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ABSTRACT

Magnetic recoding channels (MRCs) are subject to noise contamination and error- 

correcting codes (ECCs) are used to keep the integrity o f the data. Conventionally, 

hard decoding of the ECCs is performed. In this dissertation, systems using soft 

iterative decoding techniques are presented and their improved performance is 

established.

Three coding schemes are investigated for magnetic recording systems. Firstly, 

block turbo codes, including product codes and parallel block turbo codes, are 

considered on MRCs. Product codes with other types o f component codes are briefly 

discussed.

Secondly, binary low-density parity-check (LDPC) codes are proposed for MRCs. 

Random binary LDPC codes, finite-geometry LDPC codes and irregular LDPC codes 

are considered. With belief propagation decoding, LDPC systems are shown to have 

superior performance over current Reed-Solomon (RS) systems at the range possible 

for computer simulation. The issue o f RS-LDPC concatenation is also addressed.

Finally, Q-ary LDPC (Q-LDPC) codes are considered for MRCs. Belief 

propagation decoding for binary LDPC codes is extended to Q-LDPC codes and a 

reduced-complexity decoding algorithm for Q-LDPC codes is developed. Q-LDPC 

coded systems perform very well with random noise as well as with burst erasures. 

Simulations show that Q-LDPC systems outperform RS systems.

XIV



1 INTRODUCTION TO MAGNETIC RECORDING 

SYSTEMS

In magnetic recording (MR) systems, the information is recorded on the media in 

the form of a remnant magnetic field, from which the information is retrieved. In this 

work, the interest is in digital MR systems, in which the information is discrete (0 or 

I). For simplicity, digital MR systems are referred simply as MR systems in the 

following. Particular focus is on hard disk drives (HDDs), though the results can be 

easily applied to other MR systems. HDD applications require very reliable data 

retrieval, with typical failure rates below lO"'"*.

In this chapter, the basics o f MR systems are first introduced in Section 1.1, and 

coding requirements for magnetic recording channels are discussed in Section 1.2. 

The problems addressed in this dissertation are stated in Section 1.3. Finally, the 

organization of this dissertation is presented in Section 1.4.

1.1 Magnetic recording systems

1.1.1 Digital magnetic recording basics

The most fundamental components o f an MR system are heads and media. When 

a current representing the data sequence passes through the head coil, it generates a 

magnetic flux pattern. The flux is used to magnetize the media. During the write



process, the head and media are in relative movement, and the temporal signal pattern 

is recorded on the media in a spatial pattern. The media is magnetized along with the 

direction of the relative movement. During the replay process, the head picks up the 

flux change from the magnetized media with the same relative movement between the 

head and media [l]-[3].

The degree to which the media can be magnetized is in general continuous until it 

reaches saturation. However, in digital magnetic recording, saturation recording is 

used, i.e., the write magnetic flux is sufflciently strong that it saturates the media. 

Therefore, only two magnetization patterns, saturated magnetization along and 

opposite to the relative movement, are possible. The correspondence o f the data, 

write current and the magnetization pattern on the media is illustrated in Figure 1.1.

As illustrated in Figure 1.1, the change o f sign (transition) in the written data, 

either from +1 to —I or from —1 to +1 (in non-retura-zero format), corresponds to 

the transition o f the magnetization direction on the media.

data +1 -1 +1 +1 •1 -1

write current

media
magnetization !

Figure 1.1. Illustration o f data, write current and magnetization pattern.



A high-level description o f conventional signal processing and coding for an MR 

system is shown in Figure 1.2 [I].

user
data

RS Modulation MR — ^ Channel Modulation RS
Encoder Encoder Channel Detector — ¥ Decoder f Decoder

Figure 1.2. Conventional MR system.

In this system, the components shown are:

• MR channel. The MR chaimel includes the preprocessing before writing, the 

characteristics o f the interaction o f both write and read heads and media, and 

signal processing at the readback front end. The output o f the MR channel is 

a symbol-rate sequence for the channel detector to estimate the recorded data.

• Channel detector. MR channels are often equalized to partial response (PR) 

targets, and partial-response maximum-likelihood (PRML) detection is often 

used to cope with the inter-symbol-interference (ISI). Conventionally, the 

PRML detector can be implemented by the Viterbi Algorithm (VA).

• Modulation coding. A modulation code is used to facilitate timing recovery 

and gain control. In addition, it may also improve the free distance [I].

• RS coding. Reed-Solomon (RS) codes are used to correct errors that may 

occur in the channel detector. Conventionally hard decoding is performed.

In addition to the components shown in Figure 1.2, a timing recovery system and 

a gain control system are necessary [I]. However, throughout this thesis, perfect 

timing and gain control is assumed.

In the sequel, the components shown in Figure 1.2 are discussed in detail.



1.1.2 Channel response

The write process and read back process can be characterized by the transition 

response (step response), which is the readback waveform when a single positive 

transition (from —1 to +1, at time 0) is written. The step response can be measured by 

averaging the read back signals of many isolated written rising (or falling) transitions. 

In hard disk recording systems, it is found that the Lorentzian pulse [1],

Xf) = ---- 7 - ^ ---- TT, (11)

where PJV50 is the pulse width at half of the peak height and Vq is a  power

normalization constant, is a good model for the step response.

Given the channel bit duration period T , as shown in Figure 1.1, the normalized 

channel density (or simply channel density) is defined as

(1.2)

Normalized user density can be defined similarly for user bit duration period 7^.

Because o f its closeness to actual waveforms and its simplicity, the Lorentzian 

pulse is a popular step response model, and it will be used for the most part in this 

dissertation. In this dissertation, another step response model, the Lorentzian- 

Gaussian response [4]‘,

' It is understood that the waveform in Eq. (4) in [4] is not Gaussian.



■y(0=-
4 ln 2  .

-4-^0 exp(- f )
PWSO^

(1.3)

will also be considered. Figure 1.3 shows the Lorentzian and Lorentzian-Gaussian 

pulses, both at channel density 3.0.

0.9 L 

0 .8 -  

0.7̂
0.6 r 

aO.Si

0.4 r

0.3

0.2 r 

0 . 1 -

Lorentzian
LorentziarvGaussian ■

-10 -8 0
ITT

8  10

Figure 1.3. Lorentzian and Lorentzian-Gaussian waveforms at channel density 3.0.

The response o f a positive transition (at time 0) followed by an immediate 

negative transition T seconds later, is denoted as the dibit response (also known as 

pulse response), and given by

h{t) = s ( t ) - s { t - T ) .  (1.4)

The dibit response is equivalent to the pulse response (continuous time) of the 

system. Shown in Figure 1.4 is the dibit response corresponding to a Lorentzian step



response. It can be seen that the step response lasts well beyond the bit duration, 

resulting in ISI from neighboring bits.

0 .4  r 

0.3̂  

0 .2 - 

0.1 

3 0

-0.1 

-0.2 

-0 .3 -

-0.4
-10 -0 0

trr
6 8 10

Figure 1.4. Pulse response at channel density 3.0 with Lorentzian step response.

The read back signal from the recorded data stream in which is the ^-th 

recorded data bit is

Y ,x ,h { t- k T ) .  (1.5)
k

However, (1.5) is valid only when the channel is noise-free and without distortion, 

which is never true.

1.1.3 Noise

The noises that corrupt the read back signal fall into the following categories [1],[3].

•  Electronic noise. Electronic noise is the thermal noise that is present in any 

communication system, and is usually assumed to be additive white Gaussian.



Electronic noise is assumed to be data independent, and in a different read the 

noise realization is different. This property makes it possible to improve the 

performance by re-reading.

• Media noise. Media noise is caused by the granularity o f the magnetic material in 

the media, and can be divided into transition noise and particulate noise. The 

granularity results in non-smooth transition edges when transitions are written 

onto the media. For a given transition written on the media, the read back 

waveform may be shifted in time scale, resulting in position jitter, and the width 

o f the read back waveform may also change, resulting in width variation. 

Transition noise only occurs at the locations o f transitions. Any read back yields 

the same media noise. In addition, the granularity causes the discontinuity in the 

media, which results in particulate media noise.

• Nonlinear distortions and interferences.

• Abnormalities due to disk defects and thermal asperities. A disk defect results in 

the degradation or total loss of the signal, and a thermal asperity results in read 

back signal overflow.

In this dissertation, all nonlinear distortions are neglected, as well as the pulse 

width variation. Only electronic noise will be considered in Chapter 3, but position 

jitter noise, as well as disk defects and thermal asperities, will be considered in 

Chapters 4 and 5.



Position jitter noise

As mentioned above, position jitter is caused by the tinite granularity o f the 

media. This results in the randomness of the effective transition location, or in other 

words, the step response 5(r) that would be centered at / = 0 is now centered at

t = A t . Using a first-order approximation s(t + At) * a(f) + A t— s(_t) , this shift can be
dt

modeled as shown in Figure 1.5. At is a random variable, whose probability density 

function (pdf) determines the jitter noise power per transition [5]. The pdf o f each 

transition jitter will be assumed as independent and Gaussian.

s(r) s(t + At)

ds(j)!dt

Figure 1.5. First-order position jitter model.

1.1.4 Channel model

As shown in Figure 1.4, the MR channel is an ISI channel. When the noise 

source is additive white Gaussian noise (AWGN) only, the channel is linear and the 

read back waveform is simply the superposition o f the responses of the individual 

bits. It is well known that the optimal detector for this channel is a matched filter 

followed by a symbol rate sampler, which in turn is followed by a maximum 

likelihood sequence estimator [6]. The symbol rate sampler produces sufficient



statistics. The maximum likelihood sequence estimator can be implemented by a

Viterbi detector. The optimal detector is shown in Figure 1.6.

AWGN
«(/)

r ( 0y(f)
hit) K - t ) MLSE

Figure 1.6. Optimal detector for ISI channel with AWGN.

This system yields the matched filter bound when the input is a single bit 

sequence (one shot). It is shown in [7] that the required VA needs 2^ -state ( Z, is the 

length o f ISI). Since the ISI is long (or even infinite) at high density, the complexity 

is very high.

In practice, sub-optimal detection is often used to trade-off complexity for 

performance. As shown in Figure 1.7, the matched filter h(-t)  is replace by a 

realizable low-pass filter p(t) and the sampled output of the filtered dipulse response 

in ( 1.4) is equalized to some predetermined PR target with a finite-impulse-response 

(FIR) filter, and then a VA is used for detection [1],[8]. Noise correlation is simply 

neglected at the VA, which degrades the performance.

AWGN
n(t)

t = kT
M n )m MLSE

Figure 1.7. Sub-optimal detection with PR equalization.



The popular PR targets are PR4 with = (1-D)(1 + D ) , EPR4 with

H PR (D) = (1 -  D)(I + D Ÿ , EEPR4 with Hpp (D) = (1 -  Z))(I + D f ,  and some modified 

EEPR4 (ME^PR4) such as the one with = (1-Z))(I + D)(5 + 4D + 2D‘) [9].

The discrete-time model o f Figure 1.7 is shown in Figure 1.8, in which the 

sequence is expressed using D-transforms [1],[10].

N{D)

X{D) Z {D)
F{D) MLSE

Figure 1.8. All discrete-time channel model.

In Figure 1.8, the D -transform of a sequence is defined as A{D) = ,
k

where D denotes delay by one sample. Thus the following can be found,

F{D) = Q{D)W{D), (1.6)

where Q{D) is the D-transform of { q k = h ( j ) * . The correlation of the 

noise component at the MLSE is

RniD) = {D)W{DWiD-^), (1.7)

where Rp^{D) is the D-transform of =''p(o.p(o(^)l/=*r}- ^n (^) is colored due to

the low pass filter and the equalizer.

The transfer function W{D) o f the equalizer depends on the equalization 

criterion. For zero-force equalization.

1 0



W{D) = . (1.8)
Q{D)

For minimum mean square error (MMSE) equalization, the transfer function W{D) is 

given by

Rr„-W =  R,^h/.« (19 )

where R is the auto-correlation matrix o f {z*} in Figure 1.7, R .^ is the cross­

correlation matrix between {z^} and {%*}, h^^ represents the target PR response and

w is the coefficients o f  the FIR equalization filter in vector form. When the noise is 

not data-dependent, R.^ can be decomposed into two components, one due to the

signal and the other due to the noise.

If the noise n(r) is not white, the detection scheme shown in Figure 1.6 is not 

optimal. However, the sub-optimal detection scheme in Figure 1.7 is still used.

1 .1.5 Modulation coding and precoding

MR systems need a modulation code to facilitate gain control and timing 

recovery, and may also be able to improve the free Euclidean distance [1],[11]. As 

the readback system only responds to the transition, the modulation code must have a 

constraint on the maximum run o f non-transitions.

Two classes o f modulation codes are often used, run-length-limited (RLL) codes 

and maximum-transition-run (MTR) codes [ll]-[13]. In a (d, k) RLL code, the 

minimum run length o f non-transitions between two transitions is d  and the maximal 

run length of non-transitions is A:. In a (d, G/I) RLL code, in addition to the constraint

11



that the minimum non-transition run length between two transitions is d, the 

maximum run length o f non-transitions is G in the global sequence and is /  in both 

two-way interleaved sequences. For MTR codes, in addition to the minimum run 

length o f non-transitions, the maximum run length o f transitions is also constrained.

Typically, each code bit in these modulation codes is a transition marker (non- 

retum-to-zero-inverted, NRZl)- Bit 0 means a non-transition and bit 1 means a 

transition. The transition mark needs to be translated into non-transitions or 

transitions before the write current is generated to serve the designated purposes.

A precoder converts the NRZl input data into non-retum-to-zero (NRZ) format. 

Unless the code design is done in NRZ space, the precoder is necessary in the system. 

Notice that the precoder has to match the code space. The following two examples 

illustrate this idea.

Exmaple 1. Suppose the modulation code is a {d,k) RLL code with k  = 6 . A

codeword section is a=[l 0 0 0 0 0 0 11, and the precoder ----------   ^ used.
!©£)©L>^

Suppose the precoder state is [1 0 0], then the output sequence b=[l 0 0 0 0 0 0 0 0  1], 

which has 0-run of length eight, violates the constraint.

Example 2. In a quasi-MTR code, the maximum length o f 1-run is three. A 

codeword section in NRZl format is a=[0 0 0 1 1 1 0 1 0], and the precoder

   r  is used to transform this section into NRZ form. Suppose the precoder
1©D©£)^

state is [0 0 0], then the output sequence b=[0 0 0 0 0 0 1 0 1 0 1 0  0], which has six 

consecutive transitions, which violates the constraint.
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It is shown in [I4]-[17] that the precoder has great impact on the performance. 

Notice that the assumption here is that we know how to design a constrained code 

that works with the precoder [14],[I7].

1 .1.6 Signal-to-noise ratio (SNR) definition

The proper definition o f SNR is critical to compare the performance o f a system 

with different coding schemes. In MR systems, the SNR definition should depend on 

the media-head characteristics and noise level, but invariant to coding [I8],[I9]. In 

other words, ideally, coding does not change the SNR with this definition.

In the following, SNR definitions for the AWGN channel and for channels with 

both AWGN and position jitter noise are discussed.

