
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

AN INTERCOMPARISON OF LANDSAT LAND SURFACE TEMPERATURE 

RETRIEVAL METHODS UNDER VARIABLE ATMOSPHERIC CONDITIONS 

USING IN SITU SKIN TEMPERATURE 

 

 

 

 

 

 

A THESIS 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

MASTER OF ARTS 

 

 

 

 

 

 

 

 

 

By 

 

EMILY CLAIRE WINDAHL 

 Norman, Oklahoma 

2016  



 

 

 

 

 

AN INTERCOMPARISON OF LANDSAT LAND SURFACE TEMPERATURE 

RETRIEVAL METHODS UNDER VARIABLE ATMOSPHERIC CONDITIONS 

USING IN SITU SKIN TEMPERATURE 

 

 

A THESIS APPROVED FOR THE 

DEPARTMENT OF GEOGRAPHY AND ENVIRONMENTAL SUSTAINABILITY 

 

 

 

 

 

 

 

 

 

BY 

 

 

 

______________________________ 

Dr. Kirsten de Beurs, Chair 

 

 

______________________________ 

Dr. Renee McPherson 

 

 

______________________________ 

Dr. Petra Klein 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by EMILY CLAIRE WINDAHL 2016 

All Rights Reserved. 



iv 

Acknowledgements 

Research is supported by NASA IDS project NNX12AM89G: Storms, Forms, and 

Complexity of the Urban Canopy: How Land Use, Settlement Patterns, and the Shape 

of Cities Influence Severe Weather. I would like to thank Kirsten de Beurs for her 

excellent advice and guidance. I would also like to thank Braden Owsley for his 

assistance with data processing; the Oklahoma Mesonet and UCAR’s Suominet project 

for providing data used in this study; Petra Klein and Renee McPherson for their 

feedback on an early version of this research; the two anonymous reviewers whose 

recommendations improved this paper.



v 

Table of Contents 

 

Acknowledgements ......................................................................................................... iv 

List of Tables .................................................................................................................. vii 

List of Figures ................................................................................................................ viii 

Abstract ............................................................................................................................ ix 

Chapter 1: Introduction ..................................................................................................... 1 

Chapter 2: An Intercomparison of Landsat Land Surface Temperature Retrieval Methods 

under Variable Atmospheric Conditions Using in Situ Skin Temperature .................... 10 

2.1. Introduction ....................................................................................................... 10 

2.2. Study Area ......................................................................................................... 16 

2.3. Data and Preprocessing ..................................................................................... 17 

2.3.1 Landsat 5 TM data ..................................................................................... 17 

2.3.2. Mesonet data ............................................................................................. 20 

2.3.3. Suominet atmospheric parameters ............................................................ 22 

2.3.4. MODIS precipitable water vapor ............................................................. 22 

2.4. Methods ............................................................................................................. 23 

2.4.1. Land surface temperature retrieval ........................................................... 23 

2.4.1.1. Radiative Transfer Equation .................................................................. 24 

2.4.1.2 Mono-Window Algorithm ...................................................................... 25 

2.4.1.3. Generalized Single Channel method ..................................................... 26 

2.4.1.4. Estimating atmospheric parameters ....................................................... 27 

2.4.2. LST validation .......................................................................................... 28 

2.5 Results ................................................................................................................ 31 



vi 

2.5.1 Land surface temperature retrieval ............................................................ 31 

2.5.2. Land surface temperature validation ........................................................ 38 

2.5.2.1. All LST data .......................................................................................... 44 

2.5.2.1.1. All LST data: Full dataset ................................................................... 44 

2.5.2.1.2. All LST data: Low-PWV-subset ........................................................ 45 

2.5.2.1.3. All LST data: High-PWV subset ........................................................ 45 

5.2.2. Cloud-free subset ...................................................................................... 46 

5.2.2.1. Cloud-free subset: Full dataset .............................................................. 46 

5.2.2.2. Cloud-free subset: Low-PWV subset .................................................... 47 

5.2.2.3. Cloud-free subset: High-PWV subset ................................................... 47 

2.6. Discussion .......................................................................................................... 48 

2.6.1. Method selection ...................................................................................... 48 

2.6.2. Precipitable water vapor distribution ........................................................ 50 

2.6.3 Cloud contamination ................................................................................. 54 

2.7 Conclusion .......................................................................................................... 55 

References ...................................................................................................................... 56 

 



vii 

List of Tables 

Table 1. Oklahoma annual temperature and precipitation 18 

Table 2. Landsat scene details & modeled atmospheric correction parameters 19 

Table 3. Suominet atmospheric parameters 20 

Table 4. Summary of regression results using the full Landsat dataset 41 

Table 5. Summary of regression results using the cloud-free Landsat subset 43 

 



viii 

List of Figures 

Figure 1. Map of the study area 17 

Figure 2. Data processing flow chart 23 

Figure 3. Example of undetected cloud contamination 30 

Figure 4. Mean temperature maps 32 

Figure 5. Land surface temperature histograms 33 

Figure 6. LST detail maps for all methods for a low-PWV day 34 

Figure 7. LST detail maps for all methods for a medium-PWV day 35 

Figure 8. LST detail maps for all methods for a high-PWV day 36 

Figure 9. Regression of modeled and PWV-based transmittance 37 

Figure 10. Distributions of Suominet PWV 38 

Figure 11. Regressions comparing LST results to skin temperature (full dataset) 40 

Figure 12. Regressions comparing LST results to skin temperature (cloud-free) 42 

Figure 13. Mean global PWV distribution (g/cm2) 51 

Figure 14. Fraction of global PWV distribution greater than 2 g/cm2, by season 52 

Figure 15. Fraction of annual global PWV distribution greater than 2 g/cm2 53 

Figure 16. Fraction of summer global PWV distribution greater than 3 g/cm2 54 

 



ix 

Abstract 

Land surface temperature (LST) retrieved from Landsat is a valuable resource for 

understanding land cover change, monitoring the urban heat island effect, and modeling 

hydrological and carbon cycles, among other applications. However, this dataset is 

underutilized, in part because it is difficult to accurately correct for atmospheric 

interference, and in part because it is difficult to validate the resulting LST dataset. As a 

result, it is often challenging to verify the accuracy of LST calculated from historical 

data. Currently, three correction methods are commonly used to retrieve LST from 

single-band Landsat TIR data—the radiative transfer equation (RTE), the mono-

window algorithm (MWA), and the generalized single-channel (GSC) method. Based 

on current research, it is often unclear which method is best applied in different 

circumstances and what the actual achieved accuracy is—especially when these 

methods are employed as they would be for actual applications, rather than under 

validation conditions. This study retrieves LST from two years’ worth of clear-sky 

Landsat 5 TM data using all three methods and validates the results against on-the-

ground skin temperature measurements from twenty-five Oklahoma Mesonet stations. 

Additionally, LST results using both modeled transmittance and transmittance based on 

precipitable water vapor are assessed, as are results from dates with both high and low 

precipitable water vapor. Results suggest that the MWA method using modeled 

transmittance is the most robust, with results statistically indistinguishable from 

Mesonet skin temperature for the complete dataset and a cloud-free subset, as well as 

for subsets above and below 2 g/cm2 precipitable water vapor. The RTE method using 

modeled atmospheric parameters is also appropriate in some circumstances.
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Chapter 1: Introduction 

Spaceborne thermal remote sensing relies on the truth that all objects (barring a 

temperature of absolute zero) emit radiation. Further, using Planck’s law, we can relate 

the amount of radiation emitted at a given wavelength (assuming a black body in 

thermal equilibrium) to the object’s temperature. In theory, this allows us to determine 

the temperature of the earth’s surface based on the amount of electromagnetic energy it 

emits at a given wavelength, as measured by a sensor in space (Wark et al., 1962). In 

practice, this process is more complicated; the radiation received by the sensor must be 

corrected for atmospheric interactions and land surface emissivity (LSE) before true 

land surface temperature can be determined (Dash et al., 2002; Li et al., 2013; Prata et 

al., 1995). As a result, practical, accurate atmospheric and emissivity corrections that 

can be implemented by researchers or incorporated into ready-to-use land surface 

temperature (LST) products are an essential prerequisite for LST applications. 

The most commonly used thermal sensors for land surface applications are: 

MODIS on satellites Terra and Aqua (1 km resolution, 1–2-day return) (Wan, 2014); 

ASTER on Terra (90 m resolution, 16-day return) (Palluconi, 1996); TM, ETM+, and 

TIR on Landsats 4–7 and 8 (60–120 m resolution, 16-day return) (Irons et al., 2012); the 

SLSTR on the Sentinel-3 satellite(s) (1 km resolution, 1–2-day return) (Donlon et al., 

2012); AVHRR on NOAA POES satellites (1.09 km resolution, 24-hour return); 

(Ouaidrari et al., 2002); and SEVIRI on the Meteosat Second Generation satellites (3 

km resolution, 15-minute return) (Jimenez-Munoz et al., 2014a). There are two 

competing considerations for thermal remote sensing data—spatial resolution and return 

period (Dash et al., 2002). Sensors with high return frequency, like MODIS, have 
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coarser resolution, and sensors with relatively fine spatial resolution have a lower return 

frequency (e.g. TM on Landsat). High-spatial-resolution data and high-temporal-

resolution data both provide complementary insights for research applications. 

