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Abstract 

Developing computer-aided detection and/or diagnosis (CAD) schemes has been an active 

research topic in medical imaging informatics (MII) with promising results in assisting clinicians 

in making better diagnostic and/or clinical decisions in the last two decades. To build robust CAD 

schemes, we need to develop state-of-the-art image processing and machine learning (ML) 

algorithms to optimize each step in the CAD pipeline, including detection and segmentation of the 

region of interest, optimal feature generation, followed by integration to ML classifiers. In my 

dissertation, I conducted multiple studies investigating the feasibility of developing several novel 

CAD schemes in the field of medicine concerning different purposes. 

The first study aims to investigate how to optimally develop a CAD scheme of contrast-

enhanced digital mammography (CEDM) images to classify breast masses. CEDM includes both 

low energy (LE) and dual-energy subtracted (DES) images. A CAD scheme was applied to 

segment mass regions depicting LE and DES images separately. Optimal segmentation results 

generated from DES images were also mapped to LE images or vice versa. After computing image 

features, multilayer perceptron-based ML classifiers integrated with a correlation-based feature 

subset evaluator and leave-one-case-out cross-validation method were built to classify mass 

regions. The study demonstrated that DES images eliminated the overlapping effect of dense breast 

tissue, which helps improve mass segmentation accuracy. By mapping mass regions segmented 

from DES images to LE images, CAD yields significantly improved performance.  

The second study aims to develop a new quantitative image marker computed from the pre-

intervention computed tomography perfusion (CTP) images and evaluate its feasibility to predict 

clinical outcome among acute ischemic stroke (AIS) patients undergoing endovascular mechanical 

thrombectomy after diagnosis of large vessel occlusion. A CAD scheme is first developed to pre-
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process CTP images of different scanning series for each study case, perform image segmentation, 

quantify contrast-enhanced blood volumes in bilateral cerebral hemispheres, and compute image 

features related to asymmetrical cerebral blood flow patterns based on the cumulative cerebral 

blood flow curves of two hemispheres. Next, image markers based on a single optimal feature and 

ML models fused with multi-features are developed and tested to classify AIS cases into two 

classes of good and poor prognosis based on the Modified Rankin Scale. The study results show 

that ML model trained using multiple features yields significantly higher classification 

performance than the image marker using the best single feature (p<0.01). This study demonstrates 

the feasibility of developing a new CAD scheme to predict the prognosis of AIS patients in the 

hyperacute stage, which has the potential to assist clinicians in optimally treating and managing 

AIS patients.  

The third study aims to develop and test a new CAD scheme to predict prognosis in aneurysmal 

subarachnoid hemorrhage (aSAH) patients using brain CT images. Each patient had two sets of 

CT images acquired at admission and prior to discharge. CAD scheme was applied to segment 

intracranial brain regions into four subregions, namely, cerebrospinal fluid (CSF), white matter 

(WM), gray matter (GM), and extraparenchymal blood (EPB), respectively. CAD then computed 

nine image features related to 5 volumes of the segmented sulci, EPB, CSF, WM, GM, and four 

volumetrical ratios to sulci. Subsequently, 16 ML models were built using multiple features 

computed either from CT images acquired at admission or prior to discharge to predict eight 

prognosis related parameters. The results show that ML models trained using CT images acquired 

at admission yielded higher accuracy to predict short-term clinical outcomes, while ML models 

trained using CT images acquired prior to discharge had higher accuracy in predicting long-term 
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clinical outcomes. Thus, this study demonstrated the feasibility of predicting the prognosis of 

aSAH patients using new ML model-generated quantitative image markers.  

The fourth study aims to develop and test a new interactive computer-aided detection (ICAD) 

tool to quantitatively assess hemorrhage volumes. After loading each case, the ICAD tool first 

segments intracranial brain volume, performs CT labeling of each voxel. Next, contour-guided 

image-thresholding techniques based on CT Hounsfield Unit are used to estimate and segment 

hemorrhage-associated voxels (ICH). Next, two experienced neurology residents examine and 

correct the markings of ICH categorized into either intraparenchymal hemorrhage (IPH) or 

intraventricular hemorrhage (IVH) to obtain the true markings. Additionally, volumes and 

maximum two-dimensional diameter of each sub-type of hemorrhage are also computed for 

understanding ICH prognosis. The performance to segment hemorrhage regions between semi-

automated ICAD and the verified neurology residents’ true markings is evaluated using dice 

similarity coefficient (DSC). The data analysis results in the study demonstrate that the new ICAD 

tool enables to segment and quantify ICH and other hemorrhage volumes with higher DSC.    

Finally, the fifth study aims to bridge the gap between traditional radiomics and deep learning 

systems by comparing and assessing these two technologies in classifying breast lesions. First, one 

CAD scheme is applied to segment lesions and compute radiomics features. In contrast, another 

scheme applies a pre-trained residual net architecture (ResNet50) as a transfer learning model to 

extract automated features. Next, the principal component algorithm processes both initially 

computed radiomics and automated features to create optimal feature vectors. Then, several 

support vector machine (SVM) classifiers are built using the optimized radiomics or automated 

features. This study indicates that (1) CAD built using only deep transfer learning yields higher 

classification performance than the traditional radiomic-based model, (2) SVM trained using the 
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fused radiomics and automated features does not yield significantly higher AUC, and (3) radiomics 

and automated features contain highly correlated information in lesion classification.                   

In summary, in all these studies, I developed and investigated several key concepts of CAD 

pipeline, including (i) pre-processing algorithms, (ii) automatic detection and segmentation 

schemes, (iii) feature extraction and optimization methods, and (iv) ML and data analysis models. 

All developed CAD models are embedded with interactive and visually aided graphical user 

interfaces (GUIs) to provide user functionality. These techniques present innovative approaches 

for building quantitative image markers to build optimal ML models. The study results indicate 

the underlying CAD scheme's potential application to assist radiologists in clinical settings for 

their assessments in diagnosing disease and improving their overall performance. 
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1 Introduction 

1.1 Background 

According to the trends in the leading causes of deaths in the united states between 1970 to 

2002, the age-standardized death rate (per every 100,000 population) from all causes combined 

decreased by 32% from 1242.2 to 844.6 [1].  The leading causes of death include heart disease, 

cancer, stroke, accidents, chronic obstructive pulmonary disease, and diabetes. These trends depict 

a substantial decrease in the rate of deaths among heart disease (-52.152%, from 502.6 to 240.5), 

stroke (-63.1%, from 151.9 to 56.1), and accidents (-41% from 62.5 to 36.9). Yet, the death rates 

either increased or relatively remained the same for cancer, chronic disease, and diabetes. The 

above-mentioned figures may suggest a decrease in death trends per 100,000 population. However, 

every year the population is increasing, and so is the incidence of many diseases leading to the rise 

in total deaths. For instance, in the year 2001 in the US, an estimated 1,268,000 new cases of 

cancer were reported to be diagnosed, among which 553,400 died [2], whereas in the year 2020 in 

US, an estimated 1,806,590 new cancer incidences with 606,520 deaths [3]. This is still an overall 

increase in cancer incidence by +42.5% and deaths by +9.5%. This continuous year-over-year 

growth in the need for medical assistance has fueled the development and adaption of assisted 

technologies in medicine to expedite and assist radiologists and doctors. 

In the past two decades, the rapid growth of technology, the processing power of computers, 

and the wide availability of cloud infrastructure to digitize medical centers have contributed to 

major advancements in medical imaging informatics (MII). “MII broadly refers to every aspect of 

the imaging chain from image creation and acquisition to image distribution and management, 

image storage and retrieval, image processing, analysis and understanding, image visualization 

and data navigation, image interpretation, reporting, and communications. The field serves as the 
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integrative catalyst for these processes and forms a bridge with imaging and other medical 

disciplines [4]”. In current clinical standards, the wide adoption of variants of MII can be outlined 

into these flows of steps: (i)  Patients admitted to the clinical center, (ii) Suggested image 

acquisition based on the patients underlying condition, (iii) Image preprocessing and segmentation 

of the region of interest (ROI) from the images, (iv) radiomic feature extraction from the 

segmented ROI’s, background, and global images, (v) building of machine learning models for 

classification or inference of patient condition, (vi) Integrating Image-based quantitative analysis 

with clinical and genomic features (markers), (vii) Finally optimal decision making for underlying 

patient’s condition (precision medicine). An example of a radiogenomics system from [4] is 

outlined in Figure 1-1. In the above example, steps (iii) – (vii), comprising the entire analysis of 

medical imaging and diagnostic decision making, are termed computer-aided detection and 

diagnosis (CAD).  

 
Figure 1-1: Radiogenomics System Diagram: An abstract system diagram demonstrating the use of radiogenomics 
approaches in the context of precision medicine [4]. 
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The end goal of the CAD schemes is to provide a computer-decision output as a “second 

opinion” to assist radiologists’ in their image readings and diagnostic recommendations. The 

building blocks and application of CAD schemes can be customized to accommodate multiple 

imaging modalities and various disease diagnoses. Many CAD schemes were currently adopted in 

clinical settings and have shown promising results. Some examples include: (i) detection and 

classification of lung nodules on CT [5], in this study, 16 image readers comprising of both 

radiologists and residents have all shown to improve their area under the ROC curve (Az) in 

detection by using CAD scheme as shown in Figure 1-2. (ii) Classification of pulmonary nodules 

on low dose CT [6]–[8], a total of 16 radiologists participated in this study, and results were 

analyzed based on classification of nodules (Az) for a) radiologists itself without CAD, b) with 

CAD, and c) CAD itself. The radiologist's performance improved from 0.72 to 0.8 using the CAD, 

and the CAD scheme independently achieved the best result with an Az of 0.89, as shown in Figure 

1-3. (iii) Detection of Subsolid and Solid Lung Nodules on CT scans using CAD had shown 

significant improvement on the thick section of CT and a greater significance when thin sections 

of CT were used [8]. However, some studies show no significant improvement in using CAD for 

radiologist readings. For instance, in this article [9], a more extensive study was conducted in 90 

facilities on 684,956 women with mammographic screenings. The study included 25 (27.8%) 

facilities adopting CAD for readings. The results show that CAD use during mammography 

screening is associated with decreased specificity but not with improvement in the detection rate 

or prognostic characteristics of invasive breast cancer. Additionally, another study [10] reported 

that CAD systems were widely used in breast cancer screening. However, more of such clinical 

applications in the other fields are yet to be developed. Thus, there is enormous scope and potential 

to develop various CAD systems related to multiple health conditions. 
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Figure 1-2: Az values without and with CAD for 16 radiologists in the detection of lung nodules on chest radiographs. 60 
normal and 60 abnormal with lung nodules of varying subtlety were used [6]. 

 

Figure 1-3: Receiver operating characteristic (ROC) curves for distinction between malignant and benign nodules, on chest 
radiographs without and with the CAD outputs such as those shown in Figure 3. 16 radiologists participated in an observer 
study in the interpretation of 53 chest radiographs, including 31 primary lung cancers and 22 benign nodules [6]. 
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In the following sections of this chapter, I will first introduce the conventional architecture of 

a CAD scheme. Then, I review and discuss the recent developments related to each section. 

Multiple relevant articles will be discussed to highlight the important contributions of the discussed 

concepts and research steps in these sections toward the overall improvement of CAD 

performance. I will use research studies that I am a part of as a contributing author or my studies 

conducted during my Master’s thesis. A more detailed explanation of my research during my Ph.D. 

dissertation period as the first author will be discussed in the later chapters of this dissertation. 

1.2 Architecture of Conventional CAD Scheme 

A typical computer-aided medical imaging information processing and feature classification 

system is shown in Figure 1-4. The first step of a CAD begins with image acquisition/ collection 

from each patient. Then, these images were stored into a secure shareable network system known 

as a picture archiving and communication system (PACS). PACS systems facilitate image database 

storing, archiving, and a safe network for accessing image data for end-users like radiologists/ 

doctors/ and researchers [11]. Next, in the CAD scheme, images were pre-processed to improve 

image quality, remove artifacts, and eliminate background information to aid in further processing. 

Then, segmentation schemes were applied to obtain the ROI. Image features from both the 

segmented ROIs, background, and the global image were then extracted. Optimal image features 

are identified to reduce the dimensionality of feature space and/or remove redundant features. 

Finally, statistical prediction models were developed using machine learning systems to make the 

final decision.  
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Figure 1-4: Sample architecture of computer-aided medical imaging information processing and feature classification system. 

1.2.1 Significance of Imaging Modalities 

Medical imaging has become an essential component of the healthcare continuum, from 

regular screening to early diagnosis, treatment, and follow-up. X-ray is the first two-dimensional 

medical imaging method introduced in 1895. Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) soon followed in the twentieth century. The above three innovations 

are considered significant milestones in the advancement of medical imaging technology. They all 

received Nobel Price and are still very widely used in medical practice. Many other new 

improvements were discovered, including ultrasound, nuclear imaging (single-photon emission 

computed tomography (SPECT) and positron emission tomography (PET)), interventional 

molecular imaging, etc. A few critical advancements related to both CT and MRI will be discussed 

for further discussion. 

Many technological advancements were made in CT regarding scan/acquisition speed, slice 

thickness, decrease in radiation dose, and better image quality. Nowadays, CT scans are widely 
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available and can be performed in a fraction of a second, covering larger areas. Improvements in 

image reconstruction techniques and the availability of larger detectors have decreased radiation 

dosages by more than half, improving image quality. New applications such as CT perfusion (CTP) 

have revolutionized stroke therapy to detect and quantify stroke regions. In perfusion-based 

studies, a contrast agent is injected into the cerebral infarct of the patient with stroke onset. If 

sufficient penumbra is revealed, neuro-interventional treatment can be attempted. In one of my 

studies, we have used pre-interventional CTP imaging for analysis to identify the cohort of patients 

who can benefit from EMT in acute ischemic stroke patients. A sample case with large vessel 

occlusion in arteries leading to stroke is depicted in Figure 1-5 [12]. We can see that CTP used 

along the angiograph has helped identify the clot and remove the occlusion to resume the blood 

flow.  

Many recent developments were made in MRI too, and previously, one image acquisition was 

necessary for each type of functional MRI output. But now, multi-contrast MRI imaging from only 

a single acquisition is made possible, and U.S. Food and Drug Administration (FDA) approved 

GE Healthcare’s MAGiC (MAGnetic resonance image Compilation) software. After scanning, this 

system can modify image contrast to yield multiple image contrasts, including T1, T2, FLAIR, 

dual IR, phase-sensitive IR, and proton density-weighted images. This drastically reduces total 

MRI scanning time and costs and provides clinicians with multiple images to enhance their 

diagnosis and reduce orders for rescans. Additionally, various contrast-enhanced imaging 

techniques were also used in breast imaging to identify lesions hidden in the soft tissues and 

improve overall classification performance. Dynamic Contrast-Enhanced (DCE) breast MRI has 

improved the cancer detection sensitivities from 40% to 81% compared to traditional 

mammograms [13]. Hence, breast DCE-MRI has been recommended by the American Cancer 
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Society as an adjunct screening tool for mammography for women with a lifetime breast cancer 

risk greater than 20-25% [14]. In one of the studies in our lab on breast DCE-MRI images, we 

investigated the efficacy of tumor response to chemotherapy using quantitative global MRI image 

features and yielded an AUC of 0.83 to classify between two classes [15]. 

 

Figure 1-5: Illustrative images of a large vessel occlusion (LVO) stroke patient. Patient was a 67-year-old male presenting 4 h 
after onset with a full right middle cerebral artery (MCA) syndrome due to right MCA occlusion, NIHSS 14. (A) Emergent head 
computerized tomography without hemorrhage as a cause of stroke syndrome. (B) Axial maximal intensity projections from 
CTA showing right MCA occlusion (white arrow). (C) Emergent MRI DWI showing a small established core infarct. On the 
basis of this combined imaging and clinical data, it was determined that the patient had a large penumbra and small region of 
established injury and was therefore a good candidate for reperfusion therapy. (D) Anteroposterior view, catheter angiogram. 
The right internal carotid artery (ICA) injection reveals thrombus at the carotid terminus with only minimal anterior cerebral 
artery (ACA) opacification seen. Findings are consistent with an ICA-T occlusion. (e) Complete recanalization following 
mechanical thrombectomy, with full reperfusion (not shown) of the threatened penumbra. (F) 24 h MRI DWI showing arrest of 
infarct growth following reperfusion of the penumbra. The patient improved to NIHSS 4 by discharge on day 3 post-op. His 
stroke was determined to be cardioembolic following detection of atrial fibrillation after complete evaluation for cause, and he 
was free of deficits at 90-day follow-up [12]. 

1.2.2 Image Preprocessing 

Preprocessing is a crucial step in the CAD scheme. There are two main reasons to apply this: 

to enhance the quality of images to aid further steps (automated segmentation, feature extraction, 

etc.) and remove noise or unnecessary artifacts from the images. Various filtering techniques from 
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computer vision are still applicable to grey-scale medical images. This filtering of images can 

either be performed in the time-domain or frequency domain. A few example methods were as 

discussed below: 

Gabor Filter: This is a linear filter used for texture analysis (edge detection). It is mainly used 

to analyze whether there is any specific frequency content in the image in a particular orientation 

in a localized region around the region of interest. This is useful for identifying edges in the images 

and automatically recognizing text annotation in DICOM medical images. 

Mean or Average Filter: A linear kernel-based filter. It is used to replace each pixel value in 

an image with the average value of its neighbors. It is used to remove pixel values that are 

unrepresentative of their surroundings.  

Adaptive Median Filter: It is a local kernel neighbor-based filter. It is used to remove salt and 

pepper noise and impulsive noise without causing any distortion to the original images. It is helpful 

to remove distorted impulsive noise from the original signal preserving the image. 

Morphological Filter: Morphological Techniques use a “structuring element” reference 

template. The elements are used to compare each pixel with its neighbors in the structuring element 

of the original image to perform filtering. In combination with various structuring elements, these 

filters can be used to remove/ preserve peaks and valleys from the original images. Many variants 

of these filters exist, including dilation, erosion, open, close, etc., of the image. 

Image Normalization: It is a process of altering the range of pixel intensity values in an image. 

It is also called Contrast or Histogram Stretching”. The main objective of this application is to 
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bring all parts of the image or other types of signals into a range familiar to the senses for normal 

interpretation. 

Histogram Equalization: It is used to increase the global contrast of the image, especially 

when a close contrast value represents the usable data of the image. This equalization helps the 

intensities in the image to be better distributed on the histogram allowing images to achieve higher 

contrast. Histogram equalization accomplishes this by effectively spreading out the most frequent 

intensity values. 

Low/High/Band Filters: These filters are frequency domain-based. If the frequency of the 

image signal satisfies the filter's condition, only then is the signal allowed to pass through the filter. 

For example, a low pass filter will enable signals less than a selected cutoff frequency and 

attenuates higher frequency signals in an image. Typically, for the application of frequency-

domain filters, the time-domain image is first converted into a frequency-domain (ex: Fourier 

transform). Then, the filter function is applied (ex: low pass filter), followed by the inverse 

transform of frequency-domain (inverse Fourier transform), resulting in a filtered time-domain 

image. In summary, Table 1-1demonstrates several examples of applying different filters as 

discussed above to medical images. 
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Table 1-1: Sample images of various filtering techniques with both original and filtered images. 

Filtering Technique Original Image Filtered Image 

Gabor Filter 

  

Adaptive Median Filter 

  

Morphological Filter 

  

Histogram Equalization 
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Gaussian Lowpass Filter 

 

 

1.2.3 Segmentation of ROI 

In computer vision, segmentation can be divided into supervised and un-supervised 

approaches. In supervised segmentation methods, a prior existing atlas/ knowledge about the ROI 

and its background is used to perform the segmentation. Whereas in unsupervised methods, 

segmentation depends entirely on defined segmentation criteria like initial growing condition, 

growth rate, stop/limiting conditions, etc. Most common supervised segmentation methods include 

region-growing, adaptive thresholding, contour identification, clustering, etc. Next, I will discuss 

two articles related to the segmentation of suspicious regions using a unique technique. The first 

study uses a novel multi-layer topography-based growth segmentation to detect and segment 

suspicious breast lesions. The second study uses state-of-the-art deep learning architecture for 

automatic detection and segmentation of four types of retinal lesions in patients suffering from 

diabetic retinopathy. 

1.2.3.1 First Case Study: Concentric Morphology Model for Detection of Masses in 

Mammography 

Multi-level topographic (MLT) is a popular technique used for automated detection and 

segmentation of suspicious masses. We also used this technique in one of our studies, and it will 

be explained in more detail in chapter 2. These methods usually follow a defined algorithm for 

identifying growth and stopping criteria.  We will consider a study [16] in which these multi-level 
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growths of concentric layers were adapted to identify and segment the suspicious breast masses. 

This study is divided into three stages: (i) breast region segmentation and granulation, (ii) 

Detection of suspicious focal areas using the MLT technique, and (iii) false-positive reduction. 

i. Breast Region Segmentation and Granulation: 

Due to large size of mammographs, it is first reduced by a factor of 5 (from 50 to 250 μ per 

pixel). Then Based on the prior knowledge, the intensity profile of the image is first examined at 

11 horizontal sections equally spaced along with the image. By visiting each x-section using fixed 

intervals of 50 pixels starting from the background and approaching the breast, the breast 

segmentation module allocates 11 points of high pixel intensity transition close to the breast skin 

line. Spline interpolation between these advanced points is then used to calculate an initial breast 

silhouette. After cleaning the background behind this silhouette, histogram analysis is performed 

on the intermediate image to automatically determine the optimal threshold (Otsu method) for the 

final segmentation of the breast region. Pixel granulation implements a simple transformation of 

many pixel intensity levels to a smaller, more manageable number called granule levels. 

Furthermore, the granulation process ensures that groups of strongly connected pixels in terms of 

spatial location and intensity range are assigned to the same granule level. A higher granule level 

denotes strongly connected pixels with brighter intensity values. 

ii. Detection of Suspicious Focal Areas Using MLT Technique: 

First, the localization of focal areas with suspicious morphology is conducted using granulated 

breast images. First, all pixels with granule levels equal to or higher than the studied granule level 

l are identified and analyzed as a separate image. All isolated regions are identified in “focal 

regions” in this separate image. Although the above method can be repeated further for every 
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granule level in the breast region, the exhaustive search is computationally costly. Therefore, only 

the top 50% brightest granule levels are visited at equally spaced granule intervals to reduce 

complexity. Specifically, the visitation scheme operates as follows. Let us assume that N granule 

levels are present in the granulated image, where N denotes the highest (brightest) granule level. 

Starting from the highest granule level ‘N’ and continuing down to the 0.5*N granule level, the 

levels are visited with a fixed step of 0.05*N. Consequently, 11 granule levels are visited in total. 

All seeds detected in an image during the stepwise visitation scheme are collected. However, 

redundancies in seeds were removed at a minimum distance of 55 pixels threshold. Figure 1-6, 

Figure 1-7 represent the MCL model and MCL criterion, respectively. 

 

Figure 1-6: The multiple concentric layers mass 
model. 

 

Figure 1-7: Visual representation of the MCL criterion for a focal 
activity layer detected at granule level l. Four consecutive layers 
concentric with the focal activity layer is identified at progressively 
lower granule levels (l - 1); (l -2); (l - 3); and (l – 4). 

Next, for each seed, we examine the presence of concentric layers around the seed of 

progressively lower granule level, as shown in Figure 1-8. Seed regions with higher evolving 

concentric regions are considered suspicious deviations. In contrast, seed regions with fewer than 

three evolving concentric layers are eliminated from the list of candidate masses. The MCL is 
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employed by projecting focal seeds on the consecutive layer while examining the distance between 

the centroids of every consecutive layer and the projected focal seed on this layer. The layers are 

considered concentric if this distance is less than 17 mm (68 pixels). Otherwise, it is deemed 

eccentric, and the search is stopped. If the number of concentric layers found around each focal 

seed is three or more, the focal area is considered a suspicious mass. The search stops when either 

one of three conditions is encountered: 1) an eccentric layer is found or 2) an expected granule 

level is absent, or 3) at least ten consecutive concentric layers are found. A focal region with at 

least ten concentric layers is considered highly suspicious, and no further search of additional 

concentric layers is necessary. An example reference case with ROI highlighted along with 

radiologist markings and MCL layers generated were shown in Figure 1-8. 

 

Figure 1-8: (a) Fig with a seed (shown with an asterisk) detected, (b) zooming into the suspicious area to show the physicians’ 
annotations of two true abnormalities present: one malignant mass (outlined in red) and one calcification cluster (outlined in 
white), and (c) isolated concentric contours surrounding the detected mass seed. 

iii. False Positive Reduction 
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The final MCL stage applies two different criteria for the elimination of false-positive seeds. 

The first method uses relative incidence with respect to the whole breast region. The second 

method uses the minimum distance criterion. If two seeds are closer than 75 pixels, then only the 

seed detected at a higher granule level, including more concentric layers, is kept in the final cue.  

Finally, the detection performance of the scheme was evaluated using free-response operating 

characteristic (FROC) analysis. A CAD detection area was considered as a true positive (TP) if 

the centroid of its focal activity layer was included in the DDSM annotated area. If the centroid 

was outside the annotated area, the CAD detection area was considered false positive (FP) even if 

the extended detected area (i.e., its evolving concentric layers) overlapped with the physician’s 

mass annotation. The results show that malignant masses were detected with 92%, 88%, and 81% 

sensitivity at 5.4, 2.4, and 0.6 false-positive marks per image. While benign masses showed a false 

positive rate of 5.0, 1.7, and 0.2 marks per image at the previously reported operating points. The 

proposed MCL-based suspicious breast masses detection scheme has proven to be very promising 

CAD for screening mammograms to automatically identify malignant masses.  