Assuming the step response s(t) o f the channel (Lorentzian, Gaussian, 

Lorentzian-Gaussian) is known, the SNR is defined as

/TSN R = -------------------------------------- 2-------------------------------------------, (1.10)
in-band additive noise power + jitter noise power (tone pattern)

where is the peak amplitude of s ( t) . Assuming AWGN with single-sided power

N  1spectrum density the in-band additive noise power is ' where T is the

symbol duration. The jitter noise power under tone pattern is calculated as

where rij is a random variable describing the amplitude of the jitter and <jj~ is the 

variance o f the jitter. Therefore (1.10) becomes
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SNR=-

2H c \ >

( 111 )
c/t

Notice that the definition in (1.10) is in the form o f . Gi^rgy per bit— ̂  except that
total noise power

instead o f using the energy in the dibit response A(/), the energy in the step response 

5(/) is used. This makes the definition invariant with the chaimel density, which 

changes when coding is applied.

Usually, the percentage o f the jitter noise power in the total noise power is 

described as , i.e.

- / c
d
dt

s(t)
2
dt

2
dt

It can be seen from (1.11) that in order to determine for a given SNR, the

only thing to be calculated is d t . For Lorentzian and Gaussian responses.

closed forms can be found, but not for the Lorentzian-Gaussian response.

Lorentzian response

For the Lorentzian response, the integral can be solved in closed form as

.2 n  1dt = V-
2 PfFSO
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The variance o f  jitter is given by - -̂y — PW  50 = const'PW 50. The
2 ^

first-order jitter noise model, which is the first-order derivative o f s^t) multiplied by 

a random variable with variance , only depends on , P  and .

Gaussian response

/  -4 1n2  
PW50-

A Gaussian pulse is given by h{t) = exp  ̂ I  • After a lengthy process

the integral can be solved in closed form as

C

Again, the first-order jitter noise model is the first-order derivative o f sit), 

multiplied by a random variable with variance c r / . This model only depends on

Lorentzian-Gaussian response

A Lorentzian-Gaussian pulse is given by the average o f a Lorentzian pulse and a 

Gaussian pulse. Unfortunately, no closed form result o f the integral is available. 

However, it can be obtained by numerical integration. Although it cannot be proved,

N  PW50
it is reasonable to believe that this integral also depends on , p  and — —— , but 

not on Pff'SO alone.
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1.2 Coding requirement

Code rate R is defined as

R = (1.12)
c

and therefore the introduction o f coding increases the channel density . Assuming 

AWGN, the effective SNR when the matched filter bound is achieved is

D X ' f d '
N J 2

Codes for MR systems require a very high code rate for two reasons. First, for a 

given user density S^, a low code rate R means high channel density or 

equivalently high data rate need to be processed. Current HDDs operate at very high 

data rate, and further increased chaimel density makes the implementation difficult. 

The second reason lies on the peculiar coding penalty o f MR channels.

In [19] and [20], it is shown that on Lorentzian channels with AWGN the 

effective SNR is

, ,  , , ,

N J l  S:+R~ N J 2  s y

where the approximation holds for high This means the code rate loss is

proportional to R~. For comparison, the coding loss is linear with R for typical 

communication charmels. The quadratic code rate loss implies that at code rate lower 

than some threshold the gain from lowering down the code rate will not compensate 

for the code rate loss.

16



1.3 Problem statement

With increasing areal densities, the noise and distortion present in MR systems 

become more severe. Apart from the efforts on improving the materials, such as the 

media and heads, error correction coding (ECC) has been a major focus of research 

[2l],[22].

Possible ways to improve the system performance by coding techniques can be 

categorized into three groups. One approach is to keep the system architecture 

unchanged but to replace the channel detector and the RS decoder with soft decoding 

versions [23]-[25]. However the potential gain is limited. Another approach is to 

apply additional coding in the system [26]. The third approach is to replace the RS 

codes with other more powerful ECCs.

The breakthrough of iterative decoding [27]-[29] brought about a new generation 

of commimication systems [21],[22j. The possibility o f applying iterative decoding 

to magnetic recording is the issue that is investigated in this work. The following 

questions are to be answered: what kind o f codes can be used, how do they perform in 

MR systems, and what is their complexity.

1.4 Overview of the dissertation

This dissertation considers applying turbo codes, block turbo codes, binary low- 

density parity-check (LDPC) codes, and Q-ary LDPC (Q-LDPC) codes to MR 

systems.
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Chapter 2 gives an overview of soft iterative decoding for magnetic recording 

channels. Turbo coded systems and serially concatenated systems are briefly 

introduced to illustrate iterative decoding, and their shortcomings highlighted.

In Chapter 3, block turbo coded systems are considered. A product coded system 

with BCH codes as component codes is described. The channel detector is 

implemented with a soft-output Viterbi algorithm. The performance is compared 

with that o f uncoded channels without considering RS coding. Product coded 

systems with other types o f component codes are also discussed.

In Chapter 4, an LDPC coded system is proposed, in which the channel detector is 

a maximal a posteriori (MAP) detector and the LDPC decoder is a belief propagation 

(BP) decoder. Performance evaluation o f the system without considering the RS 

coding suggests a substantial gain over uncoded systems. Concatenation o f LDPC 

and RS codes does not improve the performance over the LDPC-only system, leading 

to the proposal o f using the LDPC code to replace the RS code in Figure 1.2. LDPC 

systems in the presence o f disk defects and thermal asperities (TAs) are considered. 

Also considered in this system are finite-geometry LDPC codes.

While realizing that binary LDPC codes provide little hope to cope with disk 

defects and thermal asperities, a Q-LDPC coded system is proposed in Chapter 5. 

The performance of a Q-LDPC coded system is evaluated in a pure electronic noise 

environment, as well as in environments with disk defects and thermal asperities. 

Media noise is also considered for this system. Furthermore, performance
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comparison between Q-LDPC systems and current RS coded systems is conducted. 

Array codes, which are non-binary codes, are also discussed.

Finally, conclusions are made in Chapter 6. Some discussion is also presented 

for further consideration of coding for MR systems.
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2 ITERATIVE DECODING FOR MAGNETIC 

RECORDING CHANNELS

In this chapter, iterative decoding of concatenated codes is reviewed, as well as 

turbo equalization for MR channels. As examples, the application of turbo codes and 

serial turbo codes to MR channels is briefly introduced and discussed.

2.1 Iterative decoding on partial response (PR) channels

2.1.1 Coding for PR channels

A PR channel coded using an error-correcting code (ECC) C with information 

block length k ,  as shown in Figure 2.1, can be regarded in total as a system. Denote 

the noiseless channel output vectors as y and y ' when the information vectors x and 

X are sent, respectively. A union bound of the system error rate assuming AWGN is 

given in [31], as

~ const • Q

|y'-yr r n
^ o / 2

J
UJ

(2 . 1)
dL

in which d^{x,x ')  denotes the Hamming distance between the two binary vectors 

and is the minimum Euclidean distance between any pair of y and y ’ . The
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second equality is valid at high SNR. Therefore, to improve the ML system 

performance, one needs to improve .

ECC PR
Channel

Figure 2.1. A PR channel with ECC.

On PR channels of the form 1 -  D", it is proved that > 8 , in which

is the minimum Hamming distance of code C and |_»J denotes the integer part

[29]. A PR4 channel is o f the form \ - D ~ . Therefore, to improve the ML system 

performance on these PR channels, one needs to improve , i.e., more powerful 

codes are needed. We assume that by improving the ML system performance is 

also improved on other PR charmels rather than o f the form 1 -  D ".

2.1.2 T urbo equalization

Maximum likelihood sequence estimation (MLSE) of the system can be carried 

out if the ECC shown in Figure 2.1 has a well-defined trellis, e.g., a convolutional 

code, since the overall system has a well-defined trellis. Otherwise, MLSE is 

practically impossible, and sub-optimal decoding may be used.

One common implementation o f a suboptimal estimation is as follows. Denote 

the received noisy vector as r  for information vector x sent. The chaimel detector 

passes its decision to the ECC decoder, and the output from the ECC decoder is final. 

However, the ECC decision may help the channel detector to make a better
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estimation. Thus the feedback scheme in Figure 2.2 is introduced. Iterative decoding 

for PR channels is sometimes called turbo equalization [32].

G Channel
APP

^channel

ECC
APP

rextnns
ÊCC

Figure 2.2. Turbo equalization.

To hilly exploit the advantage of the feedback, the channel detector and the ECC 

decoder need to produce soft decisions {soft information). A device that is able to 

generate posterior probability information is called an a posteriori probability (APP ) 

module. If for the /-th  bit .r, in the transmitted codeword x , we express all

 ̂ 1)
reliability information in terms of the log-likelihood-ratio (LLR) log—̂ ------  , an

P (x ,= -1 )

APP module outputs posterior probability L{x^) based on the intrinsic LLR 

f ~ { x , )  and prior LLR

L{x,) = + Z , '~ (x ,)  + . (2.2)

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [34] and the soft output Viterbi 

algorithm (SOYA) [35] outlined in Appendix A can be used as APP modules for PR 

channels and convolutional codes.

The channel APP takes r and the prior LLR from the ECC APP, and outputs the 

posterior LLR . The ECC APP takes as the prior LLR. The extrinsic

LLR of the ECC APP, , is sent back to the channel APP as prior LLR.
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2.1.3 Iterative decoding

For a binary linear code (n,k) ,  the number of codewords with weight i is 

denoted as w;. For the AWGN channel, the probability o f codeword error is bounded 

by the union bound,

(
(2.3)

where is the energy per bit and is the single-sided power spectrum density of 

the white noise [6]. It can be seen that the performance depends not only on but 

also on the weight distribution o f the code.

It is well known that code concatenation o f two or more codes produces good 

codes [36]. Each individual code in a concatenated code is referred to as a component 

code. One example of a serially concatenated code is shown in Figure 2.7 if the PR 

channel is regarded as a rate-one convolutional code [14]. A concatenated code is a 

serially concatenated code if the subsequent component encoder(s) rely on the parity 

checks from previous component encoders. Therefore, the encoding o f each 

component code must be done in some order. A concatenated code is a parallel 

concatenated code if each component encoder relies on the message only. Encoding 

o f each component code can be done in parallel. All the codes we are interested in 

this work, including turbo codes, product codes, low-density parity-check codes and 

Q-ary low-density parity codes are all concatenated codes.
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ML decoding for most error correction codes (including concatenated codes) is 

difficult or impossible due to its complexity, which is proportional to 2*, therefore 

sub-optimal decoding is required.

Similar to turbo equalization, iterative decoding may improve the decoding 

performance of a concatenated code. In fact, if  we think o f the PR channel as a rate- 

one code, then turbo equalization in Figure 2.2 is just an example o f iterative ECC 

decoding.

2.1.4 Combined iterative decoding and turbo equalization

Both turbo equalization and iterative ECC decoding are possible on PR channels. 

Therefore two loops may be operating in an iterative decoded PR system, as shown in 

Figure 2.3. The iteration loop involving the turbo equalization is called the outer 

loop, and the iteration loop inside the ECC decoder is called the inner loop. The 

inner loop iteration may be performed more than once for each outer loop iteration.

outer loop
inner loot)

jChannel ECC
APPAPP r

rextnns
ÊCC

"^channel

Figure 2.3. Outer and inner loops in an iterative decoding system.

2.1.5 Modulation codes for soft decoded magnetic recording systems

In a real MR system, a modulation code is needed. In Figure 1.2, the modulation 

code is placed immediately before the channel. This system diagram is in the top half 

o f Figure 2.4, and the concatenation shown is called a standard concatenation. At the

24



receiver side, a soft output modulation decoder is required to pass the soft information 

from the PR APP. Since the modulation code is typically non-systematic, the soft 

output modulation decoding is performed over the entire block.

To eliminate the need for a soft output modulation decoder, two reversed 

concatenation configurations can be used [37]. The first solution, shown in the lower 

half o f  Figure 2.4 is called the modified concatenation with a second systematic 

coding technique, in which two modulation codes are used [37],[39]. The message is 

first modulated by modulation code C ,, followed by the systematic ECC. The parity 

check bits o f  the ECC are then encoded by a systematic modulation code C ,. On the 

receiver side, the information pertinent to the parity check bits o f  C, is simply 

discarded. For a (0,k) type constraint, can be implemented by inserting a dummy 

bit for every k  bits.

user
dâi

ECC Modulation MR Channel Modulation ECC
Encoder —► Encoder Channel Detector —# Decoder —> Decoder

(a)

MR
Channel

Channel
Detector

ECC
Encoder

ECC
Decoder

Modulation 
Encoder C,

Modulation 
Decoder C,

Systematic
Modulation
Encoder Ci

(b)

Figure 2.4. Concatenation of ECC and modulation code, (a) standard concatenation; 

(b) modified concatenation with a second systematic code.
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An alternative way, the bit insertion technique, can be applied for a (0,^) type 

constraint [40]. The message is encoded by a {OJc-a) modulation code, where a  > 1, 

followed by the ECC encoder. The parity check bits o f  the ECC are inserted into the 

output sequence o f  the modulation encoder. The resultant sequence still exhibits the 

(0, :̂) constraint.

For a certain range o f ECC rates, the bit insertion technique yields higher overall 

code rate than the first technique [37]. However, the difference is minor. For 

instance, assume a capacity-achieving modulation code, a (0,6) constraint and a 16/17 

ECC rate; the first technique yields an overall system code rate o f 0.9266, while the 

bit insertion technique (with a=l) yields 0.9300.

2.2 Turbo codes for magnetic recording (MR) channels

2.2.1 Turbo codes

Conventional turbo codes are parallel concatenated codes with recursive 

systematic convolutional (RSC) codes as component codes (constituent codes) [27]. 

The structure is shown in Figure 2.5. The message sequence } is directly passed

through, and also encoded by encoder 1. The parity check sequence |  fi-om

encoder 1 is appended to the message. The message sequence is also encoded

by encoder 2 after scrambled by an interleaver. The parity check sequence {xf=|
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from encoder 2 is also appended to the message. The structure shown has code rate 

1/3.  To improve the code rate, the parity check bits are punctured.

-} {y* }

■H AWGN

RSC 
Encoder 2

RSC 
Encoder I

APP

APP

Figure 2.5. Turbo coding and decoding.

In order to have good distance properties, a random interleaver is needed. The 

resultant concatenated code has very few codewords with low weight, although the 

minimum distance is only two [41].

Suppose a codeword =x^,x^ ,x^-^  (±1) is transmitted through an AWGN

channel, and the received sequence is ^y* > ^s shown in Figure 2.5.

Decoding o f the turbo code is accomplished in iterative fashion, and is also illustrated 

in Figure 2.5. Each component RSC code is decoded by an APP decoder. The BCJR 

algorithm is used for the APP decoders (see Appendix A).

The LLR o f APP 1 is,

A ^1 Az ) » (2.4)
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where is a constant depending on the SNR. is the intrinsic LLR. , (x  ̂) is 

the prior LLR, which is obtained from APP 2. the extrinsic LLR, which

will be sent to APP 2. Similarly for APP 2,

L.{x,) = L,y, + Z Î:(xJ + Z ;,(x J . (2.5)

The information exchange during iterative decoding is shown in Figure 2.5. The 

extrinsic information from one APP serves as the posterior information for the other. 

Turbo codes have been shown to have very good performance [27].

2.2.2 Turbo coded MR channels

With turbo equalization, the decoding of a turbo coded PR channel is shown in 

Figure 2.6 [22]. The feedback in the turbo equalization is = L ,~  ■

outer loop

inner loop

'channel

APP

APPChannel
APP

w extrinsic 
ÊCC

Figure 2.6. Iterative decoding o f turbo coded PR channels.

It is shown in [21] and [22] that impressive gains can be obtained with turbo 

codes on MR channels with random noise [21]. In addition, turbo equalization is
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shown to provide about 0.5 dB gain [22]. However, turbo codes have some 

undesirable characteristics for an MR system:

1. High error floor. The minimum Hamming distance of turbo codes is two. 

The error floor due to the minimum weight codewords may show up at error 

rates higher than the operating rates o f MR systems. To lower the error floor, 

codes with larger are needed.

