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Abstract 

Mammography imaging is a population-based breast cancer screening tool that has 

greatly aided in the decrease in breast cancer mortality over time. Although 

mammography is the most frequently employed breast imaging modality, its performance 

is often unsatisfactory with low sensitivity and high false positive rates. This is due to the 

fact that reading and interpreting mammography images remains difficult due to the 

heterogeneity of breast tumors and dense overlapping fibroglandular tissue. To help 

overcome these clinical challenges, researchers have made great efforts to develop 

computer-aided detection and/or diagnosis (CAD) schemes to provide radiologists with 

decision-making support tools. In this dissertation, I investigate several novel methods for 

improving the performance of a CAD system in distinguishing between malignant and 

benign masses.  

The first study, we test the hypothesis that handcrafted radiomics features and deep 

learning features contain complementary information, therefore the fusion of these two 

types of features will increase the feature representation of each mass and improve the 

performance of CAD system in distinguishing malignant and benign masses. Regions of 

interest (ROI) surrounding suspicious masses are extracted and two types of features are 

computed. The first set consists of 40 radiomic features and the second set includes deep 

learning (DL) features computed from a pretrained VGG16 network. DL features are 

extracted from two pseudo color image sets, producing a total of three feature vectors 

after feature extraction, namely:  handcrafted, DL-stacked, DL-pseudo. Linear support 

vector machines (SVM) are trained using each feature set alone and in combinations.  

Results show that the fusion CAD system significantly outperforms the systems using 
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either feature type alone (AUC=0.756±0.042 p<0.05). This study demonstrates that both 

handcrafted and DL futures contain useful complementary information and that fusion of 

these two types of features increases the CAD classification performance.  

In the second study, we expand upon our first study and develop a novel CAD 

framework that fuses information extracted from ipsilateral views of bilateral 

mammograms using both DL and radiomics feature extraction methods. Each case in this 

study is represented by four images which includes the craniocaudal (CC) and 

mediolateral oblique (MLO) view of left and right breast. First, we extract matching ROIs 

from each of the four views using an ipsilateral matching and bilateral registration scheme 

to ensure masses are appropriately matched. Next, the handcrafted radiomics features 

and VGG16 model-generated features are extracted from each ROI resulting in eight 

feature vectors. Then, after reducing feature dimensionality and quantifying the bilateral 

asymmetry, we test four fusion methods. Results show that multi-view CAD systems 

significantly outperform single-view systems (AUC = 0.876±0.031 vs AUC = 0.817±0.026 

for CC view and 0.792±0.026 for MLO view, p<0.001). The study demonstrates that the 

shift from single-view CAD to four-view CAD and the inclusion of both deep transfer 

learning and radiomics features increases the feature representation of the mass thus 

improves CAD performance in distinguishing between malignant and benign breast 

lesions. 

In the third study, we build upon the first and second studies and investigate the effects 

of pseudo color image generation in classifying suspicious mammography detected 

breast lesions as malignant or benign using deep transfer learning in a multi-view CAD 

scheme. Seven pseudo color image sets are created through a combination of the original 
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grayscale image, a histogram equalized image, a bilaterally filtered image, and a 

segmented mass image. Using the multi-view CAD framework developed in the previous 

study, we observe that the two pseudo-color sets created using a segmented mass in one 

of the three image channels performed significantly better than all other pseudo-color sets 

(AUC=0.882, p<0.05 for all comparisons and AUC=0.889, p<0.05 for all comparisons). 

The results of this study support our hypothesis that pseudo color images generated with 

a segmented mass optimize the mammogram image feature representation by providing 

increased complementary information to the CADx scheme which results in an increase 

in the performance in classifying suspicious mammography detected breast lesions as 

malignant or benign.  

In summary, each of the studies presented in this dissertation aim to increase the 

accuracy of a CAD system in classifying suspicious mammography detected masses. 

Each of these studies takes a novel approach to increase the feature representation of 

the mass that needs to be classified. The results of each study demonstrate the potential 

utility of these CAD schemes as an aid to radiologists in the clinical workflow.
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Chapter 1. Introduction 

1.1. Background 

The latest cancer statistics data for the USA estimates that in 2022, 31% of cancer 

cases detected in women are breast cancer with 43,250 cases resulting in death. This 

accounts for 15% of  total cancer-related deaths [1]. Thus, breast cancer remains the 

most diagnosed cancer among women with the second highest mortality rate. From 1989 

to 2017, the mortality rate of breast cancer dropped 40% which translates to 375,900 

breast cancer deaths averted [2]. Even though the mortality rate continues to decline, the 

rate of decline has slowed from 1.9% per year from 1998-2011 to 1.3% per year from 

2011-2017 [2]. Over the past three decades, population-based breast cancer screening 

has played an important role in helping detect breast cancer in the early stage and reduce 

the mortality rate. However, the efficacy of population-based breast cancer screening is 

a controversial topic due to the low cancer prevalence (≤0.3%) in annual breast cancer 

screening resulting in a low cancer detection yield and high false-positive rate [3]. This 

high false positive rate is indicative of a high rate of unnecessary biopsies which is not 

only an economic burden but also leads to unnecessary patient anxieties which often 

result in women being less likely to continue with routine breast cancer screening [4].  

Conversations pertaining to the benefits and harms of screening mammography as 

well as its efficacy in decreasing breast cancer mortality as screening exams do not 

reduce the incidence of advanced/aggressive cancers are now common [5]. For example, 

detection of ductal carcinoma in situ (DCIS) or early invasive cancers that will never 
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progress or be of risk to the patient are occurring at a disproportionately higher rate than 

aggressive cancers. This is referred to as overdiagnosis and often results in unnecessary 

treatment that may cause more harm than the cancer itself [6]. Thus, improving the 

efficacy of breast cancer detection and/or diagnosis remains an extremely pressing global 

health issue [7]. 

While advances in medical imaging technology and progress towards better 

understanding the complex biological and chemical nature of breast cancer have greatly 

contributed to the large decline in breast cancer mortality, breast cancer is a complex and 

dynamic process, making cancer management a difficult journey with many hurdles along 

the way. The cancer detection and management pipeline has many steps, including 

detecting suspicious tumors, diagnosing said tumors as malignant or benign, staging the 

subtype and histological grade of a cancer, developing an optimal treatment plan, 

identifying tumor margins for surgical resections, evaluating and predicting response to 

chemo or radiation therapies, or predicting risk of future occurrence or reoccurrence. In 

this clinical pipeline, medical imaging plays a crucial role in the decision-making process 

for each of these tasks. Traditionally, radiologists will rely on qualitative or semi-

quantitative information visually extracted from medical images to detect suspicious 

tumors, predict the likelihood of malignancy, and evaluate cancer prognosis. The clinically 

relevant image information may include enhancement patterns, presence or absence of 

necrosis or blood, density and size of suspicious tumors, tumor boundary margin 

spiculation, or location of the suspicious tumor. However, interpreting and integrating 

information visually detected from medical images to make a final diagnostic decision is 

not an easy task.  
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1.2. Computer-aided diagnosis (CAD) in mammography imaging 

Mammography imaging is the most commonly used and widely available breast 

imaging modality. It plays a crucial role in the early diagnosis of breast cancer which is 

critical for keeping the chance of morality low. Obtaining an accurate diagnosis depends 

on the radiologists ability to accurately interpret the images. Mammography imaging uses 

low energy x-rays to create a 2D projection of the breast. Since it is an x-ray-based 

technique, the resulting images tend to be noisy and low contrast which make image 

interpretation difficult. In addition, the denser a breast is the more difficult it is for a 

radiologist to assess as abnormal regions may be obscured by overlapping dense tissue 

(Figure 1-1). This leads to a pressing clinical problem as dense breasts are associated 

with a greater risk of future breast cancer, yet it is much more difficult for a radiologist to 

interpret mammography images taken of a dense breast [8]. While diagnosing breast 

cancer from mammography exams is the most crucial step in the cancer management 

pipeline, the image interpretation task is a subjective process that can vary between 

radiologists. It is also extremely time intensive, which can lead to inaccurate results from 

fatigue associated with reading hundreds of images, and costly as two radiologists must 

review every exam and reach a consensus. If a consensus is not possible, a third 

radiologist must also review the exam to reach a decision[9].  
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Figure 1-1: Examples of different mammogram images. The top row represents normal density 

mammogram images. The bottom two rows depict the heterogeneity of fibroglandular tissues 

and dense tissues. Brighter regions correspond to areas of high density. These factors make it 

difficult to see if there is a lesion being obscured by the dense patches 

To address these clinical challenges, computer aided detection/diagnosis (CAD) 

schemes have been proposed to assist radiologists in more accurately and efficiently 

reading and interpreting medical images [10, 11].  CAD systems use quantitative image 

features to analyze a set of images and provide the radiologist with a second opinion or 

decision support to optimize the busy clinical workflow. The idea to use computers to 

automatically analyze mammography images dates back to the 1960s[12, 13]. While 

these studies demonstrated the feasibility of CAD systems, performance was overall poor 

due to computational limitations. In the 1980s and 1990s, CAD system development 

shifted from focusing on fully automated systems to systems that assisted radiologists as 

a second reader, resulting in more attention. Observer studies highlighted the undeniable 
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potential of these CAD systems in breast cancer[14, 15]. In 1998, the FDA approved the 

first CAD system for mammography [16]. This system was widely adopted, one study 

reported that in 2016 CAD was used in about 92% of screening mammograms read in 

the United States [16, 17].  Despite this wide scale clinical adoption, the utility of 

commercialized CAD schemes for breast cancer screening is often questioned [18-20].   

Since then, advances in artificial intelligence have demonstrated incredible 

capabilities in image analysis tasks such as detection, segmentation, and classification. 

This is part of the reason for the immense research interest in developing CAD systems 

for mammography over the past two decades. Despite this widespread attention, only 

eight CAD systems have received FDA approval for the detection and classification of 

breast cancer since the first system in 1998 (Table 1-1) [9]. Many of these systems have 

been approved within the last decade. This can be explained by the recent boom in deep 

learning techniques which has also diffused into CAD based mammography research.  

Tool Company Country Application 
Date of 
Approval 

cmTriage[21]  CureMetrix United States Triage 08/03/2019 

HealthMammo[22] 
Zebra Medical 
Vision 

Israel Triage 16/07/2020 

Saige-Q[23] DeepHealth United States Triage 16/04/2021 

MammoScreen [24] Therapixel France 
Detection and 
classification 

25/03/2020 

Genius AI 
Detection [25] 

Hologic United States 
Detection and 
classification 

15/11/2020 

ProFound AI 
Software [26, 27] 

iCAD United States 
Detection and 
Classification 

12/03/2021 
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Transapra 1.7.0 [28] 
ScreenPoint 
Medical B.V. 

Netherlands 
Detection and 
Classification 

02/06/2021 

INSIGHT MMG [29] Lunit Korea 
Detection and 
Classification 

17/11/2021 

Table 1-1: FDA approved CAD systems for mammography. Table taken from[9] 

In the literature, CAD is often differentiated as computer-aided detection (CADe) or 

computer-aided diagnosis (CADx). The goal of CADe schemes is to reduce observational 

oversight by drawing the attention of radiologists to suspicious regions in an image. On 

the other hand, the goal of computer-aided diagnosis (CADx) schemes is to characterize 

a suspicious area and assign it to a specific class. The work described in this dissertation 

focuses solely on CADx schemes for mammography. For this dissertation, CAD and 

CADx are used interchangeably. CAD schemes can be divided into two classes, 

traditional CAD or machine learning (ML) based CAD, and deep learning (DL) based CAD 

(Figure 1-2). 

 

Figure 1-2: Schematic diagram representing the foundational steps of ML and DL based CAD 
schemes. 
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1.2.1. Machine learning based CAD 

While DL-based CAD schemes have become increasingly more common than ML 

based CAD schemes, they still have their advantages over deep learning systems. In 

general, ML-based CAD systems are often considered more explainable than DL-based 

CAD systems as these models tend to provide more transparency into the decision-

making process by following an explicit set of rules which can be explained. While DL-

models have a “black-box” nature which makes it difficult to understand and interpret the 

rationale behind the decisions. Additionally, ML systems do not require nearly the amount 

of training data that DL systems do. Data limitations are unfortunately a common problem 

in the medical imaging domain. Recent attention to deep learning has pushed for the 

curation of large publicly available datasets which will continue to sway developers 

towards DL based systems. However, ML-based systems will be immensely useful in 

scenarios where this dataset is not available. ML-based CAD systems are also less 

computationally demanding, making them much more accessible as they can be 

deployed in resource-constrained environments.  

ML-based CAD systems traditionally contain four main steps. First, a region of interest 

(ROI) is defined. Second, a set of quantitative features is extracted to characterize the 

ROI. Third, the feature set is reduced to an optimal feature set. And fourth, a classifier is 

trained and tested to predict the likelihood of the ROI being in either class. A brief 

explanation of each of these steps is found in the following sections. 

1.2.1.1 Definition of a region of interest 

In order to classify a suspicious tumor, the region in which to extract features must be 

defined. In mammography-based CAD schemes, this is most commonly the tumor or a 
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ROI surrounding the tumor.  Accurate segmentation of the ROI is a very hot topic in the 

medical imaging domain [30, 31]. There are various ways to segment a desired region; 

these can be broken down into three broad groups: manual segmentation methods, semi-

automated segmentation methods, or fully automated segmentation methods.   

Manual segmentation involves a human annotating the boundary of each tumor or 

desired region from the background regions. This method allows for high precision as it 

is conducted by experts with full control, allowing for adjustments due to artifacts or 

irregularities. However, this is an extremely time intensive task leading to fatigue which 

may decrease the accuracy of segmentation. Manual segmentation is also subjective, 

meaning multiple radiologists may annotate the same image differently leading to 

unwanted variability in the image inputs. Semi-automated segmentation methods use a 

combination of human input and computer-based algorithms to get the segmentation 

results. This could be in the form of a human using prior knowledge of the tumor location 

to set an initial seed, or a human manually correcting the segmentation result. In the 

literature, many CADx studies rely on the semi-automated method of extracting a ROI of 

a fixed size surrounding the center of each tumor that has been marked by a human. 

Automated segmentation schemes are able to conduct image segmentation without any 

human intervention. Fully automated methods are advantageous in that they are much 

more time efficient and consistent than the other methods, but the performance of these 

methods is dependent on the segmentation task meaning they may perform poorly in ill-

defined or difficult segmentation tasks.  

The segmentation task is non-trivial as there are many factors that make it difficult. 

This includes dense breast tissue that may obscure the mass boundary, and the pectoral 
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muscle or artifacts and distortions which may fool the segmentation algorithms. Over the 

years, various techniques have been proposed for the segmentation of ROIs from 

mammograms. These techniques range from classical segmentation methods that rely 

on pixel intensities, to machine learning and deep learning segmentation methods which 

require model training and testing[30, 32]. There is no consensus on the best 

segmentation method to use to extract a ROI for mammography based CADx schemes. 

In addition, there is also no consensus on the best location to extract an ROI from. For 

example, some studies may opt to extract a bounding box that surrounds the tumor[33], 

other studies may choose to use the tumor boundary[34], while other studies may use the 

whole breast image[35, 36]. The decision is based on the goal of the study. For example, 

studies focused on predicting if a tumor is malignant or benign will tend to focus more on 

the tumor and surrounding tissue, while studies focusing on predicting the risk of breast 

cancer in breast images without tumors may focus on the area behind the nipple as it 

most accurately describes the breast parenchyma patterns which is an established 

biomarker of breast cancer risk[37]. 

Overall, tumor segmentation remains one of the most difficult challenges that 

traditional ML based CADx schemes encounter and a major hurdle to clinical 

implementation. The shift from manual to semi-automated to fully automated lesion 

segmentation has decreased the inherent bias associated with human intervention, but 

elimination of the segmentation step in its entirety through CNNs will allow for more 

generalizable CADx systems.  
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1.2.1.2 Feature extraction 

After a ROI is defined, a set of handcrafted radiomic features will be extracted. While 

using radiological features from medical images to infer phenotypic information has been 

done for many years, recent rapid advances in bioinformatics coupled with the advent of 

high performing computers has led to the field of radiomics.  Radiomics involves the 

transformation of images into mineable data through the computation of quantitative 

image-based features. These features can then be leveraged in clinical decision support 

systems to predict clinical outcomes and tailor treatment planning to individual patients, 

further shifting us towards the new paradigm of personalized medicine [38, 39].  

Feature extraction is the most crucial step in developing ML-based CADx schemes as 

the feature set will be the input to the classification model. If the feature set does not 

accurately capture the characteristics of each class, then the model will not be able to 

learn sufficiently and thus have a poor performance.   

One of the main advantages of handcrafting a feature set is that it benefits from 

domain knowledge meaning image characteristics that are known to be relevant to the 

task can be quantified and used as features. For example, malignant tumors as seen on 

mammograms are typically irregular in shape with spiculated margins and architectural 

distortions while benign tumors are typically rounded with well-defined margins (Figure 

1-3) [32, 40, 41]. Quantification of these features can help train robust ML classifiers to 

better differentiate between benign and malignant masses. Features that describe the 

shape of the tumor may include eccentricity, diameter, convex area, orientation, and 

more[32]. Features can also be extracted to quantify the spiculations of the tumors which 

will be particularly helpful for detecting malignant breast tumors [42].  



11 
 

Other examples of common features are first order statistical features which describe 

the distribution of intensities within an image, this includes mean, standard deviation, 

variance, entropy, uniformity, and others. Entropy quantifies the image histogram 

randomness which can quantify heterogeneity of the image patterns [43]. Texture features 

belong to the biggest group of radiomics features, which are extremely useful for image 

recognition and image classification tasks [44, 45]. Gray-level cooccurrence matrix 

(GLCM) based features and gray-level run length matrix (GLRLM) based features are two 

example of common texture features that characterizes the heterogeneity of intensities 

within a neighborhood of pixels. Quantification of the heterogeneity of tumors is one of 

the advantages of radiomics-generated imaging markers as heterogeneity is often very 

difficult for radiologists to visually capture and quantify in clinical practice. 

 

Figure 1-3: Examples of malignant and benign masses seen on mammograms. Modified from 
[41]. 
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While there has been a wide variety of radiomics features extracted from many 

different locations for different cancer applications, there is no consensus on what 

features make up an optimal feature set. Deciding what features should be extracted 

remains dependent on the goal of the individual study. 

1.2.1.3 Feature selection and reduction 

The initial feature set extracted from the ROI is often large and contains many highly 

correlated and irrelevant features that may decrease model performance if included in the 

final feature set. Additionally, ML-based CADx models are subject to the curse of 

dimensionality which asserts that after a certain point, the amount of data samples 

needed to train a machine learning classifier increases exponentially with a large number 

of input features[46]. Therefore, creation of an optimal feature subset from the initial 

feature pool is a critical step in building ML models. 

The goal of feature selection and reduction is to identify a subset of the features that 

will yield the best model performance. Feature selection aims to identify a subset of the 

original features that are most relevant to the task. The final set of features selected also 

exists in the original feature set, meaning the features are not changed. Feature selection 

methods can be broken down into three categories: wrappers, filters, and embedded 

methods[47]. Wrapper methods use the classifier to drive the feature selection process 

by assessing multiple subsets of features effect on model performance. Some examples 

of these methods are exhaustive, greedy, or stochastic search algorithms, and sequential 

forward or backward selection algorithms. These methods tend to be very computationally 

expensive as these algorithms must search variations of all possible feature 

combinations. It often may be more practical to use these methods in combination with a 
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filter method. Filter methods rank each feature based on a specific criterion that quantifies 

the importance of the feature in the prediction task then select the best features based on 

a selection criterion. Examples of filter methods commonly used are variance 

thresholding, correlation-based feature selection, and relief-based algorithms. Embedded 

methods are similar to wrapper methods in that feature importance is deduced during 

model training. These methods include L1-regularization and tree-based models like 

decision trees or XGBoost in which an optimal feature set can be deduced after the model 

has been trained[48].  

Feature reduction methods are also commonly used in ML-based CADx schemes. 

These techniques differ from feature selection methods as they transform the initial high-

dimensional feature set into a lower-dimensional representation. The main examples of 

this method are principal component analysis (PCA) which aims to capture the variance 

in the initial feature space while reducing the dimensionality, and linear discriminant 

analysis (LDA) which aims to reduce the initial feature dimensionality while maximizing 

the between-class separation and minimizing the within-class separation[49].  

1.2.1.4 Classification 

Machine learning classifiers are able to learn patterns within the input feature sets and 

classify an image as malignant or benign. ML techniques can either be unsupervised, 

supervised, or semi-supervised. In unsupervised learning, the algorithm explores patterns 

and structures within the data without labeled examples to guide it. These methods are 

helpful in identifying hidden structures and patterns in the data when labeled data is not 

available. Supervised learning leverages labeled data to train models, offering high 

accuracy and interpretability. However, it relies on a substantial amount of labeled data 
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and may struggle with unknown classes. Semi-supervised learning combines elements 

of both, where a portion of the data is labeled while the rest remains unlabeled. It allows 

for efficient utilization of available labeled data and can generalize well but may still 

require a reasonable amount of labeled data for the best results. Each method has its 

place depending on the data and the problem at hand, making them versatile tools in the 

field of machine learning. 

Supervised learning algorithms are most commonly used in mammography-based 

CAD systems. The most common ML classifiers used in mammography-based CAD 

systems are support vector machines (SVMs), artificial neural networks (ANNs), and K-

nearest neighbors (KNNs) [50, 51]. Each ML method can be thought of as a mathematical 

model that takes a set of features and the labels that represent each image, and outputs 

a prediction. In the training phase, the predicted value is then compared to the true label 

via a loss function. The loss function measures how well the model is performing by 

quantifying the dissimilarity between the actual value and the predicted value, then 

adjusts the model parameters in a way that minimizes the loss function. This adjustment 

is done according to an optimization algorithm. Once the model is trained, it will then be 

tested using an independent image set. For the model to be considered a good classifier, 

it must perform well on not only the training set but also the testing set. This would indicate 

that the model can generalize well on unseen data and has truly learned. 

