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1 INTRODUCTION 

1.1 Background 

Market competition and stringent safety and environmental concerns have led to 

development of strategies to improve the efficiency of process operations and reduce 

operating costs. A significant portion of project costs includes developing, installing and 

maintaining advanced process control systems. Ramaker et al. (1997) list the following 

economic motivations that exist for contribution by process control: 

(1) use existing process equipment fully, 

(2) deliver the same product consistently, 

(3) minimize product variability, 

( 4) meet safety or regulatory requirements, 

(5) increase the operator's span of control, 

( 6) reduce the cost of implementing and supporting control and information 

systems, 

(7) improve the operating range and reliability of control and information 

systems. 

Recent developments in process control technology have been directed at 

satisfying some of these stipulations. These advances are usually guided by the 

philosophy that an accurate description of future process response increases the potential 

for producing desired process behavior. In this work, we utilize causal, empirical 
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models, such as time series and neural networks to model the process behavior and 

explore their use in model predictive control algorithms and inferential modeling 

applications. 

1.2 Objectives and Contributions 

The work documented in this thesis can be classified into 3 categories: 

• Adaptive linear model predictive control, 

• Inferential modeling using neural networks, and 

• Radial basis function model based nonlinear model predictive control 

The objectives pursued and the contributions made by the present work within each 

category are described below. 

(a) Adaptive Linear Model Predictive Control: 

Model Predictive Control (MPC) algorithms share the common characteristic of 

using an explicit model of the process to predict future behavior over a specified horizon. 

The dependence of MPC techniques on model fidelity presents an ideal opportunity for 

adaptation of model parameters. The potential to estimate accurate models for the current 

operating conditions forms the prime motivation for an adaptive MPC scheme. 

In this work, an adaptive linear MPC algorithm is developed that utilizes closed­

loop process data to construct control models online. These models are subsequently 

used by the controller. Model parameters are adjusted by a recursive least squares 

algorithm. Benefits of using adaptation are shown using simulation examples. We also 
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demonstrate closed loop identifiability of single input, single output transfer function 

models used in conjunction with an industrially important form of linear MPC known as 

Dynamic Matrix Control (DMC). 

(b) Inferential Modeling Using Neural Network: 

In numerous processes, measurement of key variables is not available or too slow 

to be included in online control and optimization calculations. There is considerable 

economic. incentive in developing inferential sensors which provide an estimate of such 

hard-to-measure variables. The nonlinear nature of chemical processes makes neural 

networks a logical choice for modeling and prediction of these variables. 

In this area, we present a framework for development of inferential measurements 

using neural networks. The method involves a three-step procedure. The first step 

consists of data collection and preprocessing. In the second step, the process variables 

are subjected to simple statistical analyses to identify a subset of measurements to be 

used in the inferential scheme. The third step involves generation of the inferential 

scheme by regression. For this purpose, the multi-layer perceptron network is employed. 

Finally, the methodology is demonstrated using real data from a large refinery to infer an 

ASTM property of a petroleum product. 

( c) Radial Basis Function Model based Nonlinear Model Predictive Control: 

Application of commercial linear model predictive control technology to highly 

nonlinear processes provides only partially successful results. This has led to an active 
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interest m the development and application of nonlinear model predictive control 

(NMPC). NMPC adheres to the general MPC philosophy but uses a nonlinear model to 

provide a better approximation of the underlying nonlinear system. The resulting 

implementation requires development of nonlinear models and an expensive online 

solution of a nonlinear program. These problems are severe enough that NMPC remains 

an unrealized concept in industry. 

Here, .· the use of Radial Basis Function (RBF) networks as nonlinear process 

models in NMPC is explored. A novel RBF based NMPC algorithm is presented that is 

computationally efficient and provides . enhanced control of nonlinear processes. The 

algorithm was tested by simulation for control of a mixing process and an exothermic 

CSTR. To evaluate the applicability of the algorithm for large processes, we successfully 

applied it for control of the Eastman challenge problem presented by Downs and Vogel 

(1993). 

1.3 Organization of Thesis 

This thesis was prepared using the manuscript format. Chapters 3-6 represent 

verbatim copies of manuscripts that have been submitted for publication in peer-reviewed 

journals. 

Chapter 2 contains a literature survey on the various topics discussed above with 

an emphasis on model predictive control. Chapter 3 documents the work on adaptive 

linear MPC. Development of inferential models using neural networks is presented in 
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Chapter 4. Chapter 5 describes the RBF based NMPC algorithm. Application of the 

algorithm to the Eastman challenge process is presented in Chapter 6. Since Chapters 3, 

4, 5, and 6 are in manuscript form, they are standalone in nature. Finally, conclusions 

based on the resulting work and avenues to improve upon the current work are presented 

in Chapter 7. 
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2 LITERATURE REVIEW 

Advances in the computer industry have facilitated implementation of process 

control technology. This allowed replacement of conventional analog controllers by 

more flexible control algorithms. Among the various advanced control technologies, 

model predictive control (MPC) has been widely accepted in the process industries. In 

their vision of advanced information and control circa 2020, Ramaker et al. (1997) 

foresee computer control technology to use online economic information to dynamically 

maximize economic benefits, by adjusting the existing process equipment along with 

continuous process analysis. As discussed in Chapter 1, the work documented in this 

thesis explores and proposes enhancements to process control in the fields of model 

predictive control and inferential modeling and spans the following topics, 

• linear and nonlinear MPC, 

• adaptive linear MPC and system identification, 

• multilayer perceptron and radial basis function neural networks, and 

• inferential measurements 

In this chapter, a. review of developments in MPC and the use of neural network models 

for inferential measurement and MPC is provided. 

Section 2.1 introduces the MPC algorithm. The subsequent four sections present 

an account of the various MPC algorithms and note some theoretical results available in 

the literature. Section 2.6 surveys the literature on adaptive MPC. Literature available 

on nonlinear MPC is discussed in section 2.7. Section 2.8 focuses on applications of 
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neural networks for nonlinear MPC and inferential measurement. Sections 2.6 and 2.8 

also put the current work in perspective of that reported in literature. 

2.1 MPC - Introduction 

All MPC algorithms share a common philosophy, that is, use of an explicit model 

of the process to predict 'future behavior over a time interval called the prediction 

horizon. Process input and output constraints are directly incorporated in the algorithm. 

This allows for anticipation of constraint violation and hence an appropriate computation 

of input moves. The manipulated variable profile is computed via online optimization of 

an open-loop objective function subject to constraints. The first move of the resultant 

profile, corresponding to the current sample instant is implemented. The entire procedure 

is repeated at each sampling period (for example, see Muske and Rawlings, 1993). A 

schematic description of the traditional MPC algorithm is prpvided in Figure 2.1. The 

future duration of the forecast of process behavior is often referred to as the prediction 

horizon while the length of the manipulated variable profile is called control horizon. 

The use of MPC in the process industries first began in the 1970s under the names 

of "model predictive heuristic control" or "model algorithmic control" (Richalet, et al., 

1978; Mehra, et al., 1982) and "dynamic matrix control" (Cutler and Ramaker, 1979; 

Prett and Gillette, 1979). Since then MPC has been widely adopted as a high­

. performance, multivariable constrained control technique with commercial products 

supplied by a number of vendors. In addition to developing more flexible control 
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Figure 2.1: Schematic description of the linear 1\.1PC algorithm. 
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technology, new process identification technology was developed to allow quick 

estimation of empirical dynamic models from test data, substantially reducing the cost of 

model development. Qin and Badgewell (1997) refer to the combined effort of industrial 

process modeling and control as model predictive control technology. In a survey by Qin 

and Badgwell (1997) in 1995, over 2,200 applications of MPC were reported with the 

majority in the refining industry. 

In modern processing plants the MPC controller is part of a multi-level hierarchy 

of control functions. This is illustrated in Figure 2.2. At the top of the structure, a plant­

wide optimizer determines optimal steady-state settings for each unit in the plant. These 

may be sent to local optimizers at each unit, which run more frequently or consider a 

more detailed unit model than is possible at the plant-wide level. The unit optimizer 

computes an optimal economic steady state and passes the setpoints to the dynamic 

constraint control system for implementation. The dynamic constraint control must move 

the plant from one constrained steady state to another while minimizing constraint 

violations along the way. In the conventional structure this is accomplished by using a 

combination of PID algorithms, lead-lag blocks and high/low select logic. It is often 

difficult to translate the control requirements at this level into an appropriate conventional 

control structure. In the MPC methodology, this combination of blocks is replaced by a 

single MPC controller. The MPC controller frequently functions in a supervisory mode 

by specifying setpoints to lower level controllers. 
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Plant-Wide Optimization 

Unit 1 Unit 2 Local Optimization 

Model Predictive Control 

Unit 2 Distributed Control System 

Steady-State Optimizer 
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Steady-State Supervisory 
Control (every hour) 

Dynamic Supervisory 
Control (every minute) 

Base Control 
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Figure 2.2: Role of model predictive control from process operation perspective 
(adapted from Qin and Badgwell (1997)). 
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2.2 MPC - Origin 

Model predictive control has appeared in different branches of control literature over the 

past thirty-five years. Eaton and Rawlings (1992) suggest that the concept of using an 

open-loop optimal control computation to synthesize a feedback controller is so intuitive 

that it probably occurred to researchers prior to the availability of hardware and software 

technology to realize it. Garcia et al. (1989) cite Propoi (1963) as the first to introduce 

the idea of a finite moving horizon in 1963. A description of the essence of MPC is 

provided by Lee and Markus (1967) in their textbook on optimal control. They pointed 

out the difficulty in real-time implementation of the algorithm due to inadequate 

hardware and software (as of 1967). 

In the electrical engineering literature, MPC is usually called receding horizon 

control. In 1970, Klienman (1970) used the finite horizon concept to find a state 

feedback gain that stabilizes a time invariant system. Thomas ( 197 5) formulated a 

quadratic objective function penalizing only the input with the constraint that the state at 

the end of the horizon must be brought to zero. He showed the resulting state feedback 

law to be stabilizing for linear time-invariant systems. Later, Kwon and Pearson (1977) 

generalized the results to linear time-varying systems. As pointed by Eaton and Rawlings 

(1992), the MPC framework is also employed in aerospace engineering applications. 

They cite publications by Brusch (1974) and Johnson (1975) where finite horizon 

problems are solved to obtain optimal aircraft trajectories. 
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2.3 MPC and standard Linear Quadratic Regulator 

The development of modem MPC can be traced back to the works of Kalman 

(Kalman, 1960a; Kalman, 1960b) on the linear quadratic regulator. Consider a process 

described by a discrete-time, linear state-space model: 

xk+i = Axk + Buk 
Yk = Cxk 

(2.1) 

The vector u represents process inputs, vector y describes process output measurements 

and x represents the process states. Kalman sought to find the control sequence Uk which 

minimizes the quadratic cost function for the infinite horizon regulator problem: 

(2.2) 

where, the weighted norms are defined as, 

(2.3) 

(2.4) 

The weight matrices Q and R allow for scaling differences and tuning trade-offs. 

Variables x and u in the objective function in equation (2.2) represent deviations from the 

desired steady-state. The solution to the LQR problem was shown to be a constant gain 

controller: 

(2.5) 

where, the gain matrix, K, was computed from the solution of a discrete algebraic Ricatti 

equation. The LQR solution was shown to be stabilizing for the process ( equation (2.1)) 

with (A,B) stabilizable and (A,C) detectable with weight matrices Q and Ras positive 

semi-definite and positive definite, respectively. A dual theory was developed to 

estimate process states from noisy input and output measurements, known as the Kalman 
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filter. The Kalman filter in conjunction with LQR yields the linear quadratic Gaussian 

(LQG) controller. 

Qin and Badgwell (1997) point out that although LQG theory provided an elegant 

and powerful solution to control of unconstrained linear processes, "it had little impact on 

the control technology development in the process industry." They summarize some of 

the reasons for the failure as: 

1) lack of the ability to address constraints 

2) process nonlinearities 

3) model uncertainty 

4) unique performance criteria 

5) cultural reasons (people, education, etc.) 

The importance of constraints has been demonstrated by Prett and Gillette (1979). They 

show that the economic operating point often lies at the intersection of constraints. Thus, 

it is desirable to operate the closed loop system near constraints without violating them. 

Moreover, chemical processes are inherently nonlinear and their dynamics change with 

operating conditions. For all of these reasons, the LQG technique had minimal impact on 

the process industries. 

2.4 Linear MPC - Developments in industry 

Model predictive control philosophy as described in Section 2.1 does not 

prescribe the model type to be used in the control scheme. The initial industrial 

implementation of MPC used linear models to predict future process dynamics. This 
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class of control algorithms is referred to a linear model predictive control, i.e. MPC with 

linear models, and primarily differs in the choice of the control model and incorporation 

of constraints. The following is a brief description of the important control algorithms 

developed in the process industry. 

(a) Model predictive heuristic control (MPHC) 

The first description of MPC application was presented by Richalet et al. (1978). 

They referred to their algorithm as model predictive heuristic control. The solution 

software was named IDCOM, an acronym for identification and command. 

Richalet et al. chose a discrete-time finite impulse response (FIR) model to 

describe the relationship between the process inputs, u, (manipulated and disturbance 

variables) and the process output, y, (controlled variable). For a single input, single 

output case, the FIR model takes the form, 

N 

Yk+J = Lh;uk+J-i (2.6) 
i::::::l 

The weights hi, are called the impulse response coefficients. The sum is truncated after N 

sample periods when past inputs no longer influence the outputs. This representation is 

only possible for stable systems. The FIR model was identified from plant test data based 

on an algorithm that minimized the distance between process outputs and model response 

in the coefficient space. The reference trajectory was defined as a first order path from 

the current output value to the desired setpoint. The time constant of the reference 

trajectory controlled the speed of the desired closed loop response. 
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The control problem was interpreted as the dual of the identification problem. It 

consisted of estimating process inputs, which would minimize the distance between the 

predicted future output trajectory and the reference trajectory. Thus, the control and 

identification problems were solved using the same algorithm. Richalet et al. described 

applications of MPHC algorithm to a fluid catalytic cracking unit, a power generator, a 

polyvinyl chloride plant and a main fractionator unit. Mehra et al. (1982) provided 

further applications including a superheater, a steam generator, a wind tunnel, a utility 

boiler connected to a distillation column and a glass furnace. 

(b) Dynamic Matrix Control (DMC) 

Engineers at Shell Oil independently developed their own MPC technology in the 

1970s. Cutler and Ramaker (1979) presented an unconstrained multivariable control 

algorithm which they called Dynamic Matrix Control (DMC). The DMC algorithm used 

a linear discrete-time, step response model to relate changes in process output to a 

weighted sum of past input changes. For a SISO process, the step response model takes 

the form 

N-1 

Yk+J = Ls,Auk+J-i +sNuk+J-N (2.7) 
;~J 

The weights si, are called the step response coefficients. As in MPHC, the sum is 

truncated after N sample periods when past inputs no longer influence the outputs. The 

future outputs and future input moves were related to each other by a Dynamic Matrix. 

Using this representation, future input moves could be computed analytically as a 

solution of the least squares problem. In practice, the matrix inverse can be calculated 

oflline. Cutler and Ramaker demonstrated the superiority of the DMC algorithm over 
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conventional PIO lead/lag compensator by an application to furnace temperature control. 

Prett and Gillette (1979) provided further applications of DMC technology to fluid 

catalytic cracking unit reactor/ regenerator. They also described additional ad-hoc 

modifications to the unconstrained DMC algorithm to prevent violation of absolute input 

constraints. When a predicted future input came sufficiently close to a constraint, an 

extra equation was added to the process model. This would drive the input back to the 

feasible region. Cutler and Hawkins (1987) report a complex industrial DMC application 

to a hydrocarbon reactor involving seven input variables (five manipulated and two 

disturbance variables) and four output variables. 

(c) Quadratic Dynamic Matrix Control (QDMC) 

The original IDCOM and DMC algorithms provided adequate control of 

unconstrained multivariable processes. However, constraints were handled in an indirect 

manner. Engineers at Shell Oil addressed this weakness by posing the DMC algorithm as 

a quadratic program, in which input and output constraints appear explicitly. Garcia and 

Morshedi (1986) published a comprehensive description of this method and termed it as 

Quadratic Dynamic Matrix Control. 

The QDMC algorithm strictly enforces input and output constraints at each point 

of the prediction horizon. Constraints enforced strictly are called hard constraints. In 

practice, Garcia and Morshedi reported that hard output constraints are typically required 

to be satisfied only over a portion of the horizon which they referred to as the constraint 

window. They also observed that if non-minimum phase dynamics are present, 
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performance is improved by pushing the constraint window further to the future. An 

alternate option was suggested for handling output constraints in presence of non­

minimum phase dynamics. When output constraint violations are predicted to occur, the 

controller should attempt to minimize the violation in a least squares sense. This 

approach is known as the soft constraint concept. 

Garcia and Morshedi (1986) presented results from a pyrolysis furnace 

application. The QDMC controller adjusted fuel gas pressure in three burners in order to 

control steam temperature at three locations in the furnace. They also reported good 

results in many Shell problems, one of them as large as 12 x 12. A number of 

applications using DMC/QDMC are available in open literature, for example, see (Kelly, 

et al., 1988; Van Hoof, et al., 1989; Bozin and Austin, 1995; Meziou, et al., 1996). 

2.5 Linear MPC - Theoretical Aspects 

Later refinements of industrial MPC technology came in terms of constraint 

handling and recovery from infeasibility. A comprehensive review of industrial MPC 

technology is provided by Qin and Badgwell (1997). Industrial implementation of MPC 

requires robust algorithms with acceptable performance that can be implemented online. 

Hence, a large number of heuristic approaches were adopted with little theoretical 

justification (Muske and Rawlings, 1993). Control researchers, therefore, have attempted 

to evaluate MPC algorithms from a theoretical perspective. In the following paragraphs a 

brief account of a few important results is given. 
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Nominal Stability: Garcia and Morari (1982) discussed the fundamental 

similarities between DMC and IDCOM for the SISO case and noted their relationship to 

other forms of optimal control. They developed a unifying control structure for such 

algorithms and termed it as Internal Model Control (IMC). A key result from their 

stability analysis concluded nominal stability of the feedback system if stability of the 

plant and controller is guaranteed. They also investigated the effect of controller tuning 

on stability. Based on their results, the authors provided tuning procedures for IMC that 

provide robust model predictive control for linear, time invariant processes. In a later 

publication, Garcia and Morari (1985) extended the IMC method to multivariable 

systems. Although they developed stability theorems for certain types of unconstrained 

problems, no provision for constrained optimization was included. Ricker (1985) 

presented constrained IMC solved by quadratic programming technique. No formal 

stability analysis was presented. However, closed loop stability is discussed via heuristic 

rules of feedback filtering and input blocking. 

Zafiriou (1990) noted that the presence of hard constraints m the online 

optimization problem produces a nonlinear controller even when the plant and model 

dynamics are assumed linear. He provided a contraction mapping :framework to study the 

properties of the control algorithm. This framework accounts for the minimization of the 

objective function subject to certain hard constraints. Subsequently, he provided tuning 

guidelines so that constrained nominal stability is achieved. Zafiriou and Marchal (1991) 

showed that inclusion of hard output constraints in the online optimization problem 

solved by QDMC may result in very aggressive control action. Based on contraction 
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mapping, they presented a necessary condition, which was shown to be a good indicator 

of stability. 

Rawlings and Muske (1993) presented a constrained receding horizon controller 

that is stabilizing for both stable and unstable plants and for all choices of tuning 

parameters. A state-space formulation is used to account for both stable and unstable 

plant representations. Output feedback is performed using linear quadratic filtering 

theory. The salient feature of their regulator is use of an infinite horizon open-loop 

quadratic objective, 

00 

J = LYr k+1Qyk+J + ur k+1Ruk+J + Aur k+1SAuk+J (2.8) 
1~1 . 

subject to linear constraints on the process inputs and outputs. Only a finite number of 

decision variables, N, (the control horizon) are retained by the assumption 

UN+; = 0, j = 1,2, • • (2.9) 

Finally, they presented separate rigorous proofs for nominal, constrained, closed-

loop stability of open-loop stable and unstable plants. An important feature of this 

method is identifying bounds for the output constraint window so that the resulting 

quadratic problem is feasible. For open-loop unstable processes, an equality constraint is 

appended that requires the unstable modes be brought to zero at the end of the control 

horizon. A number of examples presented by Muske and Rawlings (1993) demonstrate 

the features of this method. 
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Robust Stability: Limited work on closed-loop stability in presence of modeling 

errors exists in the literature. A survey in 1995 by Qin and Badgwell (1997) found that 

robust stability is a serious concern in the industry and is addressed by extensive closed 

loop simulation. Vunthamdam et al. (1995) reformulated the QDMC algorithm with an 

end condition, which they called EQDMC, for the multivariable problem. They 

presented a sufficient robust stability condition for SISO systems with hard input and soft 

output constraints. The robust stability condition dictates values of the move-suppression 

factors of the online objective function that increase as the modeling uncertainty 

increases. They parameterized model uncertainty in the time domain through maximum 

and minimum impulse response coefficients and developed a constraint involving the 

move suppression factor that, if satisfied, guarantees robust stability. 

Lee and Cooley (1995) describe the well known min-max approach for solving 

the robust stability problem. The maximum cost function for all possible plants in the 

uncertainty description is minimized. Badgwell (1997) suggests that this method may 

result in a conservative solution since the worst-case scenario is optimized. He describes 

a robust MPC algorithm for open-loop stable, linear plant subject to hard input and soft 

output constraints. Model uncertainty is parameterized by a list of possible plants. 

Robust stability is achieved by adding constraints that prevent the sequence of optimal 

control costs from increasing for the true plant. The algorithm is a direct generalization 

of the nominal stabilizing regulator of Rawlings and Muske (1993). However, the 

resulting optimization problem becomes a convex nonlinear program. 

20 



Sznaier and Damborg (1990) discuss stability of a restricted class of constrained 

linear systems. In their problem statement, the states and inputs are constrained to lie in a 

bounded convex polyhedron. They show that under certain conditions, the resulting 

closed-loop system is asymptotically stable in the region of interest. Scokaert and 

Rawlings (1998) extended the work by Sznaier and Damborg by eliminating restrictions 

on the boundedness of constraint region. 

Disturbance handling via state estimation: Most industrial MPC algorithms use a 

heuristic of lumping uncertainty in model parameters and structure, measurement errors, 

unmeasured disturbances and other sources of plant-model mismatch into a constant bias 

term, viewed as a step disturbance acting on the output. Lundstrom et al. (1995) show by 

an example that such an assumption leads to poor response in presence of ramp-like 

disturbances. To obviate the need for the assumption of step disturbance at the output, 

observer based MPC algorithms have been proposed in literature (Ricker, 1990; Lee, et 

al., 1994). In the above approaches, the observer (e.g. Kalman filter) is constructed using 

the nominal model of the plant and no attempt is made to update the model parameters. 

2.6 Adaptive Model.Predictive Control 

There have been a large number of applications of adaptive feedback control over 

the past 30 years (Astrom and Wittenmark, 1995). Adaptive methods are readily 

available for automatic tuning of PID controllers. Traditionally, manual tuning of 

complex controllers has taken the route of modeling or identification followed by 

controller design. This is often a time-consuming and costly procedure. In adaptive 
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applications, on the other hand, the adaptation loop is simply switched on. The adaptive 

controller uses the current input/output data to identify a process model and/or controller 

parameters. The adaptive loop is run until the performance is satisfactory; then it is 

disconnected, and the system is left running with fixed controller parameters. 

Despite the widespread use and appeal of adaptation in PID controllers, adaptive 

MPC has received relatively little attention. Clarke et al. (1987) proposed the generalized 

predictive control (GPC) algorithm in 1987. It uses a controlled auto regressive 

integrating moving average model to describe the process. GPC is similar to MPC in that 

the process is controlled using long-range model predictions. Variants of GPC have been 

presented by many authors, for example, by Lelic and Zarrop (1987), De Keyser et al. 

(1988), Clarke and Mohtadi (1989) and Clarke (1988), which depend on assumed model 

structures and choice of cost function. GPC has also been extended to multiple-input 

multiple-output systems (Kinnaert, 1989; Dion, et al., 1991). The early literature on GPC 

did not include a stability constraint. Later Clarke et al. (1991) modified the GPC 

algorithm by appending constraints for model stabilization. However, as noted by Lee 

and Cooley (1996) and Garcia et. al. (1989), these results rely on linear adaptive control 

theory precluding consideration of the industrially important issue of control and state 

constraints. 

The use of continuous autoregressive integrated moving average models makes 

GPC suitable for parameter estimation by recursive least squares. DMC/QDMC 

algorithms, on the other hand, use a truncated step response model and no attempt is 
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made to evaluate model parameters online. The presence of a large number of step 

response coefficients in the model makes recursive identification at each sampling period 

an impractical task. To overcome this difficulty, Maiti and Saraf (1995) proposed 

calculation of only a few step response coefficients from the process input-output data. 

They fit a first order plus time delay (FOP TD) model by minimizing the sum of squared 

deviations between the calculated step response coefficients and those predicted by the 

FOPTD model. The FOPTD model was then used to extrapolate the remaining 

coefficients needed to fill the dynamic matrix. The implementation of the their adaptive 

DMC controller on a single-input, single-output (SISO) distillation column yielded 

superior results when compared with non-adaptive DMC. 

Maiti and Saraf predicted the step response coefficients, a;, using the FOPTD 

model as follows: 

(2.10) 

It is apparent that equation (2.10) is nonlinear with respect to the model parameters, viz. 

KP, the process gain; r, the process time constant; and I:i, the process delay. 

Consequently these cannot be estimated using standard recursive least squares. 

In Chapter 3, an adaptive strategy to identify the process by a low order 

parametric model is presented. Unlike the approach by Maiti and Saraf, we base the 

identification criterion on minimization of the sum of squared deviations between the 

predicted model output and the process measurements. Thus, while the DMC/QDMC 

controller uses the step response model, we utilize an autoregressive model with external 
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inputs (ARX) for identification purposes. The step response coefficients needed by the 

DMC/QDMC algorithm are obtained from the ARX model in a straightforward 

computation. The use of an ARX model enables use of standard recursive least squares 

for process identification. 

In all the above adaptive approaches, models are estimated online and control 

action calculated based on the assumption that the estimated model gives an exact 

representation of system dynamics. This is often referred to as the certainty equivalence 

principle (Astrom and Wittenmark, 1995). Ydstie (1996) identifies two issues that must 

be addressed in certainty equivalence control: (1) the estimated model must be well­

behaved in the sense that the controller stabilizes the model. This is often referred to as 

the admissibility problem; (2) if the parameter estimator ignores model uncertainty and 

unmodeled dynamics, the parameter values may grow unbounded. This is referred to as 

the parameter drift problem. Y dstie also discusses the gap between theory and practice in 

adaptive control and reports on the status of work to bridge the gap. 

Despite the strong market incentive for a self-tuning MPC controller, only one 

industrial application has been reported (Dollar, 1993). Qin and Badgwell (1997) suggest 

that, "barring a theoretical breakthrough, the situation is not likely to change in the near 

future." However, limited adaptation for deviations from base case models is foreseen as 

a practical solution (Froisy, 1994). 
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2. 7 Nonlinear Model Predictive Control 

The current generation of commercially available MPC technology is based on 

linear dynamic models, and therefore is referenced by the generic term "linear model 

predictive control. 11 Although often unjustified, the assumption of process linearity 

greatly simplifies model development and controller design. However, many processes 

are sufficiently nonlinear to preclude the successful application of LMPC technology. 

Such processes include highly nonlinear processes that operate near a fixed operating 

point (e.g., high purity distillation columns) and moderately nonlinear processes with 

large operating regimes (e.g., multi-grade polymer reactors) (Henson, 1998). 