2. High decoding complexity. Turbo decoders use two BCJR APP decoders. 

The associated hardware complexity and computational complexity are very 

large, compared to some of the codes that are discussed in later chapters.

3. Ineffective for long burst errors. For long bursts due to disk defects and 

thermal asperities, a turbo coded system does not perform well [37]. The 

reason resides in that turbo codes are designed for random errors, not for burst 

errors.

2.3 Serial turbo codes for MR systems

Shown in Figure 2.7 is the turbo equalization between the PR channel and a 

recursive convolutional code separated by an interleaver [14]. The configuration is 

sometimes called serial turbo coding.

RSC
APP

PR
Channel

Channel
APP

encoding decoding

Figure 2.7. Serial concatenation o f a PR channel and a convolutional code.
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In this system, the turbo code shown in Figure 2.5, is replaced by a single 

convolutional code. Only the turbo equalization loop exists and is mandatory. 

Instead of three APPs needed in conventional turbo coded systems, only two are 

needed in this system.

The serial turbo system performs quite well at moderate bit error rates (~10'*) 

with random noise. However, it is shown in [37] that this system has higher error 

floor than turbo coded systems and the performance degrades rapidly with burst 

errors.
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3 BLOCK TURBO CODES FOR MAGNETIC 

RECORDING CHANNELS

The component codes in the concatenated system shown in Figure 2,1 can be any 

codes in general. In the case o f turbo codes, the component codes are recursive 

convolutional codes. Block turbo codes (BTC) are referred to as concatenated codes 

with block codes as component codes. Serially concatenated block codes are called 

product codes or turbo product codes; parallel concatenated block codes are called 

parallel BTCs.

Product codes have been shown to have near-optimum performance and lower 

decoding complexity than convolutional turbo codes for additive white Gaussian 

noise channels [28]. In this chapter we discuss the applicability o f block turbo codes 

to partial-response equalized Lorentzian channels for magnetic recording. In 

particular, we consider the iterative decoding of product codes and parallel 

concatenated block codes. Simulation results show that both systems offer substantial 

gains over uncoded systems.

In Section 3.1, an introduction to BTCs is provided. The decoding o f BTCs is 

described in Section 3.2. In Section 3.3, BTC coded MR systems with Hamming 

codes as component codes are investigated. In Section 3.4, other BTC coded MR 

systems are discussed and conclusions are made in Section 3.5.
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3.1 Block turbo codes (BTCs)

3.1.1 Product codes

Given two linear systematic codes C, ={N^,K^,d^) and C, where

K,, and c/,, (/ = 1,2) are the codeword length, number o f  information bits, and 

minimum Hamming distance, respectively. The construction o f a product code with 

these codes as the component codes is shown in Figure 3.1.

AT,

i i

Checks
on

Rows

1

K z

Information
Symbols

r

Checks on Columns
Checks

on
Checks

Figure 3.1. Product code.

The encoding can be carried out as follows: 1) place K^K2 information bits in an 

array of K̂  rows and columns, 2) encode the K̂  rows using C ,, and 3) encode 

the resultant columns using C ,. In the by array obtained, all the rows 

are codewords in , and all the columns are codewords in C ,.
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Encoding steps 2 and 3 cannot be performed in parallel. In other words, one has

to be performed before the other. This is therefore a serial concatenation. The

resultant product code C, ® C, is a {N,K,d^„)  code, where

K  = K,K^ (3.1)

m̂in

The code rate R o f  the product is the product o f the two component code rates, i.e.,

R = R,R^ (3.2)

where /Î, = AC, / N., / = 1,2 .

3.1.2 Parallel block turbo codes

As can be seen from (3.2), the code rate o f a product code tends to be low. For a 

given block size, the code rate of a product code cannot be increased. To improve the 

code rate, parallel concatenated block codes can be used. The construction o f parallel 

concatenated block codes is shown in Figure 3.2.

The encoding is also carried out in three steps. 1) Put Z,,/^ message bits into a 

Z, X Z, matrix form; 2) for the Z, rows, encode each /, rows using C ,, which has 

ZZ, information bits; 3) for the Z, columns, encode each /, columns using C ,, 

which has /,Z, information bits.
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Figure 3.2. Construction o f parallel concatenated block codes.

Steps 2 and 3 can be interchanged, and the resultant code is a parallel 

concatenated code. There is no check on checks in this code. The overall code rate 

R can be calculated as

IR — (3.3)

3.2 Iterative soft decoding of block turbo codes

Iterative soft decoding of block turbo codes requires specifying the information 

exchange between the two component codes and specifying the soft decoding of each 

component code. In [28] an efficient iterative soft decoding is described, in which the 

component linear block codes are decoded based on the Chase algorithm [33].
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3.2.1 Chase algorithm for block codes

For a linear block code C = {N,K,  ) on an inter-symbol-interference (ISI) free

AWGN channel, the Chase algorithm (Chase H) [33] generates a set o f codewords 

that are at a small Euclidean distance from the received vector.

Denote the transmitted codeword as x and the received vector as r . The Chase 

algorithm is done in the following steps.

1. Generate a binary vector h , such that A, is the hard decision o f r..

2. Find p  /2 j  locations in r that have the least absolute, i.e., least

reliable, values.

3. Generate 2'’ binary vectors of length N  in which the value can be 0 or 1

at the p  bit locations found in step 2 and 0 at other bit locations. Each

generated vector is called a test pattern.

4. For each test pattern t* ( /t = 1,..., p  ), hard decoding is performed on h + t* 

The output codeword is denoted as x*. The set of all output codewords is 

denoted as Q .

5. Find the codeword in Q with smallest Euclidean distance from r . This

codeword is denoted as d .

In short, the Chase algorithm finds the most likely codeword from all codewords 

that are within Hamming distance 2|_i/„,,„ / 2 j from the received hard decision vector.

More importantly, it generates a set o f  codewords that can be used to calculate the 

soft information.
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3.2.2 Iterative decoding based on the Chase algorithm

In [28], Pyndiah developed a sub-optimal algorithm for soft decoding of a linear 

block code based on the Chase algorithm.

For the Ar-th bit in the codeword, this algorithm consists in finding two 

codewords C’“** and C"“*’, where C'"*’ is the codeword in C having a -1 for the k -  

th bit which is at the minimum Euclidean distance from the received vector r. 

Similarly, c*'“ * is the codeword in C having a +1 for the Æ-th bit which is at the 

minimum Euclidean distance from the received vector r .

At least one o f these codewords, or C’"*', must be available from the Chase 

algorithm. If both o f them are available, Pyndiah shows that the soft output LLR for 

the k  -th bit with hard decision d̂  is approximately,

LA:/? K ) = ^ ( | r - C - “*’f  ). (3.4)

If only one o f them is available, an estimate o f the soft output is used. Let us expand

LLR'idj) as

LLR (d,) = ̂ ( r , +  X  '•/<“*>/) (3-5)
O’

where

The second term o f LLR'idj) in (3.5) can be thought as extrinsic information, 

denoted as \ ‘(d^), which can be expressed as
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LLR‘{d, ) = LLRiid, ) - - • (3.6)
O'*

When the soft output needs to be estimated, the following is used:

L L R \d ,)  = p Â r d , ,v n \h  p>Q (3.7)
O'

where ^  is a weight factor introduced in [28].

Suppose a block turbo codeword is transmitted and the received matrix is R . The 

extrinsic information LLRf(dj) from one decoder can be used as prior information for

the other decoder. By adding the extrinsic information, the equivalent channel

vectors for the inputs o f the two decoders are:

K:,=K + a ^ L L R ‘ (3.8)

and

K , = R + a ^ L L R ^  (3.9)

where oris also a weight factor introduced in [28].

By combining (3.4)-(3.9), iterative decoding of a BTC can be accomplished. 

Each iteration consists o f a row decoding and a column decoding. Iterative decoding 

o f a BTC is very much the same as in a convolutional turbo code, except for the 

weight factors a  and p.
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3.3 Application of extended Hamming BTCs to magnetic recording 

channels

Two systems are considered using block turbo codes [42]. A product code is 

applied to the equalized EPR4 channel in the first system. In the second system, a 

parallel block turbo code is applied to an equalized ME~PR4 channel. The code rate 

o f the first system is higher than that of the second system. For complexity reason, 

SOVA is used for the channel APP and no turbo equalization is performed.

3.3.1 Hamming BTCs on AWGN channels

In current hard disk drives, each sector has 4096 information bits. In the 

following, block turbo codes are considered that can contain one, or more, sectors in 

each codeword. Pyndiah’s algorithm is applied to these codes.

The first code ExBCH (72,64,4)' is a product code whose component codes are 

both the extended shortened BCH code (72,64,4). The (72,64,4) code is obtained 

by shortening the BCH code (127,120,3) to (71,64,3), followed by adding an even 

parity check bit. The resultant product code is a (5184,4096,16) code and has code 

rate 0.79. The simulation results are shown in Figure 3.3. With 8 iterations, a 6.4-dB 

gain is obtained at a bit error rate (BER) 10”*.
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Figure 3.3. Performance o f ExBCH (72,64,4)’ on AWGN.

The second code ExBCH (137,128,4)^ is also a product code whose component 

codes are both the extended shortened BCH code (137,128,4). The (137,128,4) 

code is obtained by shortening the BCH code (255,247,3) to (136,128,3), followed by 

adding an even parity check bit. The resultant product code has code rate 0.87. With 

8 iterations, a 5.5-dB gain is obtained at a BER 10 =.

The third code is a parallel concatenated code ExBCH(207,198,4)“. The 4096 

message bits are put into a 66 x 66 matrix, every three rows (or columns) are encoded 

by code (207,198,4) which is obtained by shortening BCH(255,247,3) to (206,198,3) 

followed by adding an even parity check bit. The resultant product code has code rate
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0.92. The simulation results are shown in Figure 3.4. A 4.5-dB gain is obtained at a 

BER 10"̂  with 4 iterations.
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Figure 3.4. Performance o f ExBCH(207,198,4)^ on AWGN.

3.3.2 Product coded equalized EPR4 channel

The system diagram is depicted in Figure 3.5. The Lorentzian chaimel is 

equalized to the EPR4 channel response using an analog filter and a minimum mean- 

square error (MMSE) equalizer. The user data block is first encoded using a run- 

length-limited (RLL) code. After interleaving, the RLL coded block is further 

encoded using a BTC. Guard bits are inserted into the check bit sequence to enforce 

the RLL constraints before appending them to the RLL encoded user data block. On 

the decoder side, the interleaving is undone and guard bits are simply discarded. A
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rate 16/17 RLL code is used, and one guard bit (transition) is inserted every sixteen 

check bits.

The SOVA matches the —!— precoded EPR4 chaimel response. The modified
1 © D

Chase algorithm U is used in our simulations. In the Chase algorithm U, for a 

received code vector only / 2J bit places are used to generate the test patterns,

resulting in a total o f patterns. In our simulations, we use /? = 4 bit places to

generate the test patterns, resulting in 2’’ = \6  patterns being searched for each 

received code vector. The parameters dr’s and >9’s in the iterative decoding are the 

same as in [28].

data RLL I/(l+D)Enc

(nllv
I

Product
Enc

checks (ntlv Insert
Guard

Bit

appending

Equalized
EPR4

Channel

SOVA
Preceded

EPR4
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liiforniatiQ i^ Intlv
I

Delete
Guard

Bit

Figure 3.5. Diagram o f an equalized

Dc-
intlv

Product
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Dc'indv output^
1

EPR4 MR system with a product code.

User data block sizes 4096, 2x4096 and 3x4096 bits are considered, 

corresponding to one, two and three current standard sectors. The product codes used 

are listed in Table 3-1. All the component codes are obtained from the Hamming 

code (127,120,3) with a method similar to the one used in Section 3.3.1. Also listed 

are the overall system code rates (including the rate 16/17 RLL code).
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TABLE 3-1

Product codes for MR systems and their overall system code rate

Sector size Product code

System code rate 

(including rate 16/17 

RLL code)

Coding gain 

after 8 

iterations

1 sector per block (76,68,4)® (72,64,4) 0.74 3.4 dB

2 sectors per block (102,94,4)- 0.79 3.9 dB

3 sectors per block (126,118,4)- 0.81 4.0 dB

The systems are simulated at user density 2.22. Simulation results for the systems 

with block size one sector and two sectors are presented in Figure 3.6. BERs after 1, 

2, 4 and 8 iterations are plotted. Also plotted is the BER for the uncoded EPR4- 

equalized channel (with a 16/17 RLL code).

For the one sector per block configuration, the product code provides a 3.4-dB 

gain over the uncoded channel at BER = 10”* after 8 iterations. With the two sectors 

per block configuration, the gain increases to 3.9 dB. With the three sectors per block 

configuration, the gain is 4.0 dB. These gains are also shown in Table 3-1.

These gains shown above are impressive. The code rates, however, are not high 

enough for MR systems, especially for the one sector per block configuration. Since 

the sector size is fixed, we have to seek code structures other than the product code. 

Parallel BTCs can achieve higher code rates.
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Figure 3.6. BER of equalized EPR4 with a BTC at user density of 2.22.

3.3.3 Parallel block turbo code on equalized ME^PR4

Shown in Figure 3.7 is the proposed system diagram for an equalized ME^PR4 

channel with a parallel block turbo code. A quasi maximum-transition-run (MTR) 

code o f rate 16/17 is used [9]. This code has a maximum o f three consecutive 

transitions as well as an RLL constraint. The quasi MTR property reduces the 

number o f occurrences of the dominant error events, ±(+1,-1,+1). To preserve the 

MTR property, guard bits are inserted into the check bits sequence.
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The block codes used here are the Hamming codes (207,198,4) and 

(216,207,4). They are obtained by first shortening the Hamming code (255,247,3) 

and then extending them one bit by an even parity check. The size o f the user data 

block is 4096 bits. The block after quasi-MTR encoding is placed into a 64x68 

matrix. Three rows or three columns o f the matrix are encoded using the above 

Hamming codes. One guard bit (transition) is inserted for every three check bits. The 

overall code rate for this system is 0.84. The soft-output Viterbi algorithm matched

to th e  1— precoded ME^PR4 channel response is used as the soft channel decoder.
1 © D

At a fixed user density o f 2.51, after four iterations, the parallel block turbo coded 

system achieves 1.9-dB gain over QMTR coded ME^PR4, or equivalently, the 

parallel BTC coded ME^PR4 with QMTR code provides a 3.4-dB gain over EPR4 

with a 16/17 RLL code.

The performance gain obtained from this parallel BTC is roughly the same as that 

from the one sector per block product code. Therefore, in terms o f code rate, the 

parallel BTC is preferable to the product code. However, the disadvantage o f  a
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parallel BTC, compared with a product code, is its small minimum Hamming distance 

[36]. Therefore, parallel BTCs should have higher error floor than product codes.

The parameter p  in the modified Chase algorithm II is also four, and the same 

sets of 0 ’s and P's as in the previous example are used. However, if  p  = 6 is used, 

an additional 0.4-dB gain can be obtained, showing that for long block codes, the 

Chase algorithm with p = A is far from optimum.

3.4 Application of other product codes to magnetic recording 

channels

In the previous section, BTCs with extended Hamming codes as component codes 

are considered. There have been attempts to use product codes with other types of 

component codes on MRCs. The component codes chosen tend to be either very 

weak or very powerful codes.

