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LIST OF FIGURES 
 

Figure 1.1: Stratigraphic hierarchy: from a single element to complex sets. A vertical slice within 

the Pipeline 3D dataset offshore New Zealand shows the seismic appearance of different 

architectural hierarchies in deepwater channels, with corresponding cartoons below. The smallest 

architecture (4th to 5th order) is the channel element (box 1 in green). The second hierarchy (6th 

order) occurs when the channel elements stack together, forming a channel complex (box 2 in 

blue). The higher-order hierarchy (7th order and higher) occurs with the amalgamation of channel 

complexes, developing a channel complex set (box 3 in magenta). The color legend indicates the 

distinct facies that commonly occur within each element of each architecture. Measuring the sizes 

of each architectural element indicated on the right as well as their hierarchy provides key insight 

into the underlying depositional processes as well as a prediction of the more common lithologies. 

Hierarchies mentioned follow Pickering and Cantalejo (2015) classification.  

Figure 1.2. A visual guide showing the steps to convert outcrop measurements to a synthetic 

model. (A) Location and exposure of the outcropping deepwater channels at Laguna Figueroa. 

Paleoflow is from North to South (obliquely and to the right into the outcrop at this location) (B) 

Conceptual diagram of the Upper and Lower Figueroa outcrops showing channel elements, 

complexes and complex sets. The red line indicates the outcrop profile. Left of the line is into the 

outcrop face, and the right has been eroded away. (C) geocellular model using the constraints from 

(B) augmented by facies and corresponding rock properties, including acoustic impedances from 

Shallow Offshore West African modeled rock properties (Stright et al., 2014). (D) The Ormsby 

wavelet and a representative vertical slice through the 3D synthetic seismic data volume generated 

from the model shown in (C). Courtesy of Teresa Langenkamp and Lisa Stright. 
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Figure 1.3. Explanation of stratigraphic event mixing or vertical smearing of stratigraphic features. 

(A) Vertical resolution of channel elements related to different peak frequencies (modified after 

Nielson, 2011). (B) Vertical slice through the 3D Pipeline 3D offshore New Zealand seismic 

survey showing a channel complex and a Horizon used for interpretation at different stratigraphic 

levels indicated by yellow arrows. The dominant frequency at this level is 40 Hz giving a dominant 

period of 25 ms. (C) Stratal slices at approximately 25 ms intervals through the coherence volume 

computed using a ±20 ms analysis window show “stratigraphic” mixing by the seismic wavelet. 

Note that the relatively straight channel form at 2050 ms can be seen at 2080 ms and other 

stratigraphic levels (1,2,3 from deeper to shallower) where other channel forms (green arrow) 

appear causing interference. The cause of this mixing could be 1) mixing of reflectivity by the 

25ms dominant period seismic wavelet, 2) mixing of discontinuities through the 40 ms coherence 

computation, 3) shifting of the basal channel element thalweg due to compensational style as you 

move up or 4) differential compaction over deeper discontinuities between the floodplain and the 

channel element fill. 

Figure 1.4. Workflow of the study. Four different parameters were evaluated in the sensitivity 

analysis: 1) the effect of frequency content, 2) the impact on the choice of the seismic attribute, 3) 

the analysis window effect, and 4) the sensitivity to band-limited random noise addition. The best 

cases were selected to be shown in each case, and analysis was performed by comparing them with 

the original 3D geological model derived from the Laguna Figueroa Deepwater outcrop. This 

resulted in 4 cases for analysis, ultimately leading to a workflow and documentation of best 

practices in channel architecture interpretation. 
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Figure 1.5. A representative analysis window used in attribute calculations. Signals are sampled 

at discrete points, not continuous recordings. Therefore, each seismic trace will contain as many 

samples as the sample rate allows. For the example shown, if we consider the dominant period 

(distance between two peaks), our analysis window will contain 20 samples, equivalent to ~ 20 

msec. Other examples of analysis windows are depicted, including the smallest possible equivalent 

to the sample increment, in this case, 1 msec.  

Figure 1.6. A representative vertical slice (224) and time slices at t=-191ms) through the (A) 3D 

model that shows (B) 15 Hz data, (C) 60 Hz data, (D) 90 Hz data, and (E) 180 Hz data. Notice the 

improvement in the channel architecture's detail with the increase in the dominant frequency and 

corresponding spectral bandwidth, being able to interpret complexes from figure B on. 

Figure 1.7. Results on the attribute sensitivity analysis to thickness and extent of architectural 

elements using a default analysis window. We present results on the 30 Hz dataset, analogous to 

vintage seismic data (to the left), and the 60Hz dataset, representing modern seismic data (to the 

right). Each attribute is presented for both frequencies in a representative inline (224) and time 

slices (-280 ms and –191ms) as follows: (A) RMS (Root Mean Square) amplitude for 30 Hz (B) 

coherence (Sobel filter) for 30Hz, (C) Instantaneous frequency for 30 Hz, (D) RMS amplitude for 

60 Hz (E) coherence (Sobel filter) for 60Hz, (F) Instantaneous frequency for 60 Hz.  

Figure 1.8. RMS amplitude sensitivity analysis to evaluate the effect of the window size W on the 

vertical smearing of the different channel elements in the model. (A) 15 Hz with W=2ms (B)50 Hz 

with W=50ms (C) 30Hz with W=2ms (D) 50 Hz with W=50ms (E) 180 Hz with W=2 ms (F) 180 

Hz with W=50 ms. High-frequency data with a small analysis window provides the most suitable 

representation of the true model. In RMS amplitude, the most accurate facies depiction is given by 
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high frequencies and small window combination, imaging channel element base, and inner and 

outer levee facies. 

Figure 1.9. Sobel filter coherence attribute sensitivity analysis to evaluate the effect of the window 

size W on the vertical smearing and displacement of the different architectural elements in the 

model. (A) 15 Hz with W=2ms (B)30 Hz with W=2ms (C) 60Hz with W=2ms (D) 60 Hz with 

W=50ms. Notice how at a higher dominant frequency (60Hz) and smaller window of analysis, 

there is better detection of the channel element edges and channel element fill. In contrast, at lower 

frequencies and or larger windows of analysis, there is interference from deeper channel elements, 

as in the case presented on Figure 3. 

Figure 1.10. Sensitivity analysis of the effect of random noise in channel architecture 

interpretation. Results shown refer to the 60 Hz dominant frequency seismic volume (which would 

be analog to real datasets). (A) 5% band-limited random noise added evaluated in RMS, 

Coherence, and Instantaneous frequency attributes. Interpretation of prominent features like 

channel complexes is only possible. (B) 5% band-limited random noise added applied to RMS, 

coherence, and instantaneous frequency attributes. Notice how the increase in noise is detrimental 

in the channel architecture interpretation, especially when using coherence. This may be due to the 

sensitivity that small windows have on high noise content.  

Figure 1.11. Generalized workflow for a geoscientist to avoid pitfalls in interpretation by getting 

optimized results according to their dataset.  

Figure 2.1: A visual guide showing the steps used to convert outcrop measurements to a synthetic 

model. (A) Location of Laguna Figueroa outcrop in the Patagonia-Chile. (B)Upper and Lower 



xii 
 

Figueroa channel complexes identified in the outcrop, including boundaries and inner channel 

elements. The red line indicates the outcrop profile. (C) Creation of a 3D geocellular model using 

the constraints from (B) augmented by facies associations and corresponding rock properties, 

including acoustic impedances from GOM (Gulf of Mexico) and Nigerian analogs. (D) The 

Ormsby wavelet and a representative vertical slice through the 3D synthetic seismic data volume 

generated from the model shown in (C). Courtesy of Teresa Langenkamp and Lisa Stright. 

Figure 2.2 Workflow of the study. 

Figure 2.3.  (A) Representative vertical slice of the original amplitude volume and seismic 

attributes used as input: (B) Peak Magnitude, (C) Envelope, (D) Root Mean Square amplitude 

(E) Spectral component 20 Hz, (F) Spectral component 40 Hz, (G) Spectral component 55Hz. 

The spectral components were used as a spectral decomposition volume. 

Figure 2.4. Representation of (A) Self-Organizing Maps and (B) Generative Topographic Maps 

(adapted from Roy et al., 2013). Given an initial set of datapoints, they will be inputted in a 

lower dimensional latent space.  In both cases the data is later projected in a high dimensional 

latent space where a manifold space best will fit the arranged data. For (A) the BMU or winning 

neuron is selected via weighting and each BMU will be representative of the group (cluster) the 

datapoints that get closer to them will form. For (B) there are a series of basis function centers 

whose linear combination will allow the projection of the grid points in the non-Euclidean 

manifold plane as 𝑚𝑚𝑘𝑘 vectors. Adaptation to the manifold plane occurs as a product of Gaussian 

Pdf that occur around each vector. The main difference between the SOM and the GTM 

regarding their result presentation is that while SOM assigns each data point to exactly one place 

on the map GTM calculates a distribution for each data point on the map. 
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Figure 2.5. Geobodies per facies in the 3D model that serves as basis for the uncertainty 

quantification analysis. 

Figure 2.6. SOM and GTM results per cluster arrangement and heat map per case. (A) SOM of 

256 clusters, (B) GTM of 2566 clusters.  

Figure 2.7. SOM and GTM results per cluster arrangement and heat map per case. (A) SOM of 36 

clusters, (B) GTM of 36 clusters, (C) SOM of 81clusters, (D) GTM of 81 clusters, (E) SOM of 

256 clusters, (F) GTM of 256 clusters. 

Figure 2.8. Geobody comparison per case and facies compared to the original/ expected 

geobodies. 

Figure 2.9. Visual representation of uncertainty in unsupervised ML methods. (A) Shows a section 

of the original 3D model, which has been filtered y the channel facies for visualization purposes. 

(B)Presents the same section in the results of GTM36 once they have been concatenated and 

resampled. Notice how some voxels represent the correct facies but others do not. This 

demonstrates that the use of ML methods will add uncertainty in the reservoir understanding 

(dimensions, facies, and volumetrics). 

Figure 3.1. Workflow used in the uncertainty assessment of deepwater facies classification using 

a random forest classification algorithm, applied to an outcrop-derived 3D synthetic seismic model 

(Langenkamp, 2021). The choice of seismic attributes used in this model is discussed in La Marca 

et al (2023). * Notice that the original model has been divided into two: upper portion to perform 

the RF model, and the lower portion (green) to validate or apply in this unseen piece of model. In 
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this study, it's important to note that the terms 'test' and 'validation' are not interchangeable. 

Validation is employed here to understand uncertainty.   

Figure 3.2. First row: 3D Model and synthetic amplitude volume, second and third row: calculated 

seismic attributes used in the study. Peak magnitude, envelope and Root Mean Square amplitude 

(RMS) are often used to highlight changes in lithology, whereas spectral magnitudes are used to 

interpret architectural elements of different thicknesses.  

Figure 3.3. (A) Scatter plot displaying the correlation between input seismic attributes used as 

training data. Datapoints color code represent the facies defined (Yellow: channel axis, Orange: 

channel off-axis, Brown: channel margin, Red: Mass Transport deposits (MTD), and Gray 

(background shale) (B) Box plots showing the uniqueness of each attribute in representing each 

facies. Notice how shale can always be distinct from the channel facies overall. 

Figure 3.4. Histogram of samples count per facies (label) in the training dataset. Although the 

shale has greater representation than the other four facies, this imbalance is representative of actual 

deepwater channel facies distribution.  

Figure 3.5. A histogram that shows seismic attribute (feature) importance. Notice how peak 

magnitude considerably outperforms in the analysis. This might be attributed to this attribute 

sensitivity to changes in tuning which benefits different architectural facies recognition. 

Figure 3.6. Correlation matrices (left) and classification report (right) to evaluate RF classifier 

performance. Confusion matrix compare original (on the Y-axis) versus predicted (on the X-axis) 

classes in a n x n configuration. The main diagonal of the matrix reveals the correctly predicted 

classes (facies), while off-diagonal elements represent misclassifications into other classes. (A)RF 
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results applying test #1 hyparameters indicated in Table 2, (B) Optimized random forest model 

results, applying test #6 hyperparameter values in table 2 Notice how accuracy increases 

substantially with the hyperparameter optimization.  

Figure 3.7. Comparison of (A) original model (B) unoptimized RF- test#1 in table 2-, and (C) RF 

classification with optimized hyperparameters – test #6 in table 2-. Notice how the prediction is 

highly improved in C, over B as compared to the truth model. If we didn’t optimize 

hyperparameters we would be overestimating the channel axis facies and underestimating thinner 

facies such as the channel margin and MTD.  

Figure 3.8. A) confusion matrix and (B) classification report for the validation model. Here we 

see a decrease of ~ 20% in accuracy when applying the optimized RF model to unseen data. See 

Figure 6 for reference. Support refers to the number of voxels per facies. 

Figure 3.9. Comparison of (A) original vs (B) predicted RF validation. In this chart, facies have 

been isolated via opacity to compare areal distribution and proportions visually. Channel 

complexes’ location and orientation are predicted well. Chanel axis, shale. and MTD facies show 

predominance over the other channel facies, which has been misclassified into either of these 

predominant channel facies or shale. 

Figure 3.10. Comparison of true vs predicted facies in the validation model in (A) Representative 

crossline, (B) representative time slice. Notice how channel position and orientation has been 

correctly predicted to be able to differentiate between shale (non- reservoir) facies and channel 

(reservoir) facies. It is observed a predominance or likelihood of prediction of class 1 (channel 
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axis) and class 5 (MTD) over other channel facies. Channel axis facies are more evident were 

channels stack vertically. 

Figure 4.1. (A) samples per facies histogram in a training dataset showing an imbalance between 

predominant shale facies and minoritarian channel facies. (B) Feature relation vis scatterplot 

showing that gray (shales) predominates and in some cases its range is wide so it overlaps with 

other classes. 

Figure 4.2. Elbow plot indicates that the optimal number of clusters is 3, and GTM results reveal 

MTDs in a light green geobody (GTM green), Shale in red geobody (Purple/blue in GTM), and 

channel facies combined in dark green geobody (orange in GTM). This demonstrates that not every 

cluster has to represent a single facies. The elbow plot is a valuable tool for estimating the optimal 

number of clusters. The amount of clusters may be related to the quality and resolution of the data 

and distintive patterns found. 

Figure 4.3. Workflow to optimize machine learning results for facies interpretation in the face of 

imbalanced datasets. 
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ABSTRACT 
 

Accurate subsurface reservoir mapping is essential for resource exploration. In uncalibrated 

basins, seismic data, often limited by resolution, frequency, quality etc., algorithms become the 

primary information source due to the unavailability of well logs and core data. 

Seismic attributes, while integral for understanding subsurface structures, visually limit 

interpreters to working with only three of them at once. Conversely, machine learning, though 

capable of handling numerous attributes, is often seen as inscrutable "black boxes," complicating 

the interpretation of their predictions and uncertainties. 

To address these challenges, a comprehensive approach was undertaken, involving a detailed 

3D model from Chilean Patagonia's Tres Pasos Formation with synthetic seismic data. The 

synthetic data served as a benchmark for conducting sensitivity analysis on seismic attributes, 

offering insights for parameter and workflow optimization. The study also evaluated the 

uncertainty in unsupervised and supervised machine learning for deepwater facies prediction 

through qualitative and quantitative assessments. 

Study key findings include: 1) High-frequency data and smaller analysis windows provide 

clearer channel images, while low-frequency data and larger windows create composite 

appearances, particularly in small stratigraphic features. 2) GTM and SOM exhibited similar 

performance, with error rates around 2% for predominant facies but significantly higher for 

individual channel-related facies. This suggests that unbalanced data results in higher errors for 

minor facies and that a reduction in clusters or a simplified model may better represent reservoir 

versus non-reservoir facies. 3) Resolution and data distribution significantly impact predictability, 

leading to non-uniqueness in cluster generation, which applies to supervised models as well. 

Strengthening the argument that understanding the limitations of seismic data is crucial. 4) 
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Uncertainty in seismic facies prediction is influenced by factors such as training attribute selection, 

original facies proportions (e.g., imbalanced data, variable errors, and data quality). While 

optimized random forests achieved an 80% accuracy rate, validation accuracy was lower, 

emphasizing the need to address uncertainties and their role in interpretation. 

Overall the utilization of ground truth seismic data derived from outcrops offers valuable 

insights into the strengths and challenges of machine learning in subsurface applications, where 

accurate predictions are critical for decision-making and safety in the energy sector. 
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CHAPTER I: INTRODUCTION 
 

The accurate interpretation of seismic facies plays a pivotal role in understanding subsurface 

reservoirs, making informed decisions, and optimizing resource extraction strategies. In the realm 

of deepwater exploration, where the complexity of geological features often poses significant 

challenges, achieving precise facies interpretation becomes even more critical. This dissertation 

delves into the intricate world of seismic facies interpretation in deepwater environments, 

addressing key challenges and uncertainties through three main chapters. 

 

In the second chapter, we introduce the objective of the study and embark on a journey to test 

the sensitivity of seismic attributes in identifying deepwater channel facies. We explore how 

various seismic attributes respond to subtle geological variations, aiming to enhance the accuracy 

of interpretation. Additionally, this chapter sheds light on the potential pitfalls in attribute 

interpretation. By pinpointing these pitfalls, we aim to develop a deeper understanding of the 

limitations and challenges faced when attempting to discern complex geological features from 

seismic attribute data. 

 

Chapter 3 delves into the realm of unsupervised machine learning techniques for deepwater 

seismic facies interpretation. Here, we contrast the clusters obtained through these techniques with 

ground truth models, emphasizing the uncertainties inherent in such approaches. This chapter 

serves as a critical examination of the effectiveness and limitations of these state-of-the-art 

methods, enabling us to better grasp the nuances of seismic facies interpretation in deepwater 

environments. 
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The fourth chapter explores the application of a robust supervised machine learning method, 

Random Forest, in the context of seismic facies interpretation. We investigate the challenges posed 

by imbalanced data and delve into strategies for optimizing results. By addressing these 

uncertainties and offering potential solutions (shown in a section after Chapter 4), this chapter aims 

to provide a more accurate and reliable framework for seismic facies classification using 

unsupervised ML in deepwater settings. 

The ability to accurately interpret seismic facies in deepwater environments carries immense 

implications for decision-making across industries. Beyond the hydrocarbon relevance, this 

dissertation highlights the relevance of precise facies interpretation in geothermal energy 

exploration and carbon capture, utilization, and storage (CCUS) initiatives. Accurate seismic 

facies interpretation not only informs volumetric assessments but also influences critical decisions 

related to reservoir management, well placement, and risk mitigation. 

All in all, this dissertation navigates the multifaceted landscape of deepwater seismic facies 

interpretation, addressing sensitivity, uncertainty, and optimization. By addressing these 

challenges, we contribute to the advancement of knowledge and practices in subsurface 

exploration, with a broader impact that extends to industries beyond hydrocarbon extraction. The 

journey through these chapters exemplifies the necessity for accurate seismic facies interpretation 

as a cornerstone for informed decision-making and sustainable resource management. 
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CHAPTER 2: SENSITIVITY ANALYSIS OF SEISMIC ATTRIBUTES 

PARAMETRIZATION TO REDUCE MISINTERPRETATIONS: APPLICATIONS TO 

DEEPWATER CHANNEL COMPLEXES* 

 

 
*This chapter is published in the journal, Marine and Petroleum Geology, Vol. 153, (July 2023); p. T585-T598: 

La Marca, K., H. Bedle., L. Stright., and K.J. Marfurt, 2023, Sensitivity analysis of seismic attributes 
parametrization to reduce misinterpretations: Applications to deepwater channel complexes: Marine and Petroleum 
Geology, 153, 106309, Elsevier. https://doi.org/10.1016/j.marpetgeo.2023.106309 

 

*This chapter was presented at the 2021 AAPG & SEG (IMAGE) Annual Convention & Exhibition: 

La Marca, K., K. Marfurt., H. Bedle., L. Stright, and T. Langenkamp, 2021, Sensitivity analysis of seismic attributes 
parametrization for interpretation of a multi-story deepwater channel system: Tres Pasos Formation, Magallanes 
Basin Chile:  First International meeting for Applied Geosciences and energy expanded abstracts: 1191-1195. 
https://doi.org/10.1190/segam2021-3584026.1 

 

   

Abstract 

Geoscientists apply algorithms such as seismic attributes to better interpret depositional 

systems that enhance various aspects of the seismic data. However, they are limited by the original 

seismic amplitude or frequency content, data quality, and algorithm parameters considered.  

Additionally, our capacity to interpret depositional system architecture is limited by seismic 

resolution, which results in potential misinterpretations associated with the correct position of 

stratigraphic features. This is particularly important as mapping reservoir architecture (geobody 

size, shape, and stacking patterns) in the subsurface is critical for exploring and producing 

hydrocarbons, CO2 storage, and geothermal resource development since it can define connectivity 

or compartmentalization of flow zones. 

