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Abstract 
 

Many approaches to applying Genetic Algorithms (GAs) to Nondeterministic 

Polynomial time Complete (NPC) problems involve population members encoded 

directly from the problem solution space. While this technique enables trivial mapping 

of the population members to solutions, it can cause complex problems for GA 

operators as they attempt to direct the evolution of the population toward more 

promising areas of the solution space. These operators, using inspiration from genetics 

and evolution in the biological world, combine and manipulate the current population to 

produce a new population that, it is hoped, will eventually converge toward better 

solutions to the original problem. However, many problems, especially graph-space 

problems, cannot be so easily manipulated when GA members consist of direct 

encodings. In such cases, GA operators must perform awkward transformations to 

convert the progeny into viable solutions. Here is where heuristic encoding comes into 

play, in that any combination of genes will produce a viable solution. However, this 

additional level of abstraction does cause other problems and tends to weaken the 

guiding effects of traditional GA operators. Thus, I have designed custom GA operators 

that mitigate these problems by using the solutions produced by the heuristic encoded 

members to better guide the manipulation when producing the next generation. This 

dissertation shows that heuristic encoding is an effective technique for the 

representation of solutions to graph-space problems. It also shows that, when using 

heuristic encoding, GAs with traditional operators perform well compared to more 

direct encoding techniques. Finally it shows the combination of heuristic encoding and 

GA operators designed to work with them increases GA performance and can be 
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competitive with other techniques. I believe that these techniques will also work well 

for other types of problems for which GAs are commonly applied. 
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Chapter 1 

Background and Introduction to the Heuristic Encoding Technique 

Genetic Algorithms (GAs) are a type of stochastic search algorithm inspired by nature, 

and commonly applied to Nondeterministic Polynomial Time-Complete (NP-Complete, 

or NPC) problems. GAs create and manipulate a population of solutions in an attempt to 

discover good instances. Graph-space problems are defined on a set of nodes and a set 

of links. Many graph-space problems involve building a constrained path between these 

connected nodes. While GAs can be applied to these problems, the implementation can 

be difficult due to the mechanics of GAs and issues with population dynamics. This is 

caused primarily by two problems: representation issues and dimensionality. The 

obvious and most direct representation scheme involves simply listing either the nodes 

or the links that will represent a path. This technique, while simple, typically does not 

work well for GAs due to the nature of GA operators (see Chapter 3 for a description). 

Also, by dimensionality, we mean that as nodes are added to the search space, the 

hardness of the problem grows exponentially. While this is typical of NP-Complete 

problems, GAs seem to suffer more than other techniques, at least for path-building 

graph-space problems. 

 

Due to these issues, it seems most successful techniques involve either deterministic 

algorithms (Palombo et al, 2015), or other Evolutionary Computation (EC) techniques 

(Zhang and Ma, 2014). Indeed, much work has been done using GAs on smaller 

instances of the Traveling Salesman Problem (TSP) but we have found no modern day 

papers using GAs on larger TSP instances (greater than 200 nodes). 
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This research attempts to address these issues with GAs as applied to path building in 

NPC problems. We show that an alternative encoding scheme can mitigate the 

representation issues that typically result from the GA operators being applied to more 

direct encoding schemes. Also, by viewing the GA as a hyper-heuristic, a heuristic to 

manipulate other heuristics, we have devised alternative GA operators designed to work 

with this new encoding scheme which greatly increase the effectiveness of the GA on 

these types of problems. 

 

Our intent is not to find solutions to problems that are competitive with targeted 

techniques (techniques specifically designed for one and only one problem), but to 

show that our technique is generalizable and can produce good solutions to a variety of 

problems. Burke et al (2013, page 1710) states this well: 

 

“One of the goals of hyper-heuristic research is raising the level of generality. In this 

context, it is often the case that a hyper-heuristic does not aim to outperform a custom-

made solver for a given problem. In such an environment, applicability over a wide 

range of problem domains is more crucial.” 

 

An example of a targeted approach to a specific problem and one of the few 

contemporary examples of a GA applied to the Snake-In-The-Box (SITB) problem 

(other than this work) can be found in Ruiz (2014).  Ruiz (2014) implements a custom 

GA, the Mitosis Genetic Algorithm, which was designed specifically to work on the 

SITB problem. Again, our focus is to show that heuristic encoding with phenotype 
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operators is not a narrowly focused targeted solution, but can be applied to multiple 

problem domains. 

 

1.1 Introduction to Heuristic Encoding 

By encoding, we mean the technique used to represent solutions to a problem as a string 

of symbols such that a GA can manipulate them. Primarily, this encompasses the set of 

symbols that represent the individual genes and what these symbols represent. 

  

Heuristic encoding, encodings of instructions for producing solutions, can mitigate 

many of the issues typically associated with the representation of graph-space problems 

for the application of a GA. A good example is the Traveling Salesman Problem where 

encoding the nodes of the solution space directly as genes in population members, while 

straightforward, causes GA operators many problems when attempting to manipulate 

the population to produce better solutions. This research uses heuristic encoding and 

phenotype operators, operators that use the solutions produced, for both the TSP and the 

SITB problems where the efficacy of the technique to both deal with 

encoding/recombination problems and in producing good results is demonstrated. 

 

The design and selection of individual heuristics is vitally important for this technique 

to work, and knowledge of the problem space must be applied when assembling the 

heuristic set in order to fully exploit this novel technique. Indeed, if impotent heuristics 

are included with a good set, they cause the GA to waste resources searching areas that 

are of little value. Also, if needed heuristics are left out, the best areas to search may 
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never be found. This work develops an effective set of low level heuristics for these two 

problems that can be used in other evolutionary computation work as well as with 

deterministic algorithms. 

  

This encoding technique produces results that are quite competitive with traditional GA 

applications and with other techniques. We show this through experimentation and 

results, where the best known solution to the SITB in a dimension 8 hypercube was 

found using this encoding scheme combined with phenotype GA operators (Carlson and 

Hougen, 2010). Indeed, Ostergard and Pettersson (2015) use the result of this work to 

prove various bounds in the SITB problem. 

 

1.2 Introduction to Phenotype Operators 

Heuristic encoding does add an additional layer of abstraction between GA population 

members and the problem's solution space. This layer causes a weakening of the GA's 

ability to manipulate the population toward more promising areas of the search space. 

This issue is discussed in Burke et al (2013) where it is referred to as consisting of two 

different search spaces: the heuristic space, the set of all possible combinations of the 

heuristics, and the solution space, the set of all possible solutions to the problem that the 

heuristic space maps to. This problem should be dealt with in order for this scheme to 

reach its potential. This research addresses this problem as well as investigating the 

value of the heuristic encoding method. We have developed custom GA operators of 

mating/crossover and mutation, which tighten the coupling between the phenotype (the 

final product or the solution to the problem) and the genotype (the GA population 
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members). These phenotype operators make use of the phenotype to guide the 

application of the GA operators when producing new members from the current 

population. These operators produce better results with this encoding scheme than the 

typical GA operators of mutation and crossover. The development of these operators is a 

primary contribution of this work as there is little evidence of such work currently in the 

literature. Indeed, the scope of this project is greater than any other work done involving 

heuristic encoding or phenotype operators for GAs. Finally, as outside justification of 

the value of this work, a quote from Falkenauer (1998, page 42) emphasizes these 

points nicely as one of the basic claims of his book:  “a GA's encoding and operators 

must be adapted to the problem being solved.” 

 

1.3 Genetic Algorithms and the Problems Studied 

GAs have been used to deal with “The Curse of Dimensionality” (Bellman, 1961): as 

the problem grows linearly, the solution space grows exponentially. GAs were 

developed by John Holland and his colleagues (Holland, 1992) at the University of 

Michigan. The first step in using a GA is devising an encoding scheme in which 

solutions to the problem can be easily manipulated by the GA. A very common scheme 

involves encoding the solutions directly as strings of symbols, quite often binary (Bäck, 

2000, pages 132-135). Also, binary encoding is traditionally used for teaching the 

subject of GAs (Mitchell, 1996, pages10-12). However, often in graph-space problems 

or any problem where solutions are permutations of nodes or symbols, encoding paths 

or permutations directly can be used (Goldberg and Lingle, 1985). Due to the 

requirements and constraints involved, this encoding scheme can cause problems for the 
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GA. Still, direct encoding of solutions for GA population members is very common and 

for most types of problems, works well. 

 

The Traveling Salesman Problem is a good example of a Non-deterministic Polynomial 

time-Hard (NP-Hard) graph-space problem, and many attempts have been made to 

apply GAs to it. Solutions to the TSP consist of a linear, non-duplicating, and complete 

list of the nodes. Directly encoding these paths can cause problems for the GA as it 

attempts to create new solutions from old through manipulation of population members 

using GA operators. This is the case for other graph-space problems, such as the Snake-

in-the-Box problem where paths must not contain duplicate nodes. With this direct 

encoding scheme, population members can be initially encoded successfully, but the GA 

cannot directly manipulate, using its crossover and mutation operators, these solutions 

without creating duplicate nodes or edges. Therefore, either the GA operators must be 

designed to avoid this, or the new, invalid population members must be “fixed” to 

conform to valid points in the solution space (see description of Grefenstette in 

Goldberg, 1989, pages 204-205). Both of these options can be difficult and can reduce 

the effectiveness of the technique. 

 

The heuristic encoding scheme can mitigate these problems for GA operators and still 

produce good solutions to graph-space problems. In addition, this encoding scheme can 

implicitly prune the solution space in that the set of heuristics may only allow a small 

portion of the space to be accessed. This is due to the fact that there may be far more 

selections possible at any point in the path building process than there are heuristics to 
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choose from. Therefore, a good set of heuristics should still allow exploration of 

promising areas while restricting access to less promising ones. These constraints are 

necessary in order to deal with the combinatorial explosion of NP-Complete and NP-

Hard problems. Indeed, Wynn (2012) also uses built-in constraints for this purpose. 

 

So far we have made some broad and strong claims regarding the value of this work. 

How can we support these claims in a scientific manner? The next chapter formalizes 

these statements through four primary hypotheses with statements supporting the value 

and motivation of each. Next, we introduce the basic concepts of GAs (Chapter 3), 

heuristics and hyper-heuristics (Chapter 4), the problems studied (Chapter 5), the 

heuristic sets (Chapter 6), and the specifics of our GA operators (Chapter 7). Later we 

explain the experimental framework used (Chapter 8), the specific experiments and the 

results obtained (Chapter 9), the analysis and explanation of these results (Chapter 10), 

and the conclusions that can be drawn (Chapter 11). Finally, we discuss several areas of 

future work for the continuation of this research (Chapter 12). 
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Chapter 2 

Hypotheses and Motivational Statements 

Heuristic encoding does produce competitive results when compared to more traditional 

GA implementations and to other types of algorithms and techniques (Carlson and 

Hougen, 2010). However, the design and selection of the heuristic set can have a strong 

effect on the ability of the GA to discover promising areas of the solution space. Indeed, 

it is the heuristic set that provides the mapping mechanism from the problem to the 

solution space. In order for the GA to take advantage of this mapping ability, changes 

should be made to the canonical or typical GA operators to account for this novel form 

of encoding. This dissertation will show this through investigation of the following four 

hypotheses and supporting experiments and analysis. 

 

2.1 Hypothesis H1, Heuristic Representation 

H1: Heuristic encoding schemes can effectively represent solutions to graph-space 

problems. 

 

If this encoding scheme is not at least as good as others, there is little reason to use it. 

As claimed, the original purpose of heuristic encoding was to simplify the GA on 

permutation type graph-space problems such as the TSP. However, the true usefulness 

lies in its ability to prune the search space. An example is the TSP: When going from 

node one to node two in a 100 node problem, there are 99 nodes to choose from. Of 

course, as the path grows the number of selections decreases. However, this is still a 

very large decision space with roughly 99 factorial (99! = 9.3326*10155) possible paths. 
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Using a 25 heuristic set limits the number of choices at each point of the path to a 

maximum of 25 (roughly 25n-1 = 2.4892*10138 for a 100 node problem, still large, but 

much more reasonable), a drastic reduction. Using the node scheme where the solutions 

are represented directly as a sequence of nodes, the size of the search space overtakes 

the heuristic scheme at about 62 nodes. Therefore, for any TSP larger than 61 nodes, the 

heuristic encoding scheme will increasingly prune the space below the size of the node 

scheme. 

 

In contrast, what if the heuristics limit the choice in such a way that a good or the best 

path cannot be created? This is where the value of H1 is demonstrated. If it can be 

shown that the best known path in various problems can be reconstructed with the given 

heuristic set, then we have shown empirically that this set is capable of representing this 

solution. Can it be proven that the heuristic set is capable of always being able to 

represent the best solution? No, as we are dealing with NP-Complete problems. Thus, in 

general, it is not even possible to show whether a given solution is the best, without 

exhaustive search and comparison of every possible solution. Therefore, we show 

through empirical experiments that the heuristic set is at least capable of representing a 

broad set of different, world record solutions. This is done for a set of four problems in 

the TSP and four from the SITB. 

 

NOTE: Of course, there are proven bounds for some problems that can be used to show 

a given solution has reached the limit, but this is only useful in certain situations. See 
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Arora (1998) for work on a Polynomial-Time Approximation Scheme (PTAS) for the 

TSP and other geometric problems. 

 

2.2 Hypothesis H2, Encoding Scheme Comparisons 

H2: Heuristic encoding used with traditional GA operators and parameter settings 

performs no better, and may perform worse, with more traditional encoding schemes 

using the same GA operators and parameters. 

 

When initial work was done using heuristic encoding on both the TSP and the SITB, 

traditional versions of crossover and mutation along with fairly traditional parameter 

values, such as 40% probability of crossover, selection with replacement, et cetera were 

used. However, results were mediocre at best. The form of encoding was likely causing 

greater disruption of the population members when changes occurred, such as from 

crossover and mutation, than anticipated. Based on these prior results, heuristic 

encoding may not perform any better with traditional operators and parameter values 

than more traditional encoding schemes. 

 

2.3 Hypothesis H3, Phenotype GA Operators 

H3: When using heuristic encoding, phenotype operators improve average GA 

performance over that obtained with traditional GA operators. 

 

As stated in Section 2.2, initial findings showed that heuristic encoding by itself was not 

sufficient to achieve good results with a GA. This is likely caused by the disruptive 
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nature of the heuristic encoding scheme. Indeed, Mitchell (1996) states: “Some types of 

encodings require specially defined crossover and mutation operators.” While she may 

be speaking to the necessity of maintaining valid population members under the effects 

of GA operators, this statement also applies to the need for the operators to evolve better 

members. For, indeed, if GA operators are ineffective at this, there is no point to the 

GA. 

 

In order to address these issues, different techniques were researched to mitigate the 

disruptive nature of the heuristic encoding scheme while still maintaining the value of 

the GA operators in exploring the solution space. The result was new GA operators that 

cause less disruption to population members when using this encoding scheme. These 

phenotype operators use information from solutions being produced, the phenotype, and 

are explained more fully in Chapter 7. 

 

In the following discussions, canonical refers to accepted, well researched methods for 

GA operators, and traditional refers to parameter settings for various aspects of GAs 

that are more typical and more commonly used. 

 

2.3.1 Hypothesis H3-1, Phenotype Crossover 

H3-1: When using heuristic encoding, the phenotype crossover operator increases 

average GA performance above that obtained with the canonical, linear multi-point 

crossover operator. 
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2.3.2 Hypothesis H3-2, Phenotype Mutation 

H3-2: When using heuristic encoding, the phenotype mutation operator increases 

average GA performance above that obtained with the canonical mutation operator. 

 

2.3.3 Hypothesis H3-3, Combination of Phenotype Operators 

H3-3: When using heuristic encoding, the combination of phenotype crossover and 

phenotype mutation operators increases average GA performance above that obtained 

using any other combination of canonical GA operators for crossover and mutation. 

 

2.4 The Heuristic Set 

The design and selection of the heuristic set should incorporate knowledge of the 

problem space appropriate for mapping to the solution space but should not include 

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas 

of the solution space. Also, if useless heuristics are included, they detract from the 

guiding effects of the GA. 

 

These statements would seem to make sense based on simple ideas of filter effects on 

signals, and noise within signals. Using the signal analogy, if a signal is overly filtered, 

especially if it has no noise component, valuable signal content will be lost. Similarly 

with a set of heuristics, if valuable heuristics (heuristics that have been shown to be 

useful in discovery of good areas of the solution space) are removed, the GA will be 

unable to reach potentially high payoff areas of the solution space. Also, if noise is 

added, the original signal becomes harder to distinguish. Given a set of heuristics that 
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seem to work well, if noise is added, i.e., useless or unneeded heuristics are added, one 

would expect that the GA guiding the set of heuristics toward a solution to a problem, 

might have a more difficult time. 

 

We have identified a small set of heuristics for the TSP and SITB that appear to be very 

valuable in contributing to finding good solutions. These heuristics were identified by 

observing how often each heuristic could be used during the process of re-creating the 

best known solution to a problem. For the TSP, the four problems (Table 8.1) used for 

Hypothesis H1 were again used for this purpose, and for the SITB, the best known 

solutions for D7 to D10 (Table 8.2) were used. When attempting to determine if the 

heuristic set can be used to encode a known world record path, at each step, we see if a 

given heuristic will select the next node according to the known path. If said heuristic 

will select the correct node, a counter for this heuristic is incremented. This process is 

performed for each node in the path, and the check made for each heuristic, for all of 

the problems identified. When complete, the heuristics are ranked based on counts of 

how often they made the correct selection. The larger the count, the more useful the 

heuristic is likely to be, when used with the GA. After ranking the complete heuristic 

set, a small sub-set from the top of the list (having the larger counts) was identified for 

both the TSP and the SITB to be used for these experiments. However, as the TSP is 

initially encoded using only heuristic number 1, this heuristic was not considered for 

this purpose (see discussion of TSP encoding in Section 6.1). 
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By removing this subset from each, the average performance is expected to decrease as 

this will reduce the effective searching ability of the remaining heuristic set and the GA 

managing them. Also, as this will restrict the area of the solution space reachable by the 

heuristic set, we also expect to find that the best solution found using the entire set is 

likely not possible with the reduced set. 

 

Using this same set of counts for the heuristics, a small sub-set at the lower end was 

identified as possibly not useful. For the TSP, the original set contained 33 heuristics, 

and 8 were removed to create a standard set of 25 by this process. For the SITB 

problem, the original set contained 26 heuristics, and 9 were removed to create a 

standard set of 17. The worst (lowest count) heuristic removed from each set will be 

used as the “noise” heuristic for the experiments in support of Hypothesis H4-2. 

 

2.4.1 Hypothesis H4-1, Removing Key Heuristics 

H4-1: When key heuristics are removed, both upper end, and average GA performance 

decreases. 

 

2.4.2 Hypothesis H4-2, Adding Noise Heuristics 

H4-2: When additional, unneeded heuristics are added, average GA performance 

decreases. 

 

Now that the plan for supporting this work has been formalized through the list of 

hypotheses, we need a better background in the algorithmic framework used in this 
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work. Therefore, the following chapter gives a brief history and introduction to the 

mechanics of the typical genetic algorithm. 
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Chapter 3 

An Introduction to Genetic Algorithms 

While the primary focus of this work is solution representation and manipulation, the 

framework for this is the Genetic Algorithm (GA). Therefore, in order to understand the 

value and application of this work, we must understand the basics of this algorithmic 

technique, inspired by nature, as it applies to NP-Complete problems. 

 

GAs are a type of Evolutionary Computation (EC) scheme inspired by the idea of 

genetic encoding and population dynamics from nature (Holland, 1975). There are 

many other types of EC algorithm, such as Estimation of Distribution Algorithms 

(EDAs), but this work focuses on GAs. (See Hauschild and Pelikan, 2011, for an 

excellent introduction and survey of EDAs.) 

 

GAs are used in many areas including classification and control systems. Two primary 

areas are: 

 

1) In modeling and simulation of various biological problems/processes to include 

population dynamics. There are many ways that the GA has been applied to study 

various problems and areas of biology and sociology (Mitchell, 1996, pages 15-16). In 

this role, they have proven useful in the natural sciences (Holland, 1975). 

 

2) To actually solve (or at least find good solutions to) difficult problems whose 

solutions have practical import in industry, engineering, and scientific fields. There are 
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many good examples of this in the books by Mitchell (1996) and Falkenauer (1998). 

Also see Louis and Xu (1996) for an application to the Open Shop Scheduling problem. 

This is the area on which this dissertation focuses. 

 

Initially the GA was created to study various aspects of evolutionary processes and 

population dynamics (Holland, 1975). However, they eventually became useful for 

many areas of problem solving and optimization. They do have limits and are not 

applicable to all NP-Complete problems. Some problems prove to be quite difficult and 

even deceptive for GAs as discussed in Goldberg (2002, especially Chapter 7). Also, for 

a thorough discussion of the intricacies of GA design, parameter tuning, and 

optimization techniques see De Jung (1993). 

 

3.1 The Canonical GA 

The canonical GA was developed and introduced by John Holland and his associates at 

the University of Michigan in the 1960s and 70s (Holland, 1975, Mitchell, 1996), and 

was initially referred to as Genetic Plans. Holland was motivated by the desire to use 

computers to simulate natural systems and for the study of parameter changes on these 

systems. The basics of the canonical Holland GA will be explained along with some of 

the common variations based on application to the second primary application area 

above: finding good solutions to difficult problems. 

 

In order to use a GA, an encoding scheme must first be devised to represent potential 

solutions as a string of symbols, which will be referred to as population members. A 
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group of population members is the population the GA will work with. 

 

Based on the defined encoding scheme, it may be useful to derive custom GA operators 

as quoted by Mitchell (1996, page 173) “Some types of encodings require specially 

defined crossover and mutation operators.” While this is not “required” for heuristic 

encoding, it is expected to improve overall results. Once accomplished, the initial 

population can be generated. Unlike many problem solving techniques, GAs do not 

work with a single potential solution, but instead, a population of potential solutions. 

Starting with this initial population, the GA uses functions known as GA operators to 

create a new population from the initial. One complete iteration of this process is known 

as a generation, with the idea that the previous population is used to create the next 

generation of potential solutions. As this process continues, the population should 

evolve better solutions. Thus, the number of generations allowed usually is a function of 

how much time is available, the quality of solution desired, or various dynamics of the 

population (whether it has converged, when the last improvement was seen, et cetera). 

 

3.2 An Example of a Simple GA 

The following steps must be accomplished as part of the design and implementation of a 

GA solution. The first three set up and initialize the GA, while the last four constitute 

the generational cycle. 

 

1) Determine an appropriate fitness function, or a function that can be used to rank the 

quality of the population members. The fitness function will be used to evaluate 
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individual population members for use in creating the next population. 

 

2) Determine an appropriate encoding scheme and create an initial population of 

candidate solutions. This usually takes the form of a string of characters or symbols. 

Binary strings are very common. The individual symbols are referred to as alleles, with 

the set of possible symbols called the allelic values or allelic set. Integers representing 

heuristic identifiers are used for the allelic values in this research. Next, a random value 

from a uniform distribution is selected for each of the individual genes in the initial 

population. 

 

3) Determine the stopping criteria for the GA. 

This is typically some measure of the fitness of the best individual, the convergence of 

the population, or is related to resources such as running time. 

 

4) Evaluate the current population based on a fitness function determined by some 

measure of a good potential solution (what is the expected outcome?), derived in step 1. 

 

5) Determine if the stopping criteria has been met. Stop and report results if it has. 

Otherwise, continue. 

 

6) Using the evaluations from step 4, create the next population through GA operators 

of selection, crossover, and mutation. 
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7) Return to 4 and continue. 

 

For the fitness function in step 1, “fitness” refers to objective fitness in that we are 

trying to determine how well a given population member solves the problem at hand 

(does it produce a better path than other solutions, does it reduce the time necessary to 

traverse a graph, et cetera). This function is sometimes referred to simply as “the 

objective function” in the literature. To implement a fitness function, we need to 

determine a measure that can be used to grade or rank how well each individual solves 

the problem, and this is referred to as the fitness of the individual. This value will be 

very important to the GA as it evolves the population searching for more fit individuals. 

This definition of fitness is quite different than seen in the biological sciences, where it 

typically refers to the ability of an individual to survive and reproduce. Of course, in 

biology, there may be problems in the environment that individuals need to solve 

(finding food, defending territory, mate selection, and defense), but these are simply 

part of the overall goal of producing offspring that will themselves survive and 

reproduce. Thus, in biology, the primary measure of fitness is how many offspring a 

given individual can produce, whereas our measure of fitness involves the problem 

objective, objective fitness, or simply, fitness. 

 

3.3 GA Specifics as Applied to NP-Complete Problem Solving 

The following discussion focuses on application of GAs to solving NP-Complete 

problems in engineering, not as used in the biological sciences or simulation. The key 

components of the GA are as follows. 
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3.3.1 Measure of Fitness (Fitness Function) 

We must devise an appropriate measure of the performance of an individual population 

member. Based on the problem being solved, each member will map to a specific point 

in the solution space. We need to determine what metrics of this point will be used as 

the measure of fitness. This fitness function will be used in various ways by the GA 

operators to produce the next generation. It may also be used as part of the stopping 

criteria. Finally, it may be used as a measure of the quality of the best solution found by 

the GA. 