3.4.1 MR system with Reed-Solomon (RS) product codes

Product codes using RS codes as component codes are considered in [72]. 

Obtaining high code rates is more difficult than with Hamming product codes. Also, 

RS codes are not effective at correcting the random error events occurring on MR 

channels. The overall system performance is inferior to the extended Hamming 

product coded systems in Section 3.3.2.
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3.4.2 MR systems with single-parity product codes

The product codes considered in [15] are the simplest ones, with single-parity 

check (SPC) codes as component codes. An SPC code can be described by a two- 

state trellis and soft-input-soft-output (SISO) APP decoding, e.g., BCJR or SOVA, 

can be easily implemented with high efficiency and good performance. Either BCJR 

or SOVA is superior to the Chase II algorithm. Also, SPC product codes are actually 

column weight 2 low-density parity-codes (see Chapter 4), and more efficient 

decoding algorithms (belief propagation algorithm) can be used instead of the 

iterative decoding algorithm described in Section 3.2.2.

The minimum distance of an SPC product code, however, is only 4 regardless of 

the code size. In addition, the multiplicity of minimum weight codewords is quite 

large. To improve the performance, multiple codewords per sector were used in [15]. 

This, however, does not improve the minimum distance.

SPC product codes were shown to provide large gain in MR systems over 

uncoded systems, better than the extended Hamming product codes in Section 3.2.2. 

This is largely due to the effective soft decoding of the component codes o f the SPC 

product codes. The small minimum distance and large multiplicity cause noticeable 

error floor.
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3.5 Conclusion and discussion

It was shown that extended Hamming product codes provide more than 3 dB gain 

over uncoded systems on MRCs, and a parallel BTC with extended Hamming codes 

as component codes provides similar coding gain but higher code rate. It is observed 

that the Chase II algorithm is far from the capacities o f the component codes and 

more so as the component codes become more powerful. Therefore, using BTCs with 

more powerful component codes is not a good option for the following reasons. First, 

achieving high code rates is more difficult, and secondly, the decoding of the 

component codes using Chase II is less effective.

The option left is to use simple codes as component codes, as is done in SPC 

product codes. The possibility o f simple and effective decoding and therefore good 

performance make this option even more attractive. However, the high error floor 

associated with SPC product codes is a disadvantage. In addition, as will be seen in 

next chapter, SPC product codes are surpassed by other low-density parity-check 

codes with essentially the same decoding complexity.
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4 LOW-DENSITY PARITY-CHECK CODES FOR 

MAGNETIC RECORDING CHANNELS

Low-density parity-check (LDPC) codes were investigated initially by Gallager

[43] and later by MacKay [29], [44]. They were shown to have performance close to 

or better than convolutional turbo codes on AWGN channels [45]-[47]. The 

following reasons make LDPC codes especially suitable for magnetic recording 

chaimels;

1. High-rate LDPC codes can be designed with very good performance.

2. Decoding complexity o f LDPC codes is lower than that o f  turbo codes, and 

can be implemented in a highly parallel fashion. In addition, the iterative 

decoding algorithm has a built-in self-stopping mechanism.

3. LDPC codes have large minimum Hamming distance, hence low error floor.

4. The interleaver necessary for a turbo code system is not needed for an LDPC 

system.

In this chapter the use of LDPC codes on magnetic recording channels is 

investigated. Random regular LDPC codes, flnite-geometry LDPC codes and 

irregular LDPC codes are considered. RS-LDPC concatenation is also investigated. 

Coding gain, decoding behavior and error distributions are reported.

This chapter is organized as follows. In Section 4.1 LDPC codes and their 

decoding are introduced. In Section 4.2 systems with random regular LDPC codes
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are described. In Section 4.3 finite-geometiy LDPC coded systems are investigated. 

In Section 4.4 an irregular LDPC coded system is described and its performance 

evaluated. Conclusions are given in Section 4.5.

The LDPC codes investigated in this chapter are binary codes; the application of 

non-binary LDPC codes will be investigated in the following chapter.

4.1 Low-density parity-check (LDPC) codes

4.1.1 Code description

There are two equivalent ways to describe an LDPC code; matrix form and graph 

representation. An M x.N  matrix H with the elements from {0, 1}, defines a binary 

LDPC code as the N  -tuple null space o f H , if it has sparse I's.

message nodes check nodes

Figure 4.1. Graph representation of an LDPC code.

Alternatively, an LDPC code can be described by a bipartite graph [48], as shown 

in Figure 4.1. Each code bit is represented by a message node on the left, while each
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row o f  H is represented by a check node on the right. Message node and check

node Cj are connected by an edge if Hj. = I .

The LDPC code defined above can be seen as a collection o f M  sub-codes [53]. 

Each sub-code, constrained by a row of H , simply has even parity check. Decoding 

o f LDPC codes relies on the decoding of the sub-codes.

4 .1.2 Regular and irregular LDPC codes

For a regular LDPC code, the associated parity check matrix H has uniform 

column Hamming weights and uniform row Hamming weights W^. An A/ x AT

W - W
parity check matrix H with and defines a length N , rate — -----   code,

provided that H is of full rank [43],[29].

For effective decoding, it is required that there be no cycles of length four in the 

graph [44], or equivalently, the overlap of any two columns of H is at most one. 

With this condition, there is a limit on , the code length, for a given M  and

[44],

(4.1)

A simple explanation of (4.1) is as follows. Each column o f H has locations 

with ones. Choose two locations from the locations, and form a weight two

(W
column vector. There can be ^ different weight two column vectors. From N

50



columns o f H , there can be N
( w ;
v 2 .

distinct weight two column vectors. Since the

maximum number o f weight two column vectors o f length M  is
M

, we have

N
v 2 . <2y

and hence (4.1).

Equation (4.1) sets an upper limit on the code rate for a given number of 

information bits and a column weight . Figure 4.2 shows the upper bound of code 

rate for regular LDPC codes with column weight three and four.

0.95:

0.9-

ë 0.85 ;
Wg=3
Wg=4

0.8

0.75
10 10 10 

Information length K
10

Figure 4.2. Upper bound on the code rate R for regular LDPC codes.

A special example o f regular LDPC codes is the SPC product codes, discussed in 

Section 3.4.2. SPC product codes are LDPC codes with fV^=2.
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For an irregular LDPC code, the associated parity check matrix H has non- 

uniform row weights and/or column weights. In terms of the bipartite graph, as

shown in Figure 4.1, the message nodes have different degrees and/or the check

nodes have different degrees. A convenient way o f describing the code graph is 

defining the degree distribution polynomial pair

/l(x) = Ç V '  (4.2)

and

P(^) = Z a ^ ''' (4.3)I

where is the fraction of edges having left degree i and /?,. is the fraction o f edges

having right degree ; [45],[46].

Finding the weight enumerator function o f an LDPC code is not trivial due to the 

high dimensionality. The ensemble average weight enumerating function, instead, is 

more practical to deal with. For regular LDPC codes, the ensemble average 

minimum distance increases linearly with N  for fixed rate and fV̂  [43].

4.1.3 Belief propagation decoding algorithm

LDPC codes may be decoded by a majority-decoding method [50], which is a

hard decoding technique. This is, however, very ineffective, since only bit

errors are correctable. Gallager’s bit-flipping decoding [43] performs better, but is 

still far from the capacity.
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BP algorithm

The belief propagation (BP) algorithm (also called message passing algorithm) 

can be used with an LDPC code [44]. It is an iterative SISO decoding method. 

McEliece et al. have shown that the BP algorithm and the turbo decoding algorithm 

are essentially the same algorithm [51]. The following description o f the BP 

algorithm is based on [44].

Suppose a codeword x = [x |,x ,,-” ] such that Hx=0 is transmitted and the receiver 

receives the following probabilities,

f ‘ = P{x„=i),i = Q,\. (4.4)

The set o f bits participating in sub-code m is denoted by 0(/w) = {« : = 1}.

Similarly the set o f sub-codes that bit n participates is denoted by 

T'(n) = {m : = 1} . In each decoding iteration, two main alternating steps are

carried out, in which quantities and are iteratively updated:

''mn = /'(sub-code m is satisfied |.r„ = /, P(x„. ) = q^. for « ' 6 0(/n) \ {«} ) (4.5)

qL= P(.x„= i\V{n)\{m }) (4.6)

In (4.5), is the probability that sub code m is satisfied conditioned on x„ = / 

and P(x„.) = q„„. for M'e<I)(m)\{n}. In (4.6), q '̂  is the probability that x„ = i, 

given the information obtained from 'P(w)\{/n}.

Since each is binary, P{x„ =l)-f*(jc„ =0) contains all information o f P(.x„). 

Equation (4.5) can be calculated as
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2

where

(4.7)

The BP algorithm using (4.7) is sometimes called difference BP algorithm [53]. 

Evaluating (4.5) is simply the SISO decoding of an even-parity sub code. If the sum 

o f code bits up to the current stage is defined as the state variable, this sub-code can 

be described with a two-state trellis diagram, originating from and converging to the 

zero state, as shown in Figure 4.3. SISO decoding, such as the MAP decoding 

algorithm, can be carried out on this trellis diagram, and the various decoding 

algorithms originate from the various SISO decoding methods.

••• O—ÿO  

<y

Figure 4.3. Trellis diagram of a sub-code.

In (4.6), it is always assumed that the information from different sub-codes is 

independent. Therefore, (4.6) can be rewritten as

(4.8)

where is chosen such that ql„ + ^ 1 = 1

The posterior probabilities P{x„ = / 1 f ', Hx = 0) are estimated as

n  c
m e'F (n)

(4.9)

54



where a„ is chosen such that q l+ q \= \ .

A hard decision is made based on q ‘„, namely x„ = 1 if > 0.5. The

syndrome H i is calculated. If H i = 0 then the decoding algorithm halts and a valid 

codeword i  is obtained. Otherwise the algorithm repeats from the horizontal step for 

at most a certain prescribed number o f iterations. If the maximum number o f 

iterations are performed without a valid decoding, the algorithm declares an error. 

Whether or not the decoding is valid, the final q ={q[,q‘̂ ,—] is always available as

the soft estimate of x, and it may be used when turbo equalization is implemented.

intrinsic
information

message 
node n

mn
message 
node n

check 
node m

Figure 4.4. Message flow in the BP algorithm.

The message passing inside the BP algorithm is best illustrated using the code 

graph, as in Figure 4.4. For clarity, message node n is split into two. in (4.5) 

corresponds to the message passed from message node n to check node m . It is the 

extrinsic information o f bit n from the sub-code m and is broadcasted to 'P(/i)\{w} .

q'^ in (4.6) corresponds to the message passed from check node m to message node
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n . It is the estimation o f bit n , which is the intrinsic information plus the extrinsic 

information from Ÿ(n)\{/n} , and is broadcasted to .

BP algorithm using LLR

By representing the probabilities in log-likelihood ratio (LLR) form, the BP 

algorithm may be expressed in the logarithmic domain, and is referred to as the Log- 

BP algorithm [53].

Define the following LLRs:

f '— Ino JLl.LLR(/„) = l o g ^

and

£LR(r_) = log4^
m̂n

LLRiq^) = l o g ^  
9mn

L L R iqJ = \ o g ^ .
9,

The recursive updating steps (4.7)-(4.9) are given by

LLRir^) = -2teax - 1 n  -tanh (4.10)

LL R (q^)=  X  LLR(r„.„) + L L R (fJ

and

(4.11)
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LLR{q„)= X  LLR{r„.„) + LLR{f„). (4.12)
m'e.'V(n)

Simplified implementation of the BP algorithm

The computational complexity o f the BP algorithm lies largely on the MAP 

decoding o f the sub-codes, and is usually large. Also, each r„„ and need to be 

stored. The simplification of the BP algorithm is therefore achieved in two different 

steps. First, sub-optimal decoding methods can be used to decode the sub codes. 

Equations (4.7) and (4.10) are replaced by MAX-approximation [52]. Secondly, q„

may be used to approximate q ^ ,  reducing the storage requirement [54]. Further 

storage reduction can be achieved by using a “staggered” decoding schedule [55].

4.1.4 Encoding o f random LDPC codes

The straightforward way of encoding an LDPC code is to use the generator 

matrix. Suppose H is of full rank, it can be rearranged into the following form by 

column permutation,

where H, is a non-singular My. M  square matrix. The generator matrix G can be 

I.found as G =
h /h , j

, and the encoding can be done by G s for an information

vector s . In general. Hi H, is not sparse, therefore the encoding complexity is 

/î(l -  R)N ~, even though H is sparse.
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An efficient encoding method described in [49] avoids the matrix multiplication 

G -s and in fact avoids solving for the explicit generator matrix G altogether. 

Instead, this encoding method takes advantage of the sparseness o f  the parity check 

matrix H , and finds the parity check bits in two steps. The resultant encoding 

complexity is dependent on the code rate and the erasure threshold o f the given code 

graph a  (see 4.4.1), and concentrates at — R —a ) ~  N~ +OiN~). For a rate 8/9 

regular LDPC code with W^=2,  the encoding complexity is 0.019’A "+ 0 (A /),

which is considerably lower than 0 . 0 9 9 for the straightforward encoding, by a 

factor of over 200. For a rate 16/17 regular LDPC code with = 3 , the encoding

complexity is 0.01 + 0 (A /) , compared to 0.055/V’ , a factor o f  455.

4.2 MRC with regular LDPC codes

In this section, a MR system with a regular LDPC code is proposed and 

investigated. A regular LDPC coded system configuration has been considered in 

[70], in which the channel is assume to be perfectly equalized but AWGN was 

assumed after equalization. Also, the performance o f LDPC codes for a generalized 

PR channel was studied in [53], with reduced-complexity decoding for LDPC codes.

4.2.1 System description

The proposed system is shown in Figure 4.5. The Lorentzian channel response is 

equalized into an ME^PR4, with //(D ) = 5 + 4D —3D’ — 4£)^ — 2£>’ . The QMTR 

code is used to meet the run-length constraint, as well as to reduce the channel errors.
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Figure 4.5. Block diagram of a PR channel with an LDPC code.

To avoid soft decoding o f the QMTR code, in contrast to current recording 

systems, the modulation code and the error-correcting code are reversed in order in 

this system. This scheme can be traced to [37]. On the recording end, the incoming 

user data block is first encoded by a rate 16/17 QMTR code [9]. The resultant block 

from the QMTR encoder is further encoded by a high-rate LDPC code. Before 

recording, the sequence of LDPC check bits is inserted with guard bits so that both

1
run-length conditions are satisfied. The

1 © D
precoder is used to translate the ones

into transitions.

On the reading end, a MAP decoder matched to the precoded ME^PR4 is used for 

the PR channel. The MAP decoder takes the channel vector y and the prior LLR
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Pix„=\
P(x„=0

vector U '""' with U’̂ '' = log , and computes the posterior LLR vector
Pi.x„=Q)

lfo^“rior with = log

The LDPC decoder takes the posterior LLR o f the channel decoder as input 

A'"and outputs the pseudo-posterior LLR A""'. From A'" and A"", define 

A“' = A°" -  A'" as the extrinsic LLR. A“' is fed back to the PR channel decoder as 

the prior LLR. Therefore turbo decoding between the channel and the LDPC code is 

made possible.