To address these concerns, we investigated five synthetic seismic volumes from low to high-

frequency bandwidths of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz based on an architectural model 

https://doi.org/10.1016/j.marpetgeo.2023.106309
https://doi.org/10.1190/segam2021-3584026.1
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of an outcropping deepwater channelized slope system in the Magallanes Basin, Chile. We 

analyzed 1) how seismic bandwidth affects the resolution of stacked stratigraphic features (i.e., 

deepwater channel elements and Mass Transport Deposits (MTDs)) and their subsequent seismic 

interpretation, and 2) the effect of different seismic attributes commonly employed in channel 

interpretation on our data to understand the “mixing” or “vertical smearing” of stratigraphic 

features by comparing the seismic with the true geological model 3) we explored how the 

attributes’ parametrization affects the imaging of differently sized features by modifying the 

analysis window in each case from +/-2ms to +/- 50 ms. Finally, 4) we evaluated the effect of 

different noise levels in the sensitivity analysis. 

Results show that the “mixing” of events occurs mainly as a result of 1) the seismic 

bandwidth, 2) the algorithm used for each seismic attribute calculation, 3) the attribute vertical 

analysis window, and 4) the signal-to-noise ratio of the data. Broadband, higher frequency data, 

and small analysis windows provide clearer images of the stacked channels. In contrast, low-

frequency data and larger analysis windows result in more mixing or “composite” appearances, 

affecting interpretations and net-to-gross estimates, especially in small-size stratigraphic features 

such as individual channel elements and Mass Transport Deposits (MTDs). Our observations warn 

of potential misinterpretations in applying default attributes to actual seismic data, especially in 

geometrical attributes and window-dependent ones. Recognizing these misinterpretations is 

paramount for reconstructing deepwater architecture (this study), sedimentary and structural 

studies for drilling locations, reserves estimation, and overall uncertainty assessment. 

Keywords: deepwater; seismic facies; architectural elements; seismic geomorphology; 

interpretation; seismic attributes; channel complex, analysis window. 
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Motivation and objectives 

Seismic exploration of deepwater channels is challenging due to the physical properties 

inherent to the seismic, the variability in fill and stacking of reservoir geobodies, and the 

uncertainty that can occur due to the lack of hard data (core or well data). Reservoir architecture 

controls the distribution of fluids in the subsurface and the connectivity (or 

compartmentalization) of the reservoir that impacts recovery or injectivity. Therefore, 

geoscientists seek to understand how sensitive the interpretation of reservoir architecture is to 

different quality and types of seismic data, as well as different attributes and parameters 

commonly used to identify the architecture better and to make appropriate well plan decisions, 

volumetric and recovery/storage estimates. 

The primary questions we aimed to address with the study are: 

• How does the seismic data's frequency content affect the imaging of deepwater 

architecture? 

• What is the effect of each seismic attribute on the architecture interpretation and its true 

position, both vertically and horizontally? 

• What is the effect of the seismic attribute analysis window size on the vertical smearing of 

architecture? 

• What is the effect of seismic noise on our sensitivity analysis? 

The study's importance is identifying common pitfalls in seismic interpretation using 

synthetic seismic data created from an outcrop-derived architectural model of a seismic-scale 

deepwater channel system. Studies with synthetic data like this allow geoscientists to understand 

uncertainty in interpreting channel architecture from seismic data.  
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Introduction 

When it comes to reservoir characterization using seismic reflection data, even if we 

employ all the tools available to interpret, locate, and measure the reservoir that will contain (oil, 

gas, and water) or allow for the storage (geothermal, CO2) of economic resources, uncertainty 

prevails. This interpretational ambiguity occurs due to changes in various physical parameters in 

response to the media and the seismic records’ inherent acquisition and processing characteristics. 

The imaging and interpretation of different-sized stratigraphic features in the subsurface 

using seismic reflection data are often compromised due to limits in seismic resolution, which in 

addition to tuning effects, can influence volumetric interpretations and gross rock volume 

calculations (Pemberton et al., 2018). Therefore, geoscientists need to understand the common 

pitfalls associated with seismic interpretation: the impact of the frequency content on the imaging 

of reservoir architecture, the choice of parameters and attributes’ influence on the interpretation of 

architectural elements, and the detrimental impact noise can have on the overall picture. To address 

this, we performed a sensitivity analysis that evaluated four parameters: frequency content, the 

effect of the seismic attribute, the impact of the window of analysis, and noise level combined with 

five 3D synthetic datasets. 

 The synthetic data that was derived from an outcrop analog in Magallanes Basin, Chile 

(Ruetten, 2021), and employed realistic acoustic impedances. The models that used a series of 

zero-phase Ormsby wavelets and 1D convolution (Langenkamp et al., 2021) allowed us to better 

understand how seismic bandwidth and seismic attribute parametrizations affect the resolution of 

stacked stratigraphic features in a seismic-scale channel system, providing insights that could be 

beneficial to the industry for drilling decisions, whether it is for hydrocarbon, geothermal, or 

CO2 storage purposes. 
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In order to extract the most value and information from the seismic data, seismic 

interpreters often derive seismic attributes from the data to reveal additional stratigraphic or 

structural features. These attributes provide a means to enhance vertical and lateral changes in 

reflectivity, thickness, continuity, and orientation of seismic features. From the exhaustive list of 

seismic attributes existent, we focus on amplitude-derived, instantaneous, and geometric 

attributes for offering promising results in channel architecture definition (La Marca, 2020). All 

coherence algorithms (that belong to the geometric attributes’ class) use a vertical and lateral 

analysis window, whether they are based on cross-correlation, semblance/variance, 

eigenstructure analysis, or the gradient structure tensor. For good quality data, Marfurt et al. 

(1998) found it best to analyze stratigraphic features using a temporal analysis window as narrow 

as possible, determined by the highest frequency in the data or the 3rd frequency corner in the 

Ormsby wavelets. For poor-quality data, a larger window approximating the dominant period of 

the data provides improved results with minimal stratigraphic mixing.  

Pemberton et al. (2018) and Langenkamp (2021) provided insights into the effect of 

amplitude and frequency on architectural element imaging and interpretation and facies 

classification. Nonetheless, the impact of seismic attributes, the parameters, and the noise content 

were not evaluated. Hence, this is a one-of-a-kind study that focuses on assessing the complexities 

of attribute parameterization using synthetic data based on a known geologic model. 

 With the true model known, attribute parameterization and its effects on stratigraphic 

interpretation can be quantified, particularly highlighting the parameters that impact the apparent 

stratigraphic mixing or smearing of events such as the windows of analysis.  

We first describe the aspects related to the architectural (outcrop) model and the 

characteristics of the synthetic datasets used. Then, our workflow is explained, providing details 
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on the four parameters evaluated. Results are presented and focused on the cases derived from 

parameter combinations/sensitivity analysis. In the end, we provide a table and workflow that 

allows geoscientists to identify potential pitfalls in interpretation and address them according to 

their individual datasets, as best practices in interpretation should be documented and available to 

the geoscientific community to help reduce uncertainty in reservoir characterization. 

 

Geological model description 

The geological model that is the basis of this study is derived from a sandstone-rich 

deepwater channel system along a progradational slope system (Hubbard et al., 2010). These 

deepwater slope deposits from the Late Cretaceous (70-80 Mya) Tres Pasos Formation are 

exposed on approximately 3 km long, 200m thick outcrops near Laguna Figueroa in the 

Magallanes Basin, Southern Chile (Macauley and Hubbard, 2013; and Hubbard et al., 2014). The 

high quality of the stacked channel systems has been used to construct a seismic-scale 3D 

architectural model of the deepwater channel system (Pemberton et al., 2018; Jackson et al., 

2019; Langenkamp et al., 2020; Ruetten, 2021). According to Fildani et al. (2013) the outcrop is 

analogous to many slope channel systems globally in stratigraphy and depositional setting, which 

makes it an excellent benchmark for any study that aims to address problems associated with 

channel interpretation. 

The models are the result of several studies from Macauley and Hubbard (2013), Fletcher 

(2013), and Southern et al. (2017) combining measured sections, hierarchical stratigraphic 

interpretations, paleoflow measurements and thousands of GPS data points that calibrated a drone-

derived photomosaic. For these models, the fundamental architectural component are channel 

elements, defined as distinct, mappable channelized sedimentary bodies (Figure 1.1). Multiple 

stacked, related channel elements form a channel complex, and two or more complexes form a 
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channel complex set (McHargue et al., 2011; Macauley and Hubbard, 2013, Meirovitz et al., 2020; 

Figure 1.1). The outcrops at Laguna Figueroa contain two complex sets, simply referred to as the 

Upper and Lower Figueroa. The upper complex set consists of eight channel elements and are 

grouped into four distinct channel complexes. The lower complex set contains twelve channel 

elements grouped into three channel complexes.  Elements are modeled with a standardized width 

of 400 m and thickness of 25 m.  Three additional architectural components are present in the 

outcrop: mudstone drapes at the base of channel elements, mass transport deposits (MTDs) at the 

base of channel complexes, and inner-levee thin-bed deposits encasing the channelized elements 

(Macauley and Hubbard, 2013; Hubbard et al., 2014). The geological models consist of five facies: 

1) channel element axis in yellow, 2) channel element off-axis in orange, 3) channel element 

margin in brown, 4) homogeneous shale in gray, and 5) background shale (inner and outer levee 

facies) in white (Figure 1.2C).  

Jackson et al. (2019) developed the first fine-scale geocellular model combining channel 

planforms and vertical stacking for the lower outcrop section (lower channel system) but did not 

include hierarchical groupings in the architecture. Pemberton et al., (2018) generated forward 

seismic models using Jackson et al. (2018)’s model and analyzed seismic interpretation of 

architecture as a function of seismic resolution.  Nielson (2018) analyzed the tuning effects of 

single channel elements. Ruetten (2021) updated Jackson’s initial model with new interpretations 

and added an upper channel system separated from the lower system by a debris flow, and 

studied how stacking patterns impact reservoir connectivity and fluid flow. Finally, Langenkamp 

(2021) analyzed the influence of stacked channel element architecture on facies classification 

using Ruetten’s model. This work utilizes the geocellular model of Ruetten (2021) and synthetic 

seismic models from Langenkamp (2021). 
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 The five synthetic seismic models used in this study were built using a series of zero-

phase Ormsby wavelets of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz and 1D convolution (Chile 

Slope Systems research consortium; Langenkamp et al., 202; Figure 1.2C) with a reflectivity 

model. More aspects of each model are found in Langenkamp (2021). Facies-based rock 

properties (Figure 1.2B), adopted from Stright et al. (2014), show that amplitude peaks represent 

an increase in acoustic impedance (Figure 1.2D). In contrast, troughs depict a decrease in 

acoustic impedance. The synthetic volumes have a vertical window of 500 ms. For analysis 

purposes, we cropped the volume from 120ms to 380ms to avoid dead/blank zones in the 

reflectivity and focus on the target channel systems. 
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Figure 1.1. Stratigraphic hierarchy: from a single element to complex sets. A vertical slice within the 
Pipeline 3D dataset offshore New Zealand shows the seismic appearance of different architectural 
hierarchies in deepwater channels, with corresponding cartoons below. The smallest architecture (4th to 5th 

order) is the channel element (box 1 in green). The second hierarchy (6th order) occurs when the channel 
elements stack together, forming a channel complex (box 2 in blue). The higher-order hierarchy (7th order 
and higher) occurs with the amalgamation of channel complexes, developing a channel complex set (box 3 
in magenta). The color legend indicates the distinct facies that commonly occur within each element of 
each architecture. Measuring the sizes of each architectural element indicated on the right as well as their 
hierarchy, provides key insight into the underlying depositional processes as well as a prediction of the 
more common lithologies. Hierarchies mentioned follow Pickering and Cantalejo (2015) classification.  
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Figure 1.2: A visual guide showing the steps to convert outcrop measurements to a synthetic model. (A) Location and 
exposure of the outcropping deepwater channels at Laguna Figueroa. Paleoflow is from North to South (obliquely and 
to the right into the outcrop at this location) (B) Conceptual diagram of the Upper and Lower Figueroa outcrops 
showing channel elements, complexes, and complex sets. The red line indicates the outcrop profile. Left of the line is 
into the outcrop face, and the right has been eroded away. (C) geocellular model using the constraints from (B) 
augmented by facies and corresponding rock properties, including acoustic impedances from Shallow Offshore West 
African modeled rock properties (Stright et al., 2014). (D) The Ormsby wavelet and a representative vertical slice 
through the 3D synthetic seismic data volume generated from the model shown in (C). Courtesy of Teresa 
Langenkamp and Lisa Stright. 
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Methods 

To address the questions posed in the study and focus on analyzing the effect of 

bandwidth on vertical resolution, we introduce the term "stratigraphic event mixing." This 

vertical smearing phenomenon is explained in Figure 1.3, using a real example where the 

interference of channels from other stratigraphic levels is evident. As depicted in Figure 1.4, 

first, we performed an exploratory data analysis to define a vertical window of interest 

constrained to the objective of the study: 120 ms and 380 ms from our five volumes of synthetic 

seismic data. After cropping the 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz dominant frequency 

volumes, we performed a sensitivity analysis on four parameters: 1) frequency content, 2) 

seismic attribute effect, 3) the effect of the analysis window, and 4) the influence of band-limited 

random noise.  

Next, we calculated a series of seismic attributes from amplitude accentuating, geometric, 

and instantaneous attributes commonly employed in seismic interpretation of channel systems. 

Due to the number of cases to evaluate, we decided to explore and present the most 

representative seismic attributes for each case in detail (the most commonly used and that 

provided better results). Next, for each scenario, we defined a suite of 3-trace by 3-trace analysis 

windows with various vertical lengths from 2 ms to 50 ms. For visualization and interpretation 

purposes, we used co-rendering techniques. Finally, we explored the impact of the addition of 

low and high levels of noise. 

The final analysis of the results was performed by combining the aforementioned parameters into 

the following cases: 1) the response on the same attribute and analysis window in the different 

bandwidth volumes, 2) the impact of changing the analysis window for different seismic 
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attributes, 3) the effect of changing the window of analysis size for the same seismic attribute, 

and 4) the effect of noise. All cases were contrasted with the initial actual data/model. 

More details and considerations taken in each parameter evaluation are presented below. 

 

Figure 1.3. Explanation of stratigraphic event mixing or vertical smearing of stratigraphic features. (A) 
Vertical resolution of channel elements related to different peak frequencies (modified after Nielson, 
2011). (B) Vertical slice through the 3D Pipeline 3D offshore New Zealand seismic survey showing a 
channel complex and a Horizon used for interpretation at different stratigraphic levels indicated by yellow 
arrows. The dominant frequency at this level is 40 Hz giving a dominant period of 25 ms. (C) Stratal 
slices at approximately 25 ms intervals through the coherence volume computed using a ±20 ms analysis 
window show “stratigraphic” mixing by the seismic wavelet. Note that the relatively straight channel 
form at 2050 ms can be seen at 2080 ms and other stratigraphic levels (1,2,3 from deeper to shallower) 
where other channel forms (green arrow) appear causing interference. The cause of this mixing could be 
1) mixing of reflectivity by the 25ms dominant period seismic wavelet, 2) mixing of discontinuities 
through the 40 ms coherence computation, 3) shifting of the basal channel element thalweg due to 
compensational style as you move up or 4) differential compaction over deeper discontinuities between 
the floodplain and the channel element fill. 
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4.1. Parameter 1: frequency content effect 

Tuning thickness is the temporal resolving power of seismic data. Some authors use 

resolution and tuning thickness terms interchangeably, although tuning starts right below the 

vertical resolution. Table 1.1 presents the tuning thickness for each element in the synthetic 

volumes studied here. Knowing the resolvability in seismic is paramount to understanding the 

effect of other parameters considered in the sensitivity analysis. 

Resolution is the ability to resolve by seismic interpretation methods two features that are 

close together. By definition, the vertical resolution of seismic data is ¼ of the wavelength (λ), 

where the λ is determined by dividing the average velocity by the dominant frequency. 

 

Figure 1.4. Workflow of the study. Four different parameters were evaluated in the sensitivity analysis: 1) 
the effect of frequency content, 2) the impact on the choice of the seismic attribute, 3) the analysis window 
effect, and 4) the sensitivity to band-limited random noise addition. The best cases were selected to be 
shown in each case, and analysis was performed by comparing them with the original 3D geological model 
derived from the Laguna Figueroa Deepwater outcrop. This resulted in 4 cases for analysis, ultimately 
leading to a workflow and documentation of best practices in channel architecture interpretation. 
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The frequency content was the first parameter evaluated for the impact on the 

interpretation and resolvability of the different architectural elements. The five dominant 

frequency synthetic seismic volumes were analyzed, and we compared the results with those of 

Pemberton et al. (2018), and Langenkamp (2021). 

 
Channel elements MTDs 

Dominant Frequency 

(Hz) 

Tuning Thickness (m) Tuning Thickness (m) 

15 48.9 53.2 

30 24.4 26.6 

60 12.2 13.3 

90 8.1 8.9 

180 4.1 4.4 

 Table 1.1. Tuning thicknesses for shallow and deep elements in each synthetic seismic volume. Modified 

from Langenkamp (2021). 

4.2. Parameter 2: Choice of seismic attributes  

A seismic attribute is a computation made from algorithms applied to seismic data to get 

a more interpretable output. These responses relate to rock physical properties (La Marca, 2020) 

in rocks and fluids in the subsurface. However, there are tens if not hundreds of seismic 

attributes (Barnes, 2016), and time constraints do not allow for testing them all. Some of the 

latest studies (Posamentier and Kolla, 2003; Chopra and Marfurt, 2007; Hossain, 2020; and La 

Marca and Bedle, 2022) have proven the successful application of amplitude accentuating, 

geometrical and instantaneous attributes applied to PSTM data to interpret and characterize 

channel elements and complexes in both fluvial and deepwater settings. Generally, we need the 
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combination of a geometrical attribute that allows defining edges and at least one attribute that 

provides insights into stratigraphy (La Marca et al., 2019) to characterize channel features in 

seismic data. Therefore, we focused on testing attributes that belonged to those three attribute 

categories and chose the most prominent of each class. 

Table 1.2 summarizes the most representative seismic attributes selected for each class: root 

mean square amplitude (RMS), Sobel filter coherency, and instantaneous frequency. 

Attribute Appearance Attribute 
Category Measurement Use in architecture 

interpretation 

Coherence 

 

Geometric  

Direct measure of waveform 
similarity or how similar 

waveforms or traces are in a 
volume- used to emphasize 
continuous events or edges. 

Delineates edges of 
channel elements  

RMS 
amplitude 

 

Amplitude/Energy  
Measures the square root of 
the average energy within a 

vertical window.  

Provides measure of 
channel element vs 

inner levee 
Provides statistical 

measures of channel 
element fill between 
two picked horizons  

Instantaneous 
frequency 

 

Spectral 
A simple approximation of 
the mean frequency of the 

seismic wavelet.  

Channel element 
thickness 

 

Table 1.2. Selected seismic attributes to perform the sensitivity analysis showing a representative image, 

feature measurement, and use in channel element interpretation.   

4.2.1. RMS amplitude 

The RMS amplitude is an amplitude accentuating attribute often used for stratigraphic 

and lithologic variations enhancement. It is defined by the standard deviation, σ(t), of the data, 

d(t), within a running analysis window, subsequently measuring the reflectivity within that 
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window (Meek, 2015). For a window that ranges from -T=-KΔt to +T=+KΔt about a sample j, 

the RMS amplitude is: 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅(𝑗𝑗∆𝑡𝑡) = σ(𝑗𝑗∆𝑡𝑡) = � 1
2𝐾𝐾+1

 ∑ {𝑑𝑑[(𝑗𝑗 + 𝑘𝑘)∆𝑡𝑡)]}2+𝐾𝐾
𝐾𝐾=𝐾𝐾 �

1/2
      . Eq (1) 

In this study, we evaluated how well RMS showed stratigraphic variations.  

4.2.2. Coherence (Sobel Filter) 

Seismic coherency is a measure of how similar traces are among their neighbors, which is 

a response to lateral changes in the seismic record caused by variations in structure, stratigraphy, 

lithology, porosity, and the presence of hydrocarbons (Marfurt et al., 1998), and it is determined 

computing amplitude derivatives along structural dip. Sobel filter (Luo et al., 1996) is one of the 

many coherence methods, which for seismic data normalizes coherence data to produce results 

between 0 and 1, where 0 is the lowest coherence, and 1 is the highest coherence. It has proven 

to be effective in delineating channel element edges (La Marca and Bedle, 2021; Hossain, 2020; 

and Herron, 2011); therefore, we aimed to test the definition of the channel elements' edges.  

4.2.3. Instantaneous frequency 

The instantaneous frequency is computed sample by sample, is the time derivative of the 

instantaneous phase φ(t):  

F(t)=d[φ(t)]/dt.      Eq (2) 

and provides a simple estimate of the mean frequency of an isolated seismic event.  

Subrahmanyam and Rao (2008) find that the instantaneous frequency attribute can 

indicate bed thickness and provide lithology insights. Chopra and Marfurt (2007) emphasize 
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their usefulness in identifying abnormal attenuation and thin-bed tuning. Our model has thin 

features, such as channel elements (from axis, off-axis, to margins), that we aimed to test by 

using this instantaneous attribute. 

