
NETWORK INTERDICTION APPROACHES FOR DIMINISHING

MISINFORMATION SPREAD IN SOCIAL NETWORKS

By

NILOUFAR DAEMI

Bachelor of Science in Industrial Engineering
Noshirvani University of Technology

Babol, Iran
2012

Master of Science in Industrial Engineering
Amirkabir University of Technology

Tehran, Iran
2016

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2022



NETWORK INTERDICTION APPROACHES FOR DIMINISHING

MISINFORMATION SPREAD IN SOCIAL NETWORKS

Dissertation Approved:

Dr. Juan S. Borrero

Dissertation Advisor

Dr. Balabhaskar Balasundaram

Dr. Austin Buchanan

Dr. Charles Chen

ii



ACKNOWLEDGMENTS

Dedicated to

Mahsa Amini,

People of Sistan and Baluchestan,

and all the brave Iranians who are fighting for freedom.

Acknowledgments reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

iii



First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Juan

Borrero, for his continuous support and encouragement during my Ph.D. I really appreciate

the immense respect and support he has always shown me in these years that helped me get

through the most challenging moments of my Ph.D. life. None of the achievements during

my Ph.D. could have been completed without his guidance.

I am also very grateful to Dr. Balabhaskar Balasundaram for his support throughout these

years. I can never thank him enough for all he has taught me. His impact was not limited to

his expertise in the field; I have been also much influenced by his genuine personality to the

extent that he is a role model for me.

I would like to thank my committee members, Dr. Balabhaskar Balasundaram, Dr. Austin

Buchanan, and Dr. Charles Chen for their guidance and insightful comments. Additionally,

I thank Drs. Austin Buchanan, Hosseinali Salemi, and Hamidreza Validi for helping me

integrate their work with part of my research. Their assistance has been extremely valuable

to me.

Finally, I am thankful to my parents for their love, and support, and the sacrifices they

made so I can follow my dreams. When I shared with them my decision to begin a Ph.D. in

the US, they showed nothing but encouragement although this decision was going to separate

us for years. They have always been a reason for me to make every effort to grow and every

day away from them, I have lived with the dream of becoming the girl they can be proud of.

Acknowledgments reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

iv



Name: NILOUFAR DAEMI

Date of Degree: DECEMBER, 2022

Title of Study: NETWORK INTERDICTION APPROACHES FOR DIMINISHING MIS-
INFORMATION SPREAD IN SOCIAL NETWORKS

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract: Network interdiction has many applications in many domains, including telecommu-
nications, epidemic control, and social network analysis. In this dissertation, we use network
interdiction to devise strategies for the problem of misinformation dissemination in online
social networks. These platforms provide the opportunity of quick communication between
users, which in a network with malicious accounts can result in the fast spread of rumors and
harmful content. We study this topic based on two different approaches. The first approach
focuses on interdicting cohesive subgroups of malicious accounts. We use s-clubs, which are
subsets of vertices that induce subgraphs of diameter at most s to model the cohesive social
subgroups. We consider a defender that can disrupt the vertices of the adversarial network
to minimize its threat, which leads us to consider a maximum s-club interdiction problem.
Using a new notion of H-heredity in s-clubs, we provide a mixed-integer linear programming
formulation for this problem that uses far fewer constraints than the formulation based
on standard techniques. We further relate H-heredity to latency-s connected dominating
sets and design a decomposition branch-and-cut algorithm for the problem. The second
methodology that is studied in this dissertation is to delay the spread of misinformation
in the network using first passage times interdiction. The first passage times are defined
as the first time each user is exposed to a post shared by another user in the network and
is computed using a discrete time Markov chain model. Vertices are interdicted to modify
the transition probabilities and increase the propagation times between users who share
misinformation and harmful content, and vulnerable users. We show that the problem is
NP-hard and provide a mixed-integer linear programming formulation for it. Computational
experiments on benchmark instances are conducted for both interdiction approaches based on
cohesive subgroups and first passage times in order to assess the computational capabilities
of the methods we introduced.

v



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Graph notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . 3

II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Network interdiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The maximum s-club problem . . . . . . . . . . . . . . . . . . . . . . . . . 10

III. COHESIVE SUBGROUP INTERDICTION . . . . . . . . . . . . . . . . 12

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 A preliminary formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Exploiting heredity in s-clubs . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Alternate formulation using hereditary s-clubs . . . . . . . . . . . . . . . . 18

3.5.1 Facial structure of associated polyhedra . . . . . . . . . . . . . . . . 27

3.6 Hereditary s-clubs and latency-s connected dominating sets . . . . . . . . . 42

3.7 Interdicting cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 An MILP formulation . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2 Testing for matroid and submodularity properties . . . . . . . . . . 47

3.7.3 Budgeted version of the problem . . . . . . . . . . . . . . . . . . . 49

IV. COMPUTATIONAL EXPERIMENTS WITH MAXIMUM S-CLUB

INTERDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



Chapter Page

4.1 Implementing a decomposition branch-and-cut algorithm . . . . . . . . . . 54

4.1.1 Implementation details for 2-club interdiction . . . . . . . . . . . . 55

4.1.2 Implementation details for 3-club interdiction . . . . . . . . . . . . 56

4.2 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 The impact of using the H-hereditary s-club formulation . . . . . . 60

4.2.2 Results for Group-1 instances . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Results for Group-2 instances . . . . . . . . . . . . . . . . . . . . . 68

4.3 Additional experimental results . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Comparison of root node performance of Method 1 and Method 3 . 72

4.3.2 Impact of Gurobi heuristics on Method 3 . . . . . . . . . . . . . . . 73

4.3.3 Impact of exact and inexact separation on Method 3 . . . . . . . . . 78

V. FIRST PASSAGE TIME INTERDICTION . . . . . . . . . . . . . . . . . 83

5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Reasonable values for ∆ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 An MILP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Maxmizing the q-th smallest first passage time . . . . . . . . . . . . . . . . 96

5.7 Comparing interdiction policies . . . . . . . . . . . . . . . . . . . . . . . . 101

VI. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 103

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



LIST OF TABLES

Table Page

4.1. DIMACS-10 instances in Group-1 . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2. Instances in Group-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3. Results for Group-1 instances with s = 2 and α = 2 using Method 3. . . . . . 65

4.4. Results for Group-1 instances with s = 2 and α = 1 using Method 3. . . . . . 65

4.5. Results for Group-1 instances with s = 2 and α = 0.5 using Method 3. . . . 66

4.6. Results for Group-1 instances with s = 3 and α = 2 using Method 3. . . . . . 67

4.7. Results for Group-1 instances with s = 3 and α = 1 using Method 3. . . . . . 68

4.8. Results for Group-1 instances with s = 3 and α = 0.5 using Method 3. . . . . 69

4.9. Results for Group-2 instances with s = 2 and α = 2 using Method 3. . . . . . 70

4.10. Results for Group-2 instances with s = 2 and α = 1 using Method 3. . . . . . 71

4.11. Results for Group-2 instances with s = 2 and α = 0.5 using Method 3. . . . 72

4.12. Results for Group-2 instances with s = 3 using inexact separation. . . . . . . 73

4.13. Root node comparison of Method 1 and Method 3 on Group-1 instances for

s = 2 and α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14. Root node comparison of Method 1 and Method 3 on Group-1 instances for

s = 3 and α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15. Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for

s = 2 and α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16. Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for

s = 3 and α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Table Page

4.17. Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and

ϵ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18. Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and

ϵ = 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19. Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and

ϵ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.20. Inexact versus exact separation on Group-1 instances with s = 3, α = 0.5, and

ϵ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1. Results of implementing Formulation (5.24) . . . . . . . . . . . . . . . . . . 96

5.2. Results of implementation of Formulation (5.29) . . . . . . . . . . . . . . . . 101

5.3. Comparison of the proposed methodologies. . . . . . . . . . . . . . . . . . . 102

ix



LIST OF FIGURES

Figure Page

1.1. An example of hereditary property under vertex deletion . . . . . . . . . . . 5

3.1. s-club property is not hereditary under vertex deletion . . . . . . . . . . . . 14

3.2. Example of H-hereditary s-club. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3. Example of maximal hereditary subsets in an s-club . . . . . . . . . . . . . . 21

3.4. Relationship between s-clubs and latency-s CDS . . . . . . . . . . . . . . . . 43

3.5. Counterexample to show M = (K,H(K)) is not a matroid . . . . . . . . . . 48

3.6. Counterexample to show ϕ(S) and Ω(S) are neither submodular nor super-

modular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7. Example of a k-core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8. The 3-core obtained by removing vertex 7 from graph G in Figure 3.7 . . . . 50

3.9. The 3-core obtained by removing vertex 5 from graph G in Figure 3.8 . . . . 51

3.10. Example of the solution by the algorithm proposed by Zhang et al. (2017). . 51

3.11. Example of the solution of algorithm 1 . . . . . . . . . . . . . . . . . . . . . 52

4.1. Performance profile based on the running time of methods for s = 2 . . . . . 62

4.2. Performance profile based on the running time of methods for s = 3 . . . . . 63

5.1. Network model for the first passage time interdiction . . . . . . . . . . . . . 85

5.2. Example of changes in probabilities after interdiction . . . . . . . . . . . . . 85

5.3. Counterexample used to find reasonable value of ∆ij . . . . . . . . . . . . . 88

5.4. Example of the graph used to prove the NP-hardness . . . . . . . . . . . . . 89

x



CHAPTER I

INTRODUCTION

Online social networks are constantly developing and have changed the way people communi-

cate. Despite their benefits, online social networks allow the spread of misinformation and

rumors due to their openness and lack of fact-checking tools which can result in economic

losses (Domm, 2013) or negative impacts on the public (Allcott and Gentzkow, 2017). There

is empirical evidence that bots and malicious accounts play a critical role to increase anxiety

or affect the stock market and elections. One example is the tweets containing fake images

of hurricane Sandy in 2012 that led to panic and chaos among people (Gupta et al., 2013).

Another example is wiping out $130 billion in stock value in 2013, immediately after a false

tweet claiming that Barack Obama was injured in an explosion (Rapoza, 2017). Regarding

the effect of the malicious accounts’ activities on the elections, analysis shows that during the

three months before the US presidential election in 2016, fake news on Facebook generated

more engagement in comparison to real news from prominent news outlets (Silverman, 2016).

In addition to the issues caused by fake news, some content on social networks can be

harmful to vulnerable users including people of young or old age, and people with mental

health challenges. Studies show a correlation between the use of social media and depression

in teenagers and surveys reveal that teenagers report direct negative impacts of social media

on their happiness and self-esteem (Cochet, 2021; Youth Equipped To Succeed, 2022). This

motivates the development of strategies to prevent the spread of misinformation and harmful

Parts of this document are reprinted with permission from Daemi et al. (2022)

1



content on these online platforms.

The problem of misinformation blocking in networks has been widely studied in the

literature using different strategies. Minimizing the spread of misinformation with a limited

budget, setting a threshold on the influence of misinformation, and finding the misinformation

source in the network are some examples of different approaches to this problem. Most of

the available studies formulated graph models and proposed greedy and heuristic algorithms

to solve them (Tanınmış et al., 2020; Pham et al., 2019; Shi et al., 2019; Shah and Zaman,

2016).

In this dissertation, we study misinformation blocking in networks using two different

network interdiction models and develop integer programming techniques to solve them.

Unlike several existing studies with heuristic approaches, our methodologies provide optimal

solutions to minimize the spread of misinformation. In addition, instead of focusing on

detecting the rumor source or malicious bots, our models provide strategies to interdict users

based on their ability to spread misinformation by considering the structure of the network,

e.g., membership of a user in cohesive subgroups. This approach is justified based on the fact

that even if rumors are initiated by malicious accounts, innocent users might be unwittingly

helping with the spread of rumors, and considering them in strategies can be beneficial.

The first approach introduced in this dissertation is to model this problem based on the

concept of cohesive subgroups in social networks. Cohesive subgroups can represent groups

of individuals in social networks that share core beliefs, influence each other, and act as a

unit together towards a common goal (Wasserman and Faust, 1994). When such cohesive

subgroups contain malicious accounts, they are able to effectively propagate undesirable

rumors in the network (Help Net Security, 2019). Therefore, it is reasonable to consider

minimizing the size of these cohesive subgroups of adversarial accounts (by temporarily

disabling the accounts) as an approach to prevent the spread of misinformation in networks.

For this problem, we propose a methodology to minimize the size of the largest cohesive

2



subgroups which may contain malicious accounts. We define an optimization problem to find

the best interdiction policies assuming there is an interdiction penalty to delete vertices. In

this setting, deleting vertices is equivalent to disabling the users in the social network. In

Chapter III, we discuss this methodology in detail.

The second approach is to delay the propagation of misinformation through the network. In

this setting, instead of disabling the users, the focus is on reducing the speed of misinformation

dissemination. We use the concept of the first passage time in a Markov chain. Based on this

concept, we define the first passage time between user i and user j in a social network as the

first time user j is exposed to a post that has been shared by user i. We use the first passage

time as a measure that shows how fast the misinformation spreads in the network. The goal

is to optimally increase the value of the expected first passage time from a group of users

who spread harmful content denoted by S to the group of vulnerable users denoted by T .

We model this problem as the maximization of the smallest first passage time from vertices

in S to vertices in T assuming there is a limited budget to interdict vertices. In this setting,

a transition probability matrix is used which describes how a message moves throughout the

users of the network. Interdicting a vertex decreases the probability that the user successfully

shares a post with their neighbors in the network. In Chapter V, we discuss this approach in

detail.

1.1 Graph notations and definitions

Consider a graph G = (V,E) with vertex set V := {1, . . . , n} and edge set E ⊆
(
V
2

)
:=

{{u, v} | u, v ∈ V, v ̸= u}. We will assume throughout that G is not an empty graph, i.e.,

E ̸= ∅. Denote by NG(v) := {u ∈ V | {u, v} ∈ E}, the set of neighbors of vertex v and its

cardinality by degG(v). We also use the notation NG[v] := NG(v) ∪ {v} to denote the closed

neighborhood of a vertex v in G. We denote the subgraph induced by a set of vertices S ⊆ V

by G[S] :=
(
S,

(
S
2

)
∩ E

)
. For convenience, we denote the deletion of a set of vertices T and

3



incident edges as G \ T := G[V \ T ].

Let distG(u, v) denote the length of a shortest path between a connected pair for vertices

u and v in G, where the length of a path is the number of edges in the path. The diameter

of a connected graph is the maximum distance between a pair of vertices, and we denote it

by diam(G) := max{distG(u, v) | u, v ∈ V }. If u and v are in different connected components

of G, then the distance between them, and hence the diameter of that disconnected graph

are taken to be infinite. Also, we assume that distG(u, u) = 0. When the graph G under

consideration is known without any ambiguity, we drop the subscript G for convenience from

all the notations. Below, we present the formal definition of structures and concepts that will

be used in Chapters III–V. Figure 1.1 illustrates the structures and properties introduced in

Definitions 1–3.

Definition 1 (Luce and Perry (1949)). A subset of vertices C ⊆ V is called a clique if the

induced graph G[C] is complete, i.e., all the vertices in G[C] are adjacent.

Definition 2 (Mokken (1979)). Given a graph G = (V,E) and a positive integer s, we call a

subset of vertices S ⊆ V an s-club if diam(G[S]) ≤ s.

The largest cardinality of an s-club is called the s-club number of graph G, denoted

by ω̄s(G). Detecting a maximum cardinality s-club, i.e., the maximum s-club problem, is

NP-hard in general (Bourjolly et al., 2002) and in graphs of diameter s+ 1 (Balasundaram

et al., 2005). The model is one of several types of clique relaxations that have been studied

in the literature (Pattillo et al., 2013), and it reduces to a clique when s = 1. With s = 2, we

obtain a formalization of the friend-of-a-friend cluster, as a 2-club S must satisfy at least one

of the following conditions for every distinct pair of vertices u, v ∈ S: either {u, v} ∈ E, or

NG(u) ∩NG(v) ∩ S ̸= ∅. In other words, every pair of members of a 2-club are either friends

or they have a mutual friend in the group. In general, s-clubs for low values of parameter

s ∈ {2, 3} can be used to represent clusters where quick communication between members is

4



possible.

Definition 3 (Lewis and Yannakakis (1980)). Suppose for a vertex subset S ⊆ V , the induced

graph G[S] satisfies property Π. The graph property Π is said to be hereditary if, by deletion

of any subset of vertices of S, the induced graph has property Π.

1

2

3

4

5

6

Figure 1.1: In this graph, C = {4, 5, 6} forms a clique and by removing any subset D ⊆ C,
set C \D is still a clique. Set S = {1, 2, 3, 4, 5} forms a 2-club, but not every subset of S
induces a 2-club.

Definition 4 (Kulkarni (2016)). A stochastic process {Xn, n ≥ 0} with countable state-space

S is called a Discrete-Time Markov Chain (DTMC), if for all n ≥ 0, we have Xn ∈ S, and for

all n ≥ 0 and i, j ∈ S: P (Xn+1 = j | Xn = i,Xn−1, Xn−2, ..., X0) = P (Xn+1 = j | Xn = i).

The equation in Definition 4 states the Markov property in DTMC which is that the

future state of the system only depends on the present state.

Definition 5 (Kulkarni (2016)). In a stochastic system, the first passage time from state i to

state j denoted by tij is defined as the first time that the chain hits state j starting from state

i. In other words, tij = inf{n ≥ 0|Xn = j,X0 = i}

The first passage time in a DTMC is calculated using a transition probability matrix P

by solving a system of linear equations with n2 variables and n2 equations where n is the

number of states in the system:

tij = 1 +
n∑

k=1
k ̸=j

Piktkj + Piitij (1.1)

5



where Pik is the probability of transition from state i to state k in a single time unit (Kulkarni,

2016).

6



CHAPTER II

LITERATURE REVIEW

Network interdiction problems involve an interdictor and an evader where the evader operates

a network in order to optimize some objective function and the interdictor changes the

structure of the network by deleting vertices or edges to limit the evader’s achievable objective

value (Israeli and Wood, 2002; Borrero et al., 2016). In this work, we use network interdiction

to limit the dissemination of misinformation in online social networks.

In Section 2.1, we review studies on network interdiction problems that are the most

relevant to our problem. Also, because we solve the maximum s-club interdiction problem in

Chapter III, we will review works on the maximum s-club problem in Section 2.2

2.1 Network interdiction

Network interdiction was initially studied in the context of military applications, but it can

be applied to solve problems such as crime detection, prevention of outbreaks of infectious

diseases, and online social networks analysis (Sullivan et al., 2014; Assimakopoulos, 1987;

Furini et al., 2019).

Shortest path interdiction is an example of an interdiction problem with many applications

in the real world. Here, the evader’s goal is to move a supply convoy through the network

as quickly as possible. The interdictor removes arcs to maximize the shortest path length

from an origin to a destination to limit the evader’s achievable objective value (Corley and

David, 1982; Malik et al., 1989; Israeli and Wood, 2002). The problem is NP-hard (Ball et al.,

7



1989) and is formulated as a bilevel, max-min optimization problem. However, it can be

reformulated as a single-level problem and solved effectively using mixed inter programming

techniques (Israeli and Wood, 2002). Models focusing on minimizing the maximum flow

by interdiction using a limited budget are solved in a similar manner (Wood, 1993). A

comprehensive review of classical interdiction models can be found in Smith and Song (2020).

The interdictor in a network interdiction problem might have incomplete information about

the network. Borrero et al. (2016) study the shortest path interdiction problem in the setting

where the interdictor removes k arcs at each iteration and, based on the evader’s solution (the

shortest path in the interdicted network), the interdictor obtains information and modifies

its interdiction policy. The findings in this study are later generalized to other interdiction

and bilevel settings (Borrero et al., 2019, 2022)

Another application of interdiction models is to reduce the spread of infections in networks

in cases of disease outbreak or cyber-security threats. Nandi and Medal (2016) study an

interdiction problem in a network with infected and susceptible subsets of nodes. The spread

of infection is represented by the average number of new infections and the average time

to infect half of the susceptible nodes. The interdictor removes edges to minimize different

quantities such as the number of connections between infected and susceptible nodes.

The influence minimization problem in networks is also studied where the interdictor

protects or deactivates a subset of nodes in the network and the evader uses unprotected

nodes to initiate a diffusion process to maximize the total number of influenced nodes. These

problems are solved using heuristics and approximation algorithms (Tanınmış et al., 2019,

2020). One of the methods to solve these bilevel problems is the x-space algorithm proposed

by Tang et al. (2016) which solves the upper and lower bound problems consecutively until

convergence. Recently, an improved version of this algorithm has been proposed by Tanınmış

et al. (2022).

Network interdiction techniques can also be applied to reduce the size of cohesive subgroups

8



in a network. Furini et al. (2019) study the maximum clique interdiction problem where, given

a budget b, the goal is to find a subset of at most b vertices to remove from the graph so that

the clique number in the remaining graph is minimized. They exploit the hereditary property

of cliques to formulate the problem and solve several instances including large-scale social

networks to optimality. Although this approach can be useful to analyze social networks, the

clique structure can be too restrictive as it requires the diameter of the induced subgraph to

be one. To address this issue, different clique relaxations such as k-plex (Balasundaram et al.,

2011), k-core (Seidman, 1983), and s-club (Mokken, 1979) have been introduced that can be

more useful in practice. In Chapter III, we will study the maximum s-club and maximum

k-core interdiction problems.

In all of these examples of network interdiction problems, it is assumed that evaders are

deterministic and their behavior only depends on their objective such as finding a shortest

path in a graph. We can also consider evaders whose actions are described by Markov

processes because they have incomplete information about the network or limited planning

time.

Gutfraind et al. (2009) study an interdiction model with multiple Markovian evaders who

choose edges to traverse based on a random walk defined by a Markovian transition matrix.

Each evader has a target in the network, and the goal of the interdictor is to interdict edges

using a limited budget to increase the probability of capturing evaders before reaching their

targets. They show the NP-hardness of the problem for multiple evaders by a reduction from

the set cover problem and provide a greedy algorithm to find the interdiction set.

Johnson et al. (2014) study two interdiction problems with Markovian evaders. One

problem is called the budgeted interdiction problem and maximizes the number of captured

evaders under a limited budget for node interdiction. The other problem is called the full

interdiction problem and its goal is to capture all evaders at minimum cost. They examine the

complexity of these problems for different classes of special graphs. The budgeted interdiction

9



version is shown to be NP-hard even with a single evader, while the full interdiction problem

with one evader is solvable in polynomial time.

Sefair et al. (2017) consider a system based on a Discrete-Time Markov Chain (DTMC)

where the interdictor protects a subset of nodes with a limited budget while the evader

attacks a set of unprotected nodes leading to changes in the transition probabilities. The

evader’s goal is to minimize the Weighted Expected Hitting Time, while the interdictor seeks

to maximize it. The authors propose a mixed integer linear programming formulation and a

first-order approximation method to solve this problem.

The interdiction of DTMCs has applications in a wide range of systems such as revenue

management in air cargo where the used capacity (weight and volume) is modeled as a DTMC

and the goal is to maximize an expected revenue function that depends on the DTMC’s

probabilities (Han et al., 2010) or controlling infectious diseases where a DTMC describes the

disease spread (Meltzer et al., 2001). In Chapter V, we study an interdiction problem with a

similar setting where, at each step, a transition probability matrix determines the next edge

to be traversed to spread misinformation through the network.

2.2 The maximum s-club problem

A subset of vertices in a graph is an s-club if the distance between every pair of vertices is at

most s in the induced subgraph (Bourjolly et al., 2000). The largest cardinality of an s-club

is called the s-club number of graph G, denoted by ω̄s(G). Detecting a maximum cardinality

s-club, i.e., the maximum s-club problem, is NP-hard in general (Bourjolly et al., 2002) and

in graphs of diameter s+ 1 (Balasundaram et al., 2005). This model is one of several types

of clique relaxations that have been studied in the literature (Pattillo et al., 2013), and it

reduces to a clique when s = 1.

The maximum s-club problem has been extensively studied. The first IP formulation

to solve this problem was proposed by Bourjolly et al. (2002) where a binary variable yt is

10



defined for every chain t with length at most s that links vertices i, j ∈ V and a constraint is

introduced for every pair of vertices {i, j} /∈ E which requires at least one of the variables yt

to take a value of one if both vertices i and j are present in the s-club. When s = 2, the

formulation can be simplified by considering only common neighbors between vertices i and

j and defining the constraint
∑

r∈N(i)∩N(j)

xr ≥ xi + xj − 1 where N(i) is the set of neighbors of

vertex i.

Lu et al. (2018) proposed an algorithm that exploits the s-clique formulation as a relaxation

of the maximum s-club problem. The algorithm is designed based on the fact that every s-club

is also an s-clique where an s-clique S is a subset of vertices such that distG(u, v) ≤ s for every

u, v ∈ S. They proposed a decomposition and branch-and-cut algorithm to eliminate every

s-clique in the graph that is not an s-club. They combined this algorithm with preprocessing

techniques to determine vertices that satisfy the required condition to be in an s-club based

on the size of their distance-s neighborhood. This technique reduces the size of the input

graph for which the s-club problem should be solved.

Salemi and Buchanan (2020) define the concepts of length-s a, b-connector and length-s a, b-

separator and based on these concepts, they propose two integer programming formulations

path-like and cut-like to find a maximum s-club in a graph. Their computational results show

that the cut-like formulation outperforms several previous formulations. As a preprocessing

step to implement this formulation, they modify the heuristic algorithm presented by Bourjolly

et al. (2000) and defined s-th power graph Gs to find a large clique in the graph. As a

result, the size of the input graph reduces significantly in a reasonable time. We will use this

approach to solve the subproblem in our bilevel model in Chapter III.

11



CHAPTER III

COHESIVE SUBGROUP INTERDICTION

3.1 Motivation

Cohesive subgroups in social networks can represent groups of individuals that share core

beliefs, influence each other, and act together as a unit towards a common goal (Wasserman

and Faust, 1994). In more general networks, cohesive subgroup models provide formalizations

of “tightly-knit clusters” (Balasundaram et al., 2011) and therefore have been used in

applications beyond social network analysis, for example, to analyze complex biological

networks (Pasupuleti, 2008; Butenko and Wilhelm, 2006; Balasundaram et al., 2005).