 LST retrieved from Landsat, in addition to its relatively fine-scale spatial 

resolution, is a uniquely valuable dataset due to its regular global coverage and the 

continuous archive of data dating back to 1983, offered free-of-charge for users since 

2008 (Wulder et al., 2012). Only ASTER offers similarly scaled thermal data, but 

ASTER is not freely available, and does not provide routine, reliable global coverage 

offered by Landsat. Studies of urban heat, especially, benefit from the longitudinal 

depth and spatial detail of Landsat thermal data. Intra-urban temperature differences can 

be as large as or larger than urban-rural differences (Buyantuyev and Wu, 2010), but 

these intra-urban differences generally can’t be detected at the 1-km scale of, for 

example, MODIS (Sobrino et al., 2012). Additionally, potential solutions are also 

relatively small-scale—green or high-albedo roofs, for example, or increased urban tree 

cover (Gober et al., 2010; Stone et al., 2013). Evaluating their effectiveness requires 

similarly scaled LST data. 

 Unfortunately, land surface temperature from Landsat Mission thermal data is 

difficult to calculate accurately because it is limited to a single thermal band (though 

Landsat 8 TIRS has two thermal bands, band 11 continues to have calibration issues, 

limiting Landsat 8 to one functional thermal band for the foreseeable future (Montanaro 

et al., 2014)). Since the thermal infrared (TIR) radiation received by the sensor is a 

combination of radiance emitted from the earth’s surface, radiance emitted upward from 

the earth’s atmosphere, and atmospheric radiance emitted downward toward the earth’s 
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surface and reflected skyward, accurate LST cannot be determined without correcting 

for these atmospheric effects (Li et al., 2013). Additionally, the earth’s surface is not a 

blackbody; only a fraction of the absorbed radiation is then emitted to be measured by 

the sensor. Land surface emissivity (LSE)—the ratio of TIR radiation emitted from a 

given surface compared to what would be emitted by a blackbody at the same 

temperature and wavelength—must also be estimated and the effects on LST corrected. 

Numerous factors impact LSE—including chemical composition, moisture, roughness, 

phenology, and wavelength—making it difficult to predetermine at the pixel scale 

(Salisbury and D'Aria, 1992). With two or more thermal channels, the differential 

absorption between the channels (either due to different effective wavelengths or 

different viewing angles) can be used to correct for atmospheric interference 

(Zhengming and Dozier, 1996). Single-channel LST retrieval, on the other hand, 

requires both a priori LSE as well as accurate, ancillary atmospheric profiles concurrent 

with the satellite overpass and collocated with the study area (Li et al., 2013).  

Given these difficulties, there are three commonly used approaches to LST 

retrieval from Landsat thermal data: the Radiative Transfer Equation (RTE) (Barsi et 

al., 2003; Barsi et al., 2005), the Mono-Window Algorithm (MWA) (Qin et al., 2001; 

Wang et al., 2015), and the Generalized Single Channel (GSC) method (Jimenez-

Munoz et al., 2009; Jimenez-Munoz et al., 2014b; Sobrino et al., 2004). MWA and GSC 

are both simplified versions of the RTE, and all three methods requires slightly different 

atmospheric parameter inputs—transmittance, upwelling radiance, and downwelling 

radiance for RTE; transmittance and mean atmospheric temperature for MWA; 

precipitable water vapor (PWV) for GSC—and all require a priori emissivity 
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estimations. In practice, emissivity and atmospheric inputs for single-channel LST 

retrieval algorithms are often cobbled together after-the-fact from sources that were not 

intended for this purpose, introducing additional error into the LST-retrieval process. 

Once these corrections are performed, three options exist for validation (Coll et 

al., 2009; Hakuba et al., 2014; Li et al., 2013): (1) validating against in situ skin 

temperature measurements, (2) comparing measured top-of-atmosphere (TOA) radiance 

with TOA radiance produced by a radiative transfer model using the retrieved LST and 

highly accurate, concurrent atmospheric data as inputs, and (3) cross-validating 

retrieved LST with another, well-validated LST dataset as close to the same time and 

place as possible. None of these options is ideal for validating LST results under 

commonly non-ideal research conditions. The systematic, longitudinal skin temperature 

measurements across large study areas necessary for in situ skin temperature validation 

are rare (Li et al., 2013; Sobrino et al., 2004). These point measurements also may not 

be representative of pixel-scale remote sensing measurements, especially given the high 

spatial and temporal variability of LST (Prata et al., 1995). Often this method is limited 

to homogenous land cover like lakes, agricultural fields, or deserts, which is optimal for 

an initial validation of a new method, but leaves error estimation under non-

homogenous conditions unquantified. Radiance-based validation requires high-quality, 

contemporaneous atmospheric profiles which are unavailable for many, if not most, 

research applications using historical TIR data. Finally, cross-validation against other 

satellite-based LST datasets is often limited by the unavailability of concurrent, 

collocated datasets. 
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All three Landsat LST retrieval methods, in theory, are validated using a 

combination of all these methods as accurate at 1–2 K (Barsi et al., 2005; Qin et al., 

2001; Sobrino et al., 2004). However, these validations focus on the accuracy of the 

method applied under ideal conditions; there is little information about which methods 

work well under the non-ideal conditions often encountered by researchers. As a result, 

scientists wishing to apply LST in their research understandably default to the simplest 

retrieval method, which may or may not actually be appropriate. Further, because 

Landsat LST retrieval for applications is often performed in suboptimal conditions or 

with imperfect input datasets, the validated accuracies are often much higher than those 

actually achieved. However, because retrieval error rates have not been quantified under 

a variety of atmospheric conditions or with commonly used ancillary input datasets (as 

opposed to, for example, the atmospheric radiosoundings used for validation), the 

magnitude of the additional error can be difficult to determine and is too often ignored. 

It is important to keep in mind that, while LST measurements have many potential 

applications, spaceborne thermal remote sensing is relatively less developed than 

multispectral or even radar remote sensing (Kuenzer et al., 2013), though recent years 

have shown an increase in interest (search results for peer-reviewed articles using 

keywords “land surface temperature” and “remote sensing” from 2015 were double the 

results from 2010, 204 articles returned compared to 102). As a result, methods for LST 

retrieval and application are relatively untested, compared to other areas of remote 

sensing.  

Despite the difficulties associated with thermal remote sensing, potential 

applications are wide-ranging (Kuenzer et al., 2013; Li et al., 2013; Mia and Fujimitsu, 
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2013). They include: model input for agriculture, climatology, and hydrology; 

vegetation cover change detection and analysis; analysis of urban climatology, urban 

heat islands (UHIs), and heat sinks; volcano monitoring and geothermal analysis; fire 

monitoring (of forest, peat, or coal) and burned area detection; soil moisture retrieval, 

evapotranspiration estimation, and drought detection; identification of rocks and 

minerals; and monitoring industrials sites, mining operations, and pipeline security.  

Researchers have attempted to use Landsat thermal data for almost all of these 

applications. Landsat LST applications for drought monitoring, evapotranspiration 

estimation, and managing water resources are becoming more common. Ghaleb et al. 

(2015), for example, use NDVI and LST from Landsat to monitor drought conditions in 

Lebanon from 1982–2014. Gampe et al. (2016) parameterize irrigation modeling using 

Landsat LST and NDVI in the Mediterranean to improve future agricultural security 

against drought. Orhan et al. (2014) use Landsat-based vegetation and temperature 

indices to evaluate the impacts of drought and groundwater use in the Salt Lake Basin 

Area of Turkey.  

Researchers have also found useful applications of Landsat LST data for fire 

monitoring and burn detection, as well as volcano and geothermal monitoring.  Roy et 

al. (2015) use Landsat LST to detect coal fires in an Indian coal field, while Hongyuan 

et al. (2014) demonstrated a similar application in China. Quintano et al. (2015) and 

Vlassova et al. (2014) both use Landsat LST to detect and predict burn severity in 

Mediterranean forest fires. Volcano and geothermal monitoring are common 

applications. Mia et al. (2015) used Landsat to calculate the heat discharge rate after a 

1995 eruption in Japan. González et al. (2015) use Landsat thermal data to track heat 
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and mass flux from 2000–2004 for the Lascar volcano in northern Chile. Tian et al. 

(2015) use Landsat LST in their detection and quantification of potential geothermal 

resources.  

There are also other commercial/industrial applications of Landsat. For instance, 

Walsh-Thomas et al. (2012) used Landsat LST images from 1984–2011 over a large 

California wind farm to identify a downwind warming trend. Yan et al. (2014) also used 

Landsat LST to longitudinally monitor heat at a municipal solid waste disposal facility 

in Canada.  

Landsat LST is commonly used for land use/ land cover change detection in 

vegetated areas. For example, Ramdani et al. (2014) relate decreases in Indonesian palm 

oil plantation foliage cover to increases in surface temperature. Similarly, Huang and 

Anderegg (2014) similarly explore the climatic impacts, including changes in LST, of 

post-drought Aspen die-off in Colorado.  

Most common, however, is the use of Landsat thermal data for urban 

applications, especially urban-rural and intra-urban patterns of LST. Some studies 

simply look at vegetation in urban areas, exploring how land cover changes impact 

urban heat—Rogan et al. (2013), for instance, explores the impact of tree cover loss due 

to attempts to eradicate an invasive beetle in on local LST Worcester County, 

Massachusetts. Many of these urban vegetation studies are concerned with the intra-

urban structure and distribution of vegetation and the resulting relationship with LST. 

Zhou et al. (2011), Zhang et al. (2013), Maimaitiyiming et al. (2014), and Asgarian et 

al. (2015) all use landscape metrics like fractional vegetation cover, edge density, patch 

density, and percentage of landscape to quantify spatial patterns of green space and 
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urban hotspots in urban centers (Baltimore; Sydney; Aksu in Northwestern China; and 

Isfahan, Iran, respectively). The longitudinal effects of urban expansion on LST over 

time are also a concern, explored by Fu and Weng (2016) and Lu et al. (2015) in 

Atlanta and Shenyang, China, respectively. Some studies, like Li et al. (2016), also 

explore intraurban patterns of LST with respect to demographic and socioeconomic 

factors. Others, like White-Newsome et al. (2013) and Kestens et al. (2011), use 

Landsat LST to make explicit the connection between variations in urban LST 

distribution and public health, often highlighting socioeconomic and demographic 

inequalities. 

