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PREFACE 

In recent years the exact knowledge of the maximum stress and its 

location in the member has become more important, especially in cases 

where weight is a critical factor in the design. In some cases the mem­

ber might be designed to endure a limited number of stress cycles so 

that the member could be lighter in weight. In this design the stress 

cycles to failure must be known so that the member can be replaced before 

failure occurs. 

This condition makes the index of notch sensitivity a critical part 

of the design. The relation of the index of notch sensitivity to the 

fatigue limit is presented in this thesis. Three variables that affect­

ed the change of the index of notch sensitivity are also presented. 

The author wishes to recognize his advisor, Professor W. H. Easton, 

whose assistance and comments throughout the project were indispensable. 

To the Division of Engineering Research and Experiment Station of 

Oklahoma State University, whose financial support made this thesis 

possible, I express my sincere gratitude. 
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DEFINITION OF TERMS 

Nominal stress is the local stress as calculated by elementary strength 

of materials equations. 

Stress-Cycles curve is the curve obtained by plotting the fatigue limits 

with their corresponding number of stress cycles to failure. 

Enduran-2§ limit is the maximum stress to which the specimen can be sub­

jected an infinite number of times without failure. 

Fatigue limit is the maximum stress to which the specimen can be subject­

ed for failure to occur at a specified number of cycles. 

Limit stress is the maximum stress to which a part can be subjected with­

out being damaged. 



CHAPTER I 

INTRODUCTION 

It is a well known fact that the limit stress for a given specimen 

subjected to dynamic loading is lower than for the same specimen sub­

jected to static loading. Up to the present date there has been no 

completely adequate theory formulated to explain this phenomenono It 

is therefore necessary to test the specimen by subjecting it to dynamic 

loading conditions and at the same time controlling the environment to 

simulate the actual working environment. The specimen may be subjected 

to dynamic loading by complete reversal of the load from tension to 

compression, by fluctuating the load from a maximum tension to a mini­

mum tension, or by fluctuating the load from a maximum compression to 

a minimum compression. The type of loading for the test must corre­

spond to the actual working type of loading whether axial, bending, or 

torsional. 

In most cases the limit stress for a specimen subjected to dynamic 

loading is the maximum stress that will not cause failure regardless of 

how many times this maximum stress is repeated. In some cases the specD 

imen may be designed to endure a limited number of stress cycles. 

It has been proven in the past by methods such as the theory of 

elasticity and photoelasticity that at abrupt changes in cross-section 

the localized stress is much higher than the nominal stress as calcu­

lated by elementary strength of materials equations. The ratio of this 

1 



theoretical maximum stres&· to-, the- nominal stress ia ealled the theore.t-

ical stress concentration factor o Curves ar.e available- which give the 

theoretical stress concentration factor for a given geemetry and type 

* of loading. (1). The stres&'. eoncentration factor provides a quick way 

to find peak· stresses.. Thus, the tth.eoret"i·cal maximum stress, 0-max, 

is the product of the. nominal &tress and' tlie· theor.etica·l stress con-

centration factor.. In equation. form. this. relation is-i 

~ax = Kt,· o;om 

At the enduranee,,,limit and at differ.ent···fatigue limits tor a~ 

dynamically loaded specimen, a special eoncentrat-ion factor· i.s, used 

which will be designated by Kr and called the strength reduction factor .. 

The strength reduction factor is the ratio of the fatigue limit deter-

mined from a polished unnotched specimen divided by the fatigue limit 

determined from a notched specimen. 

The devia,tion at· Kr fr0m· Kt is described by- _the. term index of 

notch sensitivity, q, which is. that prop:e-rty of th.&. material which 

determines the extenrt t0 which a stress eoncentraticm of known. th:eoret--

ical magnitude is effective in reducing the· strength ( 2=)· .. .. The 

strength reduction factor and the theoretical stress concentration 

factor are related by the index of notch sensi ti vi ty. The relationship 

of these three variables is expressed by the equation 

q = 
Kr - 1 

Kt - I 

* . : Numbers in parenthesis refer tothe bibliography. 