4.3. Parameter 3: Analysis window effect 

According to Lin et al. (2014), the scale of the window height, H, is a function of the 

dominant or peak frequency fpeak: 

  H=1/(2fpeak)   .   Eq (3) 

Applying this concept to our dataset spectrum, we would need to use a window of 2ms 

for the highest frequency volume (180Hz) and ~33 ms for the lower frequency volume (15Hz).  

 

 

Figure 1.5. A representative analysis window used in attribute calculations. Signals are sampled at discrete 
points, not continuous recordings. Therefore, each seismic trace will contain as many samples as the sample 
rate allows. For the example shown, if we consider the dominant period (distance between two peaks), our 
analysis window will contain 20 samples, equivalent to ~ 20 msec. Other examples of analysis windows 
are depicted, including the smallest possible equivalent to the sample increment, in this case, 1 msec.  
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To understand the concept of analysis window, we have drawn a cartoon (Figure 1.5) that 

shows a seismic trace with its respective samples. It illustrates how a small, medium or large 

analysis window would look and what a dominant period is. Usually, the number of samples 

considered in a default analysis window parameter setting is around 11 samples (default window 

60ms) for a 6ms sample rate dataset; in our dataset, the sample rate is 1ms. In real data, 

shallower, higher frequency data often shows smaller periods than the deeper strata/intervals 

where lobes of the traces are wider. Due to this change in frequency, some authors, like Lin et al. 

(2014), recommend using an adaptive window. However, this is not often possible or available in 

the software packages commonly used by geoscientists. Nonetheless, the geoscientist/interpreter 

can control the analysis window in the attribute settings. Therefore, we want to provide insights 

into the difference between a default analysis window and a shorter or larger one (which reduces 

or increases the number of samples, respectively). We compared the results from each different 

analysis window to the original, true data (the geological model), which provides a good 

sensitivity analysis for all kinds of datasets and any of the attribute families studied here.  

4.4. Parameter 4: Addition of band-limited random noise 

When seismic data is recorded, we find two components: signal and noise. The latter 

comprises all the unwanted recorded energy that contaminates seismic data, and it can be random 

or coherent (Kumar and Ahmed, 2021). Random noise is generated by activities in the 

environment where seismic acquisition work is being carried out, and this noise appears in a 

seismic record as spikes (Enwenode, 2014). Seismic noise levels depend on the type of 

acquisition—land or marine—and the intrinsic conditions unique to every site, such as climate, 

the burial of sensor, and wind (Tanimoto et al., 2015). Although there are many types of noise, 
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like Gaussian, Pink, Brownian, violet, and blue, in this study, our fourth parameter incorporated 

in the sensitivity analysis is the band-limited random noise.  

Signal-to-noise ratio (SNR) is a measure used to compare the degree of signal to the level 

of background noise, in which case a ratio larger than 1:1 suggests more signal than noise. So, 

the lower the SNR, the noisier our dataset. As Chen et al. (2019) mentioned, this will lower the 

quality of the seismic, affecting subsequent analyses such as imaging and inversion. 

We incorporated different noise levels, from a low noise added of 5% to a high 30%. 

Higher noise levels were not presented due to the incapacity to extract meaningful interpretations 

from the data. Nowadays, noise can be added to synthetic datasets thanks to available software 

like the one used in this study. 
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Results 

To address the study questions and link the parameters taken into account in the 

sensitivity analysis, we present the results summarized in four cases:  

5.1. Case 1: The effect of the spectral bandwidth on the imaging of architectural elements 

After evaluating the five synthetic models of 15 Hz, 30 Hz, 60 Hz, 90 Hz, and 180 Hz 

dominant frequencies, we observed that the level of detail of the different sized architectural 

elements increases with frequency; therefore, broadband, higher frequency provides better 

resolution.  

Figure 1.6 shows the effect of each frequency in imaging each geological element. Figure 

1.6B corresponds to the lowest frequency, and we can distinguish channel complexes and mass 

transport deposits (MTDs). However, smaller features like the 25m thick channel elements and 

MTDs are mixed in thicker, unresolvable reflectors. 

Figures 1.6C and 1.6D show frequencies commonly encountered in the subsurface (30Hz 

and 60Hz for vintage and recent data, respectively). Here, the individual complexes are well-

defined. Nonetheless, the amalgamation or stacking of elements presents a single response and 

minimal acoustic impedance contrast.  

Higher frequencies shown in Figures 1.6E and 1.6F present the best responses compared 

to the original model. Figure 1.6E can even differentiate some of the stacked packages; overall, 

the individual and stacked channel elements can be better resolved. It is noteworthy how the 

highest frequency (180 Hz) illustrated in Figure 1.6F starts to lose the definition of the inner 

reflectors. Another observation is that, in all cases, the vertical channel axis (center) is resolved 

better than the channel's margins, both as a function of thickness (channel elements are thickest 
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in the center at the axis) and acoustic impedance contrast (rock properties of channel element 

margin is more similar to inner levee than the channel element axis). 

In general, channel complexes sets are visible at all frequencies analyzed, whereas 

individual complexes start to be resolvable from 30 Hz and higher. However, when elements 

have vertical stacking, channels do not show contrast in acoustic impedance due to repeated 

material/ similar composition and properties, therefore the attribute response is also affected by 

this phenomenon. 

 

5.2. Case 2: Attribute sensitivity to thickness and extent of stratigraphic elements 

After performing the seismic attribute sensitivity analysis, we noticed that the thickness 

and extent of stratigraphic events imaging are inherently linked to the frequency content of the 

seismic, analysis window, and seismic attribute used. At peak frequencies commonly 

encountered in the subsurface (around 30- 60Hz), the number of complexes was underestimated, 

and the size, shape, and type of architectural bodies (channels elements vs. margins, elements vs. 

complexes) were difficult to differentiate (Figure 1.7). 

In most cases, channel complex sets were able to be interpreted. However, the 

amalgamation of smaller-scale channel elements results in an incorrect estimation of thicknesses. 

Nielson (2016) documented the same phenomenon. 
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Figure 1.6. A representative vertical slice (224) and time slices at t=-191ms) through the (A) 3D model 
that shows (B) 15 Hz data, (C) 60 Hz data, (D) 90 Hz data, and (E) 180 Hz data. Notice the improvement 
in the channel architecture's detail with the increase in the dominant frequency and corresponding spectral 
bandwidth, being able to interpret complexes from figure B on. 
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For example, in cases where similar facies were in contact, the acoustic impedance 

similarities did not allow for the differentiation of individual channel elements. Also, in tests 

performed with a large analysis window, the interpretation of smaller features was not possible 

(Figure 1.8B, 1.8D). 

 

Figure 1.7. Results on the attribute sensitivity analysis to thickness and extent of architectural elements 
using a default analysis window. We present results on the 30 Hz dataset, analogous to vintage seismic data 
(to the left), and the 60Hz dataset, representing modern seismic data (to the right). Each attribute is 
presented for both frequencies in a representative inline (224) and time slices (-280 ms and –191ms) as 
follows: (A) RMS (Root Mean Square) amplitude for 30 Hz (B) coherence (Sobel filter) for 30Hz, (C) 
Instantaneous frequency for 30 Hz, (D) RMS amplitude for 60 Hz (E) coherence (Sobel filter) for 60Hz, 
(F) Instantaneous frequency for 60 Hz.  

 

5.3. Case 3: Effect of the analysis window size on the vertical smearing of stratigraphic 

architecture 

To demonstrate the effect of the window size on the vertical smearing of the different 

architectural elements in the model, we show an RMS amplitude sensitivity analysis (Figure 1.8). 

We perceived that RMS amplitude offers a detailed picture of the various facies in the 180 Hz 

volume, including imaging of the MTD associated with the channel complexes and the 
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individual channel elements. However, for larger analysis windows and lower frequency 

volumes, for example, 50 ms window combined with a 15Hz dominant period seismic volume, 

such details are lost, resulting in an accentuated vertical stratigraphic smearing effect. Therefore, 

the application of amplitude-derived seismic attributes results more effective in higher frequency 

content datasets and using a small analysis window than in another configuration. It is 

noteworthy that a higher value of RMS is presented where an amalgamation of events occurs, 

which potentially leads to the interpretation of higher NTG (Figures 1.7 and 1.8). 

Since the Sobel filter coherence seismic attribute aids in detecting discontinuities, such as 

geological structures and edges, especially in time slices, we included this attribute in our 

analysis to identify the channel complexes and the edges of the channel elements (Figure 1.9).  

 We observe stratigraphic mixing occurring in the vertical slices when we utilize a larger 

analysis window. It is also noticeable that higher dominant frequency data in combination with a 

small analysis window allows for a correct placing of feature edges (Figure 1.9C), which is 

supported when compared to the true model. In contrast, the position of the channel element 

edges deviates from the original/ true location or becomes distorted when the analysis window 

size increases (Figure 1.9D) or the frequency of the data is small (Figure 9A) regardless of the 

analysis windows used. 

5.4. Case 4: Effect of noise in the sensitivity analysis 

Figure 1.10 shows the most prominent results of the sensitivity analysis on the noise effect. We 

compared, in this case, how instantaneous frequency, coherence, and RMS amplitude seismic 

attributes respond to variations in band-limited random noise from 5% to 30%. 
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Figure 1.8. RMS amplitude sensitivity analysis to evaluate the effect of the window size W on the vertical 
smearing of the different channel elements in the model. (A) 15 Hz with W=2ms (B)50 Hz with W=50ms 
(C) 30Hz with W=2ms (D) 50 Hz with W=50ms (E) 180 Hz with W=2 ms (F) 180 Hz with W=50 ms. High-
frequency data with a small analysis window provides the most suitable representation of the true model. 
In RMS amplitude, the most accurate facies depiction is given by high frequencies and small window 
combination, imaging channel element base, and inner and outer levee facies. 
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Figure 1.9. Sobel filter coherence attribute sensitivity analysis to evaluate the effect of the window size W 
on the vertical smearing and displacement of the different architectural elements in the model. (A) 15 Hz 
with W=2ms (B)30 Hz with W=2ms (C) 60Hz with W=2ms (D) 60 Hz with W=50ms. Notice how at a 
higher dominant frequency (60Hz) and smaller window of analysis, there is better detection of the channel 
element edges and channel element fill. In contrast, at lower frequencies and or larger windows of analysis, 
there is interference from deeper channel elements, as in the case presented on Figure 1.3. 

 

The most evident finding is that with the increase in noise content, interpretation becomes 

more challenging since the amount of noise hinders channel element edge and facies detection. A 



29 
 

particular result found is a low coherence value predominance when evaluating the 30% noise 

case (Figure 1.10B). 

5.5. Pitfalls in attribute interpretation and how to minimize them 

The results mentioned above warn of potential pitfalls when interpreting seismic data. For 

example, not understanding the frequency content and quality of the seismic dataset could result 

in the inappropriate use of seismic attribute parameters and subsequent misinterpretations. To 

summarize all these results, we present a list of common pitfalls (Table 1.3) in attribute 

interpretation and how the interpreter can attempt to avoid them.  

Common 
misinterpretation 

How to address it Comments 

Not inspecting the 
frequency content and 
dominant frequency of the 
data 

Inspect the seismic volume and 
understand dominant frequency and 
variations with depth 

Higher frequency, broader bandwidth 
data provide higher vertical and lateral 
resolution 

Not understanding the 
quality of the data and 
resolution 

Calculate the seismic resolution Imaging of different scales of 
architecture improves with a higher 
signal-noise ratio 

Using meaningless 
attributes 

Have a clear geological goal and calculate 
attributes effective for similar targets in 
literature 

Avoid attributes that make pretty 
pictures but are not directly related to 
the target objective.  

Using default parameters  Select parameters adequate to your study. 
In windows-based attributes, smaller 
windows provide less vertical mixing 
whereas larger windows are less sensitive 
to noise. Because data quality and 
resolution change with depth, parameters 
appropriate for the shallow part may be 
suboptimum for the deeper part of your 
survey. 

Defaults are provided for the most 
common cases encountered by the 
most common user (e.g., oil and gas 
exploration). If your data are unique in 
either acquisition or objective, test a 
wide variety of parameters and choose 
the ones that best delineate your 
target. 

Interpreting data that has a 
low S/N ratio, or high noise 

Inspect your seismic volume and 
categorize the noise type and level when 
possible. Then apply a noise reduction or 
removal algorithm 

Noise can hinder the interpretation of 
seismic facies and calculating 
attributes won't help. If data are noisy, 
we recommend just using amplitude-
related attributes. 

Table 1.3. Common pitfalls in seismic interpretation and how to avoid them.  
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Figure 1.10. Sensitivity analysis of the effect of random noise in channel architecture interpretation. Results 
shown refer to the 60 Hz dominant frequency seismic volume (which would be analog to real datasets). (A) 
5% band-limited random noise added evaluated in RMS, Coherence, and Instantaneous frequency 
attributes. Interpretation of prominent features like channel complexes is only possible. (B) 5% band-
limited random noise added applied to RMS, coherence, and instantaneous frequency attributes. Notice 
how the increase in noise is detrimental in the channel architecture interpretation, especially when using 
coherence. This may be due to the sensitivity that small windows have on high noise content.  
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Discussion  

 

6.1. The importance of mapping channel architectures 

Channels systems, whether fluvial or deepwater in origin, exhibit petrophysical 

characteristics that make them excellent reservoirs for oil, gas, or other resources (Slatt et al., 

2009). However, channel system mapping in the subsurface becomes challenging, especially 

when only seismic data is available.  

In seismic reflection data, the amplitude, frequency, and noise content will condition the 

quality of the seismic image, affecting the interpretation of different architecture and facies 

embedded in the reflector configuration and overall seismic response. It is, therefore, paramount 

to understand how size-dependent architecture is displayed and imaged under different 

conditions and how the application of seismic attributes could help or hinder the interpretation of 

such architecture.   

In this study, we used a unique approach by employing 3D synthetic seismic datasets as a 

benchmark to perform a sensitivity analysis to understand how different-scales of architecture 

appear as a function of frequency content, noise level, type of seismic attribute, and 

parametrization, especially the analysis window selected to calculate attributes.   

The analysis of all the scenarios resulted in the following observations: broadband higher 

frequency data (e.g., 90 and 180 Hz) combined with a short analysis window (e.g., 2 ms, 20 ms) 

minimized the stratigraphic mixing (Figure 1.6). In contrast, lower frequency data that were 

analyzed using a large vertical analysis window (Figure 1.8) resulted in poor imaging of the 

channel architecture, vertically mixing stratigraphic architecture at different hierarchical levels. 

This affects the temporal evaluation of features that show an overlap of individual architecture 
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(i.e., channel elements) in the system in consecutive time slices, or in other words, a vertical 

offset from the known position (Figure 1.9) of sedimentary units (also shown by Pemberton et 

al., 2018).  

This observation warns of potential interpretation pitfalls in applying such seismic 

attributes to actual seismic data. Stratigraphic mixing can hinder the correct temporal and spatial 

representation of individual channel elements and boundaries of channel complexes, leaving the 

internal architectures and potential fluid flow barriers imprecisely imaged (Coleman, 2000), 

hence, incorrectly mapping and estimating the volume of the reservoir units of interest, which 

could result in important economic loses. 

6.2. The effect of frequency content in the imaging of architectural elements 

Resolution has always been one of the main concerns for seismic interpreters since 

important features like small channels, or DHIs/ bright spots can be overlooked in seismic data. 

Also, hazards and baffles (Cardona, 2020; Meirovitz et al., 2020; Ruetten, 2021), like the MTDs, 

may not be imaged in the seismic picture analyzed. In this study, MTDs are only five meters 

thick and usually mantle the base of the channel complexes and complex sets. 

To improve the seismic data’s resolution, as demonstrated in this study by the enhanced 

definition of each element in higher frequency datasets, frequency content should be increased. 

This suggests that ideally, modifying the initial design of the seismic data and obtaining higher 

frequency data will allow us to get the resolution required to image submarine channel 

complexity to the detail commonly observed in outcrop (Coleman et al., 2000). This type of data 

is, however, costly. 
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Although the cost of high-quality data is currently high, with the advancement in 

technology, we presume that access to higher-quality data at reduced prices will become 

available soon. An example of this kind of data is the use of OBN (ocean bottom nodes) – high-

resolution 3D seismic acquired with the addition of P-Cable, an offshore seismic data acquisition 

system that provides highly detailed ultrahigh-resolution images of the seafloor and subsurface 

geology (McGregor et al., 2022) – and high-resolution (1-6 kHz) chirp data that offer a better 

image of the stratigraphy and structure of rocks in the shallow subsurface.  

It is likely that soon most of the seismic data acquired will be high resolution, without 

necessarily needing to be high frequency, and that we will find ways to improve our algorithms 

to treat the noise associated with acquisition and processing or overall improve the data quality 

from the early stages of seismic acquisition. But, until then, we need to understand the 

limitations of various kinds of seismic data and become aware of potential pitfalls in 

interpretation. 

6.3. Selecting seismic attributes and parameters that are ideal for mapping channel 

architecture 

In this study, we evaluated the effect of seismic attributes on the channel system 

architecture interpretation and their true position in the outcrop model. Our first insight is that 

there is no one-size-fits-all kind of seismic data.  

Therefore, we suggest that the first step when interpreting seismic reflection data should 

be to 1) define the geological goal, 2) become familiar with the acquisition and processing of 

information, 3) make an initial inspection of the data, 4) determine if there is some noise or 
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artifact that the interpreter needs to correct or be aware of. Finally, 5) select seismic attributes 

based on established purpose/geological goal.  

One of the most critical steps is defining a clear geological goal. The interpreter should 

reflect on what attribute would better suit their purpose. For example, we would use amplitude-

derived or instantaneous attributes in studying bright spots. For channel systems, instantaneous 

or frequency attributes can help highlight the differences between the channel elements 

(Fedorova, 2016), whereas geometrical attributes (such as Sobel filter coherence) aid in 

delineating the external shape of the architecture (La Marca, 2020). 

Because there are tens to hundreds of attributes, testing many of them can be time-

consuming. Imagine that in this study, with just three attributes shown and the case 

combinations, we had a total of 90 volumes to evaluate. Therefore, it is recommended to work 

only with attributes whose principles the interpreter understands or, if using multiple attributes, 

rely on experimental designs like Box Behnken (Ferreira et al., 2007) that will help to synthesize 

a large amount of data.  

Attribute computation varies from software to software, and some attributes are 

computed trace by trace, whereas others are sample by sample. Understanding this initially 

would help in setting the correct parameters in each case. For attributes that are window based, 

like wavelet or average frequency, and the ones studied here, the variation of the analysis 

window affects the imaging of architectural elements.  

We used instantaneous frequency since it can indicate the edges of thin low-impedance 

thin features. Additionally, it is an excellent bed thickness indicator, where higher frequencies 

indicate sharp interfaces or thinly bedded strata and lower frequencies indicate thickly bedded 

sandstone-rich strata (Subrahmanyam and Rao, 2008). Interestingly, in the study, the true 
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thickness of isolated channel elements (approximately 25m of thick-bedded amalgamated 

sandstone at the channel element axis) was more interpretable from the dataset of 60 Hz 

dominant frequency and above and only partially distinguishable in the shallow portion of the 

30Hz dataset. This finding was also noted by Nielson (2018) and Langenkamp (2021), although 

neither study included seismic attribute analysis. 

RMS amplitude measures reflectivity within a time window (Meek, 2015). It computes 

the square root of the sum of squared amplitudes divided by the number of samples within the 

windows used (Equation 1). Therefore, the number of samples and windows used affects the 

strength of reflectivity we get with the algorithm used. In contrast, some attributes like Sobel 

filter coherence do not necessarily improve channel architecture imaging by selecting a minimal 

analysis window. In this case, since the wavelength increases with increasing velocity, which 

increases with depth, we agree with Lin et al. (2014) that coherence attributes should use a 

shorter analysis window in the shallow section and a larger vertical analysis window in the 

deeper section. Some software has this already integrated as an adaptive window, which we 

consider to be one route to improve attribute results in the future. 

6.4. Impact of noise on the interpretation of channel features 

Different types of noise could be found in our seismic data: coherent noise, a series of 

unwanted signals that appear when the source is applied (Alderton and Elias, 2021), and 

incoherent noise, which would appear whether we shoot or not. For this sensitivity analysis, we 

only explored the effect of band-limited random noise, which belongs to the latter category, on 

imaging the different architecture in a deepwater channel system. 
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When using instantaneous attributes such as instantaneous frequency, it was noticed that 

at low noise levels (e.g., 5%), smaller features like MTDs were still visible. However, with the 

increase in noise, it was extremely difficult to interpret individual geologic features in the 

seismic volume.  

As Herron (2011) stated, the output's quality of interpretability relies on the input's noise 

content. In fact, a highly noisy dataset will likely contain very little reliable information. 

Moreover, we noticed that the effect of stratigraphic mixing is emphasized in the coherence 

attribute, where anomalous low or high values of the attribute were unexpectedly found and that 

the interpretation of small or large size features in the seismic was very hard to impossible to 

perform. These findings stress the importance of noise removal using adequate techniques 

related to the type of noise. This must be done in the early stages of seismic interpretation to 

avoid misinterpretations (Figure 1.11). 