The decoding process has two iteration loops, as shown in the flow chart of 

Figure 4.6. One is the LDPC loop, which is within the LDPC decoder. After each 

LDPC iteration, the decoder checks the syndrome H x . If a valid codeword is found, 

the LDPC decoding is finished, and the whole decoding process stops. The other 

iteration loop is the channel loop. It is the turbo equalization between the PR channel 

and the LDPC code [32]. The channel loop iteration takes place only when the 

maximum number o f LDPC loop iterations is reached without finding a valid 

codeword. Therefore the decoding process halts when either a valid LDPC codeword 

is found or the maximum number of channel loop iterations is reached.
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Figure 4.6. The flow chart for iterative decoding.

4.2.2 Performance gains

Several LDPC codes are investigated. LDPCl is a rate 0.9358 code with block 

length 4376 and 4095 information bits, given in [61], with column weight fV̂  = 3. 

LDPC2 is designed with rate 0.9402, block length 4629 and 4352 information bits, 

also with column PF. = 3 [62],[68].

The proposed system with LDPC2 has overall code rate 0.8674 and user block 

size 4096 bits, whereas the system with LDPC I has code rate 0.8622 and user block 

size 3854 bits. A maximum of 50 LDPC iterations are performed before the 

algorithm branches back to the channel detector and a maximum o f 100 channel 

iterations are allowed. The system is evaluated at two different user densities. Figure
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4.7(a) shows the performance at user density 2.505 and Figure 4.7(b) shows the 

performance at user density 2.8. Also plotted in these figures are the performance of 

the rate 16/17 RLL coded ME^FR4 chatmel, the QMTR coded ME"PR4 channel, and 

the LDPCl and QMTR coded ME^PR4 channel, all at the same user density. The 

chatmel signal-to-noise ratio is defined in (1.10).

The simulation results show that the proposed system achieved a significant gain. 

At user density 2.505, LDPC2 provides an additional 4-dB gain over the QMTR code 

at a bit error rate of 10' .̂ At user density 2.8 LDPC2 provides a 3.5-dB gain.

As can be seen later in this section, there are many bit errors (twenty or more in 

some instances) when a block error occurs, while this number is smaller for the 

uncoded channel. Therefore, larger performance gains would be obtained if  block 

error rates were used for performance comparison.
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4.2.3 Iterative performance

The impact o f the maximum number o f channel iterations is investigated. If this 

number is set to one, the channel decoder works once and no turbo equalization is 

performed. Figure 4.8 shows the performance o f the LDPC2 coded system with 1, 2, 

3 and 100 maximum channel iterations. Additionally, the performance of the 

uncoded ME^PR4 system at the same user density is also shown as a comparison.

The total number o f LDPC iterations for a block is the sum o f the LDPC iterations 

in each channel iteration. Although the maximum number o f LDPC iterations is 50 in 

the simulations above, the average total number o f LDPC iterations is much smaller. 

Figure 4.9 shows the average number o f channel iterations and LDPC iterations 

actually performed if the maximum number of channel iterations is 1, 2 and 3 for user 

density 2.8. At bit error rate 10'^, the average number o f channel iterations is 1, 1.2 

and 1.5, or equivalently the turbo equalization is performed 0, 0.2 and 0.5 times per 

block on average. The average number o f LDPC iterations is about 5, 20 and 35 

respectively. From Figure 4.8, it can be seen that at bit error rate 10' ,̂ the gain for a 

maximum o f three channel iterations is about 0.3 dB over a single channel iteration or 

in other words without turbo equalization. Assuming that the computation time is 

proportional to the average number o f LDPC iterations, it will take a factor of seven 

increase in computation to obtain this small gain.
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(b)
Figure 4.8. Performance with few chatmel iterations: (a) 5„=2.505 and (b) 5„=2.8.
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Figure 4.9. Average number of iterations actually performed.

If turbo equalization is not performed and the PR APP output is assumed to be 

independent Gaussian, LDPC codes that perform well on the AWGN channel will 

also perform well on the MR channels.

4.2.4 Error distribution

The histogram of the number o f bit errors in a block is shown in Figure 4.10. The 

user density is 2.8 and the bit error rate is around 10^. No turbo equalization is 

performed. Notice that when a block has errors, there are many bit errors.

Figure 4.11 shows the error burst statistics o f the system without turbo 

equalization at user density 2.8 and bit error rate around 10^. An error event 

delimiter of eight bits is assumed. It can be seen that long error bursts are rare.
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Figure 4.10. Histogram of the number o f bit errors in a block.
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Figure 4.11. Error burst statistics.

67



4.2.5 Concatenation with RS codes

It is difRcult or even impossible to determine the performance o f the proposed 

system at the error rate where HDD systems operate. This fact prompts the 

consideration of concatenating a RS code with an LDPC code in a system [67]. 

Shown in Figure 4.12 is the system to be investigated. Enclosed in the dashed box is 

simply the system shown in Figure 4.5.

RS
Enc

RS
Dec

QMTR
Enc

QMTR
Dec

Channel,
Channel
Detector

Figure 4.12. Diagram of RS-LDFC system.

In the simulation, the QMTR decoding is skipped, and only pseudo-RS coding is 

performed in that there is actually no RS encoding, but the outputs of the LDPC 

decoder are assumed to be codewords of some RS code. To determine the error, the 

assumed codewords are compared with the correct codewords. If the number of 

symbol errors exceeds the error correcting capability, an error is declared.

RS code (136, 126) on GF(2*) is assumed to be used, and codewords are 4-way 

interleaved. Therefore, the information bits o f an LDPC codeword can be 

decomposed into four RS codewords.

The system is simulated at = 2.8. First assume the RS code is always in the

system, therefore no further code rate loss is considered. The simulation results are 

shown in Figure 4.13. The gain o f the RS-LDPC system over the LDPC system is 

very limited.
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Figure 4.13. RS error correction on an LDPC coded system.
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Figure 4.14. Performance of RS-LDPC system taking into account the RS coding 

penalty.
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If the coding penalty o f the RS code is considered, then the performance of RS- 

LDPC code is actually not as good as the LDPC system. The loss is about 0.9 dB.

The reason why the RS code is not very effective in this system lies in the 

following facts. The average number o f bit errors in a failed block is 19.4. When a 

block fails it usually has many bit errors, as shown in Figure 4.10. What is worse, 

most errors are single bit errors, as shown in Figure 4.11, so there are many error 

events in a failed block, making RS decoding difficult. However, on MR chatmels 

with very few random errors, RS-LDPC concatenation might be beneficial. In this 

case, very-high rate LDPC codes should be used to minimize the coding penalty.

4.3 Finite-geometry LDPC codes for MR systems

Finite-geometry LDPC codes are a family of codes that have a geometric 

structure, as well as low-density parity-check matrices.

4.3.1 Finite geometry LDPC codes

All the LDPC codes described above are randomly generated. However, there are 

LDPC codes that can be generated by a finite geometry [57]. It is noted in [57] that 

Euclidean geometry (EG) codes and projective geometry codes [58] are LDPC codes. 

They are referred to as Euclidean geometry LDPC (EG-LDPC) codes and projective 

geometry LDPC codes [57]. These two classes of codes are very similar, and 

therefore only EG-LDPC codes are investigated.
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On GF(2"“) , let a  be a primitive element and all the 2"“ elements be 

|o ,l,a ,-  . Let fi  be a sub-field G F ( T ) .  For any ao ,aeG F(2"“ ),

2”* — Iis defined as a line. There are (2 '̂"”' ’̂  - l ) --------  distinct lines that do not cross the
V / 2 ' - l

origin. The incidence vector o f a line is defined as a row vector v such that v. = 1 if 

a'  is on the line and v. =0 otherwise, where / = 0,---,2"“ - 2 .  Denote as H the

matrix that has all incidence vectors as its rows. H is a ^2*'""”'' - l ) - ^ —— by 2"“ -1

2 " “  - 1sparse matrix with = —--------1 and W ^ = T . The overlap between any pair of
2 —1

columns is at most one. The code with H as parity check matrix is an EG code, 

denoted as EG(m, 2^), and is an LDPC code free of cycles o f length four.

EG-LDPC codes cyclic and can be encoded using shift-register circuitry, which is 

extremely simple. However, EG-LDPC codes with moderate length have low code 

rates. In order to obtain high-rate codes for MR systems, an extension of EG-LDPC 

codes is done by modifying H, resulting in split EG-LDPC codes and companion 

EG-LDPC codes [57].

4.3.2 Split EG-LDPC codes

For simplicity, only EG(2,2^) (w=2) codes are considered. Therefore H is a 

( 2 ^ - l ) x ( 2 ’’ - l )  matrix. One can generate a (2^^- l ) x ^ ( 2 ’^ - l )  matrix 

through ^-fold column splitting. Each column vector H, is split into k  column
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vectors o f H^,„, denoted as H , ,, H,^, and . The first 1 in H goes to H ,, at the

same place, the second in H goes to H , , ,  and so on. U k\W^ where is the 

column weight o f H , then can be rearranged by column permutation into the 

following form,

where each is a circulant matrix. The split EG(2,2^) code is defined as the

null space o f the row space of H and therefore quasi-cyclic [57]. The generator 

matrix o f the split EG(2,2^) is easy to find and the encoding can be done by shift- 

register circuits [59],[60].

Split EG-LDPC codes have smaller minimum distances than the original EG- 

LDPC codes, and it is expected that the performance o f a split EG-LDPC code might 

be inferior to a random LDPC code with the same code rate.

A split EG-LDPC coded EPR4 system is considered in [60] and compared with 

RS coded system. It is shown that this system combats 128-bit burst erasure very 

well, with the assumption that the erasure is detected.

4.3.3 Companion EG(3,2^) codes

The parity check matrix H of a companion EG-LDPC (C-EG-LDPC) code is 

obtained by transposing the parity check matrix H o f  the original EG-LDPC code. In 

this section, we are only interested in the companion EG(3,2^) (C-EG(3,2^) ) code.

The matrix H for EG(3,2^) is 4599x511, and in the following form,
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H = [H, H, H,]'

where each H is a circulant square matrix, i.e., circularly shifting any row results 

into another row. C- EG(3,2^) has H as parity check matrix,

H'=[H, H, H ,].

Therefore, the companion EG(3,2^) code is quasi-cyclic, whose codeword, when 

circularly shifted by 9 bits, is another codeword.

The rank o f  H is 372 and C-EG(3,2") is a (iV = 4599, A" = 4227) LDPC code. 

The redundant rows of H can be eliminated, resulting in a parity check matrix with 

m ^im iun = 8. C-EG(3,2^) is simulated on an AWGN channel, in one case H

is used as the parity check matrix and in another case the reduced H' is used as parity 

check matrix. The simulation results are shown in Figure 4.15. Both the total word 

error rate (WER) and undetected WER are shown.
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Figure 4.15. Performance o f  C-EG(3,2^) on AWGN, with different redundancy 

parity check matrices. Maximum 50 iterations.

At WER 10”̂ , decoding using H has less than 0.2 dB gain over that using 

redundancy-reduced H , with 1.37 times o f complexity though. Also, when decoded 

with H , the majority of the errors are undetected at E^l N^=  4.7 d B . This indicates 

two things: 1) The performance shown is very close to the maximum-likelihood

bound and 2) The multiplicities o f the low weight codewords are very large.

4.3.4 Turbo equalization schedules

Different turbo equalization schedules, i.e., the number of LDPC iterations in the 

LDPC loop, are possible for the iteration between the channel detector and the LDPC 

decoder. Mittelholzer et al. studied the optimal schedule for a particular
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configuration [53]. On EPR4 with an LDPC code o f length A^=508 and /?=0.8839, it 

was found that the schedule with just one iteration in the inner LDPC loop yields best 

performance for the same total number o f LDPC iterations.

However, their conclusion seems not to be universal. For the C-EG(3, 2^) coded 

system, different schedules were tested, with a total o f 100 LDPC iterations 

performed in each schedule. The simulation results are shown in Figure 4.16, in 

which both BER and sector error rate (SER) curves are plotted. The best schedule is 

the one with 5 LDPC iterations in the inner loop.

1.E+00

1.E-01

S  1.E-02 
K

I  1E-03

1.E-04

1.E-05

\ _____-c
---J___________ ^-------------

-  -O — SER

q
—O----BER

\ -----------------r]-----------------
— 1---------- — ' I---------------- -

0 5 10 15 20 25
LDPC Iterations per turbo equalization

Figure 4.16. Comparison of turbo equalization schedules.

The best turbo equalization must be dependent on the LDPC code. Suppose that 

the LDPC code graph is free o f cycles below L, then for the first y  BP iterations, the
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information passed in the graph satisfies the independent assumption in (4.8). 

Intuitively, larger L and fewer short cycles allow more LDPC iterations in the inner 

loop. Since lower rate codes have larger L or fewer short cycles, more LDPC 

iterations per turbo equalization is a better schedule.

Also, given that the complexity o f the channel detector is higher than that o f  the 

LDPC decoder, it is justified that only schedules with many iterations in the LDPC 

loop be considered.

4.3.5 System performance

Considered here is the C-EG-LDPC(3,2^> in a system diagram shown in Figure 

4.5. This system has overall code rate R  = 0.842, and is simulated at = 2.72 

under AWGN.

I

I

1.00E-02
BER (No Turbo Eq.) 
BER (Turbo Eq.) 
BER (uncoded)1.00E-03

1.00E-04

1.00E-05

1.00E-06
16 17 1813 14 15

SNR (dB)

Figure 4.17. Performance of C-EG-LDPC coded system.
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This system is also simulated under AWGN with 48-bit disk defect. At 

SNR=19.2 dB, the total sector error rate (SER) is 0.0051, and the undetected SER is 

0.0041. Again, the high undetected SER is probably due to the larger multiplicities o f 

low weight codewords.

4.4 Irregular LDPC codes for MR systems

In this section, an irregular LDPC code for an MR system is described and 

simulated. The performance is compared with an RS coded system.

4.4.1 Capacity and optimization of LDPC codes

Given an LDPC code with a certain length and the degree distribution pair À(x) 

and p(x)  as defined in (4.2) and (4.3), to find its performance is difficult. Two 

techniques look at the capacity of the infinitely long LDPC code with tree-like cycle- 

free code graph and the same degree distribution pair À(x) and p(x)  under BP 

decoding.

On a binary erasure channel, each bit is erased with probability a  . The erasure 

threshold o f the infinitely long LDPC code is denoted by a  . Any erasure fiaction 

a  < a ‘ is recoverable, a  is shown as to be the supreme o f a  such that [45]

|im a, = 0  with a, = ûù î,(l-p (l-û r,_ i)) a n d a ^ ^ a .  (4.13)

For example, the rate 8/9 LDPC code with fV^=3 has capacity a '  = 0.092 and the 

rate 16/17 LDPC code with W^=3 has capacity a* =0.048 .
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On binary input AWGN channels, the capacity of the infinitely long LDPC code 

can be found by the density evolution technique [56].

By assuming the capacities obtained above are also the figures o f  merit o f finite- 

length LDPC codes with the same degree distribution pair, these two techniques can 

be used to optimize the degree distribution pair for best performance [46],[47].

4.4.2 Irregular LDPC coded system

Using density evolution techniques [56], an irregular LDPC code was optimized 

for the ME^PR4 channel [63]. This code has length 4835, rate 0.9 and average 

column weight 6.41. Considering the average column weight, the computational 

complexity (per bit per iteration) is more than twice of a fV^=3 regular LDPC code.

A system diagram using this code is shown in Figure 4.18, and has overall code 

rate R = 0.8410. In the simulation, the block in the dashed box is substituted by 

random data.

4 bytes 
CRC

4352512 512
bytes bitsbytes

48354352
bitsbits

User
Data

Irr-
LDPC BCJRMRC Irr-

LDPC

RLL
16/17

Figure 4.18. System diagram using an irregular LDPC code.