CHAPTER II 

STATEMENT OF THE PROBI.EM 

When a stress-cycles curve has been obtained from experimental data 

for an unnotehed specimen, it follows that different points along this 

curve give the stress which will cause failure to occur at the corre­

sponding number of stress cycles. This stress will be assumed to be the 

theoretical maximum stresso The nominal stress on a notched specimeni 

which would produce failure at any selected number of stress cycles, can 

be predicted theoretically by dividing the corresponding stress as found 

from the unnotched specimen's stress-cycles curve by the theoretical 

stress concentration factor. 

It is known that the actual stress-cycles curve for the notched 

specimen does not follow the predicted curve mentioned above. Thus, Kt 

is not applicable for use in finding the maximum stress for a dynam­

ically loaded specimen. 

This research investigates the index of notch sensitivity at dif­

ferent fatigue limits of the notch specimen shown in Figure 2. The 

material used for these specimens was C 1041 hot rolled steel and the 

specimens were subjected to an axial fluctuating tensile load. 

Three variables were investigated to explain the changing value 

q as the fatigue limit changed from a high stress to a low stress. 

The effect of local yielding will be investigatedo Strain meas­

urements will be taken at the root of the notch when the specimen is 

under the influence of a high dynamic load. 

3 
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An investigation of cold working will be made by repeating the 

stresses at high loads. Two different maximum stresses, well above the 

elastic limit, will be studied to show their relative effect due to cold 

working the material through stress cycling. In accordance with the def­

inition of cold working, the grains must be permanently deformed. Cy­

cling near the endurance limit causes a change in strength properties 

similar to that of cold working, but should not be confused with cold 

working since no permanent deformation occurs. 

Measurements of any possible geometry change of the notch will be 

taken on three different specimens having different maximum loads. 

These measurements will be taken by using the optical comparator when 

the specimen is 'l:lllder no load. 



CHAPTER III 

PROCEDURE AND EQUIPMENT 

To find the stress-cycles curve for, a gt,;en specime11, a number of 

test specimens are ·needed. The f ir8't -spe·cimen is -dynamically loaded at 

a high stress which causes failure after a f -ew cy,cl&s. The se·cond spec­

imen is loaded at a somewhat lower maximum stress than that of the firsto 

The corresponding number of cycles required to cause failure is greater 

than the number of cycles to failure of the first specimen6 Each time 

failure occurs, a new specimen replaces the fractured specimen. The new 

specimen is subjected to a lower maximum stress, which results in longer 

life of the specimen. This procedure is followed until one of the last 

specimene is dynamically loaded at a certa-in maximum stress at which 

failure does not occur. ·When this point is reached the stress-cycles 

curve is almost parallel to the aos cissa... ''rhe n~ber of cycles is 

plotted along the abscissa.. The last specimen does not fracture, but 

endures for a certain number of cycles after which the test is stopped. 

The arbitrary number of stress cycles at which the test is stopped is 

usually in the range of one to ten million cycles (3). This, however, 

depends upon the material tested. 

Note that the test is started by subjecting the first specimen to 

a high load instead of a low load. This allows a faster control of the 

test because failure does occur. If the series of tests i6 begun by 

testing the first specimen .at a stress that is too low, much time may 

5 
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expire before it i s discovered that the stress is below the endurance 

limito In this type of test, . the limit stress should be approached 

from the higher stresses. 

The conditions under which the specimens were tested were ambient 

atmospheric temperature, a constant speed of 460 cycles per minute, and 

a fluctuating tensile load. The fatigue machine used in this test was 

the UHP 20 axial loading fatigue testing machine, made by the Losenhousen 

Company of Germany. This machine has a dynamic loading capacity of 

tensile load variations from 22,050 pounds maximum to 300 pounds mini­

mum. The machine cannot alternate the load from tension to compression, 

but can only fluctuate the load from a maximum load to a minimum load. 

This type of loading is illustrated in Figure 1. Plate I is a view of 

the fatigue testing machine used for this test. 

The stress-cycles curve was obtained by testing a number of speci­

mens. Each specimen was subjected to a cyclic fluctuating load varying 

from a minimum load of 300 pounds to a maximum load. A different maxi­

mum load was used for each specimen. This procedure was repeated with 

each specimen until the endurance limit was found. 