 

3.3.2 Encoding Scheme 

In order to have a population of potential solutions for the GA to operate, we must 

determine how to represent solutions to the problem. Typically some form of character 

or symbol string is utilized. In its simplest form, a binary string is used. However, any 

fixed set of characters will suffice. The individual character locations are referred to as 

loci, the item occupying a given loci is a gene, and the specific values each gene can 

obtain are known as alleles. Thus, in a binary encoding scheme, the only allelic values 

are 0 and 1. In the heuristic encoding scheme, the allelic values are integers representing 

the heuristics in the set. Once the general form has been determined, we must decide 

how to map these strings of symbols to actual solutions. As an example, if the problem 

is determining the correct numeric values for a set of variables to optimize an equation, 

we might use a floating point format encoded into binary with each variable being 

assigned a certain number of positions, or genes, within a population member. During 

evaluation, these values are decoded to their numeric counterparts and applied to the 
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equation to determine the calculated value. This final value will be mapped to the 

fitness function to determine the overall fitness of the member. There are an infinite 

variety of encoding schemes for a given problem, and the scheme used can have drastic 

consequences on the outcome of the GA. Indeed, Falkenauer (1998, page 180) states 

“While it is certain that an NP-hard problem cannot be made trivial by any encoding, it 

is the case that an inadequate encoding can make a problem look harder to a GA than it 

actually is.” Finally, we must decide on the ordering scheme used for the genes. Linear 

ordering is most common where the genes are evaluated, interpreted, or mapped linearly 

from left to right. Other ordering schemes are also used and will be discussed as needed. 

Linear ordering is used for the examples in this section. 

 

3.3.3 Stopping Criteria 

Before running the GA, the stopping criteria must be determined. As with exhaustive 

search on a large problem, the GA can run, for all practical purposes, forever. Indeed, 

we may find that many improvements are made for the first hour of operation, but the 

next improvement may take ten additional years, in an extreme case. Some common 

criteria used are: 

 

1) Is the current best solution good enough? This is based on the problem being solved 

and what is considered an acceptable solution. 

 

2) Has the population converged? Has a single member of the population grown to 

occupy a certain percentage (determined by the developer and the dynamics being 
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considered), such as 75%? 

 

3) How long since the last improvement was seen? An example might be if the GA 

evolves regularly improved solutions for x generations, but no new improvements have 

been seen for 2x generations, we may decide to stop. 

 

4) How much time or computational resources can we afford? We may decide, based on 

empirical studies, that 5,000 generations will produce good results. However, if one can 

wait for 50,000 in the hopes of minor improvements, then this may be advisable. 

 

3.3.4 GA Operator - Selection 

We must devise some scheme for selecting members from the current population to 

participate in constructing the next. There are typically three mechanisms that allow a 

current population member to contribute: Either selection for direct copy, selection with 

an additional member for mating/crossover, or selection for mutation. Often, these can 

be combined, such as new offspring created through crossover may also be mutated. 

There are many systems for selecting but a very common form known as tournament 

selection is common and is used in some of the following experiments. Tournament 

selection randomly selects a small subset, and performs a tournament between them by 

selecting the individual with the highest fitness. The number of elements in the subset is 

known as the tournament number. If selecting for crossover, then two tournament 

selection operations will be needed in order to select two members for crossover. 
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3.3.5 GA Operator - Mating or Crossover 

Once two members of the current population have been selected, they will be combined 

in some meaningful way to produce two new members for the next population. This 

mating scheme typically involves random determination of one or more points within 

the encoded population string which will be used as focal points for swapping 

subsections between the two members. When we refer to the crossover point, we mean 

the index value of the first gene used for the swapping process. Thus, if the crossover 

point is 4, then gene 4 and all genes with a larger index value will be included. 

Following is an example using single point crossover in a 10 character string where the 

crossover point is 4, using the alphabet as the encoding characters or allelic values: 

Old member 1:  ABC BETOOPU            New member 1:  ABC ABEDTPB 
Old member 2:  RRU ABEDTPB            New member 2:  RRU BETOOPU 

This can be generalized to any number of crossover points and is known as linear multi-

point crossover. Linear refers to the fact that the sections between the crossover points 

are swapped in a linear fashion. The more points used, the more disruptive the 

operation. Therefore, we use multi-point crossover with a single point for illustration. 

There are other forms that use many more crossover points, such as parameterized 

uniform crossover (Spears and De Jung, 1995), which is becoming more popular. 

 

Crossover attempts to combine the best parts of individuals in random ways to produce 

better, more fit, offspring. Of course, often the offspring are less fit, in which case they 

should eventually be removed from the population by not being selected. This operator 

is the strength of the GA and typically provides the greatest increase in performance. 

“Being the most potent force in the GA, the crossover is also the most used operator in 
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the algorithm. Indeed, in a typical GA most of the new individuals produced (i.e., new 

points of the search space explored) are generated by this operator.” (Falkenauer, 1998, 

page 38). 

 

3.3.6 GA Operator - Mutation 

Mutation involves the low probability change of a gene from one value to another. 

Thus, for a binary encoding, this would be a bit-flip. When a gene is selected for 

mutation, typically a new value is chosen using a uniform distribution of all possible 

values. At its simplest, mutation is a random walk through the solution space, and is no 

better than any other form of enumerative search. As such, its usefulness and power are 

much less than crossover. However, its primary benefit is to assist in maintaining 

diversity and as an insurance policy against losing useful genetic material. The 

crossover operator has great power to explore the solution space. However, if a given 

allele does not exist in the population, or has been removed through selection, crossover 

can never bring it back. The mutation operator can, however, in that, when a gene has 

been selected for mutation, any allele can be selected as the new value. This does 

introduce another level of randomness, but empirical evidence suggests its value 

(Falkenauer, 1998, pages 40-43). 

 

3.4 GAs in Conclusion 

The real power of the GA lies in the GA operators and their ability to balance 

exploration of the solution space with exploitation of good potential solutions. 

However, the encoding scheme is central to the success of the GA (Mitchell, 1996). The 
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encoding scheme and the development of appropriate GA operators is the focus of this 

research. The study, comparison, and analysis of these techniques is the domain of this 

dissertation. 

 

Finally, a problem known as epistatic interaction can cause problems for the GA, and 

indeed, is a known problem in this work. Epistatic interactions occur between the genes 

in such a way that the contributions of a specific gene are affected by others (in the 

literature, the number of interactions is a constant value denoted by k, see Kauffman, 

1989 for a thorough discussion). Due to this, it is not possible to state that a specific 

gene contributes x to the overall solution while another gene contributes y as the 

contributions of these genes may be intertwined with each other as well as with others. 

This problem is even more acute with heuristic encoding where a path is built from the 

genes in a population member. In this technique, when one gene is changed, it may 

affect the contributions of all downstream genes (genes that have yet to contribute to 

this specific path). This problem is dealt with to some extent through the use of the 

locus-based approach for the ordering of the genes within a population member (Jung 

and Moon, 2002). Using the locus-based approach for gene ordering, each gene 

represents a specific node in the graph-space, instead of a specific node in a given 

solution (linear ordering). These ordering schemes are discussed more completely in 

Chapter 6. 

 

Another technique for mitigation of the negative effects of epistatic interactions 

involves mutation. For the SITB, a maximum of one gene is allowed to be mutated per 
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population member. Finally, the phenotype crossover operator helps greatly to mitigate 

this problem. See Altenberg (1994) for a thorough study of epistatic interactions in GAs. 

 

Next, we must understand how the GA can be used to manage low level heuristics in 

order to construct paths in a graph-space. For this we introduce the idea of heuristics 

and explain more fully how they are applied in this work. 
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Chapter 4 

An Introduction to Heuristics and Hyper-Heuristics 

4.1 Heuristics and Hyper-Heuristics 

Heuristics are simple “rules of thumb” used to make decisions. They can be used to 

determine the next step to take given a specific state, as part of the solution to a larger 

problem. We may have a group of these rules of thumb which will each take the current 

problem state to the next state based on the current conditions. Each heuristic decides 

what selection to make based on the current state of the problem. Thus, heuristics may 

be viewed as simple state transition rules. The question of which heuristic to apply in 

any given situation is a separate problem which the GA attempts to solve. Therefore, the 

GA serves as a type of hyper-heuristic, a heuristic to choose or select lower level 

heuristics. The idea of a hyper-heuristic for solving NP-Complete problems is well 

known in the literature and examples can be found in Terashima-Marin et al (2008) and 

Garcia-Villoria et al (2011). 

 

The following quote highlights the primary purpose of using a heuristic encoding for a 

GA; the pruning of the search space. “We resort to heuristic programming whenever an 

algorithmic solution is prohibitively expensive or impossible to follow, or is 

unavailable. The role of heuristics is to cut down the time and memory requirements of 

search.” (Ralston, 1976, page 606). 

 

Indeed, when the solution space to be searched grows exponentially, a good algorithm 

must be able to prune areas of little value, without removing areas containing better 



29 
 

solutions. So, from an evolutionary computation standpoint, heuristics are often 

combined with other techniques for this purpose. Burke et al (2013) presents an 

excellent survey of the state of the art in heuristic and hyper-heuristic techniques. 

 

4.2 The Genetic Algorithm as a Hyper-Heuristic 

When used as the encoding scheme for a GA, heuristics do add an additional layer of 

abstraction that may mitigate some of the GA operator’s manipulation problems, but 

may also introduce other problems. This scheme involves using heuristics as the values 

of genes for the population members in a GA, instead of encoding actual solutions. 

Several good examples of heuristic encoding for GAs applied to packing problems can 

be found in Terashima-Marin et al (2008), and Lopez-Camacho et al (2010). Thus, a 

population member is evaluated for fitness based on the goodness of the solution that 

can be built from its heuristics. In this type of scheme, the GA acts as a hyper-heuristic 

in that it guides the application of low level heuristics in an attempt to create a better 

sequence of heuristics (better population members) that will create better solutions. The 

GA operators simply need to operate on population members that consist of heuristic 

identifiers, any combination of which will produce a valid solution. The goal of the GA 

is to manipulate the population members such that the heuristics are arranged so that the 

ordering of their application produces better solutions as the population evolves. While 

heuristic encodings are not new (Hart, 1998, Terashima-Marin et al, 2008), their use as 

a GA encoding scheme for graph-space problems is rare (Carlson, 2002, Carlson and 

Hougen, 2010). 
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The idea of a hyper-heuristic used in this manner is well known in the EC community 

and an excellent survey of the state of the art can be found in Burke et al (2013). In this 

paper they state: “When using hyper-heuristics, we are attempting to find the right 

method or sequence of heuristics in a given situation rather than trying to solve the 

problem directly.” 

 

Another quote from Burke et al (2013) strengthens the argument for using a hyper-

heuristic to select or manage a set of lower level heuristics as is done in this work: “In 

particular, searching over a space of heuristics may be more effective than directly 

searching the underlying problem space, as heuristics may provide an advantageous 

search space structure.” 

 

This quote does highlight the fact that heuristic encoding adds an additional layer of 

abstraction that causes the GA additional problems that we deal with using specialized 

GA operators discussed in Chapter 7. 

 

In this work, we have devised a custom set of heuristics for the two problems studied, 

which the GA, as the hyper-heuristic, will arrange in such a way as to find “good” 

solutions to the two different graph-space problems. A different heuristic set will need to 

be designed for each different type of problem for which this technique will be applied. 

However, before a heuristic set can be created, the problem space must be studied in 

order to decide what feature set should be used to create the heuristics. While this 

research does not focus on the problem of feature set determination, a good example of 
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this can be found in Lopez-Camacho et al (2010). 

 

Examples of features used for the TSP heuristic set are: 

 Distance between nodes 

 Distance of a node from the Euclidean center of mass 

 Relationship between distance to current path nodes and the Euclidean center of 

mass 

 

Examples of features used for the SITB heuristic set are: 

 Position on the link table (see Table 5.1 for link table examples) 

 Number of available neighbors 

 Relative position on link table with the inbound link 

 Tightness of space around node 

 

Heuristics have been studied and used in-depth in the application to modern problem 

solving. Indeed, several fine books have been written that cover many different 

techniques including various deterministic schemes, stochastic methods, and EC 

approaches (Michalewicz and Fogel, 2004, Pearl, 1985). However, the idea of 

developing a set of low-level heuristics, while not unknown, is not as common and 

highlights one of the primary contributions of this work: The process of low-level 

heuristic set development for NP-Complete problems. 
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With a good understanding of heuristics and the GA as a hyper-heuristic to manage 

them, we will explore the two graph-space problems used to develop, test, and support 

this research. While this research should be applicable to other NP-Complete problems, 

we believe the use of graph-space problems, where a path must be built, will best 

illustrate the techniques and ideas developed here. 
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Chapter 5 

The Problems Studied 

Two example problems from the realm of graph theory are used to explore and show the 

usefulness of combining heuristics with GAs and the implementation of phenotype 

operators. In both problems, the GA builds a path through the space by evaluating the 

heuristics that a population member consists of, instead of directly manipulating paths 

as population members. The two problems, the Traveling Salesman Problem (TSP) and 

the Snake-in-the-Box problem (SITB), are explained below. We use these problems due 

to their reputations and the large amount of work the EC community has expended on 

them. However, we have found very few others using GAs on large instances of these 

problems. Indeed, Zhang and Ma (2014) use an EDA, a type of EC to solve smaller 

instances of the TSP up to 136 nodes, whereas this work has been applied to problems 

over 2,000 nodes in size. Also, for the SITB, we are aware of only a single additional 

instance of contemporary GA research (Ruiz, 2014) on larger instances. However, Diaz- 

Gomez and Hougen (2006) apply GAs to smaller instances of the SITB. The primary 

reason for this lack of GA research on the SITB seems to be that typical approaches 

using GAs do not scale well on larger problems. Indeed, our work suffers this fate to 

some extent, but still produces reasonable results even on larger problems. 

 

5.1 The Traveling Salesman Problem (TSP) 

The TSP is a simple, easy-to-understand problem that is quite hard to solve (it is NP-

hard). It is a path minimization problem where all of the nodes must be connected in a 

closed loop. The nodes themselves can be viewed as not connected initially, but are only 
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defined with x and y coordinates in a 2D plane. We seek to connect them in a complete, 

non-duplicating, closed path. As a simple analogy: there is a group of cities that a 

salesman must visit. He must start and end at the same city, and he can only visit each 

city once. As fuel and time are valuable, he must find the shortest path possible. 

 

There are infinite variations on this basic problem including 2D and 3D, but this work 

involves the Euclidean, 2D symmetric (the distances are the same in both directions) 

TSP. In this version, all we are interested in is the shortest closed path. Thus, we are not 

concerned with defining a start/end or whether we go from city A to B or B to A. In this 

scheme, there are many permutations of the nodes that actually represent the same path. 

As an example, given nodes, A B C D E F G H I J, the following paths are equivalent: 

A-B-C-D-E-F-G-H-I-J 
C-D-E-F-G-H-I-J-A-B 
H-G-F-E-D-C-B-A-J-I 
 
The end node connects back to the first, and this connection distance is included in the 

final path distance, but may not be shown in the paths themselves. Figure 5.1 is an 

example of a TSP named berlin52 from Reinelt’s TSPLIB95 showing the best known 

path. A problem of this size can be solved without much difficulty, even by a GA. 

However, GAs do not scale well using node-based encoding on problems much larger. 
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5.2 The Snake-in-the-Box Problem (SITB) 

The SITB is similar to the TSP in that it is a graph problem where an optimal path is 

sought. However, there are several key differences, first of which is that in the initial 

space, the nodes have a limited number of fixed links, instead of being a fully connected 

graph as the TSP is. The links are very structured and form a hypercube. These are the 

only links allowed. In the SITB we want to find the longest path that connects as many 

nodes within a given n dimensional hypercube as possible governed by certain 

constraints, explained in Section 5.2.2. 

Figure 5.1: berlin52.tsp from TSPLIB95 with best path of 7542 shown. This solution 
was produced by the GA using heuristic encoding and the phenotype operators. The 

red link connects the last node in the path back to the root node, with the red asterisk. 
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5.2.1 Hypercubes 

The idea of finding snakes in hypercubes of different dimensions is referred to as “The 

Snake in the Box Problem” and was originally proposed by Kautz (1958). It involves a 

graph-space that extends the idea of a single point (a dimension 0 hypercube), to a line 

(1 Dimension), square (2D) and a cube (3D) further to dimensions not easy to represent 

in visual space, a hypercube. Figure 5.2 shows examples of a two dimensional 

representation of hypercubes of dimension 2, 3, and 4. This representation scheme is 

unique to this work (Carlson and Hougen, 2010). As the dimension is increased by one, 

the number of nodes is doubled. A hypercube of dimension n has 2n nodes. Each node 

has n connections to neighbors creating a very structured space, a 2-colored graph. This 

is the box, the problem space. 

 

5.2.2 Snakes 

A snake, as put by Diaz-Gomez and Hougen (2006) is “a connected path in the 

hypercube d, where each node in the path has exactly two neighbors, except the head or 

source, and the tail, destination, that have only one neighbor.” 

 

The snake is a constrained open path in the “box” formed by the hypercube. Not only 

can it contain no duplicate nodes or edges but it also cannot have any chords, that is, a 

node in the path cannot have any path nodes next to it other than the one directly before 

it and the one directly after it in the path. This is a maximization problem as it is desired 

to find the longest snake possible in a given dimension. Thus, the set of all possible 

snakes (paths) of any length for a given hypercube dimension is the solution space for 



37 
 

that problem space. Longest paths in hypercubes have use in coding theory (Kautz, 

1958), hypercube computer communication schemes (Livingston and Stout, 1988), 

disjunctive normal form simplification (Potter et al, 1994) and other areas of science 

and engineering. Figure 5.3 has examples of the best snakes for dimensions 4 and 5 in 

two dimensional representation. In this figure, only the hypercube links forming the 

snakes are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Also, in the literature, snakes are usually listed by the total number of links they 

contain. However, we use the node count. Therefore, most published snake lengths will 

be one less than the values contained in this document. 

Figure 5.2:  2D circular graph for hypercubes of dimensions 2, 3, and 4. These graphs 
show the nodes as numbered in this work, which may be different from schemes seen 

elsewhere. 
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5.2.3 Snakes in Canonical Form 

The search space for snakes in hypercubes can be pruned by taking advantage of some 

of the symmetries in the space. A simple constraint is used by Tuohy, et al (2007) but 

was originally proposed by Kochut (1996) and is quite simple: “Always begin at node 

0.” Tuohy starts node numbering at 0, whereas we start at node 1 in this work. Due to 

the symmetric structure of the space, all nodes are equivalent before a path has been 

started. This constraint greatly reduces the search space while not removing the best 

snake. 

 

The second constraint is even more useful and is also used by Tuohy, et al (2007) and 

proposed by Kochut (1996): “Only consider snakes in canonical form.” As stated by 

Tuohy, et al (2007), “Snakes in canonical form are those which only use higher-order 

dimensions after every lower-order dimension has been used at least once.” This is 

actually a very simple idea. The hypercube structure has many symmetries and one is 

the fact that each dimension is created by connecting two copies of the previous 

dimension. Thus, D7 simply consists of two copies of D6 with matching nodes linked 

together. This additional set of links is always the largest number in the link table (see 

Table 5.1). Therefore, if we are building a snake in D5, we must include a node from the 

D4 portion of the hypercube before adding a node from the D5 addition. But first, a 

node from the D3 portion must be included before the first from D4. This continues 

until we are at the root dimension of D0 which only consists of node number 1. D1 

consists of two nodes, the node from D0, already in the snake, and a second node with a 

single link between them, which must both be in the snake before a node from D2 (a 
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square) is added. Table 5.1 shows the link table for D2, D3 and D4. In this table it can 

clearly be seen that D2 is embedded in D3 which is embedded in the D4 table, as D4 

will be embedded in the D5 table, et cetera. Finally, Figure 5.3 shows the best snakes in 

D4 and D5 but not in canonical form, whereas Figure 5.4 has the logically equivalent 

snakes in canonical form. 

 

Finally, with a solid understanding of GAs, the two problems used, and how heuristics 

can be combined with a GA to find solutions for these two problems, we will introduce 

the specific heuristic sets. The following chapter will introduce the general heuristic sets 

and give specific examples, while a complete list of the heuristics can be found in 

Appendix A. Also, the concept of gene ordering and the different implementations of 

this will be more completely explained. 
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Node Link list Node Link list Node Link list
number 1 2 number 1 2 3 number 1 2 3 4

1 2 4 1 2 4 8 1 2 4 8 16
2 1 3 2 1 3 7 2 1 3 7 15
3 4 2 3 4 2 6 3 4 2 6 14
4 3 1 4 3 1 5 4 3 1 5 13

5 6 8 4 5 6 8 4 12
6 5 7 3 6 5 7 3 11
7 8 6 2 7 8 6 2 10
8 7 5 1 8 7 5 1 9

9 10 12 16 8
10 9 11 15 7
11 12 10 14 6
12 11 9 13 5
13 14 16 12 4
14 13 15 11 3
15 16 14 10 2
16 15 13 9 1

Table 5.1: Link tables for hypercubes of dimension 2, 3, and 4. Each row shows the 
nodes that a given node has connections to, which are bi-directional. It can be seen 
here how the link table for d2 is embedded in the table for d3, and the table for d3 
is embedded in the table for d4. Refer to Figure 5.2 to see the actual links as they 

appear between the nodes. 
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Figure 5.3: 2D circular graph of best snakes in dimensions 4 and 5. Lengths are 8 and 
14 nodes. In order to focus on the snakes and their links, the unused links are not 

shown. 

Figure 5.4: Same snakes from Figure 5.3 in canonical form. In order to focus on the 
snakes and their links, the unused links are not shown. 
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Chapter 6 

The Heuristic Sets and Gene Ordering Schemes 

As previously discussed, rather than directly encoding solutions as population members, 

instructions for producing solutions are encoded as the population members. Using 

knowledge of the problem space, a set of low level heuristics was devised which use the 

current status of the problem space to make a decision of which node to add to the path 

next. 

 

There are several techniques for determining the order of gene processing or evaluation 

within a population member. In a linear ordering scheme, each population member’s 

genes is evaluated linearly, from left to right. Thus, using heuristic encoding as an 

example, if we had a linear population member of 5 genes, these genes would be 

evaluated individually, in linear order, from left to right as such: 

Index:    1  2  3  4  5 
Genes:   8  4  1  6  3 

Evaluate gene number 1, which has a value of 8 first. Then evaluate gene 2 with a value 

of 4, and continue until the final gene, gene 5 is reached, with a value of 3. 

 

Rather than using linear gene ordering, Jung and Moon (2002) use a gene ordering 

scheme referred to as the locus-based approach. With this approach, each gene 

corresponds to a node and when that node is added to the path, its allele is used for the 

selection of the next node. This technique was found to work better than linear gene 

ordering for our work and it is used for both the TSP and the SITB. 
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Locus-based ordering evaluates based on the gene's position, or loci, as a path is built, 

and may not be applicable to all types of problems that a GA can be applied to. 

However, it seems natural for path building problems such as the TSP and the SITB. 

Using the example above, we would still start at the far left, evaluating gene 1. 

However, based on which node heuristic 8 leads to in building the path, the ordering of 

the gene evaluations may change. Thus, if heuristic 8 directs the GA to add node 3, the 

gene at index 3, which is 1, would be evaluated to determine what node to add next. In 

this way, the GA will skip around evaluating the genes in the order that the nodes are 

added to the path being built. 

 

Through experiments, it was found that the locus-based approach does indeed produce 

better results than the typical linear alternative. This is likely due to the fact that 

individual heuristics are more easily tied to a specific node. However, this is more 

advantageous for the TSP than for the SITB. In the SITB, due to the symmetric nature 

of the space, it seems better to have the allelic values tied to positions in the path itself, 

rather than the space (the hypercube). Given this statement, however, we have still 

found that the locus-based gene ordering scheme works better even with the SITB, and 

it is used for both the TSP and the SITB throughout this work. 

 

One additional detail is the determination of the starting node, or root node. For the 

TSP, we simply choose a starting node at random for each population member and 

encode this as an additional gene at the end of each population member. This will be the 
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node that the population member's path will start from. Thus, for N nodes, the root node 

value is stored at the N+1 position in each population member. For the SITB, we always 

start at node 1 due to the symmetries in the space. Thus, a “root node” need not be 

encoded for the SITB population members. 

 

Finally, one difference between evaluation of SITB population members and TSP 

members involves the fact that the TSP uses all nodes while the SITB does not. Since a 

constrained path is being built in the hypercube of a given dimension, over half of the 

total nodes will not be used. Therefore, when the path has been built as far as possible 

through adding nodes to the head, it might be possible to grow the snake (add additional 

nodes) to the tail. The evaluation algorithm for the SITB does this. This quite often 

leads to snakes a bit longer than would have been possible otherwise. This idea was 

suggested through a personal communication with Lee Altenberg in 2009. 

 

Following is a brief description of the heuristic sets devised for the TSP and the SITB 

problems. A complete description of each heuristic including background definitions 

can be found in Appendix A. 

