
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PHENOTYPE OPERATORS FOR IMPROVED PERFORMANCE

OF HEURISTIC ENCODING WITHIN GENETIC ALGORITHMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

BENJAMIN PAUL CARLSON
 Norman, Oklahoma

2016

PHENOTYPE OPERATORS FOR IMPROVED PERFORMANCE
OF HEURISTIC ENCODING WITHIN GENETIC ALGORITHMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Dean Hougen, Chair

Dr. Joseph Havlicek

Dr. Mohammed Atiquzzaman

Dr. Samuel Cheng

Dr. Sridhar Radhakrishnan

© Copyright by BENJAMIN PAUL CARLSON 2016
All Rights Reserved.

Dedicated to my brother-in-law, Dennis Reust, without whose support this work would
not have been possible

iv

Acknowledgements

There are many people that I would like to thank for all of their help and support. First,

my wonderful family who has endured much as part of my road to the PhD. Eleanor, my

wife, has worked hard to make up for my excess time and energy working on the

dissertation, and my kids, Isaac and Hannah, have had to put up with upheavals in their

young lives which they handled very well.

My advisor, Professor Dean Hougen, and the entire School of Computer Science staff

have helped me whenever asked, without question and always with a smile. Dean has

maintained confidence in me even though I have tried his patience with leaving the

program for a long break. Indeed, when I asked to return, Dean and the Director of

Computer Science, Professor Sridhar Radhakrishnan, were entirely supportive and did

all they could to get me back into the program where I had left off. The school of

Computer Science has also supported me with graduate assistantships and scholarships

every semester. Indeed, I have spent the last year working for Professor Chris Weaver as

a research assistant on a very interesting NSF grant. Also, Professor Don Potter with the

University of Georgia has provided much guidance and assistance through his

background and expertise on the SITB problem.

The College of Engineering has helped me with moral support and with the Foster

Fellowship, which has been a tremendous assistance to me and my family. Thus, I also

want to thank the Foster family for their generous support to COE students. The COE

library has been an excellent resource and the staff there has been very helpful in

v

tracking down documents and books.

Finally, the University of Oklahoma and the Graduate College have helped in more

ways than I can explain here. This is a wonderful university and I feel privileged to have

been able to attend. The Graduate College gracefully restored my Whethington

Fellowship after I had left for 9 years, and has also provided much advice and support

over the years.

There are many other people that helped me and my family through this difficult but

extremely valuable process both on campus and in the Norman community and I thank

them all.

vi

Table of Contents

Acknowledgements iv

List of Tables ix

List of Figures x

Abstract xi

1 Background and Introduction to the Heuristic Encoding Technique 1
 1.1 Introduction to Heuristic Encoding 3
 1.2 Introduction to Phenotype Operators 4
 1.3 Genetic Algorithms and the Problems Studied 5

2 Hypotheses and Motivational Statements 8
 2.1 Hypothesis H1, Heuristic Representation 8
 2.2 Hypothesis H2, Encoding Scheme Comparisons 10
 2.3 Hypothesis H3, Phenotype GA Operators 10
 2.3.1 Hypothesis H3-1, Phenotype Crossover 11
 2.3.2 Hypothesis H3-2, Phenotype Mutation 12
 2.3.3 Hypothesis H3-3, Combination of Phenotype Operators 12
 2.4 The Heuristic Set 12
 2.4.1 Hypothesis H4-1, Removing Key Heuristics 14
 2.4.2 Hypothesis H4-2, Adding Noise Heuristics 14

3 An Introduction to Genetic Algorithms 16
 3.1 The Canonical GA 17
 3.2 An Example of a Simple GA 18
 3.3 GA Specifics as Applied to NP-Complete Problem Solving 20
 3.3.1 Measure of Fitness (Fitness Function) 21
 3.3.2 Encoding Scheme 21
 3.3.3 Stopping Criteria 22
 3.3.4 GA Operator - Selection 23
 3.3.5 GA Operator - Mating or Crossover 24
 3.3.6 GA Operator - Mutation 25
 3.4 GAs in Conclusion 25

4 An Introduction to Heuristics and Hyper-Heuristics 28
 4.1 Heuristics and Hyper-Heuristics 28
 4.2 The Genetic Algorithm as a Hyper-Heuristic 29

5 The Problems Studied 33
 5.1 The Traveling Salesman Problem (TSP) 33
 5.2 The Snake-in-the-Box Problem (SITB) 35
 5.2.1 Hypercubes 36

vii

 5.2.2 Snakes 36
 5.2.3 Snakes in Canonical Form 38

6 The Heuristic Sets and Gene Ordering Schemes 42
 6.1 TSP Heuristics 44
 6.2 SITB Heuristics 45

7 The GA Operators 48
 7.1 The Fitness Function 49
 7.1.1 Fitness Function for the TSP 49
 7.1.2 Fitness Function for the SITB 50
 7.2 The Selection Operator 52
 7.2.1 Selection for the TSP 53
 7.2.2 Selection for the SITB 54
 7.3 The Phenotype Crossover Operator 55
 7.3.1 Phenotype Crossover for the TSP 56
 7.3.2 Phenotype Crossover for the SITB 59
 7.4 The Phenotype Mutation Operator 62
 7.4.1 Phenotype Mutation for the TSP 64
 7.4.2 Phenotype Mutation for the SITB 65

8 Experimental Approach and Philosophy 67
 8.1 The General Approach 67
 8.2 The TSP Experimental Setup 68
 8.3 The SITB Experimental Setup 70

9 Hypotheses Experiments and Results 72
 9.1 H1 Experiments and Results 72
 9.1.1 TSP Results 73
 9.1.1.1 eil51 73
 9.1.1.2 Additional Three TSP Instances 74
 9.1.2 SITB Results 74
 9.1.2.1 7D Hypercube 75
 9.1.2.2 Additional Three Hypercube Results 76
 9.2 H2 Experiments and Results 76
 9.2.1 TSP Results 77
 9.2.2 SITB Results 79
 9.3 H3 Experiments and Results 81
 9.3.1 H3-1 Experiments and Results 85
 9.3.2 H3-2 Experiments and Results 85
 9.3.3 H3-3 Experiments and Results 86
 9.4 H4 Experiments and Results 88
 9.4.1 H4-1 Experiments and Results 88
 9.4.2 H4-2 Experiments and Results 89

viii

10 Analysis of Experimental Results 94
 10.1 H1 Experimental Analysis 94
 10.2 H2 Experimental Analysis 95
 10.2.1 TSP Analysis 96
 10.2.2 SITB Analysis 97
 10.2.3 Final Comments 98
 10.3 H3 Experimental Analysis 98
 10.3.1 TSP Analysis 100
 10.3.2 SITB Analysis 102
 10.3.3 Final Comments 105
 10.4 H4 Experimental Analysis 105
 10.4.1 TSP Analysis 106
 10.4.2 SITB Analysis 107
 10.4.3 Final Comments 109

11 Conclusions 110
 11.1 Overall TSP Findings 112
 11.2 Overall SITB Findings 114
 11.3 Final Concluding Remarks 116

12 Future Work 118

References 120

Appendices 124
 A. List of Heuristics and their Descriptions 124
 A.1 TSP Heuristics 124
 A.2 SITB Heuristics 127
 B. Parameter Settings for Hypotheses Experiments 132
 B.1 H2 Parameter Settings 132
 B.2 H3 Parameter Settings 136
 B.3 H4 Parameter Settings 138
 C. H1 Population Members and the Paths they Create 139
 C.1 TSP Population Members and their Paths 139
 C.2 SITB Population Members and their Paths 148
 D. Additional Examples 152

ix

List of Tables

5.1 Link tables for hypercubes of dimension 2, 3, and 4 40
8.1 TSPs used for training and testing 70
8.2 Hypercubes used for the SITB experiments and the current record
 length snakes 71
9.1 TSP results comparing encoding schemes for Hypothesis H2 78
9.2 TSP Wilcoxon Rank Sum p-values for Hypothesis H2 78
9.3 SITB results comparing encoding schemes for Hypothesis H2 80
9.4 SITB Wilcoxon Rank Sum p-values comparing encoding schemes
 for Hypothesis H2 80
9.5 TSP results comparing GA operators for Hypothesis H3 83
9.6 TSP Wilcoxon Rank Sum p-values comparing GA operators
 for Hypothesis H3 84
9.7 SITB results comparing GA operators for Hypothesis H3 86
9.8 SITB Wilcoxon Rank Sum p-values comparing GA operators
 for Hypothesis H3 87
9.9 TSP results comparing heuristic sets for Hypothesis H4 91
9.10 TSP Wilcoxon Rank Sum p-values comparing heuristic sets
 for Hypothesis H4 92
9.11 SITB results comparing heuristic sets for Hypothesis H4 92
9.12 SITB Wilcoxon Rank Sum p-values comparing heuristic sets
 for Hypothesis H4 93
11.1 TSP results comparing best known to best found paths using
 heuristic encoding 113
11.2 SITB results comparing best known to best found using
 heuristic encoding 117
B.1 H2 parameter values for TSP experiments 134
B.2 H2 parameter values for SITB experiments 134
B.3 H3 and H4 parameter values for TSP experiments 137
B.4 H3 and H4 parameter values for SITB experiments 137

x

List of Figures

5.1 berlin52.tsp from TSPLIB95 with best path of 7542
 using heuristic GA 35
5.2 2D circular graph for hypercubes of dimensions 2, 3, and 4 37
5.3 2D circular graph of best snakes in dimensions 4 and 5 41
5.4 Same snakes from Figure 5.3 in canonical form 41
11.1 The world record D8 snake of 99 nodes found with the heuristic GA 115
A.1 The eight quadrants used for TSP heuristics 11 to 18 125
A.2 SITB example of invalid sum and invalid count determination 130
A.3 SITB example of non-Dead-End sum count for heuristic 26 131

xi

Abstract

Many approaches to applying Genetic Algorithms (GAs) to Nondeterministic

Polynomial time Complete (NPC) problems involve population members encoded

directly from the problem solution space. While this technique enables trivial mapping

of the population members to solutions, it can cause complex problems for GA

operators as they attempt to direct the evolution of the population toward more

promising areas of the solution space. These operators, using inspiration from genetics

and evolution in the biological world, combine and manipulate the current population to

produce a new population that, it is hoped, will eventually converge toward better

solutions to the original problem. However, many problems, especially graph-space

problems, cannot be so easily manipulated when GA members consist of direct

encodings. In such cases, GA operators must perform awkward transformations to

convert the progeny into viable solutions. Here is where heuristic encoding comes into

play, in that any combination of genes will produce a viable solution. However, this

additional level of abstraction does cause other problems and tends to weaken the

guiding effects of traditional GA operators. Thus, I have designed custom GA operators

that mitigate these problems by using the solutions produced by the heuristic encoded

members to better guide the manipulation when producing the next generation. This

dissertation shows that heuristic encoding is an effective technique for the

representation of solutions to graph-space problems. It also shows that, when using

heuristic encoding, GAs with traditional operators perform well compared to more

direct encoding techniques. Finally it shows the combination of heuristic encoding and

GA operators designed to work with them increases GA performance and can be

xii

competitive with other techniques. I believe that these techniques will also work well

for other types of problems for which GAs are commonly applied.

1

Chapter 1

Background and Introduction to the Heuristic Encoding Technique

Genetic Algorithms (GAs) are a type of stochastic search algorithm inspired by nature,

and commonly applied to Nondeterministic Polynomial Time-Complete (NP-Complete,

or NPC) problems. GAs create and manipulate a population of solutions in an attempt to

discover good instances. Graph-space problems are defined on a set of nodes and a set

of links. Many graph-space problems involve building a constrained path between these

connected nodes. While GAs can be applied to these problems, the implementation can

be difficult due to the mechanics of GAs and issues with population dynamics. This is

caused primarily by two problems: representation issues and dimensionality. The

obvious and most direct representation scheme involves simply listing either the nodes

or the links that will represent a path. This technique, while simple, typically does not

work well for GAs due to the nature of GA operators (see Chapter 3 for a description).

Also, by dimensionality, we mean that as nodes are added to the search space, the

hardness of the problem grows exponentially. While this is typical of NP-Complete

problems, GAs seem to suffer more than other techniques, at least for path-building

graph-space problems.

Due to these issues, it seems most successful techniques involve either deterministic

algorithms (Palombo et al, 2015), or other Evolutionary Computation (EC) techniques

(Zhang and Ma, 2014). Indeed, much work has been done using GAs on smaller

instances of the Traveling Salesman Problem (TSP) but we have found no modern day

papers using GAs on larger TSP instances (greater than 200 nodes).

2

This research attempts to address these issues with GAs as applied to path building in

NPC problems. We show that an alternative encoding scheme can mitigate the

representation issues that typically result from the GA operators being applied to more

direct encoding schemes. Also, by viewing the GA as a hyper-heuristic, a heuristic to

manipulate other heuristics, we have devised alternative GA operators designed to work

with this new encoding scheme which greatly increase the effectiveness of the GA on

these types of problems.

Our intent is not to find solutions to problems that are competitive with targeted

techniques (techniques specifically designed for one and only one problem), but to

show that our technique is generalizable and can produce good solutions to a variety of

problems. Burke et al (2013, page 1710) states this well:

“One of the goals of hyper-heuristic research is raising the level of generality. In this

context, it is often the case that a hyper-heuristic does not aim to outperform a custom-

made solver for a given problem. In such an environment, applicability over a wide

range of problem domains is more crucial.”

An example of a targeted approach to a specific problem and one of the few

contemporary examples of a GA applied to the Snake-In-The-Box (SITB) problem

(other than this work) can be found in Ruiz (2014). Ruiz (2014) implements a custom

GA, the Mitosis Genetic Algorithm, which was designed specifically to work on the

SITB problem. Again, our focus is to show that heuristic encoding with phenotype

3

operators is not a narrowly focused targeted solution, but can be applied to multiple

problem domains.

1.1 Introduction to Heuristic Encoding

By encoding, we mean the technique used to represent solutions to a problem as a string

of symbols such that a GA can manipulate them. Primarily, this encompasses the set of

symbols that represent the individual genes and what these symbols represent.

Heuristic encoding, encodings of instructions for producing solutions, can mitigate

many of the issues typically associated with the representation of graph-space problems

for the application of a GA. A good example is the Traveling Salesman Problem where

encoding the nodes of the solution space directly as genes in population members, while

straightforward, causes GA operators many problems when attempting to manipulate

the population to produce better solutions. This research uses heuristic encoding and

phenotype operators, operators that use the solutions produced, for both the TSP and the

SITB problems where the efficacy of the technique to both deal with

encoding/recombination problems and in producing good results is demonstrated.

The design and selection of individual heuristics is vitally important for this technique

to work, and knowledge of the problem space must be applied when assembling the

heuristic set in order to fully exploit this novel technique. Indeed, if impotent heuristics

are included with a good set, they cause the GA to waste resources searching areas that

are of little value. Also, if needed heuristics are left out, the best areas to search may

4

never be found. This work develops an effective set of low level heuristics for these two

problems that can be used in other evolutionary computation work as well as with

deterministic algorithms.

This encoding technique produces results that are quite competitive with traditional GA

applications and with other techniques. We show this through experimentation and

results, where the best known solution to the SITB in a dimension 8 hypercube was

found using this encoding scheme combined with phenotype GA operators (Carlson and

Hougen, 2010). Indeed, Ostergard and Pettersson (2015) use the result of this work to

prove various bounds in the SITB problem.

1.2 Introduction to Phenotype Operators

Heuristic encoding does add an additional layer of abstraction between GA population

members and the problem's solution space. This layer causes a weakening of the GA's

ability to manipulate the population toward more promising areas of the search space.

This issue is discussed in Burke et al (2013) where it is referred to as consisting of two

different search spaces: the heuristic space, the set of all possible combinations of the

heuristics, and the solution space, the set of all possible solutions to the problem that the

heuristic space maps to. This problem should be dealt with in order for this scheme to

reach its potential. This research addresses this problem as well as investigating the

value of the heuristic encoding method. We have developed custom GA operators of

mating/crossover and mutation, which tighten the coupling between the phenotype (the

final product or the solution to the problem) and the genotype (the GA population

5

members). These phenotype operators make use of the phenotype to guide the

application of the GA operators when producing new members from the current

population. These operators produce better results with this encoding scheme than the

typical GA operators of mutation and crossover. The development of these operators is a

primary contribution of this work as there is little evidence of such work currently in the

literature. Indeed, the scope of this project is greater than any other work done involving

heuristic encoding or phenotype operators for GAs. Finally, as outside justification of

the value of this work, a quote from Falkenauer (1998, page 42) emphasizes these

points nicely as one of the basic claims of his book: “a GA's encoding and operators

must be adapted to the problem being solved.”

1.3 Genetic Algorithms and the Problems Studied

GAs have been used to deal with “The Curse of Dimensionality” (Bellman, 1961): as

the problem grows linearly, the solution space grows exponentially. GAs were

developed by John Holland and his colleagues (Holland, 1992) at the University of

Michigan. The first step in using a GA is devising an encoding scheme in which

solutions to the problem can be easily manipulated by the GA. A very common scheme

involves encoding the solutions directly as strings of symbols, quite often binary (Bäck,

2000, pages 132-135). Also, binary encoding is traditionally used for teaching the

subject of GAs (Mitchell, 1996, pages10-12). However, often in graph-space problems

or any problem where solutions are permutations of nodes or symbols, encoding paths

or permutations directly can be used (Goldberg and Lingle, 1985). Due to the

requirements and constraints involved, this encoding scheme can cause problems for the

6

GA. Still, direct encoding of solutions for GA population members is very common and

for most types of problems, works well.

The Traveling Salesman Problem is a good example of a Non-deterministic Polynomial

time-Hard (NP-Hard) graph-space problem, and many attempts have been made to

apply GAs to it. Solutions to the TSP consist of a linear, non-duplicating, and complete

list of the nodes. Directly encoding these paths can cause problems for the GA as it

attempts to create new solutions from old through manipulation of population members

using GA operators. This is the case for other graph-space problems, such as the Snake-

in-the-Box problem where paths must not contain duplicate nodes. With this direct

encoding scheme, population members can be initially encoded successfully, but the GA

cannot directly manipulate, using its crossover and mutation operators, these solutions

without creating duplicate nodes or edges. Therefore, either the GA operators must be

designed to avoid this, or the new, invalid population members must be “fixed” to

conform to valid points in the solution space (see description of Grefenstette in

Goldberg, 1989, pages 204-205). Both of these options can be difficult and can reduce

the effectiveness of the technique.

The heuristic encoding scheme can mitigate these problems for GA operators and still

produce good solutions to graph-space problems. In addition, this encoding scheme can

implicitly prune the solution space in that the set of heuristics may only allow a small

portion of the space to be accessed. This is due to the fact that there may be far more

selections possible at any point in the path building process than there are heuristics to

7

choose from. Therefore, a good set of heuristics should still allow exploration of

promising areas while restricting access to less promising ones. These constraints are

necessary in order to deal with the combinatorial explosion of NP-Complete and NP-

Hard problems. Indeed, Wynn (2012) also uses built-in constraints for this purpose.

So far we have made some broad and strong claims regarding the value of this work.

How can we support these claims in a scientific manner? The next chapter formalizes

these statements through four primary hypotheses with statements supporting the value

and motivation of each. Next, we introduce the basic concepts of GAs (Chapter 3),

heuristics and hyper-heuristics (Chapter 4), the problems studied (Chapter 5), the

heuristic sets (Chapter 6), and the specifics of our GA operators (Chapter 7). Later we

explain the experimental framework used (Chapter 8), the specific experiments and the

results obtained (Chapter 9), the analysis and explanation of these results (Chapter 10),

and the conclusions that can be drawn (Chapter 11). Finally, we discuss several areas of

future work for the continuation of this research (Chapter 12).

8

Chapter 2

Hypotheses and Motivational Statements

Heuristic encoding does produce competitive results when compared to more traditional

GA implementations and to other types of algorithms and techniques (Carlson and

Hougen, 2010). However, the design and selection of the heuristic set can have a strong

effect on the ability of the GA to discover promising areas of the solution space. Indeed,

it is the heuristic set that provides the mapping mechanism from the problem to the

solution space. In order for the GA to take advantage of this mapping ability, changes

should be made to the canonical or typical GA operators to account for this novel form

of encoding. This dissertation will show this through investigation of the following four

hypotheses and supporting experiments and analysis.

2.1 Hypothesis H1, Heuristic Representation

H1: Heuristic encoding schemes can effectively represent solutions to graph-space

problems.

If this encoding scheme is not at least as good as others, there is little reason to use it.

As claimed, the original purpose of heuristic encoding was to simplify the GA on

permutation type graph-space problems such as the TSP. However, the true usefulness

lies in its ability to prune the search space. An example is the TSP: When going from

node one to node two in a 100 node problem, there are 99 nodes to choose from. Of

course, as the path grows the number of selections decreases. However, this is still a

very large decision space with roughly 99 factorial (99! = 9.3326*10155) possible paths.

9

Using a 25 heuristic set limits the number of choices at each point of the path to a

maximum of 25 (roughly 25n-1 = 2.4892*10138 for a 100 node problem, still large, but

much more reasonable), a drastic reduction. Using the node scheme where the solutions

are represented directly as a sequence of nodes, the size of the search space overtakes

the heuristic scheme at about 62 nodes. Therefore, for any TSP larger than 61 nodes, the

heuristic encoding scheme will increasingly prune the space below the size of the node

scheme.

In contrast, what if the heuristics limit the choice in such a way that a good or the best

path cannot be created? This is where the value of H1 is demonstrated. If it can be

shown that the best known path in various problems can be reconstructed with the given

heuristic set, then we have shown empirically that this set is capable of representing this

solution. Can it be proven that the heuristic set is capable of always being able to

represent the best solution? No, as we are dealing with NP-Complete problems. Thus, in

general, it is not even possible to show whether a given solution is the best, without

exhaustive search and comparison of every possible solution. Therefore, we show

through empirical experiments that the heuristic set is at least capable of representing a

broad set of different, world record solutions. This is done for a set of four problems in

the TSP and four from the SITB.

NOTE: Of course, there are proven bounds for some problems that can be used to show

a given solution has reached the limit, but this is only useful in certain situations. See

10

Arora (1998) for work on a Polynomial-Time Approximation Scheme (PTAS) for the

TSP and other geometric problems.

2.2 Hypothesis H2, Encoding Scheme Comparisons

H2: Heuristic encoding used with traditional GA operators and parameter settings

performs no better, and may perform worse, with more traditional encoding schemes

using the same GA operators and parameters.

When initial work was done using heuristic encoding on both the TSP and the SITB,

traditional versions of crossover and mutation along with fairly traditional parameter

values, such as 40% probability of crossover, selection with replacement, et cetera were

used. However, results were mediocre at best. The form of encoding was likely causing

greater disruption of the population members when changes occurred, such as from

crossover and mutation, than anticipated. Based on these prior results, heuristic

encoding may not perform any better with traditional operators and parameter values

than more traditional encoding schemes.

2.3 Hypothesis H3, Phenotype GA Operators

H3: When using heuristic encoding, phenotype operators improve average GA

performance over that obtained with traditional GA operators.

As stated in Section 2.2, initial findings showed that heuristic encoding by itself was not

sufficient to achieve good results with a GA. This is likely caused by the disruptive

11

nature of the heuristic encoding scheme. Indeed, Mitchell (1996) states: “Some types of

encodings require specially defined crossover and mutation operators.” While she may

be speaking to the necessity of maintaining valid population members under the effects

of GA operators, this statement also applies to the need for the operators to evolve better

members. For, indeed, if GA operators are ineffective at this, there is no point to the

GA.

In order to address these issues, different techniques were researched to mitigate the

disruptive nature of the heuristic encoding scheme while still maintaining the value of

the GA operators in exploring the solution space. The result was new GA operators that

cause less disruption to population members when using this encoding scheme. These

phenotype operators use information from solutions being produced, the phenotype, and

are explained more fully in Chapter 7.

In the following discussions, canonical refers to accepted, well researched methods for

GA operators, and traditional refers to parameter settings for various aspects of GAs

that are more typical and more commonly used.

2.3.1 Hypothesis H3-1, Phenotype Crossover

H3-1: When using heuristic encoding, the phenotype crossover operator increases

average GA performance above that obtained with the canonical, linear multi-point

crossover operator.

12

2.3.2 Hypothesis H3-2, Phenotype Mutation

H3-2: When using heuristic encoding, the phenotype mutation operator increases

average GA performance above that obtained with the canonical mutation operator.

2.3.3 Hypothesis H3-3, Combination of Phenotype Operators

H3-3: When using heuristic encoding, the combination of phenotype crossover and

phenotype mutation operators increases average GA performance above that obtained

using any other combination of canonical GA operators for crossover and mutation.

2.4 The Heuristic Set

The design and selection of the heuristic set should incorporate knowledge of the

problem space appropriate for mapping to the solution space but should not include

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas

of the solution space. Also, if useless heuristics are included, they detract from the

guiding effects of the GA.

These statements would seem to make sense based on simple ideas of filter effects on

signals, and noise within signals. Using the signal analogy, if a signal is overly filtered,

especially if it has no noise component, valuable signal content will be lost. Similarly

with a set of heuristics, if valuable heuristics (heuristics that have been shown to be

useful in discovery of good areas of the solution space) are removed, the GA will be

unable to reach potentially high payoff areas of the solution space. Also, if noise is

added, the original signal becomes harder to distinguish. Given a set of heuristics that

13

seem to work well, if noise is added, i.e., useless or unneeded heuristics are added, one

would expect that the GA guiding the set of heuristics toward a solution to a problem,

might have a more difficult time.

