EFFECT OF SPATIAL VARIABILiTY OF RAINFALL
ON MODELING HYDROLOGIC/WATER

QUALITY PROCESSES

By
INDRAJEET CHAUBEY

Bachelor of Technology
University of Allahabad
Allahabad, India

1990

Master of Science
University of Arkansas
Fayetteville, Arkansas, U.S.A.
1994

-Submitted to the Faculty of the
Graduate College of the
‘Oklahoma State University
 in partial fulfilment of
the requirements for
The degree of
" DOCTOR OF PHILOSOPHY
December, 1997



7—[&@,@@




EFFECT OF SPATIAL VARIABILITY OF RAINFALL
ON MODELING HYDROLOGIC/WATER

QUALITY PROCESSES

Thesis Approved:

: Thesis Advisor

S —
) E A

&Dean\éf the Graduate College

it



ACKNOWLEDGMENTS

A scientiﬁc endeavor of this nature requires cooperation and encouragements of
many individuals. Very little, if any, of this work would have been possible without the
commitment made in good faith, frust and enceuragement by a very special group of people
associated with me. These are the 'peopnle who helped me personally and professionally.

I wish to express my deepest appreciation to Dr. C.T. Haan, me major advisor, who
gave me an opportunity to work with him. It was a dream coming true for me. I feel
extremely fortunate to have vworking with him for the last three years. His passion for the
knowledge, great insight into_ the subject matter, and a friendly and charming personality has
taught me lessons that will go a long way in shaping ﬁp my personal and professional career.
Without his scientific experﬁse, timely encouragements, and financial assistance, completionv
of this dissertation could have never been possible.

I owe a great deal to my other committee members Drs. Ron Elliott, Dan Storm, and
Nick Basta for their inyaluable'suggestions and encouragements throughout the course of this
research. |

This research could have been very difficult to complete withouf the timely
availability of data rieeded. I am grateful to Drs. J.D. GarBrecht aﬁd P.J. Starks for giving
permission to use the data from the Little Washita basin and the Micronet. Sincere thanks

are extended to Mark Morrissey and Mark Safer of the National Severe Storms Laboratory

iii



for compiling the micronet rainfall data. I am grateful to Dr. Ken Nixon and Tom Stockdale
at the Center for Computational Geosciences at the University of Oklahoma for giving
access to the NEXRAD data. The help provided by Tom Stockdale in writing computer code
to process the rainfall data and taking timé from his extremely busy schedule to help rhe with
very complex DPA daté is greatly appreciated. I am very thankful to Dr. Sabine Grunwald
for providing me the modiﬁed. AGNPS code. _Discussions with Dr. S.J. Stadler and Joseph
Seig about processing of the radar rainfall data were very helpful. Suggestions provided by
Dr. Gabriel Senay to improve this dissertation is greaﬂy appreciated.

Dr. Jayne Salisbury was very helpful throughout the course of this study. She was
always available to help me with GIS and thebLittle.Was‘hita Data. I am very thankful for
her help, support and friendship throughout my Ph.D. program.

Deep appreciation is extended to a very nice group of friends who alwayé cheered me
up when I needed them. Dr. T. Ramanarayanan, R. Lakshminarayanan, Dr. Sanjai Rai,
Puneet Srivastava and Akhilesh Mishra, I am truly proud to have friends like them. Very
sincere thanks are due to Dr. Ted Kornecki for all the friendship, fun and parties we always
enjoyed. Shraddha and I felt at home whenever we visited him.

I was fortunate to have ‘a very sincere group of friends throughout my college
education. I would like to cxpfess my dcepest appreciation to one of the very special friends
- Sanjeev Dixit. He is the principal architect of my graduate career. His friendship is the
most cherished treasure of my life. I wish everyone in this world had a friend like him.

I don’t have words to express my gratitude to my parents and brothers. Their
encouraging letters and conversations on the phone gave me strength and courage ":[o

iv



complete this degree. This accomplishment could have been very difficult without their love
and support.

Last but not the least, I owe a great deal of my success to my wife Shraddha. Her
patience, love and support made this difﬁcuit task very enj oyable. She spent endless nights
alone at homé when [ was working on this research. She always encouraged me to thrive for
the best. Without her love, support and encouragement, working on this research could have
been very difficult and boring.

I would like to dedicate this dissertation to my father - my personal hero. I wish he
was with me to enjoy this important moment of my life. . He taught me to believe in myself.
Without his power of dreafns, I cpuld have never traygled from Jawahi Diyar to Stillwater

and got all the success on the way to this long journey.



TABLE OF CONTENTS

Chapter - Page
INTRODUCTION ...t it it et et e it ettt 1
1.1 Statement of the Problem ........................ e 1
1.2 Objectives .............. P PP 2
1.3 Scope of the Study ............. PO 3
1.4 Significance ofthe Study ........ ... . 0 5
REVIEW OF LITERATURE . ... i i i ettt eee e 7
2.1 Spatially Distributed Rainfall Modcls PPN 8
2.2 Radar Measurement of Rainfall .................... e 11
2.3 Comparisons of Rain Gauge Data With Radar Scanned Data ........... 16
2.4 Effects of Spatial Variability of Rainfall on H/WQ Model Outputs. ... ... 20
THEORY ........ ...t i, e 26
3.1 Interpolation of Rainfall Data . ... ........oviteurreeenneeennnnnnns 26
3.2 Calibration of NEXRAD Data ..........ccoiiiiiiiniiiiinieninn.. 35
3.3 Description of NEXRAD Rainfall Algorithms and Techniques.......... 40
3.4 Bias in Parameter Estimation ........... ...ttt 42
METHODOLOGY ottt ittt et ettt e e ettt 45
4.1 Description of the Study Area ............ F 45
4.2. Descriptionof the Model ........... ... o i 56
4.3 Description of the GRASS-AGNPS Modeling Tool .................. 61
4.4. Modification of the AGNPS to input grid-based rainfall and energy—1ntens1ty
» values ...t e e e e 66
4.5. Sensitivity Analysis of AGNPS ....... e S e 67
4.6. Description of the rainfall events and the dataset .................... 69
4.7 Descriptionofthe RadarData ............ ... .o i, 86
4.8 Calibration of Radar Rainfall ............ FE 87