1.2.3.2 Second Case Study: Applying Deep Learning for Automatic Detection and Segmentation 

of Retinal Lesions 

I am considering another study to discuss automated detection and segmentation using deep 

learning techniques, where I participated with fellow teammates in the IEEE competition. This 

study used U-Net's modified deep learning architecture as an inspiration. We performed automatic 

segmentation of various retinal lesions in Diabetic Retinopathy (DR) patients. Early detection of 

DR from fundus images is clinically essential for the treatment of DR. The types of retinal lesions 

analyzed include microaneurysms (MA), hemorrhages (HE), hard exudates (EX) and soft exudates 
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(SE). We adopt a two-stage training strategy, which randomly extracts negative patches as the 

training set in the first stage and then selects false-positive patches generated in the first stage for 

the second-stage training. This paper was submitted to ISBI 2018 diabetic retinopathy 

segmentation and grading challenge - sub-challenge and was awarded fourth position [17]. This 

study is divided into three stages: (i) background on DR, (ii) proposed architecture of U-Net, and 

(iii) fundus image dataset and implementation. 

i. Background on DR 

Diabetes usually occurs when insulin-producing beta cells in the pancreas are destroyed (type-

1) or when various body parts fail to effectively use the insulin produced (type-2). It is a global 

health issue and one of four priority non-communicable (chronic) diseases (NCD) targeted for 

action by world leaders of the united nations [18]. Globally, it is estimated that nearly 381.8 million 

people had diabetes in 2013, and it is projected to increase to 591.9 million (55% growth) by 2035 

[19]. This increasing trend is more significant in developing regions (like Asia and Africa) as 

compared to developed regions [20] (like Europe and North America). Diabetes is chronic in 

nature, leading to many long-term health complications. Individuals with diabetes have a 

significant probability of eye damage known as diabetic retinopathy (DR). Since DR is 

progressive, if untreated in the early stages, it will damage blood vessels of the retina and can 

potentially lead to permanent blindness [18]. The prevalence of DR among individuals with 

diabetes is 43%, 28%, 18% in China, the United States, and India, respectively [21], [22]. Thus, 

appropriate screening guidelines for diabetes patients were needed for early detection and 

treatment of DR.  
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A manual interpretation of retinal fundal images by ophthalmologists is widely used to detect 

DR. During the screening, ophthalmologists observe for retinal lesions of abnormal blood vessels. 

In general, the early signs of DR are tiny swollen capillaries known as microaneurysms (MA). 

These lesions further discharge blood into the retina leading to complications such as hemorrhages 

(HE), hard exudates (EX), soft exudates (SE; cotton wool spots) etc. An illustration of different 

retinal lesions in DR is shown in Figure 1-9. Furthermore, if untreated will cause an accumulation 

of fluid in the macula leading to diabetic macular edema (DME). Manual identification of these 

different types of lesions is crucial for disease grading but is tedious due to the volume of mass 

screenings. Thus, developing an automated screening tool for the detection and grading of retinal 

lesions will have potential benefits: cost-effective reproducibility, accessibility to remote places, 

and effective mass screening schemes.  

Many researchers have been using traditional machine learning algorithms with domain-

specific handcrafted features for the classification of DR. However, the availability of high 

computing GPUs lets many researchers explore various deep learning architectures in various 

fields of computer vision, including medical imaging. In recent studies, early detection of MA 

using deep neural networks (DNN’s) [23] helped in the screening of DR. Additionally, a larger 

deep learning study on 128 thousand fundus images with annotations of 54 United States licensed 

ophthalmologists were used for classification into normal and preferable DR [22]. In another study, 

a novel two-stage deep convolutional neural networks (DCNN’s) was built for both lesion 

detection (stage:1, local network) and automatic grading (stage:2, global network) of DR severity 

[24]. Thus, in this study, we developed a DCNN using U-Net with adjusted parameters for 

estimating its feasibility in the automatic detection of various types of lesions (MA, HE, EX, and 

SE).  
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Figure 1-9: Illustration of retinal image (incenter) by highlighting normal structures (blood vessels, optic disc and fovea center) 
and abnormalities associated with DR: Enlarged regions (in left) MAs, and HEs and (in right) SEs, and EXs. 

ii. Proposed Architecture of U-Net 

Due to the large size of fundus images and the limitation of GPU memory for training a DCNN, 

we randomly cropped sub-regions from the fundus images as the input of the networks. We adopt 

a Fully Convolutional Network (FCN) architecture named U-Net [25], which was proposed for 

various biomedical image segmentation tasks. Figure 1-10 shows the architecture of the U-Net 

developed for DR lesion segmentation in our study. The network takes a 380×380 fundus image 

patch as input and predicts the binary mask of the DR lesion within the 196×196 central region of 

the input patch. The network consists of a contracting path on the left and an expansive path on 

the right. In the contracting path, convolutional layers with small kernels (i.e., 3×3) and max-

pooling layers are stacked to gradually increase the receipt filed and reduce the spatial resolution 

of convolved features. In the expansive path, de-convolution operations are applied to increase the 

resolution of feature maps. Features generated by de-convolution layers are concatenated with the 

corresponding features with the same resolution in the contracting path to combine coarse features 
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(from de-convolutional layers) and fine features (from the contracting path). Convolutional layers 

are then applied to extract high-level representations from the concatenation. The network's last 

layer is a 1×1 convolution operation with a sigmoid activation function to generate a pixel-level 

lesion probability map. We adopt the Batch Normalization (BN) technique to improve training 

efficiency in contracting and expansive paths. All convolution operations adopt a ‘valid’ padding 

method to reduce the effects of random cropping.  

 

Figure 1-10: Figure 1: Proposed U-Net architecture for patch based retinal lesion segmentation. 

iii. Fundus Image Dataset and Implementation 

This study's retinal fundus images were retrospectively collected from the existing database at 

an eye clinic in Nanded, Maharashtra, India. The dataset includes 516 fundal images. All images 

were acquired using a Kowa VX-10 alpha digital fundus camera with 4288 × 2848 pixels, 50˚ field 

of view (FOV), and centered near the macula. Measures were taken to ensure quality data 
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representing each disease stratification of DR and DME is included while collecting the database. 

The database assembled for lesion segmentation consists of 215 cases, 81 cases have signs of DR, 

and the remaining 134 were normal cases. Experts and precise annotations examined all the images 

with signs of DR that were marked for various retinal lesions (MA, EX, HE, and SE). 2/3 of the 

cases are released with ground truth for training, and the remaining 1/3 are used for testing.  

We implemented the U-Net architecture based on the TensorFlow library [26] with an Nvidia 

GeForce GTX 1080Ti GPU. 380×380 patches were extracted from the original fundus images for 

training the network. We pre-processed the image patches by subtracting the local mean of each 

color channel. For data augmentation, each patch was flipped three times (i.e., horizontally, 

vertically, and both). We adopt a two-stage training process for each sub-type of lesions (i.e., MA, 

HE, EX, and SE). We extracted positive image patches in the training set for the first stage 

according to the given ground truth mask. We randomly extracted negative image patches from 

fundus images with apparent retinopathy and without apparent retinopathy. We trained the U-Net 

using the extracted patches for 20,000 iterations for each lesion sub-types. The objective function 

is a standard cross-entropy loss function, and the Adam algorithm is employed to optimize the 

parameters. Subsequently, we applied the optimized U-Net on the fundus images in the training 

set and extracted false-positive patches generated by U-Net. We further trained the U-Net for 

10,000 iterations using the positive image patches and the false-positive patches as a second stage. 

In the testing phase, we extracted overlapped image patches using a sliding window and fed the 

patches into the network to get the corresponding probability maps. 
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Table 1-2: Performance of U-Net for retinal lesion segmentation. 

Lesion 
subtype 

T = 0.1 T = 0.25 T = 0.5 T = 0.75 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

MA 0.640 0.375 0.555 0.504 0.014 0.634 N/A N/A 

EX 0.912 0.525 0.831 0.684 0.699 0.838 0.534 0.944 

HE 0.710 0.260 0.546 0.433 0.371 0.635 0.206 0.873 

SE 0.455 0.262 0.340 0.411 N/A N/A N/A N/A 

While leave-one-out cross-validation is required for the challenge, it is time-consuming for 

training the network. Therefore, we only split the released training set into one training set and one 

evaluation set. The training set contains 44 fundus images with apparent retinopathy and 75 images 

without apparent retinopathy, while the evaluation set contains ten fundus images with apparent 

retinopathy and 14 images without apparent retinopathy. We optimized the parameters using the 

training set and evaluated the network on the evaluation and testing sets. So, it should be noted 

that the results we submitted are not from leave-one-out. Part of the results is obtained by applying 

the model to the training samples since training the network is time-consuming.  

We calculated the pixel-level sensitivity and specificity with different thresholds over the 24 

fundus images in the evaluation set. Table 1-2 summarizes the performance of the proposed U-Net 

for different sub-types of lesions. There are some ‘N/A’s in the table, which means that the 

maximum predicted probability is below the threshold. 

1.2.4 Feature Extraction and Optimization 

Extracting meaningful information from image data relevant to clinicians for deducing 

underlying phenomena can be significant for diagnosis. Thus, in CADs, feature extraction is 

performed to capture the radiomic information. These features can be broadly categorized into 
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three types: geometric-based, Intensity-based, and texture-based. Geometric features are related to 

the shape of the ROI, and some features commonly used include area, perimeter, compactness, 

circularity, eccentricity, maximum radius, etc. Next, the intensity-based features are related to the 

pixel distribution of each ROI, surrounding background, or the global image itself. Some 

commonly used intensity features include statistical parameters like mean, deviation, skewness, 

kurtosis, moments, contrast, etc. Finally, texture features capture the underlying textural 

orientation. Some commonly used types include run-length features, cooccurrence features, local 

binary patterns (LBP), histogram of oriented gradients (HOG) features, vector quantization 

generating texture descriptors, and wavelets. Theoretically, many features can be constructed from 

an image, but the primary purpose of this feature extraction is to reduce the total amount of data 

represented in an image to a smaller feature profile. 

Additionally, having a larger feature dimension can contain much redundant information and 

may lead to overfitting for decision-making. Thus, optimal feature selection or feature reduction 

techniques must be employed to reduce the final number of image features. This dimensionality 

reduction step can also reduce noise and produce more robust learning models.  

Feature dimensionality reduction achieved from selecting a subset of the existing features is 

known as feature selection. The three main approaches to feature selection are embedded, filter, 

and wrapper approaches. Embedded methods reduce the computational time compared to wrapper 

methods by incorporating the feature selection in the training process of a classifier. These are 

very sensitive to the learning algorithm used to set feature subset. Support Vector Machine (SVM) 

approaches or decision tree algorithms are some examples of embedded methods [27]. Wrapper 

methods evaluate the utility of feature subsets using the results of a specified classifier. These 

methods allow for the detection of the possible interactions between variables. A search procedure 
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within the possible feature subsets space is done. As the number of subsets grows exponentially 

with the number of features, a heuristic or a sequential selection algorithm is used for search 

purposes. The two main disadvantages of these methods are the increasing overfitting risk when 

the number of observations is insufficient and the significant computation time when the number 

of variables is large [28]. Filter methods do not depend on any classifier but can be considered pre-

processing steps based on specific criteria to evaluate features' relevance. One of the main 

disadvantages of these approaches is that the researchers ignore the interaction between features 

and hence may be unable to remove redundant features. The most proposed techniques are 

univariate, which means that each feature is considered separately, for instance on mutual 

information [29].  

Many of our previous studies have focused on feature generation, selection, and optimization 

to improve the performance of CAD schemes. The following section reviews and discusses our 

recent study, which focuses on applying a new feature optimization algorithm on medical images 

to classify breast lesions. 

In this study [30], the primary objective is to investigate the feasibility of applying a random 

projection algorithm (RPA) to build an optimal feature vector from the initially CAD-generated 

large feature pool and improve the machine learning model's performance for the classification of 

benign, malignant breast masses. We retrospectively collected a mammographic image dataset 

consisting of 1487 cases. Of these, 644 were confirmed as malignant lesions, and 843 had benign 

lesions. The majority of cases have both craniocaudal (CC) and mediolateral oblique (MLO) views 

in which the suspicious lesions are detected and marked by the radiologists. In contrast, a small 

fraction of cases have either CC or MLO images. Overall, 1,197 images depicting malignant 

lesions and 1,302 images showing benign lesions are collected. The centers of lesions were marked 
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and used as “ground truth” to evaluate CAD performance. Like most CAD schemes using the ROIs 

with a fixed size as classification targets, we used a 150-by-150 fixed size ROI centered around 

lesion markings for generating our initial feature pool. 

The features extracted can be categorized into three types: (i) statistical, (ii) geometrical, and 

(iii) textural (which includes gray-level run-length matrix (GLRLM), gray level difference matrix 

(GLDM), gray-level co-occurrence matrix (GLCM), wavelet) features. In summary, 181 features 

were computed either from the global ROI images or the segmented ROIs. 

Before using RPA to generate an optimal feature vector from the initial image feature pool, we 

first normalize each feature to make its value distribution between [0, 1] to reduce case-based 

dependency and weight all features equally. Thus, for each case, we have a feature vector of size 

𝑑, which is valuable to determine that case based on the extracted features as a point in a 𝑑 

dimensional space.  

For evaluation, we adopted the support vector machine (SVM) to train these new RPA-based 

features to predict the likelihood of lesions being malignant. Additionally, the leave-one-case-out 

(LOCO) based cross-validation method was employed to increase the size and diversity of training 

cases and reduce the potential bias in case partitions. The results were then analyzed using both 

Area under ROC curve (AUC) and classification accuracy. Finally, the performance of the 

proposed RPA method was compared with other existing methods like PCA, Chi2, and NMF. 

Figure 1-11 shows the caparison of ROC curves generated by various models to classify malignant 

and benign breast cases or lesions. Table 1-3 summarizes multiple parameters, including 

classification accuracy, sensitivity, specificity, and Odds Ratio of the models. 
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Table 1-3:  Summary of the lesion case-based classification accuracy, sensitivity, specificity, and odd ratio of using 5 SVMs trained 
using different groups of optimized features. 

Feature sub-group Accuracy 
(%) 

Sensitivity 
(%) Specificity (%) Odds 

Ratio 

Original features 69.3 62.0 75.0 4.85 

NMF 72.4 63.1 79.5 6.61 

Chi2 70.9 63.0 77.1 5.67 

PCA 72.8 68.0 76.6 6.87 

RPA 75.2 70.2 79.0 8.86 

 

 

Figure 1-11: Comparison of 10 ROC curves generated using 5 SVM models and 2 scoring (region and case-based) methods to 
classify between malignant and benign lesion regions or cases. 

1.2.5 Content-Based Medical Image Retrieval 

In the clinical practice of reading and interpreting medical images, clinicians (i.e., radiologists) 

often refer to and compare similar cases with verified diagnostic results to detect and diagnose 
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suspicious lesions or diseases. However, identifying similar reference cases from a large and 

diverse clinical database or repositories is a quite difficult task. Therefore, developing an automatic 

and effective medical image retrieval (MIR) system is required to aid clinicians and/or radiologists 

in browsing the large datasets in clinical PACS. Content-based image retrieval (CBIR) schemes 

are the most appropriate and reliable approach to automatically retrieve clinically relevant cases 

and related medical images to assist clinicians in their decision-making process [31]–[33]. The 

general architecture of CBMIR is shown in Figure 1-12. 

CBIR has been one of the most active research areas in computer vision [34]. CBIR refers to 

the recall of images from the database relevant to the query, using information derived from the 

images. Many CBIR schemes related to natural images (color) have been proposed and 

commercially accepted and/or available on the internet [35]. Nevertheless, the application of CBIR 

models for either biomedical research or routine clinical settings is limited. There are many 

possible reasons for the delay of such a popular technique (CBIR) to solve medical problems [36] 

(content-based medical image retrieval (CBMIR)). Some of the reasons are as listed here (but not 

limited to): (1) lack of collaborations between medical and engineering experts (due to data 

ownership, privacy, etc.), (2) lack of adequate representation of medical content (mostly grayscale 

images) by low-level mathematical features, (3) lack of thorough evaluation of CBIR model 

performance in health care settings, and (4) lack of availability and/or acceptance of appropriate 

CBIR tools for clinicians to experiment, etc. We will discuss one article of CBMIR in detail from 

my general examination described with a relevant application to medical image data. 
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Figure 1-12: General framework of a sample CBMIR of mammograms. 

Real-time image retrieval is crucial in using CBMIR systems in clinical diagnosis. For 

example, in the automatic analysis of massive histopathological images, the images are too big 

and often represented with over 10,000-dimensional image feature vector. In [37], a CBIR system 

is designed to retrieve images and their associated annotations from a networked microscopic 

pathology image database based on four types of image features. Additionally, another study in 

[38] proposed a CBIR system using the multi-tiered approach to retrieve microscopic images, 

allowing multi-image query and slide-level image retrieval to protect semantic consistency. 

However, scalability is the key factor in CBIR for medical image analysis. The above-discussed 

CBIR systems have only been tested on a relatively small number of cases. Thus, in an attempt to 

design a computational and scalable retrieval algorithm, [39] proposed a hashing-based approach 

to analyzing histopathological images. This study used a state-of-the-art kernelized and supervised 

hashing (KSH) method to achieve optimal performance and moderate training costs. The 

fundamental idea of KSH is to bridge the gap between the low-level hash code similarity and the 
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high-level semantic (label) similarity by use of supervised training. The proposed architecture of 

the KSH-based CBIR system is as shown in Figure 1-13. 

 

Figure 1-13: Proposed architecture of the kernelized and supervised hashing (KSH) based CBIR system. 

During training, high-dimensional visual features are extracted from histopathological images 

based on scale-invariant feature transform (SIFT). These features represent textual and appearance 

information and are quantized with a bag of words. It can provide an informative description of 

cell appearance and robust to subtle staining color changes. Then, a hashing method is used to 

compress these features into 48 bits of binary codes allowing easy mapping into a hash table for 

real-time search. A similar step can be used to reduce the high-dimensional feature vector to obtain 

small binary codes during a run-time query. Finally, using a hash table, searching for nearest 

neighbors can be achieved in a constant time, irrespective of the number of images in the reference 

database. Few retrieved sample results generated using the proposed KSH-based image retrieval 

system of histopathological images of biopsied breast tissues are shown in Figure 1-14. 
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To compare the performance of this study, the authors also compared this new KSH-based 

CBIR scheme with other classifiers that have been previously developed and tested for 

histopathological image analysis. Specifically, the conventional k-nearest neighbor (KNN), 

principal component analysis (PCA), neighborhood components analysis (NCA), and graph 

embedding were modeled and compared. The parameters that were tested are (1) precision for the 

top 10, 20, and 30 results, (2) memory cost of training data, and (3) query time for all test images. 

A comparison of the performance of the proposed system with other approaches is shown in Table 

1-4. Many different modified versions of hashing-based large-scale image retrieval techniques 

(like sparse hashing, vocabulary tree-based hashing, composite anchor graph hashing) [40]–[42] 

have also been proposed in recent years and have shown encouraging results. 

 

Figure 1-14: Sample results of the KSH based image retrieval system of histopathological breast tissues. First two rows are 
benign, the last two are actionable. 

 

 



31 
 

Table 1-4: Comparison of performance of the proposed KSH based CBIR system with other approaches. 

 kNN PCA NCA Graph Embedding Proposed KSH 

 benign actionable benign actionable benign actionable benign actionable benign actionable 

P@10 0.779 0.687 0.762 0.705 0.799 0.697 0.672 0.487 0.836 0.830 

P@20 0.773 0.653 0.758 0.681 0.800 0.689 0.673 0.486 0.839 0.829 

P@30 0.770 0.631 0.755 0.667 0.800 0.685 0.670 0.480 0.837 0.833 

STD 0.024 0.028 0.020 0.012 0.011 

Time 15.77 10.07 10.04 10.03 < 0.01 

Memory 134.58MB 0.65MB 0.65MB 0.65MB 0.01MB 

1.3 Organization of the Dissertation 

During the past several years of my study at the University of Oklahoma for my Ph.D. degree, 

I participated in multiple projects related to the development of various CAD schemes. These 

studies involved various applications of machine learning concepts in medical imaging 

informatics. I have collaborated with both researchers and medical professionals, which helps me 

better understand the current clinical challenges and the need to develop new CAD schemes, 

emphasizing assisting clinical decision-making. These studies included interactive and visually 

aided GUI application tools that researchers can use to observe and assess critical steps to help 

develop robust CAD models.  

This dissertation reports five research studies addressing various challenges in developing 

CAD schemes of medical images, including (i) proposing novel segmentation of ROIs, (ii) 

extracting and optimizing radiomic features, and (iii) applying several machine learning 

algorithms to perform classification and segmentation tasks. Chapter 2 will first briefly introduce 

the current challenges related to each suggested research study and the research hypothesis to 
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address or solve each challenge. Then, a more detailed assessment of these studies separated into 

individual sections will be provided in the subsequent Chapters 3 - 7. 

Specifically, Chapter 3 reports the investigation of applying CAD technology to a relatively 

new imaging type (contrast-enhanced digital mammograms in collaboration with Mayo Clinic) to 

classify suspicious breast masses. By collaborating with neurologists and medical residents at both 

University of Oklahoma Health Science Center (OUHSC) and the University of Texas 

Southwestern Medical Center, I developed and tested several new CAD schemes of brain CT 

images. Chapter 4 reports developing novel quantitative image markers to predict the prognosis of 

acute ischemic stroke. Chapter 5 reports another CAD scheme developed to predict multiple 

clinically relevant measures for both short-term and long-term outcomes in patients after 

aneurysmal subarachnoid hemorrhage. Chapter 6 reports another interactive CAD software tool 

developed for quantitative estimation of intracerebral hemorrhage. Next, Chapter 7 reports an 

assessment study to observe the correlation between traditional radiomic-based features and 

automatically generated deep learning features to classify the suspicious breast lesions. Finally, 

Chapter 8 summarizes the role of these proposed CAD schemes and discusses their application 

potential and the prospective future work. 
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2 Research Objective and Hypothesis 

2.1 Current State and Challenges in Developing Robust CAD Schemes 

The development of CAD schemes in MII is still emerging and has a great potential to help 

radiologists in their clinical practice. During the last couple of decades, CAD schemes in 

commercial and research centers have attracted great interest and adaption. Many commercialized 

CADs have been widely adopted in many critical fields of medical ailments, including (i) breast 

cancer screening for detection of suspicious masses, (ii) detection of lung nodules on low dose CT, 

(iii) in the field of brain stroke or hemorrhagic analysis of quantification or segmentation of edema 

and blood volumes and many other medical applications. Commercialized CAD systems were 

widely tested and used clinically as a “second reader” to assist radiologists in interpreting medical 

images. This trend of CAD development and implementation has been accelerated due to many 

catalysts like (i) improved imaging technologies, (ii) growth in processing speeds, (iii) evolution 

of the concept of radiomics which depict phenotype features that are highly associated with 

genomic and radiologic markers, (iv) advancements and application of deep learning architecture, 

(v) more research interest in the field of machine learning focusing on medical imaging 

informatics, etc.  

However, few previous studies have shown and well-investigated a gap between CAD and 

radiologists' performance improvement. The article [9] is an extensive study on CAD for breast 

cancer screening as a second assisted reader for radiologists with decreased detection rate and 

specificity performance. In our experience, major challenges for CAD shortcomings are (i) lack of 

visual assisting tools, (ii) identification of more radiomic related image features to improve the 

confidence of radiologists, (iii) selection of optimal feature pool for building a more robust 

machine learning models, (iv) creating more transparent deep learning models to visualize 
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intermediary steps, etc. In the previous chapter, we have discussed several recent publications 

focused on key steps in building CAD systems. Specifically, the articles [5], [7], [8] have 

highlighted the contribution of CADs towards improving radiologists’ performance in image 

readings. The role of new improvements in medical imaging technologies and their contribution 

to image reading and CAD application were summarized in articles [4], [6], [43], [44]. The purpose 

of various image preprocessing schemes was introduced, and the implementation of key imaging 

types was analyzed. 

Additionally, in the development of CAD schemes, detection and segmentation of various 

suspicious regions play a vital role in decision-making. Thus, we discussed two very different 

articles in this report and developed them for automatic detection and segmentation. In the first 

study [16], a multi-layer topographic-based concentric morphology model was explained in detail 

to detect masses in mammograms. The study introduces a novel scheme, which uses granulation 

to identify multiple concentric growth layers following a certain defined growth criterion, thereby 

identifying potential suspicious seeds/ masses. In the second study [17], I discussed our article on 

retinal lesion segmentation in diabetic retinopathy patients. We developed a deep learning 

architecture inspired by the U-Net to build a model for identifying and segmenting four different 

retinal lesions. The study examined the feasibility of our system in categorizing different retinal 

lesions from one another and its pixel-level sensitivity and specificity for their segmentation. Next, 

the report reviews the importance of focusing on optimizing the performance of the CAD schemes 

with different feature extraction and data reduction coupled with machine learning schemes. We 

took one of our studies [30], explaining the application of a random projection algorithm for 

optimizing the feature reduction step in our study conducted on the classification of benign and 

malignant breast lesions. The study indicated that the classification performance of the random 
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projection algorithm is significantly better for feature optimization than other standard techniques 

like the principal component analysis. 

Next, in [41], the hashing-based image retrieval technique was evaluated to retrieve large-scale 

histopathological breast tissue images. The proposed hashing technique represented a high-

dimensional feature vector (10,000) in only 48 binary bits, effectively representing the feature 

information. The proposed hashing-based CBIR results were also compared with other popular 

feature reduction-based techniques, which significantly improved parameters such as average 

precision, time complexity, and memory requirement.  

Nevertheless, despite the encouraging results of various recent studies in CAD, many 

limitations exist and need further exploration. First, many of these CAD studies are conducted on 

relatively small datasets. Thus, it is not easy to estimate its efficacy in a large population-based 

environment. The challenge here is to access larger image datasets, which is not practical in many 

instances due to data privacy protection and institutions' unwillingness to make data public to 

research. Second, more collaborations need to be conducted between CAD researchers and 

radiologists to bridge the gap and develop robust CAD schemes considering the visual markers 

radiologist observe in readings. Third, emerging radiomic features, optimal features selection, and 

reduction techniques must be further investigated. Finally, any level of automation/ generalization 

of CAD schemes may not be enough to gain the trust of the radiologist in adapting them as assisting 

tools. Thus, study-specific customizable visual tools based on radiologists’ recommendations need 

to be incorporated into CAD schemes. 