4.4.3 Performance comparison with RS coded system

On a Lorentzian-Gaussian chatmel with position jitter, the performance o f this 

LDPC system is simulated and compared with a 4-way interleaved RS system shown
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in Figure 4.19 at 5 „= 2 .5 . No turbo equalization is performed and 50 LDPC 

iterations are performed at most. The RS code is over GF(2^) and capable to correct 

seven errors.

4862512 5 7 2 ,
bytes

516
bitsbytes bytes

User
Data

MRC RLLVA RS

CRC 
4 bytes

RLL
16/17

RS 
56 bytes

Figure 4.19. System diagram using an RS code.

Shown in Figure 4.20(a) and (b) are the performance of the irregular LDPC coded 

system with 0% and 90% jitter noise, respectively. With 0% jitter noise, 1.7 dB gain 

is obtained at SER=10^; with 90% jitter noise power, 1.3 dB gain is obtained at the 

same SER.
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Figure 4.20. Performance of irregular LDPC coded systems, (a) 0% jitter noise; 

(b) 90% jitter noise.
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4.5 Conclusion

In this chapter, MR systems with different LDPC codes were investigated. LDPC 

coded systems show substantial gains over uncoded channels or conventional RS 

systems with AWGN or jitter noise. Turbo equalization brings only several tenths of 

a dB gain. At moderately low error rate, very few iterations are needed.

All LDPC codes, random codes and finite-geometry LDPC codes, regular codes 

and irregular codes, provide similar coding gains. Finite-geometry LDPC codes have 

the advantage of low encoding complexity but the disadvantage o f high decoding 

complexity. Irregular LDPC codes also have high decoding complexity. In 

conclusion, the = 3 random regular LDPC codes seem to be the best overall 

choice.

RS-LDPC concatenation is not effective under random noise. But on MRCs 

where burst noise is the main source of errors, it might be necessary. In this case, a 

very high-rate LDPC code should be used to correct occasional large number of bit 

errors in a sector, leaving the task of correcting long bursts to the RS code.
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5 Q-ARY LDPC CODES FOR MAGNETIC 

RECORDING CHANNELS

The LDPC codes considered in the previous chapter are all over GF(2). To 

emphasize this, they shall be called binary LDPC (B-LDPC) codes. It is shown that 

B-LDPC codes provide impressive gains on MRCs with random noise. However, 

MRCs are subject to long erasure bursts, and B-LDPC codes cannot combat long 

bursts very well. In this chapter, non-binary LDPC (or Q-ary LDPC, Q-LDPC) codes 

are proposed for MRCs.

In Section 5.1, the basics o f Q-LDPC codes are provided. In Section 5.2, a 

decoding method for Q-LDPC codes is described, and its decoding complexity 

analyzed. A code design method is developed in Section 5.3 to improve the erasure 

correction capability. Performance of Q-LDPC coded MRCs is presented in Section 

5.4. Array codes are addressed and compared to Q-LDPC codes in Section 5.5.

5.1 Q-ary LDPC (Q-LDPC) codes

The first work on Q-LDPC codes appeared in [64],[65]. Similar to B-LDPC 

codes, a Q-LDPC can be described by a low-density parity-check matrix .

Each element H of , is now an element from GF(g = 2'’) .  The null space of

the row space of H is the Q-LDPC code. A row vector x o f length is a codeword 

if

82



/n = l , " ,A / .  (5.1)

Similar to B-LDPC codes, a Q-LDPC code can be regarded as a collection of M  

sub-codes, which are simply parity check codes. Also, a Q-LDPC code can be 

represented by a bipartite graph, but the edges may carry q-\ different values. For 

regular Q-LDPC codes, column weight and row weight can be defined

similarly as B-LDPC codes by counting the number of non-zero GF(q) elements.

At rate 1/4 to 1/2, it was shown in [64]-[66] that Q-LDPC codes outperform B- 

LDPC codes on the AWGN channel. On channels with noise bursts, the consecutive 

bits in the burst window are grouped into fewer symbols, therefore it is easier for the 

Q-LDPC code to recover.

5.2 Q-LDPC decoding and its complexity

Any decoding method for B-LDPC codes can be extended to Q-LDPC codes by 

modifying the field operation. However, the efficient implementation of the BP 

algorithm for B-LDPC codes using LLR cannot be done for Q-LDPC codes. This 

fact increases the decoding complexity of Q-LDPC codes.

5.2.1 BP decoding for Q-LDPC codes

Given the probability mass function pmf{x„), » = 1, , A/, where x„ can be any

eG F(^), / = 0 ,-" ,^  —1. BP decoding for Q-LDPC codes is done in exactly the 

same two steps as for B-LDPC codes: row step and column step,

f(sub-code w is s a t i s f i e d = fi^pmf{x„.) = q ^ . for«'e<D(/n)\{n}) (5.2)
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(5-3)

In the row step, the sub-codes are decoded, or equivalently the check nodes are 

updated. The BCJR algorithm can be used for MAP decoding. However, the trellis 

o f each sub-code is one with q states and radix-qr, as shown in Figure 5.1.

9-1

Si.i Si

Figure 5.1. Trellis diagram section o f Q-LDPC sub-codes.

iV

Simplify the notation of sub-code constraint to ^A,JC, = 0 . As described in
1=1

Section 4.1.3, the forward-backward algorithm involves three steps: forward 

recursion, backward recursion and combination step. The forward recursion is

^(5, = / , )  = £ p (5,., = / * ) p (x, (5.4)
k=0

where A, ' is the inverse of A, in GF(^). The operation needed for one step of 

forward recursion is q~ multiplications, q ' - q  additions, plus 2q^ field operations. 

Same operations are needed for the backward recursion and combination step.
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There are M  sub-codes to be decoded. For a row weight Q-LDPC code, each 

sub-code has length therefore in total 3q^MW^ multiplications, -q)MW^ 

additions and 6q~MW^ field operations are needed for a horizontal step updating.

In the column step, message nodes are updated with the independence assumption

n  (5-5)

and the posterior probabilities are computed as

qi' = «„// n  (5-6)
m-e.'Vin)

The hard decision is chosen as jc„ =arg |m ax(^^ ) | . For large W^, it is

advantageous to use the forward-backward recursion to compute (5.6). The direct 

multiplication is, however, simpler for small (for instance = 3 ), as is the case

of interest here. Updating each message node takes q{Wj^ +W^) multiplications and 

(q -  l)W  ̂ additions. For the total N  message nodes, N  times this computation is 

needed.

In summary, the operations needed per bit per iteration are 

- ^ ( 3 q ~ M W ^ - k - q N { W ^ multiplications, -q)M W ^-¥{q-\)NW j^

additions and -^6q~M W ^  field operations. Using the relation MW^ =MW^, these 
Np
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numbers can be simplified to — + 9 ( ^ + 1))» —(X?" ~Ç)fK  + ( ^ ~ 0 ^ )

-6 q ~ fK -
P

5.2.2 Fast implementation o f the BP algorithm using fast Fourier transforms

The computation complexity described above is 0(jq^ / p ) , but it can be 

simplified. The idea o f using a fast Fourier transform (FFT) in the BP decoding was 

proposed in [6 6 ] and [56].

Notice that in the row step, decoding o f the sub codes is to find with

known pm /ix^), and pm fjJT xi)  is the same as the convolution of all pm f{Xi), 

which can be efficiently computed using the FFT,

) = I F F r f n  FFT(/7/n/(.r,))l (5.7)
I Vi  J

where IFFT is the inverse FFT. Notice that for B-LDPC codes, (5.7) is actually the 

same as the difference BP in Section 4.1.3

Since the function pntfi^x^) is defined on GF(^), FFT(/>w/'(x,)) is not a g-point 

FFT but a p-dimension 2-point FFT. An example for ^ = 8  is illustrated in Figure 

5.1. The field elements are represented in polynomial form. In the first layer, the 

FFT computes the sum and difference o f the probabilities o f two field elements 

differing from each other by only one bit location.
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Figure 5.2. FFT o f pmf{x.^ for ^ = 8 .

Using the FFT, the forward recursion (5.4) becomes

FFT(pm /(S,)) = FFT(pm/(S,_,}). FFT(pm /(/i,x,)), (5.8)

which needs only 7>qŴ  multiplications and the overhead o f the FFT and IFFT. Each 

FFT, as well as IFFT, needs pq additions. Therefore the computation needed for the 

horizontal step is IqMW^ multiplications and pqMW^ additions. The column step 

remains the same as in (5.5).

In summary, the computation needed per bit per iteration is — (fV /+ 4 fV \

multiplications and 2qW^+— adds, which is 0{q). This algorithm is called the
P

FFT-BP algorithm.
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5.2.3 Logarithm domain implementation o f the FFT-BP

In a practical implementation o f the decoder, it is highly desirable to eliminate the

need for real-valued multiplications. In the following, a technique is described to

meet this requirement.

In the FFT-BP algorithm, real-valued multiplication occurs in both the row step 

and the column step. In the column step, the multiplicands are pm f{x.^. Intuitively,

one should define new variables as the logarithm of these multiplicands. Let v be a 

probability (>0 ), and define

u = log(v) . (5.9)

Then in the column step, only additions are needed.

In the row step, as in (5.8), the multiplicands are FFT(p/n/’(x ,)) . Since 

FFT(p»i/(x,.)) may have negative values, the definition of the logarithm domain 

variables is complicated. Define LG  : R —► {1, - 1} x R by

M =(i/,M*) = (sgn(v),log|v|) (5.10)

where R is the field of reals. The inverse LG~  ̂ : {l,—1} x R —> R is

v = Mexp(i/’) . (5.11)

Then for û  =LG(v,) = ̂ i/, ,m, ), and m, = LG(v,) =  (1/2 ,i/, ), where v,,v, e  R , define

the operations +, -, x, and such that

M, G «2 = ^G(v, 0  V, ) (5.12)

where 0  stands for any o f the four operations. It is straightforward to show that
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M, X I / ,  =Z-G(v, X V , )

= LG{u^ expfii, )i/, exp(i/, >)

= (i/,'i/,,i/,'+ i/,')

M,-Î-W2 = ^G (v ,-Î-V,)

= LG{u^ exp(«, ) /( i/ , exp(M, }))

=  ( l / , l / , ’,M , ' - | / , ' )

M, +M, =Z,G(v, +v,)

= Z,g (m, exp(i/| ) +  w, exp(i/, ))

where u is determined as

«  =

1 if i/j — I/, — 1

or(z/, = l)n (i/ , = - l) r \ ( i / ,  > 1/, ) 

or(u, = - l ) n ( i / ,  = l)o ( i/ ,  < 1/, ) 

- I  ifzi, =M, = l

or(w, = l)n ( i/ , = -l)r> (i/, > i/, ) 

or(tt, = - l ) n ( i / ,  = 1)o(m, <z/, )

and If is calculated in two cases:

a. w, = «,

I/' = log(exp(i/’)+exp(i/j))

= max(i/*,i/j) + log(l+ exp(-|i/’ - i/ j j) )

b. w, ^ 1/2

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

89



u = log lexp ( m,’ ) -  exp (i/j )|
(5 18)

= max(M,', «2  ) + log -  exp -  u\ |

4. M, — w, = Z-G(V, -  V, ) (5.19)

= LG{u  ̂ exp(tt, )-w , exp(«2  )j

where u and u can be determined similarly to (5.16)-(5.18).

In (5.17), log^l+exp(-|M,' - « i |) )  can be obtained by table look-up. Similarly, in

(5.18), Iog^l-exp(-|M ,'-M j|jj can also be obtained by table look-up. Therefore,

neglecting binary operations, the computations needed for (5.15) are one comparison, 

one addition and one table look-up. The above algorithm is called the Log-FFT-BP.

To summarize, (5.15) and (5.19) are used in the FFT; (5.13) and (5.14) are used in 

the forward-backward recursion. Also, calculating ^  w, for all j  can be efficiently

implemented by first calculating then subtracting each Uj (similar idea cannot
/

be applied to ]~[ v. for all j  because o f the ‘divided by zero’ problem).
<*y

With the technique above, for each iteration, the total required computations for 

the column step and the LG domain row step are INW^q and IMW^q LG  additions 

or subtractions, respectively; the FFT and IFFT overhead requires 2NW^pq LG 

multiplications or divisions. Interestingly, for large p  (and q), the FFT and IFFT
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overhead stands for most o f the complexity. For instance, for p  = A ( 9  = 2^ =16), 

the FFT and IFFT overhead takes 2/3 of the total complexity.

In Table 5-1, the complexities of B-LDPC and Q-LDPC codes are compared. The 

complexity o f B-LDPC codes is from [37]. For p = A , the Log-FFT-BP Q-LDPC 

decoding is 12 times more complex than the Log-BP B-LDPC decoding algorithm.

TABLE 5-1

Complexity comparison between B-LDPC and Q-LDPC codes

Per bit per 

iteration
Multiplication Addition Table look-up

B-LDPC

(Max-Log-BP)
0 4W^-l 4W^

Q- LDPC 

(FFT-BP)
l q K +  —

P
0

Q- LDPC 

(Log-FFT-BP)
0 f 2 ^ + — y .

V P J
2qW^

5.3 Code design for noise bursts

In this section, the term noise burst is used to include both burst erasures and 

thermal asperities. At most one burst per LDPC codeword is considered.

In principle, Q-LDPC codes can be generated by modifying B-LDPC codes. By 

substituting the I ’s in the parity check matrix H* for a B-LDPC code with elements 

from GF(^), a Q-LDPC parity check matrix H is obtained [64],[65]. It is shown in
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[6 6 ] that the GF(^) elements replacing the I ’s in cannot be all the same, 

otherwise the resultant Q-LDPC code is simply comprised of p  disjointed (also 

interleaved) B-LDPC codes.

Conceptually, any B-LDPC code (random or algebraic, regular or irregular) parity 

check matrix H* can be used to generate a Q-LDPC code parity check matrix H . 

However, since it is shown in Section 4.3 that geometric LDPC codes have large low 

weight multiplicities and irregular LDPC codes have larger decoding complexity than 

regular LDPC codes, only random regular Q-LDPC codes are considered.

5.3.1 Minimum space distance

For a low-density matrix, the minimum space distance (MSD) is defined as the 

minimum length o f runs of zeros in all rows, and denoted as s. For example, .$ = 1 for 

the following matrix,

I 0 1 0 0 I 0 0 1 0
1 0 0 1 0 0 1 0  0 1

H =  0 1 0 1 0 1 0 1 0 0
0 1 0 0 1 0 I 0 1 0
0 0 1 0 1 0 0 1 0  1

It is shown in [60] that a B-LDPC code with MSD s is guaranteed to recover a 

burst erasure o f length 5+ 1  bits. A p-bit-symbol Q-LDPC code with MSD s is 

guaranteed to recover a burst erasure o f 5+ 1  symbols, or o f length /75+I bits. Shorter 

burst erasures can be recovered in one LDPC iteration. Since one o f  the reasons for 

considering Q-LDPC codes is to improve the error correction capability under long
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bursts, the MSD should be maximized. For a matrix with N  columns and row weight

MfF , clearly s < — .

To obtain a parity check matrix H* with large MSD, the following method is

Nused. First, a reasonable value s < —  is chosen. Then starting from the firstfy

column, locations are randomly chosen and filled with ones. For each latter

column, both cycle-4 and MSD constraint are checked, and priority is given to the 

row locations with smallest current row weight (row weight o f all previous columns). 

So, the generated matrix will have uniform but not necessarily uniform row

weights, but typically the row weights do not vary much.