In terms of the analysis window selected in the presence of noise, using a very large data-

analysis window (in three dimensions) will include plentiful data and likely produce output with 

a marked structural overprint. On the contrary, a window that is too small will barely include 

data and produce an outcome that is more a manifestation of noise in the data rather than 

geological content (Herron, 2011).  

Our final thoughts are that although studies that use synthetic data and perform sensitivity 

analyses provide a tool to address misinterpretations encountered in the seismic interpretation of 

potential reservoirs, especially in the exploration stage, it is necessary to take into account that 

each seismic dataset and geologic setting are unique to the exploration area and that every aspect 

should be considered carefully before making impactful decisions. 
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Figure 1.11. Generalized workflow for a geoscientist to avoid pitfalls in interpretation by getting optimized 
results according to their dataset.  
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Conclusions 

 The sensitivity analysis of 3D synthetic seismic volumes derived from a model of an 

outcropping deepwater slope-system and assigned reservoir properties was performed. The study 

comprised the combination of four parameters: 1) frequency content, 2) attribute selection, 3) 

windows of analysis and 4) noise content to identify their effects on the imaging of different 

scales of deepwater architecture. 

The results are summarized in four cases that allow the depiction of common pitfalls in 

channel interpretation: 1) the effect of the spectral bandwidth on the imaging of the different 

scales of architectural elements, 2) the seismic attribute sensitivity to the thickness and extent of 

element and complexes, 3) the effect of the analysis window size on the vertical smearing of 

channel elements and MTDs, and 4) the effect of noise in the sensitivity analysis.  

In this study, we introduced the term "stratigraphic mixing" to define the combined 

picture resulting from the inability to resolve a single channel element. In this sense, broadband, 

higher bandwidth (e.g., 90 Hz) data combined with a short analysis window (e.g., 2ms) 

minimizes stratigraphic mixing. In contrast, lower bandwidth data, in addition to a large analysis 

window, results in poor imaging of the channel element and channel complexes that exhibit a 

"composite" appearance, vertically mixing geological features at different stratigraphic levels. 

 The importance of this analysis resides in that stratigraphic mixing affects the temporal 

evaluation of features that show an overlap of individual architecture at different scales in the 

system in consecutive time slices or a vertical offset from the known position of sedimentary 

units, which may result in important economic losses by misplacing an exploration well (e.g., 

actual target not in place) or overestimating reserves due to an incorrect NTG estimation and 

subsequent volumetric calculation (e.g., baffles like MTD are not imaged). 
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In order to determine the sensitivity of the different architectural elements to seismic 

attributes, we explored three classes of algorithms: amplitude-based, geometrical, and 

instantaneous, and showed the results of the most prominent attributes: RMS amplitude, 

instantaneous frequency, and Sobel filter coherence.  

Attributes that are window-dependent, such as RMS amplitude, show an improved 

imaging of the actual thickness of the channel architecture when calculated using a short analysis 

window (e.g., 2ms) over a higher frequency dataset (from 30Hz and above). With larger analysis 

windows and or a small frequency dataset, there is significant vertical stratigraphic mixing. High 

RMS values and a composite effect were found in stacked channel element configurations 

indistinctly of the parameters used, which would likely result in an overestimation of NTG.  

Conversely, for edge detection attributes like coherence, a small analysis window does 

not provide a better depiction of channel element/complex/complex set edges. Instead, we 

observed displacement with respect to the actual position and composite pictures of them, 

especially in vertical sections, which makes their interpretation cumbersome. Therefore, we 

suggest using an adaptative window with depth or a default analysis window (half of the peak 

frequency is a good approximation). 

When evaluating the last parameter, which corresponds to the effect of band-limited 

noise content, it was observed that the mapping of channel elements is hindered by adding noise 

to the data. When the noise level increases, as expected, the interpretation of features is hindered 

by the impact of the noise. We suggest applying algorithms that will allow us to eliminate or 

reduce the noise before calculating any seismic attribute.  
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Our observations warn of potential interpretation pitfalls in applying default attributes to 

real seismic data, especially when using geometrical attributes and others that are windows 

dependent. We offered a simplified workflow for geoscientists to understand and address these 

concerns depending on their available data. 

The importance of using synthetic data to reduce uncertainty is proved. This data allows 

essaying multiple scenarios to provide tools that serve geoscientists that face different kinds of 

datasets around the world and help reduce uncertainty by applying best practices in seismic 

interpretation, especially in channel deposit settings. 

Best practices in interpretation should be documented more often to better address 

uncertainty and optimize reservoir characterization.  

Data Availability 

Dataset presented at this article can be found at 

https://data.nzpam.govt.nz/GOLD/system/mainframe.asp, an open-source online data repository 

hosted at New Zealand and Petroleum Minerals. Synthetic data and model need to be requested 

to authors. 
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CHAPTER 3: UNCERTAINTY ASSESSMENT IN UNSUPERVISED MACHINE 

LEARNING METHODS FOR DEEPWATER CHANNEL SEISMIC FACIES USING 

OUTCROP-DERIVED 3D MODELS AND SYNTHETIC SEISMIC DATA * 
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Abstract 

Unsupervised machine learning (ML) techniques have been widely applied to analyze 

seismic reflection data, including the identification of seismic facies and structural features. 

However, interpreting the resulting clusters often relies on geoscientists' expertise, necessitating 

a robustness assessment of these methods. To evaluate their reliability, synthetic data generated 

from an actual outcrop model were employed to demonstrate how two unsupervised methods, 

Self-Organizing Maps (SOM) and Generative Topographic Maps (GTM), cluster deepwater 

channel-related seismic facies and then measure the associated error. Six seismic attributes, 

https://doi.org/10.1190/image2022-3746992.1
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comprising RMS amplitude, instantaneous envelope, peak magnitude, and spectral 

decomposition frequencies at 20Hz, 40Hz, and 55Hz, served as input variables. Geobodies were 

assigned to each cluster formed, and error in facies clustering was quantified by comparing the 

actual 3D model with the facies grouped by machine learning methods on a voxel-by-voxel 

basis. This allowed for error quantification and the computation of metrics such as F1 score and 

accuracy through correlation matrices. Key findings revealed that 1) GTM and SOM exhibited 

similar performance, with a clustering configuration of 81 for GTM slightly outperforming 

others. 2)Error rates were approximately 2% for the predominant facies (background shale) but 

significantly higher for individual channel-related facies, suggesting that channel clusters might 

represent multiple facies. 3) Resolution and imbalanced data distribution impacted seismic facies 

predictability, resulting in non-uniqueness in cluster generation. 4) Using synthetic seismic data 

proved valuable for experimenting with different unsupervised ML, highlighting the need for 

assessing uncertainty in these methods, given their implications for crucial economic decisions 

reliant on reservoir interpretation, modeling, and volumetric estimations.  

Introduction 

Although many machine learning (ML) techniques were created in the 20th Century, only 

recently have advancements in computer hardware facilitated the widespread adoption of ML 

among geoscientists. There are broadly two types of ML: supervised and unsupervised. While 

supervised methods need a label to predict a known output, unsupervised methods have the 

capacity to find relations between the input data to get an output, usually in the form of clusters or 

groups.  

 In seismic interpretation, human interpreters are limited by the number of attributes that can 

be displayed at once (three or four with co-rendering). Previous studies (e.g., Roy et al., 2013; 
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Zhao et al., 2015; Roden and Sacrey., 2015) have demonstrated how valuable unsupervised ML 

methods are for the interpretation of seismic facies, by using multiple seismic attributes as input 

and finding patterns that were previously overlooked by the interpreter. For example, La Marca 

(2020) used different seismic attributes as input to Self-Organizing Maps (SOM) and Principal 

Component Analysis (PCA) to differentiate deepwater seismic facies in the Pipeline 3D seismic 

dataset in the Taranaki Basin, New Zealand. Infante-Paez and Marfurt (2019) were able to 

differentiate volcanoes from deepwater deposits in seismic data by using SOMs, and Zhao et al., 

2015 present an excellent comparison of unsupervised ML methods which include SOM and GTM 

to interpret seismic facies in New Zealand channel complexes. 

One caveat of unsupervised ML methods is that the interpretation of outputs (clusters) in the 

absence of well logs relies on the geoscientists’ experience and their in-context interpretation. This 

brings uncertainty when mapping reservoir dimensions, which is critical for the exploration and 

production of hydrocarbons or geothermal resources and CO2 storage. Therefore, our motivation 

is to quantitatively assess unsupervised ML methods, starting with an analysis using synthetic 

seismic data as a benchmark.  

Uncertainty is not knowing or being dubious about a situation, process, or result. In seismic 

data, from the moment of acquisition to the interpretation of the product of data processing, we 

have errors, uncertainty, and assumptions being added together (Pampalk, 2001). In this study, we 

focus on the uncertainty related to the interpretation of clusters derived from two unsupervised ML 

methods for seismic facies interpretation. Although some authors have addressed uncertainty in 

supervised ML methods, for example, Ning and Yu (2019) reviewed recent advances in the 

optimization field to suggest the integration of ML and mathematical programming for decision-

making under uncertainty; then, Abdar et al. (2021) updates Ning and Yu’s work by providing a 
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complete and robust review of uncertainty quantification in deep learning, and later Michie et al. 

(2021) show how performing a sensitivity analysis can aid in assessing uncertainty in fault 

interpretation using seismic data. As seen, uncertainty in ML methods is a relatively new concept, 

and based on a search of recent studies, there are none that have focused on assessing uncertainty 

in the use of unsupervised ML methods applied to seismic interpretation using synthetic data. 

Skepticism about the reliability of these methods makes this necessary. Therefore, we used 

synthetic data and a 3D geological model to overcome these concerns. 

The geological model and derived synthetic seismic data used in this work were built using 

outcrop data corresponding to deepwater slope channel systems from the Cretaceous Tres Pasos 

Formation, Magallanes Basin, Chile, and represent an excellent analog to similar geologic settings 

(Stright et al, 2014). Five Facies are modeled, which include background shale, channel axis, 

channel off-axis, channel margin, and Mass Transport Deposits (MTD).  

In this manuscript, we begin by presenting the motivation and research objectives. Then, we 

explain in detail the dataset used and geological setting. Then the selection criteria for the seismic 

attributes that represent the input data for the methods tested is explained. Subsequently, we show 

the workflow and details inherent to each ML method. We show how synthetic seismic data allows 

us to test two unsupervised ML techniques (Self-Organizing Maps and Generative Topographic 

Maps) with three clustering settings of 36, 81, and 256. We not only qualitatively describe the 

differences between them, but also quantify the difference between the predicted results and the 

synthetic data to determine the error in the facies definition and generate confusion matrices with 

statistical metrics that allow for the understanding of misclassification of facies in each instance. 

We conclude by providing insights on the use of unsupervised methods and what the interpreter 

should be aware of when interpreting these results. 
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Geologic model 

The geological model that is the basis of this study is derived from a sandstone-rich 

deepwater channel system along a progradational slope system (Hubbard et al., 2010). These 

deepwater slope deposits from the Late Cretaceous (70-80 Mya) Tres Pasos Formation are 

exposed on approximately 3 km long, 200m thick outcrops near Laguna Figueroa in the 

Magallanes Basin, (Figure 2.1A) Southern Chile (Macauley and Hubbard, 2013; and Hubbard et 

al., 2014). The high quality of the stacked channel systems has been used to construct a seismic-

scale 3D architectural model of the deepwater channel system (Pemberton et al., 2018; Jackson 

et al., 2019; Langenkamp et al., 2020; Ruetten, 2021). According to Fildani et al. (2013) the 

outcrop (Figure 2.1B) is analogous to many slope channel systems globally in stratigraphy and 

depositional setting, which makes it an excellent benchmark for any study that aims to address 

problems associated with channel interpretation. 

The models are the result of several studies from Macauley and Hubbard (2013), and 

Southern et al. (2017) combining measured sections, hierarchical stratigraphic interpretations, 

paleoflow measurements, and thousands of GPS data points that calibrated a drone-derived 

photomosaic. For these models, the fundamental architectural component are channel elements, 

defined as distinct, mappable channelized sedimentary bodies (Figure 2.1). Multiple stacked, 

related channel elements form a channel complex, and two or more complexes form a channel 

complex set (McHargue et al., 2011; Macauley and Hubbard, 2013, Meirovitz et al., 2020). The 

outcrops at Laguna Figueroa contain two complex sets, simply referred to as the Upper and 

Lower Figueroa. The upper complex set consists of eight channel elements and are grouped into 

four distinct channel complexes. The lower complex set contains twelve channel elements 

grouped into three channel complexes. Elements are modeled with a standardized width of 400 
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m and thickness of 25 m. Three additional architectural components are present in the outcrop: 

mudstone drapes at the base of channel elements, mass transport deposits (MTDs) at the base of 

channel complexes, and inner-levee thin-bed deposits encasing the channelized elements 

(Macauley and Hubbard, 2013; Hubbard et al., 2014). The geological models consist of five 

facies: 1) channel element axis in yellow, 2) channel element off-axis in orange, 3) channel 

element margin in brown, 4) background shale (inner and outer levee facies) in white, and 5) 

Mass transport deposits in gray (Figure 2.1C).  

Jackson et al. (2019) developed the first fine-scale geocellular model combining channel 

planforms and vertical stacking for the lower outcrop section (lower channel system) but did not 

include hierarchical groupings in the architecture. Pemberton et al., (2018) generated forward 

seismic models using Jackson et al. (2018)’s model and analyzed seismic interpretation of 

architecture as a function of seismic resolution.  Nielson (2018) analyzed the tuning effects of 

single channel elements. Ruetten (2021) updated Jackson’s initial model with new interpretations 

and added an upper channel system separated from the lower system by a debris flow and studied 

how stacking patterns impact reservoir connectivity and fluid flow. Finally, Langenkamp (2021) 

analyzed the influence of stacked channel element architecture on facies classification using 

Ruetten’s model. This work utilizes the geocellular model of Ruetten (2021) and synthetic 

seismic models from Langenkamp (2021). 

 The synthetic seismic model used in this study was built using zero-phase Ormsby 

wavelets of 60 Hz, and 1D convolution (Chile Slope Systems research consortium; Langenkamp 

et al., 2021) with a reflectivity model. More aspects of each model are found in Langenkamp 

(2021). Facies-based rock properties, adopted from Stright et al. (2014), show that amplitude 



47 
 

peaks represent an increase in acoustic impedance (Figure 2.1D). In contrast, troughs depict a 

decrease in acoustic impedance. The synthetic volume has a vertical window of 500 ms. For 

analysis purposes, we selected the 60Hz volume (Figure 2.1B) as an analog to real datasets 

(Stright et al., 2014) and cropped the resultant volumes from 120ms to 380ms to avoid 

dead/blank zones in the reflectivity and focus on the target channel systems. 

  

 

Figure 2.1. Location of outcrop and visual guide showing the steps used to convert the outcrop 
measurements to a synthetic model. (A) Location of Laguna Figueroa outcrop in the Patagonia-Chile. (B) 
Upper and Lower Figueroa channel complexes identified in the outcrop, including boundaries and inner 
channel elements. (C) Creation of a 3D geocellular model using the constraints from (B) augmented by 
facies associations and corresponding rock properties, including acoustic impedances from GOM (Gulf of 
Mexico) and Nigerian analogs. (D) The Ormsby wavelet and a representative vertical slice through the 3D 
synthetic seismic data volume generated from the model are shown in (C). Courtesy of Teresa Langenkamp 
and Lisa Stright. 
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Methods 

Three major phases were followed to assess the uncertainty in two unsupervised ML 

methods (Figure 2.2). For Phase 1, we performed an exploratory data analysis to define a vertical 

window of interest, which would later constrain the results to the objective of the study. We then 

computed a suite of instantaneous and spectral attributes, which are proven to be effective in 

defining channel architecture and interpreting deepwater seismic facies (La Marca and Bedle, 

2022; Roden and Sacrey., 2015; Zhao et al., 2016). Next, in order to select non-redundant 

attributes, we calculated the Pearson correlation (Pearson, 1901) to determine the most suitable 

input seismic attributes.  

Phase 2 involved applying the unsupervised ML techniques: Self-Organized Maps 

(SOM) and Generative Topographic Maps (GTM). We evaluated three clustering cases to 

perform a sensitivity analysis: 36 clusters, 81 clusters, and a default 256 clusters. Finally, we 

analyzed the cluster maps and generated geobodies that were representative of each channel 

facies. Once each geobody was isolated, we resampled it to the model size and quantified the 

differences between the unsupervised methods and the channel facies (true initial model) on a 

voxel-by-voxel basis. 

Phase 3, the final phase of the study, comprised a quantitative analysis that determined 

the percentage error per facies and a confusion matrix to understand how accurate the clustering 

of each facies was. The last phase also involved the calculation of statistical metrics such as 

precision, recall, F1 score, and accuracy. Each phase’s considerations are explained in more 

detail in the following subsections. 
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Phase I: Data exploratory analysis, seismic attribute calculation, and input selection 

The first step in most seismic interpretation work is the data exploratory analysis, which 

allows interpreters to identify acquisition footprint, noise, and other features that can influence 

the interpretation. However, since we are using synthetic models, this step limits to the 

evaluation of the user-defined windows over which ML algorithm calculation and seismic 

attribute calculation occur. 

Depending on the study focus and data quality it is necessary to constrain or crop the data 

both horizontally and vertically (below 500 ms for optimal performance) to better focus on the 

geological objective. 

Input seismic attribute selection.  

A seismic attribute is a computation made from algorithms applied to seismic data to obtain a 

more interpretable output. These responses relate to rock physical properties (La Marca, 2020) in 

rocks and fluids in the subsurface. However, there are tens if not hundreds of seismic attributes 

(Barnes, 2016), and time constraints do not allow for testing them all. 

Although ML algorithms can handle multiple seismic attributes at a time, we should 

select fewer, more meaningful attributes. According to Chowdhuri and Turin (2020), the 

principle of parsimony suggests that it is not practical to use a large set of variables in a model, 

and this would only represent more computation time and complexity. Therefore, as part of our 

methodology, we reduced the amount of input attributes to use in the ML methods.  
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There are at least three different strategies that one can use in selecting attributes for use 

in unsupervised ML methods: 1) Correlating candidate attributes to determine which are 

statistically independent (Kuhn and Johnson, 2013); 2) using a dimensionality reduction 

technique such as PCA or Independent Component Analysis (Roden and Sacrey., 2015; Lubo-

Robles and Marfurt, 2019); and 3) using the interpreter's geological experience and 

understanding of the properties measured by different attributes (Infante-Paez and Marfurt, 2019; 

La Marca and Bedle, 2022).  

 

Figure 2.2. Workflow of the study 
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We used a combination of strategies 1 and 3 in our attribute selection, and selected 

attributes that are not correlated and that have been proven to be suitable for stratigraphy (Table 

2.1), such as instantaneous and dip-corrected spectral attributes. Then, followed the methods in 

La Marca et al. (2021) and calculated the attributes (Figure 2.3b, 2.3c, 2.3d, and 2.3e) using a 

3x3-trace analysis window with a height of 2 ms. After that, we refined our seismic attribute 

selection by using scatterplots. Careful seismic attribute selection is paramount to generate 

optimal results when applying ML techniques. 

 

Table 2.1. Summary of seismic attributes explored to use as input. Their category, principle, references, 

and common use in channel architecture interpretation are explained. 

 

Once we followed the geoscientist experience attribute selection criteria, we normalized the 

attributes using the MinMax scaler (which scales the data between 0 and 1 maintaining skewness) in order 

to evaluate the correlation between attributes.  

 

Seismic attribute Category Principle References Use in channel interpretation

Root Mean Square amplitude Instantaneous
Is a measure of reflectivity/ Computes the square 
root of the sum of squared amplitudes divided by 
the number of samples within the window used

Meek (2015)
To detect sand bodies and mud-
filled channels associated with 
channel belts

Envelope (reflection strenght) Instantaneous Represents the envelope (and energy) of the 
signal Taner et al (1979)

Highlights changes in lithology, 
deposition, tuning effect and 
sequence boundaries 

Hilbert (Instantaneous Q) Instantaneous
Is a linear operator that produces a 90 deg phase 
shift in a signal, which allows to compute the 
complex trace attributes

Luo et al (2003) Detailed visualization of bedding 
configurations

Peak Frequency Spectral Computes the max. value of the absolute value of 
the amplitudes within a window Liu (2007) Thickness variations

Spectral magnitudes (decomposi  Spectral  Applies a suite of constant- bandwidth filters to 
the seismic data Partyka et al (1999)

Highlights channels and minor 
architectural elements (good for 
thickness changes). Low 
frequencies often depict thicker 
architectures and high frequencies 
thin elements.
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Phase II: Unsupervised ML algorithms:  Self-Organizing Maps (SOM) and Generative 

Topographic Maps (GTM) 

Machine Learning (ML) is a discipline of artificial intelligence (AI) that aims to find 

patterns to make predictions with minimal human intervention. ML is composed of broadly two 

types of methods: supervised (where labels are provided, and the desired output is known) and 

unsupervised (where labels are not given, and output is unknown). We focused on the latter.  