In summary, the above-discussed literature search and review process has helped me better 

understand different aspects, progress, and challenges of developing CAD schemes in the field of 
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medicine. It also encouraged and guided me to identify the new research directions and concerns 

related to improving and developing new CAD schemes. Thus, based on my understanding, to 

develop a robust CAD model, I first lay out the complete workflow of the current application to 

identify the major challenges that hinder the efficacy of its implementation. Then, I examine and 

compare various possible strategies concerning different aspects of CAD architecture to develop 

an optimal strategy or scheme to solve the research problems. In the following section, I will 

present some current challenges/objectives related to developing CAD schemes. Then, I will 

provide my research hypothesis and implement techniques used to solve each research problem. 

2.2 Investigating New Imaging Modality in Developing Robust CAD Scheme 

2.2.1 Background 

Various radiographic imaging modalities are currently being used to screen internal body 

structures. These modalities are categorized based on the technique used to generate these images. 

The most commonly used imaging modalities include ultrasound, x-ray, CT, MRI, and positron 

emission tomography (PET). Ultrasound devices are portable, real-time to capture anatomical and 

functional images. At the same time, CT is a widely available and fast process that achieves greater 

clarity using multiple projected x-ray sources and detectors.  Additionally, even though time-

consuming, MRI uses hydrogen atoms in the body and is very useful for depicting physiology and 

anatomy. Finally, PET scanners use the targeted injection of radioactive substances before imaging 

to detect and predict the prognosis of cancer and other diseases.  

Many of these techniques offer complimentary information, so in practice, they are often used 

in combination to observe diverse patterns related to various organs' anatomical, physiological, 

and functional aspects. For instance, it is very common for patients with brain injury to undergo 

an immediate CT angiogram at admission. Then followed by contrast injected CT and MRI (T1, 
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T2, FLAIR) scans. The initial CT allows observing the broad anatomical structures like blood 

vessels, bone structures, internal bleeding, etc. The later scans offer specific functional features 

related to patients’ response to the treatment. For another example, it is common to use full-field 

digital mammograms (FFDMs) in a large population in breast cancer screening. However, the 

people with high risk are later screened using advanced imaging like MRI and dynamic contrast-

enhanced (DCE)-MRI. 

Even though FFDM and DCE-MRI are the two most common imaging modalities in breast 

cancer screening, they have their limitations. FFDMs have relatively low sensitivity and specificity 

due to the fibro-glandular tissue (FGT) overlap in the two-dimensional projection. DCE-MRI is 

costly, time-consuming, and has lower specificity. Additional challenges in accurate detection and 

segmentation of suspicious breast masses exist in both modalities due to the overlap of dense FGT 

affecting the robustness in building CADs. Thus, there is a need to investigate and develop another 

novel imaging modality that can be fast, accessible, and has reasonable sensitivity and specificity 

ratings.  

2.2.2 Hypothesis and Proposed Approach 

A novel alternate imaging modality, namely contrast-enhanced digital mammography 

(CEDM), is being widely investigated to overcome the aforementioned disadvantages. Using this 

new imaging modality, I developed a CAD scheme to observe its feasibility in classifying 

suspicious breast masses. The idea here is that as CEDMs are acquired at two different x-ray 

energy levels (low energy (LE) and high energy (HE)) after injecting the contrast agent, it allows 

for observing the morphology and vascular enhancement of suspicious lesions. The contrast agent 

flows through the blood vessels, and its permeability is more around malignant masses than benign 

masses. Additionally, when the two images obtained for the CEDM technique are logarithmically 
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subtracted the difference in the permeability can be further enhanced to eliminate the overlapping 

effect of FGT tissues and achieve images similar to that of MRI. Thus, this new technique takes 

the maximum advantages of both FFDM and DCE-MRI while reducing their shortcomings.  

In this study, I hypothesized that the two CEDM images offer complimentary information that 

can be used to improve the performance of classifying suspicious breast lesions. Thus, I proposed 

to investigate a new and optimal approach to develop a fully automated CAD scheme of CEDM 

images with two unique characteristics.  First, dual-energy subtracted (DES) images enhance 

breast lesion regions while removing and/or suppressing normal parenchymal tissues that overlap 

or surround the lesions. Thus, segmentation of breast lesion regions from DES images becomes 

much more accurate and robust. Second, the lesion density heterogeneity information is 

predominantly observed in the LE images compared to that of the DES images, allowing the 

capture of useful radiomic image markers. Thus, the study's objective is to test my hypothesis of 

using the DES images for segmentation and LE images to generate optimal image markers in 

classifying suspicious breast lesions. 

The study's unique contribution is that we investigated and tested a new approach to developing 

the first automated CAD scheme of breast lesion classification using CEDM images. Study results 

demonstrated that LE and DES images generated from CEDM contain complementarily valuable 

information. This study helped establish a solid foundation for us and/or other researchers to 

continue developing and optimizing novel CAD schemes of CEDM images with improved 

performance in future studies. The details of this study will be presented in chapter 3. 
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2.3 Developing Quantitative Image Markers to Predict Disease Prognosis 

2.3.1 Background 

The primary objective of developing radiographic image markers is to extract clinically 

relevant information for the imaging data related to disease detection, diagnosis, and/or prognosis. 

These image features are carefully handcrafted to mimic what a radiologist or healthcare 

professional observes while reading the image scans. However, it is very challenging and problem-

specific to design these image markers. 

In assessing the acute ischemic stroke (AIS) patients with large vessel occlusion (LVO), the 

current clinical trials use the estimation of cerebral infarct core and salvageable radiological brain 

tissue “at-risk” for infarction [45]. These clinical image markers to select the patients for 

endovascular mechanical thrombectomy (EMT) depend on the arterial input function (AIF) and 

venous output function (VOF) to provide an estimate regarding several critical makers. These 

markers include cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time 

(MTT), and time to peak (TTP or Tmax) [46]. However, these techniques cannot capture 

microcirculatory dynamics of contrast flow through the brain parenchyma. Additionally, these 

estimations of stroke volumes from the CTP images are often inaccurate compared to those 

depicted in the MRI-based DWI imaging [47]. This qualitative image assessment of stroke severity 

using the above-mentioned clinical image markers lacks quantitative assessment and large inter-

reader variability [48]. 

Moreover, recent studies on aneurysmal subarachnoid hemorrhage (aSAH) patients show that 

early brain injury (EBI) and delayed cerebral ischemia (DCI) that results from several 

pathophysiological processes are major determinants of mortality and morbidity associated with 

aSAH patients [49]. However, the absence of objective radiological image biomarkers limits its 
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role in assessing disease severity and predicting prognosis. The commonly used modified Fisher 

scale (mFS), although easy to use and able to predict cerebral vasospasm and DCI, it is subjective 

with high inter-rater variability [50],[51]. Currently, qualitative tools are being used to estimate the 

blood to predict DCI occurrence and long-term clinical outcomes but suffer operator dependence 

[52]. Additionally, quantification of cerebral edema using semi-automated or automated 

segmentation of sulci volumes has shown to be an essential marker for analyzing EBI after aSAH 

[53],[54]. 

2.3.2 Hypothesis and Proposed Approach 

Thus, to address the above two clinical challenges in the patients suffering from AIS and 

aSAH, I developed two separate CAD schemes that focus on developing fully quantitative image 

markers to address the associated clinical problems. In the first study related to AIS patients, 

different from the existing techniques, I tried to observe the bilateral asymmetry in blood flow 

patterns to generate image markers. Whereas in the second method, automatic labeling and 

quantification of several clinically relevant volumes are computed to build image markers. The 

two different tasks are supposed to evaluate the performance of my proposed schemes. The 

purpose of the first task is to predict the prognosis of AIS patients. In comparison, the purpose of 

the second task is to predict various clinical complications that occur after the incidence of aSAH. 

For the first task, I investigate the feasibility of developing new quantitative image markers 

computed from CTP images at an early diagnosis stage to predict AIS prognosis. For this purpose, 

we developed a new CAD scheme with several novel image processing algorithms to segment the 

contrast agent enhanced blood volumes in bilateral cerebral hemispheres of the brain, generate 

cumulative blood flow curves and then compute asymmetrical blood flow related features in two 

brain hemispheres. Then, image markers based on the best single feature and ML models fused 
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with multi-features are developed and tested to predict clinical benefit or outcome in a group of 

AIS patients undergoing EMT for LVO. 

This first study has several unique characteristics and contributions. First, we apply several 

novel image processing algorithms to develop a new CAD scheme that can be applied to real 

clinical images with varying imaging scanning conditions. Based on our literature search, no 

similar CAD schemes are available to date. Second, due to the potential presence of unilateral 

blood clots (LVO) in AIS patients, the transit time and velocity of the blood contrast flow rate 

(wash-in and wash-out) may vary between two hemispheres of the brain. Thus, asymmetrical blood 

flow rate or pattern in two brain hemispheres provides a potentially useful image marker to predict 

AIS prognosis. Third, CAD demonstrates the feasibility of identifying and applying radiographic 

image features or markers computed from brain CTP images to phenotype AIS patients and predict 

their prognosis potentially. The study shows promising results when using the proposed CAD 

scheme and ML model to a set of diverse clinical cases with different Modified Rankin Scale 

(mRS) distribution and varying CTP imaging scanning protocols. The details of this study are 

presented in chapter 4.  

In the second task, the hypothesis is motivated from two clinical studies [53], [55] to 

automatically segment and quantify at a pre-determined level above the lateral ventricle to perform 

a volumetric assessment of sulci, white matter (WM), gray matter (WM), and extra-parenchymal 

blood (EPB). Applying an automated program to detect and segment brain CT images has the 

potential to provide a standardized and unbiased estimation of targeted radiological image 

parameters. Thus, in this exploratory study, the objective is to develop and test a CAD scheme is 

to accurately quantify image features that pathophysiologically contribute to short-term (in-

hospital) and long-term clinical outcomes. Successful development of such radiological image 
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biomarkers will help in the early prediction of possible clinical outcomes of aSAH patients. The 

study results indicate the significance of both the admission (first) and day 10-14 (last) CT scans 

in their predictive capability of assessing both short-term and long-term clinical measures. The 

details of this study will be presented in chapter 5. 

2.4 Designing Novel Segmentation Algorithms to Build Effective CAD Schemes and/or 

Interactive Software Assisting Tools 

2.4.1 Background 

Accurate segmentation of ROI is a critical step in building conventional CAD schemes. 

Various state-of-art segmentations can be applied to medical images. These techniques can be 

broadly categorized into (i) threshold-based (global, manual, adaptive, optimal, local adaptive, 

etc.), (ii) edge-based (Canny, Sobel, Fuzzy etc.), (iii) region-based, (iv) level-set based, (v) 

clustering-based, and (vi) artificial neural network-based methods. Depending upon the medical 

images we are dealing with and the ROI we need to segment, careful selection of the segmentation 

technique and finetuning to adapt to our needs is essential to achieve successful segmentation. 

Additionally, given the complexity of some medical images, it is not possible to develop a perfect 

segmentation algorithm. So, the ability to adjust to these automatically generated segmentation 

results must be integrated within the CAD scheme based on the user's expertise in reading and 

interpreting these images.  

A few challenges that affect the output of segmentation are explained briefly in this section. 

First, when the ROI is not a single solid region and diffused into the background region, it results 

in a partial segmentation result. We need a bounding contour enclosing these regions to 

successfully identify all these diffused regions. Second, artifacts (noise) and intensity 
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inhomogeneity (shading artifacts) are common during image acquisition. Specific filtering and 

registration techniques are to be implemented to address these challenges. Third, soft tissues with 

closeness in gray level between foreground and background. This will cause leakages in the 

segmentation and can be addressed by defining a bounding box or stopping criteria during the 

segmentation growth. 

2.4.2 Hypothesis and Proposed Approach 

I have implemented several novel segmentation algorithms to address the segmentation 

challenges in my research studies. In the first study related to segmenting subtle soft tumor regions 

depicted on the CEDM images, I have designed an approach that uses the radiologists' center 

marking to begin the segmentation. Then, I a custom MLT region growing algorithm that performs 

two initial growth iterations using predetermined and adaptively adjusted thresholds. Then for the 

following repeated iterations, two key factors, including the growth rate and center shift, are 

monitored to decide the region's growth and stopping criteria. The segmentation results in this 

study are satisfactory and aided in building a robust CAD scheme for classifying breast lesions. 

Second, in my studies [56] and [57], I implemented an iterative mapping-based adaptive 

thresholding to segment the intracranial brain region from the background, including surrounding 

artifacts with similar gray levels and diffused brain regions. The proposed CAD segmentation 

scheme first identifies three image markers that control the flow of the segmentation algorithm. 

During this mapping-based segmentation, the finetuning of segmentation begins at the global 

maximum image marker and is continued towards the other two image markers. This segmentation 

method uses the prior slice segmentation result to act as a reference for limiting boundary to avoid 

segmentation leakages and identify the multiple connected brain regions if existing. The 

segmentation results from both the CTP and CT brain images are accurate and need no manual 
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intervention to adjust the segmentation markings. Additionally, in the CTP study, the hypothesis 

is to quantify the blood flow over time by quantifying the asymmetrical blood volumes between 

the left and right hemispheres. For this purpose, I implemented a protocol that automatically 

performs various aspects of the CAD pipeline, including detection and segmentation of blood 

volumes to compute image markers to predict the prognosis of AIS patients. Similarly, in the aSAH 

study, the hypothesis is to quantify various brain regions, including developing image markers. I 

implemented adaptive multi-level thresholding followed by the mapped-based segmentation above 

to segment and quantify image markers to predict various clinical complications in aSAH patients. 

Third, intracerebral hemorrhage (ICH) is the most common type of intracranial bleeding with 

stroke. The volume of ICH plays a critical role in calculating the ICH score, which is a well-known 

predictor of ICH prognosis. Currently, a qualitative approximation is performed using the ABC/2 

method to compute the hemorrhagic volumes. In this study, my hypothesis is that building a more 

accurate, fast, and reliable interactive-CAD (ICAD) software tool to quantify the ICH volumes is 

possible and valuable for patient prognosis and suggests appropriate treatment methods. Thus, in 

this study, I developed a semi-automated segmentation ICAD tool for the quantitative estimation 

of ICH volume. The ICAD segmentation scheme uses the initial reference of the bounding box on 

a single slice enclosing the ICH volumes. Then, the adaptive thresholding will identify the true 

positive regions (ICH) on the current slice. These segmentation results will then be used to detect 

and continue the segmentation of ICH volumes in all the consecutive image slices until all the ICH 

blood is segmented. The results of this study were later validated by two experienced medical 

residents and have shown very encouraging dice similarity coefficient (DSC) ratings.   

Additionally, I have developed various other semi-automated ICAD tools related to brain CT 

and MRI images [52], [58]–[60]. Clinical researchers used these tools to compute radiographic 
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image markers at our collaborating institutions to predict prognosis and observe an association 

with the clinical biomarkers of the various brain-related diseases such as stroke, aSAH, and ICH. 

2.5 Bridging Gap Between Traditional Radiomics and Deep Learning-based CAD Schemes  

2.5.1 Background  

Traditional feature engineering to capture radiomic image markers is a popular and well-

accepted methodology in developing CAD schemes of medical images. The radiomics approach 

captures underlying phenomena of suspicious masses by generating a vast number of study-

relevant handcrafted features. These radiomic features can be obtained from a wide range of 

techniques, including preprocessing, segmentation, shape, density, texture patterns, frequency 

domain features etc. However, precautionary steps must be taken while extracting these features 

and identifying a small subset of useful features (avoid overfitting). Additionally, the radiomics 

approach also faces challenges in accurately segmenting subtle lesions in complex backgrounds 

and removing artifacts. 

In contrast, convolutional neural networks (CNN) based CAD models avoid all the limitations 

of the traditional radiomic approach. In other words, CNNs avoid all segmentation, feature 

computation, and optimization to automatically generate higher-level features based on the 

objective of the task. Given a relatively large dataset, careful design, and finetuning, CNN-based 

CAD models can achieve comparative or even better results than traditional models. When the size 

of the medical dataset is relatively small, it is impossible to train the CNNs from scratch. In such 

circumstances, CNN's genetic features (i.e., shape, edge, general characteristics) learned from the 

natural images can be transferred as initial values and then later finetuned to suit the medical 

imaging task. However, the biggest limitations of CNNs in the medical image analysis are their 
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‘black box’ type, image-in, and prediction-out schemes, which are not easy to gain the trust of 

medical professionals. 

2.5.2 Hypothesis and Proposed Approach 

Many CAD schemes using either traditional or CNNs are developed and investigated 

separately to assess many medical challenges on relatively small image datasets. Thus, it is 

difficult to compare and evaluate these two schemes' performance and/or similarities. Thus, this 

study examines our hypothesis of observing the performance and correlation between the two 

schemes on a relatively large dataset. Therefore, this study explores the association/correlation 

between traditional radiomics feature-based CADs and deep learning framework-based CAD 

schemes classifying malignant and benign breast lesions. We also investigate whether the 

integration of these two types of features further improves performance in lesion classification. 

During the traditional CAD pipeline design, many careful steps were considered to optimize each 

aspect of the design. These steps include (i) removal of chest wall, (ii) segmentation of lesions, 

(iii) extracting a wide range of radiomic features, and (iv) feature optimization and model 

designing. Additionally, while building the CNN model, we adapted the pre-trained ResNet 

architecture and finetuned and optimized it to fit our needs. Next, various ML models were then 

built to assess both the individual and combined performance of these two CAD schemes. The 

study results indicate that the CNN model yields significantly higher classification performance 

than the traditional radiomics model. It also supports our hypothesis that both radiomics and 

automated features contain highly correlated information in lesion classification. The details of 

this study will be presented in chapter 7.        

 



47 
 

3 Classification of Breast Masses Using A Computer-Aided Diagnosis 

Scheme of Contrast Enhanced Digital Mammograms 

3.1 Introduction 

Full-field digital mammography (FFDM) and dynamic contrast-enhanced breast magnetic 

resonance imaging (DCE-MRI) are two commonly used imaging modalities in breast cancer 

detection, diagnosis, and prognosis assessment. Mammography is the first line or the most popular 

breast imaging modality due to its high image resolution, improved image contrast, low operation 

cost, faster imaging scan and widely accessibility. However, as a two-dimensional projection 

imaging modality, mammography has relatively lower sensitivity and specificity due to the overlap 

of dense and heterogeneous fibro-glandular tissues (FGT) over the suspicious breast lesions. For 

example, mammography has lower sensitivity among women who are younger[61], have dense 

breasts[62], use hormone replacement therapy[63], and carry certain breast cancer susceptibility 

genes[64]. One study reported that mammography sensitivity reduced from 87.0% in women with 

almost entirely fatty breasts to 62.9% in women with extremely dense breasts or reduced from 

83.3% in women over 80 years old to 68.6% in women younger than 50 years old[65]. Specificity 

of mammography is also low. During a 10-year screening period, more than 50% women would 

receive at least one false-positive recall and 7 to 9% have at least one false-positive biopsy[66], 

which adds anxiety with potentially long-term psychosocial consequences to many women[67]. 

On the other hand, DCE-MRI has superior sensitivity in detecting and/or diagnosing invasive 

breast cancer comparing to mammography and other existing breast imaging modalities[68]. 

However, DCE-MRI has a number of disadvantages including higher cost and longer imaging 

scanning time. It also has a relatively lower specificity, which may generate many unnecessary 
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breast biopsies and/or over-diagnosis[69]. As a result, both FFDM and DCE-MRI imaging 

modalities have advantages and disadvantage used in breast cancer detection and diagnosis.     

In order to maximally take advantages of both FFDM and DCE-MRI imaging modalities, while 

overcome or reduce their disadvantages, an alternative imaging modality namely, contrast-

enhanced digital mammography (CEDM) emerges and is quickly gaining momentum in the 

clinical trials worldwide. When using CEDM imaging modality, contrast agent is injected into 

breast and two series of scans are conducted at two different X-ray energy levels. Since malignant 

lesions are often accompanied by increased blood vessels that have unique permeability as 

compared to benign and/or normal tissues, the use of contrast agent allows analyzing morphology 

and vascular enhancement of the suspicious lesions. Additionally, when logarithmic subtraction is 

performed between two scans taken at different instances after injection of contrast agent, the 

difference in permeability is further enhanced and overlapping effect of FGT is removed. In 

general, CEDM generates multiple images including low energy (LE) images (similar to FFDM) 

and a contrasted enhanced dual-energy subtraction (DES) images (similar to MRI, but it is ~4 

times faster than MRI exam). Therefore, CEDM has emerged as a promising imaging modality to 

overcome effect of tissue overlapping in FFDM and enable detection of tumor’s neovascularity 

related functional information similar to MRI, while maintaining high image resolution as 

FFDM[70]. 

In reading and interpreting breast images, accurate classification between malignant and 

benign lesions is still a major challenge in current clinical practice. Studies have shown that 

performance of breast lesion diagnosis varied due to the intra- and inter-reader variability[71], and 

approximately only one in four biopsies are proved to be malignant[72]. Thus, in order to help 

improve accuracy and reproducibility in classification between malignant and benign breast 



49 
 

lesions, developing computer-aided diagnosis (CAD) schemes aiming to assist radiologists in their 

decision-making to better assess risk of malignancy of the detected suspicious breast lesions have 

been attracted extensive research interest in medical imaging field for the last two decades[73], 

[74]. Although CEDM is an emerging imaging modality, our recent pilot study has demonstrated 

that classification results based on a machine learning classifier that fuses the computed 

quantitative image features from CEDM images might provide complementary information to 

radiologists in particular to help reduce false-positives[75]. Thus, based on the well-developed 

CAD concept, objective of this study is to investigate a new and optimal approach to develop a 

fully automated CAD scheme of CEDM images and yield optimal performance in classification 

between the malignant and benign mass-type breast lesions.   

3.2 Materials and Methods 

3.2.1 CEDM Imaging Acquisition and Dataset 

 CEDM images used in this study were retrospectively collected from the existing clinical 

database of Mayo Clinic Arizona. All CEDM imaging examinations were performed using the 

following imaging acquisition protocol. In brief, the patient with mammography suite is seated to 

minimize vasovagal episodes and the intravenous line is first flushed with 10mL of saline. Next, 

an iodinated contrast agent of 1.5 mL/Kg of OMNIPAQUE 350 (GE Healthcare, Princeton, NJ, 

USA) is injected using a single lumen power injector at a rate of 3 mL/second. Last, the intravenous 

line is flushed again with an additional 10 mL of saline. If possible, the injected arm is raised above 

patient’s head to facilitate contrast drainage from the arm, which enables maximum contrast 

circulation. After 2 minutes of contrast agent injection, the breast is compressed, and image 

acquisition starts.  
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In one CEDM imaging procedure, two sequential images on mediolateral oblique (MLO) and 

craniocaudal (CC) view are taken at both low and high X-ray energy levels. The low-energy (LE) 

image is acquired at (26-32kVp), which is less than the K-edge of iodine (33.2keV) to yield higher 

image contrast of soft tissue and calcifications similar to the regular FFDM. The high-energy (HE) 

image is acquired at an energy significantly higher than K-edge of iodine at (45-49kVp). Figure 3-

1(a) shows the workflow for the CEDM imaging acquisition with approximate timestamps at each 

instance (view and energy). Finally, a difference (third) image is obtained by taking subtraction 

between HE and LE image, which is named as dual-energy subtracted (DES) image as shown in 

Figure 3-1(b). DES image is a single contrast medium-enhanced image that improves the visual 

enhancement of neovascularity information in and around the tumors while suppresses or removes 

the normal breast parenchymal or fibro-glandular tissues in the background. Figure 3-2 shows 

several examples in our dataset where the lesions are almost invisible or undetectable in LE (or 

regular FFDM) images, but they are clearly visible in DES images with the highly distinguishable 

lesion boundary contour from the parenchymal background. 

In summary, from the clinical database, we retrieved and assembled a fully anonymous CEDM 

image test dataset that involves 111 women underwent breast cancer diagnosis at Mayo Clinic 

Arizona. Each case depicts one detected suspicious breast mass, which had biopsy. Based on the 

histopathologic test results of the biopsy samples, 78 masses were confirmed to be malignant and 

33 were benign. In this dataset, each mass was considered visible in both CC and MLO views of 

LE images.  
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Figure 3-1: (a) Illustration of the workflow of a CEDM imaging acquisition procedure and (b) an example of 4 images from 
left to right: High energy (HE) image, Low energy (LE) image, dual energy subtraction (DES) image displayed at same 
window and level as HE image, and the DES image displayed at an adjusted window and level for improving visibility, 
respectively. 
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Figure 3-2: A few samples in which mass-type lesions are clearly visible in DES images (the 1st row), but almost invisible in 
LE (or regular FFDM) images (the 2nd row). 

Similar to the regular FFDM images, size of the original images acquired from CEDM is either 

3328 × 2560 or 4096 × 3328 pixels depending on breast size. Then, based on the standardized 

approach to develop a CAD scheme for detecting and/or classifying breast masses[76], the original 

images were subsampled using bilinear interpolation method in which output pixel value is a 

weighted average pixel value from a 2-by-2 neighborhood kernel. The subsampled image size was 

reduced to corresponding 666 × 512 or 820 × 666 pixels. Similar image subsampling process has 

been commonly used in developing previous CAD schemes of FFDM images (e.g., [77]). Thus, 

this image dataset was used to develop and assess a new CAD scheme to classify between 

malignant and benign masses.  