The Goodman Diagram for SAE 1045 indicates that for this particular 

type of fluctuating load, the elastic limit of the material is its en­

durance limit (4) •. The material C 1041 hot rolled steel, was subjected 

to a static tensile test to find its stress-strain relationship. The 

Stress-strain curve thus obtained is shown in Figure . lo~ It -indicates 

that the elastic limit of the material is 50,000 psi. This was used 

as a guide in selecting the maximum stresses. 

In order to find the dynamic strain at the root of the notch, the 

strain measuring system was calibrated, and the strain was read directly 
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PLATE I. FATIGUE TESTING MACHINE 
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from the oscilloscope screeno This eliminated the difficult and almost 

impossible method of using the wheatstone bridge alone. · 

The strain measuring instruments included the oscilloscope, a wheat­

stonebridge, and a SR-4 strain gage of 1/16 inch gage length which was 

cemented in the notch root. These lllstruments are shown in Plate II as 

they were arranged for the test. 

The SR-4 strain gage was one of the resistances in the wheatstone 

bridge. When the SR-4 strain gage was elongated by the notch strain, 

the voltage drop across the SR-4 strain gage increased,o Thus, a voltage 

change, which was proportional to the strain, was applied to the oscillo~ 

scope and produced a wave whose amplitude varied with the notch strain. 

This method allowed the dynamic strain to be read from the oscilloscope 

screen. 

The increase in strength by cold workim.g can be detected by an 

accompanying increase in hardness. This fact was the basis for cheek­

ing hardness changes as a result of cycling at stresses above the elastic 

limit. The ha.rdness at two stress levels was measured to determine the 

amount of cold working in the notch cross-section of the notched speci= 

mens. The first specimen was stressed at a maximum of 60,000 psi for 

10,000 cycles. The .second specimen was stressed at a maximum of 35,000 

psi for 100,000 cycles. In this discussion the stresses referred to are 

nominal stresses and the term maximum stress is the peak cyclic value of 

the nominal stress as shown in Figure 1 •. The number of cycles in each 

case was chosen far enough away from the point of failure so as not to 

cause fracture of any of the fibers. The specimens were cut in two at 

the notch and the hardness profiles were found by using a Rockwell 

Hardness Tester. A sharp cutting tool was used to cut the specimens 
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in two so that any possible additional cold working by the cutting tool 

would be negligableo 

A change of notch radius was anticipated since local yielding was 

detected by strain measurements at that point. After cycling, the speci­

men was placed in an optical comparator having a magnification of one 

hundred to oneo Three points were chosen close to the root from which 

the notch radius was found. The notch was checked after the specimen 

had been subjected to several different numbers of stress cycles. 

In preparing the specimens for the test, care was taken in polishing 

them to avoid cold working on the surface. The polishing steps are list-

ed below and were applied in the order listed. 

1. No. 60 emery cloth 

2. Noo 100 emery cloth 

3o Noo 150 emery cloth 

4o Noo 320 emery cloth 

5. Crocus cloth 

A light film of oil was put on the polished surface to protect it 

from corrosion. 

The material used in all of the test was C 1041 hot rolled steel. 

The geometry of the notch and design of the specimen are shown in Figure 

2. The radius of the notch was designed so that a one-sixteenth inch 

SR-4 strain gage could be attached at its rooto Although this specimen 

does not have the exact dimensions of the ones discribed in the ASTM 

Manual .Q!l Fatigue Testing, the specimens listed in this manual were 

used as a guide. 
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CHAPTER IV 

EXPERIMENTAL TEST DATA 

Part A 
Stress-Cycles Data 

Experimental stress-cycles curves for the unnotched and notched 

specimens are shown in Figure 3. The experimental data, shown in Tables 

I and II,were obtained from tests performed in the Oklahoma State 

University Civil Engineering Testing Laboratory. 