4.9 Estimation of parameter uncertainty due to spatial variability of rainfall .. 88
4.10 Estimation of output uncertainty due to spatial variability of rainfall ....93

RESULTS AND DISCUSSION ... it it et et et e e i e 97
5.1 Spatial Variability of Rainfall ............. ... . coiiiiiiieennnn... 97
5.2 Calibration of Radar Rainfall Data ............... ... . .. ... .... 113
5.3 Effect of Rainfall Spatial Variability on Parameter Estimation .......... 117

vi



5.4 Effect of Rainfall Spatial Variability on Model Outputs .......... ... 142

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ................. 163 |

6.1 Summary . ... e .. 163

6.2 CoNCIUSIONS . . v\ttt e e e e 170

6.3 Recommendations for Future Research ............................ 172
REFERENCES ... i et e et et et e 173
APPENDIX - 1 ‘

Rainfall observed by micronet stations for the rainfall dates analyzed ....... 180
APPENDIX - 2 o

Optimum parameter estimates for the rainfall events analyzed ............. 184
APPENDIX -3 .

AGNPS outputs obtained using optimum parameters and rainfall observed at each

gauge location one at a time.............. P e 190
APPENDIX - 4 .

Computer program to estimate the AGNPS parameters .................. 197
APPENDIX -5

Computer program to process DPA rainfalldata .. ................. ... .. 208

vii



LIST OF TABLES

Table Page

4.1. Characteristics of the Cyril and Cement watersheds . . . . . .................. 56
4.2. Summary of AGNPS (version 5.0) input parameters ........................ 62
4.3. Summary of AGNPSoutputs ............... e .. 63
4.4. Relative sensitivity of the AGNPS parzﬁneters for the output considered ........ 70
4.5. Characteristics of the Micronet Stations ...... e 72
4.6. Observed rainfall, runoff, sediment and nutrientvalues ..................... 90
5.1. Spatial variability of rainfall for the Cyril watershed ......... U 101
5.2. Spatial variability of rainfall for the Cement watershed .................... 101
5.3. Spatial variability of rainfall for the Little Washitabasin .................. 102
5.4. Radar rainfall calibration factors for rainfall on 7/9/96 ..................... 114
5.5. Radar rainfall calibratién factors for rainfall on 7/10/96 . ................. .. 115

5.6. Parameter variability induced by spatial variability of rainfall for Cyril watershed119

5.7. Parameter Variability induced by spatial variability of rainfall for Cement

watershed . ... .. e 120
5.8. Biases in estimated parameters induced by the rainfall spatial variability ...... 123
5.9. Relative errors in estimated pérametérs for Cyril watershed ................. 125
5.10. Relative errors in estimated parameters for Cement watershed . ............. 126
5.11. Relative errors inrainfall values . ........ ... ... ... . i .. 127



5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

Relative errors inrainfall values .............. ... .. ... ..., 127
Correlation among the estimated parameters for Cyril watershed ............ 131
Correlation among estimated parameters for Cement watershed ............ 132

Parameter variability induced by rainfall spatial variability with radar measurement
of rainfall ........ PR 141

Output uncertainty induced by the spatial variability of rainfall in Cyril
watershed ... ... L e 144

Output uncertainty induced by the spatial variability of rainfall in Cement
watershed ............ ... ... ... ..... P 145

Bias in modeled outputs due to rainfall spatial variability ................. 148

Relative errors in modeled outputs due to rainfall spatial variability for the Cyril
watershed . ... .. e 150

Relative errors in modeled outputs due to rainfall spatial variability for the Cement
watershed .. ... . e 151

Output uncertainty induced by spatial variability of rainfall when radar data
WaAS USEA .« o ittt ittt et e e e e e 159

Bias in estimated parameters with calibrated radardata ................... 161

ix



Figure Page
4.1. Location of the Little Washita basinin Oklahoma ......................... 46
4.2. Soil groups of the Little Washita watershed ............ ... .. ... ... ..... 49
4.3. Land use and cover of the Little Washita basin . ............. e 51
4.4. DEM data of the Little Washitabasin .......... ... ... ... o i, 53
4.5. Locatioﬁ of the Cyril Watérshed in the Little Washitabasin ................ .54
4.6. Location of Cement watershed in the Little Washita basin and the Micronet

stations Used .. ... 55
4.7. Location of the Micronet stations in Little Washitabasin . ................... 71
4.8. Boundary of the Cement watershed . . .. . . .. I 76
4.9. Elevation map of the Cement watershed ............... ... .. oiiia... 77
4.10. USLE K factors for the Cement watershed ............... ... ... ... ... .. 78
4.11. Hydrologic groups of the Cement watershed .. ............. ... ... ....... B 79
4.12. Pércent Sand for the Cement watershed .......... e 80
4.13. Percent clay for the Cement watershed ........... ... ... .. .. ... ... ... 81
4.14. Land use and cover of the Cement watershed ............. e 82
4.15. Fertilizer/nutrient application rates for the Cement watershed ............... 83
4.16. Tillage practices for the Cement watershed .. ........ ... ... .. ... ... .. 84
4.17. USLE C factors for the Cement wétershed .............................. 85