3.2.2 Breast Mass Segmentation 

The first step of our CAD scheme is to automatically segment suspicious mass region depicting 

on each image of interest. Since CEDM is a diagnostic imaging modality and it applies to the 

recalled patients who have suspicious lesions detected in the screening mammograms, the 

locations of each suspicious mass-type lesion in two CC and MLO view images are already known 

and can be easily mapped to CEDM images. Figure 3-3 shows the graphical user interface (GUI) 

of our new interactive CAD scheme of CEDM images. After loading an image (either CC or MLO 

view) of interest in the GUI, the user can observe and place an initial seed point around the mass 
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center to segment the mass region in future testing cases. In this study, all region growth seeds 

namely, the mass region center pixels, were automatically placed based on the clinical truth file. 

In a batched CAD processing, no human intervention is involved. Although a large number of 

mass segmentation methods or algorithms have been developed and reported in the literature[78], 

we in this study applied and implemented a multi-layer topographic (MLT) region growing 

segmentation algorithm, which has been well-developed and applied in a number of previous CAD 

schemes[16], [79].  

 

Figure 3-3: Illustration of graphical user interface (GUI) of the CAD scheme. 

In brief, the MLT region growing algorithm first applies with a conventional region growing 

process using a pre-selected small threshold to segment the central region of the lesion. Second, 

the threshold value is adaptively adjusted based on the pixel intensity difference between the 

initially segmented region and the surrounding region. The next layer of segmentation is performed 

with the adjusted threshold. Two parameters namely, growth rate (an increase of size) and center 

shift (the displacement of centroid) between the prior and current segmentation or region growth 
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layer, are computed. If the current growth layer passes two boundary conditions in which the 

growth rate is less than 100% (double the size), and the shift of the region center is less than 10 

pixels, this current growth layer is accepted to replace its prior growth layer (region). Third, this 

region growing process continues to define the new layer until the new growth layer fails to pass 

one of the above two boundary conditions. Then, the growing iteration ends, and the last “prior” 

growth layer is selected as the final segmentation output. Figure 3-3 shows examples of the mass 

segmentation results on both DES and LE images (from the left to right). For a comparison, image 

with radiologist’s marking on the mass region is also displayed in the first image from the right.  

3.2.3 Feature Computation 

After segmentation of each breast mass, the second step of CAD is to compute image features. 

In the development phase, CAD initially computes a set of 109 image features, which can be 

divided into 4 groups as listed in Table 3-1. The first group includes 4 mass size and shape related 

image features, which include mass size, the maximum radius or convexity (smoothness) of mass 

boundary. The second group includes 13 statistical features related to heterogeneity of mass 

density (pixel values). The third group includes 8 features to detect variation of density (pixel 

values) between the mass and its surrounding boundary. These features have been defined and 

used in our previous CAD schemes of different types of medical images (including FFDM images 

and lung CT images) to represent segmented lesions[80], [81].  
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Table 3-1: Summary of 109 features separated by feature class. 

Feature class Feature number Feature description 

Shape 4 (F1-F4) Mass size, convexity, maximum radius, standard 
deviation (STD) of all radii. 

Tumor Density 

related 
13 (F5-F17) 

Mean, STD, energy, entropy, maximum intensity, 
mean absolute deviation, median, minimum, range, 
rms, uniformity, skewness, and kurtosis of a 
segmented mass region. 

Tumor background 

Density related 
8 (F18-F25) 

gradient mean, gradient STD, ISO-intensity, 
fluctuation mean, fluctuation STD, mean contrast, 
contrast, STD ratio of mass to boundary. 

Wavelet 84 (F26-F109) Apply the density features on the four wavelet 
components 

Last, the fourth group includes 84 wavelet transform generated image features. Specifically, a 

two-dimensional wavelet transform (using a “Coiflet 1” filter) was applied, which decomposes 

each image into four decompositions. During the decomposition, two-dimensional filters (low pass 

and high pass) are applied in both x- and y-direction to compute ILL, ILH, IHL, and IHH as represented 

in Figure 3-4. For instance, IHL is obtained by applying a high pass filter along the x-direction 

followed by a low pass filter in the y-direction as described in Equation 3.1, where L and H indicate 

low and high pass filters, respectively. NH and NL are the length of filters for high and low pass 

filter, respectively. In our study both NH and NL have length of 6. All features in the second and 

third groups are applied individually on each of the four wavelet components to detect density 

variations in the filtered wavelet decompositions.  

 𝐼!"(𝑖, 𝑗) = 	∑ ∑ 𝐻(𝑝)𝐿(𝑞)𝐼(𝑖 + 𝑝, 𝑗 + 𝑞)#!
$%&

#"
'%&   (3.1) 
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Figure 3-4: Illustration of the image decomposition using a wavelet transformation (one-level, un-decimated two-dimensional 
wavelet transforms using "Coiflet 1" filter), where L is a low pass filter and H is a high pass filter. 

For non-solid or diffused breast lesions, since there are multiple suspicious masses spread in 

the images without any connectivity between them, the segmented primary (the largest) mass 

region is used for computing shape, morphology, and background related features, whereas all the 

pixels in the diffused suspicious masses are used for calculating density related image features, 

which are independent of its corresponding background information.  

In addition, we took two considerations in CAD feature computation. First, each mass is 

segmented separately from CC and MLO view images. Two segmented mass regions from two 

view images often do not have the exact same computed image feature values due to the different 

tissue overlapping in two 2D projection images. Thus, we used average value of two feature values 

separately computed from either CC or MLO view image to represent the final feature value of a 

mass of interest. Second, due to the possible difference of mass region segmentation results on LE 

and DES images, GUI of our CAD scheme has a function that allows user to select an optimal 
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segmentation result from either LE or DES image, and then map the selected segmentation result 

to the matched DES or LE images if necessary, in the future clinical applications. Using this 

mapping method, we are able to compute optimal image features from both LE and DES images.  

3.2.4 Machine Learning Classifier and Performance Assessment 

The third step of CAD uses a multi-feature fusion-based machine learning classifier to produce 

a classification score for each suspicious mass under test, which ranges from 0 to 1. The higher 

classification score represents a higher likelihood of the region being malignant. Although many 

machine learning classifiers have been used in developing CAD schemes, in this study, we selected 

a simple and popular machine learning classifier namely, a multilayer perceptron (MLP) based 

artificial neural network to classify suspicious breast mass. For this purpose, we used Weka data 

mining and machine learning software platform[82] to train and test the MLP classifier. In order 

to build a highly performed and robust machine learning classifier, we needed to consider and 

address following 3 issues: (1) a relatively small CEDM image dataset of 111 cases, (2) a relatively 

large pool of initially computed 109 features, and (3) imbalance of the cases in the CEDM dataset, 

which includes 29.7% (33/111) of benign masses and 70.3% (78/111) of malignant masses.  

To overcome or minimize the potentially biased impact of above 3 issues, we adopted 

following 3 methods. First, we applied a leave-one-case-out (LOCO) cross-validation method to 

maximize learning power while minimizing the case partition and testing bias[83]. Second, we 

used a correlation-based feature subset (CFS) evaluator to reduce the dimensionality of feature 

space by dropping highly correlated, redundant, irrelevant and noisy features, and thus produce a 

subset of optimal features from the initial feature pool[84]. Specifically, a CFS evaluator was set 

to use a BestFirst search method with a search termination setting of 5, which means if the number 

of non-improving nodes in the forward search is greater than 5, CFS stops feature selection 
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process. The features selected before the termination were used to build an optimal feature set to 

train the classifier. Third, we applied a Synthetic Minority Oversampling Technique (SMOTE)[85] 

method to generate synthetic data of benign masses to produce a more balanced training dataset to 

avoid or minimize the potential classification bias towards majority (malignant) cases. For 

example, we applied SMOTE to double “benign cases” from 33 to 66. Thus, the dataset becomes 

more balanced with 45.9% (66/144) benign cases and 54.1% (78/144) malignant cases. The 

effectiveness of applying similar SMOTE method has been applied and tested in our previous 

studies[86], [87].  

After taking these considerations and protection steps, we built 4 MLP classifiers. The first 2 

MLPs used image features computed from the segmented mass regions depicting on either DES 

or LE images, respectively. Since mass segmentation results on DES and LE images may vary 

significantly. Using the GUI tool of our CAD scheme (as shown in Figure 3), we mapped the better 

or optimal segmentation results from one image to another (i.e., from DES to LE or vice versa). 

Then, after optimal mapping, CAD recomputed image features from the mapped mass regions 

depicting on either LE or DES images.  

In the process of training and testing each MLP classifier, we embedded both feature selection 

(a CFS evaluator) and SMOTE algorithm into the LOCO cross-validation process. Specifically, in 

each LOCO training and testing iteration, one mass region was first removed from the training 

dataset. Second, SMOTE algorithm was applied to generate synthetic data to double the number 

of benign cases. Third, a CFS feature selection evaluator was applied to select a set of optimal 

features. Last, a MLP classifier was trained using the training dataset and selected optimal features. 

After training process, the classifier was applied to test one independent testing mass, which was 

not involved in the training process. This CFS evaluator and SMOTE algorithm embedded LOCO 
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training and testing iteration process was repeated 111 times. As a result, each of 111 masses in 

our dataset was independently tested. The classification scores of all 111 cases were thus generated 

and recorded.  

Finally, classification performance of each MLP classifier was evaluated using following two 

methods and evaluation indices. First, a receiver operating characteristic (ROC) method was used. 

Each ROC curve and the area under ROC curve (AUC) were computed using a maximum 

likelihood based ROC curve fitting program (ROCKIT, http://www-radiology.uchicago.edu/krl/, 

University of Chicago). Second, we applied an operating threshold (T = 0.5) on the classification 

scores to divide original 111 masses into two classes (or groups) of malignant and benign cases. 

From the results, we generated a confusion matrix and computed overall classification accuracy, 

as well as the positive and negative predictive values (PPV and NPV). The evaluation results of 4 

MLP classifiers were then tabulated and compared.  

3.3 Results 

Figures 3-5 to 3-7 show examples of comparing the results of applying our CAD scheme to 

segment regions of the same breast masses depicting on both DES (the 1st row) and LE (the 2nd 

row) images, respectively. The results show that due to the large heterogeneity of breast masses 

and surrounding parenchymal tissue background, results of mass segmentation vary between using 

LE and DES images as compared to the regions of interest (ROIs) marked by the radiologists (as 

shown in the third row of Figure 3-5 to Figure 3-7). In general, for masses that are partially occulted 

under the surrounding dense fibro-glandular tissues, it is often difficult for CAD to generate 

satisfactory segmentation results using LE images due to the great fuzziness of mass boundary. 

For illustration purpose, Figure 3-5 shows 6 examples in which segmentation failed in LE images 

(the middle row) as compared to the better segmentation results yielded using DES images (the 
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top row). On the other hand, some masses may be invisible or only partially visible on DES images 

due to the lack of enhancement or large necrosis. In these cases, CAD segmentation results on LE 

images may more accurately represent the real mass regions (see Figure 3-6). Figure 3-7 shows 

examples of the mapped “optimal” segmentation results on both LE and DES images.  

The 3rd row of Figures 3-5 to 3-7 also shows the lesion bounding boxes placed by 

radiologists. By comparing with CAD-generated segmentation results (as shown in the 1st and 2nd 

rows of these figures), we can clearly observe that CAD-segmented lesion boundary are often more 

accurate than the results of manually drawing.   

 
Figure 3-5: Sample cases illustrating failed segmentation in LE images (2nd row) as compared to DES images (1st row). The 
3rd-row shows the lesion bounding boxes placed by the radiologists. 
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Figure 3-6: Sample cases illustrating failed segmentation in DES images (1st row) as compared to LE images (2nd row). The 
3rd-row shows the lesion bounding boxes placed by the radiologists. 

 
Figure 3-7: Sample cases showing optimal segmentation mapping on both DES (1st row) and LE (2nd row) images. The 3rd-row 
shows the lesion bounding boxes placed by the radiologists. 

Table 3-2 lists the highly performed image features, which were selected more than 90% of 

LOCO cross-validation based 144 training iterations. From this Table, a number of interesting 

observations can be made. For example, (1) although lesion shape or boundary margin features 

(i.e., F1 to F4 as shown in Table 3-1) are commonly considered as the most important image 

features in many of previous CAD schemes, this type of features were largely removed or not 

selected by the classifiers trained using LE images, which indicates that the lesion boundary 

features can only play important role when the lesions are more accurately segmented. (2) The 

density heterogeneity features computed from both inside a lesion and its surrounding background 
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can contribute to the CAD scheme to classify between malignant and benign lesions. (3) Extracting 

optimal density heterogeneity features can also expand to the filtered images (i.e., using wavelet 

transform as done in this study). From the filtered images, CAD can detect and select optimal 

features to build the machine leaning classifiers.        

Table 3-2: List of features selected in ≥ 90% of LOCO training and testing of 4 MLP classifiers. 

Original segmentation Optimally mapped segmentation 

DES images LE images DES images LE images 

Feature % Feature % Feature % Feature % 

F1 97 F7 99 F2 100 F5 100 

F2 99 F10 99 F5 98 F6 100 

F3 100 F11 98 F8 95 F10 100 

F5 100 F16 100 F12 100 F16 100 

F20 100 F21 93 F20 100 F33 100 

F41 99 F24 100 F35 100 F41 100 

F48 95 F39 100 F41 100 F43 97 

F56 91 F44 100 F50 97 F44 100 

F65 100 F45 100 F62 100 F45 100 

F66 100 F65 100 F77 99 F46 99 

F83 100 F80 100 F81 97 F65 92 

F88 100 F81 94 F82 99 F75 100 

F101 100   F83 99 F88 100 

    F88 100 F103 100 

    F96 100   

    F109 100   
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Figure 3-8 plots and compares 4 ROC curves that are generated using 4 sets of CAD 

classification scores, which were computed by 4 MLP classifiers. Since in this dataset, 7 masses 

were not enhanced in CEDM images (i.e., one mass region as shown in the first ROI of the top 

row of Figure 6) and thus they cannot be segmented, the first MLP classifier was trained and tested 

using the remaining 104 cases (27 benign vs. 77 malignant masses). Other 3 MLP classifiers were 

trained and tested using all 111 masses (33 benign vs. 78 malignant masses). The computed AUC 

values are 0.759±0.053 and 0.753±0.047 for the first two MLP classifiers, which were trained and 

tested using the mass regions originally segmented from DES and LE images, respectively. By 

mapping better or optimal segmentation results from LE images to DES images, AUC = 

0.739±0.048, which did not show improvement of classification performance. However, when 

mapping the better segmentation results from DES images to LE images, AUC value of using the 

new MLP classifier significantly increases to 0.848±0.038 as compared to all other 3 MLP 

classifiers (with p < 0.01). 
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Figure 3-8: Comparison of four ROC curves generated using 4 MLP classifiers using the original and optimally mapped mass 
segmentation results on DES and LE images to distinguish between malignant and benign breast masses. 

By applying an operation threshold of 0.5 on the MLP-generated classification scores, Table 

3-3 and Table 3-4 shows two sets of 4 confusion matrices that were generated based on the 

distribution of the classification scores of 4 MLP classifiers applying to DES and LE images twice. 

Two confusion matrices of Table 3-3 show distribution of the classification scores computed by 

two MLP classifiers trained using the originally segmented mass regions, while two matrices in 

Table 3-4 show distribution of the classification scores computed by two MLP classifiers trained 

using the optimally mapped mass regions depicting on DES and LE images, respectively.  
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Table 3-3: Two confusion matrices generated when applying MLP classifier to the originally segmented breast mass regions 
depicting on LE and DES images. 

                                                                               
Actual 

 

 

Prediction                

LE Images 

(Total: 111 masses) 

DES Images 

(Total: 104 masses) 

Malignant Benign Malignant Benign 

Malignant 56 (0.5) 9 (0.08) 53 (0.51) 9 (0.09) 

Benign 22 (0.2) 24 (0.22) 24 (0.23) 18 (0.17) 

Table 3-4: Two confusion matrices generated when applying MLP classifier to the optimally mapped segmented breast mass 
regions depicting on LE and DES images. 

                                                                               
Actual 

 

 

Prediction                

LE Images 

(Total: 111 masses) 

DES Images 

(Total: 111 masses) 

Malignant Benign Malignant Benign 

Malignant 63 (0.57) 9 (0.08) 55 (0.49) 12 (0.11) 

Benign 15 (0.13) 24 (0.22) 23 (0.21) 21 (0.19) 

From these 4 confusion matrices, the overall classification accuracy, positive predictive values 

(PPV) and negative predictive values (NPV) of 4 MLP classifiers were computed and compared 

as shown in Table 3-5. The results indicated that using the fourth MLP classifier, which was trained 

and tested using LE images after mapping the optimal mass region segmentation results from DES 

images to LE images, yielded the highest classification accuracy, as well as the highest PPV and 

NPV values. For example, when comparing to the second MLP classifier trained and tested using 
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the originally segmented mass regions depicting on LE images, the overall classification accuracy 

of the fourth MLP increased 8.7% (from 72.1% to 78.4%).  

Table 3-5: Summarization and comparison of classification performance using 4 MLP classifiers. 

MLP Classifier Original segmentation Optimally mapped segmentation 

 DES images LE images DES images LE images 

Overall accuracy 68.3% 72.1% 68.5% 78.4% 

AUC±STD 0.769±0.053 0.753±0.047 0.737±0.048 0.848±0.038 

PPV 85.5% 86.2% 82.1% 87.5% 

NPV 42.9% 52.2% 47.7% 61.5% 

3.4 Discussion 

Our recent study supports the concept of applying a CAD scheme or method to assist 

radiologists for interpreting CEDM images in classifying between malignant and benign 

lesions[75]. Thus, this is our first study to investigate how to optimally develop a fully-automated 

CAD scheme of CEDM images to classify between malignant and benign breast masses. This 

study has following unique characteristics and/or observations. First, in breast cancer detection 

and diagnosis, accurate classification between malignant and benign breast lesions remains a 

challenging task to date. Although CAD schemes of FFDM and breast MRI images have been 

developed aiming to assist radiologists in classifying between malignant and benign breast lesions 

in a large number of previous studies, these CAD schemes have not been accepted and used in the 

clinical practice. One of the primary difficulties is the lack of capability of accurately segmenting 

breast lesions depicting on images, in particular, the FFDM images due to the fuzzy lesion 

boundary caused by tissue overlapping. Segmentation of breast lesion is not only difficult for 

CAD, but also for radiologists, which generates large intra- and inter-reader variability. Thus, 



67 
 

inaccurate lesion segmentation reduces the accuracy and robustness of computing image features 

that are used to develop machine learning classifiers. In CEDM imaging modality, DES images 

enable to enhance breast lesion regions, while removing and/or suppressing normal parenchymal 

tissues that overlap or surround the lesions. Thus, segmentation of breast lesion regions from DES 

images becomes much more accurate and robust. This is a unique contribution of including DES 

images in the CAD schemes. This study demonstrated that by mapping the optimal lesion 

segmentation results on DES images to LE images, our CAD scheme or MLP classifier yielded 

significantly higher performance in mass classification than using the CAD scheme applying to 

the originally segmented mass regions depicting on LE images. 

Second, although using DES images enhances lesion boundary and makes lesion segmentation 

easier and more accurate than using LE images, it also has potential disadvantages in developing 

CAD schemes. For example, we observed that after contrast enhancement, lesions depicting on 

DES images become more homogeneous, which lose much density heterogeneity information of 

the lesions depicting on LE images. Thus, when using density heterogeneity and texture related 

image features computed from the segmented lesions to train and develop machine learning 

classifiers, CAD classification performance using DES images does not yield significantly higher 

performance than using LE images. It seems that the advantage of more accurate lesion 

segmentation using DES images is partially cancelled out by its disadvantage of losing density or 

texture heterogeneity information. As a result, if we want to improve CAD classification results 

using the lesion regions segmented from DES images, different strategy and/or image features 

need to be explored and used in future studies.       

Third, since CAD performance heavily depends on the difficult and diverse levels of datasets, 

it is not feasible to directly compare lesion classification performance (i.e., AUC = 0.848±0.038) 
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of CAD scheme developed in this study for CEDM images with other previously developed CAD 

schemes of FFDM images, which reported AUC values ranging from 0.70 to 0.87 due to use of 

different datasets[88]. However, despite the limitation of a relatively small and unbalanced dataset 

with 111 cases (33 benign vs. 78 malignant cases), this study is valid because we have taken 3 

measures namely, (1) a leave-one-case-out (LOCO) cross-validation method, (2) a correlation-

based feature subset (CFS) evaluator-based feature selection method and (3) a synthetic minority 

oversampling technique (SMOTE) method. Both CFS and SMOTE were embedded into LOCO 

cross-validation. In order to support advantage of this embedded approach, we also tested CAD 

performance by removing SMOTE and CFS. Table 3-6 compares the performance changes. We 

observed that (1) when SMOTE was not applied to balance the dataset (33 benign, 78 malignant), 

the performance reduced as comparing to the embedded method used in this study, and (2) when 

the CFS feature selection step was also removed, the performance further decreased. 

Table 3-6: Comparison of classification performance changes between three methods. 

Method 

Original segmentation Optimally mapped segmentation 

DES images LE images DES images LE images 

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 

Proposed MLP 0.76±0.05 68.3% 0.75±0.05 72.1% 0.74±0.05 68.5% 0.85±0.04 78.4% 

Remove SMOTE 0.63±0.06 70.19% 0.70±0.05 68.46% 0.75±0.05 62.16% 0.69±0.05 65.76% 

Remove CFS 
and SMOTE 0.56±0.07 65.38% 0.71±0.05 66.67% 0.61±0.06 64.86% 0.59±0.06 63.06% 

Fourth, besides a MLP classifier, we have also applied the same CFS evaluator and SMOTE 

algorithm embedded LOCO training and testing iteration method to build a number of several 

other popular machine learning models or classifiers, which include logistic regression (LR), 

Bayesian belief network (BNN), k-nearest neighbor (KNN), Random Forest (RF) and Random 

Committee (RC) algorithms, which are available in Weka data mining software platform[82], to 
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classify between malignant and benign masses using DES and LE images. Although the 

performance levels of different classifiers vary (i.e., from the lowest AUC = 0.735±0.047 for 

logistic regression to the highest AUC = 0.895±0.030 for BNN when using LE images after 

mapping the optimal lesion segmentation results from DES images), the performance change trend 

in each classifier maintains consistent. This supports the results produced using the MLP classifier 

as reported in the Results section of this paper. The additional testing results using different types 

of machine learning classifiers clearly indicate when using the original lesion segmentation, 

classification performance levels on DES and LE images are quite comparable. However, when 

mapping the optimal lesion segmentation results generated on DES images to LE images, all 

classifiers using different machine learning models yielded the highest classification performance.     

Table 3-7: Comparison of CAD performance between the new averaging (CC, MLO) method applied in this study and the 
conventional independent CC and MLO method. 

Method 
Original segmentation Optimally mapped segmentation 

DES images LE images DES images LE images 

 AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy 

Average 

(CC, ML) 
0.76±0.05 68.3% 0.75±0.05 72.1% 0.74±0.05 68.5% 0.85±0.04 78.4% 

Independent 
(CC, ML) 0.73±0.04 63.28% 0.81±0.03 74.77% 0.72±0.04 63.96% 0.78±0.03 72.07% 

Fifth, unlike the most of CAD schemes in digital mammograms, which classify lesion based 

on the image features computed from one (i.e., either CC or MLO) view image, we fused image 

features computed from two mass regions depicting on two view images into one classifier. In 

order to demonstrate the advantages of this new fusion approach, we did a comparison experiment. 

Table 3-7 shows the results to compare this new and conventional CAD approach, which 
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demonstrate that using the averaging features in developing the CAD schemes yields the higher 

performance. 

Last, his study also has a number of limitations. First, the size of dataset remains small. Thus, 

the performance and robustness of the CAD scheme of CEDM images need to be further optimized 

and validated using new large and diverse image dataset in the future studies. Second, in the proof-

of-concept study to demonstrate the feasibility of developing a fully-automated CAD scheme of 

CEDM images, we used well-developed CAD pipeline with new lesion segmentation mapping 

methods and image features mainly focusing on density heterogeneity of a lesion and its 

surrounding background. Thus, more studies in developing potentially new CAD approaches may 

also need in future studies. 

In summary, we investigated and tested a new approach to develop a first automated CAD 

scheme of breast lesion classification using CEDM images. Study results demonstrated that LE 

and DES images generated from CEDM contain complementarily valuable information. Using 

DES images may help more accurately segment suspicious lesions from the images if the lesions 

are enhanced. Then, by mapping the optimal lesion segmentation results (lesion boundary contour) 

from DES images onto LE images, the density heterogeneity and texture-based image features can 

be more accurately computed from LE images. Therefore, the lesion classification performance of 

using this new CAD scheme that combines these two types of images can be significantly 

improved. In summary, new knowledge that we learned from this study helped establish a solid 

foundation for us and/or other researchers in the CAD field to continue developing and optimizing 

novel CAD schemes of CEDM images with improved performance in the future studies.   
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4 Developing New Quantitative Ct Image Markers to Predict Prognosis of 

Acute Ischemic Stroke Patients 

4.1 Introduction 

Stroke is the fifth leading cause of death with more than 140,000 deaths each year in USA [89]. 

Ischemic stroke is the most common stroke accounting for about 87% of all stroke cases. It occurs 

when a vessel supplying blood to brain is obstructed due to the narrow blood vessel or clogs with 

fatty deposits. In particular, the acute ischemic stroke (AIS) due to large vessel occlusion (LVO) 

poses a large cerebral tissue at risk and carries high morbidity and mortality of the patients [90]. 

