atom decays to the ground state. As a result,
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more power of the probe laser is absorbed at higher modulation frequencies. The

effective interaction time between Rydberg atoms and the MW E-field is also longer

at higher modulation frequencies. In this sense, the sensitivity of the MW E-field

measurement is better at higher modulation frequencies. Both the modulation period

and the lifetime of a Rydberg state is in the μs scale. For the 4-level EIT to reach

equilibrium, or steady state condition, the time is in the ns scale. Therefore, the

discussion in this section is in steady state condition of the 4-level EIT system.

-15 -10 -5 0 5 10 15

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Tr
an

sm
is

si
on

 (%
)

MW Detuning (MHz)

 10 kHz
 20 kHz
 30 kHz
 40 kHz
 50 kHz

0 100 200 300 400 500

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Tr
an

sm
is

si
on

 (%
)

E Field (μV/cm)

 2 kHz
 10kHz
 20kHz
 30kHz
 50kHz

Figure 7.6: Left, the scan of MW frequency versus transmission at differ-

ent modulation frequency. Right, spectrum using different modulation

frequency when the MW is at resonance.

7.4.5 Discussions

The sensitivity at the shot noise limit can be calculated as [48]

Emin =
h

μ
√
T2TN

, (7.3)
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where h is the Planck constant, μ is the transition dipole moment, T is the measurement

time, and N is the number of atoms in the interacting area. T2 is the dephasing time.

T2 is determined by the transit time broadening, Γt, the collisional broadening, Γcol,

and the lifetime of the Rydberg state, Γ,

1/T2 =
√
Γ2
t + Γ2

col + Γ2. (7.4)

The minimum value obtained in experiment is Γt = 40 kHz, Γcol = 40 kHz and

Γ = 30 kHz. When the measurement time T = 1 sec and the transition dipole

moment μ = 1745 ea0, the calculated sensitivity determined by shot noise limit is

approximately ∼ 500 pVcm−1Hz−1/2. In experiment, the MW E-field measurement

has additional dephasing effects, e.g., transit time broadening and collision broadening

effects. These effects are at the same noise level as determined by the Rydberg lifetime.

The achieved sensitivity, 3− 5 μVcm−1Hz−1/2, is an order higher than our prior best

sensitivity [38].

The sensitivity to the MW E-field measurement is also limited by the residual

Doppler effect. The residual Doppler effect is caused by the wavelength mismatch

between the probe and and coupling lasers. The current FWHM of the Rydberg EIT

is ∼ 1.6 MHz. The residual doppler effect contributes the most to the ∼ 1.6 MHz

width. The width of the Rydberg EIT can be significantly reduced to the regime of

∼ kHz by using multi-photon readout scheme in future experiments.

Despite their small rates in the current experimental setup, some other effects

may also be factors limiting the sensitivity of the MW E-field measurement. For

example, superradiance between Rydberg states. The transition wavelength between
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Rydberg states is usually much longer than that of ground states transitions. So

the superradiance can be important. As discussed in Chapter 6, the maximum

superradiance rate can be as large as ΓSup ≈ 2π × 700 kHz. For Rydberg atoms in a

vapor cell at room temperature, the initial phases of the atomic oscillators are not

correlated and change randomly, so the superradance is suppressed and not observable

using current experimental setup. The transition between Rydberg states is long

compared to the interaction sized of atomic vapor. Thus, the superradiance between

Rydberg states can potentially contribute to decay and dephasing processes.

The reasons preventing us from reaching quantum shot noise limit can also be in

the experimental setup itself. The detection bandwidth is low, 50 kHz. 50 MHz is a

typical modulation frequency for MZI detection methods to reach Heisenberg limit

[136]. The amplitude-modulated (AM) signal of the couping laser creates residual

amplitude noise. The residual amplitude noise leads to dephasing and drift that

dramatically reduce the sensitivity. By applying an active feedback control system as

described in Ref [137], it is possible to reduce the noise of the coupling laser down to the

shot noise limit. The noise from the MZI degrades the sensitivity. The noise could be

in the phase stabilization of MZI, the amplitude fluctuation of the interferometric arms,

the imperfection of the photodetection, or the phase diffusion of the MZI. As proposed

in Ref [136], the MZI can be designed as a nearly optimal interferometer by controlling

the phase diffusion. The interaction of the Rydberg atoms with vapor cell walls causes

dephasing, too. More work on vapor cell construction and material selection needs to

be done to minimize the Rydberg atom-surface interactions. Moreover, the residual
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magnetic field of the earth is another factor that limits the sensitivity. A magnet is

used to compensate the earth magnetic field down to 0.1 Gauss. The vapor cell has

to be put in free space such that the MW E-field gets least reflection or absorption.