Many of these applications of Landsat LST offer up intriguing results which 

require the spatial resolution and multi-decade archive of the Landsat mission. 

However, because thermal remote sensing is applicable to so many disciplines, many 

applications of Landsat LST retrieval methods are published in disciplinary journals 

outside the remote sensing field (Kuenzer et al., 2013). Journals cited here, for example, 

include Landscape and Urban Planning, Environmental Health Perspectives, Applied 

Geography, Climate, and Journal of Volcanology and Geothermal Research. This 

means that the rigor with which the TIR images are processed and analyzed is not 

always subject to the scrutiny of the remote sensing community. For Landsat thermal 

data this is especially problematic, given the large amount of preprocessing required as 

well as potentially high error rates that often go undetected. Huang and Anderegg 

(2014), for example, in Journal of Geophysical Research: Biogeosciences, simply 

converted at-sensor TIR radiance to top-of-atmosphere brightness temperature, then 

applied an assumed uniform transmittance of 0.95, with no apparent emissivity 
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correction. For summer images, as used in the study, the unaccounted-for variation in 

atmospheric interference could easily render any LST change detection meaningless.  

Ultimately, without a meaningful comparison of different atmospheric 

correction methods under actual research conditions, there is little reason for a 

researcher not to use the simplest method available. Similarly, without an understanding 

of error rates for these methods as applied by researchers, especially under a range of 

atmospheric conditions, it is difficult to establish a baseline for meaningful change 

detection. 
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Chapter 2: An Intercomparison of Landsat Land Surface 

Temperature Retrieval Methods under Variable Atmospheric 

Conditions Using in Situ Skin Temperature 

2.1. Background 

Land surface temperature (LST), calculated based on remotely sensed thermal 

infrared (TIR) data, is generally accepted as a proxy for the Earth’s skin temperature 

and serves as valuable input for numerous climatic and ecological applications, 

including climate change, evapotranspiration, vegetation monitoring, hydrological cycle 

modeling, and urban health and environmental studies (Bindhu et al., 2013; Han and 

Xu, 2013; Kalma et al., 2008; Maimaitiyiming et al., 2014; Voogt and Oke, 2003; 

Weng, 2009). For many of these applications, the thirty-year archive of relatively fine 

spatial resolution (60–120 m) LST retrieved from Landsats 4-5, 7, and 8 promises a 

uniquely valuable resource. Sobrino et al. (2012), for example, showed that the 

magnitude of the surface urban heat island (SUHI), is significantly underestimated at 

coarser resolutions—120 m Landsat imagery would both provide increased detail on the 

intraurban heat patterns and more accurately quantify the SUHI. Fu and Weng (2015) 

suggest that utilizing the full Landsat TIR archive (1982-present) offers a singular 

opportunity to study changes in both inter- and intra- annual LST patterns, with 

implications for public health and our understanding of the effect of human-

environment interactions on thermal regimes.  

However, accurately calculating LST from a single thermal band, as is the case 

with Landsat 4-5, 7, and 8 (as long as band 11 continues to have calibration issues), is 

difficult. At-sensor thermal radiance is a combination of radiance emitted from the 

earth’s surface, radiance emitted upward from the earth’s atmosphere, and atmospheric 
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radiance emitted downward toward the earth’s surface and reflected skyward. In order 

to determine LST accurately, the emitted surface radiance must be isolated—primarily 

by correcting for the effects of water vapor in the atmosphere—and corrected for land 

surface emissivity (LSE).  With thermal data from Landsat TM and ETM+ limited to a 

single band, it is impossible to correct for atmospheric interference or LSE without 

ancillary data (Li et al., 2013). Three different LST retrieval methods are commonly 

used with Landsat TM and ETM+ (and increasingly with Landsat 8 TIRS band 10): the 

Radiative Transfer Equation (RTE), the Mono-Window Algorithm (MWA), and the 

Generalized Single Channel (GSC) method. Each requires slightly different atmospheric 

parameter inputs—transmittance, upwelling radiance, and downwelling radiance for 

RTE; transmittance and mean atmospheric temperature for MWA; precipitable water 

vapor (PWV) for GSC—and all require a priori emissivity estimations.  

Reported accuracy of these different methods vary, but is generally cited as 

below 2 K: the GSC method has expected errors between 1 and 2 K when PWV is 

between 0.5 and 2 g/cm2 (Jimenez-Munoz et al., 2009); the RTE approach used by 

Barsi et al. (2005) has a global expected accuracy of about 2 K; and Qin et al. (2001) 

estimate error for LST retrieval with MWA to be between 1.0 and 1.5 K when 

transmittance is above 0.8. A few different approaches have been taken to validate LST 

retrieval methods. One approach, used by Barsi et al. (2005) and Cook et al. (2014), 

validates retrieved LST using ground measurements of the surface temperature of water, 

which is easier to measure than land surface temperature and has a known and constant 

emissivity. Alternatively, as in Qin et al. (2001), radiative transfer code can be used to 

simulate atmospheric conditions to test the theoretical accuracy of a retrieval method. 
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Similarly, Sobrino et al. (2004) and Jimenez-Munoz et al. (2009) paired MODTRAN 

radiative transfer code with concurrent radiosounding data to validate their LST 

retrieval method. In situ measurements of skin temperature over land are not often used, 

primarily because measurements gathered on a large enough spatial scale to be useful 

validating satellite data are rare (Brabyn et al., 2014; Qin et al., 2001; Sobrino et al., 

2004).  

These validation methods generally provide the best possible theoretical error 

rate for the method in question, which is essential for establishing the fundamental 

validity of each approach. However, errors reported from these validations are 

underestimations of error rates incurred through the actual use of a method as employed 

for applications, when cloud contamination, non-optimal atmospheric data, and 

estimated emissivity are at play. Further, studies suggest that atmospheric correction is 

likely to contribute the largest share of error to LST retrieval methods (Hook et al., 

2007; Qin et al., 2001). Yet LST retrieval methods are often validated under optimal 

atmospheric conditions, when precipitable water vapor in the atmosphere is relatively 

low, minimizing the impact of atmospheric interference (Barsi et al., 2005; Qin et al., 

2001; Sobrino et al., 2004). Additionally, it is understood that for all single-channel 

retrieval methods, when PWV is higher than 2 g/cm2, the accuracy of LST retrieved 

using transmittance values based on PWV decreases significantly (Jimenez-Munoz et 

al., 2009). However, global PWV routinely rises above this 2 g/cm2 threshold, 

especially in summer months—a problem for research projects involving urban heat 

islands, for example, which often focus on summer LST patterns. Relatedly, cloud 

detection, especially of cirrus clouds, also poses a problem for LST retrieval from 
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Landsat 4–7. Landsats 4–7, unlike Landsat 8, do not have a SWIR band that is 

specifically optimized for detecting optically thin cirrus clouds (1.36–1.38 μm). The 

consequence is that, even using cloud masking software, cloudy pixels are identified as 

clear land, with artificially low LST measurements (Zhu et al., 2015). Previous research 

found that without any cloud masking, mean error rates in Landsat LST estimation can 

approach -9 K, while visually confirming cloud-free images can bring mean error rates 

close to zero (Cook et al., 2014). This suggests that there is no automated way to 

confirm that Landsat 4-5 and 7 images are cloud-free, and that undetected cloud 

contamination can introduce a negative bias into LST results. 

Ultimately, the reality of LST retrieval under non-ideal research conditions 

raises questions about both the accuracy and suitability of different LST retrieval 

methods under different conditions.  A few intercomparisons have been performed for 

LST retrieval methods for Landsat 5 TIR data, with mixed results. Sobrino et al. (2004) 

compared their GSC method with the MWA method for one July Landsat image over 

Valencia, Spain. They compared transmittance values based both on radiosounding data 

and PWV; the RTE using concurrent radiosounding data as input was treated as ground 

truth. They found that MWA with transmittance based on radiosounding data had a 

RMSE of 0.9 K, and a RMSE of 1.9 K with PWV-based transmittance; the GSC method 

achieved a RMSE of 1.0 K using PWV as input. Zhou et al. (2012) performed an 

intercomparison of the MWA and GSC methods in an arid region of northwestern 

China during March and April 2008, validating the methods against (1) a limited dataset 

of in situ skin temperature measurements, (2) skin temperature simulated with 

radiosoundings and MODTRAN 4.0, and (3) skin temperature calculated using the RTE 
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and radiosounding data. Similar to Sobrino et al. (2004), they also calculated LST using 

all three methods with both radiosounding data and PWV-based inputs. They found that 

for one study site, GSC was most accurate, and all methods had accuracies within 2–3 

K, while for the other two study sites, MWA performed better. Because their study 

region featured extremely low PWV, their results also suggested atmospheric correction 

may not have been necessary. They also noted that the limited amount of in situ skin 

temperature measurements restricted their capacity to fully evaluate the three methods. 

Most recently, Vlassova et al. (2014) performed a study of 13 Landsat images in Central 

Spain from 2009–2011, using skin temperature simulated with MODTRAN 5 to 

validate the GSC and MWA methods as well as the RTE method employed using 

NASA’s online atmospheric correction parameter calculator (as done in this paper). 