1.2.2. Deep learning based CADx 

Recent enthusiasm for deep learning (DL) based AI technology has led to new 

approaches for developing CAD schemes which are being rapidly explored and reported 

in the literature [52]. DL based CAD schemes use convolutional neural networks (CNNs) 
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to automatically learn hierarchical representations of the images directly from the image, 

eliminating the need for semi-automated or fully automated tumor segmentation and 

handcrafted feature selection. CNNs use convolutional layers that apply filters (kernels) 

to local regions of the input image, allowing them to capture local patterns and features. 

This architecture is well-suited for grid-like data, like images, where spatial relationships 

are important. The selected filters and convolutional layers are what make the CNN a 

powerful tool as it enables it to detect, learn, and recognize different image features or 

patterns.  

Briefly, the convolutional layers extract patterns from an input image by convolving the 

input image with a filter or kernel of specific weights. Patterns are organized into a feature 

map which will go through an activation function and be passed to the next layer. Without 

activation functions these networks would only be capable of linear feature mapping 

which would make it nearly impossible to learn features of complex non-linear 

distributions [53, 54].  Following the convolutional layers are subsampling layers, often 

max pooling layers, which will down sample the feature map by calculating the maximum 

value in a region. This highlights the most present feature in the map while decreasing 

the number of parameters that the model needs to learn and increasing the robustness 

[55]. One or more convolution layers followed by a pooling layer is often referred to as a 

block. Stacking multiple blocks is what makes this a deep network. The repetitive layer 

structure of the deep CNN is what allows for the extraction of increasingly meaningful 

information while preserving spatial information. The final feature map will be passed to 

one or more fully connected layers. The fully connected layers have full connections to all 
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neurons in the previous layer allowing it to identify relationships between all features in 

the feature map and output a class prediction. 

The main limitation of DL-based CADx schemes is the need for a large and diverse 

dataset to properly train the network. This is not often available in the medical imaging 

domain. Researchers have trained shallow CNNs for breast mass classification which do 

not require as much training data as a deep CNN model, but the robustness of these 

schemes is questionable as they are trained on smaller dataset [56-58]. The deeper a 

model is, the more complex representations can be learned, so the question of how deep 

a CNN must be to sufficiently capture features for a large classification task remains [59]. 

However, training a deep CNN from scratch is not possible without a large diverse dataset 

which are often not readily available in the medical imaging field.  

By recognizing the limitation of shallow CNN models, transfer learning has emerged 

as a solution to lack of big data in medical imaging. In transfer learning, a CNN is trained 

in one domain and applied in a new target domain [60]. This involves taking advantage 

of existing CNNs that have been pretrained on a large data set like ImageNet and 

repurposing them for a new task as this allows the networks to obtain a good sense of 

computer vision [61, 62]. Thus, several well established state of the art CNNs such as 

AlexNet, GoogLe-Net, ResNet, VGG16, and others have been pre-trained on the 

ImageNet dataset and successfully used in a wide variety of computer vision tasks 

including detection, segmentation, and classification of medical images [61, 63, 64]. 

There are two approaches to transfer learning (Figure 1-3). Fine tuning involves freezing 

some layers of a pre-trained model while training other layers[65]. Feature extraction via 

transfer learning involves using a pre-trained network exactly as is to extract feature maps 
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that will be used to train a separate ML model or classifier. The former is beneficial in that 

it will train the network to have some target specific features, but the latter is 

advantageous in that it is computationally inexpensive as it does not require any deep 

CNN training [66]. 

 

Figure 1-4: A block diagram displaying the transfer learning process. A model is trained in the 
source domain using a large diverse dataset. The information learned by the model is 

transferred to the target domain and used on a new task. The two main methods for transfer 
learning are feature extraction and fine tuning. For the feature extraction method, a feature map 

is extracted from the convolutional base taken from the source model and used to train a 
separate machine learning classifier. There are two ways to use transfer learning by fine tuning. 

The first is freezing the initial layers in the convolutional base from the source model and fine 
tuning the final layers using the target domain dataset then training a separate classifier. The 

second method does the same, except instead of training a new machine learning classifier, 
new fully connected layers will be added and trained using the target domain data [67].  
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1.3. Challenges of current CAD development 

Despite the extensive research efforts dedicated to the development and testing of 

new AI-based models in the laboratory environment, very few of these studies or models 

have been translated into clinical practice. This can be attributed to several obstacles or 

challenges. 

First, currently, most of the studies reported in the literature trained AI-based models 

using small datasets (i.e., <500 images). Training a model using a small dataset often 

results in poor generalizability and poor performance due to unavoidable bias and model 

overfitting.  

Second, medical images acquired using different machines made by different 

companies and different image acquisition or scanning protocols in different medical 

centers or hospitals may have different image characteristics (i.e., image contrast or 

contrast-to-noise ratio). CAD schemes are often quite sensitive to the small variations of 

image characteristics due to the risk of overtraining. Thus, models developed in this 

manner are not easily translatable to independent test images acquired by different 

imaging machines at different clinical sites. Developing and implementing image pre-

processing algorithms to effectively standardize or normalize images acquired from 

different machines or clinic sites [68, 69] have also attracted research interest and effort. 

Third, as mentioned previously, another common limitation of traditional ML or 

radiomics based models is that they often require a lesion segmentation step prior to 

feature extraction. Whether lesion segmentation is done semi-automatically based on an 

initial seed or automatically without human intervention, accurate and robust 

segmentation of breast lesions from the highly heterogeneous background tissue remains 
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difficult [70]. The lesion segmentation error introduces uncertainty or bias to the model 

due to the variation of the computed image features and hinders the translation of the 

models to the clinic. Recent attention to DL technology provides a way to overcome this 

limitation as the deep CNNs will extract features directly from the images themselves, 

bypassing the need for a lesion segmentation step. However, the lack of big and diverse 

datasets is a major challenge in developing robust DL models. Although transfer learning 

has emerged as a mainstream in the medical imaging field, its advantages and limitations 

are still under investigation. For example, while there is a huge focus on using pre-trained 

CNNs as feature extractors as it is computationally inexpensive and generalizable since 

these models avoid having to train or re-train the CNN at different centers with different 

imaging parameters, fine tuning the models has showed better results [60].  Additionally, 

no CNN-based transfer learning models have made it to clinical use since the models are 

still not robust as investigated in a recent comprehensive evaluation study [71]. Therefore, 

more development and validation studies are needed to address and overcome this 

challenge. 

Fourth, currently most DL-based models use a “black-box” type approach and lack 

explainability. As a result, it reduces the confidence or willingness of clinicians to consider 

or accept AI-generated prediction results [72]. Understanding how the model can make 

reliable prediction is non-trivial to most individuals because it is very difficult to explain the 

clinical or physical meanings of the features automatically extracted by a CNN-based 

deep transfer learning model. Thus, developing explainable models in medical image 

analysis has emerged as a hot research topic [73]. Among these efforts, visualization 

tools with interactive capability or functions have been developed that aim to show the 
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user what regions in an image or image patterns (i.e., “heat maps”) contribute the most 

to the decision made by a models [74, 75]. In general, new explainable AI models must 

be able to provide sound interpretation of how the features extracted result in the output 

produced. Ideally this should be done in ways that directly tie to the medical condition in 

question. Since this is an emerging research field and important research direction, more 

research efforts should dedicate to extensive development of new technologies to make 

CAD schemes and prediction models more transparent, interpretable, and explainable 

before the AI-based models or decision-making supporting tools can be fully accepted by 

the clinicians and then integrated into the clinical workflow.  
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Chapter 2. Research Objectives and Hypothesis 

It is important to investigate new methods to help decrease the false positive recall 

and benign biopsy rates of mammography so that women continue participating in routine 

breast cancer screening. As described in chapter 1, to help overcome these clinical 

challenges, researchers have made great efforts to develop CAD schemes for 

mammography to provide radiologists with decision-making support tools. Despite vast 

research efforts, the added clinical value is limited. Thus, more novel research efforts are 

needed to explore new approaches [76].  

The overall objective of this dissertation is to investigate three unique research ideas 

for improving the performance of CAD schemes in classifying suspicious mammography 

masses based on current gaps in the literature.  This includes (1) investigating the 

advantages of the fusion of traditional radiomics features typically used in ML-based CAD 

frameworks with deep learning-based features, (2) developing a novel multi-view CAD 

framework that uses true case-based inputs, and (3) investigating the role of pseudo color 

image generation in increasing mammography image feature representation prior to 

classification. The motivations, hypothesis, and proposed approach for each of these 

three studies are briefly discussed in the following section. 

2.1. Feature level fusion of radiomics features and DL features to improve 

lesion classification  

2.1.1. Background and motivations 

Extensive research has demonstrated the potential of both ML-based CADx schemes 

and DL-based CADx schemes to improve the accuracy of classifying suspicious 
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mammography detected masses as malignant or benign. [77, 78]. In the previous chapter, 

we discussed the strengths and limitations of both traditional ML and DL techniques and 

noted that where one technique fails, the other may succeed. For example, handcrafted 

features can closely mimic image features or markers used by radiologists in lesion 

diagnosis, while automated features can extract new clinically relevant features that may 

be invisible to the human eye. This has led to recent attention in developing CAD schemes 

that take advantage of both traditional and DL-based methods [41, 79, 80]. However, this 

is a new approach and further work must be done to identify optimal methods for fusing 

information from these techniques. The objective of this study is to develop a new CADx 

framework to effectively fuse a handcrafted radiomics feature set created using domain 

knowledge, and a DL feature set created using transfer learning techniques, to improve 

mass feature representation and improve the classification performance. 

2.1.2. Hypothesis and proposed approach 

In this study, we investigate the hypothesis that traditional handcrafted radiomic 

features and deep learning model generated features contain complementary 

discriminatory information and the fusion of these two types of features can increase the 

performance of a CADx system in classifying malignant and benign breast lesions. From 

a ROI surrounding suspicious mammography-detected masses, a handcrafted radiomics 

and a DL generated feature set is extracted. Due to the limited size of the dataset used, 

the DL features are extracted via transfer learning. The VGG16 network pretrained on the 

ImageNet database is used in this study to extract an extremely large feature pool. The 

images input to the DL network must be transformed from single-channel greyscale 

images into three-channel images to match the ImageNet dataset that the network is 
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pretrained on. We created two pseudo-color image sets. A stacked image set that 

contains the original ROI in three channels, and a pseudo image set which contains the 

original ROI, a bilaterally filtered version, and a histogram equalized version stacked in 

three channels.  DL features are extracted from both the stacked and pseudo image sets, 

resulting in three extracted feature vectors. A novel feature reduction pipeline is used to 

reduce the dimensionality of the three feature sets. This allows us to also investigate the 

effects of including preprocessed variants in the DL feature extraction pipeline. The 

optimal radiomics and DL-generated feature sets are then concatenated together, 

creating two fusion feature vectors. The five final feature vectors are then used to train a 

SVM to classify suspicious lesion as malignant or benign.  

2.2. A multi-view CADx framework for breast lesion classification 

2.2.1. Background and motivations 

Mammography imaging exams traditionally take two different projection images of 

each breast. A craniocaudal (CC) view is taken from topdown, while the mediolateral 

oblique (MLO) view is taken at an angle from the left to right. Radiologists will use all four 

images (left and right CC and MLO) to decide if a lesion is present and if that lesion is 

malignant or benign and needs to be biopsied. However, most CAD schemes are single 

view-based schemes, which limits the performance and clinical utility. To increase the 

performance of these CAD systems, there has been recent attention on multi-view 

information fusion of the different views which provide the CAD system will a better 

understanding of the cancer as more information is available. These systems tend to 

outperform single view systems, but it is still a relatively new research area (Table 2-1). 
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There is no consensus on the optimal method to extract and fuse information from all four 

views to build a multi-view CAD system.  

We can divide the current multi-view CAD systems into three categories based on the 

images used as an input. First, using only ipsilateral views which extracts and fuses 

information from the CC and MLO images of one breast. Using ipsilateral views is 

advantageous since image characteristics that can help classify a lesion may be obscured 

by dense overlapping tissue in one view but can be fully visible in the other view. Second, 

using only bilateral views which uses the same projection image taken of both the left and 

right breast. Using bilateral views is advantageous as it allows for quantification of 

bilateral asymmetry, a well-established image-based biomarker of a breast abnormality. 

When a radiologist interprets screening mammogrpahy exams, bilateral asymmetry is 

used a qualitative indicator of abnormalities as locations of high asymmetry often contain 

a suspicious mass[81]. And third, using both ipsilateral and bilateral views which provides 

the maximum amount of information to the CAD systems but must be handled carefully.  

When using all four images as a simultaneous input for a CAD scheme, careful 

consideration must be made to ensure that each image corresponds to the same mass 

and location, therefore it is truly a case-based scheme. One major limitation of existing 

multi-view studies is that many of them are not truly case-based, meaning the left and 

right CC and MLO view images used as an input may not be appropriately matched (Table 

2-1). For example, many studies that use ROIs extracted from ipsilateral views do not 

match the lesions ipsilaterally while building the image set. It is very possible that there 

will be more than one suspicious mass observed in a breast, therefore it is important to 
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ensure that the ROI extracted from the CC and MLO images are representative of the 

same mass. 

The same logic applies when using ROIs from bilateral views. Mammography exams 

compress the breast tissue, therefore without proper image registration, the bilateral ROIs 

do not actually correspond to the same region. The anatomical deformations present in 

the compressed breast image make simple rigid or affine transformation techniques an 

improper choice for the bilateral image registration task. This often causes researchers to 

stray away from the registration task and either quantify bilateral image characteristics 

from mismatched breast regions or use whole breast images which may hinder 

classification sensitivity[35, 82].  

Year Author 
Image 

Set 
Views 

Ipsilateral 
Matching? 

Bilateral 
Registration? 

Fusion 
Method 

Model Metric 

2015 
Tan et 

al. [35] 

1896 

private 

FFDM 

Ipsilateral 

 + 

 bilateral 

N/A - whole breast images 

used 

bilateral features are 

concatenated into a final 

CC and MLO feature vector 

multi-stage 

ANN 

AUC: 

0.779 ± 

0.025 

2019 
Li et 

al.[83] 

182 

private 
FFDM 

bilateral N/A No 

features are extracted from 

each view independently 

then concatenated into a 
single vector 

Bayesian 

artificial 

neural 
network 

AUC: 

0.84 ± 
0.03 

2019 
Khan et 
al.[84] 

CBIS-
DDSM 

Ipsilateral 

 + 

 bilateral 

No No 

features are extracted from 

each view independently 

then concatenated into a 

single vector 

VGGNet 

pretrained 

on 

ImageNet 

AUC: 
0.84 

2020 
Hina et 

al[85]. 

CBIS-

DDSM 

mini-

MIAS 

Ipsilateral 

 + 
 bilateral 

No No 

prediction scores of each 

view are generated 

independently and fused 

using an attention based 

weighted algorithm 

ResNet50 

pretrained 

on 

ImageNet 

AUC: 

0.896 

2017 
Geras et 

al. [86] 

886,437 

private 
FFDM 

Ipsilateral 

 + 
 bilateral 

N/A - whole breast images 

used 

features are extracted from 

each view independently 

then concatenated into a 
single vector 

CNN 

macro-

AUC: 
0.733 
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2023 
Boudouh 
et al.[87] 

CBIS-
DDSM 

Ipsilateral No N/A 
Ipsilateral features 
are concatenated 

InceptionResNetV2 

and EfficentNetB7 

pretrained on 

ImageNet used to 

extract features from 

the CC and MLO 

views, respectively. 

Final FC layers are 

trained 

ACC: 
95.86% 

Table 2-1: Examples of studies that include multiple mammography views as an input to a CAD 
scheme focused on classifying masses as malignant or benign. 

 

Previous studies demonstrate that multi-view CAD models tend to outperform single-

view CAD models[88], the addition of information from the contralateral breast to quantify 

the bilateral asymmetry increases model performance[89-91], and the fusion of 

handcrafted radiomic features and deep learning features outperforms either method 

alone when classifying suspicious breast lesions[41, 79]. However, to the best of our 

knowledge, no existing work combines these three points into a singular framework. Our 

previous study (section 2.1) used only craniocaudal view images as an input to the CAD 

system. In this study, we build upon our previous work to create a true case based multi-

view CADx system that takes advantage of the bilateral asymmetry using both radiomics 

and DL features.  

2.2.2. Hypothesis and proposed approach 

We hypothesize that a four-view image-based CAD scheme can yield a significantly 

higher mammography detected tumor classification performance than a one-view or two-

view system when using both handcrafted radiomics features and deep learning features.  

This work contains a multi-stage fusion problem as we must fuse information from 

multiple images and two different feature types. We investigate multiple fusion methods 

to determine the optimal method to do so. The novelty of this work lies in the method in 
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which we extract matching ROIs, making this a true case-based system. Each case 

contains four images, a left and right CC and MLO image, however the mass can only be 

seen in two of the four images. We first conduct an ipsilateral matching scheme using the 

images that contain the mass with the goal of confirming that the mass seen in ipsilateral 

views is the same mass. After ipsilateral matching, we register the breast images 

bilaterally so that matching ROIs can be extracted from the contralateral breast. A set of 

handcrafted radiomics features and DL features generated using a VGG16 network 

pretrained on ImageNet are extracted from all four images. We then quantify the bilateral 

asymmetry and then investigate multiple fusion methods to determine the optimal way to 

fuse information from multiple views using multiple feature types.  

2.3. Investigating the effects of pseudo color image generation in 

classifying malignant and benign breast lesions 

2.3.1. Background and motivations 

Transfer learning techniques continue to be a useful and effective tool for creating 

systems that do not have a large and diverse training dataset available. Leveraging pre-

trained models on datasets like ImageNet requires some network manipulation and image 

transformations prior to training as there are crucial differences between the ImageNet 

dataset and mammography images [62]. The ImageNet dataset is comprised of natural 

color (RGB) images that often have a singular distinct focal point to direct the 

classification, while mammograms are single channel greyscale images that appear 

relatively homogenous in comparison to the ImageNet dataset (Figure 2-2).  Since 

ImageNet contains 3-channel color images while mammography images are single 

channel greyscale images, mammography images must be transformed into three-
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channel images to be suitable for transfer learning with ImageNet. We call this step 

pseudo color image generation.  

 

Figure 2-1: Row A contains examples of the 3-channel color images in the ImageNet database. 
Row B and C contain single channel greyscale mammogram ROIs. Malignant cases are in row 

B while benign cases are in row C.   

 

In my first study mentioned in section 2.1, we extracted DL features from two pseudo 

color image sets. The first image set contained the original ROI stacked in three channels. 

The second image set contained the original ROI in the red channel and preprocessed 

variants in the green and blue channels, namely: a histogram equalized image and a 

bilaterally filtered image.  The image set created using preprocessed variants performed 

better than the set created using only the original ROI, however this was only statistically 

significant in one of four comparisons. This has motivated us to continue the investigation 
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into the effects of pseudo color image generation in deep transfer learning-based CAD 

schemes. 

As I continued my literature search on the topic, I noticed that many studies omit 

details pertaining to the inputs fed to deep pretrained CNN networks for breast cancer. 

We believe it is assumed that the original image is stacked in 3-channels. Additionally, 

there are a very limited number of studies that investigate the effects of using pseudo 

color images in mammography mass classification and detection tasks (Table 2-2).  

Year Author Dataset Task 

Pseudo Color Image 

Generation 
Model 

Evaluation 

Metrics 

R G B 

2017 
Antropova 

et al.[79] 

739 private 

FFDM 
classification 

original 

image 

original 

image 

original 

image 

radiomics and DL 

features train 

separate SVMs the 

output scores are 

averaged 

AUC: 0.86 

2023 
Razali et 

al.[92] 
Inbreast classification parula colormapped 

ResNet50 

pretrained on 
ImageNet 

AUC: 0.97 

2017 
Teare et 

al.[93] 

DDSM and 

ZMDS 
classification 

CLAHE 

(window=2 

clipping=8) 

CLAHE 

(window=4 

clipping=4) 

CLAHE 

(window=8 

clipping=2) 

InceptionV3 

pretrained on 

ImageNet as a 

feature extractor 

followed by a 

random forest 

AUC: 0.92 

2018 Li et al.[94] 
352 private 

FFDM 
detection 

original 
image 

gradient 
image 

local 

ternary 

pattern 

CNN 
values not 
provided 

2020 
Min et 

al.[95] 
Inbreast 

detection and 

segmentation 

original 

image 

MMS 

image 

MMS 

image 

pretrained Mask R-

CNN 

TPR: 0.9 DSC: 

0.88 

Table 2-2: Examples of mammography-based CAD studies that use a pseudo color image 
generation step. 
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Notably, Li et al. created a pseudo color image set by stacking the original 

mammography ROI, a gradient image, and the local ternary pattern image for breast 

mass detection. There were no statistically significant differences in the ability of the 

system to detect suspicious masses when using the pseudo color image set compared 

to the single channel greyscale image. The authors speculate that this is because the 

variant images in the green and blue channels of the pseudo color image are created by 

convolving a kernel over the image, therefore the CNN may be able to learn these details 

on its own so including them in a pseudo color image is not actually increasing the feature 

representation [94].   Min et al. followed this work and created pseudo color images that 

added increased morphological information which CNN would not be able to learn on its 

own. The morphological information is in the form of images created from the original ROI 

using a multi-scale morphological sifter (MMS). Using pseudo color ROIs with increased 

morphological information outperformed the original ROIs in a mammography mass 

detection task[95].   

It is well known that there are distinct morphological differences between malignant 

and benign tumors as malignant tumors tend to appear irregular in shape with spiculated 

margins while benign tumors appear round with defined boundaries (Figure 2-2). Many 

radiomics features are engineered using this domain knowledge to quantify these 

characteristics, but it is unclear how they are accounted for when using CNNs due to the 

black box nature. Additionally, the results of our first study (chapter 3) demonstrate that 

the domain knowledge used to build a handcrafted radiomics feature set is useful and 

should not be fully ignored. Since DL systems often lack any kind of domain knowledge, 

we believe adding morphological characteristics to a pseudo color image prior to using a 
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pretrained CNN may increase the feature representation therefore yield better 

classification results.  