We have identified a small set of heuristics for the TSP and SITB that appear to be very

valuable in contributing to finding good solutions. These heuristics were identified by

observing how often each heuristic could be used during the process of re-creating the

best known solution to a problem. For the TSP, the four problems (Table 8.1) used for

Hypothesis H1 were again used for this purpose, and for the SITB, the best known

solutions for D7 to D10 (Table 8.2) were used. When attempting to determine if the

heuristic set can be used to encode a known world record path, at each step, we see if a

given heuristic will select the next node according to the known path. If said heuristic

will select the correct node, a counter for this heuristic is incremented. This process is

performed for each node in the path, and the check made for each heuristic, for all of

the problems identified. When complete, the heuristics are ranked based on counts of

how often they made the correct selection. The larger the count, the more useful the

heuristic is likely to be, when used with the GA. After ranking the complete heuristic

set, a small sub-set from the top of the list (having the larger counts) was identified for

both the TSP and the SITB to be used for these experiments. However, as the TSP is

initially encoded using only heuristic number 1, this heuristic was not considered for

this purpose (see discussion of TSP encoding in Section 6.1).

14

By removing this subset from each, the average performance is expected to decrease as

this will reduce the effective searching ability of the remaining heuristic set and the GA

managing them. Also, as this will restrict the area of the solution space reachable by the

heuristic set, we also expect to find that the best solution found using the entire set is

likely not possible with the reduced set.

Using this same set of counts for the heuristics, a small sub-set at the lower end was

identified as possibly not useful. For the TSP, the original set contained 33 heuristics,

and 8 were removed to create a standard set of 25 by this process. For the SITB

problem, the original set contained 26 heuristics, and 9 were removed to create a

standard set of 17. The worst (lowest count) heuristic removed from each set will be

used as the “noise” heuristic for the experiments in support of Hypothesis H4-2.

2.4.1 Hypothesis H4-1, Removing Key Heuristics

H4-1: When key heuristics are removed, both upper end, and average GA performance

decreases.

2.4.2 Hypothesis H4-2, Adding Noise Heuristics

H4-2: When additional, unneeded heuristics are added, average GA performance

decreases.

Now that the plan for supporting this work has been formalized through the list of

hypotheses, we need a better background in the algorithmic framework used in this

15

work. Therefore, the following chapter gives a brief history and introduction to the

mechanics of the typical genetic algorithm.

16

Chapter 3

An Introduction to Genetic Algorithms

While the primary focus of this work is solution representation and manipulation, the

framework for this is the Genetic Algorithm (GA). Therefore, in order to understand the

value and application of this work, we must understand the basics of this algorithmic

technique, inspired by nature, as it applies to NP-Complete problems.

GAs are a type of Evolutionary Computation (EC) scheme inspired by the idea of

genetic encoding and population dynamics from nature (Holland, 1975). There are

many other types of EC algorithm, such as Estimation of Distribution Algorithms

(EDAs), but this work focuses on GAs. (See Hauschild and Pelikan, 2011, for an

excellent introduction and survey of EDAs.)

GAs are used in many areas including classification and control systems. Two primary

areas are:

1) In modeling and simulation of various biological problems/processes to include

population dynamics. There are many ways that the GA has been applied to study

various problems and areas of biology and sociology (Mitchell, 1996, pages 15-16). In

this role, they have proven useful in the natural sciences (Holland, 1975).

2) To actually solve (or at least find good solutions to) difficult problems whose

solutions have practical import in industry, engineering, and scientific fields. There are

17

many good examples of this in the books by Mitchell (1996) and Falkenauer (1998).

Also see Louis and Xu (1996) for an application to the Open Shop Scheduling problem.

This is the area on which this dissertation focuses.

Initially the GA was created to study various aspects of evolutionary processes and

population dynamics (Holland, 1975). However, they eventually became useful for

many areas of problem solving and optimization. They do have limits and are not

applicable to all NP-Complete problems. Some problems prove to be quite difficult and

even deceptive for GAs as discussed in Goldberg (2002, especially Chapter 7). Also, for

a thorough discussion of the intricacies of GA design, parameter tuning, and

optimization techniques see De Jung (1993).

3.1 The Canonical GA

The canonical GA was developed and introduced by John Holland and his associates at

the University of Michigan in the 1960s and 70s (Holland, 1975, Mitchell, 1996), and

was initially referred to as Genetic Plans. Holland was motivated by the desire to use

computers to simulate natural systems and for the study of parameter changes on these

systems. The basics of the canonical Holland GA will be explained along with some of

the common variations based on application to the second primary application area

above: finding good solutions to difficult problems.

In order to use a GA, an encoding scheme must first be devised to represent potential

solutions as a string of symbols, which will be referred to as population members. A

18

group of population members is the population the GA will work with.

Based on the defined encoding scheme, it may be useful to derive custom GA operators

as quoted by Mitchell (1996, page 173) “Some types of encodings require specially

defined crossover and mutation operators.” While this is not “required” for heuristic

encoding, it is expected to improve overall results. Once accomplished, the initial

population can be generated. Unlike many problem solving techniques, GAs do not

work with a single potential solution, but instead, a population of potential solutions.

Starting with this initial population, the GA uses functions known as GA operators to

create a new population from the initial. One complete iteration of this process is known

as a generation, with the idea that the previous population is used to create the next

generation of potential solutions. As this process continues, the population should

evolve better solutions. Thus, the number of generations allowed usually is a function of

how much time is available, the quality of solution desired, or various dynamics of the

population (whether it has converged, when the last improvement was seen, et cetera).

3.2 An Example of a Simple GA

The following steps must be accomplished as part of the design and implementation of a

GA solution. The first three set up and initialize the GA, while the last four constitute

the generational cycle.

1) Determine an appropriate fitness function, or a function that can be used to rank the

quality of the population members. The fitness function will be used to evaluate

19

individual population members for use in creating the next population.

2) Determine an appropriate encoding scheme and create an initial population of

candidate solutions. This usually takes the form of a string of characters or symbols.

Binary strings are very common. The individual symbols are referred to as alleles, with

the set of possible symbols called the allelic values or allelic set. Integers representing

heuristic identifiers are used for the allelic values in this research. Next, a random value

from a uniform distribution is selected for each of the individual genes in the initial

population.

3) Determine the stopping criteria for the GA.

This is typically some measure of the fitness of the best individual, the convergence of

the population, or is related to resources such as running time.

4) Evaluate the current population based on a fitness function determined by some

measure of a good potential solution (what is the expected outcome?), derived in step 1.

5) Determine if the stopping criteria has been met. Stop and report results if it has.

Otherwise, continue.

6) Using the evaluations from step 4, create the next population through GA operators

of selection, crossover, and mutation.

20

7) Return to 4 and continue.

For the fitness function in step 1, “fitness” refers to objective fitness in that we are

trying to determine how well a given population member solves the problem at hand

(does it produce a better path than other solutions, does it reduce the time necessary to

traverse a graph, et cetera). This function is sometimes referred to simply as “the

objective function” in the literature. To implement a fitness function, we need to

determine a measure that can be used to grade or rank how well each individual solves

the problem, and this is referred to as the fitness of the individual. This value will be

very important to the GA as it evolves the population searching for more fit individuals.

This definition of fitness is quite different than seen in the biological sciences, where it

typically refers to the ability of an individual to survive and reproduce. Of course, in

biology, there may be problems in the environment that individuals need to solve

(finding food, defending territory, mate selection, and defense), but these are simply

part of the overall goal of producing offspring that will themselves survive and

reproduce. Thus, in biology, the primary measure of fitness is how many offspring a

given individual can produce, whereas our measure of fitness involves the problem

objective, objective fitness, or simply, fitness.

3.3 GA Specifics as Applied to NP-Complete Problem Solving

The following discussion focuses on application of GAs to solving NP-Complete

problems in engineering, not as used in the biological sciences or simulation. The key

components of the GA are as follows.

21

3.3.1 Measure of Fitness (Fitness Function)

We must devise an appropriate measure of the performance of an individual population

member. Based on the problem being solved, each member will map to a specific point

in the solution space. We need to determine what metrics of this point will be used as

the measure of fitness. This fitness function will be used in various ways by the GA

operators to produce the next generation. It may also be used as part of the stopping

criteria. Finally, it may be used as a measure of the quality of the best solution found by

the GA.

3.3.2 Encoding Scheme

In order to have a population of potential solutions for the GA to operate, we must

determine how to represent solutions to the problem. Typically some form of character

or symbol string is utilized. In its simplest form, a binary string is used. However, any

fixed set of characters will suffice. The individual character locations are referred to as

loci, the item occupying a given loci is a gene, and the specific values each gene can

obtain are known as alleles. Thus, in a binary encoding scheme, the only allelic values

are 0 and 1. In the heuristic encoding scheme, the allelic values are integers representing

the heuristics in the set. Once the general form has been determined, we must decide

how to map these strings of symbols to actual solutions. As an example, if the problem

is determining the correct numeric values for a set of variables to optimize an equation,

we might use a floating point format encoded into binary with each variable being

assigned a certain number of positions, or genes, within a population member. During

evaluation, these values are decoded to their numeric counterparts and applied to the

22

equation to determine the calculated value. This final value will be mapped to the

fitness function to determine the overall fitness of the member. There are an infinite

variety of encoding schemes for a given problem, and the scheme used can have drastic

consequences on the outcome of the GA. Indeed, Falkenauer (1998, page 180) states

“While it is certain that an NP-hard problem cannot be made trivial by any encoding, it

is the case that an inadequate encoding can make a problem look harder to a GA than it

actually is.” Finally, we must decide on the ordering scheme used for the genes. Linear

ordering is most common where the genes are evaluated, interpreted, or mapped linearly

from left to right. Other ordering schemes are also used and will be discussed as needed.

Linear ordering is used for the examples in this section.

3.3.3 Stopping Criteria

Before running the GA, the stopping criteria must be determined. As with exhaustive

search on a large problem, the GA can run, for all practical purposes, forever. Indeed,

we may find that many improvements are made for the first hour of operation, but the

next improvement may take ten additional years, in an extreme case. Some common

criteria used are:

1) Is the current best solution good enough? This is based on the problem being solved

and what is considered an acceptable solution.

2) Has the population converged? Has a single member of the population grown to

occupy a certain percentage (determined by the developer and the dynamics being

23

considered), such as 75%?

3) How long since the last improvement was seen? An example might be if the GA

evolves regularly improved solutions for x generations, but no new improvements have

been seen for 2x generations, we may decide to stop.

4) How much time or computational resources can we afford? We may decide, based on

empirical studies, that 5,000 generations will produce good results. However, if one can

wait for 50,000 in the hopes of minor improvements, then this may be advisable.

3.3.4 GA Operator - Selection

We must devise some scheme for selecting members from the current population to

participate in constructing the next. There are typically three mechanisms that allow a

current population member to contribute: Either selection for direct copy, selection with

an additional member for mating/crossover, or selection for mutation. Often, these can

be combined, such as new offspring created through crossover may also be mutated.

There are many systems for selecting but a very common form known as tournament

selection is common and is used in some of the following experiments. Tournament

selection randomly selects a small subset, and performs a tournament between them by

selecting the individual with the highest fitness. The number of elements in the subset is

known as the tournament number. If selecting for crossover, then two tournament

selection operations will be needed in order to select two members for crossover.

24

3.3.5 GA Operator - Mating or Crossover

Once two members of the current population have been selected, they will be combined

in some meaningful way to produce two new members for the next population. This

mating scheme typically involves random determination of one or more points within

the encoded population string which will be used as focal points for swapping

subsections between the two members. When we refer to the crossover point, we mean

the index value of the first gene used for the swapping process. Thus, if the crossover

point is 4, then gene 4 and all genes with a larger index value will be included.

Following is an example using single point crossover in a 10 character string where the

crossover point is 4, using the alphabet as the encoding characters or allelic values:

Old member 1: ABC BETOOPU New member 1: ABC ABEDTPB
Old member 2: RRU ABEDTPB New member 2: RRU BETOOPU

This can be generalized to any number of crossover points and is known as linear multi-

point crossover. Linear refers to the fact that the sections between the crossover points

are swapped in a linear fashion. The more points used, the more disruptive the

operation. Therefore, we use multi-point crossover with a single point for illustration.

There are other forms that use many more crossover points, such as parameterized

uniform crossover (Spears and De Jung, 1995), which is becoming more popular.

Crossover attempts to combine the best parts of individuals in random ways to produce

better, more fit, offspring. Of course, often the offspring are less fit, in which case they

should eventually be removed from the population by not being selected. This operator

is the strength of the GA and typically provides the greatest increase in performance.

“Being the most potent force in the GA, the crossover is also the most used operator in

25

the algorithm. Indeed, in a typical GA most of the new individuals produced (i.e., new

points of the search space explored) are generated by this operator.” (Falkenauer, 1998,

page 38).

3.3.6 GA Operator - Mutation

Mutation involves the low probability change of a gene from one value to another.

Thus, for a binary encoding, this would be a bit-flip. When a gene is selected for

mutation, typically a new value is chosen using a uniform distribution of all possible

values. At its simplest, mutation is a random walk through the solution space, and is no

better than any other form of enumerative search. As such, its usefulness and power are

much less than crossover. However, its primary benefit is to assist in maintaining

diversity and as an insurance policy against losing useful genetic material. The

crossover operator has great power to explore the solution space. However, if a given

allele does not exist in the population, or has been removed through selection, crossover

can never bring it back. The mutation operator can, however, in that, when a gene has

been selected for mutation, any allele can be selected as the new value. This does

introduce another level of randomness, but empirical evidence suggests its value

(Falkenauer, 1998, pages 40-43).

3.4 GAs in Conclusion

The real power of the GA lies in the GA operators and their ability to balance

exploration of the solution space with exploitation of good potential solutions.

However, the encoding scheme is central to the success of the GA (Mitchell, 1996). The

26

encoding scheme and the development of appropriate GA operators is the focus of this

research. The study, comparison, and analysis of these techniques is the domain of this

dissertation.

Finally, a problem known as epistatic interaction can cause problems for the GA, and

indeed, is a known problem in this work. Epistatic interactions occur between the genes

in such a way that the contributions of a specific gene are affected by others (in the

literature, the number of interactions is a constant value denoted by k, see Kauffman,

1989 for a thorough discussion). Due to this, it is not possible to state that a specific

gene contributes x to the overall solution while another gene contributes y as the

contributions of these genes may be intertwined with each other as well as with others.

This problem is even more acute with heuristic encoding where a path is built from the

genes in a population member. In this technique, when one gene is changed, it may

affect the contributions of all downstream genes (genes that have yet to contribute to

this specific path). This problem is dealt with to some extent through the use of the

locus-based approach for the ordering of the genes within a population member (Jung

and Moon, 2002). Using the locus-based approach for gene ordering, each gene

represents a specific node in the graph-space, instead of a specific node in a given

solution (linear ordering). These ordering schemes are discussed more completely in

Chapter 6.

Another technique for mitigation of the negative effects of epistatic interactions

involves mutation. For the SITB, a maximum of one gene is allowed to be mutated per

27

population member. Finally, the phenotype crossover operator helps greatly to mitigate

this problem. See Altenberg (1994) for a thorough study of epistatic interactions in GAs.

Next, we must understand how the GA can be used to manage low level heuristics in

order to construct paths in a graph-space. For this we introduce the idea of heuristics

and explain more fully how they are applied in this work.

28

Chapter 4

An Introduction to Heuristics and Hyper-Heuristics

4.1 Heuristics and Hyper-Heuristics

Heuristics are simple “rules of thumb” used to make decisions. They can be used to

determine the next step to take given a specific state, as part of the solution to a larger

problem. We may have a group of these rules of thumb which will each take the current

problem state to the next state based on the current conditions. Each heuristic decides

what selection to make based on the current state of the problem. Thus, heuristics may

be viewed as simple state transition rules. The question of which heuristic to apply in

any given situation is a separate problem which the GA attempts to solve. Therefore, the

GA serves as a type of hyper-heuristic, a heuristic to choose or select lower level

heuristics. The idea of a hyper-heuristic for solving NP-Complete problems is well

known in the literature and examples can be found in Terashima-Marin et al (2008) and

Garcia-Villoria et al (2011).

The following quote highlights the primary purpose of using a heuristic encoding for a

GA; the pruning of the search space. “We resort to heuristic programming whenever an

algorithmic solution is prohibitively expensive or impossible to follow, or is

unavailable. The role of heuristics is to cut down the time and memory requirements of

search.” (Ralston, 1976, page 606).

Indeed, when the solution space to be searched grows exponentially, a good algorithm

must be able to prune areas of little value, without removing areas containing better

29

solutions. So, from an evolutionary computation standpoint, heuristics are often

combined with other techniques for this purpose. Burke et al (2013) presents an

excellent survey of the state of the art in heuristic and hyper-heuristic techniques.

4.2 The Genetic Algorithm as a Hyper-Heuristic

When used as the encoding scheme for a GA, heuristics do add an additional layer of

abstraction that may mitigate some of the GA operator’s manipulation problems, but

may also introduce other problems. This scheme involves using heuristics as the values

of genes for the population members in a GA, instead of encoding actual solutions.

Several good examples of heuristic encoding for GAs applied to packing problems can

be found in Terashima-Marin et al (2008), and Lopez-Camacho et al (2010). Thus, a

population member is evaluated for fitness based on the goodness of the solution that

can be built from its heuristics. In this type of scheme, the GA acts as a hyper-heuristic

in that it guides the application of low level heuristics in an attempt to create a better

sequence of heuristics (better population members) that will create better solutions. The

GA operators simply need to operate on population members that consist of heuristic

identifiers, any combination of which will produce a valid solution. The goal of the GA

is to manipulate the population members such that the heuristics are arranged so that the

ordering of their application produces better solutions as the population evolves. While

heuristic encodings are not new (Hart, 1998, Terashima-Marin et al, 2008), their use as

a GA encoding scheme for graph-space problems is rare (Carlson, 2002, Carlson and

Hougen, 2010).

30

The idea of a hyper-heuristic used in this manner is well known in the EC community

and an excellent survey of the state of the art can be found in Burke et al (2013). In this

paper they state: “When using hyper-heuristics, we are attempting to find the right

method or sequence of heuristics in a given situation rather than trying to solve the

problem directly.”

Another quote from Burke et al (2013) strengthens the argument for using a hyper-

heuristic to select or manage a set of lower level heuristics as is done in this work: “In

particular, searching over a space of heuristics may be more effective than directly

searching the underlying problem space, as heuristics may provide an advantageous

search space structure.”

This quote does highlight the fact that heuristic encoding adds an additional layer of

abstraction that causes the GA additional problems that we deal with using specialized

GA operators discussed in Chapter 7.

In this work, we have devised a custom set of heuristics for the two problems studied,

which the GA, as the hyper-heuristic, will arrange in such a way as to find “good”

solutions to the two different graph-space problems. A different heuristic set will need to

be designed for each different type of problem for which this technique will be applied.

However, before a heuristic set can be created, the problem space must be studied in

order to decide what feature set should be used to create the heuristics. While this

research does not focus on the problem of feature set determination, a good example of

31

this can be found in Lopez-Camacho et al (2010).

Examples of features used for the TSP heuristic set are:

 Distance between nodes

 Distance of a node from the Euclidean center of mass

 Relationship between distance to current path nodes and the Euclidean center of

mass

Examples of features used for the SITB heuristic set are:

 Position on the link table (see Table 5.1 for link table examples)

 Number of available neighbors

 Relative position on link table with the inbound link

 Tightness of space around node

Heuristics have been studied and used in-depth in the application to modern problem

solving. Indeed, several fine books have been written that cover many different

techniques including various deterministic schemes, stochastic methods, and EC

approaches (Michalewicz and Fogel, 2004, Pearl, 1985). However, the idea of

developing a set of low-level heuristics, while not unknown, is not as common and

highlights one of the primary contributions of this work: The process of low-level

heuristic set development for NP-Complete problems.

32

With a good understanding of heuristics and the GA as a hyper-heuristic to manage

them, we will explore the two graph-space problems used to develop, test, and support

this research. While this research should be applicable to other NP-Complete problems,

we believe the use of graph-space problems, where a path must be built, will best

illustrate the techniques and ideas developed here.

33

Chapter 5

The Problems Studied

Two example problems from the realm of graph theory are used to explore and show the

usefulness of combining heuristics with GAs and the implementation of phenotype

operators. In both problems, the GA builds a path through the space by evaluating the

heuristics that a population member consists of, instead of directly manipulating paths

as population members. The two problems, the Traveling Salesman Problem (TSP) and

the Snake-in-the-Box problem (SITB), are explained below. We use these problems due

to their reputations and the large amount of work the EC community has expended on

them. However, we have found very few others using GAs on large instances of these

problems. Indeed, Zhang and Ma (2014) use an EDA, a type of EC to solve smaller

instances of the TSP up to 136 nodes, whereas this work has been applied to problems

over 2,000 nodes in size. Also, for the SITB, we are aware of only a single additional

instance of contemporary GA research (Ruiz, 2014) on larger instances. However, Diaz-

Gomez and Hougen (2006) apply GAs to smaller instances of the SITB. The primary

reason for this lack of GA research on the SITB seems to be that typical approaches

using GAs do not scale well on larger problems. Indeed, our work suffers this fate to

some extent, but still produces reasonable results even on larger problems.

5.1 The Traveling Salesman Problem (TSP)

The TSP is a simple, easy-to-understand problem that is quite hard to solve (it is NP-

hard). It is a path minimization problem where all of the nodes must be connected in a

closed loop. The nodes themselves can be viewed as not connected initially, but are only

34

defined with x and y coordinates in a 2D plane. We seek to connect them in a complete,

non-duplicating, closed path. As a simple analogy: there is a group of cities that a

salesman must visit. He must start and end at the same city, and he can only visit each

city once. As fuel and time are valuable, he must find the shortest path possible.

There are infinite variations on this basic problem including 2D and 3D, but this work

involves the Euclidean, 2D symmetric (the distances are the same in both directions)

TSP. In this version, all we are interested in is the shortest closed path. Thus, we are not

concerned with defining a start/end or whether we go from city A to B or B to A. In this

scheme, there are many permutations of the nodes that actually represent the same path.

As an example, given nodes, A B C D E F G H I J, the following paths are equivalent:

A-B-C-D-E-F-G-H-I-J
C-D-E-F-G-H-I-J-A-B
H-G-F-E-D-C-B-A-J-I

The end node connects back to the first, and this connection distance is included in the

final path distance, but may not be shown in the paths themselves. Figure 5.1 is an

example of a TSP named berlin52 from Reinelt’s TSPLIB95 showing the best known

path. A problem of this size can be solved without much difficulty, even by a GA.

However, GAs do not scale well using node-based encoding on problems much larger.

35

5.2 The Snake-in-the-Box Problem (SITB)

The SITB is similar to the TSP in that it is a graph problem where an optimal path is

sought. However, there are several key differences, first of which is that in the initial

space, the nodes have a limited number of fixed links, instead of being a fully connected

graph as the TSP is. The links are very structured and form a hypercube. These are the

only links allowed. In the SITB we want to find the longest path that connects as many

nodes within a given n dimensional hypercube as possible governed by certain

constraints, explained in Section 5.2.2.

Figure 5.1: berlin52.tsp from TSPLIB95 with best path of 7542 shown. This solution
was produced by the GA using heuristic encoding and the phenotype operators. The

red link connects the last node in the path back to the root node, with the red asterisk.

36

5.2.1 Hypercubes

The idea of finding snakes in hypercubes of different dimensions is referred to as “The

Snake in the Box Problem” and was originally proposed by Kautz (1958). It involves a

graph-space that extends the idea of a single point (a dimension 0 hypercube), to a line

(1 Dimension), square (2D) and a cube (3D) further to dimensions not easy to represent

in visual space, a hypercube. Figure 5.2 shows examples of a two dimensional

representation of hypercubes of dimension 2, 3, and 4. This representation scheme is

unique to this work (Carlson and Hougen, 2010). As the dimension is increased by one,

the number of nodes is doubled. A hypercube of dimension n has 2n nodes. Each node

has n connections to neighbors creating a very structured space, a 2-colored graph. This

is the box, the problem space.

5.2.2 Snakes

A snake, as put by Diaz-Gomez and Hougen (2006) is “a connected path in the

hypercube d, where each node in the path has exactly two neighbors, except the head or

source, and the tail, destination, that have only one neighbor.”

The snake is a constrained open path in the “box” formed by the hypercube. Not only

can it contain no duplicate nodes or edges but it also cannot have any chords, that is, a

node in the path cannot have any path nodes next to it other than the one directly before

it and the one directly after it in the path. This is a maximization problem as it is desired

to find the longest snake possible in a given dimension. Thus, the set of all possible

snakes (paths) of any length for a given hypercube dimension is the solution space for

37

that problem space. Longest paths in hypercubes have use in coding theory (Kautz,

1958), hypercube computer communication schemes (Livingston and Stout, 1988),

disjunctive normal form simplification (Potter et al, 1994) and other areas of science

and engineering. Figure 5.3 has examples of the best snakes for dimensions 4 and 5 in

two dimensional representation. In this figure, only the hypercube links forming the

snakes are shown.

Also, in the literature, snakes are usually listed by the total number of links they

contain. However, we use the node count. Therefore, most published snake lengths will

be one less than the values contained in this document.

Figure 5.2: 2D circular graph for hypercubes of dimensions 2, 3, and 4. These graphs
show the nodes as numbered in this work, which may be different from schemes seen

elsewhere.

38

5.2.3 Snakes in Canonical Form

The search space for snakes in hypercubes can be pruned by taking advantage of some

of the symmetries in the space. A simple constraint is used by Tuohy, et al (2007) but

was originally proposed by Kochut (1996) and is quite simple: “Always begin at node

0.” Tuohy starts node numbering at 0, whereas we start at node 1 in this work. Due to

the symmetric structure of the space, all nodes are equivalent before a path has been

started. This constraint greatly reduces the search space while not removing the best

snake.