Only three dates featured PWV marginally above 2.0 g/cm2. Based on one sample point 

per image, they found that GSC resulted in RMSD of 0.5 K, RTE of 0.85 K, and MWA 

of 2.34 K.   

Though these intercomparisons are useful, they are focused on relatively limited 

Landsat datasets, study regions featuring low PWV, and they rely heavily on modeled 

validation datasets with limited in situ validation data. While not commonly used, in 

large part because ground measurements of skin temperature are relatively rare (Li et 

al., 2013), studies suggest that in situ measurements are appropriate for validating 

satellite LST measurements. The biggest concern when using this sort of validation is 

the mismatch in scale—given a certain degree of spatial variability, how representative 

is a point measurement of a parameter like LST of the spatially aggregated value as 

measured by a satellite (Román et al., 2009)? Rigo et al. (2006) found a strong 
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correlation between TIR emissions measured by satellites with a range of spatial 

resolutions (they examined data from AVHRR, MODIS, and Landsat 7 ETM+) and by 

ground stations in both urban and rural areas. Further, Hale et al. (2011) successfully 

used 90-meter ASTER TIR data to determine the spatial variability of LST at the 1-km 

MODIS scale in order to predict how representative point LST measurements were of 

the 1-km MODIS LST. This suggests that Landsat 5 TM LST, which has a similar 

spatial resolution to ASTER, is sufficiently sensitive to the spatial variability of LST to 

justify the use of in situ point measurements directly for validation. Finally, Mesonet 

site standards state that stations should be placed in locations where the physical 

characteristics (soil composition, land cover, etc.) are representative of as large an area 

as possible (Brock et al., 1995). This suggests that Mesonet stations are generally 

typical of their surroundings, making a comparison with the encompassing 120-m 

Landsat 5 TM TIR pixel appropriate. 

The goal of this paper is to compare the accuracy of the three most commonly 

applied atmospheric correction methods for retrieving LST from Landsat 5 TM TIR 

data—as they are actually applied—using both modeled transmittance values and 

transmittance estimated using PWV, over a range of atmospheric conditions. 

Importantly, retrieved LST datasets are validated using in situ skin temperature 

measurements from twenty-five Oklahoma Mesonet stations on fifteen dates in 2005 

and 2006. A conservative, cloud-free subset was also analyzed, as were subsets from 

low-PWV scenes (≤ 2 g/cm2) and high-PWV scenes (> 2 g/cm2). 
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2.2. Study Area 

This study focuses on the two Landsat 5 TM scenes that encompass Oklahoma 

City and the surrounding region (path 28, rows 35 and 36) (Figure 1).The majority of 

the study area is Central Great Plains, composed primarily of grassland and cropland. 

The southeast region, however, is Cross Timbers, with a mix of grassland/rangeland and 

oak trees. The largest urban center in the study area is the Oklahoma City Metropolitan 

Area, with a 2006 population estimated by the U.S. Census Bureau of approximately 

1.2 million, and a footprint of approximately 16,000 km2. Climatic variables in 

Oklahoma generally demonstrate a gradient from northwest to southeast, with 

temperatures and precipitation increasing (Costa et al., 2008). Additionally, Oklahoma 

demonstrates large intra-annual PWV and temperature gradients, making it ideal for 

exploring the impact of these changes on LST retrieval. 
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Figure 1. Map of the study area. The Landsat footprint is in dark gray, the Suominet 

stations used to generate atmospheric parameters are in white, and the Mesonet stations, 

which gathered skin temperature, are in black. 

 

2.3. Data and Preprocessing 

2.3.1 Landsat 5 TM data 

We identified Landsat 5 TM data from the USGS EarthExplorer website for all 

dates in 2005 and 2006 in our study area with approximately less than 10% cloud cover 

across both scenes. These years were chosen because the Mesonet skin temperature 

sensors were phased out in 2007, and because there was a preponderance of relatively 

cloud-free dates. As shown in Table 1, Oklahoma was drier and slightly warmer than 

the 1901–2000 means in both 2005 and 2006 (NOAA, 2015). 
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We ultimately downloaded and processed twenty-two images on eleven dates in 

2006 and twelve images on six dates in 2005, all with low or no cloud cover according 

to the image metadata (Tables 2–3). For each of the thirty-four scenes, we (1) 

radiometrically corrected the Band 6 thermal infrared data (TIR) using the bias and 

offset values from each scene’s metadata and (2) used the Fmask v3.2 algorithm to 

mask clouds, cloud shadow, water, and snow in all bands, using a conservative ten-pixel 

buffer for clouds and cloud shadow and a 0.50% cloud probability threshold (Zhu et al., 

2015). It is worth noting that while the Landsat metadata may show little or no cloud 

cover, Fmask is much more conservative when identifying clouds. We also removed 

pixels with top-of-atmosphere radiance below 1.15 W m−2 sr−1 µm−1, which appeared 

to signal invalid data on the edges of scenes far below the overall distribution of pixels 

in the images. After all data were processed, we excluded two dates due to highly 

variable PWV, leaving fifteen final dates that were analyzed further. 

 

Table 1. Oklahoma annual temperature and precipitation. 2005 and 2006 compared to 

1901–2001 means. Both years were similar, demonstrating higher temperatures and less 

precipitation than the long-term mean (NOAA, 2015). 

 Measurement 
1901–2000 

mean 
2005 2006 

2005 

difference 

from mean 

2006 

difference 

from mean 

Avg Min Temperature (°C) 8.7 9.3 9.6 0.6 0.9 

Mean Temperature (°C) 15.4 16.0 16.8 0.6 1.4 

Avg Max Temperature (°C) 22.1 22.8 24.0 0.7 1.9 

Precipitation (mm) 859.5 700.0 757.2 -159.5 -102.3 
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Table 2. Landsat TM scene details and modeled atmospheric correction parameters 

used to calculate LST. 

 

Scene Date

Cloud 

cover 

(%)

Used in 

conservative 

analysis τ

Upwelling 

Radiance

Downwelling 

Radiance

LT50280352005020PAC01 1/20/2005 0 N 0.84 1.10 1.81

LT50280352005116PAC01 4/26/2005 1 N 0.85 1.00 1.69

LT50280352005180PAC01 6/29/2005 2 N 0.65 2.99 4.69

LT50280352005212PAC01 7/31/2005 0 Y 0.70 2.54 4.09

LT50280352005244GNC01 9/1/2005 0 N 0.59 3.41 5.23

LT50280352005308PAC01 11/4/2005 0 N 0.80 1.51 2.49

LT50280352006023PAC01 1/23/2006 1 N 0.91 0.58 0.97

LT50280352006103PAC01 4/13/2006 0 Y 0.73 2.28 3.64

LT50280352006167PAC01 6/16/2006 5 N 0.61 3.30 5.08

LT50280352006183PAC04 7/2/2006 0 N 0.62 3.24 5.06

LT50280352006199PAC01 7/18/2006 0 N 0.46 4.59 6.89

LT50280352006263PAC01 9/20/2006 0 N 0.80 1.58 2.60

LT50280352006279PAC01 10/6/2006 0 Y 0.63 2.92 4.50

LT50280352006295PAC01 10/22/2006 0 Y 0.89 0.70 1.17

LT50280352006311PAC01 11/7/2006 0 N 0.70 2.04 3.26

LT50280352006327PAC01 11/23/2006 0 Y 0.85 1.13 1.84

LT50280352006359PAC01 12/25/2006 0 Y 0.96 0.24 0.41

LT50280362005020PAC01 1/20/2005 0 Y 0.84 1.14 1.87

LT50280362005116PAC01 4/26/2005 1 N 0.84 1.12 1.88

LT50280362005180PAC01 6/29/2005 0 Y 0.71 2.52 4.05

LT50280362005212PAC01 7/31/2005 0 Y 0.68 2.66 4.23

LT50280362005244GNC01 9/1/2005 0 N 0.65 2.96 4.59

LT50280362005308PAC01 11/4/2005 0 Y 0.80 1.56 2.57

LT50280362006023PAC01 1/23/2006 7 N 0.92 0.48 0.80

LT50280362006103PAC01 4/13/2006 0 Y 0.72 2.37 3.74

LT50280362006167PAC01 6/16/2006 9 N 0.61 3.30 5.07

LT50280362006183PAC04 7/2/2006 11 N 0.61 3.26 5.07

LT50280362006199PAC01 7/18/2006 1 N 0.53 4.16 6.34

LT50280362006263PAC01 9/20/2006 0 N 0.81 1.56 2.55

LT50280362006279PAC01 10/6/2006 0 N 0.62 2.98 4.56

LT50280362006295PAC01 10/22/2006 11 N 0.86 0.90 1.49

LT50280362006311PAC01 11/7/2006 19 N 0.70 2.09 3.32

LT50280362006327PAC01 11/23/2006 0 Y 0.86 1.05 1.72

LT50280362006359PAC01 12/25/2006 0 Y 0.93 0.38 0.65
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Table 3. Suominet atmospheric parameters. Parameters used to calculate LST, by 

Landsat scene. 