Henson notes that, "while NMPC offers the potential for improved process 

operation, it offers theoretical and practical problems which are considerably more 

challenging than those associated with LMPC. 11 The prime difficulties arise from 

nonlinear process modeling and the subsequent computational issues associated with 

online solution of nonlinear programs. Bequette (1991) notes that all NMPC algorithms 

are formulated using nonlinear programming techniques. Further, Mayne (1996) argues 

that model constraints corresponding to satisfaction of model equations over the 

prediction horizon, generally, result in a nonconvex optimization. Various solution 

methods of solving the online finite horizon nonlinear control problem are available 

(Santos, et al., 1995; Mayne, 1995). Staus et. al (1996) study a class of nonlinear 

problems for which the global optimum can be computed online. A similar study is 

reported by Sriniwas and Arkun (1995). 
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A common approach to the nonlinear MPC problem has been to use successive 

linearization of nonlinear models. Garcia (1984) proposed a nonlinear QDMC algorithm, 

a simple extension of DMC/QDMC based on online successive linearization of a 

mechanistic nonlinear model. Nonlinear MPC using closed-loop state estimation by an 

extended Kalman filter has been proposed by Lee and Ricker (1994). Gattu and Zafiriou 

(1995) augmented the system states with stochastic states to account for modeling errors 

and disturbances. Banerjee et al. (1997) describe a method of state estimation for 

nonlinear systems that are subject to multiple operation regimes and make transitions 

between them. The nonlinear process is approximated by a linear parameter varying 

system which consists of local linear models. Krishnan and Kosanovich (1998) also 

present a multiple model based MPC scheme. The linear time invariant models are 

computed oftline along a pre-defined reference trajectory of a batch process. Each of the 

above nonlinear MPC techniques use the standard quadratic programming optimization 

method to obtain control inputs. Also, they assume availability of accurate nonlinear 

model ( or multiple linear models). 

The industrial success of LMPC is largely due to the availability of commercial 

software packages, which can be used to· develop linear dynamic models directly from the 

process data. These linear empirical models are used by LMPC controller to predict and 

optimize process performance. On the other hand, the complexity of nonlinear systems 

precludes straightforward extension of linear theory to nonlinear system identification 

techniques (Pearson and Ogunnaike, 1997). Cook (1986) indicates that because of the 

large number of different types of nonlinearities can occur in practice, extending a basic 
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control scheme to account for all possibilities is unrealistic. One way of tackling the 

general nonlinear problem is to employ a :framework, within which a large number of 

nonlinear processes can be adequately approximated. Volterra and Hammerstein models 

(Agarwal and Seborg, 1987) and neural networks (Hussain, 1999) have been studied as 

nonlinear modeling tools. As an alternative, the NMPC controller may be based on a 

fundamental model which is derived :from conservation laws and constitutive equations. 

These two classes of nonlinear models are discussed below: 

Fundamental Models: Fundamental dynamic models are derived by application of 

transient mass, energy and momentum balances in conjunction with constitutive 

equations. The continuous time differential equations are discretized by some method 

(e.g., orthogonal collocation on finite elements (Meadows and Rawlings, 1997)) to allow 

incorporation in the NMPC scheme. 

Fundamental models enjoy certain advantages over nonlinear empirical models. 

As long as the underlying assumptions remain valid, fundamental models can be 

expected to extrapolate to operating regions which are not represented in the data set. 

Further, model parameters can be estimated from laboratory experiments and routine 

operating data instead of time-consuming plant tests. 

Henson (1998) notes that most of the NMPC studies based on fundamental 

models reported in the open literature consist of a single unit operation and a relatively 

simple nonlinear dynamic model. He suggests that this is II attributable to the inherent 
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difficulties involved in deriving fundamental dynamic models for large scale processes. 11 

One solution is to apply model reduction techniques which result in a simplified model 

with similar input/output behavior as of the rigorous fundamental model. Use of such an 

approach has been applied to chemical reactors (Duchene and Rouchon, 1996) and 

distillation columns (Levine and Rouchon, 1991). Alternatively, one may derive 

simplified fundamental models that partially describe process characteristics. 

Applications of the simplified fundamental model approach have been reported by 

Benallou et al. (1986) and Hwang (1991). 

Empirical Models: In many applications, lack of process knowledge precludes 

the formulation of a fundamental model. This necessitates the development of empirical 

models from dynamic plant data. However, unlike the well-developed theory of linear 

system identification, nonlinear system identification is a less well understood area. A 

prime difficulty associated with nonlinear empirical modeling is selection of a suitable 

model structure. Pearson and Ogunnaike (1997) summarize the following types of 

discrete-time nonlinear models utilized for NMPC: (1) Hammerstein and Weiner models, 

which consist of a serial combination of a static nonlinearity with a linear dynamic 

model, (2) Volterra models, which are expansions of nonlinear functions, (3) auto 

regressive moving average models with external inputs (ARMAX), and (5) artificial 

neural network models. Henson (1998) describes nonlinear system identification as a 

five step procedure: 

(1) model structure selection, 

(2) test input sequence design, 
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(3) noise model, 

(4) estimation of model parameters and 

( 5) model validation. 

Empirical models offer several advantages over fundamental models. Detailed 

process knowledge is not necessary for empirical model development. This consideration 

is important for complex processes. Secondly, complexity of empirical models can be 

restricted thereby reducing computations during the online nonlinear optimization. 

NMPC based on empirical models such as Hammerstein and Wiener models (Chu and 

Seborg, 1994), Volterra models (Maner, et al., 1996), ARMAX models (Sriniwas and 

Arkun, 1995) and neural network models (Su and McAvoy, 1997) has been reported by 

several investigators. Among these, artificial neural networks are the most popular 

framework for empirical model development. 

2.8 Neural Network Models In Process Control 

In the past few years, renewed interest has been paid to neural network based 

models because of their simple structure and fast and effective computational 

performance (Su and McAvoy, 1997). Their flexibility makes them suitable for a wide 

class of applications such as system identification and control, inferential modeling, and 

fault diagnosis. The most attractive property of neural networks (NN) is their ability to 

represent any arbitrary nonlinear functional mapping between input and output data 

(Hornik, et al., 1989). This is achieved through a training process that takes place by 

repeatedly presenting the input data and the corresponding target output to the network. 
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After a sufficient number of training iterations, the network creates an internal 

approximate process model by learning to recognize the map relating the outputs to the 

corresponding inputs. It is important to note that this internal model is not based on any 

specification of the actual process mechanism; the NN itself generates this approximate 

model. 

In reality, the control engmeer has to have a reasonable amount of process 

knowledge (MacGregor, et al., 1991). Indeed, the critical point in developing a robust 

NN model is selecting the most representative process inputs, and this can only be 

achieved through an understanding of the underlying process physics. The ability of 

neural networks to handle complex nonlinear processes opens a wide range of 

opportunities in advanced nonlinear process control. Among the large number of 

feedforward NN algorithms, multilayer perceptron (MLP) (Rumelhardt, et al., 1986) and 

radial basis function (RBF) networks (Moody and Darken, 1989) have been widely used 

as nonlinear models for MPC, inferential measurements and process monitoring. In the 

next two sub-sections, literature on application of NN s in inferential modeling and 

nonlinear MPC is reviewed. 

(a) Neural Networks in Inferential Modeling: A number of applications of 

neural networks as inferential models (Kramer, 1992; Yang, et al., 1995) have been 

reported. Industrial use ofNN based inferential models has also been reported (Samdani, 

1990; Piovoso and Owens, 1991; Schnelle and Fletcher, 1990). Kresta et al. (1996) 

presented model development using partial least squares (PLS). The efficacy of the 

method was demonstrated by inference of the heavy key composition in the distillate. 
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The independent latent variables were constructed using various temperature and flowrate 

measurements. Qin et al. (1997) constructed soft sensors using a principle component 

analysis (PCA) approach for continuous monitoring of emissions. However, in most 

instances, the network inputs are assumed to be known a priori and the model developed 

by training the neural network using exemplars. As noted by McGregor et al. (1991), a 

poor choice of model inputs can result in a poor NN model. 

In Chapter 4, we discuss a unified framework to construct neural network based 

inferential models. The methodology includes selection of model variables from a large 

candidate set. 

(b) Neural Networks in NMPC: Applications using recurrent NNs have also 

been reported by Karjala and Himmelblau, (1994). Psichogis and Ungar (1991) used an 

MLP model of a continuous stirred tank reactor to control product concentration using 

the MPC scheme. Using feedback to account for modeling errors, they obtained offset­

free tracking of setpoints. Willis et al. (1991) used an MLP to control product 

concentration in a CSTR. Turner et al. (1995) used NNs for distillation column control. 

Gokhale et al. (1995) used a steady-state MLP model to replace the tray-to-tray model 

used in a predictive model based controller to control the product compositions in a 

propylene-propane splitter. Emmanouilides and Petrou (1997) utilized an MLP model in 

a model predictive scheme to control the substrate concentration and pH of a complex 

nonlinear anaerobic digestion system. The model was estimated online and provided 

setpoint tracking in presence of process characteristic changes. 
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Hernandez and Arkun (1990) applied MLP networks to estimate the disturbance 

due to nonlinearities in conjunction with dynamic matrix control. This estimate was 

added to the linear model prediction during feedback. Case studies demonstrated the 

superiority of this algorithm relative to conventional linear DMC. 

In all of the above neural network based NMPC approaches, the neural network 

model is used to predict the future process behavior and this information is used by the 

online optimizer to generate the next control input. Thus, the model and the optimizer 

are separate entities of the controller. In Chapter 5, the optimization problem of the 

controller is directly parameterized in terms of an RBF network model. This novel 

approach exploits factorability of Gaussian nodes to separate the decision variables of the 

nonlinear program from all known quantities. Such a strategy allows analytical 

expressions for the gradient and Hessian of the objective function. Consequently, the 

computational efficiency of the controller is enhanced by reducing the computational 

burden during each iterative step of the nonlinear program and also the number of 

function calls during optimization. 

Most of the neural network based NMPC applications reported in the literature 

use small processes to demonstrate effectiveness of control. However, to be useful, 

process control algorithms must successfully operate in the modern process industry 

environment. To this end several challenging problems were published in Computers & 

Chemical Engineering, Vol. 17, 1993, to enable the control community to test their 
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control algorithms on industrially significant problems. The Eastman problem (EP) 

entitled, "A Plantwide Industrial Process Control Problem" by Downs and Vogel (1993) 

is one such case. In Chapter 6, we test the factorized RBF based NMPC developed in 

Chapter 5 for control of the Eastman challenge process. 
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3 ADAPTIVE QUADRATIC DYNAMIC MATRIX CONTROL 

Chapter Overview 

This chapter presents an adaptive application of quadratic dynamic matrix control 

(QDMC) using recursive least squares method. Model adaptation is useful when the 

existing model is inaccurate and an accurate model is desired. In the proposed work, the 

process is identified under closed-loop conditions using an autoregressive model with 

external inputs. A detailed description is provided for the case where the process can be 

approximated as a first-order-plus-time-delay model. The issue of unknown time-delay is 

addressed by making use of a ( 1, 1) Pade approximation. Parameterization of such models 

is discussed for single input single output and multiple input multiple output systems. 

Simulation studies using generic first-order-plus-time delay processes and a nonlinear 

CSTR demonstrate performance of the adaptive QDMC scheme. 

3.1 Introduction 

Model predictive control (MPC) has been widely accepted in the process industries 

(Qin and Badgwell, 1997) for over two decades. During this period, a large number of 

MPC algorithms have been proposed in the literature. Generalized predictive control 

(Clarke, et al., 1987) (GPC), model algorithmic control (Richalet, et al., 1978), dynamic 

matrix control (Cutler and Ramaker, 1979) (DMC), and quadratic dynamic matrix control 

(Garcia and Morshedi, 1986) (QDMC) are some of the most popular approaches. A 

number of successful implementations of the DMC/QDMC (Cutler and Hawkins, 1987; 
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Kelly, et al., 1988; Van Hoof, et al., 1989; Bozin and Austin, 1995; Meziou, et al., 1996) 

and GPC (Clarke, 1988; Dion, et al., 1991) algorithms have been reported in the literature. 

All MPC algorithms share a common underlying philosophy, that is, use of an explicit 

model to predict the process behavior over a future horizon, and implementation of 

control action that steers the process towards predetermined objectives in an optimal 

sense. The dependence of MPC techniques on the "goodness" of a model makes it an 

ideal candidate for adaptation. 

Many chemical processes are inherently nonlinear in their input-output 

relationships. The models used in linear MPC describe a process well only in the vicinity 

of some fixed operating point. As process conditions deviate from the nominal operating 

point, model mismatch increases with a corresponding degradation in control 

performance. The problem is particularly severe in the process industries where the areas 

of a plant with the greatest economic incentives to apply MPC typically exhibit 

nonlinearity (e.g., a reactor system) and are time varying in nature (e.g., equipment 

fouling, catalyst deactivation, etc.). Plant operators frequently disable an MPC system 

when model mismatch compromises overall control performance. Recommissioning 

cannot be performed until the MPC models are updated or the operating conditions return 

to original design point. With the increasing emphasis on agile or flexible manufacturing, 

the latter may no longer represent a viable option. To address this issue, a number of 

enhancements of the MPC technique have been proposed. Some of these are briefly 

reviewed below. 
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Most industrial MPC algorithms use a heuristic of combining errors in model 

parameters and structure, measurement errors, unmeasured disturbances and other sources 

of plant-model mismatch into a constant bias term, viewed as a step disturbance acting on 

the output. Lundstrom et al. (1995) showed by an example that such an assumption leads 

to poor response in presence of ramp-like disturbances. To obviate the need for the 

assumption of step disturbance at the output, observer based MPC algorithms have been 

proposed in literature (Ricker, 1990; Lee, et al., 1994). In the above approaches, the 

observer ( e.g. Kalman filter) is constructed using the nominal model of the plant and no 

attempt is made to update the model parameters. 

Control of nonlinear processes has been addressed by direct development of 

nonlinear MPC capability. Garcia (1984) extended DMC/QDMC to nonlinear MPC by 

performing online successive linearization of a mechanistic nonlinear model. Nonlinear 

MPC using closed-loop state estimation by an extended Kalman filter has been proposed 

by Lee and Ricker (1994). Gattu and Zafiriou (1995) augmented the system with 

stochastic states to account for modeling errors and disturbances. 

Control of processes over a wider operating region by using multiple models has 

been described by Banerjee et al. (1997). Their method uses state estimation for nonlinear 

systems that are subject to multiple operation regimes. The nonlinear process is 

approximated by a linear parameter varying system consisting of local linear models. 

Krishnan and Kosanovich (1998) also presented a multiple model based MPC scheme. 

The linear time invariant models are computed oflline along a pre-defined reference 
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trajectory for a batch process. Each of the above nonlinear MPC techniques use the 

standard quadratic programming optimization method to obtain control inputs. Also, they 

assume availability of an accurate nonlinear model ( or multiple linear models). No attempt 

is made to address uncertainty in the model parameters. 

All of the previously referenced approaches treat errors in model parameters along 

with other sources of process-model mismatch as a disturbance on the output and no 

attempt is made to estimate the model parameters directly. Model identification is 

considered as a separate activity from control. In this paper, we present a strategy that 

combines model parameter estimation and linear QDMC via standard methods in indirect 

adaptive control, while retaining the constant bias heuristic. Model uncertainty is 

addressed by estimating DMC/QDMC model parameters online. Such an approach may 

be useful in situations, where some or all model parameters are uncertain and a better 

estimate is desired. 

While the DMC/QDMC controller uses a convolution step response model, we 

utilize an autoregressive model with external inputs (ARX) for identification purposes. 

The step response coefficients needed by the DMC/QDMC algorithm are obtained from 

the ARX model by a simple computation. ARX models enable use of standard recursive 

least squares (RLS) for process identification. The proposed technique can be used to 

address model uncertainty in existing industrial MPC implementations in a straightforward 

way. The method may also be used in conjunction with state estimation techniques with 

linear models, but has not been pursued in the current work. 
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Use of parameter adaptation within the MPC framework is not novel. GPC was 

specifically developed for self-tuning/adaptive control applications and thus offers the 

potential for online model updates. The use of continuous autoregressive integrated 

moving average models makes GPC suitable for parameter estimation by recursive least 

squares. The industrially significant DMC/QDMC algorithms, on the other hand, use a 

truncated step response model and no attempt is made to evaluate model parameters 

online. The presence of a large number of step response coefficients in the DMC/QDMC 

model makes recursive identification at each sampling period an impractical task. To 

overcome this difficulty, Maiti and Saraf (1995) proposed calculation of only a few step 

response coefficients from the process input-output data. They fit a first order plus time 

delay (FOPTD) model by minimizing the sum of squared deviations between the 

calculated step response coefficients and those predicted by the FOPTD model. The 

FOPTD model was then used to extrapolate the remaining coefficients needed to fill the 

dynamic matrix. The implementation of the their adaptive DMC controller on a single­

input, single-output (SISO) distillation column yielded superior results when compared 

with non-adaptive DMC. 

The structure of an adaptive DMC/QDMC system is shown in Figure 3 .1. The 

adaptive system has two distinct loops (Astrom and Wittenmark, 1995): 

1) a standard feedback loop containing the process and the DMC/QDMC controller, 

2) a model parameter estimation loop using the recursive estimator. 
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Parameter Estimation loop 

Setpoint + 
1---.i MPC Controller 1--+----1H Process 

(e.g. QDMC) Input Output 

Feedback loop 

Figure 3.1: Block diagram of adaptive model predictive control system. 
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In sections 3.2 and 3.3, key issues of indirect adaptive control and closed-loop 

identification are reviewed. These include parameterization for SISO and MIMO models 

and use of a priori information. In section 3 .4, we use these ideas to synthesize an 

adaptive QDMC algorithm. A simplified analysis is presented to show that a SISO 

process controlled by DMC is closed-loop identifiable. Finally, section 3.5 presents 

simulation examples demonstrating the benefits of adaptive QDMC/DMC relative to the 

non-adaptive QDMC/DMC for FOPTD models and a nonlinear CSTR. 

3.2 Recursive Identification and Model Parameterization 

Ideally, process models used for control should be updated under closed-loop 

conditions. Furthermore, the model update procedure should be completed in less than 

one control interval so that it does not lag behind the input/output information flow. 

Recursive schemes are desirable in such situations for computational efficiency. In 

recursive schemes, the results of previous calculations are used to obtain a current 

estimate of the desired parameters. The recursive least squares (RLS) method is one such 

algorithm. Implementation of the RLS algorithm simplifies significantly when the model 

has the property of being linear in the parameters. A detailed treatment of least square 

estimators can be found in standard texts on estimation theory (Ljung, 1987; Mendel, 

1995). 
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One of the key elements of recursive process identification is the selection of the 

model structure. If sufficient open-loop data exist, it is possible to determine the order of 

a linear process using statistical methods (Box and Jenkins, 1994). However, many open­

loop stable chemical processes are well-described by low order models with time delay 

(Astrom and Wittenmark, 1995; Ogunnaike and Ray, 1994). The use of a first order plus 

time delay (FOPTD) model has been reported in a number of applications (Astrom and 

Wittenmark, 1995; Clarke, 1988; Ogunnaike and Ray, 1994; Wood and Berry, 1973). 

The remainder of this section discusses parameterization of FOPTD models. 

3.2.1 Single Input Single Output Systems (SISO) 

Let the process be described by the following model: 

y(i) +aly(i-1) +··· +any(i-n) = blu(i-d -1) + · .. + bmu(i-d -m) (3.1) 

where y(i) and u(i) are the process output and input, respectively, at the ;th instant, dis the 

process delay, and ai and bi represent the parameters of the model. In vector notation, 

y(i) = <VO (3.2) 

with the regressor vector, 

<l>=[-y(i-1) ··· -y(i-n) u(i-d-1) ··· u(i-d-m)f (3.3) 

and the parameter vector, 

(3.4) 

For a SISO process, the FOPTD model can be represented in the z-domain by the 

following transfer function: 
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(3.5) 

where ai, bi, and d are the model parameters and 0 represents the model parameter 

vector. It is noted that the above equation does not represent a single model, but a set of 

models (Ljung, 1987). The task of the identification algorithm is to determine the 

optimum value of the model parameter vector. The model represented by equation (3.5) 

is rewritten in difference form as: 

(3.6) 

If the delay, d, associated with the process is known, then equation (3. 6) is linear in the 

unknown parameters ai and bi. Often, the delay is determined by physical transport lag 

and varies with the magnitude of the manipulated variable (e.g., hydraulic delay in a pipe 

varies with the flowrate ). Consequently, it may also be necessary to estimate d in the 

FOPTD model. In this case, equation (3.6) becomes nonlinear and the standard RLS 

method cannot be used for parameter estimation. To overcome this problem, the delay 

term can be replaced by a pole-zero pair using the first order Pade approximation. Using 

this approach, the reparameterized model in z-domain becomes, 

where [ai a2 bi b2t is the vector of unknown parameters. The input-output model 

described by equation (3. 7) may be written in difference form without a delay term as: 

(3.8) 

or 

y(k) = <f 8 (3.9) 
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where the regressor vector, 

<I> = [-y(k-l) -y(k-2) u(k-l) u(k-2){ (3.10) 

and the parameter vector 

(3.11) 

More parameters are required to describe an FOPTD process using equation (3.8) 

compared to equation (3.6). However, equation (3.8) provides the ability to model a 

process with variable time delay and allows use of recursive least squares for closed-loop 

system identification. 

3.2.2 Multi-Input Multi-Output Systems (MIMO) 

A similar approach can be used to parameterize MIMO systems. Consider a 2x2 

system: 

(3.12) 

or in vector notation, 

y(z) = H(z, 9 )u(z) (3.13) 

The ijth element of H(z, 9 ) describes the relationship between the )th input and the ith 

output of the process. If the time delay in the input-output relations is not known or 

variable, the transfer function matrix H(z, 9 ) is constructed from the following elements, 

if b/z-1 +b/z-2 
h (z)= ·· I ·· 2 1+ IJ-+ lJ-aJ z a2 z 

(3.14) 
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The superscript ij indicates the location of the parameters in the matrix H(z, 9 ). The 

transfer function matrix can be expressed as the product of a numerator and denominator 

polynomial matrix using a left matrix fraction description: 

H(z, 9) = p-1(z, 9 )N(z, 9) (3.15) 

The factors, p-1(z, 9) and N(z, 9 ), are not unique. In one of the representations of the 

model described by equations (3.12) and (3.14), the denominator polynomial matrix, 

P(z, 9 ), is 

r(l JI -I II -2)(l 12 -1 . 12 -2) + a1 z + a 2 z + a1 z + a 2 z 

0 (1 21 -I 21 -2 )Q(l 22 -I 22 -2 )l 
+ a1 z + a 2 z + a 1 z + a 2 z 

(3.16) 

and the numerator polynomial matrix, N(z, 9 ), is represented by 

r 
(b II -I b 11 -2 )(l 12 -I 12 -2) 

1 z + 2 z +a1 z +a2 z 

(b 21 -I b 21 -2 )(l 22 -I 22 -2) 
1 z + 2 z +a1 z +a2 z 

(b 12 -I b 12 -2)(l II -1 II -21 
1 z + 2 z +a1 z +a2 z 

(b 22 -I b 22 -2 )(l 21 -I 21 -2) 
1 z + 2 z +a1 z +a2 z 

(3.17) 

It is desirable to reduce the degree of the determinant of the denominator 

polynomial matrix to ensure that a lesser number of parameters are required to describe 

the system. The model described by equation (3 .15) will be maximally reduced if the 

matrices P(z, 9) and N(z, 0) are left coprime (Brogan, 1991). However, in the absence of 

numerical values of the parameter vector, 9, no further identification of common factors 

is possible. Thus, the structure of the polynomial matrices in equations (3 .16) and (3 .17) 

is used to formulate the parametric model for recursive identification. Let a/ represent 
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the coefficient associated with the kth power of z-1 in the ijth monic polynomial of the 

denominator matrix, P(z, 0) and fJ/i the coefficients associated with the f1 power of z-1 in 

the ijth polynomial of the numerator matrix N(z, 0 ). The model represented by equations 

(3 .12) and (3 .14) is rewritten in difference form as follows: 

4 2 4 

y 1(k) =-La/ 1y 1(k-i)+ LLff1u/k-i) (3.18) 
i=I f=I i=I 

4 2 4 

y 2 (k) = -La/2yz(k-i) + LLJ3/1u1(k-i) (3.19) 
i=I J=I i=I 

Since the equations are linear combinations of the past measurements and inputs, they can 

be rewritten in the form of equation (3.9). The regressor vector, <I>, contains the past 

input-output data and the parameter vector, 0, consists of the unknown model 

parameters. 

3.3 A Priori Information And System Identification 

System identification is computationally simplified by incorporating all available a 

priori knowledge of the process. For instance, it may be known that in a 2x2 process, the 

output y 1 and input u2 are uncoupled. In this case, the transfer function element h12(z) will 

be identically zero. The (1, 1) element of the denominator polynomial matrix, P(z, 0) 

would simplify to (l+atz- 1 +a/z-2 ) while the (1,1) and (1,2) elements of N(z,O) 

would become (btz- 1 +b/z-2 )and O respectively. Compared to the generic model 

described by equations (3 .16) and (3 .17), the use of a priori information obviously makes 

a significant reduction in the number of model parameters that must be estimated. 
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As an additional demonstration of use of a priori information, consider the two 

input, one output system, 

(3.20) 

where the relationship between y and u1 is known but h12, is unknown. We assume h12 is 

of the form of equation (3.14). For identification purpose, the model may be 

reparameterized as: 

- y(k-l) + 0.8y(k-2) + 0.2u1 (k-5) 
T 

(k) ( . -y(k-2)+0.8y(k-3)+0.2u1(k-6) 
y -0.8y k-l)-0.2u1(k-4) = 

U 2 (k-1)- 0.8u2 (k - 2) 

U 2 (k-2)-0.8u2 (k-3) 

Thus, only the unknown part of the process is estimated. The known information about 

the relationship between y and u1, and the structure of h12 constitutes the a priori 

knowledge about the process and was employed to reduce the number of parameters in 

the identification model. 

Parameter reduction steps such as this are crucial since closed-loop identification is 

sensitive to the number of parameters to be estimated. The following example adapted 

from Gustavsson, Ljung and Soderstrom (1977) illustrates the problem. Consider a 

FOPTD process modeled by equation (3.6). Let us assume that the time delay is known. 

Also, let the process be regulated by a proportional feedback controller using the control 

law: u(k) = gy(k) where g is the fixed control gain. Then, all parameter estimates, 

a= a 0 + rg and b = b0 + r, for arbitrary r, (where a0 and b0 are the true process values) 
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give identical values of the least square criterion. Linear dependencies in the regressor 

matrix cause the least square solution to be non-unique. Thus, for nonzero r, an incorrect 

description of the open loop system is obtained. On the other hand, if the parameter a = 

a0 was known a priori, then the process would be identifiable. Thus, the difficulty in 

closed-loop estimation increases with number of parameters in the model. Note, however, 

that the problem with lack of closed-loop identifiability, in this example, would be avoided 

if a higher order feedback controller is employed. 

3.4 Adaptive Quadratic Dynamic Matrix Control 

The objective of the QDMC algorithm is to calculate a set of input moves, Au, 

such that a quadratic objective function is optimized over a future prediction horizon in 

the presence of constraints (Garcia and Morshedi, 1986). The QDMC objective function 

1s: 

(3.22) 

where e represents the vector of projected deviations of the outputs from the setpoints 

and A is a dynamic matrix, which relates the future projected outputs to the input move 

vector. The vector of future moves, Au, represents the solution that minimizes the 

objective function, rp. rrr weighs the output errors of the controlled variables. 

Excessive control moves are penalized by Ar A , the matrix of move suppression factors. 

QDMC implements hard process constraints by specifying linear inequalities as follows, 

Aumin ::;; Au ::;; Aumax 

Umin ::S; U ::S; Umax 

Y min :S Y :S Y max 
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The optimization problem represented by equations (3.22) and (3.23) constitutes a 

quadratic program. At each sampling instant, closed-loop control is achieved by 

implementing the first move of the optimal input profile i\u. The entire cycle is repeated 

at each sampling instant. 

In the remainder of this section, we present an analysis for closed-loop 

identification using DMC (Cutler and Ramaker, 1979) for a SISO system. The DMC 

control law is considered to be the solution of equation (3 .22) while ignoring constraints 

in equation (3.23) completely. The conclusions drawn from our adaptive DMC analysis 

form the basis for our discussion of the adaptive QDMC (AQDMC) algorithm. 