The second constraint is even more useful and is also used by Tuohy, et al (2007) and

proposed by Kochut (1996): “Only consider snakes in canonical form.” As stated by

Tuohy, et al (2007), “Snakes in canonical form are those which only use higher-order

dimensions after every lower-order dimension has been used at least once.” This is

actually a very simple idea. The hypercube structure has many symmetries and one is

the fact that each dimension is created by connecting two copies of the previous

dimension. Thus, D7 simply consists of two copies of D6 with matching nodes linked

together. This additional set of links is always the largest number in the link table (see

Table 5.1). Therefore, if we are building a snake in D5, we must include a node from the

D4 portion of the hypercube before adding a node from the D5 addition. But first, a

node from the D3 portion must be included before the first from D4. This continues

until we are at the root dimension of D0 which only consists of node number 1. D1

consists of two nodes, the node from D0, already in the snake, and a second node with a

single link between them, which must both be in the snake before a node from D2 (a

39

square) is added. Table 5.1 shows the link table for D2, D3 and D4. In this table it can

clearly be seen that D2 is embedded in D3 which is embedded in the D4 table, as D4

will be embedded in the D5 table, et cetera. Finally, Figure 5.3 shows the best snakes in

D4 and D5 but not in canonical form, whereas Figure 5.4 has the logically equivalent

snakes in canonical form.

Finally, with a solid understanding of GAs, the two problems used, and how heuristics

can be combined with a GA to find solutions for these two problems, we will introduce

the specific heuristic sets. The following chapter will introduce the general heuristic sets

and give specific examples, while a complete list of the heuristics can be found in

Appendix A. Also, the concept of gene ordering and the different implementations of

this will be more completely explained.

40

Node Link list Node Link list Node Link list
number 1 2 number 1 2 3 number 1 2 3 4

1 2 4 1 2 4 8 1 2 4 8 16
2 1 3 2 1 3 7 2 1 3 7 15
3 4 2 3 4 2 6 3 4 2 6 14
4 3 1 4 3 1 5 4 3 1 5 13

5 6 8 4 5 6 8 4 12
6 5 7 3 6 5 7 3 11
7 8 6 2 7 8 6 2 10
8 7 5 1 8 7 5 1 9

9 10 12 16 8
10 9 11 15 7
11 12 10 14 6
12 11 9 13 5
13 14 16 12 4
14 13 15 11 3
15 16 14 10 2
16 15 13 9 1

Table 5.1: Link tables for hypercubes of dimension 2, 3, and 4. Each row shows the
nodes that a given node has connections to, which are bi-directional. It can be seen
here how the link table for d2 is embedded in the table for d3, and the table for d3
is embedded in the table for d4. Refer to Figure 5.2 to see the actual links as they

appear between the nodes.

41

Figure 5.3: 2D circular graph of best snakes in dimensions 4 and 5. Lengths are 8 and
14 nodes. In order to focus on the snakes and their links, the unused links are not

shown.

Figure 5.4: Same snakes from Figure 5.3 in canonical form. In order to focus on the
snakes and their links, the unused links are not shown.

42

Chapter 6

The Heuristic Sets and Gene Ordering Schemes

As previously discussed, rather than directly encoding solutions as population members,

instructions for producing solutions are encoded as the population members. Using

knowledge of the problem space, a set of low level heuristics was devised which use the

current status of the problem space to make a decision of which node to add to the path

next.

There are several techniques for determining the order of gene processing or evaluation

within a population member. In a linear ordering scheme, each population member’s

genes is evaluated linearly, from left to right. Thus, using heuristic encoding as an

example, if we had a linear population member of 5 genes, these genes would be

evaluated individually, in linear order, from left to right as such:

Index: 1 2 3 4 5
Genes: 8 4 1 6 3

Evaluate gene number 1, which has a value of 8 first. Then evaluate gene 2 with a value

of 4, and continue until the final gene, gene 5 is reached, with a value of 3.

Rather than using linear gene ordering, Jung and Moon (2002) use a gene ordering

scheme referred to as the locus-based approach. With this approach, each gene

corresponds to a node and when that node is added to the path, its allele is used for the

selection of the next node. This technique was found to work better than linear gene

ordering for our work and it is used for both the TSP and the SITB.

43

Locus-based ordering evaluates based on the gene's position, or loci, as a path is built,

and may not be applicable to all types of problems that a GA can be applied to.

However, it seems natural for path building problems such as the TSP and the SITB.

Using the example above, we would still start at the far left, evaluating gene 1.

However, based on which node heuristic 8 leads to in building the path, the ordering of

the gene evaluations may change. Thus, if heuristic 8 directs the GA to add node 3, the

gene at index 3, which is 1, would be evaluated to determine what node to add next. In

this way, the GA will skip around evaluating the genes in the order that the nodes are

added to the path being built.

Through experiments, it was found that the locus-based approach does indeed produce

better results than the typical linear alternative. This is likely due to the fact that

individual heuristics are more easily tied to a specific node. However, this is more

advantageous for the TSP than for the SITB. In the SITB, due to the symmetric nature

of the space, it seems better to have the allelic values tied to positions in the path itself,

rather than the space (the hypercube). Given this statement, however, we have still

found that the locus-based gene ordering scheme works better even with the SITB, and

it is used for both the TSP and the SITB throughout this work.

One additional detail is the determination of the starting node, or root node. For the

TSP, we simply choose a starting node at random for each population member and

encode this as an additional gene at the end of each population member. This will be the

44

node that the population member's path will start from. Thus, for N nodes, the root node

value is stored at the N+1 position in each population member. For the SITB, we always

start at node 1 due to the symmetries in the space. Thus, a “root node” need not be

encoded for the SITB population members.

Finally, one difference between evaluation of SITB population members and TSP

members involves the fact that the TSP uses all nodes while the SITB does not. Since a

constrained path is being built in the hypercube of a given dimension, over half of the

total nodes will not be used. Therefore, when the path has been built as far as possible

through adding nodes to the head, it might be possible to grow the snake (add additional

nodes) to the tail. The evaluation algorithm for the SITB does this. This quite often

leads to snakes a bit longer than would have been possible otherwise. This idea was

suggested through a personal communication with Lee Altenberg in 2009.

Following is a brief description of the heuristic sets devised for the TSP and the SITB

problems. A complete description of each heuristic including background definitions

can be found in Appendix A.

6.1 TSP Heuristics

There are 25 heuristics in the TSP set. For all, if the requirements of the heuristic cannot

be fulfilled, then the closest node to the current node that has not been visited will be

selected. The most used heuristic is heuristic number 1, which selects the closest

available node. Indeed, initially, the entire population consists of random root nodes but

45

all gene values are 1. This initialization scheme is also used by Zhang and Ma (2014) to

initialize their population for their hybrid EDA. However, the other heuristics must be

available or improvements cannot be made. As part of the heuristic scheme for the TSP,

the Euclidean center of the problem based on the complete set of nodes is determined.

This "Center of Mass" is used in several of the heuristics, for example

 Heuristic number 3: Select the node that is the closest to the center.

 Heuristic number 4: Select the node that is furthest from the center.

Appendix A.1 contains a complete list and description of the TSP heuristic set.

6.2 SITB Heuristics

For finding maximal length snakes, it is useful to exploit the regularities of hypercubes.

Our approach uses heuristics that choose a link from the link table (See Table 5.1 for an

example of a link table) based on the current node (head node) and the state of the

search space. The state of the space changes with every node added to the snake. When

a node is added, several nodes may be eliminated from consideration later due to being

neighbors of the previous head. Heuristics that evaluate the state of nodes near the

current head or combine this information with knowledge of the global state could be

used to add intelligence to the selection process (Carlson and Hougen, 2010).

We have created a set of 17 heuristics that will select the next node when building a

path. Each heuristic was designed in such a way that if the link it would normally

choose is not valid due to the node it points to already having a neighbor in the snake,

46

the heuristic will look for the next most attractive link based on what the heuristic was

designed to achieve. Some of the heuristics use position information in the link table

and others use information about the state of a node’s neighbors in making a decision.

Some example heuristics are:

Heuristic number 1: Select the first node moving from left to right across the link table.

Each node has a row in the link table that shows the nodes it is connected to. For this

heuristic, we find the row for the current head node and simply select the first available

node from this row, starting at the left.

Heuristic number 6: Select the node with the largest invalid count value. Select the right

node in a tie.

This heuristic evaluates each available node and determines how many nodes each

connects to that cannot be added to the snake (thus, they are invalid). It selects the node

that has the largest value of this count. However, the node that is selected must have at

least one available node, or the snake could not grow past the selected node. This

heuristic seeks to select nodes that keep the snake tightly coiled.

The idea of tightness means that, when a node is added, we want as few nodes to be

disqualified, or removed from possible future inclusion, as possible. Thus, if we add a

node that has 5 neighbors that are currently available to be added (they have no

47

neighbors in the snake), then 4 of those nodes will be wasted upon adding said node,

due to the fact that, once said node is added, we can only make use of one of the 5

available neighbors to continue the path. The other four neighbors will be wasted and

can never be included. However, if we have a possible node that only has one available

neighbor, then, if we add said node, we will waste no nodes as the only available node

will be added next. Thus, a tight snake is one that makes good use of the nodes as they

are added. The drawback is that we are more likely to get stuck in a dead end if we

overuse the concept of tightness.

A complete list and full description of the heuristics can be found in Appendix A.2.

While the idea of a GA has been explained, we must flesh out the ideas of the

phenotype operators developed specifically for heuristic encoding. The following

chapter will explain, in detail, the specifics of the GA as used in this work.

48

Chapter 7

The GA Operators

The generation of the initial population for the TSP involves several idiosyncrasies that

must be explained in order to understand and appreciate the descriptions of the GA

operators. It was found through trials with the TSP training set that, while the entire

heuristic set is needed to achieve good results, it is best to start off by having each node

simply connect to the closest available node. Thus, initially heuristic 1, “select the

closest available node,” is used as the allelic value for all genes. This starts each

population member off with a relatively short path that will slowly be improved using

mutation to replace heuristic 1 with different values, and using crossover to intermix

these improved population members.

Also, the root node is a separate value for each population member. During initial

generation, the root node for each population member is randomly selected from all

nodes using a uniform distribution. This root node will stay with this population

member unless it is changed through mutation.

The initial population for the SITB is typical of GAs in that each gene is simply

randomly set to one of the available heuristics with no bias (uniform distribution). The

population is always evaluated starting from node 1 so there is no issue with selecting a

root node as there is with the TSP.

49

7.1 The Fitness Function

The fitness function is used by the GA as part of the evolutionary process. It is also, for

use in problem solving applications, the measure of success of the GA run. Since we are

typically only interested in one solution, the fitness function will be the qualifying value

for the selection of the best population member which will be used as the overall

solution to the problem. Following is a brief description of the specific fitness functions

used in this research.

7.1.1 Fitness Function for the TSP

With the TSP, we are interested in the shortest distance connecting all nodes in a closed

path. We use the same scheme for measuring this distance as the TSPLIB95 web site

(Reinelt) so that our values can be directly compared. For the node coordinates, floating

point values must be used. However, the final calculation of distance between each pair

of nodes is rounded to the nearest integer. The following gives an example:

xd = xi – xj

yd = yi – yj

dij =

where all values are floating point except the final distance; dij. In this way, the

distances between each pair of nodes in the path are added together as integers to

produce an integral final value which is unit independent. During the GA evolutionary

process, this path distance value is computed for the path constructed by each

50

population member and these values are used in selection and crossover for the next

population. Also, the best, shortest path found for the final population will be the end

product of the GA.

7.1.2 Fitness Function for the SITB

The SITB fitness function is a bit more complicated than for the TSP. While we are still

looking for a specific path distance, here the path is measured in number of nodes, and

it is a maximization problem. However, the biggest difference is that a separate function

is used for the GA evolution and for the final solution. The reason for this is the

granularity of the solution space is not as fine as with the TSP. There may be many

paths that are quite different but that contain the same number of nodes, whereas with

the TSP, this does not occur very often. As an example, in D7 where the maximum/best

path is 51 nodes, there may be 20 very different population members of length 49. How

can they be ranked to determine which is more likely to eventually produce a 51 node

path? This problem actually occurs often with GAs and a way must be determined to

judge the goodness of a population member outside of the solution to the problem that it

is capable of producing. For the SITB problem, this is done by determining whether two

paths of equal length also have equal probability of being easily modified, through

crossover or mutation, to a longer path by examining the state of the nodes that are not

part of the current path. These nodes can be classified in two ways:

1) They are invalid and cannot be added to a path.

2) They are valid (they have no neighbors in the path) and could eventually be added to

the path.

51

The more valid nodes, the more likely an existing path can be modified to include them.

Thus, for the fitness values that the GA uses, we combine the current path length with a

fraction based on the number of available nodes as follows:

Fi = (length in nodes) + (number of available nodes) / (total number of nodes)

where Fi is the final fitness value for population member i. This value still puts the

emphasis on length and the fractional part will never be very large (less than one). Thus,

a snake of length 49 will not be valued higher than a snake of length 50 no matter how

many available nodes it has. This scheme allows the ranking of snakes of the same

length and has proven empirically to be much better than using length alone. Indeed,

while we discovered this scheme independently, it is used by others (Tuohy et al, 2007).

This extra measure of fitness is referred to as tightness in that it measures how closely

the snake has grown to itself (refer to Section 6.2 for a more thorough discussion of

tightness). As the snake grows, it can either move into areas of the hypercube that are

largely untouched, a loose snake, or it can try to make use of the nodes near the nodes

that are currently in the snake, a tight snake. A tight snake has a higher probability of

growing further with minor modifications. The final product of the GA only includes

the length, as that is what is of interest overall. Thus, the results in this document all

contain only length since the fractional values are only used within the GA.

This is not the only measure of fitness that could be used for the SITB problem. Indeed,

Diaz-Gomez and Hougen (2006) use various other factors when determining the fitness

52

of a population member, to include partial paths remaining within the hypercube. Their

technique may make better use of determining the growth potential of a given

population member, whereas our fitness measure looks primarily at the length of the

valid snake produced, with only a secondary value reflecting growth potential.

7.2 The Selection Operator

As stated in Section 3.3.4, tournament selection, while not the first proposed selection

operator, is very commonly used today. As explained below, tournament selection is

used for the TSP, but not for the SITB. Various other selection schemes were attempted,

including some custom algorithms, but did not perform as well.

Selection is used in two ways for both problems:

1) Select x percent without replacement from the old population for direct copy to the

new. In selection without replacement, each member can only be selected one time. The

value for x found to work best for both problems is 70%, which means only 30% of the

new population will be created through crossover.

2) Selection for crossover. Here, a selection operator is used for selecting two members

from the current population with replacement for crossover where they will only be

used to create two new members for the next population, and will not themselves be

copied to the new population. In selection with replacement, there is no limit on the

number of times a given member may be selected. For this, tournament selection is used

53

for both problems. Other selection mechanisms were tried but found to perform worse.

Also, a tournament number of two is used with tournament selection for crossover in

both problems.

Finally, a form of selection elitism is used in that, regardless of which selection operator

is used, the best population member from the current population is guaranteed to be

selected at least once for direct copy. This ensures that the high point found so far is

retained and available for future exploration of the solution space. This does have the

drawback of increasing the chance of the population getting stuck and converging to a

local maximum that is not global, as is shown by Gonzalez (2009) where selection

elitism is shown to cause stagnation in certain situations. However, our experiments

have shown that this is still a good technique.

7.2.1 Selection for the TSP

As stated above, several selection operators were tried but tournament selection was

found to work best for the TSP (refer to Section 3.3.4 for a description of tournament

selection). After trying several values for tournament number, two was found to work

best. As the tournament number increases, the selection pressure increases as well,

meaning that the better members of the population will be more likely to be selected

and, thus, more quickly take over the population. Indeed, we found with larger values,

the population often converges too early to a member that is not as good as can be

achieved with a smaller tournament number. Here, we want to balance selection

pressure with the need to explore the solution space. Too much exploration and the GA

54

simply performs a random search. Too little and the GA converges too quickly to sub-

optimal areas. The concept of exploration versus exploitation was originally discussed

in Holland (1975), but is also seen in Mitchell (1996, page 118).

7.2.2 Selection for the SITB

It was found that selection percent works better and more consistently for the SITB.

While tournament selection has a stochastic nature to it since the elements are chosen

randomly, selection percent does not. With selection percent, the best x percent of the

old population is selected for direct copy to the new. Tuohy et al (2007) claims that this

technique helps to maintain diversity, and it seems to be true for the SITB based on our

experiments. However, tournament selection clearly works better for the TSP in the

experimental framework we are using. This may be caused by the population dynamics

and the range of possible fitness values. With the TSP, there is a large variation of

fitness values, and it is unlikely that two very different population members will have

the exact same fitness value. Thus, when choosing two for a tournament, it is less likely

that a tie will occur. However, this is not true with the SITB where a constant problem

has been maintaining a diversity of fitness values, due to the fact that there are many

symmetries in the solution space. In other words, there are many paths that are the same

length, but are actually logically different from each other. Therefore, under these

conditions, tournament selection is likely to result in many ties, which will weaken the

value of this selection technique.

55

7.3 The Phenotype Crossover Operator

The basic GA crossover operator does not use any information from either the fitness

function or the actual solutions produced by the population members being mated as

part of the crossover function. It only uses the population members themselves, the

genotype. The phenotype refers to the actual solution or creature (in biology) produced

by the genotype. This is where the phenotype crossover operator differs dramatically.

Since the heuristic encoding scheme adds an additional layer of abstraction to the GA,

the phenotype is no longer identical, or even similar to the genotype (as is usually the

case). Thus, there is a loosening of the guiding effect of the GA and the binding between

the population members and the solutions they produce. When we first started work on

the heuristic encoding scheme, it was found that performance was not what was hoped.

This may have been due to the additional layer of abstraction and, at the time, we could

not determine how to deal with it. Eventually, it was realized that, if we could use the

solutions produced to guide the crossover operator, we may be able to mitigate this

problem. Indeed, this has been done for both of the problems studied. Shortly after

implementing this new crossover operator for the SITB, the world record length snake

in an 8D hypercube was found using it (Carlson and Hougen, 2010). There is one

serious difference in how this operator works for the two problems. Thus, each is

explained separately in Sections 7.3.1 and 7.3.2.

The mechanism for selecting two population members for crossover is fairly typical in

that tournament selection with a tournament number of two is used to select two from

the old population for crossover. Many other selection techniques were tried but this

56

seems to work best for both the TSP and SITB. Also, a form of elitism is used in that the

best population member from the prior population is guaranteed to be selected for

crossover at least once.

7.3.1 Phenotype Crossover for the TSP

The TSP crossover operator is designed to work with the locus-based gene ordering of

the population members in order to keep alleles tied to specific nodes in the problem

space. In this way the appropriate heuristics will eventually be assigned to the nodes

that they will work best with through the evolutionary cycles of the GA. In this scheme,

the node values are encoded based on the value at the node’s position, or locus within

the population member. Thus, if the value at index 3, which is node 3’s value (it belongs

to the third node in the problem space), is 6, this means that from node 3 we would visit

node 6 next. From node 6, we see what value is at index/locus 6, and that is the next

node visited (added to the path). Finally, we must determine what the starting, or root,

node should be. This is determined by attaching an additional value at the end of the

population member. This value is the root node. Thus, if the problem has 9 nodes, each

population member will have 10 values. An example with 9 nodes using node based

encoding follows where the first line shows index values and the second line contains

the data.

57

Given the locus-based population member, with the root node as the last value:

Index: 1-2-3-4-5-6-7-8-9
Genes: 9-3-5-7-8-4-1-6-2-1

The associated path would be:

Index: 1-2-3-4-5-6-7-8-9
Nodes: 1-9-2-3-5-8-6-4-7-1

As can be seen, the last node in the open path is automatically connected back to the

first node. Therefore, the last node’s allelic value does not really matter and is not

evaluated: the path will be connected back to the root no matter what node seven’s

value is. In this example, we see that the value of a node in the population member itself

represents the node that should be visited next in the path. The idea is the same with the

heuristic encoding scheme. The only difference is that, instead of node values for the

genes, there will be integers representing heuristics. In this scheme, if the current node

in the path is node 4, then gene (locus or index) 4’s heuristic is used to determine the

next node to visit.

With an understanding of the locus-based scheme, it will be much easier to explain the

crossover operator. With the phenotype crossover operator, the actual path produced is

used to determine how to intermix the two selected members. This will be illustrated

using a simple 9 node problem and single point crossover at position 4. Also, the

following will only use a made-up set of 5 heuristics, which need not be defined. Again,

in the paths and population members listed below, the first line will simply be index

values for reference. Also, for all examples, population members will be abbreviated M

and paths as P.

58

Given the two paths (* indicates dividing point for crossover in the paths):

Index: 1-2-3*4-5-6-7-8-9
P1) Nodes: 1-2-3*4-5-6-7-8-9-1
P2) Nodes: 6-1-9*2-3-4-5-7-8-6

And the associated population members, where the last value represents the root node to

be used:

 Index: 1-2-3-4-5-6-7-8-9
M1) Genes: 1-1-5-4-1-5-2-1-2-1
M2) Genes: 1-2-5-1-2-1-4-1-5-6

We start by copying these two population members into the new population. After

copying, we perform the crossover on the two, new copied members. In this example,

the fourth position of P1 is 4 so we take the allele at gene 4 from M1 and put it into

gene 4 of M2. Next, the fifth node in P1 is 5, so we copy the value from position 5 of

M1 into position 5 of M2. We continue this process until we get to the last node in the

P1 path, 9, before returning to the root node of 1, which causes the value 2 to be copied

from gene 9 of M1 into gene 9 of M2. Next, the same process is performed on M1 using

P2 and M2.

Following are the two new population members created using this process:

 Index: 1-2-3-4-5-6-7-8-9
M1) Genes: 1-2-5-1-2-5-4-5-2-1
M2) Genes: 1-2-5-4-1-5-2-1-2-6

While this example uses a single crossover point, all experiments use two. From this

example, we can see the need for mutation in that, heuristic 3 is not represented. If 3

does not occur anywhere in the population, mutation is the only tool available to re-

introduce it.

59

7.3.2 Phenotype Crossover for the SITB

Phenotype crossover for the SITB is very similar to the TSP crossover operation with

one exception. Whereas for the TSP, we try to keep the allelic values with the nodes to

which they are assigned, with the SITB, we want to keep the allelic values tied to a

position in the snake. Of course, the GA operators will slowly change them as the

generations proceed. Thus, if a current population member produces a snake of 50

nodes, we want the allelic values that selected each node to remain in the position where

it will make the same selection when crossed over. In order to accomplish this, we need

to know not only the snake that each population member creates, we also need to

dynamically build two snakes as we cross over two members, to keep track of which

heuristic selects which node at which snake location in each new population member as

they are being constructed through crossover.

As with the TSP, initially a copy of both population members is put into the new

population. Next, these copies are used to start building snakes up to the first crossover

point. Here, the snake nodes from the opposite population member are used to

determine which member node to use in continuing to build each snake. The gene used

is actually cross copied to the other population member once it has been determined.

This continues until the second crossover point is reached, at which point we change

back to using the snake nodes from the original population members. Also, when one of

the snakes being built dynamically to guide the gene selection and copying can no

longer grow, the crossover operation is discontinued for both new members and they

remain as is.

60

This is a complicated process and requires an example. Following, we illustrate the

process using a 5D hypercube and a single cross-over point at index 6 (index 7 in the

snake, meaning that the first 6 nodes in the path will be identical in the new members

created). As can be seen from the snakes created from the original population members

and those from the new, the snake nodes past node 6 have been swapped. This is

accomplished by using the snake nodes to determine which gene values to swap. As an

example, the sixth node in each snake is node 12 hypercube. However, in population

member 1 (M1), the next node in its snake is hypercube node 13 while in M2 the next

node in its snake is hypercube node 9. We want to swap the heuristics at these two loci

(12 in both) so that the gene at locus 12 in M1 will select hypercube node 9 next and the

gene at locus 12 in M2 will select hypercube node 13 next. We see this in the new

population members where the heuristic in M1 at locus 12 has changed from 6 to 7, and

in M2, from 7 to 6. Next, in the snake produced by the old M1, we see that hypercube

node 20 follows hypercube node 13, and in M2’s snake, hypercube node 10 follows

hypercube node 9. Therefore, in M1 we want a heuristic at locus 9 that will select

hypercube node 10 next, and a heuristic at locus 13 in M2 that will select hypercube

node 20 next. Looking at the new M1, we see that the heuristic that had been at locus 9

(heuristic 3) has changed to have the value at locus 9 in M2 (heuristic 2). Also, in the

new M2, the heuristic value that had been at locus 13 (heuristic 21) has changed to the

heuristic value at locus 13 in M1 (heuristic 12). This same process will continue until no

more nodes can be added to either snake, or the original snakes have reached their ends.

In the new/recreated population members, in M1, the gene at locus 12 changed from

61

heuristic 6 to heuristic 7 and from heuristic 7 to heuristic 6 in M2. The goal of this

operator is to keep the heuristic that selected node number x in the snake (not node x in

the hypercube, but in the numbered sequence of snake nodes) such that it still selects

node x in the newly created population member. Finally, the first 4 nodes in the snakes

are 1, 2, 3, and 6. These are the base nodes when using canonical form, where 1 is

always the initial node. An additional example, without the explanation can be found in

Appendix D.

* is the crossover point

Initial Population Members and Snake
Index values:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Selected members (M1 and M2):
26 20 3 13 16 6 13 1 3 19 16 6 12 20 1 21
 4 10 24 10 4 8 1 10 4 24 1 1 1 6 8 10

16 26 14 16 3 19 12 21 2 21 4 7 21 12 13 14
19 10 21 20 10 24 4 24 4 4 7 10 13 1 16 21

Selected snakes:
 1 2 3 6 5 12 * 13 20 17 18 23 26 25
 1 2 3 6 5 12 * 9 10 23 22 19 20 17

Final Population Members and Snake
Index values:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Reconstructed members (new M1 and M2):
26 20 3 13 16 6 13 1 2 21 16 7 12 20 1 21
19 10 21 20 4 24 4 10 4 24 1 1 1 6 8 10

16 26 14 16 3 19 12 21 2 21 4 6 12 12 13 14
 4 10 21 10 10 24 1 24 4 24 7 10 13 1 16 21

Corresponding snakes:
 1 2 3 6 5 12 * 9 10 23 22 19 20 17
 1 2 3 6 5 12 * 13 20 17 18 23 26 25

62

7.4 The Phenotype Mutation Operator

The phenotype mutation operator has a strong phenotypic side when applied to the

SITB, since not all of the nodes are used to create a path. While the TSP mutation

operator can more properly be described as probabilistic, it will still be referred to as a

phenotype operator to simplify discussion. However, both use the idea of re-assigning

probabilities for selection based on the current heuristic use statistics of the best 10% of

the population, with the SITB including only those heuristics actively being used to

create snakes. This redistribution of probabilities is nearly identical to the way that an

Estimation of Distribution Algorithm reassigns probabilities as it evolves a set of

solutions, as a quote from Hauschild and Pelikan (2011) illustrates: “The important step

that differentiates EDAs from many other metaheuristics is the construction of the

model that attempts to capture the probability distribution of the promising solutions.”