 

Figure 2-2: Morphological examples of malignant and benign lesions. Modified from [30]. 

2.3.2. Hypothesis and proposed approach 

The purpose of this study is to continue the work from our previous two studies by fully 

investigating the effects of pseudo color image generation in classifying suspicious 

mammography detected breast lesions as malignant or benign using deep transfer 

learning in a multi-view CAD scheme. The performance of seven pseudo color image sets 

is compared. Pseudo color sets are created through combination of the original grayscale 
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image, a histogram equalized image, a bilaterally filtered image, and a segmented mass 

image. We hypothesize that creating pseudo color images with additional morphological 

information will provide increased complementary information to a deep network pre-

trained on the ImageNet database, and that this will yield better performance in classifying 

malignant and benign lesions than when using pseudo color images that do not contain 

morphological information. 

To create pseudo color image sets with increased morphological information, a fully 

segmented mass image is used in one of the three channels. As mentioned in chapter 

one, the mass segmentation task is extremely non-trivial. Two different techniques are 

used to obtain this segmentation. The first is a manual segmentation where the mass 

boundary is drawn by hand. This is an extremely time-consuming, error prone, and 

subjective task that is rarely conducted in clinical practice[96]. To combat this limitation, 

we also generate a fully segmented mass using a Unet that uses the manual 

segmentation images as a ground truth. The idea is to demonstrate the feasibility of using 

an automated segmentation method to generate morphological information, so the 

manual segmentation task does not need to be added to the clinical workflow.  

The CAD framework used in this study is taken from the study mentioned in section 

2.2 as multi-view CAD always outperforms single view CAD. This is a true case-based 

system, as an ipsilateral matching and bilateral registration scheme is conducted in the 

same manner.  
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Chapter 3. Improving Mammography Lesion Classification by 

Optimal Fusion of Handcrafted and Deep Transfer Learning 

Features 

3.1. Introduction  

Breast cancer has the highest incident rate and second highest mortality rate among 

cancers in women [97]. Routine mammographic screening is considered a widely used 

cost-effective approach to detect breast cancer in its earliest stages, which can help 

significantly improve cancer treatment efficacy and reduce patients’ mortality rate as 

demonstrated in many clinical studies [98, 99]. While mammography is the only accepted 

population-based breast cancer screening tool currently in clinical practice, 

mammograms are often difficult for radiologists to interpret due to the great heterogeneity 

of breast lesions and overlapped dense fibro-glandular tissues, which results in a high 

false positive recall rate. Among the suspicious breast lesions detected in mammograms 

and recommended for biopsy by radiologists, less than 30% of lesions are actually 

confirmed as malignant [100]. The high rate of benign biopsies is not only an economic 

burden, but also results in long-term psychosocial consequences to many women who 

participate in mammography screening [101]. Thus, improving the accuracy of classifying 

mammography-detected suspicious lesions to reduce the false-positive recall rate is a 

pressing clinical challenge. 

One method to help improve breast lesion detection and classification, and the 

accuracy of radiologists is through the assistance of computer-aided detection and/or 

diagnosis (CAD) schemes. Typically, computer-aided detection schemes are developed 



34 
 

and applied to detect and highlight locations of suspicious lesions depicting on 

mammograms, which may end up overlooked by radiologists, thus help increase lesion 

detection sensitivity (or reduce false negative rate) [102].  In addition, many other 

researchers have focused substantial efforts on the development and clinical translation 

of computer-aided diagnosis schemes that aim to classify the suspicious lesions as 

malignant or benign. In this article, we only develop and discuss computer-aided 

diagnosis (CAD) schemes. All CAD schemes include machine learning classifiers trained 

using a set of optimal image features extracted using one of two approaches. The first 

approach, often referred to as traditional CAD, involves extraction of a set of handcrafted 

radiomics image features to train a machine learning classifier. However, previous 

research indicates that extraction and selection of a set of optimal handcrafted features 

varies drastically between studies and is a time intensive, error-prone, and non-trivial task 

which often leads to increased false positive rates [43, 103, 104].  

In order to overcome the challenges or limitations of the traditional CAD, many 

researchers investigated a second approach that uses a deep learning model to 

automatically learn and extract features directly from the image itself, which significantly 

decreases or eliminates user intervention. The deep learning models applied to medical 

images are primarily the deep convolution neural networks (CNN) due to their immense 

success in many tasks involving computer vision. CNNs differ from traditional artificial 

neural networks (ANNs) in that they use filters and convolutional operations to transfer all 

information from neurons in one layer to the neurons in the next hidden layers, which are 

called convolutional layers. The selected filters and convolutional layers are what make 
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CNNs a powerful tool as it enables it to detect, learn, and recognize different image 

features or patterns.  

While deep CNNs have become an immensely powerful tool for many different image 

classification tasks, there are several limitations that hinder their applications to medical 

imaging tasks. Firstly, many of these deep learning algorithms are thought of as a black 

box. This is a key weakness and hurdle when trying to translate these technologies to the 

clinic. Visualization techniques have been proposed which give insight into the type of 

features extracted from each convolutional layer [105-107]; the goal of these techniques 

is to provide some level of explanation for their decision-making process. Second, training 

of these deep neural networks requires a very large dataset, which is often not available 

in medical imaging. Transfer learning has emerged as a solution to this problem. Transfer 

learning involves the transfer of knowledge from one task to another by using the model 

learned on one task for a separate task [62]. The theory is that if the original model is 

trained on a very large and diverse dataset, then the model will have a good sense of 

computer vision, therefore the features learned can be applied to other tasks [59]. Thus, 

several well established CNNs such as AlexNet, GoogLe-Net, ResNet, VGG16, and 

others have been pre-trained on the ImageNet dataset and successfully used in a wide 

variety of computer vision tasks including detection, segmentation, and classification of 

medical images [61, 63, 64]. These pre-trained CNNs can be used as a feature extractor 

in which the top fully connected layers can be removed, and the output feature map can 

be flattened into a feature vector that can be used to train another separate machine 

learning classifier for different medical imaging application tasks [66]. 
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Using these pre-trained CNNs leads to a third problem; there are many fundamental 

differences between the natural images in the ImageNet dataset used to train the CNNs 

and medical images [62]. The ImageNet images are natural color images with three 

channels (RGB), while mammograms are single channel greyscale images. Since the 

CNNs are trained on three channel RGB images they require this as an input. Stacking 

the grayscale mammogram into three channels is the most obvious solution, but this may 

provide redundant information to the network. While many studies have demonstrated 

potential or success in using transfer learning with the ImageNet dataset for classification 

of medical images [108-110], more work must be done to explore the role of image pre-

processing and deep transfer learning for breast lesion classification using 

mammograms.  

Although over the last decade great research efforts have been made to develop novel 

traditional and deep learning CAD schemes for detection and diagnosis of diseases [10, 

110-112], the existing CAD schemes have their unique characteristics including different 

advantages and limitations, which have not yet been fully investigated or compared in 

previous studies [77, 78]. In our research work, we hypothesize that the traditional 

handcrafted features and the deep learning model generated features contain 

complementary discriminatory information because some of the handcrafted features can 

closely mimic image features or markers used by radiologists in lesion diagnosis, while 

automated features have the potential to extract new clinically relevant features that may 

be invisible or difficult to detect by human eyes. Thus, optimal fusion of these two types 

of features has potential to increase CAD performance to classify breast lesions. To test 

this hypothesis, this work aims to develop and evaluate a new fusion CAD scheme with 
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improved mammogram lesion classification performance by combining both handcrafted 

and DL image features. The rest of the paper is organized as follows. Section 2 describes 

the information of the image dataset and experimental design including all steps of the 

proposed fusion CAD scheme. Section 3 reports study results by comparing lesion 

classification performance of CAD schemes using several machine learning classifiers 

trained using different sets of features. Section 4 discusses the impact of this study along 

with limitations and future work. Section 5 concludes this study. 

3.2. Methods 

3.2.1. Image Dataset 

In our research laboratory, we have assembled a retrospective breast cancer 

screening image database of full-field digital mammograms (FFDM) under an institutional 

review board (IRB) approved image collection protocol. Each collected study case 

contains sequential FFDM images acquired in two to six annual screening sessions from 

2008 to 2014. All FFDM images were acquired using the Hologic Selenia digital 

mammography machine (Hologic Inc., Bedford, MA, USA) with a fixed pixel size or spatial 

resolution of 70µm. Since in developing CAD schemes of mammograms, the high 

resolution FFDM images are used to detect microcalcifications and subsampled low-

resolution images are used to detect soft tissue mass lesions, the original FFDM images 

are also subsampled using a pixel value averaging method with a 5×5-pixel frame to make 

image size of 818×666 pixels. Then, the subsampled FFDM image has a pixel size or 

spatial resolution of 0.35mm. The 12-bit gray level remains the same. From this image 

database, we have selected and assembled many subsets of images for different CAD 
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tasks including predicting cancer risk, detecting and classifying suspicious breast lesions 

as reported in our previous research papers[35, 104, 113-115].  

In this study, we collected 1,535 craniocaudal (CC) FFDM images from our existing 

image database. Each image contains a suspicious soft tissue mass-based lesion that 

was previously detected by a radiologist during the original image reading and diagnosis 

in screening environment. All lesions were recommended for biopsy. Based on the 

pathology examination results of the biopsied lesion samples, 740 lesions were confirmed 

as malignant, while 795 lesions were confirmed as benign. In each image, the lesion 

center was marked by the radiologist and recorded in our database. Using the recorded 

lesion center as a center reference, a square patch or region of interest (ROI) with a size 

of 64×64 pixels is extracted from each image. Figure 3-1 shows two FFDM images (one 

malignant and one benign) and the corresponding ROIs.   

 

Figure 3-1: A and B display two craniocaudal mammogram images including a malignant and 
benign lesion, respectively. Red boxes represent the 64x64 patch extracted around the 

suspicious lesion. 
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3.2.2. Image preprocessing 

In order to use deep transfer learning method, we first expand or rescale the original 

ROI with 64×64 pixels to 224×224 pixels using bilinear interpolation method. In order to 

generate three channel images suitable for deep transfer learning, we combine the 

original greyscale image (Io) with two preprocessed variations [116]. Since mammograms 

are low dose X-ray images, these images may have poor contrast and the brightness may 

vary greatly between patients [117]. Firstly, a histogram equalization technique is applied 

to the original greyscale image to normalize and enhance the contrast of the mammogram 

(IHE). Second, to denoise the mammogram images, we apply a bilateral low-pass filter to 

the original greyscale image (I0) and generate a new filtered image (IBF). This filter is 

selected because of its ability to reduce image noise, while effectively preserving edge 

and other textural information [118].  

 
𝐼𝐵𝐹(𝑝) =

1

𝑊𝑝

∑ 𝐼0(𝑞)𝐺𝜎𝑠
(||𝑝 − 𝑞||)

𝑞∈Ω

𝐺𝜎𝑟
(𝐼0(𝑝) − 𝐼0(𝑞)) 

(3-1) 

 

where 𝐺𝜎𝑠
 and 𝐺𝜎𝑟

 are two Gaussian functions with two different kernel sizes determined 

by two sigma values, 𝜎𝑠 and 𝜎𝑟, respectively. 𝑊𝑝 is a normalization factor: 

 𝑊𝑝 = ∑ 𝐺𝜎𝑠
(||𝑝 − 𝑞||)

𝑞∈Ω

𝐺𝜎𝑟
(𝐼0(𝑝) − 𝐼0(𝑞))            (3-2) 

 

Thus, in using the bilateral low-pass filter, the first Gaussian low-pass filter (𝐺𝜎𝑠
) in the 

spatial domain ensures that only the pixels in the area around the central pixel are 

considered and blurred. The second Gaussian low-pass filter (𝐺𝜎𝑟
) considers the 

difference in intensity between pixels, which decreases the influence of pixel blurring with 
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the increase of intensity difference and allows for edge preservation as edge locations 

have large intensity variations. As a result, applying this bilateral filter to mammograms 

will ensure that only pixels with small intensity variations (i.e., relatively homogeneous 

breast tissue or internal tumor areas) are blurred to reduce image noise, while tumor edge 

and other textural information of tumor and surrounding fibro-glandular tissues are 

preserved. Based on a previous study, the diameter of the pixel neighborhood (Gaussian 

filter kernel) used in this study is set to 9 and both sigma values (𝜎𝑠 and 𝜎𝑟) are set to 75 

[116]. Therefore, three images, Io, IHE, IBF are stacked to form a pseudo color image 

(Figure 3-2), which are fed to the CNN for automated feature extraction. 

 

Figure 3-2: Intermediate images in the creation of the pseudo-ROIs. Pseudo-ROI is created by 
stacking the three greyscale images. 

3.2.3. Deep Transfer Learning Feature Selection 

Although several deep learning models have been applied as feature extractors for 

transfer learning in the medical imaging field, we use a VGG16 network whose weights 

have been pre-trained on the ImageNet dataset [119] as this network has performed well 

in many previous studies [120-123]. The VGG16 network is comprised of 13 convolutional 

layers followed by two full connected layers and a SoftMax layer [124]. All convolutional 

layers use a 3×3 kernel and all max-pooling layers have a stride of 2 (Table 3-1). VGG16 

takes a 224×224 3-channel RGB image as an input. For the purpose of this study, the top 
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fully connected layers are removed and a 7×7×512 feature map is extracted after the final 

max pooling layer. This feature map is then flattened into a 25,088-dimensional feature 

vector, which can be used to train a machine learning classifier.  

Block Layer Size Filter Size 

1 Convolution-1 

Convolution-2 

Max pooling 

224×224×64 

224×224×64 

112×112×64 

3×3 

3×3 

- 

2 Convolution-1 

Convolution-2 

Max pooling 

112×112×128 

112×112×128 

56×56×128 

3×3 

3×3 

- 

3 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

56×56×256 

56×56×256 

56×56×256 

28×28×256 

3×3 

3×3 

3×3 

- 

4 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

28×28×512 

28×28×512 

28×28×512 

14×14×512 

3×3 

3×3 

3×3 

- 

5 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

14×14×512 

14×14×512 

14×14×512 

7×7×512 

3×3 

3×3 

3×3 

- 

6 Flatten 

Dense 

Dense 

Dense 

25,088 

4,096 

4,096 

1,000 

 

Table 3-1: VGG-16 Architecture. For this study, block 6 is removed and features are extracted 
after the final max pooling layer. 

Due to the extremely high dimensionality of this feature vector, a three-step feature 

reduction pipeline is used to select the optimal feature set. Since the VGG16 network is 

pre-trained on the ImageNet dataset that comprises a very heterogenous set of natural 

images, yet the intensity distributions of mammograms are relatively homogenous, a large 

percentage of the neurons will not be activated when a ROI of mammogram passes 
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through. This would result in many features being inactive (zero) for most images. Thus, 

in the first step, all features with a variance of 0.01 or less are eliminated.  

The second step in the feature selection pipeline takes advantage of a quick and 

powerful relief-based algorithm, Relief-F, to rank feature importance based on how well 

that feature does at differentiating between instances that are nearby [125]. It relies on a 

nearest neighbor approach to do so. Briefly, given a randomly selected instance Ri, 

represented by an a-dimensional vector, where a is the total number of features, Relief-F 

searches for the k nearest neighbors from the same class, near hits Hj, and k nearest 

neighbors from a different class, near misses M j [126]. Feature weights, W[A], are then 

updated according to equation 3-3:  

 

𝑊[𝐴] = 𝑊[𝐴] −
1

𝑛 ∗ 𝑘
(∑𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖, 𝐻𝑗)

𝑘

𝑗=1

− ∑ 𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖, 𝑀𝑗)

𝑘

𝑗=1

) 

 

(3-3) 

where n is the total number of training instances. The diff function (equation 3-4) is used 

to quantify the difference between the attribute at two nearby instances.  

 
𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖, 𝐼) =  

|𝑣𝑎𝑙𝑢𝑒(𝐴, 𝑅𝑖 ) − 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼)|

max(𝐴) − min (𝐴)
 

(3-4) 

   

where I is either a nearby hit, Hj, or a nearby miss, Mj. Larger feature weights reflect 

features that will be more relevant for distinguishing between classes therefore more 

desirable. The weight of feature A, W[A], will be increased if randomly selected instance 

Ri and nearby instance I belong to the different classes and the feature values are 

different. W[A] will be decreased if randomly selected instance Ri and nearby instance I 
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belong to the same class feature values are different. The update in the feature weight 

will be proportional to the difference between the feature values as seen in equation 4. 

While original proposals of relief based algorithms describe a relevance threshold value, 

τ, such that all features with W[A] > τ, will be selected as a relevant feature, it is often 

more practical to select a set number of features to be considered relevant [127, 128]. In 

this study, 10 neighbors were used, and the top 300 features were chosen to undergo 

further feature selection. A more in depth review of relief based algorithms can be found 

elsewhere [127]. The final step in the feature selection pipeline uses a sequential forward 

floating feature selector (SFFS) with 10-fold cross validation to select the final optimal 

feature set [129, 130].  

As mentioned previously, VGG16 pretrained on ImageNet takes a 3-channel image 

as an input. Two methods are used to convert one channel grey level image to a three-

channel image. Therefore, in addition to extracting features from the pseudo-color-ROI 

images described in section 3.2, we also extracted features from a second group of input 

images, namely, stacked-ROI images. The stacked-ROI images are created by stacking 

the same original greyscale ROI in three channels. Therefore, after using the VGG16 

network as a feature extractor and reducing the feature set, two independent optimal 

vectors of DL features are created, namely, a pseudo-ROI feature vector and a stacked-

ROI feature vector. 

3.2.4. Handcrafted Feature Extraction and Selection 

There exists an abundance of CAD schemes which use a wide variety of handcrafted 

features. We initially computed 40 commonly used features from two separate feature 

groups. The first group consists of the first order statistical features that describe the 
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distribution of pixel intensities across the image. These include 6 features namely, the 

mean, maximum, standard deviation, energy, skewness, and kurtosis of pixel intensity 

values. While first order statistical features provide information about the intensity 

distribution of the image, they do not provide any insight into the relative spatial positions 

of these intensities. The second group consists of textural features which describe the 

spatial arrangement of the intensity distributions. These textural features include those 

derived from the gray level co-occurrence matrix (GLCM) and the gray level run-length 

matrix (GLRLM). 

The GLCM describes the number of co-occurrences of two pairs of grey level 

intensities which are a specific distance apart [131]. From the GLCM, 6 features are 

computed along four angles, 0° ,45° ,90°, and 135°, and at a distance of one pixel, namely, 

contrast, dissimilarity, homogeneity, ASM, energy, and correlation. The mean and 

maximum values of these features are computed resulting in 12 GLCM features. The 

GLRLM describes the number of consecutive pixels that have a specific pixel intensity 

[132]. From the GLRLM, 11 features are computed along the same four angles, 0° ,45° 

,90°, and 135°, namely: short run emphasis, long run emphasis, gray level nonuniformity, 

run length nonuniformity, run percentage, low gray level run emphasis, high gray level run 

emphasis, short run low gray level emphasis, short run high gray level emphasis, long 

run low gray level emphasis, and long run high gray level emphasis. The mean and 

maximum of each of these features are computed resulting in 22 GLRLM features. 

Mathematical descriptions of these features are explained in detail elsewhere [43]. After 

these 40 features were initially extracted, a variance threshold of 0.01 is applied to remove 
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irrelevant features (Figure 3-3). As a result, 17 features are selected to create an optimal 

vector of handcrafted features. 

Figure 3-3: Heatmaps of correlation coefficients of the handcrafted features before and after 

applying variance thresholding. 

 

3.2.5. Classification and Evaluation 

Five separate machine learning classifiers are built using 5 optimal feature vectors 

extracted from handcrafted features, two sets of deep transfer learning features computed 

from pseudo-color-ROIs and stacked-ROIs, and fusion between handcrafted features and 

each set of automated features to test the hypothesis that fusion of handcrafted and deep 

transfer learning features can improve the performance of using CAD schemes to classify 

breast lesions as malignant or benign. Although many different types of machine learning 

classifiers have been used and tested in CAD field, we choose to use a support vector 
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machine (SVM) as SVMs have many advantages as demonstrated in traditional machine 

learning or CAD field including its higher generalizability. 

In this study, SVM1 is trained using only the handcrafted features, SVM2 is trained 

using the deep transfer learning features, which includes two SVM2s namely, SVM2-

pseudo and SVM2-stacked, and SVM3 is trained using a fused feature set containing 

both the handcrafted and one set of deep transfer learning features, which also includes 

two SVM3s namely, SVM3-pseudo and SVM3-stacked. To build SVM3, handcrafted 

features and one set of deep transfer learning features are first combined through 

concatenation to create a new fusion feature pool. A SFFS algorithm is then used to select 

the optimal feature set from the fusion feature pool to train SVM3. All five SVMs are built 

using a linear kernel and trained using a 10-fold cross validation method. L2 regularization 

with C=1.0 is used to avoid overfitting.  

Each trained SVM model is applied to every image in the testing fold and a prediction 

score between 0 and 1 is generated that indicates the likelihood of the image depicting a 

malignant lesion. Prediction scores of all 1,535 images are used to create a receiver 

operating characteristic (ROC) curve and the area under the ROC curve (AUC) is 

computed as an evaluation metric. Next, an operating threshold (T= 0.5) is applied on all 

SVM generated prediction scores to divide all testing images into two classes of malignant 

and benign lesions, so that the classification accuracy, inducing sensitivity and specificity, 

can be computed from a confusion matrix.  In addition, the statistically significant 

differences of performance comparison are also computed and determined based on the 

criterion of p<0.05. A flowchart of this entire experimental design is shown in Figure 3-4.  
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Figure 3-4 Flowchart of the entire experimental design. 
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3.3. Results 

Table 3-2 shows the results of the feature selection pipeline used to reduce the 

pseudo and stacked ROI feature sets. After variance thresholding about 75% of features 

were removed from the pseudo-ROI feature set and 70% were removed from the stacked-

ROI feature set. This may support the idea that stacking the single channel greyscale 

image into a 3-channel RGB image provides redundant or irrelevant information. In 

addition, when applying a SFFS algorithm to select optimal features from two fusion pools 

of features, which include 17 handcrafted features plus 57 or 55 DL features (as shown 

in Table 3-2), two optimal fusion feature vectors including 61 and 37 features are 

generated. These two feature vectors include 9 and 6 handcrafted features, respectively.  