  

Landsat Scene Date

Suominet 

Station 

Name

Pressure 

(kPa)

Air 

Temp 

(degC)

Relative 

Humidity

PWV 

(g/cm²) Est. τ

LT50280352005020PAC01 1/20/2005 SG20 968.6 16.3 47.9 1.05 0.88

LT50280352005116PAC01 4/26/2005 SG20 961.2 19.9 31.1 1.15 0.87

LT50280352005180PAC01 6/29/2005 SG20 964.3 32.7 43.8 2.43 0.75

LT50280352005212PAC01 7/31/2005 SG20 971.2 32.4 38.8 2.72 0.72

LT50280352005244GNC01 9/1/2005 SG20 969.5 30.7 53.9 2.23 0.77

LT50280352005308PAC01 11/4/2005 SG20 959.0 25.9 34.3 1.49 0.84

LT50280352006023PAC01 1/23/2006 SG20 976.1 7.3 65.7 0.66 0.92

LT50280352006103PAC01 4/13/2006 SG20 969.6 29.3 48.0 1.72 0.83

LT50280352006167PAC01 6/16/2006 SG20 961.4 30.8 50.5 2.99 0.69

LT50280352006183PAC04 7/2/2006 SG20 969.7 32.9 42.3 3.01 0.68

LT50280352006199PAC01 7/18/2006 SG09 967.1 38.6 30.0 3.97 0.57

LT50280352006263PAC01 9/20/2006 SG09 963.9 27.5 31.6 1.98 0.80

LT50280352006279PAC01 10/6/2006 SG09 975.5 25.5 52.5 2.84 0.65

LT50280352006295PAC01 10/22/2006 SG09 977.9 10.1 49.5 0.97 0.89

LT50280352006311PAC01 11/7/2006 SG09 963.9 20.0 31.1 1.99 0.77

LT50280352006327PAC01 11/23/2006 SG09 967.5 15.5 55.3 0.87 0.90

LT50280352006359PAC01 12/25/2006 SG09 973.3 2.7 51.7 0.42 0.94

LT50280362005020PAC01 1/20/2005 PRCO 979.6 15.1 51.9 1.21 0.87

LT50280362005116PAC01 4/26/2005 PRCO 971.1 20.6 33.0 1.15 0.87

LT50280362005180PAC01 6/29/2005 SG19 958.9 33.9 36.4 2.62 0.73

LT50280362005212PAC01 7/31/2005 PRCO 981.6 31.3 45.3 2.83 0.70

LT50280362005244GNC01 9/1/2005 PRCO 979.0 30.1 53.8 2.12 0.79

LT50280362005308PAC01 11/4/2005 SA19 973.8 25.5 35.2 1.62 0.82

LT50280362006023PAC01 1/23/2006 PRCO 986.5 8.6 47.6 0.78 0.91

LT50280362006103PAC01 4/13/2006 SA19 984.0 27.5 54.3 2.15 0.78

LT50280362006167PAC01 6/16/2006 SA19 973.9 31.0 50.2 3.18 0.66

LT50280362006183PAC04 7/2/2006 SG19 964.2 31.5 47.4 3.12 0.67

LT50280362006199PAC01 7/18/2006 PRCO 976.7 39.4 29.1 2.98 0.69

LT50280362006263PAC01 9/20/2006 SA19 978.7 28.0 32.6 1.52 0.85

LT50280362006279PAC01 10/6/2006 PRCO 986.1 24.4 60.2 2.83 0.65

LT50280362006295PAC01 10/22/2006 PRCO 988.3 11.3 44.7 1.02 0.88

LT50280362006311PAC01 11/7/2006 PRCO 976.4 18.3 61.5 1.89 0.79

LT50280362006327PAC01 11/23/2006 PRCO 979.3 19.3 44.5 1.08 0.88

LT50280362006359PAC01 12/25/2006 PRCO 981.6 5.0 48.2 0.52 0.93
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2.3.2. Mesonet data 

 The Oklahoma Mesonet provides a network of 120 environmental monitoring 

stations across Oklahoma, with observations for many stations extending back to 1994 

(McPherson et al., 2007). Each station has instruments on or near a 10-meter tower that 

provide observational readings every five minutes. From 1999 to 2007, 89 Oklahoma 

Mesonet stations hosted infrared temperature (IRT) sensors (Fiebrich et al., 2003)—25 

of these stations were located within our study area (Figure 1). The IRT sensors, 

installed at a height of 1.5 m and with a 0.5 m diameter circle field of view, had an 

accuracy of approximately ±0.2°C from 15° to 35°C and ±0.3°C from 5° to 45°C. Initial 

temperatures were calculated using the Stefan-Boltzmann law and assumed land surface 

emissivity (LSE) of 1.0, and final skin temperatures were calculated as a function of the 

difference between the initial measured temperature and the temperature of the sensor 

body. There are two drawbacks to the IRT sensors used to measure skin temperature 

(Fiebrich et al., 2003). First, the skin temperature sensor and calculation method used 

overestimates skin temperatures above 40°C by an average of 2.1°C. In Oklahoma 

summer months, surface temperatures routinely rise above this threshold. To address 

this overestimation, we introduced a -2.1°C offset for any IRT sensor measurements 

above that 40°C threshold—36 measurements in total were offset, occurring between 

late April and early October. Second, despite careful siting of Mesonet stations, the 

sensor’s limited field of view potentially means that a given station may not be 

representative of the surrounding landscape. To ensure that we relied on data from 

stations that were representative of the surrounding landscape (to make the use of point 

data to validate 120-meter raster data more robust), we performed regressions for all 
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data by station to identify any stations which showed unusually weak correlations 

between skin temperature and Landsat LST datasets. As a result, we removed the 

Tipton station from the analysis due to an unusually low correlation; the remaining 

stations showed satisfactorily high (r > 0.8) correlations. 

2.3.3. Suominet atmospheric parameters 

Suominet is a real-time GPS network that uses phase delays in GPS signals to 

calculate precipitable water vapor in the atmospheric column (accuracy better than 2 

mm), in addition to gathering ground-level atmospheric data (Ware et al., 2000). For 

each Landsat scene, we acquired air temperature, air pressure, relative humidity, and 

precipitable water vapor (PWV) from a centrally located Suominet station (three 

stations per scene were located in our study area and period), as close to concurrent with 

Landsat 5 TM scene center time as possible (within three minutes) (Figure 1, Tables 2–

3). These variables were then used to approximate atmospheric parameters needed to 

atmospherically correct the Landsat 5 TM thermal data—transmittance, upwelling and 

downwelling radiances, and mean atmospheric temperature.  

2.3.4. MODIS precipitable water vapor  

To provide global context for the impact of PWV levels on Landsat LST 

retrieval, we used the mean maximum precipitable water vapor measurements from the 

Level-3 MODIS Atmosphere Eight-Day Global Product (MOD08_E3). Generally 

speaking, MODIS has a comparable overpass time to Landsat. This dataset aggregates 

cloud-free daily PWV data from MODIS, which have an estimated accuracy of 5-10%, 

to return a global, 1° grid of eight-day maximum PWV measurements. We calculated 
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the global average of these PWV measurements in g/cm2 for the entire time series, as 

well as seasonal averages. 

2.4. Methods 

2.4.1. Land surface temperature retrieval 

Four land surface temperature datasets were calculated using the three 

methods—RTE, using modeled atmospheric parameters; GSC, which relies on PWV as 

a direct input for atmospheric correction; and MWA, using both modeled transmittance 

and transmittance estimated based on PWV. Additionally, we calculated a fifth LST 

dataset using no atmospheric correction. The LST retrieval process is summarized in the 

flow chart in Figure 2. 

 
Figure 2. Data processing flow chart. Traces the input variables from Suominet station 

data, the resulting calculated atmospheric correction parameters, the raw Landsat 5 TM 

TIR data, and the final LST datasets. 
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2.4.1.1. Radiative Transfer Equation 

The radiative transfer equation (RTE)—which describes the at-sensor radiance 

as a function of surface, upwelling, and downwelling emission terms for a given band 

i— can be used to retrieve LST assuming one knows or can approximate band-specific 

land surface emissivity, atmospheric transmittance, upwelling radiance, and 

downwelling radiance (Li et al., 2013; Ottle and Stoll, 1993). The at-sensor thermal 

radiance can be described as (Barsi et al., 2005; Zhou et al., 2012): 

 𝐿𝑖 =  휀𝑖𝜏𝑖𝐵𝑖(𝑇𝑠) + (1 − 휀𝑖)𝜏𝑖𝐿𝑖
↓ +  𝐿𝑖

↑  (1) 

where Li is the top-of-atmosphere radiance (W m−2 sr−1 µm−1); τi is atmospheric 

transmittance; εi is land surface emissivity; 𝐿𝑖
↑ is upwelling radiance (W m−2 sr−1 µm−1); 

𝐿𝑖
↓ is downwelling radiance (W m−2 sr−1 µm−1); and Bi(TS) is the blackbody radiance at 

temperature TS (K). Based on this equation, the emitted blackbody radiance at ground-

level for Landsat TM Band 6 can be expressed: 

 𝐵6(𝑇𝑠) =  
𝐿6−(1−𝜀6)𝜏6𝐿6

↓ − 𝐿6
↑

𝜀 6𝜏6
 (2) 

The inverse of the Planck function (adapted for Landsat, specifically) can then be used 

to calculate LST (K) from the ground-level blackbody radiance (Chander et al., 2009):  

 𝑇𝑆 =
𝐾2

ln(
𝐾1

𝐵6(𝑇𝑆)
+1)

 (3) 

For the TM sensor, the calibration constants are K1= 607.76 W m−2 sr−1 µm−1 and K2= 

1260.56 K. Atmospheric transmittance, upwelling radiance, and downwelling radiance 

were modeled as discussed in Section 2.4.1.4. 
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2.4.1.2 Mono-Window Algorithm 

The Mono-Window Algorithm (MWA) is a simplification of the RTE proposed 

by Qin et al. (2001) to determine LST from Landsat 5 TM Band 6 data using only three 

input parameters: land surface emissivity, atmospheric transmittance, and effective 

mean atmospheric temperature (used to estimate upwelling and downwelling radiance 

terms using a linearized version of Planck’s function). The MWA method applies the 

following equations: 

