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Abstract: The widespread adoption of Electronic Health Records (EHR) systems in health-
care institutions in the United States makes machine learning based on large-scale and real-
world clinical data feasible and affordable. Machine learning of healthcare data, or healthcare
data analytics, has achieved numerous successes in various applications. However, there are
still many challenges for machine learning of healthcare data both structured and unstruc-
tured. Longitudinal structured clinical data (e.g., lab test results, diagnoses, and medica-
tions) have an enormous variety of categories, are collected at irregularly spaced visits, and
are sparsely distributed. Studies on analyzing longitudinal structured EHR data for tasks
such as disease prediction and visualization are still limited. For unstructured clinical notes,
existing studies mostly focus on disease prediction or cohort selection. Studies on mining
clinical notes with the direct purpose to reduce costs for healthcare providers or institutions
are limited. To fill in these gaps, this dissertation has three research topics.

The first topic is about developing state-of-the-art predictive models to detect diabetic
retinopathy using longitudinal structured EHR data. Major deep-learning-based temporal
models for disease prediction are studied, implemented, and evaluated. Experimental results
on a large-scale dataset show that temporal deep learning models outperform non-temporal
random forests models in terms of AUPRC and recall.

The second topic is about clustering temporal disease networks to visualize comorbidity
progression. We propose a clustering technique to outline comorbidity progression phases as
well as a new disease clustering method to simplify the visualization. Two case studies on
Clostridioides difficile and stroke show the methods are effective.

The third topic is clinical information extraction for medical billing. We propose a framework
that consists of two methods, a rule-based and a deep-learning-based, to extract patient
history information directly from clinical notes to facilitate the Evaluation and Management
Services (E/M) billing. Initial results of the two prototype systems on an annotated dataset
are promising and direct us for potential improvements.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The healthcare industry in the United States faces many challenges including astonishing

total expenditures, low quality, and high disparities [Sethi, 2009]. It is estimated that in

2020, health care spending in the US reached $4.1 trillion, a 9.7 percent increase from 2019

and representing almost 19.7 percent of the gross domestic product of the country in that

year [Hartman et al., 2022]. However, the quality of healthcare is not satisfactory, and

disparities are pervasive in the United States [Kelley et al., 2005]. Take vision care for

example, 24% of US counties had no ophthalmologists or optometrists in 2011 [Gibson,

2015], making it hard for many patients to have quality eye care services. Therefore, it is

of great importance to promote studies of healthcare data analytics to assist in preventive

medicine, predictive medicine, or precision medicine so that we can reduce healthcare costs,

improve patient care quality, and reduce healthcare disparities.

The widespread adoption of electronic health records (EHR) [Bardhan and Thouin, 2013,

Huerta et al., 2013] and the increasing emphasis on the use of clinical decision support

systems (CDSS) [Bright et al., 2012, Gupta and Sharda, 2013, Grout et al., 2018] have been

two of the most remarkable outcomes of healthcare reform in the U.S. during the past decade.

The adoption rate of basic EHR systems among U.S. hospitals has surged from 9.4% in 2008

to 83.8% in 2015 [Henry et al., 2016]. The ubiquitous adoption of EHR has generated an

unprecedented amount of health data, which provide the longitudinal picture of patients’
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journeys, treatment pathways, and care outcomes [Moores, 2012]. A CDSS refers to “any

electronic system designed to aid directly in clinical decision making, in which characteristics

of individual patients are used to generate patient-specific assessments or recommendations

that are then presented to clinicians for consideration [Kawamoto et al., 2005]”.

The abundance and comprehensiveness of EHR data, in conjunction with recent advances

in CDSS, has offered researchers and practitioners an ideal platform to mine actionable in-

sights to improve clinical decision-making for better healthcare outcomes [Gupta and Sharda,

2013, Johnson et al., 2014, Fichman et al., 2011]. Specific applications include test order-

ing [Zhuang et al., 2013], therapy management [Yet et al., 2013], improving care delivery and

access [Barjis et al., 2013, Li et al., 2017], detecting and predicting health conditions [Piri

et al., 2017, Topuz et al., 2018], and medication evaluation [Van Valkenhoef et al., 2013].

However, there are still many challenges in analyzing healthcare data. One of the critical

challenges is analyzing longitudinal or temporal structured healthcare data. Structured data

refers to data stored as tables in relational databases that can be easily queried and processed.

Healthcare data are inherently longitudinal, e.g., many diseases develop gradually and there

may be crucial temporal correlations between health conditions for the progression. By using

temporal reasoning or visualization in healthcare data analytics we can discover more hidden

patterns or knowledge [Combi and Shahar, 1997]. However, longitudinal healthcare data are

heterogeneous, are collected at irregularly spaced visits, and are sparsely distributed, making

it a challenging task to analyze or visualize these temporal data. Existing studies on analytics

and visualization of temporal healthcare data are still relatively limited.

Another challenge is analyzing unstructured healthcare data, especially clinical notes.

Clinical notes usually contain more information (e.g., patient lifestyle, social status, and

family history) and subtle descriptions of patient conditions or symptoms, making them

an invaluable information source for healthcare data analytics. However, clinical notes are

heterogeneous and require sophisticated text mining efforts. With the help of fast advance-
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ments in the field of natural language processing (NLP) and deep learning in recent years,

the number of studies on mining clinical notes has increased significantly. However, exist-

ing studies mostly focus on disease prediction, cohort selection, or patient care. Studies on

mining clinical notes with the direct purpose to reduce costs for healthcare institutions are

quite limited.

This dissertation aims to develop methods to better analyze and visualize temporal struc-

tured EHR data as well as extract patient information from clinical notes for medical billing

with the ultimate purpose to improve healthcare quality, reduce healthcare disparities, or

reduce medical costs.

1.2 Problem Statements

Research Problem 1: How to build a temporal predictive model to analyze

longitudinal structured EHR data to better predict the onset of chronic diseases

(specifically, diabetic retinopathy)?

Longitudinal healthcare data may contain many crucial hidden insights and improve the

performance of healthcare data analytics. Take the task of disease prediction for instance.

Most chronic diseases develop over years. There are many risk factors that gradually con-

tribute to the development of the diseases. A longitudinal observation of these factors may

unfold more insights about the trajectory of the disease progression, thus making the disease

prediction more accurate.

However, building a temporal disease prediction model is challenging due to the following

data characteristics. First, there is a significant disparity in the number of health records

for different patients in EHR systems. For example, for a specific lab test, some patients

may have hundreds of results while some others may only have several or none. Second,

for a single patient, temporal healthcare data are collected at irregularly spaced visits and
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irregular frequencies. For example, an ICU visit often has intensive lab tests, a routine

well-being check only has limited lab tests while a consultation visit usually does not have

lab tests. What’s more, many healthcare data have a variety of categories, are sparsely

distributed, and are imbalanced.

This dissertation specifically focuses on the prediction of diabetic retinopathy (DR), a

major complication of diabetes [CDC, 2021] (with blood vessel damage in the retina illus-

trated in Figure 1.1). DR is a leading cause of blindness in working-age adults globally [Yau

et al., 2012, Ting et al., 2016]. If diagnosed at an early stage, DR can be effectively treated

or even cured with intensive therapy. However, the compliance rate of DR screening remains

low due to the hurdles of current DR screening methods.

Figure 1.1: Blood Vessel Damage in the Retina

Figure source: Mayo Clinic, www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/symptoms-causes/syc-20371611

There are two major DR screening methods, fundus exams, and fundus photography.

Fundus exams are performed by an ophthalmologist or optometrist using a binocular indi-

rect ophthalmoscope or a slit lamp, which requires ophthalmic skills. Dilation, which uses

specialized eye drops to enlarge pupils, is often needed for such exams. A comprehensive
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eye exam can cost between $170-200 without insurance [Kraff, 2020]. The requirement for

ophthalmic skills and the high costs of exams make this kind of screening difficult to access

for patients in rural, remote, or other medically underserved communities.

Another screening method is fundus photography, which detects retinal abnormalities by

taking fundus images. Fundus photography is generally performed by trained physicians or

certified technicians using expensive equipment such as optical coherence tomography (OCT)

machines and digital fundus cameras. The images are later sent to ophthalmologists for

examinations. In addition to high equipment costs, certified ophthalmologists or specialists

are still needed to analyze and interpret the fundus images either at point-of-care or remotely.

Recently, artificial intelligence (AI) algorithms, particularly deep learning algorithms,

have been extensively studied to analyze fundus photographs [Gulshan et al., 2016, Ting

et al., 2017]. Since 2018, the Food and Drug Administration has approved a few AI-based DR

screening systems including IDx-DR [Abràmoff et al., 2018] and EyeArt [Bhaskaranand et al.,

2019]. Such systems utilize deep learning techniques to automatically analyze fundus images

and certified specialists are no longer needed. This relaxes the need for ophthalmologists or

certified specialists, and thus expands DR screening to more healthcare settings. However,

expensive fundus cameras are still needed for retinal imaging, which limits the use of this

screening approach to only well-funded healthcare providers. In addition, retinal imaging is

technically challenging, potentially hindering its adoption in resource-limited settings, like

rural primary care clinics, where providers have limited experience with ophthalmic imaging.

Therefore, there is an urgent need to develop non-image-based DR screening tools that

only use common Electronic Health Records (EHR) data (e.g., patient demographics, diag-

noses, lab tests, medications, and procedures) and are accessible to all healthcare settings.

Research Problem 2: How to construct comorbidity networks to group pa-

tients into phases more reasonably and better visualize temporal comorbidity

progression?
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Like disease prediction, healthcare data visualization is another task that we would like

to utilize temporal analytics. A cross-sectional visualization of healthcare data can help us

identify some patterns or associations. For example, the percentage of male patients in the

age range of 50 to 65 who are diagnosed with diabetes may be higher than that of female

patients in the same age range. However, such a cross-sectional visualization neglects the

longitudinal nature of healthcare data and cannot effectively explain many important clinical

issues such as comorbidity progression.

Temporal disease networks are commonly used to visualize longitudinal data. For exam-

ple, researchers use disease networks to visualize comorbidity progression. General practice

is that patients are grouped into different progression phases based on some kind of time

attribute (e.g., length of stay in hospital), comorbidity networks are constructed for these

phases separately, and then the networks across different phases are compared.

However, there are still some challenges, such as how to outline the phases. Existing

studies assign phases either by the same length of time or the same number of patients

within each phase. Whereas such simple methods are arbitrary and may not effectively find

the boundaries of phases and thus may not reveal insights about comorbidity progression.

Another challenge is that the number of comorbidities is enormous, which makes comorbidity

networks constructed still too complicated for visualization.

Research Problem 3: How to extract patient history information from clinical

notes to help automate the medical billing process to reduce billing costs?

The last research problem in this dissertation is about analyzing clinical notes. Healthcare

data are heterogeneous. Besides structured database tables, healthcare data are also stored

in unstructured formats such as clinical notes, patient questionnaires, radiology images, and

even speeches and videos. In fact, researchers estimate that about 80% of medical data are

unstructured [Kong, 2019, Assale et al., 2019], often in the form of free-text notes [Meystre

et al., 2008]. Compared to structured database tables (e.g., lab test tables and diagnosis
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tables), clinical notes contain more detailed information about patients (e.g., patient living

habits, social status, and family history) and subtle descriptions of conditions or symptoms,

making them an important data source for healthcare data analytics.

In the past decades, studies mining clinical notes have increased substantially. However,

there are some challenges. One challenge is the scarcity of annotated clinical notes for

supervised learning. Annotating clinical notes is time-consuming and may expose patient

protected health information (PHI). The scarcity of publicly available annotated datasets

limits the progress of studies mining clinical notes. Another challenge is that the number

of studies mining clinical notes with a direct purpose to reduce costs (e.g., medical billing

costs) for healthcare institutions is limited. Most existing studies focus on disease prediction

and cohort selection to improve patient care.

In this dissertation, we aim to reduce medical billing costs. Medical billing is one of the

heavy burdens facing healthcare institutions in the United States. In the modern healthcare

ecosystem, financial intermediaries such as private insurance companies and government

programs (e.g., Medicare and Medicaid) serve as payers to providers’ health services. To

ensure accurate reimbursement and manage the quality of care, paying intermediaries request

alphanumeric codes of diagnoses and procedures performed at a patient’s visit. As a result,

coding for medical claims, also known as medical billing, becomes one of the most important

tasks in the healthcare revenue management cycle.

At the core of medical billing are Evaluation and Management (E/M) services codes,

which are a category of Current Procedural Terminology (CPT) codes specific for billing

purposes. In addition to the Centers for Medicare and Medicaid Services (CMS)’s 1997

guidelines [CMS, 1997], American Medical Association (AMA) recently published simpli-

fied guidelines specific for office and outpatient visits [AMA, 2019]. According to the 1997

guidelines, the three key components of documentation needed to support the selection of an

appropriate level of E/M services furnished at a patient’s visit are history, examination, and
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medical decision making. The new simplified guidelines also require medically appropriate

history and/or examination although the extent of them is not used for the selection of E/M

service codes.

Unfortunately, gleaning and coding the billing information is still highly relied on the

manual processing by clinical coders to date. Among large healthcare providers, in-house

coding professionals are often hired while smaller healthcare organizations commonly out-

sourced their coding tasks. On the other side of the transaction, it costs paying interme-

diaries an equivalent amount of manpower to evaluate claims, request clarification and re-

submission, and detect and penalize frauds such as up-coding/over-coding and false charges.

The entire process has brought tremendous workload and financial burdens to care

providers, staff, professional coders, and payers. Studies have shown that physicians in

the United States spent on average from 17% to 43% of their time with EHR systems for

documentary tasks [Sinsky et al., 2016, Tai-Seale et al., 2017, Arndt et al., 2017, Woolhandler

and Himmelstein, 2014]. Such administrative responsibilities took them away from patients

and lowered their career satisfaction [Woolhandler and Himmelstein, 2014]. On the payers’

side, such costly human processes have under-met the sheer volume of reimbursement claims,

resulting in billing errors that cost U.S. tax and insurance payers a magnitude of billions

of dollars [Champagnie, 2019]. For example, the total value of challenged claims was esti-

mated from $11 billion to $54 billion annually [Gottlieb et al., 2018]. The overall billing and

insurance-related administrative costs for the whole healthcare revenue management cycle

in the United States approximated $471 billion a year [Jiwani et al., 2014]. High cost and

error volume undermined the effectiveness of current billing practices.

Despite the critical need for automatic technologies that can accurately recognize billing

information from clinical free-text notes, the research in this field remains limited to date.

Due to the complexity of E/M billing, this dissertation will focus on the extraction of the first

component (i.e., patient history information), annotate a dataset, and develop models and
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prototype systems using public or academic available resources with the ultimate purpose

to facilitate the billing practice.

1.3 Research Objectives

The research objectives of this dissertation are as follows.

• Designing state-of-the-art temporal predictive models to analyze real-world, imbal-

anced, and longitudinal structured EHR data to predict diabetic retinopathy

• Conceiving a method to model comorbidity progression using temporal disease net-

works for real-world EHR data and cluster the networks into progression phases

• Creating a method to cluster diseases to simplify the visualization of comorbidity

progression

• Establishing methods and prototype systems to extract essential patient history infor-

mation from clinical notes to facilitate medical billing

• Designing a comprehensive model evaluation metric for named entity recognition in-

cluding a taxonomy to quantify outcomes for notes with text span overlapping entities

1.4 Expected Contributions

In this dissertation, we have three research topics. The first topic is about designing pre-

dictive models to analyze longitudinal structured EHR data to detect patients with diabetic

retinopathy. The second topic is about constructing temporal comorbidity networks and

clustering these networks and diseases to visualize comorbidity progression. The third topic

is about constructing methods and systems to extract essential patient history information

from clinical notes for medical billing and comparing the performances of the systems.

For the first topic, the contributions include two aspects.
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• In the methodological aspect, to the best of our knowledge, it is the first study building

deep learning architectures to analyze longitudinal structured EHR data (e.g., lab tests)

for DR prediction. Previous DR prediction models built on structured EHR data only

analyze cross-sectional or aggregated data.

• In the application aspect, deep learning models outperformed non-temporal models,

which indicates a better alternative DR screening method. Only a small set of common

variables are used as input data, making the models accessible and easier to deploy.

For the second topic, this research has the below contributions.

• In the methodological aspect, it proposes a new method to cluster temporal disease

networks into consecutive progression phases and a new method to cluster highly as-

sociated diseases into groups to simplify the visualization of comorbidity progression.

• In the application aspect, the method to construct disease networks based on Clinical

Classifications Software (CCS) categories is easier than conventional diagnosis codes

and the system can be integrated into clinical decision support systems to visualize

comorbidity progression.

For the third topic, the contributions include two aspects.

• In the methodological aspect, to the best of our knowledge, this is the first study focus-

ing on clinical information extraction for the Evaluation/Management (E/M) medical

billing. It proposes a framework of two methods to extract patient history informa-

tion. A comprehensive metric is also proposed to evaluate named entity recognition

performances including an exact-match metric and a novel hierarchical relaxed-match

metric suitable for notes with text span overlapping entities.

• In the application aspect, this study provides technical solutions to develop libraries,

knowledge extraction rules, and deep learning architectures, and can be helpful in real

10



medical billing settings.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents a literature review on

the topics of this dissertation. Chapter 3 builds DR temporal prediction models by analyzing

longitudinal structured EHR data and compares the performances of these models. Chapter

4 introduces a mechanism to construct temporal disease networks for comorbidities and two

clustering methods for better visualization of comorbidity progression. Chapter 5 constructs

a rule-based and a deep-learning-based systems to extract essential history information from

clinical notes for E/M medical billing and compares the performances of the two systems.