This technique has proven quite successful for EDAs and is generating much interest in

the EC community. Therefore, its use in this research for reassignment of probabilities

for allelic selection during gene mutation is quite justified.

The typical GA will use a uniform probability distribution when selecting a new allele

for a mutating gene. We realized that there may be heuristics that work better than

others, on average, and some that work better on specific problems. Thus, some way for

the GA to adjust the selection probabilities seemed a good idea. In both problems, every

20 generations, the heuristic use statistics for the best 10% of the current population are

used to create a new, weighted probabilistic selection distribution for mutation. In

63

addition, the very best population member gets a double weight (if heuristic # 2 is used

5 times in the best population member, it will count as 2×5 or 10). Also, the minimum

selection probability will never drop below 0.2%. This seems a small number, but it

does allow all heuristics to maintain some presence in the population.

The actual equation for calculating the N individual probabilities is:

P(n) = 0.002 + div × (2 × CB(n) + C(n))

where n is the number of the heuristic being calculated from the total of N heuristics, N

is the number of heuristics in use (17 for the SITB and 25 for the TSP), CB(n) is the

count of how often n is used by the best population member, C(n) is the count of how

often n is used by the remaining best 10% of the current population,

div = (1.0 - N × 0.002) / (2 × TCB + TC)

TCB is the total count of heuristic use by the best population member, and TC is the

total count of heuristic use for the remaining best 10% of the population.

In a typical GA, mutation is applied to all population members in the new population:

those directly copied, and those produced through some mating or crossover operator. It

would appear that the new members produced through crossover should be immune

from mutation since they have not been evaluated for performance yet. Therefore, we

64

apply mutation only to those members directly copied from the previous generation.

Finally, of the directly copied members, the best is immune to mutation as we wish to

maintain the best solution found so far for future use by the GA in exploring the

solution space through crossover. This form of elitism is not unknown in the field

(Engelbrecht, 2007, page 139).

7.4.1 Phenotype Mutation for the TSP

With the TSP, all genes are used for each population member, with the exception of the

final two nodes where the last connects back to the root, and the second to the last only

has one node to choose from, so the heuristic need not be evaluated. However, all of the

heuristics from the best 10% of the population members are used for calculating the

new mutation selection distribution, with the heuristics for the best receiving double

weight. This technique is only applied to the node values, not to the root node. The root

node is generated from a uniform random distribution, and, if the root node is selected

for mutation, a random value is selected, again, using a uniform distribution. Note,

however, that the same value may be selected again.

For the TSP, since we generate the entire initial population to use heuristic 1, “select the

closest available node,” this will cause heuristic 1 to be overly weighted during initial

generations. This is compensated for by not allowing the same heuristic to be selected

as the replacement heuristic. When a gene is selected for mutation, if the replacement

value is the same as the current, then the portion of the probability distribution for this

heuristic is removed from the distribution by remapping the random number generated

65

so as not to include the current heuristic. Thus, if heuristic 1 is the current value of a

gene selected for mutation, the portion of the probability distribution assigned to this

value is removed and redistributed to the other heuristics. In this way, a new value is

guaranteed whenever a node is selected for mutation. This technique is not used with

the mutation of the root node, however, as the root node starts off random.

7.4.2 Phenotype Mutation for the SITB

The SITB mutation operator is very similar to the TSP mutation operator with four

exceptions:

1) Since not all of the genes are used to produce a snake, only those in use are included

in the calculations for mutation probability selection.

2) Only the genes actively in use will be mutated. This is where the phenotype part of

the name comes from in that the phenotype is used for gene selection during mutation.

3) Due to the high rate of epistatic interaction, only one gene per population member

will be mutated at a time. While epistatic interaction is also a problem with the TSP, it is

much worse for the SITB. Due to this fact, the mutation rate calculation is also a bit

different. Typically the mutation rate, which is usually set quite low, is applied to each

gene in a population member. However, since only one gene at most per population

member will be mutated, we simply perform one check for mutation on the entire

population member. For this, we must determine an equivalent mutation rate based on

66

the number of active genes (the number currently being used to produce the snake). This

can be done by taking the mutation rate and multiplying it by the snake length.

However, rather than performing this calculation for each population member, based on

its length, we simply use the current best/longest snake and multiply the mutation rate

by it. Thus, if the current rate is 95 parts per ten thousand (pp10k), the rate used for the

8D experiments, and the current longest snake is 90 nodes, then the chance that a single

population member will be selected to have one random gene mutated will be 95×90 =

8550 pp10k.

4) While the current gene’s value for the TSP will not be selected, this restriction has

been removed from the SITB. Thus, when a new allele is selected for the gene, it may

be the same as before.

67

Chapter 8

Experimental Approach and Philosophy

8.1 The General Approach

The background information for this research has now been completely explored.

However, we have conducted no experiments in support of our claims. The following

chapter gives a broad description of how we will conduct experiments in support of the

four primary hypotheses. Next we give details of each specific experiment and the

results obtained (Chapter 9). Then the results will be discussed (Chapter 10). Finally, we

cover the conclusions that can be drawn from this work (Chapter 11).

Each hypothesis will be supported with a set of experiments using both the TSP and the

SITB in order to show that the approach used is generalizable, as it was never the intent

to focus on a specific problem, but on an improved technique for using GAs on a class

of problems (graph problems).

The first hypothesis does not involve the GA but simply encoding schemes, so it will be

different than the experiments conducted for H2 though H4 which all involve the GA.

The GA experiments all involve performing 30 GA runs where, for each run, the best

evaluation will be kept for comparison. Of these 30 runs (30 values for each

experiment, one from each GA run), the best population evaluations will be used as

such: the best and worst evaluations will be recorded along with the arithmetic mean

and the standard deviation. Primarily, pairs of experiments will be conducted to

investigate a hypothesis. Thus, focus will be on the arithmetic mean of the best values

68

(rather than the best or worst) of the 30 runs for each of two experiments and statistical

analysis will be performed on sets of runs for comparison. The question is whether these

values will support each hypothesis. Statistical analysis will be used to show that the

difference between the means of the two sets of 30 values are indeed statistically

significant.

We performed Kolmogorov-Smirnov goodness-of-fit hypothesis tests using the kstest in

MATLAB to compare against a normal distribution on each set of data. These tests

showed that roughly half of the experiments were not normally distributed. Thus, the

Student’s t-test would be inappropriate as a statistical test for group comparisons.

Therefore, the Wilcoxon Rank Sum test (the ranksum test in MATLAB, which is similar

to the Mann-Whitney U test) was used to determine whether any apparent difference in

the mean values from each pair of results is significant or not (are they from the same

distribution or not).

8.2 The TSP Experimental Setup

For the TSP, problems from the TSPLIB95 (Reinelt) TSP library were used. This

library contains subgroups of TSPs in many forms but only those that are 2D symmetric

(referred to as EUC_2D in the documentation) will be used. By symmetric we mean

that the distance from node A to B is the same as from node B to A. In this kind of TSP,

all pairs of nodes have equivalent distance or cost values for either direction of travel.

From this subgroup, a training set of 7 was selected for training and development, and a

set of 7 for hypothesis testing experiments, each of which is similar in size to one in the

69

training set (one is used for both: pr2392). Thus, other than the one exception, the test

set is not used for any purpose except the hypothesis experiments. The training set is

used for all code development, parameter tuning, and timing comparisons. Using the

training set, once the parameters have been tuned, timing comparisons are performed in

a controlled environment so that each experiment with results that are to be compared

will have taken approximately the same amount of CPU time. We do not want to give

any approach an advantage in more time or resources. Indeed, this work would be of

little value if controlled timing comparisons were not performed, since it is not

uncommon for a poorly designed GA to be able to eventually catch up to the

performance of a better one given enough time.

For each of the TSPs, the number of nodes is listed as part of the problem name. Table

8.1 shows the training and development set on the left and the problems of similar size

for hypotheses testing on the right. The best known path lengths (shortest known) have

been taken as stated on the TSPLIB95 (Reinelt) web site. However, based on the

documentation provided, it is unclear where these values actually originate. Also, some

of the problems have the associated best paths available on the web site and some do

not. Again, it is unclear where these paths came from. Problem pr2392, is listed as a

training and testing problem, but is only used for H1 since it is a rather large problem

with a listed best path solution, which is what is needed for H1. In addition to pr2392,

only problems eil51, lin105, and a280 will be used for H1 as these are the only

problems from the testing set that have best paths available from the TSPLIB95 (Reinelt

) library.

70

8.3 The SITB Experimental Setup

For the SITB, there is only one problem for each hypercube dimension, so a separate

training and testing set is not an option. Instead, the appropriate parameters for each set

of experiments are determined through separate experiments, then, timing trials in a

controlled environment are performed. For the actual experiments performed in support

of the hypotheses, the time and resources allotted to each set is comparable. Also,

dimension 10 is not used for H2 as the results from the D7, 8, and 9 hypercubes seem

definitive. However, the average experimental values produced from the experiments

for H3 and H4 are not as clear, and, thus, D10 has been added for additional support of

the hypotheses statements. Table 8.2 shows the hypercube dimensions used with the

total number of nodes and the current world record length snakes.

Training
set

Best
known

Testing
set

Best
known

berlin52 7542 eil51 426
eil101 629 lin105 14379
d198 15780 rat195 2323
lin318 42029 a280 2579
pcb442 50778 d493 35002
pr1002 259045 u1060 224094
pr2392 378032 pr2392 378032

Table 8.1: TSPs used for training on left and similar sized problems for testing on
right. The current world record shortest paths are listed under “Best known”.

71

Hypercube
Dimension

Number of
Nodes

Longest Known
Snake

7 128 51
8 256 99
9 512 191

10 1024 371

Table 8.2: Hypercubes used for the SITB experiments, total number of nodes in
each, and the current record length snakes

72

Chapter 9

Hypotheses Experiments and Results

In this chapter, the individual hypotheses are restated and the individual experiments

designed to investigate the hypotheses are explained. Finally, the actual data from the

experiments is presented along with the statistical test results. The discussion of the

results and their meanings can be found in Chapter 10, Analysis.

9.1 H1 Experiments and Results

H1: Heuristic encoding schemes can effectively represent solutions to graph-space

problems.

The process for these experiments involves using the best known path to guide the

selection of heuristics to artificially construct a GA population member. This is done by

going through the path and selecting a heuristic from the set that will select the next

node in the path for which we are constructing a member. If none of the heuristics is

capable of selecting the next node, then this path cannot be recreated with the given

heuristic set. Once complete, the population member is evaluated by the evaluation

function to produce a solution path, which is then compared to the best path on record.

The two paths should be isomorphic, and for the problems analyzed (and others not

listed), the process was successful.

73

9.1.1 TSP Results

The TSP set used for this hypothesis consists of four problems: Three from the

hypotheses testing set and an additional larger problem of 2,392 nodes that will not be

used for the other hypotheses. The paths for these problems are created using a set of 25

heuristics. The results are listed in order of size. Also, only the path and population

member data for the smallest is listed here. The larger problems can be found in

Appendix C.

9.1.1.1 eil51

The best known path for this problem is 426 units long. Following is the heuristic,

locus-based population member that reproduces the best known path for this problem.

The last value is the root node. Thus, there are 52 values in the population member. The

first, third, and fifth lines represent index values for reference, and the data are below

these:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 7 7 9 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 5 5 9 1
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 24 25 26 27 43 44 45 46
 4 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 7 1 1
47 48 49 50 51 root
 8 1 7 7 1 1

Below is the path created by the heuristic set using the locus-based evaluation function.

This path is identical to the best known path for this problem:

1 22 8 26 31 28 3 36 35 20 2 29 21 16 50 34 30 9
49 10 39 33 45 15 44 42 40 19 41 13 25 14 24 43 7 23
48 6 27 51 46 12 47 18 4 17 37 5 38 11 32 1

74

Here, we see that the root node (the node the GA will always start from for this

population member) is 1. From node 1, the second node is 22. Thus, the GA uses the

heuristic at position 1 (heuristic 7 in this case) to make the decision to move to node 22.

From node 22, the heuristic at this position, heuristic 9, will be used to select the next

node, node 8. This process continues until the GA reaches node 11, the second to the

last. From node 11, there is only one node left to select, node 32. Therefore, the

heuristic at position 11, heuristic 1, is not used. Finally, the path is closed by connecting

node 32 to node 1.

9.1.1.2 Additional Three TSP Instances

This technique is able to recreate the best known (as listed in Reinelt’s TSPLIB95 web

site) path for all three of the following problems: lin105, a280, and pr2392. The best

path and the population member which created it for each, are in Appendix C.

9.1.2 SITB Results

The same approach is taken for this problem as for the TSP. The best known paths are

created for dimension 7, 8, 9, and 10 hypercubes using a heuristic set of 17. In each

case, the best path is converted to linked list format, then to canonical form. Finally, a

list of heuristics is found that will reproduce it. This technique was successful for all

four problems as shown below.

75

9.1.2.1 7D Hypercube

The best known snake in the 7D hypercube is 51 nodes in length (Kochut, 1996).

Following is the locus-based heuristic list that will produce this snake. The active genes,

the genes used to produce the path, are in bold and underlined. Also, if the nodes

selected by a set of heuristics are contiguous in the member, then they are underlined

together. Again, the odd lines show the index values for reference:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 1 1 1 14 1 1 20 8 1 1 2 1 20 4 10 14 20
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 2 1 1 7 16 2 24 6 2 21 19 1 14 12 20 20 1
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 1 1 21 16 3 16 4 12 26 1 16 3 21 1 1 1 1
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 7 26 2 14 3 1 1 3 14 26 26 26 1 16 2 1 1
69 70 71 72 73 74 75 76 77 78 78 80 81 82 83 84 85
16 1 6 3 7 21 13 26 1 7 10 20 14 1 1 1 16
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
 7 1 1 6 6 1 1 8 3 10 2 1 1 16 16 1 7
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 3 3 21 6 1 1 10 10 3 2 1 1 1 10 14 1 16
120 121 122 123 124 125 126 127 128
 14 1 1 7 10 7 1 26 4

The world record snake of 51 nodes that this heuristic list produces follows:

1 2 3 6 5 12 9 10 23 18 19 20 29 36
35 34 39 58 57 72 121 122 103 98 97 112 113 114
115 118 107 108 101 92 91 70 67 68 77 84 83 82
87 88 41 48 49 50 51 54 43

With the SITB, not all nodes are used to produce a snake, since there are constraints on

node inclusion. Therefore, the population members must contain a value for each node

and will be longer than the path produced. In this example, hypercube node 1, which is

always the root node for the SITB problems, has a value of 1. Therefore, heuristic 1 will

be used to select the next snake node, which is hypercube node 2. Hypercube node 2’s

heuristic is 1 also, which will select hypercube node 3. Hypercube node 3’s heuristic is

76

1 which will select hypercube node 6, and hypercube node 6’s heuristic is 1, which will

select hypercube node 5. This continues until, at the end of the snake, hypercube node

54, the second to the last node in the path, has a heuristic value of 2, which will select

the last node, hypercube node 43.

9.1.2.2 Additional Three Hypercube Results

The best known snake in an 8D hypercube is 99 nodes in length and was found using

this technique (Carlson and Hougen, 2010). The world record length snake for the 9D

hypercube is 191 nodes in length (Wynn, 2012). The world record snake in 10D is 371

nodes in length (Kinny, 2012). The population members that will produce these snakes

and the snakes themselves can be found in Appendix C.

9.2 H2 Experiments and Results

H2: Heuristic encoding used with traditional GA operators and parameter settings

performs no better, and may perform worse, with more traditional encoding schemes

using the same GA operators and parameters.

Following are experiments that compare the results of 30 GA runs between the more

traditional encoding scheme and the heuristic encoding, both using the same GA

operators and parameter values (minor variations may be necessary and will be

explained as needed). Also, a complete list of the parameters used can be found in

Appendix B. For all H2 experiments, linear gene ordering is used, which is more

common than locus based ordering (see Chapter 6 for a description).

77

9.2.1 TSP Results

For the TSP crossover operator, the Partially-Mapped Crossover (PMX) from Goldberg

and Lingle (1985) is used as the traditional crossover operator for node encoding. For

heuristic encoding, typical linear multi-point crossover, using 2 crossover points, is used

(see Section 3.3.5 for a description).

NOTE: Several papers refer to this as the Partially-Matched Crossover (Goldberg, 1989,

Jung and Moon, 2002). However, the original paper uses the term Mapped.

Node swapping, where two nodes are selected at random and their values are swapped,

is used as the traditional mutation operator (Louis and Li, 1997) for node encoding.

Typical uniform random mutation is used as the traditional mutation operator for

heuristic encoding (see Section 3.3.6 for a description).

Table 9.1 shows the six test problems with the best (shortest) average and worst path

length from 30 separate GA runs using both the node and heuristic encoding and

standard GA operators. In this and all subsequent tables, “mean” refers to the arithmetic

mean of the set of values. Also, S. D. is the standard deviation and is shown in the

column next to the mean. Table 9.2 shows the Wilcoxon rank sum test probability

values (p-values). These values indicate the probability of observing the two sample sets

assuming the distributions the sets were drawn from are equivalent.

78

Hypothesis Two TSP Results

 Best Mean S. D. Worst
eil51 426
Nodes 437 488 25.1 535
Heuristics 428 430 1.7 435
lin105 14379
Nodes 19301 24249 2268 27821
Heuristics 14514 14758 196.2 15184
rat195 2323
Nodes 3871 4524 310.5 5253
Heuristics 2366 2412 26.8 2471
a280 2579
Nodes 5583 6387 455.4 7630
Heuristics 2703 2751 26.1 2808
d493 35002
Nodes 81749 90208 3829.5 96523
Heuristics 37753 38136 210.3 38591
u1060 224094
Nodes 1130880 1227520 48151 1318680
Heuristics 251073 256512 2146 261208

Hypothesis Two Wilcoxon Rank Sum Results
eil51 lin105 rat195 a280 d493 u1060

2.5142E-11 3.0161E-11 3.0161E-11 3.0142E-11 3.0199E-11 3.0199E-11

Table 9.1: TSP results comparing node and heuristic encoding for Hypothesis H2. The
values under “Best” that are gray show the current world record path lengths. Each row
labeled “Nodes” or “Heuristics” represents a set of 30 GA runs using the Canonical GA

operators and typical parameter settings with the stated encoding scheme.

Table 9.2: TSP Wilcoxon Rank Sum p-values when node encoding final values are
compared to heuristic encoding using 30 GA runs for each. As can be seen from the p-

values, each compared set has a p-value of less than 5%.

79

9.2.2 SITP Results

For the SITB, heuristic encoding is compared with two alternative, more direct

schemes. In all experiments, linear based gene ordering is used. Also, linear multi-point

crossover with two crossover points is used. Finally, typical uniform mutation is used.

The first alternative encoding scheme is simple link based encoding, where each gene is

assigned a value from 1 to the dimension size, which represents which link from the

link table to take from the current head node when attempting to add a node (see Table

5.1 for an example of link tables). Using this technique, there is no search at all and if

the node the given link leads to is not available, then this snake is done and the current

length will be the value given the population member. This scheme is abbreviated L for

Link.

The second encoding scheme involves the same technique but with minor search added.

In this technique, if the node selected is not available, then the immediate neighbors of

the given link in the link table are attempted. Each row of the link table is treated as a

circular list. Thus, if the link taken is the far right entry, then the first entry of that row

will be treated as one of its neighbors, and vice versa. If the primary link is not available

but either of its neighbors is, then this node is added and we continue building the snake

for this population member. This scheme is abbreviated LS or Link+, for Link Search.

For both L and LS, the initial population generation consists of randomly generating a

number from 1 to the dimension size for each gene, using a uniform distribution. The

80

results of 30 runs using each of these encoding schemes and the heuristic scheme, all

using traditional GA operators and typical parameter values is shown in Table 9.3. For

this comparison, D10 was left out as it was clear from D7 to D9 that there is a definite

difference in performance between the encoding schemes. Table 9.4 contains the

Wilcoxon rank sum p-values comparing both the simple link encoding to the heuristic

encoding, and the link-search encoding to the heuristic encoding.

Hypothesis Two SITB Results

 Best Mean S.D. Worst
7D 51
Links Only 41 37.13 2.1 32
Links+ 49 47.80 0.7 47
Heuristics 51 49.67 1.2 48
8D 99
Links Only 73 64.77 4 58
Links+ 90 86.53 1.5 83
Heuristics 93 90.00 1.6 87
9D 191
Links Only 127 112.53 5.8 100
Links+ 158 151.77 3.1 145
Heuristics 171 161.43 3.2 156

Hypothesis Two Rank Sum Tests
D7 L to H D7 LS to H D8 L to H D8 LS to H D9 L to H D9 LS to H
2.0816E-11 1.7865E-08 2.5922E-11 2.3915E-09 2.8163E-11 5.2474E-11

Table 9.3: SITB results comparing simple link encoding, links with basic search
(Links+), and heuristic encoding for Hypothesis H2. World record best values are

highlighted in gray. Each row represents values from a set of 30 GA runs using
identical parameters for all 30. Also, the GA operators and parameter values are

identical between all experiments.

Table 9.4: SITB Wilcoxon Rank Sum p-values when link encoding (L) and Links with
basic search (LS) final values are compared to heuristic encoding (H) using 30 GA runs
for each. As can be seen from the p-values, each compared set has a p-value of less than

5%.

81

9.3 H3 Experiments and Results

H3: When using heuristic encoding, phenotype operators improve average GA

performance over that obtained with traditional GA operators.

In this set of experiments for the three sub-hypotheses, we compare the results of the

GA using heuristic encoding and the traditional GA operators with the GA using the

new operators of phenotype crossover and mutation developed to work with heuristic

encoding. The results from the H2 tests of the heuristic encodings will be used for some

of the comparisons. In all of the new experiments (those whose results were not copied

from the H2 experiments), locus based gene ordering is used. Also, linear multi-point

crossover with two crossover points is used as the traditional crossover operator.

Finally, uniform mutation is used as the traditional mutation operator.

The first step in evaluating the performance of the GA with the new operators is tuning

the various GA parameters to work best with the new operators. For parameter tuning,

we use the training and development set for the TSP and the 4 dimensions being

evaluated for the SITB. Many parameters are changed and a complete list of the

parameters and their values can be found in Appendix B. After determining the best

parameter settings, timing trials are performed using these new settings with the new

GA operators (phenotype crossover and mutation) to determine the size of the

population and the number of generations to run for equivalent timing.

82

Finally, a new set of 30 GA runs are performed for each of the TSP test problems and

the four SITB dimensions using the new parameter settings but the typical/traditional

GA operators. This is done to show that the improvements when the new operators are

used are a result of the new operators, and not the change in parameter values. Due to

this, the focus is on comparing between using the new GA operators and the new

parameters with the traditional GA operators and the new parameters.

Tables 9.5 and 9.7 list the experimental results showing the best, mean, standard

deviation and worst of the 30 GA runs for each experiment. In these tables, “Base”

refers to the traditional GA operators using the new parameters, which is what the other

three experiments for each problem will be compared against. “Crossover” is the

experiments performed with the new parameters, the traditional mutation operator, and

the phenotype crossover operator. “Mutation” uses the new parameters, the traditional

crossover operator, and the phenotype mutation operator. “Both” uses the new

parameters and both the phenotype crossover and mutation operators.

Tables 9.6 and 9.8 show the results of the Wilcoxon rank sum tests. Here, as stated

above, the interest is in comparing the “Base” experiments against substituting the

traditional operators with the new operators individually and together. Therefore, in

these tables, the last three rows contain the p-values for these comparisons. Also, in

these tables, the first four rows compare against the traditional operators and the typical

parameters, which is abbreviated as “totp.”

83

Hypothesis Three TSP Results

 Best Mean S. D. Worst
eil51 426
Base 427 430.70 3.70 439
Crossover 427 429.93 2.40 438
Mutation 427 431.03 3.82 439
Both 427 430.60 3.55 439
lin105 14379
Base 14442 14645.10 136.10 15029
Crossover 14430 14607.20 121.50 14946
Mutation 14416 14571.00 119.60 14815
Both 14412 14522.30 97.30 14788
rat195 2323
Base 2344 2379.17 21.50 2433
Crossover 2364 2404.27 31.00 2466
Mutation 2348 2375.17 18.10 2416
Both 2338 2370.70 18.90 2427
a280 2579
Base 2630 2671.90 21.70 2715
Crossover 2629 2677.07 30.80 2729
Mutation 2626 2648.90 14.80 2673
Both 2623 2646.80 15.60 2679
d493 35002
Base 36157 36842.40 308.00 37697
Crossover 36276 36933.40 327.00 37459
Mutation 35852 36413.00 298.60 37222
Both 35909 36409.00 196.80 36739
u1060 224094
Base 237634 243013.00 2340.30 248726
Crossover 239023 241732.00 1727.60 246087
Mutation 235067 239444.00 2079.00 244878
Both 234984 238816.00 1939.20 242315

Table 9.5: TSP results comparing typical GA operators of mutation and crossover with
phenotype crossover, phenotype mutation, and both. Rows labeled “Base” use typical

operators with new parameters. Rows labeled “Crossover” use the phenotype crossover
operator and the typical mutation operator. Rows labeled “Mutation” used the phenotype

mutation operator and the linear, 2-point crossover operator. Underlined values had
means not as expected.