LIST OF FIGURES



4.18. Summary flow chart of parameter/output uncertainty estimation ............. 96

5.1. Hourly distribution of rainfall on 8/3/96 over Little Washita watershed . ........ 98

5.2. Micronet Stations used with the Cyril watershed .......... ... . oL il 100
5.3. Contour map of rainfall depth (min) for stormon 3/27/96 ............ ... ... 106 |
5.4. Contour map of rainfall depth (mm) for storm on 4/21/96 ... vuiiiiiii. .. 107
5.5. Contour map of rainfall depth (mm) for storm on 5/3 1796 .................. 108
5.6. Contour map of rainfall depth (min) for stormon7/9/96 ................... 109
5.7. Contour map of rainfall depth (mm) for stormon 8/3/96 ................... 110
5.8. Contour map of rairifall depth (mm) for stormon 10/27/96 ................. 111
5.9. Contour map of rainféll depth (mm) for storm on 11/6/96 .................. 1 12
5.10. Probability plot of estimated slopes for the Cement watershed . ............. 136

5.11. Probability plot of estimated K factors for the Cement watershed ........... 137

5.12. Probability plot of estimated retention parameters for the Cement watershed .. 138

xi



AE

AGNPS

CF
CN

cov

C.V.

aD
0j

DPA
EARTHR

HRAP

LIST OF SYMBOLS

Arithmetic error

Agricultural Non Point Séurce Pollution model
kth polynomial cogfﬁéient

Radar rainfall calibrétion factor )

Curv¢ Number

Covariance

Coefficient of variation

Raindrbp diameter

Incremental value of D

Distance between points o and j

Digital Precipitation Array

Radius of the earth (km)

Hydrologic Rainfall Analysis Proj ect
Hydrology/water quality

Vector of efroneoué inputs to a H/WQ model
Vector of true inputs to a H/WQ model

USLE K factor, Mg/(rainfall energy intensity unit)

xii



SE
\

WSR-88D

XLAT
XLON
ZMESH
VA

z
0(X0,Y0)
By;

o2

Vector of erroneous parameters
Vector of true parameters

Rainfall depth

Rainfall rate (mm/h)

Relative error |

Gauge measured rainfall (inches‘)
uncalibrated radar rainfall (inches)
Radar estimated rainfall
Retention parameter |

Standard error

Drop terminal velocity of a drop

‘Weather Surveillance Radar-88 Doppler

Weight at sampling point j used in rainfall interpolation
Coordinates of a point j in two dimensional space

Latitude (degrees)

Longitude (degrees)

Grid length at v60° latitude (4.7625 km) in HRAP coorciinate
Radar reflectivity (mm®m’)

Grid length in HRAP coordinate system (km)

kth monomial in terms of x,, y,

Element of the inverse of the n x n matrix with elements @,(x,,y,)
Variance

Xiii



CHAPTER 1

INTRODUCTION
- 1.1 Statement of the Prpblem

Pollution of surface and ground water systems from agricuitural activities has been
reported to be a sérious problem. One of the most convenient ways to study the impact of
various agricultufal activities on surface and gfound water quality is the use of
hydrology/water quality (H/WQ) models. Dﬁring the last decade many models, such as
AGNPS (Young et al., 1987), ANSWERS (Beasley et al., 1980), CREAMS/GLEAMS
(Knisel, 1980), EPIC (Williams et al., 1984), WEPP (Lane et al., 1989), SWAT (Arnold et
al., 1993), and SIMPLE (Sabbagh et al., 1995) have been developed for use in making
environmental decisions on rural watersheds. These models require input parameters to
describe specific situations. The actual processes occurring in the field are more complex
and variable than can .currently be represented even in the most sophisﬁcated models.
Algorithms included in a model that are designed to represent a particular process are forced
to represent processes that are not included in the model precisely because there is no other
representation of these processes in the model (Haan et al., 1995). |

Rainfall is a key input vaﬁable used iﬁ all H/WQ models. It activates flow and mass
transport in hydrological systems. Modeling of hydrological processes in which the rainfall

is the driving force has generated considerable interest with respect to possibilities of solving



increasing environmental problems. However, most of the hydrological calculation methods
used in practical applications are still baéed on assumptions and simplifications from tﬁe
early history of hydrology (Berndtsson and Niemczynowicz, 1988). For example, it is no
longer practical to maintain the assumption that rainfall is spatially homogeneous across a
watershed area. Thus, one of the ways to improve the accuracy of calculated runoff and
runoff driven pollutant transport is to take spatial and dynamic properties of rainfall into
consideration.

The sensitivity of model outputs to the changes in input parameters has been of great
interest to both model developers and modél users. One parameter that has received little
attention in modeling is the temporal and spatial distribution bf rainfall. The storm rainfall
is usually represented by an average precipitation uniformly distributed throughout the
watershed, even though the storm events that cause the greatest movement of sediment and
nutrients are rarely uniform (Young et al., 1992). Thi.s spatial Variai)ility in rainfall input

may introduce significant errors in model parameters and subsequently in the model outputs.

1.2 Objectives
The overall goal of this research was to study the Vériability induced in H/WQ model
parameters and model outputs solely due to the spatial variability in the rainfall. This will
help isolate the variability iﬁ the model parameters/outputs caused by a spatially variable
rainfall which is otherwise thought to be uniform and is usually assumed not to contribute
towards the model parameter/output uncerfainty. The specific objectives of this research are:
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1. To combine rain gauge and radar data to capture spatial variability of rainfall.

2. To estimate parameter uncertainty in H/WQ models solely due to the spatial variability
of rainfall.

3. To study the impact of spatial variability of rainfall on model outputs, i.e. Tunoff,

sediment and nutrient losses.

Research Hypothesis. Réinfall inplit as required by most H/'WQ models is spatially variable

and introduces significant uncertainty in modeling H/'WQ processes.

1.3 Scope of the Study

This research was conducted using data from the Little Washita basin, a tributary of
the Washita River in Southwest Oklahomﬁ. Two subwéltersheds known as Cyril and Cement |
watersheds were delineated and used in this study. Rainfall spatial variability was captured
| using data from Micronet stations and NEXRAD radar data. Further details are given in
Chapter 4.