 

Figure 3-5 shows 5 ROC curves generated from classification scores of 5 SVMs along 

with corresponding AUC values. When applying an operation threshold (T = 0.5), each 

ROI with an SVM-generated classification score ≥ T is classified as a malignant lesion, 

otherwise, it is classified as a benign lesion. Figure 3-6 shows 5 confusion matrices 

generated by 5 SVMs. These confusion matrices represent the sum after 10-fold cross 

validation. Based on the data shown in Figures 3-5 and 3-6, the mean AUC values (along 

Feature Selection 
Step 

Pseudo 
ROI 

Stacked ROI 
Handcrafted 

+ Pseudo 
ROI 

Handcrafted 
+ Stacked 

ROI 

Initial number of 
features 

25,088 25,088 74 72 

Variance 
Thresholding 

6,256 7,502 - - 

Relief-F 300 300 - - 

SFFS 57 55 61 37 

Table 3-2 : Number of features before and after feature reduction steps. 
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with corresponding standard deviation of 10-fold cross-validation), classification 

accuracy, sensitivity, and specificity of all five SVMs are summarized in table 3-3. 

 

Figure 3-5: ROC AUC curves for all 5 SVMs. 

 

 

Figure 3-6: Confusion Matrices of all 5 SVMS. Confusion matrices are the sum of all matrices 

after 10-fold cross validation 
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Model AUC Accuracy Sensitivity Specificity 

SVM1 0.596±0.032 0.566±0.033 0.385±0.055 0.735±0.044 
SVM2-Stacked 0.717±0.022 0.659±0.030 0.565±0.052 0.747±0.037 
SVM3-Stacked 0.734±0.017 0.676±0.041 0.585±0.058 0.761±0.032 
SVM2-Pseudo 0.750±0.043 0.699±0.036 0.665±0.064 0.731±0.028 
SVM3-Pseudo 0.756±0.042 0.704±0.035 0.676±0.061 0.731±0.028 
Table 3-3: Summary of classification performance indices including mean values and standard 

deviations of all 5 SVM models after 10-fold cross validation. 

 

A paired t-test at an alpha value of 0.05 was used to test for a statistically significant 

difference in means between classification performance of groups of two SVMs. When 

analyzing the three SVMs developed using features extracted from the stacked ROIs, we 

observe that SVM3-stacked, trained using a fused feature vector, performs significantly 

better than both SVM1, trained using handcrafted features, and SVM2-stacked, trained 

using DL features, in both AUC and accuracy (Figure 3-7A and B). When analyzing the 

three SVMs developed using features extracted from the pseudo-ROIs, we observe that 

the AUC value yielded by SVM3-psuedo is also significantly higher than AUC values 

yielded by both SVM1 and SVM2-psuedo (Figure 3-7C). While the accuracy of SVM3-

psuedo is greater than that of SVM2-pseudo, this difference is not significant (p=0.1363) 

(Figure 3-7D). Since both feature fusion based SVMs performed better than both SVMs 

trained using single type of features, the study results validate and support our hypothesis 

that feature fusion by optimally selecting handcrafted and automated features can create 

a machine learning classifier with improved classification abilities.  



51 
 

 

Figure 3-7: Bar graphs displaying the mean and standard deviation (STD) of all three SVMs for 

the pseudo-ROIs and stacked ROIs. (**** = p <0.001, **=p<0.01, *=p<0.05) 

 

In addition to developing and evaluating a feature fusion-based SVM classifier for 

improved performance, we also compared the performance of the SVMs trained using 

pseudo-ROIs as an input to VGG16 for feature extraction, with the performance of SVM2s 

trained using stacked-ROIs as an input to VGG16 for feature extraction. While there is 

only a statistically significant difference between the accuracies of SVM2-stacked and 

SVM2-psuedo (p=0.0251), SVMs trained using features extracted from pseudo-ROIs 

achieve a higher AUC and accuracy than SVMs trained using features extracted from 

stacked-ROIs (Figure 3-8).  

 



52 
 

 

Figure 3-8: Bar graphs displaying the difference in ROC AUC and Accuracy of SVMs trained 

using deep transfer learning features extracted based on pseudo-ROIs and stacked-ROIs 

(*=p<0.05) 

In addition, Figure 3-9 shows 3 blocks or pairs of lesion classification examples. Each 

pair includes one malignant lesion (marked by red ROI frame) and one benign lesion 

(marked by yellow ROI frame) in the top row. The magnified images of the extracted ROI 

are shown in the bottom row of the figure. First, the two lesions in the left block are 

correctly classified by 3 SVMs (SVM1, SVM2-pseudo, and SVM3-pseudo). We can see 

from the ROIs that the benign mass has a roundish shape and looks relatively uniform 

when compared to the background, while the malignant lesion appears with spiculated 

margins and is much brighter than the surrounding tissue. Second, two lesions in the 

middle block are correctly classified by 2 SVMs (SVM2-pseudo and SVM3-pseudo), but 

incorrectly classified by SVM1. Since SVM1 is trained on handcrafted features only, this 

means that using only handcrafted features is not sufficient to make a correct distinction 

but DL features alone and the combination of the handcrafted and DL features can be 

more accurate. Third, the two lesions in the right block may be more subtle and are only 

correctly classified by one SVM (SVM3-pseudo) and misclassified by SVM1 and SVM2-
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pseudo. This highlights the fact that handcrafted and DL features do contain 

complementary information that when used together can better classify suspicious 

lesions.   

 

Figure 3-9: Examples of correct and failed classifications. The top row displays the full CC 

image while the bottom row shows the ROI that was used for feature extraction. Yellow ROI 

indicates that the true value is benign while a red ROI indicates that the true value is malignant. 

 

In summary, when using only deep learning features with pseudo-ROI input images, 

the AUC value and classification accuracy of SVM2-pseudo increase 25.8% (from 0.596 

to 0.750) and 21.9% (from 0.566 to 0.690), respectively, as compared to SVM1 trained 

using handcrafted features only. Additionally, when fusion of handcrafted and DL features, 

AUC value and classification accuracy of SVM3-pseudo are further increased by 0.8% 

(from 0.750 to 0.756) and 2.1% (from 0.690 to 0.704), respectively, as comparing to 

SVM2-pseudo.  

3.4. Discussion 

This work demonstrates a new CAD scheme for the classification of breast lesions as 

malignant or benign. This study uses a diverse dataset of 1,535 cases,  which is larger 
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than most datasets used in previous CAD studies to classify breast lesions (such as 8 

studies summarized in [133], which reported AUC values ranging from 0.70 to 0.87 using 

datasets involving 38 to 1,076 images). The reported performance of breast lesion 

classification in this study is not directly comparable to those reported by many previous 

studies due to the use of different image datasets. However, this new CAD scheme shows 

promising performance compared to the high rates of false-positive recalls and 

unnecessary biopsies of benign lesions in current clinical practice. The contribution of this 

study includes following unique characteristics or research approaches and new 

interesting observations, which fully support our study hypothesis.  

First, many deep learning CAD schemes have been developed and reported in the 

literature. Previous approaches can be divided into three categories. (1) The studies that 

use deep learning as an end-to-end classifier. For example, using a smaller dataset of 

560 FFDM images (280 are malignant and 280 are benign), Qiu et al. developed and 

tested a deep learning model using a 4-fold cross validation method [58]. The study 

reported AUC values ranged from 0.696±0.044 to 0.836±0.036 in 4 folds (with average of 

AUC = 0.790±0.019). (2) The studies that use a deep transfer learning model as feature 

extractors. For example, Mendel at al. used a pretrained VGG19 model to extract features 

from 78 biopsy confirmed FFDM cases [134]. Then, by using the extracted features to 

train a linear SVM classifier using a reduced feature set, the study reported an AUC of 

0.76±0.05. This study is somewhat like the SVM2 classifiers trained in our study, which 

yielded comparable AUC=0.75±0.04 (SVM2-pseudo) while it is tested using a much 

larger image dataset. (3) The studies that fused two classifiers separately trained using 

handcrafted and automated features at the final decision level. For example, Huynh et al. 
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applied a soft-voting technique to fuse the outputs of two SVMs trained using automated 

features extracted by an AlexNet model and an SVM trained using traditional CAD 

features [80]. When applying 607 ROIs extracted from 219 FFDM cases and using a 5-

fold cross-validation method, the study reported an AUC of 0.86±0.01. However, in this 

study, we investigate a new novel approach that fuses handcrafted and DL features at 

feature selection level to create an optimal feature set and train a single classifier (i.e., 

SVM3-pseudo or SVM3-stacked). To the best of our knowledge, such fusion method to 

develop CAD schemes of medical images has not been reported in the literature.   

Second, since using a deep transfer learning model as a feature extractor generates 

a very large feature vector (25,088 from VGG16 model), identifying a small set of optimal 

features is a difficult but important task. Our experiments indicated that many commonly 

used feature dimension reduction methods including principal component analysis (PCA) 

have lower performance when applying to such large feature vectors. Thus, in this study, 

we developed a new feature selection pipeline with three steps that allows for the 

successful selection of an optimal set of automated deep learning features from the huge 

number of initially extracted features. Among these three steps, we investigated and 

identified an optimal and effective approach to use Relief based algorithms, which are 

unique in that they do not assume independence among features as many other feature 

selection filter methods do. Relief-F was chosen for this study since we are unaware of 

what kind of feature interactions exist from the feature map extracted from VGG16. A 

limitation of Relief-F worth noting is that in an extremely large feature space the 

identification of a nearest neighbor becomes increasingly random, which leads to a 

decrease in performance [126, 135]. Iterative RBA such as Iterative Relief [136], Tuned 
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Relief-F(TuRF) [137] , VLSRelief-F [135], and more [138], have been developed which 

improve the performance in very large feature spaces. There is no consensus on what 

defines an extremely large feature set or when these iterative approaches perform better. 

We observed no significant difference in the performance of SVM2 or SVM3 when using 

Relief-F alone and using TuRF wrapped around Relief-F. As a result, the optimal Relief-F 

algorithm was used to reduce dimensionality of feature space by more than 95% (i.e., 

reducing the number of features from 6,256 to 300 when using pseudo-ROIs). Combining 

the three steps in this feature selection pipeline, the number of features is reduced to 55 

or 57 from original 25,088 (as shown in Table 3-2), which supports building robust SVMs 

using a large training dataset with 1,382 cases (9 folds of our dataset). 

Third, this study supports that using deep transfer learning model generated features 

has significant advantages over using the traditional handcrafted radiomics features since 

classification performance of SVM2 is significantly higher than SVM1 (i.e., AUC=0.750 for 

SVM2-pseudo and AUC=0.596 for SVM1). However, our study also demonstrates that 

the handcrafted features and DL features contain complementary information to classify 

breast lesions. Thus, using the fusion feature sets including both handcrafted and DL 

features to train and build SVM3-pseudo and SVM3-stacked enables to further improve 

lesion classification performance. Since both handcrafted and deep features extracted 

from mammograms may be able to pick up on details and patterns that cannot be 

detected with the human eye, classifications made by this fusion-based CAD scheme 

have the potential to better assist radiologists in reducing the false positive recall rate of 

mammogram lesion detection by acting as a second reader.  
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Fourth, we observe that AUC value and classification accuracy are higher when using 

pseudo-ROIs for feature extraction from deep transfer learning models than simply using 

3 stacked ROIs. Few studies have been conducted to investigate how to optimally utilize 

pseudo-color ROIs as inputs for deep CNNs. Overall, these studies show higher lesion 

classification performance when using ROIs that have been meaningfully pre-processed 

when the original greyscale image is just stacked in three dimensions [116, 139, 140]. 

This further solidifies the idea that image preprocessing is a crucial step when utilizing a 

deep learning network trained on natural images for medical imaging tasks. As many 

different contrast enhancement techniques exist for processing mammograms [117], 

future work must be done to better investigate these techniques roles in developing more 

effective pseudo-RGB images for deep transfer learning.  

Despite a large image dataset, promising classification results, and new observations 

that can help facilitate research effort to further develop and optimize CAD schemes to 

classify between breast lesions using mammograms, there are also several limitations in 

this study. First, the dataset used in this study focuses solely on craniocaudal view 

mammograms. As a result, this is only a region-based CAD scheme. Since in 

mammography a lesion can often be detected in both craniocaudal (CC) and mediolateral 

oblique (MLO) views, fusion of classification results from two views has potential to further 

improve classification performance. Thus, in future studies, we will develop and test a 

more complete case or lesion-based CAD scheme that fuses the two lesion regions 

detected on both CC and MLO views. Second, for a proof-of-concept study we only 

computed 40 handcrafted image features, used VGG16 as a deep transfer learning model 

as a feature extractor, and a standard SVM as a multifeatured-based classifier. Although 
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this is an efficient approach to test our hypothesis, the results may not be the best or 

optimal. More existing radiomics features and/or other features (i.e., local binary patterns) 

should be explored in handcrafted features, and more advanced deep transfer learning 

and classification models should be investigated and applied in future studies to improve 

lesion classification performance. Third, as shown in figure 3-4, this study used a 

concatenation method as a feature-level fusion operator. Although the concatenation 

method is widely used in the CAD field, it may not be the best method. We will further 

investigate different feature-level and decision-level fusion schemes in future studies. 

Fourth, we recognize the importance of using balanced dataset of two classes to train 

machine learning classifier. In this study, our dataset is slightly unbalanced with a ratio of 

1.074 (795/740 or 51.8% benign and 48.2% malignant images). Although the imbalanced 

ratio is relatively small and should not have significant negative impact in training SVM 

models, we will investigate this issue or impact of using the more balanced image 

datasets such as adding synthetic FFDM images using a Generative Adversarial 

Networks (GAN) as demonstrated in a recent study in our lab [141]. Lastly, although we 

use a standard 10-fold cross-validation method to test CAD performance, its robustness 

needs to be further validated or tested on multiple different datasets and compared to 

different traditional or deep learning classifiers in future work. 

3.5. Conclusions 

This study presents a new fusion-based CAD scheme that combines handcrafted 

features with automated deep transfer learning features aiming to improve the 

performance of a machine learning classifier in classification of breast lesions as 

malignant or benign. Although this is a preliminary study with several limitations, to the 
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best of our knowledge, this is the first proof-of-concept study that investigates and 

demonstrates the feasibility and advantages of optimally fusing handcrafted and two 

types of deep transfer learning generated automated features extracted from pseudo-

ROIs and stacked ROIs to train new machine leaning classifiers to improve accuracy in 

breast lesion classification. Therefore, this study helps build a solid foundation for us to 

facilitate future studies and make progress in this CAD field. We currently continue to 

investigate new approaches to (1) compute both handcrafted features (based on 

radiomics concept) and automated features (based on improved deep transfer learning 

models) including using more effective image pre-processing method to produce pseudo 

images, (2) more effectively post-process the automated features to generate optimal and 

more robust feature vectors to train machine learning classifiers, and (3) to investigate 

and apply more effective fusion methods to combine handcrafted and automated features 

to train machine learning classifiers, which aims to more effectively take or combine 

advantages of both types of image features.  
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Chapter 4. A multi-stage fusion framework to classify breast 

lesions using deep learning and radiomics features 

computed from four-view mammograms 

4.1. Introduction 

 Early detection of breast cancer is critical for improving the efficacy of cancer 

treatment and patient survival. For the last several decades, routine population based 

mammography screening has played a crucial role in early cancer detection and is one 

of the primary reasons for the decrease in the mortality rate of breast cancer.[2] Despite 

the widespread utility of mammography or digital breast tomosynthesis (DBT) recently, 

the efficacy of these population-based breast cancer screening exams is low and 

controversial due to the high false-positive recall and benign biopsy rates.[142] As a 

result, decreasing the false-positive rates is a pressing clinical issue as it leads to 

unnecessary biopsies which often have long-term psychological consequences on the 

patients in additional to being an economic burden on the society.[143]   

Thus, to help radiologists more accurately detect suspicious breast lesions and 

distinguish between malignant and benign lesions, computer-aided detection (CADe) and 

diagnosis (CADx) schemes have been extensively developed over the last several 

decades. Currently, commercialized CADe schemes have been used in the clinical 

practice to assist radiologists in detecting suspicious lesions while reading 

mammograms.[10] However, whether using CADe can add real clinical values remains 

questionable[76] due to the higher number of false-positive detections.[3, 4] On the other 

hand, CADx schemes which have the goal of helping radiologists more accurately classify 
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between malignant and benign breast lesions detected on the mammograms to reduce 

false-positive recall rate and the number benign biopsies have not yet been accepted or 

applied in clinical practice to date. Difficulties with current mammogram-based CAD 

systems (both CADe and CADx schemes) arise from (a) low contrast images intrinsic to 

X-ray mammography that require various pre-processing methods, (b) drastic differences 

in the spatial location and appearance of suspicious lesions (i.e., soft tissue masses) 

which make it difficult to obtain a large and diverse training dataset, and (c) the plethora 

of breast segmentation schemes with no consensus on the best method to use.  Therefore, 

there is still a need to improve the performance of mammography-based CAD systems 

and the manner in which these systems are employed.[3, 4]   

In a typical mammography screening exam, two projection images are taken of each 

breast namely, a craniocaudal (CC) view and a mediolateral oblique (MLO) view, resulting 

in four images per screening exam (left-CC (LCC), right-CC (RCC), left-MLO (LMLO), and 

right-MLO (RMLO)) (Figure 4-1). When a radiologist reads mammograms from one 

screening exam, he/she combines information from all four view images to decide if a 

suspicious lesion is present or not and whether the presented lesion is malignant or 

benign (or whether the patient should be recalled for an additional exam or biopsy). 

However, most existing CAD schemes are either single image-based (CADe) or lesion-

based (CADx) schemes in which the CAD schemes only analyze information or image 

features extracted from a single view image. This is thought to be one major reason that 

limits the performance of current CAD schemes, particularly, its capability to reduce false-

positive detections (for CADe schemes) and classify lesions (for CADx schemes). As a 

result, this has led to an increase in research focused on exploring new technologies and 



62 
 

approaches to effectively compute matched multi-view information or image features from 

multiple mammograms and how to optimally fuse the multi-view image features to build 

new multi-view image-based CAD schemes.[3, 4, 88]  

 

Figure 4-1: Example of the CC and MLO projection views taken in mammography, which are 

named as (A) RCC, (B) LCC, (C) RMLO, and (D) LMLO images, respectively. 

 

Although approaches to develop multi-view CAD schemes have been proposed and 

reported in the literature, they can be divided into three categories. The first and most 

popular method uses ipsilateral views by fusing information from CC and MLO views of 

one breast, which allows for the extraction of image characteristics that may be obscured 

due to dense overlapping fibro-glandular tissue in one projection view but visible in the 

other projection view. The second method uses bilateral views by fusing information from 

the same projection view of the left and right breast, which allows for quantification of 

breast tissue asymmetry (i.e., parenchymal distortions or change in contrast). This 

method mimics how radiologists tend to pay careful attention to the asymmetry between 

bilateral breasts as highly asymmetrical breasts is often a good indicator of breast cancer 

and the locations of asymmetry often contain suspicious lesions (i.e., masses).[144] The 
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third method uses both the ipsilateral and bilateral views by fusing information from all 

four images, which aims to take advantages of methods one and two.  

Developing multi-view image-based CAD schemes often faces several challenges 

including a difficult image registration task. Mammography exams require the breast to 

be compressed, as a result simple rigid or affine transformation techniques cannot 

properly model the anatomical deformations present in the compressed breast. One 

technique commonly used to accomplish this non-rigid registration task is to use a free-

form deformation (FFD) field parametrized by a B-spline control point mesh.[81] However, 

many studies bypass this difficult registration task by using basic subtraction techniques 

without image registration and ignoring the mismatch between breast regions which 

results in inaccurate asymmetry quantifications.[82, 145] Other studies do not quantify 

the bilateral asymmetry at all and just use whole breast images of bilateral breasts 

independently. Despite these difficulties, previous studies have shown that regardless of 

using either two view images (from only ipsilateral or only bilateral views) or a combination 

of four-view images, multi-view CAD schemes consistently outperform single-view CAD 

schemes, indicating that the information contained in different projection views of bilateral 

breasts can provide additional useful information in detecting and classifying suspicious 

breast lesions from mammograms.[84] 

The jump from single-view to multi-view CAD schemes introduces another issue as 

developers must also consider how to efficiently extract and fuse information from multiple 

input images. Traditionally, a set of handcrafted radiomics features would be extracted 

from the input image and then used to train a machine learning classifier. More recently, 

deep learning models are used to extract information directly from the input image based 
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on learned representations of a target domain. While deep learning-based CAD schemes 

tend to outperform conventional machine learning based CAD schemes, they require 

extremely large amounts of input data for adequate training and testing, which is often 

not available in the medical imaging domain. Hence, handcrafted radiomics feature 

extraction is still a relevant technique. Additionally, handcrafting specific radiomics 

features benefits from prior knowledge of the domain, meaning image characteristics that 

are known to be relevant to the task can be quantified through mathematical models and 

used as image features. On the other hand, deep learning-based features thrive in areas 

that traditional features lack since deep learning-based features can capture patterns that 

may not be distinguishable by human eyes, therefore, cannot be quantified by a human 

crafted mathematical model. Several studies have investigated potential advantages of 

combining handcrafted radiomics features with automated deep learning-based features 

to improve model classification performance.[89-91] However, there is no consensus on 

the best way to fuse the information extracted from multiple input images using multiple 

feature extraction methods.  