The canonical optimization problem of identifying a particular type of clique relaxation of

maximum cardinality (or weight) has received considerable attention in the literature (Pattillo

et al., 2013; Balasundaram and Pajouh, 2013). In this chapter, we focus on interdicting a

clique relaxation called s-club that models low-diameter clusters. Also, in Section 3.7, we

briefly study the maximum k-core interdiction problem.

As a motivating example for the problem of interdicting low-diameter clusters, consider

the following stylized scenario. Suppose a social media network manager (NM) recognizes that

disinformation is being spread with hashtags #badrumor and #fakenews and suspects that a

coordinated group of adversarial actors whose identities are unknown may be responsible.

Although the NM could ban or deactivate accounts, it would not be effective to do so

arbitrarily. The NM can consider the following graph model to capture this situation, let us

12



refer to it as the rumor graph: the vertex set would include all user accounts using one of

the offending hashtags in their posts; the edge set would include an edge {u, v} if account

u liked or reshared a post by account v that included one of the offending hashtags. We

use an undirected edge to indicate that the accounts represented by the end-points are

related, and not necessarily that one is directing the other. Under the assumption that the

interaction patterns of such suspicious accounts in the rumor graph resembles a cohesive

social subgroup that is capable of quick communication, one could arguably phrase the

NM’s decision problem as one of optimally interdicting (by disabling accounts) all large

low-diameter cohesive subgroups in the rumor graph.

Although we are describing a stylized version of the decision problem faced by the NM,

it can be a reasonable first step in analyzing such problems to devise effective interdiction

policies in practice. To begin with, we choose to model cohesive subgroups of interest in this

rumor network as s-clubs for low values of parameter s that ensure short pairwise distances

inside the cohesive subgroup between members as a surrogate for quick communication

between group members. We also assume that one of the maximum cardinality s-clubs

contains the adversarial accounts and that diminishing its size can impact that group’s ability

to spread disinformation. Furthermore, the other maximum cardinality s-clubs (those not

containing the adversarial actors) are unwittingly helping with the spread of the rumor and

arguably also warrant deactivation.

Interdiction by vertex deletion is the focus of this study. Suppose T ⊂ V is the “deletion

set.” A fundamental difference between interdicting cliques in a graph (Furini et al., 2019)

versus s-clubs in a graph is heredity. If K ⊂ V is a clique in G then K \ T is a clique in

G \ T because the clique property is preserved under vertex deletion. However, the s-club

property is not hereditary under vertex deletion; see Figure 3.1 (Alba, 1973). Consequently,

if S is an s-club in G, we cannot claim that S \ T is an s-club in G \ T for every T ⊆ S. This

fundamental difference drives all of the approaches taken in this work to model and solve the

13



s-club interdiction problem, and differentiates it from the techniques recently proposed for

interdicting cliques (Furini et al., 2019).

Typically, interdiction comes “at a cost.” If there were no restrictions on T , the entire

graph can be deleted. Shortest path and other network flow interdiction problems are often

motivated by applications that justify using a budget b in a constraint that says the size

of T cannot exceed b (Morton et al., 2007; Pan et al., 2003; Israeli and Wood, 2002). The

budget in these settings is derived from physical restrictions such as the number of patrol

vehicles available to intercept smugglers or the number of sensors that can be deployed in

the network for monitoring purposes. In our setting, we avoid the use of a hard budget

constraint as the NM can delete any number of vertices (e.g., by banning or temporarily

disabling user accounts) and may be willing to delete a large number of accounts to stem the

rumor (Spangler, 2018). However, if there is no cost incurred by deleting vertices, we set up

a pointless and trivial problem that would suggest deleting V . Our focus is on identifying

and deleting “club-critical vertices”, and we assume that we incur an interdiction penalty in

doing so, as opposed to a hard budget constraint.

1

2

3

4

5

6

Figure 3.1: The set S = {1, 2, 3, 4, 5} is a 2-club. After deleting any vertex i ∈ S, the set
S \ {i} will not be a 2-club.

14



3.2 Problem statement

We wish to solve the following optimization problem to find an optimal interdiction policy,

that is, a subset of vertices T ∗ that achieves the following minimum:

min
T⊆V
{ω̄s(G \ T ) + α|T |} , (3.1)

where α > 0 is the unit penalty cost of deleting a vertex. We could interpret this choice of

penalty as follows. As the empty set is a feasible solution to problem (3.1), we have:

ω̄s(G \ T ∗) + α|T ∗| ≤ ω̄s(G)

=⇒ ω̄s(G)− ω̄s(G \ T ∗)

|T ∗|
≥ α, assuming T ∗ ̸= ∅.

The ratio of the decrease in the s-club number upon interdiction to the size of an optimal

deletion set (when non-empty) is at least α. In our models, we typically choose α ∈
⋃
k∈N
{k, 1

k
}.

By setting α = k, the NM can use an operating policy that requires the s-club number

decreases by at least k for each vertex deleted. In settings where we are prepared to delete

a large number of vertices to decrease the s-club number, we can delete up to k times the

decrease that we can produce by setting α = 1/k.

3.3 A preliminary formulation

An MILP formulation of problem (3.1) can be derived by using standard techniques in

interdiction (Fischetti et al., 2018, 2019; Smith and Song, 2020). To this end, we use vectors

x ∈ {0, 1}|V | as incidence vectors of a deletion set, thus xv = 1 if v is deleted and zero otherwise.

We let T x denote the set of vertices deleted in solution x, thus T x = {v ∈ V | xv = 1}.

Henceforth, we also use the convenient short form x(S) in place of
∑

v∈S xv for S ⊆ V . In

15



terms of x, problem (3.1) is given by:

zs,α = min
{
ω̄s(G \ T x) + αx(V )

∣∣ x ∈ {0, 1}|V |} . (3.2)

The bilevel optimization problem (3.2) can be reformulated as the following single-level MILP:

zs,α = min θ + αx(V ) (3.3a)

s.t. θ ≥ |S| − |S|x(S) ∀S ∈ S (3.3b)

x ∈ {0, 1}|V |, θ ∈ R+, (3.3c)

where S is the collection of all s-clubs in G. The right-hand side of Constraint (3.3b) becomes

redundant if a vertex in S is interdicted. Otherwise, the cardinality of the maximum s-club

in the interdicted graph G \ T x should be at least |S|.

Although valid, the direct implementation of Formulation (3.3) in an MILP solver is

untenable for large instances as it requires enumerating exponentially many s-clubs in G in

the worst case. Nevertheless, this formulation can be used in a delayed constraint generation

algorithm as follows. Let S0 ⊆ S be an initial collection of s-clubs. In iteration i = 0, 1, . . .,

the algorithm solves the initial relaxation problem:

min
{
θ + αx(V )

∣∣ θ ≥ |S| − |S|x(S) ∀S ∈ S i, x ∈ {0, 1}|V |, θ ∈ R+

}
(3.4)

and recovers an optimal solution (θi, xi). If θi ≥ ω̄s(G \ T xi
) then it follows that (θi, xi) is an

optimal solution to problem (3.3), and the algorithm terminates. Otherwise, the algorithm

identifies an s-club S ′ in G \ T xi
such that |S ′| > θi and updates S i+1 := S i ∪ {S ′}.

Clearly, this delayed constraint generation algorithm converges to an optimal solution

of problem (3.3) in a finite number of steps because S is a finite set. However, it has two

16



important limitations. First, each iteration requires solving an MILP initial relaxation,

and the separation problem involves solving the NP-hard maximum s-club problem in the

interdicted graph. Second, Constraint (3.3b) will become redundant “easily” if any vertex in

S is interdicted. (Contrast this with the clique interdiction counterpart studied by Furini et al.

(2019); if S were a clique in G, the constraint would say θ ≥ |S| − x(S) as the clique property

is hereditary under vertex deletion.) This behavior can result in weak LP relaxations and

it is exacerbated in the presence of numerous “nearly” identical s-clubs, each requiring the

addition of a distinct constraint of the form (3.3b) to the initial problem. There is empirical

evidence that having a large number of similar s-clubs can be very detrimental for such delayed

constraint generation approaches from a computational perspective, especially when the

generated constraint is arguably not very strong (Lu et al., 2018; Moradi and Balasundaram,

2018). In the following, we develop techniques that help alleviate the aforementioned concerns

by exploiting graph-theoretic properties of s-clubs.

3.4 Exploiting heredity in s-clubs

In this section, we discuss an alternative formulation for the s-club interdiction problem

that addresses the issues that arise from using constraints (3.3b) in a delayed constraint

generation framework. The formulation is based on the observation that removing vertices of

an s-club does not necessarily imply that the remaining vertices do not form an s-club. In

other words, the formulation exploits the fact that some s-clubs can be partially hereditary

in the following sense.

Definition 6. Given a graph G = (V,E), an s-club S in G, and H ⊆ S, we say that S is an

H-hereditary s-club if diam(G[S \ T ]) ≤ s for every T ⊆ H.

Observe that every s-club is trivially ∅-hereditary. Furthermore, an s-club S could be

simultaneously H-hereditary and J-hereditary where J and H are incomparable subsets of

17



S. Therefore, we are only interested in H-hereditary s-clubs of S for which H is maximal

with respect to inclusion of vertices from S \H. Given an H-hereditary s-club S, we refer

to the partition {H,S \H} as the H-partition of S and it is said to be non-trivial if H ̸= ∅.

Figure 3.2 illustrates this idea using 2-clubs. Pertinently, an s-club S can be S-hereditary

(i.e., truly hereditary) if and only if S is a clique.

1

2

3

4

56

7

8

Figure 3.2: The set Ŝ = {1, 2, 3, 4, 5} is a 2-club that admits no non-trivial H-partitions. The
2-club S̃ = {1, 2, 3, 6, 7, 8} on the other hand is H̃-hereditary with H̃ = {2, 3, 6, 7, 8}.

3.5 Alternate formulation using hereditary s-clubs

Given an H-hereditary s-club S, define the following set:

Λ(S,H) :=
{
(θ, x) ∈ R+ × {0, 1}|V | | θ ≥ |S| − x(H)− |S|x(S \H)

}
, (3.5)

and the following collection of subsets of vertices:

C(S,H) := {S \ T | T ⊆ H} . (3.6)

In words, C(S,H) is the collection of all s-clubs generated from S by deleting every possible

subset of H and C(S, ∅) = {S}. The following two lemmas provide the elements that help us

to improve Formulation (3.3).

Lemma 1. Let S be an H-hereditary s-club, and consider an arbitrary point (θ̂, x̂) ∈ Λ(S,H).

18



Then the point (θ̂, x̂) satisfies the following inequalities:

θ ≥ |U | − |U |x(U) ∀U ∈ C(S,H). (3.7)

Proof. Consider an arbitrary U ∈ C(S,H) and suppose U = S \ T for some T ⊆ H. Clearly,

S \H ⊆ U . Suppose x̂(S \H) ≥ 1. Then, we also have x̂(U) ≥ 1. By definition of the set

Λ(S,H) we know that θ̂ ≥ 0, and hence (θ̂, x̂) satisfies (3.7).

Now suppose x̂(S \H) = 0. Then by definition (3.5), the point (θ̂, x̂) satisfies:

θ̂ ≥ |S| − x̂(H) = |U |+ |T | − x̂(H ∩ T )− x̂(H ∩ U),

because U and T partition S which contains H. As |T | − x̂(H ∩ T ) ≥ 0, it follows that (θ̂, x̂)

satisfies θ̂ ≥ |U | − x̂(H ∩ U). Again, as S \H and H partition S which contains U , we know

that

x̂(U) = x̂((S \H) ∩ U) + x̂(H ∩ U) = x̂(H ∩ U),

because x̂(S \H) = 0. Hence, the point (θ̂, x̂) satisfies θ ≥ |U | − x(U) ≥ |U | − |U |x(U) as

claimed.

Based on Lemma 1, when we have two s-clubs U and S such that U ∈ C(S,H), we can

replace Constraint (3.3b) corresponding to U by the constraint defining the set Λ(S,H) in (3.5)

without compromising the correctness of Formulation (3.3). Hence, |C(S,H)| constraints of

type (3.3b) can be replaced by a single constraint. For example, the 2-club S̃ = {1, 2, 3, 6, 7, 8}

in Figure 3.2 is H̃-hereditary for H̃ = {2, 3, 6, 7, 8}. Hence, we can replace constraints (3.3b)

corresponding to all 2-clubs obtained by deleting subsets of H̃ by the single constraint

θ ≥ |S̃| − x(H̃)− |S̃|x(S̃ \ H̃).

Remark 1. It is important to contrast the aforementioned discussion against incorrectly

reformulating (3.3) using Λ(S,H)-type constraints only for s-clubs that are maximal by

19



inclusion. For example, consider the 2-clubs Ŝ = {1, 2, 3, 4, 5} and Û = {2, 4, 5} in Figure 3.2.

Although, Û ⊂ Ŝ, we know that Û ̸∈ C(Ŝ, H) for any non-empty H ⊆ Ŝ because Ŝ does

not admit a non-trivial hereditary partition. Therefore, the omission of the constraint

θ ≥ |Û | − |Û |x(Û) from the formulation would be a mistake because the resulting objective

value of the solution defined by xv = 1 for all v ∈ V \ Û and xv = 0 for all v ∈ Û would be

zero, rather than the correct objective value of |Û |.

The notion of H-heredity leads us to consider the following in regards to the strength

of the Λ(S,H)-inequality. If the same s-club S is also J-hereditary, we obtain a different

Λ(S, J)-inequality that is also valid. Is there a particular choice of H that makes the resulting

constraint tighter? In this case, maximality of H with respect to the inclusion of vertices

from S is the answer. Given an s-club S, we define the set H(S) as follows:

H(S) := {H ⊆ S | S is an H-hereditary s-club}. (3.8)

Because ∅ ∈ H(S) for every s-club S in G, by our definition H(S) is always non-empty.

Lemma 2. Let S be an s-club such that H, J ∈ H(S). If J ⊂ H then Λ(S,H) ⊆ Λ(S, J).

Proof. Let (θ, x) ∈ Λ(S,H). If x(S \ J) ≥ 1, we have |S| − x(J)− |S|x(S \ J) ≤ 0 and θ ≥ 0.

Hence, (θ, x) ∈ Λ(S, J). Now suppose x(S \ J) = 0. Then, it follows that x(S \H) = 0 and

x(H \J) = 0 as J ⊂ H ⊆ S. Hence, (θ, x) satisfies θ ≥ |S|−x(H) ≥ 0. Because x(H \J) = 0,

it also implies that θ ≥ |S| − x(J) ≥ 0 and (θ, x) ∈ Λ(S, J), as desired.

Based on Lemmas 1 and 2, we can replace Constraint (3.3b) for an s-club U with the

tighter constraint defining Λ(S,H) if U ∈ C(S,H), and we only require the constraint for

H ∈ H(S) that is maximal with respect to inclusion of vertices from S in order to preserve the

correctness of the MILP formulation. However, it should be noted that even if the collection

H(S) is limited only to maximal sets, there could be several such maximal elements (see

20



example in Figure 3.3).

1

2

3

4

5

6

Figure 3.3: H = {1} and J = {4, 5} are maximal sets in H(S) = {{1}, {4}, {5}, {4, 5}} for
the 2-club S = {1, 2, 3, 4, 5, 6}.

Let us define H∗(S) as the collection of maximal sets in H(S):

H∗(S) := {H ∈ H(S) | there is no J ∈ H(S) such that H ⊂ J}. (3.9)

Note that if S does not admit a non-trivial hereditary s-club description (e.g., Ŝ in Figure 3.2),

H∗(S) = H(S) = {∅}. We are now able to state the following result, which is an immediate

consequence of the foregoing results and observations.

Lemma 3. Given an s-club S in G = (V,E), define U(S) as follows:

U(S) :=
⋃

H∈H∗(S)

C(S,H), (3.10)

where C(S,H) is defined in (3.6), and define Λ∗(S) as:

Λ∗(S) :=
⋂

H∈H∗(S)

Λ(S,H). (3.11)

If (θ, x) ∈ Λ∗(S), then (θ, x) ∈ Λ(S,H) for all H ∈ H(S) and, moreover, (θ, x) satisfies

θ ≥ |U | − |U |x(U) ∀U ∈ U(S). (3.12)

21



As a consequence of Lemma 3 we can replace all the constraints in Formulation (3.3)

associated with all the s-clubs in U(S) by |H∗(S)| stronger constraints to obtain Formula-

tion (3.14) described in Proposition 1 that follows. Depending on the particular s-club, such

reduction in the number of constraints can be very significant as illustrated by the following

remark.

Remark 2. A vertex v and its neighbors, i.e., the closed neighborhood NG[v], is an NG(v)-

hereditary s-club for every s ≥ 2. Every possible subset of NG(v) is a deletion set T such that

NG[v] \ T is an s-club, corresponding to exponentially many constraints in Formulation (3.3).

These can all be replaced by a stronger constraint θ ≥ degG(v)+1−x(NG(v))−(degG(v)+1)xv.

Proposition 1. Define C∗, the set of critical s-clubs in the graph G = (V,E), as follows:

C∗ = {S ∈ S | no s-club S ′ ⊃ S exists such that S ∈ U(S ′)}. (3.13)

The following is an equivalent reformulation of problem (3.3):

zs,α = min θ + αx(V ) (3.14a)

s.t. θ ≥ |S| − x(H)− |S|x(S \H) ∀H ∈ H∗(S),∀S ∈ C∗ (3.14b)

x ∈ {0, 1}|V |, θ ∈ R+. (3.14c)

Proof. We prove that any feasible solution of (3.14) is feasible to (3.3) and vice versa. First,

notice that Lemmas 1, 2, and 3 imply that any feasible solution of (3.14) is feasible to (3.3).

Now, suppose (θ̂, x̂) is feasible to (3.3), which implies that θ̂ ≥ ω̄s(G \ T x̂) ≥ |S ′| − |S ′|x̂(S ′)

for all S ′ ∈ S. Consider S ∈ C∗ and H ∈ H∗(S), chosen arbitrarily, and define r(S,H, x̂) =

|S|− x̂(H)−|S|x̂(S \H). Observe that the claim is proven if we can show that θ̂ ≥ r(S,H, x̂).

We consider the following three cases:

(i) S ⊆ V \ T x̂: No vertex of S is interdicted in this case and hence, x̂(H) = x̂(S \H) = 0

22



and r(S,H, x̂) = |S|. Because S ∈ S, we have that θ̂ ≥ ω̄s(G \ T x̂) ≥ |S| and the claim

holds.

(ii) (S \H) ∩ T x̂ ̸= ∅: At least one of the vertices interdicted by x̂ belongs to S \H. In

this case, x̂(S \H) ≥ 1, which implies that r(S,H, x̂) ≤ 0, and the claim holds.

(iii) (S\H)∩T x̂ = ∅ and H∩T x̂ ̸= ∅: Because any vertex in S interdicted by x̂ belongs to H,

we know that S \T x̂ is an s-club in G\T x̂, and it follows that θ̂ ≥ ω̄2(G\T x̂) ≥ |S \T x̂|.

In this case, r(S,H, x̂) = |S| − |H ∩ T x̂| = |S \ (H ∩ T x̂)|. As (S \H) ∩ T x̂ = ∅, we

have S ∩ T x̂ = H ∩ T x̂ and S \ (H ∩ T x̂) = S \ T x̂. Therefore, r(S,H, x̂) = |S \ T x̂| and

the claim holds.

Thus, we can conclude that any feasible solution of (3.3) is feasible to (3.14).

Besides having significantly less constraints, Formulation (3.14) does not have redundancies

in the sense that all constraints of the form (3.14b) are necessary in the description of the

LP relaxation of (3.14); see Proposition 3 in Section 3.5.1.

Two other questions that arise regarding Formulation (3.14) concern the strength of its

LP relaxation and whether membership of an s-club in C∗ is easily verifiable. Remark 3 that

follows, shows that the LP relaxations of Formulations (3.3) and (3.14) are incomparable.

(Hence, both formulations are investigated computationally in Section 4.2.) Proposition 2

that follows provides an alternate characterization of s-clubs in C∗.

Remark 3. Let P and P ′ denote the LP relaxations of Formulations (3.14) and (3.3),

respectively. There are instances where P is not contained in P ′ and vice versa. In general,

for s ≥ 2, neither LP relaxation contains the other. To see that P ′ ̸⊆ P , consider an s-club

S ∈ C∗ and a non-empty H ∈ H∗(S) and construct the point (θ̂, x̂) as follows:

23



x̂v =


1, if v ̸∈ S

0, if v ∈ S \H

1/2, if v ∈ H,

and θ̂ = |S| − |H|. First we show that (θ̂, x̂) ∈ P ′. For any U ∈ S, define q(U, x) :=

|U |(1−x(U)), the right-hand side of Constraint (3.3b). If U \S is not empty, then q(U, x̂) ≤ 0.

On the other hand, if U ⊆ S, we have q(U, x̂) = |U |(1 − |U ∩ H|/2). It follows that the

maximum value of q(U, x̂) over U ∈ S is |S| − |H|, achieved when U = S \H.

Hence, the point (θ̂, x̂) ∈ P ′. Furthermore, (θ̂, x̂) /∈ P as it violates Constraint (3.14b)

for the chosen S and H when |H| ≥ 1.

To see that P ̸⊆ P ′, we consider a more specific counterexample applicable for any s ≥ 2.

Suppose that G = (V,E) is a five-vertex star with center 1 and leaves {2,3,4,5}. In this case,

C∗ =
{
V
}
with H∗(V ) =

{
V \ {1}

}
. The LP relaxation of Formulation (3.14) becomes:

min θ + αx(V )

s.t. θ ≥ 5− x2 − x3 − x4 − x5 − 5x1,

x ∈ [0, 1]5, θ ≥ 0.

Consider the point θ̄ = 13/12, x̄1 = 1/3, x̄2 = 0, x̄3 = x̄4 = x̄5 = 1. Observe that (θ̄, x̄)

belongs to P but does not belong to P ′ because Formulation (3.3) includes the constraint

θ ≥ 2(1− x1 − x2) corresponding to the s-club {1, 2} that is violated by (θ̄, x̄).

Remark 4. For non-empty H, Constraint (3.14b) can be tightened using a smaller ‘big-M’

coefficient as θ ≥ |S|−x(H)− (|S|−1)x(S \H) resulting in a valid formulation with a tighter

LP relaxation. However, the conclusion of Remark 3 that the LP relaxations are incomparable

continues to hold even using the modified constraint. This can be verified using the same

24



counterexamples as in Remark 3. As this modification did not improve the computational

performance significantly in our preliminary numerical experiments, we use Constraint (3.14b)

with the ‘big-M’ coefficient of |S| for simplicity in the subsequent discussions and in our

computational studies.

Another question of interest related to Formulation (3.14) is about the relationship between

criticality of an s-club as defined in Proposition 1 and maximality of an s-club (by vertex

inclusion). Proposition 2 we establish next shows that maximality is a stricter condition

than criticality, that is, every maximal s-club is also a critical s-club although the converse

is not true. Consider the example used earlier in Remark 1. The 2-club Ŝ = {1, 2, 3, 4, 5}

in Figure 3.2 strictly contains the 2-club Û = {2, 4, 5}. The 2-club Ŝ is both critical and

maximal, while Û is clearly not maximal by inclusion. However, Û is critical according to

the definition in Proposition 1 because Ŝ, which is the unique 2-club strictly containing Û ,

does not admit any non-trivial H-partitions. Indeed, criticality is equivalent to a weaker

requirement that we refer to as one-step maximality for convenience.

Definition 7. We say that an s-club S in graph G = (V,E) is one-step maximal if and only

if S ∪ {v} is not an s-club for any v ∈ V \ S.

Observe that if an s-club is maximal then it is also one-step maximal, but the converse

is not true. The 2-club Û is one-step maximal but it is not maximal by inclusion in the

conventional sense. It is also easy to see that for cliques and other hereditary properties,

one-step maximality is equivalent to inclusionwise maximality.

Proposition 2. Consider an s-club S in graph G = (V,E). Then, S ∈ C∗ if and only if S is

one-step maximal.

Proof. Suppose that an s-club U is not critical. Then, there exists another s-club S and

a non-empty H ∈ H∗(S), such that U ∈ C(S,H). In particular, U = S \ T for some

25



non-empty T ⊆ H and U is also an s-club because S is an H-hereditary s-club. Now, for

a vertex v ∈ T and consider U ′ = U ∪ {v}, distinct from U by construction. Note that

U ′ = (S \T )∪{v} = S \(T \{v}) is also an s-club because T \{v} ⊆ H and S is H-hereditary.

Then, it follows that U is not one-step maximal.

Conversely, if U is an s-club that is not one-step maximal, then there exists some vertex

v ∈ V \ U such that U ∪ {v} is an s-club. Then, U ∪ {v} is a {v}-hereditary s-club. Hence,

U ∈ C(U ∪ {v}, {v}) and is therefore not critical.

Although deciding if an s-club is maximal by inclusion is coNP-complete (Pajouh and

Balasundaram, 2012), Proposition 2 enables us to verify whether a given s-club S is critical

in polynomial time. Nonetheless, using Formulation (3.14) directly is not expected to be

computationally viable because it requires the enumeration of all s-clubs in C∗ and their

maximal hereditary partitions based on H∗(·). Pertinently, given an s-club S, the complexity

of enumerating H∗(S) or identifying a member in it is also unclear.

However, recall the discussion in Section 3.3 on a delayed constraint generation algorithm.

In each iteration i, such a sequential cutting plane method would maintain a collection of s-

clubs S i ⊂ S and for each S ∈ S i it would also maintain collections H̃(S) ⊂ H(S). Then, the

algorithm solves the following initial relaxation MILP (compare with initial problem (3.4)):

zis,α = min
x∈{0,1}|V |

θ∈R+

{
θ + αx(V )

∣∣∣ θ ≥ |S| − x(H)− |S|x(S \H) ∀S ∈ S i, H ∈ H̃(S)
}
. (3.15)

Denote the optimal solution found by (θi, xi), we proceed similarly by identifying an

s-club S ′ in the interdicted graph G \ T xi
such that |S ′| > θi, if it exists; otherwise, the

solution is feasible and optimal. If found, an important difference is that now, instead of

adding the constraint θ ≥ |S ′| − |S ′|x(S ′), we will seek to identify a member H ′ ∈ H∗(S ′)

(if that is not possible, find a member H ′ ∈ H(S ′)). Then, we can add the constraint

θ ≥ |S ′|−x(H ′)−|S ′|x(S ′\H ′), update S i+1 with S i∪{S ′}, update H̃(S ′) with H̃(S ′)∪{H ′},

26



and then re-solve the initial relaxation. Alternately, we could add a round of constraints by

enumerating multiple members of H(S ′). Nonetheless, the Λ(S ′, H) inequality is violated

by (θi, xi) for every H ∈ H(S ′) as xi(S ′) = 0; recall that the s-club S ′ was found in the

interdicted graph.