Leading cause of LVO is cardio-embolism due to atrial fibrillation. There has been an increased 

incidence of atrial fibrillation with aging population that parallels the increase in LVO related AIS 

[91]. Besides applying clot-dissolving drug and tissue plasminogen activator to treat AIS patients 

in attempt to restore blood flow in the blocked brain regions, endovascular mechanical 

thrombectomy (EMT) is also recommended to treat some AIS patients with LVO to reduce 

morbidity and mortality [92].  Recently, several multicenter clinical trials have reported improved 

treatment outcome in AIS patients with LVO [93], [45].  In a study of operating EMT 6 to 24 hours 

after stroke with a mismatch between deficit and infarct, the results showed the improved outcome 

in patients treated with EMT plus standard care as compared to patients who received standard 

care alone [93]. Additionally, similar improvement was reported in another study conducted EMT 

in the stroke patients at 6 to 16 hours [45]. These trials are based on the estimation of cerebral 

infarct core and existence of salvageable radiological brain tissue “at-risk” for infarction. Case 

selection biases in these trials are also widely debated. Additionally, the objective clinical or 

radiological correlation for region-specific AIS related outcome after such interventions is still 

unknown and needs an investigation in further studies.  
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Due to the lack of accurate clinical markers to accurately stratify AIS patients who can or 

cannot benefit from EMT to date [94], identifying new clinical markers that highly associate with 

efficacy of EMT plays a critical role to quickly restore the peripheral blood supply in a short time 

period, which can help minimize the amount of brain tissue injury or risk of permanent tissue 

damage among the AIS patients who can benefit from EMT. Principles of currently used imaging 

software to select patients for EMT depends on arterial input function (AIF) and venous output 

function (VOF) to provide estimate regarding cerebral blood flow (CBF), cerebral blood volume 

(CBV), mean transit time (MTT) and time to peak (TTP or Tmax) computed from computed 

tomography perfusion (CTP) images [46]. Such algorithms that depend on initial contrast flow in 

a major cerebral arterial system and outflow through a major venous channel are unable to capture 

microcirculatory dynamics of contrast flow through the brain parenchyma. Using CTP derived 

CBV to estimate ischemic core or AIS volume is often inaccurate as comparing to that estimated 

using magnetic resonance imaging (MRI) based diffusion weighted imaging (DWI) [47]. Some 

researchers highlighted that these inconsistencies are partially contributed due to high noise 

sensitivity in deconvolution-based on singular value decomposition. However, even though newer 

techniques using Bayesian method are robust as compared to SVD, they are still missing a 

significant infarct volume visible on the MRI images. In a recent study, our group showed that 

clinical outcome highly associated with the final cerebral infarct volume estimated using DWI 

sequences of post-intervention MRI [60]. Hence, although CTP has significantly clinical 

advantages over MRI in AIS diagnosis due to its highly efficient and wide accessibility, it requires 

developing new imaging markers that have significantly increased prediction accuracy or high 

association to the clinical outcome of AIS patients with LVO.  
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Despite of the improved imaging technology, qualitative image assessment of AIS severity or 

status using the radiologists-rated cerebral blood flow, cerebral blood volume, mean transit time 

and time to peak [95] has limitations including lack of quantitative assessment and large inter-

reader variability [48]. In order to overcome these limitations, identifying and developing new 

quantitative image markers have been attracting broad research interests in the medical image 

informatics field [96]. In particular, the recently developed radiomics concept has proven that 

radiographic images (i.e., CT and MRI) depict useful image phenotype features that highly 

associate with genomic biomarkers [97] and have potential to predict disease prognosis [98]. Thus, 

based on radiomics concept and previous research focus in developing computer-aided detection 

and diagnosis (CAD) schemes of medical images [15], [99]–[102] including a CAD scheme 

equipped with an interactive graphic user interface (GUI) to detect and quantify severity of 

aneurysmal subarachnoid hemorrhage patients using brain CT images [103], we aim to investigate 

the feasibility of  developing new quantitative image markers computed from CTP images at an 

early diagnosis stage to predict AIS prognosis in this study. For this purpose, we developed a new 

CAD scheme with several novel image processing algorithms to segment the contrast agent 

enhanced blood volumes in bilateral cerebral hemispheres of brain, generate cumulative blood 

flow curves and then compute asymmetrical blood flow related features in two brain hemispheres. 

Then, image markers based on the best single feature and machine learning (ML) models fused 

with multi-features are developed and tested to predict clinical benefit or outcome in group of AIS 

patients undergoing EMT for LVO. The details of the study design and experimental data analysis 

results are presented in the following sections of this article.  
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4.2 Materials and Methods 

4.2.1 Image Dataset 

A de-identified retrospective dataset of pre-intervention CTP images of 31 AIS patients due to 

LVO was obtained from the Department of Neurology at the University of Oklahoma Health 

Sciences Center (OUHSC). Based on current clinical standard of Modified Rankin Scale (mRS) 

[104], the primary treatment outcomes of AIS patients are categorized into seven scales (from 0 to 

6). Figure 4-1(a) summarizes the distribution of mRS among these 31 patients. Due to the small 

dataset, we divided the patients into two classes of good (favorable) and poor (unfavorable) 

prognosis based on mRS as shown in Figure 4-1(b). Class-0 includes 16 cases in which mRS range 

from 0 – 3 representing from no symptoms to moderate neurological disability (requiring some 

help, but able to walk unassisted), while calss-1 includes 15 cases ranked from 4 – 6 in mRS 

representing from moderately severe disability (unable to walk and attend to bodily needs without 

assistance) to dead. The goal of this study was to develop and apply new quantitative image 

markers to classify AIS cases into these two classes.  

 
Figure 4-1: Distribution of patients based on the Modified Rankin Scale (mRS). (a) Separated by individual mRS, (b) Separated 
by mRS into two classes: [‘class-0’: 0-3]; [‘class-1’: 4-6]. 
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During AIS diagnosis and treatment in OUHSC, each patient is pre-assessed radiologically for 

their eligibility to undergo EMT. Specifically, during the image acquisition, multiple CT image 

scans are conducted including initial non-contrast CT of the head, CT angiogram, and sequential 

CTP scans, respectively. In CTP image acquisition, a rapid intravenous infusion of 40 ml of 

Isovue-370 contrast agent is administered. This contrast agent gradually enters and passes through 

the bloodstream and vessels, which helps visually distinguish blood flow from other brain 

structures. Thus, during the CTP image acquisition process, the dynamic flow of contrast agent 

(i.e., wash-in and wash-out patterns) are used to capture the total blood amount and velocity of 

blood flow through different regions of the brain. 

4.2.2 Image Pre-processing 

Among the clinical cases, there is variability in the number of CTP scanning sequences (i.e., 

ranging from 28 to 89), scanning range (i.e., whole brain or only the targeted volume of interest) 

resulting in different number of image slices in one scanning sequence (i.e., ranging from 8 to 23), 

and image slice thickness (i.e., 2.5 or 5.0mm). The pixel spacing parameters for all the cases are 

0.488 × 0.488 mm for length and width respectively. In addition, some cases can use one-

directional CTP scanning protocol, while others use two-directional scanning protocol. In one-

directional scan, when completing one scanning sequence of the targeted brain section, CT 

machine pauses and returns to the starting point to perform the next scanning sequence (i.e., always 

from top to bottom or vice versa). Whereas in use of two-directional protocol, CT machine 

cyclically captures image sequences continuously without any break (i.e., scanning from top to 

bottom and then reversely scanning from bottom to top).  Regarding image reconstruction 

algorithm, we used GE CT scanners, automatic settings of filtered back projection (FBP) with a 

standard convolution kernel and the filter selected as head. Then, the image pixel intensity values 
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are converted into standard Hounsfield Unit (HU) value based on the dicom rescaling parameters 

such as slope and intercept. 

In order to accommodate the acquired CTP image sequence irregularities mentioned above and 

make all cases comparable to each other, it requires CAD scheme to automatically organize the 

images retrieved from the clinical picture archiving and communication system (PACS) database 

by identifying the number of CTP image scanning sequences and adaptively labeling each image 

slice to a specific indexed brain location in the correct image sequence. Since the head is held fixed 

during image acquisition, the degree of similarity between the matched brain sections during the 

adjacent scanning sequences is higher. Thus, CAD scheme uses a simple dice-similarity based 

approach to identify two parameters (scan-type namely, one-directional or two-directional 

scanning protocols, number of the detected unique brain matching sections in different scanning 

sequences) for each case.  

In our dataset, we find that the maximum number of scanned image slices in one scanning 

sequence for all patients is ≤ 23 images. Thus, for each case, CAD scheme selects the first 50 

images retrieved from each CTP case to initially identify scan-type and match images in two 

adjacent scanning sequence. For this purpose, CAD scheme first performs a rough brain 

segmentation using thresholding to exclude the skull region. If the number of connected regions 

in an image slice is more than one, only the most significant area is included, while others are 

discarded. Next, CAD scheme uses the dice similarity coefficient to compute the degree of 

similarity among these segmented areas in the images to identify the first unique CTP scanning 

sequence and its best matching pair. This can determine the scan-type and the actual number of 

CTP image slices in each scanning sequence. Figure 2 illustrates this CAD process. For example, 

for one case using one-directional scanning protocol with total slice number of x, CAD scheme 
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requires to detect its scan-type and the number of x slices in one scanning sequence. Thus, slice 

(1) matches slice (x+1) and continues (as shown in the middle row of Figure 4-2). The bottom row 

of Figure 2 shows that if the case uses two-directional scanning protocol with total slice number 

of x+2 in one scanning sequence, CAD will identify image matching in different order (i.e., slice 

x+2 matches slice x+3, and so forth).  Once detecting the scan-type and the number of image slices 

in one sequence using the initial set of 50 image slices, CAD maps the results to the rest of all 

images in one case. Thus, the total number of CTP image scanning sequences of each case is 

computed using Equation (4.1) and all images of every series are labeled to a specific indexed 

brain location.  

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑇𝑃	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 	 #$%&'	)*+,-.	$/	0+&1-2	0)	$)-	3&2-
456789	:;	<6=>8	?@<A8?	<4	:48	BCD	?8E584A8

    (4.1) 

 

Figure 4-2: A sample illustration of the proposed dice-similarity based approach identifying the parameters (scan-type and 
number of unique brain indices). 

4.2.3 Image Segmentation 

A novel segmentation algorithm using image markers or fiducials and mapping technique is 

implemented in CAD scheme. For each unique CTP image sequence, CAD scheme identifies three 

perfusion markers namely, global minimum (gm), local minimum (lm), and maximum peak (mp). 

Like the method discussed in image pre-processing, CAD first performs an initial brain 

segmentation using thresholding to identify the largest connected intracranial brain region. A line 
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plot depicting the initially segmented areas of each slice is constructed. The slice with the largest 

area is considered as mp, the slice with the smallest area is regarded as gm, and the slice with the 

smallest area in the opposite direction concerning the mp slice and gm slice is marked as lm. Next, 

the fine-tuning procedure is applied to segment final brain areas beginning with the mp slice as the 

initial starting point because the actual brain in this slice is usually the most significant, single 

connected component, and enclosed within the skull. Therefore, a precise segmentation without 

any leakages can be attained on this slice using a thresholding-based segmentation. In this way, 

the fine-tuning segmentation process continues towards either left or right direction, applying a 

consecutive mapping technique. This segmentation method uses the prior slice segmentation result 

to act as both a reference for limiting boundary to avoid segmentation leakages and identifying the 

multiple connected brain regions if existing. The limiting boundary criterion prevents 

segmentation leakage, which can be corrected applying a process of morphological dilation. In the 

case of multiple connected regions, each region is examined and constrained to enclose within the 

limiting boundary for inclusion in the current slice segmentation. In summary, this segmentation 

process initiates at mp slice for each sequence and continues using the steps as mentioned above 

until either a gm slice or lm slice is reached in both directions covering all the image slices. 

Since this study primarily focuses on understanding and analyzing the asymmetry of blood 

flow between the left and right hemispheres of the brain, which is an important image feature used 

by neuro-radiologists to assess the efficacy of EMT, CAD scheme splits each segmented brain 

slice into two parts of left and right hemispheres. We also design and implement an interactive 

graphical user interface (GUI) of the CAD scheme with multiple visual-aid tools and 

functionalities as shown in Figure 4-3. Additionally, if GUI shows a slight tilt in brain image 

orientation occurred during image acquisition, a function tool has been added in the GUI to request 
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CAD scheme to rotate images and correct image orientation. Thus, CAD scheme can correctly 

separate left and right hemispheres of the brain for image feature computation and data analysis. 

4.2.4 Image Feature Computation  

CAD scheme first computes blood volume in the left and right hemispheres from blood profile 

image of each CTP slice. After grouping the computed blood values per each unique sequence, 

CAD computes the following image features. First, the blood volume (VBlood) in one CTP slice is 

computed using Equation (4.2), 

VF@::G(𝑠𝑙𝑖𝑐𝑒) = 	NF.D (slice) × PH 	× PF × SC	(slice)     (4.2) 

where NB.P is the number of detected or segmented blood pixels, PL and PB represent pixel 

length and breadth, while ST represents slice thickness, respectively. A summation of VBlood for all 

slices for one CTP scanning sequence (or a series) is computed using Equation (4.3),  

 

Figure 4-3: Picture of the implemented interactive graphical user interface (GUI) of the CAD scheme, which includes two image 
windows showing the original CT image slice (left) and the segmented brain area (right), and multiple operating functionalities 
and parameter assignment boxes on both left and right column. 
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VF@::G(𝑠𝑒𝑟𝑖𝑒𝑠) = 	 B C𝑁I.K(sliceL) × PH 	× PF × SC	(sliceL)E
+

2'03-!MN

																																(4.3) 

where m = number of slices in the series. However, VBlood per series can be represented as two 

independent terms voxel count (VCterm), and VPterm as explained from Equations (4.4-4.6).  

VC.O896=	𝑁I.K[𝑠𝑙𝑖𝑐𝑒PMN, 	𝑠𝑙𝑖𝑐𝑒PMQ 	… 𝑠𝑙𝑖𝑐𝑒PM+]		    (4.4) 

VP.O896=	PH 	× PF × SC[𝑠𝑙𝑖𝑐𝑒PMN, 	𝑠𝑙𝑖𝑐𝑒PMQ 	… 𝑠𝑙𝑖𝑐𝑒PM+]    (4.5) 

VF@::G(𝑠𝑒𝑟𝑖𝑒𝑠) = 	VC.O896×	(VP.O896 )R     (4.6) 

where VPterm is an array of constant values for all the series. VCterm changes for each series 

depending upon the blood profile. Thus, VBlood is directly proportional to VCterm. Throughout the 

rest of this article, we represent the summation of the VCterm as VBlood, as indicated in Equation 

(4.7). 

VF@::G(𝑠𝑒𝑟𝑖𝑒𝑠) ∝ 	NVC.O896=	 B 𝑁I.K(sliceL)
+

2'03-!MN

		O																																											(4.7) 

Second, to detect the trend of blood supply in two brain hemispheres over time, CAD scheme 

computes the cumulative volume of blood (VCumulative) as shown in Equation (4.8),  

VB565@=O<S8 =	 Q𝑉2" , 𝑉2"T2# , 𝑉2"T2#T2$ , … , 𝑉2"T2#T2$T⋯T2%&"T2% 		S    (4.8) 

where 𝑉(V)(W)(X)⋯)(YZV)(Y is the summation of VBlood between 1st to nth CTP scanning series, 

and n indicates the number of images in a unique series. This cumulative volume of blood 

(VCumulative) is calculated independently for both left (VCumulative_L) and right (VCumulative_R) 

hemispheres from their respective blood profile images using the steps as mentioned earlier from 

Equations (4.2-4.8). 
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Third, due to variation in operator settings during CTP image acquisition, the scan brain 

regions and duration of scanning vary among the patients. If a line plot is mapped between the 

number of unique series (x-axis: n) and cumulative volume of blood in a hemisphere (y-axis: 

[VCumulative_L or VCumulative_R]) for all the cases, the scales will not be compatible. To address this, 

we performed a case-based normalization of n, VCumulative_L, and VCumulative_R, as shown in Equations 

(4.9-4.11) to scale or normalize the computed feature values between 0 and 1. 

𝑛T = 	
𝑛 −min	(𝑛)

max(𝑛) −min	(𝑛)																																																																				(4.9) 

MinS=@ = minCVB565@=O<S8' , VB565@=O<S8(E ;MaxS=@ = maxC𝑉[*+*'&%0\-) , 𝑉[*+*'&%0\-*E							(4.10) 

vT[*+*'&%0\-_^ =	
VB565@=O<S8_H −Min_val
Max_val	 − Min_val 	; 	vT[*+*'&%0\-__ =	

VB565@=O<S8_` −Min_val
Max_val	 − Min_val 												(4.11) 

 
4.2.5 Asymmetrical Blood Flow Pattern Analysis 

Since acute ischemic stroke (AIS) usually occurs in one hemisphere of the brain with LVO, 

which blocks the respective primary arterial blood flow. As a result, blood flow velocity in two 

hemispheres of the brain is different, which makes the dynamic flow (wash-in and wash-out of 

contrast agent) go faster in the healthy hemisphere without LVO than the diseased hemisphere 

with LVO. Thus, detecting and quantifying asymmetrical blood flow patterns is our focus to 

identify new image markers to predict AIS prognosis. Specifically, as shown in Figure 4, we divide 

the timed image sequences into three equal phases namely, initial phase, intermediate phase, and 

final phase. For each phase, the corresponding section of the line segments (VCumulative_L and 

VCumulative_R) from the line plots is utilized to calculate intermediate slopes (𝑚+,) using a linear 

regression method, where A is right or left hemisphere, and B is the phase. For example, 𝑚"- is 

the slope of the left hemisphere in the 2nd/intermediate phase. Additionally, we subtracted the 

values of VCumulative_L and VCumulative_R between the left and right hemispheres to construct an 
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absolute difference in cumulative volumes (|VCumulative_D|) followed by normalization to yield 

v3./0/123456_8. Then, v3./0/123456_8 curve is also divided into three equal phases similar to the 

method discussed earlier to compute their respective intermediate difference slopes (𝑚8,), where 

D represents the difference line, and B is the phase (as shown in Figure 4-4). Finally, the absolute 

cumulative disparity in the total blood volume between both hemispheres at the completion of CTP 

image acquisition is computed using the last value of the arrays 

(v3./0/123456_9(6;<), 𝑎𝑛𝑑	v3./0/123456_"(6;<)) as shown in the Equation (4.12). 

𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒#$%&' 	= 	𝑎𝑏𝑠Cvb𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑅(𝑒𝑛𝑑) −	vb𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝐿(𝑒𝑛𝑑)E   (4.12) 

4.2.6 Machine Learning Classifier Model 

Using the absolute cumulative disparity value computed at the end of the blood line plot 

(𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321) and other slop-based features computed in 3 phases (as shown in Figure 

4), we test several models to develop image markers to classify cases into two mRS classes of 

 

Figure 4-4: A sample illustration of sectoring cumulative volume of blood line plot into three equal phases and computing 
corresponding intermediate slopes for left and right hemisphere. 
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good and poor prognosis. Each model or marker generates classification scores ranging from 0 and 

1. The higher score represents the higher likelihood of the case having poor prognosis (‘class-1’: 

mRS = 3-6). Table 4-1 lists 3 independent models.  

1. Model-I only uses one image feature of the absolute cumulative disparity value 

(𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321) to simulate what neuro-radiologists do to predict patient prognosis 

with the quantitative data.  

2. Model-II is built using features computed separately from two blood flow curves of the left 

and right hemispheres of the brain (v3./0/123456_" , v3./0/123456_9) in three phases and the 

difference in blood cumulative volume (𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321).  

3. Model-III is built using features computed from one subtracted blood flow curve between the 

left and right hemispheres of the brain (v3./0/123456_8) in three phases and the differences in 

blood cumulative volume (𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321), which emphasizes on the bilateral 

asymmetry of the computed image features between left and right hemisphere of the brain.  

Table 4-1: List of features included in each type of ML model. 

 

 

 

 

 

 

In order to build multi-feature fusion models (Model-II and Model-III), we select two well-

known supervised machine learning (ML) architectures namely, support vector machine (SVM) 

Model Feature Pool 

Model-I 𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321 

Model-II 𝑚"&, 𝑚"-, 𝑚"M, 𝑚9&, 𝑚9-, 𝑚9M, 𝑎𝑛𝑑	𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321 

Model-III 𝑚8&, 𝑚8-, 𝑚8M, 𝑎𝑛𝑑	𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒KL321 
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and K-nearest neighborhood (KNN). Based on our previous experience of applying SVM and 

KNN in developing CAD schemes of medical images [105], [106], a polynomial kernel is used in 

SVM model and K = 5 (neighbors) is applied in KNN model. To build the optimal ML models, 

following three steps are used. First, a feature-wise normalization is performed to transform values 

of each feature to a scale from 0 to 1. Second, a principal component analysis (PCA) method is 

applied to generate new feature vector with a variance rate of 95% applied to reduce redundancy 

of the image features. Third, due to the small dataset, a leave-one-case-out (LOCO) based cross-

validation method is adopted to train and evaluate each ML model to maximize the number of 

training samples and avoid case patrician bias [107]. In this way, each of 31 cases in our dataset 

will be independently tested by the model trained using other 30 cases in 31 training iterations.   

To evaluate the performance of each classification model, we used the following two steps. First, 

a receiver operating characteristic curve (ROC) is constructed form the classification scores and 

the area under the ROC curve (AUC) is computed and used as an assessment index to evaluate and 

compare the performance of each model to classify between two mRS classes. Second, we apply 

an operating threshold on the classification scores (T = 0.5) to divide all testing cases into two 

mRS classes (score ≤ 0.5: ‘Class-0’; score > 0.5: ‘Class-1’). From the classification results, several 

confusion matrices corresponding to different models are generated, which are used to compute 

various performance indices (i.e., classification accuracy, positive predictive value (PPV), 

negative predictive value (NPV), sensitivity, and specificity).  

In summary, Figure 4-5 shows a complete flow diagram of each step in our CAD scheme, 

which includes image pre-processing and data analysis pipelines using the ML model. All 

programs used in CAD scheme and GUI tool (as shown in Figure 4-3) are coded using MATLAB 

R2019b package and libraries. Whereas the ROC curve and the AUC are computed using a 
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maximum likelihood-based ROC curve fitting program (ROCKIT, http://www-

radiology.uchicago.edu/krl/ , University of Chicago), which is publicly available and widely used 

in radiology and medical imaging informatics field.  

 

4.3 Results 

Figure 4-6 shows an example of the matched brain CTP slices in the whole scan of 28 

sequences, which depict change in the visibility of the contrast agent in the blood over the CTP 

image acquisition time. Looking at these 28 images from the top left to the bottom right in a left 

to right fashion, one can notice that the visibility of blood contrast is more dominant in the right 

hemisphere at the early phase of CTP scans as compared to the left hemisphere (wash-in). As the 

CTP acquisition continues, the blood contrast in the right hemisphere appears to drain completely 

(wash-out) first, whereas the contrast is still visible in the left hemisphere in the images of later 

scanning sequences. This example shows that our CAD scheme automatically detects the amount 

 

Figure 4-5: A detailed flow diagram of each step of the proposed CAD scheme. 
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of contrast filled blood volume over time using the cumulative amount of blood to quantify the 

contrast agent variation between the left and right hemispheres of the brain. 

       

       

       

       

Figure 4-6: From top-left to bottom-right: A sample brain index over CTP acquisition time depicting the variation in blood flow 
between the left and right hemisphere. 

Figure 4-7 demonstrates the segmentation results of a sample CTP brain series for an individual 

patient. Unlike a regular segmentation scheme that targets to identify either a single connected 

cerebral region or uses the skull as the limiting boundary may fail to achieve the accurate results 

as it may miss certain regions or cause possible leakages in some other scenarios, our CAD scheme 

successfully detects the multiple connected regions as shown in the 2nd and 3rd images of Figure 

4-7. The reason of generating such a result is because our CAD scheme uses 3 image markers as 

guides to set a protocol with the limiting boundary criterion for brain regions depicting on each 
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image slice and thereby identifying all the true multiple connected brain regions resulting in more 

sophisticated and accurate segmentation results. 

 

Figure 4-7: Illustration of proposed segmentation scheme using image markers and consecutive mapping technique for a sample 
brain series. 

Figure 4-8 illustrates and compares the difference of the cumulative blood volume between the 

left and right hemispheres in two cases. In case (a), there is a clearly big difference in the 

cumulative blood flow and volume between two hemispheres throughout the CTP image 

acquisition period, which indicates the presence of major LVO. Thus, applying EMT to remove 

blood clot and resume blood supply can help balance blood in both hemispheres. Since this patient 

can benefit from the EMT and thus receive good clinical outcome (in class-0 of mRS). However, 

case (b) has relatively small difference of cumulative blood flow or transit time in both 

hemispheres. Thus, the underlying reason for the poor prognosis is not primarily caused by LVO 
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or unbalanced blood supply. The clinical result shows that this patient does not benefit from EMT 

and is classified into class-1 of mRS in this study. 

  

(a) (b) 
Figure 4-8: Comparison between two cumulative blood flow curves in left and right hemispheres of the brain, where case (a) is 
classified to ‘class-0’ and case (b) is classified to ‘class-1’ of mRS. 

By analyzing all 31 testing cases in our dataset, Table 4-2 shows and compares the number of 

input features that are generated using PCA algorithm and used to train ML models, as well as the 

classification performance (AUC values) of 5 models. The corresponding ROC curves are 

presented in Figure 4-9. The results show that Model-III built using the features computed from 

the subtracted blood flow curves (related to the transit time for contrast agent wash-in and wash-

out) between two hemispheres of the brain produces the highest AUC values as compared to 

Model-I and Model-II. Using KNN and SVM ML methods, Model-III.2 (KNN) and Model-III.1 

(SVM) yield AUC=0.878±0.077 and 0.846±0.078, respectively. 
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Table 4-2: Summary of the number of PCA features used in various ML models and their corresponding classification performance 
in terms of AUC. 

Model Number of Features AUC 

Model-I 1 0.772±0.084 

Model-II.1: SVM 5 0.746±0.089 

Model-II.2: KNN 5 0.607±0.103 

Model-III.1: SVM 4 0.846±0.078 

Model-III.2: KNN 4 0.878±0.077 

 

 

Figure 4-9: Comparison of various ROC curves generated using 5 models to classify between two mRS classes. 