So it is hard to shield the magnetic field completely because the shield materials are

usually made of metal. The sensitivity of the MW E-field measurement using the MZI

can be essentially improved by solving these problems.

7.5 Conclusion

In summary, the experiment applies a homodyne detection technique using

a MZI to achieve a new sensitivity limit for the measurement of MW E-fields,

∼ 3− 5 μVcm−1Hz−1/2. The minimum detectable field is ∼ 1 μVcm−1. This set-

up can be easily implemented to cancel the noise of the probe laser. The chapter

also discusses the homogeneous dephasing effects caused by transit time broadening,

collision broadening, and the lifetime of the Rydberg atoms. It is shown that these

dephasing effects are the fundamental limiting factors that determine the shot noise

limit. The study of these factors is important not only to MW E-field sensing, but

also to quantum information science which requires to manipulating the interactions

involving Rydberg atoms. A recent report shows that the optical MZI can be integrat-

ed into a chip [138] to study alkali atom spectroscopy. This can be beneficial to the

MW E-field measurement towards on-chip devices without the probe noise.
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Chapter 8

Discussions and outlook

8.1 A brief review on atom-based MW electrometry

This dissertation demonstrates an atom-based method to measure MW E-fields.

The atom-based approach uses Rydberg atoms in thermal vapor cells via electro-

magnetically induced transparency (EIT). A MW E-field is coupled between two

neighbouring Rydberg state, causing an AT splitting in the atomic spectrum. The

amplitude of the MW E-field is proportional to the AT splitting. The atom-based

method is promising to perform MW E-field measurements with a sensitivity orders

of magnitude higher than the conventional MW standard. The measurement of MW

E-fields links to the properties of Rydberg atoms. The properties of Rydberg atoms

are determined precisely with atomic spectroscopy. Thus, the properties of Rydberg

atoms lead to traceable or self-calibrated devices for MW E-fields.

Being different from the conventional dipole antennas that are made of conducting

materials, the atom-based approach utilizes an atomic vapor in a dielectric container.

The dielectric container is free of metal and minimally disturbs the MW E-field.

This dissertation demonstrates an imaging technique to measure MW E-fields in the

sub-wavelength regime, obtaining ∼ 66μm, λ/650 spatial resolution the [39]. The

near-field measurement is also presented by imaging a MW E-field near a waveguide.

The method is promising to develop into portable standard devices by minimizing

the setup and detection system. The accuracy of the MW E-field measurement is
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about ∼1% by using a vapor cell with its size much smaller than the wavelength of

the target MW E-field.

The dissertation introduced an alternative way to measure the amplitude of a MW

E-field besides using AT splitting. The amplitude of a MW E-field is determined by

detecting the change in the index of refraction induced by the MW E-field. The change

in the index of refraction results in the deflection of the probe laser beam passing

through a prism shaped vapor cell. The sensitivity of the MW E-field measurement is

∼ 46.5mVcm−1 Hz−1/2 with a minimum detectable field of ∼ 8.25μVcm−1.

The dissertation also presents the MW E-field measurement applying a Mach-

Zehnder Interferometer with a homodyne detection. The sensitivity of the MW

E-field measurement reaches ∼ 3μVcm−1Hz−1/2 and the minimum detectable field is

∼ 1μVcm−1. The dephasing is caused by transit time broadening, collision broadening,

and the lifetime of the Rydberg atoms. These dephasing effects are the fundamental

limiting factors that determine the shot noise limit.