 

6.1 TSP Heuristics 

There are 25 heuristics in the TSP set. For all, if the requirements of the heuristic cannot 

be fulfilled, then the closest node to the current node that has not been visited will be 

selected. The most used heuristic is heuristic number 1, which selects the closest 

available node. Indeed, initially, the entire population consists of random root nodes but 
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all gene values are 1. This initialization scheme is also used by Zhang and Ma (2014) to 

initialize their population for their hybrid EDA. However, the other heuristics must be 

available or improvements cannot be made. As part of the heuristic scheme for the TSP, 

the Euclidean center of the problem based on the complete set of nodes is determined. 

This "Center of Mass" is used in several of the heuristics, for example 

 Heuristic number 3: Select the node that is the closest to the center. 

 Heuristic number 4: Select the node that is furthest from the center. 

 

Appendix A.1 contains a complete list and description of the TSP heuristic set. 

 

6.2 SITB Heuristics 

For finding maximal length snakes, it is useful to exploit the regularities of hypercubes. 

Our approach uses heuristics that choose a link from the link table (See Table 5.1 for an 

example of a link table) based on the current node (head node) and the state of the 

search space. The state of the space changes with every node added to the snake. When 

a node is added, several nodes may be eliminated from consideration later due to being 

neighbors of the previous head. Heuristics that evaluate the state of nodes near the 

current head or combine this information with knowledge of the global state could be 

used to add intelligence to the selection process (Carlson and Hougen, 2010). 

 

We have created a set of 17 heuristics that will select the next node when building a 

path. Each heuristic was designed in such a way that if the link it would normally 

choose is not valid due to the node it points to already having a neighbor in the snake, 
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the heuristic will look for the next most attractive link based on what the heuristic was 

designed to achieve. Some of the heuristics use position information in the link table 

and others use information about the state of a node’s neighbors in making a decision. 

Some example heuristics are: 

 

Heuristic number 1: Select the first node moving from left to right across the link table. 

 

Each node has a row in the link table that shows the nodes it is connected to. For this 

heuristic, we find the row for the current head node and simply select the first available 

node from this row, starting at the left. 

 

Heuristic number 6: Select the node with the largest invalid count value. Select the right 

node in a tie.  

 

This heuristic evaluates each available node and determines how many nodes each 

connects to that cannot be added to the snake (thus, they are invalid). It selects the node 

that has the largest value of this count. However, the node that is selected must have at 

least one available node, or the snake could not grow past the selected node. This 

heuristic seeks to select nodes that keep the snake tightly coiled. 

 

The idea of tightness means that, when a node is added, we want as few nodes to be 

disqualified, or removed from possible future inclusion, as possible. Thus, if we add a 

node that has 5 neighbors that are currently available to be added (they have no 
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neighbors in the snake), then 4 of those nodes will be wasted upon adding said node, 

due to the fact that, once said node is added, we can only make use of one of the 5 

available neighbors to continue the path. The other four neighbors will be wasted and 

can never be included. However, if we have a possible node that only has one available 

neighbor, then, if we add said node, we will waste no nodes as the only available node 

will be added next. Thus, a tight snake is one that makes good use of the nodes as they 

are added. The drawback is that we are more likely to get stuck in a dead end if we 

overuse the concept of tightness. 

  

A complete list and full description of the heuristics can be found in Appendix A.2. 

 

While the idea of a GA has been explained, we must flesh out the ideas of the 

phenotype operators developed specifically for heuristic encoding. The following 

chapter will explain, in detail, the specifics of the GA as used in this work. 
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Chapter 7 

The GA Operators 

The generation of the initial population for the TSP involves several idiosyncrasies that 

must be explained in order to understand and appreciate the descriptions of the GA 

operators. It was found through trials with the TSP training set that, while the entire 

heuristic set is needed to achieve good results, it is best to start off by having each node 

simply connect to the closest available node. Thus, initially heuristic 1, “select the 

closest available node,” is used as the allelic value for all genes. This starts each 

population member off with a relatively short path that will slowly be improved using 

mutation to replace heuristic 1 with different values, and using crossover to intermix 

these improved population members. 

 

Also, the root node is a separate value for each population member. During initial 

generation, the root node for each population member is randomly selected from all 

nodes using a uniform distribution. This root node will stay with this population 

member unless it is changed through mutation. 

 

The initial population for the SITB is typical of GAs in that each gene is simply 

randomly set to one of the available heuristics with no bias (uniform distribution). The 

population is always evaluated starting from node 1 so there is no issue with selecting a 

root node as there is with the TSP. 
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7.1 The Fitness Function 

The fitness function is used by the GA as part of the evolutionary process. It is also, for 

use in problem solving applications, the measure of success of the GA run. Since we are 

typically only interested in one solution, the fitness function will be the qualifying value 

for the selection of the best population member which will be used as the overall 

solution to the problem. Following is a brief description of the specific fitness functions 

used in this research. 

 

7.1.1 Fitness Function for the TSP 

With the TSP, we are interested in the shortest distance connecting all nodes in a closed 

path. We use the same scheme for measuring this distance as the TSPLIB95 web site 

(Reinelt) so that our values can be directly compared. For the node coordinates, floating 

point values must be used. However, the final calculation of distance between each pair 

of nodes is rounded to the nearest integer. The following gives an example: 

 

xd = xi – xj 

yd = yi – yj 

dij =  

 

where all values are floating point except the final distance; dij. In this way, the 

distances between each pair of nodes in the path are added together as integers to 

produce an integral final value which is unit independent. During the GA evolutionary 

process, this path distance value is computed for the path constructed by each 
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population member and these values are used in selection and crossover for the next 

population. Also, the best, shortest path found for the final population will be the end 

product of the GA. 

 

7.1.2 Fitness Function for the SITB 

The SITB fitness function is a bit more complicated than for the TSP. While we are still 

looking for a specific path distance, here the path is measured in number of nodes, and 

it is a maximization problem. However, the biggest difference is that a separate function 

is used for the GA evolution and for the final solution. The reason for this is the 

granularity of the solution space is not as fine as with the TSP. There may be many 

paths that are quite different but that contain the same number of nodes, whereas with 

the TSP, this does not occur very often. As an example, in D7 where the maximum/best 

path is 51 nodes, there may be 20 very different population members of length 49. How 

can they be ranked to determine which is more likely to eventually produce a 51 node 

path? This problem actually occurs often with GAs and a way must be determined to 

judge the goodness of a population member outside of the solution to the problem that it 

is capable of producing. For the SITB problem, this is done by determining whether two 

paths of equal length also have equal probability of being easily modified, through 

crossover or mutation, to a longer path by examining the state of the nodes that are not 

part of the current path. These nodes can be classified in two ways: 

1) They are invalid and cannot be added to a path. 

2) They are valid (they have no neighbors in the path) and could eventually be added to 

the path. 



51 
 

The more valid nodes, the more likely an existing path can be modified to include them. 

Thus, for the fitness values that the GA uses, we combine the current path length with a 

fraction based on the number of available nodes as follows: 

 

Fi = (length in nodes) + (number of available nodes) / (total number of nodes) 

 

where Fi is the final fitness value for population member i. This value still puts the 

emphasis on length and the fractional part will never be very large (less than one). Thus, 

a snake of length 49 will not be valued higher than a snake of length 50 no matter how 

many available nodes it has. This scheme allows the ranking of snakes of the same 

length and has proven empirically to be much better than using length alone. Indeed, 

while we discovered this scheme independently, it is used by others (Tuohy et al, 2007). 

This extra measure of fitness is referred to as tightness in that it measures how closely 

the snake has grown to itself (refer to Section 6.2 for a more thorough discussion of 

tightness). As the snake grows, it can either move into areas of the hypercube that are 

largely untouched, a loose snake, or it can try to make use of the nodes near the nodes 

that are currently in the snake, a tight snake. A tight snake has a higher probability of 

growing further with minor modifications. The final product of the GA only includes 

the length, as that is what is of interest overall. Thus, the results in this document all 

contain only length since the fractional values are only used within the GA. 

 

This is not the only measure of fitness that could be used for the SITB problem. Indeed, 

Diaz-Gomez and Hougen (2006) use various other factors when determining the fitness 
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of a population member, to include partial paths remaining within the hypercube. Their 

technique may make better use of determining the growth potential of a given 

population member, whereas our fitness measure looks primarily at the length of the 

valid snake produced, with only a secondary value reflecting growth potential. 

 

7.2 The Selection Operator 

As stated in Section 3.3.4, tournament selection, while not the first proposed selection 

operator, is very commonly used today. As explained below, tournament selection is 

used for the TSP, but not for the SITB. Various other selection schemes were attempted, 

including some custom algorithms, but did not perform as well. 

 

Selection is used in two ways for both problems: 

 

1) Select x percent without replacement from the old population for direct copy to the 

new. In selection without replacement, each member can only be selected one time. The 

value for x found to work best for both problems is 70%, which means only 30% of the 

new population will be created through crossover. 

 

2) Selection for crossover. Here, a selection operator is used for selecting two members 

from the current population with replacement for crossover where they will only be 

used to create two new members for the next population, and will not themselves be 

copied to the new population. In selection with replacement, there is no limit on the 

number of times a given member may be selected. For this, tournament selection is used 
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for both problems. Other selection mechanisms were tried but found to perform worse. 

Also, a tournament number of two is used with tournament selection for crossover in 

both problems. 

 

Finally, a form of selection elitism is used in that, regardless of which selection operator 

is used, the best population member from the current population is guaranteed to be 

selected at least once for direct copy. This ensures that the high point found so far is 

retained and available for future exploration of the solution space. This does have the 

drawback of increasing the chance of the population getting stuck and converging to a 

local maximum that is not global, as is shown by Gonzalez (2009) where selection 

elitism is shown to cause stagnation in certain situations. However, our experiments 

have shown that this is still a good technique. 

 

7.2.1 Selection for the TSP 

As stated above, several selection operators were tried but tournament selection was 

found to work best for the TSP (refer to Section 3.3.4 for a description of tournament 

selection). After trying several values for tournament number, two was found to work 

best. As the tournament number increases, the selection pressure increases as well, 

meaning that the better members of the population will be more likely to be selected 

and, thus, more quickly take over the population. Indeed, we found with larger values, 

the population often converges too early to a member that is not as good as can be 

achieved with a smaller tournament number. Here, we want to balance selection 

pressure with the need to explore the solution space. Too much exploration and the GA 
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simply performs a random search. Too little and the GA converges too quickly to sub-

optimal areas. The concept of exploration versus exploitation was originally discussed 

in Holland (1975), but is also seen in Mitchell (1996, page 118).  

 

7.2.2 Selection for the SITB 

It was found that selection percent works better and more consistently for the SITB. 

While tournament selection has a stochastic nature to it since the elements are chosen 

randomly, selection percent does not. With selection percent, the best x percent of the 

old population is selected for direct copy to the new. Tuohy et al (2007) claims that this 

technique helps to maintain diversity, and it seems to be true for the SITB based on our 

experiments. However, tournament selection clearly works better for the TSP in the 

experimental framework we are using. This may be caused by the population dynamics 

and the range of possible fitness values. With the TSP, there is a large variation of 

fitness values, and it is unlikely that two very different population members will have 

the exact same fitness value. Thus, when choosing two for a tournament, it is less likely 

that a tie will occur. However, this is not true with the SITB where a constant problem 

has been maintaining a diversity of fitness values, due to the fact that there are many 

symmetries in the solution space. In other words, there are many paths that are the same 

length, but are actually logically different from each other. Therefore, under these 

conditions, tournament selection is likely to result in many ties, which will weaken the 

value of this selection technique. 
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7.3 The Phenotype Crossover Operator 

The basic GA crossover operator does not use any information from either the fitness 

function or the actual solutions produced by the population members being mated as 

part of the crossover function. It only uses the population members themselves, the 

genotype. The phenotype refers to the actual solution or creature (in biology) produced 

by the genotype. This is where the phenotype crossover operator differs dramatically. 

Since the heuristic encoding scheme adds an additional layer of abstraction to the GA, 

the phenotype is no longer identical, or even similar to the genotype (as is usually the 

case). Thus, there is a loosening of the guiding effect of the GA and the binding between 

the population members and the solutions they produce. When we first started work on 

the heuristic encoding scheme, it was found that performance was not what was hoped. 

This may have been due to the additional layer of abstraction and, at the time, we could 

not determine how to deal with it. Eventually, it was realized that, if we could use the 

solutions produced to guide the crossover operator, we may be able to mitigate this 

problem. Indeed, this has been done for both of the problems studied. Shortly after 

implementing this new crossover operator for the SITB, the world record length snake 

in an 8D hypercube was found using it (Carlson and Hougen, 2010). There is one 

serious difference in how this operator works for the two problems. Thus, each is 

explained separately in Sections 7.3.1 and 7.3.2. 

 

The mechanism for selecting two population members for crossover is fairly typical in 

that tournament selection with a tournament number of two is used to select two from 

the old population for crossover. Many other selection techniques were tried but this 



56 
 

seems to work best for both the TSP and SITB. Also, a form of elitism is used in that the 

best population member from the prior population is guaranteed to be selected for 

crossover at least once. 

 

7.3.1 Phenotype Crossover for the TSP 

The TSP crossover operator is designed to work with the locus-based gene ordering of 

the population members in order to keep alleles tied to specific nodes in the problem 

space. In this way the appropriate heuristics will eventually be assigned to the nodes 

that they will work best with through the evolutionary cycles of the GA. In this scheme, 

the node values are encoded based on the value at the node’s position, or locus within 

the population member. Thus, if the value at index 3, which is node 3’s value (it belongs 

to the third node in the problem space), is 6, this means that from node 3 we would visit 

node 6 next. From node 6, we see what value is at index/locus 6, and that is the next 

node visited (added to the path). Finally, we must determine what the starting, or root, 

node should be. This is determined by attaching an additional value at the end of the 

population member. This value is the root node. Thus, if the problem has 9 nodes, each 

population member will have 10 values. An example with 9 nodes using node based 

encoding follows where the first line shows index values and the second line contains 

the data. 

 

 

 

 



57 
 

Given the locus-based population member, with the root node as the last value: 

Index: 1-2-3-4-5-6-7-8-9 
Genes: 9-3-5-7-8-4-1-6-2-1 
 
The associated path would be: 
 
Index: 1-2-3-4-5-6-7-8-9 
Nodes: 1-9-2-3-5-8-6-4-7-1 
 
As can be seen, the last node in the open path is automatically connected back to the 

first node. Therefore, the last node’s allelic value does not really matter and is not 

evaluated: the path will be connected back to the root no matter what node seven’s 

value is. In this example, we see that the value of a node in the population member itself 

represents the node that should be visited next in the path. The idea is the same with the 

heuristic encoding scheme. The only difference is that, instead of node values for the 

genes, there will be integers representing heuristics. In this scheme, if the current node 

in the path is node 4, then gene (locus or index) 4’s heuristic is used to determine the 

next node to visit. 

 

With an understanding of the locus-based scheme, it will be much easier to explain the 

crossover operator. With the phenotype crossover operator, the actual path produced is 

used to determine how to intermix the two selected members. This will be illustrated 

using a simple 9 node problem and single point crossover at position 4. Also, the 

following will only use a made-up set of 5 heuristics, which need not be defined. Again, 

in the paths and population members listed below, the first line will simply be index 

values for reference. Also, for all examples, population members will be abbreviated M 

and paths as P. 
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Given the two paths (* indicates dividing point for crossover in the paths): 

Index: 1-2-3*4-5-6-7-8-9 
P1) Nodes: 1-2-3*4-5-6-7-8-9-1 
P2) Nodes: 6-1-9*2-3-4-5-7-8-6 
 
And the associated population members, where the last value represents the root node to 

be used: 

 Index: 1-2-3-4-5-6-7-8-9 
M1) Genes: 1-1-5-4-1-5-2-1-2-1 
M2) Genes: 1-2-5-1-2-1-4-1-5-6 
 
We start by copying these two population members into the new population. After 

copying, we perform the crossover on the two, new copied members. In this example, 

the fourth position of P1 is 4 so we take the allele at gene 4 from M1 and put it into 

gene 4 of M2. Next, the fifth node in P1 is 5, so we copy the value from position 5 of 

M1 into position 5 of M2. We continue this process until we get to the last node in the 

P1 path, 9, before returning to the root node of 1, which causes the value 2 to be copied 

from gene 9 of M1 into gene 9 of M2. Next, the same process is performed on M1 using 

P2 and M2. 

Following are the two new population members created using this process: 

 Index: 1-2-3-4-5-6-7-8-9 
M1) Genes: 1-2-5-1-2-5-4-5-2-1 
M2) Genes: 1-2-5-4-1-5-2-1-2-6 
 
While this example uses a single crossover point, all experiments use two. From this 

example, we can see the need for mutation in that, heuristic 3 is not represented. If 3 

does not occur anywhere in the population, mutation is the only tool available to re-

introduce it. 
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7.3.2 Phenotype Crossover for the SITB 

Phenotype crossover for the SITB is very similar to the TSP crossover operation with 

one exception. Whereas for the TSP, we try to keep the allelic values with the nodes to 

which they are assigned, with the SITB, we want to keep the allelic values tied to a 

position in the snake. Of course, the GA operators will slowly change them as the 

generations proceed. Thus, if a current population member produces a snake of 50 

nodes, we want the allelic values that selected each node to remain in the position where 

it will make the same selection when crossed over. In order to accomplish this, we need 

to know not only the snake that each population member creates, we also need to 

dynamically build two snakes as we cross over two members, to keep track of which 

heuristic selects which node at which snake location in each new population member as 

they are being constructed through crossover. 

 

As with the TSP, initially a copy of both population members is put into the new 

population.  Next, these copies are used to start building snakes up to the first crossover 

point. Here, the snake nodes from the opposite population member are used to 

determine which member node to use in continuing to build each snake. The gene used 

is actually cross copied to the other population member once it has been determined. 

This continues until the second crossover point is reached, at which point we change 

back to using the snake nodes from the original population members. Also, when one of 

the snakes being built dynamically to guide the gene selection and copying can no 

longer grow, the crossover operation is discontinued for both new members and they 

remain as is. 
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This is a complicated process and requires an example. Following, we illustrate the 

process using a 5D hypercube and a single cross-over point at index 6 (index 7 in the 

snake, meaning that the first 6 nodes in the path will be identical in the new members 

created). As can be seen from the snakes created from the original population members 

and those from the new, the snake nodes past node 6 have been swapped. This is 

accomplished by using the snake nodes to determine which gene values to swap. As an 

example, the sixth node in each snake is node 12 hypercube. However, in population 

member 1 (M1), the next node in its snake is hypercube node 13 while in M2 the next 

node in its snake is hypercube node 9. We want to swap the heuristics at these two loci 

(12 in both) so that the gene at locus 12 in M1 will select hypercube node 9 next and the 

gene at locus 12 in M2 will select hypercube node 13 next. We see this in the new 

population members where the heuristic in M1 at locus 12 has changed from 6 to 7, and 

in M2, from 7 to 6. Next, in the snake produced by the old M1, we see that hypercube 

node 20 follows hypercube node 13, and in M2’s snake, hypercube node 10 follows 

hypercube node 9. Therefore, in M1 we want a heuristic at locus 9 that will select 

hypercube node 10 next, and a heuristic at locus 13 in M2 that will select hypercube 

node 20 next. Looking at the new M1, we see that the heuristic that had been at locus 9 

(heuristic 3) has changed to have the value at locus 9 in M2 (heuristic 2). Also, in the 

new M2, the heuristic value that had been at locus 13 (heuristic 21) has changed to the 

heuristic value at locus 13 in M1 (heuristic 12). This same process will continue until no 

more nodes can be added to either snake, or the original snakes have reached their ends. 

In the new/recreated population members, in M1, the gene at locus 12 changed from 
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heuristic 6 to heuristic 7 and from heuristic 7 to heuristic 6 in M2. The goal of this 

operator is to keep the heuristic that selected node number x in the snake (not node x in 

the hypercube, but in the numbered sequence of snake nodes) such that it still selects 

node x in the newly created population member. Finally, the first 4 nodes in the snakes 

are 1, 2, 3, and 6. These are the base nodes when using canonical form, where 1 is 

always the initial node. An additional example, without the explanation can be found in 

Appendix D. 

 
* is the crossover point 
 
Initial Population Members and Snake 
Index values: 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
 
Selected members (M1 and M2): 
26 20  3 13 16  6 13  1  3 19 16  6 12 20  1 21 
 4 10 24 10  4  8  1 10  4 24  1  1  1  6  8 10 
 
16 26 14 16  3 19 12 21  2 21  4  7 21 12 13 14 
19 10 21 20 10 24  4 24  4  4  7 10 13  1 16 21 
 
Selected snakes: 
 1   2   3   6   5  12 * 13  20  17  18  23  26  25 
 1   2   3   6   5  12 *  9  10  23  22  19  20  17 
 

 
Final Population Members and Snake 
Index values: 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
 
Reconstructed members (new M1 and M2): 
26 20  3 13 16  6 13  1  2 21 16  7 12 20  1 21 
19 10 21 20  4 24  4 10  4 24  1  1  1  6  8 10 
 
16 26 14 16  3 19 12 21  2 21  4  6 12 12 13 14 
 4 10 21 10 10 24  1 24  4 24  7 10 13  1 16 21 
 
Corresponding snakes: 
 1   2   3   6   5  12 *  9  10  23  22  19  20  17 
 1   2   3   6   5  12 * 13  20  17  18  23  26  25 
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7.4 The Phenotype Mutation Operator 

The phenotype mutation operator has a strong phenotypic side when applied to the 

SITB, since not all of the nodes are used to create a path. While the TSP mutation 

operator can more properly be described as probabilistic, it will still be referred to as a 

phenotype operator to simplify discussion. However, both use the idea of re-assigning 

probabilities for selection based on the current heuristic use statistics of the best 10% of 

the population, with the SITB including only those heuristics actively being used to 

create snakes. This redistribution of probabilities is nearly identical to the way that an 

Estimation of Distribution Algorithm reassigns probabilities as it evolves a set of 

solutions, as a quote from Hauschild and Pelikan (2011) illustrates: “The important step 

that differentiates EDAs from many other metaheuristics is the construction of the 

model that attempts to capture the probability distribution of the promising solutions.” 

 

This technique has proven quite successful for EDAs and is generating much interest in 

the EC community. Therefore, its use in this research for reassignment of probabilities 

for allelic selection during gene mutation is quite justified. 

 

The typical GA will use a uniform probability distribution when selecting a new allele 

for a mutating gene. We realized that there may be heuristics that work better than 

others, on average, and some that work better on specific problems. Thus, some way for 

the GA to adjust the selection probabilities seemed a good idea. In both problems, every 

20 generations, the heuristic use statistics for the best 10% of the current population are 

used to create a new, weighted probabilistic selection distribution for mutation. In 
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addition, the very best population member gets a double weight (if heuristic # 2 is used 

5 times in the best population member, it will count as 2×5 or 10). Also, the minimum 

selection probability will never drop below 0.2%. This seems a small number, but it 

does allow all heuristics to maintain some presence in the population. 

 

The actual equation for calculating the N individual probabilities is: 

 

P(n) = 0.002 + div × (2 × CB(n) + C(n)) 

 

where n is the number of the heuristic being calculated from the total of N heuristics, N 

is the number of heuristics in use (17 for the SITB and 25 for the TSP), CB(n) is the 

count of how often n is used by the best population member, C(n) is the count of how 

often n is used by the remaining best 10% of the current population, 

 

div = (1.0 - N × 0.002) / (2 × TCB + TC) 

 

TCB is the total count of heuristic use by the best population member, and TC is the 

total count of heuristic use for the remaining best 10% of the population. 

 

In a typical GA, mutation is applied to all population members in the new population: 

those directly copied, and those produced through some mating or crossover operator. It 

would appear that the new members produced through crossover should be immune 

from mutation since they have not been evaluated for performance yet. Therefore, we 
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apply mutation only to those members directly copied from the previous generation. 

Finally, of the directly copied members, the best is immune to mutation as we wish to 

maintain the best solution found so far for future use by the GA in exploring the 

solution space through crossover. This form of elitism is not unknown in the field 

(Engelbrecht, 2007, page 139). 

 

7.4.1 Phenotype Mutation for the TSP 

With the TSP, all genes are used for each population member, with the exception of the 

final two nodes where the last connects back to the root, and the second to the last only 

has one node to choose from, so the heuristic need not be evaluated. However, all of the 

heuristics from the best 10% of the population members are used for calculating the 

new mutation selection distribution, with the heuristics for the best receiving double 

weight. This technique is only applied to the node values, not to the root node. The root 

node is generated from a uniform random distribution, and, if the root node is selected 

for mutation, a random value is selected, again, using a uniform distribution. Note, 

however, that the same value may be selected again. 

 

For the TSP, since we generate the entire initial population to use heuristic 1, “select the 

closest available node,” this will cause heuristic 1 to be overly weighted during initial 

generations. This is compensated for by not allowing the same heuristic to be selected 

as the replacement heuristic. When a gene is selected for mutation, if the replacement 

value is the same as the current, then the portion of the probability distribution for this 

heuristic is removed from the distribution by remapping the random number generated 
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so as not to include the current heuristic. Thus, if heuristic 1 is the current value of a 

gene selected for mutation, the portion of the probability distribution assigned to this 

value is removed and redistributed to the other heuristics. In this way, a new value is 

guaranteed whenever a node is selected for mutation. This technique is not used with 

the mutation of the root node, however, as the root node starts off random. 