3.4.1 Closed-loop Identification with DMC 

To study the effect of DMC algorithm on the parameter estimation scheme, 

consider the first-order process model: 

y(k) = ay(k -1) + bu(k -1) (3.24) 

Although the parameter estimation is implemented incrementally using recursive least 

squares, the performance approaches that of the traditional, batch least squares solution, 

where the regressor matrix, <I>, is defined as, 

y(l) u(l) 

<I>= y(2) u(2) 

y(t) u(t) 
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and Y represents the vector oft measurements, that is, 

v = (y(2) y(3) . . . y(t + 1)Y (3.27) 

The elements ofY represent the process output measurements. The parameter vector, 0, 

consists of the unknowns a and b. 

Uniqueness of the least squares solution is essential in obtaining the correct 

estimate of the parameter vector O . This requires (I) to be of full rank. If the data used 

to construct (I) were collected during steady-state operation, the process outputs and 

inputs would be linearly dependent, causing (I) to be of rank one. Thus, the parameter 

estimator must be shut down during steady-state operation when the measurement data 

are no longer informative. 

To investigate the effects of the adaptive scheme on the regressor matrix, we 

consider the DMC control law (Cutler and Ramaker, 1979): 

(3.28) 

which minimizes the objective function in equation (3.22) with rrr and Ar A taken as 

the identity and zero matrices respectively. Let us assume that the step-response 

coefficients in the dynamic matrix are updated by the adaptation scheme at every control 

instant. The c x p matrix, (Ar A }-1 Ar at the kth instant may be represented as follows: 

(3.29) 
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where c and p represent the control and prediction horizons respectively. Note that 

elements sif are implicit functions of the model parameter estimates based on data up to 

k-1. 

The vector of future projected deviations from the setpoint, e, can be evaluated 

using the parametric model in equation (3 .24) as follows: 

i!(k + i) = r.,, -[ a,_,'y(k) + t,a,_t1h, ,u(k-1) J-(y(k)-a,_,y(k- l)-b,_,u(k-1)) 

(3.30) 

where i = 1, .. . ,p. Scalars rk+i, refer to the reference trajectory. The term in the square 

bracket represents the projected model output i samples in the future based on past 

control actions. Thus, the step response model used by DMC to calculate the projected 

error is replaced by a first order ARX model. The last term in equation (3 .30) represents 

the bias or current model-process mismatch. 

Using equations (3.29) and (3.30), the DMC control law (equation (3.28)) in terms 

of the model parameters is, 

u(k) + { (ts,, (a,_,, b,_,) t a,_,'-1 b,_, J-1 }u(k -1) = -(ts,, (a,_, A, ~a,_,' + 1 )}(k) 

+( a, ,ts"(a, ,A,) }<k-1) + ( ts,,(a,_,,b,_,)r ~,) 

(3.31) 

The following conclusions can be drawn from inspection of the control law: 
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1) The adaptive DMC controller is first order with respect to both the process output 

and input. Substitution of the control law in equation (3 .26) provides the regressor 

matrix. The order of the controller suggests that under fairly general conditions, the 

columns of (l) will be independent when the data correspond to process response to 

deviations from the reference trajectory. 

2) A similar analysis with a higher order SISO model, 

(3.32) 

yields a controller with the following structure, 

(3.33) 

where z-1 is the backward shift operator and rsp is the setpoint. Note that rk+i is the desired 

reference trajectory between the current measurement and the setpoint over the prediction 

horizon. The following relations between the degrees of the model and controller 

polynomials are satisfied: 

deg(R) = deg(B) and deg(S) = deg(A) (3.34) 

Thus, adaptive DMC has a two degree of freedom controller configuration. It is 

known from pole-placement design for self tuning controllers, that A and B can be 

uniquely determined only if polynomials R and Sare of sufficiently high degree (Astrom 

and Wittenmark, 1995). Further, to achieve identifiability in closed-loop, 

deg(S):::: deg(A 0
) (3.35) 

where A 0 is the denominator polynomial of the linear process. Equation (3.34) indicates 

that adaptive DMC satisfies the requirements for closed-loop identifiability provided the 
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selected identification model (equation (3.32)) has a degree greater than or equal to that of 

the underlying linear process. 

3) The constant bias term ensures that the order of the controller equals the order of 

the estimation model. Since a high order controller is important for closed-loop 

identification, the bias term has a beneficial effect on parameter estimation. 

4) If the biased projected future model output matches the reference trajectory, then 

u(k) = u(k-1). During such operation, the parameter estimator must be shut down. Thus, 

process excitation in adaptive DMC using the model in equation (3.32) is realized only by 

presence of non-zero projected error over the future horizon. 

5) No direct relationship emerges between parameter estimation and the prediction 

and control horizons. However, the control and prediction horizons serve as tuning 

parameters and therefore influence the model estimates. 

3.4.2 Algorithm for adaptive QDMC 

To ensure full rank of the regressor matrix, (I>, model adaptation should be 

performed only when the plant data exhibit adequate excitation. Astrom and Wittenmark 

(1995) discuss triggers for model updating based on calculation of covariances and 

spectra. However, simpler methods are often used in practice. A common method 

involves a criterion comparing the magnitudes of the variations in inputs and outputs with 

predetermined threshold values. In the current work, the recursive calculations are 

performed only if this criterion is satisfied. A drawback of this simple test lies in 

interpreting measurement noise as excitation. Another limitation is that the consistency 

and unbiasedness of least square estimates can be inferred only if the measurement noise is 
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white (Ljung, 1987; Mendel, 1995). It may be possible to alleviate these problems by 

designing suitable pre-whitening noise filters (Box and Jenkins, 1994) and triggers for 

model adaptation. 

In the simulation examples presented at the end of this paper, the initial values of 

the model parameters are assumed to be zero. The AQDMC algorithm is initialized by a 

nominal control model. The nominal model represents the existing control model that is 

no longer fully descriptive of the underlying process. As parameter estimates begin to 

arrive sequentially, they are checked for convergence based on a predetermined tolerance 

on the rate of parameter change. If the convergence criterion is satisfied, the step 

response coefficients used by the DMC/QDMC controller are calculated from the 

estimated model and replace the nominal step response model. After the initial 

replacement of the· nominal control model, the parameter adaptation is continued with the 

arrival of new input/output data, provided the excitation criterion is satisfied. The step 

response model is recalculated whenever a new converged parameter estimate becomes 

available. A schematic description of the various phases of the algorithm along a 

parameter estimation trajectory is described in Figure 3 .2. 

Use of an inadequate nominal model in the initial phase of the AQDMC algorithm 

may lead to poor control until the parameter convergence condition is satisfied and the 

adapted parameters employed. This is particularly significant if large number of 

parameters need to be estimated since they will typically require measurements, which are 

obtained sequentially, over a longer period to satisfy parameter convergence. In such 
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initial values 

/___;.....---

parameters converge; 
use estimated model 

Adaptation stopped; 
no excitation 

,,..,.........__________ .. 

adaptation~~-------- •• 

parameters converge; 
use estimated model 

Figure 3.2: Use of estimated parameters is first made when they converge. The 
step response coefficients are calculated after this point whenever new 
converged estimates become available. Parameter adaptation is 
stopped when the data are no longer exciting. 
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cases, it may be beneficial to override the convergence criterion and use the adapted 

parameters for control after a pre-determined period. 

Unlike DMC, the QDMC controller observes hard constraints and avoids 

aggressive control action by use of a move suppression factor ( Garcia and Morshedi, 

1986). From a parameter estimation standpoint, this has the undesirable effect of 

generating low energy input signals. This situation potentially slows down convergence of 

parameter estimates. However, move suppression and constraints are required from a 

process perspective and must be tolerated. 

Reset action is implemented in DMC and QDMC by biasing the current predicted 

output to match the current measurement. This technique eliminates steady-state offset 

errors. In AQDMC, additional reset action is introduced by the parameter estimator. 

Since the parameter estimator attempts to determine the model of the process, while the 

controller endeavors to keep the controlled variables at their respective setpoints, it is 

expected that the adaptive controller will compensate for steady state errors, thereby 

minimizing the impact of the biasing operation. The flowchart depicting the adaptive 

QDMC algorithm is shown in Figure 3.3. 

3.4.3 Conversion of identification model to step response model 

The model for process identification can be described by equation (3.6) or (3.8) 

depending on the choice of model structure. Conversion to step response model is 

achieved by assuming all initial conditions to be zero and implementing a step input, u(k) = 
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Figure 3.3: Adaptive QDMC algorithm. 
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1, k = 0, 1, ... to the process. The step response coefficients are then calculated recursively 

as the response to the input sequence. 

3.5 Simulation Examples 

The AQDMC algorithm was tested usmg simulations with MATLAB. The 

optimization of the quadratic objective function (equation (3.22)) including inequality 

constraints (equation (3.23)) was performed using the standard quadratic programming 

function (qp.m) available in MATLAB. In the following examples, the initial values of the 

unknown model parameters are assumed to be zero. The process can be approximated 

using a first-order-plus-time-delay model. The control horizon was set at 5 sample 

periods while the prediction horizon used was 80 sample periods. The error penalty and 

move suppression matrices were diagonal with identical non-zero elements of 1 and 0.02, 

respectively. Parameter estimation was performed only when the absolute value of change 

in either the input or output values exceeded 2E-04. The estimated model first replaces 

the initial nominal model when the variation in parameter estimates dropped to less than 

2% of the previous value. Subsequent model updates are performed whenever the 

convergence criterion of 2% is satisfied. Model parameters are adapted whenever the 

excitation condition is satisfied. 

Example I: S/SO and known time delay: Consider the SISO process where the 

actual process can be characterized as: 

0.0154z--4 
h (z)----

process - 1- 0.8187z-] (3.36) 
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For this case we assume it is known that the time delay of the process is 3 sample periods 

while the other parameters are unknown. The initial control model is: 

h ( ) _ 0.0028z-4 

initial model z - 1- 0.9623z-] (3.37) 

A setpoint change of 0.01 is introduced. The constraints are defined as: 

0.25~~uk+J ~-0.25; l~uk+J ~-1, for j=l, ... ,5, 

0.02~Yk+J ~-0.02,for j=l, ... ,80 

Figures 3.4(a) and 3.4(b) show the output response and input for the process. The dashed 

curve represents performance of the QDMC algorithm while the solid line represents the 

AQDMC algorithm. Figure 3.4(c) shows the estimation history for the model parameters. 

The nominal model (equation (3.37)) is replaced by the estimated model at k = 25 when 

the model parameters converge. Thus, the AQDMC and the QDMC results are identical 

until k = 25, after which the AQDMC controller adapts the model parameters whenever 

the excitation condition is satisfied. At k = 71, the process reaches steady state operation 

and the input-output data contain no new information. Here, the parameter estimator is 

shut down. 

A comparison of the step test results of the estimated model with the actual 

process is shown in Figure 3 .4( d). It is seen that the initial estimated model used at k = 25 

does not approximate the process well. However, the quality of the estimates improves 

quickly. Since the process and the model used by the estimator conform to the same 

structure, it is possible to compare the estimated parameters with the actual values. 
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Figure 3.4: Example 1: Comparison of AQDMC and QDMC algorithms used to control a 
SISO process. Both the process and the model structure used by AQDMC 
are as shown in equation (3.5). The time delay of the process is known. 
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It is seen from Figure 3. 4( c) that the estimated parameters approach the true values 

specified in equation (3 .3 8). At k = 71, the estimated model is: 

0.018z--4 
h estimated model (z) = 1- 0.779z-' (3.38) 

Thus, the ability of the AQDMC controller to effectively "learn" the process improves 

control performance as expected. 

Example 2: SISO and unknown time· delay with white noise: This example 

illustrates the performance of the AQDMC algorithm in the presence of white 

measurement noise and unknown time delay. Let the process and the initial model be 

represented by equations (3.36) and (3.37) as before. Also, let the constraints be the same 

as in the previous example. In this case, we also assume the time delay is unknown. Since 

the time delay, d, associated with the process is unknown, equation (3 .6) is no longer 

linear in parameters and the model represented by equation (3.8) must be employed. 

Gaussian white noise with zero mean and standard deviation 0.001 is added to the output 

measurement. 

The process outputs and inputs in response to a setpoint change of O.01 are shown 

m figures 3.5(a) and 3.5(b), respectively. A measurement filter is not used. The 

parameter estimation history is shown in figure 3. 5 ( c). The controller replaces the initial 

model with the estimated model at k = 25. Figure 3.5(d) illustrates the step response of 

the model at various stages of identification. The estimated model exhibits an inverse 

response due to a zero located outside the unit circle ( at -bzf b 1 ::::: 1. 7, for the estimated 
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Figure 3.5: Example 2: Performance of the AQDMC algorithm in presence of 
white noise. 
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model at k = 150). · This represents an undesirable trait introduced by use of 

overparameterized model structure. The estimated model is: 

h ( ) - 0.025z-1 + 0.042z-2 

estimatedmodel z = 1- 0.316z-l - 0.476z-2 
(3.39) 

Direct comparison of the estimated model to the actual process model is not 

possible because of the different model structures. However, the gains for both models 

can be calculated using the final value theorem. The gains for the estimated and actual 

process models are 0.082 and 0.085, respectively. 

Example 3: MIMO and unknown time delay: Consider a 2x2 process whose 

dynamics are defined as: 

0.006z-4 - 0.0043z-3 

l-0.92z-1 1-0.9355z-1 

Gprocess(s) = (3 .40) 
0.0096z-4 -O.Oll 7z-3 

1-0.9184z-1 1-0.9066z-1 

The process constraints are defined as: 

0.25 ~ Au12 . ~ -0.25; 2 ~ u1 2 . ~ -2, for j = 1, ... ,5, 
, k+J . ' k+J 

0.04 ~ y 12k . ~ -0.04, for j = 1, ... ,80 
, +J 

We assume no information is known regarding the process delays. The parameterized 

model structure used in the identification step is based on equations (3.18) and (3.19). 

The initial model used by the QDMC controller is 
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0.0022z-5 -0.0032z-2 

l-0.9592z-1 1- 0.9672z-1 

Ginitia1 mode1(s) = (3.41) 
o.oosz-6 -0.0042z-2 

1- 0.9535z-1 1-0.9512z-1 

At k = 0, a setpoint change of 0.02 is introduced for Yi and is stepped back to 0.0 at k = 

101. Figures 3. 6( a) and 3. 6(b) show the response of the two process outputs controlled 

by the QDMC and the AQDMC controllers. Due to the large process-model mismatch, 

the QDMC controller is unable to control the process and the outputs settle at steady 

values due to non-availability of input resources as defined by the constraints (i.e. u1,2min= 

-2). The AQDMC controller uses the initial model described by equation (3 .41) until k = 

30. Although the model estimates have not attained steady values (see Figure 3.7(a)), we 

override this criterion and employ the intermediate estimated model at each control 

execution. Now, the dynamic matrix is time varying and provides additional input 

excitation to the process. Although the process response moves towards the setpoint, the 

performance is sluggish. The process does not attain the desired output values until k = 

100 when the new setpoint is implemented. Now, the adaptive system shows improved 

performance due to improved model parameter estimates based on a larger amount of data 

available to calculate the estimates. 

The estimation trajectories of some of the model parameters are shown in Figure 

3.7(a). The significant change in slopes at k = 101 shows the increase in the rate of 

estimation of parameters. This is due to the availability of informative input-output 

process data in response to the new setpoint change. The step response of the converged 

model at k = 198 is shown in Figure 3. 7(b ). 
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Figure 3.6: Example 3: Comparison of AQDMC and QDMC algorithms used in the 
control of a 2 x 2 process. At k = 0, the setpoint for output 1 is set to 
0.02. At k = 101, the setpoint is stepped back to 0.0. 
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Example 4: Nonlinear CSTR As a final example, we consider control of a non-

adiabatic, continuous, stirred-tank reactor with a first order irreversible reaction. The heat 

of reaction is removed by circulation of cooling water in the reactor jacket. Uppal et al. 

[1974] describe the following system of equations that govern the process dynamics, 

(3.42a) 

(3.42b) 

States x1 and x2 represent reactant conversion and a dimensionless reactor 

temperature. The manipulated variable, u, is a dimensionless temperature of the reactor 

jacket. The steady state characteristic of the reactor for parameters, P = 3. 0, r = 40, B = 

22 and Da = 0.082, is shown in Figure 3.8. The process exhibits low gain at small values 

of conversion (1% to 4%) and considerably higher gain (in excess of 80 times the low 

gain) at higher conversions (> 18% ). A linear model is developed by conducting a step test 

that describes the relationship between u and x1 at low conversions ( in the vicinity of 1 % 

to 4%), 

h ( ) _ 0.0063z-1 

initialmodel z -1-0.3886z-' (3.43) 

Performance of a DMC controller which employs the above model for various 

setpoint changes is shown in Figure 3.9(a). At low conversion values, the DMC controller 

shows adequate performance. However, when a new setpoint (x1 = 0.18) is implemented, 

the DMC controller does not recognize the high plant gain in the new 
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Figure 3.8: Example 4: Steady-state behavior ofCSTR for/J= 3.0, y= 40.0, B = 22 
and Da = 0.082. 
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region, resulting in aggressive control action. The system becomes unbounded when the 

next setpoint change (from 0.18 to 0.19) is implemented. 

For purposes of adaptation, a model structure of equation (3.6) is selected. The 

process delay, d, is assumed to be zero. The solid curve in Figure 3.9(a) shows the 

corresponding behavior of the adaptive DMC controller. Model adaptation is triggered at 

k = 3 00 units, when the setpoint is changed to O .18. The model parameters are estimated 

for the high-gain environment (see Figure 3.9(c)) and used for control. At x1 = 0.18, the 

estimated model steady-state gain was 0.433 (at k = 390, when the adaptation was turned 

off due to lack of excitation) while the process steady-state gain= 0.55. The nominal 

model gain remains unchanged at 0.0103 which is inaccurate at the new setpoint. When 

the setpoint is changed to 0.19, the parameter adaptation continues and the controller 

successfully steers the plant to the new setpoint. Figure 3.9(d) shows the plant model 

mismatch for the non-adaptive and adaptive versions of DMC. The mismatch is small 

when the adapted model is used relative to standard DMC. 

For adaptive control of the nonlinear CSTR problem, two modifications were 

made to the AQDMC algorithm vis-a-vis previous examples. (1) a forgetting factor of 

0.92 was used with the recursive least squares algorithm, which discounted old 

measurements and emphasized recent ones, (2) the adapted FOPTD model in deviation 

form was constructed around the steady-state point (x1,s = 0.18, Us= -0.007). 
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Figure 3.9: Example 4: Comparison of adaptive DMC and non-adaptive DMC 
performances for control of nonlinear CSTR. The nominal model was 
developed for low conversions (1 to 4% conversion). The DMC system 
response is unbounded for operation in high conversion regions while 
the adaptive DMC controller modifies controller parameters to reflect 
larger gain in the high conversion region. 
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3.6 Conclusions 

Performance of the quadratic dynamic matrix control algorithm is sensitive to the 

presence of model parameter errors along with other sources of process-model mismatch. 

To overcome model parameter errors, we proposed an online model estimation technique 

using the recursive least square algorithm which can be integrated with QDMC to provide 

an adaptive QDMC algorithm. The usefulness of the algorithm was demonstrated through 

simulation examples. 

An analysis of adaptive DMC was performed to show that the controller is closed­

loop identifiable provided the identification model is of sufficiently high degree. In this 

study, processes well described by FOPTD models were considered. The efficacy of the 

adaptive technique for these processes was successfully demonstrated for linear and 

nonlinear SISO systems. The benefits of leveraging a priori information were also 

illustrated. 

For MIMO systems, the use of AQDMC controllers is computationally more 

involved due to the large number of parameters required to describe such processes. 

Estimation of a large number of parameters requires a large data set. The data are 

obtained sequentially from the process and hence, the time required to obtain a reasonable 

estimate of the model is increased. However, this problem can be alleviated if model 

uncertainty affects only a smaller subset of the parameters which need to be estimated. 
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In this work, measurements were used for adaptation when variations in inputs and 

outputs were larger than a predetermined threshold value. This method worked well for 

the noise-free simulation examples. However, an issue that remains to be addressed is 

development of suitable adaptation triggers in presence of measurements corrupted by 

noise. 
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4 DEVELOPMENT OF INFERENTIAL MEASUREMENTS USING 

NEURAL NETWORKS 

Chapter Overview 

In many industrial processes, the most desirable variables to control are measured 

infrequently off-line in a quality control laboratory. In these situations, application of 

advanced control or optimization requires use of inferred measurements generated from 

correlations with measured process variables. For well-understood processes, the form of 

the correlation as well as the choice of inputs may be known. However, many industrial 

processes are too complex and the appropriate form of the correlation and choice of input 

measurements are not obvious. Here, process knowledge, operating experience, and 

statistical methods are crucial in development of correlations to be used for inferential 

measurements. 

This chapter describes a systematic approach to development of nonlinear 

correlations for inferential measurements using neural networks. A three-step procedure 

is proposed. The first step consists of data collection and preprocessing. In the second 

step, the process variables are subjected to simple statistical analyses to identify a subset 

of measurements to be used in the inferential scheme. The third step involves generation 

of the inferential scheme. We demonstrate the methodology by inferring the ASTM 95% 

endpoint of a petroleum product using actual data from a U.S. domestic refinery. 
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4.1 Introduction 

Methods for online control and optimization of processes are based on reliable 

and accurate measurements of key variables. However, not all important variables can be 

measured in real-time to allow for timely action based on their measurements. The lack 

of key measurements can be attributed to various factors (Marlin, 1995): (1) insufficient 

automation of soine sensitive analyses without human intervention; (2) even if real-time 

measurement is possible, the cost of installing an additional sensor may not be 

economically attractive. The hard-to-measure variables usually represent product quality 

or are of direct economic interest. Often, these variables are inferred by correlations 

involving available measurements. The inferential model provides an estimate of the 

variable, which can then be incorporated in control and monitoring schemes. 

Although inferential models are widely used in industry, only a few techniques of 

inferential model development have been discussed in open literature. Kresta et al. 

(1996) presented model development using partial least squares (PLS). The efficacy of 

the method was demonstrated by inference of the heavy key composition in the distillate. 

The independent latent variables were constructed using various temperature and flowrate 

measurements. Qin et al. (1997) constructed soft sensors using a principle component 

analysis (PCA) approach for continuous monitoring of emissions. Both of the above 

approaches are purely data-driven. The inputs to the inferential model are linear 

combinations of the measurements (latent variables in PLS, principle components in 

PCA) such that they describe the significant variability of the data set. Thus, while the 
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· resulting correlation is often adequate, it fails to provide an intuitive sense of dependence 

of the inferred variable on the measurements. 

In this work, we adopt the route of variable selection followed by regression. 

Thus, unlike the above approaches, only those measurements that have a significant 

influence on the inferred variable are included in the correlation. Selection and use of the 

measured variables in the inferential model requires considerable process insight. In case 

of physically large and highly integrated processes, enumeration of candidate variables 

based on process insight alone may not be feasible. Moreover, if the set of candidate 

measured variables is large, development of the correlation can easily become a time­

consuming procedure. Identification of variables to be employed in the correlation is 

accomplished using simple . statistical tools in conjunction with process knowledge. The 

correlation is then developed with the aid of regression using neural network models. 

Section 4.2 discusses a three-step procedure to develop inferential measurements 

beginning with collection of data from the process. Section 4.3 describes a situation from 

the refining· industry, which requires inferential measurements to control the process. 

Sections 4.4, 4.5, and 4.6 illustrate the three-step procedure to generate inferential 

measurements as applied to the situation described in S.ection 4.3. Finally, conclusions 

are presented in section 4.7. 
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4.2 Methodology 

Large and complex processes contain a number of controlled and monitoring 

variables and a larger number of measured variables. If a desired variable y cannot be 

measured, then it must be inferred using a suitable subset of p · measured variables, { Xi, 

i=l,p} selected from the larger set ofn candidate variables. The choice of then measured 

variables may be based on the investigator's past experience or process insight. Thus, the 

problem of inferential measurement may be decomposed into three sub-problems: 

a) data collection and preprocessing, i.e. the variable we wish to infer and the 

candidate set of n measured variables; 

b) identification of a subset of p measured variables which will be used in the 

inference of the unmeasured variable, y; 

c) approximation of the relationship between the inferred variable, y, and the subset 

identified in sub-problem (b ), {xi, i= 1,p}, using neural networks. 

Thus, we seek a correlation of the form: 

y == f({xi,i=l,p}) (4.1) 

Modeling by linear regression uses a similar three-step procedure. The number of 

predictor variables included in the linear model fixes the number of model parameters 

and hence its complexity. For instance, a model with three predictors contains four 

parameters (including the intercept). However, in neural network models, the model 

complexity depends on the number of nodes in hidden layer, in addition to number of 

predictor variables. Sub-problem (b) keeps the model complexity in check with respect 

to number of predictor variables. In this work, the number of nodes in hidden layer is 

chosen by trial and error based on minimum mean square error. 
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In the remainder of this chapter, the unmeasured variable, y, will be referred to as 

the dependent or response variable and the measured variables may occasionally be 

referred to as the independent or regressor variables. The following three subsections 

describe each sub-problem. 

4.2.1 Sub-problem (a): Data Collection and Preprocessing 

The first step in the development of a correlation is collection of data consisting 

of the dependent and the candidate independent variables. Experience and process 

insights often guide the choice of the candidate independent variables. It is important to 

choose all variables, which can potentially influence the inferred dependent variable. It is 

expected that sub-problem (b) will screen out irrelevant independent variables from the 

subset of independent variables which will be employed in the correlation. 

Further, the data required to develop the model must reflect the conditions under 

which it will be used. Let us assume that the correlation developed will be used to infer a 

variable during steady state operation of the process. Thus, due care must be taken to 

ensure that the data indeed reflects steady state conditions. To remove the effect of local 

transients, the sampled process variables like pressure, temperature and flow may be 

averaged over a suitable time period. Moreover, the observations must cover the entire 

range of operating conditions. The data set may be augmented by composite variables 

like stream enthalpies, heat duties of equipment, etc. that play an important role m 

characterizing process behavior. A schematic of the data matrix is shown in Figure 4 .1. 
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ObsNo. 1 

Obs No. 2 

Obs No. m 

dependent 

y 

direct measurements augmented variables 

Figure 4.1: Schematic of the matrix of collected data. The first column refers to the 

inferred variable. The subsequent columns contain measurements of 

candidate independent variables. Augmented variables refer to variables 

such as enthalpy, product yield, etc. which cannot be measured but calculated 

using direct measurements. 
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The raw data thus collected may contain observations that are inconsistent with 

the statistical character of the remainder of the data set. These outlying observations can 

have an unwarranted influence on the model estimates (Cook and Weisberg, 1980). A 

difficulty in detecting such multivariate outliers is that the observation itself may not be 

extreme on any of the independent variables and therefore not apparent on the plots of 

two variables at a time. In this work, we employ principle components (PCs) in a fairly 

simple way to identify multivariate outliers as discussed by Jolliffe (1986). Principal 

components represent an orthogonal transformation of the data so that the variances of 

the derived coordinates are in decreasing order of magnitude. The first few principal 

components refer to directions associated with high variance of observations. The last 

few PCs refer to directions associated with small variance. Jolliffe suggests the use of 

following test statistics to identify outliers: 

n 

dli 2 = LZ2ik 

k=n-q+I 

n 2 
d 2 _ ~ Z;k 

2· - LJ 
1 

k=n-q+I /k 

(4.2) 

where Zik is the value of the kth PC for the ith observation, n is the number of variables , q 

represents the low variance PCs (for example, variance < 1) and lk is the variance of the 

kth sample PC. Statistics dli and d2; are designed to detect observations that do not 

conform to the correlational structure of the data. This is evident from the definition of 

the statistics since only the last few PCs are considered in their evaluation. Statistic d2i 

penalizes observations associated with low variance PCs more heavily than dli. Statistic 
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d3; is designed to detect observations that inflate the variance of the data set. All PCs are 

considered in evaluation of the d3i statistic. 