TABLE I 

STRESS-CYCLES DATA FOR UNNQTCHED SPECIMEN 

Material - C 1041 hot rolled steel 
Dimensions - see Figure 2 

Specimen max. load max. load diameter area stress cycles 
mt lb in. sq in. psi 

1 6.63 14600 0.501 0.197 74200 2.180x1a3 

2 6.50 14300 0.504 0.199 72000 3.920x1o4 

3 5.92 13020 0.501 0.197 66000 6 .. 020x1o4 

4 5.43 11930 0.496 0.193 62000 9.560x1o4 

5 5.20 11420 0.500 0.196 58200 1.959x105 

6 4.92 10820 0.498 0.195 55600 8.283x105 

7 4.57 10080 0.492 0.190 53000 2.620x106 

* 8 4.48 9850 0.501 0.197 50000 5.000x106 

* did not fracture 
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TABLE II 

STRESS-CYCLES DATA FOR NOTCHED SPECIMEN 

Material~ C 1041 hot rolled steel 
Dimensions - see Figure 2 

Specimen max. load max. load diameter area stress cycles 
mt lb in. sq in. psi 

9 2.35 5180 0.317 0.079 65600 lo8.3xlo4 

10 2.26 4980 0.325 0.003 60000 4.32x1o4 

11 1.88 4140 0.315 0.078 53000 5.68xlo4 

12 1.70 3730 0.317 0.079 47200 l.55xl05 

13 1.48 3250 0.325 o.08.3 39200 7.20x105 

14 1.29 2840 0.317 0.079 36000 3.27xlo5 

15 1.25 2740 0.320 0.0005 34000 2.50x106 

*16 1.15 2530 0.317 0.079 .32000 5.00x106 

· * did not fracture 
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Part B 
Local Yielding 

16 

Local yielding was investigated on one of the notched specimens at 

a nominal stress of 44,800 psi. Since the theoretical stress concentra­

tion factor is 1.78*, the theoretical maximum stress was well above the 

elastic limit of the material. 

It was noticed that as the number of stress cycles increased, the 

local strain at the notch root decreased steadilyo Table III gives the 

data of the test. In Figure 4 a plot of the experimental data is shown. 

So as not to miss any possible yielding during the first few cycles, the 

maximum load was applied and released slowly by use of the static loading 

device. The maximum strain for the first cycle, as given by the strain 

measuring system, was 0.00209 inches per inch. The second, third, fourth, 

and fifth cycles were also applied by use of the static loading device. 

The result$ of the first five cycles are shown to a reduced scale on the 

top curve of Figure 4o 

Figure 4 indicates that the yielding was more severe in the first 

few stress cycles. The curve is much steeper at stress cycles below 

fifty. The elbow of the curve starts at about fifty stress cycles. 

Past this point the strain decreases only slightly and approaches a 

constant value as the number of stress cycles is increased. 

It is noticed from the stress-strain relation, which is shown in 

Figure 10, that the elastic limit is 50,000 psi and the strain corres­

ponding to this stress is 0.00166 inches per inch. Locating this 

*Figure 11 in the appendix gives a special from of Neuber 1 s 
nomograph, ,from which Kt was found. 
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TABLE III 

.STRAIN MEASUREMENTS ON A NOTCHED SPEC !MEN 

amplitude * maximum Strain stress 

scope ino/in. cycles 
divisions 

8 .. 4 0.00209 1 

7.8 0.00193 2 

7 .5 0.00185 3 

7.3 0.00180 4 

7 .. 2 0.00177 5 

6.9 0.00169 50 

6.6 0.00161 100 

6.3 0.00153 2000 

6 .. 1 0.00148 4000 

5.9 0.00142 6000 

5 .. 7 0.00138 8000 

5o3 0.00127 10000 

* The calibration curve is given in Figure 9 of the appendix.. From 

this curve a calibration equation, equation (a) of the appendix9 

18 

was derived. This equation was used to calculate the maximum strains 

listed in Table IIIo 
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strain on the curve in Figure 4 it is seen to be at the elbow of the 

curveo From this it may be said that the amount of yielding depends 

upon the amount by which the maximum stress exceeds the elastic limito 

The strain measuring system indicated there was a small amount of 

yielding at the root of the notch even after the local stress in the 

notch root was below the elastic limito This yielding might be·· said 

to be the residual effect of the original plastic deformation. 