The last chapter summarizes and concludes this dissertation.
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CHAPTER II

LITERATURE REVIEW

2.1 Diabetic Retinopathy Prediction Using Longitudinal EHR Data

2.1.1 Diseases Prediction Using Longitudinal EHR Data

Longitudinal healthcare data are considered to be an invaluable source for healthcare ma-

chine learning [Moskovitch et al., 2019]. On one hand, longitudinal healthcare data can

help us discover insights about potential changes in patient health conditions. For example,

an unintentional weight loss may signal diabetes or a more severe illness [Williamson et al.,

2000]. On the other hand, long-term temporal dependencies exist ubiquitously in health

conditions [Pham et al., 2017]. For example, patients with a longer history of diabetes are

more likely to develop diabetic retinopathy (DR) [Klein et al., 1984]. Therefore, analyz-

ing longitudinal data is important for healthcare analytics [Combi and Shahar, 1997]. In

fact, literature shows that predictive models built on longitudinal data have better perfor-

mances [Singh et al., 2015, Gupta et al., 2020, Wang and Yao, 2022].

However, building disease prediction models to analyze longitudinal data is challenging.

First, longitudinal healthcare data differ in collecting frequencies. Some data are collected

at fixed intervals (e.g., electrocardiogram data) while others are collected at irregular fre-

quencies (e.g., lab tests and diagnoses).

Second, there is a significant disparity in the number of temporal health records for

different patients in EHR systems. Part of the disparity results from the difference in visit
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frequency across patients. Some patients visit hospitals only when they feel really necessary

while some others visit hospitals much more frequently. Patients with complicated health

conditions also tend to generate more records. Coverage of the dataset also accounts for this

disparity. If a patient chooses to visit a new hospital that uses a different EHR system, the

new records may not be included in the dataset.

Healthcare data in EHR are also high dimensional, sparsely distributed, and contain many

missing values. Take diagnoses for example, there are about 13,000 ICD-9-CM diagnosis

codes and about 68,000 ICD-10-CM codes. For most of these diagnosis codes, only a small

fraction of the population has records. Therefore, if we use diagnosis codes as input data,

the dataset is likely high dimensional and sparsely distributed with many missing values.

Due to the above characteristics of longitudinal healthcare data, conventional time series

analysis methods which rely on the assumption of regularly sampled data are not suitable

for temporal healthcare data analytics. Traditional machine learning algorithms are also not

designed to analyze longitudinal data. Hence, some researchers proposed the knowledge-

based temporal abstraction approach [Shahar, 1997]. There are three basic steps for this

approach [Moskovitch et al., 2019]. The first step is to transform raw, irregularly time-

stamped variables into symbolic time intervals using some kind of knowledge abstraction

method (e.g., statistical mean or median or counts). The second step is to exact temporal

patterns or relations in these symbolic intervals using techniques such as Allen’s interval

algebra [Allen, 1983]. The last step is to induce classifiers based on these patterns or relations

for various machine learning tasks such as prediction.

We have many studies following this approach in the literature. An algorithm called

“IEMiner” (Interval-based Event Miner) was proposed to discover frequent temporal pat-

terns from interval-based events and was evaluated on hepatitis classification [Patel et al.,

2008]. A framework named “KarmaLegoSification (KLS)” that can efficiently extract rela-

tions from symbolic time intervals for clinical event prediction was also proposed [Moskovitch
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and Shahar, 2015]. The time abstraction approach was also integrated with hidden Markov

models for sepsis prediction [Gupta et al., 2020]. However, the process of temporal abstrac-

tion for temporal intervals has the problem of information loss, and extracting the temporal

relations between time intervals is also demanding.

In the past several years, deep neural networks, or deep learning techniques, have been in-

creasingly utilized for longitudinal healthcare data analytics due to their superior capacities

to model sequential information with great flexibility [Xie et al., 2022]. Recurrent neu-

ral networks (RNN) [Rumelhart et al., 1986], particularly the sub-types of long short-term

memory (LSTM) [Hochreiter and Schmidhuber, 1997] and gated recurrent units (GRU) [Cho

et al., 2014], is one of the most popular deep learning techniques used. A reverse-time atten-

tion mechanism based on RNN was proposed and evaluated for the prediction of heart fail-

ure [Choi et al., 2016]. An end-to-end system named “DeepCare” which uses LSTM achieved

better prediction performances than plain RNN and non-temporal models on datasets of di-

abetes and mental health [Pham et al., 2017]. Attention mechanism was introduced into

RNN, and multi-task prediction layers were added to the architecture which demonstrated

better prediction performances for bone diseases and cardiovascular disease [Suo et al., 2017].

Interested readers may refer to [Xie et al., 2022] for a comprehensive survey.

Recent studies show that temporal convolutional network (TCN) [Lea et al., 2016] which

uses dilated causal convolutions has superior performances in modeling sequential data. An

empirical evaluation found that generic TCN model outperforms canonical RNN models for a

variety of temporal modeling tasks [Bai et al., 2018]. TCN was also employed to predict clin-

ical events for ICU patients and achieved better performances than LSTM models [Catling

and Wolff, 2020]. TCN has been successfully employed for the prediction of diseases includ-

ing diabetes [Xie and Wang, 2020], influenza-like illness [Lee et al., 2021], depression [Du

et al., 2019], and sepsis [Moor et al., 2019, Kok et al., 2020, Wang and Yao, 2022].

Although more and more studies are utilizing deep learning temporal models for disease
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prediction, the number of such studies is still limited, particularly for diseases with multiple

types of risk factors (e.g., diabetes and its complications). Machine learning models trained

and tested on real-world large-scale datasets for these diseases are even scarce.

2.1.2 Diabetic Retinopathy Prediction Using EHR Data

There are extensive clinical studies on DR risk factors in the literature [Mohamed et al.,

2007, Stitt et al., 2016], which provide clinical insights for machine learning feature selec-

tion and thus significantly facilitate healthcare data analytics on DR prediction. Widely

recognized risk factors of DR include patient demographics [Klein et al., 1984], duration of

diabetes [Klein et al., 1984], lab tests [Olsen et al., 2000, Irace et al., 2011], and comor-

bidities (e.g., neuropathy [Candrilli et al., 2007], nephropathy [Cruickshanks et al., 1993],

hypertension [Van Leiden et al., 2002], obesity [Van Leiden et al., 2002], and cardiovascular

disease [Van Hecke et al., 2005]), among many others.

Meanwhile, machine learning researchers have constructed various models using common

EHR data for DR prediction in the past decades. Cox’s proportional hazard model was

used to analyze patient demographics, blood tests, and some comorbidity variables for DR

prediction [Semeraro et al., 2011]. Decision tree models were built to include more DR

risk factors and performances of two ensemble approaches were compared [Ogunyemi and

Kermah, 2015]. Multiple machine learning models (decision tree, random forests, logistic

regress, and artificial neural networks) were utilized to analyze patient demographics and

a small set of lab tests for DR prediction [Piri et al., 2017]. A DR risk index was recently

proposed with ten demographics and lab test variables and a DR predictive model was then

developed based on the risk index [Wang et al., 2021]. However, all these models are built

on either cross-sectional or aggregated data and do not leverage the temporal information

in the longitudinal EHR data for DR prediction.
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2.1.3 Intellectual Gaps

Through a thorough literature review, we found that in the area of DR prediction, there has

been limited work to:

• Leverage state-of-the-art deep learning techniques to analyze structured longitudinal

EHR data. Existing research either built traditional machine learning models to ana-

lyze cross-sectional or aggregated data or employed deep learning techniques to analyze

retinal fundus images.

• Incorporate clinical domain knowledge into deep learning disease prediction models.

There is a lack of clinical domain knowledge in developing deep-learning-based temporal

representation models [Xie et al., 2022]. Domain knowledge can be used to select those

potentially important variables and make the models easier for deployment.

2.2 Visualization Analytics and Temporal Disease Network

2.2.1 Visualization Analytics for Comorbidity

Visual analytics (VA) can reduce the information overload on memory and cognition, and

leverage the power of human perception [Caban and Gotz, 2015, Simpao et al., 2014]. Nowa-

days, it has become an integral component of clinical decision support systems [Mane et al.,

2012, Simpao et al., 2015a, Simpao et al., 2015b, Rind et al., 2013, Nelson et al., 2019]. For

example, through VA, large volumes of data and complex ideas in healthcare settings can be

presented with clarity, accuracy, and efficiency in visual diagrams [Nadj et al., 2020, Kamsu-

Foguem et al., 2012]. Furthermore, VA dashboards allow real-time monitoring and tracking

of healthcare information, such as hospital-specific antibiograms [Simpao et al., 2018], ad-

verse drug events [Sorbello et al., 2017], and departmental performance metrics [Karami and

Safdari, 2016]. It also has been reported that visualized data improved recall of important

clinical information [Tscholl et al., 2018].

16



An emerging and important direction of VA in clinical decision-making is to visualize

and mine comorbidity progression patterns [Hidalgo et al., 2009, Warner et al., 2013, Kr-

ishnamurthy et al., 2018, Wang et al., 2020, Hossain et al., 2020]. Comorbidity refers to

one or more other health conditions coexisting with a particular index disease under inves-

tigation [Feinstein, 1970]. Comorbidity has been increasingly prevalent [Divo et al., 2014]

and consistently challenging healthcare practice and research by leading to worse health out-

comes, complicating diagnostics and treatments, and misleading medical statistics [Feinstein,

1970, Gijsen et al., 2001]. As a result, great efforts have been devoted to exploring effective

methodology to handle comorbidity to improve clinical decision-making during the past few

decades [De Groot et al., 2003, Capobianco and Lio, 2013, Zolbanin et al., 2015].

Network modeling represents an intuitive and useful approach to investigating comor-

bidities and their progression patterns [Cramer et al., 2010, Barabási et al., 2011, Brunson

and Laubenbacher, 2018] mainly for the following advantages

• User-friendly presentation of disease associations. By modeling comorbidities as nodes

and their pairwise associations as edges, network models can present comorbidity vi-

sually. The nodes and edges can further carry attributes to express specific features

of diseases and disease associations. Examples of such attributes include node size for

disease prevalence and edge weight for association strength [Divo et al., 2015, Warner

et al., 2015]. Furthermore, edges can be directed to represent the dynamic (e.g., causal

or sequential) interactions among diseases [Jensen et al., 2014, Wang et al., 2020].

• Support for disease progression analysis. By discretizing the entire time frame of the

index disease into different time windows, modeling comorbidity within each window as

a disease network (hereafter referred to as temporal disease network, TDN), then com-

paring the dynamics through the TDN sequence across different windows, researchers

are able to show and analyze the progression of the index condition and comorbidities.

This approach has been applied to chronic conditions, such as cancer and mental dis-
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orders, which often come with a long period and multiple comorbidities [Chen et al.,

2009, Chmiel et al., 2014].

• Capability to incorporate additional biomarkers. In addition to diseases, other biomark-

ers, such as genes and symptoms, can also be modeled as nodes and incorporated into

the disease network by establishing edges that are representative of associations be-

tween the diseases and the biomarkers. For example, “diseasome” networks incorpo-

rate genes and/or proteins as nodes, and link them with diseases [Barabási, 2007, Nam

et al., 2019], and psychiatric symptom networks include symptoms, drugs, and even

adverse effects of drugs in addition to diseases [Cramer et al., 2010, Davazdahemami

and Delen, 2018].

2.2.2 Temporal Disease Networks for Comorbidity Progression

Networks are commonly employed in healthcare visualization analytics. In a basic undi-

rected, unweighted network modeling comorbidities, nodes represent comorbidities, while

edges manifest the coexistence relationships among diseases in a certain patient cohort. The

coexistence relationship is usually evaluated using a statistical measure, such as relative

risk [Jeong et al., 2017], Pearson’s correlation [Hidalgo et al., 2009], and Salton Cosine In-

dex (SCI) [Chen et al., 2015], among others. Then, a threshold is used to eliminate trivial

coexistences and retain the significant ones as edges.

Comorbidity networks are often large, dense, and complicated. To facilitate the analysis

and visualization of complex comorbidity networks, graph clustering methods have been

used to detect comorbidity patterns [Guo et al., 2019, Shu et al., 2019] and reduce network

complexity [Schäfer et al., 2014]. A common network clustering model is the clique, i.e., a

complete graph, in which all nodes are pairwise interconnected [Sokolova et al., 2017, Peleg

et al., 2009]. For instance, in Figure 2.1, the TDN at Window 1 is a clique of three nodes.

Given a sequence of TDNs across different time windows, progression analysis often
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Figure 2.1: Two TDNs in Different Windows

Note: The one at Window 1 is a clique with three nodes. In Window 2, a clique enumeration algorithm may detect two

cliques as circled, which is a split of the clique at the earlier window, causing analysts to lose track of the disease cluster

implied by the clique.

involves comparing how much the TDNs are dissimilar from each other. There have been

abundant approaches proposed in the literature to measure network dissimilarity [Tantardini

et al., 2019, Wills and Meyer, 2020]. A majority of these methods summarize the structural

features of a network into a vector of statistics, then define the dissimilarity between a pair

of networks as the distance (e.g., Euclidean or Manhattan distance) between the two vectors

associated with the networks. In addition to basic structures in network theory, e.g., node

degree and network diameter, the literature also used many advanced structural features,

including cluster coefficient [Berlingerio et al., 2013], graphlet [Pržulj et al., 2004], and graph

kernel [Vishwanathan et al., 2010, Ghosh et al., 2018], to name a few.

2.2.3 Intellectual Gaps

Through a thorough literature review, we found that in the area of TDN modeling and

analysis, there has been limited work to

• Outline progression phases. Most TDN-related studies [Chen et al., 2009, Martel et al.,

2016, McElroy et al., 2018] predefined a granularity parameter m, then discretized the

entire time frame of the study cohort into m windows of even length or even sample

size, without providing algorithms that can detect at which window(s) notable changes

of TDNs had occurred. Another issue brought by the simple m-window discretization

method is that when the granularity is high, many windows come with very similar
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TDNs, which increases the redundancy of visualization, especially at late stages of the

time frame, when the number of comorbidities grows to a stable level.

• Streamline the visualization. Network clustering methods, such as the clique model,

can be used to streamline the visualization of a single network as discussed earlier,

but the extension to TDNs across multiple time windows is not straightforward. A

confusion is that a clique in one window may be divided in another window, as shown

in Figure 2.1. For complex TDNs with large sizes and many windows, the confusion

will be much deteriorated, leading to the loss of track of certain disease clusters.

2.3 Clinical Information Extraction Using NLP

Natural language processing (NLP) has become increasingly popular in healthcare analytics

over the past decades [Assale et al., 2019]. It has been extensively applied to extract useful

clinical information from different types of clinical free text, such as radiology reports [Pons

et al., 2016], pathology reports [Burger et al., 2016], medical literature [Huang et al., 2011],

and medical social media [Denecke, 2014, Tutubalina et al., 2018]. Functionalities involved

in clinical information extraction (CIE) mainly include text classification (e.g., phenotyp-

ing, mortality prediction, and severity prediction), named entity recognition (e.g., clinical

concepts, de-identification, and negation), relation extraction, and others (e.g., information

retrieval, disambiguation, and segmentation) [Wu et al., 2020]. Rule-based and supervised

machine learning (ML) approaches are often employed in NLP for CIE, and a multitude of

associated computer programs have been created.

2.3.1 Rule-based Approaches

As suggested by the name, rule-based approaches leverage a series of predefined semantic

rules to extract the information of specific interest [Wang et al., 2018b]. The rules often con-

sist of a specified lexicon and the search logic for the lexicon. Popular lexicons in healthcare
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research and applications include Unified Medical Language System (UMLS) for medical ter-

minologies [Bodenreider, 2004], Chronic Conditions Data Warehouse regarding chronic con-

dition categories [HealthAPT, 2022], Phenome-Wide Association Studies (PheWAS) about

disease-gene relations [Denny et al., 2010], and DrugBank with respect to drug-gene re-

lations [Wishart et al., 2008], among others. The search logic can be implemented with

algorithmic flow control statements (e.g., “if...else...”) in combination with regular expres-

sion (a sequence of characters defining the match pattern to locate specific strings embedded

in a text [Thompson, 1968]).

Physicians’ domain knowledge and experience are generally leveraged to guide the de-

velopment of rules. By integrating physicians’ insights and other medical knowledge bases,

rule-based algorithms are generally easy to interpret and can be accurate in many appli-

cations. For example, a review study shows that rule-based NLP algorithms and machine

learning algorithms have similar performances in case detection [Ford et al., 2016].

However, rule-based algorithms require physicians and engineers to collaborate to man-

ually craft rules, which is usually demanding and time-consuming [Chiticariu et al., 2013].

Another disadvantage is that researchers cannot enumerate all possible rules by heuristic

observation inherently, particularly for complex or causal relations [Gevarter, 1984]. In ad-

dition, rule-based systems often perform unsatisfactorily if corpora or tasks change. In other

words, they have limited portability and generalizability [Wang et al., 2018b].

2.3.2 Supervised Machine Learning

A typical ML procedure for NLP/CIE starts with an annotated corpus. Then, a set of

word and context features of the corpus are extracted and used to train machine learning

algorithms that can classify and recognize the text information of interest [Nadkarni et al.,

2011]. The application of ML models, such as support vector machines [Wright et al., 2013],

conditional random fields [Jiang et al., 2011], maximum entropy [Osborne et al., 2016],
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random forests [Brown and Kachura, 2019], and neural networks [Goldberg, 2016] in CIE

has been extensively reported in the literature.