The resultant data set obtained after deletion of outlying observations is used in 

sub-problems (b) and ( c) to obtain a correlation for prediction of y having the form of 

equation (4.1). Sub-problem (b) deals with the issue of selecting a suitable subset {x;, 

i=l,p} from the set of n candidate variables whereas sub-problem (c) involves 

approximation of the function/ using neural networks. 

4.2.2 Sub-problem (b ): Identification of subset of variables for regression 

Researchers often collect data on a response variable and several potential 

predictor variables during experiments. As discussed in section 4.2.1, additional 

predictor variables are frequently created by taking functions of the observed predictor 

variables. In the traditional method of obtaining a correlation using multiple linear 

regression, the hazard of using too many predictor variables is widely know. The 

addition of a variable to least square prediction equation almost always increases the 

variance of the predicted response (Walls and Weeks, 1969; Allen, 1971). Addition of 

predictor variables may decrease the squared bias, but this decrease is often small relative 

to the increase in variance. Consequently, the correlation based on large number of 

predictors is very sensitive to noise and results in a non-robust model. To overcome this 

problem, regression analysts focussed on determining methods to identify a subset of the 

original set of predictor variables (Hocking, 1983). 
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Often, the subset of regression variables may be partially identified by the 

investigator based on his/her experience and understanding of the process. Additionally, 

one may use statistical tools that identify relationships between groups of variables. This 

stage involves a certain degree of judgment and an art of "informal conversation'' with 

the data. If the investigator does not make a judicious choice during variable selection 

but instead selects variable indiscriminately, the resulting model will be less robust and 

the irrelevant variables may mask or replace the effects of the more important variables. 

We discuss three techniques, viz., (a) scatter plots and simple correlation coefficients; (b) 

partial correlation coefficients; (c) Mallows' Cp statistic. 

4.2.2.1 Scatter Plots and Simple Correlation Coefficients 

A graph of each regressor versus the dependent variable on a two-dimensional 

plot enables the investigator to visually search for underlying relationships. The pattern 

of points on the graph represents the relationship between the variables. Organization of 

the points along a straight line indicates linear relationship. A curved set of points may 

denote that the relationship is nonlinear. Absence of a pattern may denote that no 

significant relationship exists between the two variables. Simple correlation coefficients 

provide a measure of linear association between the two variables and thus aid in the 

selection of independent variables that exhibit a linear relationship with the dependent 

variable. It is observed that if the inherent relationship between the two variables is 

nonlinear, then the absolute value of the correlation coefficient may be far less than unity. 

However, our judgment will be made using scatter plots and comparative values of the 
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correlation coefficients between each of the independent variables and the dependent 

variable and not on the magnitude of the coefficient itself 

4.2.2.2 Partial Correlation Coefficient 

Calculation of simple correlation coefficient between the independent and 

response variable ignores the effects of the other candidate independent variables. In a 

multivariable case, the value of the correlation coefficient may be masked by influences 

of other variables. In such situations, partial correlation coefficient (Steel and Torrie, 

1980) may be employed to view linear association between two variables, say x; and xi, 

by "adjusting for" the effect of other variables, (x1, ••• , x;.1, X;+1, ••• , Xj-I, Xft-1· • • , Xn). It is 

calculated using the matrix of simple correlation coefficients [Ru] as follows, 

-Cu 
rij.1,···,1-l,i+1,···,j-1,j+1,··,n = · 'CC 

"\J\.....,u'-1i 

(4.3) 

where ry1.1,. .. ,1_1,i+1,. .. ,n is the partial correlation between the variables X; and xi. Cii represents 

the i/h element of the inverse of the simple correlation coefficient matrix [Rii]. Thus, 

partial correlation coefficients have been employed in this work to identify those 

independent variables, which have significant prediction effect on the response variable, 

from the list of n independent variable. As with simple correlation coefficients, we seek 

those independent variables that exhibit dominant association with the dependent 

variable. 

Based on scatter plots, simple and partial correlation coefficients a preliminary 

subset of r independent variables, { x;, i= l ,r; r<n}, is selected. If the number of candidate 
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independent variables, n, is large, the preliminary elimination of (n-r) variables reduces 

the quantity of independent variables to a manageable number for further study. In the 

next step, the choice of the r regressor variables is further scrutinized. 

4.2.2.3 Mallows' CP statistic 

Partial correlation coefficient calculation eliminates the effect of other candidate 

regressors when studying the relationship between · a single regressor variable xi and 

independent variable, y. However, it does not consider selection of a subset of predictors 

from a larger set. Tasks designed to select a subset of predictor variables involve 

examining some criterion like the coefficient of determination, commonly known as R2. 

R2 is defined as the fraction of the variation in the independent variable measurements 

explained by the regression model and equals unity if the fitted equation passes through 

all the data points. However, as discussed previously, the variance of the model response 

always increases with the inclusion of additional predictor variables. Thus, it cannot be 

used to determine the "best" choice of model subset when the number of variables in 

candidate subsets may vary. In such cases, criteria that penalize model complexity are 

more suitable for subset selection. Mallow's Cp statistic (Mallows, 1973) , Ak:aike 

information criterion (Ak:aike, 1974) and Bayesian information criterion (Schwarz, 1978) 

among others have been widely used to evaluate model complexity. Below, a brief 

description of the Cp statistic employed in the current work is provided. 
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Mallow suggests that the 'standardized total squared error' be used as a criterion 

and he developed an estimate of this quantity called the Cp statistic. It is defined as 

follows: 

residual sum of squares for subset model 

C P = with p parameters including an intercept _ (r _ 2P) ( 4 .4) 
residual variance for full model 

where p denotes the number of predictor variables selected in the regression model from 

the larger set of r variables in the data set. Good models typically have the (p, Cp) co-

ordinate close to the 45 degree line on a Cp vis p plot. Since this method inspects all 

combinations of variables to provide a good subset of predictors to be used in the 

regression scheme, the number of possible subsets grows very rapidly with the number of 

variables. For a set of n candidate predictor variables, the total number of combinations 

is 2n -1. Hence, the Cp statistic was calculated only for the 2r -1 subsets that could be 

constructed from the preliminary subset identified in sub-problem (b ). Methods to 

decrease computational effort in subset selection have been discussed by Hocking and 

Leslie (1967) and LaMotte and Hocking (1970). Use of the Cp statistic in this study was 

a means of refining the choice of the subset of predictors from an initial subset 

constructed by using simple and partial correlation coefficients. 

Using the above techniques, a set of regressor- variables, {x;, i=l,p}, from the set 

of n original measured variables is identified. In the final stage, the correlation is 

developed between the identified subset and the dependent variable using regression. 
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4.2.3 Sub-problem (c): Approximation of the relationship between the unmeasured 

variable, y, and the measured variables, {xi, i=l,p} using neural networks 

The last step in development of the inferential measurement is building models 

using the identified set of { x;, i= l ,p} to predict the unmeasured variable, y. If no specific 

a priori information exists about the model, one may take recourse to non-parametric 

modeling using neural networks. Good approximation of nonlinear functions also makes 

neural network the choice of regression. In this work, we considered 2-layer feedforward 

neural networks as shown in Figure 4.2. The network is trained using backpropagation 

algorithm. The performance of the network will be a reflection on the (i) success of 

outlier detection; (ii) adequacy of the selected subsets of variables; (iii) the architecture of 

the neural network. Equivalently, poor performance can be attributed to failure of any 

one or a combination of the three steps. This shows the coupled nature of each task 

undertaken in this work, thereby, making empirical model-building an iterative 

procedure. We briefly discuss two aspects of regression using neural networks: (a) 

training methodology; (b) regression refinement. 

4.2.3.1 Training Methodology 

Training neural networks is a data-analytic procedure and does not impose a 

stochastic framework on the training set. Under these conditions, it is necessary to stop 

training once an overfit is indicated. One way of doing this is with the use of cross­

validation (Hush and Horne, 1993). The original data set is split into two subsets. One 

subset is used for training while the other is used for validation. The weights and biases 

obtained by using the training subset are applied to the validation subset to evaluate the 
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Figure 4.2: Architecture of multilayer perceptron neural network used in construction of 

inferential model. The inputs to the network are determined in sub-problem 

(b ). Sub-problem ( c) determines the optimal number of nodes in hidden 

layer. 
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performance in terms of the sum of squared errors. Typically, the sum of squared errors 

(SSE) for the training subset decreases with the number of iterations and perhaps levels 

off to some constant value when a local minimum is attained. In an overfit situation, SSE 

for the validation set decreases at first, but then comes to a minimum and later increases 

though the SSE of the training set continues to decrease. When the SSE of the validation 

subset increases, it is assumed that the regressions algorithm is over-fitting the training 

data. In the current work, the training was stopped as soon as SSE over the validation set 

began to increase. 

4.2.3.2 Regression Refinement 

The cross-validation training approach ensures that converged values of weights 

and biases are not strongly influenced by few outlying observations that may be present 

in the training set. Thus, a comparison of neural network prediction with the actual data 

set (training+ validation) gives an indication of those observations that do not conform to 

regression. In the example presented in the following section, those observations whose 

network prediction error was large (greater than 2 to 3 standard deviations from the error 

mean) were deleted from the data set and the training procedure repeated. 

It is assumed that the outlying observations detected by the cross-validation 

training method represent unsteady state measurements, which are inappropriate for 

model development. Moreover, such observations may significantly affect the regression 

parameters. However, an accompanying risk in automating outlier detection as 

described, is the possibility of deleting observations that indicate a bona fide operating 
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condition. The resulting data set ( after deleting outliers detected by the network trained 

by cross-validation) may be used again to generate a new set of weights and biases by the 

training method described above. 

The methods described above represent a few techniques from the vast volume of 

literature available. For instance, numerous techniques to detect outliers are described by 

Barnett (1994). Similarly, identification of the subset of regressors may be accomplished 

by several approaches like sequential search approaches, backward elimination, etc. 

(Johnson and Wichern, 1988; Hair, et al., 1995). The choice of backpropagation 

algorithm is also arbitrary and may be substituted by other networks such as radial basis 

function networks. In the remainder of this chapter, the three-step procedure is used to 

generate a correlation for a petroleum refinery based on real data. 

4.3 An Example from Petroleum Refinery 

In its native state, crude petroleum consists of a large number of hydrocarbons in 

addition to small quantities of inorganic compounds. The purpose of the refining process 

is the production of marketable products from crude. Fractionation towers and other 

processing equipment are employed in petroleum refineries. The separation of the crude 

into fractions possessing different properties leverages boiling range differences between 

desired products. Figure 4.3 depicts a typical fractionation tower in a refinery. Also 

shown are typical product streams drawn from the tower. The main feed comprises of 

preflash bottoms from the crude furnace. An auxiliary feed, preflash kerosene from the 

preflash tower, also enters the tower. A number of products are obtained. Lighter 
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Figure 4.3: A schematic of a typical atmospheric distillation tower. Shown are two feed 

streams that enter the tower. Side streams are often fed to side-strippers to 

obtain intermediate products between the overhead product and bottoms. 
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products like naphtha are withdrawn from the top the tower while heavier products are 

collected at the bottom. Side-drawn products are often fed to stripping columns for 

further separation. 

The temperature profile and the vapor traffic within the column are manipulated 

by using pumparound reflux. The large quantities of material and energy flow along with 

complex thermodynamic behavior of the components involved make the operation and 

control of the tower difficult. For profitable operation of the column, control of product 

quality is most important. In conventional distillation, product quality is expressed in 

terms of purity of components involved. .The component purity may then be related to 

boiling points, which are used as control specifications. However, in crude petroleum 

fractionation, the products usually consist of a variety of components and a component by 

component analysis is not practically realizable. Instead, the products are subjected to 

rapid distillation procedures defined by American Society of Testing Materials (ASTM) 

during routine laboratory tests to yield an approximate measure of the composition in 

terms of ASTM distillation boiling ranges. As noted by Nelson (1941), routine tests to 

estimate the endpoints of the product form a "common basis of understanding between 

the refiner and the business world." 

A measure often used is the ASTM 95% endpoint of the product and refers to the 

temperature when 95% of the product is vaporized when distilled using the ASTM 

procedures. For example, kerosene has an ASTM boiling range of 325 °F to 550 °F. The 

customer may specify the desired kerosene ASTM 95% endpoint to be, say, 525 °F. In 
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this case, the column will need to be controlled such that the product quality specification 

is met. However, unlike conventional distillation, where the composition of the 

components in product streams may be measured reliably by on-stream analyzers, in 

petroleum fractionation, an online measurement of ASTM 95% endpoint is not generally 

feasible. The product sample is sent for routine laboratory tests to determine quality. 

Large lags of four to eight hours may occur before results of the lab analysis are known. 

During this time, a large amount of off-spec material may be produced leading to 

significant economic penalty. The potential for savings via more accurate product quality 

estimates forms the prime motivation for development of reliable inferential 

measurements of product quality. Quality control implementation on a real refinery 

using inferential models is discussed by San et al (1994a; 1994b). They also discuss the 

economic benefits realized from such a scheme. 

In the next three sections, the three-step procedure of section 4.2 will be used to 

develop an empirical correlation to infer ASTM 95% endpoint of kerosene. 

Conventional lab methods to measure ASTM 95% endpoints use ASTM distillation 

apparatus and often yield varying results for the same sample and consequently have 

limited reliability. On the other hand measurements using simulated distillation 

(SimDist®) techniques exhibit reduced variability in measurements of the ASTM 95% 

endpoint of a given sample. SimDist is a liquid chromatographic procedure, which 

generates endpoint measurements with greater accuracy than traditional ASTM test 

procedures. However, both techniques have significant measurement lags associated 

with them making them unsuitable for use by the multivariable control system. Thus, 
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inference of ASTM 95% product endpoint 1s essential to enable control of the 

fractionation tower. 

4.4 Identification and Collection of Candidate Independent Variables and 

Preprocessing of Data 

The development of inferential measurement of ASTM 95% endpoint of kerosene 

begins with collecting the data required to construct a correlation. However, before 

collection of the data, the measurements that will be included in the data set must be 

decided. This decision is usually based on process insights and operational experience. 

Some factors considered in deciding the set of candidate independent variables for the 

fractionation tower example are discussed below. 

4.4.1 Rationale for deciding set of candidate independent variables 

The degree of separation between adjacent streams in a fractionation tower is 

strongly influenced by the internal operating conditions of the tower. The magnitude of 

separation is often measured in terms of (5-95) gap/overlap and is defined as the 

difference between the ASTM 5% initial point of the heavy stream and the ASTM 95% 

endpoint of the adjacent lighter stream (Watkins, 1979). Thus, 

(5- 95) Gap I Overlap = I's%, Heavy - 1;5%,Light, ASTM (4.5) 

Gap/overlap measures the degree of separation between two adjacent product streams. 

For example, an overlap of 60 °F represents poorer separation of adjacent products than 

an overlap of say, 10 °F. This is evident from the definition of (5-95) gap/overlap as 

shown in equation ( 4.4). An overlap of 60 °F represents a case where the ASTM 95% 
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endpoint of the lighter product stream is greater than the ASTM 5% initial point of the 

heavier stream by 60 °F. Thus, the ASTM boiling ranges of the two product streams 

overlap implying a poor separation between the two. 

It is possible to estimate the ASTM 95% endpoint of a product based on product 

gap/overlap and true boiling point (TBP) cut point between the product stream and the 

adjacent heavier stream. As an example, consider the light product stream, naphtha, and 

the adjacent heavier product stream, kerosene. Based on material balances, the ASTM 

95% endpoint of naphtha is evaluated as, 

. % Kerosene . 
ASTM 95% endpomt Naphtha= - gap/overlap+ cut pomt 

% Kerosene+% Naphtha 

(4.6) 

where the yields of products, kerosene and naphtha, are defined as: 

,.1, • l,'d product draw rate prouuct y1e u = =--------
feed rate 

(4.7) 

The cut point used in equation (4.6) represents the whole crude TBP temperature 

corresponding to the yield point between two :fractions. In the above example, the TBP 

cut point between naphtha and kerosene is calculated as follows: 

. ( % Naphtha J Cut pomt = Kerosene5/l'A, AsTM - x (4_8) 
°' · % Naphtha + % Kerosene 

· (Kerosene 511',<,, ASTM - Naphtha 511',<,, ASTM) 

Based on equations (4.6), (4.7) and (4.8), it is proposed to infer the ASTM 95% endpoint 

of products as follows: 

AS1M 95% endpoint = g(gap I overlap, product yields, AS1M 50% points, 

92 

operating variables) 
(4.9) 



However, gap/overlap and ASTM 50% product points are lab measurements and 

not available online. It is decided to predict the value of gap/overlap so that it could be 

used to infer the ASTM 95% endpoint in accordance to equation (4.9). Empirical 

knowledge exists that relates the degree of separation as measured by gap/overlap to the 

separation capability of the system represented by an F-factor and the degree of difficulty 

of separation, LlT(50%) (Watkins, 1979). Thus, the following functional dependence is 

suggested: 

gap/ overlap= f 1(F- factor,LlT(50%)) (4.10) 

However, F-factor is related to the internal reflux ratio of the tower while the 

parameter, LlT(50%), is a function of the ASTM 50% temperatures of the product 

streams. Thus, equation ( 4 .10) can be reformulated as: 

gap/overlap = / 2 (internal reflux ratio, AS1M 50% point) (4.11) 

Although, the internal reflux ratio cannot be measured explicitly, it is influenced by the 

operating conditions of the fractionation tower. Hence, gap/overlap is related to 

operating variables and ASTM 50% temperature, 

gap/ overlap= /(operating pressures, temperatures and flow rates,AS1M 50% point) 

(4.12) 

Equations ( 4. 9) and ( 4 .12) suggest a list of candidate independent variables. We intend 

to first approximate function f by a neural network NNl to predict gap/overlap and 

subsequently use the predicted value as one of the inputs to network NN2 which will 

approximate function g to predict the desired ASTM 95% endpoint. Figure 4.4 shows a 

schematic description of this configuration. 
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Figure 4.4: Illustration of regression scheme. Neural network NNl predicts gap/overlap. 

Network NN2 uses the predicted gap/ overlap as one of its inputs among 

others to estimate the unmeasured variable, ASTM 95% endpoint of 

kerosene. 
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4.4.2 Collection of Data 

The models developed in the current work correspond to steady state operation of 

the fractionation tower. Thus, averaging of process variables was employed to remove 

the effect of local transients on the data set. Measurements of process variables like 

pressure, temperature and flow were hourly averages. For example, consider a product 

sample collected at 4:00 p.m. for measurement of ASTM distillation temperature. Then 

the corresponding observations of process variables at 4:00 p.m. are the averaged values 

from 3 :00 p.m. to 4:00 p.m. On the other hand, the SimDist measurements on product 

quality were reflective of samples collected at a specific point in time. The data set was 

augmented by addition of variables like product yield calculated, various stream 

enthalpies and equipment heat duties. The data set was arranged in the style of Figure 4 .1 

and consisted of 59 variables and 546 observations representing the distillation unit 

operation for one year. Data on ASTM 95% endpoint, gap/overlap, and other quality 

variables were based on measurements using simulated distillation (SimDist®) of the 

product samples. 

4.4.3 Data Preprocessing 

Outliers were detected using the test statistics presented in equation (4.2). Those 

observations whose test statistic deviated by more than two standard deviations from the 

mean were deleted. Here, 11 outliers were detected by statistic dli, 29 by d2i and 15 by 

d3j. The total number of outliers deleted was 33. It is noted that the outliers detected by 

the three statistics may refer to the same observation and thus the total number of 

outlying observations that were deleted does not equal the sum of the outliers detected by 
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each statistic. After deletion of outliers, the remainder data set had 513 observations. All 

further analysis was based on the (513 observations x 59 variables) data matrix. 

4.5 Identification of a Suitable Subset for Regression 

As discussed in section 4.4.1, the estimation of ASTM 95% endpoint consists of 

predictions by two neural networks arranged in series as shown in Figure 4. 4. 

Considerations on selection of inputs to these networks were discussed in 4.2.2. Despite 

using these guidelines, the list of candidate predictor variables was still very large ( over 

50 variables for both neural networks, NNl and NN2). To keep the model simple, it is 

desirable to identify only those . variables that significantly influence the dependent 

variables, viz. gap/overlap in NNl and 95% end-point in NN2. 

Scatter plots, simple and partial correlation coefficients were generated between 

each of the independent variable and the dependent variable. For purpose of illustration, 

the plot depicting gap/overlap between kerosene and the adjacent heavy oil distillate 

(HOD) versus pressure differential across the fractionation tower measured at the top 

(measurement tag PDl, in Figure 4.3) is reproduced in Figure 4.5. A visual inspection of 

the scatter plot and the correlation coefficient of -0.72 indicate a strong relationship 

between these two variables. Thus, the pressure difference across the tower is selected as 

a variable in the subset, which will be employed to predict kerosene/HOD gap/overlap. 

The identification of the variable, pressure differential in tower is reasonable since it 

governs vapor traffic and hence internal reflux ratio in the tower. The relationship 

between gap/overlap and internal reflux ratio was suggested by equation ( 4.11 ). 
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Figure 4.5: Scatter plot depicting relationship between kerosene/HOD gap/overlap and 

pressure differential across atmospheric tower (PD 1 in Figure 4.1 ). 
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One of the other candidate independent variables in the preliminary list was the 

pressure differential across the tower measured at the bottom. The simple correlation 

coefficient between SimDist measurement of gap/overlap and the pressure difference 

across the tower measured at the bottom (measurement tag, PD2 in Figure 4.3) is -0.47, 

indicating a reasonably significant relationship between them, relative to other candidate 

variables. However, the partial correlation between the SimDist measurement of 

gap/overlap and PD2 is only -0.12, indicating that the individual influence of this 

measurement on gap/ overlap is relatively weak. On the other hand the partial correlation 

coefficient between the SimDist measurement of gap/ overlap and the pressure difference 

across the tower measured at top of tower (measurement tag: PD1) is -0.53. This 

situation indicates that the pressure difference measured at the top of the tower is a better 

indicator of the gap/overlap then the pressure difference across the tower measured at the 

bottom. The significant value of the simple correlation coefficient (-0.47) between PD2 

and SimDist measurement of gap/overlap may be due to common effect of PD 1 on both 

gap/overlap and PD2. 

Based on scatter plots, simple and partial correlation coefficients a subset of eight 

variables was selected which forms a preliminary subset of variables used to approximate 

function f of equation (4.12) by neural network NNI. A description of the selected 

variables is provided in Table 4.1. A similar exercise was performed to identify inputs 

for neural network NN2. The scatter plot of the network output, viz. ASTM 95% 

temperature of kerosene, and one of the inputs, viz. gap/overlap, is shown in Figure 4.6. 

The correlation coefficient of absolute value 0. 7 indicates a significant association 

98 



Table 4.1: 

Variables influencing Kerosene/HOD gap/overlap as identified by scatter plots, 

simple and partial correlation coefficients. 

Variable Predictor Variable Correlation Partial 

Number Coefficient Correlation 

Coefficient 

1 ASTM 50% cut point of kerosene -0.48 0.09 

2 differential of 50% points of adjacent light -0.44 -0.27 

streams 

3 differential of 50% points of adjacent -0.42 0.02 

heavier streams 

4 FCl, heavy product to storage 0.41 0.25 

5 . FC2, auxiliary feed 0.61 0.11 

6 Tll, side-stripper bottoms temp. -0.49 -0.27 

7 PDil, .Afl at top of column -0.72 -0.53 

8 PDI2, .Afl at bottom of column -0.47 -0.12 

between these two variables. This feature is consistent with the definition of (5-95) gap 

in equation (4.5) and was also suggested by equation (4.9). · The corresponding partial 

correlation coefficient value is found to be -0.84. However, as depicted in Figure 4.4, the 

input gap/overlap to network NN2 is a prediction by the network NNl and not the 

SimDist measurement ori which the current analysis is based. Thus, the quality of 

prediction of gap/overlap by NNl limits the performance of the network NN2. Hence, a 
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Figure 4.6: Scatter plot depicting relationship between ASTM 95% endpoint of kerosene 

and kerosene/HOD gap/overlap. 
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good prediction of gap/overlap is crucial to a good performance of the overall model. 

Based on scatter plots, simple and partial correlation coefficients a preliminary subset of 

nine independent variables is selected. See Table 4.2 for a brief description of these 

variables. 

The preliminary subsets for NNl (Table 4.1) and NN2 (Table 4.2) are then 

subjected to Mallows' Cp statistic analysis to study their suitability. The Cp statistic is 

calculated for all possible combinations of variables from Table 4.1. For purposes of 

illustration, the Mallow statistic calculated for certain subsets is displayed in Table 4.3. 

The variables considered in each subset in the table represent that combination 

corresponding to which the value of Cp is lowest for a fixed number of variables, p, in the 

model. It is further observed that if we plot the p v/s Cp graph, none of the points would 

lie on or close to the 45° line, indicating that none of these subsets are optimal. 

Although, the model with eight variables (Cp = 17) may be the "best" based on Cp 

statistic, the subset with five variables (Cp. =24) may be considered to be more prudent, 

since. it involves a fewer number of variables. The model with eight predictors contains 

three extra measurements over the model with five predictors, viz. ASTM 50% 

temperature of kerosene (variable number 1 in Table 4.1), difference between ASTM 

50% points of HOD and kerosene (variable number 3 in Table 4.1) and pressure 

difference across the tower measured at the bottom of the tower (variable number 8 in 

Table 4.1). The partial correlations between these three variables and gap/overlap are 

seen to be the lowest when compared to the other five variables implying a relatively low 

degree of individual influence on the dependent variable, gap/overlap. Thus, based on 
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Table 4.2 

Variables determined to be significant influences on ASTM 95% endpoint of 

kerosene as identified by scatter plots, simple, and partial correlation coefficients. 

Variable . Predictor Variable Correlation Partial 

Number Coefficient Correlation 

Coefficient 

1 kerosene and HOD gap/overlap -0.70 -0.84 

2 naphtha yield -0.43 0.18 

3 kerosene yield 0.42 -0.15 

4 fraction of kerosene in product -0.48 0.18 

5 50% cutpoint of kerosene 0.69 0.39 

6 50% cutpoint of HOD 0.57 0.62 

7 HOD 50% - KERO 50% 0.77 0.13 

8 AP at top of crude tower 0.46 0.13 

9 enthalpy of naphtha stream -0.45 -0.45 

the combined results of Mallow's statistic and partial correlation, the model with five 

predictors was selected for prediction of gap/overlap by the neural network NNl. This 

exercised was repeated with the variables in Table 4.2 to identify inputs to neural 

network NN2 (see Figure 4.4). The Cp values for a few subsets are shown in Table 4.4. 

Based on the Cp values, the subset with four variables is selected. 
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Table 4.3 

Mallow Statistic for certain Subsets of Variables of Table 4.1. 

Number of Predict Subset of Variables, Cp 

Variables in Subset, p { Variables Number } * 

1 {7} 283 

2 {6,7} 208 

3 {4,6,7} 96 

4 {2,4,6,7} 32 

5 {2,4,5,6,7} 24 

6 {2,4,5,6,7,8} 18 

7 {2,3,4,5,6, 7,8} 19 

8 { 1,2,3,4,5,6, 7,8} 17 

To identify the variable number with measurement description, refer to Table 4.1. 

Statistical techniques focus attention on variables that that have significant 

prediction power on the dependent variable. However, it is useful to provide a physical 

significance to each of the identified variables from a process standpoint. 

4.6 Regression Using Neural Networks 

The iterative method of training and regression refinement discussed in section 

4.2.3 was applied to neural networks NNl and NN2. The inputs to these neural networks 

can be referenced from Tables 4.3 and 4.4, respectively. During the regression 
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Table 4.4 

Mallow Statistic for certain Subsets of Variables of Table 4.2. 

Number of Predict Subset of Variables, 

Variables in Subset, p { Variables Number}* 
Cp 

1 {l} 3834 

2 { 1,6} 933 

3 {1,6,9} 282 

4 { 1,5,6,9} 47 

5 { 1,4,5,6,9} 11 

To identify the variable number with measurement description, refer to Table 4.2. 

refinement phase, those observations that beyond 2.5 times the standard deviation of error 

from the error mean were deleted. The threshold 2.5 was arrived at by trial and error. 