Most H/WQ models that use rainfall as an input, assume spatial homogeneity of
rainfall across the watershed. The results obtained in this study can be used as a guideline
to estimate the errors in the model parameters/outputs induced by the rainfall spatial
variability. Very few studies have been conducted in the past to assess the effect of rainfall
spatial variability on model outputs. Most of these studies concentrated on hydrologic
components of the model such as runoff volume, peak runoff rate and time to peak'. No
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study has been conducted to estimate the uncertainty in the model parameters induced by

rainfall spatial Vafiabﬂity. All of these studies were limited by the smaller size of the

watersheds, and a small number of raingauges available to capture the rainfall spatial

variability. This study was conducted on two watersheds. The rainfall spatial variability was

captured using a dense network of raingauges and radar data. The following steps were taken

to accomplish the objectives of this study:

1.

Rainfall spatial variability was capturéd using Micronet raingauges and radar. Radar
data were calibrated using the Micronet data.

AGNPS model was modified to input a grid-based rainfall and energy intensity.
AGNPS was calibrated ﬁsing true rainfall pattern and funoff data. Calibrated
parameters and the true rainfall pattern were used to obtain the ‘observed’ model
outputs.

Model parameter uncertainty sdlely due to rainfall spatial variability was obtained
by estiinating the model parameters using observed outputs and rainfall observed ét
each gauge location assuming the spatial homogeneity of rainfall.

Model output uncertainty resulting solely from the spatial variation in rainfall was

estimated by running the model using calibrated parameters and rainfall observed at

each gauge location, one at a time, assuming that the rainfall was spatially

homogeneous across the watershed.



1.4 Significance of the Study

Historically, in the application of H/WQ models, rainfall has been assumed to be a
uniform process and it is assumed not to contribute to parameter uncertainty. Consequently,
a single rainfall depth is input in the models. Several studies have shown that rainfall is
spatially variable and it may cause a variability in the model outputs. Rudra et al. (1;93 )
observed that: "failure to take these variations into account during calibration could lead fo
highly distorted estimates of model parameters; and failure to consider the detailed Vaﬁatioas
during model application could lead to serious inac}curaciesvin predicted results".

In recent years, a rapid increase in both the number and size-of various kinds of
pollutant releases and the spread of pollutants has been observed. In pace with the increasing
environmental problems the need for accurate hydrological estimation methods is also |
increasing. For the identification and estimation of pollution management technologies, it
is very important to calculate pollutant release and pollutant Uanspoﬁ‘ with accurate temporal
and spatial resolution. Since rainfall is a driving force behind many kinds of pollutarit
release and subsequent transport and spread mechanisms, an accurate description of temporal
and spatial rainfall variability should be used for these calculations (Berndtsson and
Niemczynowicz, 1988). O'Connell and Todini (1996) stressed that the use of radar and
- dense raingauge data should be the type of experiment needed to gain a better understandiné
of the hydrological importanae of spatial Variability in rainfall.

With the -adve'n;c of moden precipitation measurement techniques it is now possible
to measure spatial variability of rainfall easily and more accurately. Spatial variability oif
rainfall waé captured by the use of raingauge and radar measured rainfall. This spatially

5



variable rainfall was applied to AGricultural Non-Point Source Pollution (AGNPS) model.
The results of this study give an insight about parameter uncertainty that was caused solely
by the spatial variability of rainfall. Also, it gives information about how much variability
in the model output can result when rainfall is assumed uniform. The results of this study

can be applied to other H/WQ models that use rainfall as an input.



CHAPTER 2

REVIEW OF LITERATURE

Haan (1989) has mentioned that in any modeling effort fhere are at least three typés
of uncertainty in?olved - parameter ﬁncértainty.; model uncertaint}'/‘, and uncertainty in the
true state of ﬂature. Parameter uncértainty réﬂects incomplete models, incomplete
information and inadequate paraméter'estimation techniques. 'Parameter uncertainty ariseé
because parameters are random variables ‘and one can never be sure of the proper value of
the parameters. Uncértainty in the model parameters results from the. approximate nature o;f
the model containing the parameters. Model uncertainty arises because any model is a
simplification of processes occurring in the nature and it does not represent the true system.
Because many simplifying assumptions are made while modeling hydrologic processes ofl
a wafershed scale, algorithms included in the model do not represent all the processes that
are actually occurring on a watershed. Uncertainty in the true state of nature refers to thé;
variability in. spac‘e and time of méteorologic factors such as rainfall, temperature, solar
radiation, stream flow, etc. This work is mainly focused on the parameter uncertainty and
the uncertainty due to the true state of nature.

Traditionally, ';hé distribution of rainfall depth has }been assumed to be homogenous
and consequently very few attempts have been made to model the spatial variability of

rainfall. As rainfall is measured conventionally at a finite (and sometimes sparse) set of



points, the resulting estimate of average rainfall in space is subject to error (1) because tlzle
spatial variability of rainfall has been averaged out and (2) because the accuracy of the
resulting average will depend on the density of the raingauge network (Shah et al., 1996).
When a particular process such as rainfall variability is not modeled or is incompletely
modeled, other components of the model are forced to compensate for this model
shortcoming. Consequently, physically-based parameters may lose their strict physical
interpretation. These parameters then reflect processes they were not originally intended to

represent.