84

Bold values not Hypothesis Three Rank Sum Tests

significant at 5% eil51 lin105 rat195 a280 d493 u1060
totp vs Base 7.57E-01 5.19E-02 6.26E-06 6.01E-11 3.02E-11 3.02E-11
totp vs Crossover 5.97E-01 6.50E-03 1.52E-01 3.62E-10 3.02E-11 3.02E-11
totp vs Mutation 7.17E-01 1.17E-04 3.63E-07 3.00E-11 3.02E-11 3.02E-11
totp vs Both 5.76E-01 6.80E-07 6.22E-08 3.00E-11 3.01E-11 3.02E-11
Base vs Crossover 9.15E-01 2.46E-01 7.67E-04 6.31E-01 1.41E-01 1.70E-02
Base vs Mutation 4.06E-01 2.70E-02 5.10E-01 4.45E-05 1.93E-06 7.60E-07
Base vs Both 8.04E-01 1.05E-04 1.17E-01 1.20E-05 1.36E-07 2.83E-08
Both vs Crossover 9.58E-01 4.80E-03 5.61E-06 9.45E-05 1.87E-07 7.60E-07
Both vs Mutation 3.06E-01 1.24E-01 3.07E-01 6.26E-01 7.62E-01 3.79E-01

The first row in Table 9.6 and the first row in Table 9.8 each compares the typical

parameter values with the new values, but both use the traditional GA operators.

In all of the tables, if an average value is not what was expected, then it is underlined. A

discussion of these values and their implications can be found in Chapter 10, Analysis.

In the tables with p-values, if two groups are not statistically significantly different at

the 5% level, then they appear bold.

NOTE: As D10 was not used for H2, there are no typical parameters using traditional

operators (totp) experimental values to compare against. Therefore, the totp rows for

D10 in Table 9.8 contain NA.

Table 9.6: TSP Wilcoxon Rank Sum p-values from comparing heuristic encoding
with traditional operators and typical parameters (totp), traditional operators and new

parameters (Base), and combinations of the new operators with the old operators.
Only sets labeled totp use the typical parameter values. Bold values are not

statistically significant at 5%. Underlined values had means not as expected.

85

9.3.1 H3-1 Experiments and Results

H3-1: When using heuristic encoding, the phenotype crossover operator increases

average GA performance above that obtained with the canonical, linear multi-point

crossover operator.

This is shown by comparing the Base case explained above with experiments using all

the same parameters but with the traditional crossover replaced with phenotype

crossover. The traditional crossover operator being used for both the TSP and the SITB

is the simple multi-point linear crossover operator. In all cases, two point crossover is

used. Tables 9.5 and 9.7 show the results of the experiments with the relevant

comparisons between the Base and Crossover rows of data. Tables 9.6 and 9.8 contain

the Wilcoxon Rank Sum p-values with relevant rows labeled “Base vs Crossover.”

9.3.2 H3-2 Experiments and Results

H3-2: When using heuristic encoding, the phenotype mutation operator increases

average GA performance above that obtained with the canonical mutation operator.

As with H3-1, here we compare the Base results with the results replacing the typical

GA mutation operator for the TSP and SITB with the phenotype mutation operator. The

relevant rows in Tables 9.5 and 9.7 are the Base and Mutation rows. The Wilcoxon

Rank Sum p-values are in Tables 9.6 and 9.8 in the “Base vs Mutation” rows.

86

Hypothesis Three SITB Results

 Best Mean S.D. Worst
7D 51
Base 51 50.13 1.10 48
Crossover 51 50.33 0.96 49
Mutation 51 50.37 1.00 48
Both 51 50.67 0.76 49
8D 99
Base 95 92.27 1.26 89
Crossover 95 92.83 2.49 89
Mutation 95 92.27 1.20 90
Both 96 93.83 1.27 92
9D 191
Base 172 165.70 3.31 158
Crossover 176 170.00 3.61 159
Mutation 174 167.20 3.37 161
Both 177 171.27 2.45 167
10D 371
Base 315 297.23 7.47 282
Crossover 321 314.10 3.55 307
Mutation 312 298.13 4.75 290
Both 325 315.23 4.22 308

9.3.3 H3-3 Experiments and Results

H3-3: When using heuristic encoding, the combination of phenotype crossover and

phenotype mutation operators increases average GA performance above that obtained

using any other combination of canonical GA operators for crossover and mutation.

Table 9.7: SITB experiments of 30 GA runs each showing the performance using
typical GA operators (Base), phenotype crossover with typical mutation (Crossover),
linear crossover with phenotype mutation (Mutation), and phenotype crossover with

phenotype mutation (Both). Underlined values had means not as expected.

87

Here, as with H3-1 and H3-2, we are interested in comparing performance using the

new parameters and traditional GA operators with the new parameters and both new GA

operators. In addition, we show that using both of the new operators together performs

better than using only one (i.e., using one traditional operator and one new). With this in

mind, rows in Tables 9.6 and 9.8 with both of the new operators are labeled “Both,” and

we compare primarily the average value with the average from all three other rows for

each experiment (Base, Crossover, and Mutation rows). If the hypothesis has merit, the

average for “Both” should be better than any of the other experiments in these tables.

Also, Tables 9.7 and 9.8 have the Wilcoxon Rank Sum p-values for statistical

significance in the rows labeled “Base vs Both,” “Both vs Crossover,” and “Both vs

Mutation.”

Bold values are not Hypothesis Three Rank Sum Tests

significant at 5% D7 D8 D9 D10
totp vs Base 1.06E-01 7.66E-07 1.20E-05 NA
totp vs Crossover 1.82E-02 5.83E-05 4.13E-09 NA
totp vs Mutation 1.38E-02 8.25E-07 1.19E-07 NA
totp vs Both 2.87E-04 1.28E-10 1.29E-10 NA
Base vs Crossover 4.88E-01 1.20E-01 9.87E-06 3.58E-10
Base vs Mutation 4.01E-01 8.31E-01 1.69E-01 5.69E-01
Base vs Both 3.92E-02 4.34E-05 4.51E-08 1.94E-10
Both vs Crossover 1.42E-01 2.73E-01 2.48E-01 4.44E-01
Both vs Mutation 2.12E-01 3.37E-05 9.41E-06 4.66E-11

Table 9.8: SITB Wilcoxon Rank Sum p-values from comparing heuristic encoding
with traditional operators and typical parameters (totp), traditional operators and new

parameters (Base), and combinations of the new operators with the old operators.
Only sets labeled totp use the typical parameter values. Bold values are not

statistically significant at 5%. Underlined values had means not as expected.

88

9.4 H4 Experiments and Results

The design and selection of the heuristic set should incorporate knowledge of the

problem space appropriate for mapping to the solution space but should not include

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas

of the solution space. Also, if useless heuristics are included, they detract from the

guiding effects of the GA.

9.4.1 H4-1 Experiments and Results

H4-1: When key heuristics are removed, both upper end, and average GA performance

decreases.

For the TSP, heuristics 4, 5, 6, 7, and 11 (see Appendix A.1 for a description of these)

are removed from the standard set of 25 (see Section 2.4 for a discussion of how this

subset was selected). With this subset of 20, 30 GA runs on each problem are performed

and compared with the base set of heuristics using the results labeled "Both" from the

H3 experiments. All other parameters are the same. The results are in Table 9.9 in rows

labeled “Base Set” and “Minus.” The Wilcoxon Rank Sum probability test results are in

Table 9.10.

For the SITB, the heuristics removed are 4, 6, 20, 24, and 26 (see Appendix A.2 for a

description) from the base set of 17 for a subset of 12 (see Section 2.4 for a discussion

of how this subset was selected). Again, 30 runs for each of the problems are performed

and compared with the base set of heuristics using the results labeled “Both” from the

89

H3 experiments. The results are in Table 9.11 in rows labeled “Base set” and “Minus.”

The Wilcoxon Rank Sum probability test results are in Table 9.12.

9.4.2 H4-2 Experiments and Results

H4-2: When additional, unneeded heuristics are added, average GA performance

decreases.

This is tested in a similar way for both the TSP and the SITB. For both, copies of a

heuristic that had previously been removed from the set as not very helpful, are added.

Refer to Section 2.4 for a discussion of how this heuristic was selected. For the TSP, the

added heuristic instructs the GA to add the furthest node from the current node. While

this heuristic may occasionally be a good idea, it has been determined through

experimentation that this heuristic is normally a bad idea and should generally not be

used. Thus, for the TSP, 8 copies of this heuristic are added to the base set of 25 for a

total of 33 heuristics. 30 GA runs are conducted for each TSP test problem using this

new set of 33, and results compared to performance using the base set of 25 heuristics

labeled “Both” from the H3 experiments. All other parameters and GA operators are

identical. Results are in Table 9.9 in rows labeled “Base Set” and “Plus,” with the

Wilcoxon Rank Sum statistical data in Table 9.10.

For the SITB, a similar scheme is followed. The noise heuristic will add the node with

the largest number of non-dead end neighbors. (If one potential candidate has two

neighbors that are not dead ends, and another has three, add the one with three.) Here

90

non-dead end means that, after adding the stated node, there is at least one additional

node that can be added). To the base set of 17 heuristics are added 8 copies of this noise

heuristic. As with the TSP, 30 GA runs are performed and compared to the base set of

17 heuristics labeled “Both” from the H3 experiments. All other parameters and GA

operators are identical. Results are in Table 9.11 in rows labeled “Base Set” and “Plus.”

Table 9.12 contains the Wilcoxon Rank Sum statistical comparisons.

91

Hypothesis Four TSP Results

 Best Mean S. D. Worst
eil51 426
Base Set 427 430.60 3.55 439
Minus 429 433.20 3.96 439
Plus 427 431.63 4.21 439
lin105 14379
Base Set 14412 14522.30 97.30 14788
Minus 14499 14639.90 113.72 14923
Plus 14416 14530.50 74.33 14737
rat195 2323
Base Set 2338 2370.70 18.90 2427
Minus 2360 2377.97 11.25 2412
Plus 2339 2371.83 15.41 2412
a280 2579
Base Set 2623 2646.80 15.60 2679
Minus 2624 2656.03 16.03 2691
Plus 2599 2648.47 21.05 2711
d493 35002
Base Set 35909 36409.00 196.80 36739
Minus 36188 36650.60 202.29 37044
Plus 35713 36456.70 269.00 37018
u1060 224094
Base Set 234984 238816.00 1939.20 242315
Minus 236054 240077.00 1885.39 243872
Plus 235100 240017.00 2427.33 245089

Table 9.9: TSP experiments of 30 GA runs each showing the performance using
the base set of heuristics found to work best, with the removal of 5 useful heuristics

(Minus), and the addition of 8 heuristics of little value (Plus). While all averages
were ranked as expected, not all differences are statistically significant.

92

Bold
values not Hypothesis Four Rank Sum Tests
significant
at 5% eil51 lin105 rat195 a280 d493 u1060
Base set vs
Minus 7.9403E-04 3.2826E-05 2.5000E-02 3.3200E-02 5.2587E-05 1.5600E-02
Base set vs
Plus 4.1330E-01 3.5830E-01 5.8410E-01 7.9570E-01 3.3650E-01 3.3900E-02

Hypothesis Four SITB Results

 Best Mean S.D. Worst
7D 51
Base Set 51 50.67 0.76 49
Minus 51 49.93 1.05 48
Plus 51 49.47 0.97 48
8D 99
Base Set 96 93.83 1.27 92
Minus 94 92.63 0.67 91
Plus 95 92.67 0.84 90
9D 191
Base Set 177 171.27 2.45 167
Minus 169 165.00 2.27 159
Plus 177 170.13 2.61 165
10D 371
Base Set 325 315.23 4.22 308
Minus 308 298.47 4.97 289
Plus 324 315.00 4.17 308

Table 9.11: SITB experiments of 30 GA runs each showing the performance using the
base set of heuristics found to work best, with the removal of 5 useful heuristics (Minus),
and the addition of 8 heuristics of little value (Plus). While all averages were ranked as

expected, not all differences are statistically significant.

Table 9.10: TSP Wilcoxon Rank Sum p-values from comparing base set of heuristics with
the removal of 5 useful heuristics (Minus), and the addition of 8 heuristics of little value

(Plus). Bold values not statistically significant at 5%.

93

Bold Values are not Hypothesis Four Rank Sum Tests

significant at 5% D7 D8 D9 D10
Base set vs Minus 3.5000E-03 2.1322E-04 2.8826E-10 2.9784E-11
Base set vs Plus 1.0996E-05 5.6556E-04 6.1500E-02 8.1790E-01

Table 9.12: SITB Wilcoxon Rank Sum p-values from comparing base set of
heuristics with the removal of 5 useful heuristics (Minus), and the addition of 8
heuristics of little value (Plus). Bold values not statistically significant at 5%.

94

Chapter 10

Analysis of Experimental Results

We have presented much experimental data which will now be analyzed and explored.

In this chapter, we attempt to understand the results and their implications to the

hypotheses and this work in general.

As part of the analysis for H2 through H4, the Wilcoxon Rank Sum test for comparison

is performed using the MATLAB ranksum function between relevant sets of data. This

function performs a two sided test on two sets to calculate the probability that they

came from the same distribution. This function indicates at the 5% confidence level, if

two sets of 30 experimental values are indeed drawn from populations with different

distributions. For all experiments the p-values from these tests are included in the

tables. For these tables, if the compared sets have a value greater than 5%, its p-value is

bold, indicating a greater than 5% chance the sets are from the same distribution. Also,

for experiments where the mean value of the 30 GA runs was not as expected, this mean

value in the data table and its associated p-value are underlined.

10.1 H1 Experimental Analysis

H1: Heuristic encoding schemes can effectively represent solutions to graph-space

problems.

For the four representative TSPs used, it has been shown that the heuristic set of only 25

can reproduce the world record path. Indeed, we have been able to successfully

95

reproduce the best path for all of the training set problems for which the path is

available as well. While this does not prove that this heuristic set is sufficient to

reproduce the best path in any TSP, it shows the efficacy of this set in covering the

solution space.

For the SITB, as with the TSP, we find that a series of heuristics from the set of 17 is

capable of reproducing the world record snakes in D7, 8, 9, and 10. These findings

adequately support the hypothesis that this is a good encoding technique for a GA.

While showing that a specific point in a large search space can be represented using a

given scheme is good, it does not necessarily mean that the path in the search space to

these points can be found by a GA. To show this, we must also show that, in general,

and under the right conditions, a GA, using this encoding scheme can, on average,

achieve reasonably good results. This is the focus of the remaining hypotheses: showing

that, when combined with appropriate GA operators, good results are produced.

10.2 H2 Experimental Analysis

H2: Heuristic encoding used with traditional GA operators and parameter settings

performs no better, and may perform worse, with more traditional encoding schemes

using the same GA operators and parameters.

96

For both the TSP and the SITB, the experiments did not support the hypothesis. One

common reason for this is that the heuristics encode knowledge of the problem space

directly into the population members. This allows the GA to apply this knowledge

during population manipulation instead of the more random nature of traditional

encoding schemes where the GA must evolve the population to discover useful

knowledge of the problem space. With these results, the addition of customized GA

operators for the heuristic sets may not provide as much improvement as initially

expected, although improvements should still be seen. Also, these findings imply there

may be less degradation in performance when good heuristics are removed, or when

noise heuristics are added.

10.2.1 TSP Analysis

The experimental data for this hypothesis and the TSP are in Table 9.1 with the

statistical tests in Table 9.2. It was observed on the large problems (d493 and u1060 and

the training problems) using node encoding that the GA continued to evolve better

solutions no matter the number of generations it was allowed to run. The reason for this,

and the poor performance overall, is likely the random nature of the initial population.

The nodes are arranged in a completely random manner which leaves great room for

improvement, and the GA will continue to improve for a much longer time than is

typical when using GAs. However, the heuristic encoding scheme starts the population

off at a much better state where less improvement can be made. Thus, the population is

able to converge much more quickly to reasonably good solutions. Also, the fact that

there are far fewer heuristics than there are nodes allows the heuristic encoding scheme

97

to prune the search space. Thus, the GA has a much smaller area to explore when using

heuristic encoding for this problem. Note that this statement does not apply to the SITB

where the number of heuristics is larger than the number of links that can be taken.

For the TSP results, it seems obvious from the data in Table 9.1 that the values for the

node and the heuristic encoding schemes are drawn from different distributions (their

means are statistically different). Indeed, the Wilcoxon Rank Sum test for comparison

also indicates that all of the TSP comparisons result from different distributions, at the

5% confidence level. This indicates that the differences seen in the averages of the 30

tests are indeed statistically significant.

10.2.2 SITB Analysis

The experimental data for this hypothesis and the SITB are in Table 9.3 with the

statistical tests in Table 9.4. As with the TSP, results from Table 9.3 clearly show the

difference in performance using the heuristic encoding scheme when compared to more

traditional encoding schemes, even when traditional GA operators and parameters are

used. Unlike the TSP, this cannot be explained with the argument of search space

pruning in that we have more heuristics than links. As an example, in an 8 dimensional

hypercube, each node links to 8 other nodes. When building a snake, this allows for

only 7 choices at most (one of the links leads to the previous node in the path and, thus,

cannot be used). However, with a heuristic set of 17, there are 17 different possible

values or choices compared to only 7 using link encoding. Thus, we believe the reasons

for the better performance using heuristics come primarily from the built-in knowledge

98

of the problem space, and from the fact that the heuristics will only select a dead-end

node as a last resort. Finally, the Wilcoxon Rank Sum tests support the apparent

improvement of heuristic encoding over both of the link encoding variants. As with the

TSP, the Wilcoxon Rank Sum tests show that each pair is drawn from a different

distribution, at the 5% confidence level. As expected, the LS (Link Search) encoding

does perform better than the simple link encoding. However LS is still markedly worse

than heuristic encoding, again, not supporting the hypothesis.

10.2.3 Final Comments

Ultimately, the experiments showed this hypothesis incorrect! Indeed, the heuristic

encoding in all cases outperformed the traditional encoding schemes even when

traditional GA operators and parameters were used. The difference in performance

becomes worse as the problem size grows.

10.3 H3 Experimental Analysis

H3: When using heuristic encoding, phenotype operators improve average GA

performance over that obtained with traditional GA operators.

The first row in Tables 9.6 and 9.8 compares the typical parameter values with the new

values, but both use the traditional GA operators. In all cases for the TSP and the SITB,

except eil51, the new parameters perform better. The next three rows compare using the

typical parameter values and the new values with the given new GA operators. These

99

first four rows are mostly for completeness and it is the last five rows that are of most

interest and are discussed below.

H3-1: When using heuristic encoding, the phenotype crossover operator increases

average GA performance above that obtained with the canonical, linear multi-point

crossover operator.

H3-2: When using heuristic encoding, the phenotype mutation operator increases

average GA performance above that obtained with the canonical mutation operator.

H3-3: When using heuristic encoding, the combination of phenotype crossover and

phenotype mutation operators increases average GA performance above that obtained

using any other combination of canonical GA operators for crossover and mutation.

For all three sub-hypotheses, results were mostly as expected, with some interesting

exceptions which are reviewed in the separate TSP and SITB analysis sections. As

discussed in 10.2, the heuristic encoding, even with traditional GA operators, performed

better than expected. This causes the addition of custom designed operators to not

improve performance as much as expected, but still to some extent. In Tables 9.5 and

9.7, we start by performing a set of experiments using the traditional operators, but with

the parameters tuned for the new operators. These experiments are labeled “Base” in the

tables to show that they are the baseline for the other experiments to be compared

against. Also, while we are not interested in comparing performance between the

phenotype mutation operator and the phenotype crossover operator, it is important to

100

show that the combination of these two operators works better than either alone. Thus,

these mean value comparisons will be discussed and have the “Both” mean value

underlined if this assumption is not true. As with H2, all relevant experiments are

compared using the Wilcoxon rank sum tests in Tables 9.6 and 9.8. These tables also

compare between both new operators and each individually.

10.3.1 TSP Analysis

While the intent was to find a good set of TSP test problems of various sizes starting

under 100 nodes, this caused problems when using the smallest problem, due to ceiling

effects. Results for the eil51 problem are so similar as to be statistically insignificant,

and the Wilcoxon results bear this out as seen in the first column of Table 9.6.

Another interesting finding is it appears from the tests that phenotype crossover, on its

own (i.e., in combination with traditional mutation) actually detracts from performance

over linear crossover, at least for all but the largest problem of 1,060 nodes. Indeed,

even for lin105, where phenotype crossover performed marginally better than Base on

average, it fails the Wilcoxon test for statistical significance. We are not sure why the

phenotype crossover only shows improvement when combined with the phenotype

mutation operator, but not with traditional mutation. However, this may be caused by

the initial gene values all being set to one. This initial uniform population may affect the

performance of the more complicated phenotype crossover operator more than linear

multi-point crossover. It is interesting to note, however, that on the largest, most

difficult problem of 1,060 nodes, phenotype crossover does show statistically

101

significant improvement over linear multi-point crossover.

The phenotype mutation operator, however, seems to perform statistically significantly

better than the traditional mutation, with the exception of rat195, where its mean was

still higher, but not statistically significantly so.

Finally, the most interesting result from these experiments is, with the exception of eil51

which can be discounted due to ceiling effects, the combination of the two new

operators always outperforms all other combinations of old and new operators, even

when individually, performance may drop with only one of them (primarily the

phenotype crossover as discussed above). We believe this is due to the fact that the

phenotype mutation operator redistributes the allelic selection probabilities such that the

values contributing more to shorter paths quickly get incorporated into the population,

which allows the phenotype crossover operator to be effective quicker than with a

uniform random mutation operator. Therefore, when used together, the average

performance increases over either phenotype operator alone.

Regardless of the actual differences in mean values, for all comparisons with the

Wilcoxon Rank Sum test, the combination of both new operators and only the new

mutation operator is not statistically significant. This lessens the value of the previous

paragraph, even though the average for the combination tests is better for every problem

except eil51. Also, the best/shortest path found is better for the combination in all cases

except d493, again indicating the combination may be better overall. Since the tests for

102

statistical significance do not have low enough p-values to show at a high enough

confidence level that the combination does perform better than phenotype mutation

alone, no definite conclusions can be drawn.

10.3.2 SITB Analysis

These experiments were conducted very similarly to the TSP, as we expect to find

improvements with the new operators individually, and again, greater improvement

when they are combined. Results of experiments in Table 9.7 show that this is largely

the case. However, oddly enough we get similar results from the TSP except that the roll

of the phenotype mutation and crossover operators has reversed. Table 9.7 shows that

the phenotype mutation operator does not increase average path lengths by much, and

Table 9.8 shows the p-values larger than 5% (the smallest is 17%) for all four hypercube

dimensions, implying that the new mutation operator did not actually change the

average results by a significant amount.

Even more interesting, however, is the fact that, when combined with the phenotype

crossover operator, which generally does improve performance, it does seem to improve

the mean, but not in a statistically significant manner, as seen from the “Both vs

Crossover” rows in Table 9.8. As stated above, this is very similar to results from the

TSP experiments except that there, phenotype crossover was the weaker by itself.

103

While phenotype crossover seems to improve mean performance in all cases, it fails to

show this in D7 and D8 with the Wilcoxon Rank Sum tests as seen in Table 9.8. As the

problem gets larger, the value of phenotype crossover should, and does increase as seen

in the p-values for D9 and D10. However, in all cases, the combination of both

phenotype operators improves performance over the base case in a statistically

significant way, as seen from the row labeled “Base vs Both” in Table 9.8. As with the

TSP, there seems to be some dynamic interaction involved in using both of the

phenotype operators that is able to take advantage of the heuristic encoding, and which

is not seen in either operator individually. There are many potential causes, but

parameter tuning may be a partial cause.

The last two rows of Table 9.8, show that the mutation operator seems to weaken as the

dimension grows while the crossover operator strengthens. This is shown by the p-

values growing smaller for the “Both vs Mutation” row and larger for the “Both vs

Crossover” row, implying the distributions are growing further apart for the former, but

closer together for the latter. This may indicate that, as the problem space grows,

phenotype crossover tends to dominate the evolution of the population toward better

solutions, while the significance of mutation decreases. However, the best solution

found (longest snake, or the snake with the largest number of nodes) for the D8 to D10

set of 30 runs was better for the combination of the new operators than for any other

combination. We see, perhaps, a ceiling effect for the best paths in D7 as they are 51 for

all combinations of operators.

104

The likely reasons for phenotype mutation being less effective for the SITB than for the

TSP are four:

1) There are more heuristics than link choices for the SITB. This implies that multiple

heuristics will choose the same node, thus weakening the value of the mutation

operator’s ability to re-introduce lost alleles.

2) The population starts off with random heuristic values for the SITB but all heuristic 1

for the TSP. Thus, phenotype mutation is not used for the SITB to randomize the

population and bring in new values.

3) Phenotype mutation for the SITB is not limited to selecting a new value different

from the current. Thus, when a gene is selected for mutation in the SITB, there is a

chance the same value may be selected.

4) Only one gene per population member can be mutated for the SITB unlike the TSP,

where multiple genes may be selected.

These arguments are not all specific to phenotype mutation, and may apply to

traditional uniform mutation as well. However, they do show that, in general, mutation

is likely to play less of a roll in our implementation of a GA for the SITB than it does

for the TSP. Thus, even an improved mutation operator is unlikely to show as dramatic

improvements for the SITB as for the TSP, and this is what is found in our results.

105

10.3.3 Final Comments

For both problems, while overall performance did not increase as much as expected, the

phenotype GA operators did show a performance increase, especially when combined.

There are cases where, individually, the new operators actually decreased performance,

but this was mitigated when combined with the other new operator. Indeed, this should

be studied further, and may lead to other improvements to the heuristic encoding

technique and better GA operators for it.

10.4 H4 Experimental Analysis

The design and selection of the heuristic set should incorporate knowledge of the

problem space appropriate for mapping to the solution space but should not include

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas

of the solution space. Also, if useless heuristics are included, they detract from the

guiding effects of the GA.

H4-1: When key heuristics are removed, both upper end, and average GA performance

decreases.