 

7.4.2 Phenotype Mutation for the SITB 

The SITB mutation operator is very similar to the TSP mutation operator with four 

exceptions:  

 

1) Since not all of the genes are used to produce a snake, only those in use are included 

in the calculations for mutation probability selection. 

 

2) Only the genes actively in use will be mutated. This is where the phenotype part of 

the name comes from in that the phenotype is used for gene selection during mutation. 

 

3) Due to the high rate of epistatic interaction, only one gene per population member 

will be mutated at a time. While epistatic interaction is also a problem with the TSP, it is 

much worse for the SITB. Due to this fact, the mutation rate calculation is also a bit 

different. Typically the mutation rate, which is usually set quite low, is applied to each 

gene in a population member. However, since only one gene at most per population 

member will be mutated, we simply perform one check for mutation on the entire 

population member. For this, we must determine an equivalent mutation rate based on 
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the number of active genes (the number currently being used to produce the snake). This 

can be done by taking the mutation rate and multiplying it by the snake length. 

However, rather than performing this calculation for each population member, based on 

its length, we simply use the current best/longest snake and multiply the mutation rate 

by it. Thus, if the current rate is 95 parts per ten thousand (pp10k), the rate used for the 

8D experiments, and the current longest snake is 90 nodes, then the chance that a single 

population member will be selected to have one random gene mutated will be 95×90 = 

8550 pp10k. 

 

4) While the current gene’s value for the TSP will not be selected, this restriction has 

been removed from the SITB. Thus, when a new allele is selected for the gene, it may 

be the same as before. 
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Chapter 8 

Experimental Approach and Philosophy 

 
8.1 The General Approach 

The background information for this research has now been completely explored. 

However, we have conducted no experiments in support of our claims. The following 

chapter gives a broad description of how we will conduct experiments in support of the 

four primary hypotheses. Next we give details of each specific experiment and the 

results obtained (Chapter 9). Then the results will be discussed (Chapter 10). Finally, we 

cover the conclusions that can be drawn from this work (Chapter 11). 

 

Each hypothesis will be supported with a set of experiments using both the TSP and the 

SITB in order to show that the approach used is generalizable, as it was never the intent 

to focus on a specific problem, but on an improved technique for using GAs on a class 

of problems (graph problems). 

 

The first hypothesis does not involve the GA but simply encoding schemes, so it will be 

different than the experiments conducted for H2 though H4 which all involve the GA. 

The GA experiments all involve performing 30 GA runs where, for each run, the best 

evaluation will be kept for comparison. Of these 30 runs (30 values for each 

experiment, one from each GA run), the best population evaluations will be used as 

such: the best and worst evaluations will be recorded along with the arithmetic mean 

and the standard deviation. Primarily, pairs of experiments will be conducted to 

investigate a hypothesis. Thus, focus will be on the arithmetic mean of the best values 



68 
 

(rather than the best or worst) of the 30 runs for each of two experiments and statistical 

analysis will be performed on sets of runs for comparison. The question is whether these  

values will support each hypothesis. Statistical analysis will be used to show that the 

difference between the means of the two sets of 30 values are indeed statistically 

significant. 

 

We performed Kolmogorov-Smirnov goodness-of-fit hypothesis tests using the kstest in 

MATLAB to compare against a normal distribution on each set of data. These tests 

showed that roughly half of the experiments were not normally distributed. Thus, the 

Student’s t-test would be inappropriate as a statistical test for group comparisons. 

Therefore, the Wilcoxon Rank Sum test (the ranksum test in MATLAB, which is similar 

to the Mann-Whitney U test) was used to determine whether any apparent difference in 

the mean values from each pair of results is significant or not (are they from the same 

distribution or not). 

 

8.2 The TSP Experimental Setup 

For the TSP, problems from the TSPLIB95 (Reinelt ) TSP library were used. This 

library contains subgroups of TSPs in many forms but only those that are 2D symmetric 

(referred to as EUC_2D in the documentation) will be used. By symmetric we mean 

that the distance from node A to B is the same as from node B to A. In this kind of TSP, 

all pairs of nodes have equivalent distance or cost values for either direction of travel. 

From this subgroup, a training set of 7 was selected for training and development, and a 

set of 7 for hypothesis testing experiments, each of which is similar in size to one in the 
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training set (one is used for both: pr2392). Thus, other than the one exception, the test 

set is not used for any purpose except the hypothesis experiments. The training set is 

used for all code development, parameter tuning, and timing comparisons. Using the 

training set, once the parameters have been tuned, timing comparisons are performed in 

a controlled environment so that each experiment with results that are to be compared 

will have taken approximately the same amount of CPU time. We do not want to give 

any approach an advantage in more time or resources. Indeed, this work would be of 

little value if controlled timing comparisons were not performed, since it is not 

uncommon for a poorly designed GA to be able to eventually catch up to the 

performance of a better one given enough time. 

 

For each of the TSPs, the number of nodes is listed as part of the problem name. Table 

8.1 shows the training and development set on the left and the problems of similar size 

for hypotheses testing on the right. The best known path lengths (shortest known) have 

been taken as stated on the TSPLIB95 (Reinelt ) web site. However, based on the 

documentation provided, it is unclear where these values actually originate. Also, some 

of the problems have the associated best paths available on the web site and some do 

not. Again, it is unclear where these paths came from. Problem pr2392, is listed as a 

training and testing problem, but is only used for H1 since it is a rather large problem 

with a listed best path solution, which is what is needed for H1. In addition to pr2392, 

only problems eil51, lin105, and a280 will be used for H1 as these are the only 

problems from the testing set that have best paths available from the TSPLIB95 (Reinelt 

) library. 
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8.3 The SITB Experimental Setup 

For the SITB, there is only one problem for each hypercube dimension, so a separate 

training and testing set is not an option. Instead, the appropriate parameters for each set 

of experiments are determined through separate experiments, then, timing trials in a 

controlled environment are performed. For the actual experiments performed in support 

of the hypotheses, the time and resources allotted to each set is comparable. Also, 

dimension 10 is not used for H2 as the results from the D7, 8, and 9 hypercubes seem 

definitive. However, the average experimental values produced from the experiments 

for H3 and H4 are not as clear, and, thus, D10 has been added for additional support of 

the hypotheses statements. Table 8.2 shows the hypercube dimensions used with the 

total number of nodes and the current world record length snakes. 

 

 
 
 
 

Training 
set 

Best 
known 

Testing 
set 

Best 
known 

berlin52 7542 eil51 426 
eil101 629 lin105 14379 
d198 15780 rat195 2323 
lin318 42029 a280 2579 
pcb442 50778 d493 35002 
pr1002 259045 u1060 224094 
pr2392 378032 pr2392 378032 

 
 
 
 
 
 
 
 

Table 8.1:  TSPs used for training on left and similar sized problems for testing on 
right. The current world record shortest paths are listed under “Best known”. 
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Hypercube 
Dimension 

Number of 
Nodes 

Longest Known 
Snake 

7 128 51 
8 256 99 
9 512 191 

10 1024 371 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.2:  Hypercubes used for the SITB experiments, total number of nodes in 
each, and the current record length snakes 
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Chapter 9 

Hypotheses Experiments and Results 

In this chapter, the individual hypotheses are restated and the individual experiments 

designed to investigate the hypotheses are explained. Finally, the actual data from the 

experiments is presented along with the statistical test results. The discussion of the 

results and their meanings can be found in Chapter 10, Analysis. 

 

9.1 H1 Experiments and Results 

H1: Heuristic encoding schemes can effectively represent solutions to graph-space 

problems. 

 

The process for these experiments involves using the best known path to guide the 

selection of heuristics to artificially construct a GA population member. This is done by 

going through the path and selecting a heuristic from the set that will select the next 

node in the path for which we are constructing a member. If none of the heuristics is 

capable of selecting the next node, then this path cannot be recreated with the given 

heuristic set. Once complete, the population member is evaluated by the evaluation 

function to produce a solution path, which is then compared to the best path on record. 

The two paths should be isomorphic, and for the problems analyzed (and others not 

listed), the process was successful. 
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9.1.1 TSP Results 

The TSP set used for this hypothesis consists of four problems: Three from the 

hypotheses testing set and an additional larger problem of 2,392 nodes that will not be 

used for the other hypotheses. The paths for these problems are created using a set of 25 

heuristics. The results are listed in order of size. Also, only the path and population 

member data for the smallest is listed here. The larger problems can be found in 

Appendix C. 

 

9.1.1.1 eil51 

The best known path for this problem is 426 units long. Following is the heuristic, 

locus-based population member that reproduces the best known path for this problem. 

The last value is the root node. Thus, there are 52 values in the population member. The 

first, third, and fifth lines represent index values for reference, and the data are below 

these: 

 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23    
 7  7  9  1  1  1  1  1  1  1  1  1  1  7  1  1  1  1  1  5  5  9  1  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 24 25 26 27 43 44 45 46  
 4  1  1  8  1  1  1  1  1  1  1  1  1  1  1  1  1  1  4  1  7  1  1  
47 48 49 50 51 root 
 8  1  7  7  1  1 
 

Below is the path created by the heuristic set using the locus-based evaluation function. 

This path is identical to the best known path for this problem: 

1   22  8   26  31  28  3   36  35  20  2   29  21  16  50  34  30  9   
49  10  39  33  45  15  44  42  40  19  41  13  25  14  24  43  7   23  
48  6   27  51  46  12  47  18  4   17  37  5   38  11  32  1 
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Here, we see that the root node (the node the GA will always start from for this 

population member) is 1. From node 1, the second node is 22. Thus, the GA uses the 

heuristic at position 1 (heuristic 7 in this case) to make the decision to move to node 22. 

From node 22, the heuristic at this position, heuristic 9, will be used to select the next 

node, node 8. This process continues until the GA reaches node 11, the second to the 

last. From node 11, there is only one node left to select, node 32. Therefore, the 

heuristic at position 11, heuristic 1, is not used. Finally, the path is closed by connecting 

node 32 to node 1. 

 

9.1.1.2 Additional Three TSP Instances 

This technique is able to recreate the best known (as listed in Reinelt’s TSPLIB95 web 

site) path for all three of the following problems: lin105, a280, and pr2392. The best 

path and the population member which created it for each, are in Appendix C. 

 

9.1.2 SITB Results 

The same approach is taken for this problem as for the TSP. The best known paths are 

created for dimension 7, 8, 9, and 10 hypercubes using a heuristic set of 17. In each 

case, the best path is converted to linked list format, then to canonical form. Finally, a 

list of heuristics is found that will reproduce it. This technique was successful for all 

four problems as shown below. 
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9.1.2.1 7D Hypercube 

The best known snake in the 7D hypercube is 51 nodes in length (Kochut, 1996). 

Following is the locus-based heuristic list that will produce this snake. The active genes, 

the genes used to produce the path, are in bold and underlined. Also, if the nodes 

selected by a set of heuristics are contiguous in the member, then they are underlined 

together. Again, the odd lines show the index values for reference: 

 1   2   3   4   5   6   7   8   9  10  11  12   13  14  15  16  17   
 1   1   1   14  1   1   20  8   1   1   2   1   20   4  10  14  20 
18  19  20  21  22  23  24  25  26  27  28  29   30  31  32  33  34  
 2   1   1   7  16   2  24   6   2  21  19   1   14  12  20  20   1   
35  36  37  38  39  40  41  42  43  44  45  46   47  48  49  50  51 
 1   1  21  16   3  16   4  12  26   1  16   3   21   1   1   1   1    
52  53  54  55  56  57  58  59  60  61  62  63   64  65  66  67  68   
 7  26   2  14   3   1   1   3  14  26  26  26    1  16   2   1   1 
69  70  71  72  73  74  75  76  77  78  78  80   81  82  83  84  85 
16   1   6   3   7  21  13  26   1   7  10  20   14   1   1   1  16 
86  87  88  89  90  91  92  93  94  95  96  97  98  99  100 101 102 
 7   1   1   6   6   1   1   8   3  10   2   1   1  16   16   1   7  
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119  
  3   3  21   6   1   1  10  10   3   2   1   1   1  10  14   1  16 
120 121 122 123 124 125 126 127 128 
 14   1   1   7  10   7   1  26   4 
 
 
The world record snake of 51 nodes that this heuristic list produces follows: 
 
1    2    3    6    5    12   9    10   23   18   19   20   29   36   
35   34   39   58   57   72   121  122  103  98   97   112  113  114  
115  118  107  108  101  92   91   70   67   68   77   84   83   82   
87   88   41   48   49   50   51   54   43    
 

With the SITB, not all nodes are used to produce a snake, since there are constraints on 

node inclusion. Therefore, the population members must contain a value for each node 

and will be longer than the path produced. In this example, hypercube node 1, which is 

always the root node for the SITB problems, has a value of 1. Therefore, heuristic 1 will 

be used to select the next snake node, which is hypercube node 2. Hypercube node 2’s 

heuristic is 1 also, which will select hypercube node 3. Hypercube node 3’s heuristic is 
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1 which will select hypercube node 6, and hypercube node 6’s heuristic is 1, which will 

select hypercube node 5. This continues until, at the end of the snake, hypercube node 

54, the second to the last node in the path, has a heuristic value of 2, which will select 

the last node, hypercube node 43. 

 

9.1.2.2 Additional Three Hypercube Results 

The best known snake in an 8D hypercube is 99 nodes in length and was found using 

this technique (Carlson and Hougen, 2010). The world record length snake for the 9D 

hypercube is 191 nodes in length (Wynn, 2012). The world record snake in 10D is 371 

nodes in length (Kinny, 2012). The population members that will produce these snakes 

and the snakes themselves can be found in Appendix C. 

 

9.2 H2 Experiments and Results 

H2: Heuristic encoding used with traditional GA operators and parameter settings 

performs no better, and may perform worse, with more traditional encoding schemes 

using the same GA operators and parameters. 

 

Following are experiments that compare the results of 30 GA runs between the more 

traditional encoding scheme and the heuristic encoding, both using the same GA 

operators and parameter values (minor variations may be necessary and will be 

explained as needed). Also, a complete list of the parameters used can be found in 

Appendix B. For all H2 experiments, linear gene ordering is used, which is more 

common than locus based ordering (see Chapter 6 for a description). 
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9.2.1 TSP Results 

For the TSP crossover operator, the Partially-Mapped Crossover (PMX) from Goldberg 

and Lingle (1985) is used as the traditional crossover operator for node encoding. For 

heuristic encoding, typical linear multi-point crossover, using 2 crossover points, is used 

(see Section 3.3.5 for a description). 

 

NOTE: Several papers refer to this as the Partially-Matched Crossover (Goldberg, 1989, 

Jung and Moon, 2002). However, the original paper uses the term Mapped. 

 

Node swapping, where two nodes are selected at random and their values are swapped, 

is used as the traditional mutation operator (Louis and Li, 1997) for node encoding. 

Typical uniform random mutation is used as the traditional mutation operator for 

heuristic encoding (see Section 3.3.6 for a description). 

 

Table 9.1 shows the six test problems with the best (shortest) average and worst path 

length from 30 separate GA runs using both the node and heuristic encoding and 

standard GA operators. In this and all subsequent tables, “mean” refers to the arithmetic 

mean of the set of values. Also, S. D. is the standard deviation and is shown in the 

column next to the mean. Table 9.2 shows the Wilcoxon rank sum test probability 

values (p-values). These values indicate the probability of observing the two sample sets 

assuming the distributions the sets were drawn from are equivalent. 
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Hypothesis     Two   TSP Results   

  Best Mean S. D. Worst 
eil51 426       
Nodes 437 488 25.1 535 
Heuristics 428 430 1.7 435 
lin105 14379       
Nodes 19301 24249 2268 27821 
Heuristics 14514 14758 196.2 15184 
rat195 2323       
Nodes 3871 4524 310.5 5253 
Heuristics 2366 2412 26.8 2471 
a280 2579       
Nodes 5583 6387 455.4 7630 
Heuristics 2703 2751 26.1 2808 
d493 35002       
Nodes 81749 90208 3829.5 96523 
Heuristics 37753 38136 210.3 38591 
u1060 224094       
Nodes 1130880 1227520 48151 1318680 
Heuristics 251073 256512 2146 261208 

 
 
 

 
 
 
 
 

Hypothesis       Two Wilcoxon  Rank Sum Results 
eil51 lin105 rat195 a280 d493 u1060 

2.5142E-11 3.0161E-11 3.0161E-11 3.0142E-11 3.0199E-11 3.0199E-11 
 
 
 
 
 

Table 9.1:  TSP results comparing node and heuristic encoding for Hypothesis H2. The 
values under “Best” that are gray show the current world record path lengths. Each row 
labeled “Nodes” or “Heuristics” represents a set of 30 GA runs using the Canonical GA 

operators and typical parameter settings with the stated      encoding scheme. 

Table 9.2:  TSP Wilcoxon Rank Sum p-values when node encoding final values are 
compared to heuristic encoding using 30 GA runs for each. As can be seen from the p-

values, each compared set has a p-value of less than 5%. 
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9.2.2 SITP Results 

For the SITB, heuristic encoding is compared with two alternative, more direct 

schemes. In all experiments, linear based gene ordering is used. Also, linear multi-point 

crossover with two crossover points is used. Finally, typical uniform mutation is used. 

 

The first alternative encoding scheme is simple link based encoding, where each gene is 

assigned a value from 1 to the dimension size, which represents which link from the 

link table to take from the current head node when attempting to add a node (see Table 

5.1 for an example of link tables). Using this technique, there is no search at all and if 

the node the given link leads to is not available, then this snake is done and the current 

length will be the value given the population member. This scheme is abbreviated L for 

Link. 

 

The second encoding scheme involves the same technique but with minor search added. 

In this technique, if the node selected is not available, then the immediate neighbors of 

the given link in the link table are attempted. Each row of the link table is treated as a 

circular list. Thus, if the link taken is the far right entry, then the first entry of that row 

will be treated as one of its neighbors, and vice versa. If the primary link is not available 

but either of its neighbors is, then this node is added and we continue building the snake 

for this population member. This scheme is abbreviated LS or Link+, for Link Search.  

 

For both L and LS, the initial population generation consists of randomly generating a 

number from 1 to the dimension size for each gene, using a uniform distribution. The 
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results of 30 runs using each of these encoding schemes and the heuristic scheme, all 

using traditional GA operators and typical parameter values is shown in Table 9.3. For 

this comparison, D10 was left out as it was clear from D7 to D9 that there is a definite 

difference in performance between the encoding schemes. Table 9.4 contains the 

Wilcoxon rank sum p-values comparing both the simple link encoding to the heuristic 

encoding, and the link-search encoding to the heuristic encoding. 

 
  
 
 
 
 
 

Hypothesis    Two SITB Results   

  Best Mean S.D. Worst 
7D 51       
Links Only 41 37.13 2.1 32 
Links+ 49 47.80 0.7 47 
Heuristics 51 49.67 1.2 48 
8D 99       
Links Only 73 64.77 4 58 
Links+ 90 86.53 1.5 83 
Heuristics 93 90.00 1.6 87 
9D 191       
Links Only 127 112.53 5.8 100 
Links+ 158 151.77 3.1 145 
Heuristics 171 161.43 3.2 156 

 
 
 
 
 
 
 

Hypothesis       Two     Rank Sum Tests   
D7  L to H D7 LS to H D8 L to H D8 LS to H D9 L to H D9 LS to H 
2.0816E-11 1.7865E-08 2.5922E-11 2.3915E-09 2.8163E-11 5.2474E-11 

Table 9.3:  SITB results comparing simple link encoding, links with basic search 
(Links+), and heuristic encoding for Hypothesis H2. World record best values are 

highlighted in gray. Each row represents values from a set of 30 GA runs using 
identical parameters for all 30. Also, the GA operators and parameter values are 

identical between all experiments. 

Table 9.4:  SITB Wilcoxon Rank Sum p-values when link encoding (L) and Links with 
basic search (LS) final values are compared to heuristic encoding (H) using 30 GA runs 
for each. As can be seen from the p-values, each compared set has a p-value of less than 

5%. 
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9.3 H3 Experiments and Results 

H3: When using heuristic encoding, phenotype operators improve average GA 

performance over that obtained with traditional GA operators. 

 

In this set of experiments for the three sub-hypotheses, we compare the results of the 

GA using heuristic encoding and the traditional GA operators with the GA using the 

new operators of phenotype crossover and mutation developed to work with heuristic 

encoding. The results from the H2 tests of the heuristic encodings will be used for some 

of the comparisons. In all of the new experiments (those whose results were not copied 

from the H2 experiments), locus based gene ordering is used. Also, linear multi-point 

crossover with two crossover points is used as the traditional crossover operator. 

Finally, uniform mutation is used as the traditional mutation operator. 

 

The first step in evaluating the performance of the GA with the new operators is tuning 

the various GA parameters to work best with the new operators. For parameter tuning, 

we use the training and development set for the TSP and the 4 dimensions being 

evaluated for the SITB. Many parameters are changed and a complete list of the 

parameters and their values can be found in Appendix B. After determining the best 

parameter settings, timing trials are performed using these new settings with the new 

GA operators (phenotype crossover and mutation) to determine the size of the 

population and the number of generations to run for equivalent timing. 
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Finally, a new set of 30 GA runs are performed for each of the TSP test problems and 

the four SITB dimensions using the new parameter settings but the typical/traditional 

GA operators. This is done to show that the improvements when the new operators are 

used are a result of the new operators, and not the change in parameter values. Due to 

this, the focus is on comparing between using the new GA operators and the new 

parameters with the traditional GA operators and the new parameters. 

  

Tables 9.5 and 9.7 list the experimental results showing the best, mean, standard 

deviation and worst of the 30 GA runs for each experiment. In these tables, “Base” 

refers to the traditional GA operators using the new parameters, which is what the other 

three experiments for each problem will be compared against. “Crossover” is the 

experiments performed with the new parameters, the traditional mutation operator, and 

the phenotype crossover operator. “Mutation” uses the new parameters, the traditional 

crossover operator, and the phenotype mutation operator. “Both” uses the new 

parameters and both the phenotype crossover and mutation operators. 

 

Tables 9.6 and 9.8 show the results of the Wilcoxon rank sum tests. Here, as stated 

above, the interest is in comparing the “Base” experiments against substituting the 

traditional operators with the new operators individually and together. Therefore, in 

these tables, the last three rows contain the p-values for these comparisons. Also, in 

these tables, the first four rows compare against the traditional operators and the typical 

parameters, which is abbreviated as “totp.” 
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Hypothesis    Three    TSP Results   

  Best Mean S. D. Worst 
eil51 426       
Base 427 430.70 3.70 439 
Crossover 427 429.93 2.40 438 
Mutation 427 431.03 3.82 439 
Both 427 430.60 3.55 439 
lin105 14379       
Base 14442 14645.10 136.10 15029 
Crossover 14430 14607.20 121.50 14946 
Mutation 14416 14571.00 119.60 14815 
Both 14412 14522.30 97.30 14788 
rat195 2323       
Base 2344 2379.17 21.50 2433 
Crossover 2364 2404.27 31.00 2466 
Mutation 2348 2375.17 18.10 2416 
Both 2338 2370.70 18.90 2427 
a280 2579       
Base 2630 2671.90 21.70 2715 
Crossover 2629 2677.07 30.80 2729 
Mutation 2626 2648.90 14.80 2673 
Both 2623 2646.80 15.60 2679 
d493 35002       
Base 36157 36842.40 308.00 37697 
Crossover 36276 36933.40 327.00 37459 
Mutation 35852 36413.00 298.60 37222 
Both 35909 36409.00 196.80 36739 
u1060 224094       
Base 237634 243013.00 2340.30 248726 
Crossover 239023 241732.00 1727.60 246087 
Mutation 235067 239444.00 2079.00 244878 
Both 234984 238816.00 1939.20 242315 

 
 
 

Table 9.5:  TSP results comparing typical GA operators of mutation and crossover with 
phenotype crossover, phenotype mutation, and both. Rows labeled “Base” use typical 

operators with new parameters. Rows labeled “Crossover” use the phenotype crossover 
operator and the typical mutation operator. Rows labeled “Mutation” used the phenotype 

mutation operator and the linear, 2-point crossover operator. Underlined values had 
means not as expected. 
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Bold values not Hypothesis   Three  Rank  Sum  Tests   

significant at 5% eil51 lin105 rat195 a280 d493 u1060 
totp vs Base 7.57E-01 5.19E-02 6.26E-06 6.01E-11 3.02E-11 3.02E-11 
totp vs Crossover 5.97E-01 6.50E-03 1.52E-01 3.62E-10 3.02E-11 3.02E-11 
totp vs Mutation 7.17E-01 1.17E-04 3.63E-07 3.00E-11 3.02E-11 3.02E-11 
totp vs Both 5.76E-01 6.80E-07 6.22E-08 3.00E-11 3.01E-11 3.02E-11 
Base vs Crossover 9.15E-01 2.46E-01 7.67E-04 6.31E-01 1.41E-01 1.70E-02 
Base vs Mutation 4.06E-01 2.70E-02 5.10E-01 4.45E-05 1.93E-06 7.60E-07 
Base vs Both 8.04E-01 1.05E-04 1.17E-01 1.20E-05 1.36E-07 2.83E-08 
Both vs Crossover 9.58E-01 4.80E-03 5.61E-06 9.45E-05 1.87E-07 7.60E-07 
Both vs Mutation 3.06E-01 1.24E-01 3.07E-01 6.26E-01 7.62E-01 3.79E-01 

 
 
 
The first row in Table 9.6 and the first row in Table 9.8 each compares the typical 

parameter values with the new values, but both use the traditional GA operators. 