First known as Hebbian Learning, Unsupervised ML models are a category of algorithms 

that unveil underlying patterns and relationships in the data without any reference, supervision, 

or labels. Unsupervised methods were first used nearly six decades ago (McCulloch and Pitts, 

1943). However, their popularity increased in the geosciences field only in the last decade.  

Unsupervised ML can be further divided into two categories: clustering and association. 

We tested methods that belong to the clustering category. Clustering (Hartigan, 1975) is the 

grouping of similar objects, where all the objects within the same cluster share a particular 

property in common. When machine learning uses seismic attributes, clusters can represent 

geologic information embedded in the data. These clusters can help identify geologic features 

and geobodies, which sometimes are difficult to interpret by other means (Roden and Sacrey., 

2015). In this category, we find methods such as K-means, PCA, and the two we selected for this 

study: Self Organizing Maps (SOM) and Generative Topographic Maps (GTM). 

These two methods were selected over similar techniques because 1) both methods are 

widely available in many software and have started to be available in code/programming 

languages, 2) they are relatively easy to understand and define, 3) they are proven to work well 
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for seismic facies interpretation 4) analyzing data in a particular latent space may reveal data 

properties that are overlooked in the original/ initial space, and 5) curiosity to contrast methods 

that are somewhat similar to evaluate their performance against the same input data and dataset 

evaluated. 

There are many case studies that prove that SOMs are robust methods for the technology 

sector to evaluate competitive technical intelligence (e.g., An and Yu, 2010), in marketing (e.g., 

Hanafizadeh and Mirzazadeh, 2010), in medicine (e.g., Tuckova et al., 2011) and in 

environmental applications (e.g., Gibson et al., 2017) to find patterns with similar characteristics 

within their respective datasets. Roy et al., (2013) describe how SOM has been used since the 

late 1990s in the oil industry to resolve diverse geoscience interpretation problems, and Chen et 

al. (2009) present applications to improve signal-to-noise ratio. There are several examples of 

studies that have used SOMs for facies classification. 

 For deepwater settings, many studies (e.g., Coleou, 2003; Wallet et al., 2009; Zhao et al., 

2015; La Marca and Bedle., 2022) demonstrated that SOMs are useful for defining architectural 

elements associated with channel complexes. Infante-Paez and Marfurt., (2019) differentiated 

deepwater deposits from volcanic deposits using SOMs. This method has also been used in 

unconventional resource plays. Verma et al., (2012), mapped high frackability and high TOC 

zones in the Barnett Shale, while Sacrey and Roden (2014) located sweet spots in the Eagle Ford 

shale. 
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Figure 2.3.  (A) A representative vertical slice of the original amplitude volume and seismic attributes used 
as input: (B) Peak Magnitude, (C) Envelope, (D) RMS, (E) Spectral component 20 Hz, (F) Spectral 
component 40 Hz, (G) Spectral component 55Hz. 
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GTM has been used successfully in various fields to model complex high-dimensional 

data. In the chemical field, Horvath et al. (2019) used it for drug design (chemical space 

cartography) and Lin (2019) used it for drug design and library visualization. GTM has also been 

employed in engineering (e.g., aerodynamic configuration presented by Chao et al., 2022), and 

more commonly in the geosciences field, where we have seen successful studies on channel-

related seismic facies (e.g., Wallet et al., 2009, Chopra and Marfurt, 2014) and carbonate seismic 

facies (Roy et al., 2014).  

Assumptions considered for the models selected are: 1) The 3D synthetic seismic volume 

of 60 Hz dominant frequency was selected to perform the tests due to its similarity to the 

frequency content of actual seismic data. If we would like to evaluate the response of high-

resolution datasets (OBN data or Chirp) we would need to select a synthetic model with higher 

frequency which would likely offer better resolution. 2) We are using a 60 Hz dominant 

frequency volume, which is not a high-resolution volume, but it is closer to the data we often use 

to make seismic interpretation. 3) Our dataset does not include significative noise. We would 

need to perform a sensitivity analysis to test the ML methods' response in front of different data 

quality. So, we are presenting one of the best-case scenarios possible. 4) Only five facies were 

considered and one of them (background shale) represents most of the data in proportion. 

However, we wanted to test this scenario, since it represents the geological setting that is 

analogous to other deepwater systems deposited worldwide. 5) Although we acknowledge the 

use of an elbow plot to determine the optimal number of clusters as shown in La Marca et al. 

(2021), we decided to test different cluster scenarios to perform a sensitivity analysis, which also 

falls within uncertainty assessment procedures. 6) Seismic attributes were calculated using an 

analysis window of 2ms to optimize results as suggested by La Marca et al. (2021) 
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Before explaining the details for both methods, let us explain the “latent space” concept 

since we will mention the term in the algorithms used. A latent space is simply a representation 

of compressed data (in the form of an abstract multi-dimensional space) that contains all the 

possible outputs and in which similar data points are closer together in space (Roy et al., 2013 

and Wallet et al., 2009). Latent space is useful for learning data features and for finding simpler 

representations of data for analysis. A latent space can be high-dimensional or low-dimensional. 

A high-dimensional latent space is sensitive to features in the input data and can lead to 

overfitting if training data is insufficient. On the other hand, a low-dimensional latent space 

attempts to capture the primary features required to learn and represent the input data.   

SOM definition 

First introduced by Kohonen, the “Kohonen Self-Organized Map” in 1982 (Kohonen 

1982, 1995) is an unsupervised ML technique that transforms a complex high-dimensional input 

space into a simpler low-dimensional (typically 2D) discrete output space by preserving the 

topology (relationships) in the data (Bartkowiak, 2004; Asan & Ercan, 2012; Barnes et al., 

2016). 

 SOMs are popular seismic facies clustering technique that extract similar patterns 

embedded with multiple seismic attribute volumes (Zhao et al, 2016). Since it is an unsupervised 

technique, the selection of attributes that are thought to contribute the most in the classification is 

primordial. The neurons involved in the SOM classification seek to identify relationships 

between the various input datasets, and then grouped similar subsets of the data (Sanger, 1989) 

into several colors to aid the interpretation. (Figure 2.4A) 
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SOM process can be summarized in four steps:  1) Input data and initialization: our 

different seismic attributes are used as input. 2) Weighting and best matching unit (BMU) 

definition (sometimes referenced as the winning neuron or prototype vector), where a neuron 

learns by adjusting its position within the attribute space as it is drawn toward nearby data 

samples in what is known as competitive learning (Asan and Ercan, 2012). Once the learning 

process has completed, the winning neuron set is used to classify each selected multiattribute 

sample in the survey (Roden and Sacrey., 2015).  3) Clustering: Given the BMU, each attribute 

sample in the dataset incrementally approaches towards a similar BMU in each case by the 

Euclidean distance. A SOM manifold that contains all the possible combinations is then formed, 

and the algorithm deforms this manifold to better fit the data in each iteration (Zhao et al., 2015). 

4) Projection of clusters in a lower 2D dimensional space where colors are assigned. Gao (2007) 

mentions that if the number of prototype vectors is 256, we will have 256 colors. These are the 

potential clusters. Our results can form either 256 or considerably a smaller number of clusters 

(e.g., three or four). Finally, after clusters or classes are obtained, the interpreter uses their 

knowledge to make geological interpretations of these clusters.  

Table 2.2 shows the parameters selected in each case. Notice that the number by the SOM case 

refers to the number of clusters originally assigned. 

Table 2.2. Self-Organizing Maps cases’ parameterization specifications 
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GTM definition 

Generative Topographic Maps (GTM) first introduced by Christopher Bishop in 1997 

(Bishop et al., 1998) is a nonlinear dimension reduction, and clustering technique that provides a 

probabilistic representation of data vectors in latent space (Chopra and Marfurt, 2014) (Figure 

2.4B). It is generative because data is assumed to arise by first probabilistically picking a point in 

a low-dimensional space. Then the mean projection of the posterior probability of the data vector 

is used in generating the clusters in the high dimensional latent space (Roy et al, 201). 

GTM operates following the next steps (Roy et al, 2014): 1) Initial array of grid points 

(K) are on a lower dimensional space. 2) Each of the grid points are nonlinearly mapped onto a 

similar dimensional non-Euclidean curved surface as a corresponding vector (mk). 3) Each data 

vector (xk) mapped into this space is modeled as a suite of Gaussian probability functions 

centered on these reference vectors (mk).4) Components of the Gaussian model are iteratively 

moved toward data vector that it best represents, hence maximizing likelihood (via the 

expectation maximization algorithm). 5) Configuration is projected on the latent space.

 

Figure 2.4. Representation of (A) Self-Organizing Maps and (B) Generative Topographic Maps 
(adapted from Roy et al., 2013). 
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 Given an initial set of datapoints, they will be inputted in a lower dimensional latent 

space.  In both cases the data is later projected in a high dimensional latent space where a 

manifold space best will fit the arranged data. For (A) the BMU or winning neuron is selected 

via weighting and each BMU will be representative of the group (cluster) the datapoints that get 

closer to them will form. For (B) there are a series of basis function centers whose linear 

combination will allow the projection of the grid points in the non-Euclidean manifold plane as 

m_k vectors. Adaptation to the manifold plane occurs as a product of Gaussian Pdf that occur 

around each vector. The main difference between the SOM and the GTM regarding their result 

presentation is that while SOM assigns each data point to exactly one place on the map GTM 

calculates a distribution for each data point on the map. 

Table 2.3 shows the parameters selected in each case. Notice that the number by the 

GTM case refers to the number of clusters originally assigned. 

Table 2.3. Generative Topographic Map’s cases’ parameterization specifications 

 

Advantages and drawbacks of SOM and GTM methods  

Although SOM and GTM may result in similar outcomes and both are included within 

unsupervised ML clustering methods, there are some differences that need to be understood 

before applying them to our data. 

Case
# Attributes 

used as input
# Clusters (samples in 

latent space)
Topology

# Basis functions 
(< cluster #)

Weight regularization 
factor

# Data training 
iterations

Window size

GTM256 6 256 (36x36) squared 0.5 0.05 50 499 ms
GTM81 6 81 (9x9) squared 0.5 0.05 50 499 ms
GTM36 6 36 (6x6) squared 0.5 0.05 50 499 ms
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SOM is likely the more popular of the two methods because it is easy to understand, 

simple to use, produces good intuitive results (Pampalk, 2001), and is available in several 

computational packages. Moreover, being a neural network that attempts to replicate human 

brain behavior makes the method attractive to many users. Furthermore, Bishop et al. (1998) 

explained that the major advantage of the SOM over the GTM algorithm is the processing speed 

since GTM is a third slower than the SOM algorithm. 

However, the SOM method has some drawbacks, including the absence of a quantitative 

error measure for the convergence acceptance criteria (which could be solved by a cost function) 

since there is no indication about the vector’s probability being well represented by other regions 

on the manifold (facies) (Kohonen, 1995; Bishop et al., 1998). In other words, the selection of 

the neighborhood function in each iteration is subjective so that different solutions derive after 

each iteration. Finally, no probability density is defined that could yield a confidence measure in 

the final clustering results (Bishop et al., 1998). 

GTM comes to solve the SOM drawback of convergence since it allows the selection of a 

learning rate (Marfurt and Chopra, 2014) and has some other virtues. For example, the method 

explicitly formulates a density model over the data, uses a cost function that quantifies how well 

the map is trained, and uses a sound optimization procedure (EM algorithm). In addition to this, 

GTM presents more information about the mapping than the SOM since it calculates the 

distribution of single data points, making it easier to visualize. Also, although both methods 

preserve the topology (relationships) in the data, SOM does not preserve the actual distances 

(Asan and Ercan, 2012). Therefore, GTM produces a more separable and interpretable map than 

other methods. 
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GTM also has some disadvantages to consider, namely: GTM has not been developed in 

the context of neural networks. Instead, it is embedded in a statistical framework (more insights 

on this are found in Pampalk, 2001), and the expectation-maximization (EM) method finds only 

local optimal solutions. 

As seen, some of the limitations of the SOM algorithm have been addressed by the GTM 

algorithm. However, some others cannot be solved since they are inherent to the model of 

mapping data points from a high-dimensional data-space onto a 2-dimensional map while 

preserving local distances. Pampalk (2001) recommends using GTM or SOM combined with 

other data-mining methods, such as pure clustering (K-means) or multi-dimensional scaling 

techniques. 

Phase III: Uncertainty quantification (UQ) and analysis  

Geobody definition 

A geobody is a 3D object that consists of a series of geoblobs (groups of seeds clustered 

together) that have been extracted from a seismic volume. The seismic volume can be the 

original amplitude, a seismic attribute, or as is this case, the result of an ML algorithm applied to 

seismic data.  

Geobody definition depends on interpretation. We isolated each facies by analyzing the 

clusters map, grouping the cluster numbers that were most representative (Table 2.5), and 

creating a rule in the calculator of the software assigning a particular number per facies. An 

example of geobody generation for facies 5 in the GTM case of 36 clusters is presented in 

equation 1. 
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We assigned 1 to channel axis facies, 2 to channel off-axis, 4 to channel margin, and 5 to 

MTDs. Geobodies can also be picked or refined by using opacity thresholds in the interpretation 

package. If clusters did not fall in the previous facies category, we assigned 0, which means it 

corresponds to the background shale, which in this geological setting is expected to represent the 

majority of the facies. 

GTM36_Facies5=if((Xplot_GTM36_60HZ = 3)  Or (Xplot_GTM36_60HZ = 17) ,5,0)        (1) 

Once defined our geobodies per facies and each model tested, we performed a resampling 

of each geobody by using a popular interpretation software. Resampling means sampling a 

seismic volume (or geobodies interpreted from seismic data) inside the cells of a 3D model. This 

creates a property that allows to make comparisons and calculations in the same domain as the 

original 3D model (voxel by voxel). Figure 2.5 shows the original model geobodies that we 

isolated out of the 3D model. These geobodies are the benchmark for the uncertainty 

quantification (UQ) analysis. 

Uncertainty Quantification (UQ) for unsupervised ML methods 

We calculated the confusion matrix to understand which facies were confused (or 

represented by the same cluster) in each case.  
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Figure 2.5. Geobodies per facies in the 3D model that serves as basis for the uncertainty quantification 

analysis. 

For this, we used the calculator option in the interpretation software. An example for the 

case of GTM36 is presented below: 

DF_GTM36=0  

DF1_GTM36= if (GTM36_Facies1=1,1,DF_GTM36)  

DF2_GTM36= if (GTM36_Facies2=2,2,DF1_GTM36)  

DF4_GTM36= if (GTM36_Facies4=4,4,DF2_GTM36)  

DF5_GTM36= if (GTM36_Facies5=5,5,DF4_GTM36)            (2) 
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These operations allowed us to obtain a single file with concatenated facies that was 

easier to handle for the next step, the uncertainty evaluation via error estimation and confusion 

matrix generation.  

Percent error 

Calculation done in a voxel-by-voxel way using equation 3, once we have built the 

geobodies  

Percent error =((actual facies voxels –ML result voxels)/actual facies voxels) *100                    (3) 

Confusion matrix and statistical metrics 

Since we are testing clustering algorithms (unsupervised ML), and therefore the output is 

clusters, and knowing the response in the synthetic model, we will use the terms class and 

clusters interchangeably. Treating these clusters as classes allows us to employ error estimation 

techniques such as the confusion matrix. 

According to Kuhn and Johnson (2013), a common method for describing the 

performance of a classification model is the confusion matrix. A confusion matrix is a cross 

tabulation of the observed and predicted classes. It is a NxN matrix employed to measure 

performance of classification models. Although the methods analyzed in this study are 

unsupervised and generate clusters, knowing the original response allows for calculation of 

statistical metrics that help understand misclassification of facies represented by the clusters 

formed. 
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Confusion matrices are represented by two axes: the horizontal or X axis represents the 

predicted facies (clustered), and the vertical Y axis represents the true facies from the original 3D 

model. The main diagonal in the matrix represents the cases where the classes (In our case 

facies) were correctly predicted, while the other values off the diagonal represent the number of 

errors of each possible case. 

Confusion matrices allow to determine true positives (TP) when the actual and predicted 

values are positive, True Negatives (TN) when the actual and predicted values are negative, false 

positives (FP) when the predicted value is positive while the true value is negative, and false 

negatives (FN) when the predicted value is negative, but the true value is positive. Although 

these values are not interpreted individually, they are used to calculate the metrics precision, 

recall and F-1 score. We can further determine accuracy, macro average, and weighted average 

to evaluate the performance of the ML methods in our multi-class classification. 

Table 2.4 summarizes the different statistical metrics calculated to assess the uncertainty 

of the ML models here evaluated. 

 

 

 

 

 

 



66 
 

Table 2.4. Metrics to evaluate performance of the ML evaluated. Modified after Kuhn and Johnson 

(2013). 

 

 

Results 

In the next sub-sections qualitative and quantitative analysis results are presented. 

Unsupervised ML results: qualitative analysis  

Normally, a seismic interpreter tends to use default parameters when there is a lack of 

understanding of how to improve the performance of algorithms, whether they lead to seismic 

attributes or different machine learning techniques. That is the reason why we first show in 

Figure 2.8 a comparison between the most general (default) case of 256 clusters for both SOM 

(Figure 2.8A) and GTM (Figure 2.8B). A seismic interpreter would not have any a priori 
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information that helps them understand the meaning of the clusters formed, and usually, their 

interpretation relies on their expertise and geological knowledge (La Marca and Bedle, 2022).  

Unsupervised results derive four panels as seen in Figure 2.8, which show the cross 

plotting of main output axes axis 1 and axis 2 and which offers the visual picture of the clusters 

in our dataset. We also obtain a 2D color legend with as many colors as clusters possible, a 2D 

histogram that would show the clusters formed and their occurrence or frequency such as the 

more clusters we have with one color, the more presence this cluster has in the data studied or 

indicate that more datapoints belong to each cluster formed. Finally, by overlying the histogram 

and colormap one can correlate which colors in the SOM correspond to each cluster.  

There are fewer clusters formed than the numbers we initially set in the input parameters. 

For example, SOM256 generates 37 clusters, and GTM256 123 clusters. We overall noticed that 

in all the cases, fewer representative clusters are formed in the SOM as compared to GTM. Also, 

we observed better details with fewer clusters than with 256, therefore the rest of the analysis are 

focused on the cases with 81 (high-level clusters) and 36 (low-level clusters). 

Because the expected facies and the synthetic model is based on the 3D model that 

contains them, we can qualitatively evaluate the performance of both methods by contrasting 

expected (Figure 2.5) vs. obtained facies/ clusters. 

It is noticeable that there are more clusters than facies expected (5). This means that 

either 1) each facies is defined by an aggregate of clusters, 2) some clusters do not have 

geological meaning or would represent noise, or 3) each cluster can represent more than one 

facies at a time depending on what features/ patterns were considered in the internal weighting 
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process that each algorithm used to define each cluster, this may be similar to the overfitting we 

know in supervised methods.  

When visually analyzing Figure 2.6 it is noticed that GTM256 (Figure 2.6B) seems to 

offer a more robust representation of the expected facies, having Facies 1 (channel axis) shown 

in color fuchsia, Facies 2 (channel off-axis) by mostly orange clusters, Facies 4 (channel margin) 

in brownish/ pink, Facies 5 (MTD) in blue/ purple and Facies 0 (Background shale) in green. On 

the other hand, SOM256 (Figure 2.6A) does not show such discrimination of facies, and clusters' 

colors are very similar, which can turn the interpretation process into a cumbersome task. 

 

Figure 2.6. SOM and GTM results per cluster arrangement and heat map per case. (A) SOM of 256 

clusters, (B) GTM of 256 clusters. 
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Unsupervised ML results: quantitative analysis  

A neuron grid along with the corendered 2D color legend allowed to group clusters 

interpreted to represent each facies. Table 2.5 presents the clusters we considered per case study.  

Table 2.5. Clusters interpreted per case study and facies. 

 

Figure 2.7 shows a panel with the SOM and GTM results per case studied. By visual 

interpretation we observed that GTM (Figures 2.7B and 2.7D) apparently better represents the 

actual facies than SOM cases (Figures 2.7A and 2.7C) and that facies 0 (background shale) has 

more data counts and clusters when looking at the histogram. Also, by our interpretation we 

would slightly prefer the 81 clusters cases since it shows smoother “facies”. 

Using the values in Table 2.5 and Equation 2, we generated geobodies per facies and 

cases. Figure 2.8 shows a graph that allows to compare the original expected geobody vs the 

obtained in each case. Overall, we notice that the generated geobodies do not mimic exactly the 

expected ones which may be due to misinterpretation of clusters or errors in the geobody 

generation method in the software used.  

To quantitatively understand and address uncertainty in SOM and GTM methods we 

estimated a percentage error and built a confusion matrix which we explain in the next 

subsection. 