The nominal strain corresponding to a nominal stress of 445800 psi 

is 0000146 inches per incho Again looking at Figure 4 it is seen that 

the curve levels off at a strain slightly below 0000146 inches per incho 

The final strain would not be expected to go lower than the nominal 

straino The following is offered as a partial explanation for this 

slightly lower strain o 

Any deviation between the measured strain and the actual strain 

can be explained partly by Figure 5o The maximum stress is located at 

point mo The elongation of the SR-4 strain gage is not uniform through­

out its length, but the unit elongation is a maximum at point mo This 

means that the voltage drop across the SR=4 strain gage is not as large 

as it would be if the entire gage length had been elongated uniformlyo 

The result is the strain indicated by the strain measuring system is 

smaller than the true straino 
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Part C 
Work Hardening 

21 

Hardness measurements were taken at different points in the cross-

section of the notch to detect any cold working due to the stress-cy~ 

cling. The result of this hardness check is shown in Figure 6. It is 

recognized that consistant hardness measurements are rather difficult to 

obtain even when the material has been annealed. The hardness was 

checked at different points at the same radius of the cross~section. 

The values at the same radius were within one half of a Rockwell B num-

ber. It is believed that this is a close representation of the hardness 

profile for the given notched specimen which had been previously sub-

jected to 10,000 stress cycles fluctuating between the maximum stress 

of 60,000 psi and a minimum stress of 3,680 psi. 

Before the specimen was subjected to the stress cycles, a small 

slice was taken off the end of the twelve inch specimen. The hardness 

of this slice was assumed to be the original hardness in the notch 

before stress cycling. For an annealed specimen this assumption would 

be more nearly correct. The two specimens used in this particular part 

of the test were annealed. The original hardness in the notch cross-

section was Rockwell 80 B. 

$ince the largest plastic deformation occurs at the root of the 

notch, the hardness at that point would be expected to be higher than 

the hardness in the center of the cross-section. The test data does 

not show this. 
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Part D 
Notch Geometry Change 

The radius of the notch was checked in the optical comparator at 

different cycle intervals, the load fluctuations being the same for each 

cycle. This procedure was repeated for fluctuating loads of three dif-

ferent maximum magnitudes. The first maximum load produced a nominal 

stress of 60~000 psi which was well in the plastic range. The other two 

maximum nominal stresses were 45,000 psi and 30,000 psi respectively. 

It was expected that any change in geometry of the notch would take 

place in the first few cycles, since the local yielding was more severe 

in the first few cycles. The load was applied slowly for the first five 

cycles, and the notch was checked in the optical comparator after each 

cycle for a permanent change in geometry. 

No change in the radius was noticed in any part of the test. It 

should be noted, however, that the notch tested had a 1/16 inch radius. 

If the notch had been one with a smaller radius, a change might have 

been detected. 

Since local yielding was detected by strain measurements, it indi~ 

cated that there was a change in notch geometry. Thus, although the 

test did not show a change in notch radius, it seems probable that there 

was a minute change which could not be detected. 

--



CHAPTER V 

DISCUSSION 

It is desirable to note some of the possible values that the index 

of notch sensitivity can have. First, the stress-cycles curve for the 

unnotched specimen was obtained. From this curve a predicted stress-

cycles curve for the notched specimen was obtained by dividing fatigue 

limits of the unnotched specimen by the theorectical stress concentra-

tion factor. 

The stress-cycles curve for the notched specimen might be expected 

to follow this predicted curve, since the maximum stress is the govern-

ing stress for fatigue failure. However, the actual stress-cycles curve 

did not follow the predicted curve, but had a greater slope at the higher 

stresses. 

Since by definition 

q :: 

and 
,,,-r (unnotched specimen) Vnom 

/"I (notched specimen) vnom 

as the number of cycles to failure decreases q also decreases.. If the 

stress-cycles curve for the notched specimen intersects the stress-cycles 

curve for the unnotched specimen, q will be zero at the point of inter-

section. 
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Thus, when 

c:Tnom (unnotched specimen) = ~om (notched specimen) 

Kr : 1 

1 - 1 
and q = 

q = 0 

Likewise, the value of q will be unity when the stress-cycles curve 

for the notched specimen intersects the predicted stress-cycles curve 

for the notched specimen. 

Thus, when 

Ct"nom (notched specimen) -- rT (predicted) 

Kt - 1 
and q = 

Kt - 1 

q - 1 -
The index of notch sensitivity varies from zero to unity between 

these two points. 

Figure 3 shows that at high loads the fatigue limit of the notched 

specimen approaches the fatigue limit of the unnotched specimen. This 

means that the strength reduction factor becomes smaller as the fatigue 

limit increases. The changing value of the strength reduction factor 

also corresponds to a changing value of the index of notch sensitivity. 