 

In all of the tables, if an average value is not what was expected, then it is underlined. A 

discussion of these values and their implications can be found in Chapter 10, Analysis. 

In the tables with p-values, if two groups are not statistically significantly different at 

the 5% level, then they appear bold. 

 

NOTE: As D10 was not used for H2, there are no typical parameters using traditional 

operators (totp) experimental values to compare against. Therefore, the totp rows for 

D10 in Table 9.8 contain NA. 

 

Table 9.6:  TSP Wilcoxon Rank Sum p-values from comparing heuristic encoding 
with traditional operators and typical parameters (totp), traditional operators and new 

parameters (Base), and combinations of the new operators with the old operators. 
Only sets labeled totp use the typical parameter values. Bold values are not 

statistically significant at 5%. Underlined values had means not as expected. 
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9.3.1 H3-1 Experiments and Results 

H3-1: When using heuristic encoding, the phenotype crossover operator increases 

average GA performance above that obtained with the canonical, linear multi-point 

crossover operator. 

 

This is shown by comparing the Base case explained above with experiments using all 

the same parameters but with the traditional crossover replaced with phenotype 

crossover. The traditional crossover operator being used for both the TSP and the SITB 

is the simple multi-point linear crossover operator. In all cases, two point crossover is 

used. Tables 9.5 and 9.7 show the results of the experiments with the relevant 

comparisons between the Base and Crossover rows of data. Tables 9.6 and 9.8 contain 

the Wilcoxon Rank Sum p-values with relevant rows labeled “Base vs Crossover.” 

 

9.3.2 H3-2 Experiments and Results 

H3-2: When using heuristic encoding, the phenotype mutation operator increases 

average GA performance above that obtained with the canonical mutation operator. 

 

As with H3-1, here we compare the Base results with the results replacing the typical 

GA mutation operator for the TSP and SITB with the phenotype mutation operator. The 

relevant rows in Tables 9.5 and 9.7 are the Base and Mutation rows. The Wilcoxon 

Rank Sum p-values are in Tables 9.6 and 9.8 in the “Base vs Mutation” rows. 
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Hypothesis    Three    SITB Results   

  Best Mean S.D. Worst 
7D 51       
Base 51 50.13 1.10 48 
Crossover 51 50.33 0.96 49 
Mutation 51 50.37 1.00 48 
Both 51 50.67 0.76 49 
8D 99       
Base 95 92.27 1.26 89 
Crossover 95 92.83 2.49 89 
Mutation 95 92.27 1.20 90 
Both 96 93.83 1.27 92 
9D 191       
Base 172 165.70 3.31 158 
Crossover 176 170.00 3.61 159 
Mutation 174 167.20 3.37 161 
Both 177 171.27 2.45 167 
10D 371       
Base 315 297.23 7.47 282 
Crossover 321 314.10 3.55 307 
Mutation 312 298.13 4.75 290 
Both 325 315.23 4.22 308 

 
 
 

9.3.3 H3-3 Experiments and Results 

H3-3: When using heuristic encoding, the combination of phenotype crossover and 

phenotype mutation operators increases average GA performance above that obtained 

using any other combination of canonical GA operators for crossover and mutation. 

 

Table 9.7:  SITB experiments of 30 GA runs each showing the performance using 
typical GA operators (Base), phenotype crossover with typical mutation (Crossover), 
linear crossover with phenotype mutation (Mutation), and phenotype crossover with 

phenotype mutation (Both). Underlined values had means not as expected. 
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Here, as with H3-1 and H3-2, we are interested in comparing performance using the 

new parameters and traditional GA operators with the new parameters and both new GA 

operators. In addition, we show that using both of the new operators together performs 

better than using only one (i.e., using one traditional operator and one new). With this in 

mind, rows in Tables 9.6 and 9.8 with both of the new operators are labeled “Both,” and 

we compare primarily the average value with the average from all three other rows for 

each experiment (Base, Crossover, and Mutation rows). If the hypothesis has merit, the 

average for “Both” should be better than any of the other experiments in these tables. 

Also, Tables 9.7 and 9.8 have the Wilcoxon Rank Sum p-values for statistical 

significance in the rows labeled “Base vs Both,” “Both vs Crossover,” and “Both vs 

Mutation.” 

 
 
 
 
 
 
 

Bold values are not Hypothesis    Three  Rank     Sum    Tests 

significant at 5% D7 D8 D9 D10 
totp vs Base 1.06E-01 7.66E-07 1.20E-05        NA 
totp vs Crossover 1.82E-02 5.83E-05 4.13E-09        NA 
totp vs Mutation 1.38E-02 8.25E-07 1.19E-07        NA 
totp vs Both 2.87E-04 1.28E-10 1.29E-10        NA 
Base vs Crossover 4.88E-01 1.20E-01 9.87E-06 3.58E-10 
Base vs Mutation 4.01E-01 8.31E-01 1.69E-01 5.69E-01 
Base vs Both 3.92E-02 4.34E-05 4.51E-08 1.94E-10 
Both vs Crossover 1.42E-01 2.73E-01 2.48E-01 4.44E-01 
Both vs Mutation 2.12E-01 3.37E-05 9.41E-06 4.66E-11 

 
 
 
 

Table 9.8:  SITB Wilcoxon Rank Sum p-values from comparing heuristic encoding 
with traditional operators and typical parameters (totp), traditional operators and new 

parameters (Base), and combinations of the new operators with the old operators. 
Only sets labeled totp use the typical parameter values. Bold values are not 

statistically significant at 5%. Underlined values had means not as expected.  
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9.4 H4 Experiments and Results 

The design and selection of the heuristic set should incorporate knowledge of the 

problem space appropriate for mapping to the solution space but should not include 

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas 

of the solution space. Also, if useless heuristics are included, they detract from the 

guiding effects of the GA. 

 

9.4.1 H4-1 Experiments and Results 

H4-1: When key heuristics are removed, both upper end, and average GA performance 

decreases. 

 

For the TSP, heuristics 4, 5, 6, 7, and 11 (see Appendix A.1 for a description of these) 

are removed from the standard set of 25 (see Section 2.4 for a discussion of how this 

subset was selected). With this subset of 20, 30 GA runs on each problem are performed 

and compared with the base set of heuristics using the results labeled "Both" from the 

H3 experiments. All other parameters are the same. The results are in Table 9.9 in rows 

labeled “Base Set” and “Minus.” The Wilcoxon Rank Sum probability test results are in 

Table 9.10. 

 

For the SITB, the heuristics removed are 4, 6, 20, 24, and 26 (see Appendix A.2 for a 

description) from the base set of 17 for a subset of 12 (see Section 2.4 for a discussion 

of how this subset was selected). Again, 30 runs for each of the problems are performed 

and compared with the base set of heuristics using the results labeled “Both” from the 
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H3 experiments. The results are in Table 9.11 in rows labeled “Base set” and “Minus.” 

The Wilcoxon Rank Sum probability test results are in Table 9.12. 

 

9.4.2 H4-2 Experiments and Results 

H4-2: When additional, unneeded heuristics are added, average GA performance 

decreases. 

 

This is tested in a similar way for both the TSP and the SITB. For both, copies of a 

heuristic that had previously been removed from the set as not very helpful, are added. 

Refer to Section 2.4 for a discussion of how this heuristic was selected. For the TSP, the 

added heuristic instructs the GA to add the furthest node from the current node. While 

this heuristic may occasionally be a good idea, it has been determined through 

experimentation that this heuristic is normally a bad idea and should generally not be 

used. Thus, for the TSP, 8 copies of this heuristic are added to the base set of 25 for a 

total of 33 heuristics. 30 GA runs are conducted for each TSP test problem using this 

new set of 33, and results compared to performance using the base set of 25 heuristics 

labeled “Both” from the H3 experiments. All other parameters and GA operators are 

identical. Results are in Table 9.9 in rows labeled “Base Set” and “Plus,” with the 

Wilcoxon Rank Sum statistical data in Table 9.10. 

 

For the SITB, a similar scheme is followed. The noise heuristic will add the node with 

the largest number of non-dead end neighbors. (If one potential candidate has two 

neighbors that are not dead ends, and another has three, add the one with three.) Here 
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non-dead end means that, after adding the stated node, there is at least one additional 

node that can be added). To the base set of 17 heuristics are added 8 copies of this noise 

heuristic. As with the TSP, 30 GA runs are performed and compared to the base set of 

17 heuristics labeled “Both” from the H3 experiments. All other parameters and GA 

operators are identical. Results are in Table 9.11 in rows labeled “Base Set” and “Plus.” 

Table 9.12 contains the Wilcoxon Rank Sum statistical comparisons. 
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Hypothesis      Four     TSP  Results   

  Best Mean S. D. Worst 
eil51 426       
Base Set 427 430.60 3.55 439 
Minus 429 433.20 3.96 439 
Plus 427 431.63 4.21 439 
lin105 14379       
Base Set 14412 14522.30 97.30 14788 
Minus 14499 14639.90 113.72 14923 
Plus 14416 14530.50 74.33 14737 
rat195 2323       
Base Set 2338 2370.70 18.90 2427 
Minus 2360 2377.97 11.25 2412 
Plus 2339 2371.83 15.41 2412 
a280 2579       
Base Set 2623 2646.80 15.60 2679 
Minus 2624 2656.03 16.03 2691 
Plus 2599 2648.47 21.05 2711 
d493 35002       
Base Set 35909 36409.00 196.80 36739 
Minus 36188 36650.60 202.29 37044 
Plus 35713 36456.70 269.00 37018 
u1060 224094       
Base Set 234984 238816.00 1939.20 242315 
Minus 236054 240077.00 1885.39 243872 
Plus 235100 240017.00 2427.33 245089 

 
 
 
 
 
 
 
 
 
 
 
 

Table 9.9:  TSP experiments of 30 GA runs each showing the performance using 
the base set of heuristics found to work best, with the removal of 5 useful heuristics 

(Minus), and the addition of 8 heuristics of little value (Plus). While all averages 
were ranked as expected, not all differences are statistically significant. 
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Bold 
values not Hypothesis   Four  Rank  Sum  Tests   
significant 
at 5% eil51 lin105 rat195 a280 d493 u1060 
Base set vs 
Minus 7.9403E-04 3.2826E-05 2.5000E-02 3.3200E-02 5.2587E-05 1.5600E-02 
Base set vs 
Plus 4.1330E-01 3.5830E-01 5.8410E-01 7.9570E-01 3.3650E-01 3.3900E-02 
 
 
 
 
 
 
 
 

Hypothesis     Four   SITB Results   

  Best Mean S.D. Worst 
7D 51       
Base Set 51 50.67 0.76 49 
Minus 51 49.93 1.05 48 
Plus 51 49.47 0.97 48 
8D 99       
Base Set 96 93.83 1.27 92 
Minus 94 92.63 0.67 91 
Plus 95 92.67 0.84 90 
9D 191       
Base Set 177 171.27 2.45 167 
Minus 169 165.00 2.27 159 
Plus 177 170.13 2.61 165 
10D 371       
Base Set 325 315.23 4.22 308 
Minus 308 298.47 4.97 289 
Plus 324 315.00 4.17 308 

 
 
 
 
 

Table 9.11:  SITB experiments of 30 GA runs each showing the performance using the 
base set of heuristics found to work best, with the removal of 5 useful heuristics (Minus), 
and the addition of 8 heuristics of little value (Plus). While all averages were ranked as 

expected, not all differences are statistically significant. 

Table 9.10:  TSP Wilcoxon Rank Sum p-values from comparing base set of heuristics with 
the removal of 5 useful heuristics (Minus), and the addition of 8 heuristics of little value 

(Plus). Bold values not statistically significant at 5%.  
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Bold Values are not Hypothesis     Four Rank    Sum  Tests 

significant at 5% D7 D8 D9 D10 
Base set vs Minus 3.5000E-03 2.1322E-04 2.8826E-10 2.9784E-11 
Base set vs Plus 1.0996E-05 5.6556E-04 6.1500E-02 8.1790E-01 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9.12:  SITB Wilcoxon Rank Sum p-values from comparing base set of 
heuristics with the removal of 5 useful heuristics (Minus), and the addition of 8 
heuristics of little value (Plus). Bold values not statistically significant at 5%. 
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Chapter 10 

Analysis of Experimental Results 

We have presented much experimental data which will now be analyzed and explored. 

In this chapter, we attempt to understand the results and their implications to the 

hypotheses and this work in general. 

 

As part of the analysis for H2 through H4, the Wilcoxon Rank Sum test for comparison 

is performed using the MATLAB ranksum function between relevant sets of data. This 

function performs a two sided test on two sets to calculate the probability that they 

came from the same distribution. This function indicates at the 5% confidence level, if 

two sets of 30 experimental values are indeed drawn from populations with different 

distributions. For all experiments the p-values from these tests are included in the 

tables. For these tables, if the compared sets have a value greater than 5%, its p-value is 

bold, indicating a greater than 5% chance the sets are from the same distribution. Also, 

for experiments where the mean value of the 30 GA runs was not as expected, this mean 

value in the data table and its associated p-value are underlined. 

 

10.1 H1 Experimental Analysis 

H1: Heuristic encoding schemes can effectively represent solutions to graph-space 

problems. 

 

For the four representative TSPs used, it has been shown that the heuristic set of only 25 

can reproduce the world record path. Indeed, we have been able to successfully 
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reproduce the best path for all of the training set problems for which the path is 

available as well. While this does not prove that this heuristic set is sufficient to 

reproduce the best path in any TSP, it shows the efficacy of this set in covering the 

solution space. 

 

For the SITB, as with the TSP, we find that a series of heuristics from the set of 17 is 

capable of reproducing the world record snakes in D7, 8, 9, and 10. These findings 

adequately support the hypothesis that this is a good encoding technique for a GA. 

 

While showing that a specific point in a large search space can be represented using a 

given scheme is good, it does not necessarily mean that the path in the search space to 

these points can be found by a GA. To show this, we must also show that, in general, 

and under the right conditions, a GA, using this encoding scheme can, on average, 

achieve reasonably good results. This is the focus of the remaining hypotheses: showing 

that, when combined with appropriate GA operators, good results are produced. 

 

10.2 H2 Experimental Analysis 

H2: Heuristic encoding used with traditional GA operators and parameter settings 

performs no better, and may perform worse, with more traditional encoding schemes 

using the same GA operators and parameters. 
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For both the TSP and the SITB, the experiments did not support the hypothesis. One 

common reason for this is that the heuristics encode knowledge of the problem space 

directly into the population members. This allows the GA to apply this knowledge 

during population manipulation instead of the more random nature of traditional 

encoding schemes where the GA must evolve the population to discover useful 

knowledge of the problem space. With these results, the addition of customized GA 

operators for the heuristic sets may not provide as much improvement as initially 

expected, although improvements should still be seen. Also, these findings imply there 

may be less degradation in performance when good heuristics are removed, or when 

noise heuristics are added. 

 

10.2.1 TSP Analysis 

The experimental data for this hypothesis and the TSP are in Table 9.1 with the 

statistical tests in Table 9.2. It was observed on the large problems (d493 and u1060 and 

the training problems) using node encoding that the GA continued to evolve better 

solutions no matter the number of generations it was allowed to run. The reason for this, 

and the poor performance overall, is likely the random nature of the initial population. 

The nodes are arranged in a completely random manner which leaves great room for 

improvement, and the GA will continue to improve for a much longer time than is 

typical when using GAs. However, the heuristic encoding scheme starts the population 

off at a much better state where less improvement can be made. Thus, the population is 

able to converge much more quickly to reasonably good solutions. Also, the fact that 

there are far fewer heuristics than there are nodes allows the heuristic encoding scheme 
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to prune the search space. Thus, the GA has a much smaller area to explore when using 

heuristic encoding for this problem. Note that this statement does not apply to the SITB 

where the number of heuristics is larger than the number of links that can be taken. 

 

For the TSP results, it seems obvious from the data in Table 9.1 that the values for the 

node and the heuristic encoding schemes are drawn from different distributions (their 

means are statistically different). Indeed, the Wilcoxon Rank Sum test for comparison 

also indicates that all of the TSP comparisons result from different distributions, at the 

5% confidence level. This indicates that the differences seen in the averages of the 30 

tests are indeed statistically significant. 

 

10.2.2 SITB Analysis 

The experimental data for this hypothesis and the SITB are in Table 9.3 with the 

statistical tests in Table 9.4. As with the TSP, results from Table 9.3 clearly show the 

difference in performance using the heuristic encoding scheme when compared to more 

traditional encoding schemes, even when traditional GA operators and parameters are 

used. Unlike the TSP, this cannot be explained with the argument of search space 

pruning in that we have more heuristics than links. As an example, in an 8 dimensional 

hypercube, each node links to 8 other nodes. When building a snake, this allows for 

only 7 choices at most (one of the links leads to the previous node in the path and, thus, 

cannot be used). However, with a heuristic set of 17, there are 17 different possible 

values or choices compared to only 7 using link encoding. Thus, we believe the reasons 

for the better performance using heuristics come primarily from the built-in knowledge 
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of the problem space, and from the fact that the heuristics will only select a dead-end 

node as a last resort. Finally, the Wilcoxon Rank Sum tests support the apparent 

improvement of heuristic encoding over both of the link encoding variants. As with the 

TSP, the Wilcoxon Rank Sum tests show that each pair is drawn from a different 

distribution, at the 5% confidence level. As expected, the LS (Link Search) encoding 

does perform better than the simple link encoding. However LS is still markedly worse 

than heuristic encoding, again, not supporting the hypothesis. 

 

10.2.3 Final Comments 

Ultimately, the experiments showed this hypothesis incorrect! Indeed, the heuristic 

encoding in all cases outperformed the traditional encoding schemes even when 

traditional GA operators and parameters were used. The difference in performance 

becomes worse as the problem size grows. 

 

10.3 H3 Experimental Analysis 

H3: When using heuristic encoding, phenotype operators improve average GA 

performance over that obtained with traditional GA operators. 

 

The first row in Tables 9.6 and 9.8 compares the typical parameter values with the new 

values, but both use the traditional GA operators. In all cases for the TSP and the SITB, 

except eil51, the new parameters perform better. The next three rows compare using the 

typical parameter values and the new values with the given new GA operators. These 
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first four rows are mostly for completeness and it is the last five rows that are of most 

interest and are discussed below. 

 

H3-1: When using heuristic encoding, the phenotype crossover operator increases 

average GA performance above that obtained with the canonical, linear multi-point 

crossover operator. 

 

H3-2: When using heuristic encoding, the phenotype mutation operator increases 

average GA performance above that obtained with the canonical mutation operator. 

 

H3-3: When using heuristic encoding, the combination of phenotype crossover and 

phenotype mutation operators increases average GA performance above that obtained 

using any other combination of canonical GA operators for crossover and mutation. 

 

For all three sub-hypotheses, results were mostly as expected, with some interesting 

exceptions which are reviewed in the separate TSP and SITB analysis sections. As 

discussed in 10.2, the heuristic encoding, even with traditional GA operators, performed 

better than expected. This causes the addition of custom designed operators to not 

improve performance as much as expected, but still to some extent. In Tables 9.5 and 

9.7, we start by performing a set of experiments using the traditional operators, but with 

the parameters tuned for the new operators. These experiments are labeled “Base” in the 

tables to show that they are the baseline for the other experiments to be compared 

against. Also, while we are not interested in comparing performance between the 

phenotype mutation operator and the phenotype crossover operator, it is important to 



100 
 

show that the combination of these two operators works better than either alone. Thus, 

these mean value comparisons will be discussed and have the “Both” mean value 

underlined if this assumption is not true. As with H2, all relevant experiments are 

compared using the Wilcoxon rank sum tests in Tables 9.6 and 9.8. These tables also 

compare between both new operators and each individually. 

 

10.3.1 TSP Analysis 

While the intent was to find a good set of TSP test problems of various sizes starting 

under 100 nodes, this caused problems when using the smallest problem, due to ceiling 

effects. Results for the eil51 problem are so similar as to be statistically insignificant, 

and the Wilcoxon results bear this out as seen in the first column of Table 9.6. 

 

Another interesting finding is it appears from the tests that phenotype crossover, on its 

own (i.e., in combination with traditional mutation) actually detracts from performance 

over linear crossover, at least for all but the largest problem of 1,060 nodes. Indeed, 

even for lin105, where phenotype crossover performed marginally better than Base on 

average, it fails the Wilcoxon test for statistical significance. We are not sure why the 

phenotype crossover only shows improvement when combined with the phenotype 

mutation operator, but not with traditional mutation. However, this may be caused by 

the initial gene values all being set to one. This initial uniform population may affect the 

performance of the more complicated phenotype crossover operator more than linear 

multi-point crossover. It is interesting to note, however, that on the largest, most 

difficult problem of 1,060 nodes, phenotype crossover does show statistically 
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significant improvement over linear multi-point crossover. 

 

The phenotype mutation operator, however, seems to perform statistically significantly 

better than the traditional mutation, with the exception of rat195, where its mean was 

still higher, but not statistically significantly so. 

 

Finally, the most interesting result from these experiments is, with the exception of eil51 

which can be discounted due to ceiling effects, the combination of the two new 

operators always outperforms all other combinations of old and new operators, even 

when individually, performance may drop with only one of them (primarily the 

phenotype crossover as discussed above). We believe this is due to the fact that the 

phenotype mutation operator redistributes the allelic selection probabilities such that the 

values contributing more to shorter paths quickly get incorporated into the population, 

which allows the phenotype crossover operator to be effective quicker than with a 

uniform random mutation operator. Therefore, when used together, the average 

performance increases over either phenotype operator alone. 

 

Regardless of the actual differences in mean values, for all comparisons with the 

Wilcoxon Rank Sum test, the combination of both new operators and only the new 

mutation operator is not statistically significant. This lessens the value of the previous 

paragraph, even though the average for the combination tests is better for every problem 

except eil51. Also, the best/shortest path found is better for the combination in all cases 

except d493, again indicating the combination may be better overall. Since the tests for 
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statistical significance do not have low enough p-values to show at a high enough 

confidence level that the combination does perform better than phenotype mutation 

alone, no definite conclusions can be drawn. 

 

10.3.2 SITB Analysis 

These experiments were conducted very similarly to the TSP, as we expect to find 

improvements with the new operators individually, and again, greater improvement 

when they are combined. Results of experiments in Table 9.7 show that this is largely 

the case. However, oddly enough we get similar results from the TSP except that the roll 

of the phenotype mutation and crossover operators has reversed. Table 9.7 shows that 

the phenotype mutation operator does not increase average path lengths by much, and 

Table 9.8 shows the p-values larger than 5% (the smallest is 17%) for all four hypercube 

dimensions, implying that the new mutation operator did not actually change the 

average results by a significant amount. 

 

Even more interesting, however, is the fact that, when combined with the phenotype 

crossover operator, which generally does improve performance, it does seem to improve 

the mean, but not in a statistically significant manner, as seen from the “Both vs 

Crossover” rows in Table 9.8. As stated above, this is very similar to results from the 

TSP experiments except that there, phenotype crossover was the weaker by itself. 
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While phenotype crossover seems to improve mean performance in all cases, it fails to 

show this in D7 and D8 with the Wilcoxon Rank Sum tests as seen in Table 9.8. As the 

problem gets larger, the value of phenotype crossover should, and does increase as seen 

in the p-values for D9 and D10. However, in all cases, the combination of both 

phenotype operators improves performance over the base case in a statistically 

significant way, as seen from the row labeled “Base vs Both” in Table 9.8. As with the 

TSP, there seems to be some dynamic interaction involved in using both of the 

phenotype operators that is able to take advantage of the heuristic encoding, and which 

is not seen in either operator individually. There are many potential causes, but 

parameter tuning may be a partial cause. 

 

The last two rows of Table 9.8, show that the mutation operator seems to weaken as the 

dimension grows while the crossover operator strengthens. This is shown by the p-

values growing smaller for the “Both vs Mutation” row and larger for the “Both vs 

Crossover” row, implying the distributions are growing further apart for the former, but 

closer together for the latter. This may indicate that, as the problem space grows, 

phenotype crossover tends to dominate the evolution of the population toward better 

solutions, while the significance of mutation decreases. However, the best solution 

found (longest snake, or the snake with the largest number of nodes) for the D8 to D10 

set of 30 runs was better for the combination of the new operators than for any other 

combination. We see, perhaps, a ceiling effect for the best paths in D7 as they are 51 for 

all combinations of operators. 
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The likely reasons for phenotype mutation being less effective for the SITB than for the 

TSP are four: 

 

1) There are more heuristics than link choices for the SITB. This implies that multiple 

heuristics will choose the same node, thus weakening the value of the mutation 

operator’s ability to re-introduce lost alleles. 