As outlined above, the three main considerations when developing CAD of 

mammograms are (1) single-view or multi-view schemes, (2) multi-view schemes based 

on ipsilateral-view analysis or bilateral-view analysis or both, and (3) the schemes using 

traditional radiomics features or deep learning generated features. Previous studies 

demonstrate that multi-view CAD models tend to outperform single-view CAD models,[88] 

the addition of information from the contralateral breast to quantify the bilateral asymmetry 

increases model performance[89-91], and the fusion of handcrafted radiomic features and 

deep learning features outperforms either method alone when classifying suspicious 
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breast lesions[41, 79]. However, to the best of our knowledge, no existing work combines 

these three points into a singular framework. In order to address these challenges, we 

hypothesize that (1) the automated features generated by deep transfer learning model 

and handcrafted radiomics features contain complementary information, and optimal 

fusion of these two types of features can improve CAD performance in tumor 

classification, and (2) a 4-view image-based CAD scheme can yield significantly higher 

tumor classification performance than one or two-view image-based CAD schemes. In 

the rest of this paper, CAD scheme refers to CADx scheme of lesion diagnosis or 

classification. To test our hypothesis, this study systematically investigates and compares 

advantages and limitations of fusing deep learning generated features and traditional 

radiomics based features to develop multi-view CAD schemes. 

Specifically, this study focuses on the investigation of the following issues, namely, (1) 

identifying and extracting matched regions of interest (ROIs) from four mammograms, (2) 

exploring and computing a new type of image features to represent bilateral image feature 

asymmetry, and (3) training and testing machine learning classifier using different image 

feature fusion methods namely, feature level and output level fusion techniques. Through 

these investigations, the goal of this study is to demonstrate the feasibility of developing 

a new optimal case-based CAD framework to classify suspicious breast lesions, which 

fuses both handcrafted radiomics (HCR) features and deep transfer learning (DTL) 

features computed from four CC and MLO view mammograms of the left and right 

breasts. Detailed descriptions of the technical development of this framework are 

presented in the following sections.  
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4.2. Materials and Methods 

4.2.1. Image Dataset 

The dataset used in this study is assembled from a large de-identified image database 

of full-field digital mammograms (FFDM). These FFDM images were acquired under an 

institutional review board approved image collection protocol using the Hologic Selenia 

digital mammography machine (Hologic Inc., Bedford, MA, USA) from 2008 to 2014. 

Detailed image and dataset characteristics can be found in our previous studies.[145] In 

brief, sizes of the original FFDM images are either 3,325×4,095 or 2,555×3,325 pixels 

with one-dimensional pixel size of 0.07mm. To develop CAD schemes of mass-type lesion 

detection or classification, an average kernel with 5×5 pixels is applied to subsample each 

original FFDM image. As a result, sizes of FFDM images are reduced to 665×819 or 

511×665 pixels with pixel size of 0.35mm. In this study, we selected all available cases 

that have four FFDM images representing CC and MLO view of the left and right breast. 

Each case contains one suspicious mass-based lesion that has been marked by a 

radiologist and proven by biopsy as malignant or benign. Cases were excluded if the 

mass was not visualized in both CC and MLO view.  

To confirm that the mass seen on both CC and MLO view is the same mass, an 

ipsilateral matching process was applied. Prior to ipsilateral matching, background 

artifacts are removed by first converting the image to a binary image using an Otsu 

thresholding method and then creating a mask based on the external contour.[146] The 

mask is applied to the original image, resulting in an image of the whole breast region 

with all background artifacts removed. The first step of the ipsilateral matching process is 

to identify the location of the pectoral muscle in both views. The pectoral muscle is often 
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not visible in the CC view; therefore, the location of the pectoral muscle on the CC view 

is defined as a vertical line that is parallel to the edge of the image. To identify the pectoral 

muscle on MLO images, a straight line approximation is made based on the average 

gradient as adopted from a previous study.[147] The pectoral muscle location is then used 

to identify the nipple location in both CC and MLO images following the method developed 

in previous study.[148]   

Once these landmarks are identified, ipsilateral matching is conducted based on an 

existing method.[149] Briefly, the centerline is first defined which is a line perpendicular 

to the pectoral muscle that passes through the nipple. Next, the mass is projected onto 

the centerline and the distance between the mass projected onto the centerline and the 

nipple is calculated (Figure 4-2). If the absolute difference between this distance from the 

CC view and MLO view is less than 100 pixels, then the two masses are considered 

ipsilaterally matched. In the subsampled images, 100 pixels represents 35mm which 

should comfortably match small and large lesions while accounting for bias introduced by 

the radiologist when marking the center of each lesion.[150]  Masses that could not be 

matched ipsilaterally are discarded.  
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Figure 4-2: Example of the ipsilateral matching scheme. The location of the pectoral muscle is 

drawn in green, the location of the nipple is shown by a pink dot, and the centerline is drawn in 

blue. The LMLO and LCC images in this case each contained one suspicious lesion as marked 

with a red circle. After the centerline is drawn, the mass is projected onto the centerline (white 

dot) and the distance to the nipple is calculated. For this case, the distance was 157.93 pixels 

for the LMLO view and 155.00 pixels for the LCC view. Since the absolute difference between 

these values is less than 100, we consider this mass to be ipsilaterally matched. 

4.2.2. A new multi-view CAD framework 

Figure 4-3 is a visual representation of the proposed multi-view CAD framework 

developed and tested in this study. In this figure, we assume that a suspicious lesion is 

visually detected on FFDM images of the right breast. Thus, two suspicious lesion regions 

(ROIs) are located and extracted on both CC and MLO view images of right breast, which 

are defined as RCC image and RMLO image on the top row of the figure. Then, multiple 

CAD image processing and feature analysis steps are applied to build machine learning 

classifiers to predict the likelihood of the queried suspicious lesion being malignant. The 

details of all CAD steps are described below.    
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Figure 4-3:  Flowchart of the framework of this study 
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4.2.2.1 Extraction of matching regions in four views 

As shown in Figure 4-3, after ipsilateral matching, all cases are represented by four 

images where two of those images are ipsilateral views of the same suspicious lesion 

and the other two images are ipsilateral views of the contralateral breast without a lesion. 

To quantify the bilateral asymmetry of image features computed between bilateral images, 

we perform bilateral image registration to identify and extract two matched regions of 

interest (ROIs) from two bilateral mammograms, which includes two pairs of the 

registered ROIs (LCC-RCC and LMLO-RMLO).   

Before registration, all right breast images are mirrored so that the orientation of the 

left and right breasts are the same. Bilateral registration is conducted using a 

multiresolution B-spline transformation that optimizes the mattes mutual information 

metric.[151] The registration method is implemented using SimpleITK of the Insight Toolkit 

(ITK) in python.[152] For this study, the mammogram containing a suspicious lesion is 

used as the fixed image while the contralateral mammogram is used as the moving image. 

Registration is conducted in this manner so that the annotations of the center of the 

suspicious lesions remain accurate. Once the images are bilaterally registered, four 

matched ROIs of 64×64 pixels are extracted surrounding the center of each lesion region 

on two ipsilateral view of the same breast and from two matching ROIs on two ipsilateral 

views of the contralateral breast (Figure 4-4).   
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Figure 4-4: Example of bilateral registration and ROI extraction. The top row displays the B-

spline transformation via checkerboard visualization. (A) is the unregistered CC images, (B) is 

the registered CC images, (C) is the unregistered MLO images, and (D) is the registered MLO 

images. The middle row displays the registered bilateral images for the (E) RCC, (F) LCC, (G) 

RMLO and (H) LMLO view. The red bounding boxes show the 64x64 pixel ROI extracted 

surrounding the center of the lesion as marked by a radiologist. Blue boxes seen in the 

contralateral images show the location in which the corresponding ROI is extracted after 

bilateral registration. The bottom row shows the extracted ROIs from the corresponding view 

above it. 

 

4.2.2.2 Handcrafted Radiomics Feature Extraction and Reduction 

Forty-five handcrafted radiomics (HCR) features are first computed from each ROI 

independently. These include 7 first-order statistical features that describe the intensity 

distributions of the images with no spatial information, 12 gray-level cooccurrence matrix 

(GLCM) derived features and 22 gray-level run length matrix (GLRLM) derived features 
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that are used to describe the spatial distribution of the varying intensity distributions. 

Additionally, four Gabor features are extracted since these features are known to be 

extremely useful for mammography texture analysis as the filters have optimal 

Heisenberg joint resolution in the spatial frequency domain, so that the features are able 

to overcome the intrinsic low resolution and high noise of mammography images.[153] A 

Gabor filter bank of 16 filters is created from a combination of the following parameters, 

spatial frequency of the harmonic function of 0.05 or 0.25, orientation of 0-4, and standard 

deviation of the Gaussian kernel of 1 or 3. Each image is convolved with each filter and 

the mean, variance, energy, and entropy are calculated from the filtered image. Then, the 

mean of each feature over the 16 filtered images is taken resulting in four Gabor features 

per image.  

After HCR feature extraction, four feature vectors are created namely, LCC-HCR, 

RCC-HCR, LMLO-HCR and RMLO-HCR, each containing 45 features. Next, each of 

these features (𝑓𝑖
𝑜𝑟𝑔, 𝑖 = 1,2, ⋯ ,45) is independently normalized using the following 

equation. 

𝑓𝑖
𝑁𝑜𝑟𝑚 =

𝑓𝑖
𝑜𝑟𝑔 − 𝑓𝑖

𝑚𝑖𝑛

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
 

where 𝑓𝑖
𝑚𝑎𝑥 = 𝜇 + 2𝜎, 𝑓𝑖

𝑚𝑖𝑛 = 𝜇 − 2𝜎, and 𝜇 is mean feature value of all cases (𝑁 = 964) 

and 𝜎 is the standard deviation. If 𝑓𝑖
𝑁𝑜𝑟𝑚 > 1, it is assigned to 1, while if 𝑓𝑖

𝑁𝑜𝑟𝑚 < 0, it is 

assigned to 0. In this way, we can avoid the possible impact by the outlier feature values 

in the dataset.  
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Next, the bilateral asymmetry features are computed using an absolute subtraction 

of two matched features extracted from the left and right breast of either CC or MLO 

views, independently (i.e., 𝑓𝑖
𝐵𝑆 = |𝑓

𝑖
𝑁𝑜𝑟𝑚−𝐿𝑒𝑓𝑡 − 𝑓

𝑖
𝑁𝑜𝑟𝑚−𝑅𝑖𝑔ℎ𝑡|) to quantify bilateral breast 

tissue or image feature difference or asymmetry. Then, a variance thresholding method 

is applied to prescreen the compute bilateral asymmetrical features using an empirically 

selected threshold of 0.01 to remove irrelevant or redundant features. Thus, the final CC-

HCR and MLO-HCR feature vectors are generated. 

4.2.2.3 Deep Transfer learning feature extraction and reduction 

To extract deep transfer learning (DTL) features directly from the image, we use a 

VGG16 network pretrained on the ImageNet database exactly as conducted in our 

previous study.[154] Because this network is pretrained on three channel color images 

from the ImageNet database, the network will take three channel images as an input. We 

create pseudo-color ROIs by stacking the original image, a bilaterally filtered image, and 

a histogram equalized image in the three channels and feed this image to the network. 

Details of creating pseudo-ROIs can be found in our previous work.[154] The previous 

studies have demonstrated that using pseudo-ROIs as inputs to the deep transfer 

learning model produce features that contain more relevant information for the prediction 

task than directly stacking the original ROI into the three channels.[116, 154] Since 

VGG16 takes a 224×224 image as an input, all ROIs of 64×64 pixels are resized using a 

bilinear interpolation.  

The architecture of the VGG16 network is made up of five blocks, each of which 

contain either two or three convolutional layers followed by a max pooling layer after each 

convolution layer. Then, VGG16 network includes three fully connected layers. Since we 



74 
 

use VGG16 network as an automated feature extractor, the top three fully connected 

layers are removed. As a result, 25,088 automated image features are extracted after the 

final max pooling layer and then normalized. The bilateral asymmetrical features are 

quantified in the same manner as the HCR features.   

To significantly reduce the dimensionality of the extremely large sets of automated 

features, we take two steps. First, a variance thresholding method is applied to remove 

all features that have a variance of less than an empirically selected threshold of 0.02, 

which reduces the number of automated features from 25,088 to ~6,000. Second, we use 

a sequential forward feature selector (SFFS) algorithm implemented with a 4-fold cross-

validation method wrapped inside a linear support vector machine (SVM) and using the 

area under the receiver operating characteristic curve (AUC) as an evaluation metric[116, 

154] to obtain a final optimal CC-DTL and MLO-DTL feature vector. This feature selection 

method of using the SFFS algorithm has been applied and reported in our previous 

studies. [116, 154]  

4.2.2.4 Classification and Model Evaluation 

In this study, we investigate four different feature fusion strategies to determine which 

method produced the best results (Figure 4-5).  

1. Method 1 is a feature level fusion followed by a two-stage classification system. In this 

method, for each projection view, the HCR and DTL feature vectors are first fused via 

concatenation. Next, the two fusion feature vectors are used to train two separate 

classifiers whose outputs are then fused and used to train a final classifier.  
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2. Method 2 is a two-stage classification system in which four separate classifiers are 

trained independently using either the HCR or DTL feature vector from either 

projection view. Then, the outputs of the four classifiers are fused and used to train a 

final classifier.  

3. Method 3 is a three-stage classification system, which begins the same way as 

method 2. In the second stage, the outputs of the classifiers trained on the CC-HCR 

and CC-DTL feature vectors are concatenated and used to train one classifier and the 

outputs of the classifiers trained on the MLO-HCR and MLO-DTL feature vectors are 

concatenated and used to train another classifier. In the third stage the output of the 

two classifiers trained on either projection CC or MLO view are concatenated and used 

to train a final classifier.  

4. Method 4 is identical to method 3 except in the second stage the two classifiers are 

trained using the concatenation of the outputs of the prior classifiers that were trained 

using either the CC-HCR and MLO-HCR feature vectors or the CC-DTL and MLO-

DTL feature vectors.  

 

Figure 4-5: Schematic Diagram of the four fusion methods investigated 
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As shown in Figure 4-5, we select a linear support vector machine (SVM) as the 

machine learning classifier to fuse image features and generate a classification score to 

predict the likelihood of a testing case depicting a malignant lesion because when 

comparing to many other types of machine learning classifiers, a SVM is easy to train 

with a simple structure and has a higher capability to be robust. Thus, SVMs are 

commonly used in CAD of breast lesion classification tasks as described in a recent 

systematic review article [50]. In this study, all SVMs are trained and tested using a 

stratified 10-fold cross validation method in which all cases were randomly divided into 

10 subsets, where in each cross-validation cycle, nine subsets are used for training and 

one subset is used for the testing of SVM classifier. To address the imbalance issue of 

our dataset (36.6% benign cases versus 63.4% malignant cases, which will be reported 

in Results section below), we use the synthetic minority oversampling technique 

(SMOTE) to oversample the benign cases to ensure that each classifier is trained using 

a subset of the data that contains a balanced number of malignant and benign cases[155]. 

SMOTE algorithm is embedded into each cross-validation fold and applied to only the 

training datasets as reported in the previous study.[85]  

Each SVM produces a prediction score between 0 and 1 for each testing case, where 

higher scores indicate a higher probability of being malignant. Prediction scores 

generated on the testing dataset over 10-fold CV are then used to generate receiver 

operating characteristic (ROC) curves using the publicly available ROC curve fitting 

program, ROCKIT (http://metz-roc.uchicago.edu/MetzROC), which generates a smooth 

ROC curve based on the maximum likelihood estimates of the SVM-generated prediction 

scores. The area under the ROC curve (AUC) along with the standard deviation is 

http://metz-roc.uchicago.edu/MetzROC
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computed and used as an evaluation metric. The statistically significant difference of the 

different SVM classifiers (AUC values) are also compared using p-values computed by 

ROCKIT program. Additionally, an operation threshold of 0.5 is applied to the prediction 

scores to divide the testing cases into malignant and benign class. Predictions scores 

(<0.5) are classified as benign, while scores (≥0.5) are malignant. The overall 

classification accuracy, precision, sensitivity, and specificity of each SVM along with the 

standard deviation are then computed and recorded as additional evaluation indices.  

4.3. Results 

The initial dataset is comprised of 1,065 cases that contain four FFDM images, 

namely: LCC, RCC, LMLO, and RMLO images. Each case depicts one biopsied soft 

tissue mass-type breast lesion. Our ipsilateral matching scheme is unable to confirm that 

the lesion marked in the CC view is the same lesion marked in the MLO view in 66 cases. 

The bilateral registration scheme fails to register the other 35 cases. This resulted in a 

final dataset that contained 964 cases of which 353 cases depict benign lesions and 611 

cases depict malignant as confirmed by tissue biopsy. Therefore, the final true case-

based dataset used in this study to train and test the CAD scheme contains 3,856 FFDM 

images where 1,412 images associate with benign cases and 2,444 images associate 

with malignant cases.   

After feature reduction, the HCR-CC and HCR-MLO feature vectors contain 26 and 

22 features, respectively. The HCR features selected for the final feature sets are 

displayed in Table 4-1. The DTL-CC and DTL-MLO feature vectors contain 74 and 44 

features, respectively. The HCR-CC feature vector and the DTL-CC feature vector are 

combined via concatenation to create the fusion feature vector that is used in Method 1. 
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The same process is repeated with the MLO feature vectors. To fuse HCR and DTL 

features, the features included in CC fusion and MLO fusion feature vectors are further 

analyzed and reduced using a SFFS method. After feature reduction, the CC fusion 

feature vector contains 43 features (including 14% HCR features and 86% DTL features) 

while the MLO fusion feature set contains 31 features (including 13% HCR features and 

87% DTL features). The HCR features selected in the final fusion feature vectors are 

shown in the last two columns of Table 4-1.  

Feature 
Type 

Feature Name 

Feature Set 

HCR-CC HCR-MLO Fusion (CC) Fusion (MLO) 

Statistical 

Mean X X  X 

Max X X   

Standard Deviation X X  X 

Energy     

Entropy X X   

Skewness     

Kurtosis X X X  

GLCM 

Contrast 
Max     

Mean X    

Dissimilarity 
Max X X   

Mean X X   

Homogeneity 
Max X    

Mean X X   

ASM 
Max     

Mean     

Energy 
Max     

Mean     

Correlation 
Max X X X  

Mean  X   

GLRLM 

SRE 
Max X    

Mean     

LRE 
Max     

Mean     

GLN 
Max X X   

Mean X X   

RLN 
Max     

Mean     

RP Max     
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Mean     

LGLRE 
Max     

Mean     

HGLRE 
Max X X   

Mean X X   

SRLGLE 
Max X    

Mean X  X  

SRHGLE 
Max X X   

Mean X X   

LRLGLE 
Max     

Mean     

LRGHLE 
Max X X   

Mean X X X  

Gabor 

Features 

Mean X X  X 

Variance X X X X 

Energy X X   

Entropy X X X  

Table 4-1: Handcrafted radiomic features selected after feature reduction. An X indicates that 

the feature was selected to be used in the final feature vector for the corresponding column. 

 

The results of the four different fusion methods are shown in Figure 4-6 and Table 4-

2, which include four ROC curves generated by four fusion methods (Figure 4-6) and the 

corresponding AUC values along with the standard deviation computed by ROCKIT 

program (Table 4-2). The results show that using Method 1, three SVMs yield significantly 

higher AUC values than the corresponding SVMs generated using methods 2, 3, and 4 

(with all p < 0.005). The similar performance patterns (including classification accuracy, 

precision, sensitivity, and specificity) among the SVM classifiers generated in four 

methods are also observed after applying the operation threshold to assign or classify 

testing cases into malignant and benign classes. Thus, Method 1 is selected for further 

data analysis.  
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Figure 4-6: Final ROC Curves of the four different fusion methods. ROC Curves are generated 

using a maximum likelihood estimation method in ROCKIT.  
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Method SVM AUC Accuracy Precision Sensitivity Specificity 

1 

SVM1 0.817 ± 0.026 0.745 ± 0.033 0.745 ± 0.116 0.633 ± 0.057 0.841 ± 0.053 

SVM2 0.792 ± 0.026 0.721 ± 0.035 0.734 ± 0.048 0.600 ± 0.047 0.823 ± 0.027 

SVM3 0.876 ± 0.031 0.792 ± 0.044 0.773 ± 0.097 0.696 ± 0.059 0.863 ± 0.049 

2 

SVM1 0.664 ± 0.039 0.611 ± 0.030 0.694 ± 0.063 0.478 ± 0.027 0.763 ± 0.039 

SVM2 0.642 ± 0.051 0.584 ± 0.046 0.677 ± 0.047 0.456 ± 0.039 0.738 ± 0.041 

SVM3 0.781 ± 0.030 0.726 ± 0.023 0.714 ± 0.110 0.609 ± 0.027 0.823 ± 0.052 

SVM4 0.741 ± 0.029 0.694 ± 0.034 0.694 ± 0.069 0.572 ± 0.049 0.800 ± 0.029 

SVM5 0.851 ± 0.025 0.782 ± 0.030 0.748 ± 0.095 0.691 ± 0.053 0.850 ± 0.043 

3  

SVM1 0.664 ± 0.039 0.611 ± 0.030 0.694 ± 0.063 0.478 ± 0.027 0.763 ± 0.039 

SVM2 0.642 ± 0.051 0.584 ± 0.046 0.677 ± 0.047 0.456 ± 0.039 0.738 ± 0.041 

SVM3 0.781 ± 0.030 0.726 ± 0.023 0.714 ± 0.110 0.609 ± 0.027 0.823 ± 0.052 

SVM4 0.741 ± 0.029 0.694 ± 0.034 0.694 ± 0.069 0.572 ± 0.049 0.800 ± 0.029 

SVM5 0.800 ± 0.023 0.742 ± 0.042 0.714 ± 0.120 0.634 ± 0.049 0.825 ± 0.054 

SVM6 0.766 ± 0.032 0.709 ± 0.038 0.697 ± 0.072 0.595 ± 0.063 0.806 ± 0.032 

SVM7 0.852 ± 0.027 0.778 ± 0.035 0.742 ± 0.098 0.686 ± 0.057 0.846 ± 0.044 

4 

SVM1 0.664 ± 0.039 0.611 ± 0.030 0.694 ± 0.063 0.478 ± 0.027 0.763 ± 0.039 

SVM2 0.642 ± 0.051 0.584 ± 0.046 0.677 ± 0.047 0.456 ± 0.039 0.738 ± 0.041 

SVM3 0.781 ± 0.030 0.726 ± 0.023 0.714 ± 0.110 0.609 ± 0.027 0.823 ± 0.052 

SVM4 0.741 ± 0.029 0.694 ± 0.034 0.694 ± 0.069 0.572 ± 0.049 0.800 ± 0.029 

SVM5 0.642 ± 0.051 0.581 ± 0.046 0.657 ± 0.033 0.452 ± 0.039 0.728 ± 0.036 

SVM6 0.829 ± 0.028 0.762 ± 0.029 0.734 ± 0.090 0.659 ± 0.037 0.838 ± 0.042 

SVM7 0.841 ± 0.028 0.772 ± 0.033 0.742 ± 0.057 0.676 ± 0.056 0.842 ± 0.028 

Table 4-2: Results of the four fusion methods. Mean values and standard deviation over 10-fold 

CV. 