Twice the standard deviation caused too many observations to be deleted while thrice the 

standard deviation caused too few observations to be deleted. This procedure was 

iterated a few times before arriving at the final values of weights and biases. It is 

assumed that such outlying observations detected by the neural network trained using 

cross-validation approach represent unsteady state measurements, which are 

inappropriate for model development. Moreover, such observations may adversely affect 

the regression parameters. In the current example, deletion of 25 observations, used in 

training of network NNl, afforded a significant decrease in the standard deviation of 
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error from 3.9° F (before deletion of outlying observations) to 2.7° F (after deletion of 

outlying observations). The performance of this network is shown in Figure 4.7. 

A similar procedure was applied to neural network NN2 used in prediction of 

ASTM 95% kerosene endpoint. Note that for evaluation of the performance ofNN2, the 

input gap/overlap used is the output of NNl while the SimDist measured gap/overlap is 

used in training. Only one iteration of training and regression refinement was used 

during which 11 outliers were deleted. The comparison of the predicted value of ASTM 

95% endpoints versus the SimDist measurements is shown in Figure 4.8. 

4.6.1 A Benchmark Test 

It is instructive to compare the predictions in Figure 4.8 with neural network NN2 

predictions when the input gap/overlap refers to actuaLSimDist measurements rather than 

gap/overlap values predicted by network NNl. This comparison reflects the performance 

of the network NNl and sets a limit to the accuracy of the prediction of ASTM 95% 

endpoint for the given data set using the scheme presented in Figure 4.4. Figure 4.9 

shows the performance of the network, NN2 when SimDist values of gap/overlap are 

used to predict the ASTM 95% endpoint. The standard deviation of the prediction errors 

is 1.8 °F. The standard deviation of prediction errors when predicted gap/overlap was 

used as input to NN2 was 2.3 °F (see Figure 4.8). The superior performance is expected 

since actual SimDist measurements of gap/overlap are used as inputs to NN2 and hence 

errors in NNl prediction are not reflected in the performance of network NN2. However, 

in implementation of the work-plan, no such measurements will be available online and 

105 



~ m 
"t: 
(I) 
> 
0 a. m 
0) -LO 

(J) 
I 

~ 
"U 
(I) 

-~ m 
E a z 

1 

0.6 

0.2 

-0.2 

.. . . ' '. '. I• 
I' . . 

0 100 

--. lab meas 

-· ----· network prediction 

200 300 400 500 

observation Number 

The Figure 4. 7: Performance of network NNl when trained usmg trimmed data. 

trimming of outliers was performed to refine regression (section 4.2.3.2). 

Five neurons are used in hidden layer. 
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The input values of gap/overlap used to evaluate performance are the 

SimDist measurements and do not represent prediction by NNl as in Figure 

4.8. 
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will need to be predicted by NNl. This comparison merely serves as a benchmark testto 

determine the effect of performance ofNNl on the performance ofNN2. 

4.6.2 A Rearranged Scheme of Work 

Analysis of the data set in section 4.5 had revealed a strong relationship between 

ASTM 95% endpoint and gap/overlap. This, in turn, motivated the idea of employing a 

neural network, NNl, to predict gap/overlap. Subsequently, this prediction along with 

other variables identified by sub-problem (b) would be used as inputs to a second neural 

network, NN2, to predict ASTM 95% endpoints. The configuration of the overall 

scheme is shown in Figure 4 .10. Also shown is an alternative arrangement. Here, the 

eight inputs to the neural network, NN consist of the five NNl inputs and three NN2 

inputs ( except gap/ overlap). 

A prime motivation for the rearranged scheme is the ease of implementation of 

endpoint inference technique. Although gap/overlap is not predicted explicitly as in 

Figure 4.4, it is expected that this information will be manifested in the five NNl inputs 

and is therefore embedded in the regres~ion scheme to predict ASTM 95% endpoint. It is 

noted that the rearranged scheme of work does not supplant the previous scheme, since 

all inputs to neural network NN were identified as inputs to NNl and NN2 in the revised 

scheme. The rearrangement is merely a direct approach to ASTM 95% endpoint 

calculation. Thus, the rearranged scheme of work in Figure 4 .11 is equivalent to the 

revised scheme of work in an input/ output sense and only differs with respect to the 

internal structure of regression. 
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Figure 4.10: The top schematic shows the configuration of the inferential correlation in 

the original scheme. The inputs to the network were identified using 

procedures described in sub-problem (b ). The bottom schematic shows the 

revised scheme of work with identified inputs. The inputs to NNI and 

NN2 form the inputs to network NN ( except the intermediate variable, 

gap/overlap). 
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The summary of performances of the rearranged network NN of figure 4.11 when 

3, 4, 5, 6, and 7 neurons are employed in the hidden layer is shown in Table 4.5. Table 

4.5 also shows the performance of the serial NN1/NN2 scheme. It is observed that each 

of the single neural network NN schemes exhibit superior performance when compared 

to the overall performance of the two network configuration. In fact, four of the five 

neural networks studied in the rearranged scheme of work, viz. when four, five, six and 

seven neurons are used in hidden layer, showed comparable performances relative to the 

predictions of NN2 in the benchmark test. 

It was noted in the results of serial NN1/NN2 scheme of work that the errors in 

prediction of gap/overlap by NNl adversely affected the estimation of ASTM 95% 

endpoint by NN2. This situation arose because the predicted gap/overlap was a direct 

input to NN2. The strong association between gap/overlap and ASTM 95% endpoint led 

to magnification of the errors in gap/overlap prediction. In the revised scheme of work 

no such accumulation of errors occurs since all inputs are fed directly to the network NN 

which predicts the ASTM 95% endpoint. This is also consistent with the fact that 

predictions of the rearranged scheme of work were comparable with NN2 estimates of 

ASTM 95% endpoint when SimDist measurements of gap/overlap are used (see section 

4.6.1). It is observed from Table 4.5 that the neural network with five neurons in the 

hidden layer is optimal in the sense that it exhibits the smallest mean squared error 

(MSE). As the number of neurons increases from three to five in the hidden layer, MSE 

of predictions decreases. However, a further increase in hidden layer neurons causes 

MSE to increase. This situation may be attributed to the cross-validation method 

employed in training. As the number of neurons in the hidden layer increases, the neural 
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Figure 4.11: Performance of network NN when five neurons are used in hidden layer. 

The inputs and output are shown schematically in Figure 4.10. Performance 

measures are shown in Table 4.5. 
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Table 4.5 

Performance measures for neural network NN (rearranged scheme of work) when 

different number of neurons are used in the hidden layer. Also the results of the 

revised scheme of work are shown. 

Number of Mean Squared Standard Minimum Maximum 
Neurons in Error in Deviation of Error (°F) Error (°F) 

hidden layer Prediction (0 F2) Prediction Error 
(OF) 

3 4.0 2.0 -7.2 7.8 
4 3.3 1.8 -5.8 8.1 
5 2.9 1.7 -5.7 4.1 
6 3.1 1.8 -4.9 4.5 

7 3.7 1.9 -5.4 7.7 

Serial 5.6 2.3 -9.9 8.2 
NN1/NN2 
Scheme 
Benchmark 3.3 1.8 -5.0 8.1 
Serial 
NN1/NN2 Test 

network possesses improved capability to mimic the training set data ( due to the larger 

number of parameters available). This memorization of the training set causes larger 

prediction errors when the trained network is · used with the validation set, thereby, 

increasing the overall mean squared error. The performance of the neural network NN 

with five neurons in the hidden layer is shown in Figure 4.11. 
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4. 7 Conclusions 

A unified :framework to develop inferential measurements is presented. The 

three-step procedure is used to develop a correlation to infer ASTM 95% temperature of 

kerosene in a :fractionation tower. The developed correlation predicts the ASTM 95% 

endpoint of kerosene with an error standard deviation of 1. 7 °F. Success of the 

correlation development depends on the success of each of the three steps. 

In the petroleum refinery example, it is shown that the identification of candidate 

independent variables demands an understanding of the process. Identification of the set 

of variables that will be employed in the regression scheme involves a certain degree of 

subjective judgment and process experience. The example also illustrates the possibility 

of improving estimates by rearranging the correlation. 
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5 A FACTORIZED APPROACH TO NONLINEAR MPC USING A RADIAL 

BASIS FUNCTION PROCESS MODEL 

Chapter Overview 

A computationally efficient approach for nonlinear model predictive control 

(NMPC) is presented. The new approach exploits the factorability of radial basis 

function (RBF) process models in a traditional model predictive control (MPC) 

framework. The key to the approach is formulation of the RBF process model in a 

manner capable of making nonlinear predictions across a p-step horizon without use of 

future unknown process measurements. The proposed RBF model avoids error 

propagation from use of model predictions as input in a recursive or iterative manner. 

The resulting NMPC formulation usmg the RBF model provides analytic 

expressions for the gradient and Hessian of the controller's objective function in terms of 

the RBF network parameters. Solution of the NMPC optimization problem is 

significantly simplified by factorization of the RBF model output into terms containing 

only known and unknown parts of the process. The proposed NMPC approach is 

illustrated with simulation examples. 
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5.1 Introduction 

Many chemical processes exhibit nonlinear behavior. Application of commercial 

linear model predictive control (MPC) technology is only partially successful in such 

cases. As process conditions deviate from the nominal operating point, model mismatch 

increases with a corresponding degradation in control performance. The problem is 

particularly severe in the process industries where the areas of a plant with the greatest 

economic incentives to apply MPC ( e.g., a reactor system) typically exhibit strong 

nonlinearities. Plant operators frequently disable an MPC system when model mismatch 

compromises overall control performance. Recommissioning cannot be performed until 

the MPC models are updated or the operating conditions return to original design point. 

The notion of using a nonlinear model to control a significantly nonlinear process 

within the model predictive control paradigm has led to an active interest in the 

development and application of nonlinear model predictive control. Nonlinear MPC 

(NMPC) adheres to the general MPC philosophy, that is, use of an explicit model to 

predict the process behavior over a future horizon, and implementation of control action 

that steers the process towards predetermined objectives in an optimal sense. NMPC uses 

a nonlinear model to provide a better approximation of the underlying nonlinear system. 

However, use of a nonlinear model presents additional challenges relative to linear MPC: 

1) the complexity of nonlinear systems makes systematic development of nonlinear 

system identification techniques difficult (Pearson and Ogunnaike, 1997), and 2) 

nonlinear MPC requires solution of a nonlinear program at each sampling instant making 

implementation more involved (Henson, 1998). 
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Use of artificial neural networks as nonlinear dynamic models has been studied in 

recent years. When applied for predictive control most utilize a feedforward network 

architecture, while a few use the recurrent type. Hussain (1999) provides a summary of a 

number of applications reported in literature. 

In this chapter, we propose a radial basis function (RBF) network based NMPC 

approach. The proposed RBF model is capable of providing non-iterative sequential 

predictions over a prediction horizon of length p. The factorability of Gaussian 

functions, employed by the RBF network nodes, is leveraged to formulate a compact 

representation of the model predictions over the prediction horizon. The traditional MPC 

controller objective function and the associated gradient and Hessian are then directly 

parameterized in terms of the network parameters. The resulting NMPC system is 

computationally efficient and provides the enhanced control expected from use of a 

nonlinear model. Simulation examples are provided to demonstrate identification and 

control with the proposed technique. 

5.2 Nonlinear System Identification Using Neural Networks 

A feedforward network can be regarded as a nonlinear autoregressive model with 

external inputs (NARX), 

(5.1) 

where a time-delay of unity is assumed between the model output, j) k, and the previous 

process inputs, Uk-I- Ny and Nu are integers defined by the order of the model. Scalars 
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Uk-1, ... , Uk-Nu represent the sequence of inputs used by the model. Function F depends on 

the network architecture and the type of activation function employed by the nodes. 

A feedforward network 1s typically trained to mm1mize the I -step ahead 

prediction error, 

N 2 

EFFN = LIYktk-1 -ykl (5.2) 
k=I 

The subscript of Yktk-i emphasizes the fact that the model prediction, yk, at sample k is 

based on measurements up to and including k-1. However, one of the primary purposes 

of MPC is to deal with complex dynamics over an extended horizon. Thus, an MPC 

model must predict the process dynamics over a prediction horizon, p, usually greater 

than unity. Equation (5.1) cannot be directly employed to provide the desired long-term 

predictions since future measurements needed in the computation are not available. 

However, a feedforward network can be cascaded to itself so that the model outputs are 

used as inputs for future predictions. Thus, the p predictions can be obtained as follows, 

(5.3) 

In writing the above predictions, it has been assumed that p > Ny. We will refer to 

equation (5.3) as "cascaded I-step" predictions. 

Su and McAvoy (1997) tested the long-range predictive capability of a "cascaded 

I-step" feedforward network on a biological wastewater treatment system. The results 

showed that a feedforward neural network makes poor predictions long-term when 
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compared to a recurrent neural network. The poor performance was attributed to the fact 

that the feedforward network training based on equation (5.2) does not take multi-step 

prediction into account. Thus, accumulation of prediction errors leads to deterioration of 

model performance as the prediction horizon increases. 

In contrast a recurrent neural network is trained based on minimization of the 

following criterion, 

(5.4) 

The training criterion simultaneously minimizes the prediction errors for I-step, 2-step, 

and so forth up top-steps in the future. Su and McAvoy reported good results using the 

recurrent network on the wastewater treatment plant. While appealing for use in an MPC 

system, recurrent networks are extremely difficult to train (Narendra and Parthasarathy, 

1990). Until this problem is overcome, recurrent networks cannot be considered for 

general-purpose use in an MPC system. 

In the remainder of this section, we discuss an alternative approach where 

predictions up to p-steps in the future can be made without requiring future ( and yet 

unknown) process outputs. Thus, no cascading is necessary to provide the future p 

predictions and problems with accumulation and propagation of modeling errors are 

avoided. The proposed approach retains the simplicity of I-step ahead training. 

The cascaded I-step model in equation (5.3) uses model predictions between k+ 1 

and k+j to predict future process outputs k+j+i. The dummy indices, j and i, assume 
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values in the range, [2, p-1] and [1, p-j], respectively. However, we want to avoid 

dependency of model predictions later in the control horizon p on previous model 

predictions. In a real-time control setting, measurements are available only up to the 

current instant, k. Thus, we require measurements input to our process model be limited 

to instant k or earlier. This may be accomplished by starting with the input-output model 

of equation ( 5 .1) and applying successive iterations of this map until the measurements 

needed in the model input refer to available measurements. 

To illustrate this idea, consider a model with a prediction horizon, p = 3, output 

order, Ny= 2, and input order, Nu= 2. Then equation (5.1) can be rewritten as, 

Yk =F(yk-1,Yk-2,uk-1,uk-2) (5.5) 

Applying successive iterations of function F yields the following expressions, 

(5.6) 

Equation ( 5. 6) may be written as, 

Y~ = F(y y u u u u ) k!k-3 k-3' k-4> k-1' k-2> k-3' k-4 (5.7) 

The argument of the resulting composite function, F , contains delayed process outputs 

and process inputs ranging from k-p to k-p+ I-Ny ( that is, k-3 to k-4) and k-1 to k-p+ I-Nu 

(that is, k-l to k-4), respectively. Note that the model defined by equation (5.7) can be 

used to make p = 3 future predictions without needing future plant outputs, 

Yk+11k-2 = F(yk_z,Yk-3> Uk, uk-1> uk_z, uk-3) 
Yk+21k-1 = F(yk-1>Yk-2,uk+1>uk,uk-1'uk-2) 
Yk+3fk = F(yk,Yk-1' uk+z, uk+P uk, uk_i) 
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Thus, we have eliminated the need to use predicted model outputs to obtain future 

predictions. During prediction of Yk+J in equation (5.8), factors that affect the process 

between the time k+ j-p and k+ j are accounted for by process inputs calculated for the 

interval [ k+ j- l, k+ j-p-Nu + 1]. Thus, the model in equation ( 5. 7) maintains the causal 

relationship between the inputs and output. For the general case of a prediction horizon 

of p samples and input and output orders of Nu and Ny, respectively, equation (5.7) takes 

the form, 

YA = F1 ... y u ... u ) 
k/k-p \Yk-p> , k-p+I-Ny> k-1' , k-p+I-Nu (5.9) 

We modify the above model to make it better suited for control by replacing the 

past p process inputs, Uk-I, ... , uk-p by the corresponding control moves, Auk-I, ... , Auk-p, 

where, 

Revisiting the model in equation ( 5. 7), the inputs are then modified as follows, 

Yktk-3 = F(yk-3,Yk-4' Auk-1 + uk_z, Auk-2 + Auk-3 + uk-4' Auk-3 + uk-4 ,uk_J 

Yktk-3 = G(yk-3 ,Yk-4, Auk-1, Auk-2, Auk-3, uk-4) 

Thus for the general model in equation (5.9), 

Y" =G( · .•• y u ••• u Au ••• Au ) klk-p \Yk-p' , k-p+I-Ny> k-p-1> , k-p+I-Nu> k-p> , k-1 

(5.10) 

(5.11) 

(5.12) 

Replacement of recent p control inputs by the corresponding control moves 

simplifies expressions presented later in the chapter. From a process response 

approximation point of view, the delayed input/output measurements, viz. Yk-p, ... , Yk-p+J-

Ny and uk-p-I, ... , Uk-p-Nu, respectively, provide a reference to the state of the system p 
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samples in the past. Causality is provided by the most recent p input moves Auk-p, ... , 

Auk-1- To ensure that delayed process inputs appear in the model, in addition to input 

moves and process outputs, Nu ~ 2. Since p future predictions can be made without use of 

model outputs, we will refer to equation (5.12) as the ''p-step control model." The p 

future predictions with the p-step control model can be expressed as, 

Y" = GI · · · y u · · · u Au · · · Au ) k+I/k-p+I \Yk+l-p> ' k+2-p-Ny> · k-p> > k+2-p-Nu> k+l-p> ' k 

(5.13) 

To graphically illustrate the arrangement of the model inputs, consider a model 

with a prediction horizon, p = 4. Let us also assume that Ny= 3 and Nu= 2. Then the 

inputs to the networks will be as shown in Fig. 5 .1. Note that the future four predictions 

require only current and past information on process inputs and outputs. As discussed 

later in Section 5 .4, the unknown future input moves are calculated by the MPC 

controller. In the next section, we use the p-step control model formulated as a radial 

basis function network to predict y k+i • An example is provided that compares predictive 

performance of the p-step control model with the cascaded I-step model in equation 

(5.3). 

5.3 Dynamic Modeling Using RBF network 

Feedforward RBF networks have been widely used as models of dynamic 

processes (Chen, et al., 1990; Pottmann and Seborg, 1997). The dynamics are 
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Figure 5.1: Timelines showing inputs to the p-step control model. For this example, p = 
4, Ny = 3, and Nu = 2. Predicted outputs are generated from known 
information only, previous model predictions for y are not used in model 
input. 
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approximated by using past process input/output information in the network input. The 

RBF network is trained based on minimizing prediction error over the training trajectory 

(Moody and Darken, 1989). An important task in empirical model building is the 

selection of inputs. 

Based on the p-step model for a single-input, single-output system, the input 

vector for an RBF network would be, 

x _ I.. .·.. y u ··· u Au ··· Au J k -1,Yk-p k-p+I-Ny k-p-1 k-p+I-Nu k-p k-1 (5.14) 

Measurable disturbances can be accounted by augmenting the input vector Xk to reflect 

· current and past values of the disturbance variables. The RBF prediction of the process 

output at instantk is: 

m1 x,.-t. 
[ 

II 112] y,. = ~w1 exp - · a 2 
1 (5.15) 

where m1 represents the number of nodes, tj and Wj are the center and weight associated 

with the / 11 node respectively. It is assumed that each node is of fixed width a. Multiple-

inputs and multiple outputs can be handled by including these in the RBF input vector, XI,;. 

The RBF network parameters are determined through a two-step training 

procedure. First, the center locations, · tj, and width, o; are fixed by an unsupervised 

training algorithm, i.e. a clustering algorithm (Hush and Home, 1993) (e.g. Kohonen 

feature map, k-means). The weights are obtained by regression with some form of 

regularization incorporated (Poggio and Girosi, 1990; German, et al., 1992). 
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To compare future predictions by the p-step control model with the cascaded 1-

step model of equation (5.1), we consider a simulation example of a hot/cold water 

mixing process (Rhinehart, 1998). The process is shown schematically in Figure 5.2. 

Water at 80°C and 10°C enters through the hot and cold legs respectively. The mixed 

stream temperature, Tm, and flowrate, Fm, are controlled by the hot and cold leg control 

valves. The valves are regulated by control signals u1 and u2 whose range is 0-100%. 

The process is simulated by a first principles model that describes the flow dynamics in 

response to valve stem positions. The flowrate through each valve is a nonlinear function 

of the stem position. The temperature sensor is assumed to be located at the mixing point 

and is. modeled as a third order response to the true mixing point temperature. The true 

mixing point temperature is calculated as a flowrate weighted average of the hot and cold 

leg temperatures. To emphasize the nonlinearity of the model, we choose to predict Tm 

and Fm rather than Fhot and Fco1a, using signals u1 and u2 where: 

T = Fho,(u1>u2)T,.o, +Fco1iu1'u2)T:01a 
m Fhot (ui, u2) + Fcola<ul> Uz) 

(5.16) 

and 

(5.17) 

A summary of the network configuration for the cascaded I-step and the p-step 

models is provided in Table 5.1. The training and test set data were generated by exciting 

the process with random values of inputs u1 and u2 between 10% and 100% and holding 

the inputs for a random period between 5 and 60 seconds. The sample period was 5 

seconds. In formulating the RBF input vector for the p-step control model, the prediction 
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Tco1d= 10°C 

Fco1d 

.............................................. , 

Figure 5.2: Schematic diagram of the hot/cold mixing process. 
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Table 5.1 

RBF model summary for hot/cold mixing example. 

cascaded 1-step model (p=l) p-step model (p=8) 
Training set/Test set size 3000/2500 3000/2500 
Number of hidden nodes 15 75 
Number of input units 9 25 
Model Nv: 2 for Tm; 1 for Fm Nv: 2 for Tm; 1 for Fm 

Nu: 1 for u 1; 1 for U2 Nu: 1 for u1; 1 for U2 

Na 1 for Thot; 1 for Tcoza Na 1 for Thot; 1 for Tcoza 
Model inputs T m.k-1, T m.k-2, Fm,k-1, T m.k-s, T m.k-9, Fm,k-s, 

UJ,k-1, U2,k-l, UJ,k-9, U2,Jo-9, 

Thotk-1, Thotk-2, Tcold,k-1, Tcold,k-2 dU1J-s, ••• , L\u1,k-1, L\u2,k-B, ... , L\u2,k-1 

Thotk-1, T hotk-2, T cold,k-1, T cold,k-2 
Test set performance 0.8 °C for Tm 2.1 °C for Tm 
(Root mean square error) 0 .3 Kg/min for Fm 1.1 Kg/min for Fm 

horizon p was set to eight samples, the time taken by the process to reach the new steady 

state value. As noted in Table 5.1, the test set statistics for the 1-step model were better 

than those for the p-step model. · This result was expected since the 1-step model had 

access to the previous actual output measurement, while the most recent output 

measurement employed by the p-step model was eight measurements in the past. As 

discussed below, the test set statistics are deceiving for situations where more than a 

single output prediction is needed. 

A comparison of twenty consecutive future predictions of the cascaded 1-step and 

the p-step RBF models to a step change in the input u2 from 60% to 40% is shown in Fig. 

5.3. Input u1 was held constant at 25%. The twenty future predictions by the cascaded 1-

step and the p-step models were generated using equations (5.3) and (5.13) respectively. 

Note that the p-step control model uses only measurements available up to current instant 

to make future eight predictions while the cascaded model uses future predictions as 
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inputs to the RBF network. It is evident from Figure 5.3 that the 1-step cascaded model 

performs well until k = 6. However, beyond k = 6 error accumulation becomes 

significant and the 1-step model predictions degrade. This trend is consistent with the 

observation made by Su and McAvoy. On the other hand, the p-step control model (with 

p = 8) performs more uniformly over the entire horizon of twenty samples. Thus, 

although the cascaded 1-step model provides excellent one-step predictions, long range 

predictions are problematic and better addressed using a p-step model. This advantage 

becomes more pronounced as the prediction horizon increases and would be beneficial in 

industrial applications of MPC which typically use large prediction horizon in the range 

of20 to 50 (Marlin, 1995). 

An RBF model can be easily manipulated to predict the steady-state gain at any 

point whenever the prediction horizon p exceeds the settling time for the process. In the 

abi,ence of control moves between k-p and k-1, the model prediction at k, yk, will 

correspond to the steady-state measurement in response to input uk-p-i · Thus, the RBF 

model can predict steady state process output in a single computation step. Figure 5.4 

illustrates the steady state prediction of mixed stream temperature by the RBF p-step 

model. The input to the hot leg valve was maintained at 25%, while the input to cold leg 

valve, u2, was varied from 20% to 100% in steps of 5% to generate the steady state RBF 

model predictions and process response. The control input moves, tiu1,1c-i and tiu2,1c-i, i=l, 

... , p, were set to zero. The similarity between the model prediction and process steady 

state values confirms that information on nonlinear sensitivity of the process is embedded 

within the RBF model. 
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Finally, to illustrate approximation of process dynamics by the RBF model, we 

present results of a simulation exercise in Figure 5. 5. The figure shows the results of a 

step test run on the process equations and the RBF model. The cold water valve was 

stepped up from 50% to 75% in one simulation run and stepped down from 50% to 25% 

in the other. In both runs, the hot leg valve was maintained at 25%. Excellent 

performance is indicated in both cases. In the following section, we parameterize the 

MPC control problem in terms of the p-step control model. 

5.4 MPC Using p-step Control Model · 

Model predictive control algorithms compute a manipulated variable profile over 

a control horizon by optimizing an objective function defined over the prediction horizon, 

subject to constraints. Only the first move is implemented and the procedure is repeated 

at every sampling instant. The optimization function reflects the process objectives that 

must be achieved, including minimization of overall cost. However, economic 

optimization is often performed by a higher level system, which determines the optimal 

setpoints. We utilize the traditional MPC optimization function that penalizes deviation 

of future model predictions, y k+ j , from setpoints, rk+j, while minimizing future control 

moves, Auk+;: 

P c-1 

rJJ = 1:r i (r k+i - Y k+i )2 + LAi (~ u k+i )2 (5.18) 
i=O 
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Variables p and c represent the prediction and control horizons, respectively. It and Ai 

denote the error penalty and move suppression factors at the l11 instant. Then, the MPC 

control law can be stated as, 

arg(min rp) such that 

Ymin ::;; Yk+i ::;; Ymax 

/J. Umin ::;; /J. U k+i ::;; /J. Umax 

Umin ::;; uk+I ::;; umax 

(5.19) 

Based on the p-step control model, the future model predictions, y k+I' are seen to 

depend on past control moves and the future control move variables, !J.uk+i (see equations 

(5.14) and (5.15)). The future control moves, !J.uk, ... , !J.uk+c-1, represent the decision 

variables for the optimization problem in equation (5.19). For calculation purposes, it is 

desirable to express y k+i such that the unknown decision variables appear explicitly in the 

objective function. Since Gaussian functions are factorable, it is possible to express the 

model prediction, Y1<-+i, as an inner product of two vectors. The unknown decision 

variables are contained in one vector and all other known past quantities, including the 

network weights in the other. Thus, the RBF output can be rearranged as follows: 

[ ]

T , 

w 1 exp(past) exp( future) 

j) ,., = t. w, exp(past +future)= · : I : l 
w "'I exp(past) l exp( future) 

(5.20) 

or 

" ,... T" 
Yk+i = Y p,k+i Y r,k+i (5.21) 
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Subscripts p and f refer to the fact that the corresponding factors contain all known (past) 

and unknown (future) terms, respectively. Thus, only Yr,k+i needs to be computed during 

every function call by the optimization algorithm. 