Table 4-3 illustrates 5 confusion matrices of 5 models. Based on these matrices, a set of the 

computed performance indices including accuracy, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV), are summarized in Table 4-4. From these 
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tables, one can observe that like AUC value assessment (Table 4-2), the highest classification 

accuracy is obtained for Model-III in which Model-III.2 (KNN) achieves the highest prediction 

accuracy of 90.3%. 

Table 4-3: Summary of confusion matrices of various ML models to classify between mRS classes. 

Model Actual 
Predicted  

Positive Negative 

Model-I: 
Positive 11 5 

Negative 4 11 

Model-II.1:  SVM 
Positive 13 3 

Negative 6 9 

Model-II.2: KNN 
Positive 10 6 

Negative 5 10 

Model-III.1: SVM 
Positive 13 3 

Negative 4 11 

Model-III.2: KNN 
Positive 16 0 

Negative 3 12 

Table 4-4: Summary of several performance indices for various ML models. 

Model Accuracy 
(%) Sensitivity  Specificity  PPV NPV 

Model-I: 70.97 0.69 0.73 0.73 0.69 

Model-II.1:  SVM 70.97 0.81 0.60 0.68 0.75 

Model-II.2: KNN 64.52 0.63 0.67 0.67 0.63 

Model-III.1: SVM 77.42 0.81 0.73 0.76 0.79 

Model-III.2: KNN 90.32 1.00 0.80 0.84 1.00 
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4.4 Discussion 

In this study, we investigate the feasibility of developing and applying new quantitative image 

markers or ML models to predict prognosis of AIS patients at an early stage using pre-intervention 

brain CTP images. The study has several unique characteristics and contributions. First, we apply 

several novel image processing algorithms to develop a new CAD scheme that can be applied to 

real clinical images with varying imaging scanning conditions. Based on our literature search, no 

similar CAD schemes are available to date. Our CAD scheme can automatically perform following 

tasks including (1) organizing and matching all CTP image slices in a correct order of scanning 

sequences, (2) segmenting brain volume and contrast-enhanced blood volume in all CTP image 

slices, (3) generating two cumulative blood flow curve diagrams of left and right hemispheres of 

the brain, and (4) computing image features related to the blood transit time and velocity in 3 

normalized phases of CTP scanning sequences. To increase reliability and user confidence to the 

CAD scheme, a unique interactive GUI is designed and used (as shown in Figure 4-3). As a result, 

any possible image processing errors (i.e., brain or blood volume segmentation errors) can be 

visually observed and corrected either automatically by performing the pre-installed correction 

functions in the GUI or manually by the user’s hand drawing or new boundary condition setting. 

Although we did not test the GUI functions in this study, the similar GUI tool developed in our 

previous study [103] has been tested and used by the clinical researchers in the Department of 

Neurology of OUHSC to provide quantified percentage of blood leakage volume in aneurysmal 

subarachnoid hemorrhage (aSAH) patients using brain CT images, and then predict clinical 

outcome of the patients as reported in our previous publications [108], [52].  

Second, due to the potential presence of unilateral blood clot (LVO) in AIS patients, the transit 

time and velocity of the blood contrast flow rate (wash-in and wash-out) may vary between two 
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hemispheres of brain. Thus, asymmetrical blood flow rate or pattern in two hemispheres of the 

brain provides a potentially useful image marker to predict AIS prognosis. Instead of subjective 

assessment of asymmetrical blood flow rate or transit time by the neuro-radiologists, which is 

qualitative and has large inter-reader variability, our CAD scheme computes several quantitative 

features to assess asymmetrical blood flow rate and patterns. Our data analysis results demonstrate 

that using the absolute cumulative disparity value has higher discriminatory power to predict 

prognosis of AIS patients with AUC=0.772±0.084 (Table 4-2), which is significantly higher than 

random guess (AUC=0.5). In addition, our GUI tool (Figure 4-3) provides clinicians (i.e., neuro-

radiologists) a visual-aid tool to examine or monitor transit time or velocity of blood flow and the 

final difference of cumulative amount of blood flow in the left and right hemispheres of the brain.  

Third, another advantage of developing CAD scheme is to compute multiple features. Then, 

ML methods can be applied to select optimal features and build multi-feature fusion models aiming 

to achieve the increased prediction performance than using a single optimal feature or marker. In 

this study, we investigate two sets of features. As shown in Figure 4-4, one includes cumulative 

blood flow or contrast agent transit time slopes related features computed separately from the left 

and right hemispheres of the brain, while another one includes features computed from the 

subtracted cumulative blood flow curve of two hemispheres. The study results (Table 4-2) 

demonstrate that multi-feature fusion models yield significantly higher prediction performance 

than using a single image feature or marker (p<0.01). Model-III also yields significantly higher 

performance than model-II for using both SVM and KNN learning methods. It indicates that using 

the absolute difference curve of blood flow between two hemispheres carriers more discriminatory 

information or power to train ML models than using the features computed separately from two 

hemispheres. It also reduces the number of features (Table 4-2), which can help improve 
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robustness of ML models. Additionally, performing paired t-test showed that 4 out of 6 analyses 

have a significant statistical performance (p < 0.05) amongst the multi-feature fusion models. For 

instance, the best performing Model-III.2 (in terms of accuracy and AUC), has statistically 

significant performance as compared to Model_II.1 and Model-III.1. More details related to the p-

values computed between the various ML methods are summarized in Table 4-5. 

Table 4-5:Comparison of p-value between various ML models. 

P-value Model-I Model-II.1 Model-II.2 Model-III.1 Model-III.2 

Model-I 
 

0.238689 0.20936 0.218763 0.234386 

Model-II.1 
  

0.009978 0.382433 0.012067 

Model-II.2 
   

2E-05 0.25409 

Model-III.1 
    

2.65E-07 

Model-III.2 
     

Fourth, many radiomics studies have recently reported that radiographic images (i.e., CT) 

contain useful phenotype image features, which highly associate with prognosis of cancer patients 

[97], [98]. In this study, we demonstrate the feasibility of identifying and applying radiographic 

image features or markers computed from brain CTP images to potentially phenotype AIS patients 

and predict their prognosis. This study supports and expands radiomics concept to more broad 

clinical application fields. The success of our approach to develop new quantitative image markers 

or prediction models will eventually provide clinicians a new decision-making supporting tool to 

assist them more accurately stratifying AIS patients for choosing and applying optimal treatment 

methods (i.e., EMT) at an early stage aiming to reduce patients’ mortality and morbidity rates.       

Despite the encouraging results, we also recognize that this study has several limitations. First, 

only a small dataset is used in this study. Distribution of cases belonging to each mRS class (0 to 
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6) is also not uniform, which restricts us to divide the dataset into only two classes to represent 

good and poor prognosis. Due to the small dataset, the computed AUC values have relatively big 

standard deviation (Table 4-2) indicating the relatively lower confidence level. Additionally, small 

dataset may not well-represent the general AIS population in the real clinical environment. Thus, 

the performance and robustness of our CAD scheme and image marker or ML models need to be 

further tested using larger and independent study cohorts in future studies. Second, the simple case 

normalization to compensate the different numbers of the CTP scanning sequences and division 

of cumulative blood volumes into three equal phases may not be optimal. A more dynamic or 

adaptive division of cumulative blood volume phases should be investigated and compared in 

future studies. Third, to fully use radiomics concept, more image features need to be explored and 

computed to identify more discriminatory information to improve performance and robustness of 

ML models. Last, this study uses a simple threshold and labeling algorithm to segment brain and 

blood volume. Currently, deep learning technology has been applied to segment the targeted 

regions of interest in medical images [109], [110]. Using deep learning method may help achieve 

higher accuracy in segmentation of brain and blood volume using CTP images in future.  

In conclusion, this is a preliminary and proof-of-concept study to develop new quantitative 

image markers to classify AIS patients based on mRS severity using a set of bilateral asymmetrical 

image features computed of CTP images between the left and right hemispheres of the brain. The 

study demonstrates the promising results when applying the CAD scheme and ML model to a set 

of diverse clinical cases with different mRS distribution and varying CTP imaging scanning 

protocols. Based on the foundation built in this study, new research effort can follow to further 

validate these quantitative image markers and conduct prospective clinical studies in the future.   
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5 Applying Quantitative Radiographic Image Markers To Predict 

Clinical Complications After Aneurysmal Subarachnoid Hemorrhage: 

A Pilot Study 

5.1 Introduction 

Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency associated with high 

mortality, morbidity, and significant healthcare burden[111]. Nearly 30,000 people are affected by 

aSAH every year in the United States[112]. Recent studies suggest early brain injury (EBI) and 

delayed cerebral ischemia (DCI) that results from several pathophysiological processes are major 

determinants of mortality and morbidity associated with aSAH patients. EBI typically occurs 

within 72 hours of aSAH while DCI is commonly seen 4-14 days of aSAH onset. Thus, early and 

quick diagnosis and prediction of aSAH prognosis is important to more effectively treat aSAH 

patients in clinical practice.  

EBI occur secondary to one or more of the following: acute hydrocephalus (HCP), transient 

cerebral oligemia, and systemic inflammatory response. EBI causes significant morbidity and 

mortality[49]. Despite this known associative role of EBI in determining clinical outcome, absence 

of objective radiological image biomarkers limits its role in assessing disease severity and 

predicting prognosis. The commonly used modified Fisher scale (mFS) identifies amount of blood 

in subarachnoid space and ventricles, although easy to use and able to predict cerebral vasospasm 

and DCI, it is subjective with high inter-rater variability[50],[51]. Quantifying blood using above-

mentioned parameters have decent ability to predict occurrence of DCI and long-term clinical 

outcome, but it is semi-automated and also operator dependent[52]. In addition, recent studies 

reported DCI as a complex process, not fully explained by intracranial blood or HCP[113]. Hence, 
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researchers have investigated if EBI could be radiologically assessed through global cerebral 

edema (GCE) that might incorporate some of the above-mentioned complex process to more 

objectively predict clinical outcome. Recently, a semi-quantitative non-automated scoring system 

has been investigated to assess GCE using Subarachnoid Hemorrhage Early Brain Edema Score 

(SEBES) that is based on the visibility of sulci at two pre-determined levels, which may predict 

DCI with high accuracy[55]. Additionally, quantification of cerebral edema using semi-automated 

or automated segmentation of sulci volumes has shown to be an important marker for analyzing 

EBI after aSAH[53],[54]. 

As described above, in order to detect or quantify severity of aSAH and predict its prognosis 

or clinical outcomes, non-contrast computed tomography (CT) imaging is typically applied to scan 

patients’ brain due to high efficiency of CT imaging scan to detect leaked blood on brain tissue. 

However, subjectivity of neuroradiologists in reading brain computed tomography (CT) images 

plays a significant role in assessing EBI radiologically and hence prone to predictive errors. It is 

likely that many useful imaging features depicting on brain CT images acquired at admission of 

patients and subsequent CT scans during hospitalization may or may not be correctly identified 

through visual inspection and subjective interpretation of neuroradiologists alone. Applying an 

automated program to detect and segment brain CT images has potential to provide a standardized 

and unbiased estimation of targeted radiological image parameters. Hence, in this exploratory 

study we develop and test a novel and automated radiographic imaging software to accurately 

quantify image features that pathophysiologically contribute to short-term (in-hospital) and long-

term clinical outcome. Successful development of such radiological image biomarker will help in 

the early prediction of possible clinical outcome of aSAH patients. The hypothesis used to develop 

current image analysis software is based on the two studies[55], [53] that used automated program 
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to segment and quantify a pre-determined level above lateral ventricle to perform a volumetric 

assessment of sulci, white matter (WM), gray matter (WM), and extra-parenchymal blood (EPB). 

Hence, the objective of this study was to develop and test a computer-aided detection (CAD) 

scheme to automatically segment brain regions and generate radiographic imaging biomarkers 

computed from brain CT images to predict various clinical outcomes after aSAH. 

5.2 Materials and Methods 

5.2.1 Study Population: 

This study was approved by Institutional Review Board at the University of Oklahoma Health 

Sciences Center (OUHSC). All patients used as study subjects had previously signed written 

informed consent forms for their participation in the long-term follow-up portion of the study 

during their 1-year clinical follow-up as discussed in our previous studies[52], [114]. In brief, CT 

scans of 59 patients admitted with the diagnosis of aSAH at the OU Medical Center between the 

years 2014 and 2016 were retrospectively analyzed for this study. The inclusion criteria for the 

study subjects required patients diagnosed with aSAH and a CT scan acquired within 48 hours of 

symptom onset. Multiple CT scans of the head were acquired to different clinical indications 

during the hospital course. However, for this study, we only used two non-contrast CT scans 

acquired during patients’ admission and day 10-14 after hospitalization, which are termed as the 

first and last CT scans in the rest of this paper. The 10-14 days were chosen as it is generally 

accepted to be the end of DCI period (prior-to-discharge). 

Following 4 short-term clinical outcomes during hospitalization were retrospectively studied: 

(i) Clinical vasospasm (CVSM) – defined as patients developing clinical symptoms attributable to 

cerebral vasospasm after exclusion of other confounding causes, (ii) DCI – defined as occurrence 

of CVSM and/or radiological evidence of cerebral infarction, (iii) HCP – assessed on admission 
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CT scan using age-corrected bicaudate index[115], and (iv) ventriculoperitoneal shunt (VPS) – 

placement during or after discharge as clinically determined. Additionally, clinical outcome 

assessed during post-discharge clinic visit includes two indices namely, (1) a modified Rankin 

score (mRS) that assesses physical disability ranging 0 to 6 with higher values indicating worse 

outcome and (2) a Montreal cognitive assessment (MoCA) index that assesses cognitive disability 

which is scored 0-30 with lower score indicate presence of cognitive dysfunction. These generate 

4 long-term clinical outcomes defined in this study. 

Due to the small dataset of 59 patients, we divided each clinical outcome into two categories 

of good or poor outcome, as discussed below. The clinical measures DCI, CVSM, HCP, and VPS, 

were categorized into two classes of either presence (poor) or absent (good). The mRS is an ordinal 

disability score categorized into seven scales (from 0 = no symptoms to 6 = dead). We divided 

mRS into two categories: 0 to 2, independent functioning and 3 to 6 as dependent outcome or 

death. A MoCA score of 26 or greater is considered normal. Thus, we divided MoCA into two 

categories a MoCA score of 26 or over (normal cognition) and a MoCA score of less than 26 

(presence of cognitive disability). The mRS and MoCA were performed in patients at ~3-month 

(3M) and ~1 year (1FU) follow-up visit. The distribution of the patients for the above eight 

measures along the demographics was summarized in Table 5-1. 

 

 

 

 

 

 



99 
 

Table 5-1: Demographics and Clinical Characteristics of patients (n = 59). mRS: class-1: 0-2; class-2: 3-6; MOCA: class-1: ≥ 
26; class-2 < 26; SD – Standard Deviation; IQR – Interquartile range, 3M – 3 months, 1FU – 1 year follow-up. 

Clinical Characteristics 
Number of cases (n)  

First scan Last scan 

Sex Male: 20; Female:39 - 

Age: (Min 20; Max 83)                                                         

Mean ± SD                                          Median (IQR) 

                               52.7 ± 

12.9                  53 (44, 60) 
- 

DCI (Yes/No) 59 (33/26) 57 (33/24) 

CVSM (Yes/No) 59 (23/36) 57 (23/34) 

HCP (Yes/No) 39 (15/24) 37 (15/22) 

VPS (Yes/No) 53 (13/40) 51 (13/38) 

mRS at 3M (class-1/class-2)                    41 (27/14) 40 (26/14) 

MOCA at 3M (class-1/class-2)                41 (19/22) 40 (19/21) 

mRS at 1FU (class-1/class-2)                    36 (22/14) 34 (20/14) 

MOCA at 1FU (class-1/class-2)                36 (16/20) 34 (14/20) 

 

5.2.2 Flow Diagram of the Proposed CAD Scheme: 

CAD scheme is divided into two phases namely, image processing phase and data analysis 

phases. Image processing phase is common, while data analyses phase changes depending on the 

clinical measure being evaluated. During image processing phase, each three-dimensional (3D) 

input brain CT scan is processed to (i) automatically segment volumetric region of the intracranial 

brain, (ii) label each voxel to different subcategory, and (iii) compute corresponding radiographic 

image features. While in data analysis phase, the computed image features associated with a 

specific type of scan (first or last) coming from image processing phase are combined with class 



100 
 

labels of each clinical measure to perform classification analysis. In this study, we assessed 

classification performance of our CAD scheme for each of eight clinical measures as shown in 

table 1 independently using both first and last CT scans. As a result, 16 different classification 

analyses were performed belonging to 8 clinical measures for both the first and last CT scans. A 

sample representation of the detailed flow diagram of the proposed CAD scheme highlighting 

individual steps in each phase is shown in Figure 5-1. A more detailed explanation of each step of 

CAD scheme are discussed in the subsequent sections. 

 
Figure 5-1: A detailed flow diagram of each step of the proposed CAD scheme categorized by the image processing and the data 
analysis phases. 

5.2.3 3D Brain Segmentation and CT Labeling: 

A two-stage consecutive mapping-based algorithm is implemented in this CAD scheme to 

achieve optimal segmentation results[116]. During the first stage, for each 3D CT scan sequence, 

CAD scheme applies an initial image pre-processing step to identify three image markers namely, 

global minimum (gm), local minimum (lm), and maximum peak (mp) of intracranial brain region. 

These image markers will represent slice indices of the current CT sequence to act as reference 

points to guide CAD segmentation algorithm. To achieve this, CAD performs Otsu thresholding 
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to filter the largest single-connected intracranial brain region belonging to each of the 2D-image 

slices. Next, based on a comparison of segmented brain volumes, the slice with the largest volume 

is considered mp, the slice with the smallest volume is regarded as gm, and the slice with the 

smallest volume in the opposite direction concerning the mp slice gm slice is marked as lm. The 

initial segmentation results at the end of the first stage are still prone to errors regarding leakages 

and identification of multiple brain regions per slice. Thus, in the second stage, a fine-tuning 

technique in reference to the neighboring slices is applied to obtain precise segmentation. 

Correction in this stage begins with the mp slice as the intracranial brain region in this slice is the 

most significant, single connected component and wholly enclosed within the skull, facilitating 

accurate segmentation. Then, the fine-tuning procedure scans either in the left or right direction, 

applying the consecutive mapping technique. During this mapping-based correction, the 

segmentation results from the prior slice are used to define the limiting boundary criterion to avoid 

segmentation leakages and identify multiple connected brain regions. The limiting boundary 

criterion performs morphological dilation on prior segmentation results to define current slice 

boundary limits, which prevents segmentation leakages. In the case of multiple connected regions, 

each individual region is examined with prior segmentation results and constrained to enclose 

within the limiting boundary for inclusion in the current slice segmentation. To summarize the 

second stage of the segmentation method, the process begins and considers the segmentation at 

mp slice as the reference, then continues using this consecutive mapping-based algorithm until 

either a gm slice or lm slice is reached in both directions covering all the image slices. 

After successful brain region segmentation, based on the standardized calibration of 

Hounsfield Units (HU) of CT images, each CT voxel inside the brain is subcategorized into four 

regions, namely, Cerebrospinal fluid (CSF), White Matter (WM), Grey Matter (GM), and blood 
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using multi-thresholds of Hounsfield Units (HU). In this study, the default threshold (TH) values 

defined for subcategorization of voxels were TH1: 20, TH2: 32, and TH3: 50. Any voxel with an 

HU value less than or equal to TH1 is identified as CSF during the CT labeling protocol. In 

contrast, all the voxels with HU values greater than TH3 are labeled as blood. Then, the voxels 

with HU values greater than TH1 and less than or equal to TH2 are labeled as WM. Finally, the 

voxels with HU values greater than TH2 and less than or equal to TH3 are labeled as GM. To 

summarize, CT labeling protocol: (1) CSF ≤ TH1, (2) TH1 < WM ≤ TH2, (3) TH2 < GM ≤ TH3, 

(4) TH3 < blood was applied to categorize each voxel into one of the four regions. Following CT 

Labelling, volumetric analysis of these four regions was performed to identify and compute 

radiographic image features. The analysis was conducted only on image slices between the level 

of lateral ventricles until the top of the skull. This pre-determined level was picked from the 

previous study[55], where the presence of sulci is analyzed using a qualitative assessment for 

association with aSAH. All the CSF regions automatically identified by the CAD scheme are 

considered as sulcal regions as CSF is filled within the sulcal space. 

5.2.4 Computing Radiographic Image Features: 

CAD scheme is applied to compute the image features from CT images slice-by-slice. The 

three-dimensional (3D) volumetric representation of each image feature is then computed by 

weighted summation of feature values computed in all corresponding CT image slices. For each 

CT label (i.e., Sulci, WM, GM, Blood, and Brain), an initial slice-based representation of volumes 

is computed using the number of the segmented voxels (NLabel) and slices parameters such as voxel 

length (VL), voxel breadth (VB), and slice thickness (ST) as shown in equation 5.1.  

𝐿𝑎𝑏𝑒𝑙N|(14O6 	= 	𝑁"+,P" × 𝑉" 	× 𝑉, × 𝑆K 	|(14O6 (5.1) 
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Next, a summation of these slice volumes was performed to yield 3D volumes of each labeled 

category as shown in equation 5.2.  

𝐿𝑎𝑏𝑒𝑙N =	 B 𝐿𝑎𝑏𝑒𝑙N|(14O6a 		
;

(14O6abc

 (5.2) 

Above process is repeated independently for each of the CT labels to obtain corresponding 

volumetric features. For instance, to compute the 3D volume of the labeled sulci, CAD scheme 

first computes the segmented sulcal volumes depicting on each slice separately and then combine 

the results of all the slices to obtain the 3D volume of sulci as shown in equations 5.3 and 5.4.  

𝑆𝑢𝑙𝑐𝑖N|(14O6 =	𝑁Q/1O4 × 𝑉" 	× 𝑉, × 𝑆K|(14O6 	 (5.3) 

𝑆𝑢𝑙𝑐𝑖N =	 B 𝑆𝑢𝑙𝑐𝑖N|(14O6 	
;

(14O6abc

 (5.4) 

In this way, the first group of features includes volumes of 5 labeled categories namely, sulci, 

white matter (WM), gray matter (GM), blood, and brain tissue, are computed, which are 

represented using a "V" as subscript following each label as follows: (i) SULCIV, (ii) WMV, (iii) 

GMV, (iv) BLOODV, and (v) BRAINV.  

Additionally, CAD scheme also computes the second group of features that includes 4 features 

obtained by calculating the proportion SULCIV with respect to the volumes of remaining labels 

(WMV, GMV, BLOODV, and BRAINV) and represented with a "SULCI" as a subscript following 

each label as follows: (i) WMSULCI, (ii) GMSULCI, (iii) BLOODSULCI, and (iv) BRAINSULCI, 

respectively. For instance, the proportion of sulci with respect to WM is represented using WMSULCI 

and is computed as shown in equation 5.5.  
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𝑊𝑀QR".S =	
𝑆𝑢𝑙𝑐𝑖N
𝑊𝑀N

	 (5.5) 

As a result, a total of nine radiographic image features, including five features from the first 
group and four features from the second group, are extracted and computed from 3D CT slices of 
each case. 

5.2.5 Building Machine Learning Model and Evaluation: 

We then build and test several multi-feature fusion-based machine learning (ML) models to 

classify prognosis of the study cases into two classes. Specifically, we investigated eight clinical 

measures (as shown in table 1) for two CT scans (first and last), resulting in a total of 16 different 

independent analyses of case classification. Due to the wide range of data analysis, we examined 

the feasibility of applying three popular supervised ML architectures namely, support vector 

machine (SVM), k-nearest neighborhood (kNN), and logistic regression for the classification tasks 

in this study. Based on our study experience, a polynomial kernel is used in the SVM model and 

k = 10 (neighbors) is applied in the kNN model. 

In order to build robust and highly performed ML models, following three critical issues or 

challenges need to be considered and addressed, which are: (i) imbalance of cases between two 

classes, (ii) a scope for redundancy in the initial feature pool, and (iii) a relatively small dataset. 

First, there is a noticeable imbalance between the number of samples belonging to each class 

regarding each clinical measure in our dataset. For example, in the case of CVSM, we have a total 

of 59 samples with the first CT scan, and the number of samples belonging to class-1 vs. class-2 

is 23(39%) vs. 36(61%), respectively. More details related to the class imbalance situation 

regarding each of the 16 analyses can be observed in table 1. To address this issue and minimize 

its impact on training ML model, we applied a Synthetic Minority Oversampling Technique 

(SMOTE) algorithm[117] to rebalance the number of samples in each class. The vital point of 
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applying SMOTE is that it introduces synthetic data samples by interpolation between some 

minority class instances within a specified neighborhood. The fundamental purpose of the SMOTE 

is to generate synthetic data samples belonging to the minority class label using the interpolation 

technique of minority class instances within a specified neighborhood. For instance, if we need a 

total of N new synthetic samples to balance the minority class, according to a distance metric, we 

first select K samples belonging to the minority class from the training set. Then, among these K 

instances, N instances are selected randomly for computing the new instances by interpolation. A 

sample illustration of SMOTE can be seen in Figure 5-2 in which u represents the minority class 

label, and [u1, u2, u3, u4] represents the N instances selected. In contrast, the points [v1, v2, v3, 

v4] represent the synthetic data generated using interpolation. Second, to potentially avoid 

overtraining and reduce the redundancy of the input features, we applied principal component 

analysis (PCA). The PCA is set to generate a new principal component feature vector with a 

variance rate of 95%. Third, a leave-one-case-out (LOCO) based cross-validation method is 

adopted to train and evaluate each ML model due to the small dataset. A LOCO validation method 

maximizes learning power, while minimizing the case partition and testing bias as demonstrated 

in previous studies (i.e.,[87], [118]). 