Facies SOM36 GTM36 SOM81 GTM81
Facies 1 15,20 10,4,3,9 67,78 5,7,14,44,61
Facies 2 22 23,17,28,29 6,13,23 52,53,61,62
Facies 4 4,24 20,16,21,22,27,11,5 30,31,39,40 24,34, 43
Facies 5 33,34 3,17 34, 41,42 33, 41,42,50



70 
 

 

Figure 2.7. SOM and GTM results per cluster arrangement and heat map per case. (A) SOM of 36 
clusters, (B) GTM of 36 clusters, (C) SOM of 81clusters, (D) GTM of 81 clusters, (E) SOM of 256 
clusters, (F) GTM of 256 clusters 
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Figure 2.8. Geobody comparison per case and facies compared to the original/ expected geobodies. 

Percentage error estimates for UQ 

Using equation 4 which considers original voxels vs predicted, error per facies was 

calculated and Table 2.6 presents these results. Overall, geobodies formed per facies have a high 

error in predicting individual facies, as opposed to background shale that presented the lowest 

error in all cases. This implies that we should likely merge two or more facies in a single class 

(cluster for the unsupervised ML purpose) to correctly predict it. 
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Table 2.6. Results of percentage error per case and facies 

 

Confusion matrix results for UQ  

To address uncertainty in the ML methods studied we developed a confusion matrix per 

facies and each case tested. Table 2.7 shows the results of the matrices, where the main diagonal 

represents the correctly predicted data points per facies. We explain one example of how we 

interpret the results of the matrix. Focusing on the GTM 81, the rightmost column (support) 

shows the expected number of voxels expected to be predicted per facies. 

 If we analyze Facies 1, which corresponds to the channel axis, we expected to predict 

461,204 voxels. However, when we calculated the confusion matrix (see the main diagonal on 

the leftmost table) only 81,804 voxels correctly fell in this facies category. Therefore, the 

remaining 379,400 voxels were misinterpreted by the other facies. If we follow that row where 

the Facies 2 is (yellow) noticed that 165,356 voxels were misclassified as shale when they 

belonged to Facies 1. Similarly, 30,309 were misclassified as Facies 2, 92,905 voxels fell in the 

Facies 4 class, and 90,230 were confused with Facies 5. 

We derived some statistical measures that consider the TP, TN, FN, and FP to estimate 

the error in predicting facies per case, which holistically allows us to address uncertainty in the 

ML methods used. 

Facies SOM36 error % GTM36 error % SOM81 error % GTM81 error %
0 1.126 5.658 0.271 2.249
1 91.857 90.108 93.509 82.263
2 99.995 92.514 98.494 95.185
4 86.494 59.589 95.164 82.842
5 58.179 65.907 26.739 44.106
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Table 2.7. Results of confusion matrix per facies for the SOM36, GTM36, SOM81, GTM81. Precision, 
recall, F1, and accuracy metrics are shown to the right of each case studied. 

 

Like the error presented in 5.2.1, when looking at the metrics, we see how just one of the 

classes (Facies 0 or shale) in each model has the highest precision and recall, and that the models 

do not show good performance for the other evaluated facies, being Facies 2 and 1 the next best 

in performance, followed by Facies 5 and 4. 

When comparing the tested methods, we see that the models have high accuracy, with 

SOM36 the one with the highest weighted average (0.94), followed by GTM81 with 0.93. 

A) Facies Precision Recall F1-score support
24858571 4462 0 198169 77350 0 0.97 0.99 0.98 25138552

168730 37554 8 123337 131575 1 0.37 0.08 0.13 461204
137323 23155 17 81221 99338 2 0.38 0.00 0.00 341054
167089 8115 18 32813 34912 4 0.07 0.14 0.09 242947
171985 28175 2 61464 149617 5 0.30 0.36 0.33 411243

Accuracy 0.94 26595000
Macro avg 0.42 0.31 0.31 26595000

Weighted avg 0.94 0.94 0.94 26595000
B)

23792424 269643 11340 989036 76109 0 0.98 0.95 0.96 25138552
126093 45620 32709 186883 69899 1 0.12 0.10 0.11 461204
104071 20471 25531 146237 44744 2 0.22 0.07 0.11 341054
104296 14908 4900 98178 20665 4 0.06 0.40 0.11 242947
140204 23659 39705 191964 15711 5 0.07 0.04 0.05 411243

Accuracy 0.90 26595000
Macro avg 0.29 0.31 0.27 26595000

Weighted avg 0.93 0.90 0.92 26595000
C)

25070544 38966 182 17482 11378 0 0.96 1.00 0.98 25138552
348827 29939 14713 26379 41346 1 0.26 0.06 0.10 461204
268375 16572 5137 25916 25054 2 0.18 0.02 0.03 341054
206563 14491 2167 11749 7977 4 0.10 0.05 0.07 242947
301281 17273 6479 30386 55824 5 0.39 0.14 0.20 411243

Accuracy 0.95 26595000
Macro avg 0.38 0.25 0.28 26595000

Weighted avg 0.92 0.95 0.92 26595000
D)

24585623 211703 20889 75880 244457 0 0.97 0.98 0.98 25138552
165956 81804 30309 92905 90230 1 0.21 0.18 0.19 461204
133785 50611 16423 63987 76248 2 0.2 0.05 0.08 341054
137799 24728 5426 41684 33310 4 0.12 0.17 0.14 242947
229861 27032 8530 66886 78934 5 0.15 0.19 0.17 411243

Accuracy 0.93 26595000
Macro avg 0.33 0.31 0.31 26595000

Facies 0 Facies 1 Facies 2 Facies 4 Facies 5 Weighted avg 0.93 0.93 0.93 26595000

SO
M

36
G

TM
36

SO
M

81
G

TM
81
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Overall, all methods present similar performance, but in-depth analysis is provided in the 

upcoming discussion section. 

 

Figure 2.9. Visual representation of uncertainty in unsupervised ML methods. (A) Shows a section of the 
original 3D model, which has been filtered y the channel facies for visualization purposes. (B)Presents the 
same section in the results of GTM36 once they have been concatenated and resampled. Notice how some 
voxels represent the correct facies but others do not. This demonstrates that the use of ML methods will 
add uncertainty to the reservoir understanding (dimensions, facies, and volumetrics). 

 

Discussion 

We used synthetic seismic data and a 3D model originated from outcropping data to 

address the uncertainty in channel facies and architectures clustering using two popular 

unsupervised machine learning methods: SOM and GTM. In the following subsections, we 

discuss the main findings and insights of the study. 
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Selecting seismic attributes and parameters that are ideal for mapping channel architectures.  

In geophysics, and most specifically interpretation of seismic reflection data, the usual 

input for any ML method are seismic attributes. In this sense, we recommend working only with 

attributes whose principles the interpreter understands well. In our case, we tested instantaneous 

and spectral seismic attributes that have been proven to provide good results in the seismic 

deepwater channel architecture assessment (Zhao et al, 2015; Roden and Sacrey, 2015). 

In this study, we are applying attribute selection as if we did not know the expected 

answer or scenario with the aim of simulating the interpreter’s behavior in front of exploration 

data. Therefore, after applying geological knowledge and statistical relationships we selected six 

attributes to use as input in the unsupervised machine learning methods: peak magnitude, 

instantaneous envelope, RMS, and spectral magnitudes of 20 Hz, 40 Hz, and 55 Hz. A good 

guide that can be followed in the input attribute selection stage is found in Roden and Sacrey. 

(2015), Infante-Paez and Marfurt (2019), and La Marca and Bedle (2022). 

The use of unsupervised machine learning methods for deepwater seismic facies: which 

method is better? 

The choice of an unsupervised ML method over a supervised method depends on the type 

of data available for the study. In exploration stages, it is often rare to rely on well logs or other 

data. In this scenario, unsupervised methods provide ways to find relationships among the 

variables in the data available (Roden and Sacrey, 2015), while reducing the time of interpreting 

big data associated with multiple input information that comes from the seismic attributes used. 
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However, unsupervised methods require interpreter evaluation to approve or disapprove 

the output. In this study, we selected two commonly used unsupervised ML methods (SOM and 

GTM) to evaluate their performance and better understand the real meaning of each cluster 

formed as well as compare both somehow similar methods. The advantage of using unsupervised 

methods relies in that they can identify new relationships between seismic attributes, which are 

unknown beforehand, assisting the expert in generating a more accurate interpretation. 

Although several authors present insights on how GTM is superior to SOM and comes to 

solve many of its drawbacks (Chopra and Marfurt, 2014), such as the lack of convergence to a 

local minimum and setting of a learning rate that would optimize the results, we found that in our 

dataset SOM and GTM performance is very similar. When analyzing visually the results of the 

different cases: 256,81 and 36 clusters we observed that 1) The reduction of clusters does not 

necessarily offer an output that is easier to interpret and 2) GTM seemed to offer more 

distinction between the facies we aimed to interpret. Barkowiak (2004) states that generally, the 

topology of GTM and SOM looks similar, although GTM yields smaller quantization error than 

SOM. 

When evaluating the metrics comparing each cluster case (e.g., SOM36 against GTM36), 

we noticed that there is a slight improvement in the overall performance (weighted avg of F1 

score) in GTM vs. SOM method.  For individual facies prediction, in both cases, Facies 1 and 

Facies 5 were better predicted than Facies 2 and Facies 4. However, we noticed that the 

predominance of shale (Facies 0) over other facies, imbalances our dataset, punishing the 

performance in the prediction of other facies and even causing misclassification of other facies 
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that fall in the Facies 0 category, which can be observed in the confusion matrix (Table 2.7) and 

in Figure 2.9.  

The main takeaway of these results is that we should determine an optimal number of 

clusters, likely as suggested in our previous study (La Marca et al, 2021) where better results 

were achieved with a cluster number of three, which would represent the background shale, 

MTDs, and Channel facies. The drawback of applying this approach is that we are not letting the 

algorithm distinguish between economically attractive facies (e.g., Facies 1, or channel axis vs. 

Facies 4) and results would be too general and non-practical in instances when reservoir 

modeling and volumetrics are necessary to make important decisions. 

Our suggestion would be to make use of data available, for example, if a well exists in a 

desirable location, we could use it to validate the clustering results and then create labels for 

training as unsupervised learning. On the whole, we would recommend using supervised 

methods whenever possible since they have direct performance metrics, and if this is not 

possible, then use more than one unsupervised ML method (e.g., GTM and Kmeans) with 

sufficient clusters in the initial setting that would give some freedom to find patterns among the 

data and consider best practices for each method used (Sun, 2000).  

 The drawback of both methods tested herein is that they are a reflection of the input and 

do not have controls for unbalanced data. Both algorithms are projecting the data from the 

attribute space onto the latent space. They do not have the capability to discern geology, but 

rather patterns in the data, and that is probably why the shale dominates. The latent space is 

“mostly shale”, just like the attribute space. We prefer the algorithms to understand that shale is 

one entity, and the channel axis is another, but they only see attributes (datapoints). If the 
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attributes are similar, they will be close together in the latent space and will fall in the same 

cluster. This is a limitation of the technique in the method discussed and implemented here.  

Uncertainty Quantification (UQ) of unsupervised machine learning methods: working with 

unbalanced data.  

Some deepwater settings as explained in Slatt. 2013, can be mud-dominated, depending 

on the location and provenance of sediment (Fildani et al, 2013). In our case, slope systems are 

often comprised of high-quality lobe/ channel systems embedded in a poor reservoir quality 

shale. Although from the seismic response perspective the acoustic impedance contrast between 

these different facies (e.g., shale vs channel axis) benefits the imaging, when performing 

machine learning methods, we would have imbalanced data due to the predominance of shale 

over other facies and this may impact the accuracy of the methods.  

According to Jeni et al. (2013) and Luque et al. (2019), when a dataset is imbalanced, the 

F1 score (which is a function of precision and recall) and its averages are better metrics to assess 

model performance as opposed to accuracy. We considered the F1 score and its weighted 

average in each scenario evaluated. Surprisingly we found that for the 36 clusters arrangement, 

SOM slightly outperformed the GTM method having a weighted F1 avg of 0.94 as compared to 

0.92 in the GTM. On the contrary, when increasing the cluster numbers (81), we noticed how 

GTM outperforms SOM by 1% although SOM shows higher accuracy (~2% higher).  

Another important observation is that weighted values are much higher than the F1 score, 

which may indicate that the models are good for the dominant class prediction but underperform 

for the other classes (facies). For example, the highest F1 score of all is always reflected in 
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Facies 0, and for other facies is always lower than 0.5; the highest was 0.33 shown in Facies 5 

for SOM36.  This is confirmed when we look at the weighted average which accounts for the 

proportions of each facies as compared to the total voxels. Therefore, we can say that in the 

presence of highly imbalanced data, the prediction of other classes would be affected by the 

predominant one. This is evidenced in the “per class” scores where we see that the models are 

not good (besides shale), resulting in F1 scores that lay far below 0.5 for any other class. One 

way to address highly imbalanced data could be testing metrics like the ROC curve or 

performing a normalization of the values as suggested by Jeni et al, (2013). 

When evaluating models, we need to consider all the metrics, since for instance, when 

looking at the F1 score and macro one may think that SOM36 outperforms its counterparts, 

however, it presents the worst recall for class 2 from all the cases presented. This means that the 

model itself is not able to identify all the Facies 2 occurrences. In such case, if we were 

interested in class 2 and trying to identify potential regions for further investigation, GTM36 

would have the best score, although it is still low.   

Our interpretation of these results is that there is not a single cluster or set of clusters 

representing each facies, especially those that are near the resolution of the seismic. A better 

approach would be to consider background shale vs channel facies to see the actual error in 

interpreting these facies. In fact, in a previous study (La Marca et al., 2021) where K-means and 

PCA were evaluated when determining the optimal cluster number for the dataset using the 

elbow plot (Sum of squares within a method), there were three predominant clusters attributed to 

shale, channel facies, and MTD. Pampalk (2001) mentions that Since K-means is not concerned 
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with neighborhoods its clustering results are more accurate compared to the SOM. Therefore, 

this could be an alternative to improve results. 

The advantage of this study is that although previous studies focused on addressing 

uncertainty in supervised ML methods (e.g., Abdar et al, 2021; and Stracuzzi et al, 2017), and 

authors like Mathieu, 2017 introduced the concern of addressing uncertainty in unsupervised 

methods, our study is pioneer in the realm of geophysics and the first that uses synthetic seismic 

data and outcrop derived models to evaluate the performance of unsupervised ML methods like 

SOM and GTM.  Addressing uncertainty to understand the cluster definition is and how really 

these ML methods are operating is paramount to be considered prior to making any decisions 

based on interpretations and gain confidence in their use. 

The importance of properly address uncertainty in unsupervised ML methods and implications 

on the energy sector. 

According to Weber (1993), the use of 3D seismic has resulted in some cases, in a 

remarkable delineation of individual sand bodies and of reservoir architecture. However, even 

with high-quality 3D seismic data (Figure 2.1), it is still cumbersome to resolve internal reservoir 

configuration (Coleman et al, 2000) due to poor acoustic impedance contrast or insufficient 

thickness of the individual beds. As example. Kus et al. (2021) show how sands have changes 

not only in thickness but also in composition, offering a finger-like planform geometry.  

Our analysis attempts to show the error associated with facies interpretation using 

unsupervised methods like SOM and GTM and allows for interpretations that in cases like the 

one presented by Kus et al (2021), one should consider selecting more clusters than the optimal 
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cluster number because some of the isolated clusters may represent those sands that do not 

necessarily share common features with other sandstones.  

 Stracuzzi et al (2017) point out that when using seismic data, errors, hence uncertainty, 

are added in each step. Therefore, uncertainty starts from the acquisition, followed by the effects 

of data preprocessing, which removes irrelevant signals, but may also alter seismic information. 

Furthermore, quality of data (resolution, noise, frequency content) may affect the resolvability of 

different architectures, for example, MTDs (Facies 5 in our study) are often overlooked, and 

since they represent baffles (Cardona et al, 2020) for fluid flow, they can negatively impact the 

reservoir assessment if not mapped correctly. 

Subsequently, model-form uncertainty arises from the learning process: many plausible 

model parameterizations exist, and each provides a slightly different output.  In addition to this, 

we noticed that there is uncertainty introduced when selecting attributes that may be not the most 

suitable/ adequate, to not use the correct parameters or cluster number, followed by the method 

we use to generate geobodies (how some of the voxels/ geoblobs are not going to be connected if 

geoblobs are isolated, so we lose important information).And since we assign the clusters a 

meaning regarding our geological knowledge we may be misinterpreting facies, or interpreting a 

cluster that actually has no geological meaning (a particular pattern or frequency range). 

Therefore, it is cumbersome to fully address uncertainty in seismic reservoir characterization. 

 Conclusion 

We introduce a new approach to assess uncertainty in unsupervised ML methods, by 

using synthetic seismic data and 3D models built upon a real deepwater outcropping. Using 

synthetic data to quantify the methods’ ability to correctly classify facies, provides confidence in 
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the interpretation of seismic facies using clustering techniques in cases where well data is not 

available. For our case, and probably commonly evidenced in analog settings, background shale 

(Facies 0) represented the majority of the data, creating an imbalanced dataset. Although we 

addressed this issue by focusing on the F1 score instead of accuracy, other metrics outside the 

scope of this study (e.g., ROC curve), could help to better understand the method’s performance. 

There is no single cluster or set of clusters representing each facies, especially those that are near 

the resolution of the seismic. A better approach would be to consider background shale vs. 

channel facies (sum of main channel facies) to see the actual error in interpreting these facies. 

Based on the metrics evaluated, overall GTM and SOM have similar performance. When 

looking at the F1 score and macro one may think that SOM36 outperforms its counterparts, 

however, it presents the worst recall for class 2 from all. This means that the model itself is not 

able to identify all the Facies 2 (channel off axis) occurrences. In such case, if we were interested 

in class 2 and trying to identify potential regions for further investigation, GTM36 would have 

the best score, although it is still low.  As interpreters we need to be aware that there are multiple 

errors that add uncertainty in the seismic interpretation process, from the acquisition and 

processing which will condition the quality and resolution of our seismic, to the seismic 

attributes used as input, number of clusters and parameterization, as well as the human bias in the 

interpretation process, which if well logs are not available makes it rely on the geoscientist 

expertise. Due to this, we recommend the use of supervised methods over unsupervised 

whenever possible, or pure clustering techniques like K-means if unsupervised methods are the 

only option. 
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Addressing uncertainty in ML methods, especially unsupervised methods is necessary to 

properly select algorithms that allow for building more accurate 3D reservoir models, volume 

estimation, and flow simulation, all of which are critical for the oil and gas industry and in new 

energy studies like CCUS and geothermal resources development. 
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CHAPTER 4: UNDERSTANDING UNCERTAINTY IN DEEPWATER CHANNEL 

SEISMIC FACIES CLASSIFICATION APPLYING RANDOM FOREST ON OUTCROP-

CONSTRAINED 3D MODELS AND SYNTHETIC SEISMIC DATA* 
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models and synthetic seismic data. 

 

 

Abstract 

In order to understand the uncertainties in seismic interpretation, we apply a random 

forest classifier, a robust supervised machine learning method, to synthetic seismic data derived 

from real outcrop data. This novel approach of using outcrop-based synthetic data as ground 

truth allows us  to  better understand  the influence of classifier hyperparameters (such as number 

of estimators/ trees, maximum depth of each tree, and others) on prediction accuracy. Based on 

previous analysis, we choose six seismic attributes that are able to differentiate five deepwater 

architectural facies: shale (thin-bedded turbidites), channel axis, off-axis, margin, and mass 

transport deposit (MTD). Our random forest hyperparameter testing indicate that optimization of 

the random forest classifier is sensitive to the 1) choice of training attributes and their predictive 

importance, 2) original facies proportions, 3) similarity in the seismic expression of different 

facies, 4) seismic data resolution, and seismic data signal-to-noise ratio.  A simple classifier 

using common random forest hyperparameters developed for fluid saturation, predicted the 

facies with only 74% accuracy. Although computationally more expensive, optimizing the 

random forest hyperparameters provided ~89% accuracy. Unfortunately, when applying the best 
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model to an unseen portion of the model, although the position of the channel complex set was 

accurately predicted, our validation accuracy was only 58% , showing the limitations of 

universal models and persistent uncertainties. Utilizing outcrop-derived ground truth data 

provides insights into machine learning pitfalls and strengths for subsurface applications, where 

accurate predictions could impact operational decision-making and safety in both energy 

production and carbon sequestration. 

Introduction 

Machine learning (ML) techniques are becoming increasingly popular to solve problems 

that the naked eye or a human interpreter with limited time would not be able to solve. There are 

two types of ML: unsupervised and supervised. Supervised methods involve the development of 

prediction models when a given dataset has the output (labels) available. Supervised methods 

have many applications in the geophysical field, including the one addressed in this study, 

seismic facies interpretation.  One of the advantages of supervised ML methods is that they can 

be trained for the labeled multi-class data to perform the task of classification (Ning and Yu, 

2019). However, ML models carry uncertainty with them that can be difficult to quantify. 