The foregoing discussion highlights the important considerations when separating Λ(S,H)-

inequalities. In particular, how can we detect an H ∈ H∗(S)? We address this question in

Section 3.6. We close this section by discussing polyhedral properties of the LP relaxation

and of the convex hull of feasible solutions of Formulation (3.14).

3.5.1 Facial structure of associated polyhedra

Here, we show that the LP relaxation of Formulation (3.14) has no redundant constraints, then

we show three types of facets of the convex hull of the formulation based on maximal cliques,

critical stars, and critical edge stars of G under an additional assumption of independence

among some vertices in the s-club.

First, we discuss the results needed to prove Proposition 3. The LP relaxation P of

Formulation (3.14) is full dimensional because (θ = |V |, xv = 1/|V | : v ∈ V ) ∈ interior(P ).

Consider an S ∈ C∗ and H ∈ H∗(S) that define the face F (S,H) of the polyhedron P given

by the corresponding (S,H)-constraint (3.14b), that is,

F (S,H) := {(θ, x) ∈ P | θ = r(S,H, x)} . (3.16)

where we recall that r(S,H, x) = |S| − x(H)− |S|x(S \H).

Lemma 4. The face F (S,H) in equation (3.16) is not contained within any of the following

faces of P : {(θ, x) ∈ P | θ = 0} and {(θ, x) ∈ P | xv = i} for each v ∈ V and i ∈ {0, 1}.

Proof. Define θ′ = |S| − |H|, x′
v = 0 if v ∈ S \ H and x′

v = 1 if v ∈ (V \ S) ∪ H. Note

that (θ′, x′) must belong to P . For any S ′ ∈ C∗ and H ′ ∈ H∗(S ′), if x′(S ′ \ H ′) ≥ 1, then

27



r(S ′, H ′, x′) ≤ 0 ≤ θ′. On the other hand if x′(S ′ \ H ′) = 0, then S ′ \ H ′ ⊆ S \ H, and

θ′ = |S|−|H| ≥ |S ′|−|H ′| = r(S ′, H ′, x′). As r(S,H, x′) = θ′, we know that (θ′, x′) ∈ F (S,H).

Moreover, point (θ′, x′) is not in the (xv = 1)-face of v ∈ S \H and not in the (xv = 0)-face

of v ∈ (V \ S) ∪H.

Now consider another point defined as θ̃ = |S|, x̃v = 0 if v ∈ S and x̃v = 1 if v ∈ V \ S.

Note that (θ̃, x̃) ∈ F (S,H) based on similar arguments.

The point (θ̃, x̃) is not contained in the (xv = 1)-face of v ∈ S, not contained in the

(xv = 0)-face of v ∈ V \ S, and not contained in the (θ = 0)-face as |S| ≥ 1. Next we show

that F (S,H) can neither belong to the (xv = 0)-face for v ∈ S \H nor to the (xv = 1)-face

for v ∈ V \ S to complete the proof.

For any U ∈ C∗, J ∈ H∗(U), and x ∈ [0, 1]|V |, we know that r(U, J, x̃) ≤ |S| = θ̃ for any

U ∈ C∗, J ∈ H∗(U) as (θ̃, x̃) ∈ P . If in addition U ̸= S, we claim that r(U, J, x̃) ≤ |S| − 1.

Indeed, if U ⊂ S or U ∩ S = ∅ then the claim follows from the definition of x̃. Thus, suppose

that U ∩ S ̸= ∅ and U \ S ̸= ∅.

If U ∩ S ⊂ S, i.e., S \ U is non-empty, then

r(U, J, x̃) = |U |− |J \S|− |U |× |(U \J)\S| ≤ |U |− |J \S|− |(U \J)\S| = |U ∩S| ≤ |S|−1.

Now suppose S ⊂ U . We also know that U \J ≠ ∅, as otherwise U is a clique that contains

S, which contradicts S ∈ C∗. If in addition, (U \ J) ∩ (V \ S) = ∅, it follows that U \ J ⊆ S.

Consider the following relationships: U \ J ⊆ S ⊂ U , which implies that U \ S ⊆ J . Hence,

S can be obtained from U by deleting U \ S ∈ H(U), a contradiction to S ∈ C∗. Therefore, if

S ⊂ U it must be the case that (U \J)∩ (V \S) ̸= ∅. If so, we obtain r(U, J, x̃) ≤ 0 ≤ |S|−1,

as desired. So the claim holds.

We are now ready to demonstrate a point (θ̂, x̂) ∈ F (S,H) that is not contained in the

(xv = 0)-face for an arbitrarily chosen v ∈ S \H. Define x̂u = x̃u ∀u ̸= v and with x̂v = 1/|S|;

28



let θ̂ = |S|− 1. Then, r(S,H, x̂) = |S|− 1 and therefore (θ̂, x̂) satisfies the equality constraint

in F (S,H). On the other hand, as x̂ > x̃ we obtain r(U, J, x̂) ≤ r(U, J, x̃) for any U ∈ C∗

and J ∈ H∗(U). Therefore, as r(U, J, x̃) ≤ |S| − 1 = θ̂, we conclude that θ̂ ≥ r(U, J, x̂) for

any U ∈ C∗ and J ∈ H∗(U). In other words, (θ̂, x̂) belongs to F (S,H) but it does not belong

into the face of P induced by xv = 0.

Now we demonstrate a point (θ̄, x̄) ∈ F (S,H) that is not contained in the (xv = 1)-face for

an arbitrarily chosen v ∈ V \S. Consider the same x̃ as in the previous case and define x̄u = x̃u

for each u ≠ v and set x̄v = 1− ϵ, where the positive constant ϵ < 1/|V |, and let θ̄ = θ̃ = |S|.

Observe that r(S,H, x̄) = r(S,H, x̃) and therefore (θ̄, x̄) satisfies the constraint defining

F (S,H) at equality. Similarly, r(U, J, x̄) = r(U, J, x̃) for any s-club U that does not contain

vertex v. Hence, if v ̸∈ U , (θ̄, x̄) satisfies the corresponding constraint θ ≥ r(U, J, x). If v ∈ J ,

then r(U, J, x̄) = r(U, J, x̃) + ϵ ≤ |S| − 1 + 1/|V | < |S| = θ̄, thus (θ̄, x̄) satisfies the constraint

θ ≥ r(U, J, x). Finally, if v ∈ U \J , then r(U, J, x̄) = r(U, J, x̃)+ ϵ|U | ≤ |S| − 1+1 = |S| = θ̄.

Again (θ̄, x̄) satisfies the constraint θ ≥ r(U, J, x) if v ∈ U \ J . Hence, (θ̄, x̄) ∈ F (S,H), but

it does not belong to the face induced by xv = 1. Hence, F (S,H) is not contained within

any of the trivial faces of P .

Proposition 3. Every Constraint (3.14b) induces a facet of the LP relaxation polyhedron

of (3.14).

Proof. Consider Ŝ ∈ C∗ and Ĥ ∈ H∗(Ŝ) also chosen arbitrarily such that (S,H) ̸= (Ŝ, Ĥ).

We claim that there exists a point (θ̃, x̃) ∈ F (S,H) such that (θ̃, x̃) /∈ F (Ŝ, Ĥ); this assertion

in conjunction with Lemma 4 would yield the desired result. This is because, if F (S,H) \

F (Ŝ, Ĥ) ̸= ∅, we know that the face F (S,H) cannot be completely contained in the face

F (Ŝ, Ĥ). Since the latter is arbitrary, it shows that no other inequality (3.14b) induces a

face of P that contains F (S,H). Therefore, F (S,H) must be maximal.

First, we assume that Ŝ = S. It then follows that Ĥ ̸= H, which in turn implies that

29



S \H ≠ ∅; recall that if S = H, then S = Ŝ must be a clique, in which case H∗(Ŝ) = {Ŝ} as

it only contains maximal members. Consider the point constructed as follows: θ̃ = |S| − |H|,

x̃v = 0 if v ∈ S \ H and x̃v = 1 if v ∈ (V \ S) ∪ H. Note that (θ̃, x̃) ∈ F (S,H) as the

defining inequality is active at (θ̃, x̃) and the point belongs to P (easy to verify). Now,

because H, Ĥ ∈ H∗(S), then H is not contained in Ĥ and vice versa. This observation

implies that S \ Ĥ is not contained in S \ H, consequently x̃(S \ Ĥ) ≥ 1. Therefore,

|Ŝ| − x̃(Ĥ)− |Ŝ|x̃(Ŝ \ Ĥ) ≤ 0 and θ̃ > 0, which implies that (θ̃, x̃) ̸∈ F (Ŝ, Ĥ).

Now we assume that S ̸= Ŝ and consider the following point: θ̃ = |S|, x̃v = 0 if v ∈ S

and x̃v = 1 if v ∈ V \ S. Note that (θ̃, x̃) ∈ F (S,H). Suppose that Ŝ \ Ĥ is not contained

in S. Then, x̃(Ŝ \ Ĥ) ≥ 1 and therefore |Ŝ| − x̃(Ĥ) − x̃(Ŝ \ Ĥ) ≤ 0, which implies that

(θ̃, x̃) ̸∈ F (Ŝ, Ĥ) as θ̃ = |S| ≥ 1. Next consider the case where Ŝ \ Ĥ ⊆ S. Because S, Ŝ ∈ C∗,

by the definition of C∗ we know that Ŝ \ Ĥ ≠ S; hence, the containment must be strict.

Now, partition Ĥ as Ĥ = Ĥ1 ∪ Ĥ2, where Ĥ1 = Ĥ \ S and Ĥ2 = Ĥ ∩ S. From the fact

that Ŝ \ Ĥ ⊂ S, it follows that the right-hand side of the constraint inducing face F (Ŝ, Ĥ)

evaluated at (θ̃, x̃) becomes:

|Ŝ| − x̃(Ĥ)− x̃(Ŝ \ Ĥ) = |Ŝ| − x̃(Ĥ) = |Ŝ| − |Ĥ1|.

Now, we claim that |Ŝ| − |Ĥ1| < |S|. Suppose, for the sake of contradiction that this is

not the case, i.e, |Ŝ| − |Ĥ1| = |S|. Then, as Ŝ \ Ĥ1 ⊆ S this would imply that Ŝ \ Ĥ1 = S.

However, this would contradict the definition of C∗ as S ∈ C∗. Therefore, |Ŝ|− |Ĥ1| < |S| = θ̃

implying that (θ̃, x̃) ̸∈ F (Ŝ, Ĥ), which completes the proof.

The result in Proposition 3 indicates the importance of critical s-clubs in C∗ (and the

maximal members in H∗(S) for every critical s-club S) in formulating this problem. It further

emphasizes the fact that no constraint of type (3.14b) is dominated by another of this type

in the associated LP relaxation. This result also motivates the facets of the convex hull

30



of feasible solutions to Formulation (3.14) we derive based on specially structured s-clubs.

These results are presented next.

Let P denote the convex hull of the set of feasible solutions of Formulation (3.14). As it is

to be expected, constraints (3.14b) do not yield facets of P in general because of the ‘big-M’

type constant |S| in the constraint. To identify facets of P, we begin with an inequality

that is known to induce a facet of the clique interdiction counterpart. Furini et al. (2019)

formulate the clique interdiction problem (with an interdiction budget instead of a penalty)

using the following constraints:

θ ≥ |K| − x(K) ∀K ∈ K, (3.17)

where K is the collection of all cliques in G. Because the clique property is hereditary, there

is no need for a ‘big-M’ coefficient in Constraint (3.17) to make the constraint redundant if a

vertex in K is interdicted. Furini et al. (2019) further show that inequality (3.17) induces a

facet of the convex hull of feasible solutions to their budget-constrained clique interdiction

problem under suitable conditions, one of which is the maximality of clique K.

Cliques are s-clubs for every s ≥ 2 and remain so if some vertices are interdicted. So

the inequality (3.17) is valid for the s-club interdiction problem as well, and it is reasonable

to ask if they induce facets when the clique K satisfies some additional requirement (like

maximality). Next, we provide a result that generalizes these facets to s-clubs, for any s ≥ 2.

For a given subset of vertices Q ⊆ V , let PQ denote the face of the convex hull P in

which the vertices of Q are not interdicted, that is, PQ = P ∩ {(θ, x) | xv = 0 ∀v ∈ Q} (see

Lemmas 5 and 6 regarding the “zero facets” of P). One can consider PQ as the convex

hull of interest at a node of a branch-and-cut tree where the variables corresponding to Q

have been fixed to zero. However, we are more interested in the case where Q = S \H for

some H-hereditary s-club S when certain facets of PQ can be readily derived, as shown in

31



Theorem 1.

Lemma 5. Consider a non-empty graph G = (V,E) and positive integer s. The convex hull

of feasible solutions to Formulation (3.14), denoted by P, is full dimensional.

Proof. Let ev denote the |V |-dimensional unit vector with v-th component at one. It is easy

to verify that the following |V | + 2 points in P, (θ = |V |, x = ev) ∈ P for each v ∈ V ,

(θ = |V |, x = 0), and (θ = 0, x = 1), are affinely independent.

Lemma 6. Consider a non-empty graph G = (V,E) and positive integer s. The valid

inequality xv ≥ 0 induces a facet of P for each v ∈ V .

Proof. Let the “zero face” corresponding to vertex v be denoted as Fv := {(θ, x) ∈ P | xv = 0}.

As dim(P) = |V |+1, we demonstrate the same number of affinely independent points contained

in Fv to establish this claim. The following can be easily verified as affinely independent points:

(θ = |V |, x = eu) ∈ P for each u ∈ V \ {v}, (θ = |V |, x = 0), and (θ = 1, x = 1− ev).

Theorem 1. Let S ∈ C∗ be an H-hereditary s-club. Then the following inequality is valid for

PS\H and induces a facet of PS\H for any positive integer s:

θ ≥ |S| − x(H). (3.18)

Proof. Consider an s-club S ∈ C∗ and an H ∈ H(S). Note that S \H may be empty if

S = H is a clique. We know from Lemma 6 that PS\H := P ∩ {(θ, x) | xv = 0 ∀v ∈ S \H} is

a face of P , and hence,

dim(PS\H) = dim(P)− |S \H|.

The inequality θ ≥ |S| − x(H) is valid for PS\H because xv = 0 for every v ∈ S \H and

S is H-hereditary. The following collection of dim(PS\H) points can be easily verified to be

32



contained in the face,

FQ := {(θ, x) ∈ PS\H | θ = |S| − x(H)}.

1. Construct the first |H| points (θ̂, x̂) for every vertex u ∈ H where θ̂ = |S| − 1 and x̂ is

defined as

x̂v =


1, if v = u,

1, if v ∈ V \ S,

0, if v ∈ S \ {u}.

2. Construct the next |V \ S| points (θ̂, x̂) for every vertex u ∈ V \ S where θ̂ = |S| and x̂

is defined as

x̂v =


0, if v ∈ S ∪ {u}

1, if v ∈ V \ (S ∪ {u}).

Note that because S is a critical s-club, S ∪ {u} cannot be an s-club based on Proposi-

tion 2.

3. Finally consider the point, (θ̂, x̂) where θ̂ = |S| and x̂ defined as

x̂v =


0, if v ∈ S

1, if v ∈ V \ S.

The foregoing dim(PS\H) = |V |+1−|S|+|H| points can be verified to be affinely independent,

establishing our claim.

Although H is not required to be a maximal member of H(S) for Theorem 1 to hold, it

is relevant in the following sense. Such an inequality is valid (without lifting the variables in

S \H) only locally in the nodes of a branch-and-cut tree where the corresponding variables

33



have been fixed to zero. It could therefore be argued that larger H ∈ H(S) will make this

inequality usable higher up in the branch-and-cut tree where it could be even more effective.

This observation leads us to consider the special case S = H, where (3.18) is valid for P

and induces a facet if S ∈ C∗. Recall from the discussions following Definition 6 that S is

S-hereditary only if it is a clique, in which case inequality (3.18) is precisely inequality (3.17)

for clique S. If s = 1 and we consider clique interdiction, this inequality induces a facet of P

if the clique S ∈ C∗. We also know from Proposition 2 that the 1-club (clique) S ∈ C∗ if and

only if it is one-step maximal. As clique is a hereditary property, this is equivalently saying

that the clique S must be inclusionwise maximal for inequality (3.18) to induce a facet of P .

Therefore, the special case of Theorem 1 with H = S and s = 1 extends the result of Furini

et al. (2019) to our setting with interdiction penalty.

Now consider the same special case S = H but with s ≥ 2. For a clique S to be a critical

s-club, i.e., a one-step maximal s-club, no vertex in V \ S can be adjacent to a vertex in S;

otherwise, such a vertex along with vertices in S forms an s-club for any s ≥ 2. Thus, we

can conclude that if S is clique that induces a maximal connected component of the graph

G, inequality (3.18) induces a facet of P for any s ≥ 2. We can now see Theorem 1 as a

generalization of the result of Furini et al. (2019) to s-club interdiction under interdiction

penalty for any s ≥ 2. It should be noted, however, that the criticality requirement on

the clique is a very restrictive condition when s ≥ 2, as the clique must form a connected

component by itself. It turns out, as the following theorem established by a direct proof

shows, that it is sufficient for the clique S to be maximal with respect to the clique property

(and not necessarily critical with respect to the s-club property) for inequality (3.17) to

induce a facet of P for any s ≥ 2.

Theorem 2. Given a graph G = (V,E), a positive integer s, and an inclusionwise maximal

34



clique S in G, the following inequality is valid for P and induces a facet of P:

θ ≥ |S| − x(S). (3.19)

Proof. Validity of inequality (3.19) is easy to see as the clique S is hereditary under vertex

deletion and it is an s-club for every s ≥ 2. We prove that the face F ′ of P induced by

inequality (3.19) is maximal. That is,

F ′ := {(θ, x) ∈ P | θ + x(S) = |S|} .

Consider an arbitrary proper face of P given by:

F := {(θ, x) ∈ P | a0θ +
∑
i∈V

aixi = b},

which we assume contains F ′ in order to arrive at a contradiction.

Consider the following point: θ = |S|;xu = 1 ∀u /∈ S;xu = 0 ∀u ∈ S. As (θ, x) ∈ F ′ ⊆ F ,

we obtain the following equation:

|S|a0 +
∑
i/∈S

ai = b. (3.20)

Now consider the following point for some ℓ ∈ S: θ = |S| − 1;xu = 1 ∀u ∈ (V \S)∪{ℓ};xu =

0 ∀u ∈ S \ {ℓ}. As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

(|S| − 1)a0 +
∑
i/∈S

ai + aℓ = b. (3.21)

From equations (3.20) and (3.21), we can conclude that aℓ = a0 ∀ℓ ∈ S and rewrite F as

35



follows:

F = {(θ, x) ∈ P | a0θ + a0x(S) +
∑
i/∈S

aixi = b}. (3.22)

Finally, consider the following point for an arbitrary vertex ℓ /∈ S: θ = |S \ NG(ℓ)|; xu =

1 ∀u ∈ NG(ℓ) ∪ [V \ (S ∪ {ℓ})]; xu = 0 ∀u ∈ {ℓ} ∪ S \ NG(ℓ). Because S is a maximal

clique, vertex ℓ cannot be adjacent to every vertex in S. Hence, we know that S \NG(ℓ) is a

non-empty clique. We also know that {ℓ} ∪ S \NG(ℓ) is not an s-club as vertex ℓ is isolated

in the graph interdicted according to x. As ℓ /∈ S, we know that x(S) = |S ∩NG(ℓ)|, and

hence θ + x(S) = |S|, implying that (θ, x) ∈ F ′. Now, using Equation (3.22) we can obtain

the following equation as F ′ ⊆ F :

a0|S \NG(ℓ)|+ a0|S ∩NG(ℓ)|+
∑

i/∈S∪{ℓ}

ai = b. (3.23)

From equations (3.20) and (3.23), we can conclude that aℓ = 0 for each ℓ /∈ S and b = |S|a0.

We now know that F has the following form:

F = {(θ, x) ∈ P | a0θ + a0x(S) = |S|a0}.

As F is a proper face, we know that a0 ̸= 0 and we can conclude that F ′ = F is a maximal

proper face.

Because enumerating maximal cliques is not computationally desirable given that there

could be exponentially many in a graph (Moon and Moser, 1965), we do not explicitly make

use of this facet in our computational studies. However, the next two results—based on

specially structured s-clubs—are interesting to us from a computational perspective.

Theorem 3. Given a graph G = (V,E) and an integer s ≥ 2, suppose that for some vertex

v ∈ V the closed neighborhood of v forms a critical s-club. That is, NG[v] ∈ C∗, a critical star

36



centered at v. If NG(v) is an independent set, the following inequality is valid and induces a

facet of P:

θ ≥ degG(v) + 1− x(NG(v))− degG(v)xv. (3.24)

This inequality can be viewed as a strengthening of the coefficient of xv in Constraint (3.14b)

with S = NG[v] and H = NG(v).

Proof. Validity of inequality (3.24) follows from the observation that for any x ∈ {0, 1}|V |

and θ ∈ R, we know that (θ, x) ∈ P if and only if θ ≥ ω̄s(G \ T x). We know that if xv = 0,

ω̄s(G \ T x) ≥ degG(v) + 1− x(NG(v)) and the inequality is valid. If xv = 1 and NG(v) is an

independent set, the inequality imposes that θ ≥ 1− x(NG(v)), which is valid for all x ∈ P .

As before, we show that inequality (3.24) induces a maximal face of P . We define,

F ′ := {(θ, x) ∈ P | θ + x(NG(v)) + dvxv = dv + 1} ,

where dv ≡ degG(v). Consider an arbitrary proper face of P given by:

F := {(θ, x) ∈ P | a0θ +
∑
i∈V

aixi = b},

which we assume contains F ′.

Consider the following point: θ = dv + 1;xu = 1 ∀u /∈ NG[v];xu = 0 ∀u ∈ NG[v]. As

(θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

(dv + 1)a0 +
∑

i/∈NG[v]

ai = b. (3.25)

Now consider the following point for some ℓ ∈ NG(v): θ = dv;xu = 1 ∀u /∈ NG[v];xℓ =

37



1;xu = 0 ∀u ∈ NG[v] \ {ℓ}. As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

dva0 +
∑

i/∈NG[v]

ai + aℓ = b. (3.26)

From equations (3.25) and (3.26), we can conclude that aℓ = a0 ∀ℓ ∈ NG(v) and rewrite F

as follows:

F = {(θ, x) ∈ P | a0θ + a0x(NG(v)) + avxv +
∑

i/∈NG[v]

aixi = b}.

Next we consider an arbitrary ℓ /∈ NG[v]. As NG[v] ∈ C∗ is a one-step maximal (critical)

s-club, we know that NG[v] ∪ {ℓ} cannot be an s-club; otherwise, we will contradict the

definition of C∗ (see Proposition 2). Hence, we consider the following point: θ = dv + 1; xu =

0 ∀u ∈ NG[v] ∪ {ℓ};xu = 1 ∀u /∈ NG[v] ∪ {ℓ}. As (θ, x) ∈ F ′ ⊆ F , we obtain the following

equation:

(dv + 1)a0 +
∑

i/∈NG[v]∪{ℓ}

ai = b. (3.27)

Now from equations (3.25) and (3.27), we can conclude that aℓ = 0 for each ℓ /∈ NG[v] and

b = (dv + 1)a0. We now know that F has the following form:

F = {(θ, x) ∈ P | a0θ + a0x(NG(v)) + avxv = (dv + 1)a0}.

Finally to identify the coefficient av, we consider the following point: θ = 1;xu = 0 ∀u ∈

NG(v);xu = 1 ∀u /∈ NG(v). As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

a0 + av = (dv + 1)a0. (3.28)

Hence, av = dva0. Because F is a proper face, we know that a0 ̸= 0 and thus we conclude

that F ′ = F is a maximal proper face.

38



Theorem 4 that follows is similar to Theorem 3, and is based instead on critical edge

stars, i.e., sets of the form NG(u) ∪NG(v) where {u, v} ∈ E. Due to the asymmetry in the

coefficients of xu and xv, in general, Theorem 4 corresponds to two facet-inducing inequalities

obtained by interchanging vertices u and v.

Theorem 4. Given a graph G = (V,E) and an integer s ≥ 3, consider adjacent vertices u

and v such that NG(u)∪NG(v)\{u, v} is a non-empty independent set. If NG(u)∪NG(v) ∈ C∗,

then

θ ≥ degG(u) + degG(v)− cuv − x(Luv)− [degG(u)− cuv]xu − [degG(v)−min(cuv, 1)]xv

(3.29)

is valid and induces a facet of P, where Luv := NG(u) ∪NG(v) \ {u, v} and cuv := |NG(u) ∩

NG(v)|.

Proof. Validity of inequality (3.29) follows from the observation that for any feasible solution

(θ, x) ∈ P of Formulation (3.14), θ ≥ ω̄s(G \ T x). If xu = xv = 0, we know that ω̄s(G \ T x) ≥

degG(u) + degG(v)− cuv − x(Luv) and the inequality is satisfied. If xu = xv = 1, we require

θ ≥ min{1, cuv} − x(Luv) which holds.

If xu = 1 and xv = 0, then θ ≥ degG(v)− x(Luv) which is valid. Finally, if xu = 0 and

xv = 1, we require θ ≥ degG(u)− cuv − x(Luv) + min{1, cuv}. Here, we consider two cases. If

cuv = 0, the inequality becomes θ ≥ degG(u)− x(Luv), and if cuv ≥ 1, the inequality becomes

θ ≥ degG(u)− cuv − x(Luv) + 1 and the inequality is valid in both cases.

Next, we show that the face of P induced by inequality (3.29) is maximal.