As the strength reduction factor increases with decreasing fatigue limit, 
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the index of notch senSi ti vi t~ increases. Figure 7 shows th':e values of 

q as a function of the number of stress cycles. I ndirectly q i s a func-

tion of local yielding, cold working, and the change of notch geometry. 

In chapter four it was shown by means of the strain gage r eadings 

that there does exist local yielding. As the maximum stress in a spe~ · 

cifi c notched specimen decreased, the potential l ife of the specimen 

operating under given loading conditions was increased. This follows 

since the fatigue life of the material depends upon its maximum stress. 

In Figure 3 it is shown that for a nominal stress of 40, 000 psi on a 

notched specimen, its life was increased 300,000 cycles partly as a 

result of local yielding. 

In Figure 8 it will be noticed that the stress ~riax at the root 

of the notch was greater than the elastic limit and plasti c deformation 
I 

occured. Upon unloading, a residual compressive stress, 0-min' ·is l eft 

in the outer fibers while the core is pre-stressed in tension. During 

th xt 1 th . t /7'" ,, ch h e ne eye e, e maximum s ress, v max, does not rea as igh a 

peak as did the first maximum stre:s:s. Each stress 'cycle reduces the 

maximum root stress by this locali'21~d yielding. 'Thi~ localized yielding 

is one of the factors associs.ted wi tlh the change whl ·ch occurs in the 

root of the notch as the number of stl'."ess cycles ts increased. At low 

loads local yielding is not as pronounced, since plastic deformation is 

not as severe . 

From this discussion it follows that when local yielding occurs, 
. 

the theoret :tca.l. stress concentration factor has less effect as a stress 

raiser " Since local yielding is more pronounced at the higher loads, the 

value of Kr is smaller at the-higher loads . Si nce the i ndex of notch 

sensitiv.1:tY. is a_ fllll_ction of Kr .aD:ci Kt ' it fo.~lows that q also i s smaller 

at high loads than at low loads. 
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Figure 8. 

Effect of Residual 'Stresses on the Stress 
Gradient' ih the Not'clied Specimen · 
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By definition, cold working of steel is the mechanical deformation 

of steel at temperatures below the transformation temperature. When the 

steel is plastically deformed at these low temperatures, the pearlite 

and ferrite grains are elongated in the direction in which work is ap­

plied (5). This mechanical distortion results in an increase of hard­

ness and brittleness. 

The test did indicate cold working occured during the stress cy­

cling. The first hardness test was made on a notched specimen which 

had previously been subjected to a maximum fluctuating stress of 60,000 

psi for 10,000 stress cycles. The result showed only a slight increase 

in hardness. The second notched specimen, which had been subjected to 

a maximum fluctuating stress of 35,000 psi, did not show a differential 

in hardness. Therefore, as the maximum fluctuating stress is decreased 

and approaches the elastic limit, the cold working becomes negligable. 

The effect of cold working is, in general, to increase the index 

of notch sensitivity of a given metal, simultaneously with the increase 

in tensile strength. However, Cornelius and Bollenrath found that a 

0.38 per cent carbon steel had a lower index of notch sensitivity in 

the cold worked condition ( 6) • 

The material used in this test contained 0.41 per cent carbon. 

Therefore, it seems logical in this case that the index of notch sensi­

tivity decreases with a decrease in ductility. Previous literature 

shows the endurance limit is higher for cold worked material than for 

the same material not cold worked. The limit stress of the notched 

specimen is increased due to the cold working done by stress cycling 

above the elastic limit. This change in strength properties of the 

material decreases the strength reduction factor. Therefore, the index 
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of notch sensitivity is made smaller at high fatigue limits due to this 

cold working. 

It should be noted that the unnotched specimen was also cold 

worked due to the s~ress cycling, but the cold working in·the notched 

. specimen was greater because of stress concentration. The differential 

in cold working of the two is the important factor, since the unnotched 

stress cycles curve was used as a basis for the calculation of the 

index of notch sensitivity of the notched specimen. 

The calculation of Kt was made on the basis of the original notch 

radius. It was of interest to investigate the change of notch radius 

under a given load to see if local yielding had any effect on the 

geometry of the notch. 