Considering the complexity (see Section 5.2), GF(16) is probably the largest field 

that one can handle Q-LDPC codes and only codes with fV^<3 are considered. For 

sector size (4096 bits) codes, the Q-LDPC codes designed on GF(16) are summarized 

in Table 5-11.

TABLE 5-n 

Q-LDPC codes on GF(16), = 3

Code N M R

1 1182 94 0.9205 2 0

2 1152 128 0.8889 30

3 1234 137 0.8890 30
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Notice that Code I has rate 0.9205, while the maximum code rate for a. = 3, 

M  = 94 LDPC code is 0.9267, showing that the MSD rule does not hinder the design 

o f high-rate codes.

5.3.2 Performance of Q-LDPC codes on AWGN with burst erasures

The erasure is modeled as the received channel value being zero. Q-LDPC codes 

have excellent erasure recovery capability. Code 2 is chosen to illustrate the 

superiority of Q-LDPC codes over B-LDPC codes for erasure recovery. As shown in 

Table 5-H, Code 2 has s = 30 . On a binary erasure channel, where only a single burst 

erasure can occur per codeword, this code is guaranteed to recover erasures o f 31 

symbols of 4-bit each. In the worst case, a length 118 bits erasure can result in a 31- 

symbol erasure, with the first and the last bit in the sequence the only erased bit in the 

corresponding erased symbols. Therefore, Code 2 is guaranteed to recover single 

burst erasures of length 118 bits.

Simulations, however, show that Code 2 is able to recover all single burst erasures 

o f length up to 344 bits, and some single burst erasures o f length 352 bits cannot be 

recovered. By comparison, a B-LDPC code with the same length (in bits) and code 

rate was designed, referred to as Code B, which has f  = 166, and only has erasure 

recovery capability o f240 bits.
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TABLE 5-m

MSD comparison between Q-LDPC and B-LDPC codes

Code 2 (Q-LDPC) Code B (B-LDPC)

MSD 30 symbols 166 bits

Actual burst erasure recovery capability 344 bits 240 bits

The performance of Code 2 and Code B on AWGN is shown in Figure 5.3, 

together with the uncoded performance. The channel is assumed to be binary-input 

with AWGN. It can be seen that the Q-LDPC code has steeper waterfall curve than 

the B-LDPC code.

1.E-02 — B— BER (R=8/9 Q)
-  43- - BER (R=8/9 Q. 144) 
— 0— BER (R=8/9 B)
-  -0- - BER (R=8/9 B, 144) 
— *—  BER (uncoded)

1.E-03S

I
“  1.E-04

1.E-05
4 73 6 8 95 10

Eb/No (dB)

Figure 5.3. Performance of Code 2 and Code B on ISI-free AWGN chaimels.
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Also shown in Figure 5.3 is the performance of Code 2 and Code B on AWGN 

with 144-bit erasures. For the same length of erasure, the performance degradation 

for the B-LDPC code is larger than for the Q-LDPC code.

5.3.3 Undetected burst and noise overestimation

In Section 5.3.2, the noise burst is assumed to be detected, and erasures are 

declared by setting the channel values to zero for the burst. If the burst is not 

detected, in the case of 1 0 0 % fading, the channel values in the burst simply contain 

the noise.

When a channel has a noise burst in addition to AWGN, strictly speaking, the 

noise is non-stationary and the distribution of the noise is unknown. However, the 

Gaussian distribution is still assumed. The variance <r' o f the overall noise is larger 

than the variance <r* of the AWGN. The use o f a noise variance for the decoder 

larger than C7~ is called noise over-estimation.

Table 5-IV shows the effect o f noise over-estimation on the performance of Code 

2 on a binary-input AWGN channel with undetected burst erasures. The erasure 

window is uniformly distributed throughout the codeword. Without noise over­

estimation, something odd can be found from the table. With 48-bit undetected 100% 

erasures, the code performs worse at =10dB than at 7 dB. This can be

explained as follows. At 7 dB, cr~ is larger than at 10 dB. With noise over­

estimation, the decoder assigns less confident probabilities to the erased symbols, 

which are prone to be in error. This helps the BP decoder to find the correct
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codewords. The effectiveness o f noise over-estimation is shown by the results with 

96-bit fiill erasures. At SNR 7 dB, the word error rate is 0.0024 without noise over­

estimation, but no error occurs if the noise variance is over-estimated by 2 dB.

TABLE 5-IV 

Performance of Code 2 with noise over-estimation

Eb/No (dB) 48-bit 100% 
erasures

96-bit 100% 
erasuresAWGN Estimated

7
7 0 0.0024

5 0

10 10 0.04

5.4 Performance of Q-LDPC codes on MRCs

Q-LPDC codes perform well on AWGN channels, and they are resistant to long 

erasures. These two properties are exactly what MR systems need. In this section, Q- 

LDPC coded MR systems are investigated.

5.4.1 Q-LDPC coded EPR4-equaIized channel

Shown in Figure 5.4 is the diagram o f a proposed system. The Lorentzian 

channel is assumed. The channel is MMSE equalized to the EPR4 target. The rate 

16/17 RLL code is not implemented in the simulation, rather it is included in the 

diagram to compensate the coding penalty present in the actual system.

16/17 — ^ LDPC Equalized EPR4 LDPC
RLL Enc EPR4 Detector Dec

Figure 5.4. Q-LDPC coded EPR4-equalized MR system.
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The system is simulated with Code I and Code 2, respectively, and is compared 

with the uncoded system, at user density = 2.505. The BP decoder is set to

perform at most 50 iterations. Turbo equalization is not implemented. Plotted in 

Figure 5.5 are the BER and symbol error rate performance. These two codes perform 

very similarly, and both provide over 3.5 dB gain over the uncoded system at BER

10^. At BER 10^, less than three iterations are executed on average.v5

1.E-02
— B BER (Code 2)
— -O— - SymER (Code 2) 
— 0-----BER (Code 1)
— -O— - SymER (Code 1 ) 
— BEP (uncoded)

1.E-03S

g
“  1.E-04

1.E-05
1915 16 1813 14 17

SNR (dB)

Figure 5.5. Performance o f Q-LDPC coded EPR4-equalized MR chaimel.

The system in Figure 5.4 with Code 2 is also evaluated on AWGN in the presence 

o f burst erasures at channel density = 2.975. Each sector is assumed to have 48-

bit full burst erasures. The test SNR is 19.5 dB, or at raw BER 6x10"^ excluding the 

erasures. Define A (dB) = SNR (dB)-SNR^, (dB), Table 5-V shows the simulation 

results with different noise over-estimation. As in the case o f  AWGN, appropriate
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noise over-estimation is necessary for good performance. Without noise over­

estimation ( A = 0 dB ), ail sectors simulated are in error. As A becomes larger, the 

performance improves. But when A > 12 dB, the performance deteriorates. The best 

A is around 6  dB.

TABLE 5-V

Code 2 coded system at 19.5 dB with 48-bit full erasures and noise over-estimation

Estimated SNR (dB) Sector Failure Rate

19.5, A=OdB «1

16.5, A=3dB 0.13

15.5, A=4dB 0.003

14.7, A=4.8 dB 0

13.5, A=6 dB 0

10.5, A=9dB 0

7.5, A=12dB ~1

This system is also simulated at SNR=19.5 dB with full erasures of different 

length, and the performance is shown in Table 5-VI. In the simulation, the noise 

over-estimation is A=9 dB. Roughly, this system is able to correct full erasures o f 

length 160 bits.

Intuitively, the system should be able to correct longer partial erasures than full 

erasures. Performance of the system at SNR=19.5 dB with 50% erasures is shown in
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Table 5-VTI. Also A=9 dB o f noise over-estimation is used. It can be seen that 280- 

bit half erasures can be corrected, almost doubled the length for full erasures.

TABLE 5-VI

Performance o f Code 2 coded system with different full erasures

Length of Defects (bit) Sector Error Rate
48 0/3000
80 0/5000
1 2 0 0/5000
160 0/5000
2 0 0 1/5000
240 41/5000
280 80/5000

TABLE 5-Vn

Code 2 system performance at 19.5 dB with 50% erasures

Length of Defect (bit) Sector Error Rate

48 0/3000

80 0/5000

1 2 0 0/5000

160 0/5000

2 0 0 0/5000

240 0/5000

280 0/5000

320 2/5000

400 61/5000

1 0 0



When a thermal asperity (TA) occurs, the analog-to-digital converter is saturated 

for a period o f time. For simplicity, the TA is modeled as a rectangular window in 

which the readback signals equal the maximum signal level possible for the PR target. 

Table 5-VTII shows the simulation result o f  the system with TAs. The length of 

correctable TA is 80 bits, which is not as good as for erasures. The reason, 

intuitively, is the fact that the TA is equivalent to a noise with variance 1 6 -4  = 12, 

while full erasures are equivalent to a noise with variance 4.

TABLE 5-Vffl 

System performance with different TA lengths

Length of TA (bit) Sector Error Rate

48 0/5000

80 0/5000

120 13/5000

In practice, TAs might be detectable. In that case, the channel values in the TA 

window can simply by zeroed out. The noise condition is therefore improved and the 

system must perform better than with full erasures o f the same length as the TA. 

Furthermore, one can perform channel detection excluding the TA window, and set 

the LLR to zero in the TA window, as done in [60].

It is verified through the above simulations that Q-LDPC codes perform well on 

MR channels with noise bursts. Since the SNR is quite high in these simulations, the
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results reflect the error correction capability on erasure-dominant systems. For a 

practical system, it is necessary to know the performance o f  the system at lower SNR. 

An extensive simulation was carried out for the system and shown in Figure 5.4 at 

SNR=17 dB with 80-bit full erasures. Out of 10  ̂ sectors simulated, only 3 sectors 

were in error, which corresponds to a sector error rate at 3x10"^ roughly. The bit 

error distribution o f the three sectors in error is plotted in Figure 5.6. It can be seen 

that the bit errors have been spread, and in fact scattered, therefore, an RS code 

concatenated to the Q-LDPC code would not be effective.

6 bit errors

38 bit errors
■OO ■ ■ ‘O

27 bit errors

O OO

O O D-

OO- 0-0 0

(338808--00- -<300...... O-

starting of e

G-O- r
OO ■ ■ ^

y  O

0 500 1000 1500 2000 2500 3000 3500
Bit Error Locations

Figure 5.6. Bit error locations o f the sectors in error.

4000 4500

5.4.2 Q-LDPC vs. RS systems on equalized ME^PR4

In the previous section, the Q-LDPC codes are examined on an EPR4-equalized 

Lorentzian chaimel with AWGN. The performance of the Q-LDPC coded system is
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compared with the uncoded system. In this section, media noise is included, and the 

performance of a Q-LDPC coded system is compared with current RS coded systems, 

on ME^PR4-equalized Lorentzian-Gaussian channels.

Shown in Figure 5.7 is the system diagram of a HDD system. For simulation 

purposes, a variation o f Figure 5.7 is shown in Figure 5.8, with the compensation for 

16/17 code rate included. The random data at the input of the MRC are assumed to 

be RS codewords, and pseudo-RS decoding is performed. The overall code rate is 

0.8425.

4862512 5 7 2 ,
bytes

516
bitsbytes bytes

User
Data

VAMRC RSRLL

CRC 
4 bytes

RLL
16/17

RS 
56 bytes

Figure 5.7. An RS coded system.

512 [572 I 
[bytes

516
bytes bytes

User
Data

VAMRC

CRC 
4 bytes

Pseudo
RS

RS 
56 bytes

Figure 5.8. Model for an RS coded system.

The proposed Q-LDPC system is shown in Figure 5.9. These two systems have 

similar code rates. The Q-LDPC code is Code 3 in Table 5-11 with rate 0.8890 and 

MSD J = 30, whose performance on ISl-free AWGN channel is within 0.1 dB from 

that o f Code 2, as shown in Figure 5.3. The overall code rate is 0.8298, close to the 

RS system.
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bitsbytes bytes

12341097
symbolssymbols

User
Data

BCJRMRC LDPCLDPC

CRC 
4 bytes

RLL
16/17

Figure 5.9. Proposed Q-LDPC coded system.

The two systems are simulated at = 2.5 on channels with purely AWGN, and

also on channels with 90% jitter noise power. Turbo equalization is not performed 

and at most 50 LDPC iterations are allowed.

Shown in Figure 5.10 are the results o f the Q-LDPC and RS coded systems under 

purely AWGN, with both sector error rate and byte (8-bit) error rate shown. At sector 

error rate 10^, the proposed Q-LDPC coded system outperforms current RS system 

by 2.2 dB. Also shown in Figure 5.10 is the sector error rate performance of the 

irregular B-LDPC code in Section 4.4, which is thought to be the best B-LDPC code 

for the ME"PR4 chaimel. It can be observed that not only the Q-LDPC code performs 

about 0.5 dB better than the irregular B-LDPC at SER = 10"^, the Q-LDPC curve is 

much steeper, indicating even larger gains at lower error rates.

Shown in Figure 5.11 are the results o f the Q-LDPC and RS coded systems under 

90% jitter noise power, also with both sector error rate and byte (8-bit) error rate 

shown. At a sector error rate o f 10^, the proposed Q-LDPC coded system 

outperforms current RS system by 1.4 dB.
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Figure 5.10. Performance on channels with purely AWGN.
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Figure 5.11. Performance on channels with 90% jitter noise power.
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The erasure performance o f the systems is summarized in Table 5-DC. With 

purely AWGN, the raw BER at SNR = 18 dB is approximately 3e-4; and with 90% 

jitter noise power, the raw BER at SNR = 15 dB is also around 3e-4. In both cases, 

the Q-LDPC system cannot correct 80-bit burst erasures.

TABLE 5-IX

Erasure performance of Q-LDPC equalized ME^PR4 system

Noise SNR Full Erasure Sectors
Simulated

Failed
Sectors

AWGN
l7dB 80-bit 10,000 29

l8dB 80-bit 5,000 3

Jitter Noise
14 dB 80-bit 10,000 153

15 dB 64-bit 5,000 6

Compared with the Q-LDPC coded EPR4 system, shown in Table 5-VI, both 

systems have raw channel BER 10' -̂10" ,̂ same erasure length, and same code rate, 

similar length, but the ME‘PR4 system does not perform as well as the EPR4 system. 

Since the only significant différence is the PR target, the channel BCJR output was 

examined and compared for the two systems.

Shown in Figure 5.12 are the channel APP output LLRs o f a sector in error, on the 

equalized ME“PR4 chaimel at the channel density in Table 5-DC and SNR=18 dB 

with 80-bit full erasures. It can be seen that the channel APP output LLRs in the
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erasure window have the same sign and almost the same close-to-zero magnitude. 

This can be easily explained as follows. Since the channel values in the erasure 

window are close to zero, a sequence of non-transitions will be the most likely data. 

This explains the similarity of the sign. Furthermore, the sequence of O’s and the 

sequence I 's  have very close probabilities, which explains the small magnitude. 

However, the non-zero values stand for the “leakage” from outside the erasure 

window due to the partial response.

Shown in Figure 5.13 are the channel APP output LLRs of a sector in error on the 

equalized EPR4 channel at the same channel density and SNR (17 dB) as in Figure 

5.6 with 80-bit full erasures.

For sectors in error, the average LLR magnitude inside the erasure window is 

obtained through simulation. So is the average LLR magnitude outside the erasure 

window. The ratio o f  the former to the latter is found to be 0.41 for the ME^PR4- 

equalized channel and 0.23 for the EPR4-equalized channel. The large magnitude in 

the erasure window represents large noise. Therefore, the erasure performance o f the 

ME^PR4 system is not as good as the EPR4 system.