We further analyze the data listed in Table 4-2. First, to further analyze the differences 

between feature level fusion and output level fusion, we compare the performance of 

classifiers of method 1 to stage two classifiers of method 3. In method 1, SVM 1 and SVM 

2 are trained using a feature vector that fuses HCR and DTL feature vectors computed 

from the CC view and MLO view, respectively. In method 3, SVM 5 and SVM 6 are trained 

using the fusion of the outputs from classifiers independently trained on the HCR and DTL 

feature vectors computed from the CC and MLO views, respectively. We compare the 

performance between SVM 1 of Method 1 and SVM 5 of Method 3, as well as between 
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SVM 2 of Method 1 and SVM 6 of Method 3 to determine if direct fusion of features 

computed from multi-view images continues to outperform fusion of classifier output 

scores generated by multi-classifiers trained only using image features computed from a 

single projection view. The data analysis results show that SVM 1 and SVM 2 of method 

1 yield significantly higher AUC values (AUCs = 0.817±0.026 and 0.792±0.026) than SVM 

5 and SVM 6 of Method 3 (AUC = 0.800±0.023 and 0.766±0.032) with p = 0.0327 for 

using two bilateral CC view images and p < 0.001 for using two bilateral MLO view 

images, respectively, which indicate that fusion of image features is better than fusion of 

output of two classifiers separately trained using different single-view image features.  

Second, to determine whether fusion of HCR and DTL feature vectors yield better 

results, we compare the performance of the SVMs trained on the fusion feature sets used 

in Method 1 to the SVMs trained on the HCR and DTL feature sets independently in stage 

one of all three output level fusion methods. For both projection views, the SVMs trained 

using the HCR and DTL fusion feature vectors also yield significantly higher classification 

performance (AUCs = 0.817±0.026 and 0.792±0.026) than the SVMs trained using either 

only the HCR or DTL feature vector (AUCs = 0.664±0.039 and 0.781±0.030) with p < 

0.001 and p = 0.0431 for the CC view, and (AUCs = 0.642±0.051 and 0.741±0.029) with 

p < 0.001 and p = 0.0091 for the MLO view, respectively.  

Third, besides that the SVMs of Method 1 in general perform significantly better than 

the SVMs of the other three methods, we also compare the performance between the 

SVM trained using four images that combine two pairs of bilateral images (CC and MLO 

view) and other two SVMs trained using two images that combine one pair of bilateral 

images (either CC or MLO view), which are SVM1 vs SVM2 and SVM1 vs SVM3 as 
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shown in Method 1 of Figure 4-5).  The results show that SVM1 yields an AUC = 

0.876±0.031, which is significantly higher than AUC = 0.817±0.026 yielded by SVM2 and 

AUC = 0.7920±0.026 yielded by SVM3 (both p < 0.001) (Table 4-2). Corresponding ROC 

Curves are displayed in Figure 4-7. No statistically significant difference is observed in 

the ROC curves or AUC values between SVM2 and SVM3 (p = 0.3546). Additionally, 

Figure 4-8 displays the sum of three confusion matrices of SVM1, SVM2 and SVM3 

computed based on the classification accuracy of malignant and benign cases, which are 

then used to compute the overall classification accuracy, precision, sensitivity, and 

specificity as reported in Table 4-2. 

 

Figure 4-7: smooth ROC curves of the single-view classifiers and the multi-view classifier 

based on the maximum likelihood estimates of the prediction scores generated over 10-fold CV. 
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Figure 4-8: Sum of each confusion matrix over 10-fold CV for the single view and multi-view 

classifiers. 

4.4. Discussion 

This paper reports on a new study that combines three common analysis tools used 

in developing CAD of multi-view mammograms into a single framework for assisting in 

the diagnosis of suspicious breast lesions as malignant or benign. Unlike previous multi-

view CAD schemes of mammograms that combine the complementary image features 

computed from either ipsilateral or bilateral mammography views, or the CAD schemes 

the use both HCR features and DTL features computed from single images, this study 

has several unique characteristics or aspects as comparing to many previous studies in 

this research field.  

First, this is a complete case-base CAD scheme that extracts two sets of matched 

ROIs from four mammograms in one screening examination (including two lesion regions 

depicting on two ipsilateral views and two negative regions on images of the contralateral 

breast). Two types of image features (HCR and DTL) computed from these four matched 

ROIs are passed through the framework simultaneously, so that the final machine 

learning classifier fuses the clinically relevant and complementary information extracted 

from each ROI of different view when making a final predictive decision. However, 

accurate identification of four matched ROIs on both ipsilateral and bilateral 
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mammograms by a CAD scheme is very difficult due to the difference of breast 

compression in acquiring four view images. Unlike previous studies (i.e., Khan et al.[84]) 

that manually determine four matched ROIs from four mammograms, we develop and 

add two algorithms of an ipsilateral view matching and a bilateral image registration prior 

to ROI extraction. As a result, applying an ipsilateral matching algorithm ensures that one 

lesion visualized in one projection view is the same lesion visualized in another projection 

view. This is an extremely important step as some cases may have a suspicious lesion 

marked in the CC view and a different lesion marked in the MLO view, meaning there are 

two distinct lesions within the breast, and each is only visualized in one projection view. 

Additionally, our CAD framework also applies a bilateral registration algorithm to ensure 

that the ROIs extracted from the contralateral breast are from the same spatial location 

as the lesion on two ipsilateral view images. By implementing these two algorithms, we 

developed a unique four-view image or case-based CAD framework. 

Second, we chose to quantify the bilateral asymmetrical features computed from two 

ROIs in each projection (CC and MLO) view as opposed to using the image features 

computed from two bilateral ROIs independently to build and train machine learning 

classifier. Our approach does not only reduce the number of image features in the initial 

feature pool, which improve efficacy of feature selection or feature dimensionality 

reduction, it can also better mimic the experience of how radiologists diagnose breast 

lesions in reading mammograms. Since when visually inspecting a mammogram exam 

for abnormalities, a radiologist often relies on the bilateral asymmetry as a qualitative 

imaging marker, quantifying bilateral asymmetry of two pairs of the matched ROIs in CC 

and MLO view can also generate effective quantitative imaging markers used in CAD 
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schemes. Previous studies have demonstrated the advantages of applying CAD schemes 

that focus on analysis of bilateral image feature asymmetry computed from two 

mammograms of left and right breast to predict the short-term risk of developing breast 

cancer[89-91, 156] and the likelihood of having breast cancer depicting on 

mammograms.[85], [86] However, these previous studies bypass the image registration 

step and the extraction of ROIs. Thus, the prediction models or classifiers are developed 

based on the analysis of bilateral image feature asymmetry computed from whole breast. 

Our study computes bilateral image feature asymmetry two matched ROIs, which can 

eliminate or significantly reduce the impact of the most heterogeneously normal breast 

tissue areas, and thus help improve CAD performance of lesion classification. For 

example, one previous CAD scheme using bilateral image feature asymmetry of whole 

mammograms reported a macro-AUC of 0.733 in detecting breast cancer,[86] while our 

CAD scheme yields AUC = 0.876±0.031. Although two studies use different image 

datasets and their performance cannot be directly compared, we believe that 

classification performance of our new CAD scheme is encouraging, which is attributed to 

the quantification of bilateral image feature asymmetry of the targeted ROIs matched in 

pairs of bilateral mammograms.  

Third, unlike many previous CAD schemes that use either traditional HCR features 

or automated DTL features separately, this study demonstrates the feasibility and 

advantages of fusing HCR and DTL features computed from two pairs of bilateral ROIs 

extracted from four mammograms. In using the pretrained VGG16 network as a feature 

extractor, we are able to mix HCR and DTL features into one initial feature pool. Thus, the 

optimal fusion feature vectors include both HCR and DTL features, which provide lower 
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correlation or complementary information. Additionally, we also observe that in fusion 

feature vectors, majority of features are DTL feature (i.e., CC fusion feature vector 

contains 6 HCR features (14%) and 37 DTL features (86%)), which shows that DTL 

features make higher contribution in this CAD scheme. However, adding the minority of 

HCR features still improves classification performance of the final fusion-based CAD 

scheme. In addition, although several other studies have also been conducted to fuse 

HCR and DTL features to develop CAD schemes of breast lesion classification, these 

schemes are limited to be single-view or faux case-based schemes as ROIs are extracted 

from all four views and classified independently or from only two-views omitting 

information contained in the contralateral [41, 79]. Our study is the first study that fuses 

the bilateral asymmetry of HCR and DTL features computed from two pairs of the 

matched ROIs on CC and MLO views.    

Fourth, although many fusion methods have been previously investigated aiming to 

help improve CAD performance, few studies have investigated and compared different 

fusion methods to identify the optimal method for the multi-level fusion problem. In this 

study, we test three fusion methods or tasks in developing this CAD framework namely, 

bilateral image fusion, ipsilateral image fusion, and finally fusion of multiple feature types. 

The first level of fusion is handled through the quantification of the bilateral asymmetry as 

this is when we fuse information extracted from two bilateral mammograms. Our 

justification for this type of fusion is based on the location of bilateral asymmetry in 

mammograms as an indicator of abnormalities. To determine the optimal way to fuse 

ipsilateral information and multiple feature types, we conducted several experiments with 

four different fusion methods. Results show that feature level fusion of the different feature 
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types prior to training classifiers on each projection view is superior to output level fusion 

after training classifiers on each feature set independently.  

Due to the above unique characteristics or innovation of this study, we also make 

several interesting observations to further support or validate several important 

conclusions of previous studies. First, in our previous work, we developed a single view 

CAD scheme that fused HCR and DTL features extracted from only the CC view of a 

lesion and concluded that the CAD scheme trained by fusion of HCR and DTL features 

could yield significantly higher performance than the CAD schemes developed using only 

either HCR or DTL features.[157] This work is an extension of our previous study which 

solidifies this conclusion using both the CC and MLO projection views. Second, we 

observe that late fusion of information extracted from different projection views performs 

better than when this information is fused earlier. This can be seen by the results of 

method 1 and method 3 as both methods keep the two projection views separate until the 

final classification step and yield the best classification performance in terms of AUC. We 

believe that this is because fibroglandular tissue patterns often appear very different on 

CC and MLO view projection images, which makes the information contained in the 

feature vectors extracted from the two view images very different. Hence, the superior 

result is obtained when the information extracted from multiple projection views is used 

to train classifiers separately. Third, we also observe that multi-view CAD systems tend 

to outperform single view CAD systems as demonstrated in many previous studies.[88, 

157] This conclusion is further validated and expanded in this study using a combination 

of HCR and DTL features from all four view mammograms in a complete case-based 

manner. In this study, the four-view fusion CAD system yields a classification performance 
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of AUC = 0.876±0.031 with an accuracy of 0.792±0.044, while the performance of CAD 

schemes based on fusion of two bilateral images of either CC or MLO view only yield 

AUC of 0.817±0.026 and 0.792±0.026, and an accuracy of 0.745±0.033 and 0.721±0.035, 

respectively.  

Although this is a unique case-based multi-view CAD framework that yields an 

encouraging performance of breast lesion classification, we recognize the limitations of 

this study. First, we use a relatively simple ROI extraction technique to avoid introducing 

any potential bias or variability from an automated or semi-automated tumor 

segmentation scheme. This method may not have been optimal, therefore, we should 

investigate other lesion segmentation techniques prior to feature extraction.  

Second, although many deep learning models have been used in CAD field as feature 

extractors, we used a pretrained VGG16 network as a feature extractor to decrease the 

computational complexity of this framework since using transfer learning for feature 

extraction does not require additional training of the network. We should test and compare 

different networks and methods for extracting the DTL features from these deep networks 

(i.e., using another popular ResNet50 model in CAD schemes[157]). Additionally, we plan 

to investigate the effects of transfer learning using a DL network pretrained on radiological 

images from the RadImageNet database as opposed to the natural images in the 

ImageNet database, as RadImageNet pretrained models have outperformed ImageNet 

pretrained models in some medical classification tasks. 36 

Third, we conduct the feature reduction and selection process to identify the optimal 

feature vectors using the whole dataset. To minimize the possible bias, we also apply a 

4-fold cross validation method in feature selection as reported in previous CAD studies. 
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37 Then, the features are used to build SVM classifiers using a 10-fold cross-validation 

method. Although this approach has advantages of identifying the final optimal feature 

vectors, it may introduce the risk of increasing bias to the classifiers because the testing 

cases are only blind to classifier training process and may be involved in feature selection 

process. To eliminate the possible bias, the feature selection process should be 

embedded into the cross-validation of classifier training and testing process, however, 

this process has disadvantages of higher computation costs and the inability to identify 

the final optimal feature vectors that can be applied “as is” to the new independent 

datasets in future validation studies. For this study, we believe that the impact of the 

potential bias can be ignored because our objective is to compare the relative 

performance changes among the several SVMs that are built using the same feature 

selection and classifier training and testing method.   

Fourth, this framework is developed and tested using a singular dataset, therefore, it 

may not be generalizable to other mammography images that were taken at different 

centers on different machines. To further test and improve the generalizability and 

robustness of this new CAD framework, we will continue to expand our study dataset by 

collecting new images from our university medical center and utilizing publicly available 

databases in our future studies.  

Fifth, we recognize that in current clinical practice, more and more 2D mammograms 

are synthetic images generated by digital breast tomosynthesis (DBT) images, which may 

have slightly different image quality or characteristics as comparing to original FFDM 

images. Thus, CAD scheme developed using FFDM images may need to be retrained to 
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fit the DBT-generated synthetic images. However, the approved concept of this study is 

also valid to the DBT-generated synthetic images.  

Last, this study only includes soft-tissue mass type lesions seen on both projection 

(CC and MLO) views, while this excludes a small fraction of subtle or difficult lesions. 

Future work should include cases where a mass is only seen in one view by developing 

and adding a new CAD module to handle and process these difficult cases.  

4.5. Conclusions 

In summary, we develop and test a novel case-based CAD framework of breast lesion 

classification in this study, which (1) extracts two sets of matched ROIs from the CC and 

MLO view of mammograms, (2) computes a set of bilateral asymmetric HCR and DTL 

image features (3) assembles two optimal fusion feature vectors mixed with both HCR 

and DTL features, and (4) builds final machine learning classifier (SVM) trained using the 

fusion feature vectors. By applying this new CAD framework to a diverse image dataset 

involving 964 cases of 3,856 FFDM images, we conduct a series of experiments to 

compare advantages and lesion classification performance using different image feature 

or classification score fusion methods. The study results demonstrate that (1) fusing HCR 

and DTL features for each pair of projection view before training a classifier is a better 

choice than fusing the outputs of classifiers trained on each type of features 

independently and (2) CAD classification performance is enhanced through the addition 

and fusion of image features computed from two ipsilateral (CC and MLO) views of the 

lesion. Overall, the study results fully support our hypothesis that (1) HCR and DTL 

features contain complementary information in lesion classification, (2) multi-view CAD 

outperforms single-view CAD for mammography lesion classification. The study results 
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also highlight the significance of optimally fusing HCR and DTL image features computed 

from all four matched mammograms to enhance performance of the final CAD classifiers. 

However, this is a proof-of-concept type study, more work needs to further optimize and 

validate this new case-based CAD framework in future studies.  
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Chapter 5. Pseudo color image generation for improving the 

performance of deep transfer learning-based computer aided 

diagnosis schemes in breast mass classification 

5.1. Introduction 

Breast cancer is one of the leading causes of death in women worldwide. While the 

mortality rate of breast cancer has dropped 42% since 1989, the incidence rate of breast 

cancer continues to increase by 0.5% each year. [1]  Mammography, a population-based 

x-ray screening tool, plays a large role in these statistics as it helps with early detection 

which is key for keeping the mortality rate low. In a standard mammography screening 

exam, two images are taken of each breast, a craniocaudal (CC) view which is taken from 

the top, and a mediolateral oblique (MLO) view which is taken from the side. Radiologists 

will analyze all four images (two projection views from both breasts) to determine if there 

are any suspicious regions that must be biopsied. Even though mammography has 

played a significant role in decreasing the breast cancer mortality rate, there is a very high 

false positive rate associated with the exam as less than 30% of suspicious regions 

referred for biopsies are malignancies[100]. This is because mammography images are 

very difficult to interpret due to high heterogeneity between lesions and difficulty 

associated with visualizing dense breast tissues.  

Many computer-aided diagnosis (CADx) systems have been developed which aim to 

help a radiologist classify suspicious lesions and thus decrease the false positive rate.  

These systems can act as a second reader which can decrease the workload on 

radiologists as well as decrease the amount of time spent analyzing each exam. However, 
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the utility and effectiveness of the systems used in clinical practice is often questioned as 

there are conflicting results as to whether these systems really aid in decreasing the false 

positive or benign biopsy rates[158, 159]. Much more work must be done to make these 

systems more robust in addition to determining the best way to fuse these systems into 

the clinical workflow. Despite that caveat, the utility of artificial intelligence into 

experimental CADx schemes for mammography has allowed for tremendous progress in 

the medical imaging field.   

Deep learning based CADx schemes use convolutional neural networks (CNNs) to 

automatically classify a suspicious lesion from the input image. Since these networks 

learn the image features directly from the suspicious lesion, they can identify patterns 

relevant to the target domain that cannot be seen with the human eye. While these 

networks tend to outperform machine learning based CADx schemes, they are more 

difficult to train as they require a large and diverse dataset which is not often available in 

the medical imaging domain[34, 160]. Transfer learning has emerged as a solution to this 

problem. Transfer learning is a method in which a network that has been trained on a 

large dataset is modified and used for a different task. This works well because of the 

deep structure of the CNNs; the initial layers of the network are able to learn generic, 

high-level features, where the deeper layers can learn features more specific to the target 

domain. Transfer learning has been used extensively in many breast cancer classification 

tasks by either fine-tuning the network or as a feature extractor, both techniques which 

have shown promising results[65].  

Transfer learning studies often use a deep CNN pretrained on the ImageNet dataset.  

The ImageNet dataset is comprised of three-channel RGB color images that tend to have 
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a single focal point[61]. Mammogram images are single channel greyscale images which 

do not always have a distinct focal point, especially when looking at very dense breast 

tissue. Despite these differences, transfer learning using a state-of-the-art network such 

as VGG16, ResNet50, or InceptionV3, pretrained on ImageNet has still had tremendous 

success in breast mass classification tasks[50]. However, using this method requires our 

input mammography images to also be transformed into three channel images to match 

the shape of the ImageNet images. This is termed pseudo color image generation as the 

single channel images are transformed into pseudo RGB images to be compatible with 

the pretrained network. Many studies do not discuss the method in which this is 

conducted. Most commonly, we see the mammogram images stacked in three channels 

before being fed to the deep network. There are a limited number of studies that begin to 

investigate the potential benefits of different methods of pseudo color ROI generation. 

Razali et al. created pseudo color images by mapping the single-channel greyscale 

ROI to an RGB color map. Using a pretrained ResNet50 network as a feature extractor 

and an SVM for classifying suspicious lesions as malignant or benign, they demonstrated 

that color manipulation of the original greyscale images provides increased information 

and can yield better performance than using greyscale images alone (ACC of 91.54 vs 

88.56, respectively) [92].  Teare et al. utilized pre-processing techniques in the pseudo 

color image generation step to increase the feature representation of the input images. 

Pseudo color images were developed by varying the CLAHE window and clipping 

parameters in the three channels. An inceptionV3 network was pretrained on ImageNet 

and used as a feature extractor and input to a random forest for classification which 

resulted in an AUC of 0.922, specificity of 0.80, and sensitivity of 0.91 [93]. Jones et al. 
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compared the performance of two different pseudo color image sets for classifying breast 

lesions in the craniocaudal view as malignant or benign. The first was created by stacking 

single-channel greyscale images in three channels, and the second by stacking the 

original greyscale image, a bilaterally filtered image, and a histogram equalized version. 

A VGG16 network pretrained on the ImageNet dataset was used as a feature extractor. 

DTL-based features were merged with handcrafted features extracted from the original 

greyscale images and fed to a SVM for predicting the likelihood of malignancy. Better 

performance was seen using the pseudo color ROIs generated using pre-processing 

techniques compared to the ROIs created via stacking (AUC 0.756 vs 0.734 and Accuracy 

0.704 vs 0.676, respectively) [154].   