 

2) The population starts off with random heuristic values for the SITB but all heuristic 1 

for the TSP. Thus, phenotype mutation is not used for the SITB to randomize the 

population and bring in new values. 

 

3) Phenotype mutation for the SITB is not limited to selecting a new value different 

from the current. Thus, when a gene is selected for mutation in the SITB, there is a 

chance the same value may be selected. 

 

4) Only one gene per population member can be mutated for the SITB unlike the TSP, 

where multiple genes may be selected. 

 

These arguments are not all specific to phenotype mutation, and may apply to 

traditional uniform mutation as well. However, they do show that, in general, mutation 

is likely to play less of a roll in our implementation of a GA for the SITB than it does 

for the TSP. Thus, even an improved mutation operator is unlikely to show as dramatic 

improvements for the SITB as for the TSP, and this is what is found in our results. 
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10.3.3 Final Comments 

For both problems, while overall performance did not increase as much as expected, the 

phenotype GA operators did show a performance increase, especially when combined. 

There are cases where, individually, the new operators actually decreased performance, 

but this was mitigated when combined with the other new operator. Indeed, this should 

be studied further, and may lead to other improvements to the heuristic encoding 

technique and better GA operators for it. 

 

10.4 H4 Experimental Analysis 

The design and selection of the heuristic set should incorporate knowledge of the 

problem space appropriate for mapping to the solution space but should not include 

useless heuristics. If key heuristics are missing, the GA is unable to find promising areas 

of the solution space. Also, if useless heuristics are included, they detract from the 

guiding effects of the GA. 

 

H4-1: When key heuristics are removed, both upper end, and average GA performance 

decreases. 

 

H4-2: When additional, unneeded heuristics are added, average GA performance 

decreases. 

 

As explained in Section 9.4, we study the effects of the removal of needed heuristics, 

and that of adding useless heuristics simulating noise in the heuristic set. It is surprising 
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that we did not get the dramatic results expected, but still observe a general decrease in 

overall effectiveness of the GA with heuristic encoding. In Tables 9.9 to 9.12, “Base 

set” refers to results from the “Both” experiments from H3 where both of the new GA 

operators were used with the “Base” heuristic set found to work best. This base set is 

compared to the two experiments for this hypothesis, where a key set of heuristics is 

removed (“Minus” in the tables), and extra “noise” heuristics are added (“Plus” in the 

tables.) 

 

10.4.1 TSP Analysis 

Results for both sub-hypotheses as applied to the TSP can be found in Table 9.9 with the 

Wilcoxon Rank Sum statistical results in Table 9.10. When a small subset of useful 

heuristics is removed from the operational set, we see a definite and statistically 

significant degradation in performance as witnessed in the tables. Indeed, for even the 

smallest problem, eil51, the average and best performance decreased from the base set, 

and these differences are statistically significant as seen in Table 9.10. The reason for 

this is quite simple: The new heuristic set does not have the reach into the solution 

space that the larger set had. There are simply valuable areas of the solution space that 

can no longer be reached. Of course, we want the heuristic set to prune the search space 

and, indeed, this is one of the motivating factors behind heuristic encoding. However, 

we want to design and select heuristics in a manner that will prune unfruitful areas, 

whereas, here, the more valuable heuristics were removed. 
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Results of the Plus TSP tests are actually quite interesting. While adding the noise 

heuristics seems to cause a slight decrease in average performance, it is mostly 

insignificant. Indeed, the Wilcoxon Rank Sum tests fail to show statistical significance 

at the 5% level for all but the largest problem. This implies that adding noise does not 

affect performance as much as expected, and, in most cases, not even to a statistically 

significant level. The reason for this is likely the phenotype mutation operator. The 

primary point of this operator is to allow the GA to tailor the selection of heuristics 

during mutation based on their use within the best 10% of the current population. Thus, 

it would appear that, for population members with noise heuristics, their presence 

degrades population members so that they are less likely to be within the best 10%. 

With this being the case, if the GA is allowed to run long enough, the noise heuristics 

will slowly be removed from the active population, thus reducing their effect on the 

population’s performance. Also, since no valuable heuristics were actually removed, the 

same areas of the solution space reachable without the noise heuristics are also 

reachable with them. 

 

10.4.2 SITB Analysis 

Results for both sub-hypothesis as applied to the SITB can be found in Table 9.11 with 

the Wilcoxon Rank Sum statistical results in Table 9.12. In all cases, the removal of a 

small subset of useful heuristics noticeably degrades the performance both on average 

and for the best found, with the exception of D7. Indeed, this difference is also 

statistically significant as seen in Table 9.12. Also, this degradation worsens as the 

problem size increases. This may be due to the fact that, as the search space increases, it 
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is more necessary to have a larger number of options for selection of the next node. As 

the options are restricted and the search space increases, the performance is bound to 

decrease. As with the TSP results, this is not surprising, since much of the exploration 

ability of the heuristic set has been removed. In such a case, even with good GA 

operators and the best parameter settings, the GA may not be able to reach promising 

areas of the search space that were accessible with the more complete set (the Base Set). 

 

Results when noise heuristics are added are very similar to what was observed with the 

TSP. In all cases there is a minor reduction in mean performance. However, this 

reduction is only statistically significant for the two smaller dimensions, D7 and D8. 

The Wilcoxon Rank Sum test results in Table 9.12 show that the difference in D9 is 

minor (6.15%) and that there is virtually no difference between the results produced 

without and with the noise heuristics in D10. Less of a difference is observed in these 

larger problems due to the fact that they run longer (the larger the problem 

size/population members, the more generations are required by a GA to reach good 

solutions), and this allows the phenotype mutation operator more time to remove the 

noise heuristics from the population (see discussion for the TSP in Section 10.4.1). 
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10.4.3 Final Comments 

Results for the Minus tests were as expected and support the hypothesis. However, 

adding 8 noise heuristics had less effect than expected. While the phenotype mutation 

operator was designed to be able to identify and remove unneeded heuristics, it was not 

expected to be so effective. Indeed, the longer the GA is allowed to run, the less 

degradation is seen from the noise heuristics. Thus, while the mean with the noise 

heuristics is generally worse than without, this difference is quite minor. However, 

removal of valuable heuristics does indeed affect performance strongly in nearly all 

cases. In the smaller problems the effect is less, due to the reduced size of the space to 

be explored. In these smaller problems, the remaining heuristics are more able to make 

up for the loss. 
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Chapter 11 

Conclusions 

This work contributes much to the area of GAs as applied to NP-Complete problems 

and to the use of heuristics in general. Some of the specific contributions are: 

 

1) The specific study of heuristic encoding for GAs and graph-space problems. While 

there are a few others who have applied heuristic encoding for GAs (Hart and Ross, 

1998; Lopez-Camacho et al, 2010), the application to graph-space problems where the 

low level heuristics are used to dynamically construct a path seems rare (Carlson, 2002; 

Carlson and Hougen, 2010). Indeed, the study of this technique on two rather diverse 

problems can inform and guide others in applying heuristics to GAs. Burke et al (2013) 

mentions that an area of heuristic research needing further work is their application to 

multiple problem domains, and that this should be shown to produce good results on 

average across these domains, rather than targeting specific problems. 

 

2) The development of low level heuristic sets for the TSP and the SITB. These 

heuristic sets are shown to be quite useful in finding good solutions to these problems, 

and can be used by others both for GAs and with other techniques. The process itself of 

studying the effectiveness and application of these sets is also a strong contribution. 

 

3) Scope and application. The scope of this project is larger than any known regarding 

the study and application of heuristics to GA encoding schemes. While others have 

focused on individual projects, this research attempts to show that this is a generalizable 
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technique with broad application. 

 

4) The development of phenotype GA operators. These new operators developed for 

heuristic encoding are quite different than most in the evolutionary computation 

community, and seem to work well with heuristic encoding. While most GA operators 

work directly with the GA's population members (the genotype) the phenotype 

operators use the final product and apply information from solutions back to the 

manipulation of the GA's population. This work and the path taken to develop such 

operators should prove useful to others in the evolutionary computation community. 

Burke et al (2013) lists this as one of the areas for further research in heuristic 

techniques. 

 

5) Generally good results were obtained and a world record was broken for the 8D 

hypercube. The previous record of 98 (Rajan and Shende, 1999) had stood for 11 years 

before being broken by using heuristic encoding combined with phenotype GA 

operators (Carlson and Hougen, 2010). 

 

6) Already this work is proving useful to others: Ostergard and Pettersson (2015) have 

used the 99 node snake found in this work as a starting point for their exhaustive search 

of the 8D hypercube space. They show that our 99 node snake is the longest possible 

within the 8D hypercube. 
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Based on the good performance in these two representative graph-space NP-Hard and 

NP-Complete problems, it appears the heuristic encoding technique performs well on at 

least graph-space problems, if not on any class of NP-Complete problem to which a GA 

can be applied. Certainly the performance, when compared to other, more typical, 

encoding schemes and sets of GA operators, justifies this approach. Indeed, even before 

the GA starts, the average evaluations for the initial populations using heuristic 

encodings- are quite good. This fact, of course, caused issues with H2 where the claim 

was that performance under these conditions would not be good. The good results 

before implementing custom GA operators and parameter tuning for the heuristics was 

unexpected. 

 

The disruptive nature of this encoding scheme is mitigated well by using locus-based 

gene ordering, phenotype crossover and phenotype mutation operators. It seems clear 

these new operators do contribute to the success as applied to the TSP and SITB 

problem. It is quite interesting that the phenotype mutation operator was so good at 

removing the noise heuristics from the operating set, as seen from the results of the H4-

2 experiments. 

 

11.1 Overall TSP Findings 

The TSP has been studied in depth for many years and has had many different types of 

algorithms applied to it. It seems from the literature that the best are non-EC techniques, 

and are often deterministic such as polyhedral, or branch and bound (Carlier and Villon, 

1990). Indeed, the LK heuristic algorithm works quite well, even though the initial 
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paper was only applied to smaller problems (Lin and Kernighan, 1973). However, the 

purpose of this work was never to compete with other’s work in finding good solutions 

to the TSP. Instead, the TSP was used as one of two problems for developing and testing 

the idea of heuristic encodings for GAs. In this, it has served well and, although not 

specifically competing for good solutions, the heuristic encoded GA does reasonably 

well, even in larger problems over a thousand nodes. 

  

Table 11.1 lists some of the better solutions found to various TSPs in this project and 

compared to the known best (bold matches the best known). For most of the problems 

under 200 nodes, the best known path was found. For those larger, the heuristic encoded 

GA still finds reasonably good solutions within a short time (perhaps an hour for 1,000 

nodes). However, once these good solutions are found, the GA must run for much 

longer before meaningful improvements are made. An example is pr2392: In about one 

hour the GA can typically find solutions around 410,000. However, it takes perhaps 

another day to get to 400,000 and a week to get to 390,000 (the best known is 378,032). 

 
 
 
 
 

TSP Best Known Heuristic Best 
berlin52 7,542 7,542 
eil101 629 629 
ch150 6,528 6,528 
d198 15,780 15,825 

lin318 42,029 42,584 
pcb442 50,778 51,551 
pr1002 259,045 267,199 
pr2392 378,032 390,557 

 

Table 11.1:  TSP results comparing best known to best found paths using heuristic 
encoding. Bold values found by the heuristic GA are equal to known record. Best 

known values taken from TSPLIB95 web site. 
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11.2 Overall SITB Findings 

As with the TSP, the Snake-In-The-Box problem is used primarily as a test and 

development platform for heuristic encoded GAs. While also a graph-space problem, 

unlike the TSP, it has a very structured space. Therefore, it makes a good match with the 

TSP for vetting the heuristic encoded GA with phenotype operators. When a heuristic 

encoded GA for this problem was initially studied, the performance was not very good. 

After developing the idea of the phenotype crossover and mutation operators and 

implementing them, average performance increased dramatically and the world record 

length snake of 99 nodes in an 8 dimensional hypercube was quickly found. Figure 11.1 

shows this longest snake in canonical form and in the 2-D circular format. In this figure, 

the nodes are numbered from 1 to 256 starting on the right side and going 

counterclockwise. The tail is light blue, on the right, and the head is dark pink, on the 

left. This snake has since been proven to be optimal in D8 by Ostergard and Pettersson 

(2015). 

 

In addition, this technique does quite well in other dimensions. However, performance 

does noticeably drop off after D9. The best snake of 27 nodes in D6, which an 

exhaustive search algorithm can find in about two minutes, is found by the GA 

immediately (within seconds), and sometimes appears as an initial population member 

before the GA has even started. Also, our exhaustive search implemented using 

MATLAB has never found better than 49 in D7 (it has been allowed to run for several 

weeks), where the best is 51. However the heuristic encoded GA finds the best of 51 

nearly every time within several minutes. Table 11.2 has additional comparisons of the 
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current record snakes and the best found in this work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.1: The world record D8 snake of 99 nodes in canonical form found with 
the Heuristic encoded GA using phenotype operators. Light blue node on right is 
the start/root node or tail of the snake. Pink node on left is the final or head node. 
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11.3 Final Concluding Remarks 

Many GA approaches to graph-space problems (or problems that, while not graphs on 

the surface, can easily be turned into graphs) use GAs combined with local search 

optimization. With these techniques, as part of the GA evaluation scheme, some form of 

deterministic local search is performed on the solutions created by the population 

members in an attempt to squeeze just a bit more performance out of them. However, 

our technique is considered a pure Evolutionary Algorithm or EA (Jung and Moon, 

2002), in that no additional searching is performed outside of the normal GA 

evolutionary process. One might argue that the heuristics themselves perform a local 

search, but it can be argued that this is simply a side effect of the encoding scheme, not 

an actual optimization technique. Indeed, often the given heuristic selects a node that is 

not a good choice based on local optimization, but ends up being a good choice from a 

global perspective. This is one reason for using this technique: to avoid choices that 

appear good short term (locally, known as a greedy algorithm), but that might detract 

from the overall success of the population member producing a quality solution! 

 

Finally, while conducting this research, I have found few research projects that use GAs 

for larger problems, but instead use some form of deterministic algorithm (Wynn, 2012, 

also Carlier and Villon, 1990), or other form of stochastic algorithms that have been 

highly modified for the problem at hand (Kinny, 2012, also Allison and Paulusma, 

2016). Also, some use other techniques to find seed solutions for a GA (Louis and Xu, 

1996). Finally, some use a GA to evolve pruning rules for some other form of search 

technique (Tuohy, et al, 2007). However, I found no other projects involving a pure EA 
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as applied to very large NP-Complete graph-space problems, as this work does. See 

Jung and Moon (2002) for a more complete evaluation and discussion of historic 

evolutionary computation techniques for the TSP. 

 
 
 
 
 
 
 
 

SITB Dimension Best Known Heuristic Best 
6 27       [1] 27 
7 51       [2] 51 
8 99       [3] 99 
9 191     [4] 180 

10 371     [5] 332 
11 709     [6] 603 
12 1,358  [6] 1,087 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 11.2:  SITB results comparing best known to best found with the heuristic 
encoded GA using phenotype operators. Bold values found using the heuristic 
GA are equal to known best values. Best known values found by: [1] Davies, 

1965, [2] Potter et al, 1994, [3] Carlson and Hougen, 2010, [4] Wynn, 2012, [5] 
Kinny, 2012, [6] Allison and Paulusma, 2016 
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Chapter 12 

Future Work 

 

There are primarily two areas of future work: 

 

1) While phenotype operators were developed for crossover and mutation, a phenotype 

selection operator should be developed. Currently, in selection for direct copy and 

selection for crossover, only the evaluation score of the individual population members 

are used. Some form of selection that also examines the solutions produced by the 

population members as part of the determination for selection should be developed. This 

operator should help the population maintain diversity which will allow for better 

exploration of the solution space. 

 

2) Application to other problems, including non-graph-space problems. This technique 

should be demonstrated on other problems to determine its efficacy in more broad 

terms. Indeed, this is the primary focus of this work: to develop the heuristic encoding 

technique to be a general encoding technique for NP-Complete problems with GAs. If it 

can be shown that this technique works well on a broader class of problems, this will 

validate its usefulness and illustrate how it can be adapted to many different problems. 

 

Finally, when these are accomplished, it would make sense to bring this material 

together in a single volume, in order to more completely communicate the technique of 

heuristic encoding of problems for GA application, and the idea of phenotype operators. 
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This would allow others to more quickly develop solutions to their own problems using 

heuristic encoding and phenotype operators. It would also bring together my work and 

the work of others in this area. 
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Appendices 
 
A. List of Heuristics and their Descriptions 
 
This appendix contains the complete list and description of the two heuristic sets for the 

TSP and the SITB. As needed, it also contains additional explanations and supporting 

figures for various concepts involved. 

 

A.1 TSP Heuristics 

The initial heuristic set contained 33 heuristics. However, it was found that 8 acted as 

noise and did not contribute to finding shorter paths. Due to this, the heuristic numbers 

may have gaps. In all of the descriptions, it is implied that only available nodes will be 

considered, and that the current node is implied (in “Select the closest node” it is 

implied that this refers to the closest node to the current node.) Also, center refers to the 

Euclidean center of mass of the entire problem, which is calculated at the beginning and 

kept static throughout the path building process. The current set below contains 25 

numbered from 1 to 26: 

1) Select the closest node. 

3) Select the closest node to the center. 

4) Select furthest node from the center. 

5) Select the node whose sum of distance from the current node and distance from the 

center is the smallest. 

6) Select the node that is the closest and also is closer to the center than the current 

node. 

7) Select the node that is the closest and is also further from the center than the current 
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node. 

8) Select the second closest node from all available nodes. 

9) Select the third closest node from all available nodes. 

10) Select the fourth closest node from all available nodes. 

 

Heuristics 11 to 18 use the idea of dividing the space into Euclidian quadrants. Figure 

A.1 shows the four quadrants used by numbers 11 to 14 on the left, and the four 

quadrants used by numbers 15 to 18 on the right. For all of these heuristics, the current 

node is at the origin. I refer to quads one through four on the right as alternate quads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11) Select the nearest node in quad 1. 

12) Select the nearest node in quad 2. 

13) Select the nearest node in quad 3. 

14) Select the nearest node in quad 4. 

15) Select the nearest node in alternative quad 1. 

Figure A.1: The eight quadrants used for TSP heuristics 11 to 18. The current node is 
at the origin. 
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16) Select the nearest node in alternative quad 2. 

17) Select the nearest node in alternative quad 3. 

18) Select the nearest node in alternative quad 4. 

19) Select the node that is the closest in the x coordinate only. 

20) Select the node that is the closest in the x coordinate that is also closer to the center. 

21) Select the node that is the closest in the x coordinate that is also further from the 

center. 

22) Select the node that is the closest in the y coordinate only. 

23) Select the node that is the closest in the y coordinate that is also closer to the center. 

24) Select the node that is the closest in the y coordinate that is also further from the 

center. 

 

Heuristics 25 and 26 use the distance between the furthest two nodes in the problem 

space, referred to as total distance, which implies that it is the total distance the problem 

space occupies. 

25) Select the closest node that is at least 10% of the total distance from the current 

node. 

26) Select the closest node that is at least 20% of the total distance from the current 

node. 
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A.2 SITB Heuristics 

The initial SITB heuristic set contained 26 heuristics. Through experimentation and 

analysis it was found that 9 of these contributed little or nothing to the success of the 

GA, and were removed. The remaining 17 are explained below. In the descriptions, an 

example of a link table is in Figure 5.1. This is a table showing the connections of all 

nodes. Each node has a row listing the nodes it connects to. 

 

As with the TSP set, some from the original set have been removed. Thus, the 

remaining 17 are not contiguous in their numbering scheme. Also, a node that is a dead 

end, in that no other nodes after it can be selected, will only be selected as a last resort. 

 

Some additional concepts need explanation. Invalid means that a node cannot be added 

to the snake, either because it is already in the snake, or because it already has a 

neighbor in the snake and that neighbor is not the head node of the current path. 

 

Non-Dead End (NDE) node is an available node (it can be added to the snake) that has 

at least one neighbor that can be added to the snake. Thus, if this node is added, the 

snake can still grow. However, a Dead End (DE) node, if selected, will terminate the 

growth of the snake. 

 

 A node can have multiple neighbors in the snake, and this value is kept track of as part 

of the node's current status. When a NDE node is being considered, some of the 

heuristics will examine the number of invalid neighbors it has. This examination can be 
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performed in two ways: 

1) Count the number of invalid neighbors, referred to as the invalid count 

2) Sum up the number of times each neighbor that is invalid has been invalidated due to 

a neighbor in the snake, referred to as the invalid sum. 

 

Figure A.2 illustrates these two concepts. This figure is not meant to properly represent 

a hypercube, and does not accurately show all of the nodes and links. 

 

1) Select the first node moving from left to right across the link table. 

2) Select least invalid sum greater than one. This heuristic will select the neighbor that 

has the least value for invalid sum (explained above), but that is greater than one. 

3) Select closest link with respect to the inbound link for the current head. Treat the row 

from the link table for the current head node as a circular list. 

4) Select the node that has the largest invalid sum value. 

6) Select the node with the largest invalid count value. Select the right node in a tie. 

7) Select the furthest link with respect to the inbound link (opposite of #3). 

8) Select the furthest link from the inbound link, but add one to the link number. 

10) Select the node that has the largest invalid sum value. Select right in a tie. 

12) Select the closest link from the inbound link. Select right in a tie. 

13) Select the furthest link from the inbound link, but subtract one from the link 

number. 

14) Select the closest link from the inbound link, but add one to the link number. 

16) Select least invalid sum greater than one. Select right in a tie. 
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19) Select the furthest link from the inbound link. Select right in a tie. 

20) Select the node with the largest invalid count. 

21) Select closest link from the inbound link. However, start searching at the inbound 

link minus 2. Select right in a tie. 

24) Select the neighbor that has the least number of NDE neighbors, but at least one. 

26) Select the neighbor that has the least number of NDE neighbors whose sum of 

available neighbors is smallest, but at least one. This is a rather difficult heuristic to 

understand. It involves looking two levels deep past the node under consideration. 

Figure A.3 illustrates this heuristic. 
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Figure A.2: SITB example of invalid sum and invalid count determination. Black 
nodes are in the snake, white nodes are available to be added, and red nodes are 

invalid and cannot be added. From the current head node (far right black node), there 
are three options: N1, N2, and N3. N1 is invalid due to an immediate neighbor, other 
than the current head node, being in the snake and so is not considered. Both N2 and 

N3 are valid, NDE nodes. They are valid because they have no immediate neighbor in 
the snake, and they are NDE since both have an additional neighbor that can be added 
next. Now, to determine the sum and count of each using 1 and 2 above we first look 

at only the total number of invalid neighbors that each has: the invalid count. This 
value is 2 for N2 and 1 for N3. Therefore, if we were using heuristic 6 we would 

select N2, which has the largest invalid count value. The invalid sum value for N2 is 2 
+ 1 or 3, while the invalid sum for N3 is 3 also. Therefore, if we were to use heuristic 

2, the link table would be consulted to break the tie and the node that appears first, 
starting from the left, would be selected. 
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Figure A.3: SITB example of NDE sum for heuristic 26. 
From the head node, we see three possible nodes under consideration. Heuristic 26 looks 
at how many available nodes each NDE neighbor of the node under consideration has. 

Thus, in the figure, we see the neighbors of N1 have a count of 2, 0, and 1. This indicates 
two available neighbors, zero available neighbors (a dead end neighbor), and one 

available respectively. Therefore, the score given N1 is 2+0+1 or 3. This heuristic is 
looking for the smallest score, not the largest. However, the score must be at least one or 
the node has no NDE neighbors, meaning only two additional nodes could be added. Due 

to this, N2 is not considered. The competition is between N1 with a score of 3 and N3 
with a score of 1, and, thus, N3 will be selected. 
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B. Parameter Settings for Hypotheses Experiments 
 
This appendix contains the specifics of the parameters used for the various experiments. 

Each section explains the settings for the experiments exploring a single hypothesis. 

 

B.1 H2 Parameter Settings 

The GA parameter settings for H2 have been selected to conform to the most common 

values used for a typical GA. These settings are mostly the same for the TSP and the 

SITB for all encoding schemes used. The list below gives a brief description and the 

values used. 

 

Selection elitism is enabled for all experiments. This implies that the best population 

member from the current population will always be selected for being copied, without 

change, to the next population. Also, the best member is immune from mutation. 

Finally, the best member is used at least once as one of the two members used for 

crossover to produce two new members. 

 

For all experiments, a certain percentage of the old population is directly copied to the 

new. This percentage for H2 is 30%. The mechanism for selecting these 30% is 

tournament selection without replacement. This means that no member will be copied 

twice. 

 

For all experiments, the remaining 70% of the new population will be created through 

crossover (in the literature this is referred to as 70% probability for crossover). For all 
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experiments, the selection mechanism for crossover is tournament selection with 

replacement. These are selected from the complete old population, including those 

already selected for direct copy. 