As an example of RBF output factorization, consider the p-step control model 

with a prediction horizon, p = 2, output order, Ny= 1, and input order, Nu= 2. Then, the 

output of a 3-node RBF network, Yk+P in response to input vector (see equation (5.14)), 

(5.22) 

can be written as,, 

A - ~ . [-llxk+J -tJll2 J Yi.-+i - LJ w1 exp 2 
J=I (J' 

(5.23) 

Let f.j,z represent the '111 element of the node center vector, t1. Then, equation (5.23) can be 

rewritten as the product of two vectors as follows, 

Yk+I = (5.24) 

As discussed previously, the first. factor on the right hand side represents y p,k+i and 

contains all known measurements (including the current measurement) and the known 

past inputs applied to the process. The second vector represents y r,k+i consists of the 

unknown control move, Auk, which is a decision variable of the optimization program 

presented in equation (5.19). All future p predictions can be expressed in a similar way. 
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As shown later, this factorized form facilitates analytic expressions for the gradient and 

Hessian of the objective function. 

To illustrate the factorization of the RBF model prediction based on the generalp-

step control model structure, consider the model prediction at k+ l. Let the center, t, 

associated with a given node be partitioned as follows, 

(5.25) 

Vectors t" and tu contain elements corresponding to the delayed process outputs and 

inputs while t.&l corresponds to the elements of the input moves. Then the factors y p,k+i 

and y r,k+i can be written as follows: 

[ 
1 {(yk-p+1 -t1/)2 

+···+(A-p-Ny+1 -tNy/)
2 

+(uk-p -11,/)2 +···+}] 
WI exp - -2 u l'iu 2 /'iu 2 

u u -t + Au -t +···+ Au -t ( k-p+2-Nu Nu-1,1 ) ( k-p+I 1,1 ) ( k-1 p-1,1 )_ 
~ 

Y,,k+1 = . 

[ {(y Y)2 (y . Y)2 ( U)2 }] 1 k-p+I -fl,"'J. +•••+ k-p+I-Ny -fNy,"'J. + Uk-p -fl,"'J. +•••+ 
W "'J. exp - -2 u l'iu 2 /'iu 2 

u u -t + Au -t +···+ Au -t · ( k-p+2-Nu Nu-l,m1 ) ( k-p+I l,"'J. ) ( k-1 p-l,m1 ) 

(5.26) 

and 

~ 

Yr,k+1 = (5.27) 

The center element, ftm corresponds to the mth component of the f1 node center. Thus, 

y r,k+i contains all the input moves the optimizer must calculate, while y p,k+i is formed by 

135 



completely known quantities including past measurements, pnor control moves and 

network weights. 

As in linear MPC, we assume zero input moves after a control horizon oflength c. 

Then, performing a similar exercise as above, the factors for the predictions, y k+i , ••• , 

Yk+p, based on c future moves, Auk, ••• , Auk+c-1, take the following form: 

(5.28) 

where i ranges from 1 top. 1 represents a column vector of size m1 with unity elements. 

The operator ". *" is used to denote element by element multiplication. Note that when 

the index, i, equals p, the final summation drops out since j varies from O to -1. The 

factor y r,k+i that contains the future moves the optimization algorithm must calculate is: 

y r,k+I ·= exp[-~ f ~uk+i-1_1 l-t p-J "" Y], i = 1, ... , c 
CT J=O 

(5.29a) 

[ 1 1-1 I~ ) J· Yr.k+i =exp --2 ~viuk+i-1-11-tp-1"" 2 , i=c+1, ... ,p 
.a 1=•-c 

(5.29b) 

The exponential function in equations (5.28) and (5.29) implies a term by term 

application to each element of the column vector in the square brackets. Column vector t1 

is constructed by using the / 1 element of all m1 centers. Thus, any future prediction, y k+i, 

can be computed using equations (5.21), (5.28) and (5.29). 
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The objective function in equation (5.18) can be parameterized in terms of the 

network weights and the decision variables as follows: 

(5.30) 
i=I 1=0 

The gradient of the objective function can be computed analytically as follows: 

(V,I,.) 2~r ( " T" 'h r DYr,k+i 2A A 
'P m = - 7=:i' I \!'k+i - y p,k+i y f,k+i ~ p,k+i oAum + ~ uk+m (5.31) 

where (Vt/J)mdenotes the mth component of the gradient and m = 0, ... , c-1. The partial 

derivative of y r,k+i is evaluated from equation (5.29) as, 

X,. 1-(--;-)y f k+I" * (.._ u k+m 1-t -i+m+/1'"} form+ 1 < i 
VJ f,k+i _ (J' : ~ p 

oAu . · 
m 

0, . for m + 1 ~ i 

(5.32) 

Similarly, the (m,n) component of the Hessian matrix can be computed as follows, 

. . . { l . [}2" J 
2 = -2 p r r _ " T" " T Y f,k+i _ 

(V t/J) m,n L j ( k+i y p,k+I y f,k+i y p,k+i oil oil 
1=! Un Un 

(
" T oy f,k+i J(" T oy f,k+i J} 
y p,k+i 0/l Um y p,k+I 0/l Un 

(5.33) 

The second order partial derivative in the above expression is calculated by, 

y f,k+I = - _!_ " * 8 1 + VJ f,k+I U 1-t [}2" ( )( X,. J 
oAunoAum u2 Yr,k+1· mn OAun (A k+m p-J (5.34) 

when (m + 1), (n + 1) :s:; i and zero otherwise. 

Using the above expressions for the gradient and Hessian, the optimization of the 

objective function in equation (5.30) can be performed using sequential quadratic 
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programming (SQP). The nonlinear output constraint in equation (5.19) can be written in 

terms of the factors of the model prediction and linearized using equation (5.32). The 

input constraints can be converted to input move constraints as in quadratic dynamic 

matrix control (Garcia and Morshedi, 1986). Analytical expressions for the gradient and 

Hessian greatly reduce the number of function calls and hence the computational burden 

during optimization. In addition, the separation of the decision variables in the model 

prediction ensures that only the unknown parts of the objective function and the gradient 

and Hessian required by the SQP algorithm are recalculated during · optimization. 

Although the above expressions are derived for a single-input-single output system, 

similar expressions can be written for· multiple-input multiple-output (MIMO) system by 

augmenting the objective function, y P and Yr to include the multiple input/output 

variables. 

5.5 Simulation Examples 

To illustrate the performance of our proposed NMPC approach for a MIMO 

problem, consider control of the 2 x 2 hot/cold water mixing process discussed 

previously. In implementing the factorized RBF based NMPC for a MJMO process with 

No outputs, the network weights are stored in a m x N0 matrix, W. 

W = [wl W2 • • • WNo] (5.35) 

Equation (5.28) is then modified to provide y P for the fh process outputs as follows: 
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where I ranges from 1 to the number of process outputs, No. Vector y 1 , which contains 

the future input moves, remains unchanged. The summary for the p-step control model is 

shown in Table 5 .1. The error penalties I;, i = 1, ... , p were set to O. 5 and 1.1 for the 

temperature and flow, respectively, with Aj,} =1, ... , c set to 0.7 for both the inputs, u1 

and u2. The prediction and control horizons were assumed to be 8 and 3 sample intervals, 

respectively. At each control step, y P was calculated only once. During optimization, 

each objective function call involved calculation of yr and the computation of the model 

predictions based on equation (5.21). Optimization was performed using MATLAB's 

SQP function, constr, with analytical values of the gradient generated by equations (5.31) 

and (5.32). MATLAB's SQP function calculated the Hessian by finite difference. Inputs 

ui and u2 were constrained to lie between 10% and 100%. No constraints were imposed 

on the outputs, the mixed stream temperature and flowrate. As in traditional linear MPC, 

the future p predictions are biased by the current value of the mismatch at each control 

execution step. 

Control of the mixed stream temperature and flowrate for multiple setpoint 

changes is presented in Fig. 5.6. For the purpose of comparison, control of the mixing 

process by QDMC is also shown. The linear model used by QDMC is identified by step 

tests in the 40% to 60% region of the hot and cold valve signals. Disturbances enter the 

process at k = 50, 125, 200 and 375 by step changes in the hot and cold leg temperatures 

as shown in the figure. The RBF model accounts for hot and cold fluid temperatures 

changes by incorporating these measurements in the RBF input vector as shown below, 

augmented [ • T, T, T T ] 
xk+i = xk+i : hot,k hot,k-1 cold,k cold,k-1 (5.37) 
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Figure 5.6: (a) and (b) illustrate control of the 2x2 mixing process in presence of 
measured disturbances in hot leg (at k = 50,200, and 375) and cold leg (at k 
= 125, 200, and 375) temperatures by the RBF based NMPC and linear 
QDMC. Setpoint changes were made at k=l 75, 375, 575 and 775 for 
temperature and at k=175, 375 and 775 for tlowrate. (c) and (d) show 
control action implemented by the NMPC and QDMC controllers. ( e) and 
(fl nrocess model mismatch for temnerature and tlowrate 
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Similarly, the center vector is also augmented to include center elements corresponding 

to the disturbance measurements. During the future prediction phase, it is assumed that 

the current values of the hot and cold leg temperatures remain constant over the 

prediction horizon. In this example, the QDMC also uses a model to account for the 

temperature disturbances. Both, the RBF based NMPC and QDMC successfully reject 

these measured disturbances by use of measurement bias. 

At k = 175, the temperature setpoint is changed from the initial value of 55°C to 

30°C while the flow setpoint is changed from 17 kg/min to 27 kg/min. The QDMC 

controller responds by making large positive changes in the cold leg valve to decrease the 

temperature of the mixed stream. The hot leg valve has a higher throughput ( nearly 

double) than the cold leg valve at a given stem position. Thus, the QDMC controller also 

opens the hot leg valve to allow for increased flow rate. However, at lower temperatures 

the mixed stream temperature becomes increasingly sensitive to hot water flow. When 

the flow rate setpoint is further increased at k = 3 7 5, the hot leg valve further opens till it 

saturates at 100% and the process is no longer maintained at the respective setpoints. At 

k = 775, the setpoints are brought to the region of linear model .development and the 

linear QDMC controller is once again able to control the plant. On the other hand, the 

RBF based NMPC controller exhibits excellent control over the entire operating region. 

Also shown in Fig. 5.6 is the process-model mismatch for the two outputs. Tight control 

by the RBF based NMPC controller is a consequence of good predictions by the RBF 

model over the entire range of operation. 
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It is of practical interest to investigate the computational requirements for the 

factorized RBF model based NMPC algorithm. To evaluate computational benefits, the 

computation time needed by the factorized RBF model based NMPC for the above 

problem is compared with a non-factorized RBF based NMPC algorithm which also uses 

the p-step control model. Unlike the factorized approach where y, is calculated only 

once during each control execution, the. non-factorized algorithm computes the entire 

expression for RBF model predictions (similar to equation (5.2)) during each iteration of 

the nonlinear program at every control execution. Also, the gradient information is 

calculated numerically with the non-factorized approach. Table 5.2 documents the 

results. The results were generated by using the tic-toe command in MATLAB and 

represent the actual time needed by the computer to complete the controller-related 

calculations. As evident from Table 5.2, the factorized RBF based NMPC is an order of 

Table 5.2 

Comparison of computation time needed in control of hot/cold mixing example. 

(simulation for 900 samples or 4450 seconds) 

Factorized RBF Non-factorized RBF QDMC 
basedNMPC basedNMPC 

(gradients evaluated 
numerically) 

Real-time needed for 268 2984 17 
computation (seconds) 
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magnitude efficient than the non-factorized approach. This is a significant reduction 

considering the non-factorized NMPC approach is two orders of magnitude more 

demanding than linear QDMC. 

To test the RBF model based NMPC algorithm in presence of unmeasured 

disturbances, we again consider control of the hot/cold mixing process. However, unlike 

the previous example, the RBF model does not utilize the hot and cold leg temperatures. 

Additionally, various process non-idealities, including valve stiction, drifts in process 

parameters, drifts in temperature, and drifts and spikes in upstream pressure drops of the 

hot and cold legs, are built into the governing equations for the process (Rhinehart, 

1998). The control simulation results are shown in Figure 5.7. The mixed stream 

flowrate measurement was filtered using a CUSUM filter (Rhinehart, 1992) prior to input 

to the MPG scheme. No filtering was employed for the temperature measurement. The 

RBF network was trained on the unfiltered noisy data. Use of regularization during 

training ensured that the network does not overfit the noisy data. The number of nodes 

and the regularization parameter were selected so that similar statistics are obtained for 

network performances on the training and test sets. Based on the simulation results, it is 

observed that RBF based MPC exhibits tight control of the mixing processes in face of 

the non-idealities described above. 

As a final example, we consider control of a non-adiabatic, continuous, stirred­

tank reactor with a first order irreversible reaction. The heat of reaction is removed by 

circulation of cooling water in the reactor jacket. Uppal et al. (1974) describe the 
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Figure 5.7: (a) and (b) illustrate the control of the 2x2 mixing process in presence of 
unmeasured disturbances in hot and cold leg temperatures (steps, drifts and 
spikes). Setpoint changes were made at k=O, 65 and 365 for temperature and 
at k=O, 200, and 365 for flowrate. (c) control action implemented by the 
NMPC controller. ( d) process model mismatch for temperature and 
flowrate. 
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following system of equations that govern the process dynamics, 

(5.38a) 

(5.38b) 

States x1 and x2 represent reactant conversion and a dimensionless reactor temperature. 

The manipulated variable, u, is a dimensionless reactor jacket temperature. The steady 

state characteristic of the reactor for parameters, P= 3.0, y= 40, B = 22 and Da = 0.082, 

is shown in Fig. 5.8. The process exhibits low gain at small values of conversion (1 % to 

4%) and considerably higher gain (in excess of 80 times the low gain) at higher 

conversions (>18%). The performance of the RBF based NMPC and linear QDMC is 

shown in Fig. 5.8. A 125-node RBF network was trained to emulate process behavior 

over the range of 1% to 20% of conversion. For the QDMC controller, a linear model 

was developed by conducting a step test at low conversions (1 % to 4% ). A prediction 

and control horizon of 9 and 3 samples, respectively, was used for both algorithms. At 

low conversion, the QDMC controller shows adequate performance. However, when a 

new setpoint (x1 = 0.18) is implemented, the QDMC controller does not recognize the 

high plant gain in this new region, resulting in aggressive control action. The system 

becomes unbounded when the next setpoint change (from 0.18 to 0.19) is implemented. 

On the other hand, the RBF based NMPC controller provides tight control over the entire 

range of operation. 
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Figure 5.8: (a) shows the steady state characteristics of the CSTR process. (b) 
illustrates the control of the CSTR process using a linear QDMC 
controller and the RBF based NMPC algorithm. Setpoint changes were 
made at k=200, 400, and 600. The linear QDMC control system 
becomes unstable in high gain region (k>646). The RBF-NMPC 
controller provides tight control in both, the low and high gain regions. 
( c) control action. ( d) orocess model mismatch. 
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5.6 Conclusions 

The most significant contribution of the proposed methodology is the ability to 

provide nonlinear control. The proposed NMPC technique integrates two well-accepted 

concepts in the modeling and control communities, RBF networks and Model Predictive 

Control. RBF-based ~C controller design offers the potential of a generic 

methodology for a large number of industrial processes as many process nonlinearities 

can be expressed in terms a set of radial basis functions (Hartman et al., 1990). 

The methodology can be applied to multivariable systems as illustrated by 

application to the 2 x 2 hot/cold water mixing simulation. Conceptually, the 

methodology can be applied to any m x n system. However, the use ofRBF networks for 

the process model introduces practical questions of scale. As evident from the 

development presented in Section 5.4, the number of nodes used to model a multivariable 

system directly impacts. the computational resources required to implement the proposed 

methodology. There is an obvious premium on efficient modeling to minimize the total 

number of RBF nodes. Additional work is required to determine the point at which scale 

becomes a problem. The potential to compensate for reduced control model fidelity with 

additional computational effort is clearly an issue of interest in this situation. 

The potential problems of scale mentioned previously have been mitigated in part 

by leveraging the factorability of the Gaussian functions used in RBF networks. This 

property was exploited to express model predictions as an inner product of two vectors, 

one containing the decision variables of the MPC optimization program with the other 
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made up entirely of known past quantities. This minimizes computational effort since 

only the unknown parts of the objective function need to be re-evaluated during each 

optimization call. Additional computational benefits are realized due to the compact 

representations for the MPC controller objective function and the availability of analytic 

expressions for the gradient and Hessian. The objective function takes the form of a sum 

of weighted Gaussian functions. Opportunities may exist to further exploit the radial 

symmetry of the Gaussian functions to tailor more efficient MPC optimization 

algorithms. 

In the proposed NMPC scheme, the choice of the prediction horizon p influences 

both the controller performance as well as the control model. The p-step model 

specifically eliminates iterative · dependency on model predictions. However, there is a 

cost. The most recent output measurement available for use by the model is always p 

steps prior in time. Thep-step model was proposed due to problems with cascaded 1-step 

models using industrial magnitude prediction horizons. Performance of p-step models 

using these relatively long prediction horizons needs to be demonstrated. 
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6 APPLICATION OF FACTORIZED RBF BASED MPC TO THE 

EASTMAN CHALLENGE PROBLEM 

Chapter Overview 

The purpose of this paper is to explore the application of a factorized radial basis 

function (RBF) network model based nonlinear MPC (NMPC) algorithm (Bhartiya and 

Whiteley, 2000) for control of the Eastman process. The algorithm derives its 

computational efficiency by factorizing the model response. Control inputs are 

calculated based on optimization of a nonlinear objective function using the sequential 

quadratic programming technique. A brief description of the algorithm is included in the 

paper. Key elements of a plantwide control strategy outlined by McAvoy and Ye (1994) 

are discussed. A subset ( 4x4) is selected for control by the RBF based NMPC algorithm 

with the remaining plant uses the McAvoy and Ye scheme. An RBF model is then 

developed for this subset and finally, results using factorized RBF based NMPC approach 

for control of the Eastman process are presented. 

6.1 Introduction 

The Eastman challenge problem (Downs and Vogel, 1993) has been used 

extensively to evaluate different control strategies. In this paper, we demonstrate 

successful application of a new nonlinear model predictive control (NMPC) algorithm 

(Bhartiya and Whiteley, 2000) to the Eastman process. The NMPC algorithm employs a 

nonlinear process model in the form of a radial basis function (RBF) network. The 

algorithm exploits the factorability of RBF models in a traditional model predictive 
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control framework. The Eastman challenge problem provides an ideal testbed to evaluate 

the computational and nonlinear control benefits of the proposed NMPC algorithm. 

Model predictive control (MPC) is used extensively to control high value, 

constrained, multivariable industrial processes (Qin and Badgwell, 1997). However, the 

current generation of commercially available MPC packages generally relies on linear 

process models. Excellent performance is realized as long as the plant operates close to 

the conditions used to create the linear approximation of the process. The goal for the 

next generation of control software is to provide similar capability across the whole range 

of possible plant operating conditions. MPC can potentially provide this capability if a 

more accurate nonlinear model of the process is employed. 

However, use of a nonlinear model presents additional challenges relative to 

linear MPC: 1) the complexity of nonlinear systems makes systematic development of 

nonlinear system identification technique difficult (Pearson and Ogunnaike, 1997), and 2) 

nonlinear MPC requires solution of a nonlinear program at each sampling instant making 

implementation more involved (Henson, 1998). Both of these problems have been 

investigated by a number of researchers. The following paragraphs provide a brief 

account of developments reported in literature. 

A straightforward extension of linear theory to nonlinear system identification is 

generally difficulty due to the complexity of nonlinear systems. Cook (1986) indicates 

that because of the large number of different types of nonlinearities can occur in practice, 
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extending a basic control scheme to account for all possibilities is unrealistic. One way 

of tackling the general nonlinear problem is to employ a framework, within which a large 

number of nonlinear processes can be adequately approximated. Volterra and 

Hammerstein models (Agarwal and Seborg, 1987) and neural networks (Hussain, 1999) 

have been studied as nonlinear modeling tools. As an alternative, the NMPC controller 

may be based on a fundamental model which is derived from conservation laws and 

constitutive equations. The continuous time differential equations are discretized by 

some method (e.g., orthogonal collocation on finite elements (Meadows and Rawlings, 

1997) to allow incorporation in the NMPC scheme. 

A common approach to the nonlinear optimization required in NMPC is based on 

successive linearization of nonlinear models. Garcia (1984) proposed a nonlinear QDMC 

algorithm, a simple extension of DMC/QDMC based on online successive linearization 

of a mechanistic nonlinear model. Nonlinear MPC using closed-loop state estimation by 

an extended Kalman filter has been proposed by Lee and Ricker (1994). Gattu and 

Zafiriou (1995) augmented the system states with stochastic states to account for 

modeling errors and disturbances. Banerjee et al. (1997) describe a method of state 

estimation for nonlinear systems that are subject to multiple operation regimes and make 

transitions between them. The nonlinear process is approximated by a linear parameter 

varying system which consists of local linear models. Krishnan and Kosanovich (1998) 

also present a multiple model based MPC scheme. The linear time invariant models are 

computed offiine along a pre-defined reference trajectory of a batch process. Each of the 

above nonlinear MPC techniques use the standard quadratic programming optimization 
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method to obtain control inputs. Use of nonlinear programming techniques have also 

been used (Bequette, 1991). Mayne (1996) argues that model constraints corresponding 

to satisfaction of model equations over the prediction horizon, generally, result in a 

nonconvex optimization. Various solution methods of solving the online finite horizon 

nonlinear control problem are available (Mayne, 1995; Santos et al., 1995). Staus et. al 

(1996) study a class of nonlinear problems for which the global optimum can be 

computed online. A similar study is reported by Sriniwas and Arkun (1995). 

In the past few years, renewed interest has been paid to neural network models 

because of their simple structure and effective computational performance. In particular, 

artificial neural networks have been used for inferential modeling (Bhide et al., 1995), 

fault diagnosis (Venkatasubramanian et al., 1990), process identification (Chen et al., 

1990) and model based control (Bhat and McAvoy, 1990; Su and McAvoy, 1997). 

Hussain (1999) provides a summary of a number of applications reported in literature. 

When applied for predictive control most utilize a feedforward network architecture, 

while a few use the recurrent type. Among the various neural network choices, multi­

layer perceptron and radial basis function networks are the most popular in control and 

identification applications. Both of these networks are capable of universal 

approximation (Cybenko, 1987; Hartman et al., 1990). 

The Eastman process has been used for many purposes including evaluation of 

various linear and nonlinear MPC schemes. McAvoy and Ye (1994) outlined a multiple 

single loop strategy. The loop pairings were determined based on the relative gain array, 
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Niederlinski index and nonlinear disturbance and saturation analyses. Banerjee and 

Arkun (1995) proposed a two-tier control configuration procedure to design the SISO 

loops. Kanadibhotla and Riggs (1995) applied Generic Model Control (GMC) to the 

reactor temperature loop and a nonlinear steady-state compensating controller to the 

stripper composition loop. The remainder of the plant was controlled using standard PI 

controllers. Other SISO strategies have also been outlined by Desai and Rivera (1993), 

Lyman and Georgakis (1995), Luyben (1996), and Ricker (1996). Tyreus (1999) used a 

partial control structure in which the controlled variables were identified by a 

thermodynamically motivated dominant variable method. 

Palavajjhala et al. (1993) compared a SISO strategy with a DMC implementation. 

Ricker and Lee (1995b) proposed a nonlinear (mechanistic), dynamic model of the 

Eastman process consisting of 15 adjustable parameters: In a later publication, Ricker 

and Lee (1995a) presented a nonlinear MPC for an 8x8 subset of the Eastman process 

using their nonlinear mechanistic model of the plant. The remaining controlled variables 

were stabilized by SISO feedback loops in a cascade structure. Variables manipulated by 

the MJ>C controller were setpoints to the SISO loops. The model was linearized at every 

control execution step and process inputs calculated. The nonlinear model predictive 

control (NMPC) showed good results over the entire spectrum of plant operation. While 

they did not provide details, Ricker and Lee stated that they tested MIMO strategies 

employing time-invariant models such as DMC, QDMC, IDCOM, etc. and noted that 

these models were too sensitive to gain variations and could not be tuned for robust 

performance. The DMC implementation of Palavajjhala et al. violated the ±5% 
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variability specification on product compositions. Sriniwas and Arkun (1997) used linear 

input output models with MPC in a supervisory mode to control the Eastman process . 

. The current work differs from those listed above in that MPC is based on a nonlinear 

RBF model identified from input-output data. 

The remainder of this paper is organized as follows. The essential points for the 

proposed nonlinear MPC algorithm are presented in Section 2. A brief overview of the 

Eastman process is presented in Section 3. Application of the NMPC algorithm for 

control of the Eastman process is described in Section 4. Results are presented in Section 

5 followed by conclusions in Section. 6. 

6.2 RBF-Based Nonlinear MPC Algorithm 

A complete description of the algorithm is presented in (Bhartiya and Whiteley, 

2000). From an MPC . standpoint, the most important point is the use of a radial basis 

function (RBF) neural network to predict future process behavior. Feedforward RBF 

networks have been widely used as models of dynamic processes (Chen et al., 1990; 

Pottmann and Seborg, 1997). A number of applications using the RBF model.with model 

predictive control (MPC) havebeen reported.in the literature. Hunt·and Sbarbaro (1992) 

use an RBF model for pH control of a neutralizing tank. Pottmann and Seborg (1997) 

train a RBF network to directly emulate a predictive controller. 

The radial basis function (RBF) network consists of an input layer, a hidden layer 

and an output layer. In the input layer, unweighted inputs, x, are directly transmitted to 
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the hidden layer nodes. Each hidden layer node consists of a radial basis function. In the 

current work, the Gaussian function is employed, 

g. (x) = exp[- iix -ti 112 J 
J 0"2 

(6.1) 

where t1 is the center of the / 1 hidden node. It is assumed that each node is of fixed width 

u. Other radial functions such as inverse multiquadric have also been used (Pottman and 

Seborg, 1992). The output layer performs a weighted summation of hidden node outputs 

to give the network output, 

m, 

j\(x) = Lwiig/x) (6.2) 
J=1 

where m1 represents the number of hidden. nodes and wy is the weight between the l 11 

output node and the /h hidden node. · RBF network training consists of fixing the hidden 

node centers and their width, and the weights to approximate the input-output mapping 

provided by the data. Often, the training data consists of noisy measurements. This may 

cause the minimization of prediction error to be an ill-posed problem. Regularization 

theory is used to address this problem by incorporating smoothness constraints or a priori 

knowledge (Poggio and Girosi, 1990) in the minimization problem. Regularization may 

also be used to incorporate first-principles knowledge (Gurumoorthy and Kosanovich, 

1998) directly in the training algorithm. 

The proposed NMPC algorithm employs an RBF model to provide non-iterative 

sequential predictions over a prediction horizon of length p. The model is structured to 

avoid dependency of future model predictions on previous model predictions. Future 
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predictions, y k, are related to past measurements Yi and inputs ui, delayed by p samples 

and input moves, l!:i. u,, as follows, 

Y~ = Ff ··· y u ••• u l!:i.u ••• l!:i.u ) (6 3) klk-p \)' k-p, , k-p+I-N y, k-p-1' , k-p+I-Nu, k-p, , k-1 · 

where the control move at the 'i!1 instant, 

(6.4) 

Ny and Nu represent the orders of output and input, respectively. Function Fis defined by 

the RBF network. From a process response approximation point of view, the delayed 

input/output measurements, viz. Yk-p, ... , Yk-p+J-Ny and Uk-p-1, ... , Uk-p-Nu, respectively, 

provide a reference to the state of the systemp samples in the past. Note that subscripts 

now refer to instances in time rather than connectivity within the RBF network. 

Based on the model in equation (6.3), the following form of the input vector is 

chosen for a single-input, single-output system, 

xk = lYk-p ••• Yk-p+I-Ny uk-p-1 ••• uk-p+I-Nu l!:i.uk-p ••• l!:i.uk-lj (6.5) 

Figure 6.1 illustrates the input vector with elements located on a timeline. Measurable 

disturbances can be accounted by augmenting the input vector x to include the 

disturbance variables. The RBF prediction of the process output at instant k is then 

obtained by equation (6.2). Multiple-inputs and multiple outputs can be handled by 

including these in the RBF input vector, x. 