Let F ′ denote the face of P induced by inequality (3.29). That is,

F ′ := {(θ, x) ∈ P | θ + x(Luv) + (du − cuv)xu + (dv −min{1, cuv})xv = du + dv − cuv} ,

39



where du ≡ degG(u). Consider an arbitrary proper face of P given by:

F := {(θ, x) ∈ P | a0θ +
∑
i∈V

aixi = b},

which we assume contains F ′.

Consider the following point: θ = du + dv − cuv;xi = 1 ∀i /∈ N(u) ∪ N(v);xi = 0 ∀i ∈

N(u) ∪N(v). As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

(du + dv − cuv)a0 +
∑

i/∈N(u)∪N(v)

ai = b. (3.30)

Now for some ℓ ∈ Luv, consider the following point: θ = du + dv − cuv − 1;xi = 1 ∀i /∈

N(u) ∪ N(v);xℓ = 1;xi = 0 ∀i ∈ N(u) ∪ N(v) \ {l}. As (θ, x) ∈ F ′ ⊆ F , we obtain the

following equation:

(du + dv − cuv − 1)a0 +
∑

i/∈N(u)∪N(v)

ai + aℓ = b. (3.31)

From equations (3.30) and (3.31), we can conclude that aℓ = a0 ∀ℓ ∈ Luv and rewrite F as

follows:

F = {(θ, x) ∈ P | a0θ + a0x(Luv) + auxu + avxv +
∑

i/∈N(u)∪N(v)

aixi = b}.

Next we consider an arbitrary ℓ /∈ N(u) ∪ N(v). As N(u) ∪ N(v) ∈ C∗, we know that

N(u) ∪ N(v) ∪ {ℓ} cannot be an s-club; otherwise, we will contradict the definition of C∗

(see Proposition 2). Hence, we consider the following point: θ = du + dv − cuv;xi = 0 ∀i ∈

N(u)∪N(v)∪{ℓ};xi = 1 ∀i /∈ N(u)∪N(v)∪{ℓ}. As (θ, x) ∈ F ′ ⊆ F , we obtain the following

40



equation:

(du + dv − cuv)a0 +
∑

i/∈{N(u)∪N(v)}∪{ℓ}

ai = b. (3.32)

Now from equations (3.30) and (3.32), we can conclude that aℓ = 0 for each ℓ /∈ N(u)∪N(v)

and b = (du + dv − cuv)a0. We now know that F has the following form:

F = {(θ, x) ∈ P | a0θ + a0x(Luv) + auxu + avxv = (du + dv − cuv)a0}.

To identify the coefficients au and av, we consider the following two cases.

(i) Suppose cuv = 0. Consider the point θ = dv;xi = 0 ∀i ∈ N(u)∪N(v) \ {u};xi = 1 ∀i /∈

Luv;xu = 1 As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

dva0 + au = (du + dv)a0. (3.33)

Hence, au = dua0.

Now, consider the following point to determine coefficient av: θ = du;xi = 0 ∀i ∈

N(u)∪N(v) \ {v};xi = 1 ∀i /∈ Luv;xv = 1. As (θ, x) ∈ F ′ ⊆ F , we obtain the following

equation:

dua0 + av = (du + dv)a0. (3.34)

Hence, av = dva0.

(ii) Suppose cuv ≥ 1. Consider the point: θ = dv;xi = 0 ∀i ∈ N(u) ∪ N(v) \ {u};xi =

1 ∀i /∈ Luv;xu = 1. As (θ, x) ∈ F ′ ⊆ F , we obtain the following equation:

dva0 + au = (du + dv − cuv)a0. (3.35)

Hence, au = (du − cuv)a0.

41



Finally, consider the following point to determine coefficient av: θ = 1;xi = 0 ∀i ∈

Luv;xi = 1 ∀i /∈ Luv;xu = xv = 1. As (θ, x) ∈ F ′ ⊆ F , we obtain the following

equation:

a0 + (du − cuv)a0 + av = (du + dv − cuv)a0. (3.36)

Hence, av = (dv − 1)a0.

Combining the two cases together we obtain au = (du− cuv)a0 and av = (dv −min{1, cuv})a0.

Because F is a proper face, we know that a0 ̸= 0 and thus we conclude that F ′ = F is a

maximal proper face.

Many real-life social and biological networks demonstrate a power law degree distribution

and are also extremely sparse in terms of edge density (Chung and Lu, 2006; Newman, 2003;

Barabási and Albert, 1999). So it is not uncommon in practice to find vertices and edges

with a large number of independent neighbors in sparse real-life graphs, such as those used

in our computational study. Nonetheless, we also do not recommend strictly testing the

satisfaction of the sufficient conditions in order to add the critical vertex and edge star facets

during computations. These two results essentially serve to motivate our emphasis on vertex

and edge stars in building the initial relaxation of Formulation (3.14) used in our delayed

constraint generation algorithm discussed in Section 4.1.

3.6 Hereditary s-clubs and latency-s connected dominating sets

Given a graph G = (V,E), we say that D ⊆ V is a dominating set if every vertex outside

D has a neighbor in D. We say that D is a connected dominating set if in addition, G[D]

is connected. In essence, a connected dominating set ensures that every pair of distinct

vertices outside the dominating set have a path connecting them (whose internal vertices are

contained in the dominating set). The connection to hereditary s-clubs, while not obvious,

arises when we require distance bounds in addition to connected domination. Definition 8

42



below is adapted from its counterpart for directed graphs introduced by Validi and Buchanan

(2020).

Definition 8 (Validi and Buchanan (2020)). Given a graph G = (V,E), a subset of vertices

D is called a latency-s connected dominating set (latency-s CDS) if it is a dominating set in

G and for every pair of distinct vertices in V there exists a path of length at most s whose

internal vertices belong to D.

If D is a latency-s CDS, then it is a dominating set that is also an s-club. Note that

the length-bounded path requirement applies to vertex-pairs inside D as well. Clearly, a

dominating s-club is not necessarily a latency-s CDS (see Figure 3.4a). It is also easy to

see that a dominating (s − 2)-club is a latency-s CDS. However, a latency-s CDS is not

necessarily a dominating (s− 2)-club (see Figure 3.4b).

1 2 3

4 5 6

(a)

1

2

3

4

5

6

(b)

Figure 3.4: (a) Set {1, 2, 3} forms a dominating 2-club, but it is not a latency-2 CDS since
the length of the path between vertices 5 and 6 is 4. (b) Set {1, 2, 3} forms a latency-3 CDS.
(Note that vertices 4 and 6 are adjacent and vacuously satisfy the requirement.) Clearly, it is
not a 1-club (clique).

Given an s-club S in graph G = (V,E), we say that D is a “latency-s CDS over S” if

and only if D is a latency-s CDS in the induced subgraph G[S]. In general, a graph G has a

latency-s CDS if and only if diam(G) ≤ s. The necessity can be deduced from the fact that

every pair of vertices must be connected by a path of length at most s, in order for a latency-s

CDS to exist. Conversely, if diam(G) ≤ s we know that V is a latency-s CDS. A meaningful

optimization problem therefore is to find a latency-s CDS of minimum cardinality. The

43



notion of a latency-s CDS is relevant to s-club interdiction because of its close relationship

to hereditary s-clubs as crystallized in the following result.

Proposition 4. Consider a graph G = (V,E) in which S is an s-club and H ∈ H(S) such

that H ̸= S. Then S \H is a latency-s CDS over S. Conversely, suppose that a non-empty

D ⊆ S is a latency-s CDS over S. Then S \D ∈ H(S).

Proof. ( =⇒ ) The claim is trivial if H is empty; suppose not. Because S and S \ H are

s-clubs, it follows that G[S] and G[S \H] are both connected. Hence, S \H dominates G[S].

It suffices to show that between distinct, non-adjacent vertices u and v in S, there exists a

path of length at most s whose internal vertices belong to S \H. The claim is trivially true

if u and v belong to S \H.

Suppose u and v belong to H. Define T := H \ {u, v}. Because S is an H-hereditary

s-club, we know that S \ T is an s-club that contains u and v. Hence, there exists a path of

length at most s between u and v in G[S \ T ], and the internal vertices on this path clearly

do not intersect H.

Now suppose u ∈ S \H and v ∈ H. Define T ′ := H \ {v}. As before, S \ T ′ is an s-club

that contains both u and v, and the internal vertices on some path of length at most s

between them in G[S \ T ] are all contained in S \H.

(⇐= ) For an arbitrary T ⊆ S \D, we need to show that S \ T is an s-club. Consider

distinct, non-adjacent vertices u and v in S \ T . By definition, there exists a u, v-path of

length at most s in G[S] with all its internal vertices contained in D. None of these vertices

are deleted when T is deleted, and the path is preserved in G[S \ T ].

Proposition 4 allows us to find large subsets H ∈ H(S) by equivalently finding small

latency-s CDSs. Hence, when identifying violated constraints in our delayed constraint

generation approach, we can replace the problem of finding a large H ∈ H(S) by finding

a minimum cardinality latency-s CDS sets in S. By framing the problem in this manner

44



we can exploit existing methods to solve the minimum latency-s CDS problem (Validi and

Buchanan, 2020).

In Chapter IV, we use these results to design a decomposition branch-and-cut algorithm

to solve Formulation (3.14), and perform numerical experiments to evaluate the capabilities

of the proposed algorithm to solve the s-club interdiction problem on benchmark instances.

3.7 Interdicting cores

In this section, we study the problem of interdicting k-core of an undirected graph. A subset

of vertices K is called a k-core of G, if the minimum degree of G[K] is at least k, and K

is maximal with respect to inclusion (Seidman, 1983). For convenience, we also refer to

G[K] as a k-core. A k-core is a useful model to capture cohesive subgroups and measure

user engagement in social media assuming that the engagement depends on the number

of connections a user has on the platform (Zhang et al., 2017). Matula and Beck (1983)

provide a linear-time algorithm for computing the k-core for every value of k. A very fast

implementation of this algorithm appears in Walteros and Buchanan (2020).

While working on this problem, we became aware of the existence of related papers in

the literature (Zhang et al., 2017; Cerulli et al., 2022) that partially addressed the research

questions for k-cores of interest to us. As a consequence, we decided to not pursue this

model further. In the following sections, we briefly describe the directions we explored in our

preliminary studies.

45



3.7.1 An MILP formulation

Similar to club interdiction, the k-core interdiction problem with an interdiction penalty can

be formulated as a mixed integer linear programming as follows:

zs,α = min θ + αx(V ) (3.37a)

s.t. θ ≥ |K| − |K|x(K) ∀K ∈ K (3.37b)

x ∈ {0, 1}|V |, θ ∈ R+, (3.37c)

where θ is the cardinality of a largest k-core in the interdicted graph, and K is the set of all

the k-cores in G. In general, k-cores are not hereditary and the Constraint (3.37b) associated

with a k-core K becomes redundant when a vertex v ∈ K is deleted. Therefore, we investigate

the possibility of rewriting this constraint using the concepts of heredity and criticality that

were introduced for s-clubs in Section 3.4. In this regard, we have the following:

Definition 9. Given a graph G = (V,E), a k-core K in G, and H ⊆ K, we say that K is an

H-hereditary k-core if δK\T ≥ k where δK\T = min{degK\T (v) : v ∈ K \ T} for every T ⊆ H.

We denote by H(K) the set of all the hereditary subsets of K. Also, we define U(K) in

an analogous way U(S) is defined in Equation (3.10).

Definition 10. The set of critical k-cores in the graph G = (V,E) is defined as C∗ = {K ∈

K | no k-core K ′ ⊃ K exists such that K ∈ U(K ′)}.

Proposition 5. Each k-core K in graph G = (V,E) is critical.

Proof. For the sake of contradiction, suppose there exists a k-core K in G that is not critical.

Therefore, we can write it as K = K0 \ T where K0 is a k-core and T ⊆ H(K0). This means

that we can write K0 = K ∪T , so K is not maximal. This is a contradiction because a k-core

is a maximal connected subgraph with a minimum degree of at least k for every vertex in K.

46



So, K has to be critical. Since K is chosen arbitrarily, we can conclude that any k-core in G

is critical.

Proposition 5 shows that the techniques we have used for the s-club interdiction problem

to improve the formulation by considering only critical s-clubs and reducing the number of

constraints will not be beneficial for the k-cores. Therefore, in the next sections, we examine

other approaches to solve the problem.

3.7.2 Testing for matroid and submodularity properties

In this section, we investigate if the maximum k-core in a graph post interdiction is a

submodular function and if the family of hereditary sets of a k-core induces a matroid. The

motivation for testing these properties is that these types of functions/systems have properties

akin to convex functions and play an important role in combinatorial optimization (Feige

et al., 2011). For example, it is proved that under some conditions, there is a polynomial

time algorithm for minimization of any submodular function (Grötschel et al., 1981). Like-

wise, some matroid optimization problems can be solved in polynomial time using greedy

algorithms (Brezovec et al., 1986). Therefore, testing these properties can be useful to find

potentially fast algorithms to solve the k-core interdiction problem.

First, we consider M = (K,H(K)) where K is a k-core in G and H(K) is the set of all of

the hereditary subsets of K based on Definition 9. M should have the following properties to

be a matroid (Welsh, 2010):

1. ∅ ∈ H(K).

2. For each A
′ ⊆ A ⊆ K, if A ∈ H(K), then A

′ ∈ H(K).

3. Let A ∈ H(K), B ∈ H(K), and |A| > |B|. Then, there exist x ∈ A \ B such that

B ∪ {x} ∈ H(K).

47



We see that M in an independence system, because it has the first two properties: (1)∅ is

a hereditary subset for every k-core, (2) based on the definition of heredity, if H ⊆ K is a

hereditary subset, then T ∈ H(K) for every T ⊆ H. This shows that M is an independent

system. However, M is not a matroid as it does not have the third property. Figure 3.5

shows a counterexample.

21

3

4

5

6

Figure 3.5: K = {1, ..., 6} is a 2-core and H(K) =
{
∅, {1}, {3}, {5}, {6}, {3, 5}, {3, 6}

}
. Let

A = {3, 6} and B = {1}. Then, A \B = A, but none of the sets B ∪ {3} and B ∪ {6} are in
H(K).

Next, we define ϕ(S) as the k-core number of G \ S, i.e., the size of the largest k-core

in G after S is interdicted. Using a counterexample, we can show this function is neither

submodular nor supermodular. Inequalities (3.38) and (3.39), respectively, show the condition

for submodularity and supermodularity of ϕ(S) (Grötschel et al., 1981):

ϕ(X ∪ {x})− ϕ(X) ≥ ϕ(Y ∪ {x})− ϕ(Y ) ∀ X, Y ⊆ V,X ⊆ Y, x ∈ V \ Y (3.38)

ϕ(X ∪ {x})− ϕ(X) ≤ ϕ(Y ∪ {x})− ϕ(Y ) ∀ X, Y ⊆ V,X ⊆ Y, x ∈ V \ Y (3.39)

Consider the counterexample in Figure 3.6. If k = 2, X = {2}, Y = {2, 3} and x = {1},

we have ϕ(X) = 4, ϕ(Y ) = 3, ϕ(X ∪ {x}) = ϕ(Y ∪ {x}) = 0. As it can be seen the

inequality (3.38) does not hold, so ϕ(S) is not submodular. Also, if x = {5}, we have

ϕ(X) = 4, ϕ(Y ) = 3, ϕ(X ∪ {x}) = 3, and ϕ(Y ∪ {x}) = 0. Therefore, the inequality (3.39)

does not hold, and ϕ(S) is not supermodular.

48



1 2

5

4 3

Figure 3.6: Counterexample to show ϕ(S) and Ω(S) are neither submodular nor supermodular.

Now consider Ω(S) = |V | − ϕ(S). We show that Ω(S) is not submodular using the

counterexample in Figure 3.6. Let k = 2, X = {2}, Y = {2, 3} and x = {5}. Then we

have Ω(X) = 1, Ω(Y ) = 2, Ω(X ∪ {x}) = 2 and Ω(Y ∪ {x}) = 5. It can be seen that

inequality (3.38) does not hold because 2 − 1 ̸≥ 5 − 2, and Ω(S) is not submodular. This

function is not supermodular either because if x = {1}, we have Ω(X) = 1, Ω(Y ) = 2,

Ω(X ∪ {x}) = 5 and Ω(Y ∪ {x}) = 5. Therefore, the inequality (3.39) does not hold because

5− 1 ̸≤ 5− 2, and Ω(S) is not supermodular.

Based on these observations, we can conclude the algorithms for optimizing submodular

functions and for optimizing over matroids cannot be used in our setting, at least in a

straightforward manner. In the next section, we study the k-core interdiction problem with a

budget constraint instead of the interdiction penalty.

3.7.3 Budgeted version of the problem

Zhang et al. (2017) proposed the collapsed k-core problem defined as finding the set of b

vertices in G = (V,E) whose deletion results in the smallest k-core. They prove that the

problem is NP-hard and propose a greedy heuristic algorithm to find the interdiction set with

a limited budget. The complexity of the heuristic algorithm is O(bnm) where b, n, and m

are respectively the budget, number of nodes, and number of edges in the graph. At each

iteration, the algorithm removes a vertex whose deletion results in the smallest k-core in the

49



remaining graph and the number of iterations is equal to the budget. Figures 3.7-3.10 show

an example of an instance where the solution of the algorithm is not optimal.

Consider the original graph in Figure 3.7 which is also a 3-core and suppose b = 2.

According to the proposed algorithm by Zhang et al. (2017), in the first iteration, vertex

7 must be deleted. The remaining 3-core is shown in Figure 3.8. In the second iteration,

deleting any of the vertices will result in a 3-core of size 4 (see Figure 3.9). Therefore, with 2

units of budget, the solution of the algorithm is 4. However, if we delete vertices 5 and 9, the

size of the 3-core will be zero and this is an optimal solution, see Figure 3.10.

1

2

3

4 5

67 8

9

10

Figure 3.7: Graph G that is a 3-core.

5

6 8

9

10

Figure 3.8: The 3-core obtained by removing vertex 7 from graph G in Figure 3.7

Alternatively, consider the following. By interdicting every vertex in a k-core, the degree

50



6 8

9

10

Figure 3.9: Removing any of the vertices from the graph in Figure 3.8 will result in a 3-core
of size 4. Here, the 3-core by deleting vertex 5 is shown.

1

2

3

4

67 8

9

10

Figure 3.10: Deleting vertex 5 from the graph in Figure 3.7 results in a 3-core with size 9, so
the algorithm proposed by Zhang et al. (2017) does not pick this vertex in the first iteration.
However, by deleting both vertices 5 and 9, the size of the 3-core will be zero.

of its neighbors decreases by at least 1. This implies that in addition to the interdicted vertex,

all the neighbors with degree equal to k will be removed as well because they do not have

the minimum degree to be in the k-core. We use this fact to propose a greedy algorithm to

find the interdiction set. Let K be the largest k-core in the graph. At each iteration, this

algorithm determines a set L containing the vertices in K with the smallest degree. It also

finds the size of the set L ∩NK(v) for every vertex v ∈ K. Then, the vertex with the largest

intersection will be deleted. This choice can be justified as follows: if the minimum degree is

k, deleting this vertex might result in removing more vertices in the same iteration; if the

minimum degree is greater than k, deleting this vertex decreases the degree of more vertices

in set L and make their degree closer to k, so potentially, more vertices will be removed

51



in the next iterations. It is readily checked that this algorithm (see Algorithm 1) runs in

polynomial time. However, it is not guaranteed to find an optimal solution.

Algorithm 1: A greedy algorithm for the maximum k-core interdiction problem.

Input: G(V,E), integer k, budget b
Output: Largest k-core in G \D where D is the deletion set and |D| ≤ b.

1 K ← maximum k-core in G
2 while b > 0 do
3 G′ ← G[K]
4 δ(G′)← min{degG′(v) : v ∈ V }
5 L← {u ∈ K : degG′(u) = δ(G′)}
6 D ← D ∪ {v ∈ argmaxu∈K |L ∩NG′(u)|}
7 b← b− 1
8 K ← maximum k-core (G′ \D)

9 Return K

Figure 3.11 shows an example where this algorithm does not find an optimal interdiction

solution. Let k = 2 and b = 1. In this 2-core, we have L = {2, 3, 5, 6} and the size of the

intersection of L with the neighbors of vertices is equal to two for vertices 1, 4 and 6, is equal

to one for vertices 2 and 4 and is zero for vertex 5. Therefore, vertices 1, 4, and 6 are all

candidates to be deleted. However, KG\{1} = KG\{4} = 0 and KG\{6} = 3, so the solution

D = {6} is not optimal.

1 2

34

5 6

Figure 3.11: Using Algorithm 1, vertices 1, 4, and 6 are all candidates to be deleted. However,
D = {6} is not optimal because KG\{1} = KG\{4} = 0 and KG\{6} = 3.

Previous research on this topic includes the NP-hardness of the problem, fixed parameter

tractability, and W [1]-hardness (Luo et al., 2021). More recently, an integer programming

approach for the collapsed k-core problem has been introduced by Cerulli et al. (2022). They

52



provide two bilevel programs for the collapsed k-core problem. One of the programs is

reformulated as a single-level model that exploits a Benders-like decomposition approach.

For the other program, the lower-level problem is stated as a linear formulation to find the

k-core. They also derive combinatorial lower bound on the value of the optimal solution, and

describe some pre-processing techniques and valid inequalities for all the formulations they

have proposed.

53



CHAPTER IV

COMPUTATIONAL EXPERIMENTS WITH MAXIMUM S-CLUB

INTERDICTION

In this chapter, we present a decomposition algorithm to implement the formulations for the

maximum s-club problem. Also, we discuss the numerical experiments in detail and evaluate

the effect of reformulating the problem using the critical s-clubs and their hereditary subsets.

4.1 Implementing a decomposition branch-and-cut algorithm

Based on the results of Sections 3.4 and 3.6, our approach to solve Formulation (3.14) employs

delayed constraint generation in a decomposition and branch-and-cut (DBC) framework.

This DBC algorithm starts by solving an initial relaxation of Formulation (3.14) where C∗

in constraint (3.14b) is replaced by an initial collection of s-clubs S0 ⊆ S. As this initial

relaxation is solved using an LP relaxation based branch-and-cut (BC) algorithm, nodes are

pruned as usual by infeasibility or by bound. However, if the LP relaxation optimum (θi, xi)

at some BC node i is integral, we must verify its feasibility.

To this end, we can solve a separation subproblem in order to verify if a constraint

of type (3.14b) corresponding to some H-hereditary s-club S is violated. First, we find a

maximum s-club in the interdicted graph, say S. If ω̄s(G \ T xi
) = |S| > θi, we must add

a violated constraint to eliminate this solution. In order to find an H ∈ H(S), based on

Proposition 4, we can solve the minimum latency-s CDS problem on the subgraph G[S]. If

H(S) is empty, then the minimum latency-s CDS will be S itself, and we add constraint (3.3b)

54



Algorithm 2: Separation procedure

Input: Integral LP optimum (θ̂, x̂) at the DBC node.
Output: (S,H), where S is an H-hereditary s-club corresponding to a violated

constraint, if one exists.
1 S ← a maximum s-club in G \ T x̂

2 if |S| > θ̂ then
3 D ← a minimum latency-s CDS in G[S]
4 return (S, S \D)

5 else

6 (θ̂, x̂) is feasible

for S. After the violated constraint is added, the LP relaxation at node i is re-solved. If

ω̄s(G \ T xi
) = |S| ≤ θi, no violated constraint exists, we can certify that the integral solution

(θi, xi) is feasible to the original problem and prune that BC node. This separation routine is

described in Algorithm 2.

The separation subproblem ensures the correctness of the overall algorithm despite starting

with a relaxation of the original problem. From our experiments, we found that the DBC

algorithm typically generates far fewer constraints than all possible constraints of type (3.14b).

In the following we discuss how we initialize the relaxation problem in our computational

study described in Section 4.2, as well as specify some additional implementation details of

the heuristic separation procedure used in our experiments when s = 2 and s = 3.

4.1.1 Implementation details for 2-club interdiction

When solving the 2-club interdiction problem, we initialize the relaxation problem with

constraints based on stars in G (see Remark 2). We write the constraints for the star NG[v]

centered at v, with the hereditary subset H = NG(v). This choice of H is maximal as long

as NG[v] is not a clique. Hence, the initial relaxation constraints have the following form:

θ ≥ degG(v) + 1− x(NG(v))− (degG(v) + 1)xv. (4.1)

55



In our experiments, we add constraint (4.1) only for those vertices that correspond to the

top 20% of the largest degrees in G to consider larger 2-clubs (in form of stars) and avoid

adding too many constraints in advance.

Once a maximum 2-club S that corresponds to a violated constraint is found, we use a

simpler heuristic approach to identify a hereditary subset for the case of s = 2, instead of

finding a minimum latency-s CDS inside G[S] (line 3 of Algorithm 2). This simplification is

based on the observation that if G[S] contains a dominating vertex v, then the set {v} is a

latency-2 CDS and S is a S \ {v}-hereditary 2-club. In fact, if S is not a clique, then {v} is

a minimum latency-2 CDS of G[S].

Algorithm 3 outlines the pseudocode of a heuristic separation procedure for s = 2 that

does not rely on solving the minimum latency-s CDS problem. If we find any vertex v

that dominates G[S], we return immediately having identified a strong violated constraint.

Otherwise, we find all the leaves L in G[S] and S \ L is a feasible latency-2 CDS. If no

leaves exists, then L is empty, and we effectively add a constraint of type (3.3b). In all three

cases, note that the constraint identified will be violated by (θ̂, x̂). This heuristic separation

procedure was found to be effective for the case s = 2 in our computational studies.

4.1.2 Implementation details for 3-club interdiction

In this case, the initial set S0 of 3-clubs includes the constraints associated with edge stars

corresponding to S := NG(u) ∪NG(v) for each {u, v} ∈ E, with H = NG(u) ∪NG(v) \ {u, v}.