 

Tournament number: In all experiments, both selection for direct copy and selection for 

crossover, the tournament number used is 2. This is the number of members selected to 

take part in the tournament, where the member with the best evaluation wins and is  

selected. If this number is increased, selection pressure (the likelihood that a better 

member will be selected) will go up. If it is set to unity, then we have simply random 

selection with no pressure to select based on quality of solution. 

 

Crossover points: When performing crossover, 2 crossover points are used for all 

experiments. 

 

Also, with the exception of the best member being immune from mutation, mutation is 

applied to every gene in every population member of the new population, once it has 

been created through selection and crossover. 

 

Finally, linear gene ordering is used for all H2 experiments. An individual population 

member is evaluated by starting at index 1 (the gene at the first locus), determining the 

node that should be added based on this gene, then going to the gene at locus 2 for the 

next, then the gene at locus 3, et cetera, until the path cannot continue or it has been 

completed. Each population member has the same number of genes as the problem has 
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nodes. This implies that over half of the genes for the SITB population members will 

not be used as the nodes that can be added are constrained and this is a maximization 

problem. As an example, there are 128 nodes in a 7 dimensional hypercube, but the 

longest known path is only 51 nodes. Also, for the TSP, an additional gene is added at 

the end which indicates the root node (the node to start building the path from). As 

mentioned previously, due to the symmetries in the hypercube, the start node is 

irrelevant. Thus, we always start at node 1. 

 

The additional parameters that are typically tuned for each problem are: 

1) Number of Generations. 

2) Population size. 

3) Mutation rate. Values are listed as parts per 10,000 (pp10k). 

 

The values for the problems used in H2 are listed in Table B.1 for the TSP and Table 

B.2 for the SITB. In Table B.1, the first three rows are the values used for the traditional 

encoding schemes (nodes) while the last three are for the heuristic encoding scheme. In 

Table B.2, the first three rows are for the simple link encoding scheme, the middle three 

for the link-search scheme, and the last for the heuristic encoding scheme. The reason 

these values are different for the different encoding schemes are that we attempted to 

get the experiments to take approximately the same amount of time for a more equal, 

proper comparison. The traditional encoding schemes typically run faster and, therefore, 

are given a larger population size or more generations, or both. 
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  eil51 lin105 rat195 a280 d493 u1060 
Node Encoding             
Generations 2,000 3,000 5,000 8,000 15,000 30,000 
Population Size 1,000 1,000 1,000 500 200 200 
Mutation Rate 120 50 30 12 10 5 
Heuristic Encoding             
Generations 2,000 2,000 4,000 5,000 6,000 7,000 
Population Size 300 300 500 500 400 500 
Mutation Rate 100 60 35 11 13 5 

 
 
 
 
 
 
 
 
 
 

  7D 8D 9D 
Link Encoding       
Generations 500 800 1500 
Population Size 1200 9000 10000 
Mutation Rate 100 80 60 
Link+Search Encoding       
Generations 500 800 1500 
Population Size 800 6000 7000 
Mutation Rate 140 100 80 
Heuristic Encoding       
Generations 500 800 1500 
Population Size 600 4000 4000 
Mutation Rate 120 100 80 

 
 
 
 
 
 

Table B.1:  Hypothesis H2 parameter values for TSP experiments. First group 
indicates settings for the Node encoding experiments, while the second shows the 

settings for the heuristic encoding experiments. Mutation rates are in parts per 
10,000. 

Table B.2:  Hypothesis H2 parameter values for SITB experiments. First group 
indicates settings for the link only encoding, second for the link with simple 

search, and last for the heuristic encoding experiments. Mutation rates are all in 
parts per 10,000. 
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B.2 H3 Parameter Settings 

The GA parameter settings for H3 have been tuned to work best with the new GA 

operators, and these parameters are used throughout, even when the traditional GA 

operators are used. 

 

As with H2, elitism is used throughout for selection, mutation, and crossover selection 

(see discussion in B.1 above.) 

 

Selection, however, is reversed in that now all experiments will select for direct copy 

70% with the remaining 30% being created through crossover. These numbers have 

been found to work best for heuristic encoding with phenotype operators. Also, for the 

SITB we now use selection percent (see Section 7.2.2) instead of tournament selection 

for direct copy. However, we still use tournament selection from the old population 

when selecting for crossover. 

 

As with H2, the tournament number used is 2 for all experiments in both selection for 

direct copy and for crossover. Also, the number of crossover points is 2 for both 

problems and all experiments. 

 

Mutation is only applied to directly copied members of the new population with the 

exception of the best member, which is immune to mutation. Finally, for the TSP, 

mutation is applied to every gene, whereas for the SITB, mutation is only applied to a 

single active gene currently being used to produce the snake. 
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Locus-based (also referred to in the literature as vertex-based) gene ordering is used for 

all experiments and for both problems. This scheme seems to work best for heuristic 

encoding, especially with graph-space problems. 

 

The additional parameters that are typically tuned for each problem are: 

1) Number of Generations. 

2) Population size. 

3) Mutation rate. Values are listed as parts per 10,000 (pp10k). 

These values for the problems used in H3 are listed in Table B.3 for the TSP and B.4 for 

the SITB. These values are used for all experiments. As elsewhere, 30 GA runs are 

performed for each. 

 
 
 
 
 

  eil51 lin105 rat195 a280 d493 u1060 
Generations 2,000 2,000 4,000 5,000 6,000 7,000 
Population Size 300 300 500 500 600 800 
Mutation Rate 130 100 65 35 20 9 

 
 
 
 
 
 
 
 

  7D 8D 9D 10D 
Generations 500 800 1,300 2,000 
Population Size 600 4,000 4,000 2,000 
Mutation Rate 190 95 32 25 

 
 

Table B.3:  Hypotheses H3 and H4 parameter values for TSP experiments. The same 
parameters were used for both the subtraction of and the addition of heuristics 

experiments. Mutation rates are all in parts per 10,000. 

Table B.4:  Hypotheses H3 and H4 parameter values for SITB experiments. The same 
parameters were used for both the subtraction of and the addition of heuristics 

experiments. Mutation rates are all in parts per 10,000. 
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B.3 H4 Parameter Settings 

All parameters for all experiments in support of H4 are the same as for H3. See Tables 

B.3 and B.4 for the settings for the generations, population size, and mutation rates. 

 

The TSP heuristics removed for the H4-1 experiments were: 4, 5, 6, 7, and 11. 

The SITB heuristics removed for the H4-1 experiments were: 4, 6, 20, 24, and 26. 

 

The TSP noise heuristic duplicated 8 times for the H4-2 experiments was: 

“Add the node that is furthest from the current node.” 

 

The SITB noise heuristic duplicated 8 times for the H4-2 experiments was: 

“Add the node with the largest number of NDE neighbors.”  
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C. H1 Population Members and the Paths they Create 

This appendix contains the heuristic encoded population members that were artificially 

constructed to create the best known paths for three of the larger TSP instances and 

three of the larger SITB instances. 

 

C.1 TSP Population Members and their Paths 

The population members show the genomes of the solutions. These consist of the 

heuristics used to construct the paths, followed by an additional value representing the 

root node. Also, the corresponding paths created from the genome list the TSP node 

numbers, starting and ending with the root node. The paths produced are logically 

equivalent to the best path listed on the TSPLIB95 web-site. 

 

lin105 locus-based population member that will produce the best known path of length 
14,379: 
1   1   1   1   1   1   1   1   1   1   1   1   4   1   1   7   1   1   
1   7   1   1   1   1   1   1   10  1   1   1   1   6   1   1   1   1   
1   1   1   8   1   8   1   9   1   1   1   1   8   1   1   1   1   1   
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   5   1   3   
1   1   1   1   1   1   1   10  5   1   1   1   1   1   1   1   1   8   
1   1   5   1   1   1   1   1   4   1   1   1   1   1   1   1 
 
 
lin105 path produced by this population member: 
1    2    6    7    10   11   15   103  21   22   29   30   31   32   
33   28   23   20   12   19   24   27   16   17   18   25   26   36   
37   42   41   43   46   52   53   58   57   54   51   47   44   104  
40   49   45   48   50   55   56   59   105  62   63   70   69   74   
75   81   73   76   80   86   79   77   72   64   67   68   71   78   
82   83   84   85   91   92   96   97   101  102  93   89   90   98   
99   100  95   94   88   87   66   65   61   60   39   38   35   34   
14   13   4    5    9    8    3    1 
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a280 locus-based population member that will produce the best known path of length 
2,579: 
4  4  1  1  1  1  1  1  1  8  1  1  1  6  1  1  1  1  1  6  1  1  1  1  
1  1  1  1  1  1  1  1  8  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  1  1  7  7  7  7  7  7  1  1  1  1  1  1  7  1  1  1  1  1  7  1  1  
1  1  1  1  5  1  9  1  1  1  1  1  7  1  5  6  6  1  1  1  1  1  1  1  
7  7  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  5  1  8  1  1  1  
1  1  1  1  5  1  1  1  5  5  1  1  1  7  1  7  1  1  3  1  1  1  1  1  
8  8  5  3  1  3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
5  8  1  1  5  1  1  7  1  8  3  1  1  1  1  1  1  1  8  1  1  1  1  1  
1  6  1  1  8  1  1  1  6  8  1  1  1  6  8  1  1  1  1  7  1  8  1  7   
1  8  1  7  1  8  1  1  1  1  1  1  1  1  1  1  1  1  1  4  7  7  1  1  
1  1  6  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   
 
 
a280 path produced by this population member: 
1    2    242  243  244  241  240  239  238  237  236  235  234  233  
232  231  246  245  247  250  251  230  229  228  227  226  225  224  
223  222  221  220  219  218  217  216  215  214  213  212  211  210  
207  206  205  204  203  202  201  198  197  196  195  194  193  192  
191  190  189  188  187  186  185  184  183  182  181  176  180  179  
150  178  177  151  152  156  153  155  154  129  130  131  20   21   
128  127  126  125  124  123  122  121  120  119  157  158  159  160  
175  161  162  163  164  165  166  167  168  169  170  172  171  173   
174  107  106  105  104  103  102  101  100  99   98   97   96   95   
94   93   92   91   90   89   109  108  110  111  112  88   87   113  
114  115  117  116  86   85   84   83   82   81   80   79   78   77   
76   75   74   73   72   71   70   69   68   67   66   65   64   58   
57   56   55   54   53   52   51   50   49   48   47   46   45   44   
59   63   62   118  61   60   43   42   41   40   39   38   37   36   
35   34   33   32   31   30   29   28   27   26   22   25   23   24   
14   15   13   12   11   10   9    8    7    6    5    4    277  276   
275  274  273  272  271  16   17   18   19   132  133  134  270  269  
135  136  268  267  137  138  139  149  148  147  146  145  199  200  
144  143  142  141  140  266  265  264  263  262  261  260  259  258  
257  254  253  208  209  252  255  256  249  248  278  279  3    280  
1     
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pr2392 locus-based population member that will produce the best known path length of 
378,032: 
1     4     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1      
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     7     1     1     1     1     1     1     
1     1     1     1     1     8     1     1     8     1     1     1     
1     1     1     1     1     1     1     1     1     1     9     1     
1     1     1     1     1     1     1     1     8     1     1     1     
5     1     1     1     6     1     8     1     1     5     1     1      
1     8     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     8     1     7     1     1     1     1     1     
1     8     1     1     1     1     1     7     1     1     1     1     
1     1     1     1     1     1     1     1     9     1     1     7     
11    1     8     8     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     6     1     1     1     1     1     7     8      
8     1     1     8     1     1     1     1     1     1     1     9     
1     1     1     1     1     1     1     1     1     1     5     1     
1     5     1     1     1     9     1     1     1     1     1     1     
1     1     1     1     5     1     1     1     1     1     5     1     
8     1     1     1     5     1     5     1     5     1     1     1     
1     1     5     1     1     7     1     1     1     1     1     1     
1     1     5     5     1     1     1     8     1     1     1     9      
1     1     1     1     1     1     1     1     5     1     1     1     
1     1     1     1     1     10    1     1     1     8     1     1     
1     1     1     1     1     1     8     1     5     1     1     1     
1     1     1     1     1     1     1     1     1     8     1     1     
7     9     1     7     1     1     1     1     1     1     1     8     
6     6     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1      
1     1     1     1     1     1     1     1     1     1     1     5     
1     1     8     7     1     7     7     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     10    1     1     1     1     
1     1     6     9     8     1     5     1     1     1     1     1     
1     1     9     1     1     1     1     1     1     1     1     1     
1     6     1     1     8     1     1     1     9     1     1     1      
1     1     9     1     1     1     1     1     5     1     1     8     
1     1     1     1     7     1     6     8     1     1     1     7     
1     8     1     1     1     1     1     1     1     8     1     1     
1     1     22    1     1     1     1     1     6     1     7     1     
1     1     1     1     1     1     1     1     1     5     9     8     
1     1     1     8     8     1     1     1     5     1     1     1     
5     1     1     1     1     1     1     1     1     5     1     1      
1     1     1     1     1     1     5     1     1     1     7     1     
1     1     1     1     1     1     1     8     1     8     1     1     
1     1     1     1     1     6     1     1     7     1     8     1     
1     1     1     1     1     1     1     1     1     1     1     1     
5     5     1     1     1     1     1     1     1     1     1     1     
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1     1     1     1     1     1     1     1     1     8     1     1     
1     1     1     1     1     1     8     1     1     1     8     1      
9     1     1     1     9     1     8     1     1     1     7     1     
1     8     1     1     8     1     1     1     1     1     1     1     
1     7     1     6     1     1     1     1     1     5     1     1     
6     1     1     1     1     8     1     10    8     1     1     6     
6     8     1     8     1     1     1     1     1     1     1     6     
1     1     1     1     7     1     1     1     1     1     1     5     
1     1     1     1     1     1     1     1     1     1     1     1      
1     1     8     1     1     1     1     1     1     1     1     5     
1     1     1     1     1     8     9     8     1     1     1     1     
1     1     1     1     1     1     1     1     8     7     1     1     
1     1     1     1     1     1     5     1     1     1     5     1     
1     1     1     7     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     8     8     1     
1     1     8     1     1     10    1     1     6     5     1     1      
7     1     5     1     1     1     1     1     1     1     1     1     
8     8     1     1     1     8     1     1     1     5     1     1     
1     5     8     8     1     1     5     1     1     1     1     1     
1     1     1     3     1     1     1     1     1     1     1     1     
1     1     13    1     1     1     1     1     6     1     1     1     
1     1     1     1     1     1     1     5     1     1     1     1     
1     1     1     1     1     8     1     1     1     8     1     1      
8     1     1     8     1     1     1     7     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     7     1     
8     1     1     1     1     1     1     6     1     1     1     1     
1     1     1     5     6     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     5     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1      
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
5     1     1     1     1     1     1     1     1     7     1     1     
1     8     1     9     1     1     1     9     1     6     1     1     
1     8     1     1     8     1     1     6     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     6     1     
1     1     1     1     1     1     1     1     7     1     1     1      
1     1     1     1     1     1     9     1     7     1     1     1     
1     1     1     1     1     1     9     8     1     1     1     1     
1     1     1     1     1     1     1     1     6     1     9     1     
1     1     1     8     1     9     1     1     1     1     1     1     
9     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     8     1     1     1     1     1     1      
1     1     8     1     1     1     1     1     8     9     6     1     
1     1     1     1     1     1     1     1     1     1     1     8     
8     1     1     1     1     1     1     9     1     1     1     1     
1     1     1     1     7     1     1     1     1     1     1     1     
8     1     1     10    1     1     1     1     1     1     1     1     
6     1     1     10    1     1     8     8     1     1     9     1     
8     1     1     1     1     1     1     1     1     1     6     8      
1     1     1     8     1     1     1     1     7     8     8     1     
1     8     1     1     1     1     1     1     1     1     6     1     
1     1     1     1     1     1     1     1     1     8     1     1     
6     1     1     1     1     1     1     1     1     1     1     1     
1     1     6     1     1     1     1     1     1     1     1     1     
7     1     1     9     6     1     1     1     9     1     5     1     
1     5     1     1     1     5     1     1     1     1     1     1      
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1     1     1     1     1     1     1     1     5     1     8     1     
1     1     1     1     1     7     1     1     1     1     1     7     
1     1     1     1     1     1     1     1     1     1     1     1     
9     1     1     8     11    1     8     8     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     5     1     1     1     
1     1     1     8     9     5     1     8     1     1     1     1     
1     1     1     9     1     1     1     1     1     1     7     1     
1     1     8     1     1     8     1     1     1     6     1     1     
1     1     1     1     1     1     1     1     8     1     1     1     
1     1     8     1     5     1     1     1     6     1     6     1     
9     1     1     1     1     1     8     8     8     1     1     1     
1     1     1     1     1     1     8     8     1     1     1     8     
1     1     1     9     1     1     1     1     1     1     1     1     
8     1     1     1     1     1     1     1     1     19    1     1     
1     6     1     1     1     1     1     1     1     1     8     1     
8     1     1     1     1     1     1     1     1     1     1     1     
1     5     1     1     5     9     1     8     1     1     1     1     
1     1     1     8     5     5     1     1     1     10    1     1     
1     1     5     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     9     7     1     1     10    1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     3     1     1     1     7     1     1     4     1     1     
4     1     1     1     8     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     8     1     5     1     1     
1     1     1     1     8     1     1     1     1     1     1     3     
1     1     1     1     1     5     1     1     1     1     1     1     
8     1     1     9     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     10    1     1     1     1     1     1     8     9     8     
1     8     1     1     1     1     1     1     1     5     1     1     
1     1     1     1     1     1     1     1     8     1     1     4     
1     1     1     4     1     1     1     1     1     7     1     1     
1     1     1     4     1     1     4     1     1     1     1     7     
1     8     6     1     1     1     8     1     8     1     1     1     
1     1     1     1     8     1     1     1     1     4     1     1     
1     1     1     8     1     8     1     1     1     1     1     1     
1     1     1     1     9     9     8     1     1     1     8     8     
1     1     1     8     1     1     1     9     1     1     1     1     
1     1     1     1     8     1     1     1     1     1     1     1     
1     10    1     1     1     8     1     1     1     1     1     1     
1     1     8     1     8     1     1     1     1     1     1     1     
10    1     1     4     1     4     1     1     1     1     1     1     
1     1     1     1     1     1     1     9     4     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     8     1     1     1     1     1     1     1     
1     6     1     1     1     8     1     6     1     1     1     9     
1     7     1     1     1     8     1     1     8     1     1     7     
1     1     1     1     1     1     1     1     8     1     8     1     
1     1     1     1     8     1     1     9     1     1     1     1     
8     1     6     6     1     1     6     8     8     1     6     1     
1     1     1     1     1     1     8     1     1     1     1     6     
1     1     1     1     1     1     6     1     1     1     1     1     
1     1     1     1     1     1     1     1     1     8     1     1     
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1     1     1     1     1     1     8     1     1     1     1     1     
6     9     8     1     1     1     1     1     1     1     1     1     
1     1     1     8     8     1     1     1     1     1     1     1     
1     8     1     1     1     7     1     1     1     1     8     1     
1     1     1     1     1     1     1     1     1     1     1     1     
8     1     1     1     1     1     1     7     1     1     10    1     
1     8     8     1     1     9     1     8     1     1     1     1     
1     1     1     1     1     7     6     1     1     1     8     1     
1     1     1     7     7     6     1     1     8     1     1     1     
1     1     1     1     1     1     1     5     1     1     1     1     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     1     1     8     1     1     1     1     1     1     1     
1     8     1     1     1     5     1     5     1     1     1     5     
1     8     1     1     1     5     1     1     7     1     1     8     
1     1     1     1     1     1     1     1     1     1     1     1     
1     1     8     1     1     1     1     1     1     1     1     1     
5     1     1     1     1     1     1     1     1     1     9     1     
5     1     1     1     1     1     1     1     1     1     7     7     
1     1     1     1     1     1     1     1     1     1     1     1     
8     1     7     1     1     1     1     8     1     9     1     1     
1     1     1     1     9     1     1     1     1     1     1     1     
1     1     1     1     1     1     1     8     1     1     1     1     
1     1     1     1     7     1     1     1     1     1     6     9     
8     1     1     1     1     1     1     1     1     1     1     1     
1     8     5     1     1     1     1     1     1     7     1     1     
1     1     1     1     1     1     8     1     1     1     1     1     
1     1     1     1     1     10    1     1     1     1     1     1     
1     1     8     1     1     6     1     1     7     8     1     1     
9     1     8     1     1     1     1     1     1     1     1     1     
7     8     1     1     1     6     1     1     1     1     7     8     
6     1     1     7     1     1     1     1     1     1     1     1     
1     1     1     1     1     1     1622   
 