Feature engineering, which extracts a set of informative features and/or aggregates dis-

tinct features into new features in order to obtain a representation to enable ML classification,

plays an essential role in CIE [Garla and Brandt, 2012, Xu et al., 2012]. Prevalent features

in CIE include part-of-speech tags that are categories (e.g. noun, verb) to which words are

assigned in accordance with their syntactic functions [Collier and Takeuchi, 2004], bag-of-

words that represent a text as a multiset of words in the text disregarding word order [Kolari

et al., 2006], n-gram that is a contiguous sequence of n items from a given text [Sidorov et al.,

2014], term frequency-inverse document frequency (TF-IDF) that is a value for each word

in a document through an inverse proportion of the frequency of the word in a particular

document to the percentage of documents containing the word [Ramos et al., 2003], and

word embeddings that are trained vector representations of words [Wang et al., 2018a].

It is worth noting that deep learning (DL), an emerging paradigm of artificial neural

networks, has recently gained increasing attention in CIE [Wu et al., 2020]. DL shows great

promise in many CIE applications thanks to its sophisticated network architectures. For

instance, RNN and transformer networks have mechanisms designed to accommodate the

sequential nature of texts that allow them to capture and exploit temporal information con-

tained in these texts [Jurafsky and Martin, 2022]. Interested readers may refer to [Jurafsky

and Martin, 2022] for a thorough discussion about DL models in NLP.

Compared to rule-based algorithms, ML/DL models are more efficient since they require

fewer manual efforts and are automatically trainable [Chiticariu et al., 2013]. They also

have a better capability of learning from high-dimensional representations or features of

texts [Li, 2018] as well as capturing distant contextual information [Jurafsky and Martin,

2022]. However, in order to create accurate models, the model training process usually

requires a substantial amount of labeled data samples, whose annotation can be highly time-
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consuming [Chiticariu et al., 2013]. In addition, feature engineering for non-DL ML models

is complex and demanding [Chiticariu et al., 2013] while word-embeddings that DL models

often rely on contain and magnify biases [Papakyriakopoulos et al., 2020].

2.3.3 Integrated NLP Software

By integrating rule-based and ML/DL algorithms, a lot of CIE software has been created in

academia and industry. A considerable proportion of the software was designed to handle cer-

tain specific tasks in CIE. Examples of such specialized CIE software include NegEx [Chap-

man et al., 2001] for identifying negated findings and diseases, MedEx [Xu et al., 2010] and

MedXN [Sohn et al., 2014] for detecting medications, and MedTime [Lin et al., 2013] that

was designed to extract and normalize temporal information. On the other hand, generic

CIE software, such as MedLEE [Friedman et al., 2004], MetaMap [Aronson and Lang, 2010],

cTAKES [Savova et al., 2010], and CLAMP [Soysal et al., 2018] have emerged as popular

integrated clinical NLP tools. These integrated tools have multiple built-in specialized algo-

rithms and are able to recognize a variety of medical information including note headings,

diseases, diagnoses, treatments, tests, and medications, among many others.

2.3.4 Intellectual Gaps

Through a thorough literature review, we found that in the area of analyzing clinical notes

for E/M medical billing, there has been limited work to

• Outline the framework or technical solutions for patient information extraction to fa-

cilitate E/M billing. No academic research has been found to extract essential patient

information from clinical notes for E/M medical billing.

• Annotate a dataset for patient history information extraction. No public datasets are

available for training models to extract patient history information.
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• Compare model performances for the purpose of patient history information extrac-

tion. There are a few studies comparing model performances for general named entity

recognition but no study discussing performances of models to extract patient his-

tory information. In addition, there is no evaluation metric to quantify named entity

recognition performance for notes with text span overlapping entities.
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CHAPTER III

PREDICTING DIABETIC RETINOPATHY USING LONGITUDINAL

ELECTRONIC HEALTH RECORDS DATA1

3.1 Introduction

The objective of this research is to build state-of-the-art deep learning temporal models

to analyze longitudinal EHR data for diabetic retinopathy (DR) prediction. These models

can be implemented as an accessible and low-cost alternative screening method to identify

diabetic patients at high risk of DR. To make sure the models are easy for deployment, only

a small set of patient demographics, comorbidities, and a few routine blood test variables

are selected as input variables.

In Section 2.1, we review related literature in the area of modeling longitudinal EHR data

for disease prediction and DR prediction as well as the intellectual gaps that we are addressing

in this research. The remainder of this chapter is organized as follows. In Section 3.2, we

introduce the dataset and data pre-processing. In Section 3.3, we discuss the models we

intend to construct in detail. Model performance comparisons are in Section 3.4. Finally,

Section 3.5 includes the discussion and conclusion of this study.

1This is a joint work with Zekai Wang, Dr. Bing Yao, and Dr. Tieming Liu. A manuscript based on this study has been

accepted and will be published at IEEE CASE 2022 conference. Chen, S., Wang, Z., Yao, B. and Liu, T.(2022). Prediction of

Diabetic Retinopathy Using Temporal Electronic Health Records. IEEE International Conference on Automation Science and

Engineering (CASE), Mexico City, August 20-24, 2022.
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3.2 Dataset and Data Pre-processing

The dataset used in this study is retrieved from the 2018 Cerner Health Facts® database,

which is one of the largest real-world, de-identified, and HIPAA-compliant EHR databases

in America. The database includes clinical records dated back to the late 1990s covering

more than 63 million patients across the entire country. Clinical information such as patient

demographics, admissions and discharges, lab tests, diagnoses, medications, procedures, and

medical events are stored in the database with detailed timestamps, making Health Facts®

an invaluable resource for predictive medicine.

Table 3.1: Diagnosis Codes for Diabetes and Its Complications

Code Type Code Code Description

ICD-
9-
CM

250.x Diabetes mellitus (DM)
362.0x DR
250.4x Nephropathy
250.6x Neuropathy
278.0x Overweight and obesity
414.0x Coronary atherosclerosis

ICD-
10-
CM

E10.x Type 1 DM
E11.x Type 2 DM
E10.31x–E10.35x Type 1 DM with DR
E11.31x–E11.35x Type 2 DM with DR
E10.21 Type 1 DM with diabetic nephropathy
E11.21 Type 2 DM with diabetic nephropathy
E10.40 Type 1 DM with diabetic neuropathy
E11.40 Type 2 DM with diabetic neuropathy
E66.x Overweight and obesity
I25.x Chronic ischemic heart disease

CCS Category Hypertension% Hypertension*

Note: “Hypertension complicating pregnancy; childbirth and the puerperium” and “Hypertension with complications and
secondary hypertension” will be matched by the query “Hypertension%”.

This study aims to develop state-of-the-art temporal predictive models to identify DR

patients from diabetic patients. To retrieve the study cohort, diagnosis codes including

International Classification of Diseases Ninth Revision-Clinical Modification (ICD-9-CM),

ICD-10-CM, and the aggregated Clinical Classifications Software (CCS) categories were used

(Table 3.1). Patients with one or more diabetes mellitus (DM) codes were defined as dia-
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betic patients. Among these diabetic patients, those who have one or more DR codes were

considered to be DR patients, and the remaining patients were treated as non-DR diabetic

patients. In total, the DR cohort contains 69,354 patients whose admission dates range from

December 1999 to June 2017. The non-DR diabetic cohort contains 2,363,051 patients whose

admission dates range from October 1998 to September 2017.

After surveying the literature on DR prediction [Yau et al., 2012, Wang et al., 2021],

we included 21 routine lab test variables (Table 3.2), 5 comorbidity variables (neuropathy,

nephropathy, hypertension, obesity, and cardiovascular disease), 3 demographic variables

(age, gender, and race), and the duration of diabetes in years.

Table 3.2: Lab Test Variables Used in the Dataset

Variable Name Abbr. Normal Range (Unit)

Alanine Aminotransferase/SGPT ALT 7-55 U/L

Anion Gap AG 7-15 mmol/L

Aspartate Aminotransferase/SGOT AST 8-60 U/L

Bilirubin Total Serum or Plasma Mass/Volume TSB ≤ 1.2 mg/dL

Blood Urea Nitrogen BUN 6-24 mg/dL

Hematocrit Hct 35.5-48.6%

Hemoglobin Hb 11.6-16.6 g/dL

Hemoglobin A1C (Glycosylated Hemoglobin) HbA1c 4.0-6.4%

Mean Corpuscular Hemoglobin MCH 27-31 pg/cell

Mean Corpuscular Hemoglobin Concentration MCHC 32-36 g/dL

Mean Corpuscular Volume MCV 78.2-97.9 fL

Red Blood Cell Count RBC 3.92-5.65 x 1012/L

Serum Albumin ALB 3.5-5.0 g/dL

Serum Calcium Ca 8.6-11.0 mg/dL

Serum Chloride Cl 98-112 mmol/L

Serum Triglyceride Tgl ≤ 150 mg/dL

Serum Potassium K 3.6-5.2 mmol/L

Serum Quantitative Creatinine Cr 0.59-1.35 mg/dL

Serum Sodium Na 135-145 mmol/L

Serum/Plasma Quantitative Glucose Glu 70-140 mg/dL

White Blood Cell Count WBC 3.4-9.6 x 109/L

Note: Normal range values (except for MCH and MCHC) are taken from Rochester 2022 Interpretive Handbook by Mayo
Clinic Laboratories. Values are mainly for adults, and some are relaxed for gender and age groups if differences exist. Normal
range values for MCH and MCHC are from https://www.ucsfhealth.org/medical-tests/rbc-indices.

For a patient in the DR cohort, we search the first encounter when the patient was

diagnosed with diabetes as encounter I, the first encounter when the patient was diagnosed
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of DR as encounter J , and then extract all the longitudinal lab test results ranging from I to

J . For non-DR patients, we also set I as the encounter when the patient was first diagnosed

with diabetes and extract all longitudinal lab tests from I to the patient’s latest encounter

J in the EHR database.

Lab test values are numerical and are aggregated in means at the encounter level. Patient

race and gender are retrieved from the last encounter and are transformed into numerical with

one-hot encoding. Patient age in years is collected at each encounter. Duration of diabetes

in years is calculated as the temporal distance of admission time from current encounter

to encounter I. The five comorbidity variables are binary. Neuropathy, nephropathy, and

cardiovascular disease are generally considered irreversible, so if there exists one diagnosis

code for these variables in a patient’s retrieved records, the patient will be labeled positive for

these variables, otherwise, the patient will be labeled as negative. Obesity and hypertension

are considered reversible, so we only check the diagnosis codes in the last encounter. If there

is such a diagnosis code for these two variables in the last encounter, we will label the patient

positive. Otherwise, we will label the patient negative for these two variables.

Figure 3.1 shows that missing values are prevalent for lab test variables. Inspired by a

previous study [Wang and Yao, 2022], we first use forward imputation, then use backward

imputation, and impute the remaining missing values with 0.

Figure 3.1: Percentages of Encounters with Missing Values
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Table 3.3: Encounter Number Statistics of the Original Dataset

Encounter Number Statistic DR Cohort Non-DR Cohort

Min of Encounter Numbers 1 1

Max of Encounter Numbers 236 504

Mean of Encounter Numbers 5.89 5.68

Median of Encounter Numbers 3 3

% of Patients with ≤ 25 Encounters 97% 97%

Table 3.3 shows the statistics of encounter numbers in the two cohorts. Most patients

have limited numbers of encounters, which is not ideal for building temporal models. Since

the objective of this study is to build temporal models for analyzing longitudinal EHR data,

we sample a subset as the final dataset containing patients with at least 10 encounters. In

the final dataset, there are 414,199 patients in total, and 12,590 of them are DR positive.

DR positive rate is 3.04%, close to the 2.85% DR rate in the original whole dataset. To

ensure an equal number of encounters for all the patients, we set the maximum time steps as

25 and apply zero-padding techniques. For patients with less than 25 encounters, padding

encounters will be added at the beginning of the encounter sequences. For patients with

more than 25 encounters, only the latest 25 encounters are kept.

3.3 Methodology

As we discussed in Section 2.1.1, artificial-neural-networks-based deep learning models have

been increasingly employed in temporal analysis of longitudinal healthcare data in recent

years due to their flexibility in modeling sequential data. RNN (particularly its sub-type of

LSTM) and TCN are among the most popular temporal models with many successful appli-

cations including disease prediction. Inspired by a recent study on sepsis prediction [Wang

and Yao, 2022], we intend to build LSTM and TCN models with a multi-branching mecha-

nism and compare the model performances.

A recent survey finds that there is a lack of clinical domain knowledge in the current
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deep learning studies modeling healthcare data [Xie et al., 2022]. Incorporating invaluable

clinical domain knowledge may improve model performances. In Section 2.1.2, we discussed

some of the most important clinical findings about DR in literature including potential DR

risk factors. We will incorporate such knowledge of DR risk factors in our model building.

In summary, we intend to build LSTM and TCN models with a multi-branching mecha-

nism for DR prediction. We will compare them with non-temporal random forests models,

which have the best performances in literature.

3.3.1 Artificial Neural Networks

A typical artificial neural networks architecture is composed of one input layer, one or more

hidden layers, and one output layer. Each layer may contain different numbers of nodes, and

nodes are connected from layer to layer to allow information to flow from the input to the

output. The interaction between two adjacent hidden layers i and i− 1 is characterized as

Y i = σ(Bi +W iY i−1)

where Y i−1 and Y i denote the outputs of layers i− 1 and i respectively, W i and Bi are the

weight matrix and bias vector for layer i, and σ(·) denotes the nonlinear activation function

(e.g., sigmoid, tanh, or ReLu).

By designing sophisticated hidden layer structures, advanced neural network models can

be developed to capture hidden information and patterns from different types of data. For

example, convolutional neural networks (CNNs) have been developed to investigate spatial

correlations for pattern recognition in imaging data [Rawat and Wang, 2017]. Furthermore,

RNN and TCN have been proposed to capture the temporal correlations in longitudinal

data. In this work, we will engage different temporal network architectures to analyze the

longitudinal EHR data for DR prediction.
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Figure 3.2: Illustration of an LSTM Block

3.3.2 LSTM

LSTM networks have been designed to mitigate the common problem of gradient vanishing

and explosion in traditional RNNs by incorporating a gating mechanism in the network

structure. LSTM has a wide application to capture the temporal dynamics of sequential data

in a variety of areas such as machine translation and speech recognition. The information

flow across the LSTM block is achieved by three layers, i.e., the input layer x, the hidden

layer h, and a context layer c. As illustrated in Figure 3.2, a classic LSTM block takes the

current input vector xt, and the hidden state and context state (ht−1, ct−1) from the previous

block and further controls the information flow through the three gates (“forget” gate ft,

“add” gate it, and “output” gate ot).

The gate ft is used to delete information from context no longer needed and performs

the following operations

ft = sigm(Ufht−1 +Wfxt)

kt = ct−1 ⊗ ft

where sigm is sigmoid operation, ⊗ is element-wise multiplication, and Uf and Wf are

coefficient matrices.
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The gate it is used to add information to the context state and its output is calculated

by the following operations

gt = tanh(Ught−1 +Wgxt)

it = sigm(Uiht−1 +Wixt)

jt = gt ⊗ it

where tanh is hyperbolic tangent operation. The context layer is further updated as

ct = jt + kt

Finally, the gate ot decides the information needed for the current hidden state and its

operations are as follows

ot = sigm(Uoht−1 +Woxt)

ht = ot ⊗ tanh(ct)

LSTM is flexible in processing sequential data with irregular duration and further making

predictions. LSTM blocks can be stacked to make the networks deeper and possibly learn

more complex representations. In this study, we will build an architecture of two stacked

LSTMs. The output dimensions of the two LSTM layers are 32 and 64 respectively. Kernel

regularizer is l2-norm of the network parameters and the loss function is binary cross-entropy.

3.3.3 TCN

TCN is an extension of conventional CNN. Figure 3.3 illustrates a typical TCN residual

block. Instead of capturing spatial patterns as in traditional CNN, TCN-based models

extract temporal dependency in longitudinal data through the mechanism of dilated causal

convolutions. A simple dilated causal convolution operation with dilation factors d = 1, 2

and filter size k = 3 is shown in Figure 3.3(a). Mathematically, the dilated convolutional
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Figure 3.3: Dilated Causal Convolution and Residual Block of a TCN Block

operation is given as

C(t) = (xp
v ∗d f)(t) =

k−1∑
a=0

f(a) · xp
v(t− a · d)

where C(·) denotes the convolution output, xp
v denotes the observations of variable v over

time for patient p, * represents the convolution operation, d is the dilation factor, f(a) : a ∈

{0, 1, ...k − 1} is a filter, and k is the kernel size. Note that the operation (t− a · d) ensures

only historic information is included in the causal convolution calculation at time t.

The causal convolution guarantees all the historical sequential information in the data is

captured in the network without leaks. We can tune dilation factors and the kernel size to

modify the model’s capabilities of identifying local or distant temporal dependency. Inside

the residual block of Figure 3.3(b), there are two layers of causal convolutions, and each

causal convolution layer is followed by a batch normalization, a ReLu activation function,

and a dropout rate. A residual shortcut is also included in the block which directly passes the

input data to the output operation of the block. Note that an additional 1 × 1 convolutional

layer is needed for the shortcut connection if the input and output of the causal convolution

operations have different dimensions. The output of a residual block o(xp
v) is derived as

o(xp
v) = activation(F(xp

v) + xp
v)
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where F denotes a series of network transformations including the causal convolution, batch

normalization, ReLu, and a dropout layer.

In this study, we will build a TCN architecture with 1 stack of a residual block, 64 filters,

a kernel size of 3, ReLu activation, and a dropout rate of 0.1.