Clearly, H ∈ H(S), and H would belong to H∗(S) unless H∪{u} ∈ H∗(S), H∪{v} ∈ H∗(S),

or H∪{u, v} ∈ H∗(S). In other words, H is at most two elements short of a maximal member

of H(S) in case it is not in H∗(S). The constraint of type (3.14b) specializes to the following

for edge stars:

θ ≥ |S| − x(S \ {u, v})− |S|(xu + xv) ∀{u, v} ∈ E. (4.2)

56



Algorithm 3: Separation algorithm for s = 2

Input: Integral LP optimum (θ̂, x̂) at the DBC node.
Output: (S,H), where S is a H-hereditary 2-club corresponding to a violated

constraint, if one exists.
1 S ← a maximum 2-club in G \ T x̂

2 if |S| > θ̂ then
3 L← ∅
4 for v ∈ S do
5 if |NG[S](v)| = |S| − 1 then
6 return (S, S \ {v})
7 if |NG[S](v)| = 1 then
8 L← L ∪ {v}

9 return (S, L)

10 else

11 (θ̂, x̂) is feasible

As every 2-club is also a 3-club, we also add constraint (4.1) for all the vertices in G. In

general, the star constraints are not dominated by edge star constraints (4.2).

4.2 Computational experiments

In this section, we report on the results of our numerical experiments designed to assess the

capabilities of the proposed DBC algorithm to solve the s-club interdiction problem on real

and synthetic benchmark instances. All experiments are conducted on a 64-bit Windows®

10 Pro machine with 16GB of RAM and 1.8 GHz processor with 7 cores. All algorithms

are implemented in C++, compiled using Microsoft® Visual Studio® 2017, and GurobiTM

Optimizer v9.0.2 is used to solve the MILPs (Gurobi Optimization, LLC, 2021). Our codes

are publicly available (Daemi et al., 2021b,a).

Our testbed consists of two groups of instances. Group-1 contains 22 graphs from the Tenth

DIMACS Implementation Challenge (DIMACS-10), see (Dimacs, 2012). Group-2 contains

18 graphs taken from the following online repositories: Stanford Large Network Dataset

57



Collection (SNAP) (Leskovec and Krevl, 2014), the BGU Social Networks Security Research

Group (BGU) (Lesser et al., 2013), the Koblenz Network Collection (KONECT) (Kunegis,

2013) and the Network Repository (NR) (Rossi and Ahmed, 2015). Most of the instances

in our testbed come from real-world networks. Further, the instances Gplus, Facebook1,

Facebook2, and Douban in Group-2 represent snapshots of real online social networks. The

instances in Group-2 were also used in the computational studies in Raghavan and Zhang

(2019).

Tables 4.1 and 4.2 list all the graphs in our testbed. We converted the directed graphs

to undirected graphs by ignoring the orientation on the arcs. For each instance we list the

number of vertices, edges, and the edge density ρ(G) = |E|/
(|V |

2

)
. To solve the maximum

s-club problem during separation, we use the “ICUT” algorithm introduced by Salemi and

Buchanan (2020), the code for which has been made publicly available by the authors. ICUT

is an effective integer-programming-based exact solver for the maximum s-club problem for

general values of s on the instances we use in our testbed. It sequentially solves the maximum

s-club problem on several smaller subgraphs using a delayed constraint generation framework.

Tables 4.1 and 4.2 report the time it takes to find ω̄2(G) and ω̄3(G) using the ICUT solver.

TL in the Time column indicates that the solver terminated by reaching the time limit.

Using the Gurobi parameter GRB DoubleParam Timelimit, we impose a time limit of

3600 seconds on the solve time of the initial problem, and the same time limit on each call to

solve the maximum s-club subproblems in ICUT and the minimum latency-s CDS problem

during the separation procedure. Reaching the time limit while solving any of these problems

will terminate the overall algorithm (usually quickly), in which case we have failed to solve the

problem to optimality on that instance. We also use the Gurobi parameter LazyConstraint

to add the violated constraints found in the separation procedure on-the-fly.

As discussed in Section 4.1, the DBC algorithm requires solving the maximum s-club

problem several times, once for every integral solution (θ̂, x̂) that is found in the BC tree to

58



Table 4.1: DIMACS-10 instances in Group-1 and the time taken to solve the maximum s-club problem for
s = 2, 3 using the ICUT algorithm. Instances celegansneural, celegans-metabolic, and PGPgiantcompo

are shortened to celegansn, celegansm, and PGP, respectively, in the other tables.

Graph G |V | |E| ρ(G) (%) ω̄2(G) Time (s) ω̄3(G) Time (s)

karate 34 78 13.90 18 0.01 25 0.00
dolphins 62 159 8.41 13 0.14 29 0.02
lesmis 77 254 8.68 37 0.00 58 0.00
polbooks 105 441 8.08 28 0.09 53 0.00
adjnoun 112 425 6.84 50 0.00 82 0.19
football 115 613 9.35 16 0.84 58 1.52
jazz 198 2,742 14.06 103 0.42 174 0.05
celegansneural 297 2,148 4.89 135 0.02 243 0.37
celegans-metabolic 453 2,025 1.98 238 0.02 371 0.10
email 1,133 5,451 0.85 72 6.89 212 65.69
polblogs 1,490 16,715 1.51 352 30.82 776 31.43
netscience 1,589 2,742 0.22 35 0.02 54 0.02
add20 2,395 7,462 0.26 124 0.17 671 0.23
data 2,851 15,093 0.37 18 13.27 32 15.51
uk 4,824 6,837 0.06 5 12.32 8 13.86
power 4,941 6,593 0.05 20 0.68 30 0.69
add32 4,960 9,462 0.08 32 0.48 99 0.50
hep-th 8,361 15,751 0.05 51 1.34 120 41.66
whitaker3 9,800 28,989 0.06 9 66.50 15 90.78
crack 10,240 30,380 0.06 10 81.95 17 96.06
PGPgiantcompo 10,680 24,316 0.04 206 4.07 422 4.30
cs4 22,499 43,858 0.02 6 165.26 12 236.51

Table 4.2: Instances in Group-2 and the time taken to solve the maximum s-club problem
for s = 2, 3 using the ICUT algorithm.

Graph G Source |V | |E| ρ(G)(%) ω̄2(G) Time (s) ω̄3(G) Time (s)

G04 SNAP 10,876 39,994 0.07 104 4.89 ≥ 181 TL
G05 SNAP 8,846 31,839 0.08 89 9.96 ≥ 258 TL
G06 SNAP 8,717 31,525 0.08 116 3.64 ≥ 243 TL
G08 SNAP 6,301 20,777 0.10 98 23.08 453 464.72
G09 SNAP 8,114 26,013 0.08 103 20.93 449 945.33
B-Alpha SNAP 3,783 14,124 0.20 512 0.66 1,294 626.06
B-OTC SNAP 5,881 21,492 0.12 796 1.36 ≥ 1,969 TL
AS01 SNAP 10,670 22,002 0.04 2,313 15.25 4,997 613.26
AS02 SNAP 10,900 31,180 0.05 2,344 15.89 5,352 202.68
Ning BGU 10,298 40,887 0.09 688 4.29 ≥ 2,294 TL
Hamsterster Konect 1,858 12,534 0.78 273 0.18 680 89.18
Escorts Konect 10,106 39,016 0.08 312 4.32 ≥ 679 TL
Anybeat N.R. 12,645 49,132 0.06 4,801 9.17 ≥ 7,752 TL
Advogato N.R. 6,551 39,432 0.31 808 1.64 2,193 1,937.74
Gplus Konect 23,613 39,194 0.01 2,762 9.99 ≥ 4,767 TL
Facebook1 BGU 39,446 50,228 0.01 1,366 27.45 11,542 2,136.21
Facebook2 Konect 2,888 2,981 0.07 770 0.13 1,241 0.18
Douban N.R. 154,908 327,162 0.00 ≥ 288 TL ≥ 911 TL

59



verify its feasibility. Therefore, if solving the maximum s-club problem requires a significant

amount of time for a given graph, then we do not expect the interdiction problem to be solved

in a reasonable amount of time. More critically, reaching the time limit on the maximum

s-club solver without producing a violated s-club affects the overall correctness. For this

reason, we only consider those instances in the larger test bed described next on which we

can find a large enough s-club in reasonable time using our chosen solver.

As it can be seen in Tables 4.1 and 4.2, all instances in Group-1 are solved within a

reasonable time (less than 5 minutes) for both s = 2 and s = 3. For Group-2, all the instances

except Douban are solved to optimality when s = 2. However, when s = 3, only 9 out of 18

instances are solved to optimality within the time limit, and among these instances, Advogato

and Facebook1 requires a significant amount of time. For this reason, when s = 2, we do not

include instance Douban in our experiments and when s = 3, for instances in Group-2, we

use heuristic approaches to find a maximum 3-club and a minimum latency-3 CDS instead of

using the exact methods we implement in other cases.

In Section 4.2.1, we use the Group-1 instances to show how the naive Formulation (3.3)

and Formulation (3.14) based on hereditary s-clubs compare when each is used in the DBC

algorithm. In Sections 4.2.2 and 4.2.3, we present the results of our experiments with both

groups of instances using the best performing DBC algorithm and heuristic approaches.

4.2.1 The impact of using the H-hereditary s-club formulation

In Section 3.5, we introduced the idea of partitioning an s-club S into a hereditary subset

H and S \H in order to generate a constraint of type (3.14b). Here, we assess the impact

of using these constraints by comparing three different methods. In the first method, a

constraint of type (3.3b) is used in the initialization and during separation (Method 1). The

second method uses the H-hereditary s-club constraint (3.14b) in the initialization of the

relaxation problem and constraint (3.3b) during separation (Method 2). The third method

60



uses constraint (3.14b) during initialization and separation (Method 3). In all three methods,

we initialize S0 by creating a set of s-clubs in the form of stars (when s = 2, 3) or edge stars

(when s = 3), and add a constraint for each s-club in S0 to initialize the relaxation problem.

Note that the type of constraint we add for each s-club in S0 depends on the method, as

explained before. We compare the performance of these three methods in terms of running

time and visualize the comparison using performance profiles (Dolan and Moré, 2002).

In order to construct a performance profile, we define I as the set of the instances in

our testbed,M as the set of methods, and ti,m as the running time of solving the instance

i by method m. The baseline of the comparison is the shortest running time among three

methods for every instance, and we compute the performance ratio as ri,m = ti,m/t
∗
i , where

t∗i = min{ti,m : m ∈ M}. Then, for every method m, we define fm(τ) as the empirical

cumulative distribution function of the performance ratio ri,m. As stated in Equation (4.3),

fm(τ) is the fraction of the instances in our testbed that were solved by method m within a

factor τ of the fastest solve-time for that instance.

fm(τ) =
|{i ∈ I : ti,m ≤ τt∗i }|

|I|
. (4.3)

If we observe that fm(τ) ≥ fm′(τ) for all τ ≥ 1, then there is evidence to suggest that method

m is better than m′ on this testbed. In particular, fm(1.0) is the fraction of the instances

in the testbed for which method m is the fastest. It is best to interpret these profiles as

the comparison of Method 3 vs Method 1 and Method 3 vs Method 2 for each value of

α ∈ {0.5, 2} Gould and Scott (2016).

Figure 4.1 shows the performance profiles of Method 1, Method 2, and Method 3 for all the

instances in Group-1 for s = 2. We selected α = 0.5 and α = 2 for these experiments, meaning

that in the former setting it is cheap to interdict vertices (i.e., for every two interdicted

vertices the maximum s-club in the interdicted graph should reduce by at least one) while in

61



Figure 4.1: Performance profile based on the running time of methods for s = 2 and
α ∈ {0.5, 2}.

the latter setting it is expensive to interdict vertices (i.e., for every interdicted vertex the

maximum s-club in the interdicted graph should reduce by at least two).

It can be seen that for both values of α, Method 3 is significantly better than Methods 1

and 2 on this testbed for s = 2. The performance of Method 2 is generally within 10 times

the fastest running time, while Method 1 has a far worse performance overall, achieving 10

times the fastest running time only for less than 50% of the instances.

The performance profile for s = 3 is shown in Figure 4.2. As before, Method 3 has the

best performance on this testbed. Method 2 performs worse than it did when s = 2, because

there are about 5% of the instances whose solution times are not within 100 times the fastest

running time when α = 2. Method 1, on the other hand, has a similarly poor performance

now, as it was the case with s = 2.

These comparisons show that, in general, Method 3 outperforms the other two methods.

62



Figure 4.2: Performance profile based on the running time of methods for s = 3 and
α ∈ {0.5, 2}.

This observation confirms that using constraints based onH-hereditary s-clubs at initialization

and during separation can significantly improve the performance of our DBC algorithm.

Therefore, we use this method in the remaining computational experiments in Sections 4.2.2

and 4.2.3.

Before discussing the results of our main experiments with Method 3, we should mention

that we evaluated its performance by conducting two other experiments reported in greater

detail in Section 4.3. First, a root node performance comparison between Method 1 and

Method 3. The results show that Method 3 outperforms Method 1 by providing the same

or smaller gaps and objective values for nearly all the instances (see Section 4.3.1). We

also evaluated the dependency of Method 3 on primal heuristics built into the Gurobi solver,

comparing its performance with and without these heuristics. Neither choice consistently

offers superior performance, and we discuss this in greater detail in Section 4.3.2.

63



4.2.2 Results for Group-1 instances

We report on the results obtained for the instances in Group-1 for s ∈ {2, 3} and α ∈ {0.5, 1, 2}

using Method 3 in this section. For each instance, we report the number of interdicted vertices

under x(V ), the s-club number of the interdicted graph under θ, the total number of BC

nodes explored, the total number of separation callbacks under #CB, the total number of

violated constraints added under #Cuts (broken down by each type when s = 2 under Star,

Leaf, Regular), the total running time, the total time taken to solve the maximum s-club

problem, the total time taken to solve the minimum latency-s CDS problem (when s = 3),

and the relative optimality gap at termination.

Tables 4.3, 4.4, and 4.5 show the results for α = 2, 1, and 0.5, respectively, with s = 2.

All the instances are solved to optimality under a one hour time limit with the exception of

jazz and polblogs that are not solved to optimality for any value of α. We can observe in

Table 4.1 that for most of the instances the 2-club number of the original graph ω̄2(G) tends

to be much larger than the 2-club number after interdiction (i.e., θ) for all values of α we

consider. For example, the values of ω̄2(G) in the original graph for celegans-metabolic

and PGPgiantcompo are respectively 238 and 206, while they decrease to 32 and 76 after

interdiction when α = 2. These values further decrease to 10 and 47 as α = 0.5 because

interdiction is cheaper in this case. However, when ω̄2(G) is very small compared to |V |, we

find θ to be almost equal to ω̄2(G). Consider the instance cs4 as an example, with ω̄2(G) = 6.

The 2-club number of this graph remains the same after interdiction for all values of α we

considered (note that this instance has 22,449 vertices).

Another observation is that for most of the instances, decreasing the value of α from 2

to 0.5 makes the instance more difficult to solve and, as a result, the number of BC nodes

explored and running times increase. For example, when α = 2, football is solved in the

root node in 3.07 seconds, while for α = 0.5, the number of explored nodes is 973, 384 and

the running time increases to 92.14 seconds. This behavior could be due to the fact that as α

64



Table 4.3: Results for Group-1 instances with s = 2 and α = 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

karate 3 9 1 5 0 3 0.08 0.01 0.00
dolphins 0 13 1 2 1 0 0.10 0.06 0.00
lesmis 2 18 1 4 1 0 0.38 0.01 0.00
polbooks 1 25 1 14 4 8 0.70 0.45 0.00
adjnoun 6 14 1 5 1 0 0.56 0.46 0.00
football 0 16 1 12 0 10 3.07 3.01 0.00
jazz 5 71 37,284 4,735 1 4,731 TL 3570.47 16.17
celegansn 12 36 63 8 1 3 7.18 6.87 0.00
celegansm 13 32 21 4 1 0 0.33 0.03 0.00
email 1 52 1 3 1 0 12.37 12.11 0.00
polblogs 21 154 1,180 100 2 92 TL 3607.45 18.67
netscience 3 21 1 3 1 0 0.16 0.04 0.00
add20 14 68 32 5 1 0 6.88 0.81 0.00
data 0 18 0 2 0 1 7.64 7.58 0.00
uk 0 5 1 8 0 7 29.93 29.76 0.00
power 2 15 1 3 0 1 1.74 1.60 0.00
add32 0 32 1 2 1 0 0.76 0.63 0.00
hep-th 3 40 1 3 1 0 3.87 3.05 0.00
whitaker3 0 9 0 2 1 0 48.23 47.96 0.00
crack 0 10 1 2 1 0 38.09 37.86 0.00
PGP 11 76 79 6 4 0 26.46 20.02 0.00
cs4 0 6 1 6 0 5 407.60 405.63 0.00

Table 4.4: Results for Group-1 instances with s = 2 and α = 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

karate 5 5 1 9 3 4 0.12 0.01 0.00
dolphins 0 13 34 4 2 1 0.27 0.12 0.00
lesmis 8 10 57 10 4 3 0.16 0.01 0.00
polbooks 13 12 144 12 6 3 0.42 0.14 0.00
adjnoun 6 14 23 6 1 0 1.01 0.80 0.00
football 0 16 1 14 0 11 3.52 3.42 0.00
jazz 21 45 74,282 6,389 22 6,361 TL 3598.92 10.42
celegansn 21 23 175 6 1 0 4.24 3.92 0.00
celegansm 21 18 54 5 1 0 0.35 0.05 0.00
email 8 42 49 3 1 0 12.72 11.38 0.00
polblogs 113 55 972 140 1 135 TL 3737.62 30.78
netscience 3 21 1 3 1 0 0.17 0.04 0.00
add20 30 49 281 5 2 0 8.98 0.64 0.00
data 0 18 1 2 0 1 7.83 7.69 0.00
uk 0 5 1 8 0 7 30.01 29.85 0.00
power 2 15 1 3 0 1 1.83 1.65 0.00
add32 0 32 1 2 1 0 1.12 0.64 0.00
hep-th 5 36 1 3 1 0 4.79 3.55 0.00
whitaker3 0 9 0 2 1 0 47.18 46.99 0.00
crack 0 10 1 2 1 0 34.91 34.65 0.00
PGP 24 62 325 5 1 2 44.54 25.98 0.00
cs4 0 6 1 6 0 5 411.37 409.26 0.00

65



Table 4.5: Results for Group-1 instances with s = 2 and α = 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

karate 8 3 41 17 11 3 0.16 0.01 0.00
dolphins 3 10 200 16 13 2 0.52 0.25 0.00
lesmis 10 8 90 18 16 0 0.52 0.04 0.00
polbooks 16 10 268 23 17 2 0.41 0.13 0.00
adjnoun 12 10 331 16 12 1 1.07 0.67 0.00
football 1 15 973,384 96 2 90 92.14 26.56 0.00
jazz 44 26 1,497,964 5,307 56 5,249 TL 1271.72 12.62
celegansn 23 21 2,214 13 7 2 6.18 5.61 0.00
celegansm 32 10 181 7 2 1 0.48 0.09 0.00
email 12 38 1,020 6 1 0 39.51 37.44 0.00
polblogs 125 42 452,127 138 1 116 TL 1976.77 2.19
netscience 3 21 206 3 1 0 1.20 0.04 0.00
add20 52 34 7,088 9 2 0 12.59 0.95 0.00
data 1 17 20 3 0 1 13.25 12.86 0.00
uk 0 5 1 8 0 7 29.07 28.87 0.00
power 2 15 1 3 0 1 2.01 1.59 0.00
add32 4 29 58 4 1 0 3.19 1.09 0.00
hep-th 18 29 412 4 2 0 10.95 6.34 0.00
whitaker3 0 9 1 2 1 0 47.00 46.72 0.00
crack 1 9 1 3 1 0 72.81 72.51 0.00
PGP 45 47 5,858 3 1 0 41.63 8.20 0.00
cs4 0 6 1 7 0 6 503.88 501.18 0.00

decreases, interdiction is cheaper and there are many more feasible solutions of high quality

distributed across the BC tree, thereby resulting in far fewer BC nodes being pruned.

Tables 4.6, 4.7, and 4.8 report our results for 3-club interdiction with α = 2, 1, and 0.5,

respectively. The number of instances that are solved to optimality within the time limit

are 14, 13, and 12 for α = 2, 1, and 0.5, respectively. (By contrast, 20 out of the 22 graphs

for all three values of α were solved to optimality for 2-club interdiction.) In general, we

observe that the 3-club interdiction problem is significantly more difficult to solve than its

2-club counterpart. When solving the 3-club interdiction problem using Method 3, we invoke

separation more frequently and each callback to the separation problem takes more time to

finish.

During separation, the maximum 3-club problem takes more time to solve than the

maximum 2-club problem on our testbed (see Table 4.1 for instances where the difference

is significant). But more importantly, on each maximum 3-club we find, the algorithm now

66



Table 4.6: Results for Group-1 instances with s = 3 and α = 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 5 6 1 8 4 0.32 0.00 0.02 0.00
dolphins 3 19 11,011 95 93 4.49 1.86 0.55 0.00
lesmis 8 11 72 28 20 0.79 0.02 0.18 0.00
polbooks 10 25 50,926 192 187 20.54 7.18 1.94 0.00
adjnoun 10 25 497,453 774 767 429.93 208.39 13.00 0.00
football 2 50 11,670 120 116 232.65 220.00 5.16 0.00
jazz 5 145 45,760 3,633 3,629 TL 549.44 2646.06 40.17
celegansn 28 68 24,388 1,822 1,814 TL 2375.78 1164.87 37.85
celegansm 22 29 5,982 30 28 52.81 2.10 8.98 0.00
email 140 94 1 26 24 TL 3752.68 79.68 81.84
polblogs 340 228 1 20 19 TL 733.57 3180.50 81.93
netscience 6 27 155 8 6 2.78 0.12 0.04 0.00
add20 61 125 3,816 338 330 TL 77.85 787.69 53.32
data 0 32 1 8 6 45.97 43.34 0.04 0.00
uk 0 8 1 5 3 21.87 21.56 0.01 0.00
power 1 27 1 7 5 5.57 4.50 0.02 0.00
add32 5 75 729,074 65 63 TL 15.86 1.03 1.00
hep-th 0 120 1 83 82 TL 3573.15 4.91 44.66
whitaker3 0 15 1 6 4 177.24 175.41 0.01 0.00
crack 0 17 1 6 5 204.25 201.43 0.02 0.00
PGP 4 266 1 104 103 TL 2955.97 40.22 56.79
cs4 0 12 1 6 4 653.00 648.15 0.02 0.00

solves the latency-3 CDS problem as opposed to the heuristic used for s = 2. We find that the

instances that were not solved to optimality also typically have significantly larger running

times for finding a latency-3 CDS, compared to those instances that we do solve to optimality.

The number of calls to the separation routine, the number of cuts added, and the number

of BC nodes have increased on average when compared to what is observed for s = 2. One

possible explanation for this behavior is that the initial strength of the relaxation problem

based on s-clubs in S0 is not as strong when s = 3 compared to when s = 2. In other words,

the edge star based constraints (4.2) when s = 3 are possibly not as strong as star based

constraints (4.1) when s = 2. The relative weakness of the initial relaxation based on edge

star constraints may be due to large 3-clubs in the graph that do not resemble edge stars,

while it is more common for large 2-clubs to resemble stars.

As solving the separation problem for both values of s requires a significant proportion

of the overall solution time, we have evaluated the effect of using heuristics to solve the

separation problem. Our results show that this approach might improve the performance of

67



Table 4.7: Results for Group-1 instances with s = 3 and α = 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 6 5 17 7 3 0.19 0.00 0.02 0.00
dolphins 9 11 11,187 188 184 8.01 3.93 0.82 0.00
lesmis 8 11 84 9 6 0.41 0.00 0.07 0.00
polbooks 20 12 16,007 74 69 12.21 1.80 0.58 0.00
adjnoun 17 15 237,311 269 263 168.81 59.20 2.26 0.00
football 5 45 82,949 2,496 2,491 TL 3241.66 72.25 46.32
jazz 72 28 63,683 6,165 6,159 TL 1003.51 1751.19 33.32
celegansn 40 43 21,710 2,052 2,044 TL 3009.87 513.28 32.90
celegansm 29 19 21,846 34 30 78.16 1.31 8.82 0.00
email 167 70 1 46 45 TL 3639.63 93.73 74.15
polblogs 350 188 1 24 22 TL 850.14 3217.57 76.88
netscience 6 27 1,887 8 6 6.67 0.12 0.04 0.00
add20 102 47 194,989 4,242 4,235 TL 612.74 1549.38 35.94
data 1 31 32,189 28 25 390.48 182.72 0.19 0.00
uk 0 8 1 7 6 33.21 32.74 0.02 0.00
power 3 25 2,774 18 16 26.67 13.04 0.07 0.00
add32 16 55 935,727 92 89 TL 19.22 1.13 7.99
hep-th 6 114 1 93 91 TL 3457.43 4.33 53.44
whitaker3 0 15 1 7 6 212.12 209.15 0.02 0.00
crack 0 17 1 7 6 269.91 265.80 0.02 0.00
PGP 7 252 1 86 84 TL 2425.85 29.35 63.97
cs4 1 10 1 7 6 749.78 742.57 0.02 0.00

Method 3 depending on the test bed; see Section 4.3.3 for more details.

We close this section by noting that similar to the s = 2 case, the optimal value of θ

shows that our model decreases the maximum 3-club size significantly except for those cases

where ω̄3(G) is small. As before, the interdiction problem becomes more difficult to solve

when the value of α is decreased.