Li et al. compared the performance of a CNN in detecting masses using two different 

pseudo color inputs. The first dataset used pseudo color ROIs created by stacking the 

original ROI, a gradient image, and the local ternary pattern image. The second dataset 

uses the single channel greyscale ROI images. The free receiver operating 

characteristics (FROC) curves did not show any statistically significant differences in the 

ability to distinguish masses from normal tissue using pseudo color ROIs or greyscale 

ROIs. Authors assert that this may be because the pseudo color ROI was generated using 

gradient and texture images that can be learned by the CNN itself, therefore creating the 

pseudo color image in this manner may not be actually increasing the amount of 

information at all [94].  Min et al created pseudo color ROIs by placing the original image 

in the red channel, followed by two images generated by a multi-scale morphological sifter 

(MMS) in the green and blue channels. The MMS was developed in a manner that aimed 

to extract spicules as malignant lesions tend to have spiculated margins. The pseudo 
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color ROI is then used in a pretrained Mask R-CNN network with a ResNet101 backbone 

for mass detection and segmentation. Using pseudo color images outperformed the 

single channel ROIs with an average true positive rate of 0.90 at 0.9 false positives per 

image and an average dice similarity index of 0.88 [95].   

These studies demonstrate that pseudo color image inputs may provide increased 

and complementary information to a CNN which yields better classification and detection 

performance. Therefore, the goal of this study is to further investigate the effects of using 

different pseudo color images as input to a pretrained deep CNN for classifying suspicious 

breast lesions and malignant or benign. It is known that malignant and benign masses 

can often be distinguished based on their contours as benign masses tend to have round 

or oval contours while malignant masses tend to be irregular in shape with highly 

spiculated margins[32, 40, 41]. We hypothesize that the addition of a fully segmented 

mass that captures these morphological distinctions to a pseudo color image may aid in 

classifying suspicious breast lesions as malignant or benign by providing increased and 

complementary information.  In this study, we compare the performance of seven pseudo 

color image sets as inputs to a multi-view CADx scheme for classifying suspicious breast 

lesions as malignant or benign. Section 2 of this paper details the methods used in this 

study, including the pseudo color image generation steps and the mass segmentation and 

classification frameworks. The results are presented in section 3 followed by a discussion 

of the results in section 4.  
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5.2. Methods 

5.2.1. Dataset 

The dataset used in this study consists of full-field digital mammograms (FFDM) that 

were acquired under institutional review board (IRB) approved protocol using a Hologic 

Selenia digital mammography machine (Hologic Inc., Bedford, MA USA) from 2008 to 

2014. Details pertaining to the image specifics can be found in several of our previous 

publications[36, 154, 161]. In this study, we retrospectively assembled a dataset by 

selecting cases that contained all four images taken during the screening mammography 

exam (left and right CC and MLO images). We only select cases where a mass can be 

seen in both the CC and MLO view of the same breast. An experienced radiologist has 

marked the center of each lesion and all suspicious lesions have been biopsy proven as 

malignant or benign. The center of each lesion was used as a reference to manually 

annotate the suspicious mass boundaries. The annotations were converted into binary 

segmentation masks and treated as the ground truth. 

5.2.2. Extraction of matched ROIs 

As some cases contain multiple masses in the same breast, we conducted an 

ipsilateral matching scheme to ensure that masses were properly matched up prior to 

classification. After ipsilateral matching, each mass is represented by four images, the 

CC and MLO view of the breast that contains the suspicious mass and the CC and MLO 

view of the contralateral breast. In this study, we will quantify the bilateral asymmetry 

between breasts as conducted in our previous work. To do so, we first must register the 

contralateral breast images to the image that contains the suspicious mass. The bilateral 

registration scheme is conducted using a multi-resolution B-spline transformation that 
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optimizes the mattes mutual information metric. The FFDM image containing the 

suspicious mass is selected as the fixed image and the contralateral is selected as the 

moving image so as to not distort the location of the mass that has been marked by a 

radiologist. In depth details pertaining to the ipsilateral matching and bilateral registration 

schemes can be found in our previous study[162]. After bilateral registration, a 64x64 

pixel region of interest (ROIs) is extracted surrounding the center of the lesion that has 

been marked by a radiologist. Since only the CC and MLO images of the breast containing 

the lesion have been center marked, we extract the same ROI from the contralateral 

breasts as the images have been bilaterally registered therefore, they should represent 

the same area in the breast. A visual representation of this can be seen in Figure 5-1 step 

1. In this figure, the suspicious lesion can be seen in the red bounding boxes in the left 

breast.  
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Figure 5-1: A schematic diagram of this study.  
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5.2.3. Pseudo color image generation 

The aim of this study is to investigate the effects of different pseudo color ROIs on 

suspicious breast lesion classification. We create seven variations of pseudo color ROIs 

by stacking different versions of the original ROI in three channels, thus creating three 

channel images that mimic the three channel color images in the ImageNet dataset. Table 

5-1 contains a breakdown of each pseudo color image set used in this study. In all but 

one set, we use a combination of the original single-channel image (𝐼𝑜), a histogram 

equalized version (𝐼𝐻𝐸), a bilaterally filtered version (𝐼𝐵𝐹), and the segmented mass image 

(𝐼𝑠𝑒𝑔). The final set is created by mapping the single-channel greyscale ROI values to all 

available values in the parula colormap.  The histogram equalization pre-processing 

technique is selected to increase the contrast as mammography is an x-ray-based 

technique that is inherently low contrast. The bilateral filtering pre-processing technique 

is selected to de-noise the images as this technique is able to preserve edge and textural 

information while reducing noise [118]. 

 

 

 

 

 

Set R G B 

A 𝐼𝑜 𝐼𝑜 𝐼𝑜 

B_gt 𝐼𝑜 𝐼𝑠𝑒𝑔 _𝐺𝑇  𝐼𝐻𝐸  

B_unet 𝐼𝑜 𝐼𝑠𝑒𝑔 _unet  𝐼𝐻𝐸  

C 𝐼𝑜 𝐼𝐵𝐹 𝐼𝐻𝐸  

D_gt 𝐼𝑜 𝐼𝑠𝑒𝑔 _𝐺𝑇  𝐼𝑜 

D_unet 𝐼𝑜 𝐼𝑠𝑒𝑔 _unet  𝐼𝑜 

E Parula color mapped 

Table 5-1:  Descriptions of each Pseudo color image sets. 𝐼𝑜 = original image, 𝐼𝐻𝐸  = histogram 

equalized variant, 𝐼𝐵𝐹= bilaterally filtered variant, 𝐼𝑠𝑒𝑔 _𝐺𝑇 = segmented mass using the ground 

truth,  𝐼𝑠𝑒𝑔 _𝑢𝑛𝑒𝑡 = segmented mass using the UNET predicted mask. Set E is created by applying 

the parula colormap to the original image. 
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To best investigate the effect of including a segmented mass image in the pseudo 

color images, we use both the ground truth segmentation mask and a UNET generated 

automated segmentation mask to create the pseudo color images. The motivation for 

using an automated segmentation step is to bypass the need for a manual segmentation 

step in future studies as this is extremely time consuming and very user dependent[96]. 

Investigating the performance of both the ground truth segmentation as well as an 

automated segmentation result in pseudo color image will allow us to determine to what 

degree the automated segmentation result affects mass classification performance. 

Therefore, Set B and Set D are divided into two different sets, Set B ground truth(B_gt), 

which contains the ground truth segmentation, and Set B Unet (B_unet), which contains 

the UNET predicted segmentation mask. The same follows for Set D. This makes for a 

total of 7 pseudo color sets being tested. The fully segmented mass images for sets B_gt 

and D_gt are obtained by converting the ground truth annotation to a binary image and 

then applying this mask to the original greyscale image.  

5.2.3.1 UNET for automated mass segmentation 

Prior to the creation of the pseudo color ROIs, a Unet was trained to perform automatic 

mass segmentation. The Unet is selected as this segmentation method has been shown 

to perform well in breast mass classification tasks[34, 163-165] and tends to perform 

better than other segmentation methods like SegNet or Fully Convolutional Networks 

(FCNs) with a limited number of training examples[31]. The Unet is made up of an 

encoding pathway and a decoding pathway. The encoding pathway learns abstract 

representations of the input image through convolutional operations and downsampling 

via max pooling layers. The decoder pathway uses the abstract information learned from 
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the encoder blocks to reconstruct the segmentation mask of the input via upsampling and 

convolutional blocks. The network is able to do this through skip connections which act 

as a bridge between the corresponding encoder and decoder blocks, allowing spatial 

information to be preserved[166]. The encoding pathway and decoding pathway form two 

symmetrical halves of the network which give the network its “U” structure. 

The encoding half of the network consists of four blocks, each block contains two 

convolutional layers with a 3x3 kernel and ReLU activation functions, followed by a 2x2 

max pooling layer with a stride of 2 for the downsampling. Each step down in the encoding 

pathway doubles the number of feature channels. The decoding half also consists of four 

blocks, each block upsamples the input feature map using a 2x2 up-convolution, then 

concatenates the feature map with the feature map from the corresponding encoding 

layer, followed by two convolutional layers with a 3x3 kernel and ReLU activation 

functions. Each step up in the decoding pathway halves the number of feature channels. 

All convolutional operations are padded with a stride of 1 to ensure the input and output 

image are the same size. A dropout layer with probability 0.2 is added to each block in 

the encoding layer and decoding layer after the first convolutional layer. The output layer 

of the network uses a 1x1 convolution with a sigmoid activation function to get the final 

probability map of each pixel belonging to either the foreground or background. To train 

the network, Adam optimizer was used with an initial learning rate of 1e-3 on mini batches 

of size 16 for 100 epochs. A custom loss function that combines binary cross entropy loss 

and dice loss was used to emphasize capturing fine details such as spiculations 

(equations 5-1 – 5-3). 
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 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) = 𝛼𝐿𝐷𝑖𝑐𝑒(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) + (1 − 𝛼)𝐿𝐵𝐶𝐸 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) 

 
(5-1) 

 
𝐿𝐷𝑖𝑐𝑒(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) = 1 − 

2 ∗ |𝑦𝑡𝑟𝑢𝑒 ∩ 𝑦𝑝𝑟𝑒𝑑 |

|𝑦𝑡𝑟𝑢𝑒 | + |𝑦𝑝𝑟𝑒𝑑 |
 

 

(5-2) 

 𝐿𝐵𝐶𝐸 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) = −(𝑦𝑡𝑟𝑢𝑒 ∗ log(𝑦𝑝𝑟𝑒𝑑 ) + (1 − 𝑦𝑡𝑟𝑢𝑒 ) ∗ log(1 − 𝑦𝑝𝑟𝑒𝑑 )) 

 
(5-3) 

 

Where 𝑦𝑡𝑟𝑢𝑒 is the binary ground truth image, 𝑦𝑝𝑟𝑒𝑑  is the predicted binary 

segmentation mask, and 𝛼 is a weight given to each component in the loss term. Different 

values for 𝛼 were investigated. The final value is set at 0.7. The manual segmentations 

are treated as the ground truth. The learning rate decayed exponentially at a rate of e-1 

after the first 10 epochs. The images containing masses are split into five bins, each bin 

is used as the testing set once for a total of five training cycles. In each training cycle, 

80% of the data is used for training (60% for training, 20% for validation), while 20% is 

reserved for testing. This is done in a manner so that each image appears in the testing 

set once, therefore each image will have a corresponding segmentation mask produced 

by the UNET which can be used to create the pseudo color image. To create the 

segmented mass image, the binary mask created by the UNET will be applied to the 

original image to produce an image that contains only the segmented mass.   

While there are four images associated with each mass, only two of the four images 

contain the suspicious mass. To create pseudo sets B_unet and D_unet, the binary 

segmentation mask will be applied to the contralateral image of the same projection view. 

For example, if the mass can be seen in the LCC and LMLO images, then the 

segmentation mask for the LCC image will be applied to the RCC image and the LMLO 

segmentation mask will be applied to the RMLO image. Since the contralateral breast 
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images have been bilaterally registered to the images that contain the mass, applying the 

binary segmentation masks in this manner will segment out the area in the contralateral 

breast that correspond to the same location that the suspicious mass is located in. To 

assess the performance of the mass segmentation, we used the dice similarity coefficient 

(DSC) and the Jaccard Index 

5.2.4. Mass Classification 

Recent attention to CADx in breast cancer has demonstrated that multi-view CADx 

schemes tend to outperform single-view CADx schemes[84, 88]. Our previous study 

investigated the optimal method for fusing feature vectors from multiple views taken 

during a mammography exam[162]. We follow the same pipeline in this study. This 

involves extracting deep transfer learning-based features from each of the four 

mammography views, quantifying the bilateral asymmetry, and training a two-stage 

classification system which predicts the likelihood of a mass being malignant.  

5.2.4.1 Transfer learning and feature extraction  

In this work, we take advantage of the publicly available VGG16 network that has been 

pretrained on the ImageNet database.  Before using the pretrained network, our input 

images are modified to match the ImageNet input image shape of 224x224x3. The 64x64 

pixel original images are resized to 224x224 via bilinear interpolation and converted into 

three channel pseudo color images as mentioned in section 2.2.  The VGG16 network 

has a relatively simple architecture that consists of five convolutional blocks followed by 

some dense layers. Blocks 1 and 2 contain two convolutional layers followed by a max 

pooling layer, while blocks 3, 4, and 5 contain three convolutional layers followed by a 

max pooling layer [124]. In this study, we use the pretrained VGG16 network as a feature 
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extractor by freezing all weights and removing the top dense layers. The architecture 

adopted for this study can be seen in Table 5- 2. Features are then extracted from all four 

images after the final max pooling layer and flattened into a 25,088-dimensional vector.  

Block Layer Size Filter Size 

1 Convolution-1 

Convolution-2 

Max pooling 

224×224×64 

224×224×64 

112×112×64 

3×3 

3×3 

- 

2 Convolution-1 

Convolution-2 

Max pooling 

112×112×128 

112×112×128 

56×56×128 

3×3 

3×3 

- 

3 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

56×56×256 

56×56×256 

56×56×256 

28×28×256 

3×3 

3×3 

3×3 

- 

4 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

28×28×512 

28×28×512 

28×28×512 

14×14×512 

3×3 

3×3 

3×3 

- 

5 Convolution-1 

Convolution-2 

Convolution-3 

Max pooling 

14×14×512 

14×14×512 

14×14×512 

7×7×512 

3×3 

3×3 

3×3 

- 

Table 5-2: VGG16 architecture used for feature extraction. 

5.2.4.2 Multi-view CADx Framework 

A multi-view CADx framework is used to classify each case as malignant or benign. 

After pseudo color image generation, there are seven image sets. Each set contains four 

subsets representing the left and right CC and MLO image of the mass. Each subset 

contains m images of size 224x224x3, where m is the number of cases in this study. For 

each set, features are extracted from each subset independently, resulting in four m x 

25,088 feature vectors. Each feature vector is then normalized from 0-1, and the bilateral 

asymmetry is quantified by taking the absolute value of the different between the feature 



107 
 

vectors representing the bilateral views (LCC-RCC, LMLO-RMLO). This results in two 

feature vectors, a CC and MLO feature vector, each of size m x 25,088. To reduce the 

high dimensionality of these vectors, we first apply variance thresholding at a threshold 

of 0.2 to each set. We then apply a sequential forward feature selection (SFFS) algorithm 

to obtain the optimal feature set. The SFFS algorithm is conducted using a linear support 

vector machine (SVM) over 4-fold cross validation. The optimal CC and optimal MLO 

feature vectors are then used to train two SVMs independently. The output of each SVM 

is fused and used to train a final SVM. All SVMs are trained and tested using 5-fold cross 

validation. Since our dataset is slightly imbalanced, we embed the synthetic minority 

oversampling technique (SMOTE) into each fold to resample the minority cases to 

balance the training dataset.  

To assess the performance of the mass classification, the likelihood score of a case 

being malignant is generated for each case in the test set over cross validation and used 

to create a receiver operating characteristic (ROC) curve. The area under the ROC curve 

(AUC) and the standard deviation is then computed. Delong’s test is used to check for 

statistical significance between the ROC curves of each pseudo color set at an alpha level 

of 0.05 [167]. Five other metrics are generated from the sum of the confusion matrices 

generated by the final classifier in the two-stage classification scheme over each cross-

validation fold, namely: accuracy, sensitivity, specificity, precision, and F1 score.   

5.3. Results 

The initial dataset obtained is the same dataset used in our previous study[162].  

Initially, there were 1,065 cases containing four FFDM images representing the left and 

right CC and MLO view. The ipsilateral matching scheme failed to confirm 66 cases, while 
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the bilateral registration scheme failed in 35 cases. This resulted in 964 cases.  Of these 

964 cases, we were unable to obtain ground truth mass annotations in both images 

containing the mass for 134 cases, resulting in a final dataset of 830 cases. Of the 830 

cases, 310 of the masses are biopsy proven benign and 520 cases are biopsy proven 

malignant, which corresponds to 3,320 64x64 greyscale ROIs and 1,660 binary 

segmentation masks.  

After 5-fold CV, automated mass segmentation via a Unet achieved a DSC of 0.894 

∓ 0.002 and a Jaccard Index of 0.814 ∓ 0.003. Some examples of the manual ground 

truth segmentation and the automated segmentation can be seen in figure 5-2.  

 

Figure 5-2: Examples of the manual ground truth segmentation in red and the UNET produced 

segmentation mask in green. The top row are benign cases, and the bottom row are malignant 

cases. 

The performance metrics of the mass classification scheme for each pseudo color 

image set can be seen in figures 5-3-5-4 and table 5-3. Overall, sets B_gt and D_gt 

outperform all other sets in terms of AUC, accuracy, sensitivity, specificity, precision, and 

F1 score. Pseudo color sets B_gt and D_gt, both created using the ground truth 

segmentation masks, perform significantly better than sets A, B_unet, C, D_unet, and E 
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in terms of AUC (p=0.0046, 0.0003, 0.0066, <0.0001, <0.0001 and p=0.0013, 0.0001, 

0.0025, 0.0001, <0.0001, respectively). There are no statistically significant differences 

between the AUC of set B_gt and set D_gt (p=0.6036) or between sets A, B_unet, C, or 

D_unet. All sets perform significantly better than set E in terms of AUC (p<0.001 for all 

comparisons).  

 

Figure 5-3: Final receiver operating characteristic curves for all seven pseudo color image sets. 

 

 
AUC Acc Precision Sensitivity Specificity F1 score 

A 0.833 ± 0.014 0.747 ± 0.030 0.817 ± 0.028 0.771 ± 0.068 0.706 ±0.072 0.791 ± 0.033 

B_gt 0.882 ± 0.012 0.812 ± 0.009 0.864 ± 0.016 0.831 ± 0.016 0.781 ± 0.032 0.847 ± 0.008 

B_unet 0.820 ± 0.015 0.763 ± 0.022 0.825 ± 0.025 0.790 ± 0.035 0.716 ± 0.053 0.806 ± 0.019 

C 0.836 ± 0.014 0.777 ± 0.028 0.833 ± 0.020 0.0806 ± 0.037 0.729 ± 0.034 0.819 ± 0.025 

D_gt 0.889 ± 0.012 0.816 ± 0.020 0.871 ± 0.021 0.829 ± 0.025 0.794 ± 0.039 0.849 ± 0.017 

D_unet 0.812 ± 0.015 0.741± 0.0250 0.816± 0.0315 0.758 ± 0.017 0.713 ± 0.059 0.786 ± 0.018 

E 0.718 ± 0.018 0.681 ± 0.035 0.767 ± 0.030 0.704 ± 0.039 0.642 ± 0.050 0.734 ± 0.031 

Table 5-3: Mean and standard deviation of all metrics computed from each test fold over 5-fold 
cross validation. 
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Figure 5-4: Confusion matrices for each of the seven pseudo color sets. Within each matrix, the 

top left corner represents the number of true negatives (TN), the top right corner represents the 

number of false positives (FP), the bottom left corner represents the number of false negatives 

(FN), and the bottom right corner represents the number of true positives (TP). 

 

While the performance of set B_gt and set D_gt support our hypothesis that 

pseudo color images created using a segmentation mask will provide increased 

information and yield better performance than pseudo color images created without the 

additional morphological information, the performance of set B_unet and set D_unet is 

not significantly better than sets A or C. But since the performance of set B_gt and D_gt 

are significantly better than sets B_unet and D_unet, this can be attributed to the quality 

of the automated UNET segmentation step as the only difference between these two sets 

is the creation of the segmentation mask that is in the green channel of each image. To 

further investigate this, we visually inspected the results of the UNET and observed that 

the network had trouble capturing spiculations to the same degree that is present in the 

ground truth images (Figure 5-5).  
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Figure 5-5: Examples of malignant cases where the UNET does a poor job at capturing 

spiculations. The ground truth segmentation is in red and the UNET produced segmentation 

mask is in green. 

Since the morphology of malignant lesions is associated with spiculated margins, the 

inability to capture spiculations may trick the scheme into believing a lesion is benign 

since the segmentation mask is rounded when there are actually spiculations present. 

This would result in an increase in the number of false negatives, which is seen between 

sets B_gt and B_unet and D_gt and D_unet (Figure 5-5).  We believe this explains the 

reason for the decrease in performance when using the automated mass segmentation 

as opposed to the ground truth in the pseudo color sets.  

5.4. Discussion  

In this work we investigate the effects of pseudo color image generation on classifying 

suspicious breast lesions as malignant or benign using deep transfer learning. Our 

previous work began to investigate the effects of creating pseudo color images using 

various preprocessing techniques to increase the information passed to the deep network 

with the goal of increasing the performance of a CADx framework in classifying malignant 

and benign lesions[154]. In that study, two image sets were created; the first set used the 
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original image stacked in three channels, and the second set used the original image in 

combination with variants of the original single channel image that either suppressed 

noise or enhanced contrast. While the performance did increase when using the pseudo 

color images created with pre-processed variants, this was not always a statistically 

significant difference. Similarly, the studies conducted by Li et al. and Min et al. for 

detecting masses using pseudo color generated images suggested that pseudo color 

images that contain morphological information will improve breast mass detection while 

pseudo color images that contained texturally enhanced versions did not improve 

performance[94, 95]. In this work, we aim to see if this follows for mass classification as 

well.  