As used herein, uncertainty in machine learning refers to the lack of confidence in the 

results obtained, or working with imperfect information (Brownlee, 2019). Though no algorithm 

is perfect, metrics are a good resource to quantify output accuracy, which is critical in fields like 

medicine and technology where inaccurate predictions have consequences (e.g., self-driving 

vehicles). In our context, incorrectly predicting facies or fluid presence could lead to drilling 

wrong targets, causing economic losses and operational risks in the real world where data is 

often messy. Recent work has assessed uncertainty in ML applications (e.g., Nagl et al, 2022; 
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Abdar et al, 2021; and Mathieu, 2017). However, little research has examined uncertainty 

specifically when applying ML models to seismic data for predicting deepwater seismic facies.  

Assessing uncertainty is further complicated by the fact that there are two main types of 

uncertainty to be addressed. Aleatoric and epistemic as described by Hora (1996) and Der 

Kiureghian and Ditlevsen (2009). Epistemic uncertainty stems from insufficient data 

representation and is reducible since it can be lowered by providing additional data. Models are 

expected to exhibit high epistemic uncertainty when the input data is far away from the training 

data. In practice, nobody can provide an infinite amount of training data, so a model will never 

be able to reach an epistemic uncertainty of zero. The second type of uncertainty, aleatoric, 

relates to the data itself. Data are never a perfect representation of reality and are always 

bandlimited and often contaminated by both random and coherent noise such as multiples and 

migration artifacts. Aleatory uncertainty, as opposed to epistemic uncertainty, cannot be reduced 

with additional information since it is not a property of the model but rather an inherent property 

of the data themselves. Therefore, we need to be aware of the pitfalls that model bias brings to 

the interpretation process (Posamentier et al, 2007). 

According to Phan (2019), uncertainty quantification (UQ) currently underpins many 

critical decisions, and predictions made without UQ are usually not trustworthy. A common 

approach to quantify uncertainty is the Bayesian approach (e.g., Langenkamp, 2021), however 

Bayesian Neural Networks are computationally expensive and “do not scale easily to complex 

neural network and architectures containing many parameters” as noted by Nagl et al., (2022). 

Therefore, we aim to improve the understanding of the uncertainty associated with 

deepwater seismic facies prediction by comparing a ground truth outcrop-derived 3D model and 
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derived synthetic seismic data with predictions made using random forest (RF) unsupervised ML 

algorithm that was developed by Breiman (2001). In this study, RF is applied as a classification 

technique, since we want to predict facies which are discrete variables and distinguish these 

classes (facies) from the rest.  We then optimize the hyperparameters and apply the best model 

obtained to unseen data, the answers to which we already know a priori. In reality, we may never 

have all the observations, in which case we will not need a predictive model. However, in this 

case, having all the answers allows for a better understanding of the performance, and nuances of 

the method. As George Box’s aphorism states, “all models are wrong, but some are useful”, so 

we aim to understand how useful an optimized RF is to predict deepwater facies. 

The RF method takes advantage of the decision trees that ensemble it but alleviates 

overfitting of training data and is less biased since it integrates individual trees, generally trained 

via bagging. A key benefit of a bagging algorithm is that it provides a quantitative measure of the 

importance or redundancy of each attribute in the learning process, resulting in highly accurate 

prediction (Kim et al., 2018). Another strength of RF is prediction of multiple classes that are 

available. There are some studies where RF has been applied to seismic data. For example, Kim 

et al (2018) applied RF algorithm to classify seismic facies and to thoroughly define the 

limestone and shale facies in a Barnett shale seismic survey. Ballinas et al (2023) discriminated 

fluid saturation (water, oil and high or low saturations of gas), and Bhattacharya et al (2016) 

performed lithofacies classification in the Bakken shale. Most of these studies successfully 

distinguish shale, limestone, or sand prone facies in a general way using seismic facies (e.g., Ao 

et al, 2019). However, there has been limited work to date that applies RF to understand 

deepwater seismic facies to the extent of detail in this study. 
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3D synthetic models have been used to calibrate the sensitivity of new technology to 

better image geologic features of interest. For instance, Clawson et al. (2003) used 3D synthetics 

computed from outcrop studies in the Permian Basin to calibrate the mapping Brushy Canyon 

channels using the relative new coherence and spectral decomposition algorithms. Inspired by 

the latter, unlike other studies that have a probabilistic approach to quantify uncertainty, this 

study utilizes ground truth synthetic data to understand the uncertainty associated to the different 

levels of an unsupervised machine learning method application. This includes aspects such as 

data understanding and input selection, as well as the analysis of misclassifications, all in the 

context of comparing with a ground truth model, in what we call “analog-based uncertainty 

assessment”. 

We begin our paper with a summary of data preparation, seismic facies selection, and 

seismic attribute selection. Then we use some of these data to train the random forest algorithm, 

modifying the RF hyperparameters to improve performance of the model. Then, we use the best 

model on a portion of the original data that was not used before in a process that we here refer to 

as validation. Because these are synthetic data generated from a known model, we know the 

correct answer, allowing us to visualize and numerically assess facies misclassifications. We 

conclude by summarizing our  main findings and how this workflow and the application of 

random forest classifiers in general can benefit the seismic interpretation community. 
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Methodology 

We employed the random forest algorithm in a supervised manner to classify deepwater 

seismic facies. To accomplish this, we utilized a 3D model constructed from observations and 

measurements of outcropping deepwater slope channels (Ruetten, 2021) and a corresponding 

synthetic model (Langenkamp, 2021) to train and assess the algorithm's performance. Our 

selection of seismic attributes (features) was guided by previous analysis and correlations (La 

Marca et al, 2023). We ensured consistency by cropping the input data to the same dimensions 

and standardized the seismic attributes through Min-Max scaler normalization (Patro and Kumar, 

2015) before applying the algorithm. 

To achieve optimal results, we fine-tuned the hyperparameters of the random forest 

algorithm, to find a balance between accurate classification and avoiding overfitting. This 

optimization process allowed us to harness the potential of RF for classification efficiently and 

effectively. For a detailed overview of our approach, refer to Figure 3.1, which illustrates the 

workflow applied in this study. Subsequently, we provide explanations and considerations 

regarding our methodology. 
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Figure 3.1. Workflow used in the uncertainty assessment of deepwater facies classification using a 
random forest classification algorithm, applied to an outcrop-derived 3D synthetic seismic model 

(Langenkamp, 2021). The choice of seismic attributes used in this model is discussed in La Marca et al 
(2023). * Notice that the original model has been divided into two: upper portion to perform the RF 

model, and the lower portion (green) to validate or apply in this unseen piece of model. In this study, it's 
important to note that the terms 'test' and 'validation' are not interchangeable. Validation is employed here 

to understand uncertainty.   
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Ground truth model foundation 

The Laguna Figueroa outcrop in the Chilean Patagonia, served as the foundation for 

creating a scaled, GPS-positioned 3D reservoir model that encompasses various channel related 

facies. These facies serve as our model labels, including 1) channel axis, 2) channel off- axis, 3) 

channel margin, 4) mass transport deposits (MTD), and 5) thin bedded turbidites (for practical 

purposes we use the term “shale”). This model, in conjunction with 1D convolution using zero-

phase Ormsby wavelets and assigned real acoustic impedances, facilitated the generation of 

synthetic forward modeled seismic data. For more in-depth information of the model refer to 

Ruetten (2021) and Langenkamp (2021). From the suite of synthetic data provided, we used the 

60Hz dominant frequency volume (Figure 3.2) with random noise added to mimic real data 

(Stright et al., 2014), and so provide valuable insights into the uncertainty associated with 

seismic facies classification. 

Phase 1. Data preparation and seismic attribute selection 

When applying ML techniques, one of the critical initial steps involves data preparation. 

The choices made regarding data selection, variables (such as seismic attributes), and study 

window can affect method’s robustness. While no single seismic attribute can effectively 

distinguish all the targeted classes or facies for study, it's important to note that an excessive 

number of variables does not necessarily provide a solution to this challenge. Therefore, the 

method for selecting input seismic attributes involves a combination of user expertise, ensuring 

that they align with common practices for channel interpretation, and assessing their statistical 

correlation suitability (Barnes, 2007, Kim et al, 2018; La Marca et al., 2023). These attributes 

were computed across the entire dataset and subsequently cropped within the selected study 
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window, reducing potential smearing effects or errors associated with trace-based attribute 

calculations. Figure 3.2 provides a representative 3D visual of each of these attributes. 

 

Figure 3.2. First row: 3D Model and synthetic amplitude volume, second and third row: 
calculated seismic attributes used in the study. Peak magnitude, envelope and Root Mean Square 
amplitude (RMS) are often used to highlight changes in lithology, whereas spectral magnitudes 

are used to interpret architectural elements of different thicknesses.  

 

To assess the reproducibility of RF classification, we divided the original volume into 

two distinct sets as noted in Figure 3.2: one for training/test (upper) and the other for validation 

(lower). The latter represents an unseen and unused portion reserved for the validation process, 

to demonstrate how accurately the RF prediction model is performing using “new” data. (note 
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that test and validation here are not interchangeable and that normally RF does not require 

validation). Data conditioning was carried out by analyzing the distribution of variables and 

applying Min-Max scaling, which normalizes the data between 0 and 1 while maintaining 

skewness (Raju et al, 2020). This scaling process allowed to ensure that both the input data and 

the validation dataset are in the same analytical space (Ballinas et al, 2023), and scaled, making 

posterior processing easier. 

Phase 2. Random forest method 

Numerous supervised ML methods are available for tackling facies classification 

challenges. Nevertheless, among these options, Random Forest (Ho, 1995; Breiman, 1996, 2001) 

stands out as one of the most robust supervised classification algorithms as demonstrated by 

previous studies that compared RF with other methods (Bhattacharya et al, 2016; Kim et al, 

2018; Rahimi and Ali, 2022; Nayaran et al, 2023; Ballinas et al, 2023). Therefore, the decision to 

use RF in our study was driven by its track record of effectiveness in classification tasks, coupled 

with its robustness in handling various data complexities, including noise, outliers, and data 

heterogeneity.  

Random forest consists of an ensemble of decision trees, with the final classification 

being determined by the majority within their individual results. In our specific case, the input 

labels, representing facies, are linked to the input seismic attributes to be used as training dataset. 

RF is based on bagging (Breiman, 1996), meaning that data in the training dataset is selected 

with replacement. This approach enhances overall accuracy and reduces overfitting problems 

(Breiman, 2001). 
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Feature/ attributes importance 

We define the M target facies (labels) one by one, resulting in  

 

𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡𝑁𝑁𝑁𝑁 = � 𝑁𝑁𝑚𝑚 
𝑅𝑅

𝑚𝑚=1

 

 

where Nm is the number of training voxels for the 𝑚𝑚𝑡𝑡ℎ facies. Then we compute a suite of Q 

seismic attributes (features) that best differentiate the M facies such that the training data consists 

of Ntotal length-Q vectors.  Because of bagging, for each tree constructed within the ensemble, a 

random subset of data points is selected. This process aims to discern the importance of each 

feature (seismic attribute) in distinguishing between different classes (facies). The result is a 

histogram that shows the seismic attribute importance/ contribution in the classification. This 

unique aspect of random forest greatly contributes to its effectiveness as a classification method. 

 

Hyperparameters of random forest: grid search and cross-validation 

A crucial step in ensuring the robustness of RF is the optimization of hyperparameters. These 

parameters play a vital role in the model’s training process and directly influence its accuracy in 

predicting classes.  For this reason, we undertook an exhaustive iteration of grid search to fine-

tune the hyperparameters and gain a comprehensive understanding of how each parameter 

influenced accuracy (score). Grid search creates alternate model configurations by analyzing and 
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discretizing a target range of values into each hyperparameter of interest and training the model 

across all hyperparameters for all combinations (Mesafint and Manjaiah, 2021).  

During this experiment, we implemented a five-fold cross validation approach during 

training, maintaining an 80/20 ratio for points used for training compared to those used for the 

testing stage. Thus, this proportion which is based on Pareto’s principle ensures a robust 

assessment of model performance (Gholamy et al, 2018; and Roshan, 2022). 

 We performed six tests (Table 3.2) varying one parameter at a time, and the last test (test 

6) uses all the optimal parameter values in each of the previous tests. We did this to understand 

the individual contribution of each parameter to the model performance and to save time, since 

running a grid search varying all parameters at once, although a common practice, can be very 

time-consuming. Table 3.2 shows a summary of the parameter evaluated in this study, its 

meaning and description of the test.  We selected the best combination that not only yielded high 

accuracy but that also was computationally efficient, considering the dataset’s scale.  

Error estimation and metrics 

According to Kuhn and Johnson (2013), a common method for describing the 

performance of a classification model is the confusion matrix. Therefore, confusion matrices 

were used to assess the performance of the Random Forest classification model. These matrices 

compare original (on the Y-axis) versus predicted (on the X-axis) classes in a n x n 

configuration. The main diagonal of the matrix reveals the correctly predicted classes (facies), 

while off-diagonal elements represent misclassifications into other classes. Table 3.1 describes 

the statistical metrics used and how to calculate each one of them. 
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Although metrics such as precision, recall, accuracy, and weighted average accuracy are 

used to understand how well classes are classified, in the case of imbalanced data (a greater 

proportion of one facies over the others) the F1 score becomes our best ally to evaluate the 

model performance. If you have an imbalanced dataset but want to assign more weight to classes 

with more samples, consider using weighted average instead of macro average (which treats all 

classes equally). 

Table 3.1. Metrics to evaluate performance of the ML evaluated. Modified after Kuhn and Johnson 

(2013). 
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Phase 3. Model validation 

After selecting and applying the best RF model, we performed a validation step by 

applying the algorithm with these chosen settings to a portion of the model that had not been 

utilized previously. This approach differs from others found in the literature, where wells (that 

represent a single location in the area) are typically employed for blind testing the model's 

application. In our case, having access to a complete true model (and consequently, the expected 

correct facies) provides a unique opportunity to gain a deeper understanding of the uncertainty 

associated with these facies’ predictions using random forest. 

Results and discussion 

In order to evaluate the uncertainty associated with deepwater facies classification using 

random forest supervised ML algorithm, a 3D outcrop-derived model with five facies (labels) 

was used and six seismic attributes (RMS, instantaneous envelope, peak magnitude and spectral 

magnitudes of 55 Hz, 45 Hz, and 20 Hz) were employed for training. 

The full advantage of utilizing machine learning methods lies in their ability to harness 

information from multiple seismic attributes. In traditional interpretation practices, interpreters 

are typically constrained to visualize one or, at most, three attributes at a time. Ironically, this 

limited approach often introduces more uncertainty into the interpretation process compared to 

the use of ML methods that can combine and aid in visualizing multi-dimensional data. 

Figure 3.3 displays a scatterplot that illustrates the correlation between these seismic 

attributes and the different classes or facies. Upon analyzing this graph, it becomes evident that 

uncertainty may arise from the fact that attribute values within each facies exhibit similar ranges, 
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and each attribute seems to distinguish well between shale facies and channel facies, but 

differences between individual channel facies may be subtle. Probably, this is partially a result of 

the choice of features (seismic attributes) within the category of epistemic uncertainty and the 

resolution and quality of the seismic (aleatoric uncertainty) in which case we have limited to no 

control. 
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Figure 3.3.  (A) Scatter plot displaying the correlation between input seismic attributes used as training 
data. Data points color code represent the facies defined (Yellow: channel axis, Orange: channel off-axis, 

Brown: channel margin, Red: Mass Transport deposits (MTD), and Gray (background shale) (B) Box 
plots showing the uniqueness of each attribute in representing each facies. Notice how shale can always 

be distinct from the channel facies overall. 

 

Another observation is the prevalence of the gray (shale/non reservoir) facies in 

comparison to the other facies categories. This aligns to what is depicted in Figure 3.4, which 

illustrates the dominance of background shale facies over its counterpart, the channel facies. 

Although this suggests that the used dataset may be imbalanced, it is indeed a representation of 
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actual deepwater channel facies distribution, and hence, what we will likely find in real seismic 

data. 

 

Figure 3.4. Histogram of samples count per facies (label) in the training dataset. Although the 
shale has greater representation than the other four facies, this imbalance is representative of actual 
deepwater channel facies distribution.  

As stated by Stracuzzi et al. in 2017, even minor alterations in the training or test data can 

result in substantial and unpredictable variations in performance for a model characterized by 

uncertainty. Therefore, we conducted a thorough hyperparameter optimization, as outlined in 

Table 3.2 and Figure 3.1. The outcomes of this optimization process indicated that the 

algorithm's performance notably improved under certain conditions. Specifically, when the 

maximum depth (Test #4) was set at a high value, when the maximum number of samples was 

increased (Test #3), when the minimum number of samples required to split was kept small (Test 

#2), and when a high number of estimators (Test #5) was utilized. In simple words, the more 

trees within the model the better. These findings are highlighted in the results from Test #6, as 

shown in Table 3.2. 
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Table 3.2. Summary of the best results obtained per hyperparameter optimization test. Each test 
comprised a grid search with variations of the tested hyperparameter. Test #1 was selected randomly as a 
start point, and each subsequent test evaluated a different parameter (in bold). Test #6 ultimately shows 
the best hyperparameter configuration, which is the result of a last grid search using the results/ tendency 
of Tests 2-6. Test #6 shows the parameters employed in the RF model.  

 

 

 

Random forest allows to determine variable (seismic attribute) importance 

One of the advantages of RF is its ability to determine the importance of attributes in the 

classification process. The results indicate that peak magnitude significantly outperforms its 

counterparts (Figure 3.5), accounting for 35% of importance, followed by RMS amplitude at 

approximately 17%. The remaining variables exhibit a similar level of performance, each 

contributing around 13%. Notably, the attribute with the least impact on classification was the 

spectral magnitude of 20 Hz. Spectral seismic attributes generate a smearing response as seen in 

Figure 3.2 with white arrows, possibly affecting the correct identification of facies, yet are 

suggested by the authors in the channel architecture interpretation from seismic data. A 

suggestion would be to try other methods for spectral magnitude calculation different than CWT 

Test # N estimators Max depth Min sample split Max features Max samples Score Description hyperparameter tested
Result/ tendency 
that offers best 

perfomance

1 500 425 10 2 4000 0.790
Original values used as start point n/a

2 500 425 5 2 4000 0.799
Min sample split:Minimum number 
of data points placed in a node 
before the node is split Smaller/ reduce

3 500 425 5 2 20000 0.848
Max samples: Determines what 
fraction of the original dataset is 
given to any individual tree Larger/ increase

4 500 500 5 2 20000 0.778 Max depth: Maximum number of 
levels in each decision tree Reduce or keep

5 1000 500 5 2 20000 0.848 Number of estimators: Number of 
trees Larger/ increase

6 1000 425 3 2 80000 0.882 Using the best hyperparameters tendencies
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(continuous wavelet transform) or combine and test with a suite of attributes less sensitive to 

smearing.   

 

Figure 3.5 A histogram that shows seismic attribute (feature) importance. Notice how peak 
magnitude considerably outperforms in the analysis. This might be attributed to this attribute sensitivity to 
changes in tuning which benefits different architectural facies recognition. 

 

After the RF is implemented, we employ two ways to assess its performance: 1) 

quantitatively by using correlation matrices and performance metrics, and 2) visually, by 

exporting the 3D prediction generated in SEGY format and comparing it with the original data 

voxel to voxel.  For the first case, Figure 3.6 presents both the confusion matrix (on the left) and 

the classification report (on the right) for the original (Test 1) RF model versus the optimized one 

(Test 6). 

Precision, expressed as a percentage, measures how accurately particular facies are 

predicted in comparison to other facies or classes. In the classification report, you can observe 

that the term "support" refers to the number of samples or data points used in each class. 

Additionally, the "macro average" considers this support, providing a more reliable training 
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score, particularly in datasets where there is a significant disparity in the quantity of data points, 

which is our case with the background shale (as seen in Figure 3.4). 

It's worth noting (Figure 3.6) that the macro average value increased from 52% to 81% 

after applying the optimal hyperparameters and weighted average accuracy went up from 74% to 

89%, indicating a substantial improvement in model performance. This emphasizes the 

importance of hyperparameter optimization in the model accuracy and reduction of uncertainty. 

To understand how this happens, Figure 3.7 provides a visual representation of the distinctions 

among the original dataset, the first random forest model, and the optimized RF model. The 

optimized RF model effectively captures nearly all the facies present in the original dataset. 

However, it's noteworthy that the margin facies (brown) proved to be the most challenging to 

predict. As corroborated by the confusion matrix, it was frequently misclassified as shale. 

Although these facies may be sedimentologically similar, this pattern was observed in relation to 

other classes as well. 
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Random forest model performance 

 

Figure 3.6. Confusion matrices (left) and classification report (right) to evaluate RF classifier 
performance. Confusion matrices compare original (on the Y-axis) versus predicted (on the X-axis) 

classes in a n x n configuration. The main diagonal of the matrix reveals the correctly predicted classes 
(facies), while off-diagonal elements represent misclassifications into other classes. (A)RF results 

applying test #1 hyperparameters indicated in Table 3.2, (B) Optimized random forest model results, 
applying test #6 hyperparameter values in Table 3.2 Notice how accuracy increases substantially with the 

hyperparameter optimization.  