4.2.3 Results for Group-2 instances

We evaluate the performance of Method 3 on Group-2 instances in this section. Tables 4.9,

4.10, and 4.11 show the results for s = 2. As mentioned before, graph Douban is not included

in these experiments because the maximum 2-club for this instance is not found within the

time limit. The results on the remaining 17 instances show that all of them are solved to

optimality within the one hour time limit except instance Anybeat with α = 0.5, which has a

1% relative optimality gap at termination. We also find that the value of ω̄2(G) remains the

same for three instances G05,G08,G09 with α = 2, but in all other cases the 2-club number

68



Table 4.8: Results for Group-1 instances with s = 3 and α = 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 7 4 78 2 0 0.24 0.00 0.00 0.00
dolphins 18 5 10,654 52 39 3.79 0.45 0.16 0.00
lesmis 13 7 85 4 0 0.59 0.00 0.00 0.00
polbooks 27 8 42,088 44 34 24.74 0.83 0.20 0.00
adjnoun 22 10 148,295 86 75 117.51 9.64 0.45 0.00
football 40 19 249,850 6,843 6,839 TL 2548.35 81.29 36.66
jazz 90 14 546,993 1,606 1,596 TL 230.80 16.60 19.85
celegansn 58 27 174,674 2,364 2,356 TL 2374.93 70.85 27.40
celegansm 35 14 279,199 60 55 717.01 4.37 0.81 0.00
email 251 50 1 56 54 TL 3671.76 143.89 71.90
polblogs 454 62 1 45 43 TL 1357.63 2118.54 68.46
netscience 12 21 7,867 8 6 30.69 0.12 0.04 0.00
add20 116 33 625,508 615 610 TL 45.23 108.92 24.90
data 1 31 471,772 37 33 TL 258.05 0.24 3.55
uk 0 8 1 9 8 51.10 50.15 0.03 0.00
power 7 22 20,025 23 20 114.11 16.14 0.08 0.00
add32 38 39 442,630 112 108 TL 18.63 0.98 14.14
hep-th 11 110 1 99 98 TL 3107.94 1.95 59.10
whitaker3 0 15 1 9 8 294.46 284.14 0.02 0.00
crack 0 17 1 10 9 405.37 394.57 0.03 0.00
PGP 10,680 0 1 89 88 TL 1783.37 41.73 98.68
cs4 1 10 1 9 8 1005.55 994.03 0.03 0.00

significantly decreases after interdiction. For example, the maximum 2-club size of AS02 is

2, 344, while after interdiction it decreases to 114, 80, and 58, respectively, for α equal to

2, 1, and 0.5.

Although during initialization of the relaxation we add star based constraints only for

the top 20% of vertices by degree, as described in Section 4.1.1, the number of violated

constraints that are added on-the-fly is never more than 4 (G08 when α = 0.5). As it can

be seen under the columns Star and Leaf in the tables, in the vast majority of instances

the largest 2-club found in the interdicted graph is frequently a star and our heuristic never

added a constraint using just the leaves detected in H.

Similar to Group-1 instances, the interdiction problem becomes more difficult to solve for

smaller values of α, and the number of BC nodes explored and the running time increase

noticeably. As an example, the number of explored nodes for instance Anybeat increases

from 136 when α = 2 to 321, 054 when α = 0.5. Moreover, the average running time for the

16 instances that are solved to optimality, increases from 116 seconds to 356 seconds as α

69



Table 4.9: Results for Group-2 instances with s = 2 and α = 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

G04 2 67 1 3 1 0 49.19 47.22 0.00
G05 0 89 1 2 1 0 15.79 13.77 0.00
G06 1 74 1 3 1 0 16.75 15.68 0.00
G08 0 98 25 2 1 0 21.81 19.38 0.00
G09 0 103 26 2 1 0 23.65 19.99 0.00
B-Alpha 23 99 134 3 1 0 21.87 17.16 0.00
B-OTC 35 103 89 3 1 0 33.70 27.3 0.00
AS01 42 73 159 3 1 0 68.76 45.63 0.00
AS02 40 114 209 3 1 0 69.64 47.07 0.00
Ning 30 130 551 3 1 0 123.45 113.60 0.00
Hamsterster 19 89 65 3 0 1 23.07 20.65 0.00
Escorts 21 120 167 3 1 0 104.85 100.16 0.00
Anybeat 54 136 2,602 4 2 0 399.65 283.61 0.00
Advogato 40 131 300 3 1 0 1219.16 1204.89 0.00
Gplus 100 40 279 4 1 0 24.31 16.39 0.00
Facebook1 116 1 1 3 1 0 55.15 51.04 0.00
Facebook2 10 1 1 4 2 0 0.30 0.23 0.00

decreases from 2 to 0.5.

For s = 3, as mentioned before, solving the maximum s-club problem to optimality

is too time-consuming for instances in Group-2 (See Table 4.2). Therefore, we use an

inexact approach to solve the separation problem to find a sufficiently violated constraint

(i.e., corresponding s-club) instead of finding a maximum s-club. Given an integral feasible

solution (θ̂, x̂) to the initial relaxation, instead of finding a maximum s-club in the graph

interdicted according to x̂, we look for an s-club with cardinality at least θ̂ + ϵ where ϵ is the

minimum violation we seek in the constraint.

In this inexact separation approach, first we rely on the greedy heuristic built into the

ICUT solver to detect a sufficiently large s-club. If this heuristic s-club size is at least θ̂ + ϵ,

the separation call is terminated early and the corresponding violated constraint is added

to the initial problem. If the heuristic s-club is not sufficiently large, the exact Gurobi BC

algorithm in the ICUT solver is run with a termination condition based on a target objective

value. In this setting, the solver stops once it finds an s-club of size at least θ̂+ ϵ. If neither of

the above two conditions results in early termination of ICUT, we let it continue to solve the

70



Table 4.10: Results for Group-2 instances with s = 2 and α = 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

G04 2 67 134 3 1 0 50.07 46.66 0.00
G05 8 79 250 4 2 0 40.00 35.24 0.00
G06 5 69 60 3 1 0 25.07 19.60 0.00
G08 2 94 640 6 4 0 104.19 90.72 0.00
G09 20 78 1,431 3 1 0 49.13 30.18 0.00
B-Alpha 50 60 294 3 1 0 17.18 9.84 0.00
B-OTC 54 76 3,633 4 1 0 67.38 38.39 0.00
AS01 54 60 922 3 2 0 73.27 44.99 0.00
AS02 62 80 1,642 3 2 0 104.54 47.17 0.00
Ning 45 106 3,140 5 1 0 360.93 335.74 0.00
Hamsterster 25 82 614 4 0 1 43.33 40.20 0.00
Escorts 37 91 486 3 1 0 106.75 100.68 0.00
Anybeat 83 99 19,374 4 2 0 507.91 224.23 0.00
Advogato 62 106 5,868 6 2 0 2121.36 2027.90 0.00
Gplus 124 5 1 5 1 0 23.25 17.95 0.00
Facebook1 116 1 1 3 1 0 48.98 45.28 0.00
Facebook2 10 1 1 4 2 0 0.28 0.22 0.00

separation problem to optimality. In this case, it will terminate either returning a maximum

s-club with violation, i.e., of size greater than θ̂ and smaller than θ̂ + ϵ; or certifying that no

violated constraint exists. Note that by design, on our test bed ICUT subproblems do not

reach their termination by time limit. After experimentation with ϵ = 1.5, 2.5, and 5 in this

inexact separation approach (see Section 4.3.3), we chose to employ a minimum constraint

violation target of 1.5 for early termination of a separation call.

Moreover, instead of solving the minimum latency-s CDS problem to optimality, we use

the following method that is analogous to Algorithm 3 to heuristically find a hereditary

subset of the violated 3-club: if a 3-club S contains an edge {u, v} such that degG[S](u) +

degG[S](v)− |cuv| = |S| where |cuv| is the number of common neighbors of vertices u and v,

then {u, v} ⊆ S is a minimum latency-3 CDS of G[S] and S is a H-hereditary 3-club for

H = S\{u, v}. Otherwise, we set H = {u ∈ S | degG[S](u) = 1}. Table 4.12 shows the results

of these experiments for α = 2. As it can be seen, only 3 instances Gplus, Facebook1, and

Facebook2 are solved to optimality within the time limit. We should remind the reader here

that all separation calls terminated conclusively even though the cumulative separation time

71



Table 4.11: Results for Group-2 instances with s = 2 and α = 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Regular Total time (s) s-club time (s) Gap (%)

G04 26 47 479 4 1 0 158.12 150.56 0.00
G05 63 31 1,909 4 1 0 127.67 115.26 0.00
G06 69 31 2,577 3 1 0 80.47 53.41 0.00
G08 75 26 476 3 1 0 41.43 37.97 0.00
G09 72 30 3,052 3 1 0 54.92 46.99 0.00
B-Alpha 81 41 36,709 6 2 0 160.82 20.72 0.00
B-OTC 82 54 37,748 4 1 0 239.13 21.59 0.00
AS01 73 44 4,687 3 1 0 94.28 47.02 0.00
AS02 96 58 31,063 8 2 2 674.79 171.61 0.00
Ning 93 75 99,359 4 1 0 908.55 171.84 0.00
Hamsterster 60 51 53,082 8 1 3 213.56 75.75 0.00
Escorts 79 65 18,715 3 1 0 212.38 80.37 0.00
Anybeat 118 71 321,054 6 3 0 TL 224.25 1.00
Advogato 102 80 154,273 9 3 0 2622.67 1971.76 0.00
Gplus 129 2 1 4 2 0 19.54 16.87 0.00
Facebook1 116 1 1 5 2 0 86.24 80.73 0.00
Facebook2 10 1 1 4 2 0 0.29 0.22 0.00

exceeds one hour in these instances. Since our previous experiments show that the interdiction

problem becomes more difficult to solve on this test bed as the value of α decreases, we have

not conducted experiments for α = 1 and α = 0.5. The results for the Group-2 instances

reinforce the conclusions from our experiments with Group-1, that for s = 3 the interdiction

problem becomes much more challenging to solve.

4.3 Additional experimental results

4.3.1 Comparison of root node performance of Method 1 and Method 3

We have compared the performance of Method 1 and Method 3 in the root node by setting a

termination condition on the number of explored nodes. All other solver parameters including

primal heuristics and general purpose cutting planes are at their default settings. With this

condition, the solver terminates when the total number of branch-and-cut nodes explored

exceeds the value specified in the Gurobi NodeLimit parameter (which is 1 in our case).

Tables 4.13 and 4.14 show the results of these experiments. Comparing the quality of the

objective values and gaps obtained by each method in the root node shows that except for

72



Table 4.12: Results for Group-2 instances with s = 3 using inexact separation.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

G04 10,876 0 1 5 4 TL 4,967.81 0.00 99.62
G05 8,846 0 1 9 8 TL 4,671.76 0.00 99.48
G06 8,717 0 1 87 86 TL 6,325.01 0.03 99.44
G08 5,672 9 1 135 133 TL 3,493.11 0.17 98.97
G09 8,114 0 1 57 56 TL 4,449.13 0.06 99.33
B-Alpha 3,783 0 1 117 116 TL 78.47 0.31 98.02
B-OTC 5,295 8 1 90 88 TL 148.10 0.24 98.32
AS01 62 82 1,050 125 122 TL 195.56 0.06 15.74
AS02 10,900 0 1 74 73 TL 178.72 0.52 99.11
Ning 10,298 0 1 47 46 TL 442.33 0.98 99.00
Hamsterster 1,674 7 18,099 3,386 3,384 TL 2,777.36 9.15 95.26
Escorts 10,106 0 1 5 3 TL 4,002.30 0.00 99.20
Anybeat 12,645 0 1 25 24 TL 190.87 0.73 99.10
Advogato 6,551 0 1 46 45 TL 559.49 1.16 98.33
Gplus 100 41 380 8 5 2405.92 53.99 0.07 0.00
Facebook1 116 1 1 5 3 318.07 170.60 0.07 0.00
Facebook2 10 1 1 6 4 2.50 0.63 0.00 0.00
Douban 154,908 0 1 4 3 TL 4,261.36 0.03 99.92

graph football for s = 2, Method 3 gives the same or a smaller gap and a smaller objective

value than Method 1 at the root node. These results (along with the results presented in

section 4.3.2) suggest that the improvements observed in Method 3 are predominantly because

the heredity-based formulation is better than the standard formulation.

4.3.2 Impact of Gurobi heuristics on Method 3

As our DBC algorithm only separates integral solutions, it stands to reason that its perfor-

mance will depend on the effectiveness of the primal heuristics built into the Gurobi solver

that produce integral solutions to the initial relaxation. In order to examine the dependency

of our algorithm performance on Gurobi primal heuristics, we have performed experiments

that disable these heuristics.

Table 4.15 and 4.16 report the results for s = 2 and s = 3, respectively. When s = 2, we

find that 16 out of 20 graphs are solved faster when turning off the primal heuristics (47%

decrease on average), while the running times increase for other instances adjnoun (24%),

football (122%), celegansn (55%) and PGP (16%). It can also be seen that in general, the

number of explored nodes increases, and the number of callbacks and cuts decreases when

73



Table 4.13: Root node comparison of Method 1 and Method 3 on Group-1 instances for s = 2
and α = 0.5.

Graph G Method #CB #Cuts Total time (s) s-club time (s) Obj Val Gap (%)

karate
3 17 14 0.14 0.02 7.00 8.52
1 84 82 0.26 0.12 16.50 92.42

dolphins
3 12 11 0.39 0.20 11.50 20.66
1 45 44 1.78 1.66 12.00 83.33

lesmis
3 18 16 0.32 0.02 13.00 13.89
1 47 43 0.15 0.07 21.50 93.02

polbooks
3 19 15 0.41 0.11 18.00 18.80
1 51 49 1.20 1.11 24.50 91.84

adjnoun
3 12 9 0.90 0.59 16.00 20.11
1 81 77 2.52 2.27 28.50 93.97

football
3 42 38 11.36 11.14 16.00 20.54
1 34 29 10.12 10.03 15.50 77.88

celegansn
3 9 5 4.59 4.36 32.50 21.77
1 40 39 4.82 4.07 135.00 98.12

celegansm
3 7 3 0.44 0.08 26.00 9.79
1 36 35 0.66 0.51 238.00 98.74

email
3 5 1 24.35 23.65 44.50 9.76
1 29 27 153.49 152.52 66.50 86.29

netscience
3 3 1 1.16 0.04 22.50 5.63
1 73 71 2.14 1.27 29.50 49.37

add20
3 7 1 2.60 0.77 62.50 20.01
1 98 97 93.01 18.97 124.00 86.88

data
3 3 1 12.59 12.19 17.50 4.62
1 3 1 13.76 13.45 17.50 9.36

uk
3 8 7 27.04 26.85 5.00 0.00
1 7 6 23.97 23.77 5.00 0.00

power
3 3 1 2.05 1.61 16.00 0.00
1 36 34 27.39 26.16 16.00 5.52

add32
3 4 1 3.21 1.15 31.00 3.95
1 54 53 23.96 13.78 32.00 33.55

hep-th
3 4 2 10.55 6.40 38.00 7.63
1 163 162 465.74 267.26 51.00 48.35

whitaker3
3 2 1 44.94 44.68 9.00 0.00
1 2 1 48.05 47.72 9.00 0.00

crack
3 3 1 69.49 69.19 9.50 0.00
1 3 1 88.99 88.58 9.50 0.00

PGP
3 3 1 28.05 8.29 69.50 9.68
1 138 137 933.31 636.85 206.00 84.89

cs4
3 7 6 716.82 713.64 6.00 0.00
1 8 7 666.96 663.10 6.00 0.00

74



Table 4.14: Root node comparison of Method 1 and Method 3 on Group-1 instances for s = 3
and α = 0.5.

Graph G Method #CB #Cuts Total time(s) s-club time(s) LCDS time(s) Obj Val Gap (%)

karate
3 2 0 0.24 0.00 0.00 7.50 5.89
1 62 59 0.16 0.05 15.00 82.14

dolphins
3 33 30 1.07 0.41 0.24 17.50 34.99
1 66 66 0.84 0.63 20.50 70.95

lesmis
3 4 0 0.6 0.00 0.00 13.50 7.81
1 81 80 0.32 0.10 25.50 79.88

polbooks
3 35 31 2.88 0.79 0.32 22.50 22.63
1 42 41 0.50 0.22 29.00 78.45

adjnoun
3 53 49 8.7 6.80 0.59 27.50 39.84
1 51 49 4.01 3.31 31.00 76.20

celegansm
3 55 50 16.77 4.18 0.87 31.50 13.63
1 32 31 8.80 4.23 184.50 94.69

netscience
3 8 6 13.22 0.11 0.05 27.00 8.49
1 113 111 7.56 1.86 40.00 56.01

uk
3 9 8 46.01 44.95 0.04 8.00 0.00
1 13 11 51.20 50.12 8.00 0.00

power
3 23 20 27.96 14.72 0.11 25.50 5.22
1 211 210 193.99 164.46 51.50 58.11

whitaker3
3 9 8 274.45 264.57 0.04 15.00 0.00
1 14 12 348.51 339.10 15.00 0.00

crack
3 10 9 383.09 372.56 0.04 17.00 0.00
1 18 16 606.28 595.34 17.00 0.00

cs4
3 9 8 961.8 948.99 0.04 10.50 0.00
1 14 14 1172.67 1158.99 10.50 0.00

Gurobi heuristics are turned off. When s = 3 the decrease in the running times is 39% on

average for 9 out of 12 instances and for graphs adjnoun, power and crack, the running

times increase 6%, 24%, and 4%, respectively. The number of explored nodes increases for 6

instances while the number of callbacks and cuts increase only for the graph power.

Based on these results, it is difficult to conclude that turning Gurobi heuristics on or off

leads to a consistent, predictable impact on the overall performance. This may be attributed

to the conflicting forces at play. Turning off Gurobi heuristics can result in fewer (or no)

integral solutions encountered at the root node that invoke separation calls, with less time

spent finding s-clubs and re-solving node relaxations as a result. In some (easier) instances,

75



Table 4.15: Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for
s = 2 and α = 0.5.

Graph G Heuristics x(v) θ #BC nodes #CB #Cuts Total time (s) s-club time (s)

karate
Off 8 3 80 17 15 0.07 0.01
On 8 3 41 17 14 0.16 0.01

dolphins
Off 3 10 211 14 12 0.23 0.17
On 3 10 200 16 15 0.52 0.25

lesmis
Off 10 8 335 18 16 0.06 0.01
On 10 8 90 18 16 0.52 0.04

polbooks
Off 20 8 476 26 22 0.33 0.26
On 16 10 268 23 19 0.41 0.13

adjnoun
Off 12 10 848 20 16 1.33 1.20
On 12 10 331 16 13 1.07 0.67

football
Off 1 15 3,686,723 137 133 204.61 47.15
On 1 15 973,384 96 92 92.14 26.56

celegansn
Off 23 21 3,290 18 14 9.57 9.18
On 23 21 2,214 13 9 6.18 5.61

celegansm
Off 32 10 335 6 1 0.31 0.05
On 32 10 181 7 3 0.48 0.09

email
Off 12 38 1,445 5 2 38.04 36.88
On 12 38 1,020 6 1 39.51 37.44

netscience
Off 3 21 88 1 0 0.31 0.03
On 3 21 206 3 1 1.20 0.04

add20
Off 52 34 4,701 8 1 8.98 0.83
On 52 34 7,088 9 2 12.59 0.95

data
Off 1 17 28 1 0 5.10 4.84
On 1 17 20 3 1 13.25 12.86

uk
Off 0 5 1 3 3 12.78 12.65
On 0 5 1 8 7 29.07 28.87

power
Off 2 15 1 1 1 1.21 0.76
On 2 15 1 3 1 2.01 1.59

add32
Off 4 29 56 1 0 0.90 0.26
On 4 29 58 4 1 3.19 1.09

hep-th
Off 18 29 826 3 1 7.78 5.92
On 18 29 412 4 2 10.95 6.34

whitaker3
Off 0 9 1 1 0 25.90 25.64
On 0 9 1 2 1 47.00 46.72

crack
Off 1 9 1 1 0 32.36 32.08
On 1 9 1 3 1 72.81 72.51

PGP
Off 45 47 4,613 4 0 48.14 17.10
On 45 47 5,858 3 1 41.63 8.20

cs4
Off 0 6 1 4 3 363.48 361.44
On 0 6 1 7 6 503.88 501.18

76



Table 4.16: Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for
s = 3 and α = 0.5.

Graph G Heuristics x(v) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s)

karate
Off 11 2 134 1 0 0.14 0.00 0.00
On 7 4 78 2 0 0.24 0.00 0.00

dolphins
Off 20 4 7,344 21 19 1.86 0.27 0.08
On 18 5 10,654 52 39 3.79 0.45 0.16

lesmis
Off 13 7 148 1 0 0.37 0.00 0.00
On 13 7 85 4 0 0.59 0.00 0.00

polbooks
Off 27 8 47,587 21 18 16.84 0.10 0.07
On 27 8 42,088 44 34 24.74 0.83 0.20

adjnoun
Off 26 8 181,072 29 27 124.49 3.15 0.11
On 22 10 148,295 86 75 117.51 9.64 0.45

celegansm
Off 35 14 154,883 35 34 348.04 0.80 0.17
On 35 14 279,199 60 55 717.01 4.37 0.81

netscience
Off 14 20 8,841 3 3 7.34 0.07 0.01
On 12 21 7,867 8 6 30.69 0.12 0.04

uk
Off 2 7 1 6 6 44.45 42.54 0.03
On 0 8 1 9 8 51.10 50.15 0.03

power
Off 7 22 25,879 31 29 141.99 30.96 0.16
On 7 22 20,025 23 20 114.11 16.14 0.08

whitaker3
Off 0 15 1 6 6 238.44 221.16 0.03
On 0 15 1 9 8 294.46 284.14 0.02

crack
Off 0 17 1 8 7 420.60 407.57 0.05
On 0 17 1 10 9 405.37 394.57 0.03

cs4
Off 1 10 1 6 6 755.52 741.10 0.03
On 1 10 1 9 8 1005.55 994.03 0.03

this can be beneficial as the wallclock time is reduced by simply letting the tree enumerate.

However, on other instances, turning off Gurobi heuristics resulting in fewer integral solutions

leading to fewer separation calls and fewer constraints generated at the root node, costs us in

overall performance. A weaker relaxation at the root node and a larger tree size are a result

of primal heuristic solutions not triggering constraint generation as often when turned off.

However, the performance that is elicited by the choice seems to be very instance specific,

and no doubt a function of the initial relaxation strength and integrality for the instance

under consideration.

77



4.3.3 Impact of exact and inexact separation on Method 3

We performed experiments to evaluate the impact of inexact separation on the overall

performance of Method 3. Given an integral feasible solution (θ̂, x̂) to the initial relaxation,

instead of finding a maximum s-club in the graph interdicted according to x̂, we look for an

s-club with cardinality at least θ̂+ ϵ using the procedure described in Section 4.2.3, where ϵ is

the minimum violation we seek in the constraint. We experimented with ϵ = 1.5, 2.5, and 5.

Results of these experiments and their comparison with the default setting are shown in

Tables 4.17–4.20. The last two columns of these tables, #ICUT-H and #ICUT-ϵ respectively

indicate the number of lazy cuts detected using the first and second early termination

attempts. Tables 4.17–4.19 report the results for ϵ = 5, 2.5, and 1.5 when s = 2. As it can be

seen, ϵ = 5 is too large of a target for early termination and the separation problem is solved

to optimality in most of the iterations of our test bed. As the value of ϵ decreases, more

ϵ-violated cuts are found early. Tables 4.18 and 4.19 show that for both ϵ = 2.5 and ϵ = 1.5,

the decrease in the running times is about 25% on average for 18 out of 20 instances. For the

other 2 instances, the running times increase 4% and 6% on average for ϵ = 2.5 and ϵ = 1.5,

respectively. Considering only those instances in Table 4.19 (ϵ = 1.5) that take at least one

minute to be solved, which are football, crack and cs4, we can observe that the running

times of football and crack decrease 68% and 10% respectively, and the running time of

cs4 increases 10% when inexact separation is used. For all the other instances that take

less than a minute to solve, the running times decrease at an average of 24%. Regarding

the number of cuts in Table 4.19 (ϵ = 1.5), for the graph football, 48 out of 55 total cuts

are found by early termination. The total number of callbacks and cuts decreased from 96

and 92, respectively, to 60 and 55, which suggests that the cuts are sufficiently strong. For

the graph celegansn, although all the violated constraints are found by heuristics, the total

number of callbacks and cuts increased, which means that the cuts added using heuristics are

weaker when compared to the cuts added by the exact solution in this instance. In other

78



Table 4.17: Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and
ϵ = 5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ϵ

karate
inexact 8 3 41 17 14 0.15 0.02 0 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 200 16 15 0.38 0.18 3 1
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.31 0.01 3 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.46 0.11 6 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 528 15 13 0.89 0.52 2 2
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 356,392 56 51 28.40 10.89 19 0
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.80 2.37 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.45 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 32.54 30.56 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.34 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.51 0.87 0 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 10.02 9.64 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 26.94 26.71 0 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.86 1.40 0 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.02 0.96 0 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.66 5.95 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.56 27.26 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 64.39 63.97 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.49 7.42 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 8 6 521.39 517.40 0 3
exact 0 6 1 7 6 503.88 501.18

79



Table 4.18: Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and
ϵ = 2.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ϵ

karate
inexact 8 3 41 17 14 0.10 0.01 8 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 218 16 14 0.33 0.16 9 3
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.27 0.01 10 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.39 0.10 16 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 394 15 13 0.68 0.33 10 1
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 510,258 65 60 38.98 12.73 22 8
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.61 2.21 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.42 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 31.47 29.42 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.21 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.42 0.85 1 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 9.67 9.28 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 20.94 20.71 3 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.83 1.35 1 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.11 0.95 1 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.64 5.93 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.21 26.90 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 65.84 65.38 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.66 7.44 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 9 7 540.55 536.14 3 0
exact 0 6 1 7 6 503.88 501.18

80



Table 4.19: Inexact versus exact separation on Group-1 instances with s = 2, α = 0.5, and
ϵ = 1.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ϵ

karate
inexact 8 3 41 17 14 0.09 0.01 9 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 215 16 14 0.39 0.19 12 0
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.28 0.01 11 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.32 0.03 18 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 433 18 16 0.66 0.33 14 0
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 503,717 60 55 29.72 5.86 23 25
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.60 2.19 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.41 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 31.40 29.49 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.21 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.40 0.88 1 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 9.71 9.34 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 21.04 20.82 3 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.80 1.35 1 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.10 0.94 1 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.86 6.01 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.85 27.56 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 65.88 65.50 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.18 7.43 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 9 7 555.40 550.93 3 0
exact 0 6 1 7 6 503.88 501.18

81



Table 4.20: Inexact versus exact separation on Group-1 instances with s = 3, α = 0.5, and
ϵ = 1.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

LCDS
time (s)

#ICUT-H #ICUT-ϵ

karate
inexact 7 4 78 2 0 0.21 0.00 0.00 0 0
exact 7 4 78 2 0 0.24 0.00 0.00

dolphins
inexact 18 5 9,137 66 56 3.46 0.24 0.28 30 3
exact 18 5 10,654 52 39 3.79 0.45 0.16

lesmis
inexact 13 7 85 4 0 0.54 0.00 0.00 0 0
exact 13 7 85 4 0 0.59 0.00 0.00

polbooks
inexact 27 8 70,436 56 49 29.27 0.50 0.37 22 3
exact 27 8 42,088 44 34 24.74 0.83 0.20

adjnoun
inexact 24 9 189,962 119 107 119.30 5.07 0.66 35 33
exact 22 10 148,295 86 75 117.51 9.64 0.45

celegansm
inexact 35 14 98,595 39 37 353.80 1.62 1.06 9 18
exact 35 14 279,199 60 55 717.01 4.37 0.81

netscience
inexact 12 21 7,867 8 6 30.70 0.07 0.06 4 0
exact 12 21 7,867 8 6 30.69 0.12 0.04

uk
inexact 0 8 1 9 8 36.30 35.24 0.04 0 0
exact 0 8 1 9 8 51.10 50.15 0.03

power
inexact 7 22 17,530 24 22 105.00 16.35 0.12 8 3
exact 7 22 20,025 23 20 114.11 16.14 0.08

whitaker3
inexact 0 15 1 9 8 142.25 131.67 0.04 1 5
exact 0 15 1 9 8 294.46 284.14 0.02

crack
inexact 0 17 1 10 9 192.31 176.81 0.05 0 6
exact 0 17 1 10 9 405.37 394.57 0.03

cs4
inexact 1 10 1 9 8 581.47 568.57 0.04 0 6
exact 1 10 1 9 8 1005.55 994.03 0.03

instances, the number of callbacks and total number of cuts are the same for both exact and

inexact separation or the difference is negligible.