 𝑇𝑆 =  
[𝑎6(1−𝐶6−𝐷6)+(𝑏6(1−𝐶6−𝐷6)+𝐶6+𝐷6)𝑇6−𝐷6𝑇𝑎]

𝐶6
 (4) 

 𝐶6 = 휀6𝜏6 (5) 

 𝐷6 = (1 − 𝜏6)[1 + (1 − 휀6)𝜏6] (6) 

where Ta is the effective mean atmospheric temperature (K); coefficients a6 and b6 

(determined by linearizing the Planck function using Taylor’s expansion) equal -

67.355351 and 0.458606 respectively, given brightness temperatures between 0 and 

70°C; and T6 is the at-sensor brightness temperature (K) (calculated by applying the 

inverse of the Planck function to the top-of-atmosphere radiance measured by Landsat 5 

TM using Equation 3). More information about the derivation of formulas 4–6 can be 

found in Qin et al. (2001). Mean atmospheric temperature can be determined as a 

function of near-surface air temperature for different atmospheric profiles—we used the 

Suominet air temperature as input for the mid-latitude summer and mid-latitude winter 

equations as described in Qin et al. (2001). Transmittance was estimated using both the 

methods described in Section 2.4.1.4.  
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2.4.1.3. Generalized Single Channel method 

The Generalized Single Channel (GSC) method was intended to be an easily 

operationalized LST retrieval method requiring minimal input. It relies on estimated 

atmospheric functions dependent on total precipitable water vapor as determined from a 

variety of atmospheric radiosounding databases and MODTRAN-4 radiative transfer 

code (Sobrino et al., 2004). The GSC method calculates LST using the equation: 

 𝑇𝑆 =  𝛾 [
1

𝜀
[𝜓1𝐿6 + 𝜓2] + 𝜓3] +  𝛿 (7) 

where parameters γ and δ are determined as follows: 

 𝛾 ≈  
𝑇6

2

𝑏𝛾𝐿6
 (8) 

 𝛿 ≈  𝑇6 −
𝑇6

2

𝑏𝛾
 (9) 

using at-sensor brightness temperature (T6) as calculated using Equation 3, and where bγ 

is equal to 1256 K for Landsat 5 band 6, and L6 is equal to at-sensor radiance in W m−2 

sr−1 µm−1. ψ1, ψ2, and ψ3 are three PWV-based atmospheric functions which relate 

transmittance, upwelling radiance, and downwelling radiance to PWV. These functions 

are derived from databases of atmospheric profiles, with slightly different coefficients 

depending on the database used (equations 10–12). In this case, we used the 

atmospheric function coefficients derived from the TIGR61 database because it 

included atmospheric profiles with the widest range of precipitable water vapor, and so 

was most representative of our study area and period (Jimenez-Munoz et al., 2009). The 

equations used are: 

 𝜓1 =  0.08735𝜔2 −  0.09553ω + 1.10188, (10) 

 𝜓2 =  −0.69188𝜔2 −  0.58185ω − 0.29887, (11) 
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 𝜓3 =  −0.03724 𝜔2 +  1.53065ω − 0.45476, (12) 

where ω is precipitable water vapor in g/cm2, as measured by a central Suominet 

station. More detail about the derivation of this method can be found in Sobrino et al. 

(2004) and especially Jimenez-Munoz et al. (2009). 

2.4.1.4. Estimating atmospheric parameters 

For LST retrieval, we used both modeled parameters and parameters estimated 

as functions of PWV and surface air temperature; all relied on Suominet station data. 

Parameters required by the RTE to atmospherically correct remotely sensed TIR data—

transmittance, upwelling radiance, and downwelling radiance—can be estimated using 

an atmospheric radiative transfer model applied to an atmospheric profile concurrent 

with satellite data. In our case, we used NASA’s web-based Atmospheric Correction 

Parameter Calculator (Barsi et al., 2003), which applies the atmospheric radiative 

transfer model MODTRAN 4.0 to atmospheric profiles generated by the National 

Centers for Environmental Protection (NCEP), accounting for local conditions input by 

the user—in this case, we used the Suominet station values to maintain consistency with 

transmittance values derived from Suominet-based precipitable water vapor. The model 

takes the point location, time, and atmospheric data from the weather station as input 

and interpolates the NCEP profiles in time and space for that point—the result is 

estimated point values for transmittance, upwelling radiance, and downwelling 

radiance. Those atmospheric parameters are then assumed to be representative for an 

entire Landsat 5 TM scene. 

Transmittance for band 6 is primarily determined by precipitable water vapor in 

the atmosphere, and thus can be estimated as a function of PWV as described in Qin et 
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al. (2001). Qin et al. (2001) used LOWTRAN 7 software to simulate the relationship 

between PWV and transmittance for low and high temperature profiles (centered around 

surface air temperatures of 18°C and 35°C, respectively) for the PWV range of 0.4-4.0 

g/cm2—given the same PWV, transmittance will be higher at higher temperatures. The 

result is four linear models relating transmittance to PWV for low and high PWV 

measurements (0.4-1.6 g/cm2 and 1.6-3.0 g/cm2, respectively) at both low and high 

temperatures.  We used measurements from the most central Suominet station with 

valid precipitable water vapor data available for each date along with concurrent surface 

air temperature to calculate one transmittance value for each scene using these four 

equations, assuming a cutoff of 1.6 g/cm2.  

2.4.2. LST validation 

In order to validate the LST datasets retrieved from Landsat 5 TM, we used skin 

temperature measurements from Mesonet IRT sensors as ground truth. We first 

performed linear regressions on each full LST dataset, examining LST as a function of 

skin temperature. We also subset each LST dataset into data from scenes with PWV 

below 2 g/cm2 and data from scenes with PWV above 2 g/cm2—since this is an oft-

cited threshold above which single-band LST retrieval becomes less accurate—and 

performed linear regression analysis on each subset.  It is reasonable to assume that 

perfect LST retrieval would result in a one-to-one regression line with skin temperature. 

To test this, we performed a t-test to determine if each regression line’s slope and 

intercept were significantly different from one and zero, respectively, at the p=0.05 

level. We also calculated root mean squared error (RMSE) and mean absolute error 
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(MAE) from skin temperature to determine error rates from ground truth for each 

method. 

Additionally, we were interested whether the regression lines for data above and 

data below the PWV threshold were the same, or if the relationship between skin 

temperature and LST changed as PWV increased. To test this, we used analysis of 

covariance (ANCOVA) testing, introducing a grouping factor to determine whether the 

two data subsets were statistically distinct. If t-testing showed that the coefficient for the 

grouping factor’s interaction with the regression slope was indistinguishable from zero 

(p ≥ 0.05), the null hypothesis that the two subsets have the same slope cannot be 

rejected. The implication is that the same relationship between LST and skin 

temperature can be used for the complete dataset.  

Cloud detection in Landsat 4–7 data is problematic; unmasked cirrus clouds 

especially can have an impact on LST results. To determine if cirrus cloud 

contamination impacted our results, we also applied the same regression and ANCOVA 

analyses to a more conservative subset of our data, using only images that were visually 

clear of apparent cloud contamination. Scenes with large dark areas or unexplained 

streaking were excluded to create a dataset that was as likely to be free of cloud 

contamination as possible. Figure 3 is a an example of an image that Landsat metadata 

identified as cloud-free, and for which Fmask provided only minimal masking, yet is 

likely marked by extensive cloud contamination as evidenced by splotches and streaks 

of unexplained low temperatures. There may be other explanations for some of the 

visual artifacts we excluded, but for our more conservative analysis we erred on the side 

of excluding some good data in order to ensure a dataset free of cloud contamination. 
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Figure 3. Example of undetected cloud contamination (Sept. 20, 2006). The Landsat 5 

TM metadata reports cloud cover for both scenes on this date as 0.00%. Fmask has 

clearly masked some clouds, but large areas of unusually low temperatures suggest 

unmasked cloud contamination. 

 

Finally, emissivity estimations pose a significant problem for single-channel 

LST retrieval (Li et al., 2013). However, because the skin temperature data is provided 

with an assumed emissivity of one, emissivity corrections for our LST datasets are 

unnecessary and were not applied. As a result, we avoid the additional uncertainty 

introduced by emissivity estimation and instead focus on the accuracy of the 

atmospheric correction methods. However, it also means that all skin temperature and 

LST retrievals are slightly underestimated, since the actual emissivity of the land 
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surface is less than one; additionally, that underestimation is distributed unevenly across 

land cover types. 

2.5 Results 

2.5.1 Land surface temperature retrieval 

LST was calculated from Landsat 5 TM data for seventeen dates using RTE, 

MWA (using both modeled transmittance and transmittance estimated using PWV), 

GSC, and no atmospheric correction—five LST datasets in all. Due to variable 

precipitable water vapor across the study area, two dates (September 1, 2005 and July 

18, 2006) were excluded from further analysis. Mean temperature maps based on the 

four atmospherically corrected datasets for a high water vapor date (July 7, 2005), a 

medium water vapor date (April 13, 2006), and a low water vapor date (December 25, 

2006) can be seen in Figure 4. Histograms of LST results for all methods for the same 

two dates can be seen in Figure 5—LST variability both within each method and among 

correction methods clearly increases as PWV increases. Figures 6–8, which illustrate 

the variation among methods in finer detail, further support this observation. Much 

higher variability is observable on the high water vapor date, both spatially and among 

the different methods. While the GSC method produces results comparable to the other 

methods on the low-temperature, low-PWV date (Figure 6), LST retrieval from GSC 

appears increasingly warm relative to LST retrieved using the other methods as 

temperatures and PWV increase (Figures 7 and 8). Similarly, the increase in spatial 

variability as temperatures and PWV increase is evidenced by the increased contrast 

between vegetated areas and the surrounding landscape, with vegetated areas staying 
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relatively cool (the green streaks in Figures 7 and 8) as the rest of the landscape heats 

up. 