 
Figure 5-2: A sample illustration of generating synthetic data of the minority class label using the interpolation of SMOTE 
algorithm. 
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We embedded both SMOTE and PCA algorithms into the LOCO cross-validation process 

during training and testing each ML model. Specifically, in each LOCO training and testing 

iteration, we first take out one case from the training set as independent testing case. Second, 

SMOTE algorithm is applied to generate synthetic data to balance the minimum class instances. 

Third, PCA is applied to the training samples with a variance rate of 95%, thereby, generating a 

new feature vector of reduced length. Fourth, the ML model is trained using all training samples 

(including the synthetic samples). Last, after the ML model is trained, the model is applied to the 

testing case to generate a classification score. This SMOTE and PCA embedded LOCO training 

and testing iteration process is repeated 59 times for testing all cases in our dataset. As a result, 59 

classification scores generated by each ML model are recorded. 

To evaluate performance of each ML model, we used following two steps. First, a receiver 

operating characteristic curve (ROC) is constructed from the classification scores using a 

maximum likelihood-based ROC curve fitting program (ROCKIT, http://www-

radiology.uchicago.edu/krl/, University of Chicago), and the area under the ROC curve (AUC) is 

computed and used as an index to evaluate and compare the performance of each ML model to 

classify between two classes. Second, we apply an operating threshold on the classification scores 

(T = 0.5) to divide all testing cases into two classes (score ≤ 0.5: 'Class-1'; score > 0.5: 'Class-2'). 

From the classification results, several confusion matrices corresponding to different ML models 

are generated, which are used to compute various performance indices of class classification (i.e., 

classification accuracy (ACC), sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV)).  
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5.3 Results 

Figure 5-3 shows one sample of case segmentation results applying the proposed consecutive 

mapping-based algorithm in our CAD scheme. The sequence of images is organized from the top 

left to the bottom right in a left to right fashion. CAD scheme identifies 28 CT image slices 

depicting visible brain regions with varying size in the first 25 CT slices. In this case, CAD 

identifies slice-11 as the mp slice with the most significant brain area. In contrast, slice-1 and slice-

25 are assigned as gm and lm, respectively. During the fine-tuning stage from mp towards the gm 

(left direction), we can notice that the guided limited boundary criteria defined from the prior slice 

segmentation have assisted in both avoiding leakages and identifying multiple connected brain 

regions (noticed in slices 1 through 7). Additionally, during fine-tuning stage from mp towards the 

lm (right direction), when the top of the skull is reached at slice-26, segmentation is not performed 

for slices 26 through 28 as it is not required. 

 
Figure 5-3: A sample case segmentation results using the proposed consecutive mapping-based algorithm. The sequence of 
images is organized from the top left to the bottom right in a left to right fashion. 
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As explained earlier, in this study, image data analysis is conducted only on image slices 

between the level of lateral ventricles until the top of the skull. Thus, for each case, the last slice 

index depicting the ventricles is marked for reference. Then, all the images above the defined 

ventricle level until the top of the skull are selected for further analysis by CAD scheme. Figure 4 

shows a sample series of images representing the CT labeled images within the defined region of 

analysis, including the reference slice consisting of ventricles. In Figure 5-4, slice-1 is only shown 

to illustrate the level of ventricles but not included in further analysis. Here, the images are labeled 

in greyscale ranging from dark to bright, in four levels where each level represents sulci, WM, 

GM, and Blood, respectively. 

 
Figure 5-4: A sample case illustration of CT labeled images within the defined region of analysis. The first slice in the sequence 
is for ventricles reference purpose only and not included in the volumetric analysis of labeled regions. In the figure, greyscale 
ranging from dark to bright in four levels represents cerebrospinal fluid (1), white matter (2), gray matter (3) and blood (4), 
respectively. 

Figure 5-5 and Figure 5-6 plot and compare the ROC curves to classify cases into two classes 

based on all eight clinical measures between the first and the last CT scan. The AUC values 

computed from the first CT scan range between 0.65±0.10 and 0.82±0.05, with the lowest value 

observed for classifying mRS at 1FU and the highest value for classifying DCI. Similarly, the 

AUC values for the last CT scan range between 0.62±0.07 and 0.86±0.07, with the lowest value 

observed for classifying DCI and the highest value observed for classifying both MOCA at 3M 
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and MOCA at 1FU. For simplicity, we separated the clinical measures into two groups, namely 

representing short-term and long-term clinical outcome. The short-term clinical measures are the 

complications that occur during hospitalization, including DCI, CVSM, HCP, and VPS. Whereas 

the long-term clinical measures are observed at three months and 1-year follow-up after hospital 

discharge, including mRS at 3M, MOCA at 3M, mRS at 1FU, and MOCA at 1FU. In terms of 

short-term measures, on comparison between the first and the last CT scan, we observe that 

majority of these complications (including DCI, CVSM, HCP) are more accurately predicted using 

the first CT scan. In contrast, only VPS can be observed to have a higher accuracy using the last 

CT scan. On the contrary, to predict long-term measures (mRS and MOCA at 3M and 1FU), 

classification accuracy is higher using the last CT scan than using the first CT scan, which indicates 

impact of treatment during hospitalization of the patients. More details regarding the best model 

selected for each of 16 data classification analyses and the performance metrics (AUC and ACC) 

are summarized in Table 5-2. 

 
Figure 5-5: A comparison of ROC curves for the short-term clinical measures between using the first and the last CT scan. 
Where (a) represents the curves plotted from the first CT scan, (b) represents the curves plotted from the last CT scan. 
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Figure 5-6: A comparison of ROC curves for the long-term clinical measures between the first and the last CT scan. Where (a) 
represents the curves plotted from the first CT scan, (b) represents the curves plotted from the last CT scan. 

 

 

Table 5-2: A comparison of classification performance metrics and the best model selected for each of eight clinical measures 
between the first and the last CT scan. 

Scan Type Clinical Measure Model AUC±STD ACC 

First 

DCI  SVM 0.82±0.05 0.78 

CVSM  SVM 0.76±0.06 0.78 

HCP  kNN 0.73±0.09 0.72 

VPS  SVM 0.77±0.07 0.77 

mRS at 3M  SVM 0.75±0.08 0.73 

MOCA at 3M  kNN 0.82±0.07 0.78 

mRS at 1FU  SVM 0.65±0.10 0.72 

MOCA at 1FU  SVM 0.73±0.08 0.64 
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Last 

DCI  SVM 0.62±0.07 0.63 

CVSM  SVM 0.71±0.07 0.63 

HCP  SVM 0.68±0.09 0.68 

VPS  SVM 0.80±0.06 0.73 

mRS at 3M  SVM 0.85±0.07 0.80 

MOCA at 3M  Log Reg 0.86±0.06 0.80 

mRS at 1FU  SVM 0.71±0.09 0.62 

MOCA at 1FU  SVM 0.86±0.07 0.79 

 

Additionally, a side-by-side comparison of both performance evaluation metrics including 

AUC and classification accuracy for each of the 16 data analyses in the study is shown in Figure 

5-7. From accuracy values, we can notice that all the short-term measures are better performed 

using the first CT scan than the last CT scan. Whereas in the long-term measures, we observe that 

the majority of clinical measures or outcomes (including mRS at 3M, MOCA at 3M, and MOCA 

at 1FU) are better predicted using the last CT scan, and only mRS at 1FU is better predicted using 

the first CT scan. Last, based on 16 confusion matrices generated from the classification scores of 

their respective ML models, a set of the additional computed performance indices, including 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), are 

summarized and compared as shown in Table 5-3. 
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Figure 5-7: A side-by-side comparison of both the performance evaluation metrics AUC and accuracy for each of the 16 
analyses. 

Additionally, Table 5-4 shows two sets of AUC values along with the standard deviations of 

applying each of 9 single image features computed by our CAD scheme from the images of the 

first, and last CT scans to predict or classify mRS at 3-months among 41 aSAH patients. AUC 

values range from 0.52±0.10 to 0.73±0.09. The results indicate that many of these image features 

contain relatively higher levels of discriminatory power. For example, 4 image features yield AUC 

> 0.6 to predict mRS at 3-months using both CT images acquired at both the first and the last CT 

scans. However, the results also show that using an SVM model to optimally fuse multiple image 

features yields the highest classification performance (i.e., AUC = 0.85±0.07 using the images 

acquired from the last CT scan). 
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Table 5-3: A comparison of several other classification performance indices for each of eight clinical measures between the first 
and the last scan. 

Scan Type Clinical Measure Sensitivity Specificity PPV NPV 

First 

DCI  0.88 0.65 0.76 0.81 

CVSM  0.87 0.72 0.67 0.9 

HCP  0.73 0.71 0.61 0.81 

VPS  0.85 0.75 0.52 0.94 

mRS at 3M  0.96 0.29 0.72 0.80 

MOCA at 3M  0.74 0.82 0.78 0.78 

mRS at 1FU  0.91 0.43 0.71 0.75 

MOCA at 1FU  0.75 0.55 0.57 0.73 

Last 

DCI  0.79 0.42 0.65 0.59 

CVSM  0.83 0.5 0.53 0.81 

HCP  0.67 0.68 0.59 0.75 

VPS  0.77 0.71 0.48 0.9 

mRS at 3M  0.88 0.64 0.82 0.75 

MOCA at 3M  0.84 0.76 0.76 0.84 

mRS at 1FU  0.80 0.36 0.64 0.56 

MOCA at 1FU  0.86 0.75 0.71 0.88 
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Table 5-4:AUC values and standard deviations of applying each of 9 single image features computed by our CAD scheme to 
predict or classify mRS at 3-months using the images of the first and last CT scans. 

Feature Number First Scan Last Scan 

F1 0.66±0.10 0.57±0.09 

F2 0.71±0.09 0.65±0.10 

F3 0.72±0.09 0.73±0.08 

F4 0.57±0.09 0.54±0.11 

F5 0.64±0.09 0.58±0.10 

F6 0.67±0.09 0.52±0.10 

F7 0.56±0.10 0.72±0.08 

F8 0.62±0.10 0.63±0.09 

F9 0.62±0.10 0.66±0.09 

Proposed Combined 

Model 
0.75±0.08 0.85±0.07 

 

5.4 DISCUSSION 

This study demonstrates that sequential brain CT scans can play an important objective role to 

quantitatively predict both short-term and long-term clinical outcomes of aSAH patients. Although 

many clinical measures (i.e., 8 measures presented in Table 1) have been proposed and 

investigated, these measures are subjectively and qualitatively assessed by neuroradiologists in 

current clinical practice[119], which is a difficult task with potentially higher inter-rater variability. 

However, we propose developing this novel unbiased quantitative image analysis software, which 

can provide objective and quantitative radiological image marker or data analysis tool to predict 
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aSAH outcomes. Previous studies have demonstrated the advantages of using new image markers 

to facilitate clinical research and assist clinicians in their decision making process[120], [121]. In 

this study, we investigate and demonstrate the feasibility of developing and applying new 

quantitative radiographic image biomarkers using multi-feature fusion-based ML models to 

predict the prognosis of various clinical measures commonly used in current clinical practice after 

aSAH. The quantitative image markers enable to assess both the short-term and long-term clinical 

measures, which were predominantly observed between the first and last CT scans. To the best of 

our knowledge, no similar quantitative image markers have been developed and applied to predict 

variety of short-term and long-term clinical outcome measures of aSAH patients.  

This study has several unique characteristics and contributions to develop and apply novel 

quantitative image markers. First, the image processing pipeline of the CAD scheme is fully 

automated and capable of performing various tasks including (i) accurate segmentation of 

intracranial brain volume using a novel mapping-based segmentation scheme, (ii) automated 

labeling to subcategorize each CT voxel into four clinically relevant brain regions, and (iii) 

computing relevant radiographic image features representing the volumetric characteristics of 

these defined brain sub-regions. Since all CAD steps mentioned above are performed 

automatically without any user intervention, the procedure is less time-consuming and has higher 

reproducible or robust results every time. Additionally, the CAD scheme is also visually interactive 

along with various functionalities that allow users to either monitor or adjust volumetric 

estimations. Even though none of these features were used in this study, they will be examined in 

future experiments by clinical professionals to improve the segmentation markings. These 

corrections will provide a ground truth of CT labeling, thereby, resulting in building more robust 

ML prediction or classification models. 
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Second, our study demonstrates the feasibility of identifying and applying radiographic image 

features or markers computed from brain CT images to potentially phenotype aSAH patients and 

predict the prognosis of various associated clinical measures. This study supports the radiomics 

concept and provides a new opportunity to expand the radiomics concept[122] to more broad 

clinical application fields. The study is influenced by an article[55] using qualitative markers 

evaluated by the clinicians as assessment in SAH patients and developed automatic quantitative 

image markers that are consistent and not prone to human error. Additionally, based on the results 

of this study, we have two observations namely, (i) the image markers extracted and computed 

from the admission (first) CT scan have potential to quickly predict the short-term clinical 

measures or outcome, which may help clinicians quickly decide optimal treatment options to 

improve clinical outcome, (ii) Whereas the image markers extracted from the 10–14-day (last) CT 

scan can more accurately predict the long-term clinical measures in aSAH patients. Such 

observation clearly supports the impact of patients’ treatment on the long-term clinical outcome 

or recovery, which can assist clinicians developing optimal rehabilitation plan for the patients 

discharged from the hospital. As a result, our study results and observation indicate the potential 

advantages of developing new quantitative image markers, which has promising potential to 

provide clinicians (neuroradiologists) new decision-making supporting tools to assist them 

optimally treating initial brain injury and also mitigating secondary brain injury to reduce the 

morbidity and mortality of aSAH patients. 

Third, unlike many previous studies to identify image markers based on single optimal image 

feature, the quantitative image markers developed and tested in this study are represented using 

ML model-generated classification scores. The ML models are built and integrated with multi-

feature fusion methods that enable to capture the complementary image phenotype information. 
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This can achieve higher performance than using a single feature-based correlation method as 

demonstrated in many previous studies (i.e.,[87]). Additionally, many precautionary measures are 

taken while developing and training these ML models namely, (i) SMOTE algorithm is used to 

address and solve the class imbalance issue, (ii) PCA method is applied to generate optimal and 

non-redundant feature vector to achieve feature dimensionality reduction with a variance rate of 

95%, and (iii) LOCO cross-validation method is used to maximize learning power of available 

dataset and eliminate bias in case partition. Both SMOTE and PCA are also embedded into LOCO 

cross-validation to further reduce training bias. 

Fourth, although most previous studies used p-values or odds ratios to evaluate association 

between image or clinical markers and patients’ prognosis or response to treatment, assessment 

results of association cannot be directly applied in the clinical practice to develop or establish 

precision medicine or personalized treatment paradigm. To overcome this limitation and increase 

clinical relevance, we use ROC-based data analysis method and build confusion matrices to 

evaluate performance or accuracy of the ML models to predict patients’ prognosis or clinical 

measures. The reported AUC values along with classification sensitivity, specificity and positive 

or negative predictive values (PPV or NPV) have higher clinical significance to assist clinicians 

(neuroradiologists) making the optimal diagnosis and treatment decision applying to the individual 

patients in the clinical practice. Our study results with the highest AUC = 0.86±0.07 clearly 

demonstrate the feasibility or potential of developing and applying new quantitative image markers 

in future clinical practice.               

Despite the encouraging results, we also recognize that this is only a pilot study with several 

limitations. First, the dataset assembled in this study is relatively small and may not sufficiently 

represent the varied spectrum of aSAH patient population. Thus, a more extensive and diversified 
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study cohort must be used to train/test a more robust CAD scheme. Second, simple thresholding 

is employed to perform CT labeling of various regions, which may not be ideal due to CT image 

noise. Although a more adaptive case-based thresholding may be investigated for better CT 

labeling. As the increase of dataset, an advanced deep learning model-based region segmentation 

method can also be developed and tested to segment brain CT images as demonstrated in one of 

our recent studies, which applies a modified deep leaning model to segment acute ischemic stroke 

(AIS) lesions using a publicly available AIS dataset. Third, we only compute and build a small 

feature pool with 9 features. As a dataset size increases, more radiomics types of features or deep 

learning model generated automated features can be computed and investigated. Fourth, even 

though the interactive graphical user interface has multiple features to monitor/update 

segmentation and CT labeling, these steps were not considered and evaluated in this study. Thus, 

to overcome these limitations and improve ML model or image marker accuracy, in our future 

studies, we will ask experienced clinicians to validate/correct the possible errors in automated 

markings to improve region segmentation results, thereby, improving the performance of 

prediction models.  

In conclusion, despite several limitations, this is a valid pilot study that has clearly 

demonstrated feasibility and potential advantages of developing new quantitative image markers 

to predict the prognosis of aSAH patients corresponding to various clinical measures used in 

current clinical practice. The initial results indicate the significance of both the admission (first) 

and day 10-14 (last) CT scans in their predictive capability of assessing both short-term and long-

term clinical measures. Based on the foundation built in this study, more research efforts can 

follow to further optimize and validate the novel quantitative image markers by conducting 

prospective clinical studies in the future.   
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6 An Interactive Computer-Aided Detection Software Tool for 

Quantitative Estimation of Intracerebral Hemorrhage 

6.1 Introduction 
Intracerebral hemorrhage (ICH) is the most common type of intracranial bleeding that occurs 

with stroke. Among these ICH patients, more than one-third die within a month, and only about 

twenty percent will regain functional independence after treatment [123]. The volume of ICH is a 

vital variable used to calculate ICH-score, which is a well-known predictor of ICH prognosis 

[124]. Manual delineation of blood markings to compute the accurate volumes is tedious, time-

consuming, and not practical in clinical settings. Currently, ABC/2 is the most used approximation 

method to calculate hemorrhagic volume [125].  

During ICH, a cerebral bleed can occur within the brain tissue (intraparenchymal hemorrhage 

(IPH)) or ventricles (intraventricular hemorrhage (IVH)). Prior studies have investigated various 

qualitative methods to derive volumetric analysis of intraparenchymal hemorrhage (IPH), but IVH 

was not included. Based on our previous experiences in developing CAD schemes from 

neuroimaging [60], [59], [126], we believe a more accurate, fast, and reliable way for estimation 

of ICH volume will be very valuable for rapid prognosis and appropriate treatment, especially for 

those who are potentially fit for emergency surgical intervention. Thus, the purpose of this study 

is to develop a semi-automated interactive computer-aided detection (ICAD) segmentation tool 

for quantitative estimation of ICH volume.  
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6.2 Materials and methods 

6.2.1 Image Dataset: 

A non-contrast CT image dataset of 200 patients out of the 411 patients admitted with ICH 

diagnosis between the years 2012-2015 was retrospectively collected for this study. The imaging 

database was assembled from the existing clinical database from the Department of Neurology at 

the University of Oklahoma Health Sciences Center (OUHSC). During the period of 

hospitalization, multiple CT scans of the head were acquired from time to time for analyzing the 

patient’s condition. For this study, we only used the initial admission scan before treatment for the 

quantification of ICH. 

6.2.2 3D Brain Segmentation and CT Labeling: 

We proposed a novel segmentation algorithm using a mapping technique in this CAD scheme. 

For each 3D Dicom CT sequence, the ICAD scheme performs an initial pre-processing step 

involving rough brain segmentation using thresholding is performed to identify the largest single-

connected region in each of the 2D-image slices. Then based on segmented brain volumes, the 

slice with the largest volume is used as a reference marker to begin the proposed segmentation 

scheme. The fine-tuning begins at the reference marker slice as the intracranial brain volume in 

this slice is usually the most significant, single connected component and completely enclosed 

within the skull, facilitating accurate segmentation. Then, fine-tuning segmentation continues 

towards either left or right, applying a consecutive mapping technique. This mapping-based 

segmentation technique uses the prior slices segmentation result as guidance to identify multiple 

connected brain regions and act as limiting boundaries to avoid segmentation leakages. To identify 

multiple-connected regions, each region overlap is examined with prior segmentation results for 

its inclusion. Additionally, the limiting boundary criterion performs morphological dilation on 
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prior segmentation results to define the current slice boundary limit avoiding segmentation 

leakages. In summary, the above-mentioned process begins at identified reference marker slice 

and continues in both directions covering all the image slices. 

After successful segmentation of the intracranial brain region, each CT voxel is labeled into 

three regions, namely, Cerebrospinal fluid (CSF), Tissue (White Matter, Grey Matter), and Blood 

using the Hounsfield Unit (HU) of the brain. The preset threshold (TH) values were TH1: 15, TH2: 

45, and TH3: 80. The protocol set for this CT labeling is as follows: (1) CSF ≤ TH1, (2) TH1 < 

Tissue ≤ TH2, (3) TH2 < Blood ≤ TH3. After CT Labelling, each image slice is examined to 

identify the presence of IPH and IVH regions, followed by providing a contour enclosing the IPH 

and IVH. The ICAD scheme then labels blood within the boundary to IPH or IVH markings, 

respectively. Additionally, the combination of IPH and IVH labels is also categorized as the ICH. 

Next, these markings were visually examined by a medical resident. In case of irregularities in 

these markings, the ICAD tool allows the residents to perform correction by drawing a new 

marking, thereby resulting in an accurate segmentation of IPH and IVH markings. Figure 6-1 

illustrates the proposed ICAD segmentation tool for semi-automated ICH markings with multiple 

visual functionalities. 



122 
 

 

Figure 6-1: Proposed ICAD segmentation tool for semi-automated ICH markings. 

6.2.3 Volumetric Analysis and DICE Similarity: 

For each CT Label (i.e., IPH, IVH, and ICH), the CAD scheme computes image features. First, 

for each slice, the number of voxels belonging to the label are counted (𝑁"+,P"), then voxel length 

VU, voxel breadth VV, and slice thickness SW are used to calculate the respective label volume of 

each slice, as shown in equation (6.1). Next, a total case-based label volume is calculated as shown 

in equation (6.2). For example, to calculate the total amount of ICH, the number of ICH voxels in 

each slice to compute the total ICH volume as shown in equation (6.3). Similarly, the total volumes 

of VXYZ, 𝑎𝑛𝑑	VX[Zwere also computed. Additionally, the total intracranial brain volume enclosed 

within skull is also calculated as shown in equation (6.4). Additionally, for each case, the 

maximum 2D diameter (max_2D) of the largest CT label (i.e., IPH, IVH, and ICH) was also 

computed to capture information similar to the traditional ABC/2 method. 

V!"#$!(𝑠𝑙𝑖𝑐𝑒) = 	𝑁%&'(%(slice) × V! 	× V# × S)	(slice)																																																																																					(6.1) 
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V!"#$! = 	 6 V!"#$!(𝑠𝑙𝑖𝑐𝑒*)	
+

,-./0!12

																																																																																																									(6.2) 

V𝐼𝐶𝐻(𝑠𝑙𝑖𝑐𝑒) = 	𝑁𝐼𝐶𝐻(slice) × V! 	× V# × S)	(slice); 							V𝐼𝐶𝐻 = 	 6 V𝐼𝐶𝐻(𝑠𝑙𝑖𝑐𝑒*)	
+

,-./0!12

																																																(6.3) 

V#3456(𝑠𝑙𝑖𝑐𝑒) = 	𝑁'78.+(slice) × V! 	× V# × S)	(slice); 							V#3456 = 	 6 V#3546(𝑠𝑙𝑖𝑐𝑒*)	
+

,-./0!12

																																															(6.4) 

Finally, the contribution of the semi-automated segmentation of the ICAD scheme towards 

accurate segmentation of ICH is made using the Dice similarity coefficient (DSC). To calculate 

DSC between the semi-automated markings (𝐴) and the final accurate resident markings (𝐵) an 

overlap between two markings is calculated as shown in equation (6.5).  

																				𝑑𝑖𝑐𝑒(𝐴, 𝐵) 	= 	2	 ∗ 	 |	𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐴, 𝐵)	|	/	(	|	𝐴	| 	+ 	 |	𝐵	|	)																																																											(6.5) 

6.3 Results 

 For each case, the first segmentation of intracranial brain volume is performed before CT 

labeling and ICH markings. Figure 6- 2 illustrates the segmentation results of the ICAD scheme 

for ICH marking in a sample case. Figure 6- 2 only shows the slices consisting of the ICH markings 

here, where IPH and IVH are outlined using green and red colors, respectively. 

Table 6-1 summarizes information of various volumetric parameters and maximum 2D 

diameter of CT labels (i.e., IPH, IVH, ICH, and intracranial brain). For each parameter, both 

median and interquartile range (IQR) are represented for all cases. Additionally, the volume-

related parameters were represented in cubic.mm, and the diameter parameter is represented using 

mm. 
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Figure 6- 2: A sample case illustration of ICAD scheme with ICH markings. 

Table 6-1: Summary of various parameters of CT labels. 

Label Type 
Volumetric parameter (cubic.mm) Max_2D parameter (mm) 

Median 
 

IQR 
 

Median IQR 

Intracranial Brain 1279.7205 [1187.01, 1379.23] 
 

- - 

ICH 37.8525 [13.6626, 70.7912] 54.5683 [38.0556, 71.7985] 

IPH 24.5380 [7.3519, 54.2804] 49.7232 [31.9088, 63.8661] 

IVH 10.8981 [2.3493, 36.0557] 39.1904 [23.3227, 64.2572] 

Table 6-2 illustrates summary statistics of DSC between the semi-automated and resident 

markings for each of the CT labels (i.e., IPH, IVH, and ICH). Additionally, these measures were 

also categorized between the two observers who independently performed the markings for 100 

cases. 
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Table 6-2: Summary statistics of DSC parameters both combined and separated between two observers. 