3.3.4 Multi-Branching Output Mechanism

Another technique used in this study is the multi-branching output mechanism to address

imbalanced data issue.

Real-world medical data is often subject to imbalanced data issue. For a classifica-

tion task, a dataset is called imbalanced if the proportions of the target classes (e.g., posi-

tive/negative for a certain disease, mild/moderate/severe symptoms, survived/deceased after

a procedure) of the dataset are skewed. Imbalanced data is a common issue in EHRs, as

the number of patients with the target disease/symptom is much smaller compared with the

population. The class or classes with abundant examples may dominate the machine learn-

ing process. In other words, with imbalanced data, the algorithms pursuing classification

accuracy tend to ignore the minority class (e.g., people with the disease). Such a classifier is

unsatisfactory because the detection of minority examples is crucial. In our study, the pro-

portion of patients with DR in the population is less than 3%. The LSTM and TCN models

trained directly on such imbalanced data will yield unsatisfactory prediction performance.

Literature shows that a multi-branching output mechanism can improve model perfor-

mances due to balanced training datasets and robust prediction [Wang and Yao, 2022]. In

this study, we will add z branching outputs as shown in Figure 3.4 after the LSTM and TCN

layers to build different architectures. Each branching output consists of a dense layer fol-

lowed by a sigmoid activation function. During the training process, the training dataset is

first transformed into a balanced set by oversampling the minority class (positive for DR) and

then divided into equal-size batches. During the training phase, for each balanced training
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Figure 3.4: Multi-branching Output Mechanism

batch, a random output is selected for the training. The core TCN or LSTM architectures

will eventually be trained on the entire dataset. During the prediction phase, we will take

the mean of the z outputs as the probability of the positive case.

Due to computational limits, we will build multi-branching models for LSTM and TCN

with z = 1, 5, and 10, respectively. When z = 1, the models are conventional architectures

without the multi-branching output mechanism.

In addition to LSTM and TCN architectures, we will also build random forest (RF)

classifiers as non-temporal baseline models and compare the performances of all the models.

We use two methods to transform longitudinal data into non-temporal data for RF models -

only keeping the lab results of the last encounter (“LastEnct”) or aggregating the lab results

of all the encounters in statistical means (“MeanEnct”).

In addition, to address the missing value issue of temporal EHR data, the framework

first generates missing-value masks for the raw data, imputes any missing values in the raw

data, and uses both data as input data of the model.
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3.4 Results

3.4.1 Model Evaluation Metrics

Choosing the right evaluation metrics is important when we compare performances of clas-

sification models. We will discuss the major evaluation metrics in the literature and select

the ones suitable for our study.

Accuracy is one of the most popular metrics for classification and is defined as

Accuracy =
TP + TN

TP + FP + TN + FN

where TP (short for “true positive”) is the number of positive cases that are correctly

predicted as positive by a model, FP (short for “false positive”) is the number of negative

cases that are incorrectly predicted as positive, TN (short for “true negative”) is the number

of negative cases that are correctly predicted as negative, and FN (short for “false negative”)

is the number of positive cases that are incorrectly predicted as negative. A false positive

case is also called a Type I error while a false negative case is called a Type II error.

Although accuracy is simple and has been widely used, it is not a good metric for highly

imbalanced datasets or the costs of different types of errors vary significantly [Chawla, 2009].

In our study, the dataset is extremely imbalanced (DR positive rate is less than 3%). A simple

guess of non-DR for all patients can achieve high accuracy of more than 97%, but it fails

to identify any DR patient. In addition, a Type II error is significantly more costly than a

Type I error. A Type II error (i.e., the model fails to identify a DR patient) may delay the

intervention or treatment, and thus result in vision damage to the patient while a Type I

error (i.e., the model incorrectly classifies a non-DR patient as DR) may only have the extra

cost of an ophthalmic exam for confirmation. Based on these two points, accuracy is not an

appropriate metric for our study and will not be used in model evaluation.

Specificity and sensitivity are one pair of common evaluation metrics for classification

models. Specificity represents the ability of a model to correctly identify people without a
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disease while sensitivity reflects the ability of that model to correctly identify patients with

the disease. They are calculated as follows.

Specificity =
TN

TN+FP

Sensitivity =
TP

TP+FN

Note that specificity is also called true negative rate or (1 - false positive rate) while sensitivity

is also called true positive rate.

A model is desirable if it can achieve high values of both specificity and sensitivity.

Clearly, a simple guess of the majority class non-DR in our study will achieve a high specificity

value of 1 but a low sensitivity of 0, an example of why this pair of metrics is better than

accuracy. A receiver operating characteristic (ROC) curve is commonly used to plot the

true positive rate (i.e., sensitivity) against the false positive rate (i.e., 1 - specificity), and

the area under the curve, called AUC or AUROC, is often used as an evaluation metric in

practice. AUROC ranges from 0 to 1. The higher the AUROC, the better model we have.

Precision and recall are another pair of common evaluation metrics. Precision is the

fraction of true positive cases among all the “positive” cases that a model predicts while

recall is the fraction of positive cases that are correctly predicted by that model. They are

calculated as follows.

Precision =
TP

TP+FP

Recall =
TP

TP+FN

Obviously, recall is the same as sensitivity.

We expect a model to achieve high values of both precision and recall. A simple guess of

the majority class non-DR for all people will achieve a precision of 1 or N/A (depending on

how we define the edge scenarios) but a low recall of 0. A precision-recall curve is used to plot

the precision against the recall and the area under the curve, called AUPRC, is often used
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as an integrated evaluation metric. AUPRC ranges from 0 to 1. The higher the AUPRC,

the better model we have.

Different from specificity (based on the negative class) and sensitivity, both precision and

recall are based on the positive class, making AUPRC more sensitive to improvements for the

positive class which is more important than the negative class in our study. In fact, studies

in the literature have claimed that AUPRC is more suitable than AUROC for imbalanced

datasets [Bradley et al., 2006, Soleymani et al., 2020]. During our model comparison, we

will include both AUROC and AUPRC, but we will consider AUPRC to be a more effective

metric based on the literature.

As we discussed that a Type II error may be detrimental (may cause vision loss or blind-

ness to patients), we would like to minimize the Type II error rate, or maximize sensitivity

or recall. Therefore, we will check the recall values (denoted as Recall hereafter) as well.

3.4.2 Model Performances

We summarize the prediction performances of our models in Table 3.4 with the three metrics

we discussed, AUROC, AUPRC, and Recall.

The RF-LastEnct model outperforms the others in terms of AUROC (0.927) although

the performances of TCN and RF-MeanEnct models are very close (0.922). However, TCN-

MB-10 model outperforms its peers in terms of AUPRC (0.765). RF models achieve slightly

lower AUPRC values (0.757 and 0.751).

Since Recall depends on the threshold we choose for our probabilistic prediction, we

arbitrarily choose 0.5 as the threshold and compare the corresponding performances. From

the last column in Table 3.4, we can see that temporal models outperform baseline RF

models in terms of Recall. We tried other thresholds and the temporal models generally

have higher Recall values.
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Table 3.4: Model Performances

Model AUROC AUPRC Recall*
RF-LastEnct 0.927 0.757 0.650
RF-MeanEnct 0.922 0.751 0.650
LSTM 0.919 0.734 0.777
LSTM-MB-5 0.919 0.740 0.776
LSTM-MB-10 0.917 0.736 0.792
TCN 0.922 0.724 0.708
TCN-MB-5 0.916 0.716 0.722
TCN-MB-10 0.912 0.765 0.886

*: Recall is short for the recall score of the DR positive class with a threshold of 0.5. RF-LastEnct represents the RF model
built on a non-temporal dataset derived by keeping lab tests of the last encounter while RF-MeanEnct is built on a
non-temporal dataset derived by aggregating lab tests across all encounters.

3.5 Conclusion

In this study, we implement state-of-the-art temporal models including LSTM and TCN with

a multi-branching output mechanism to analyze longitudinal EHR data for DR prediction.

Experimental results on a large-scale dataset show that temporal models achieve similar

AUROC values compared with baseline RF models but outperform in both AUPRC and

Recall scores, exhibiting the benefits of analyzing longitudinal EHR data for DR prediction.

Contributions of this study are twofold. First, to the best of our knowledge, this is

the first study using temporal models to analyze longitudinal EHR data for DR prediction.

Second, we only use a small set of patient demographics, comorbidities, and routine lab test

variables as model input, providing a more accessible approach for DR screening. This can

be deployed in medically underserved communities to reduce eye care disparities.

We identified several limitations of the present investigation, which need to be addressed

in our future work. First, the numbers of temporal and baseline models examined are limited.

Examining more temporal models (e.g., the knowledge-based temporal abstraction approach

and the transformers models) and more non-temporal baseline models may help us identify

more differences in model performances. Second, more data representation techniques may

be needed. Some variables (i.e., patient demographics and comorbidities) are not longitudinal
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in nature. In this study, they are duplicated to accommodate the sequence of lab tests, which

may not be the best method. Differentiating the representation of different types of variables

is needed to further improve the model performances. Third, a more detailed study on the

association of model performance and the number of multi-branching outputs is desired.
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CHAPTER IV

CLUSTERING TEMPORAL DISEASE NETWORKS TO VISUALIZE

COMORBIDITY PROGRESSION1

4.1 Introduction

The objective of this research is to design a visual analytics (VA) system that can efficiently

detect and visualize comorbidity progressions using temporal disease network (TDN) models.

The VA system incorporates two novel TDN clustering technologies—temporal clustering and

disease clustering. The temporal clustering identifies notable changes during the comorbidity

progression and aggregates windows to phases based on the time of the changes. On the

other hand, the disease clustering captures higher-level structures of TDNs by clustering

highly coexisting conditions and simplifies the TDN visualization based on the identified

structures. The developed VA system can be integrated into clinical decision support systems

to provide evidence-based, visual insights regarding the timeline and patterns of comorbidity

progression to support the decision-making in healthcare settings.

In Section 2.2, we provide a literature review of related work in the area of TDNs and

show the intellectual gaps that we are addressing in this research. The remainder of this

chapter is organized as follows. In Section 4.2, the system design and proposed clustering

technologies are presented in detail, followed by two case studies on Clostridioides Difficile

1This is a joint work with Dr. Yajun Lu, Dr. Zhuqi Miao, Dr. Dursun Delen, and Dr. Andrew Gin. A paper based on this

study has been published on Decision Support Systems. Lu, Y., Chen, S., Miao, Z., Delen, D. and Gin, A.(2021). Clustering

temporal disease networks to assist clinical decision support systems in visual analytics of comorbidity progression. Decision

Support Systems, 148, article number 113583.
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(C.Diff) and stroke in Section 4.3. Finally, Sections 4.4 and 4.5 include the discussion and

conclusion of this study, respectively.

4.2 Methodology

The proposed VA system consists of four modules as shown in Figure 4.1. Module 1 receives

data from clinical data warehouses and prepares the data for subsequent analysis and vi-

sualization. Module 2 then builds TDNs with sufficient granularity using the preprocessed

data, while Module 3 identifies highly similar TDNs and clusters corresponding windows into

phases, followed by Module 4 which visualizes TDNs over the phases. The role of clinical

domain experts is to guide the process of modules by determining the initialization parame-

ters and examine the output for validity, while the system eventually provides visual insights

regarding comorbidity progression back to the clinical experts to support evidence-based

decision making. Since the technological contribution of our work mainly revolves around

Modules 2, 3, and 4, the rest of this section will focus on elaborating the methodology we

employed to design these modules.

EHR Data 
Warehouse

Clinical 
Data 

Warehouse

Module 1: Data 
Preprocessing

Module 2: TDN
Construction

Module 3: Temporal 
Clustering

Module 4: Visualization 
& Disease Clustering

Clinical Experts

Guidance

Proposed System

Visual Insights

Figure 4.1: Proposed TDN-based VA System for Comorbidity Progressions
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4.2.1 TDN Construction

First, we provide basic definitions and notations of a network used in this study. A most fun-

damental network (i.e., graph) model, denoted by G, is a mathematical structure composed

of a set of nodes V (G) that model the objects of interest and a set of undirected edges E(G)

representing the pairwise relationships among the objects [West, 1996]. The number of nodes

and the number of edges included in a network are called the order and the size of the net-

work and are denoted by |V (G)| and |E(G)| respectively. Given a subset of nodes S ⊆ V (G),

we herein denote by G[S] the subgraph induced by S, i.e., a subgraph obtained by dropping

nodes in V (G)\S and their incident edges from G. For a node v ∈ V (G), the neighbors of

v, NG(v) refers to the set of nodes adjacent to v and its cardinality is called the degree of

v, denoted by degG(v) herein. In this research, node v and its neighbors NG(v) together are

referred to as the closed neighborhood of v, denoted by NG[v], and its induced subgraph is

called the ego network of v, denoted by egoG(v). In other words, NG[v] := NG(v) ∪ {v} and

egoG(v) := G[NG[v]].

To quantify the coexistence relationship among comorbid diseases, we make use of SCI [Chen

et al., 2015, Kalgotra et al., 2017], which can be expressed as

SCI ij =
nij√
ninj

(4.2.1)

where nij represents the number of hospital encounters with the onset of both diseases i and

j, while ni (or nj) corresponds to the number of encounters with the onset of disease i (or

j). When SCI ij = γ%, at least one of nij/ni and nij/nj is no less than γ%. It implies that

encounters with the onset of both diseases are at least γ percent of all encounters of one

disease. SCI has been used as an alternative to Pearson’s correlation coefficient (PCC) for

disease network modeling because it avoids two potential issues of PCC: (i) sample size can

have an overly high impact on the PCC strength [Kalgotra et al., 2017], and (ii) PCC may

underestimate the coexistence of a pair of diseases, of which one is rare while the other is
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prevalent [Fotouhi et al., 2018].

Given an SCI threshold θ determined under the clinical experts’ guidance, we can then

establish an edge between each pair of diseases (nodes) i and j such that SCI ij ≥ θ. In

addition to θ, the system also needs advice from clinical experts to specify a value for the

granularity parameter m to discretize the entire time frame into m windows that are as

granular as possible. Re-organization of the windows will be accomplished by the Temporal

Clustering Module of the system.

4.2.2 Temporal Clustering

This module involves two techniques: (i) network dissimilarity measurement, and (ii) con-

secutive p-median clustering for time windows, as elaborated in the following.

Network Dissimilarity Measurement

In this research, we adapted and improved the NetSimile method proposed by [Berlingerio

et al., 2013] to evaluate the network dissimilarity among different windows. The NetSimile

method “quantifies” the structural features of a network G by calculating multiple statistical

metrics (including median, mean, standard deviation, skewness, and kurtosis in this study)

for a number of features associated with each node v ∈ V (G). The specific features employed

in this study include:

• The degree of v;

• Clustering coefficient of v, defined as 2
degG(v)(degG(v)−1)

|E(G[NG(v)])|;

• The average degree of the neighbors of v;

• The average clustering coefficient of the neighbors of v;

• The size of the ego network of v;
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• The number of edges connecting the nodes in egoG(v) and nodes not in egoG(v);

• The number of nodes that are not in egoG(v) but are neighbors of nodes in egoG(v).

The process results in a 35-entry vector of statistics that evaluates the structure of a network.

The vector is herein referred to as the signature vector and denoted by ZG for a network G.

In the classical NetSimile method, the dissimilarity between a pair of networks, Gi and

Gj, was assessed using the Canberra distance of the corresponding signature vectors, i.e.,

δ(Gi, Gj) =
1

35

35∑
k=1

|ZGi
[k]− ZGj

[k]|
|ZGi

[k]|+ |ZGj
[k]|

(4.2.2)

where ZGi
[k] (or ZGj

[k]) indicates the kth entry of the vector ZGi
(or ZGj

). The similarity

then can be expressed as 1 − δ(Gi, Gj). Nevertheless, the classical NetSimile method does

not consider the disparity of node sets, and thus can underestimate the dissimilarity when

there are uncommon nodes between two networks. Considering the two TDNs, G1 and G2

shown in Figure 4.2, δ(G1, G2) = 0 indicating the “identical” edge structure between the

two TDNs. However, the structure is based on different node sets (new diseases 4 and 5 are

developed from G1 to G2, whereas diseases 1 and 2 become absent), so the two TDNs are

actually not the same.

0

3

2

1

G1

0

3

4

5

G2

Figure 4.2: Two TDNs that Are Cliques with Different Node Sets

This issue motivates us to introduce an overlapping factor to enhance the NetSimile

method to handle the dissimilarity caused by the difference between node sets. The overlap-

ping factor ω(Gi, Gj) is defined as follows,

ω(Gi, Gj) =
|E(Gi[D])|+ |E(Gj[D])|
|E(Gi)|+ |E(Gj)|

(4.2.3)
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where D = V (Gi) ∩ V (Gj). Clearly, 0 ≤ ω(Gi, Gj) ≤ 1. By incorporating ω(Gi, Gj), the

modified dissimilarity d(Gi, Gj) is expressed as

d(Gi, Gj) = 1− ω(Gi, Gj)× (1− δ(Gi[D], Gj[D])) (4.2.4)

The rationale behind the modified formula is straightforward: 1 − δ(Gi[D], Gj[D]) evalu-

ates the similarity between the node-overlapping subgraphs of Gi and Gj. Because the

rest parts are completely different, we scale down 1 − δ(Gi[D], Gj[D]) with the overlap-

ping factor ω(Gi, Gj) to evaluate the overall similarity between the two entire networks.