 

Figure 4. Mean temperature maps. Temperature maps averaging all atmospheric 

correction methods for (A) low-, (B) medium-, and (C) high-PWV days.  
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Figure 5. Land surface temperature histograms. Histograms of LST results for all LST 

datasets for low-, medium-, and high-PWV days. As PWV increases, temperature 

results become increasingly variable both within each LST dataset and among them. For 

the low-PWV date, correction method makes little difference overall; for the high-PWV 

date, it has a large impact on overall results. 
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Figure 6. LST detail maps for all methods for a low-PWV day (December 25, 2006). 

The low variability across space and among methods, relative to the medium- and high-

PWV dates illustrated in Figures 7 and 8, is evident. The temperature scale is the same 

for Figures 6, 7 and 8. 
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Figure 7. LST detail maps for all methods for a medium-PWV day (April 13, 2006). 

The increase in variability across space and among methods, relative to the low-PWV 

date illustrated in Figure 6, is evident, with GSC producing relatively warmer results, 

and the cooling effect of vegetation apparent in the green streaks across the various LST 

datasets. 
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Figure 8. LST detail maps for all retrieval methods for a high-PWV day (July 31, 

2005). The increase in variability across space and among methods, relative to the low- 

and medium- PWV date illustrated in Figures 6 and 7, is evident. GSC produces 

noticeably warmer results, and the contrast between vegetation and surrounding land 

cover is increased. 

 

The atmospheric parameters we employed to retrieve LST from Landsat 5 

TM—estimated using PWV and modeled using NCEP atmospheric profiles with 

MODTRAN 4.0 code—can be seen in Tables 2–3. Overall, transmittance from 

Suominet PWV was overestimated compared to modeled values (Figure 9)— 

differences ranged from -0.01 to 0.10, excluding the two dates with variable PWV—

with the differences increasing as PWV increased. Additionally, the distribution of the 
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PWV measurements from the six Suominet stations in the study area can be seen in 

Figure 10 (not all stations recorded measurements for all dates). As seen in the boxplots, 

PWV measurements for each date are relatively consistent across the study area, with 

the exception of September 1, 2005 and July 18, 2006 (indicated with black arrows). 

Actual stations and PWV values used to retrieve LST can be found in Tables 2–3.

 

Figure 9. Regression of modeled and PWV-based transmittance. PWV-based 

transmittance is generally underestimated compared to modeled transmittance, with the 

degree of underestimation increasing as transmittance decreases. 
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Figure 10. Distributions of Suominet PWV. PWV distributions across the study area for 

each date studied, by day of the year. While variability in PWV across the study area is 

generally low, September 1, 2005 and July 18, 2006 (identified with black arrows), with 

PWV ranges of approximately 1 g/cm2, show that this is not always the case. 

 

2.5.2. Land surface temperature validation 

Two analyses were performed—one comparing skin temperature with all 

processed data, and a more conservative analysis utilizing only scenes that were 

visually confirmed to be free of cloud contamination. Regression results for all five 

methods using all data are listed in Table 4 and are illustrated in Figure 11; regression 

results using the more conservative, cloud-contamination-free data subset are listed in 

Table 5 and are illustrated in Figure 12. As expected, all atmospheric correction 

methods for all subsets in all analyses improved on LST results using no atmospheric 

correction, as evidenced by lower RMSEs and MAEs when compared with skin 
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temperature. Overall, LST retrieved using MWA with modeled transmittance and RTE 

outperformed methods using PWV-based transmittance. 
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Figure 11. Regressions comparing LST results to skin temperature, using the full 

Landsat dataset. Regression lines and equations for all data; data from scenes below 2 

g/cm2 PWV; and data from scenes above 2 g/cm2 PWV are shown in black, blue, and 

red, respectively.  
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Figure 12. Regressions comparing LST results to skin temperature, using the cloud-free 

Landsat dataset. Regression lines and equations for all data, data from scenes below 2 

g/cm2 PWV, and data from scenes above 2 g/cm2 PWV are shown in black, blue, and 

red, respectively. 
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2.5.2.1. All LST data 

Model RMSEs for all atmospheric correction methods were comparable, though 

slightly higher for GSC overall and slightly lower with no atmospheric correction 

(Figure 11, Table 4). 

2.5.2.1.1. All LST data: Full dataset 

For all data in the full dataset, MWA using modeled transmittance performed 

the best—regression analysis suggests that LST retrieved with this method was overall 

statistically indistinguishable from skin temperature; no other method achieved this 

result for all data. RMSE compared to skin temperature using this method was 3.67 K, 

and MAE was 3.05 K (Table 4, 1:1 line). MWA using PWV-based transmittance 

underestimated skin temperature overall, with the degree of underestimation increasing 

as both skin temperature and PWV increase (Figure 11). This method also resulted in 

the highest errors of all correction methods, with a 4.00 K RMSE and a 3.43 MAE 

(Table 4, 1:1 line). High regression coefficients suggest that GSC, which relies heavily 

on PWV for LST extraction, was the worst at generating a one-to-one relationship with 

skin temperature (Table 4, Regression Models). Interestingly, RMSE and MAE using 

GSC were slightly lower than both MWA datasets; however, with a slope of 1.17 and 

an intercept of -53.09, regression analysis suggests that this is because the model 

crosses the one-to-one line, rather than because GSC does a better job of accurately 

predicting LST in all atmospheric and climatic contexts (Table 4, Regression Models; 

Figure 11, GSC). The very high slope means that GSC underestimates LST at low skin 

temperatures, and overestimates LST at high temperatures. Because the relationship 

between skin temperature and retrieved LST changes as atmospheric and climatic 
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conditions change, this method produces results that may not be intercomparable when 

retrieved under different conditions.  

2.5.2.1.2. All LST data: Low-PWV-subset 

Both methods using modeled transmittance, MWA and RTE, provided results 

that were statistically indistinguishable from skin temperature measurements for data 

under the 2 g/cm2 PWV threshold. RTE did a marginally better job predicting skin 

temperature for dates with low PWV, with higher p-values for model slope and 

intercept and lower RMSE and MAE than MWA with modeled transmittance (3.20 K 

and 2.70 K compared to 3.59 K and 3.06 K, respectively) (Table 4, 1-to-1 line). As with 

the full dataset, GSC had the lowest errors of all methods—RMSE of 2.92 and MAE of 

2.70—but the model coefficients suggest that this method does not produce LST results 

equivalent with skin temperature. MWA using transmittance from PWV performed the 

worst of all correction methods, with the highest RMSE and MAE (3.84 K and 3.33 K, 

respectively), and regression coefficients indicating the results were not equivalent to 

skin temperature (Table 4). 

2.5.2.1.3. All LST data: High-PWV subset 

Adjusted r-squared values ranged from 0.42 to 0.57 for all methods, relatively 

low compared to regressions using all data or only data below the PWV threshold 

(Table 4, Regression Models). Because the dataset being analyzed is smaller, and the 

temperature and PWV ranges are relatively smaller, only LST retrieved using GSC was 

determined to be statistically different from skin temperature. ANCOVA analysis also 

suggested that the high-PWV and low-PWV regressions using GSC were statistically 

significantly different from each other; this could not be determined for any of the other 
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methods (Table 4, Slope difference). Error rates using GSC were also relatively high; 

RMSE was 4.19 K and MAE was 3.46K (Table 4, 1-to-1 line). Based on RMSE and 

MAE, RTE outperformed MWA with modeled transmittance—both measurements of 

error were almost 1 K lower with RTE. MWA with PWV-based transmittance had the 

highest errors of all correction methods—4.34 K RMSE and 3.66 K MAE. 

5.2.2. Cloud-free subset 

Results from the conservative analysis, which used data from scenes with no 

likely cloud contamination based on visual inspection, were similar to the analysis 

incorporating all data. Overall, model errors for the cloud-free subset are lower than 

when all data are included, with RMSE ranging from 1.37 to 2.9 K for all conservative 

regressions (Table 5), compared to 1.87 to 3.17K for regressions with all data (Table 4). 

5.2.2.1. Cloud-free subset: Full dataset  

As with the analysis of all LST data, MWA using modeled transmittance again 

performed best for all data being analyzed, with regression coefficients statistically 

indistinguishable from a one-to-one line and error rates that were second-lowest (RMSE 

of 2.86 K and MAE of 2.50 K) (Table 5, 1-to-1 line). In this case, MWA using PWV-

based transmittance also produced LST results that were statistically indistinguishable 

from skin temperature, though error rates were the highest of all correction methods 

(RMSE of 3.19 K and MAE of 2.84 K). RTE produced the lowest errors—RMSE of 

2.65 and MAE of 2.26—but the overall regression suggested that LST retrieved using 

RTE was statistically different from skin temperature measurements, as was LST 

retrieved using GSC.  
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5.2.2.2. Cloud-free subset: Low-PWV subset 

Regressions showed that, for scenes with PWV under the 2 g/cm2 threshold, 

only LST datasets retrieved using RTE and MWA with modeled transmittance were 

statistically indistinguishable from skin temperature (Table 5). Both had had similar 

errors—2.75 K RMSE and 2.45 K MAE with RTE, and 2.79 K RMSE and 2.50 K MAE 

with MWA. Again, GSC had the lowest errors—2.35 K RMSE and 1.99 K MAE—but 

the regression coefficients indicated that the results produced were not statistically 

comparable to skin temperature, even when only cloud-free data below the PWV 

threshold were included (Table 5, 1-to-1 line).  