H4-2: When additional, unneeded heuristics are added, average GA performance

decreases.

As explained in Section 9.4, we study the effects of the removal of needed heuristics,

and that of adding useless heuristics simulating noise in the heuristic set. It is surprising

106

that we did not get the dramatic results expected, but still observe a general decrease in

overall effectiveness of the GA with heuristic encoding. In Tables 9.9 to 9.12, “Base

set” refers to results from the “Both” experiments from H3 where both of the new GA

operators were used with the “Base” heuristic set found to work best. This base set is

compared to the two experiments for this hypothesis, where a key set of heuristics is

removed (“Minus” in the tables), and extra “noise” heuristics are added (“Plus” in the

tables.)

10.4.1 TSP Analysis

Results for both sub-hypotheses as applied to the TSP can be found in Table 9.9 with the

Wilcoxon Rank Sum statistical results in Table 9.10. When a small subset of useful

heuristics is removed from the operational set, we see a definite and statistically

significant degradation in performance as witnessed in the tables. Indeed, for even the

smallest problem, eil51, the average and best performance decreased from the base set,

and these differences are statistically significant as seen in Table 9.10. The reason for

this is quite simple: The new heuristic set does not have the reach into the solution

space that the larger set had. There are simply valuable areas of the solution space that

can no longer be reached. Of course, we want the heuristic set to prune the search space

and, indeed, this is one of the motivating factors behind heuristic encoding. However,

we want to design and select heuristics in a manner that will prune unfruitful areas,

whereas, here, the more valuable heuristics were removed.

107

Results of the Plus TSP tests are actually quite interesting. While adding the noise

heuristics seems to cause a slight decrease in average performance, it is mostly

insignificant. Indeed, the Wilcoxon Rank Sum tests fail to show statistical significance

at the 5% level for all but the largest problem. This implies that adding noise does not

affect performance as much as expected, and, in most cases, not even to a statistically

significant level. The reason for this is likely the phenotype mutation operator. The

primary point of this operator is to allow the GA to tailor the selection of heuristics

during mutation based on their use within the best 10% of the current population. Thus,

it would appear that, for population members with noise heuristics, their presence

degrades population members so that they are less likely to be within the best 10%.

With this being the case, if the GA is allowed to run long enough, the noise heuristics

will slowly be removed from the active population, thus reducing their effect on the

population’s performance. Also, since no valuable heuristics were actually removed, the

same areas of the solution space reachable without the noise heuristics are also

reachable with them.

10.4.2 SITB Analysis

Results for both sub-hypothesis as applied to the SITB can be found in Table 9.11 with

the Wilcoxon Rank Sum statistical results in Table 9.12. In all cases, the removal of a

small subset of useful heuristics noticeably degrades the performance both on average

and for the best found, with the exception of D7. Indeed, this difference is also

statistically significant as seen in Table 9.12. Also, this degradation worsens as the

problem size increases. This may be due to the fact that, as the search space increases, it

108

is more necessary to have a larger number of options for selection of the next node. As

the options are restricted and the search space increases, the performance is bound to

decrease. As with the TSP results, this is not surprising, since much of the exploration

ability of the heuristic set has been removed. In such a case, even with good GA

operators and the best parameter settings, the GA may not be able to reach promising

areas of the search space that were accessible with the more complete set (the Base Set).

Results when noise heuristics are added are very similar to what was observed with the

TSP. In all cases there is a minor reduction in mean performance. However, this

reduction is only statistically significant for the two smaller dimensions, D7 and D8.

The Wilcoxon Rank Sum test results in Table 9.12 show that the difference in D9 is

minor (6.15%) and that there is virtually no difference between the results produced

without and with the noise heuristics in D10. Less of a difference is observed in these

larger problems due to the fact that they run longer (the larger the problem

size/population members, the more generations are required by a GA to reach good

solutions), and this allows the phenotype mutation operator more time to remove the

noise heuristics from the population (see discussion for the TSP in Section 10.4.1).

109

10.4.3 Final Comments

Results for the Minus tests were as expected and support the hypothesis. However,

adding 8 noise heuristics had less effect than expected. While the phenotype mutation

operator was designed to be able to identify and remove unneeded heuristics, it was not

expected to be so effective. Indeed, the longer the GA is allowed to run, the less

degradation is seen from the noise heuristics. Thus, while the mean with the noise

heuristics is generally worse than without, this difference is quite minor. However,

removal of valuable heuristics does indeed affect performance strongly in nearly all

cases. In the smaller problems the effect is less, due to the reduced size of the space to

be explored. In these smaller problems, the remaining heuristics are more able to make

up for the loss.

110

Chapter 11

Conclusions

This work contributes much to the area of GAs as applied to NP-Complete problems

and to the use of heuristics in general. Some of the specific contributions are:

1) The specific study of heuristic encoding for GAs and graph-space problems. While

there are a few others who have applied heuristic encoding for GAs (Hart and Ross,

1998; Lopez-Camacho et al, 2010), the application to graph-space problems where the

low level heuristics are used to dynamically construct a path seems rare (Carlson, 2002;

Carlson and Hougen, 2010). Indeed, the study of this technique on two rather diverse

problems can inform and guide others in applying heuristics to GAs. Burke et al (2013)

mentions that an area of heuristic research needing further work is their application to

multiple problem domains, and that this should be shown to produce good results on

average across these domains, rather than targeting specific problems.

2) The development of low level heuristic sets for the TSP and the SITB. These

heuristic sets are shown to be quite useful in finding good solutions to these problems,

and can be used by others both for GAs and with other techniques. The process itself of

studying the effectiveness and application of these sets is also a strong contribution.

3) Scope and application. The scope of this project is larger than any known regarding

the study and application of heuristics to GA encoding schemes. While others have

focused on individual projects, this research attempts to show that this is a generalizable

111

technique with broad application.

4) The development of phenotype GA operators. These new operators developed for

heuristic encoding are quite different than most in the evolutionary computation

community, and seem to work well with heuristic encoding. While most GA operators

work directly with the GA's population members (the genotype) the phenotype

operators use the final product and apply information from solutions back to the

manipulation of the GA's population. This work and the path taken to develop such

operators should prove useful to others in the evolutionary computation community.

Burke et al (2013) lists this as one of the areas for further research in heuristic

techniques.

5) Generally good results were obtained and a world record was broken for the 8D

hypercube. The previous record of 98 (Rajan and Shende, 1999) had stood for 11 years

before being broken by using heuristic encoding combined with phenotype GA

operators (Carlson and Hougen, 2010).

6) Already this work is proving useful to others: Ostergard and Pettersson (2015) have

used the 99 node snake found in this work as a starting point for their exhaustive search

of the 8D hypercube space. They show that our 99 node snake is the longest possible

within the 8D hypercube.

112

Based on the good performance in these two representative graph-space NP-Hard and

NP-Complete problems, it appears the heuristic encoding technique performs well on at

least graph-space problems, if not on any class of NP-Complete problem to which a GA

can be applied. Certainly the performance, when compared to other, more typical,

encoding schemes and sets of GA operators, justifies this approach. Indeed, even before

the GA starts, the average evaluations for the initial populations using heuristic

encodings- are quite good. This fact, of course, caused issues with H2 where the claim

was that performance under these conditions would not be good. The good results

before implementing custom GA operators and parameter tuning for the heuristics was

unexpected.

The disruptive nature of this encoding scheme is mitigated well by using locus-based

gene ordering, phenotype crossover and phenotype mutation operators. It seems clear

these new operators do contribute to the success as applied to the TSP and SITB

problem. It is quite interesting that the phenotype mutation operator was so good at

removing the noise heuristics from the operating set, as seen from the results of the H4-

2 experiments.

11.1 Overall TSP Findings

The TSP has been studied in depth for many years and has had many different types of

algorithms applied to it. It seems from the literature that the best are non-EC techniques,

and are often deterministic such as polyhedral, or branch and bound (Carlier and Villon,

1990). Indeed, the LK heuristic algorithm works quite well, even though the initial

113

paper was only applied to smaller problems (Lin and Kernighan, 1973). However, the

purpose of this work was never to compete with other’s work in finding good solutions

to the TSP. Instead, the TSP was used as one of two problems for developing and testing

the idea of heuristic encodings for GAs. In this, it has served well and, although not

specifically competing for good solutions, the heuristic encoded GA does reasonably

well, even in larger problems over a thousand nodes.

Table 11.1 lists some of the better solutions found to various TSPs in this project and

compared to the known best (bold matches the best known). For most of the problems

under 200 nodes, the best known path was found. For those larger, the heuristic encoded

GA still finds reasonably good solutions within a short time (perhaps an hour for 1,000

nodes). However, once these good solutions are found, the GA must run for much

longer before meaningful improvements are made. An example is pr2392: In about one

hour the GA can typically find solutions around 410,000. However, it takes perhaps

another day to get to 400,000 and a week to get to 390,000 (the best known is 378,032).

TSP Best Known Heuristic Best
berlin52 7,542 7,542
eil101 629 629
ch150 6,528 6,528
d198 15,780 15,825

lin318 42,029 42,584
pcb442 50,778 51,551
pr1002 259,045 267,199
pr2392 378,032 390,557

Table 11.1: TSP results comparing best known to best found paths using heuristic
encoding. Bold values found by the heuristic GA are equal to known record. Best

known values taken from TSPLIB95 web site.

114

11.2 Overall SITB Findings

As with the TSP, the Snake-In-The-Box problem is used primarily as a test and

development platform for heuristic encoded GAs. While also a graph-space problem,

unlike the TSP, it has a very structured space. Therefore, it makes a good match with the

TSP for vetting the heuristic encoded GA with phenotype operators. When a heuristic

encoded GA for this problem was initially studied, the performance was not very good.

After developing the idea of the phenotype crossover and mutation operators and

implementing them, average performance increased dramatically and the world record

length snake of 99 nodes in an 8 dimensional hypercube was quickly found. Figure 11.1

shows this longest snake in canonical form and in the 2-D circular format. In this figure,

the nodes are numbered from 1 to 256 starting on the right side and going

counterclockwise. The tail is light blue, on the right, and the head is dark pink, on the

left. This snake has since been proven to be optimal in D8 by Ostergard and Pettersson

(2015).

In addition, this technique does quite well in other dimensions. However, performance

does noticeably drop off after D9. The best snake of 27 nodes in D6, which an

exhaustive search algorithm can find in about two minutes, is found by the GA

immediately (within seconds), and sometimes appears as an initial population member

before the GA has even started. Also, our exhaustive search implemented using

MATLAB has never found better than 49 in D7 (it has been allowed to run for several

weeks), where the best is 51. However the heuristic encoded GA finds the best of 51

nearly every time within several minutes. Table 11.2 has additional comparisons of the

115

current record snakes and the best found in this work.

Figure 11.1: The world record D8 snake of 99 nodes in canonical form found with
the Heuristic encoded GA using phenotype operators. Light blue node on right is
the start/root node or tail of the snake. Pink node on left is the final or head node.

116

11.3 Final Concluding Remarks

Many GA approaches to graph-space problems (or problems that, while not graphs on

the surface, can easily be turned into graphs) use GAs combined with local search

optimization. With these techniques, as part of the GA evaluation scheme, some form of

deterministic local search is performed on the solutions created by the population

members in an attempt to squeeze just a bit more performance out of them. However,

our technique is considered a pure Evolutionary Algorithm or EA (Jung and Moon,

2002), in that no additional searching is performed outside of the normal GA

evolutionary process. One might argue that the heuristics themselves perform a local

search, but it can be argued that this is simply a side effect of the encoding scheme, not

an actual optimization technique. Indeed, often the given heuristic selects a node that is

not a good choice based on local optimization, but ends up being a good choice from a

global perspective. This is one reason for using this technique: to avoid choices that

appear good short term (locally, known as a greedy algorithm), but that might detract

from the overall success of the population member producing a quality solution!

Finally, while conducting this research, I have found few research projects that use GAs

for larger problems, but instead use some form of deterministic algorithm (Wynn, 2012,

also Carlier and Villon, 1990), or other form of stochastic algorithms that have been

highly modified for the problem at hand (Kinny, 2012, also Allison and Paulusma,

2016). Also, some use other techniques to find seed solutions for a GA (Louis and Xu,

1996). Finally, some use a GA to evolve pruning rules for some other form of search

technique (Tuohy, et al, 2007). However, I found no other projects involving a pure EA

117

as applied to very large NP-Complete graph-space problems, as this work does. See

Jung and Moon (2002) for a more complete evaluation and discussion of historic

evolutionary computation techniques for the TSP.

SITB Dimension Best Known Heuristic Best
6 27 [1] 27
7 51 [2] 51
8 99 [3] 99
9 191 [4] 180

10 371 [5] 332
11 709 [6] 603
12 1,358 [6] 1,087

Table 11.2: SITB results comparing best known to best found with the heuristic
encoded GA using phenotype operators. Bold values found using the heuristic
GA are equal to known best values. Best known values found by: [1] Davies,

1965, [2] Potter et al, 1994, [3] Carlson and Hougen, 2010, [4] Wynn, 2012, [5]
Kinny, 2012, [6] Allison and Paulusma, 2016

118

Chapter 12

Future Work

There are primarily two areas of future work:

1) While phenotype operators were developed for crossover and mutation, a phenotype

selection operator should be developed. Currently, in selection for direct copy and

selection for crossover, only the evaluation score of the individual population members

are used. Some form of selection that also examines the solutions produced by the

population members as part of the determination for selection should be developed. This

operator should help the population maintain diversity which will allow for better

exploration of the solution space.

2) Application to other problems, including non-graph-space problems. This technique

should be demonstrated on other problems to determine its efficacy in more broad

terms. Indeed, this is the primary focus of this work: to develop the heuristic encoding

technique to be a general encoding technique for NP-Complete problems with GAs. If it

can be shown that this technique works well on a broader class of problems, this will

validate its usefulness and illustrate how it can be adapted to many different problems.

Finally, when these are accomplished, it would make sense to bring this material

together in a single volume, in order to more completely communicate the technique of

heuristic encoding of problems for GA application, and the idea of phenotype operators.

119

This would allow others to more quickly develop solutions to their own problems using

heuristic encoding and phenotype operators. It would also bring together my work and

the work of others in this area.

120

References

NOTE: Information retrieved regarding world record snakes from Prof. Don Potters
SITB web site at:
http://ai1.ai.uga.edu/sib/sibwiki/doku.php/records

Allison, D., Paulusma, D. 2016. New Bounds for the Snake-in-the-Box Problem.
arXiv:1603.05119v1, 10 pages, not numbered.

Altenberg, L. 1994. Evolving Better Representations through Selective Genome
Growth. IEEE World Congress on Computational Intelligence, pages182-187

Arora, S. 1998. Polynomial Time Approximation Schemes for Euclidean Traveling
Salesman and Other Geometric Problems. Journal of the ACM, volume 45, number 5,
pages 753-782.

Bäck, T., Fogel, D. B., Michalewicz, T. 2000. Evolutionary Computation 1: Basic
Algorithms and Operators. Taylor & Francis Group, LLC.

Bellman, R. 1961. Adaptive Control Processes: A Guided Tour. Princeton, NJ:
Princeton University Press.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R. 2013.
Hyper-Heuristics: A Survey of the State of the Art. Journal of the Operational Research
Society, 64, pages 1695-1724.

Carlier, J., Villon, P. 1990. A New Heuristic for the Traveling Salesman Problem.
RAIRO - Operations Research - Recherché Opérationnelle 24.3, pages 245-253.

Carlson, B. 2002. Rule Coding for Genetic Algorithms: an Alternative Solution to the
Traveling Salesman Problem. International Conference on Artificial Intelligence, Las
Vegas, NV, pages 878-883.

Carlson, B., Hougen, D. 2010. Phenotype Feedback Genetic Algorithm Operators for
Heuristic Encoding of Snakes within Hypercubes. Genetic and Evolutionary
Computation Conference, July 7-11, Portland, OR, 2010, pages 791-798.

Davies, D.W. 1965. Longest -Separated- Paths and Loops in an N Cube, IEEE
Transactions on Electronic Computers, Vol. 14, page 261.

De Jong, K. A. 1993. Genetic Algorithms are NOT Function Optimizers. In L. D.
Whitley, ed., Foundations of Genetic Algorithms 2. Morgan Kaufmann, pages 5-18.

Diaz-Gomez, P., Hougen, D. 2006. Analysis of the Snake in the Box Problem:
Mathematical Conjecture and Genetic Algorithm Approach. Genetic and Evolutionary

http://ai1.ai.uga.edu/sib/restricted/papers/Davi65.pdf

121

Computation Conference, pages 1409-1410.

Engelbrecht, A. P. 2007. Computational Intelligence: An Introduction, Second Edition.
John Wiley & Sons Ltd.

Falkenauer, E. 1998. Genetic Algorithms and Grouping Problems. John Wiley & Sons
Ltd.

Garcia-Villoria, A., Salhi, S., Corominas, A., Pastor, R. 2011. Hyper-Heuristic
Approaches for the Response Time Variability Problem. European Journal of
Operational Research, pages 160-169.

Goldberg, D. E. 2002. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Springer Science+Business Media Dordrecht.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison Wesley Longman, Inc.

Goldberg, D., Lingle, R. 1985. Alleles, Loci, and the Traveling Salesman Problem.
International Conference on Genetic Algorithms and Their Applications, pages 154-
159.

Gonzalez, G. 2009. Elitism, Fitness, and Growth. University of Oklahoma Master's
Thesis.

Hart, E., Ross, P. 1998. A Heuristic Combination Method for Solving Job-Shop
Scheduling Problems. Proceedings Parallel Problem Solving from Nature 5th
International Conference, Lecture Notes in Computer Science Volume 1498, pages 845-
854.

Hauschild, M., Pelikan, M. 2011. An Introduction and Survey of Estimation of
Distribution Algorithms. Swarm and Evolutionary Computation 1, pages 111-128.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press. (Second edition: MIT Press, 1992)

Jung, S., Moon, B. 2002. Toward Minimal Restriction of Genetic Encoding and
Crossovers for the Two-Dimensional Euclidean TSP. IEEE Transactions on
Evolutionary Computation, 6, pages 557-565.

Kauffman, S. A. 1989. Adaptation on Rugged Fitness Landscapes. Stein, D., editor,
Lectures in the Sciences of Complexity, pages 527-618, Redwood City: Addison-Wesley.
SFI Studies in the Sciences of Complexity, Lecture Volume I.

Kautz, W. 1958. Unit-Distance Error-Checking codes. IRE Transactions on Electronic
Computers 1958, 7, pages 179-180.

122

Kinny, D. 2012. A New Approach to the Snake-In-The-Box Problem. European
Conference on Artificial Intelligence, doi:10.3233/978-1-61499-098-7, pages 462-467.

Kochut, K. 1996. Snake-in-the-Box Codes for Dimension 7. Journal of Combinatorial
Mathematics and Combinatorial Computations 20, pages 175-185.

Lin, S., Kernighan, B. 1973. An Effective Heuristic Algorithm for the Traveling
Salesman Problem. Operations Research, 21, pages 498-516.

Livingston, M., Stout, Q. 1988. Distributed resources in hypercube computers. 3rd
Conference on Hypercube Concurrent Computers and Applications, pages 222-231.

Lopez-Camacho, E., Terashima-Marin, H., Ross, P. 2010. Defining a Problem-State
Representation with Data Mining within a Hyper-heuristic Model which Solves 2D
Irregular Bin Packing Problems. 12th Ibero-American Conference on Advances in
Artificial Intelligence, pages 204-213.

Louis, S., Xu, Z. 1996. Genetic Algorithms for Open Shop Scheduling and Re-
Scheduling. 11th ISCA International Conference on Computers and Their Applications,
pages 99-102

Louis, S, Li, G. 1997. Augmenting Genetic Algorithms with Memory to Solve Traveling
Salesman Problems. Wang, P. P., editor, Third Joint Conference on Information
Sciences, pages 108-111.

Michalewicz, Z, Fogel, D. B. 2004. How to Solve It: Modern Heuristics, Second
Edition. Springer-Verlag.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press

Ostergard, P.R.J., Pettersson, V.H. 2015. Exhaustive Search for Snake-in-the-Box
Codes. Graphs and Combinatorics, 31, pages 1019-1028.

Palombo, A., Stern, R., Puzis, R., Felner, A., Kiesel, S., Ruml, W. 2015. Solving the
Snake in the Box Problem with Heuristic Search: First Results. Eighth International
Symposium on Combinatorial Search, pages 96-104.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Inc.

Potter, W., Robinson, R., Miller, J., Kochut, K., Redys, D. 1994. Using the Genetic
Algorithm to find Snake-in-the-Box Codes. 7th International Conference on Industrial
& Engineering Applications of Artificial Intelligence and Expert Systems, pages 307-
314.

123

Rajan, D., Shende, A. 1999. Maximal and Reversible Snakes in Hypercubes. 24th
Annual Australasian Conference on Combinatorial Mathematics and Combinatorial
Computation.

Ralston, A. (Editor) 1976. Encyclopedia of Computer Science, First Edition. Litton
Educational Publishing, Inc.

Ruiz, KH. 2014. Search for Maximal Snake-in-the-Box Using New Genetic Algorithm.
Genetic and Evolutionary Computation Conference, pages 831-838.

Spears, W. M., De Jung, K. A. 1995. On the Virtues of Parameterized Uniform
Crossover. Naval Research Lab Washington DC, 7 pages.

Terashima-Marin, H., Ross, P., Farias-Zarate, C. J., Lopez-Camacho, E., Valenzuela-
Rendon, M. 2008. Generalized Hyper-Heuristics for solving 2D Regular and Irregular
Packing Problems. Annals of Operations Research, pages 369-392.

Reinelt, R. TSPLIB95, University of Heidelberg, Gerhard, e-mail:
Gerhard.Reinelt@informatik.uni-heidelberg.de
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html

Tuohy, D., Potter, W., Casella, D. 2007. Searching for Snake-in-the-Box Codes with
Evolved Pruning Models. International Conference on Genetic and Evolutionary
Methods, pages 3-9.

Wynn, E. 2012. Constructing Circuit Codes by Permuting Initial Sequences.
arXiv:1201.1647v1, 9 pages, not numbered.

Zhang, X., Ma, Y. 2014. Solving TSP Problems with Hybrid Estimation of Distribution
Algorithms. International Conference on Intelligent Computing, Lecture Notes in
Computer Science 8588, pages 73-81.

mailto:Gerhard.Reinelt@informatik.uni-heidelberg.de
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html

124

Appendices

A. List of Heuristics and their Descriptions

This appendix contains the complete list and description of the two heuristic sets for the

TSP and the SITB. As needed, it also contains additional explanations and supporting

figures for various concepts involved.

A.1 TSP Heuristics

The initial heuristic set contained 33 heuristics. However, it was found that 8 acted as

noise and did not contribute to finding shorter paths. Due to this, the heuristic numbers

may have gaps. In all of the descriptions, it is implied that only available nodes will be

considered, and that the current node is implied (in “Select the closest node” it is

implied that this refers to the closest node to the current node.) Also, center refers to the

Euclidean center of mass of the entire problem, which is calculated at the beginning and

kept static throughout the path building process. The current set below contains 25

numbered from 1 to 26:

1) Select the closest node.

3) Select the closest node to the center.

4) Select furthest node from the center.

5) Select the node whose sum of distance from the current node and distance from the

center is the smallest.

6) Select the node that is the closest and also is closer to the center than the current

node.

7) Select the node that is the closest and is also further from the center than the current

125

node.

8) Select the second closest node from all available nodes.

9) Select the third closest node from all available nodes.

10) Select the fourth closest node from all available nodes.

Heuristics 11 to 18 use the idea of dividing the space into Euclidian quadrants. Figure

A.1 shows the four quadrants used by numbers 11 to 14 on the left, and the four

quadrants used by numbers 15 to 18 on the right. For all of these heuristics, the current

node is at the origin. I refer to quads one through four on the right as alternate quads.

11) Select the nearest node in quad 1.

12) Select the nearest node in quad 2.

13) Select the nearest node in quad 3.

14) Select the nearest node in quad 4.

15) Select the nearest node in alternative quad 1.

Figure A.1: The eight quadrants used for TSP heuristics 11 to 18. The current node is
at the origin.

126

16) Select the nearest node in alternative quad 2.

17) Select the nearest node in alternative quad 3.

18) Select the nearest node in alternative quad 4.

19) Select the node that is the closest in the x coordinate only.

20) Select the node that is the closest in the x coordinate that is also closer to the center.

21) Select the node that is the closest in the x coordinate that is also further from the

center.

22) Select the node that is the closest in the y coordinate only.

23) Select the node that is the closest in the y coordinate that is also closer to the center.

24) Select the node that is the closest in the y coordinate that is also further from the

center.

Heuristics 25 and 26 use the distance between the furthest two nodes in the problem

space, referred to as total distance, which implies that it is the total distance the problem

space occupies.

25) Select the closest node that is at least 10% of the total distance from the current

node.

26) Select the closest node that is at least 20% of the total distance from the current

node.

127

A.2 SITB Heuristics

The initial SITB heuristic set contained 26 heuristics. Through experimentation and

analysis it was found that 9 of these contributed little or nothing to the success of the

GA, and were removed. The remaining 17 are explained below. In the descriptions, an

example of a link table is in Figure 5.1. This is a table showing the connections of all

nodes. Each node has a row listing the nodes it connects to.

As with the TSP set, some from the original set have been removed. Thus, the

remaining 17 are not contiguous in their numbering scheme. Also, a node that is a dead

end, in that no other nodes after it can be selected, will only be selected as a last resort.

Some additional concepts need explanation. Invalid means that a node cannot be added

to the snake, either because it is already in the snake, or because it already has a

neighbor in the snake and that neighbor is not the head node of the current path.

Non-Dead End (NDE) node is an available node (it can be added to the snake) that has

at least one neighbor that can be added to the snake. Thus, if this node is added, the

snake can still grow. However, a Dead End (DE) node, if selected, will terminate the

growth of the snake.