Re-considering the two networks in Figure 4.2, the dissimilarity between node-overlapping

subgraphs δ(Gi[D], Gj[D]) = 0 and ω(G1, G2) = 1/6, therefore d(G1, G2) = 5/6 and the

overall similarity between the two networks is 1/6, which is a better evaluation compared

with that returned by the classical NetSimile method.

Consecutive p-Median Clustering

As we pointed out in Section 2.2.3, some consecutive windows can come with very similar

TDNs, thus providing limited new information about comorbidity progression, and leading

to visualization redundancy. In order to address the issue, we propose and solve a consecutive

p-median problem (CPMP) defined as follows.

Problem: Consecutive p-median problem.

Input: A positive integer p, a collection ofm objectsO := {O1, O2, . . . , Om}, and the distance

between any two objects.

Output: From O, find p objects with indices {j1, j2, . . . , jp} as medians and assign the

remaining m− p objects to the medians such that

(i) The total summation of distances from each Oi to its assigned median is minimized,

(ii) When Oi is assigned to median Ojq , if i ≥ jq, Ok for all k such that jq ≤ k < i must be
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assigned to Ojq , otherwise, Ok for all k such that i < k ≤ jq must be assigned to Ojq .

The problem is an extension of the classical p-median problem that has been often used for

clustering [Klastorin, 1985, Köhn et al., 2010]. The extension is condition (ii) that imposes

the assignment of consecutive objects to medians. For example, if we would like to solve

the consecutive 2-median problem on the TDNs shown in Figure 4.3, we cannot assign the

TDNs on Window 1 and Window 5 together even though they are identical. By applying

CPMP to TDNs, we can group consecutive windows with highly similar TDNs into the same

temporal cluster, which can be interpreted as a phase of comorbidity progression.

Window 1 Window 2 Window 3 Window 4 Window 5

Figure 4.3: A Sequence of TDNs Across Five Time Windows

Note: TDNs on Window 1 and Window 5 are identical and the ones through Window 2 to Window 4 are highly similar.

In this study, we developed a (linear) integer programming (IP) formulation (4.2.5)–

(4.2.12) to model and solve the CPMP on a sequence of TDNs, G = {G1, G2, . . . , Gm}. In

the formulation, the binary variable xij = 1 if and only if TDN Gi is assigned to median Gj,

for any i, j ∈ {1, 2, . . . ,m} such that i ̸= j, otherwise xij = 0. When xjj = 1, it indicates that

Gj is designated as a median for any j ∈ {1, 2, · · · ,m}. The objective function (4.2.5) aims

to minimize the total dissimilarity between TDNs and the medians to which the TDNs are

assigned across all windows. Constraint (4.2.6) ensures that at most p TDNs are selected

as medians. In Constraint (4.2.7), we force each TDN Gi to be assigned to exactly one

median. Constraint (4.2.8) guarantees that if Gi is assigned to Gj then Gj must be a median.

Constraints (4.2.9) and (4.2.10) make sure that only consecutive TDNs can be grouped into
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the same cluster. In constraint (4.2.11), τ represents a threshold for not clustering. When

the dissimilarity between two consecutive TDNs Gi and Gi+1 is greater than or equal to τ ,

they will not be grouped into the same cluster. This constraint allows us to avoid clustering

highly different TDNs.

min
m∑
i=1

m∑
j=1

d(Gi, Gj)xij (4.2.5)

subject to:

m∑
j=1

xjj ≤ p (4.2.6)

m∑
j=1

xij = 1 ∀i ∈ {1, 2, · · · ,m} (4.2.7)

xij ≤ xjj ∀i, j ∈ {1, 2, · · · ,m} | i ̸= j (4.2.8)

xij ≤ xkj ∀i ∈ {1, 2, · · · ,m− 2}, j ∈ {i+ 2, i+ 3, · · · ,m}, k ∈ {i+ 1, i+ 2, · · · , j − 1} (4.2.9)

xij ≤ xkj ∀i ∈ {3, 4, · · · ,m}, j ∈ {1, 2, · · · , i− 2}, k ∈ {j + 1, j + 2, · · · , i− 1} (4.2.10)

xij + xi+1,j ≤ 1 ∀j ∈ {1, 2, · · · ,m}, i ∈ {1, 2, · · · ,m− 1} | d(Gi, Gi+1) ≥ τ (4.2.11)

xij ∈ {0, 1} ∀i, j ∈ {1, 2, · · · ,m} (4.2.12)

Selection of the Value for p

The parameter p determines how many clusters the initial time windows should be grouped

into; in other words, how many phases the entire time frame is supposed to be broken down

into. Usually, we are interested in a relatively small p to simplify the TDN sequence to allow

us to capture the primary changes of comorbidity over time. Meanwhile, we need to avoid

using a value that is too small, because an overly small p can result in very broad phases

that combine windows hardly similar. The clinical advice from domain experts is essential

to choose a proper value of p. Whereas, data analytic methods can also be used to support

the decision on this parameter.

The Silhouette Index (SI ) has often been used in literature to determine the value of p

for p-median models [Köhn et al., 2010, Rousseeuw, 1987]. In this study, we adapted SI to

find a proper value of p for our proposed CPMP. Let C(p) = {C1, C2, . . . Cp} be a clustering

of TDNs G = {G1, G2, . . . , Gm}; given a network G ∈ G, let Ck represent the cluster that
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contains G and GA denote the network(s) in G that are adjacent to G. Then, our adapted

SI for G is defined as

SI G(C(p), G) =



0 if |Ck| ≥ σ|G|

0 if |Ck| = 1 and ∃ Ĝ ∈ GA | d(G, Ĝ) < τ

1 if |Ck| = 1 and d(G, Ĝ) ≥ τ,∀ Ĝ ∈ GA
∆C\Ck

(G)−∆Ck
(G)

max{∆Ck
(G),∆C\Ck

(G)}
if 2 ≤ |Ck| < σ|G|

(4.2.13)

The adapted SI considers four scenarios: (i) When a cluster contains too many TDNs

(σ|G| or more), or (ii) a cluster contains a single TDN, but this TDN does not differ much

(dissimilarity is less than τ) from an adjacent TDN, then the SI is set to be 0 to discourage

the scenarios. (iii) However, when a single TDN is too dissimilar (dissimilarity is τ or

larger) from adjacent TDNs to be grouped into other clusters, we let SI be 1 to allow the

TDN to form a cluster by itself. (iv) When a cluster is neither too large (less than σ|G|)

nor too small (size is at least 2), we compute an SI that measures how a TDN is similar

to its assigned cluster compared with other clusters. ∆Ck
(G) = 1

|Ck|−1

∑
Ĝ∈Ck\G d(G, Ĝ)

is the “internal distance” of G within its own cluster, defined as the average dissimilarity

between G and the other networks in the cluster that G belongs to. While ∆C\Ck
(G) =

min
{

1
|Ci|

∑
Ĝ∈Ci

d(G, Ĝ),∀i ∈ {1, 2, · · · , p}
∣∣∣ i ̸= k

}
is the “external distance” of G, and is

evaluated with the smallest average dissimilarities between G and the clusters to which G

does not belong. The scenarios establish “soft” bounds of 2 (lower bound) and σ|G| (upper

bound) for the cluster size. “Soft” means that though discouraged, the bounds still can be

exceeded if necessary.

The overall clustering quality can be then evaluated using the average SI of all TDNs in

the sequence G, i.e.

SI G(C(p)) =
1

|G|
∑
G∈G

SI G(C(p), G). (4.2.14)
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The value of SI G(C(p)) falls within the range of [−1, 1]. The higher is the SI G(C(p)), the

more likely are TDNs clustered properly such that TDNs are close within each cluster, but

distant across different clusters. Note that, given a TDN sequence G, C(p) is determined by

the solution of IP formulation (4.2.5)–(4.2.12) with the input parameter p. Hence, SI G(C(p))

is essentially a function of the number of clusters p ∈ {1, 2, · · · ,m}. The desired value for

the parameter p, p∗ should be the one that maximizes this function; in other words,

p∗ = argmax
p∈{1,2,...,m}

SI G(C(p)). (4.2.15)

4.2.3 TDN Visualization and Disease Clustering

A major challenge of TDN visualization is that complex networks may include too many

nodes and edges to be displayed in an intuitive and orderly manner. In our TDN Visualization

Module, we propose and solve a minimum atomic clique partition problem (MACPP) to

address this challenge, as elaborated in the following.

Definition 1 (Atomic Clique) Given a collection of networks, G = {G1, G2, · · · , Gm},

a subset S ⊆
⋃m

i=1 V (Gi) is called an atomic clique if S is a clique in Gj,∀j ∈ M , but

S ∩ V (Gk) = ∅, ∀k /∈M , where M = {i ∈ {1, 2, · · · ,m} | S ⊆ V (Gi)}.

Definition 1 requires that in any network Gi ∈ G, all nodes in an atomic clique S are

either forming a clique or completely absent. For example, in Figure 2.1, the atomic cliques

across Window 1 and Window 2 are {1, 2, 3}, {4}, {5}. The clique {1, 2, 3} represents the

initial comorbid diseases in Window 1, while {4} and {5} are newly developed diseases in

Window 2. They are not interconnected directly, indicating that from diseases {1, 2, 3},

patients are very likely to develop either disease {4} or disease {5}, separately. Recall that

in Section 2.2.3, we have shown that classical clique models could not necessarily capture

this progression pattern. Instead, our proposed atomic clique model succeeds to address this
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challenge. Now, let us define MACPP which can decompose TDNs into a minimum set of

atomic cliques.

Problem: Minimum atomic clique partition problem.

Input: A collection of networks, G = {G1, G2, · · · , Gm}.

Output: A collection of atomic cliques K = {K1, K2, . . . , Kq} such that

• Ki ∩Kj = ∅, ∀i, j ∈ {1, 2, . . . , q} | i ̸= j

•
⋃q

i=1Ki =
⋃m

j=1 V (Gj)

• q is minimized.

The partition nature of the problem requires that the atomic cliques are mutually exclusive

and in a combination containing all nodes from the network collection. While the objective

of minimizing the number of atomic cliques allows us to simplify the decomposition of the

network collection as much as possible.

In this research, we developed an iterative algorithm (Algorithm 1) to find a feasible

solution to MACPP. According to Definition 1, an atomic clique exists either in a single

network or within an intersection of multiple networks. As a result, Algorithm 1 first finds

a common node subset D across as many networks as possible through Lines 4–8. The

initialization of D is performed at Line 4. Specifically, we assign the entire node set of the

network Gk to D, where k is the smallest index of the networks remaining in G. The nested

while loop from Line 9 to Line 16 then seeks an atomic clique partition on all D-induced

subgraphs, Gi[D], ∀i ∈ M . Once we narrow down to Gi[D], we can iteratively detect and

remove a maximum atomic clique across all Gi[D] each time by leveraging an IP formulation

until a partition is formed. After an atomic clique partition is found on Gi[D], the algorithm

excludes D and repeats previous steps until all Gi ∈ G are empty.

The IP formulation we used to find a maximum atomic clique across Gi[D],∀i ∈ M is
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Algorithm 1: Atomic clique partition algorithm
Input: A collection of networks G = {G1, G2, · · · , Gm}.
Output: An atomic clique partition K.

1 K ←− ∅
2 while G ̸= ∅ do
3 M ←− ∅
4 D ←− V (Gk), where k = min{i | Gi ∈ G}
5 for Gi ∈ G do

6 if D ∩ V (Gi) ̸= ∅ then
7 D ←− D ∩ V (Gi)

8 M ←−M ∪ {i}

9 while D ̸= ∅ do
10 find a subset K ⊆ D such that K is a clique in Gi[D],∀i ∈M and |K| is maximized by

solving formulation (4.2.16)–(4.2.18)

11 K ←− K ∪K

12 for i ∈M do

13 Gi ←− Gi[V (Gi) \K]

14 if V (Gi) = ∅ then
15 G ←− G \Gi

16 D ←− D \K

17 return K

presented in (4.2.16)–(4.2.18). The binary variable xj = 1 if and only if j ∈ D is selected in

the solution. Constraint (4.2.17) ensures that at most one of nodes j, k ∈ D can be included

in the solution if j and k are disconnected in any single network Gi[D], so the solution will

be guaranteed to be an atomic clique. While the objective function aims to maximize the

cardinality of the atomic clique.

max
∑
j∈D

xj (4.2.16)

xj + xk ≤ 1 ∀{j, k} ∈ Q = {{j, k} ⊆ D | ∃ i ∈M such that {j, k} /∈ E(Gi)} (4.2.17)

xj ∈ {0, 1} ∀j ∈ D, (4.2.18)

Algorithm 1 is essentially a greedy algorithm because the IP formulation tries to find a

maximum atomic clique in each iteration of the nested loop through Lines 9–16. Clearly,

52



the algorithm returns a feasible solution to MACPP because each K found in one iteration

is isolated from that found in other iterations, and K exhausts all nodes in G.

4.3 Case Studies

To assess the effectiveness of our proposed system, we applied it to two case studies on

analyzing and visualizing the comorbidity progressions during hospitalizations for C.Diff

and stroke patients, respectively. In the case studies, our system was implemented using

Python 3.7, and the IP formulations involved were solved using a state-of-the-art optimiza-

tion solver—Gurobi 8.1.1 [Gurobi Optimization, LLC, 2020].

4.3.1 Data Cohorts and Data Preparation

We integrated Cerner Health Facts® EHR data warehouse as the data source into our system.

Health Facts® contains clinical data extracted directly from the U.S. hospitals that operate

on Cerner EHR systems. Cerner Corporation collects and integrates the data through its

established operations in compliance with the Health Insurance Portability and Account-

ability Act (HIPAA) laws. Because the data has been completely de-identified according to

HIPAA regulations, the Institutional Review Boards (IRB) at Oklahoma State University

exempted the study from review.

C.Diff is a bacterial infection that is mostly hospital-acquired among senior patients [CDC,

2019], while stroke is one of the leading chronic conditions for death/disability in the

U.S. [Members et al., 2016]. Our C.Diff and stroke study cohorts were extracted from

Health Facts® using International Classification of Diseases 9th/10th Revision (ICD-9/10)

codes (the ICD-9/10 codes are listed in the Supplementary Material). The cohorts included

hospitalized encounters of female patients aged 65 or older with the onset of C.Diff/stroke

between November 1999 and August 2017. Patient age, length of stay (LOS), and all diag-

noses associated with the encounters were exported as well.
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Our data pre-processing mainly dealt with outlying LOS, erroneous diagnoses, and diag-

nosis combination. In order to exclude extreme outliers in LOS, we restricted the analysis

to the encounters of LOS within the range of 24 hours to 14 days, which is a common range

for inpatient hospital stays. We noticed that the data included some infeasible diagnoses,

such as birth/labor-related diagnoses and male conditions. Encounters with such erroneous

diagnoses were excluded from the study cohorts. Furthermore, the ICD-9/10 codes used in

Health Facts® can be overly specific to express disease states in the usual sense. We used

the Clinical Classifications Software (CCS) [AHRQ, 2020] to aggregate ICD-9/10 codes into

relatively high-level disease states. For example, CCS combines malignant neoplasms at dif-

ferent locations of esophagus together as the “cancer of esophagus”. Our data extraction and

preprocessing eventually resulted in two large datasets containing hundreds of thousands or

millions of encounters and diagnosis records as shown in Table 4.1 (under the “Enct #” and

“Diag #” columns).

4.3.2 TDN Construction

In Health Facts®, diagnoses were recorded in encounters, but lacking specific timestamps

about at what time during the encounter a condition was diagnosed. In other words, given

time points t1 < t2 < · · · < tm within an encounter, we cannot tell what diagnoses occurred

exactly during a time interval [ti, ti+1]. Therefore, we defined the windows based on LOS

as Warner et al. did in their studies on hospital-acquired complications [Warner et al.,

2013, Warner et al., 2016]. In particular, Window i includes all encounters with LOS ∈[
l + (i − 1)ϵ, l + iϵ

)
, where l is the smallest LOS included for analysis (24 hours in our

case studies in light of the data preparation). The rationale is that when a large sample is

included in a window, the statistical results based on the sample can be considered as the

expected values of the attributes of a general population in the window. Then, the changes

newly happened to Window i + 1 from Window i can be well representative of the events
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occurring within the interval
[
l+ iϵ, l+ (i+1)ϵ

)
for the population. In our case studies, we

specified ϵ = 12 hours, which resulted in 26 windows in total, i.e., m = 26.

Then, we built networks over the 26 windows with SCI threshold θ = 0.05. Since our

interest was concentrated on the progression of C.Diff/stroke and its strongly coexisting

diseases, we only considered the ego networks of C.Diff/stroke as the TDNs for analysis and

visualization henceforth. The TDNs constructed based on our C.Diff and stroke cohorts are

visualized in Figure 4.4 and Figure 4.5 respectively. The orders and sizes of the TDNs are

listed in Table 4.1.