2.1 Sp-:itially Distribluted Rainfall Models

In seeking to characterize the behavior of rainfall in timé and in space, Rhenalé-
Fegueredo et al. (1974) have classified various stochastic modeling approaches as follows:
(1). Point Rainfall Models: These models are based on observations of rainfall from a’
single raingauge taken over a relevant time interval (e.g., hourly, daily) and thus characterize
a time series of rainfall at a single point.
). Multivariate Rainfall Models: In these models the correlation structure of the
historical point raﬁnfalls for the relevant time is presérved by considering several raingauge‘s
simultaneously. When using such models for Monte Carlo simulations, rainfall depths ca;l
only be generated at the given gauge locations.
(3). Multidimensional Rainfall Field Models: Sﬁch models seek to characterize thie
statistical structure of the rainfall at any point in the area of interest, and not just the locationé
of the raingauges. These type of models can be used to assess the impact of spatial
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variability in rainfall on watershed response, as they can be used to simulate a fully
distributed true rainfall input to a distributed model to obtain a corresponding true responsé.

The concept of simulating a spatial rainfall distribution is not new. Amorocho and
Brandstetter (1967), Grayman and Eagleson (1969), and Cole and Sheriff (1972) were amoﬁg
the pioneers in presenting the mathematical descriptions of rainfall distribution in space.
Mejia and Rodriguez-Iturbe (1974) developed an 'areal—multidimensional’ rainfall model thét
uses stochastic cohcepts for simulating storm total rainfall depth at.any point. Later, Bras
and Rodriguez-Iturbe (1976) expanded this work to develop a 'non—stationary time-varying
multidiménsional' rainfall generator.

Felgate and Read (1975) adopted the correlation analysis technique developed by
Briggs et al. ( 1950)‘ to quélitaﬁvely describe the structure of stationary rainstorms. They |
assumed that spatial properties of rainfall patterns could be described by a two-dimensional
Lagrangian spatial correlation ﬁmction. Amorocho and Wu (1977) developed a modeling
framework to generate precipitation sequences for any sampling time interval and at any
ground location in the path of a storm. Their model uses a randomization process to produc¢
clusters of short duration rain cells within a storm band.

In 1978, Eagleson presented a rainfall model that described the changes in stonﬁ
intensity through time as a Poisson process. Such storms have random and independent total
depths. Later, he developed a rainfall model to sirﬁulate spaﬁal storm properties (Eagleson,
1984). He modeled the occurrence of wetted rainstorm area within a catchment as a Poisson
process in which each storm was composed of stationary, non-overlapping, independeni[
random cell clusters whose centers were Poisson-distributed in space and whose areas were

9



fractals. He used this model td estimate spatial properties of tropical air mass thunderstorms
on six tropical catchments in Sudan.

Rodri guez-Iturbe, Gupta, Waldez and Waymire published several articles on concepts
in mddeling temporal and spatial occurrences of sltorms' (Waymire and Gupta, 1981a, 1981b;
Waymire et al., 1984; Rodriéuez-Iturbg et él., 1984; Valdes and Rodriguez-Iturbe, 1985;
Waymire, 1985). Liké Eagleson (1984), they also described istorm occurrences as a Poissbh
proéess. In théir approach, the storm is composed of rain cells that are Poisson-distributed
in space. The number of rain cellé for é storm is a random variable. Raiﬁ intensify for a cell
is assumed to f01‘10§v a decay function that is spatially symmetric around the center of the cell
where the maximum inténsity occﬁrs. Rodrigﬁez-Iturbe et al. (1987) offered detailea
description of several decay funétiohs, and studied theif charactéristics.

Meadows ef_al. (1994) used rainfall records to develdp a dimensionless rainfalvl
distribution pattern. They found the rainfall distribution pattern to be ﬁnimodal and ellipticaél
which can be described by a second degree polynomial equation with two independeﬁt
variables. The relationship between a spatially variable rainfall and watershed performance
was examined by performing storm water simulations using this spatially variant pattern and
comparing the results to those generatéd using a uniform rainfall depth. Based on thls
comparison the authors illustrated that by using a spatially uniform rainfall depth over thé
watershed, runoff peaks and volumes were generally ovérestimated. This rainfall distribution
pattérn can be applied as a forensic tool to only those watersheds which have sufficient

information (historical data) to establish the spatial scale.

10



Loukas and Quick (1996) analyzed 175 storms in a mountainous watershed in tHe
southwestern British Columbia. The precipitation was found to increase up to the mid-
distance of the watershed, and then decreased and/or leveled off or increased with the
elevation again, depending on the type of event. The average storm intensity at the mid-
distance, on average, was foﬁnd to be 90% larger than the average storm intensity af Zero

elevation.

2.2 Radér Meas.ur.ement- of Rainfall

A rain gauge is the most direct and accurate way to measure tﬁe rainfall at a poiﬁt
where the gauge is located. The watershed physiographic factors, especially topography and
the local topography surrouﬁding the gauge strongly affect the gauge measﬁred precipitatioﬁ.
Hovind (1965) showed that a deficiency of up to 70% was possible on the windward side and
an excess of up to 100% was possible on the lee slope as comi)ared to the ﬁléasurement;s
taken at a summit. Also, rain gauges only measure rainfall at a point. There is usually littlé
interest in point rainfall measurements except to determine the relative accuracies of various
gauges.

Because there may Be large errors in the rain depth at any one gauge representing théa |
areal average, hydrolbgists have resorted to a network of rain gauges and to radar to improvéa
areal average rainfall estimates. There is no doubt that a sufficiently dense netwérk of
gauges can measure rainfall better than a radar. In fact, gauge measurements are acceptecél

as the standard against which other measurement techniques are compared. However,
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operational raingauge networks are usually too sparse to capture the spatial variability of
rainfall. | :

Although the accuracy of the radar measured rainfall is highly suspect, radar has thé
decided advantage of being_ able to remotely survey large areas and to make millions 0f
measurements in minutes. Radars (e.g., dual polarization or Doppler) capable of meésuring
more than one parameter (e.g., vertical and horizontal reflectivities or spectrurﬁ of terminal
velocities) in each resolution volume offer impfoved estimates of critically impoﬂaﬁt
parameters of the drop size distributions so that high-resolution measurements of spatial
distribution of rainfall can be ﬁlade (DoViak and Zrni(;, 1984). In the U.S., a network of
more than 120 highly sophisticated and state of the arf the Next Generation Weather Radaf
System (NEXRAD) is expected to provide higﬁ—quality,‘ high—resolution precipitation data
that meet a wide range of hydrometeorological applications. The first NEXRAD unit began
operating in 1991 near Oklahoma City, OK. The NEXRAD systefns are termed as WSR;
88D (Weather Surveillance Radar-88 Doppler). The basic principles of radar meteorology
are well describéd in textbooks such as Battan (1973), Doviak and Zric (1984) and Atlas
(1990). Only a brief review of the principles of rainfall measurement by a radar will bé
given heré as mofe detailed discussion is available in these textbooks.