The results of the experiments for the 3-club interdiction problem showed similar behavior,

thus we only report the results for ϵ = 1.5, the case where more violated constraints are

found by inexact separation. In Table 4.20, out of 12 instances, the running times decrease

31% on average for six instances and increase about 7% on average for three instances.

Comparing the decrease in the running times for all the instances (25% when s = 2 and

31% when s = 3 for ϵ = 1.5) with the decrease in the more challenging instances that take at

least a minute to solve (39% when s = 2 and 41% when s = 3 for ϵ = 1.5) shows that using

inexact separation is more helpful for solving the more challenging instances.

82



CHAPTER V

FIRST PASSAGE TIME INTERDICTION

In network interdiction problems, we cannot always assume that evaders act deterministically

and seek an optimal strategy to achieve their goal. Evaders might be unpredictable and choose

their actions randomly due to incomplete information about the network and uncertainties or

limited time for finding an optimal solution. In these situations, we can describe the behavior

of the evaders with a Markov chain. In this chapter, we introduce a version of the network

interdiction problem with markovian evaders where at each step, he/she chooses the next

node randomly to build their path toward a target and the interdictor’s goal is to increase the

time taken the evader to reach their target. The motivation for this setting is its application

in online social networks where malicious accounts spread harmful content in the network

quickly and it is difficult for the social network manager or informed users to take an action.

In the next section, we discuss the problem and our approach to solve it.

5.1 Problem statement

Following Berkhout and Heidergott (2019), consider a directed graph G = (V,E) that

represents the connections in the social network such that V is the set of users and there

is a directed arc (i, j) ∈ E if user j follows user i in the network. The graph also contains

a loop for every vertex i ∈ V , i.e., (i, i) ∈ E. We model the exposure of any given harmful

post to a user using a discrete time Markov chain (DTMC) and assume that the DTMC is

irreducible. We define a Markov chain with transition probability matrix P on graph G such

83



that Pij > 0 for every (i, j) ∈ E and Pij = 0 if (i, j) /∈ E. Let Xn denote the state of the

chain at time n, which in the social network, shows the location of a message, e.g., Xn = i

means that at time n, user i receives the message. We use a random walk model to interpret

matrix P : if the walk is at state i at time n, it reaches state j with probability Pij at time

n+ 1, meaning that from user i the message jumps to user j with probability Pij, thus the

state of the message at time n+ 1 will be j.

We define the expected first passage time in the social network as the first time user

j observes a post that has been shared in the network by user i. Assuming a transition

probability matrix is given, the interdictor has the information on the chance that the message

moves from a user to their connections and is able to compute the expected first passage

times between users by solving a system of linear equations.

Suppose the network contains a group of malicious users denoted by S and a group of

vulnerable users denoted by T . The goal is to increase the expected first passage times from

users in S to users in T . Figure 5.1 shows an example of this setting where S = {1} and

T = {4}. The parameter Pij on each arc can be interpreted as the probability that, within a

given and fixed time interval (e.g., a second), user i shares a post with user j and that user j

reads the post. Also, for every vertex, there is a loop with a probability Pii that shows the

chance that the user decides not to share the post with their connections or that the user

shares it but their connections do not read it. The interdictor must find a way to increase the

expected time that it takes user 4 to learn about the harmful post, given that 1 is the initial

user that knows about the message (X0 = 1). This is possible by modifying the probabilities.

Since the goal is to increase the first passage times, in our setting, interdicting vertex i ∈ V

decreases the probability of traversing every arc (i, j) for every vertex j ∈ N(i) where N(i) is

the set of neighbors of vertex i. Also, considering that the summation of the probabilities of

the outgoing arcs and the loop for every vertex must be equal to one, interdicting vertex i

increases the probability of traversing the loop from i to itself, and the increase is equal to

84



1

2

3

4

P23

P32

P12

P21

P13

P31

P24

P42

P11

P22

P33

P44

Figure 5.1: S = {1} and T = {4}. The goal is to increase the expected first passage time
from 1 to 4.

the total decrease in the probability of all the outgoing arcs of this vertex. Figure 5.2 shows

the way probabilities are updated when a vertex is interdicted. By interdicting vertex i, the

probability of traversing each arc (i, j) will decrease to Pij(1−∆ij) where 0 ≤ ∆ij ≤ 1 and

j ∈ N(i). Also, the probability of traversing the loop will increase to Pii +
∑

j∈N(i) Pij∆ij.

1

2

3

4

P23

P24

P42

P32

P12(1 − ∆12)

P21

P13(1 − ∆13)

P31

P11 + P12∆12 + P13∆13

P22

P33

P44

Figure 5.2: By interdicting vertex 1, value of P11 increases and value of P12 and P13 decrease.

Based on this setting, we study the optimization problem (5.1) where the goal is to find

an optimal interdiction policy of size B to maximize the smallest expected first passage time

from S to T :

max

{
min{tij(x) : i ∈ S, j ∈ T} :

∑
i∈V

xi ≤ B

}
. (5.1)

In this problem, xi is a binary variable that takes one if vertex i is interdicted and tij(x) is the

85



(expected) first passage time from i to j given that the nodes dictated by x are interdicted

and can be computed using the following equation:

tij(x) = 1 +
∑

k∈N(i)
k ̸=j

Pik(1−∆ikxi)tkj + (Pii +
∑

k∈N(i)

Pik∆ikxi)tij ∀i, j ∈ V, i ̸= j (5.2)

Observe that Equation (5.2) is analogous to Equation (1.1), with the difference that it includes

the effect of interdiction.

5.2 Reasonable values for ∆ij

In this section, we determine the values that ensure that using ∆ij to modify the probabilities

will not result in decreasing the values of the first passage times.

Proposition 6. If the interdiction penalties ∆ij depend only on the departing state, i.e., if

∆ij = ∆i for all j ∈ N(i), j ̸= i, i ∈ V , then interdiction actions never decrease the first

passage times.

Proof. To this end, we consider a fixed state j and the first passage times to state j. Nominally

(that is, pre-interdiction), the first passage times tij, i ̸= j, satisfy

tij =
1

1− Pii

+

∑
k ̸=i,j Piktik

1− Pii

. (5.3)

Now, assume 0 ≤ ∆i < 1 are given, i ̸= j, and suppose that Pik becomes Pik(1 −∆i) for

all k ̸= i, and that Pii becomes Pii +
∑

k ̸=i∆iPik = ∆i + (1 − ∆i)Pii. With the modified

probabilities, it can be shown using the first passage times equations that the first passage

times in the modified network, t̂ij, i ̸= j satisfy

t̂ij =
1

(1−∆i)(1− Pii)
+

∑
k ̸=i,j Pik t̂ik

1− Pii

. (5.4)

86



Let N denote the number of vertices in the graph and B be the (N − 1)× (N − 1) matrix

defined by

Bqr =


Pqr

1−Pqq
, if q, r ̸= j, q ̸= r

0, if q, r ̸= j, q = r,

(5.5)

and let I be an (N−1)× (N−1) identity matrix. Furthermore, let u and w be the (N−1)×1

vectors defined by

uq =
1

1− Pqq

and wq =
1

(1−∆q)(1− Pqq)
q ̸= j. (5.6)

Then, the vector forms of the first passage times equations are:

(I −B)V = u and (I −B)V̂ = w. (5.7)

where V is the vector with the tij and V̂ is the vector with the t̂ij.

It is readily checked that the rows of matrix B sum to at most one. Moreover, at least

one row sums to strictly less than one (otherwise, the probability of reaching state j will be

zero). Thus, as all entries in B are non-negative, basic determinant properties imply that

the determinant of B is strictly less than one (and strictly greater than zero if the DTMC is

irreducible, which we assume). Thus, (I −B)−1 exists and is given by

(I −B)−1 =
∞∑
t=0

Bt. (5.8)

Consequently,

V =
∞∑
t=0

Btu and V̂ =
∞∑
t=0

Btw. (5.9)

Since each element in Bt is non-negative for all t ≥ 0 and since w ≥ u ≥ 0, it can be concluded

that V̂ ≥ V . This observation implies (as the ∆ijs are arbitrary in [0, 1) and hence can be

87



made zero), that any interdiction action never decreases the first passage times. Moreover,

they imply that a valid lower bound for tij, for any interdiction decision, is the nominal

value of the first passage times, that is, the first passage times in the network without any

interdiction, and that an upper bound for tij is the value of the first passage times after all

vertices are interdicted.

Now, using a counterexample, we show that if ∆ij ̸= ∆ik for some j, k ∈ N(i), then by

interdicting vertex i, first passage times might decrease. Consider Figure 5.3 and assume that

for every i ∈ V , probabilities Pij are equal to 1
deg(i)+1

if j ∈ N [i] and 0 otherwise. With these

probabilities, in the original graph, we have tij = 4.5 if (i, j) ∈ E and tij = 6 if (i, j) /∈ E.

Suppose that vertex 1 is interdicted and ∆12 = 0.2 and ∆13 = 0.9. Computing the first

passage times with these parameters shows that the values of the first passage times from

vertices 1, 2, and 4 to vertex 3 respectively decrease to 3.72, 5.48, and 4.24.

12

34

Figure 5.3: Counterexample to show different values of ∆ij for j ∈ N(i) can result in a
decrease in the value of the first passage times.

Based on these observations, we can conclude that for every vertex i ∈ V , the value of ∆ij

must be equal for all j ∈ N(i) to avoid interdiction reducing the values of the first passage

times.

88



5.3 Complexity

In this section, we study the complexity of problem (5.1). We reduce from Vertex Cover to

the decision problem of determining whether the first passage time from every vertex in S to

every vertex in T can be raised to a certain threshold using at most B interdicted vertices.

Given a vertex cover problem instance, i.e., an undirected graph G = (V,E) and an integer

B, we construct an instance of our interdiction problem on a directed graph G′ = (V,E ′).

The graph G′ extends graph G by adding a target vertex w, which is made adjacent to all

other vertices, and by transforming each undirected arc into two directed arcs, as it is shown

in Figure 5.4.

1

2

3

w

Figure 5.4: Undirected graph G = {V,E} contains vertices V = {1, 2, 3}. Graph G′ is
obtained by transforming every undirected arc in G into two directed arcs and adding vertex
w and arcs (i, w) for every i ∈ V .

Let S = V , T = {w}, and define the transition matrix P in graph G′ be as follows where

di = degG(i):

Pij =


0 if i = j

p if i ∈ V, j = w

(1− p)/di otherwise

(5.10)

89



For a particular solution, we define the profit of a vertex as the value of the first passage

time from that vertex to the target (vertex w). Theorem 5 shows the interdiction problem is

NP-hard by reduction from the vertex cover problem.

Theorem 5. The vertex cover instance admits a vertex cover of size B if and only if

there exists a sufficiently large p, on graph G′, with transition probability matrix P given by

Equation (5.10), with ∆i = p, for every i ∈ V , such that the value of Equation (5.1) is at

least 2.

Proof. By interdicting vertex i, probability of traversing arc (i, j) becomes Pij(1−∆i) for

every i ∈ V . Also, N(i) in this section denotes NG(i) and does not include vertex w (subscript

G is dropped for convenience.). First, assume there is a size-B vertex cover C of G. Then an

interdiction solution where all the vertices in C are interdicted will have the following profit

tiw for each vertex i ∈ V :

tiw = 1 +
∑

k∈N(i)
k ̸=w

(1− p)

di
(1−∆ixi)tkw +

( ∑
k∈N(i)

(1− p)

di
∆ixi + p∆ixi

)
tiw (5.11)

By replacing ∆i with p, we have:

tiw =
1

(1− pxi)
+

(1− p)

di

∑
k∈N(i)
k ̸=w

tkw (5.12)

Consider the following cases:

• Vertex i ∈ C: In this case, xi = 1 and the value of the first passage time for any

0 ≤ p < 1 will be:

tiw =
1

(1− p)
+

(1− p)

di

∑
k∈N(i)
k ̸=w

tkw (5.13)

Since C is a vertex cover and i ∈ C, to find the lower bound of tiw, we can assume that

90



k /∈ C for every k ∈ N(i), thus xk = 0. By replacing tkw with its equivalent value using

Equation (5.12), where xk = 0, we have:

tiw =
1

(1− p)
+

(1− p)

di

∑
k∈N(i)
k ̸=w

(
1 +

(1− p)

dk

∑
j∈N(k)
j ̸=w

tjw

)
(5.14a)

=
1

(1− p)
+ (1− p) +

(1− p)2

di

∑
k∈N(i)
k ̸=w

1

dk

∑
j∈N(k)
j ̸=w

tjw (5.14b)

It can be seen that if p→ 1, then tiw →∞ because of the first term in Equation (5.14b),

so in this case, tiw ≥ 2.

• Vertex i /∈ C: In this case, xi = 0 and the value of the first passage time will be:

tiw = 1 +
(1− p)

di

∑
k∈N(i)
k ̸=w

tkw (5.15)

Since C is a vertex cover, if i /∈ C, then k ∈ C for every k ∈ N(i) and thus xk = 1. By

replacing tkw with its equivalent value using Equation (5.13), we can see tiw ≥ 2:

tiw = 1 +
(1− p)

di

∑
k∈N(i)
k ̸=w

( 1

(1− p)
+

(1− p)

dk

∑
j∈N(k)
j ̸=w

tjw

)
(5.16a)

= 2 +
(1− p)2

di

∑
k∈N(i)
k ̸=w

1

dk

∑
j∈N(k)
j ̸=w

tjw (5.16b)

We can conclude that if there is a vertex cover of size B and if p is sufficiently close to 1,

then the maximum of the minimum first passage time from V to w after interdiction in G′

has to be at least 2.

Now assume there is no size-B vertex cover. Therefore, for any interdiction set S of size

B, there exists at least one arc (i, j) where none of the vertices i and j are interdicted. Recall

91



that tij is the expected value of the first passage times, thus to compute the profit of vertex i

we can write:

tiw = P [tiw = 1] + 2P [tiw = 2] + E[tiw|tiw ≥ 3]P [tiw ≥ 3]. (5.17)

Note that P [tiw = 1] = p and

P [tiw = 2] =
(1− p)

di

∑
j∈N(i)
j /∈C

p+
(1− p)

di

∑
j∈N(i)
j∈C

p(1− p) (5.18a)

=
p(1− p)d−i

di
+

p(1− p)2d+i
di

=
p(1− p)

di

(
d−i + (1− p)d+i

)
. (5.18b)

Moreover,

P [tiw ≥ 3] = 1− P [tiw = 1]− P [tiw = 2] = (1− p)

(
1− p(d−i + (1− p)d+i )

di

)

where d−i and d+i respectively show the cardinality of sets {j ∈ N(i) : j /∈ C} and {j ∈ N(i) :

j ∈ C}, and d−i ≥ 1 as C is not a vertex cover. It can be verified that if all the vertices are

interdicted, then the value of the first passage time from i to w denoted by t̂iw will be equal

to 1/p(1− p). By exploiting the Markov property, this observation implies that:

E[tiw|tiw ≥ 3] ≤ 1

p(1− p)
(5.19)

Therefore, we can write:

tiw ≤ p+
1

p
+

2p(1− p)− 1

di

(
d−i + (1− p)d+i

)
(5.20)

92



It can be seen that if p→ 1:

tiw ≤ 1 + 1− d−i
di

(5.21)

Therefore, tiw is strictly smaller than 2 since d−i ≥ 1. We showed that if there is no size-B

vertex cover, then, by making p sufficiently close to 1, there is at least one vertex with a

profit of less than 2. This completes our proof and shows the problem is NP-hard.

5.4 An MILP formulation

In this section, we present a mixed-integer Programming formulation of problem (5.1). We

denote by tij the expected first passage time from i to j and by θ the smallest first passage

time from S to T . Also, we use x ∈ {0, 1}|V | to show the interdiction set such that xi = 1 if

vertex i is interdicted and zero otherwise:

z0 =max θ (5.22a)∑
i∈V

xi ≤ B (5.22b)

θ ≤ tij ∀ i ∈ S, j ∈ T (5.22c)

tij = 1 +
∑

k∈N(i)
k ̸=j

Pik(1−∆ixi)tkj +
(
Pii +

∑
k∈N(i)

Pik∆ixi

)
tij ∀ i, j ∈ V, i ̸= j (5.22d)

xi ∈ {0, 1} ∀ i ∈ V (5.22e)

tij ≥ 0 ∀ i, j ∈ V. (5.22f)

Constraint (5.22c) requires θ to be smaller than any first passage time in the graph (between

sets S and T ) and constraint (5.22d) is built based on the equation (1.1) by considering

the possibility of interdicting the vertices. This formulation is not linear because of the

93



constraint (5.22d) and we introduce variable zij to linearize it:

zij =

( ∑
k∈N(i)

Pik∆itij −
∑

k∈N(i)
k ̸=j

Pik∆itkj

)
xi ∀i, j ∈ V. (5.23)

Using the new variables, the linear formulation will be as follows:

z0 =max θ (5.24a)∑
i∈V

xi ≤ B (5.24b)

θ ≤ tij ∀ i ∈ S, j ∈ T (5.24c)

tij = 1− zij +
∑

k∈N(i)
k ̸=j

Piktkj + Piitij ∀ i, j ∈ V, i ̸= j (5.24d)

zij ≤
∑

k∈N(i)
k ̸=j

Pik∆itkj −
∑

k∈N(i)

Pik∆itij +Mij(1− xi) ∀ i, j ∈ V, i ̸= j (5.24e)

zij ≥
∑

k∈N(i)
k ̸=j

Pik∆itkj −
∑

k∈N(i)

Pik∆itij −Mij(1− xi) ∀ i, j ∈ V, i ̸= j (5.24f)

zij ≤Mijxi ∀ i, j ∈ V, i ̸= j (5.24g)

zij ≥ −Mijxi ∀ i, j ∈ V, i ̸= j (5.24h)

tij ≥ 0 ∀ i, j ∈ V, i ̸= j (5.24i)

xi ∈ {0, 1} ∀ i ∈ V. (5.24j)

As it can be seen, this formulation contains several big-M ’s which considering con-

straints (5.24e)–(5.24f), must satisfy the following inequality:

Mij ≥
∑

k∈N(i)
k ̸=j

∆iPiktkj −
∑

k∈N(i)

∆iPiktij (5.25)

94



Therefore, Mij should be the upper bound of the right-hand side of inequality (5.25)

which is obtained when tkj takes its upper bound and tij takes its lower bound. These bounds

can be computed based on the discussion in Section 5.2:

Mij =
∑

k∈N(i)
k ̸=j

∆iPik t̂kj −
∑

k∈N(i)

∆iPik t̄ij, (5.26)

where t̂kj is the upper bound on the value of tkj obtained by interdicting all the vertices in

the network and t̄ij is the lower bound on the value of tij which is the expected first passage

time from i to j in the original graph.

5.5 Computational experiments

In this section, we present the result of implementing Formulation (5.24) on the instances

introduced in Table 4.1. All the graphs in this testbed are undirected, and we convert them

to directed graphs. Experiments are conducted on a 64-bit Windows® 10 Pro machine with

16GB of RAM and 1.8 GHz processor with 7 cores. All algorithms are implemented in C++,

compiled using Microsoft® Visual Studio® 2017, and GurobiTM Optimizer v9.5.2 is used to

solve the MILPs (Gurobi Optimization, LLC, 2021).

Before implementing Formulation (5.24), we use Gurobi to find the first passage times in

the original graph for all the instances in Table 4.1. For some of the graphs in this testbed,

the solver hits the one hour time limit or reports an “out-of-memory” error when solving the

system of linear equations to compute the first passage times. We exclude these instances

from our experiments considering that Formulation (5.24) has many variables and constraints

in addition to a system of linear equations formed by constraints (5.24d).

In our experiments, sets S and T are chosen randomly and their cardinality is equal

to 20% of the number of vertices. The interdiction budget B is also equal to 20% of the

95



number of vertices. For every vertex i ∈ V , transition probabilities of its loop and outgoing

arcs are computed as 1/(deg(i) + 1) and ∆i = 0.5. We report the results in Table 5.1. All

the instances are solved to optimality in the root node and the increase in the value of the

smallest first passage time is at least 23% for football and at most 55% for celegansm.

Table 5.1: Results of implementing Formulation (5.24). FPTG and FPTG′ are the smallest
first passage time from S to T respectively in the original graph and the interdicted graph.

Graph # nodes # edges FPTG FPTG′ increase in FPT (%) Solution time (s)

karate 34 78 56.02 79.56 42.03 0.15
dolphins 62 159 38.77 52.60 35.66 0.53
lesmis 77 254 56.91 81.75 43.66 0.84
polbooks 105 441 54.87 77.67 41.57 2.63
adjnoun 112 425 39.69 57.13 43.96 3.86
football 115 613 100.94 124.38 23.22 7.36
jazz 198 2742 70.85 98.22 38.62 52.96
celegansn 297 2148 231.97 331.90 43.08 205.98
celegansm 453 2025 30.50 47.48 55.66 294.50

Our numerical experiments show that the objective of maximizing the smallest first

passage time in a graph can be too restrictive in some cases. As an example, with the setting

in our experiments, for any vertex i ∈ V with a degree equal to one and its neighbor j, we

have tij = 2 which is the smallest first passage time in the graph. For these pairs of vertices,

regardless of the interdiction policy, it can be shown that the value of tij will not exceed 4.

Also, instead of focusing on the smallest first passage times, one might decide in order to

maximize a quantity, not as “extreme” as the minimum first passage time. This motivates us

to consider the problem of maximizing the q-th smallest first passage time in the next section.

5.6 Maxmizing the q-th smallest first passage time

In this section, we study the interdicting problem to maximize the q-th smallest first passage

time between S and T in the graph. For any i ∈ S, let t̃i be the smallest first passage time

from i to any vertex in T , i.e., t̃i = min{tij : j ∈ T} for every i ∈ S. Our goal is to maximize

96



the q-th smallest t̃i with q = 1, 2, ..., |S|. That is, we seek to solve:

max

{
min{t̃i(x) : i ∈ S} :

∑
i∈V

xi ≤ B

}
, (5.27)

where t̃i(x) is the value of t̃i after the vertices indicated by x are interdicted.

We define binary variable yi that takes one whenever the value of variable t̃i is one of the

(q − 1) smallest t̃is. Using the same variables defined for the Formulation (5.24), we have:

max θ (5.28a)

s.t.
∑
i∈V

yi = q − 1 (5.28b)

t̃iyi ≤ θ ∀ i ∈ V (5.28c)

θ ≤ (M − t̃i)yi + t̃i ∀ i ∈ V (5.28d)

t̃i ≤ tij ∀ i, j ∈ V, i ̸= j (5.28e)∑
i∈V

xi ≤ B (5.28f)

tij = 1 +
∑

k∈N(i)
k ̸=j

Pik(1−∆ixi)tkj +
(
Pii +

∑
k∈N(i)

Pik∆ixi

)
tij ∀ i, j ∈ V, i ̸= j (5.28g)

tij ≥ 0 ∀ i, j ∈ V (5.28h)

xi ∈ {0, 1} ∀ i ∈ V (5.28i)

yi ∈ {0, 1} ∀ i ∈ V. (5.28j)

Constraint (5.28d) contains a big-M that must be at least the size of the q-th smallest t̃i. Also,

constraints (5.28d) and (5.28g) are nonlinear. The latter is the same as the constraint (5.22d)

in Formulation (5.22) and can be linearized in the same way. To linearize constraint (5.28d),

97



we introduce a new continuous variable ui = t̃iyi, and we will have:

max θ (5.29a)∑
i∈V

yi = q − 1 (5.29b)

ui ≤ θ ∀ i ∈ V (5.29c)

θ ≤Myi − ui + t̃i ∀ i ∈ V (5.29d)

ui ≤ t̃i +M(1− yi) ∀ i ∈ V (5.29e)

ui ≥ t̃i −M(1− yi) ∀ i ∈ V (5.29f)

ui ≤Myi ∀ i ∈ V (5.29g)

t̃i ≤ tij ∀ i ∈ V, j ∈ V, i ̸= j (5.29h)∑
i∈V

xi ≤ B (5.29i)

tij = 1− zij +
∑

k∈N(i)
k ̸=j

Piktkj + Piitij ∀ i, j ∈ V, i ̸= j (5.29j)

zij ≤
∑

k∈N(i)
k ̸=j

Pik∆itkj −
∑

k∈N(i)

Pik∆itij +Mij(1− xi) ∀ i, j ∈ V, i ̸= j (5.29k)

zij ≥
∑

k∈N(i)
k ̸=j

Pik∆itkj −
∑

k∈N(i)

Pik∆itij −Mij(1− xi) ∀ i, j ∈ V, i ̸= j (5.29l)

zij ≤Mijxi ∀ i, j ∈ V, i ̸= j (5.29m)

zij ≥ −Mijxi ∀ i, j ∈ V, i ̸= j (5.29n)

tij ≥ 0 ∀ i, j ∈ V (5.29o)

uij ≥ 0 ∀ i, j ∈ V (5.29p)

xi ∈ {0, 1} ∀ i ∈ V (5.29q)

yi ∈ {0, 1} ∀ i ∈ V. (5.29r)

98



Next, we show the correctness of Formulation (5.28). Consider graph G = (V,E). Let

D ⊆ V be the interdiction set and xD be its characteristic vector. Theorem (6) proves the

correctness of Formulation (5.28).