 A node can have multiple neighbors in the snake, and this value is kept track of as part

of the node's current status. When a NDE node is being considered, some of the

heuristics will examine the number of invalid neighbors it has. This examination can be

128

performed in two ways:

1) Count the number of invalid neighbors, referred to as the invalid count

2) Sum up the number of times each neighbor that is invalid has been invalidated due to

a neighbor in the snake, referred to as the invalid sum.

Figure A.2 illustrates these two concepts. This figure is not meant to properly represent

a hypercube, and does not accurately show all of the nodes and links.

1) Select the first node moving from left to right across the link table.

2) Select least invalid sum greater than one. This heuristic will select the neighbor that

has the least value for invalid sum (explained above), but that is greater than one.

3) Select closest link with respect to the inbound link for the current head. Treat the row

from the link table for the current head node as a circular list.

4) Select the node that has the largest invalid sum value.

6) Select the node with the largest invalid count value. Select the right node in a tie.

7) Select the furthest link with respect to the inbound link (opposite of #3).

8) Select the furthest link from the inbound link, but add one to the link number.

10) Select the node that has the largest invalid sum value. Select right in a tie.

12) Select the closest link from the inbound link. Select right in a tie.

13) Select the furthest link from the inbound link, but subtract one from the link

number.

14) Select the closest link from the inbound link, but add one to the link number.

16) Select least invalid sum greater than one. Select right in a tie.

129

19) Select the furthest link from the inbound link. Select right in a tie.

20) Select the node with the largest invalid count.

21) Select closest link from the inbound link. However, start searching at the inbound

link minus 2. Select right in a tie.

24) Select the neighbor that has the least number of NDE neighbors, but at least one.

26) Select the neighbor that has the least number of NDE neighbors whose sum of

available neighbors is smallest, but at least one. This is a rather difficult heuristic to

understand. It involves looking two levels deep past the node under consideration.

Figure A.3 illustrates this heuristic.

130

Figure A.2: SITB example of invalid sum and invalid count determination. Black
nodes are in the snake, white nodes are available to be added, and red nodes are

invalid and cannot be added. From the current head node (far right black node), there
are three options: N1, N2, and N3. N1 is invalid due to an immediate neighbor, other
than the current head node, being in the snake and so is not considered. Both N2 and

N3 are valid, NDE nodes. They are valid because they have no immediate neighbor in
the snake, and they are NDE since both have an additional neighbor that can be added
next. Now, to determine the sum and count of each using 1 and 2 above we first look

at only the total number of invalid neighbors that each has: the invalid count. This
value is 2 for N2 and 1 for N3. Therefore, if we were using heuristic 6 we would

select N2, which has the largest invalid count value. The invalid sum value for N2 is 2
+ 1 or 3, while the invalid sum for N3 is 3 also. Therefore, if we were to use heuristic

2, the link table would be consulted to break the tie and the node that appears first,
starting from the left, would be selected.

131

Figure A.3: SITB example of NDE sum for heuristic 26.
From the head node, we see three possible nodes under consideration. Heuristic 26 looks
at how many available nodes each NDE neighbor of the node under consideration has.

Thus, in the figure, we see the neighbors of N1 have a count of 2, 0, and 1. This indicates
two available neighbors, zero available neighbors (a dead end neighbor), and one

available respectively. Therefore, the score given N1 is 2+0+1 or 3. This heuristic is
looking for the smallest score, not the largest. However, the score must be at least one or
the node has no NDE neighbors, meaning only two additional nodes could be added. Due

to this, N2 is not considered. The competition is between N1 with a score of 3 and N3
with a score of 1, and, thus, N3 will be selected.

132

B. Parameter Settings for Hypotheses Experiments

This appendix contains the specifics of the parameters used for the various experiments.

Each section explains the settings for the experiments exploring a single hypothesis.

B.1 H2 Parameter Settings

The GA parameter settings for H2 have been selected to conform to the most common

values used for a typical GA. These settings are mostly the same for the TSP and the

SITB for all encoding schemes used. The list below gives a brief description and the

values used.

Selection elitism is enabled for all experiments. This implies that the best population

member from the current population will always be selected for being copied, without

change, to the next population. Also, the best member is immune from mutation.

Finally, the best member is used at least once as one of the two members used for

crossover to produce two new members.

For all experiments, a certain percentage of the old population is directly copied to the

new. This percentage for H2 is 30%. The mechanism for selecting these 30% is

tournament selection without replacement. This means that no member will be copied

twice.

For all experiments, the remaining 70% of the new population will be created through

crossover (in the literature this is referred to as 70% probability for crossover). For all

133

experiments, the selection mechanism for crossover is tournament selection with

replacement. These are selected from the complete old population, including those

already selected for direct copy.

Tournament number: In all experiments, both selection for direct copy and selection for

crossover, the tournament number used is 2. This is the number of members selected to

take part in the tournament, where the member with the best evaluation wins and is

selected. If this number is increased, selection pressure (the likelihood that a better

member will be selected) will go up. If it is set to unity, then we have simply random

selection with no pressure to select based on quality of solution.

Crossover points: When performing crossover, 2 crossover points are used for all

experiments.

Also, with the exception of the best member being immune from mutation, mutation is

applied to every gene in every population member of the new population, once it has

been created through selection and crossover.

Finally, linear gene ordering is used for all H2 experiments. An individual population

member is evaluated by starting at index 1 (the gene at the first locus), determining the

node that should be added based on this gene, then going to the gene at locus 2 for the

next, then the gene at locus 3, et cetera, until the path cannot continue or it has been

completed. Each population member has the same number of genes as the problem has

134

nodes. This implies that over half of the genes for the SITB population members will

not be used as the nodes that can be added are constrained and this is a maximization

problem. As an example, there are 128 nodes in a 7 dimensional hypercube, but the

longest known path is only 51 nodes. Also, for the TSP, an additional gene is added at

the end which indicates the root node (the node to start building the path from). As

mentioned previously, due to the symmetries in the hypercube, the start node is

irrelevant. Thus, we always start at node 1.

The additional parameters that are typically tuned for each problem are:

1) Number of Generations.

2) Population size.

3) Mutation rate. Values are listed as parts per 10,000 (pp10k).

The values for the problems used in H2 are listed in Table B.1 for the TSP and Table

B.2 for the SITB. In Table B.1, the first three rows are the values used for the traditional

encoding schemes (nodes) while the last three are for the heuristic encoding scheme. In

Table B.2, the first three rows are for the simple link encoding scheme, the middle three

for the link-search scheme, and the last for the heuristic encoding scheme. The reason

these values are different for the different encoding schemes are that we attempted to

get the experiments to take approximately the same amount of time for a more equal,

proper comparison. The traditional encoding schemes typically run faster and, therefore,

are given a larger population size or more generations, or both.

135

 eil51 lin105 rat195 a280 d493 u1060
Node Encoding
Generations 2,000 3,000 5,000 8,000 15,000 30,000
Population Size 1,000 1,000 1,000 500 200 200
Mutation Rate 120 50 30 12 10 5
Heuristic Encoding
Generations 2,000 2,000 4,000 5,000 6,000 7,000
Population Size 300 300 500 500 400 500
Mutation Rate 100 60 35 11 13 5

 7D 8D 9D
Link Encoding
Generations 500 800 1500
Population Size 1200 9000 10000
Mutation Rate 100 80 60
Link+Search Encoding
Generations 500 800 1500
Population Size 800 6000 7000
Mutation Rate 140 100 80
Heuristic Encoding
Generations 500 800 1500
Population Size 600 4000 4000
Mutation Rate 120 100 80

Table B.1: Hypothesis H2 parameter values for TSP experiments. First group
indicates settings for the Node encoding experiments, while the second shows the

settings for the heuristic encoding experiments. Mutation rates are in parts per
10,000.

Table B.2: Hypothesis H2 parameter values for SITB experiments. First group
indicates settings for the link only encoding, second for the link with simple

search, and last for the heuristic encoding experiments. Mutation rates are all in
parts per 10,000.

136

B.2 H3 Parameter Settings

The GA parameter settings for H3 have been tuned to work best with the new GA

operators, and these parameters are used throughout, even when the traditional GA

operators are used.

As with H2, elitism is used throughout for selection, mutation, and crossover selection

(see discussion in B.1 above.)

Selection, however, is reversed in that now all experiments will select for direct copy

70% with the remaining 30% being created through crossover. These numbers have

been found to work best for heuristic encoding with phenotype operators. Also, for the

SITB we now use selection percent (see Section 7.2.2) instead of tournament selection

for direct copy. However, we still use tournament selection from the old population

when selecting for crossover.

As with H2, the tournament number used is 2 for all experiments in both selection for

direct copy and for crossover. Also, the number of crossover points is 2 for both

problems and all experiments.

Mutation is only applied to directly copied members of the new population with the

exception of the best member, which is immune to mutation. Finally, for the TSP,

mutation is applied to every gene, whereas for the SITB, mutation is only applied to a

single active gene currently being used to produce the snake.

137

Locus-based (also referred to in the literature as vertex-based) gene ordering is used for

all experiments and for both problems. This scheme seems to work best for heuristic

encoding, especially with graph-space problems.

The additional parameters that are typically tuned for each problem are:

1) Number of Generations.

2) Population size.

3) Mutation rate. Values are listed as parts per 10,000 (pp10k).

These values for the problems used in H3 are listed in Table B.3 for the TSP and B.4 for

the SITB. These values are used for all experiments. As elsewhere, 30 GA runs are

performed for each.

 eil51 lin105 rat195 a280 d493 u1060
Generations 2,000 2,000 4,000 5,000 6,000 7,000
Population Size 300 300 500 500 600 800
Mutation Rate 130 100 65 35 20 9

 7D 8D 9D 10D
Generations 500 800 1,300 2,000
Population Size 600 4,000 4,000 2,000
Mutation Rate 190 95 32 25

Table B.3: Hypotheses H3 and H4 parameter values for TSP experiments. The same
parameters were used for both the subtraction of and the addition of heuristics

experiments. Mutation rates are all in parts per 10,000.

Table B.4: Hypotheses H3 and H4 parameter values for SITB experiments. The same
parameters were used for both the subtraction of and the addition of heuristics

experiments. Mutation rates are all in parts per 10,000.

138

B.3 H4 Parameter Settings

All parameters for all experiments in support of H4 are the same as for H3. See Tables

B.3 and B.4 for the settings for the generations, population size, and mutation rates.

The TSP heuristics removed for the H4-1 experiments were: 4, 5, 6, 7, and 11.

The SITB heuristics removed for the H4-1 experiments were: 4, 6, 20, 24, and 26.

The TSP noise heuristic duplicated 8 times for the H4-2 experiments was:

“Add the node that is furthest from the current node.”

The SITB noise heuristic duplicated 8 times for the H4-2 experiments was:

“Add the node with the largest number of NDE neighbors.”

139

C. H1 Population Members and the Paths they Create

This appendix contains the heuristic encoded population members that were artificially

constructed to create the best known paths for three of the larger TSP instances and

three of the larger SITB instances.

C.1 TSP Population Members and their Paths

The population members show the genomes of the solutions. These consist of the

heuristics used to construct the paths, followed by an additional value representing the

root node. Also, the corresponding paths created from the genome list the TSP node

numbers, starting and ending with the root node. The paths produced are logically

equivalent to the best path listed on the TSPLIB95 web-site.

lin105 locus-based population member that will produce the best known path of length
14,379:
1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 7 1 1
1 7 1 1 1 1 1 1 10 1 1 1 1 6 1 1 1 1
1 1 1 8 1 8 1 9 1 1 1 1 8 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 3
1 1 1 1 1 1 1 10 5 1 1 1 1 1 1 1 1 8
1 1 5 1 1 1 1 1 4 1 1 1 1 1 1 1

lin105 path produced by this population member:
1 2 6 7 10 11 15 103 21 22 29 30 31 32
33 28 23 20 12 19 24 27 16 17 18 25 26 36
37 42 41 43 46 52 53 58 57 54 51 47 44 104
40 49 45 48 50 55 56 59 105 62 63 70 69 74
75 81 73 76 80 86 79 77 72 64 67 68 71 78
82 83 84 85 91 92 96 97 101 102 93 89 90 98
99 100 95 94 88 87 66 65 61 60 39 38 35 34
14 13 4 5 9 8 3 1

140

a280 locus-based population member that will produce the best known path of length
2,579:
4 4 1 1 1 1 1 1 1 8 1 1 1 6 1 1 1 1 1 6 1 1 1 1
1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 7 7 7 7 7 7 1 1 1 1 1 1 7 1 1 1 1 1 7 1 1
1 1 1 1 5 1 9 1 1 1 1 1 7 1 5 6 6 1 1 1 1 1 1 1
7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 8 1 1 1
1 1 1 1 5 1 1 1 5 5 1 1 1 7 1 7 1 1 3 1 1 1 1 1
8 8 5 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 8 1 1 5 1 1 7 1 8 3 1 1 1 1 1 1 1 8 1 1 1 1 1
1 6 1 1 8 1 1 1 6 8 1 1 1 6 8 1 1 1 1 7 1 8 1 7
1 8 1 7 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 4 7 7 1 1
1 1 6 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a280 path produced by this population member:
1 2 242 243 244 241 240 239 238 237 236 235 234 233
232 231 246 245 247 250 251 230 229 228 227 226 225 224
223 222 221 220 219 218 217 216 215 214 213 212 211 210
207 206 205 204 203 202 201 198 197 196 195 194 193 192
191 190 189 188 187 186 185 184 183 182 181 176 180 179
150 178 177 151 152 156 153 155 154 129 130 131 20 21
128 127 126 125 124 123 122 121 120 119 157 158 159 160
175 161 162 163 164 165 166 167 168 169 170 172 171 173
174 107 106 105 104 103 102 101 100 99 98 97 96 95
94 93 92 91 90 89 109 108 110 111 112 88 87 113
114 115 117 116 86 85 84 83 82 81 80 79 78 77
76 75 74 73 72 71 70 69 68 67 66 65 64 58
57 56 55 54 53 52 51 50 49 48 47 46 45 44
59 63 62 118 61 60 43 42 41 40 39 38 37 36
35 34 33 32 31 30 29 28 27 26 22 25 23 24
14 15 13 12 11 10 9 8 7 6 5 4 277 276
275 274 273 272 271 16 17 18 19 132 133 134 270 269
135 136 268 267 137 138 139 149 148 147 146 145 199 200
144 143 142 141 140 266 265 264 263 262 261 260 259 258
257 254 253 208 209 252 255 256 249 248 278 279 3 280
1

141

pr2392 locus-based population member that will produce the best known path length of
378,032:
1 4 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 7 1 1 1 1 1 1
1 1 1 1 1 8 1 1 8 1 1 1
1 1 1 1 1 1 1 1 1 1 9 1
1 1 1 1 1 1 1 1 8 1 1 1
5 1 1 1 6 1 8 1 1 5 1 1
1 8 1 1 1 1 1 1 1 1 1 1
1 1 1 1 8 1 7 1 1 1 1 1
1 8 1 1 1 1 1 7 1 1 1 1
1 1 1 1 1 1 1 1 9 1 1 7
11 1 8 8 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 6 1 1 1 1 1 7 8
8 1 1 8 1 1 1 1 1 1 1 9
1 1 1 1 1 1 1 1 1 1 5 1
1 5 1 1 1 9 1 1 1 1 1 1
1 1 1 1 5 1 1 1 1 1 5 1
8 1 1 1 5 1 5 1 5 1 1 1
1 1 5 1 1 7 1 1 1 1 1 1
1 1 5 5 1 1 1 8 1 1 1 9
1 1 1 1 1 1 1 1 5 1 1 1
1 1 1 1 1 10 1 1 1 8 1 1
1 1 1 1 1 1 8 1 5 1 1 1
1 1 1 1 1 1 1 1 1 8 1 1
7 9 1 7 1 1 1 1 1 1 1 8
6 6 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 5
1 1 8 7 1 7 7 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 10 1 1 1 1
1 1 6 9 8 1 5 1 1 1 1 1
1 1 9 1 1 1 1 1 1 1 1 1
1 6 1 1 8 1 1 1 9 1 1 1
1 1 9 1 1 1 1 1 5 1 1 8
1 1 1 1 7 1 6 8 1 1 1 7
1 8 1 1 1 1 1 1 1 8 1 1
1 1 22 1 1 1 1 1 6 1 7 1
1 1 1 1 1 1 1 1 1 5 9 8
1 1 1 8 8 1 1 1 5 1 1 1
5 1 1 1 1 1 1 1 1 5 1 1
1 1 1 1 1 1 5 1 1 1 7 1
1 1 1 1 1 1 1 8 1 8 1 1
1 1 1 1 1 6 1 1 7 1 8 1
1 1 1 1 1 1 1 1 1 1 1 1
5 5 1 1 1 1 1 1 1 1 1 1

142

1 1 1 1 1 1 1 1 1 8 1 1
1 1 1 1 1 1 8 1 1 1 8 1
9 1 1 1 9 1 8 1 1 1 7 1
1 8 1 1 8 1 1 1 1 1 1 1
1 7 1 6 1 1 1 1 1 5 1 1
6 1 1 1 1 8 1 10 8 1 1 6
6 8 1 8 1 1 1 1 1 1 1 6
1 1 1 1 7 1 1 1 1 1 1 5
1 1 1 1 1 1 1 1 1 1 1 1
1 1 8 1 1 1 1 1 1 1 1 5
1 1 1 1 1 8 9 8 1 1 1 1
1 1 1 1 1 1 1 1 8 7 1 1
1 1 1 1 1 1 5 1 1 1 5 1
1 1 1 7 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 8 8 1
1 1 8 1 1 10 1 1 6 5 1 1
7 1 5 1 1 1 1 1 1 1 1 1
8 8 1 1 1 8 1 1 1 5 1 1
1 5 8 8 1 1 5 1 1 1 1 1
1 1 1 3 1 1 1 1 1 1 1 1
1 1 13 1 1 1 1 1 6 1 1 1
1 1 1 1 1 1 1 5 1 1 1 1
1 1 1 1 1 8 1 1 1 8 1 1
8 1 1 8 1 1 1 7 1 1 1 1
1 1 1 1 1 1 1 1 1 1 7 1
8 1 1 1 1 1 1 6 1 1 1 1
1 1 1 5 6 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 5 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 7 1 1
1 8 1 9 1 1 1 9 1 6 1 1
1 8 1 1 8 1 1 6 1 1 1 1
1 1 1 1 1 1 1 1 1 1 6 1
1 1 1 1 1 1 1 1 7 1 1 1
1 1 1 1 1 1 9 1 7 1 1 1
1 1 1 1 1 1 9 8 1 1 1 1
1 1 1 1 1 1 1 1 6 1 9 1
1 1 1 8 1 9 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1
1 1 1 8 1 1 1 1 1 1
1 1 8 1 1 1 1 1 8 9 6 1
1 1 1 1 1 1 1 1 1 1 1 8
8 1 1 1 1 1 1 9 1 1 1 1
1 1 1 1 7 1 1 1 1 1 1 1
8 1 1 10 1 1 1 1 1 1 1 1
6 1 1 10 1 1 8 8 1 1 9 1
8 1 1 1 1 1 1 1 1 1 6 8
1 1 1 8 1 1 1 1 7 8 8 1
1 8 1 1 1 1 1 1 1 1 6 1
1 1 1 1 1 1 1 1 1 8 1 1
6 1 1 1 1 1 1 1 1 1 1 1
1 1 6 1 1 1 1 1 1 1 1 1
7 1 1 9 6 1 1 1 9 1 5 1
1 5 1 1 1 5 1 1 1 1 1 1

143

1 1 1 1 1 1 1 1 5 1 8 1
1 1 1 1 1 7 1 1 1 1 1 7
1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 8 11 1 8 8 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 5 1 1 1
1 1 1 8 9 5 1 8 1 1 1 1
1 1 1 9 1 1 1 1 1 1 7 1
1 1 8 1 1 8 1 1 1 6 1 1
1 1 1 1 1 1 1 1 8 1 1 1
1 1 8 1 5 1 1 1 6 1 6 1
9 1 1 1 1 1 8 8 8 1 1 1
1 1 1 1 1 1 8 8 1 1 1 8
1 1 1 9 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 19 1 1
1 6 1 1 1 1 1 1 1 1 8 1
8 1 1 1 1 1 1 1 1 1 1 1
1 5 1 1 5 9 1 8 1 1 1 1
1 1 1 8 5 5 1 1 1 10 1 1
1 1 5 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 9 7 1 1 10 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 1 1 1 7 1 1 4 1 1
4 1 1 1 8 1 1 1 1 1 1 1
1 1 1 1 1 1 1 8 1 5 1 1
1 1 1 1 8 1 1 1 1 1 1 3
1 1 1 1 1 5 1 1 1 1 1 1
8 1 1 9 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 10 1 1 1 1 1 1 8 9 8
1 8 1 1 1 1 1 1 1 5 1 1
1 1 1 1 1 1 1 1 8 1 1 4
1 1 1 4 1 1 1 1 1 7 1 1
1 1 1 4 1 1 4 1 1 1 1 7
1 8 6 1 1 1 8 1 8 1 1 1
1 1 1 1 8 1 1 1 1 4 1 1
1 1 1 8 1 8 1 1 1 1 1 1
1 1 1 1 9 9 8 1 1 1 8 8
1 1 1 8 1 1 1 9 1 1 1 1
1 1 1 1 8 1 1 1 1 1 1 1
1 10 1 1 1 8 1 1 1 1 1 1
1 1 8 1 8 1 1 1 1 1 1 1
10 1 1 4 1 4 1 1 1 1 1 1
1 1 1 1 1 1 1 9 4 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 8 1 1 1 1 1 1 1
1 6 1 1 1 8 1 6 1 1 1 9
1 7 1 1 1 8 1 1 8 1 1 7
1 1 1 1 1 1 1 1 8 1 8 1
1 1 1 1 8 1 1 9 1 1 1 1
8 1 6 6 1 1 6 8 8 1 6 1
1 1 1 1 1 1 8 1 1 1 1 6
1 1 1 1 1 1 6 1 1 1 1 1
1 1 1 1 1 1 1 1 1 8 1 1

144

1 1 1 1 1 1 8 1 1 1 1 1
6 9 8 1 1 1 1 1 1 1 1 1
1 1 1 8 8 1 1 1 1 1 1 1
1 8 1 1 1 7 1 1 1 1 8 1
1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 7 1 1 10 1
1 8 8 1 1 9 1 8 1 1 1 1
1 1 1 1 1 7 6 1 1 1 8 1
1 1 1 7 7 6 1 1 8 1 1 1
1 1 1 1 1 1 1 5 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 8 1 1 1 1 1 1 1
1 8 1 1 1 5 1 5 1 1 1 5
1 8 1 1 1 5 1 1 7 1 1 8
1 1 1 1 1 1 1 1 1 1 1 1
1 1 8 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 9 1
5 1 1 1 1 1 1 1 1 1 7 7
1 1 1 1 1 1 1 1 1 1 1 1
8 1 7 1 1 1 1 8 1 9 1 1
1 1 1 1 9 1 1 1 1 1 1 1
1 1 1 1 1 1 1 8 1 1 1 1
1 1 1 1 7 1 1 1 1 1 6 9
8 1 1 1 1 1 1 1 1 1 1 1
1 8 5 1 1 1 1 1 1 7 1 1
1 1 1 1 1 1 8 1 1 1 1 1
1 1 1 1 1 10 1 1 1 1 1 1
1 1 8 1 1 6 1 1 7 8 1 1
9 1 8 1 1 1 1 1 1 1 1 1
7 8 1 1 1 6 1 1 1 1 7 8
6 1 1 7 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1622

pr2392 path produced by this population member:
1622 1621 1620 1619 1618 1617 1616 1615 1614 1613 1612 1611
1610 1609 1608 1607 1606 1605 1604 1603 1602 1601 1600 1599
1598 1597 1596 1595 1594 1593 1592 1591 1590 1589 1588 1587
1586 1585 1584 1583 1582 1581 1580 1579 1578 1577 1576 1575
1574 1573 1572 1571 1570 1569 1568 1567 1566 1565 1564 1563
1562 1561 1560 1559 1558 1557 1556 1555 1554 1553 1552 1551
1550 1549 1548 1547 1546 1545 1544 1543 1542 1541 1540 1539
1538 1537 1536 1535 1534 1533 1532 1531 1530 1529 1528 1527
1526 1525 1524 1523 1522 1521 1520 1519 1518 1517 1516 1515
1514 1513 1512 1511 1510 1509 1508 1507 1506 1505 1504 1503
1502 1501 1500 1499 1498 1497 1496 1495 1494 1493 1492 1491
1490 1489 1488 1487 1486 1485 1484 1483 1482 1481 1480 1479
1478 1477 1476 1475 1474 1473 1472 1471 1470 1469 1468 1467
1466 1465 1464 1463 1462 1461 1460 1459 1458 1457 1456 1455
1454 1453 1452 1451 1450 1449 1448 1447 1446 1445 1444 1443
1442 1441 1440 1439 1438 1437 1436 1435 1434 1433 1432 1431
1430 1429 1428 1427 1426 1425 1424 1423 1422 1421 1420 1419
1418 1417 1416 1415 1414 1413 1412 1411 1410 1409 1408 1407
1406 1405 1404 1403 1402 1401 1400 1399 1398 1397 1396 1395
1394 1393 1392 1391 1390 1389 1388 1387 1386 1385 1384 1383
1382 1381 1380 1379 1378 1377 1376 1375 1374 1373 1372 1371