Although indirect, radar estimates of rainfall are continuous in space and provid¢
information on the spatial variability of rainfail. Radar transmits a radio energy and
measures the returned energy after reﬂéction and scattering by’ raindrops, hailstoneé or
snowflakes. Rainfall rate R is estimated from the measurement of the returned energy (rada:r
reﬂectiyity), Z. Unfortunately, there is no universal relationship connecting these twé
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parameters, although it is a common experience that larger rainfall rates produce more
intense echoes (Doviak and Zmic, 1984). Rainfall rate is dependent on drop siie
distribution. A real drop size distribution requires an indefinite number of parameiers to
characterize it, and thus the radar-‘détermined vaiue of Z alone can not provide a unique
measurement of R. Due to the uncertain Z-R relationship, miscalibration of electroni:c
components and many ofher factors, radar rainfall is estimated to have both systematic and
random errors of 100% or more (Wilson and Brandes, 1979). Even with the modern radar
technology (WSR—SSD), Smith et al. (1v9>96),‘and Pereira and Crawford (1995) reported that
radar underestimatéd raihfall at all ranges. The underésﬁmation of the rainfall by radar was
found to be range dependent and the underestimatioh was most severe for far and close
ranges.

The radar reﬂectiVity factor (Z in units of mm%m?®) is proportional to the summatiofx
of the sixth power of partiéleb diameters in a unit volume illuminated by the radar beam and

is defined as
Z=3XND®=["N(D)D®D ' ,
i fo (D) 2.1)
where N; is number of drops per unit volume of air with diameter D; and N(D) is the number
of drops with diameters between D and D+dD in a unit volume of air. The desired

parameter, rainfalll rate (R), is related to D through the following equation assuming thaf[

there is no vertical air motion present.
R = Efo N(D)D’V (D)dD | 2.2)
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where V(D) is the drop terminal velocity of a drop of diameter D that is approximated, 1n
units of cm/s, by V, = 1400 D'? (Wilson and Brandes, 1979).

Measurement of drop size distribution around the globe has been made undér
different climate conditions. Battan (1973) lists more than 69 different R-Z relations. In

general a R-Z relation is desCribed using the empirical relationship,

Z = aR® 2.3)

where a and b are constants. For stratiform rains the relation Z = 200 R'® was given by
Marshall et al. (1955) and is known asvth’e Marshall-Palmer formula, with R in mm/hr and
Zin mm® m?,

It is quite difﬁcult to calibrate radars to w‘ithinva decibel, and there could be a
systematic bias in the radar measured reflectivity. Some of these €rrors can be compensated
by choosing an appropriate R-Z relétipn. According to Cain and Sn‘ﬁth (1976), the relatio%n
Z = 1.55R*®® removes any pervasive bias in the radar estimated rainfall (RER) in North
Dakota, whereas in Miami, Florida, Woodley et al. (1975) reported that the relation Z =
300R ' worked better. Filho (1996) used the same relationship in North-Central Oklahoma
as suggested by Woodley et al. (1975). In a recent study using data from Tulsa and Tw1n
Lakes, Oklahoma, Smith et al. (1996) suggested the parameter values to be a=0.017 and
b=0.714 for the Oklahoma conditions.

Liu and Krajewski (1996) compared advection methods and a space-time krigiﬁé
interpolation method to calculate hourly accumulation of radar-rainfall. The space-time
evolution of rainfall fields was generated from a stochastic model. The generated fields Wefe
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sampled following typical radar scanning strategies. Based on the statistical results and a
visual analysis of the graphical images, the authors suggested to use an interpolation scheme
for radar observations even when storm velocity was not high. The space—time kriging
method was found to provide the smallest mean error. The advection method gave the
smallest standard error wheh advection velocity was high. “The kriging method provided the
best results for a low wind velocity. .

Wilson and Brandes (1979) have discussed the factors that produce errors in radar
rainfall measurement. These sources can be categoriaed as:

1. errors in estimating radar reﬂectivity factor;

2. variations in the Z-R relation; and

3. gaugeand radar sampling differences.

Brandes (1975) has suggested a techmque whereby gauges can be used to adjust the
RER Atlas et al. (1984) suggested that improvements in the accuracy of radar ramfall
measurements can be achieved by measuring radar parameters in addition to reflectivity to
overcome the ambiguity in drop size distribution. Goddard and Cherry (1984) suggested
measurements of path-integrated microwave attenuation and also dual polarization methods
to improve accurac'y.

Smith et al. (1996) analyzed more than one year of data from two WSR-88D radars
located in Oklahoma to characterize the systematic biases in the hourly precipitatioh
accumulation estimates. The authors analyzed the biases in three contexts: (1) biases that
arise from the range dependent sampling of the radar, (2) Systematic differences betweeh
radar rainfall estimates when two radars are observing the same area, and (3) systematic
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differences between radar and gauge measured rainfall values. A significant underestimation
of rainfall was observed to occur within a 40 km range of the radar due to bias in reﬂectivit§y
observations at the higher elevation angles used for rainfall estimation close to the radar.
Bright band and anomalous propagation leéd to systematic overestimation of rainfall at
intermediate ranges. Beyond 150 km in Spring-summer and beyond 100 km in winter-falil,
underestimation of precipitation was pronounced due to. incomplete beam filling and
overshooting of precipitation. Radar-radar intercomparison analyses indicated that radar

calibration was a significant problem at some sites.