Theorem 6. A subset D ⊆ V is a maximizer for problem (5.27) if and only if there exist

xD, yD, tD, t̃D such that (θ∗, xD, yD, tD, t̃D) is an optimal solution to Formulation (5.28).

(=⇒) Suppose D is a maximizer for the original problem. We want to show that there

exist xD, yD, tD, t̃D such that (θ∗, xD, yD, tD, t̃D) is an optimal solution to Formulation (5.28)

with the objective value equal to c∗ = θ∗.

For the sake of contradiction, suppose there is no xD, yD, tD, t̃D such that (θ∗, xD, yD, tD, t̃D)

is an optimal solution to Formulation (5.28). Thus, because it can be readily checked that

an optimal solution to Formulation (5.28) always exists, we can assume that there exists a

solution (θ̄, xD̄, yD̄, tD̄, t̃D̄) that is optimal with the objective value c̄ = θ̄ such that D̄ ̸= D

and c̄ > c∗.

Based on the constraints (5.28c) and (5.28d), if yD̄i = 0, then 0 ≤ θ̄ ≤ t̃D̄i , and if yD̄i = 1,

then t̃D̄i ≤ θ̄ ≤M . On the other hand, based on the constraint (5.28b), only (q−1) of variables

yi can take one and others will take zero. Considering these three types of constraints, the

solution (θ̄, xD̄, yD̄, tD̄, t̃D̄) is feasible if yD̄i = 1 for those i ∈ V such that t̃D̄i is in the (q − 1)

smallest values, otherwise, the lower bounds in constraints (5.28c) can become larger than

the upper bounds in constraints (5.28d) which results in the infeasibility of the solution.

Since Formulation (5.28) maximizes the objective function, and variable θ has a positive

objective function coefficient, it takes the largest possible value considering the bounds in

constraints (5.28c) and (5.28d). So, θ̄, the value of variable θ given D̄, will be exactly equal

to the smallest value in the RHS of constraints (5.28d), i.e., min
{
M,min{t̃D̄i |i ∈ V, yi = 0}

}
.

As we mentioned above, we have yD̄i = 1 for i ∈ V associated with (q − 1) smallest t̃D̄i and

yD̄i = 0 for i ∈ V associated with (n− q+1) largest t̃D̄i . This means that for i ∈ V associated

99



with the q-th smallest t̃D̄i , we have yD̄i = 0. Therefore, θ̄ = c̄ =
{
M,min{t̃D̄i |i ∈ V, yD̄i = 0}

}
will be equal the q-th smallest t̃D̄i which is equivalent to min{t̃i(x) : i ∈ S} according to the

original problem.

This shows that D is not a maximizer for the original problem because we assumed

c̄ > c∗ and showed that c̄ = min{t̃i(xD̄) : i ∈ S}, which means that the q-th smallest t̃i in

the graph by interdicting set D̄ is greater than the q-th smallest t̃i by interdicting D. This

is a contradiction and we can conclude that (θ∗, xD, yD, tD, t̃D) is an optimal solution to

Formulation (5.28).

(⇐=) Suppose (θ∗, xD, yD, tD, t̃D) with the objective value equal to c∗ = θ∗ is an optimal

solution to Formulation (5.28). We want to show that D is a maximizer for problem (5.27).

For the sake of contradiction, suppose D is not a maximizer and the original problem has

a maximizer D̄ where D̄ ̸= D such that min{t̃i(xD̄) : i ∈ S} > min{t̃i(xD) : i ∈ S}. We show

that if this holds, then (θ∗, xD, yD, tD, t̃D) cannot be an optimal solution to Formulation (5.28).

Based on the discussion in the other direction of the proof, we know that variable θ in

Formulation (5.27) will be equal to the smallest RHS of constraints (5.28d). We also showed

that the RHS of this constraint is equal to M for (q − 1) of the constraints associated with

those i ∈ V where t̃is have smaller values and is equal to t̃i for (n− q + 1) of the constraints

associated with those i ∈ V where t̃is have larger values. Therefore, θ̄, value of variable θ

given D̄, will be equal to the q-th smallest t̃i, i.e., min{t̃i(xD̄) : i ∈ S}.

Since we assumed min{t̃i(xD̄, yD̄) : i ∈ S} > min{t̃i(xD, yD) : i ∈ S}, we can conclude that

θ̄ > θ∗. This shows that solution (θ∗, xD, yD, tD, t̃D) is not optimal. This is a contradiction

and we can conclude that D is a maximizer for the original problem. This proves our desired

result, so Formulation (5.28) is correct.

Finally, we present the results of implementing Formulation (5.28) on the same instances

used in Section 5.5. Our setting is also the same as the previous experiments with probabilities

to be 1
deg(i)+1

, 20% of vertices as the budget and randomly chosen sets S and T . We set

100



q to be half of the number of vertices in set S meaning that the interdictor ignores the

(|S|/2) smallest first passage times and focuses on maximizing the other (|S|/2) largest first

passage times. The results are presented in Table 5.2. Solving Formulation (5.28) has been

more difficult than Formulation (5.24) due to more variables and constraints. It can be seen

that the running times have increased for all the instances and celegansm is not solved to

optimality in one hour time limit. However, the increase in the value of the first passage times

is between 22% to 50%. For both formulations (5.24) and (5.28), the direct implementation

does not allow us to solve the problem for large instances. We will discuss the possible

improvements in Chapter VI.

Table 5.2: Results of implementation of Formulation (5.29) with q = |V |/10.
Graph FPTG FPTG′ increase in FPT (%) #B&B nodes Solution time (s) Gap (%)

karate 63.36 90.19 42.35 1 0.63 0.00
dolphins 52.59 71.37 35.71 1 2.70 0.00
lesmis 72.47 103.32 42.58 1 3.81 0.00
polbooks 118.49 175.81 48.38 1 11.77 0.00
adjnoun 51.23 73.26 43.01 1 15.64 0.00
football 126.46 154.51 22.18 169 78.45 0.00
jazz 79.31 109.58 38.17 221 704.34 0.00
celegansn 239.17 342.07 43.02 2300 2645.06 0.00
celegansm 49.52 74.54 50.52 1133 3620.53 8.42

5.7 Comparing interdiction policies

In this section, we compare the effect of different interdiction policies on the increase of

the value of the first passage times. We consider the interdiction policies generated by four

approaches: 2-club interdiction and 3-club interdiction in Chapter IV, first passage time

interdiction introduced in this chapter, and a random interdiction policy where 20% of vertices

are selected randomly to be interdicted. We compute the value of the smallest first passage

times in the interdicted graph using the interdiction set generated by each method. For s-club

interdiction approaches, we have considered the solutions when α = 2 (Results in Tables 4.3

and 4.6). All the other parameters are the same as the experiments in Section 5.5.

101



Table 5.3 shows the results of these experiments. Column FPTG shows the value of

the smallest first passage time in the original graph and columns FPTG′ show the smallest

first passage time after interdiction. NA values indicate that we were not able to generate

an interdiction policy by that method to use in these experiments. It can be seen that by

interdicting the same number of vertices, the increase obtained by the first passage time

interdiction is always larger than the random interdiction which shows the usefulness of this

approach.

FPT interdiction is outperforming the 2-club and 3-club interdiction methods for all the

instances. This observation is in line with our expectations because unlike s-club interdiction

methods that find the policies to decrease the size of the cohesive subgroups, the objective

of the FPT interdiction is to increase the first passage times. In addition, we should note

that the s-club interdiction methods use an interdiction penalty instead of a budget, and

as a result, the size of the interdiction sets obtained by these methods might be smaller.

For example, for dolphins and football, no vertex is interdicted by the 2-club interdiction

approach. This difference is another explanation for the smaller increase in the first passage

times in comparison to the FPT interdiction or even the random interdiction approach

considering Proposition 6 in Section 5.2.

Table 5.3: Comparing the increase in the value of the smallest first passage time using
different interdiction policies.

FPT Interdiction 2-club interdiction 3-club interdiction Random interdiction

Graph FPTG FPTG′ Increase (%) FPTG′ Increase (%) FPTG′ Increase (%) FPTG′ Increase (%)

karate 56.02 79.56 42.03 70.42 25.72 77.12 37.68 67.69 20.85
dolphins 38.77 52.60 35.66 38.77 0.00 42.15 8.70 45.71 17.89
lesmis 56.91 81.75 43.66 62.60 10.02 71.85 26.25 62.74 10.26
polbooks 54.87 77.67 41.57 56.48 2.94 67.25 22.57 63.39 15.54
adjnoun 39.69 57.13 43.96 45.28 14.08 48.50 22.21 41.70 5.07
football 100.94 124.38 23.22 100.94 0.00 102.75 1.79 121.38 20.25
jazz 70.85 98.22 38.62 NA NA NA NA 83.10 17.28
celegansn 231.97 331.90 43.08 270.54 16.62 NA NA 279.56 20.51
celegansm 30.50 47.48 55.66 37.62 23.35 39.48 29.44 38.18 25.10

102



CHAPTER VI

CONCLUSION AND FUTURE WORK

In this dissertation, we studied interdicting cohesive subgroups and interdicting first passage

times in networks. We have focused on the application of these methodologies in online social

network analysis and presented formulations and algorithms to solve these problems on the

benchmark instances. In this section, we summarize our contributions and identify possible

future research directions.

6.1 Contributions

The first problem we studied in this dissertation is the maximum s-club interdiction. This

study makes the following contributions to the literature of adversarial community disruptions,

specifically, interdiction by deletion of vertices in maximum cardinality s-clubs.

We introduce the new concept of H-hereditary s-clubs, which extends the notion of

heredity to s-clubs. Based on H-heredity, we introduce an MILP formulation of the s-club

interdiction problem that has fewer constraints than the naive MILP formulation that is

based on standard interdiction formulation techniques. We show that the LP relaxation of

the proposed formulation does not have redundant constraints. We also derive three types of

facet defining inequalities for the convex hull of feasible solutions by further strengthening

the new constraints based on H-heredity for special s-clubs.

We establish a one-to-one correspondence between the sets inducing H-heredity in an

s-club and latency-s connected dominating sets (latency-s CDSs) of the s-club (Validi and

103



Buchanan, 2020). We exploit this relationship in a decomposition branch-and-cut algorithm

based on delayed constraint generation. This approach is able to solve several real-life and

synthetic instances of the interdiction problem with more than 10,000 vertices in a matter of

minutes. Moreover, our approach solves the problem orders of magnitude faster than using

an analogous algorithm based on the naive MILP formulation.

The second problem is the first passage time interdiction. We used the first passage times

to measure how fast misinformation is disseminated in an online network, and interdict vertices

to delay the propagation times. This is a new approach in the literature of online social

network analysis and network interdiction with non-deterministic evaders. We considered

two different objectives; maximizing the smallest first passage time and maximizing the q-th

smallest first passage time between two given sets of accounts. For each problem, we have

proposed MILP formulations and solved the problem on the benchmark instances. We also

show the problem is NP-hard by reduction from the vertex cover problem.

6.2 Future work

For the maximum s-club interdiction problem, we used two different groups of instances and

our numerical results show that the 3-club interdiction problem is still quite challenging to

solve on the second group of instances in our test-bed on which solving the NP-hard maximum

3-club problem remains difficult. Given the importance of conclusive termination during

separation calls for the correctness of such a relaxation-based decomposition branch-and-

cut scheme, further breakthroughs are needed to solve the maximum s-club and minimum

latency-s CDS problems on this test bed for s ≥ 3. The initial relaxation also needs further

investigation and strengthening, especially for s ≥ 3, to shift the computational burden away

from the separation procedures to the extent possible. These developments and improved

inexact separation procedures for s ≥ 3 can further extend our ability to solve the s-club

interdiction on even larger scale social networks.

104



For the first passage time interdiction problem, we will study the possibility of proposing

polynomial time algorithms to solve the problem on special graphs such as paths and trees.

In our experiments, we have implemented the MILP formulations directly and as a result, we

are not able to solve large instances due to the number of variables and constraints in the

formulations. It is beneficial to investigate techniques to design decomposition algorithms for

these formulations. We will also improve the formulations by finding bounds on the value of

the first passage times using the structure of the network and we will consider using block

decomposition algorithms to find vertices whose deletion can result in disconnecting the

graph and increasing the first passage times values.

Additionally, considering the existing studies on the misinformation blocking problem, and

the network interdiction approaches introduced in this dissertation, it would be beneficial to

conduct a simulation study to compare the effectiveness of these methodologies in minimizing

the spread of misinformation in real-world social networks under different models of propaga-

tion. Such studies would be similar to our comparisons in Section 5.7, with the difference

that they would be based on discrete-event simulations of other models of propagation such

as e.g., the independent cascade model or the linear threshold model of Kempe et al. (2003).

We anticipate that using our proposed interdiction policies would result in a substantial

decrease in the spread of harmful cascades, when compared to easy-to-implement benchmark

policies such as, e.g., deleting vertices of the network at random.

105



REFERENCES

R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical

Sociology, 3(1):113–126, 1973.

H. Allcott and M. Gentzkow. Social media and fake news in the 2016 election. Journal of

Economic Perspectives, 31(2):211–36, 2017.

N. Assimakopoulos. A network interdiction model for hospital infection control. Computers

in biology and medicine, 17(6):413–422, 1987.

B. Balasundaram and F. M. Pajouh. Graph theoretic clique relaxations and applications. In

P. M. Pardalos, D.-Z. Du, and R. Graham, editors, Handbook of Combinatorial Optimization,

pages 1559–1598. Springer, New York, 2nd edition, 2013. ISBN 978-1-4419-7996-4.

B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing biological

networks. Journal of Combinatorial Optimization, 10(1):23–39, August 2005.

B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social network analysis:

The maximum k-plex problem. Operations Research, 59(1):133–142, 2011.

M. O. Ball, B. L. Golden, and R. V. Vohra. Finding the most vital arcs in a network.

Operations Research Letters, 8(2):73–76, 1989.

A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):

509–512, 1999.

106



J. Berkhout and B. F. Heidergott. Analysis of markov influence graphs. Operations Research,

67(3):892–904, 2019.

J. S. Borrero, O. A. Prokopyev, and D. Sauré. Sequential shortest path interdiction with

incomplete information. Decision Analysis, 13(1):68–98, 2016.

J. S. Borrero, O. A. Prokopyev, and D. Sauré. Sequential interdiction with incomplete

information and learning. Operations Research, 67(1):72–89, 2019.

J. S. Borrero, O. A. Prokopyev, and D. Sauré. Learning in sequential bilevel linear program-

ming. INFORMS Journal on Optimization, 4(2):174–199, 2022.

J.-M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for finding k-clubs in an undirected

graph. Computers & Operations Research, 27:559–569, 2000.

J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club

problem in an undirected graph. European Journal Of Operational Research, 138:21–28,

2002.

C. Brezovec, G. Cornuéjols, and F. Glover. Two algorithms for weighted matroid intersection.

Mathematical Programming, 36(1):39–53, 1986.

S. Butenko and W. Wilhelm. Clique-detection models in computational biochemistry and

genomics. European Journal of Operational Research, 173:1–17, 2006.

M. Cerulli, D. Serra, C. Sorgente, C. Archetti, and I. Ljubic. Mathematical programming

formulations for the collapsed k-core problem. arXiv preprint arXiv:2211.14833, 2022.

F. Chung and L. Lu. Complex Graphs and Networks. CBMS Lecture Series. American

Mathematical Society, Providence, RI, 2006.

107



M. Cochet. Minors and social media- how are the most vulnerable pro-

tected? https://computationalsocialmedia.tech/index.php/2021/03/02/

minors-and-social-media-how-are-the-most-vulnerable-protected/, Accessed

November 3, 2022, March 2021.

H. W. Corley and Y. S. David. Most vital links and nodes in weighted networks. Operations

Research Letters, 1(4):157–160, 1982.

N. Daemi, J. S. Borrero, and B. Balasundaram. Decomposition branch-and-cut solver for

3-club interdiction. C++ Codes online at: https://github.com/niloufardaemi/3club_

interdiction, Accessed January 6, 2022, August 2021a.

N. Daemi, J. S. Borrero, and B. Balasundaram. Decomposition branch-and-cut solver for

2-club interdiction. C++ Codes online at: https://github.com/niloufardaemi/2club_

interdiction, Accessed January 6, 2022, August 2021b.

N. Daemi, J. S. Borrero, and B. Balasundaram. Interdicting low-diameter cohesive subgroups

in large-scale social networks. INFORMS Journal on Optimization, 4(3):304–325, 2022.

Dimacs. Graph Partitioning and Graph Clustering: TenthDimacs Implementation Challenge.

http://www.cc.gatech.edu/dimacs10/index.shtml, 2012. Accessed Feb 2015.

E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213, 2002.

P. Domm. False rumor of explosion at white house causes stocks to briefly plunge; ap confirms

its twitter feed was hacked. CNBC. COM, 23:2062, 2013.

U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions.

SIAM Journal on Computing, 40(4):1133–1153, 2011.

108



M. Fischetti, M. Monaci, and M. Sinnl. A dynamic reformulation heuristic for generalized

interdiction problems. European Journal of Operational Research, 267(1):40–51, 2018.

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. Interdiction games and monotonicity, with

application to knapsack problems. INFORMS Journal on Computing, 31(2):390–410, 2019.

F. Furini, I. Ljubić, S. Martin, and P. San Segundo. The maximum clique interdiction

problem. European Journal of Operational Research, 277(1):112–127, 2019.

N. Gould and J. Scott. A note on performance profiles for benchmarking software. ACM

Transactions on Mathematical Software (TOMS), 43(2):1–5, 2016.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi. Faking sandy: characterizing and

identifying fake images on twitter during hurricane sandy. In Proceedings of the 22nd

international conference on World Wide Web, pages 729–736, 2013.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL http://www.

gurobi.com.

A. Gutfraind, A. Hagberg, and F. Pan. Optimal interdiction of unreactive markovian

evaders. In International Conference on Integration of Constraint Programming, Artificial

Intelligence, and Operations Research, pages 102–116. Springer, 2009.

D. L. Han, L. C. Tang, and H. C. Huang. A markov model for single-leg air cargo revenue

management under a bid-price policy. European Journal of Operational Research, 200(3):

800–811, 2010.

109



Help Net Security. Attackers use large-scale bots to launch attacks on so-

cial media platforms. https://www.helpnetsecurity.com/2019/08/27/

attacks-on-social-media-platforms, Accessed October 31, 2022, August 2019.

E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks: An International

Journal, 40(2):97–111, 2002.

M. P. Johnson, A. Gutfraind, and K. Ahmadizadeh. Evader interdiction: algorithms,

complexity and collateral damage. Annals of operations research, 222(1):341–359, 2014.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social

network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 137–146, 2003.

V. G. Kulkarni. Modeling and analysis of stochastic systems, chapter 3. Chapman and

Hall/CRC, 2016.

J. Kunegis. Konect: the Koblenz network collection. In Proceedings of the 22nd International

Conference on World Wide Web, pages 1343–1350, 2013.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data/, June 2014.

O. Lesser, L. Tenenboim-Chekina, L. Rokach, and Y. Elovici. Intruder or welcome friend:

Inferring group membership in online social networks. In International Conference on

Social Computing, Behavioral-Cultural Modeling, and Prediction, pages 368–376. Springer,

2013.

J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is

np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

110



Y. Lu, E. Moradi, and B. Balasundaram. Correction to: Finding a maximum k-club using the

k-clique formulation and canonical hypercube cuts. Optimization Letters, 12(8):1959–1969,

November 2018.

R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychometrika,

14(2):95–116, 1949.

J. Luo, H. Molter, and O. Suchỳ. A parameterized complexity view on collapsing k-cores.

Theory of Computing Systems, 65(8):1243–1282, 2021.

K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem.

Operations Research Letters, 8(4):223–227, 1989.

D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring

algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

M. I. Meltzer, I. Damon, J. W. LeDuc, and J. D. Millar. Modeling potential responses to

smallpox as a bioterrorist weapon. Emerging Infectious Diseases, 7(6):959, 2001.

R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161–173, 1979.

J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3:23–28,

1965.

E. Moradi and B. Balasundaram. Finding a maximum k-club using the k-clique formulation

and canonical hypercube cuts. Optimization Letters, 12(8):1947–1957, November 2018.

D. P. Morton, F. Pan, and K. J. Saeger. Models for nuclear smuggling interdiction. IIE

Transactions, 39(1):3–14, 2007.

A. K. Nandi and H. R. Medal. Methods for removing links in a network to minimize the

spread of infections. Computers & Operations Research, 69:10–24, 2016.

111



M. Newman. The structure and function of complex networks. SIAM Review, 45:167–256,

2003.

F. M. Pajouh and B. Balasundaram. On inclusionwise maximal and maximum cardinality

k-clubs in graphs. Discrete Optimization, 9(2):84–97, May 2012.

F. Pan, W. Charlton, and D. Morton. Interdicting smuggled nuclear material. In D. Woodruff,

editor, Network Interdiction and Stochastic Integer Programming, pages 1–20. Kluwer

Academic Publishers, Boston, 2003.

S. Pasupuleti. Detection of protein complexes in protein interaction networks using n-clubs. In

In EvoBIO 2008: Proceedings of the 6th European Conference on Evolutionary Computation,

Machine Learning and Data Mining in Bioinformatics, pages 153–164. Springer, 2008.

volume 4973 of Lecture Notes in Computer Science.

J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network analysis.

European Journal of Operational Research, 226(1):9–18, 2013.

C. V. Pham, Q. V. Phu, H. X. Hoang, J. Pei, and M. T. Thai. Minimum budget for

misinformation blocking in online social networks. Journal of Combinatorial Optimization,

38(4):1101–1127, 2019.

S. Raghavan and R. Zhang. A branch-and-cut approach for the weighted target set selection

problem on social networks. INFORMS Journal on Optimization, 1(4):304–322, 2019.

K. Rapoza. Can “fake news” impact the stock market? https://www.forbes.com/

sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/?sh=

7cae6dcb2fac, Accessed November 3, 2022, February 2017.

R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics

and visualization. In AAAI, 2015. URL http://networkrepository.com.

112



H. Salemi and A. Buchanan. Parsimonious formulations for low-diameter clusters. Mathe-

matical Programming Computation, 12(3):493–528, 2020.

J. A. Sefair, J. C. Smith, M. A. Acevedo, and R. J. Fletcher Jr. A defender-attacker model and

algorithm for maximizing weighted expected hitting time with application to conservation

planning. IISE Transactions, 49(12):1112–1128, 2017.

S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.

D. Shah and T. Zaman. Finding rumor sources on random trees. Operations Research, 64(3):

736–755, 2016.

P. Shi, Z. Zhang, and K.-K. R. Choo. Detecting malicious social bots based on clickstream

sequences. IEEE Access, 7:28855–28862, 2019.

C. Silverman. This analysis shows how viral fake election news stories outperformed

real news on Facebook. https://www.buzzfeednews.com/article/craigsilverman/

viral-fake-election-news-outperformed-real-news-on-facebook, Accessed Novem-

ber 3, 2022, November 2016.

J. C. Smith and Y. Song. A survey of network interdiction models and algorithms. European

Journal of Operational Research, 283(3):797–811, 2020.

T. Spangler. Twitter stock slides on report that it has been deleting over

1 million fake accounts daily. https://variety.com/2018/digital/news/

twitter-stock-deleted-fake-accounts-1202868405/, Accessed November 3, 2022,

July 2018.

K. M. Sullivan, D. P. Morton, F. Pan, and J. Cole Smith. Securing a border under asymmetric

information. Naval Research Logistics (NRL), 61(2):91–100, 2014.

113



Y. Tang, J.-P. P. Richard, and J. C. Smith. A class of algorithms for mixed-integer bilevel

min–max optimization. Journal of Global Optimization, 66(2):225–262, 2016.

K. Tanınmış, N. Aras, and I. Altınel. Influence maximization with deactivation in social

networks. European Journal of Operational Research, 278(1):105–119, 2019.

K. Tanınmış, N. Aras, İ. K. Altınel, and E. Güney. Minimizing the misinformation spread in

social networks. IISE Transactions, 52(8):850–863, 2020.

K. Tanınmış, N. Aras, and İ. K. Altınel. Improved x-space algorithm for min-max bilevel

problems with an application to misinformation spread in social networks. European

Journal of Operational Research, 297(1):40–52, 2022.

H. Validi and A. Buchanan. The optimal design of low-latency virtual backbones. INFORMS

Journal on Computing, 32(4):952–967, 2020.

J. L. Walteros and A. Buchanan. Why is maximum clique often easy in practice? Operations

Research, 68(6):1866–1895, 2020.

S. Wasserman and K. Faust. Social network analysis: Methods and applications, volume 8.

Cambridge university press, 1994.

D. J. Welsh. Matroid Theory. Courier Corporation, 2010.

R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling, 17

(2):1–18, 1993.

Youth Equipped To Succeed. How social media affects teens. https://justsayyes.org/

jsy-blog/how-social-media-affects-teens/, Accessed November 3, 2022, October

2022.

114



F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social network

engagement: The collapsed k-core problem. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

115



VITA

Niloufar Daemi

Candidate for the Degree of

Doctor of Philosophy

Dissertation: NETWORK INTERDICTION APPROACHES FOR DIMINISHING MISIN-
FORMATION SPREAD IN SOCIAL NETWORKS

Major Field: Industrial Engineering and Management

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Industrial Engineering and
Management at Oklahoma State University, Stillwater, Oklahoma in December, 2022.

Completed the requirements for the Master of Science in Industrial Engineering at
Amirkabir University of Technology, Tehran, Iran in 2016.

Completed the requirements for the Bachelor of Science in Industrial Engineering at
Noshirvani University of Technology, Babol, Iran in 2012.