145

1370 1369 1368 1367 1366 1365 1364 1363 1362 1361 1360 1359
1358 1357 1356 1355 1354 1353 1352 1351 1350 1349 1348 1347
1346 1345 1344 1343 1342 1341 1340 1339 1338 1337 1336 1335
1334 1333 1332 1331 1330 1329 1328 1327 1326 1325 1324 1323
1322 1321 1320 1319 1318 1317 1316 1315 1314 1313 1312 1311
1310 1309 1308 1307 1306 1305 1304 1303 1302 1301 1300 1299
1298 1297 1296 1295 1294 1293 1292 1291 1290 1289 1288 1287
1286 1285 1284 1283 1282 1281 1280 1279 1278 1277 1276 1275
1274 1273 1272 1271 1270 1269 1268 1267 1266 1265 1264 1263
1262 1261 1260 1259 1258 1257 1256 1255 1254 1253 1252 1251
1250 1249 1248 1247 1246 1245 1244 1243 1242 1241 1240 1239
1238 1237 1236 1235 1234 1233 1232 1231 1230 1229 1228 1227
1226 1225 1224 1223 1222 1221 1220 1219 1218 1217 1216 1215
1214 1213 1212 1211 1210 1209 1208 1207 1206 1205 1204 1203
1202 1201 1200 1199 1198 1197 1196 1195 1194 1193 1192 1191
1190 1189 1188 1187 1186 1185 1184 1183 1182 1181 1180 1179
1178 1177 1176 1175 1174 1173 1172 1171 1170 1169 1168 1167
1166 1165 1164 1163 1162 1161 1160 1159 1158 1157 1156 1155
1154 1153 1152 1151 1150 1149 1148 1147 1146 1145 1144 1143
1142 1141 1140 1139 1138 1137 1136 1135 1134 1133 1132 1131
1130 1129 1128 1127 1126 1125 1124 1123 1122 1121 1120 1119
1118 1117 1116 1115 1114 1113 1112 1111 1110 1109 1108 1107
1106 1105 1104 1103 1102 1101 1100 1099 1098 1097 1096 1095
1094 1093 1092 1091 1090 1089 1088 1087 1086 1085 1084 1083
1082 1081 1080 1079 1078 1077 1076 1075 1074 1073 1072 1071
1070 1069 1068 1067 1066 1065 1064 1063 1062 1061 1060 1059
1058 1057 1056 1055 1054 1053 1052 1051 1050 1049 1048 1047
1046 1045 1044 1043 1042 1041 1040 1039 1038 1037 1036 1035
1034 1033 1032 1031 1030 1029 1028 1027 1026 1025 1024 1023
1022 1021 1020 1019 1018 1017 1016 1015 1014 1013 1012 1011
1010 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000 999
998 997 996 995 994 993 992 991 990 989 988 987
986 985 984 983 982 981 980 979 978 977 976 975
974 973 972 971 970 969 968 967 966 965 964 963
962 961 960 959 958 957 956 955 954 953 952 951
950 949 948 947 946 945 944 943 942 941 940 939
938 937 936 935 934 933 932 931 930 929 928 927
926 925 924 923 922 921 920 919 918 917 916 915
914 913 912 911 910 909 908 907 906 905 904 903
902 901 900 899 898 897 896 895 894 893 892 891
890 889 888 887 886 885 884 883 882 881 880 879
878 877 876 875 874 873 872 871 870 869 868 867
866 865 864 863 862 861 860 859 858 857 856 855
854 853 852 851 850 849 848 847 846 845 844 843
842 841 840 839 838 837 836 835 834 833 832 831
830 829 828 827 826 825 824 823 822 821 820 819
818 817 816 815 814 813 812 811 810 809 808 807
806 805 804 803 802 801 800 799 798 797 796 795
794 793 792 791 790 789 788 787 786 785 784 783
782 781 780 779 778 777 776 775 774 773 772 771
770 769 768 767 766 765 764 763 762 761 760 759
758 757 756 755 754 753 752 751 750 749 748 747
746 745 744 743 742 741 740 739 738 737 736 735
734 733 732 731 730 729 728 727 726 725 724 723
722 721 720 719 718 717 716 715 714 713 712 711
710 709 708 707 706 705 704 703 702 701 700 699
698 697 696 695 694 693 692 691 690 689 688 687

146

686 685 684 683 682 681 680 679 678 677 676 675
674 673 672 671 670 669 668 667 666 665 664 663
662 661 660 659 658 657 656 655 654 653 652 651
650 649 648 647 646 645 644 643 642 641 640 639
638 637 636 635 634 633 632 631 630 629 628 627
626 625 624 623 622 621 620 619 618 617 616 615
614 613 612 611 610 609 608 607 606 605 604 603
602 601 600 599 598 597 596 595 594 593 592 591
590 589 588 587 586 585 584 583 582 581 580 579
578 577 576 575 574 573 572 571 570 569 568 567
566 565 564 563 562 561 560 559 558 557 556 555
554 553 552 551 550 549 548 547 546 545 544 543
542 541 540 539 538 537 536 535 534 533 532 531
530 529 528 527 526 525 524 523 522 521 520 519
518 517 516 515 514 513 512 511 510 509 508 507
506 505 504 503 502 501 500 499 498 497 496 495
494 493 492 491 490 489 488 487 486 485 484 483
482 481 480 479 478 477 476 475 474 473 472 471
470 469 468 467 466 465 464 463 462 461 460 459
458 457 456 455 454 453 452 451 450 449 448 447
446 445 444 443 442 441 440 439 438 437 436 435
434 433 432 431 430 429 428 427 426 425 424 423
422 421 420 419 418 417 416 415 414 413 412 411
410 409 408 407 406 405 404 403 402 401 400 399
398 397 396 395 394 393 392 391 390 389 388 387
386 385 384 383 382 381 380 379 378 377 376 375
374 373 372 371 370 369 368 367 366 365 364 363
362 361 360 359 358 357 356 355 354 353 352 351
350 349 348 347 346 345 344 343 342 341 340 339
338 337 336 335 334 333 332 331 330 329 328 327
326 325 324 323 322 321 320 319 318 317 316 315
314 313 312 311 310 309 308 307 306 305 304 303
302 301 300 299 298 297 296 295 294 293 292 291
290 289 288 287 286 285 284 283 282 281 280 279
278 277 276 275 274 273 272 271 270 269 268 267
266 265 264 263 262 261 260 259 258 257 256 255
254 253 252 251 250 249 248 247 246 245 244 243
242 241 240 239 238 237 236 235 234 233 232 231
230 229 228 227 226 225 224 223 222 221 220 219
218 217 216 215 214 213 212 211 210 209 208 207
206 205 204 203 202 201 200 199 198 197 196 195
194 193 192 191 190 189 188 187 186 185 184 183
182 181 180 179 178 177 176 175 174 173 172 171
170 169 168 167 166 165 164 163 162 161 160 159
158 157 156 155 154 153 152 151 150 149 148 147
146 145 144 143 142 141 140 139 138 137 136 135
134 133 132 131 130 129 128 127 126 125 124 123
122 121 120 119 118 117 116 115 114 113 112 111
110 109 108 107 106 105 104 103 102 101 100 99
98 97 96 95 94 93 92 91 90 89 88 87
86 85 84 83 82 81 80 79 78 77 76 75
74 73 72 71 70 69 68 67 66 65 64 63
62 61 60 59 58 57 56 55 54 53 52 51
50 49 48 47 46 45 44 43 42 41 40 39
38 37 36 35 34 33 32 31 30 29 28 27
26 25 24 23 22 21 20 19 18 17 16 15
14 13 12 11 10 9 8 7 6 5 4 3

147

2 1 2392 2391 2390 2389 2388 2387 2386 2385 2384 2383
2382 2381 2380 2379 2378 2377 2376 2375 2374 2373 2372 2371
2370 2369 2368 2367 2366 2365 2364 2363 2362 2361 2360 2359
2358 2357 2356 2355 2354 2353 2352 2351 2350 2349 2348 2347
2346 2345 2344 2343 2342 2341 2340 2339 2338 2337 2336 2335
2334 2333 2332 2331 2330 2329 2328 2327 2326 2325 2324 2323
2322 2321 2320 2319 2318 2317 2316 2315 2314 2313 2312 2311
2310 2309 2308 2307 2306 2305 2304 2303 2302 2301 2300 2299
2298 2297 2296 2295 2294 2293 2292 2291 2290 2289 2288 2287
2286 2285 2284 2283 2282 2281 2280 2279 2278 2277 2276 2275
2274 2273 2272 2271 2270 2269 2268 2267 2266 2265 2264 2263
2262 2261 2260 2259 2258 2257 2256 2255 2254 2253 2252 2251
2250 2249 2248 2247 2246 2245 2244 2243 2242 2241 2240 2239
2238 2237 2236 2235 2234 2233 2232 2231 2230 2229 2228 2227
2226 2225 2224 2223 2222 2221 2220 2219 2218 2217 2216 2215
2214 2213 2212 2211 2210 2209 2208 2207 2206 2205 2204 2203
2202 2201 2200 2199 2198 2197 2196 2195 2194 2193 2192 2191
2190 2189 2188 2187 2186 2185 2184 2183 2182 2181 2180 2179
2178 2177 2176 2175 2174 2173 2172 2171 2170 2169 2168 2167
2166 2165 2164 2163 2162 2161 2160 2159 2158 2157 2156 2155
2154 2153 2152 2151 2150 2149 2148 2147 2146 2145 2144 2143
2142 2141 2140 2139 2138 2137 2136 2135 2134 2133 2132 2131
2130 2129 2128 2127 2126 2125 2124 2123 2122 2121 2120 2119
2118 2117 2116 2115 2114 2113 2112 2111 2110 2109 2108 2107
2106 2105 2104 2103 2102 2101 2100 2099 2098 2097 2096 2095
2094 2093 2092 2091 2090 2089 2088 2087 2086 2085 2084 2083
2082 2081 2080 2079 2078 2077 2076 2075 2074 2073 2072 2071
2070 2069 2068 2067 2066 2065 2064 2063 2062 2061 2060 2059
2058 2057 2056 2055 2054 2053 2052 2051 2050 2049 2048 2047
2046 2045 2044 2043 2042 2041 2040 2039 2038 2037 2036 2035
2034 2033 2032 2031 2030 2029 2028 2027 2026 2025 2024 2023
2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011
2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999
1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987
1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975
1974 1973 1972 1971 1970 1969 1968 1967 1966 1965 1964 1963
1962 1961 1960 1959 1958 1957 1956 1955 1954 1953 1952 1951
1950 1949 1948 1947 1946 1945 1944 1943 1942 1941 1940 1939
1938 1937 1936 1935 1934 1933 1932 1931 1930 1929 1928 1927
1926 1925 1924 1923 1922 1921 1920 1919 1918 1917 1916 1915
1914 1913 1912 1911 1910 1909 1908 1907 1906 1905 1904 1903
1902 1901 1900 1899 1898 1897 1896 1895 1894 1893 1892 1891
1890 1889 1888 1887 1886 1885 1884 1883 1882 1881 1880 1879
1878 1877 1876 1875 1874 1873 1872 1871 1870 1869 1868 1867
1866 1865 1864 1863 1862 1861 1860 1859 1858 1857 1856 1855
1854 1853 1852 1851 1850 1849 1848 1847 1846 1845 1844 1843
1842 1841 1840 1839 1838 1837 1836 1835 1834 1833 1832 1831
1830 1829 1828 1827 1826 1825 1824 1823 1822 1821 1820 1819
1818 1817 1816 1815 1814 1813 1812 1811 1810 1809 1808 1807
1806 1805 1804 1803 1802 1801 1800 1799 1798 1797 1796 1795
1794 1793 1792 1791 1790 1789 1788 1787 1786 1785 1784 1783
1782 1781 1780 1779 1778 1777 1776 1775 1774 1773 1772 1771
1770 1769 1768 1767 1766 1765 1764 1763 1762 1761 1760 1759
1758 1757 1756 1755 1754 1753 1752 1751 1750 1749 1748 1747
1746 1745 1744 1743 1742 1741 1740 1739 1738 1737 1736 1735
1734 1733 1732 1731 1730 1729 1728 1727 1726 1725 1724 1723
1722 1721 1720 1719 1718 1717 1716 1715 1714 1713 1712 1711

148

1710 1709 1708 1707 1706 1705 1704 1703 1702 1701 1700 1699
1698 1697 1696 1695 1694 1693 1692 1691 1690 1689 1688 1687
1686 1685 1684 1683 1682 1681 1680 1679 1678 1677 1676 1675
1674 1673 1672 1671 1670 1669 1668 1667 1666 1665 1664 1663
1662 1661 1660 1659 1658 1657 1656 1655 1654 1653 1652 1651
1650 1649 1648 1647 1646 1645 1644 1643 1642 1641 1640 1639
1638 1637 1636 1635 1634 1633 1632 1631 1630 1629 1628 1627
1626 1625 1624 1623 1622

C.2 SITB Population Members and their Paths

This section contains the genomes that will create the best known snakes in hypercubes

of dimension 8, 9, and 10. For each dimension, the population genome is listed first,

followed by the snake it produces. The produced snakes are logically equivalent to the

best known.

D8 locus-based population member that will produce the longest snake of 99 nodes:
1 1 1 12 19 3 16 8 1 1 2 8 14 26 12 13 24 4
14 3 8 13 4 1 8 1 7 4 1 12 16 1 12 1 26 1
19 3 21 3 20 24 1 4 4 6 2 2 1 1 1 2 2 14
3 7 2 16 21 1 4 3 14 4 1 1 13 1 19 3 20 6
1 1 2 6 1 19 10 20 3 8 24 4 7 24 6 2 6 13
4 1 8 3 1 24 1 2 10 1 2 19 1 24 20 7 2 4
12 1 12 3 1 1 1 16 26 24 6 8 1 1 10 14 3 1
26 19 1 2 2 4 21 3 21 6 1 1 1 21 8 26 6 26
7 2 3 4 8 1 1 1 1 24 12 1 26 4 1 26 13 10
3 20 2 7 1 14 14 3 16 1 1 12 1 6 3 1 1 24
1 6 12 2 1 1 12 1 19 1 21 8 1 1 7 1 26 3
2 7 2 1 1 6 10 4 10 12 4 3 1 6 20 14 7 1
19 1 6 4 4 6 1 4 4 7 6 2 1 16 1 7 7 12
4 13 26 2 7 20 1 1 12 8 24 7 19 3 1 1 21 1
10 10 19 6

D8 99 node path produced by this population member:
1 2 3 6 11 10 9 24 21 44 53 60 57 40
89 88 73 74 75 70 91 38 219 198 203 202 201 216
209 48 49 50 51 46 211 238 239 242 241 244 141 132
129 130 159 158 163 190 179 178 175 170 167 186 185 188
181 172 173 84 77 68 65 66 95 34 223 194 193 196
221 36 29 100 97 112 113 114 115 110 107 150 139 138
137 152 153 156 229 252 249 250 231 26 103 122 121 124
117

149

D9 locus-based population member that will produce the longest snake of 191 nodes:
1 1 1 1 1 1 20 19 7 3 8 1 19 3 8 12 1 1
1 3 16 21 2 1 26 13 7 3 19 16 7 20 1 1 1 1
6 3 2 7 6 19 1 20 2 13 1 20 1 1 14 16 21 1
1 4 12 4 1 12 20 1 8 3 1 2 3 3 13 1 3 12
1 12 2 1 12 1 13 16 1 1 1 26 1 20 6 24 21 3
14 4 12 16 2 26 20 3 1 1 3 12 1 14 4 3 4 1
26 4 19 1 1 12 6 1 19 1 6 12 24 1 21 13 1 14
12 4 1 1 1 4 1 2 20 3 1 4 10 1 24 1 21 2
6 1 1 12 13 3 1 1 13 2 1 4 1 4 26 1 10 1
1 1 16 10 1 21 3 7 24 12 1 8 24 14 1 1 12 4
6 1 1 2 13 6 4 21 16 20 7 26 3 4 1 7 20 13
3 1 1 6 20 1 19 1 24 6 24 3 1 4 2 13 3 3
19 1 20 3 16 19 8 20 3 10 12 12 8 2 7 1 21 12
1 1 12 6 7 1 1 1 1 1 3 16 2 14 4 1 16 8
1 10 1 1 2 21 1 6 1 1 20 13 1 12 6 1 3 1
8 21 20 3 1 1 13 3 24 1 21 7 6 26 12 4 4 1
10 19 1 1 3 3 12 1 1 24 1 21 1 16 4 2 1 1
19 20 7 4 1 10 8 1 16 13 14 14 13 1 4 1 1 8
1 3 7 2 8 24 3 1 12 1 8 19 1 1 4 20 1 8
3 7 3 12 26 12 7 2 3 13 1 1 1 4 6 6 24 1
12 14 1 1 21 10 7 1 4 1 8 1 13 1 1 13 1 1
10 20 1 13 10 6 1 1 1 4 4 14 1 2 1 24 3 1
13 1 21 2 26 1 2 26 7 16 1 1 6 21 4 16 6 8
13 1 2 20 12 2 19 1 1 26 26 8 1 24 1 10 4 7
1 1 14 1 10 1 1 3 12 26 6 4 6 8 8 4 24 13
1 1 26 2 16 1 1 1 26 1 10 1 10 6 1 1 1 20
1 16 21 2 1 3 7 1 2 20 20 14 1 20 19 2 8 7
1 4 6 2 1 1 1 7 2 1 2 1 1 4 13 1 1 2
1 14 21 19 1 16 19 24

D9 191 node path produced by this population member:
1 2 3 6 5 12 9 24 23 18 19 20 45 52
49 50 55 54 43 38 35 34 33 40 89 72 73 76
85 108 107 118 119 122 103 98 99 100 125 116 113 112
81 82 83 78 67 70 187 182 183 178 177 180 173 164
163 162 167 218 215 210 211 206 195 196 253 244 241 242
247 250 249 200 201 204 213 236 235 230 155 156 133 140
137 152 151 146 147 142 131 130 129 160 225 288 287 354
355 356 381 372 369 368 337 338 339 334 323 322 321 320
305 306 311 310 299 294 291 292 301 276 275 270 259 262
261 268 265 280 297 296 345 360 377 378 375 374 363 364
341 332 325 444 389 396 393 408 407 402 403 398 387 386
385 416 417 420 429 436 433 434 439 438 427 422 423 474
487 488 505 456 457 460 469 492 491 502 503 498 497 496
465 466 467 462 451 452 509 484 483

150

D10 locus-based population member that will produce the longest snake of 371 nodes:
1 1 1 6 20 3 19 20 1 1 2 10 8 20 26 19 16 1
1 13 2 10 20 1 10 13 10 1 1 20 16 6 6 4 19 7
21 14 2 7 1 1 1 24 14 1 12 2 2 7 13 3 1 7
3 10 1 1 2 1 10 12 13 24 1 1 2 1 4 6 1 16
1 1 1 1 21 1 14 6 21 8 19 13 2 24 16 1 4 19
1 1 19 1 1 14 1 1 7 13 6 19 24 3 2 4 1 19
21 7 21 21 1 8 4 3 20 10 8 26 2 2 16 1 1 8
1 26 13 1 3 2 6 4 1 20 1 1 21 6 3 8 3 7
2 20 24 3 13 1 1 12 24 3 7 16 20 8 1 1 13 7
14 26 2 4 1 1 13 3 10 2 2 26 10 2 1 1 13 1
1 6 14 1 1 14 1 1 24 1 26 8 1 1 14 1 19 2
19 7 1 1 1 20 16 1 7 26 6 10 19 2 1 12 10 1
6 12 1 1 16 1 1 1 14 12 19 8 24 1 3 13 7 1
1 3 1 16 26 1 1 1 1 3 1 24 8 14 26 1 6 3
1 7 14 8 14 2 1 3 12 19 21 21 1 1 4 19 1 6
16 19 3 26 10 12 1 20 20 1 2 13 20 3 8 12 1 19
21 13 4 10 16 24 1 1 7 1 1 3 13 1 6 4 2 20
19 1 4 3 6 21 1 19 1 1 2 1 4 12 1 1 20 14
20 21 1 21 1 1 6 1 10 13 14 3 2 21 2 24 3 14
3 24 12 2 1 1 13 1 1 3 1 16 26 3 24 12 1 1
14 1 10 2 8 21 4 19 1 1 3 1 10 4 14 24 4 4
1 1 7 26 4 20 3 3 4 21 1 24 3 8 1 1 20 1
20 10 20 12 19 12 10 1 14 4 8 4 24 21 26 20 2 13
26 21 20 21 1 10 10 14 1 1 3 1 21 1 2 14 4 7
1 1 6 1 20 16 6 4 1 26 1 1 19 1 6 20 1 1
12 1 12 20 10 13 1 1 1 21 20 1 19 21 19 10 26 13
6 21 26 1 21 14 1 1 20 1 2 8 1 20 2 7 21 16
1 1 20 1 1 4 26 19 7 3 1 1 1 8 1 19 21 13
1 16 19 1 1 3 14 21 6 8 1 1 20 10 24 7 1 1
1 20 1 14 26 19 13 1 1 24 1 21 19 1 8 13 1 2
3 26 19 8 16 6 20 4 19 14 1 1 10 1 1 8 1 1
19 4 2 13 13 1 7 20 2 16 1 1 1 1 3 1 14 2
1 1 2 24 2 12 1 19 1 1 10 1 2 12 12 3 2 20
26 13 3 13 8 26 1 12 1 1 7 2 4 3 4 19 1 24
24 20 4 1 20 1 10 12 6 6 4 19 1 1 26 1 13 4
13 1 4 21 1 1 16 21 21 13 1 1 10 1 7 10 1 6
1 1 13 8 16 14 2 6 1 2 6 26 14 3 14 1 20 7
2 2 12 1 8 21 7 1 2 1 16 2 1 1 4 20 2 26
1 4 1 7 1 1 26 1 8 3 8 4 1 7 1 1 14 16
2 8 1 1 2 4 21 21 1 2 1 1 2 1 8 2 3 13
24 13 10 24 4 20 1 10 19 8 16 7 2 14 26 1 4 12
14 26 13 13 16 24 16 8 4 26 19 1 14 3 1 1 1 24
1 24 3 20 19 19 19 2 1 7 4 1 16 4 4 26 4 8
6 24 1 1 1 1 1 7 13 13 8 7 12 20 1 7 3 1
12 6 26 2 2 19 4 7 13 24 8 7 20 20 1 1 6 1
1 16 19 7 26 1 2 19 6 1 26 3 8 10 1 20 1 1
7 1 10 2 6 1 24 20 10 13 1 16 1 1 4 6 12 1
4 6 4 2 1 10 3 3 14 24 12 13 1 1 13 3 21 1
16 12 7 1 19 16 1 1 21 3 16 10 4 2 1 19 1 1
1 4 6 1 7 14 1 24 1 1 20 21 26 6 10 2 1 8
8 4 1 13 1 1 2 1 8 24 21 13 12 4 4 12 3 3
1 14 12 4 7 3 4 2 16 2 10 24 1 4 6 21 1 1
2 2 16 2 1 14 1 7 1 1 14 1 13 4 6 13 1 21
1 1 12 1 13 13 1 1 2 1 6 14 1 1 1 1 1 10
10 1 26 16 6 1 1 1 1 26 6 1 10 3 1 13 13 1

151

1 3 1 21 3 1 13 2 20 3 4 4 3 12 26 2 21 1
1 1 1 26 4 16 26 7 1 1 12 1 1 6 26 2

D10 371 node path produced by this population member:
1 2 3 6 11 10 9 24 21 28 29 36
33 48 49 52 53 60 57 58 39 42 43 46
19 18 111 114 115 78 75 74 73 88 85 92
91 94 95 66 65 68 125 124 121 104 97 160
159 158 131 190 187 188 185 168 167 170 175 178
177 180 173 148 237 240 241 242 243 206 203 202
201 216 213 220 219 222 223 194 193 196 253 252
245 140 137 138 135 250 231 234 235 150 107 406
491 490 487 488 481 496 497 498 499 462 459 458
457 472 469 476 475 478 479 450 449 452 509 508
501 396 393 394 391 386 387 446 443 444 441 424
423 426 431 434 433 436 429 404 413 356 285 284
277 280 265 266 267 374 379 380 377 360 359 362
367 370 369 372 269 308 305 304 337 352 321 322
327 330 329 332 341 348 347 350 339 302 299 298
295 296 313 316 315 318 259 258 287 738 799 770
771 830 827 828 825 808 807 810 811 814 851 862
859 860 853 844 841 842 839 834 833 864 849 816
817 820 781 884 881 882 879 874 871 872 889 892
891 886 779 778 777 792 789 796 797 868 925 924
917 908 905 906 903 898 899 958 955 956 953 936
935 938 943 946 945 948 941 980 981 984 969 970
971 974 1011 1010 1009 1008 993 1000 1017 1020 1021 964
961 962 991 990 987 998 539 540 533 536 521 522
523 630 635 636 633 616 615 618 623 626 625 628
525 564 561 560 593 608 577 578 583 586 585 588
597 604 603 606 611 670 667 662 683 694 699 700
697 680 679 674 687 690 689 692 685 676 733 736
705 706 711 714 713 716 757 764 765 644 641 642
647 650 649 664 657 752 753 754 755 750 531 558
555 554 551 552 569 572 571 574 515 514 513

152

D. Additional Examples

Following is another example of single point phenotype crossover in a D5 hypercube.

This is similar to the example in Section 7.3.2 and should help in understanding of this

operator as it is applied to the SITB.

Initial Population Members and Snake
Index values:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Selected population members:
10 13 12 7 8 1 21 10 7 10 8 24 21 2 12 8
13 6 19 10 20 8 14 2 1 24 1 20 1 12 7 6

 7 20 14 14 7 2 19 8 1 24 26 20 13 26 10 7
10 14 20 1 26 10 24 1 1 2 8 14 3 2 20 14

Selected snakes:
1 2 3 6 5 12 * 13 20 17 24 25 26
1 2 3 6 5 12 * 13 20 19 18 23 24 25

Final Population Members and Snake
Index values:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reconstructed members:
10 13 12 7 8 1 21 10 7 10 8 24 13 2 12 8
13 14 20 1 20 8 24 1 1 24 1 20 1 12 7 6

 7 20 14 14 7 2 19 8 1 24 26 20 21 26 10 7
13 14 20 10 26 10 24 2 1 24 8 14 3 2 20 14

Reconstructed snakes:
 1 2 3 6 5 12 * 13 20 19 18 23 24 25
 1 2 3 6 5 12 * 13 20 17 24 25 26

An * indicates crossover point.