2.3 Compﬁrisons of Rain Gaugé Data With Radar Scanned Data

Numerous arfi‘cles have been published ovér thé years comparing accuracy of raddr
scanned rainfall against rain. gauge measured rainfall. There has been considerable debat¢
in recent years about accuracy of different rainfall measurement techniques and whethef

“measurement techniques based upon remote sensing technology, using radar and/or satellite
systems, can replace or complement rain gauge measurements. Several researchers have
suggested that radar estimated rainfall (RER) when calibrated with rain gauges can give a
rainfall estimate with the point accuracy of gauges and the spatial resolution and coveragé
of a radar.

Wilson and Brandes (1979) compared the radar and gauge measurements for 14
Oklahdma storms observed by the NSSL W‘SR-57 radar. The average ratio éf gauge and
radar measured depth varied from 0.41 (radar overestimate) to 2.41 (radar underestimate)i
The average difference befween radar and gauge point measurements for all 14 storms wa$
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found to be 63%. But by removing the mean storm bias, the average difference was reduced
to 24%. Much of the radar error results were attributed to storm-to-storm differences in the
Z-R relationship caused by microphysical and kinematic processes that affect the drop-siz:e
distribution and drop-fall speeds. ‘The‘authors suggested that the combined radar-gauge
estimates were usually better than the gauge ‘only for gauge densities < 1 per 300-400 km?,
whereas, radar-gauge estimates were nb longer better than the gauge-only estimates wheﬁ
~ the density increased fo about 1 per 250-300 km?. |

Legates and Willmott (1990) found that the mean standard error for a particular
network and rain field was a function of the numbéf of gauges in the network, the raining
fraction of the area and the ratio of the standard deviation to tﬁe mean of the non-zero portiop
of the rain field. Tﬁe authors found that the raingauge errors wefe directly proportional to
total precipitation and ahiount to nearly 11% of the global catch. |

Collier (1986) compared the bias and randofn errors in rainfall measured by a
telemetering gauge network alone, and from a radar calibrated by using data from only a fe\év
gauges. He suggested that a very dense gauge network was needed t§ measure point rainfall
very accurately. However, a less dense gauge network with a radar system calibrated using
the data from a few of the telemetering gaug‘e‘s’ was capable of produCing meaéurement’s
which had the same or better accuracy as a sparse gauge network over a large area. Thé
calibrated radar estimates wefe more accurate within 75 km of the radar site than those using
the telemetric raingauge network ‘alo.ne. Based on the comparison of WSR-88D and

Oklahoma Mesonet data, Pereira and Crawford (1995) concluded that the statistical
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integration of radar estimates and Mesonet measurements produced a more accurate final
analysis than using either of the two parameter fields alone.

Bellon and Austin (1984) analyzed a total of 37 weather sequences which passed over
the City of Montreal, Canada, and fouﬁd that the radar measured accumulations had an
inherent error of thé order of 25%, 0.5 hr forecasts had an error of 50% and 3 hr forecasts ha(;:i
an error of about 60%. The authors found that the introduction of the radar calibration facto;
did not improve forecasts much. In the studies of Wilson (1970) and Brandes (1975), thé
gauge-radar mean rainfall estimates were more accu;éte than the estimates obtained using
only gauges for lérge area (29,0000: km2), low gauge density (no more than one gauge pé:r
700 km?), and .lon‘g' duration rainfall events. Brandés (1975) showed that radar-measured
rainfall corrected by gauge data improved the accuracy frofn 24% for measurements by
gauge alone to 14% for combined radar-gauge measurements with a gauge deﬁsity of on¢
gauge per 1600 km®. He suggestéd that"évaporation below the radar beam, wind velocit)?
fluctuations, and sampling were factors contributing to large spatial variations among
calibration factors.

Although considerable research has been done to compare the accuracy of raingauge?
and radar measured rainfall, very limited information is available whi>ch éompares the;a
measurement of NEXRAD with rain gauges. The research conducted by the National Sever¢
Storms Laboratory in Norman, Oklahoma, has been mostly based on a point comparison 1n
the accuracy of rainféll between NEXRAD and selected rain gauges in central Oklahomz;
(N SSL, 1992). Also no information is available in terms of examining the relationshiﬁ
between the spatial distribution of runoff and spatial structure of rainfall at the pixel level.
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Spatial distribution of runoff within a watershed is extremely impoftant for flood prediction
and water resource management, as well as basin planning.

Ma (1993) applied NEXRAD rainfall dataz rain gauge network precipitation data, and
designed-storm data to compare spétial variation in r,ainfallv depths. The rain gauge network
and NEXRAD were ‘found to give a different center of storm. Also, the raingauge
measurements ovef predicted the rainfall in some parts of the watershed énd under predicte(ji
in other parts as compared to the NEXRAD measured rainfall. Appfoximately half of the
total pixels in the watershed were found to have different runoff values between NEXRAD
data and rain gauge network data. The differeﬁce between NEXRAD data and the design
uniform storm data was found to bé less than the difference between NEXRAD and rain
gauge data. The author concluded that the spatial distribution of surface runoff was strongly
affected by the spatial pattern of precipitation.