 

Moreover, when delving deeper into the analysis, we find that the highest error rates may 

be associated in part with the stacking patterns. For example, in Figure 3.7B, note how other 

channel facies (margin or off-axis) are misclassified as channel axis facies where channels are 

stacked vertically. Also, high errors are found in channel margin facies. Figure 3.7 shows how 

the thickness of these elements may suggest that the resolution of the seismic plays an important 

role in model performance. The fact that margin facies are located in areas where the data is 

sparser, which is a known downside of the method, results in high errors in classification.  These 

misclassifications have a direct impact on uncertainty in interpretation since geoscientists could 

be evidencing an increase or decrease in the observed label (facies) which translates directly in 

over or underestimation of the facies which can impact directly on economics (e.g., overestimate 

the presence and volumes of prospective facies) and even drilling safety (underestimate the 
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presence of drilling hazards and or baffles such as MTDs or others in a different geological 

setting).  

 

 

Figure 3.7. Comparison of (A) original model (B) unoptimized RF- test#1 in Table 3.2-, and (C) RF 
classification with optimized hyperparameters – test #6 in Table 3.2-. Notice how the prediction is highly 
improved in C, over B as compared to the truth model. If we didn’t optimize hyperparameters we would 
be overestimating the channel axis facies and underestimating thinner facies such as the channel margin 

and MTD.  

 

Model validation 

To evaluate the performance of the RF model, we applied it to a previously untouched 

portion of the data that had been set aside before the training. This allows us to examine how 

well the model is predicting the facies. Figure 3.8 shows the confusion matrix and classification 

report, revealing that the model achieved an accuracy of ~60%. A closer look at the 

misclassifications occurred, reveals that the label with the highest rate of misclassification was 
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“channel margin”, which was often mislabeled as “channel axis facies”, followed by “shale”. 

Notably, this class also had the lowest F1 score. 

 However, when we examine the entire context visually in Figure 3.9, it is quite 

impressive to see that the model successfully captures the trends and overall configuration of the 

channel facies, even though they are located at different depth and orientations from the channels 

and facies used for training (Figure 7A). The “channel off-axis” and “margin” facies are thin 

enough to be affected by the resolution of the data. Using seismic attributes, even with optimal 

parameterization (La Marca, 2023), can lead to some smearing that may impact the labeling 

process and result in the misclassifications we observe here. Also, having a high accuracy in the 

training set vs the accuracy obtained in the validation may suggest overfitting, meaning a model 

learned well the input but that is not applicable to new problems/data.  

To have a better understanding of how the channel facies predicted were distributed, a 

representative cross-section and time slice of the original and predicted validation models are 

presented in Figure 3.10. Notice how channel position and orientation have been correctly 

predicted to be able to differentiate between shale (non-reservoir) facies and channel (reservoir) 

facies. It is observed a predominance or likelihood of prediction of class 1 (channel axis) and 

class 5 (MTD) over other channel facies. Channel axis facies are more evident where channels 

stack vertically.  

Overall, we notice that the model correctly predicts the location of the channel complex, 

which is valuable, especially if we extrapolate this capability to applications in exploration and 

development. The prediction of the correct location of the channel in unseen data reduces 

uncertainty in the use of RF to understand general position and trends of potential reservoir.  
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This supports the idea of considering using reliable analogs for developing RF (or other 

supervised) models that can help to better understand and interpret new frontiers and basins.  

Nevertheless, it is evident that some facies within the channel are misplaced. While this 

might not be a significant issue when considering channel facies as reservoir facies, it could 

increase the risk if facies such as the “MTD’s” (potential baffles) are misclassified. We attribute 

these misclassifications to the use of a training dataset that has high accuracy but that applied to 

deeper facies struggles to identify the correct label. This is a real-world problem that warns of an 

increase in uncertainty when applying a model that learned from training data that suits it but 

may not be ideal for a different basin or seismic quality. 

 

Figure 3.8. (A) confusion matrix and (B) classification report for the validation model. Here we see a 

decrease of ~ 20% in accuracy when applying the optimized RF model to unseen data. See Figure 3.6 for 

reference. Support refers to the number of voxels per facies. 
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Figure 3.9. Comparison of (A) original vs (B) predicted RF validation. In this chart, facies have been 
isolated via opacity to compare areal distribution and proportions visually. Channel complexes’ location 

and orientation are predicted well. Chanel axis, shale. and MTD facies show predominance over the other 
channel facies, which has been misclassified into either of these predominant channel facies or shale. 
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Figure 3.10. Comparison of expected (truth) vs predicted in the validation model in (A) Representative 
crossline, (B) representative time slice. Notice how channel position and orientation has been correctly 
predicted to be able to differentiate between shale (non- reservoir) facies and channel (reservoir) facies. It 
is observed a predominance or likelihood of prediction of class 1 (channel axis) and class 5 (MTD) over 
other channel facies. Channel axis facies are more evident were channels stack vertically.  

 

Changes in lithology, stacking pattern, channel distribution, level of compaction and 

presence of other elements like potential salt are expected to affect the results, which is 

suggested also by Langenkamp (2021). There is not a one- size that fits all algorithm or method, 

or parameters. However, we want to underscore the importance of fine-tuning hyperparameter to 

boost the accuracy of model predictions and address epistemic uncertainty. On the other hand, 

we realized that aleatory uncertainty will always be a factor, as it is intrinsic to variables like data 

quality, facies proportions and the presence of outliers which we can be aware of but have 

limited control on.  

This study reveals several key takeaways: 1) there is no perfect model that will reproduce 

with fidelity all facies in an uncalibrated basin. 2) Model optimization requires a) understanding 
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original data limitations like resolution, tuning, quality, noise (aleatoric uncertainty); b) using 

appropriate seismic attributes; c) exhaustive hyperparameter tuning, albeit time-consuming; and 

d) balanced, representative training data via resampling. 3) Despite the robustness of supervised 

methods, expert geoscience input is essential for contextualizing and incorporating prior 

knowledge into interpretations. Ultimately, machine learning assists geoscientists' work, but 

cannot eliminate uncertainty - only address it.   

Conclusions 

RF is a robust, although computationally expensive method that offers high accuracy, but 

this method is sensitive to input variables, labels, parametrization, and proportions of data. We 

used synthetic seismic data generated from an outcrop-derived 3D model (ground truth data) to 

eliminate interpreter errors in defining seismic facies (labels) used in training a random forest 

facies classifier. Eliminating such errors provided insight into misclassification due to the 

selection of hyperparameters and the choice of seismic attributes used in the classification. The 

use of hyperparameter optimizers such as the grid search allows for an increase in the 

classification accuracy which solves for the epistemic uncertainty, however, variables such as 

noise and data that may be imbalanced and aleatoric uncertainty are intrinsic to the data and may 

recover reprocessing. Nonetheless, the availability of the complete answer/ground truth model in 

this study offers a unique opportunity to understand the level of misclassification between facies. 

RF offers a way to understand seismic attribute importance. In this aspect, an evaluation of input 

data that better fits the initial facies interpretation is paramount to optimize predictions using RF. 

The RF algorithm was effective since tested accuracy values were high and channel facies were 

visibly distinguished. For the validation process, visually the expected locations of facies within 

the channels were predicted, although the overall performance score decreased. Overall 
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shale/non-reservoir facies were distinguished from the channel/reservoir facies. 

Misclassifications occurred mostly from channel facies being classified as shale, which is 

attributed to the imbalance in data proportion. We attribute misclassifications to possibly: 1) 

overfitting (training accuracy is high and validation error is low), 2) limited resolution of the 

seismic data that results in stratigraphic mixing where thinner facies are overpowered by nearby 

thicker facies, 3) imbalanced data (we have more shale than any other facies) so the model will 

prefer to pick shale over other label/ facies. This imbalance can be solved by resampling the data 

for training, 4) RF does not work well with sparse data, so in edges where channel margin or off 

axis facies are present these were most likely to be misclassified, 5) Need of more 

hyperparameter tuning or the use of alternate features (attributes).  

When the model was applied to a validation dataset (an unseen piece of seismic data), the 

accuracy decreased. This speaks about the uncertainty we will have in finding the right facies if 

we apply a RF model that learned from the training dataset but that fails in accommodating 

properly to a new set of facies that are subject to different configuration and properties 

(epistemic uncertainty), and the different quality and resolution of seismic (aleatory uncertainty). 

Therefore, the level of certainty in the outcome of an ML model will be directly proportional to 

the quality of the training and input datasets.  

 A significant finding of the study is that although there are misclassifications, RF 

showed to be a powerful tool to interpret correct position and overall deepwater channel facies 

configuration, which reduces uncertainty, especially in uncalibrated basins. We suggest that the 

robustness of predictions are a function of the resolution and the signal-to-noise ratio of the 

seismic data, type of seismic attributes used, and the similarity in the seismic expression of 
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different geologic facies. Two things are paramount: an exhaustive hyperparameter tuning, and 

the geoscientist analysis of the predictions. We highlight the importance of the use of analogs to 

understand subsurface seismic data, bearing in mind that there is not a single model that fits all. 

Uncertainty has a tremendous impact on decision making which can represent not only 

economical but human losses if decisions are not taken appropriately and accurately, so creating 

awareness on the potential misinterpretations associated with these uncertainties remains 

necessary. 
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SPECIAL SECTION: WORKING WITH IMBALANCED DATA IN MACHINE 
LEARNING ALGORITHMS: BRIDGING THE GAP BETWEEN REAL AND OPTIMAL 

IN SEISMIC FACIES INTERPRETATION * 
 

*This section will be sent to AAPG explorer-non peer reviewed, informative digital journal- at the end of 2023 (an 
initial draft was already sent for evaluation, and it does not intend to follow a science chapter format, but rather a 
quick review of the unbalanced data problem): 

La Marca, K., and H. Bedle, 2023. Working with imbalanced data in machine learning algorithms: bridging the gap 

between real and optimal in seismic facies interpretation 

While scientists and workforces are becoming increasingly comfortable with the term 

'machine learning', and the reluctance to employ these methods is gradually fading, there are still 

many uncertainties regarding their correct application and understanding of the output. 

Therefore, there is a need to explain what might be occurring within the so-called 'black boxes' 

and what could be causing high errors and misclassifications. If not well understood, these issues 

can lead to incorrect interpretations and economic losses. 

We would dare to estimate that 80% of any machine learning method, especially 

unsupervised ones, relies on proper input data preparation. There is a concept that 'garbage-in’-

results in ‘garbage-ou'. Thus, we not only need to understand the kind of data we have but also 

how we can optimize it. The amount of data, their relationships, and quality are just a few 

aspects we need to consider in this regard. We will focus on the first aspect here, as disparities in 

data (imbalance) can lead to significant errors. 

In reality, most geological settings we study tend to be imbalanced. Consider a deepwater 

setting, where channel complexes are often surrounded by shales in a major proportion, or where 

salt tectonics dominate, and salt bodies represent the negative class. Since a perfect dataset exists 

only in a utopian world, we need to understand our data and how to optimize results without 

biasing or overfitting our models. 



114 
 

The term 'imbalance' in data refers to the differences in proportions between classes. In 

this context, the class with the majority of records or instances will be called the 'negative class,' 

while the underrepresented or minority class will be named the 'positive class.' 

In reality, most geological settings we study tend to be imbalanced. Consider a deepwater 

setting, where channel complexes are often surrounded by shales in a major proportion, or where 

salt tectonics dominate, and salt bodies represent the negative class. Since a perfect dataset exists 

only in a utopian world, we need to understand our data and how to optimize results without 

biasing or overfitting our models. 

To understand the impact of class imbalance, we need to first comprehend: 1) the degree 

of imbalance between classes and 2) the overlap between classes. The degree of imbalance (also 

known as Imblance Ratio or IR) is calculated by relating the total number of negative class 

examples to the number of positive class examples. Figure 4.1 provides an example of how shale 

facies make up the majority of a training dataset used to predict deepwater channel facies. In this 

scenario, five facies are used as labels. Relating background 'shale' to any of the other facies 

results in doubling or tripling them, creating an imbalanced dataset. 

Another consideration is the type of machine learning technique we intend to use. 

Supervised methods rely on error metrics because both the input and output are known. In the 

case of unsupervised ML techniques, only the input is known, and the selection of the correct 

number of clusters is still under debate. Therefore, we will provide general guidance based on 

our experience and common practices regarding what to do with each type of method for seismic 

facies interpretation. 
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Figure 4.1. (A) samples per facies histogram in a training dataset showing an imbalance between 
predominant shale facies and minoratary channel facies. (B) Feature relation vis scatterplot showing that 

gray (shales) predominates and in some cases its range is wide so it overlaps with other classes. 

However, when we sum up all the channel facies and MTD, they will be almost 

proportional to the background shale, suggesting that we should consider simplifying our labels. 

Unsupervised methods and imbalanced data 

When using clustering algorithms, such as K-means, SOM, and GTM , it is suggested to 

use seismic attributes that are suitable for the geological target. Analyze their statistical 

relationships, and refine them if necessary using a dimensionality reduction technique (e.g., 

PCA, ICA, Shap values). Additionally, consider using a method such as an elbow plot to 

determine the optimal number of clusters. An example is shown in Figure 4.2, which depicts 

results and error using a ML technique (such as GTM) with 3 clusters where 5 clusters were 

expected. Notice how error is reduced by using a optimal cluster number determined by an elbow 

plot. This suggests that altough we intend to depict 5 facies, the data patterns end up forming 3 

major clusters.  
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Interpreting these visually, we can see that one corresponds to the majoritary shale facies, 

another represents the MTDs, and the third cluster represents the channel facies (axis, off-axis 

and margin) combined. It is important to remember that while we aim to identify all discrete 

facies, the properties of the seismic data (frequency, noise, resolution etc.) and the type of 

seismic attributes used, as well as their parameterizations, play a fundamental role in the detailed 

or non- definition of different seismic facies. 

 

Figure 4.2. Elbow plot indicates that the optimal number of clusters is 3, and GTM results reveal MTDs 
in a light green geobody (GTM green), Shale in red geobody (Purple/blue in GTM), and channel facies 

combined in dark green geobody (orange in GTM). This demonstrates that not every cluster has to 
represent a single facies. The elbow plot is a valuable tool for estimating the optimal number of clusters. 

The amount of clusters may be related to the quality and resolution of the data and distintive patterns 
found. 
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Supervised methods and imbalanced datasets 

 

Supervised ML needs an input (labels+features) to train the model, allowing us to know a 

priori the expected facies and enabling numerical error estimation or performance evaluation.  

Figure 4.2 displays a distribution of a training data. By contrasting seismic attributes used 

as features, it becomes apparent that there is an overlap between shale and most of the channel 

facies. This overlap will result in missclassifications of these facies with shale. One potential 

solution is to explore other features that create greater distinction between classes or, to perform 

a resampling of the data.  

Some of the methods we can employ to address imbalanced datasets include: 

a) The use of simple algorithms such as DBscan (e.g. Piegari et al, 2008) or K-means with 

realistic labels or minimum classes. Another option is the use of  boosting algorithms 

(such as random forest) which assign different weights to the training distribution in each 

iteration. After each iteration, boosting increases the weights associated with the 

incorrectly classified examples and decreases the weights associated with the correctly 

classified examples. 

b) Oversampling or undersampling: oversampling refers to appending to the original data 

set, while undersampling involves the removal of data from the original dataset, typically 

from the majority or negative set, to achieve the same proportion or balance. However, 

this method could introduce its own set of problematic consequences, which can 

potentially hinder learning, as mentioned by He and Garcia (2009). 

c) The use of correct statistical metrics: A confusion matrix is a popular tool for 

understanding and evaluating classification problems. It compares actual or original vs 
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predicted values. The main diagonal shows the samples that were classified correctly, 

while the other fields help us understand where and to what extent missclassifications 

occur. While accuracy is normally the metric evaluated in confusion matrices, it places 

more weight on common classes than on rare classes. This can make it challenging for a 

classifier to perform well on rare classes when evaluating imbalanced datasets, as 

indicated by Chawla (2009). In such cases, it is recommended to use the F score, which is 

a weighted harmonic mean between precision and recall. There is also a G score that, 

instead of a harmonic mean, uses a geometric mean. 

d) ROC (Receiver Operating Characteristic) curve and AUC:  ROC is used to analyze 

classifier performance by comparing the False Positive Rate (FPR) on the x-axis vs. the 

True Positive Rate on the y-axis. The closer the curve is to the upper-left corner, the 

better the classifier is. By calculating AUC (Area Under the Curve), we can obtain a 

score for the classifier. A higher AUC score, closer to 1, indicates a good classifier with a 

top-left ROC curve. AUC lower than 0.5 can be considered as indicating a poor classifier. 

It's important to note that these methods are designed for binary problems and not multi-

class scenarios, which are common in seismic facies. When dealing with multi-class 

scenarios, we may need to evaluate ROC or AUC per class, and it becomes sensitive to 

class skew, as the negative class would be a combination of N-1 classes (He and Garcia, 

009)." 

To summarize the recommendations here provided, we have created an easy-to-follow 

workflow (Figure 4.3) that could be helpful for interpreters who are beginners in dealing with 

imbalanced data. 
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Figure 4.3. Workflow to optimize machine learning results for facies interpretation in the face of 
inbalanced datasets 

No dataset will be ever perfect and you should be suspicious of very accurate models that 

will probably reflect bias or overfitting problems. Also, not every imbalanced dataset will 

necessarily result in poor training data. As geoscientists, we need to use the tools such as seismic 

attributes and ML techniques intelligently, be aware of our data’s limitations, apply best 

practices, including parameter optimization, and, most importantly, recognize that in geology, 

nothing is perfect. Our understanding of the geological context and subsequent inferences still 

need to be carried out. We believe that machines can’t fully replace us, at least not yet. 
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CHAPTER 5: CONCLUSIONS 

 
In this dissertation the overarching theme is the application of synthetic seismic data and 

machine learning techniques to understand and address uncertainty in the interpretation of 

deepwater geological features, particularly channel facies. Each chapter addressed provides 

valuable insights and highlights the challenges and opportunities in this field. 

Chapter 2 focused on the sensitivity analysis of 3D synthetic seismic volumes, 

emphasizing the importance of various parameters such as frequency content, attribute selection, 

analysis window size, and noise content. The study introduced the concept of "stratigraphic 

mixing" and demonstrates its impact on geological feature interpretation, with implications for 

economic decisions in exploration and reserves estimation. The text also discussed the sensitivity 

of different architectural elements to seismic attributes, providing a guide for best practices in 

seismic interpretation. 

Chapter 3 introduced a new approach to assess uncertainty in unsupervised machine 

learning methods (SOM and GTM) using synthetic seismic data. It addressed the challenge of 

classifying facies in imbalanced datasets and the importance of using metrics like F1 score. I 

presented the limitations and uncertainties associated with unsupervised methods and 

recommended supervised methods preferable, or clustering techniques if well data is not 

available. In the latter, the use of meaningful and optimized attributes as input is paramount. The 

study highlighted the need to address uncertainty in machine learning methods for building more 

accurate 3D reservoir models, which are critical for the energy industry. 

Chapter 4 explored the use of synthetic seismic data to evaluate uncertainty in supervised 

machine learning methods, specifically random forest (RF). It discussed the challenges of data 
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imbalance, noise, and the effect of seismic resolution on classification accuracy. The text 

underscores the importance of optimizing input data and the potential for misclassification when 

applying models to new datasets (proved by validation). It acknowledged the inherent 

uncertainties associated with data quality and seismic resolution (known as aleatoric uncertainty) 

and stresses the role of geoscientist analysis in reducing uncertainty and giving sense to the 

results regardless of the method employed. 

To better explain the implications of imbalance datasets, which will likely be the case in a 

deepwater geological setting where usually shale predominates over other facies, I addressed this 

topic briefly in the section presented after Chapter 4, explaining what it is, the implications and a 

guide to handle it based on literature review. 

This dissertation has the significance of using synthetic data and machine learning 

methods to address uncertainty in deepwater geological interpretation. Therefore, a guide to 

optimize seismic attributes and ML methods to aim this is provided throughout the text. It is also 

underscored the economic and decision-making implications of uncertainty in the energy 

industry and advocate for best practices, hyperparameter tuning, and geoscientist expertise to 

reduce uncertainty and improve the accuracy of geological interpretations. Overall, these studies 

provide valuable insights for geoscientists and researchers working in the field of seismic 

interpretation, deepwater geological analysis and reservoir characterization. 
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APPENDIX 

 
APPENDIX A: specs for each synthetic seismic volume 

 

Dominant 

Frequency 

(Hz) 

Length 

(ms) 

Sample 

rate (ms) 

Low-cut 

Frequency 

(Hz) 

Low-Pass 

Frequency 

(Hz) 

High-Pass 

Frequency 

(Hz) 

High-cut 

Frequency 

(Hz) 

15 200 1 1 3 23 35 

30 200 1 2 6 45 70 

60 100 1 4 12 90 140 

90 100 1 6 18 135 210 

180 26 1 10 30 225 350 

 

APPENDIX B: detailed explanation of channel architectural facies (source: Jackson et al., 2019) 
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