Table 4.1: Statistics of Encounters and TDNs in Each Window

Window
C.Diff - Senior Female Cohort Stroke - Senior Female Cohort

Enct # Diag # |V | |E| Enct # Diag # |V | |E|

1 158,408 1,088,614 6 15 13,070 57,703 105 602

2 173,611 1,400,515 7 21 11,641 55,473 110 727

3 200,907 1,625,593 9 34 11,721 55,131 108 723

4 196,913 1,738,845 14 90 11,201 54,259 113 776

5 242,541 2,056,285 12 65 10,251 50,313 113 821

6 173,887 1,612,831 26 321 8,697 42,569 114 843

7 164,309 1,533,572 28 372 7,392 36,497 117 889

8 128,370 1,246,318 32 482 6,348 31,215 119 936

9 116,790 1,147,284 34 547 5,259 26,660 120 1,072

10 95,243 962,605 39 692 4,680 23,286 122 1,101

11 86,439 883,730 35 584 3,850 19,480 120 1,147

12 72,727 750,208 42 811 3,507 17,752 123 1,250

13 66,558 703,248 44 931 2,868 14,422 118 1,308

14 55,194 581,826 50 1,195 2,660 13,407 120 1,371

15 47,954 519,614 54 1,401 2,061 10,627 121 1,551

16 39,010 423,053 54 1,360 1,849 9,288 117 1,516

17 33,844 380,795 61 1,738 1,501 7,780 124 1,660

18 30,021 332,668 62 1,754 1,502 7,637 125 1,655

19 25,702 295,288 62 1,806 1,157 6,028 131 1,831

20 23,662 265,881 61 1,739 1,155 6,013 133 1,864

21 20,171 233,745 68 2,155 924 4,816 117 1,682

22 18,604 213,280 66 2,039 936 4,894 125 1,859

23 15,760 187,325 70 2,275 738 3,957 133 1,893

24 15,514 177,554 74 2,484 839 4,361 122 1,771

25 13,080 155,944 75 2,595 586 3,076 123 1,707

26 13,832 160,786 67 2,139 869 4,542 121 1,770

Total 2,229,051 20,677,407 – – 117,262 571,186 – –

Note: TDNs are ego networks.
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Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7

Window 8 Window 9 Window 10 Window 11 Window 12 Window 13 Window 14

Window 15 Window 16 Window 17 Window 18 Window 19 Window 20

Window 21 Window 22 Window 23 Window 24 Window 25 Window 26

Figure 4.4: TDNs Constructed for the C.Diff Cohort (Senior Female Patients)

Note: The node color is used to indicate the existence pattern of a node in adjacent windows. C.Diff node is in green color

through all windows. Given a window, a blue node indicates that the node also appears in both adjacent windows or the

unique adjacent window. A red node means that the node does not appear in any adjacent window(s). Pink means that the

node also appears in the next window but not in the previous window, while orange indicates that the node also occurs in the

previous window but not in the next window.
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Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7

Window 8 Window 9 Window 10 Window 11 Window 12 Window 13 Window 14

Window 15 Window 16 Window 17 Window 18 Window 19 Window 20

Window 21 Window 22 Window 23 Window 24 Window 25 Window 26

Figure 4.5: TDNs Constructed for the Stroke Cohort (Senior Female Patients)
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4.3.3 Temporal Clustering

Figure 4.6 shows the heat maps of dissimilarities among TDNs and the SI charts for p.

Diagrams (A) and (C) are for C.Diff while (B) and (D) are for stroke. Let’s first talk about

C.Diff. The dissimilarity between each pair of the TDNs of the C.Diff cohort is calculated

and plotted as a heat map shown in Figure 4.6 (A). A dark cell indicates that the two

networks are similar to each other. From the heat map, we may roughly observe that (i)

there exist a few dark blocks, which correspond to clusters of windows that may imply

progression phases; and (ii) the phases tend to include more windows over time, indicating

that comorbidity evolves more rapidly at earlier phases compared with later phases.

We now present the CPMP results on this TDN sequence to demonstrate CPMP’s ef-

fectiveness to capture the observations algorithmically. In order to solve the CPMP on this

TDN sequence, we firstly used the SI method described in Section 4.2.2 to determine a

proper p∗ for the TDNs. During the calculation of SI , we let both the parameters τ and

σ be 0.5, meaning we do not intend to cluster a window with its adjacent window(s) if the

dissimilarity is no less than 0.5, and we discourage a cluster that includes half or more of all

windows since it might be overly broad. The SI result in Figure 4.6 (C) shows that p∗ = 5,

indicating that the entire window sequence should be clustered into five phases.

Given p = p∗ = 5, the CPMP solution is: Phase 1 includes Windows 1 – 3, Phase

2 contains Windows 4 – 5, Phase 3 consists of Windows 6 – 11, Phase 4 is comprised of

Windows 12 – 20, and Phase 5 includes Windows 21 – 26. The corresponding days of the

phases are shown in Table 4.2. The results are aligned with the observations we can inspect

from Figure 4.6 (A), demonstrating that the proposed consecutive p-median model is capable

to identify the progression patterns algorithmically.

The stroke results are presented in Figure 4.6 (B) and Figure 4.6 (D). Figure 4.6 (D)
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(A) (B)

(C) (D)

Figure 4.6: Heat Maps of Dissimilarities among TDNs and the SI Charts for p

Note: (A) and (C) are diagrams for C.Diff; (B) and (D) are diagrams for stroke.

shows that p∗ = 3, implying that hospitalized stroke patients may experience three phases:

Phase 1 includes Windows 1 – 8, Phase 2 contains Windows 9 – 15, and Phase 3 consists of

Windows 16 – 26, as shown in Table 4.2. Similar to the C.Diff results, the phases outlined

by the proposed consecutive p-median model are also in line with what we can observe from

Figure 4.6 (B).

Table 4.2: Phases and Corresponding Windows and Days

Cohorts Time Unit Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

C.Diff
Window 1 – 3 4 – 5 6 – 11 12 – 20 21 – 26
Day 2 – 3 3 – 4 4 – 7 7 – 11 12 – 14

Stroke
Window 1 – 8 9 – 15 16 – 26 – –
Day 2 – 5 6 – 9 9 – 14 – –
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4.3.4 Visualization of TDNs in Phases

By visualizing TDNs in the identified phases, we can reduce the complexity of the entire

TDN sequence over time. However, the complexity inside a single TDN remains because

some TDNs can include many nodes and edges. For example, the C.Diff TDN at Phase 5

includes 688 edges incident to 38 nodes. Visualizing such dense networks in a user-friendly

format will significantly facilitate subsequent inspection and analysis. To that end, we firstly

found an atomic clique partition using Algorithm 1. Then, for the TDN at every phase,

we plotted each atomic clique together in a compact, shaded space. In addition, to keep

consistency, each atomic clique was rendered in the same color across all phases.
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Figure 4.7: TDNs Constructed on the Phases of the C.Diff Cohort

The C.Diff comorbidity progression is visualized in Figure 4.7, from which we can observe
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that acute renal failure (node 5), fluid and electrolyte disorder (node 88), other gastroin-

testinal disorders (node 167), and septicemia (node 211) along with C.Diff (node 0) form

an atomic clique that occurs persistently across all phases (marked as AC0 in Figure 4.7).

It implies that these diseases are highly coexisting with C.Diff throughout the entire time

frame. Many clinical studies [Bauer et al., 2012, Doshi et al., 2018] have reported similar

findings that these diseases are highly associated with C.Diff, thus validating our VA results.

Another interesting progression pattern we can inspect from Figure 4.7 is that instead

of occurring independently, the comorbidities that appeared at later phases tend to form

atomic cliques as well. In other words, the onset of one of these diseases may indicate one

or more other conditions in the same atomic clique. For example, urinary tract infections

(UTI, node 228) appears in Phases 3 – 5, which echoes a previous study finding that UTI is

associated with prolonged hospitalization of C.Diff patients [Warner et al., 2013]. Further-

more, our approach discovers that UTI occurs in an atomic clique that also includes cardiac

dysrhythmias (node 55), chronic kidney disease (node 57), and disorders of lipid metabolism

(node 78). It suggests that doctors should pay attention to not only UTI but also these

UTI-associated diseases to prevent prolonged hospitalization.

The stroke comorbidity progression is visualized in Figure 4.8, which shows that a few

diseases start to be highly coexisting with stroke after Phase 1. It implies that these disease

states are highly associated with prolonged hospitalization of more than one week for stroke

patients. This association of some of the diseases, such as mental health disorders (node 130)

and shock (node 213), is also supported by other clinical studies [Siddiqui et al., 2018, Myint

et al., 2018]. Furthermore, other two risk factors for prolonged hospitalizations—fracture

of lower limb (node 89) and fracture of hip (node 90)—occur in the same atomic clique. It

indicates that these two conditions are very likely to occur together, which may be resulted

from post-stroke fall [Schmid et al., 2010].
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Figure 4.8: TDNs Constructed on the Phases of the Stroke Cohort

Note: There exists a set of common cliques throughout all the phases. The common cliques are visualized in detail in the

upper left part of the figure and simplified as a large node in the TDNs across the phases. The edge weight in the TDNs

indicates how many nodes inside the set of common cliques are connected to a node outside the common cliques.

4.4 Discussion

Our proposed VA system for comorbidity progression has significant implications in both

the technology advance and healthcare applications, as discussed in the following.

Technical Contributions. The highlight of this research from a technical perspective is

that we investigate the temporal and disease clustering of TDNs for the first time. In this

effort, two new problems and associated algorithms, rooted from the methodology for the
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single network, were extended to network sequences (i.e., TDNs) to address the challenges

in implementing the temporal and disease clustering of TDNs:

• The consecutive p-median problem was extended from the classical p-median problem,

by requiring each cluster to only include consecutive objects (TDNs in our case) to

model temporal clustering. An IP formulation was developed to solve the problem,

and the classical Silhouette Index was modified to determine a suitable value of p.

• The minimum atomic clique partition problem was extended from the minimum clique

partition problem for a single network to clustering diseases across a sequence of TDNs.

A greedy heuristic algorithm was developed to find a feasible solution for the problem.

Application in Healthcare. Supported by the temporal clustering module, our proposed

system can automatically detect the comorbidity progression phases. Because the disease

states and coexistence relationships are highly similar within each phase while remarkably

distinct across different phases, the end of a phase can indicate a beginning time point

of significant progression changes. Furthermore, through our visualization module, we are

able to show the comorbidity coexistence relationships and progression patterns visually

and concisely. It can help doctors understand when and what diseases are most likely to

be comorbid with the index disease and plan prevention and treatments. For example, in

our stroke case study, the VA results in Figure 4.8 show that fractures are associated with

prolonged hospitalization for more than one week. Furthermore, the fractures often include

both lower limb and hip fractures. By being aware of this fact, hospitals and doctors can

prepare proper care resources to prevent/handle both types of fractures during patients’

hospitalizations. In addition, the TDNs can be used to compare different subgroups of

patients, such as matched case-control cohorts based on a certain treatment [Kim et al.,

2018] to evaluate the treatment’s efficacy or different gender groups [Kalgotra et al., 2017]

to reveal progression disparities between genders.
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Limitations. This research mainly has two limitations. First, in the literature there are

many approaches for network dissimilarity measurement. The choices of the method may

influence the temporal clustering results. However, a systematic review and comparison of

all the methods for our problem is beyond the scope of this study. Second, our temporal

and disease clustering approaches only work on undirected, unweighted networks. TDNs

can be more sophisticated by carrying node attributes (like disease frequency), edge weight

(like SCI value), and edge direction (like presence order). Performing temporal and disease

clustering on such complex TDNs requires corresponding dissimilarity measurement methods

and graphical cluster models. Nevertheless, many of the approaches are either still absent

or require much effort for suitable adaptions. As a result, we leave these for future work.

4.5 Conclusion

Comorbidity is a prominent challenge in healthcare practice and research. We modeled

comorbidity progression as a sequence of TDNs, and designed a VA system, which integrates

novel temporal and disease clustering technologies to visualize progression patterns from the

TDN sequence. Two case studies of applying the system to C.Diff and stroke demonstrate

the effectiveness of the system. Based on the discussion in Section 4.4, we summarize two

directions for our future work—healthcare application and technical improvement. From the

healthcare application perspective, we plan to apply the proposed system to more diseases

to mine useful insights for healthcare practice. We will also incorporate more biomarkers

besides comorbidity during the applications to reveal more progression patterns. In order to

improve the proposed technologies, we plan to extend our temporal and disease clustering

approaches to more sophisticated TDNs that can carry node attributes and edge weights. In

this study, we proposed a heuristic algorithm for MACPP, which does not necessarily find

a minimized solution. Hence, we are interested in developing exact algorithms, such as IP

formulations, which are able to provide optimal solutions for MACPP in our future work.
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CHAPTER V

EXTRACTING PATIENT HISTORY INFORMATION FROM CLINICAL

NOTES FOR MEDICAL BILLING1

5.1 Introduction

As we discussed in Section 1.2, medical billing is an important yet demanding task in the

healthcare revenue management cycle and the extraction of patient history information is

critical for proper billing. The objective of this study is to develop natural language pro-

cessing (NLP) systems that can effectively recognize three important categories of patient

history information—chief complaint (CC), history of present illness (HPI), and past, family

and/or social history (PFSH) [CMS, 2020]—directly from clinical notes. An occurrence of

such patient history information is called an entity and this clinical information extraction

(CIE) study is a typical named entity recognition (NER) task.

As detailed in Table 5.1, CC is a brief statement that describes the major reason for a

medical encounter, often in the patient’s own words. CC can be about a symptom, problem,

condition, diagnosis, or even physician recommended followup. A simple example can be

“CC: Right foot pain.”

HPI describes how a patient’s present illness developed from the first sign/symptom

or the previous encounter to the present. HPI mainly deals with eight elements, which

are quality, location, severity, duration, timing, context, modifying factors, and associated

1This is a joint work with Tuan-Dung Le, Dr. Thanh Thieu, Dr. Andrew Gin, Dr. Phuong D.Nguyen, Dr. Tieming Liu

and Dr. Zhuqi Miao.
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Table 5.1: Descriptions and Examples of History Elements for E/M Services

Element Sub-element Description Example

CC a brief statement on the reason for
a medical encounter

right foot pain

HPI

Location where the complaint is located right foot
Quality the nature of the problem aching pain
Severity how bad the problem is 6 on a scale of 1 to 10
Duration how long it has existed it started two days ago
Timing any onset pattern for the com-

plaint
constant

Context any specific activity associated
with the main complaint

harvested corns

Modifying Factors what prior treatment or medica-
tion has been tried

better when heat is ap-
plied

Associated Signs
or Symptoms

what symptoms or signs that ac-
company the main complaint

numbness, fatigue

PFSH
Past History the patient’s past medical history diabetes, hypertension
Family History the patient’s family medical his-

tory
father has dementia

Social History the patient’s social medical history nonsmoker, drinks occa-
sionally

signs and symptoms. Quality indicates the nature of the problem, symptom, or pain, often

about how they feel (e.g., sharp, dull, constant, intermittent, and improved/worsening). The

location, severity, and duration elements refer to where, how bad (e.g., pain scale 1–10 and

mild/severe), and how long the problem exists. While timing, context, modifying factors,

and associated signs/symptoms tell what timing pattern comes with (e.g., in the morning and

after meals), what activities accompany the problem, what actions the patient has taken to

address the problem and whether the problem improves or worsens, and what other symptoms

or signs co-occur with the problem, respectively.

PFSH consists of reviews in three aspects regarding the patient’s history before the

present illness: past medical history, family history, and social history. Past medical history

involves the patient’s past medical experiences with illnesses, injuries, operations, medica-

tions, and/or allergies, among others. Family history contains a review of medical events

in the patient’s family, mainly about the diseases that can be inherited by or occur in the

patient at risk. Social history is an age-appropriate review of the patient’s past and current
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activities such as marital status, living status, alcohol usage, exercises, and hobbies.

Note that in the 1997 Evaluation/Management (E/M) services documentation guidelines,

chronic conditions are considered auxiliary elements in HPI. Therefore, in addition to ex-

tracting the aforementioned CC, HPI, and PFSH elements, our algorithms and systems are

designed to be able to recognize Chronic Conditions as well.

An excerpt from an example clinical note and the corresponding history element anno-

tations are illustrated in Figure 5.1.

Figure 5.1: A Clinical Note Example and History Element Annotations

5.2 Methodology

As illustrated in Figure 5.2, the methods of our study involved creating rule-based algorithms

and deep learning (DL) models and applying them to a set of annotated clinical notes to

extract history elements therein. The CIE performances of these two approaches were then

evaluated. The technical details of each process within the flowchart are elaborated in the

remainder of this section.

67



Figure 5.2: Flowchart of the Methods and Experimental Design

5.2.1 Clinical Notes

In this study, we used the Medical Transcription Sample Reports and Examples (MTSam-

ples) as our data source. MTSamples is one of the most popular clinical note repos-

itories among the medical and medical informatics research communities [Wang et al.,

2018b, MTHelpLine, 2022]. The structure of MTSamples notes is very similar to that shown

in Figure 5.1. Each note is organized into several sections with each section starting with an

explicit section heading, followed by free-text narratives about patient visits. Since the notes

are transcribed, the section headings are generally correct, and different sections represent

different types of information (e.g., a section with a section heading “Chief Complaint” usu-

ally contains the information of the chief complaint). Note that all the MTSamples notes

have been completely de-identified according to Health Insurance Portability and Account-

ability Act (HIPAA) regulations.

Due to the complexity of clinical notes and the annotation workload, we selected and

annotated 61 clinical notes from MTSamples as the benchmark dataset for the study. The

benchmark dataset included 27 consultation notes, 12 SOAP (“subjective, objective, assess-

ment, and plan”) reports, 6 emergency room reports, 3 followup notes, 3 history and physical

notes, and 10 miscellaneous notes. The annotations were first completed independently by

two undergraduate students who majored in biology. They were then curated by two other

collaborators, followed by verification and adjustment by an experienced physician. There
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were 1,648 labels annotated in total for the selected notes as described in Table 5.2. Note

that there are many overlapping labels in our dataset, e.g., most Chronic Condition entities

are also labeled as Past History entities at the same time.