We hypothesize that creating pseudo color images with additional morphological 

information will provide increased complementary information to a deep network pre-

trained on the ImageNet database, and that this will yield better performance in classifying 

malignant and benign lesions than when using pseudo color images that do not contain 

morphological information. Overall, the results of this work support our hypothesis and 

demonstrate that the addition of the segmented mass to the pseudo color images prior to 

using deep transfer learning significantly improved the ability of the network to classify 

malignant and benign lesions when compared to pseudo color images created using only 

the original image and pre-processed variants that improved contrast or decreased noise.  

Since sets B_gt and D_gt perform significantly better than all other sets, we can 

conclude that the addition of the segmented mass image to the pseudo color image is 

responsible for the increase in performance. Additionally, we do not observe a significant 

difference between sets B_gt and D_gt which only vary in the green blue channel (AUC= 
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0.882 and 0.889, p=0.6036). Set B_gt contains a histogram equalized version of the 

original image in the blue channel, while set D_gt contains another copy of the original 

image. This indicates that the addition of the histogram equalized image does not also 

increase performance and that the increase in performance is solely due to the addition 

of the segmented mass. There are also no statistically significant differences between the 

AUC values of sets A, B_unet, C, and D_unet. This indicates that using pre-processing 

techniques that aim to increase the textural information passed to the deep CNN by 

convolving a filter with the original image may not actually increase the information as the 

convolutional layers of the CNN may be able to automatically learn similar features 

without this addition. Our results support this assertion as there are no significant 

differences between set A, which contains only the original image, and set C which 

contains two texturally enhanced versions.  On the contrary, the CNN is not able to 

automatically learn the morphological information that the fully segmented mass channel 

provided without architectural modifications. This indicates that the pseudo color sets 

containing a fully segmented mass channel provide increased and complementary 

information to the network which yields significantly better performance while the pseudo 

color sets created from texturally enhanced variant channels do not increase the 

information provided therefore do not have classification performance improvements.  

In this study, the morphological information is provided by segmenting the 

suspicious mass from the background tissue. We use two different techniques to obtain 

the segmented mass: manual segmentation and automated segmentation via a Unet. The 

manual segmentation mask is used as the ground truth image for the automated 

segmentation task. We recognize that acquiring a manual segmentation for every 



114 
 

suspicious mass is an extremely time consuming and error prone task. To overcome 

future issues of obtaining this ground truth segmentation, we use a Unet to demonstrate 

that a fully automated mass segmentation network can be used in place of a manual 

segmentation mask. The results of this study show that the pseudo color images created 

using the Unet generated segmentation mask do not perform as well as the pseudo color 

images created using the manual segmentation mask. Visual inspection of the Unet 

generated segmentation masks revealed that the network was doing a poor job at 

capturing spiculations (Figure 5-6) which may be the reason for the decrease in 

performance. We believe that further work into creating a better automated mass 

segmentation network will overcome this problem.  In this study, a basic Unet architecture 

is used with only 1,328 examples in the training dataset in each fold. Many complex 

modifications to the Unet architecture have been proposed in breast mass segmentation 

tasks that should be investigated in this framework[163, 168, 169]. In addition to adding 

more robust training data and modifying the Unet architecture, other segmentation 

networks should be investigated to improve performance, including SegNet, Fully 

Convolutional Networks (FCN), and conditional generative adversarial networks (cGAN) 

as these networks have shown superior performance in breast mass segmentation 

tasks[170-172]. 

While investigating the best method for the classification portion of the framework, 

there were extensive attempts to fine tune the VGG16 network as opposed to using it as 

a feature extractor. We were unable to successfully train a multi-view model for pseudo 

color sets A and C as there was an overfitting problem that could not be overcome unless 

we had a larger dataset. This may also support the conclusion that the addition of the 
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morphological information to sets B and D did provide increased information which 

mitigated the overfitting issue experienced by sets A and C.  

While this is a proof-of-concept study, we faced some notable limitations. First, the 

dataset used in this work is acquired from a single location. Therefore, we are unsure if 

the results will hold up when using datasets from other locations with mammography 

images acquired from different machines with different scanning protocols. Second, it is 

extremely difficult to obtain the ground truth mass segmentation images. In this study 

alone, there were 134 cases which had to be removed due to the inability to draw the 

annotations due to dense breast tissue obstructing the view or local irregularities making 

it difficult to find the boundary.  We recognize that this may hinder others from using this 

technique in future computer aided diagnosis schemes. Using a fully automated 

segmentation network trained on a large and diverse mammography image set will allow 

overcome this limitation. Third, we only investigate and compare seven different pseudo 

color image sets that are made up of combinations of four single channel images, the 

original image, a bilaterally filtered image, a histogram equalized image, and the 

segmented mass. While the decision to use a bilaterally filtered image and histogram 

equalized image was to decrease noise and increase contrast as mammograms are x-

ray images which are traditionally noisy and low contrast, there are many different pre-

processing techniques that are commonly used in mammography based CADx systems 

that can be investigated further[173].  

5.5. Conclusions  

As deep learning techniques continue to outperform traditional machine learning 

techniques, it is important to experiment with ways in which these networks are used in 
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mammography based CADx schemes. The need for a large and diverse dataset to train 

a deep CNN often forces researchers to use a transfer learning technique in lieu of 

training a network from scratch. Utilizing a state-of-the-art deep CNN pretrained on the 

ImageNet dataset for the breast mass classification task requires some manipulation of 

the network or input images before training. The results of this study demonstrate that 

using pseudo color images that include increased morphological information as input to 

a pre-trained VGG16 network will improve the performance abilities in classifying 

malignant and benign lesions.   
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Chapter 6. Conclusions and future work 

6.1. Summary 

Breast cancer remains an extremely deadly disease with incidence on the rise. Early 

detection through routine screening exams remains the best method for reducing the 

mortality associated with the disease. However, the efficacy including both sensitivity and 

specificity of current breast screening must be improved. The increase in the number of 

breast imaging modalities coupled with a large amount of clinical, pathological, and 

genetic information has made it more difficult and time consuming for clinicians to digest 

all available information and make an accurate diagnosis and appropriate personalized 

treatment plan. Recent advances in radiomics and DL technology provide promising 

opportunities to extract more clinically relevant image features as well as to streamline 

many different types of diagnostic information to build novel CAD systems as decision-

making support tools that aim to help clinicians make more accurate and robust cancer 

diagnosis and treatment decisions.  

In summary, the work presented in this dissertation focuses on investigating and 

developing different methods to improve the performance of CADx systems for 

mammography by increasing the feature representation of the input images.  

In chapter 3 we increase the feature representation of suspicious mammography 

detected masses by fusing a handcrafted radiomics feature set with a deep transfer 

learning generated feature set. Our study concluded that the CADx scheme that uses the 

fusion feature set performs significantly better at classifying masses as malignant or 

benign than the same scheme using either only handcrafted radiomics or DL features. 
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While I was not the first person to investigate the fusion of ML and DL-based CAD 

techniques, the contributions of the work include the following. Firstly, we demonstrate 

that even though using only DL features outperforms the use of only handcrafted features, 

the two sets are complementary therefore when fused together performance is 

significantly improved. This signifies that the domain expertise included in handcrafted 

feature extraction is useful and should not be ignored. Second, we develop a novel feature 

selection and reduction pipeline that is able to successfully extract the most meaningful 

features from an extremely high dimensional feature pool. Third, we began to investigate 

the effects of pseudo color image generation on the DL feature extraction step. We 

observed better classification performance when using pseudo color images that 

contained pre-processed variants, highlighting the importance of preprocessing in 

mammography-based CAD, and providing us motivation to continue the investigation into 

pseudo color images in CADx which is done in chapter 5.  

In chapter 4 we increase the feature representation of suspicious mammography 

detected masses by including both the CC and MLO view images of the mass and the 

contralateral breast and by using a fusion of radiomics and DL features. Our study can be 

differentiated from the existing multi-view CAD studies in three ways, namely: the 

inclusion of both radiomics and DL features, the true case-based nature of the input 

images, and the quantification of the bilateral asymmetry. We include an ipsilateral 

matching scheme and bilateral registration scheme to ensure that the ROIs that pass 

simultaneously through the framework correspond to the same mass ipsilaterally and the 

same region bilaterally. The bilateral registration scheme also allows us to obtain a more 

accurate quantification of the bilateral asymmetry.  
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In chapter 5 we increase the feature representation of suspicious mammography 

detected masses by generating pseudo color images that include increased 

morphological information. In this study we build off our work in chapter 3 and chapter 4 

by continuing to investigate the role of pseudo color image generation in the deep transfer 

learning feature extraction step of a multi-view CAD system. The results demonstrate that 

pseudo color image sets that contain increased morphological information perform 

significantly better than any other set in classifying breast masses as malignant or benign. 

This work demonstrates the feasibility of improving classification performance when using 

transfer learning techniques through a relatively simple image transformation. To the best 

of our knowledge, no other study investigates the link between pseudo color image 

generation and mammography based CADx performance. 

Over the past three years, I have made great progress in understanding the 

indisputable role that artificial intelligence continues to have in the medical imaging field. 

I have had the opportunity to investigate and develop new methods for improving the 

accuracy of mammography-based CAD systems. While the focus of this dissertation is 

on mammography imaging as it is the most widely used and accessible breast imaging 

modality, there are other imaging modalities which cannot be ignored. In an effort to give 

myself a well-rounded understanding of breast imaging beyond mammography, I 

published a review paper that details current advances in CAD schemes for breast cancer 

that includes all breast imaging modalities. Additionally, I have published and co-authored 

multiple journal articles and conference papers.  
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1. Jones, MA. Faiz, R. Islam, W. Qiu, Y. Pseudo Color Image Generation for 

Improving the Performance of Deep Transfer Learning-based Computer 
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2. Jones, MA. Sadeghipour, N. Chen, X. Islam, W. and Zheng, B. A multi-stage 

fusion framework to classify breast lesions using deep learning and radiomics 

features computed from four-view mammograms. Med Phys. 2023 March 31.  

3. Sheth, V. Chen, X. Mettenbrink, EM. Yang, W. Jones, MA. M’Saad, O. 

Thomas, A. Newport, RS. Francek, E. Wang, L. Frickenstein, AN. Donahue, 

N. Holden, A. Mjema, NF. Green, DE, DeAngelis, PL. Bewersdorf, J. Wilhem, 
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Super-Resolution Microscopy. ACS Nano. 2023 April 18.  

4. Islam, W. Jones, MA. Faiz, R. Sadeghipour, N. Qiu, Y. Zheng, B. Improving 

Performance of Breast Lesion Classification Using a RestNet50 Model 

Optimized with a Novel Attention Mechanism. Tomography. 2022 Sept 28.  

5. Jones, MA. Islam, W. Faiz, R. Chen, X. and Zheng, B. Applying artificial 

intelligence technology to assist with breast cancer diagnosis and prognosis 

prediction. Front. Oncol. 2022 Aug.  

6. Danala, G. Maryada, S.K. Islam, W; Faiz, R. Jones, MA. Qiu, Y; Zheng, B. A 

comparison of Computer-Aided Diagnosis Schemes Optimized Using 
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Radiomics and Deep Transfer Learning Methods. Bioengineering. 2022 June 

13.  

7. Jones, MA. Faiz, R. Qiu, Y. Zheng, B. Improving Mammography Lesion 

Classification by Optimal Fusion of Handcrafted and Deep Transfer Learning 

Features. Physics in Medicine & Biology. 2022 Feb 7.  

8. Gai, T. Thai, T. Jones, MA.  Jo, J. Zheng, B. Applying a radiomics-based 

CAD scheme to classify between malignant and benign pancreatic tumors 

using CT images. J Xray Sci Technol. 2022 Jan 24.  

9. Jones, MA. MacCuaig, WM. Frickenstein, AN. Camalan, S. Gurcan, M.N. 

Holter-Chakrabarty, J. Morris, K.T. McNally, M.W. Booth, K.K. Carter, S. 

Grizzle, W.E. McNally, L.R. Molecular Imaging of Inflammatory Disease. 

Biomedicines 2021 Feb 4.  

10. MacCuaig, WM*. Jones, MA*. Abeyakoon, O. McNally, LR. Development of 

Multispectral Optoacoustic Tomography (MSOT) as a clinically translatable 

imaging modality. Radiology: Imaging Cancer 2020 Nov 20. (*Co-First 

authors) 

11. Frickenstein, A*. Jones, MA*. Behkam, B. McNally, LR. Imaging inflammation 

and infection in the gastrointestinal tract. Int J Mol Sci. 2019 Dec 30. (*Co-

First authors) 

12. Gomez-Gutierrez, JG*. Bhutiani, N*. McNally, MW. Chuong, P. Yin, W. Jones, 

MA. Zeiderman, MR. Grizzle, WE. McNally, LR. The neutral red assay can be 
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used to evaluate cell viability during autophagy or in an acidic 

microenvironment in vitro. Biotechnic and Histochemistry. 2020 Aug 03.  

6.1.2. Conference Papers 

1. Sadeghipour, N. Tabesh, F. Natarajan, A. Jones, MA. Chen, X. 

Paulmurugan, R. and Zheng,B. Quantitative methods for molecular 

ultrasound imaging. SPIE Medical Imaging 2023. April 10th, 2023. 

2. Jones MA, Pham H, Gai T, Zheng B. Fusion of Handcrafted and Deep 

Transfer Learning Features to Improve Performance of Breast Lesion 

Classification. Stephenson Cancer Center 2022 Cancer Research 

Symposium. Oklahoma City, Oklahoma. March 4th, 2022  

3. Jones MA, Pham H, Gai T, Zheng B. Fusion of Handcrafted and Deep 

Transfer Learning Features to Improve Performance of Breast Lesion 

Classification. SPIE Medical Imaging 2022. San Diego, CA. February 2022.  

4. Danala G, Mirniaharikandehei S, Jones MA, Gai T, Maryada SK, Wu D, Qiu 

Y, Zheng B. Developing interactive computer-aided detection tools to support 

translational clinical research. Proc. SPIE 12035, Medical Imaging 2022: 

Image Perception, Observer Performance, and Technology Assessment. 

March 21st 2022.   

5. Mirniaharikandehei S, Hollingsworth A, Jones MA, Liu H, Qiu Y, Zheng B. 
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mammography-occult tumors. SPIE Medical Imaging. San Diego, CA. 

February 2022.  

6. Pham H, Jones MA, Gai T, Islam W, Danala G, Jo J, Zheng B. Identifying an 

optimal machine learning generated image marker to predict survival of 

gastric cancer patients. SPIE Medical Imaging. San Diego, CA. February 

2022.  

7. Danala G, Maryada SK, Pham H, Islam W, Jones MA, Zheng B. Comparison 

of performance in breast lesions classification using radiomics and deep 

transfer learning: An assessment study. SPIE Medical Imaging. San Diego, 

CA. February 2022.  

8. Jones MA, Fouts B, McNally M, Samkutty A, MacCuaig W, Frickenstein AN, 

McNally LR. Evaluation of multispectral separation algorithms to identify 

spectrally distinct chromophores in breast cancer. AACR Annual Meeting 

2020. San Diego, CA. April 2020. 
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McNally LR. Targeting behavior and pharmacokinetics of pHILP-conjugated 

mesoporous silica nanoparticles in pancreatic tumors. AACR Annual Meeting 
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Cancer Center 2020 Cancer Research Symposium. Oklahoma City, 

Oklahoma. February 7th, 2020.   

11. Jones MA, Fouts B, McNally M, Samkutty A, McNally LR. Development of pH 

responsive mesoporous silica nanoparticles in the treatment of ER/PR + 

Breast Cancer. END2Cancer, Oklahoma City, Oklahoma. November 2019 

6.2. Future work 

Despite the extensive research that has been conducted in developing CAD schemes 

to aid radiologists in reading and interpretating mammography images, there are still 

many challenges that must be addressed for these systems to be robust enough to 

proceed to clinical use. There are many generic challenges that almost all CAD systems 

face which have been discussed in the introduction (section 1.3) of this dissertation. 

Notable challenges and future goals specific to the research presented in this dissertation 

are as follows.  

First, the mammography images used in chapter 3, 4, and 5 all come from the same 

dataset. It is unknown how well these studies will generalize on unseen datasets that 

come from different locations and different scanners. This highlights the important 

obstacle that is the lack of large and high-quality image databases for many different 

application tasks. Although several breast image databases are publicly available 

including DDSM, INbreast, MIAS, and BCDR, these databases mainly contain easy cases 

and lack subtle cases, which substantially reduces the diversity and heterogeneity of 

these image databases. Many existing databases reported in previous research papers 

are also either obsolete (i.e., DDSM and MIAS used the digitized screen-film based 



125 
 

mammograms) or have a lack of biopsy-approved ground-truth (i.e., INbreast). Thus, 

models developed using these “easy” databases have lower performance when applied 

to real diverse images acquired in clinical practice. In our work, we use a private 

mammography database that more accurately depicts real-life clinical data as it contains 

a diverse imaging set with high heterogeneity in the lesions as well as breast densities.  

By recognizing such limitations or challenges, more research efforts continue to build 

better public image databases. For example, The Cancer Imaging Archive (TCIA) was 

created in 2011 with the aim of developing a large, de-identified, open-access archive of 

medical images from a wide variety of cancers and imaging modalities [174]. New 

significant progress is expected in future studies to build this important infrastructure to 

help develop robust predictive models in the medical imaging field.   Thus, the 

establishment of TCIA allows researchers to train and validate their prediction models on 

imaging data acquired from other clinical sites to help researchers develop more accurate 

and robust models that can eventually be translated to the clinic.  

Second, our work focuses solely on mammography imaging techniques despite there 

being other breast cancer imaging modalities. The downfalls of mammography have led 

to an increase in the use of other adjunct imaging modalities in clinical practice including 

ultrasound (US) and dynamic contrast enhanced magnetic resonance imaging (DCE-

MRI) [175, 176]. Digital breast tomosynthesis (DBT) is a newer modality that is commonly 

used in which X-ray images are taken over multiple angles in a limited range (i.e., 

±15°) and the acquired scanning data is reconstructed into quasi-3D breast images to 

reduce the impact of dense breast tissue overlap in 2D mammograms [177]. Additionally, 

several other new imaging modalities including contrast enhanced spectral 
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mammography (CESM) [175, 176], phase contrast breast imaging [178], breast computed 

tomography [179], thermography and electrical impedance tomography of breast imaging 

[180], and molecular breast imaging [181], have also been investigated and tested in 

many prospective studies or clinical trials. The frameworks of the studies described in this 

dissertation should be applied to other imaging modalities when applicable. 

Mammography remains the most commonly used and accessible breast imaging modality 

worldwide, therefore the work conducted in this dissertation is still extremely relevant.  

Third, in our studies a VGG16 network pretrained on the ImageNet database is used 

as a feature extractor. The decision is rooted in its established success and widespread 

applicability. However, it is imperative to acknowledge that the landscape of deep learning 

for medical image classification tasks is continually evolving, offering a multitude of state-

of-the-art alternatives. The alternative networks should be investigated further, not only 

as feature extractor but also through fine tuning.  

Fourth, we focus this dissertation on the improvement of classifying malignant and 

benign breast masses. I believe that the trajectory of this work should be expanded to 

include a fully automated detection step prior to mass classification. Currently, the mass 

detection step is conducted manually as a radiologist has marked the center of each 

suspicious region which is used as a guide to extract ROIs. Many existing studies focus 

solely on the detection of suspicious regions rather than the classification. We believe 

that future work should be conducted to create a fully automated mass detection and 

classification system. Such modification would enhance the clinical applicability, 

ultimately paving the way for the integration of these systems into clinical practice.  
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Fifth, it is important to note that we reported our overall AUC values at a threshold of 

0.5 as this represents a balanced trade-off between the true positive rate and true 

negative rate, but this metric may not be ideal in the clinical context of classifying 

suspicious lesions as malignant or benign[182]. Clinically, it is most important to limit the 

number of false negatives, as this would mean that an individual that does have breast 

cancer is told that she does not have cancer which has significant consequences as early 

treatment gives the best chance at survival. In order to ensure that this false negative rate 

is low, we can decrease the threshold of our model which will result in an increase in 

sensitivity as more cases are being predicted as positive but a decrease in specificity as 

this increases the number of false positives. This trade-off results in more women with 

benign lesions undergoing further testing but this is considered a clinically acceptable 

outcome compared to letting malignant lesions go undiagnosed. Before this work can be 

translated to the clinic, the choice of threshold must be carefully investigated with the help 

of experienced breast radiologists. We will look at how the sensitivity and specificity of 

our model change with varied thresholds. This domain expertise will allow us to choose 

an optimal threshold that minimizes the false positive rate while also ensuring that the 

sensitivity and specificity are acceptable. 

Lastly, a graphical user interface should be created which can be used and tested in 

clinical practice. The performance of AI-based models reported in the literature based on 

laboratory studies may not be directly applicable to clinical practice as researchers have 

found that higher sensitivity of experimental CAD systems may not actually help 

radiologists in reading and interpreting images in clinical practice. One previous observer 

performance study reported that radiologists failed to recognize correct prompts of CADe 
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scheme in 71% of missed cancer cases due to higher false-positive prompts [158]. By 

retrospectively analyzing a large cohort of clinical data before and after implementing 

CADe schemes in multiple community hospitals, one study reported that the current 

method of using CADe schemes in mammography reduced radiologists’ performance as 

seen by decreased specificity and positive predictive values [183]. In order to overcome 

this issue, researchers have investigated several new approaches of using CADe 

schemes. One study reported that using an interactive prompt method to replace a 

conventional “second reader” prompt method significantly improves radiologists’ 

performance in detecting malignant masses from mammograms [159]. However, this 

interactive prompting method has not been accepted in clinical practice. Thus, the lessons 

learned from CADe schemes used in clinical practice indicate that more research efforts 

are needed to investigate and develop new methods, including FDA clearance processes, 

to evaluate the potential clinical utility of all new CAD systems for different clinical medical 

imaging applications [184].       
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