8.2 Shot noise limit for Rydberg atom electrometry

In Chapter 7, the equation 7.3 gives the minimum detectable E-field limited

by the shot noise. When setting the integration time T = 1 s, the shot noise limit

sensitivity is given by

Emin√
Hz

=
h

μMW

√
NatT2

. (8.1)

When ignoring transit time broadening and collisions, the dephasing time T2 is

determined by radiative decay rate of the involved Rydberg state, scaling with n3,
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while the transition dipole moment scales with n2. As a result, the sensitivity scales

with n as,

Emin√
Hz

∼ n−3.5. (8.2)

Take 133Cs gas for an example, the Cs gas is in a vapor cell at room temperature. The

EIT beam radius is 0.5 mm and the length of the vapor cell is 3 cm. The transition

of 52D5/2 → 53P3/2 at 5.047 GHz with a transition dipole moment is ∼ 1749 ea0. At

room temperature, 25 oC, the pressure of the Cs vapor cell is ∼ 1.5× 10−6 Torr,

corresponding to a atomic density of ∼ 5× 1010cm−3. About ∼1/400 of the atomic

density in the vapor cell participates in the EIT process. Therefore, the sensitivity is

10 pVcm−1Hz−1/2.

To pursue a sensitivity towards shot noise limit, several other effects can limit

the sensitivity of the MW E-field measurement. For example, collisions and transit

time broadening change the dephasing time T2 so the sensitivity of the MW E-field

measurement is degraded. The technical noises need to be overcome to reach this

sensitivity. These noises are due to the noise of lasers, stray electric and magnetic

fields, etc.

8.3 Outlook

The statistical error are caused by several technical noises including frequency

and intensity instability of the lasers, acoustic noise from the opto-mechanics, and

optical imperfections. More efforts on reducing these technical noises are needed for

the MW E-field measurement. The wavelength mismatch between the probe and
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coupling lasers induces a residual Doppler effect that is the main factor to broaden

the EIT window. The broadened EIT window limits the sensitivity of the MW E-field

measurement. To reach the shot noise limit, it is necessary to find a way to eliminate

the residual Doppler effect. The background magnetic field of the earth is one of the

primary source of systematic errors. Maintaining a high accuracy of the MW E-field

measurement requires to improve methods to shield, compensate, and cancel the stray

magnetic field in the background.

Standard antenna measurements are needed to test the Rydberg atom-based

MW E-field sensing. The stable properties of Rydberg atoms facilitate calibration of

the MW radiation to SI units. A comparison to a conventional standard antenna is

needed to validate the Rydberg atom-based sensor as a candidate for a new generation

of the MW E-field standard. As demonstrated in this dissertation, the atom-based

MW E-field sensors are superior to the conventional standard antenna. Thus, it is

necessary to build two Rydberg atom-based standards. The comparison between the

two standards is essential to evaluate the precision of the new standard.

Besides being a candidate as a new standard for MW E-field measurement, the

potential to be a portable MW E-field sensor is also attractive to both scientific research

and industrial applications. The techniques for a portable atom-based sensor have

already been developed for atomic clocks [63]. These techniques include micro-optics

package for the laser system, mini-vapor-cell fabrication technique, magnetic field

shielding, and minimizing the electric power consumption for the device. With these

existing techniques, a small volume of MW E-field probe is promising to implement
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using the Rydberg EIT process as discussed in this dissertation.

The Rydberg atom-based MW E-field sensor creates a choice for probes at far-

infrared (FIR) frequencies. The atom-based approach can lead to self-calibrated

devices for MW E-field in the FIR regime. By changing the principle quantum number

of Rydberg atoms, the Rydberg EIT system is applicable to measure MW E-fields

across a large frequency range, from GHz to THz. A highly sensitive THz MW sensor

facilitates the applications with THz radiation such as quantum cascade laser, wireless

communication with THz waves, and metamaterials in the THz-frequency range [139].

The detection of MW E-field in millimeter regime (or 100 GHz regime) has been already

realized using this approach [140]. The Rydberg EIT method provides a promising

approach for MW E-field detection in FIR frequencies including the millimeter wave

regime and THz frequency regime.
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