Control moves are determined usmg the traditional MPC approach. The 

algorithm computes the manipulated variable profile over a control horizon by optimizing 

an objective function defined over the prediction horizon, subject to constraints. Only the 
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Figure 6.1: Timelines showing inputs to the p-step control model. For this example, p = 
4, Ny = 3, and Nu = 2. Predicted outputs are generated from known 
information only, previous model predictions for y are not used in model 
input. 
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first move is implemented and the procedure is repeated at every sampling instant. We 

use the following objective function: 

(6.6) 
i=I i=O 

Variables p and c represent the prediction and control horizons, respectively. I; and A; 

denote the error penalty and move suppression factors at the ith instant. The MPC control 

law can be stated as, 

arg(min rp) such that 
l'iuk, l'iuk+I '···, l'iuk+c-1 

< ~ < Yrnii> - Yk+t - Ymax 
l!..uI!llll sl!..uk+i sl!..umax 

Umin S Uk+i S Umax 

(6.7) 

The future model predictions, y k+i, depend on past control moves and the future 

control move variables, l!..uk+i (see equation (6.3)). The future control moves, l!..uk, ... , 

l!..uk+c-1, represent the decision variables for the optimization problem in equation (6.7). 

For calculation purposes, it is desirable to express Yk+i such that the unknown decision 

variables appear explicitly in the objective .function. The key idea in the factorized RBF 

model lies in expressing the model prediction, y k+i, as an inner product of two vectors. 

The unknown decision variables of the nonlinear program (equation (6.7)) are contained 

in one vector and all other known past quantities, including the network weights in the 

other. Thus, the RBF output can be rearranged as follows: 

[ ]

T 
w 1 exp(past) exp(future) 

j),.., = t. w J exp(pas, + fature) = , I , l 
w m, exp(past) l exp(Juture) 

(6.8) 

158 



or, 

" " T" 
Yk+I = y p,k+i y f,k+I (6.9) 

Subscripts p and f refer to the fact that the corresponding factors contain all known (past) 

and unknown (future) terms, respectively. Thus, only yr k+i needs to be computed during 

every function call by the optimization algorithm. All future p predictions can be 

expressed in a similar way. The factorized form provides analytic expressions for the 

gradient and Hessian of the objective function (Bhartiya and Whiteley, 2000). As 

demonstrated later, the availability of analytic expressions significantly reduces the 

computational requirements associated with the algorithm. In addition, the separation of 

the decision variables in the model prediction ensures that only the unknown parts of the 

objective function and the gradient and Hessian required by the sequential quadratic 

programming (SQP) algorithm· are recalculated during optimization. 

The nonlinear output constraint in equation ( 6. 7) can be written in terms of the 

factors of the model prediction and linearized. However, output constraints have not 

been used in the current work. The input constraints can be converted to input move 

constraints as in quadratic dynamic matrix control (Garcia and Morshedi, 1986). 

6.3 Overview of Eastman Process 

The process consists of producing two products from four reactants by the 

following reactions (Downs and Vogel, 1993), 

A(g) + C(g) + D(g) ~ G(liq) Product 1 

A(g) + C(g) + E(g) ~ H(liq) Product 2 
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A(g) + E(g) ~ F(liq) 

3D(g) ~ 2F(liq) 

Byproduct 

Byproduct 

In addition to the reactants, an inert B is also present. Five unit operations, viz. an 

exothermic, two-phase reactor, a product condenser, a vapor-liquid separator, a 

compressor, and a stripper column with a reboiler are employed. A schematic of the 

Eastman process is shown in Figure 6.2 .. The gaseous reactants react to form the liquid 

products. The heat of reaction is removed by an internal cooling bundle. Although a 

large holdup of products G and H exists in the reactor, there is no liquid effluent stream. 

Unreacted feed along with the vaporized product leaves the reactor through a partial 

condenser to the vapor-liquid separator. The separated liquid contains most of the 

products G and H and small amounts of reactants D, E and byproduct F. Unreacted 

reactants, A and C and the inert B are essentially noncondensibles and are recycled back 

to the reactor by a compressor. A purge stream is provided to avoid buildup of inert B. 

Figure 6.2 

Finally, the separated liquid enters a stripper column to recover the unreacted 

reactants. Steam is provided as the heat source to recover the volatile components. 

Products G and H exit the stripper base and are separated in a downstream unit. 

The main control objective is to maintain product rate and compositions at their 

respective setpoints (±5% for production rate and ±5 mol % G) and minimizing 

variability of A, D and C feed streams due to small available holdup. This must be 

accomplished while keeping other process variables within operational constraints to 
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Figure 6.2: Schematic of the Eastman challenge process. 
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ensure equipment protection. Additional details are available in Downs and Vogel 

(1993). 

6.4 Application ofRBF-Based NMPC to Eastman Problem 

6.4.1 Plantwide Control Strategy 

As a starting point, we used the SISO strategy previously reported by McAvoy 

and Ye (1994) for the base regulatory control system. The SISO loop pairings 

recommended by McAvoy and Ye are presented in Table 6.1. Two minor modifications 

were made to McAvoy and Ye's scheme: 

1) Setpoint of condenser cooling water return is used to control the condenser 

temperature (Gain= 5.0 %/°C; integral time= 50 minutes). Recycle flow was 

not controlled. 

2) The flow controller for the A & C stream (stream 4) was tuned more 

aggressively (Gain= 0.3 %/kscmh; integral time= 0.09 minutes). 

Selection of the manipulated and controlled variables associated with the NMPC 

controller was made ·based on the control objectives specified in the Eastman problem 

statement. Downs and Vogel suggested the following setpoint changes from the base 

case conditions: 

1) production rate step change (-15%), 

2) product mix step change (50G/50H to 40G/60H on mass basis), 

3) reactor operating pressure step change (-60 kPa) 

4) purge gas composition of component B step change (+2 mol %). 
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Table 6.1 

Input-output pairing determined by McAvoy and Ye (McAvoy and Ye, 1994) 

Controlled Variable Manipulated Variable 

Reactor temperature Reactor coolant temperature setpoint 
Reactor pressure A feed rate setpoint 
Reactor level E feed rate setpoint 
Separator level Underflow rate setpoint 
Stripper temperature Steam flow setpoint 
Stripper level . Stripper underflow rate setpoint 
Production rate A & C feed rate setpoint 
G/H composition in product DIE ratio setpoint 
E composition in product Stripper temperature setpoint 
Inert B composition in purge stream Purge flow rate setpoint 
Recycle flow Condenser cooling water temperature setpoint 
Compressor power Recycle valve 

We therefore chose to control the production rate, reactor pressure, and purge gas 

composition. Since the PI controller in the McA voy and Ye scheme performs adequately 

for control of product quality ( within the tolerance of ±5 mol % G as suggested by 

Downs and Vogel), product quality was not included in the NMPC scheme. 

A fourth controlled variable was selected however. Disturbance IDV(l) is 

defined by a step change in the A/C feed ratio in stream 4. This disturbance upsets the 

reaction stoichiometry causing the gaseous reactants to accumulate in the reactor-recycle 

loop with an associated increase in reactor pressure. A similar situation is encountered 

with disturbance IDV(8) which relates to random variations in the A, B and C 

composition of stream 4. In order to address reactor stoichiometry disturbances, the A/C 
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mole ratio in the reactor feed was included as an additional controlled variable in the 

NMPC scheme. 

The manipulated variables were selected based on the steady-state gain matrix 

presented by McAvoy and Ye (1994) along with the following observations. 

1) The A & C feed stream consists of reactant C and the bulk of reactant A, both 

of which are needed to form products, G and H. Thus, this stream directly 

affects the production rate. It is also the carrier of inert B and hence directly 

influences the purge gas composition of component B. 

2) The reactor temperature strongly influences the reactor pressure. A decrease 

in reaction temperature quenches the reaction. In this case, the unreacted 

reactants, which are essentially noncondensibles, accumulate in the recycle 

loop causing the reactor pressure to rise. On the other hand, an increase in 

reaction temperature increases the rate of formation and subsequent 

vaporization of products. The vaporized products are then condensed leading 

to a drop in the recycle loop pressure. 

3) Stream A has a much smaller throughput compared to the A & C stream and 

supplies the remainder of component A needed for the reaction. Thus, this 

stream can be effectively used for control of the A/C ratio in the reactor feed. 

4) Purge rate is a logical choice for control of component B in purge. It also 

affects the pressure by avoiding accumulation of noncondensibles. 

Based on the above considerations, we chose A feed, A & C feed, reactor temperature 

and purge rate as the set of manipulated variables used by NMPC scheme. 
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Of the twenty load disturbances suggested by Downs and Vogel, seven {IDV(4, 

5, 7, 11, 12, 14 and 15)} are directly addressed by the base SISO regulatory control 

system. Disturbance IDV(2) is defined by a step increase in the B composition while 

maintaining A/C composition constant in stream 4. Since B is an inert, it does not upset 

the stoichiometry in the reactor. The presence of the disturbance is detected by the 

consequent rise in the purge gas composition of component B and should be addressed by 

the NMPC controller. Disturbances IDV(3, 9 and 10) relate to temperature changes in 

feed streams 2 and 4. These disturbances manifest themselves by changing the heat 

content of the reactor. Thus, these disturbances can be rejected by manipulation of the 

reactor temperature setpoint. 

A summary of the resulting 4x4 subset selected for control by NMPC is provided 

in Table 6.2. PI controller tuning parameter values used are as in McAvoy and Ye except 

for the NMPC subset and the two modifications noted previously. Note that each of the 

variables manipulated by the NMPC controller are setpoints for the lower level PI 

controls. 

Table 6.2 

Controlled and manipulated variables for control by the RBF based MPC 

controller. 

MPC controlled variables MPC manipulated variables 
Reactor pressure Reactor temperature setpoint 

Composition of B in purge Purge rate setpoint 
Production rate A & C feed rate setpoint 

A/C mole ratio in reactor feed A feed rate setpoint 
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6.4.2 Development of the RBF Model 

The choice of control and prediction horizons and the sample interval determines 

the dimension of the input vector to the RBF model. We used a sample interval as 3 

minutes. The prediction and control horizons were chosen as one hour (p=20) and 15 

minutes (c=5), respectively. 

The prediction and control horizons affect the number of hidden nodes required 

by the RBF model. Typically, an increase in the input space size ( due to large 

dimension) requires greater number of hidden nodes to span it. While increasing the 

number of nodes is a potential solution, it leads to a concomitant increase in model 

complexity and demands on the test and training set size. 

Training data were generated by perturbing the NMPC manipulated variables 

around the base case. Table 6.3 gives the range of the perturbations. The magnitude of 

the steps was selected randomly within the ranges specified in Table 6.3. The duration of 

each step was selected randomly between 45 minutes and 2 hours. The simulator was run 

multiple times to generate the desired data. A total of 3 5 runs with simulation time 

varying between 16 hours and 175 hours were made. Each run was terminated when 

process conditions approached known operating constraints for the process (e.g., high 

pressure shutdown). All disturbances were turned off during each run. 

Before generating network input patterns, the data were normalized to zero mean 

and unity standard deviation. The arrangement of measurements in each network input 

166 



pattern, Xk is shown in Table 6.4. Note that in addition to the control inputs, the input 

vector also contains measurements of D feed, E feed and the total reactor feed rates. Use 

of D feed rate and E feed rate as inputs to the RBF model was necessary since 

implementation of the product mix setpoint change entailed large manipulations of the D 

and E feed rate to the reactor. These manipulations in turn potentially influence variables 

controlled by the NMPC controller and therefore must be modeled by the RBF network. 

Table 6.3 

Operating region represented in network training. 

MPC Manipulated Variable Maximum value Minimum value 
Reactor temperature (°C) 116 128 
Purge rate (kscmh) 0.05 0.85 
A & C feed rate (kscmh) 7.5 11 
A feed 0.05 1.05 

Table 6.4 

Elements of RBF input pattern vector Xk. 

Delayed CVs Pressure,k-v % B in purge,k-v Product rate,k-v AJC mole ratio,k-v 
DelayedMV A feed,k-v-1 A & C feed,k-v-1 Purge rate,k-v-1 Temperature,k-v-1 
Past input AA feed,k-p, AC feed,k-p, ... , APurge,k-p, ... , ATemp.,k-p, ... , 
moves ... ,AA AC feed,k-1 APurge,k-1 ATemp.,k-1 

feed,k-1 
Disturbance D feed rate,k E feed rate,k Reactor feed 
inputs rate,k 

A total of 10,000 network input patterns were selected by uniformly choosing 

from the entire set of approximately 40,000 available patterns. These covered the range 

of operating region summarized in Table 6.3. A 230 hidden node RBF network was 
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trained using 5000 input patterns. The network was then validated on the remaining 5000 

patterns. Training and test set error statistics are provided in Table 6.5. 

To illustrate RBF model predictions within and outside of training region, the 

following experiment was performed. At time zero, the A & C feed rate was stepped 

down from its base value of 9.3477 m3h-1 to 9.0 m3h-1 for a period of two hours. It was 

then decreased in steps of O. 5 m3h-1 at hourly intervals to 7. 5 m3h-1. After five hours, the 

A & C feed rate was stepped to 6.0 m3h-1, which lies outside of the training data range 

(see Table 6.3). During this exercise, the A feed rate, purge rate and reactor temperature 

were maintained at their base values. A comparison the actual and predicted behavior is 

shown in Figure 6.3. As expected, good agreement is observed until after five hours 

when the model begins to operate outside the range of the training data. However, the 

model does continue to correctly predict long term trends. 

Table 6.5 

Training and test set error statistics. 

Reactor Product ComponentB (A/C) 
pressure, flow rate, in purge, mol mole 
kPa m3/hr % ratio in 

reactor 
feed 

Training mean error -0.0024 -0.0001 0.0000 0.0000 
set Standard 8.3387 0.1186 0.1038 0.0337 

deviation of 
error 

Test set mean error 0.0042 0.0006 -0.0039 0.0008 
standard 8.7749 0.1207 0.1089 0.0331 
deviation of 
error 
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Figure 6.3: Comparison of RBF model predictions with plant measurements for step 
changes in A & C feed rate. All other variables are maintained at their 
base values. After 5 hours, the A & C feed rate is brought to 6 m3/h, 
which lies outside the lower limit of training data of 7 .5m3 /h. 
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6.4.3 NMPC Controller Settings 

Table 6.6 shows the error penalty and move suppression factors employed in the 

current work. Considerations used in the choice of the weighting factors are as follows: 

1) Large deviations in NC mole ratio in the reactor feed from the base case value of 

1.22 can potentially lead to plant shutdown due to violation of pressure limits. 

Thus, NC mole ratio must be controlled tightly. 

2) The product rate must be kept near its setpoint. 

3) No tolerance limits are specified on reactor pressure and purge gas composition of 

component B. Thus, smaller penalties can be applied to lower priority for their 

control. 

4) Downs and Vogel suggest changes in flow rate of the A &C stream (stream 4) are 

undesirable. 

5) Large changes in purge rate can change the reactor feed rate (by changing the 

recycle rate) leading to upsets in the production rate. 

Table 6.6 

Weights used in the RBF based MPC simulations. 

Controlled Variable Error Manipulated variable Move 
penalty suppression 

Reactor pressure 0.16 A feed setpoint 0.7 
Product flow rate 0.42 C feed setpoint 1.0 
Component B in purge 0.28 · Purge rate 0.8 
NC mole ratio in reactor 0.35 Reactor temperature 1.4 
feed 

Hard constraints were implemented only on the manipulated variables. Table 6.3 

documents the constraints used. 

170 



6.5 NMPC Controller Performance 

In all simulation results reported below, setpoint changes or disturbances were 

implemented after two hours of simulation at the base case conditions. Further, all flow 

and pressure measurements wer~ filtered using a CUSUM filter (Rhinehart, 1992) prior 

to input to the NMPC scheme. In their paper, Downs and Vogel (1993) suggest the 

following setpoint changes and disturbances to evaluate the control scheme. 

1) Production rate (step change -15%) 

2) Product mix (step change from 50G/50H to 40G/60H) 

3) Pressure change (step change -60 kPa) 

4) Composition ofB in purge (step change 2%) 

5) IDV(l) (step change A/C feed ratio in stream 4) 

6) IDV(4) (step change reactor cooling water inlet temperature) 

7) IDV(8) (random variation A, B, C feed composition in stream 4) 

8) IDV(12) + IDV(15) (simultaneous random variation of condenser cooling 

water inlet temperature and valve sticking). 

6.5.1 Servo Response 

Results for setpoint changes are presented in Figures 6.4 to 6.7. The product mix 

setpoint was implemented through the PI controller that used the DIE feed ratio as the 

manipulated variable. D and E feed measurements were also used as inputs to the RBF 

network model. All four of the setpoint changes reflected operation in region represented 

in the training data. Consequently, the RBF model provided good predictions and tight 

control was achieved. 
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Figure 6.4: Product flowrate setpoint change (-15%). 
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Figure 6.6: Reactor pressure setpoint change (-60 kPa). 
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Figure 6.7: Purge B composition setpoint change (+2 mol%). 
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Figure 6.8 provides an illustration of the mismatch between the plant 

measurements and the RBF model predictions for the setpoint change in purge gas 

composition of component B. The result is typical for the other setpoint changes as well. 

The relatively small mismatches observed in the setpoint tracking confirm the accuracy 

of the RBF model predictions. These results were expected since the data used for 

training of the RBF network covered the necessary ranges represented in these 

simulations (in absence of any disturbance). 

6.5.2 Regulatory Response 

Disturbances IDV(4) and IDV(12+15) relate to cooling water of the reactor and 

condenser, respectively, and are rejected by the inner loops of the cascade structure. 

Since the NMPC subset is not affected, no appreciable transients were observed and the 

results have been omitted. Among the other disturbances, we found those that upset the 

A to C ratio in the reactor feed (i.e., IDV(l) and IDV(8)) were most difficult to control. 

In such instances, the unmeasured disturbances, which are not incorporated in the RBF 

model, lead to inaccurate model predictions. Results for IDV(l) (step change in A/C feed 

ratio in stream 4) and the corresponding process-model mismatch are shown in Figures 

6.9 and 6.10, respectively. The unmeasured step disturbance is first detected by a drop in 

a controlled variable, the A/C molal ratio in the reactor feed ( see Figure 6 .11). 

Consequently, the A feed rate is increased to bring A/C ratio in reactor feed to its 

setpoint. Since IDV(l) was a step disturbance, the process-model mismatch ultimately 

reaches steady-state values (see Figure 6.10). The NMPC controller employing the 

traditional additive disturbance bias to account for model mismatch provides reasonably 
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Figure 6.9: Disturbance IDV(l) (step change in A/C feed ratio in A & C stream) 
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leading to poor predictions. However, due to the step nature of the 
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good control under this circumstance. 

However, in presence ofIDV(S) (random variations in A, Band C composition in 

stream 4), model mismatch no longer behaves as a step disturbance at the output. 

Consequently, poorer control was observed (Figure 6.12). The random mismatch 

between the model predictions and plant measurements is apparent from Figure 6.13. 

The observed degradation in control was expected and is common to all MPC algorithms 

that use a constant bias to account for model mismatch (Lundstrom et al., 1995). 

Observer based MPC algorithms (Lee et al., 1994; Ricker, 1990) represent one possible 

solution to this problem. Nonlinear MPC using closed-loop state estimation by an 

extended Kalman filter has been proposed by Lee and Ricker (1994). In their MPC 

strategy for control of the Eastman process, Ricker and Lee (1995a) use an extended 

Kalman filter to estimate unmeasured disturbance states. Their results also indicate 

excellent control in presence of disturbance IDV(S). While state estimation has not been 

pursued in the current work, it may be possible to linearize the RBF model at every 

control interval followed by a realization of a state-space model and use of state 

estimation te~hniques. 

6.5.3 Computational Requirements 

The MATLAB implementation of the Eastman process developed by Prof N.L. Ricker 

was used for all simulations. During each control step, y p,k+i was calculated only once. 

The MATLAB function constr was used to perform the constrained nonlinear 
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minimization via sequential quadratic programming with active set method for constraint 

handling. 

Table 6. 7 documents the time needed to compute the control relevant instructions 

for the proposed factorized RBF based NMPC and a non-factorized approach for 

implementation of the pressure setpoint change (Figure 6.6). In the non-factorized 

approach, gradients were computed numerically and the future predictions involved 

computation of j) k+t at each function call. The factorized approach used analytical 

gradient expressions and needed computation of only one factor, y r,k+i (see equation 

(6.9)), at every function call during optimization since y p,k+I contains past measurements 

and moves, and remains unchanged for a given control step. The computational results 

presented in Table 6. 7 were calculated using the tic-toe commands in MATLAB and are 

typical of the 50 hr. simulation results presented in this paper using a 550 MHz Windows 

operating system. 

Table 6.7 

Comparison of computation time needed for implementation of a setpoint change 

of -60 kPa in reactor pressure (Figure 6.6). 

(simulation for 1000 samples or 50 hours) 

Factorized RBF based Non-factorized RBF 
NMPC based NMPC (gradients 

evaluated numerically) 
Real-time needed for 1.82 38.31 
computation (hours) 
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As evident from Table 6.7, the factorized formulation of the RBF model NMPC 

scheme is significantly (2+ orders of magnitude) more efficient than a non-factorized 

form using numerical approximations for the required gradient and Hessian information. 

For the factorized formulation, the number of :function and gradients evaluations that 

were needed for the optimization to converge at each control execution ranged from 3 to 

15. For the non-factorized, non-analytical form, the number of iterations frequently 

reached the user specified upper bound of 600. 

6.5.4 Discussion of Results 

The results presented are consistent with expectations. RBF models can provide 

good approximation of any nonlinear system. Hence, an NMPC scheme that employs an 

RBF model would be expected to provide good· control whenever the plant operated in 

regions used to train the model. Practical implementation of an RBF ( or any empirical 

model) based MPC scheme would require a watchdog to verify that operation lies within 

model development bounds. The problem/concept is the same as required for the linear 

MPC systems currently employed in industry. However, the level of concern is greater 

for an RBF based system due to the less certain ( compared to a linear impulse or step 

response model) extrapolation characteristics. 

Another issue affecting practical implementation of an RBF based NMPC scheme 

is collection of the plant data necessary to develop the model. The amount of data 

required to develop a nonlinear model using an RBF or other type of neural network is 

orders of magnitude greater than required for a simple linear model. However, the time 
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and investment required to develop the linear models used with today's linear MPC 

systems is already an impediment in many cases. Significant economic benefits would be 

required for management to authorize plant tests to collect the amount of data used to 

produce the results presented in this paper. Nevertheless, the potential improvement in 

performance using nonlinear control methods provides the incentive to find new ways to 

develop robust RBF models from existing closed-loop plant data or other means. 

6.6. Conclusions 

Nonlinear model predictive control of the Eastman process using a factorized 

radial basis function network model is presented. The results demonstrate applicability 

of the technique on an industrial scale. The salient feature of the factorized approach lies 

in the ability to express model future predictions as an inner product of two vectors. One 

of the vectors contains the decision variables of the MPC optimization program while the 

other consists entirely of known past quantities. Thus, computational effort is minimized, 

since only the unknown parts of the objective function need to be re-evaluated during 

optimization at a given control execution step. The results presented confirm the 

computational efficiency of the proposed NMPC algorithm. 

In the current work, the RBF network was trained using data from the Eastman 

plant simulator, corresponding to operation of plant in absence of disturbances. 

Consequently, tight control was obtained for the setpoint changes suggested by Downs 

and Vogel. Disturbances that upset the reaction stoichiometry were found to be more 
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difficult to control. From a practical standpoint, the most pressmg issues involve 

development of the nonlinear RBF model. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The work described in previous chapters was developed along two lines of thought: 

1) online update of models in linear MPC to reflect current operating conditions, and 

2) use of neural network models for soft sensing and nonlinear MPC. 

The potential benefits were demonstrated through use of simulation examples and real 

data. The salient conclusions that can be drawn from the documented work are presented 

below. 

• Model adaptation is useful in improving control· performance in cases where large 

errors in model parameters contribute to plant-model mismatch (Chapter 3). 

• The adaptive QDMC algorithm depicted in Figure 3.3 has been designed such that it 

can be integrated with existing control software with minimal computational burden 

owing to efficiency of the recursive least squares algorithm. 

• For a SISO process controlled by an adaptive DMC controller (section 3.4.1), the 

closed-loop system is identifiable, provided the data are sufficiently exciting. 

• While neural networks (multi-layer perceptron) serve as a vehicle for constructing 

correlations, substantial effort must be invested in data preparation and variable 

selection for a successful application (Chapter 4). 

• In the petroleum refinery example under study, the endpoint of kerosene could be 

predicted within an error standard deviation of 1. 7 °F using the proposed 

methodology for inferential measurements. 
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• The novel nonlinear MPC (NMPC) algorithm usmg radial basis function (RBF) 

networks (Chapter 5) uses factorization of Gaussian functions to provide a 

computationally efficient method for control of nonlinear processes. 

• The NMPC algorithm takes a generic form and relies only on the parameters and not 

on the mechanics of the particular process in question. This is similar to 

DMC/QDMC implementations where the processes are described in terms of the step 

response coefficients allowing development of generic software. 

• Successful application of the RBF based NMPC algorithm to the Eastman challenge 

problem demonstrates the potential of the proposed technique to large problems. 

The main theme in all of the above work consisted of incorporating process knowledge in 

control applications and follows the adage, "the more accurately we can predict the future 

process behavior, the better will be the chance of controlling it." 

7.2 Recommendations 

A number of opportunities exist for improving upon the present work. These are listed 

below. 

7.2.1 Adaptive QDMC 

The adaptive QDMC algorithm discussed in Chapter 3 attempts to provide an 

adaptive feature to linear MPC similar to self-tuning in commercially available PIO-type 

controllers. The simulation examples described the potential of such a scheme for linear 

and nonlinear systems. However, certain points need to be further explored. 
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a) The adapted model parameters may be biased in presence of non-white noise in 

measurements. One approach to this problem lies in development of suitable 

filters. Such filters may be based on noise models such as the Box and Jenkins 

transfer function model (Box and Jenkins, 1994). 

b) Further work also needs to be done on incorporating unmeasured process 

disturbance models (as opposed to noise). MPC handles all sources of plant­

model mismatch as an additive step disturbance at the output. It has been shown 

by Lundstrom et al. (1995) by an example that such an approach leads to poor 

control by MPC in presence of ramp-like disturbances. To obviate the need for 

the assumption of step disturbance at the output, observer based MPC algorithms 

have been proposed in literature (Lee et al., 1994; Ricker, 1990). Benefits of 

observers with adaptive QDMC need to be further explored. 

c) Continuous parameter estimation can lead to parameter drift as the estimation 

algorithm tries to estimate parameters such that the error between the plant 

response and model prediction is minimized. One solution to avoid parameter 

drift is the dead zone approach. Here, the identification algorithm is stopped 

when the signals are not sufficiently excited to guarantee model improvement. In 

Chapter 3, the trigger for model adaptation was based on comparison of 

magnitudes of the variations in inputs and outputs with predetermined threshold 

values was employed. However, such a technique may be inappropriate if the 
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signal-to-noise ratio is small. In such situations, appropriate adaptation triggers 

need to be developed. 

7.2 Neural network models for forecasting and control 

(a) Simplified theoretical models attempt to capture the essence of the underlying 

phenomena. Thus, such models provide insights into the behavior of the process. 

Further, since these models are constrained by the description of a physical 

phenomenon, less process data are required in their development. However, a 

concomitant disadvantage, is their inaccuracy when applied to real-world 

situations. This may be attributed to inappropriate model assumptions. 

Development of neural network models , on the other hand, needs a large amount 

of data. Moreover, there is no guarantee that these models satisfy material and 

energy balances, a fundamental consideration in process operation. However, if 

appropriate data are available, good predictions can be obtained. Thus, there 

exists an opportunity to integrate theoretical and neural network models . to 

provide hybrid models. Work on these lines by Gurumoorthy and Kosanovich 

(1998) can be directly applied to the factorized RBF model based NMPC. 

(b) Data for neural network training in Chapter 5 and Chapter 6 was generated by 

applying random inputs to the process simulator and recording the response. 