If the full erasure or TA is detected, then by zeroing the channel APP output 

LLRs in the erasure window, in all cases in Table 5-EX, the 80-bit noise bursts are 

correctable.
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Figure 5.12. Equalized ME^PR4 channel BCJR output with 80-bit full erasures.

EPR4

rii<«lc \
----- Normal
-----Disk Defect

1 j 1
11r 111 ililull'l llluili

500 1000 1500 2000 2500 3000 3500 4000 4500
bit

Figure 5.13. Equalized EPR4 channel BCJR output w ith 80-bit full erasures.
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5.5 Array codes

Array codes refer to a class of codes defined on a two-dimension array and are 

very good for burst error detection and correction [73]. They can be constructed with 

the symbols lying in rings [76]. Algebraic decoding for array codes is similar to that 

for RS codes. Recently, array codes were found to have binary low-density parity- 

check matrices, and therefore are LDPC codes [74],[75].

For a prime number p, the codewords o f  an array code can be defined as a square

matrix =[Ao,A ,,...,Ap_,], where each A,, / = 0 , 1 , 1  is a column vector

and also a symbol. Parameter r  defines the number o f parity check symbols and A is 

a codeword if  for all k = 0,1,..., r  -1  and / = 0,1,..., p  -1 ,

p - i

y=o
=  0 . (5.20)

where (»)^ is the modulo-p residue.

The constraints in (5.20) can be rewritten as

/  /
/  <T

I
_P-1

■ Ao ■

A,
■ Ao ■

A,

> p - . .

=  H

. V . .

= 0 (5.21)

I  O-"-' ...

where <r is p x p  single-cyclic-shift matrix for a column vector o f length p.

cr =
0 1 0
0 0 I
1 0 0

for p  = 3, for example. The rpxp~  parity check matrix H in (5.21)
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is a sparse matrix with column weight W^=r and free o f cycles o f length four. 

Therefore the array code is in fact a B-LDPC code.

Since each submatrix of H containing p  rows adds up to an all-one row vector.

the rank o f H is r{p  — 1) +1. Thus the code rate is I —r ( p - I )  + l

Array codes can be shortened by using fewer columns of H , for instance

/  I
I  <y

I

/  cr"-' ... &

defines the parity check matrix of a length-A: array code with /7-bit symbol size. 

Also, short cycles can be eliminated to improve the performance with BP decoding

[74].

With algebraic decoding, an array code with r  check symbols is able to correct 

one symbol error and r-2 symbol erasures, or r  symbol erasures. The burst erasure 

recovery capability is better than B-LDPC and Q-LDPC codes. For example, the 

array code with /? = 71, A: = 65, and r  = 7, thus code rate /? = 0.8936 is able to 

correct seven symbol erasures. If the erasure is a single consecutive bit sequence, this 

is at least (7 —l)x71 + l = 427 bits, better than the B-LDPC and Q-LDPC codes 

discussed in Section 5.3. Also, multiple erasures can also be recovered with 

guarantee, which is not addressed for B-LDPC and Q-LDPC codes. It is interesting 

that with MSD code design, small results in large MSD thus large (guaranteed)
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burst erasure recovery capability, however, we see here large r  (i.e. ^  ) results large 

burst erasure recovery capability. One thing should be noted, though, that the error 

recovery is done in one LDPC iteration in the former case but in more than one 

iteration in the latter case, if BP decoding is used.

With BP decoding, the burst erasure recovery capability should not be inferior to 

that with algebraic decoding. Also, it is shown in [74],[75] that the performance o f 

sector size high-rate array codes is slightly inferior to similar random B-LDPC codes.

Array codes are potentially useful on MRCs in which noise bursts are detectable 

and occur more often than random errors. When random errors are dominant, a 

random B-LDPC code is a better option because o f its small and Q-LDPC is an 

even better option because of its good performance.

5.6 Conclusions

Q-LDPC coded MR systems were described in this chapter, and code design for 

burst erasure was developed. On an equalized EPR4 channel, it is showm that a Q- 

LDPC code performs very well with random noise and noise burst. On an equalized 

ME^PR4 channel, it is shown that under random noise, a Q-LDPC system 

outperforms an RS system with similar code rate.

BP decoding was extended to Q-LDPC codes and an FFT technique was adopted 

for efficient decoding. In addition, a logarithm domain efficient decoding algorithm 

is developed. However, it is shown that Q-LDPC codes are about ten times more 

complex than B-LDPC codes.
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Array codes are good codes in terms of burst erasure recovery. However, the 

performance o f array codes with both random noise and noise burst needs further 

research.
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CONCLUSIONS AND FURTHER WORK

Three coding schemes, for which soft iterative decoding is performed, were 

investigated for usage in the next generation of MR systems. Block turbo codes 

achieve moderate coding gains, but suffer either low code rate or potentially high 

error floor. B-LDPC codes provide substantial gains under random noise and show 

no error floor up to BER=10 \  At moderately low BER (~10*®), typically very few 

iterations are actually performed. However, there are many (several tens) bit errors 

given a sector error. Q-LDPC codes also provided substantial gains under random 

noise, outperforming RS codes by several dB. Q-LDPC codes are also robust to noise 

bursts. Efficient and simplified Q-LDPC decoding was investigated, but the decoding 

complexity o f Q-LDPC codes is still about an order o f magnitude larger that B-LDPC 

codes.

LDPC coding seems to be promising for MR systems. In systems where both 

random noise and noise bursts substantially contribute to the errors, a near-term 

solution might be the concatenation o f a very-high-rate B-LDPC code and a RS code. 

In such a system, the role of the B-LDPC code is to correct some or all random bit 

errors and reduce the number of symbol errors to within the ECC capability o f the RS 

codes. A single high-rate Q-LDPC code might be the ultimate solution should the 

semiconductor technology allow.
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The performance of array codes on MRCs needs to be investigated further, 

especially on noise burst dominant environments.

As might be noted, all results presented are at some BER larger than lO"*. This is 

probably the limit for computer simulation, but still far from the actual operating 

point. Experiments must be carried out before any final conclusion can be made. 

This is the more important but also more difficult, or even impossible, future work.

This dissertation includes the following original contributions.

• Product codes were introduced for MR systems, and the system performance 

was evaluated.

•  B-LDPC coded MR systems were introduced, and substantial gains were 

achieved. The characteristics of the iterative decoding were investigated. It 

was shown that RS-LDPC concatenation is not beneficial in systems where 

random errors are dominant.

•  Q-LDPC coded systems were proposed, which improve the system 

performance under long erasures. An efficient decoding algorithm was 

developed for Q-LDPC codes. Q-LDPC systems were shown to outperform 

RS systems.
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APPENDIX A. SOFT OUTPUT CHANNEL DETECTION 

AND DECODING

The output of a PR channel detector or an error-correcting decoder may be hard 

decisions (0 or 1) or probabilities associated with the bit being a one or a zero, called 

soft decision. In a system with multi-stage decoding and/or detection, soft decision 

from the previous stage may improve the performance of the next stage.

Suppose the data vector x is transmitted, and the received vector is r, the 

required soft information is P(x, = 11 r) or equivalently P(x, = 0 1 r) , where jc, stands 

for the / -th bit in the transmitted vector. A device that performs this function (MAP 

or approximate) is called an a posterior probability (APP) module. Bahl-Cocke- 

Jelinek-Raviv (BCJR) and soft output Viterbi algorithm (SOVA) are two techniques 

use to implement the APP module.

A.1 BCJR algorithm for PR channels

The BCJR algorithm is an efficient realization o f the MAP detector for AWGN 

PR channels (in general, any Markov process) with finite number o f states. Using the 

trellis of the given PR polynomial, the algorithm updates the conditional probabilities 

in a recursive fashion. The following description is based on [34].

Let X = {x,,X2, ” ,x^}. The prior information for x, is known as.
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The noiseless channel vector is corrupted by the noise vector n = {n^,n2 ,•^^,nf,}, 

resulting in the received noisy channel vector r  = .Tv} - This Markov process

can be depicted as a linear trellis diagram with iV+1 time stages, from 0 to N, driven 

by X, and M  states in each stage. Let the M  states in the state space be labeled as 0, 

1, A/-1. The state o f the process at time stage / is labeled as 5,, where

i = The initial s t a t e a n d  final state are known.

In the following, the notation r/ is defined as the vector r. , .

The state transition probabilities are known as

Pint \m') = P{Si = m | 5,_, =m') (A.2)

and

Define

P(xI m ',/n) = P(x, = X I 5,_, = m \ 5, = m) (A.3)

a, (s) = P(Si = s, r,' ) ( A.4)

= (AS)

and

Xi (s',s) = P(Si = ̂ 1 5 . _ ,  = J O
= = s 15,_, =  f  ')P(ri 15, = s, 5,._, = J •)•

(A.6)

In (A.6), P(S, = sl5,_, =5*) is the prior information, and P(r  ̂ |5, =5")

depends on the noise vector n , or simply on «, if  the noise is independent, a^is)
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and fif/is) are initialized according to the initial and ending states. Then the 

recursion is done as

a, W  = ^  ÛT,-, (s ")y, ( A.7)
s'eS

and

Pi (^ ) = S  ^ ")A+t ") • ( A.8)

The soft information, which is the likelihood ratio, for x,. is calculated as

A(x,.) = ̂ ^ -------------------------- (A.9)
/>(x,=-l|r,^) ^a ,.,{s ')rXs\s)PXs)

s-

where S* and S~ are the set o f  transition from state f '  to f  that is driven by input 

+ l and -1 , respectively.

A(x,) can be rewritten as,

A(x,) = A '^ C x ,)  A“ (x,) (A. 10)

in which A“'(x,.) is called the er/r/n^/c/n/o/vnar/ow.

The above algorithm is a MAP algorithm. A similar recursive algorithm, Log- 

MAP, can be realized in the logarithm domain [71]. Also, the MAX-Log-MAP 

simplifies Log-MAP by using table look-up instead of logarithmic computations [71].

A.2 SOVA for PR channels

The BCJR algorithm yields optimal bit-wise (symbol-wise) estimation for ISl 

channels with AWGN. However, the complexity is high since all possible paths are
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traced. SOVA modifies the VA to produce soft information, and is a low complexity 

sub-optimal detection algorithm [35]. SOVA is used in Chapter 1 in block turbo 

coded MR channels.

Shown in Figure A.1 is trellis section for a PR channel. In addition to the VA, 

soft information is stored for each bit on every survivor path. The soft information is 

defined as the probability o f a hard decision being in error.

1   .______   state

Figure A. 1. Trellis diagram for a PR channel.

In the update at time / at state s , two candidate paths are compared and the one 

with smaller Euclidean path metric is selected. Denote the selected path with path 1 

and the other path 2, and their path metric A/, and M ,, respectively. Assuming 

AWGN, the probability o f selecting the wrong path is

1
P s J

The probability of the J-th bit being wrong is denoted as Pj on each survivor

path. At places where the hard decisions differ on path 1 and path 2, the soft 

information is updated as.
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or in the log-likelihood ratio domain in which Lj = log

Pj * - P j ( \ - P j ) P s j  (A.I1)

^ - P j

Pj

(A.12)
e +e

where A = A/  ̂— A/,.

At the begirming o f the SOVA, Pj  is initialized to the A^”"''(Xj) in (A.1). 

Similarly to (A. 10), the output likelihood ratio can be written as

A(x,) = A'’̂ ”̂ (x,)-A“'(x ,).
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APPENDIX B. PRECODED PR CHANNELS

Two questions are to be answered in this appendix.

1. What is the relationship between the soft output and the hard decision, or can 

the soft output be used to predict performance?

2. What is the effect of the precoder on performance?

The effect o f the precoder on PR channels performance has been widely noticed

[14],[16],[I7], In order to simplify the description o f the quality o f the soft 

information, mean reliability, is defined as [16]

n  = E  { =  I) -  p{x, = -1)]} , (B. 1)

where x, is the i-th bit of the recorded data vector. It is shown in [16] that is 

consistent with the hard decision performance.

B.l Ideal PR channels

In this test, the channel is assumed to be an ideal PR channel. The output o f  the 

channel is corrupted by AWGN. The SNR for ideal PR channels is defined as the 

ratio o f the mean signal power over the noise variance. For example, the energy in 

the EPR4 polynomial 1 + D + D* + is 4.
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Shown in Figure B.l is the mean reliability o f PR4, EPR4 and ME^PR4 with

different precoding, namely no precoding, —-— and — precoding. The results
1@D 1©D^

are obtained by Monte-Carlo simulation o f 100 length 4096-bit blocks.

1
0.9 
0.8 
0.7 

^  0.6 
5 0.5 
I  0.4 

0.3 
0.2 
0.1 

0

SNR (dB)

-X — MEEPR4. no pracodor — B---- MEEPR4,

•X — EPR4, no procoder — -B — EPR4,1/(1+D)

• X  - -PR4, no precoder - - a  - -PR4,1/(1+D)

 A  MEEPR4,1/(1 *0*2)

-  -A — EPR4,1/(1 *0*2) 

- ■ ■ A -  -PR4,1/(1*0*2)

Figure B. 1. Mean reliability o f ideal PR channels with different precoders.

At the SNR range shown, for a fixed precoding, PR4 yields better reliability than 

EPR4, and better than ME“PR4. This is consistent with [16] in that long ISI results in 

more uncertainty. However, the effect o f precoding on the mean reliability is not so

simple. For PR4 and EPR4, no precoding yields best reliability. 1
1 © D -

T next and

1
1 ©D

worst. For ME PR4, however, no precoding yields the best reliability. 1
1 © D
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next and — —̂rr worst. It can thus be concluded that the effect o f precoder depends 
I©D^

on the PR channel.

B.2 MR channels

Now we consider MR channels. The step response is assumed to be Lorentzian- 

Gaussian as in Section 1.1, and the channel is subject to both AWGN and jitter noise. 

The chaimels are precoded by different precoders as in the previous section, and are 

equalized to EPR4 or ME‘PR4. At the output of the channel detector, the noise is 

correlated. The SNR is defined as in (1.10).

Shown in Figures Figure B.2 and Figure B.3 are the mean reliability and BER for 

equalized EPR4 and ME^PR4 channels with pure AWGN, with different precoding. 

The following observations can be made:

1. No precoding yields worst mean reliability throughout all SNRs shown. 

Recall that on ideal PR channels, no precoding yields best performance, as 

shown in Figure B.3

2. The mean reliability curves have a crossover. At low SNR, precoder —-—  is
1 © D

1©D"
not as good as — —p > but the opposite is true at high SNR.

3. BER is consistent with the mean reliability. Large mean reliability 

corresponds to low BER. BER curves have a crossover at the same SNR as 

mean reliability curves.
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Figure B.2. Mean reliability and BER of equalized EPR4 Lorentzian-Gaussian 

channel with different precoders, =3.0127, AWGN.
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Figure B.3. Mean reliability and BER o f equalized ME PR4 Lorentzian-Gaussian 

channel with different precoders, = 3.0127, AWGN.

For equalized EPR4 and ME"PR4 channels with 90% jitter noise, similar

conclusions can be made except that at low SNR 1
1©Z)

yields the worst

performance.

In coded MR channels, as the systems shown in Chapters 3, 4 and 5, low raw 

BER at the chatmel detector corresponds to good overall performance and the overall 

system performance is very sensitive to that. The raw BER at the chatmel detector is 

even more important in systems in which turbo equalization is not performed. 

Therefore, appropriate precoding needs to be carefully chosen.
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