5.2.2.3. Cloud-free subset: High-PWV subset 

R-squared values for regressions with cloud-free data above the 2 g/cm2 

threshold were higher in the conservative analysis (Table 5) than when all high-PWV 

data were included (Table 4), suggesting that cloud-free LST datasets better accounted 

for the variability in the skin temperature data. Again, for the high-PWV subset, only 

LST retrieved using GSC was determined to be statistically different from skin 

temperature; all other methods could not be distinguished statistically from skin 

temperature. Similarly, ANCOVA analysis suggested that the high-PWV and low-PWV 

regressions using GSC were statistically significantly different from each other (the null 

hypothesis that the high- and low-PWV regressions were the same could not be rejected 

for any of the other methods) (Table 5, Slope difference). Compared to skin 

temperature, error rates with GSC were only slightly lower than with all data: RMSE 

was lowered to 4.08 K and MAE to 3.32 K. Though the regressions could not be 

statistically distinguished from a one-to-one relationship with skin temperature, RTE 
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came very close to an actual one-to-one relationship, with a slope of 1.00, an intercept 

of -1.60, and p-values compared to 1 and 0 of 0.98 and 0.97, respectively (Table 5). For 

high- PWV data, RTE also provided the lowest errors compared to skin temperature of 

all methods, with RMSE of 2.43 K and MAE of 1.88 K. And while most of the methods 

did not have statistical evidence that the slopes above and below the 2 g/cm2 threshold 

were different, a very high p-value for RTE ANCOVA analysis—0.98—suggests that 

regression slopes above and below the PWV threshold are especially similar. 

2.6. Discussion 

2.6.1. Method selection 

Overall, MWA using modeled transmittance provided the best results, with 

regression analysis suggesting that the full LST dataset and all subsets were statistically 

indistinguishable from skin temperature. This method also was the most consistent 

across all datasets, with the relationship between skin temperature and LST remaining 

relatively constant as skin temperature and PWV increased. Overall errors were high, 

however, with RMSE relative to skin temperature remaining at 2.86 K even with the 

cloud-free subset. Some of this error is attributable to problems inherent when 

comparing point data to 120m raster data. However, it suggests that the bar for 

statistically significant change detection is fairly high.  

While MWA using modeled transmittance performed best overall, RTE 

arguably performed well enough to be useful in some contexts. For data with 

atmospheric PWV below 2 g/cm2, this method is as or more accurate than MWA. 

Additionally, regression analysis using the cloud-free dataset suggests that it may also 

be effective for data with higher PWV content with good quality control. And while the 
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regressions for both the full LST dataset and the full cloud-free subsets suggest that 

LST retrieved using this method is not statistically equivalent to skin temperature, 

ANCOVA analysis cannot confirm that the regressions above and below the PWV 

threshold have different slopes.  Error rates using this method were also consistently 

lower than with MWA using modeled transmittance, dropping to 2.65 K RMSE for the 

full, cloud-free subset. Additionally, because this method does not require PWV content 

as input, it is logistically much simpler to implement than MWA with modeled 

transmittance, which requires both modeled and PWV-based input parameters.  

Both methods that relied on PWV-based transmittance were less accurate than 

the methods with modeled transmittance, suggesting that basing transmittance values 

for an entire scene on one PWV measurement is not the most effective option. GSC in 

particular performed poorly, with the relationship between skin temperature and LST 

retrieved using GSC changing dramatically as both temperature and PWV increased. 

GSC also failed to produce a regression equation that was statistically equivalent to a 

one-to-one relationship with skin temperature even when data was limited to scenes 

with PWV less than 2 g/cm2. However, further analysis shows that the GSC method can 

produce results statistically indistinguishable from skin temperature measurements 

under a 1.6 g/cm2 PWV threshold, with p-values for slope (compared to one) and 

intercept (compared to zero) of 0.36 and 0.20, respectively. It follows that this method 

may be appropriate for study areas and periods which are not likely to have PWV above 

1.6 g/cm2. This result is similar to that found by (Jimenez-Munoz et al. (2009)) showing 

that both error rates and bias with GSC increase as PWV approaches 2.0 g/cm2. 
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2.6.2. Precipitable water vapor distribution 

Two issues with PWV arise with Landsat LST retrieval methods as employed 

here—first, is the PWV measurement used for atmospheric correction representative of 

the entire scene? Second, can that PWV measurement be used to accurately 

atmospherically correct the Landsat thermal data? Based on Suominet PWV 

measurements, the spatial variability of PWV is generally small across our study area, 

but not always. When the variability in PWV across the study area is greater than 1 

g/cm2, for instance, the choice of one value over another would have a significant 

impact on transmittance and thus LST retrieval. Further, for at least some dates, the 

variation in PWV across the study area probably means one transmittance value per 

scene may not accurately reflect the spatial variability of atmospheric conditions, 

suggesting that monitoring the spatial variability of this parameter may be an important 

initial quality control measure for LST retrieval from Landsat.   

Regarding accuracy, it is clear that error rates increase and the effectiveness of 

different retrieval methods decreases as PWV rises above 2.0 g/cm2. The relevant 

question, then, is where and when will PWV content be high enough to introduce 

additional error to Landsat LST retrieval, and make the choice of retrieval method 

relevant? Mean 8-day maximum global PWV from MODIS can be seen in Figure 13, 

with values ranging from essentially zero to 6.78 g/cm2. These estimates are probably 

slightly inflated due to the aggregation method, but still provide useful global context. 

The fraction of all observations that were above the 2 g/cm2 threshold for the entire 

dataset and for seasonal subsets are in Figures 14 and 15; above 3 g/cm2 for summer in 

Figure 16. The takeaway is that global PWV content varies quite a bit seasonally and 
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spatially, and is often above the 2 g/cm2 threshold, impacting both expected error rates 

as well as the appropriate retrieval method. The United States, for example, has PWV 

below the 2 g/cm2 threshold during winter (with the exception of the Gulf Coast), but 

PWV increases throughout the south and central U.S. in spring and fall, with summer 

values across most of the U.S. peaking above 2 g/cm2 (and in many cases above 3 

g/cm2). This suggests that error rates for LST retrieval in summer will be higher than in 

winter, and that retrieval methods that rely on PWV content for atmospheric correction 

may not be appropriate for much of the year. Further, it also suggests that even when 

using an LST-retrieval method that does not require PWV measurements, like RTE, it is 

important to gather ancillary PWV data for quality control and error estimation 

purposes. 

 
Figure 13. Mean global PWV distribution (g/cm2). Large swaths of the globe average 

greater than 2 g/cm2 PWV annually, including much of the southeastern United States. 
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Figure 14. Fraction of the annual global PWV data greater than 2 g/cm2. Much of the 

globe is subject to atmospheric conditions with more than 2 g/cm2 PWV for at least part 

of the year. 



53 

 
Figure 15. Fraction of the global PWV data greater than 2 g/cm2, by season. Top to 

bottom: winter, summer; spring, fall. While much of the northern hemisphere is below 

the 2 g/cm2 threshold during winter months, with only 0–20% of data above the 

threshold, most of the globe’s land cover is above this threshold at least 80% of the time 

during summer months. 
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Figure 16. Fraction of the global PWV data greater than 3 g/cm2 in summer months. 

Many regions, including the southeastern United States, India, and Southeast Asia, 

report PWV greater than 3 g/cm2 at least 80% of the time during summer months. 

 

2.6.3 Cloud contamination 

Detecting cloud contamination, especially cirrus clouds, remains a concern with 

Landsat 4–7 data. Results here suggest that cloud contamination (likely cirrus clouds) 

not reported in the Landsat metadata and not masked by Fmask does introduce error 

into LST retrieval. At least some of this contamination can be detected visually in the 

thermal data, but it is difficult to mask or automate detection. Further, a manual 

inspection of data points occurring in these contaminated areas indicates that the 

contamination may only decrease LST by 5–10 K below skin temperature 

measurements; this has a material effect on LST retrieval, but may be difficult to detect 

statistically. In this analysis, limiting regression to scenes visually confirmed to be 

cloud-free resulted in a mean decrease in RMSE of 0.62 K and in MAE of 0.42 K for all 

atmospherically corrected methods and subsets when compared to skin temperature. 

While this decrease is not necessarily due to the elimination of cloud contamination 
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alone, it does seem reasonable to conclude that undetected clouds increase error in LST 

retrieval from Landsat 4–7. 

2.7 Conclusion 

Given the spatial and intra-annual variation in PWV seen in Figures 10–13, an 

LST-retrieval method that is not only accurate, but also maintains a uniform 

relationship with actual skin temperature even as temperatures and PWV in the 

atmosphere increase, is essential for producing results that can be compared across time 

and space. LST retrieval methods that used PWV-based transmittance struggled to 

accomplish this; modeled transmittance rates provided more robust results. 

Additionally, from this perspective the mono-window algorithm was the most effective 

overall, though the radiative transfer equation as implemented here provided results that 

were almost as good, and is more easily employed. Caveats remain, however. 

Undetected cloud contamination and spatially variable PWV remain of concern, and 

suggest that quality control measures targeting these problems should be utilized when 

retrieving LST from Landsat. Finally, though emissivity estimation is not addressed 

here, it remains an important issue for accurate LST retrieval, and will likely increase 

error beyond what is quantified here. This research provides more accurate error 

assessment for applied Landsat LST retrieval methods that will aid in change 

assessment through both time and space, and will allow users to better strike a balance 

between accuracy and ease of implementation for various applications. 
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