Such an approach is based on excitation of the process and does not make use of 

any criteria that link prediction capabilities of networks to the data structure. 
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Development of such criteria will aid in designing appropriate test signal designs 

for system identification. 

( c) The RBF model used in Chapter 5 and Chapter 6 use input patterns that consist of 

process outputs, process inputs and past input moves. It is of interest to design 

tests that detect the distance. between the input training patterns in the cluster 

space. This will also aid in obtaining data for training of the network which 

adequately · spans the input pattern space in addition to the region of process 

operation. 

( d) A primary concern with neural network models is their validity when operating in 

regions not represented in the training data. This will often be the case if the no 

process data exist for certain regions or for a new process. Based on the work in 

Chapter 5 and Chapter 6, it is noted that the neural network model performance is 

generally poor in such regions. A possible improvement of the factorized RBF 

model based NMPC in such situations is use of weight adaptation. The network 

response is linear in the weight parameters and it may be possible to use the 

standard recursive least squares similar as in the adaptive QDMC work. Here, as 

new data become available (which are representative of the training set), the 

weights would be adapted to reflect the new operating region. A similar idea may 

be pursued with the number of nodes and their location. While algorithms exist in 

literature that adaptively increase or decrease the size of the network, ( and hence 
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the number of centers and their widths), these tend to add a huge computational 

load and may not be of use for online applications. 
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APPENDIX A -- QUADRATIC DYNAMIC MATRIX CONTROL 

A-1 Introduction 

The Quadratic Dynamic Matrix Control algorithm makes use of the a step 

response model in which the output prediction is a function of the input changes, 

(A-1) 

where k is the sample instant and Uk is the input to the process at k. At sample instant 0, 

a unit step input is applied to the system. A typical discrete-response of a stable system is 

shown in Figure A-1. 
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Figure A-1: Step response model 

The step response gives no information at times between the sampled points. The 

values of the response at the sample· instants are often referred to as the step coefficients. 

Assuming that the plant is linear, the overall effect of all step inputs is evaluated as the 

sum of each individual effect. The step coefficients can thus be used to predict the output 

from the input values at each sample instant as follows: 
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Yi= a/1.u0 

Yz = az!iuo + a1!1u1 

N-1 
Yk = La;!iuk-i + anuk-N 

;~1 

(A-2) 

where N is the number of sample periods required for the step response to reach steady-

state conditions. 

QDMC belongs to the general class of Model Predictive Control (MPC) 

algorithms. Often, due to slow process dynamics, it takes a substantial amount of time 

for the effect of each control action taken to be fully reflected in the process 

measurements. Thus, it is not possible to interpret the results of the current output using 

only the input applied at the previous instant. Like other model predictive controllers, 

QDMC determines the future behavior of the plant if no further control action is taken. 

The future period, p ( sample period), called the prediction horizon, must be long enough 

to ensure that the past inputs have completely manifested in the process outputs. The task 

of the controller is to determine a set of plant inputs over an input horizon, c ( sample 

period), which will minimize the future errors in presence of process constraints. 

A-2 QDMC Algorithm 

The discrete-time step-response model is used to predict the future output values. 

The following is an algorithmic description of the QDMC controller. Let the current 

sample instant be k. 
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Step 1: Input History Shift 

The value of the past inputs is shifted backwards in time, thus retaining only the 

past N values of the inputs. 

\:Ji= l,N (A-3) 

where N is the number of sample instants for the step response of the process to reach 

steady-state. 

Step 2: Output Feedback 

To relate the prediction of the model with the current measurement, yk, a model 

bias term bk is computed. The use of the bias is to set the model prediction at the current 

time to the current output. It is computed as follows: 

(A-4) 

where ai, i = 1, N are the step response coefficients as discussed previously. 

This simple form of feedback is often regarded as estimation of an output disturbance that 

is assumed to be constant for all future time. 

Step 3: Reference Trajectory 

At every instant k a smooth path from the current measured output, y k , to the 

setpoint Ysp, called the reference trajectory, is computed. The path can be parameterized 

in terms of a desired closed loop time constant rr: 

r . = {y k+i' . i = 1, a, 
k+z y +(y -y )(l-e-<•-a,)Atl,,) i=a,+l,p 

k+ar sp k+ar ' 

(A-5) 
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where ar is the time delay of the process. 

Step 4: Move Calculation 

To compute the future moves, the model prediction at the (k+i)th instant ts 

separated into a past input contribution, Yk+i and a future input contribution, Yk+i· 

where the future input contribution is evaluated using the step-response model as: 

i 

yf k+i = La1..1uk+i-J 
J=I 

and the past input contribution is evaluated as 

N-1 

yP k+i = La1..1Uk+i-J + aNuk+i-N 
J=i+I 

Vi= N -1,p 

Vi= l,p 

Vi= l,N -2 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

The future errors are the differences between the setpoints and the predicted output at 

each future instant k+i, Vi = l,p: 

(A-10) 

Using equation (A'."6), the above equation may be rewritten as 

(A-11) 

Let, 

A - p b e k+i - rk+i - Y k+i - k (A-12) 

The term ek+i represents the future deviations of the output from the reference trajectory 

that would occur if no future control adjustments were made. Thus, 

(A-13) 
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The future input contribution to the projected outputs may be written in a matrix form as: 

f Y k+I a1 0 0 0 
f Y k+2 a2 a1 0 0 
f Y k+3 a3 a2 a1 0 Auk 

Auk+i 

f Y k+c = ac ac-1 ac-2 a1 Auk+2 (A-14) 

f Y k+N aN aN-1 aN-2 aN-c+I Auk+c-1 

f y k+p aN aN aN ap-c+I 

or equivalently 

y 1 = AAu (A-15) 

Here, the matrix A is called the dynamic matrix. Combining this equation with (A-11) 

we obtain: 

e = e'----AAu (A-16) 

Finally, the control input to the process 1s calculated as the solution to the 

constrained optimization problem: 

(A-17) 

subject to 

(A-18) 

Y min :S: Y :S: Y max 
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A-3 Formulation of the Quadratic Program(QP) 

The objective function can be recast as: 

where the Hessian matrix, H, and the gradient vector, g, are given by 

H = ATrTrA +ATA 
g = ATrTre 

The constraints are converted in terms of the design variable, Au as follows: 

Uk l 0 0 Auk 

Uk+I 1 1 0 Auk+1 
= 

uk+c-1 1 1 1 Auk+c-1 

Or in vector notation, 

Thus the inequality constraints (A-18) are reformulated as 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

Similarly, the constraints on the process output can be written in term of the design 

variable,Au as 

(Ym1n -yP -b) S AAu S (Ymax -yP -b) (A-24) 

Thus, the optimization problem represented by equation (A-17) and equation (A-

18) in the QDMC algorithm can be stated in the form of a standard QP: 

(A-25) 

subject to: 
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(A-26) 

The constrained problem is solved at each control interval using a standard QP code. For 

reasonable tuning parameters, the Hessian matrix will be positive definite, which makes 

the optimization problem relatively simple. 

Performance of the control system improves as the control horizon c increases, 

since the optimization problem will then have additional degrees of freedom with which 

to minimize future prediction errors. The prediction horizon p should be long enough to 

capture the steady-state effects of moves. Garcia and Morshedi (1986) recommend the 

setting: 

p=N+c (A-27) 

Figure A-2 illustrates the QDMC algorithm 
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Figure A-2: illustration of QDMC control 
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APPENDIX B -- RECURSIVE LEAST SQUARES ALGORITHM 

B-1 Introduction 

The least squares method is a basic technique in parameter estimation and is 

particularly simple if the model is linear in the parameters. Let y(i), the observation at the 

ith instant, be related to known variables, (f)l(i), (f)l.(i), ... ,(f)n(i) as follows: 

(B-1) 

or in vector notation 

y(i) = <f 0 (B-2) 

where the regressor vector <I> (i) is given by 

(B-3) 

and the parameter vector, 0 (i) is: 

(B-4) 

The model index i often denotes time while n is the number of parameters. Pairs 

of observation and the regressors { (y(i), {fi.._i) ), i= 1,2, ... t} are obtained from an experiment. 

Then, the least squares problem is to determine the model parameters in such a way that 

the model outputs agree as closely as possible with the observations in the least square 

sense. The parameter vector O. should be chosen to minimize the least squares objective 

function: 

V(O ,t) = _!_ :t (y(i)- rpT ((~ )2 

2 1=1 

(B-5) 

where t is the total number of measurements available. Let 
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and 

(f}T (1) 

<l(f) = (f}T (2) 

(f}T (3) 

P(t) = (<I>T (t)<I>(t) t1 
Using equation (B-6) the above equation can be rewritten as 

P(t) = ( t tp(i)rpT (i) )-' 

(B-6) 

(B-7) 

(B-8) 

The least -square computations are arranged in such a way that the estimates 

obtained at time t-1 are used to evaluate the estimates at time t. An important assumption 

made is that the matrix <I>r <I> is non-singular for all t. Then given initial conditions 0(t0) 

and P(to), the least-square estimate satisfies the recursive equations: 

9 (k) ~9 (k-1)+ K(k)(y(k)-<pT (k' (k-1)) 

K(k) = P(k-l)p(k)(I +<pT (k)P(k-l)p(k)}-1 
P(k) = (1-K(k)pT (k))P(k-1) 

(B-9) 

Thus, the estimate at time t is obtained by adding a correction to the previous estimate. 

The correction is proportional to the error in prediction and is also called the innovation. 

t 

with the assumption that the autocorrelation matrix L <l>(i)<I> r (i) is nonsingular for all 
i=l 

available t measurements. This error reflects a part of the new measurement at time k 

which could not be predicted by the previous model and is therefore called the innovation 

process. Matrix P provides an estimate of the measure of parameter vector covariance 

(Mendel, 1995). Matrix K(k) is often referred to as the adaptation gain. A detailed 

213 



treatment of least square estimators can be found in standard texts on estimation theory 

(Ljung, 1987; Mendel, 1995). 

The matrix· P(t) is defined only when Cl> 7 Cl> is non-singular. It follows from 

equation (B-8) that Cl> 7 Cl> is always singular if t<n. However, it is convenient to use the 

recursive equations in all steps. If the recursive equations use the initial condition 

P(O) = P0 (B-10) 

where Po is positive definite, then 

P(t) = (P0 -I + Cl>T (t)Cl>(t) t (B-11) 

Thus, P(t) can be made arbitrarily close to ( Cl> 7 Cl> )1 by choosing a sufficiently large Po. 

B-2 Properties of Least Squares 

The recursive least squares algorithm is formulated from the well known batch 

solution. It is, therefore, of interest to evaluate the relationship between the two 

algorithms. 

Batch vis Recursive: Let the parameter vector consist of di elements. Then assuming 

availability of N observations, the well known batch least squares solution takes the form, 

(B-12) 

If the estimate is instead calculated by recursive least squares, the following estimate is 

obtained, 
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(B-13) 

where O (0) is the initial estimate and P(O) is the initial covariance estimator. Thus, by 

making P(O) positive definite but arbitrarily large, the recursive estimation can be made 

arbitrarily close to the batch solution. Choosing a large positive definite value of P(O) 

also reduces the influence of the initial estimate O (0) on the subsequent iterates. Thus, 

the RLS estimator enjoys the same properties as the batch estimate, provided appropriate 

initial conditions for P are chosen. 

Conditions for Unbiasedness o(Least Square Estimates: Stochastic estimators assume 

that the model parameters are random variables. Thus, a primary concern is to evaluate 

the conditions under which the estimates will be unbiased. A discussion of these 

conditions for the least square estimate is provided below. 

Assume that the data are generated by the equation, 

y(i) = <!>(if O O + e(i) (B-14) 

where e(i) is white noise of zero mean and known variance. Then, the parameter estimate 

0 is an unbiased estimate of O 0 , provided the regressor vector <I> is deterministic 

(Soderstrom and Stoica, 1989). However, this is a serious limitation since the 

disturbance e(i) invariably imparts a stochastic character to the process output y(i), 

thereby, making <I> non-deterministic. Further, since the plant input is generated as a 

feedback reaction, plant inputs, u(i), is also generally non-deterministic. 
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A less stringent condition allows <I> to be a stochastic variable, but deems that it 

be independent of the disturbance, e(i). However, this condition too is violated in 

practice due to the interaction between the plant outputs and inputs with the disturbance. 

Results for unbiasedness of least square estimates have been proved for large samples 

under relatively weaker conditions. One limitation in the large sample estimate is that the 

input signal must be persistently exciting of sufficient degree (Soderstrom and Stoica, 

1989). Further, the nature of feedback must be complex enough to avoid development of 

linear dependencies of regressor vectors. In section 3 .4, it is shown that a SISO DMC 

controller satisfies the later condition. 

Despite of the restrictive conditions for unbiasedness, least square estimates have 

the attractive property of computational simplicity. The recursive algorithm is 

computationally efficient and does add any significant burden to the online control 

calculations of MPC. Further, the presence of small bias may be tolerable since MPC 

methods incorporate feedback to overcome model uncertainty. In contrast, modifications 

of least squares such as instrument variable methods provide unbiased and consistent 

estimates under less restrictive condition. However, the implementation is more 

involved. 

The properties of least square estimate, indeed, any estimator are crucially linked 

to model selection. For instance, if the process data is governed by an autoregressive, 

moving average model with external inputs (ARMAX) and the identification model is of 

the ARX type, the parameter estimates are likely to be biased. 
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APPENDIX C -- QUADRATIC PROGRAMMING USING ACTIVE SET 

METHOD 

C-1 Introduction 

Many questions dealing with "what is the 'best' approach" employ optimization 

techniques. Such applications arise in various fields of science and engineering, which 

are often models of reality. The index of 'goodness' is measured by an objective function, 

.f(x), where the elements of x represent the independent or decision variables. The 

optimal solution refers to the variable x * at which the objective function has a minimum 

or a maximum value. 

For example, consider the optimal operation of a distillation column. The column 

is used to separate mixtures of components of differing volatility. We may formulate an 

objective function that measures the revenues from this column. Thus, based on market 

conditions (that is, demand, cost, etc. ), it might be desirable to maximize yield of some 

product. The decision variables could be feed rate, separated component purity among 

others. Furthermore, constraints may be associated with the objective function. For 

instance, the flow rates cannot be negative, the component purity must lie between O and 

100% and other system constraints. 

C-1.1 Problem Statement 

A problem, such as above may be mathematically formulated as, 
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minimize f (x), x E 91n 
X 

subject to ci (x) = 0 i E E (C-1) 

cj(x) ~ 0 i EI 

where E and I refer to the set of indices of equality and inequality constraints, ci(x), 

respectively. The solution search space is n-dimensional. Note that a maximization 

problem could be cast as a minimization one by choosing the objective function to be -

ft..x). Equation (C-1) defines the general constrained optimization problem 

In many applications, the objective function is quadratic (such as minimize sum 

of squared errors of a linear system or a quadratic approximation of a nonlinear function) 

and the constraint functions linear (or affine). Such a formulation defines the quadratic 

programming problem. It is expressed as, 

minimize /(x) = .!..xr Gx + gr x 
X 2 

subject to : a/ x = h; 

T b" aj x~ 1 

iEE 

iEI 

(C-2) 

Here, G represents the symmetric Hessian matrix or the curvature of the objective 

surface. Vectors ai denote the gradients of constraints, ci(x), with respect to x. 

Thus, the goal of an optimization algorithm is solution of the quadratic program 

presented in equation (C-2), that is, search for a point, x*, in 91n such that the objective 

functionft..x) is minimized in addition to satisfying the set of constraints. 
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C-1.2 Terminology 

Before proceeding further, a few terms used in solving the quadratic program in 

equation (C-2) are reviewed. 

Feasibility: 

Any point x' in 91n that satisfies all constraints in equation (C-2) is said to be a 

feasible point. The set of feasible points is referred to as the feasible region. If the 

constraints are inconsistent, then the problem will be infeasible (ex: minimizej(x) subject 

to x1>2 and x1<l). During a search, an incremental step 6, such that the resulting point x 

exists in the feasible region, is called a feasible step. 

Active Constraint: 

Constraints, ci (x), i E A, are said to be. active at x', if x' lies on the boundary of 

the feasible region and this boundary is formed by the constraints whose indices are 

members of set A. Set A is referred to as the active set. Note that all equality constraints 

are necessarily active, i.e. E c A . During the search process, some inequality constraints 

may become active and their indices will also be included in A. 

C-1.3 An Example 

To illustrate these concepts further, the following simple example is presented. 
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minimize f(x) = 1-xr [2 0Jx + [- 2Jr x + 2, x E 9\ 2 

X 2 0 2 -2 

subject to: c, (x): [:J x ~ 2 +../2 IE I (C-3) 

c,(x): [-/J x~-2 2EI 

Only, two decision variables are considered to allow graphical display of various 

properties. The objective function represents as family of circles centered at [1 If The 

linear constraints represent straight lines. These are shown in Figure C- 1. The dashed 

lines represent inequality constraints c1(x) and c2(x). The solid curves refer to the 

contours of the objective function. From the figure, it is clear that the minimum is 

. T 

achieved at [I+ ~ I+ ~ J , where the active constraint c1(x) is tangent to the circle 

of unit radius. In the problem statement (equation (C-3)), the set of equality constraint 

indices, E, is the null set, while the set of inequality constraint indices, I, is the set { 1,2}. 

At the minimum point, x *, only the first constraint is active. Thus, A= {1 } . Ignoring the 

second constraint does not affect the solution in any way. 

The remainder of this appendix is arranged as follows. Section C-2 describes 

method of Lagrange multipliers to solve constrained optimization problems. Active set 

methods are used to handle inequality constraints and will be the topic of discussion in 

section C-3. The example problem stated in equation (C-3) will be used to demonstrate 

various features of constrained optimization. Finally, a brief description of additional 

considerations will be provided in section C-4. 
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Figure C-1: Illustration of some concepts using quadratic program in equation (C-3) as 
an example. See section 1.2 for details. 

C-2 Method of Lagrange Multipliers 

In unconstrained optimization, necessary and sufficient conditions for a minimum 

x* are based on first and second order conditions. 

V xf(x)lx* = 0 

V2 xJ (xt. 2': 0 
(C-4) 

To generalize this concept to constrained optimization, the notion of Lagrange multipliers 

is introduced. Here, an additional complication of feasible region is introduced. For x* 

to be a minimum, no feasible descent direction must exist. 
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Let us momentarily assume that we have a set of equality constraints alone. The 

feasible minimum point, x*, must necessarily lie on the intersection of these constraints. 

Let o represent an incremental feasible step from the minimum point. Then the new 

position, x*+o, must also lie on the linear equality constraints. Thus, 

(C-5) 

However, since x* is a feasible point, it satisfies the equality constraint in equation (C-2). 

It, therefore follows that, 

(C-6) 

Equation (C-6) provides a means of identifying feasible directions. If in addition, /(x)lx* 

has a negative slope along o, that is 

then the feasible directions along o will reduce /(x). However, since x* is a local 

minimum this cannot occur, that is, no further feasible descent directions are possible at 

the minimum point. Thus, equations ( 6) and (7) cannot be satisfied simultaneously at the 

minimum point x*. The preceding statement will not be violated if g* is a linear 

combination of the vectors ai, iEA, that is, 

g * = La;* A;* = A* t * 
iEE 

(C-8) 

where, A* denotes the matrix with a/ arranged in columns. Equation (C-8) forms the 

necessary condition for a local minimizer. The coefficients At are referred to as the 

Lagrange multipliers. The superscript * indicates that the multipliers are associated with 

the minimum solution x*. 
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These ideas are illustrated in Figure C- 2. To be consistent with the discussion 

above, we temporarily assume that constraint c1 in equation (C-3) is an equality 

constraint and let us ignore constraint c2 completely. Thus, E = { 1 } and I= { } . Consider 

the point x" whose coordinates are (1, 1 +"12), in Figure C- 2, which lies on the c1 

constraint. At point x", which is not a local minimum point, g":t:a1 "11, since g" and a1" 

are non-collinear. Thus, there exists an incremental feasible step, o, as shown that will 

satisfy both equations ( 6) and (7). Thus, o represents a feasible step in the descent 

direction. Taking this step will reduce the value of the objective function as is evident 

from the figure. On the other hand, at the minimum point, x*, (1 + 11"12, 1 + l/"12), the 

gradient, g*=a1 *11 satisfies equation (C-8) and hence no feasible descent direction exists. 
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Figure C-2: The gradient of the objective function and constraints are collinear at the 
local minimum x*. At any other non-stationary point, equation (C-8) is not 
satisfied. 

Equation (C-8) can be written more conveniently by introducing the Lagrange function, 

L(x,'A,) = /(x)- LA;c;(x) (C-9) 
iEE 

· Then, the conditions for a local minimizer translate to 

VL(x*,i.. *) = 0, where V = [;:] (C-10) 

For the quadratic objective function and linear constraints m equation (C-2), the 

condition represented by equation (C-10) becomes, 
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(C-11) 

Solution of equation (C-11) gives the desired solution, x*, and the Lagrange variables 

associated with the active constraints, ci. 

It can also be shown (Fletcher, 1987) that the Lagrange multiplier, Ai, of the l 1 

constraint measures the rate of change in the objective function value relative to changes 

in that constraint function. Let us assume that Ai is a negative number for i EAnl, the set 

of active inequality constraints. This implies that if we move away from the /h active 

inequality constraint in the direction ci>O direction (which is feasible for iEAnl), then the 

objective function decreases. But since at the minimum point x*, no further decrease of 

/(x) is possible in the feasible region, the multiplier must have a non-negative value at the 

mimimizer. Thus, 

atx=x*, A/:?:0, ViEAnl (C-12) 

This condition is very useful in evaluating the current set of active inequality constraints. 

Thus, Lagrange multipliers aid in identification of constraints, which are not binding at a 

given feasible point. This idea is further discussed in the section 3. 

The above ideas embodied in equations (C-5) through (C-12) are summarized in 

form of a theorem. This is reproduced from Fletcher (1987). 
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Theorem for first order necessary conditions 

If x* is a local minimizer of problem (1) and if a regularity condition holds 

(briefly, the constraints, ci, must be independent; for details, see [1]) at x*, then there 

exist Lagrange multipliers A* such that x*, A* satisfy the following system: 

\\L(x, l) = O 

ci(x) = 0, i EE 

c;(x) = 0, i EI 

A,i ~ 0, i EI 

A;C; (x) = 0, \Ii 

These conditions are also referred to as Kuhn-Tucker conditions. 

C-3 Active Set Method 

(C-13) 

Equality constraints force the minimum solution to lie on the intersection of the 

hypersurfaces of those constraints, since x* must satisfy ci(x) = 0, v iEE. However, 

inequality constraints do not necessarily require the solution to exist on the hypersurface 

of those constraints, since ci(x) ~ 0, v iEl. The Lagrange method discussed so far, 

involves active constraints ( equality and active inequality constraints) only and searches 

along the intersection of these hypersurfaces. 

The primal active set method describes a method for identifying a correct set of 

active inequality constraints and temporarily disregards the remaining inequality 

constraints. The active constraints are treated as equality constraints. With this 

information, one can then use the Kuhn-Tucker condition (equation (C-13)) to solve for 
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the desired solution. Checks are made to ensure that the obtained solution is feasible with 

respect to the constraints not in the active set. If the solution is infeasible, then a new set 

of active constraints is formed based on certain criteria. An algorithmic description of 

the procedure is described below. 

The following algorithm is documented by Fletcher (1987). It begins by choosing 

certain inequality constraints as active and thus forming the active set A (1). 

(a) An initial feasible point, x<1) is found which satisfies the active constraints in A<1). 

Setk=L 

(b) Let<> be defined by a shift of origin to x<1). Now solve the quadratic program, 

minimize f (6) = !r, r G6 + gCklr 6 
X 2 (C-14) 

subject to: air6 = b, i E ACkl 

Note that the term g<k) in the transformed coordinate system is Gx(k)+g. If B = 0 

does not solve equation (C-14) go to (d). 

( c) Compute Lagrange multipliers A (k) and solve for the minimum value of active 

inequality constraint multiplier using, 

min i?) (C-15) 
iEAriI 

Let Aq represent the minimum value. If the minimum value is non-negative, then 

the solution x<k) is a minimum and satisfies all constraints (see equation (C-12)). 
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Thus, set x*=x(k) and terminate program. On the other hand, if the minimum 

value is negative, the qth constraint is not binding and is removed from the current 

active set A (k). 

( d) Take a step in the direction of B, by setting, 

(C-16) 

where s<k) represents the current search vector, B. a<k) is chosen such that the new 

location x(k+1) lies on the set of active constraint as shown, 

[ 
· b T (k) J aCk) = min 1, min i -ai .x 
i·i"A T (k) ·"' a s 

ats<k)<O i 

(C-17) 

Let the minimum in the curly bracket be satisfied by the pth constraint. 

( e) If a.,<k) < 1, add the pth constraint to the active set A. 

(t) Set k=k+l, and go to (b). 

An illustration of this algorithm is provided by· applying it to the example problem 

presented in section C-1.3. We begin by choosing an initial feasible point at x<1) = [3 lf 

As shown in Figure C- 3, this starting point lies on constraint c2 (see equation (C-3)) and 

is shown by the symbol 'o' on the plot. Thus, the index set of active constraints, A<1) = 

{2}. Constraint c1 is inactive at this time. Solution of equation (C-14) yielded the 

solution, B<1) = [-1 -1 f in the transformed coordinate system or [2 of in the x1-x2 
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coordinate system (recall that we have shifted the origin to x<1) before solving equation 

(C-14)). The symbol 'D' represents this point in Figure C- 3. 

The obtained solution indeed minimizes the objective function with respect to the 

active constraint c2. However, in doing so, constraint c1 gets violated and hence the 

solution is infeasible. Thus, a line search is made in the direction of ci1) giving the best 

feasible point, x<2) = [2+ l/...J2 11...J2f depicted by the symbol '0' in Figure C- 3. The best 

feasible point . also corresponds to the point of intersection of the two linear constraints. 

Thus, at this point both the constraints become active, that is, A <2) = { 2, 1}. 

In the next step, we discover that A..2 associated with constraint c2 is negative. 

This implies that if we move away from this constraint in the feasible direction, we could 

further minimize the function, f Thus, constraint c2 is removed from the active set of 

constraints, resulting inA<3) = {l}. In the final step, equation (C-14) is solved once again 

and we obtain the desired solution depicted by '*' in Figure C- 3. A summary of the 

iterative parameters is given in Table C- 1 below. 
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Table C-1 

Description of parameters during stages of iteration. These can also be followed 

from Figure C- 3 

Iteration, k Iterate, xT(k) Active set, A (k) a.(k) Multipliers, 

'Ji...T(k) iEA t , 

1 [3 1] {2} 0.2929 [-2] 

2 [2.707 0.707] {2, l} 1.0000 [-2, 1.4142] 

3 [2.707 0.707] {l} 1.0000 [1.4142] 

4 [1. 7071 1. 7071] Converged - -

Thus, only four iterations . were required to successfuliy terminate the algorithm. 

In fact, quadratic programs enjoy the finite termination property. This is briefly 

discussed by Fletcher (1987). 

C-4 Qualifications and Conclusions 

In this appendix, the use of active set method in solving quadratic programs is discussed. 

A simple example is used to illustrate the algorithm graphically. Most modem codes for 

quadratic programming are far more sophisticated. We solved equation (C-11) using 

standard inversion subroutine in MATLAB. In real applications, the problems may not 
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be numerically well conditioned and superior algorithms must be employed. Fletcher 

(1987) discusses a few. Further, if the Hessian matrix is indefinite, local minima may 

exist. This introduces extra complications in the algorithm. Also, most real applications 

involve a large number of decision variables and thus storage 
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Figure C-3: Illustration of algorithm using Active Set method to solve a quadratic 
program. x(k) represents iterates at different stages, k. Details of the 
calculations are provided in Table C- 1. 

concerns arise. Moreover, many control algorithms employ quadratic programming in 

real-time (for e.g. quadratic dynamic matrix controller), requiring efficient algorithms. 
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Quadratic programs enjoy a wide range of applications. In most instances, users buy 

well-written codes to solve the problem. In this work, the basics features of a quadratic 

program solver are discussed. 
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