Label 
Type 

DICE: Combined DICE: Observer-1 DICE: Observer-2 

Median 
 

IQR 
 

Median IQR Median IQR 

ICH 0.9655 [0.9194, 0.9872] 0.9721 [0.9312, 0.9902] 0.9613 [0.9127, 0.9840] 

IPH 0.9733 [0.9358, 0.9934] 0.9754 [0.9436, 0.9932] 0.9653 [0.9245, 0.9945] 

IVH 0.9156 [0.8313, 0.9786] 0.8999 [0.8030, 0.9609] 0.9300 [0.8595, 0.9923] 

6.4 Discussion 

This study develops and evaluates a novel semi-automated and interactive computer-aided 

detection (ICAD) segmentation tool for quantitative estimation of ICH volume categorized by IPH 

and IVH markings. The study has several unique characteristics and contributions. First, the 

scheme has the automatic capability to perform various tasks, including (i) segmentation of 

intracranial brain volume, (ii) CT labeling if each voxel into three defined brain regions (i.e., CSF, 

Tissue, and Blood), (iii) markings of blood region into either IPH or IVH based on provided 

contours, (iv) computing various volumetric parameters. Additionally, the scheme allows for 

visual inspection and modifications of ICH markings followed by computing dice similarity 

between semi-automated and the final accurate segmentation of markings. Second, the semi-

automated segmentation results were satisfactory, with the median DSC values ranging between 

0.92 to 0.97 for ICH markings, as shown in Table 6-2. Thus, the time required to correct these 

markings to obtain accurate segmentation results using the ICAD tool is significantly less as 

compared to a fully manual segmentation scheme. Third, both the observers had comparable 

confidence in using the ICAD tool for segmentation with median DSC values of 0.97 and 0.96 

(0.01 difference) for combined ICH markings. Thus, the initial ICH markings provided by the 
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ICAD act as a reference for marking and can help reduce inter-reader variability between the 

observers. 

Despite the encouraging results, we recognize that this study has several limitations. First, the 

ICAD is a semi-automated segmentation scheme needing the user to draw contour enclosing ICH 

region to identify the ICH. In the future, we will use these segmentation markings as input for a 

deep-learning architecture to perform fully automated segmentation of both IPH and IVH [25]. 

Second, only one observer looked at each case independently; in the future, two observers will 

examine a subset of the same sample of cases to observe the inter-reader variability. Third, the 

current observers used the ICAD tool segmentation results as a reference, thereby being biased. In 

the future, we will ask a new observer to perform all the markings completely manually without 

the ICAD tool to further deduce the advantages of the ICAD scheme in terms of segmentation 

accuracy and time spent on each case. Furthermore, the application of advanced machine learning 

models with a multitude of imaging features used in medical analysis needs to be further 

investigated [101], [105], [127], [128].  In conclusion, this study has demonstrated the potential of 

our ICAD segmentation tool for marking and quantification of ICH using brain CT images of 

patients. 
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7 Comparison of Performance in Breast Lesions Classification Using 

Radiomics and Deep Transfer Learning: An Assessment Study 

7.1 Introduction 

Full-field digital mammography (FFDM) is the most common and widely accepted clinical 

imaging modality for breast cancer screening in the general population. However, FFDM has a 

relatively lower sensitivity and specificity due to two-dimensional projection imaging. Thus, it is 

challenging to develop computer-aided detection and diagnosis (CAD) to assist radiologists in 

detecting suspicious lesions and classifying between malignant and benign lesions. Currently, 

computer-aided detection (CADe) schemes have been routinely implemented in the clinical 

practice, while computer-aided diagnosis (CADx) schemes have not been accepted in clinical 

practice. In previous CAD studies, two technologies have been widely used to extract and compute 

image features for lesion classification. 

First, traditional feature engineering to capture radiomic information is popular and well 

accepted in developing CAD schemes of medical images. Based on the radiomics concept, CAD 

schemes can extract a vast number of handcrafted features specific to understand the underlying 

phenomenon of suspicious breast lesions. These radiomic features can be obtained from a wide 

range of topics covering shape, density, texture patterns, frequency domain features etc. However, 

this higher number of initial feature dimensions comes with an inherent challenge of possible 

overfitting (curse of dimensionality), redundant information between features due to high 

correlation. Thus, it is important to take precautionary measures to reduce feature numbers or 

dimensionality. The optimal features can be obtained from either feature selection or reduction 

techniques. Additionally, the radiomics approach often faces the challenge of accurately 

segmenting subtle lesions if needed before feature engineering of local regions.  
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Second, in recent years, the interest in extracting automated features using the deep transfer 

learning method is emerging. Transfer learning exploits the phenomenon of learning global 

features independent of image types to initialize the network weights on larger and more 

commonly available images. Then, the pre-trained network can be finetuned using a small medical 

image dataset relative to the specific application task. However, in the medical image analysis, 

these ‘black box’ type, image-in, and prediction-out schemes are not easy to gain the trust of 

medical professionals.  

Since in previous studies, CAD schemes are separately developed using either handcrafted 

radiomics features or deep transfer learning model generated automated features using different 

and relatively small image datasets. Thus, it is very difficult to compare the performance of these 

two types of image features to achieve better performance. As a result, the advantages and/or 

potential limitations of CAD schemes trained using radiomics and automated features have not 

been well investigated to date. In order to address this issue, we conduct a new study to explore 

the association/correlation between the traditional radiomics feature-based CADs and deep 

learning framework-based CAD scheme in classifying between malignant and benign breast 

lesions using a relatively large and diverse image dataset. Additionally, we also investigate 

whether integration of these two types of features further improves performance in lesion 

classification.  

7.2 Materials and methods 

7.2.1 Image Dataset 

A fully anonymous and retrospective database consisting of full-field digital mammograms 

(FFDMs) was assembled for this study. The dataset is heterogeneous and consists of 2,778 FFDM 

images from craniocaudal (CC) and mediolateral oblique (MLO) views. The center location 
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belonging to suspicious lesion (soft tissue mass) in each image was marked by the radiologist. 

Based on the biopsy results, these images depict 1,452 malignant and 1,326 benign masses.  

The study primarily consists of two main phases, (i) a traditional image analysis phase with 

details involving the handcrafted features (ii) a deep learning architecture adjusted and finetuned 

for generating probabilities to classify between benign and malignant classes. More details 

regarding these two phases, along with model evaluation settings, are explained in the following 

sections. 

7.2.2 Image Processing and Traditional Feature Engineering 

During the traditional image processing phase, we first examined all the cases to identify the 

ideal size of a rectangular window centered around the radiologists marking enclosing the lesion 

region. We observed the optimal window size to be 150×150, covering all types of lesions in the 

dataset. Then, we cropped the fixed-size image patches centered with the reference markings for 

each case. Necessary steps were taken to zero pad the edges or corners if the central region is along 

the boundary. Additionally, a relatively small subsample of cases consisting of chest wall regions 

within the patch was automatically segmented out. Then, we performed an adaptive thresholding-

based segmentation with seed selected at the center. The segmentation results are satisfactory, and 

only a small subset (<5%) needed a manual adjustment of the segmentation boundary. 

Next, a total of 235 traditional handcrafted image features covering a variety of radiomic 

information representing lesion characteristics such as shape, density, boundary contrast, texture 

patterns, and wavelets were computed. The lesion-specific features explain the local patterns like 

shape, density distribution within and around the boundary region. In contrast, global image 

features capture the total image patch’s texture, density patterns, and frequency domain 
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information. More detailed information regarding these features can be found in our previous 

studies [1, 2]. 

7.2.3 Deep Learning Framework Settings 

We used the popular image classification architecture of pre-trained residual net architecture 

(ResNet50) for the deep learning phase with weights tuned for the ImageNet dataset consisting of 

1,000 classes. The final fully connected (FC) layer used for prediction was adjusted to categorize 

two classes (benign or malignant lesions). Then, we feed image patches of size 150×150 into the 

deep learning architecture and required transformations such as resizing (224×224×3: Height × 

Width × Depth), normalization of the mean and standard deviation of each channel were performed 

on the fly. We used the same grayscale FFDM image patch repeated for the three channels for the 

depth. Additionally, a minimal augmentation step (involving random centered crop, random 

horizontal, and random vertical flip with p=0.5) was added to introduce slight variation of a sample 

image for different epochs during the training phase. Due to the nature of medical images, a simple 

feature extractor type training involving freezing of all unchanged layers and updating only the 

weights and biases of the modified last FC layer did not yield good results. Thus, in this study, we 

optimized the weights of all layers during the training. 

Given the limitation of our dataset size relative to the computer vision field, we maximize the 

training and consider the time required for this network-tuning; currently, we used 10-fold cross-

validation (CV). During each fold, the data is split randomly into training (90%) and testing (10%) 

without repetition between them, and each sample case is only used once in the test phase. We 

investigated various batch sizes (i.e., 4,8,16, etc.) and found that a batch size of 4 works well for 

our analysis. Additionally, we selected Adam optimizer with an initial learning rate (lr) of 1e-4 at 

the beginning of each cross fold. We updated the learning rate scheduler with an exponential decay 



131 
 

function with a gamma value of 0.4 after each epoch. After each epoch, the network was evaluated 

to monitor training and validation loss during the training process, thereby deciding the stopping 

criterion. We noticed that by ten epochs, the network is saturated, and any further training resulted 

in overfitting. Thus, we only trained the network for ten epochs during each cross fold. During the 

validation phase, the network is loaded in evaluation mode, and a forward pass of data is done to 

collect both classification labels and probabilities. In summary, we used a 10-fold CV with ten 

epochs per each fold; at the end of each training fold, the test data was evaluated on the network 

to record both classification labels and the associated probabilities. 

7.2.4 Model Building and Performance Evaluation: 

We build and test several models to classify suspicious breast masses into two classes. 

Specifically, we investigated: (i) using only standard radiomic features, (ii) using probability score 

from ResNet50, (iii) integrated models with a combination of radiomic and ResNet50 models. 

More details regarding the models are provided in Error! Reference source not found.. In model 

I, the initial feature dimension of size 235 is reduced using PCA with a variance rate of 0.99, and 

then an SVM classifier was implemented. In model II, a simple classification based on a prediction 

probability of ResNet50 was performed. Whereas, during model III, multiple combinations of the 

above two were conducted using the output scores of models I and II, including III.1 using two 

scores from the model I and II considered as features to build an SVM classifier, III.2 using a 

simple weighted average of classification scores generated by models I and II, III.3 using a 

minimum score of models I and II, and III.4 using a maximum score of models I and II. 

Additionally, we also investigated the classification performance of three subgroups of traditional 

radiomic features (a. shape + density, b. wavelets, c. texture groups) with the integration of PCA 

into their respective SVM classification learner. The classification scores of each model were 
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named using ‘S’ followed by the subscript of the model number. For instance, the model I output 

score is S1, and a weighted average model built using a combination of S1 and S2 is termed as S3.2. 

To evaluate the performance of each model, we used two steps. First, a receiver operating 

characteristic curve (ROC) is constructed from the classification scores. The area under the ROC 

curve (AUC) is computed and used as an index to evaluate and compare the performance of each 

model to classify between two classes. Second, we apply an operating threshold on the 

classification scores (T = 0.5) to divide all testing cases into two classes (score ≤ 0.5: ‘Benign’; 

score > 0.5: ‘Malignant’). Figure 7-1 shows a detailed flow chart explaining each step of the 

proposed CAD scheme. 

 

 
Figure 7-1: A detailed flow diagram of each step of the proposed CAD scheme. 

7.3 Results 

Figure 7-2 shows sample images in the database with an overlay of the segmentation results. 

The cases with segmentation overlay with red or green color are malignant or benign cases, 

respectively. Additionally, in some image patches, we can also notice that zero paddings are 

performed whenever needed (lesion at the edge or corner inside the original image). We can also 
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notice that the density distribution of lesions consists of both solid and diffused samples. The 

diffused or hidden lesions segmentation is challenging to segment and/or analyze and may not 

represent the underlying lesion image marker. 

 
Figure 7-2: Sample case image patches with segmentation overlay (Red: Malignant; Green: Benign). 

We first performed an independent analysis of each subgroup in model I during the 

performance evaluation stage before the models summarized in Error! Reference source not 

found.. These models were also evaluated using PCA integration with an SVM classifier during 

each cross fold. The first model was built using a subgroup of features, including shape and 

density-related features. It included a total of 50 features, and the distribution of ACCs was 

65.68±0.02. Similarly, the models built using wavelet and texture pattern features independently 

resulted in an ACC distribution of 64.39±0.04 and 61.94±0.02, respectively. These traditional 

radiomic-based models’ performance was the lowest as expected as we were only observing the 

classification capabilities separately. Whereas, when a combined model of these three subgroups 

was performed (model I), we observed an increase in the performance metrics (ACC, AUC) as 

shown in Table 7-1, indicating that the combination of these types adds new information for 

classification model to learn new information. Next, the ResNet50 (model II) performed 
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significantly better than the model I in terms of both ACC (77.31±2.65) and AUC (0.85±0.02). 

The trendline depicting the change in the improvement of performance distribution in terms of 

ACC for each fold per epoch using the ResNet50 is shown in Figure 7-3. 

 
Figure 7-3: Trendline depicting the change in ACC distribution for each fold per epoch using ResNet50. 

Next, we used four different combinations to observe the performance improvement 

combining models I and II scores. In models III.1 and III.2 built using SVM and weighted averages 

of S1 and S2, we noticed that the performance metrics are very similar to that of ResNet50. This 

indicates that both traditional and deep learning features converge at the end towards classification 

prediction and have a high correlation. Additionally, a negative effect on performance was 

observed when using either min- or max-based simple classification models. A more detailed 

comparison of the distribution of performance metrics for each model is shown in Figure 7-4. In 

terms of both ACC and AUC from these results, we clearly notice that ResNet50 or a combination 

of ResNet50 with traditional radiomic features yield a similar performance with a high association.  
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Figure 7-4: Comparison between distribution of (a) accuracies and (b) AUCs for each model. 

Table 7-1: Summary of details for each model, including feature description and performance metrics. 

Model (output score) Feature description AUC ACC (%) 

Model I (S1) a. shape + density, b. wavelets, c. texture groups 0.77 ± 0.02 71.23 ± 2.44 

Model II (S2) classification probability of ResNet50 0.85 ± 0.02 77.31 ± 2.65 

Model III.1 (S3.1) SVM (S1¸ S2) 0.85 ± 0.01 77.42 ± 2.47 

Model III.2 (S3.2) W1 × S1 + W2 × S2 0.85 ± 0.01 77.31 ± 2.83 

Model III.3 (S3.3) Min (S1, S2) 0.83 ± 0.02 73.35 ± 2.17 

Model III.4 (S3.4) Max (S1, S2) 0.85 ± 0.02 74.07 ± 2.24 

7.4 Discussion  

In this study, we investigate the association between the traditional radiomics-based CAD 

features and the deep learning framework (ResNet50) in the classification of breast masses. This 

study generates several new and interesting observations, namely, first, the performance of 

subgroups of radiomic features is low when evaluated separately. Whereas, when combined, new 

information from each subgroup contribute additional information for the classification learner to 

improve the performance (ACC) significantly from a range for individual models (65.68±0.02, 

64.39±0.04, 61.94±-0.02) to the combined model I (71.23±2.44). 

Second, training a complex deep learning framework (ResNet) by freezing all input layers is 

not ideal given the contrast between ImageNet data and complex structures in the breast region. 
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However, a significant improvement in results compared to the model I is achieved by retraining 

a transfer learning model to update weights of all the layers in the network. Initializing the deep 

learning framework with weights from pre-trained ImageNet and customizing for a binary 

classification task (i.e., classifying between malignant and benign breast lesions in this study) 

works well. This step of careful customization and training all the layers for certain epochs is 

essential for optimally applying the deep transfer learning network to learn the parameters used in 

CAD of medical images.  

Third, when we combine the scores from models I and II, we observe no significant change in 

the improvement of the performance as compared to model II. Nevertheless, this supports the 

theory that both optimized radiomic features and deep learning features have a high degree of 

correlation. This level of closeness/association between two classification scores represents that 

even though no specific attention is taken in the deep learning framework after careful selection 

of features, they still capture the underlying phenomenon of breast images similar to that of 

radiomic features. Thus, even a simple weighted average base classifier model built using a 

combination of scores S1 and S2 yielded a consistent performance similar to that of ResNet50. 

Despite the encouraging observations in our results, we recognize some limitations in our 

study. First, even though we used a wide range of radiomic features (shape, density, texture, 

wavelets) for our model I, there are numerous more combinations to analyze the traditional feature-

based model. Second, we only used the standard ResNet50 by modifying the last FC layer to 

examine and utilize the full potential of transfer learning. We need to validate this phenomenon on 

other state-of-the-art deep learning frameworks in the future. Third, we were limited to using 10-

fold cross-validation given the constraints; in the future, we will try to use either more folds or 
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obtain a separate new test dataset to validate the classification performance of these transfer 

learning models.  

In conclusion, this study observes and compares traditional radiomic feature-based CADs and 

deep learning framework-based CAD to classify breast masses. Additionally, we also observed a 

high degree of correlation between the classification scores of two types of CAD models, 

representing that both preserve/capture similar information irrespective of the discrepancies in 

both approaches. Thus, although deep transfer learning is widely considered a “black-box” type 

study with a high degree of difficulty for human users to understand its learning or decision-

making logic or reasoning, the automated features provide high discriminatory information or 

power than traditional radiomics features. A furthermore comprehensive analysis covering both 

radiomic and deep learning architectures needs to be investigated to validate these observations. 

 

 

 

 

 

 

 

 

 



138 
 

8 Conclusion and Future Work 

8.1 Summary 

During the last several decades, research interests have grown in developing CAD schemes of 

medical images in commercial companies and research institutions. Many commercialized CADs 

are now available and utilized in clinical research and practice. Some commercialized CAD 

systems are clinically accepted as “second readers” to assist radiologists in interpreting medical 

images. However, the application of CAD in clinical practice is still limited, and more 

development effort and progress are needed. For this purpose, the proper supervision must be taken 

in multiple stages to develop a robust and reliable CAD scheme, which include (i) elimination of 

artifacts and improving the quality of images, (ii) Accurate detection and segmentation of the 

region of interest, (iii) radiomic feature computation and their optimization, and (iv) fine-tuning 

parameters of the machine learning model to address the underlying medical application 

objectives. Recently, this trend of CAD development and implementation has been accelerated due 

to many catalysts like (i) improved imaging technologies, (ii) growth in computational processing 

speeds, (iii) evolution of the concept of radiomics which depicts phenotype features that are highly 

associated with genomic and radiologic markers, (iv) advancements and application of deep 

learning architectures, (v) more research interest in the field of machine learning focusing on 

medical imaging informatics, etc. Despite encouraging results of developing various CAD systems 

in medicine, it is still an emerging field and requires more research penetration in many fields. 

Many clinical studies involving the interpretation of medical images can be assisted and/or 

improved by identifying novel radiographic image markers that capture clinically observed 

patterns. Many research studies have shown high inter-and intra-reader variability in assessing 

medical images. Additionally, this manual interpretation is time-consuming, inconsistent, and 
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highly dependent on the reader's skill. Additionally, the role of radiomics has been proven in 

assessing radiographic images (i.e., CT and MRI) depicting useful image phenotype features that 

are highly associated with genomic biomarkers [95] and have the potential to predict disease 

prognosis [96]. Thus, developing and integrating such study-specific radiomic engineered CADs 

with current evaluation tools used by radiologists/ experts will be useful to serve as a secondary 

reader and address some of the existing limitations. 

In the previous chapters of my dissertation, I presented and discussed several new approaches 

or solutions to address several key aspects of CAD development. The contributions in these studies 

ranged from developing novel image markers, segmentation architectures, and building interactive 

visually aided image analysis software tools to build problem-specific applications that are robust, 

reliable, and easily interpretable in assessing various medical imaging problems. 

In chapter 3, I successfully validate my hypothesis of using the two CEDM images offering 

complementary information to improve CAD performance. For this purpose, a new and optimal 

approach is applied to develop a fully automated CAD scheme of CEDM images to classify 

suspicious breast lesions. One crucial observation in this study is that DES images constructed 

using two images (LE and HE) obtained at two x-ray energy levels can eliminate the overlapping 

effect of FGT and better highlight the tumors. The study demonstrates that both DES and LE 

images contribute complementary information that can be used to improve segmentation (DES) 

and extract more tumor-related heterogenous (LE) information to improve the overall lesion 

classification accuracy of the CAD scheme. The study is the first of its kind to develop an 

automated CAD scheme using CEDM images. It has established a solid foundation to continue 

developing and optimizing CAD schemes using CEDM images to classify breast lesions in the 

future.  
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In Chapters 4 and 5, I present several unique quantitative image markers extracted from brain 

CT images enabling to predict the prognosis of patients suffering from different types of stroke 

diseases. Specifically, in Chapter 4, I demonstrate the feasibility of extracting image markers from 

the CTP images at an early stage to predict the prognosis of AIS patients. Several unique image 

processing algorithms are proposed and embedded into building this CAD scheme. For instance, 

although parameters like (i) the number of image sequences, (ii) the number of image slices per 

sequence, etc., are inconsistent between different brain CT scanning cases. The new CAD scheme 

automatically identifies and normalizes these parameters before performing the rest of the image 

processing and feature analysis. Next, segmentation of brain regions and identifying the blood 

flow patterns over time are also carefully designed to develop novel image markers representing 

the asymmetrical blood volumes. Additionally, I design and implement a unique interactive CAD 

that supports full customization and the ability to monitor all aspects of the image analysis pipeline 

to encourage experienced readers to observe and optimize the automated results if needed in their 

research or future clinical applications. The study demonstrates promising results when applying 

the proposed CAD scheme and ML model to predict AIS patients' prognosis with the diverse class 

distribution. 

In Chapter 5, image markers representing clinically relevant information are also automatically 

developed to investigate its potential in predicting a wide range of clinical measures amongst 

aSAH patients. Like the CAD scheme developed in Chapter 4, very careful customization of an 

interactive CAD scheme is also successfully developed and tested to automatically segment and 

generate radiomics image markers representing the proportions of various subregions. The study 

results are very encouraging and support the clinical expectations. Namely, (i) the admission CT 

scan illustrates its potential in predicting the short-term clinical complications, and (ii) the 
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discharge CT scan shows significance in predicting the prognosis of long-term measures. The 

study provides scientific rationale or evidence to support conducting future prospective studies to 

use the admission results generated by the CAD scheme to take more patient-specific care and 

treatment, thereby impacting the overall long-term recovery in the aSAH patients. 

In Chapter 6, I demonstrate another example to support translational clinical research activities 

by developing and implementing an ICAD scheme or tool of image segmentation and image 

marker quantification, which allows the clinical researchers to semi-automatically segment and 

quantify the ICH markings. To improve the efficacy of using this ICAD tool by the clinical 

researchers, the ICAD tool only requires minimum user input, such as providing a rough boundary 

enclosing the ICH region. CAD will perform identification and automatic segmentation of 3D ICH 

volumes. The utility of this new ICAD tool has been successfully validated by the experienced 

clinical researchers in their translational studies that have reported quite encouraging results to 

identify and extract new quantitative image markers, which highly associate with the patients’ 

prognosis or clinical outcomes. 

In chapter 7, I demonstrate a comparative study that successfully assesses and compares the 

two most popular types of CAD approaches using either traditional radiomics-based or deep 

learning such as CNN-based CAD models. We assembled a relatively large image dataset of nearly 

2,800 mammograms to investigate the association/correlation between these two types of CAD 

schemes in evaluating their performance in classifying suspicious breast lesions. The study results 

show that both types of CAD schemes contain similar information in their ability to classify breast 

lesions. Additionally, the CNN-based CAD model performs significantly better than the traditional 

radiomics feature-based CAD model. No significant performance improvement achieved using 

various fusion techniques further supports my research hypothesis as presented in Chapter 2.  
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In summary, the research efforts made during my Ph.D. studies provided me with a great 

learning opportunity to explore, investigate, and contribute to developing and testing several new 

novel CAD schemes or ICAD tools for medical images. Additionally, I am also part of many 

collaborative CAD studies along with researchers in both medical imaging engineering and clinical 

research or applications fields. These research efforts have resulted in promising results, as 

reported in many research papers published in engineering and clinical journals and medical 

imaging conference proceedings, demonstrating the scientific significance and potential 

translational clinical applications. 
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8.2 Future Works 

Despite extensive research efforts and progress made in the CAD field, researchers still face 

many challenges in developing robust CAD schemes for clinical applications. The role of 

radiomics to represent the tumor heterogeneity information needs to be further investigated on a 

larger and more diverse dataset of many diseases. Additionally, even though the state-of-art deep 

learning systems have demonstrated better performance in classification and segmentation tasks. 

These systems have a few limitations, namely, (i) evaluated on smaller datasets using 

augmentation technique, (ii) Black-box approach of image-in, and prediction-out schemes are not 

easy to gain the trust of medical professionals. Thus, there is a need to build CAD systems that can 

be visually interactive, allowing the clinical researchers to observe various stages of deep learning  

Based on my experience during my Ph.D. study, I will continue my research to explore further 

techniques to improve the acceptance of CAD applications in clinical practice. For instance, I will 

further validate my CAD schemes' performance on larger datasets collected in our future 

prospective studies. In a few of my studies (i.e., chapters 4,5,6), I am currently working with 

clinical researchers to use these CAD systems and optimize them based on their recommendations. 

Additionally, deep learning systems can be used to automate various aspects of CAD systems. 

Thus, I will explore the role of such systems to act as feature extractors or segmentation tools in 

my current studies. Then, I will integrate them with existing ML systems embedded along with 

ICAD tools. Finally, any level of automation/ generalization of CAD schemes may not be enough 

to gain the trust of the radiologist in adapting them as assisting tools. Thus, I will continue to 

develop/improve study-specific customizable visual tools based on radiologists’ recommendations 

in the CAD schemes. 
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By combining my previous works and additional new work in my Ph.D. research and studies, I can 

comprehensively investigate different machine learning algorithms' challenges as a frame of CAD 

systems and develop more robust algorithms. Since I am exploring the integration of CAD systems 

and deep learning, I believe the success of my research will provide a significant contribution to 

the development of CAD systems in the future in the medical imaging informatics area. 

Furthermore, my research achievements during my Ph.D. will significantly benefit the research 

work in my academic, professional development, and future career. 
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