When the radius of the notch changes, the fatigue life of the 

specimen is affected. As the notch radius increases, the theoretical 

stress concentration factor decreases. As a result, the life of the 

specimen will be increased. Most of the change of the theoretical 

stress concentration factor, resulting from a change of radius, occurs 

during the first few stress cycles and as the stress cycles increases 

the theoretical stress concentration factor approaches a constant 

value. 

The magnitude of the radius change would depend on the original 

radius of the notch and the maximum stress produced in the notch. The 

test indicated that the change in the radius of the notch was very 

small, and in this case the effect of the radius change on the life 

of the specimen was negligable. 



CHAPTER VI 

CONCLUSIONS 

Three contributing factors which cause the index of notch sensi~ 

tivity to change as the fatigue limit changes are local yielding, cold 

working, and change in geometry of the notch. 

Local yielding has a greater effect on this change than cold working 

or geometry change. The amount of yielding depends upon the amount by 

which the maximum stress exceeds the elastic limit. This indicates the 

reason for a low index of notch sensitivity at high fatigue limits. As 

the fatigue limit is decreased local yielding becomes less severe; there­

fore, the index of notch sensitivity is larger at lower fatigue limits. 

Another factor contributing to the low index of notch sensitivity 

at high fatigue limits is cold working. This cold working is a result 

of stress cycling in the plastic region. This cycling increased the 

hardness of the material which lowered the index of notch sensitivity. 

The change in notch radius could not be detected after the specimen 

was subjected to a maximum nominal fluctuating stress of 60,000 psi. It 

is believed, however, there was a minute change in radius. The contri~ 

bution this change in geometry makes toward varying the index of notch 

sensitivity is negligable. 

These factors should be considered by the designer of mechanisms 

which are to endure through a given number of stress cycles. Material 

31 
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cost and weight can be reduced by checking closely the index of notch 

sensitivity of the member at different fatigue limits. 

It should be recognized that only a limited number of tests were 

made and that additional tests of this material are needed. The values 

of q obtained.from these tests are applicable only for the material, 

notch geometry, and type of loading used in these ·tests. 
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CALIBRATION 

To calibrate the strain measuring system, a plain two inch gage 

length tensile specimen was used on which was attached a dial strain 

instrument and a SR-4 strain gage identical to one cemented in the notch 

of the notched specimen. The wheatstone bridge was balanced before the 

static load was applied. As the specimen was statically stressed, the 

dial strain instrument was read along with the peak to peak deflection 

of the oscilloscope curve. The calibration curve obtained from this 

operation is shown in Figure 9. 

The relation between the amplitude of the oscilloscope curve and 

the strain was linear within the range that the oscilloscope was used. 

After a few points were established on the calibration curve, the gen-

eral equation of a straight line was applied to obtain the relation 

between the amplitude and strain. The equation of the calibration curve 

shown in Figure 9 is derived below. 

(a) 

where 

E - E = m( d - d1) . 1 

(E - 0.0025) = ( 0.0025/9. 5) (d - 10) 

E = (0.0025/9.5) d - (0.0025/9.5) 10+ 0.0025 

E:: = (0.000263) d - 0.00263 + 0.0025 

€; = (0.000263) d - 0.00013 

E= strain 

€1 = strain at point one 

m = slope of strain-deflection curve 

d = deflection 

dl - deflection at point one .. 
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METHOD OF OBTAINING THE THEORETICAL STRESS CONCENTRATION FACTOR 

For the notch shown in Figure 2, Neuber in his nomograph gives a 

theoretical stress concentration factor, Kt, of 1.78. The following 

calculations were used and applied to the special form of Neuber's 

nomograph as reproduced and shown in Figure 11 to obtain the theoretical 

stress concentration factor. 

t = 3/32 inch 

a = 5/32 inch 

r = 1/16 inch 

substituting ~ t/r • ~ (.3) (.32)/(.32) (2) = F 

also 

~·t/r -.. 1.224 

~ a/r = ~ (5)(32)/(.32)(2) = ~ 2.5 

~ : 1.58 

where * t = depth of notch 

* see Figure 11 

a = on~ half the diameter of the specimen 
at the root of the notch 

r c radius of notch 
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