Table 5.2: Label Counts of the Annotated Dataset

Entity type Total
Overlap per-
centage (%)

Most overlap with (#overlap)

CC 138 22.64 Chronic Condition (17)

Chronic Condition 171 93.57 Past History (120)

HPI-location 69 46.38 CC (16)

HPI-quality 57 10.53 CC, HPI-associated signs/symptoms (3)

HPI-severity 27 18.52 HPI-associated signs/symptoms (4)

HPI-duration 67 4.48 HPI-context (2)

HPI-timing 37 8.11 HPI-associated signs/symptoms (3)

HPI-context 37 10.81 HPI-location (3)

HPI-modifying factors 82 2.44 Past History (2)

HPI-associated
signs/symptoms

269 12.64 HPI-location (13)

Past History 520 23.46 Chronic Condition (120)

Family History 45 2.22 Chronic Condition (1)

Social History 129 0

5.2.2 Rule-Based Algorithms

Figure 5.3 shows the design of our rule-based algorithms, which involve two steps of processes,

(1) pre-classification and (2) rule-based entity recognition, as elaborated in the following.

Figure 5.3: Rule-based Algorithms
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Pre-Classification. Section headings can provide useful information for classifying the

text included in the corresponding sections. As a result, the first process of pre-classification

is to perform section segmentation on the given notes by leveraging their headings. Following

the segmentation, the second process is to tag basic medical entities, including problems,

tests, treatments, body parts, etc. Besides what section a word/phrase belongs to, what tag

it possesses is also useful for classifying the text in the subsequent recognition step.

We used CLAMP 1.6.1 to implement the two processes. CLAMP is a popular integrated

clinical NLP software and has been increasingly employed to analyze narrative patient re-

ports. Although CLAMP possesses an embedded heading lexicon for segmentation, it was

not sufficiently comprehensive to handle all the headings in our dataset. Hence, we added

two types of extra keywords to CLAMP’s heading lexicon to enhance the segmentation ac-

curacy, (1) the keywords that no heading in CLAMP is exactly the same as or has a similar

meaning to, such as “subjective”, “diagnosis”, and “service”, and (2) the syntactic variations

of headings already built in CLAMP, such as “course in hospital” for “hospital course”.

Rule-Based Entity Recognition. This step involves three types of rules to recognize

history elements from either the original text or the pre-classification outputs.

• Type-1 rules consider the combinations of section headings and basic medical tags. For

instance, when a disease tag appears in the chief complaint section, it is considered a CC

element. Whereas, when it appears in the past medical history section, it is considered a

Past History element.

• Type-2 rules leverage the combinations of section headings, keywords, and basic medical

tags. For example, a problem-type medical tag following the keyword “complaints of”

in the section “subjective” or “history of present illness” often indicates a CC entity.

Similarly, a body location tag following the keyword “issues with” or “problems with” in

the two above sections also indicates a CC entity.
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• Type-3 rules consider the combinations of section headings and keywords. For example,

keywords such as “mild”, “moderate”, and “severe” were used to recognize HPI-Severity

elements in sections “subjective” or “history of present illness”. Furthermore, in order to

detect chronic conditions, we developed a library of UMLS (Unified Medical Language Sys-

tem) CUIs (Concept Unique Identifier) for chronic conditions defined by Chronic Condi-

tions Data Warehouse (ccwdata.org). CUIs of entities recognized by CLAMP are matched

against the library within some sections to identify chronic conditions.

5.2.3 Deep Learning Models

Since we only have a limited number of annotated notes, it is not appropriate for us to build

DL models from scratch and train the models by ourselves as we often do in other studies.

Instead, the DL approach employed in this study is a transfer learning scheme based on a pre-

trained model named the Bidirectional Encoder Representation from Transformers (BERT).

The method involves adapting three machine learning concepts—Transformer, BERT, and

Transfer Learning—as elaborated in the following.

Transformer. Since its debut in 2017, the transformer has become an increasingly popular

technique in the field of NLP [Vaswani et al., 2017]. Prior to the transformer, most DL-

based NLP techniques were built using RNNs (e.g., LSTM), which process text sequentially.

By contrast, transformers dispense with the sequential processing by fully leveraging the

attention mechanism, which can assess every token and its context more independently at

the same time. This nature allows transformers to be more parallelizable in programming,

thereby making the model training of transformers on large-scale corpora possible.

BERT. The transformer’s strength in parallel computing led to the development of NLP

models pre-trained on large-scale language datasets. BERT is one of such transformer-based

pre-trained models. The BERTmodel used in our study is an open-source, clinical BERT pre-
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trained on MIMIC-III discharge summary notes [Alsentzer et al., 2019]. The “bidirectional”

mechanism allows BERT to exploit both the left (i.e., earlier) and right (i.e., later) contexts

of each token. By being trained on two unlabeled tasks — masked language modeling (a

certain proportion of words are masked at random, and the model is trained to predict them

from context) and next sentence prediction (given a sentence, the model is trained to predict

whether another selected sentence is probably the next sentence), clinical BERT gained an

“understanding” about the vocabulary, syntax, and phrasing that are used in clinical note

documentation. The understanding is represented and output as a vector C ∈ RH , where

R stands for the set of all real numbers. The dimension of the vector, H, also known as

“hidden size”, is 768 according to the implementation [Alsentzer et al., 2019].

Transfer Learning. Given the pre-trained clinical BERT model, we used transfer learning

to adapt it to our downstream problem in recognizing history elements. Transfer learning

aims to transfer ML knowledge/models gained from solving one task to a different but

related task [Torrey and Shavlik, 2010]. The transfer strategy we used was fine-tuning,

which introduced a linear layer on top of the clinical BERT model, as shown in Figure 5.4.

We used the BIO tagging schema which classifies each token in the sentence into “begin”

(with a tag of B − E), “inside” (with a tag of I − E), or “outside” (with a tag of O) of

an entity category E. Suppose that x = [x(1), x(2), · · · , x(n)] represents a sentence which

consists of a sequence of n words, y = [y(1), y(2), · · · , y(n)] represents the sequence of NER

tags, and the task is to predict the entity tag y(i) ∈ Y for each word x(i) where y(i) can

be O,B − cc, I − cc, B − hpi.quality, I − hpi.quality, · · ·. The total number of tags is 27 in

our setting (two possible tags for each of the 13 entity types plus an “O” tag). We used a

pre-trained clinical BERT model as an encoder θ to obtain token representations and then

classify them into tags by simply adding a linear layer (w ∈ R768×27). Applying standard
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fine-tuning, the model is trained to minimize the cross-entropy loss:

L = −
n∑

i=1

fi,yi(x
(i); θ, w) = −

n∑
i=1

fi,yi(h(i);w)

where h = [h(1), h(2), · · · , h(n)] are token embeddings corresponding to the input x.

Figure 5.4: BERT Transfer Learning Architecture

5.2.4 Model Evaluation Metrics

We evaluated the two NLP models with two types of metrics: the exact-match metric and

the relaxed-match metric [Li et al., 2020]. With an exact-match metric, a prediction is

considered correct only when both the text span and the type of an entity are exactly the

same with the gold-standard annotations. With a relaxed-match metric, if the type of an

entity is correct and its text span overlaps with the ground-truth annotations, the prediction

is considered partially correct. Relaxed-match metric also distinguishes different types of

errors, which allows us to examine model performance in detail.

Exact-Match Metric. We used the typical exact-match metric in NLP to evaluate the

performances of our rule-based and deep learning models. The metric included precision,
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recall, and F-1 scores. Precision is the fraction of predicted entities that are correct according

to gold standard notes while recall is the fraction of the entities in gold standard notes that

are successfully predicted. F-1 score is a measure that combines both precision and recall.

Precision =
|{Predicted Labels} ∩ {Gold-standard Labels}|

|{Predicted Labels}|

Recall =
|{Predicted Labels} ∩ {Gold-standard Labels}|

|{Gold-standard Labels}|

F1 score =
2 ∗ Precision ∗ Recall
Precision + Recall

The evaluations are performed with the help of the seqeval [Nakayama, 2018] script,

which is a Python package for sequence labeling evaluation and tested by the widely used

conlleval [Sang, 2004] script.

Relaxed-Match Metric. One widely adopted relaxed-match metric for named entity

recognition (NER) is the Fifth Message Understanding Conference (MUC-5) Evaluation

Metrics [Chinchor and Sundheim, 1993]. MUC-5 compares gold-standard annotations with

predictions using six categories, i.e., Correct, Partially Correct, Incorrect, Spurious, Missing,

and Non-committal, and defines a special formula to calculate error counts. A similar but

simpler metric defines five types of errors including wrong range, wrong tag, wrong range and

tag, no extraction, and no annotation [Ichihara et al., 2015]. However, these existing relaxed-

match metrics are not suitable for overlapping or nested NER evaluation. For example, they

all require that “Oklahoma State University” be labeled as an organization, but “Oklahoma”

not be labeled as a place at the same time. In our dataset, we have many overlapping labels.

Therefore, we need to develop a new relaxed-match metric.

We propose a hierarchical relaxed-match metric that can deal with overlapping or nested

entity labels. For each type of history element, there are six below mutual exclusive count
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categories. Codes are provided in the brackets for convenience (S: text span, E: exact match-

ing, P: partial matching, T: entity type, C: correct, I: incorrect).

• Category 1, text span exact matching and entity type correct (SE-TC)

For an entity A of a certain type in a gold-standard note, there is an entity B in the
corresponding prediction note which shares the same text span and entity type with
A.

• Category 2, text span partial matching and entity type correct (SP-TC)

For an entity A of a certain type in a gold-standard note, no Category 1 entity exists
in the corresponding prediction note, but there is an entity B in the prediction note
that shares a partial matching text span and the same entity type with A.

• Category 3, text span exact matching and entity type incorrect (SE-TI)

For an entity A of a certain type in a gold-standard note, no Category 1 or 2 entity
exists in the corresponding prediction note, but there is an entity B in the prediction
note that shares the same text span with A and the entity type of B is incorrect.

• Category 4, text span partial matching and entity type incorrect (SP-TI)

For an entity A of a certain type in a gold-standard note, no Category 1 or 2 or
3 entity exists in the corresponding prediction note, but there is an entity B in the
corresponding prediction note which shares a partial matching text span with A and
the entity type of B is incorrect.

• Category 5, Missing (MS).

For an entity A of a certain type in a gold-standard note, the text span of A in the
corresponding prediction note does not contain any entity of any type.

• Category 6, Spurious (SR).

For an entity B of a certain type in a prediction note, the text span of B in the
corresponding gold-standard note does not contain any entity of any type.

Note that the first five categories are hierarchical. For each entity of a certain type in a

gold-standard note, we will go through the corresponding prediction note and count it as one

of the first five categories following the order from Category 1 to Category 5 while for each

entity of that type in a prediction note, we will go through the corresponding gold-standard

note and check whether the Category 6 applies. During this process, multiple occurrences

within the same category are only counted once for each entity in gold-standard notes.
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5.3 Results

5.3.1 Exact-Match Metric Performances

Table 5.3 presents the two systems’ exact-match metric performances side-by-side. The

relatively low performances from both systems show that information extraction of patient

history information for E/M billing is still a challenging problem. In general, CC, HPI

timing, and PFSH are better identified while HPI context, HPI modifying factors, and HPI

associated signs/symptoms are more difficult to recognize. This phenomenon is consistent

with our assumption that some types of billing elements require more complicated inferences

than others. The rule-based system performed better on multiple element types in the

context of a relatively small labeled corpus. The BERT system might correctly learn a

pattern, e.g., CC precision = 0.73, but did not have enough training examples to generalize,

e.g., CC recall = 0.10.

Table 5.3: Exact-Match Model Performances

Rule-based BERT
Element Type Prec. Recl. F1 Prec. Recl. F1 Sprt.

CC 0.42 0.40 0.41 0.73 0.10 0.18 138

Chronic Condition 0.77 0.59 0.67 0.51 0.54 0.52 171

HPI-location 0.15 0.43 0.23 0.29 0.10 0.15 69

HPI-quality 0.42 0.30 0.35 0.17 0.19 0.18 57

HPI-severity 0.27 0.41 0.32 0 0 0 27

HPI-duration 0.21 0.30 0.25 0.44 0.36 0.39 67

HPI-timing 0.38 0.54 0.45 0.25 0.11 0.15 37

HPI-context 0.04 0.03 0.03 0.0 0.0 0.0 37

HPI-modifying factors 0.16 0.54 0.25 0.18 0.24 0.20 82

HPI-associated
signs/symptoms

0.16 0.33 0.22 0.13 0.22 0.16 269

Past History 0.54 0.69 0.61 0.53 0.71 0.61 520

Family History 0.70 0.87 0.77 0.63 0.67 0.65 45

Social History 0.12 0.10 0.11 0.33 0.40 0.36 129

Note: “Prec.” — Precision, “Recl.” — Recall, “F1” — F1-score, “Sprt.” — Support.

An interesting finding is that the rule-based system in general has a relatively higher recall

but lower precision. This indicates that our rule-based system contains some low-precision
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rules which yield many false positive predictions. This is consistent with our conception that

varying precision is a common characteristic of rule-based systems [Michelakis et al., 2009].

On the contrary, the deep learning system, in general, has lower recall rates but its

precision rates are relatively higher. The deep learning system is fine-tuned on limited

training samples so although it does learn some patterns, its learning capacity is compromised

and thus there are many misses during the prediction.

We also compared the performances of the two systems on notes in different size groups.

We divided the notes into 3-quantile groups based on their numbers of tokens, numbers of

sentences, and numbers of sections, respectively. F1 scores of the two systems in these groups

are reported in Tables 5.4, 5.5, and 5.6.

Table 5.4: F1 Scores for Notes with Different Numbers of Tokens

Element Type
Rule-based BERT

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
Sp F1 Sp F1 Sp F1 Sp F1 Sp F1 Sp F1

CC 39 0.38 57 0.45 42 0.43 39 0.14 57 0.22 42 0.16
Chronic Condition 30 0.67 59 0.61 82 0.71 30 0.54 59 0.44 82 0.60
HPI-location 24 0.35 11 0.18 34 0.20 24 0.15 11 0.31 34 0.12
HPI-quality 13 0.43 13 0.20 31 0.36 13 0.25 13 0.26 31 0.17
HPI-severity 9 0.14 9 0.24 9 0.52 9 0.00 9 0.00 9 0.00
HPI-duration 21 0.27 16 0.20 30 0.26 21 0.31 16 0.32 30 0.48
HPI-timing 10 0.70 6 0.23 21 0.45 10 0.17 6 0.25 21 0.13
HPI-context 9 0.15 10 0.00 18 0.00 9 0.00 10 0.00 18 0.00
HPI-modifying factors 7 0.08 31 0.25 44 0.29 7 0.29 31 0.24 44 0.21
HPI-associated
signs/symptoms

51 0.23 79 0.21 139 0.21 51 0.19 79 0.17 139 0.19

Past History 85 0.55 206 0.58 229 0.65 85 0.63 206 0.61 229 0.69
Family History 8 0.74 14 0.79 23 0.78 8 0.86 14 0.64 23 0.73
Social History 22 0.04 37 0.19 70 0.10 22 0.30 37 0.48 70 0.41
Average 0.396 0.429 0.430 0.352 0.411 0.417

Note: Group 1 - notes with no more than 557 tokens, Group 2 - notes with token numbers in (557, 823], Group 3 - notes with
more than 823 tokens
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Table 5.5: F1 Scores for Notes with Different Numbers of Sentences

Element Type
Rule-based BERT

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
Sp F1 Sp F1 Sp F1 Sp F1 Sp F1 Sp F1

CC 42 0.35 46 0.47 50 0.45 42 0.09 46 0.22 50 0.21
Chronic Condition 35 0.67 62 0.67 74 0.67 35 0.60 62 0.57 74 0.49
HPI-location 20 0.20 19 0.29 20 0.20 20 0.18 19 0.15 30 0.14
HPI-quality 11 0.32 22 0.32 24 0.38 11 0.31 22 0.23 24 0.13
HPI-severity 14 0.15 6 0.24 7 0.64 14 0.00 6 0.00 7 0.00
HPI-duration 21 0.24 25 0.18 21 0.33 21 0.35 25 0.40 21 0.43
HPI-timing 9 0.37 10 0.62 18 0.39 9 0.00 10 0.37 18 0.09
HPI-context 12 0.11 11 0.00 14 0.00 12 0.00 11 0.00 14 0.00
HPI-modifying factors 20 0.17 32 0.35 30 0.19 20 0.28 32 0.22 30 0.20
HPI-associated
signs/symptoms

62 0.18 87 0.23 120 0.21 62 0.18 87 0.21 120 0.17

Past History 88 0.59 165 0.59 267 0.62 88 0.61 165 0.62 267 0.68
Family History 9 0.70 13 0.79 23 0.79 9 0.80 13 0.67 23 0.73
Social History 24 0.08 36 0.09 69 0.14 24 0.21 36 0.46 69 0.45
Average 0.360 0.431 0.445 0.332 0.412 0.429

Note: Group 1 - notes with no more than 50 sentences, Group 2 - notes with sentence numbers in (50, 72], Group 3 - notes
with more than 72 sentences

Table 5.6: F1 Scores for Notes with Different Numbers of Sections

Element Type
Rule-based BERT

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
Sp F1 Sp F1 Sp F1 Sp F1 Sp F1 Sp F1

CC 49 0.43 46 0.48 43 0.35 49 0.15 46 0.11 43 0.27
Chronic Condition 42 0.70 58 0.56 71 0.72 42 0.53 58 0.58 71 0.52
HPI-location 23 0.19 26 0.21 20 0.28 23 0.22 26 0.10 20 0.16
HPI-quality 26 0.35 19 0.35 12 0.33 26 0.33 19 0.18 12 0.00
HPI-severity 16 0.22 6 0.53 5 0.40 16 0.00 6 0.00 5 0.00
HPI-duration 25 0.15 32 0.38 10 0.19 25 0.37 32 0.44 10 0.25
HPI-timing 15 0.41 14 0.48 8 0.47 15 0.21 14 0.09 8 0.22
HPI-context 13 0.10 10 0.00 14 0.00 13 0.00 10 0.00 14 0.00
HPI-modifying factors 42 0.27 27 0.27 13 0.16 42 0.24 27 0.28 13 0.07
HPI-associated
signs/symptoms

105 0.21 78 0.16 86 0.27 105 0.20 78 0.23 86 0.13

Past History 127 0.50 156 0.62 237 0.64 127 0.54 156 0.67 237 0.69
Family History 8 0.56 21 0.93 16 0.70 8 0.46 21 0.80 16 0.73
Social History 28 0.07 42 0.19 59 0.08 28 0.15 42 0.42 59 0.52
Average 0.351 0.435 0.465 0.314 0.420 0.461

Note: Group 1 - notes with no more than 10 sections, Group 2 - notes with section numbers in (10, 12], Group 3 - notes with
more than 12 sections
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If we focus on the averaged F1 scores, the above three tables can be summarized in

Figure 5.5. We identify two interesting findings. First, as the number of tokens, sentences,

or sections in a note group increases, the averaged F1 scores of both systems in the group

increase. This indicates that both systems perform better if the notes are lengthier and

contain more sections. This is consistent with our assumption that short notes are generally

more heterogeneous, lack of contextual information for inference, and thus more challenging

for text analysis. Another finding is that the averaged F1 score gap between the two systems

narrows as notes become lengthier or contain more sections. In other words, the BERT

system is able to exploit contextual information and catches up quickly with the rule-based

system in terms of averaged F1 score when more information exists in notes.