 
pr2392 path produced by this population member: 
1622  1621  1620  1619  1618  1617  1616  1615  1614  1613  1612  1611  
1610  1609  1608  1607  1606  1605  1604  1603  1602  1601  1600  1599  
1598  1597  1596  1595  1594  1593  1592  1591  1590  1589  1588  1587  
1586  1585  1584  1583  1582  1581  1580  1579  1578  1577  1576  1575  
1574  1573  1572  1571  1570  1569  1568  1567  1566  1565  1564  1563  
1562  1561  1560  1559  1558  1557  1556  1555  1554  1553  1552  1551  
1550  1549  1548  1547  1546  1545  1544  1543  1542  1541  1540  1539  
1538  1537  1536  1535  1534  1533  1532  1531  1530  1529  1528  1527  
1526  1525  1524  1523  1522  1521  1520  1519  1518  1517  1516  1515  
1514  1513  1512  1511  1510  1509  1508  1507  1506  1505  1504  1503  
1502  1501  1500  1499  1498  1497  1496  1495  1494  1493  1492  1491  
1490  1489  1488  1487  1486  1485  1484  1483  1482  1481  1480  1479  
1478  1477  1476  1475  1474  1473  1472  1471  1470  1469  1468  1467   
1466  1465  1464  1463  1462  1461  1460  1459  1458  1457  1456  1455  
1454  1453  1452  1451  1450  1449  1448  1447  1446  1445  1444  1443  
1442  1441  1440  1439  1438  1437  1436  1435  1434  1433  1432  1431  
1430  1429  1428  1427  1426  1425  1424  1423  1422  1421  1420  1419  
1418  1417  1416  1415  1414  1413  1412  1411  1410  1409  1408  1407  
1406  1405  1404  1403  1402  1401  1400  1399  1398  1397  1396  1395  
1394  1393  1392  1391  1390  1389  1388  1387  1386  1385  1384  1383  
1382  1381  1380  1379  1378  1377  1376  1375  1374  1373  1372  1371  
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1370  1369  1368  1367  1366  1365  1364  1363  1362  1361  1360  1359  
1358  1357  1356  1355  1354  1353  1352  1351  1350  1349  1348  1347  
1346  1345  1344  1343  1342  1341  1340  1339  1338  1337  1336  1335  
1334  1333  1332  1331  1330  1329  1328  1327  1326  1325  1324  1323  
1322  1321  1320  1319  1318  1317  1316  1315  1314  1313  1312  1311   
1310  1309  1308  1307  1306  1305  1304  1303  1302  1301  1300  1299  
1298  1297  1296  1295  1294  1293  1292  1291  1290  1289  1288  1287  
1286  1285  1284  1283  1282  1281  1280  1279  1278  1277  1276  1275  
1274  1273  1272  1271  1270  1269  1268  1267  1266  1265  1264  1263  
1262  1261  1260  1259  1258  1257  1256  1255  1254  1253  1252  1251  
1250  1249  1248  1247  1246  1245  1244  1243  1242  1241  1240  1239  
1238  1237  1236  1235  1234  1233  1232  1231  1230  1229  1228  1227  
1226  1225  1224  1223  1222  1221  1220  1219  1218  1217  1216  1215  
1214  1213  1212  1211  1210  1209  1208  1207  1206  1205  1204  1203  
1202  1201  1200  1199  1198  1197  1196  1195  1194  1193  1192  1191  
1190  1189  1188  1187  1186  1185  1184  1183  1182  1181  1180  1179  
1178  1177  1176  1175  1174  1173  1172  1171  1170  1169  1168  1167  
1166  1165  1164  1163  1162  1161  1160  1159  1158  1157  1156  1155   
1154  1153  1152  1151  1150  1149  1148  1147  1146  1145  1144  1143  
1142  1141  1140  1139  1138  1137  1136  1135  1134  1133  1132  1131  
1130  1129  1128  1127  1126  1125  1124  1123  1122  1121  1120  1119  
1118  1117  1116  1115  1114  1113  1112  1111  1110  1109  1108  1107  
1106  1105  1104  1103  1102  1101  1100  1099  1098  1097  1096  1095  
1094  1093  1092  1091  1090  1089  1088  1087  1086  1085  1084  1083  
1082  1081  1080  1079  1078  1077  1076  1075  1074  1073  1072  1071  
1070  1069  1068  1067  1066  1065  1064  1063  1062  1061  1060  1059  
1058  1057  1056  1055  1054  1053  1052  1051  1050  1049  1048  1047  
1046  1045  1044  1043  1042  1041  1040  1039  1038  1037  1036  1035  
1034  1033  1032  1031  1030  1029  1028  1027  1026  1025  1024  1023  
1022  1021  1020  1019  1018  1017  1016  1015  1014  1013  1012  1011  
1010  1009  1008  1007  1006  1005  1004  1003  1002  1001  1000  999    
998   997   996   995   994   993   992   991   990   989   988   987   
986   985   984   983   982   981   980   979   978   977   976   975   
974   973   972   971   970   969   968   967   966   965   964   963   
962   961   960   959   958   957   956   955   954   953   952   951   
950   949   948   947   946   945   944   943   942   941   940   939   
938   937   936   935   934   933   932   931   930   929   928   927   
926   925   924   923   922   921   920   919   918   917   916   915   
914   913   912   911   910   909   908   907   906   905   904   903   
902   901   900   899   898   897   896   895   894   893   892   891   
890   889   888   887   886   885   884   883   882   881   880   879   
878   877   876   875   874   873   872   871   870   869   868   867   
866   865   864   863   862   861   860   859   858   857   856   855   
854   853   852   851   850   849   848   847   846   845   844   843    
842   841   840   839   838   837   836   835   834   833   832   831   
830   829   828   827   826   825   824   823   822   821   820   819   
818   817   816   815   814   813   812   811   810   809   808   807   
806   805   804   803   802   801   800   799   798   797   796   795   
794   793   792   791   790   789   788   787   786   785   784   783   
782   781   780   779   778   777   776   775   774   773   772   771   
770   769   768   767   766   765   764   763   762   761   760   759   
758   757   756   755   754   753   752   751   750   749   748   747   
746   745   744   743   742   741   740   739   738   737   736   735   
734   733   732   731   730   729   728   727   726   725   724   723   
722   721   720   719   718   717   716   715   714   713   712   711   
710   709   708   707   706   705   704   703   702   701   700   699   
698   697   696   695   694   693   692   691   690   689   688   687    
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686   685   684   683   682   681   680   679   678   677   676   675   
674   673   672   671   670   669   668   667   666   665   664   663   
662   661   660   659   658   657   656   655   654   653   652   651   
650   649   648   647   646   645   644   643   642   641   640   639   
638   637   636   635   634   633   632   631   630   629   628   627   
626   625   624   623   622   621   620   619   618   617   616   615   
614   613   612   611   610   609   608   607   606   605   604   603   
602   601   600   599   598   597   596   595   594   593   592   591   
590   589   588   587   586   585   584   583   582   581   580   579   
578   577   576   575   574   573   572   571   570   569   568   567   
566   565   564   563   562   561   560   559   558   557   556   555   
554   553   552   551   550   549   548   547   546   545   544   543   
542   541   540   539   538   537   536   535   534   533   532   531    
530   529   528   527   526   525   524   523   522   521   520   519   
518   517   516   515   514   513   512   511   510   509   508   507   
506   505   504   503   502   501   500   499   498   497   496   495   
494   493   492   491   490   489   488   487   486   485   484   483   
482   481   480   479   478   477   476   475   474   473   472   471   
470   469   468   467   466   465   464   463   462   461   460   459   
458   457   456   455   454   453   452   451   450   449   448   447   
446   445   444   443   442   441   440   439   438   437   436   435   
434   433   432   431   430   429   428   427   426   425   424   423   
422   421   420   419   418   417   416   415   414   413   412   411   
410   409   408   407   406   405   404   403   402   401   400   399   
398   397   396   395   394   393   392   391   390   389   388   387   
386   385   384   383   382   381   380   379   378   377   376   375    
374   373   372   371   370   369   368   367   366   365   364   363   
362   361   360   359   358   357   356   355   354   353   352   351   
350   349   348   347   346   345   344   343   342   341   340   339   
338   337   336   335   334   333   332   331   330   329   328   327   
326   325   324   323   322   321   320   319   318   317   316   315   
314   313   312   311   310   309   308   307   306   305   304   303   
302   301   300   299   298   297   296   295   294   293   292   291   
290   289   288   287   286   285   284   283   282   281   280   279   
278   277   276   275   274   273   272   271   270   269   268   267   
266   265   264   263   262   261   260   259   258   257   256   255   
254   253   252   251   250   249   248   247   246   245   244   243   
242   241   240   239   238   237   236   235   234   233   232   231   
230   229   228   227   226   225   224   223   222   221   220   219    
218   217   216   215   214   213   212   211   210   209   208   207   
206   205   204   203   202   201   200   199   198   197   196   195   
194   193   192   191   190   189   188   187   186   185   184   183   
182   181   180   179   178   177   176   175   174   173   172   171   
170   169   168   167   166   165   164   163   162   161   160   159   
158   157   156   155   154   153   152   151   150   149   148   147   
146   145   144   143   142   141   140   139   138   137   136   135   
134   133   132   131   130   129   128   127   126   125   124   123   
122   121   120   119   118   117   116   115   114   113   112   111   
110   109   108   107   106   105   104   103   102   101   100   99    
98    97    96    95    94    93    92    91    90    89    88    87    
86    85    84    83    82    81    80    79    78    77    76    75    
74    73    72    71    70    69    68    67    66    65    64    63     
62    61    60    59    58    57    56    55    54    53    52    51    
50    49    48    47    46    45    44    43    42    41    40    39    
38    37    36    35    34    33    32    31    30    29    28    27    
26    25    24    23    22    21    20    19    18    17    16    15    
14    13    12    11    10    9     8     7     6     5     4     3     
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2     1     2392  2391  2390  2389  2388  2387  2386  2385  2384  2383  
2382  2381  2380  2379  2378  2377  2376  2375  2374  2373  2372  2371  
2370  2369  2368  2367  2366  2365  2364  2363  2362  2361  2360  2359  
2358  2357  2356  2355  2354  2353  2352  2351  2350  2349  2348  2347  
2346  2345  2344  2343  2342  2341  2340  2339  2338  2337  2336  2335  
2334  2333  2332  2331  2330  2329  2328  2327  2326  2325  2324  2323  
2322  2321  2320  2319  2318  2317  2316  2315  2314  2313  2312  2311  
2310  2309  2308  2307  2306  2305  2304  2303  2302  2301  2300  2299   
2298  2297  2296  2295  2294  2293  2292  2291  2290  2289  2288  2287  
2286  2285  2284  2283  2282  2281  2280  2279  2278  2277  2276  2275  
2274  2273  2272  2271  2270  2269  2268  2267  2266  2265  2264  2263  
2262  2261  2260  2259  2258  2257  2256  2255  2254  2253  2252  2251  
2250  2249  2248  2247  2246  2245  2244  2243  2242  2241  2240  2239  
2238  2237  2236  2235  2234  2233  2232  2231  2230  2229  2228  2227  
2226  2225  2224  2223  2222  2221  2220  2219  2218  2217  2216  2215  
2214  2213  2212  2211  2210  2209  2208  2207  2206  2205  2204  2203  
2202  2201  2200  2199  2198  2197  2196  2195  2194  2193  2192  2191  
2190  2189  2188  2187  2186  2185  2184  2183  2182  2181  2180  2179  
2178  2177  2176  2175  2174  2173  2172  2171  2170  2169  2168  2167  
2166  2165  2164  2163  2162  2161  2160  2159  2158  2157  2156  2155  
2154  2153  2152  2151  2150  2149  2148  2147  2146  2145  2144  2143   
2142  2141  2140  2139  2138  2137  2136  2135  2134  2133  2132  2131  
2130  2129  2128  2127  2126  2125  2124  2123  2122  2121  2120  2119  
2118  2117  2116  2115  2114  2113  2112  2111  2110  2109  2108  2107  
2106  2105  2104  2103  2102  2101  2100  2099  2098  2097  2096  2095  
2094  2093  2092  2091  2090  2089  2088  2087  2086  2085  2084  2083  
2082  2081  2080  2079  2078  2077  2076  2075  2074  2073  2072  2071  
2070  2069  2068  2067  2066  2065  2064  2063  2062  2061  2060  2059  
2058  2057  2056  2055  2054  2053  2052  2051  2050  2049  2048  2047  
2046  2045  2044  2043  2042  2041  2040  2039  2038  2037  2036  2035  
2034  2033  2032  2031  2030  2029  2028  2027  2026  2025  2024  2023  
2022  2021  2020  2019  2018  2017  2016  2015  2014  2013  2012  2011  
2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  
1998  1997  1996  1995  1994  1993  1992  1991  1990  1989  1988  1987   
1986  1985  1984  1983  1982  1981  1980  1979  1978  1977  1976  1975  
1974  1973  1972  1971  1970  1969  1968  1967  1966  1965  1964  1963  
1962  1961  1960  1959  1958  1957  1956  1955  1954  1953  1952  1951  
1950  1949  1948  1947  1946  1945  1944  1943  1942  1941  1940  1939  
1938  1937  1936  1935  1934  1933  1932  1931  1930  1929  1928  1927  
1926  1925  1924  1923  1922  1921  1920  1919  1918  1917  1916  1915  
1914  1913  1912  1911  1910  1909  1908  1907  1906  1905  1904  1903  
1902  1901  1900  1899  1898  1897  1896  1895  1894  1893  1892  1891  
1890  1889  1888  1887  1886  1885  1884  1883  1882  1881  1880  1879  
1878  1877  1876  1875  1874  1873  1872  1871  1870  1869  1868  1867  
1866  1865  1864  1863  1862  1861  1860  1859  1858  1857  1856  1855  
1854  1853  1852  1851  1850  1849  1848  1847  1846  1845  1844  1843  
1842  1841  1840  1839  1838  1837  1836  1835  1834  1833  1832  1831   
1830  1829  1828  1827  1826  1825  1824  1823  1822  1821  1820  1819  
1818  1817  1816  1815  1814  1813  1812  1811  1810  1809  1808  1807  
1806  1805  1804  1803  1802  1801  1800  1799  1798  1797  1796  1795  
1794  1793  1792  1791  1790  1789  1788  1787  1786  1785  1784  1783  
1782  1781  1780  1779  1778  1777  1776  1775  1774  1773  1772  1771  
1770  1769  1768  1767  1766  1765  1764  1763  1762  1761  1760  1759  
1758  1757  1756  1755  1754  1753  1752  1751  1750  1749  1748  1747  
1746  1745  1744  1743  1742  1741  1740  1739  1738  1737  1736  1735  
1734  1733  1732  1731  1730  1729  1728  1727  1726  1725  1724  1723  
1722  1721  1720  1719  1718  1717  1716  1715  1714  1713  1712  1711  
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1710  1709  1708  1707  1706  1705  1704  1703  1702  1701  1700  1699  
1698  1697  1696  1695  1694  1693  1692  1691  1690  1689  1688  1687  
1686  1685  1684  1683  1682  1681  1680  1679  1678  1677  1676  1675   
1674  1673  1672  1671  1670  1669  1668  1667  1666  1665  1664  1663  
1662  1661  1660  1659  1658  1657  1656  1655  1654  1653  1652  1651  
1650  1649  1648  1647  1646  1645  1644  1643  1642  1641  1640  1639  
1638  1637  1636  1635  1634  1633  1632  1631  1630  1629  1628  1627  
1626  1625  1624  1623  1622   
 
 
 
 
C.2 SITB Population Members and their Paths 

This section contains the genomes that will create the best known snakes in hypercubes 

of dimension 8, 9, and 10. For each dimension, the population genome is listed first, 

followed by the snake it produces. The produced snakes are logically equivalent to the 

best known. 

 
D8 locus-based population member that will produce the longest snake of 99 nodes: 
1   1   1   12  19  3   16  8   1   1   2   8   14  26  12  13  24  4   
14  3   8   13  4   1   8   1   7   4   1   12  16  1   12  1   26  1   
19  3   21  3   20  24  1   4   4   6   2   2   1   1   1   2   2   14  
3   7   2   16  21  1   4   3   14  4   1   1   13  1   19  3   20  6   
1   1   2   6   1   19  10  20  3   8   24  4   7   24  6   2   6   13  
4   1   8   3   1   24  1   2   10  1   2   19  1   24  20  7   2   4   
12  1   12  3   1   1   1   16  26  24  6   8   1   1   10  14  3   1   
26  19  1   2   2   4   21  3   21  6   1   1   1   21  8   26  6   26  
7   2   3   4   8   1   1   1   1   24  12  1   26  4   1   26  13  10  
3   20  2   7   1   14  14  3   16  1   1   12  1   6   3   1   1   24   
1   6   12  2   1   1   12  1   19  1   21  8   1   1   7   1   26  3   
2   7   2   1   1   6   10  4   10  12  4   3   1   6   20  14  7   1   
19  1   6   4   4   6   1   4   4   7   6   2   1   16  1   7   7   12  
4   13  26  2   7   20  1   1   12  8   24  7   19  3   1   1   21  1   
10  10  19  6 
 
 
 
D8 99 node path produced by this population member: 
1    2    3    6    11   10   9    24   21   44   53   60   57   40   
89   88   73   74   75   70   91   38   219  198  203  202  201  216  
209  48   49   50   51   46   211  238  239  242  241  244  141  132  
129  130  159  158  163  190  179  178  175  170  167  186  185  188  
181  172  173  84   77   68   65   66   95   34   223  194  193  196  
221  36   29   100  97   112  113  114  115  110  107  150  139  138  
137  152  153  156  229  252  249  250  231  26   103  122  121  124  
117 
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D9 locus-based population member that will produce the longest snake of 191 nodes: 
1   1   1   1   1   1   20  19  7   3   8   1   19  3   8   12  1   1   
1   3   16  21  2   1   26  13  7   3   19  16  7   20  1   1   1   1   
6   3   2   7   6   19  1   20  2   13  1   20  1   1   14  16  21  1   
1   4   12  4   1   12  20  1   8   3   1   2   3   3   13  1   3   12  
1   12  2   1   12  1   13  16  1   1   1   26  1   20  6   24  21  3   
14  4   12  16  2   26  20  3   1   1   3   12  1   14  4   3   4   1   
26  4   19  1   1   12  6   1   19  1   6   12  24  1   21  13  1   14  
12  4   1   1   1   4   1   2   20  3   1   4   10  1   24  1   21  2   
6   1   1   12  13  3   1   1   13  2   1   4   1   4   26  1   10  1   
1   1   16  10  1   21  3   7   24  12  1   8   24  14  1   1   12  4    
6   1   1   2   13  6   4   21  16  20  7   26  3   4   1   7   20  13  
3   1   1   6   20  1   19  1   24  6   24  3   1   4   2   13  3   3   
19  1   20  3   16  19  8   20  3   10  12  12  8   2   7   1   21  12  
1   1   12  6   7   1   1   1   1   1   3   16  2   14  4   1   16  8   
1   10  1   1   2   21  1   6   1   1   20  13  1   12  6   1   3   1   
8   21  20  3   1   1   13  3   24  1   21  7   6   26  12  4   4   1   
10  19  1   1   3   3   12  1   1   24  1   21  1   16  4   2   1   1   
19  20  7   4   1   10  8   1   16  13  14  14  13  1   4   1   1   8   
1   3   7   2   8   24  3   1   12  1   8   19  1   1   4   20  1   8   
3   7   3   12  26  12  7   2   3   13  1   1   1   4   6   6   24  1    
12  14  1   1   21  10  7   1   4   1   8   1   13  1   1   13  1   1   
10  20  1   13  10  6   1   1   1   4   4   14  1   2   1   24  3   1   
13  1   21  2   26  1   2   26  7   16  1   1   6   21  4   16  6   8   
13  1   2   20  12  2   19  1   1   26  26  8   1   24  1   10  4   7   
1   1   14  1   10  1   1   3   12  26  6   4   6   8   8   4   24  13  
1   1   26  2   16  1   1   1   26  1   10  1   10  6   1   1   1   20  
1   16  21  2   1   3   7   1   2   20  20  14  1   20  19  2   8   7   
1   4   6   2   1   1   1   7   2   1   2   1   1   4   13  1   1   2   
1   14  21  19  1   16  19  24 
 
 
D9 191 node path produced by this population member: 
1    2    3    6    5    12   9    24   23   18   19   20   45   52   
49   50   55   54   43   38   35   34   33   40   89   72   73   76   
85   108  107  118  119  122  103  98   99   100  125  116  113  112  
81   82   83   78   67   70   187  182  183  178  177  180  173  164  
163  162  167  218  215  210  211  206  195  196  253  244  241  242  
247  250  249  200  201  204  213  236  235  230  155  156  133  140  
137  152  151  146  147  142  131  130  129  160  225  288  287  354  
355  356  381  372  369  368  337  338  339  334  323  322  321  320   
305  306  311  310  299  294  291  292  301  276  275  270  259  262  
261  268  265  280  297  296  345  360  377  378  375  374  363  364  
341  332  325  444  389  396  393  408  407  402  403  398  387  386  
385  416  417  420  429  436  433  434  439  438  427  422  423  474  
487  488  505  456  457  460  469  492  491  502  503  498  497  496  
465  466  467  462  451  452  509  484  483 
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D10 locus-based population member that will produce the longest snake of 371 nodes: 
1   1   1   6   20  3   19  20  1   1   2   10  8   20  26  19  16  1   
1   13  2   10  20  1   10  13  10  1   1   20  16  6   6   4   19  7   
21  14  2   7   1   1   1   24  14  1   12  2   2   7   13  3   1   7   
3   10  1   1   2   1   10  12  13  24  1   1   2   1   4   6   1   16  
1   1   1   1   21  1   14  6   21  8   19  13  2   24  16  1   4   19  
1   1   19  1   1   14  1   1   7   13  6   19  24  3   2   4   1   19  
21  7   21  21  1   8   4   3   20  10  8   26  2   2   16  1   1   8   
1   26  13  1   3   2   6   4   1   20  1   1   21  6   3   8   3   7   
2   20  24  3   13  1   1   12  24  3   7   16  20  8   1   1   13  7   
14  26  2   4   1   1   13  3   10  2   2   26  10  2   1   1   13  1    
1   6   14  1   1   14  1   1   24  1   26  8   1   1   14  1   19  2   
19  7   1   1   1   20  16  1   7   26  6   10  19  2   1   12  10  1   
6   12  1   1   16  1   1   1   14  12  19  8   24  1   3   13  7   1   
1   3   1   16  26  1   1   1   1   3   1   24  8   14  26  1   6   3   
1   7   14  8   14  2   1   3   12  19  21  21  1   1   4   19  1   6   
16  19  3   26  10  12  1   20  20  1   2   13  20  3   8   12  1   19  
21  13  4   10  16  24  1   1   7   1   1   3   13  1   6   4   2   20  
19  1   4   3   6   21  1   19  1   1   2   1   4   12  1   1   20  14  
20  21  1   21  1   1   6   1   10  13  14  3   2   21  2   24  3   14  
3   24  12  2   1   1   13  1   1   3   1   16  26  3   24  12  1   1    
14  1   10  2   8   21  4   19  1   1   3   1   10  4   14  24  4   4   
1   1   7   26  4   20  3   3   4   21  1   24  3   8   1   1   20  1   
20  10  20  12  19  12  10  1   14  4   8   4   24  21  26  20  2   13  
26  21  20  21  1   10  10  14  1   1   3   1   21  1   2   14  4   7   
1   1   6   1   20  16  6   4   1   26  1   1   19  1   6   20  1   1   
12  1   12  20  10  13  1   1   1   21  20  1   19  21  19  10  26  13  
6   21  26  1   21  14  1   1   20  1   2   8   1   20  2   7   21  16  
1   1   20  1   1   4   26  19  7   3   1   1   1   8   1   19  21  13  
1   16  19  1   1   3   14  21  6   8   1   1   20  10  24  7   1   1   
1   20  1   14  26  19  13  1   1   24  1   21  19  1   8   13  1   2    
3   26  19  8   16  6   20  4   19  14  1   1   10  1   1   8   1   1   
19  4   2   13  13  1   7   20  2   16  1   1   1   1   3   1   14  2   
1   1   2   24  2   12  1   19  1   1   10  1   2   12  12  3   2   20  
26  13  3   13  8   26  1   12  1   1   7   2   4   3   4   19  1   24  
24  20  4   1   20  1   10  12  6   6   4   19  1   1   26  1   13  4   
13  1   4   21  1   1   16  21  21  13  1   1   10  1   7   10  1   6   
1   1   13  8   16  14  2   6   1   2   6   26  14  3   14  1   20  7   
2   2   12  1   8   21  7   1   2   1   16  2   1   1   4   20  2   26  
1   4   1   7   1   1   26  1   8   3   8   4   1   7   1   1   14  16  
2   8   1   1   2   4   21  21  1   2   1   1   2   1   8   2   3   13   
24  13  10  24  4   20  1   10  19  8   16  7   2   14  26  1   4   12  
14  26  13  13  16  24  16  8   4   26  19  1   14  3   1   1   1   24  
1   24  3   20  19  19  19  2   1   7   4   1   16  4   4   26  4   8   
6   24  1   1   1   1   1   7   13  13  8   7   12  20  1   7   3   1   
12  6   26  2   2   19  4   7   13  24  8   7   20  20  1   1   6   1   
1   16  19  7   26  1   2   19  6   1   26  3   8   10  1   20  1   1   
7   1   10  2   6   1   24  20  10  13  1   16  1   1   4   6   12  1   
4   6   4   2   1   10  3   3   14  24  12  13  1   1   13  3   21  1   
16  12  7   1   19  16  1   1   21  3   16  10  4   2   1   19  1   1   
1   4   6   1   7   14  1   24  1   1   20  21  26  6   10  2   1   8    
8   4   1   13  1   1   2   1   8   24  21  13  12  4   4   12  3   3   
1   14  12  4   7   3   4   2   16  2   10  24  1   4   6   21  1   1   
2   2   16  2   1   14  1   7   1   1   14  1   13  4   6   13  1   21  
1   1   12  1   13  13  1   1   2   1   6   14  1   1   1   1   1   10  
10  1   26  16  6   1   1   1   1   26  6   1   10  3   1   13  13  1   
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1   3   1   21  3   1   13  2   20  3   4   4   3   12  26  2   21  1   
1   1   1   26  4   16  26  7   1   1   12  1   1   6   26  2    
 
 
D10 371 node path produced by this population member: 
1     2     3     6     11    10    9     24    21    28    29    36    
33    48    49    52    53    60    57    58    39    42    43    46    
19    18    111   114   115   78    75    74    73    88    85    92    
91    94    95    66    65    68    125   124   121   104   97    160   
159   158   131   190   187   188   185   168   167   170   175   178   
177   180   173   148   237   240   241   242   243   206   203   202   
201   216   213   220   219   222   223   194   193   196   253   252   
245   140   137   138   135   250   231   234   235   150   107   406   
491   490   487   488   481   496   497   498   499   462   459   458   
457   472   469   476   475   478   479   450   449   452   509   508   
501   396   393   394   391   386   387   446   443   444   441   424   
423   426   431   434   433   436   429   404   413   356   285   284   
277   280   265   266   267   374   379   380   377   360   359   362    
367   370   369   372   269   308   305   304   337   352   321   322   
327   330   329   332   341   348   347   350   339   302   299   298   
295   296   313   316   315   318   259   258   287   738   799   770   
771   830   827   828   825   808   807   810   811   814   851   862   
859   860   853   844   841   842   839   834   833   864   849   816   
817   820   781   884   881   882   879   874   871   872   889   892   
891   886   779   778   777   792   789   796   797   868   925   924   
917   908   905   906   903   898   899   958   955   956   953   936   
935   938   943   946   945   948   941   980   981   984   969   970   
971   974   1011  1010  1009  1008  993   1000  1017  1020  1021  964   
961   962   991   990   987   998   539   540   533   536   521   522   
523   630   635   636   633   616   615   618   623   626   625   628   
525   564   561   560   593   608   577   578   583   586   585   588    
597   604   603   606   611   670   667   662   683   694   699   700   
697   680   679   674   687   690   689   692   685   676   733   736   
705   706   711   714   713   716   757   764   765   644   641   642   
647   650   649   664   657   752   753   754   755   750   531   558   
555   554   551   552   569   572   571   574   515   514   513    
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D. Additional Examples 

Following is another example of single point phenotype crossover in a D5 hypercube. 

This is similar to the example in Section 7.3.2 and should help in understanding of this 

operator as it is applied to the SITB. 

 
Initial Population Members and Snake 
Index values: 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
 

Selected population members: 
10 13 12  7  8  1 21 10  7 10  8 24 21  2 12  8 
13  6 19 10 20  8 14  2  1 24  1 20  1 12  7  6 
 
 7 20 14 14  7  2 19  8  1 24 26 20 13 26 10  7 
10 14 20  1 26 10 24  1  1  2  8 14  3  2 20 14 
 
Selected snakes: 
1   2   3   6   5  12 * 13  20  17  24  25  26 
1   2   3   6   5  12 * 13  20  19  18  23  24  25 
 
 
Final Population Members and Snake 
Index values: 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
 
Reconstructed members: 
10 13 12  7  8  1 21 10  7 10  8 24 13  2 12  8 
13 14 20  1 20  8 24  1  1 24  1 20  1 12  7  6 
 
 7 20 14 14  7  2 19  8  1 24 26 20 21 26 10  7 
13 14 20 10 26 10 24  2  1 24  8 14  3  2 20 14 
 
Reconstructed snakes: 
 1   2   3   6   5  12 * 13  20  19  18  23  24  25 
 1   2   3   6   5  12 * 13  20  17  24  25  26 
 

An * indicates crossover point. 