Figure 5.5: Average F1 Scores across Note Groups

5.3.2 Relaxed-Match Metric Performances

Table 5.7 shows the relaxed-match metric performances. Note that the values of the six

categories are not counts but are calculated in ratios. To be specific, the first five categories

are calculated by dividing each category count by the number of labels of each element type
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Table 5.7: Relaxed-Match Model Performances

Element Type Labels
Rule-based (ratios) BERT (ratios)

Preds SE-TC SP-TC SE-TI SP-TI MS SR Preds SE-TC SP-TC SE-TI SP-TI MS SR
CC 138 127 0.41 0.12 0.17 0.15 0.16 0.17 19 0.11 0.01 0.22 0.17 0.49 0.05
Chronic Con-
dition

171 130 0.57 0.03 0.26 0.08 0.06 0.10 167 0.52 0.06 0.12 0.06 0.24 0.17

HPI-location 68 196 0.21 0.54 0.00 0.04 0.21 0.22 23 0.04 0.12 0.06 0.21 0.57 0.39
HPI-quality 56 40 0.25 0.13 0.13 0.13 0.38 0.13 46 0.20 0.11 0.07 0.13 0.50 0.28
HPI-severity 27 40 0.22 0.37 0.00 0.11 0.30 0.45 2 0.00 0.07 0.04 0.26 0.63 0.00
HPI-
duration

67 95 0.28 0.34 0.00 0.06 0.31 0.43 52 0.33 0.15 0.01 0.03 0.48 0.31

HPI-timing 36 52 0.28 0.31 0.03 0.14 0.25 0.38 12 0.03 0.14 0.17 0.31 0.36 0.25
HPI-context 37 27 0.03 0.30 0.05 0.43 0.19 0.26 27 0.00 0.22 0.05 0.41 0.32 0.52
HPI-
modifying
factors

82 267 0.54 0.29 0.00 0.04 0.13 0.35 86 0.24 0.11 0.15 0.10 0.40 0.40

HPI-
associated
signs/symptoms

269 522 0.30 0.29 0.04 0.11 0.26 0.38 334 0.20 0.19 0.01 0.07 0.53 0.44

Past History 520 640 0.68 0.10 0.12 0.04 0.06 0.34 610 0.70 0.07 0.02 0.02 0.19 0.24
Family His-
tory

45 54 0.87 0.04 0.02 0.07 0.00 0.22 38 0.67 0.09 0.11 0.00 0.13 0.11

Social His-
tory

129 103 0.10 0.64 0.01 0.05 0.19 0.09 120 0.39 0.38 0.02 0.04 0.18 0.18

Note: “Labels” — the number of gold-standard labels, “Preds” — the number of predicted labels, cell values of the first five
categories — counts divided by the number of gold-standard labels, cell values of the sixth category — counts divided by the
number of predicted labels

in gold-standard notes while the sixth category is calculated by dividing the count of the

sixth category by the number of predictions of that element type in prediction notes.

An interesting finding is about Category 2 (SP-TC). In relaxed-match metrics, Category

2 predictions are generally considered as partially correct. If we add Category 1 and Category

2 together (Figure 5.6), the percentage of “correct” entities of the two systems will be further

higher, highlighting the potential of our NLP systems in computer-assisted medical billing.

Figure 5.6: Percentages of Correct Entities in Gold-standard Notes
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5.3.3 Select Example Analysis

Here we select some example outputs of the two systems and examine them intuitively.

In Example 1 below (G: gold-standard, R: rule-based model, B: BERT model), for the

rule-based model prediction, the CC entity type has three Category 1 counts, the Chronic

Condition type has one Category 1 count ([diabetes mellitus]) and one Category 3 count

([hypercholesterolemia]); for the BERT model prediction, the CC entity type has three Cat-

egory 1 counts, the Chronic Condition type has two Category 3 counts ([diabetes mellitus]

and [hypercholesterolemia]), the Past History type has one Category 6 count ([Followup]).

Example 1:

(G) CHIEF COMPLAINT: Followup on [diabetes mellitus]CC,chronicCondition,

[hypercholesterolemia]CC,chronicCondition, and [sinusitis]CC .

(R) CHIEF COMPLAINT: Followup on [diabetes mellitus]CC,chronicCondition,

[hypercholesterolemia]CC , and [sinusitis]CC .

(B) CHIEF COMPLAINT: [Followup]pastHistory on [diabetes mellitus]CC ,

[hypercholesterolemia]CC , and [sinusitis]CC .

Similarly, in Example 2, for the rule-based model prediction, the HPI-Associated Signs

and Symptoms entity type has one Category 2 count (either [sinus] or [congestion] or

[drainage]), and the HPI-Duration type has one Category 1 count ([several days]); for the

end-to-end BERT model prediction, the HPI-Associated Signs and Symptoms entity type

has one Category 2 count (either [sinus congestion] or [drainage]), and the HPI-Duration

type has one Category 2 count ([last several days]).

Example 2:

(G) She does complain of some [sinus congestion and drainage]hpi.assocSignsAndSymptoms for the

last [several days]hpi.duration.

(R) She does complain of some [sinus]hpi.assocSignsAndSymptoms,hpi.location

[congestion]hpi.assocSignsAndSymptoms and [drainage]hpi.assocSignsAndSymptoms for the last

[several days]hpi.duration.

(B) She does complain of some [sinus congestion]hpi.assocSignsAndSymptoms and

[drainage]hpi.assocSignsAndSymptoms for the [last several days]hpi.duration.
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In Example 3, most history information is contained in only one section, making extrac-

tion even more challenging. For example, BERT did a worse job in identifying CC entities

although a strong hint (“complains of”) exists.

Example 3:

(G) SUBJECTIVE: The patient is in with several medical problems. She complains of

[numbness]CC , [tingling]CC , and a [pain]CC in the [toes primarily of her right foot]hpi.location

described as a [moderate]hpi.severity pain. She initially describes it as a [sharp quality

pain]hpi.quality, but is unable to characterize it more fully. She has had it for about [a

year]hpi.duration, but seems to be [worsening]hpi.quality. She has [little bit]hpi.quality of [paraes-

thesias]hpi.assocSignsAndSymptoms in the [left toe]hpi.location as well and seem to involve [all the

toes of the right foot]hpi.location. They are [not worse with walking]hpi.modifyingFactors.

(R) SUBJECTIVE: The patient is in with [[several medical]hpi.modifyingFactors prob-

lems]hpi.assocSignsAndSymptoms. She complains of [numbness]CC , [tingling]CC , and a [pain in the

[toes]hpi.location]CC primarily of her [right foot]hpi.location described as a [[moderate]hpi.severity

pain]CC . She initially describes it as a [sharp quality pain]hpi.assocSignsAndSymptoms, but is

[unable]hpi.assocSignsAndSymptoms to characterize it more fully. She has had it for about a year,

but seems to be [worsening]hpi.quality,hpi.assocSignsAndSymptoms. She has little bit of [paraesthe-

sias]hpi.assocSignsAndSymptoms in the [left toe]hpi.location as well and seem to involve all the toes

of the right foot. They are not [[worse]hpi.quality with walking]hpi.modifyingFactors.

(B) SUBJECTIVE: The patient is in with several medical problems. She

complains of [numbness]hpi.assocSignsAndSymptoms, [tingling]hpi.assocSignsAndSymptoms, and a

[pain]hpi.assocSignsAndSymptoms in the [toes primarily of her right foot]hpi.location described as

a [moderate]hpi.severity pain. She initially describes it as a [sharp quality pain]hpi.quality, but

is unable to characterize it more fully. She has had it for about [a year]hpi.duration, but

seems to be [worsening]hpi.quality. She has [little]hpi.assocSignsAndSymptoms bit of [paraesthe-

sias]hpi.assocSignsAndSymptoms in the left toe as well and seem to involve all the toes of the right

foot. They are [not worse]hpi.quality [with walking]hpi.assocSignsAndSymptoms.

In Example 4, most history information is also contained in only one section but the

BERT system successfully identified CC entities. The hint “complaint of” is similar to the

hint in Example 3. This indicates the difficulty to interpret deep learning models.
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Example 4:

(G) HISTORY OF PRESENT ILLNESS: A 49-year-old female with history of [atopic der-

matitis]pastHistory comes to the clinic with complaint of [left otalgia]CC and [headache]CC .

Symptoms started approximately [three weeks ago]hpi.duration and she was having [difficulty

hearing]hpi.assocSignsAndSymptoms, although that has [greatly improved]hpi.quality. She is hav-

ing some [left-sided sinus pressure]hpi.assocSignsAndSymptoms and actually went to the dentist

because her [teeth were hurting; however, the teeth were okay]hpi.assocSignsAndSymptoms. She

continues to have some [[left-sided jaw]hpi.location pain]hpi.assocSignsAndSymptoms.

(R) HISTORY OF PRESENT [ILLNESS]pastHistory: A 49-year-old female with his-

tory of [atopic dermatitis]pastHistory,hpi.assocSignsAndSymptoms comes to the clinic with [com-

plaint]pastHistory of left [otalgia]CC and [headache]CC . Symptoms started approximately three

[weeks ago]hpi.duration and she was having [difficulty hearing]hpi.assocSignsAndSymptoms, although

that has greatly [improved]hpi.quality. She is having some [[left-sided sinus]hpi.location pres-

sure]hpi.assocSignsAndSymptoms and actually went to the dentist because her teeth were hurt-

ing; however, the teeth were okay. She continues to have some [[left-sided jaw]hpi.location

pain]hpi.assocSignsAndSymptoms.

(B) HISTORY OF PRESENT ILLNESS: A 49-year-old female with history of [atopic der-

matitis]pastHistory,chronicCondition comes to the clinic with complaint of [[left]hpi.location otal-

gia]CC and [headache]CC . Symptoms started approximately [three weeks ago]hpi.duration and

she was having [difficulty hearing]hpi.assocSignsAndSymptoms, although that has [greatly im-

proved]hpi.quality. She is having some [left-sided sinus pressure]hpi.assocSignsAndSymptoms and

actually went to the dentist because her [teeth were hurting]hpi.assocSignsAndSymptoms; how-

ever, the teeth [were okay]hpi.assocSignsAndSymptoms. She continues to have some [[left-sided

jaw pain]hpi.assocSignsAndSymptoms.

5.4 Conclusion

Medical billing is a major challenge in the healthcare revenue management cycle in the

United States. This study is the first in the academic community on extracting patient

history information directly from clinical notes to facilitate E/M billing. It proposes a

framework and develops two prototype systems – a rule-based and a deep-learning-based.

The two prototype systems developed in this study meet our expectations in their capaci-
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ties to extract essential patient history information. On average, extraction performances are

better for such elements as PFSH, CC, Chronic Condition, and HPI-Duration. Performances

are less satisfactory for elements including HPI-Context, HPI-Quality, and HPI-Timing. This

is generally consistent with our assumption that some elements need more semantic reasoning

which unfortunately is still technically challenging at this moment.

Another interesting finding is that performances of both systems improve as note size

increases which indicates rich notes should be used as input data for medical billing. In

addition, the deep learning BERT model may have more potential in terms of performance

improvements and portability if we train it on a larger dataset.

In short, the proposed framework and the two prototype systems exhibit promising values.

We summarize the contributions and limitations of this study as follows.

Methodological Contributions

• This study proposes the first framework in the academic community to use publicly

or academically available resources to extract patient history information to facilitate

E/M medical billing. A rule-based and a deep learning systems are constructed and

tested on an annotated dataset.

• It also proposes comprehensive metrics to evaluate NER performances including the

exact-match metric and the relaxed-match metric which is a novel hierarchical metric

suitable for quantifying the NER outcomes for notes with text span overlapping entities.

Application Contributions

• This study demonstrates the application potential and feasibility to reduce medical

billing costs by developing clinical information extraction systems.

• It also introduces clinical NLP resources currently available, discusses the challenges

needed to be addressed, and provides some technical solutions (e.g., libraries and knowl-

edge extraction rules).
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Limitations

• The annotated dataset for this study is small which limits the knowledge discovery

capacities of both rule-based and deep learning systems. A larger dataset may signifi-

cantly improve model performances.

• The rule-based system has many assumptions and may not generalize well to other

datasets. For example, one assumption is that notes have explicit section headings

while many raw clinical notes do not have such headings. Another assumption is that

information is documented in appropriate sections which may not be true.

• The deep learning model is built on a pre-trained BERT model using the transfer

learning approach, which does not guarantee to have similar performances with newly

trained models. A comparison between transfer learning and newly trained BERT

models may be necessary.

Future work includes annotating a larger dataset for model training and testing, com-

paring more cutting-edge deep learning algorithms, comparing transfer learning and newly

trained deep learning models, and validating the systems in real-world clinical settings.
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CHAPTER VI

CONCLUSION

In this dissertation, we focus on building machine learning models and systems to analyze

structured EHR data or unstructured clinical notes with a goal to improve health care quality,

reduce healthcare costs, and reduce healthcare disparities.

The three research topics include analyzing longitudinal structured EHR data for diabetic

retinopathy prediction, constructing and clustering temporal disease networks to better visu-

alize comorbidity progression, and designing systems to extract patient history information

to facilitate E/M medical billing.

For the first topic, we studied temporal analysis methods for diabetic retinopathy pre-

diction, constructed both deep learning temporal models and non-temporal random forests

models, and evaluated the models on a large-scale dataset. The dataset is extracted from

one of the largest real-world EHR databases in America, containing patient demographics,

lab tests, and comorbidity variables. Experimental results show that deep learning temporal

models outperformed non-temporal random forest models in terms of AUPRC and Recall.

At the methodological level, to the best of our knowledge, this is the first study that

implements deep learning temporal models to analyze longitudinal EHR data for DR pre-

diction. The deep learning architectures also have a multi-branching output mechanism to

address the imbalanced dataset issue. At the application level, the study shows that devel-

oping a temporal DR prediction model using widely available longitudinal EHR data may

be a better alternative to assist current DR screening, which potentially can help curb the
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DR prevalence.

Future work for this study includes examining more temporal (e.g., the knowledge-based

temporal abstraction approach) and baseline models, incorporating more data representa-

tion techniques, and performing a more detailed study on the association between model

performance and the number of multi-branching outputs.

For the second topic, we designed a method to construct disease networks, proposed a

consecutive p-median clustering method to group temporal disease networks into phases, and

simplified the visualization using a disease clustering method. Two case studies on C.Diff

and stroke demonstrated that the methods are effective.

At the methodological level, contributions of this study include the consecutive p-median

clustering and the disease atomic clustering methods. At the application level, the proposed

framework can be applied in real-world clinical settings to visualize comorbidity progression

to improve clinical decision-making.

Future work includes examining more network dissimilarity measurements (which may

influence the temporal clustering results) and testing the methods on more complex disease

networks (e.g., directed or weighted networks which carry more clinical information than the

undirected and unweighted networks in our current study).

For the third topic, we proposed a framework to extract patient history information

directly from clinical notes to facilitate E/M medical billing. Two approaches and their cor-

responding prototype systems, one rule-based and one deep-learning-based, were developed.

The two prototype systems show that extraction of patient history information is still a

technically challenging task, but computer-assisted medical billing has promising potentials.

At the methodological level, to the best of our knowledge, it is the first framework

proposed for E/M medical billing in the academic community. The rule-based and the BERT

transfer learning architectures represent the two major technique solutions. A comprehensive

evaluation metric including a novel hierarchical relaxed-match metric is proposed to quantify
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named entity recognition outcomes on notes with text span overlapping entities. At the

application level, the framework and technical solutions proposed in this study can be applied

in real-world billing practice to relieve the billing burden.

Future work of this study includes annotating a larger dataset for model training and

testing, comparing more cutting-edge deep learning algorithms, and improving and validating

the systems in real-world clinical settings.
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