Smith et al. (1996) used raingauges and the NEXRAD system of WSR-88D radar
located in Twin Lakes and Tulsa, Oklahoma to characterize biases of radar-estimated rainfall
compared to the actual rainfall. The intercomparisons were based on WSR-88D hourly
rainfall acéumula’tion products and hourly raingauge data. The authors concluded that radaf
undereétimated rainfall at most sites. Underestimation was most severe at far range and closg
range, but at most sites, underestimation occurred at all ranges. The'rair.lgauge observationé
were found to be 48% larger than WSR-88D rainfal_l estimafes in the range 0-40 km, 18%
in the range 40-160 km, and 40% in the ra.nge- greater than 160 km for the warm season. Foi
the cold season the corresponding values were found to be 30%, 14%, and 100%. However,
accurate delineation of the no-rain area was found to be a particular strength of the radair
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estimates. For sites within 200 km of the radar location, radar accumulations were found ﬁo
- be zero for more than 98% of the zero raingauge accumulations. Analyses of spatiafll
coverage of heavy rainfall was also found to be a fundamental advantage of radar over

raingauge networks for rainfall estimates.

2.4 Effects of Spatial V ariabﬂity of Rajnfall on H/'WQ Model Outputs

Although it is acknowledged that, in general, catchments have an integrating c;r
smoothing effect on rainfall both 1n time and in space, the complex relationship between the
degree of spatial variability: of rainfall, .cafc‘hment characteristics (toi)ography, channel
network, soils, etc.), antecedent soil moisture conditions and catchment response is poorly
understood (Shah etba‘ll., 1996). A very few stu(lii‘es héve been éonducted to investigate thé
significance of spatial Vériability of rainfall in H/'WQ processes. Dawdy and Bergman
(1969) studied the effect of rainfall ;Iariability on stream flow simulation in a small basin in
Southern California. They concluded that predicting peak discharge based on a siﬁgle raih
gage observation resulted in a standard error on the magnitude of 20%. Similarly, Troutmah
( 19‘83) suggested that spatial variability of precipitatioﬁ inflates mean squared errors o;f
prediction in precipitation-runoff modeling. One component of these larger errors was
observed to be bias which often takes the form of overprediction for large events and
underprediction for small events. He examined this problem assuming stochastic structur;e
for fhe spatial behaviof of rainfall together with a form of the Green-Ampt inﬁltratioh
equation for prediction of storm runoff volume. In similar studies, Wilson et al. (1979) and
other researchers (Beven and Hornberger, ‘1982; Seliga et al., 1992; Corradini and Sihgl%,
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1985; Krajewski et al., 1991; Obled et al., 1994) have concluded that storm runoff
hydrographs are sensitive to the spatial distribution and accuracy of the precipitation inputé.

Young et al. (1992) attempted to assess the impact of spatial variability of rainfall
on model performance by getting a'ﬁrsf approximatioh of the deviations of runoff Volumé
~ and sediment load caused by varying the spatial distribution of rainfall input to AGNPS.
They generated‘ event rainfall amounts by distributing a known volume of water by a
bivariate normal ‘distributi(_)n function. The parameters of the distribution were adjusted fof
the purpose of centering the peak over different locations on the watershed and to adjust the
spread of the distribution. Tﬂe authors found that in one case total N loss was four times
more and the total P and sediment yield were five times greater than the estimates obtained
from an average uniform rainfall. In a sifnilar study, Luzio and Lenzi (1995) applied
AGNPS to a watershed in northern Italy. The authors applied spatially variable rainfall inpu§t
using the spline method of interpblation. Rainfall erésion index and sediment yield werc;
increased by more than 20% and total N and total P loads were increased by more than 17%
when spatially variable rainfall was used. The authors speculated that coupling of radar data
to model input data would significantly improve model results.

Shah et al. (1996a) investigated the relationship between the spatial variability of
rainfall and catchment response by conducting experiments with a stochastic rainfall field
model and  a physically distributed Systeme Hydrologique Europeen (SHE) model. They ’
- used Turning Bands Method (TBM).incorporating a fractionalIy differenced line process to
generate Gaussian random fields with a specified space-time correlation structure to develo;é)
the rainfall field model. A transformation was then‘ applied to the Gaussian field t(é)
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reproduce the non-stationary temporal structure and skewed marginal distribution df
observed rainfall and this transformed field was then propagated in space with the require?d
velocity. Comparisons of the means, variances, skewness, cross- and auto-correlatioin
functions of the observed and simulated ‘storms at the sampling points showed a good
agreement. Later, the authors applied the spatially-variable rainfall to the SHE model to
assess the interaction between spatial variability of rainfall, antecedent catéhment conditionis
and runoff production to isolate thf; component of error in runoff simulations associated w1th
incomplete sampling of the réinfall input to distributed catchment models. Percent errors in
peak discharge and in total volume raﬁged from 1-39% and 1-16%, respectively. The
percentage errors were observed to bé larger for dry catchment conditions than for wet
conditions. The errors increased with decreasing corrélation as the rainfall became more
spatially variable. Based on the results the authors suggested that under wet conditions, gooéi
predictions of runoff could be obtainéd with a spatially averaged rainfall input, provided that
at least one gaﬁge was available in the 10.55 km? catchment. But the interpretation of this
work was limited by the small catchment size, a few number of storms simulated and a few
raingauges used for the conditional simulation.

Fau‘res» ét'él. ‘ (1’995) examined the effect of various rainfall measuremenftechn’ique?
and spatial rainfall variability on runoff modeling of a small watershed (4.4 ha). The authbré%
demonstrated that the uncerfainty in runoff estimation was strongly related to the number o?f
gauges available to measure input rainfall. The spatial variability of rainfall was observea
to cause a large variation in modeled runoff. When five model runs were conducted usiné
input from one of the five recording raingauges, one at a time, the coefficient of variation foi
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peak rate and runoff volume ranged from 9 to 76%, and from 2 to 65%, respectively, over
eight observed storm events. By using four well distributed gauges the variation in modeled
runoff volume was reported to approach the sampling resolution of the raingauges as weil
as the estimated accuracy of runoiff volume and peak rate observations. The duthofs
concluded that if distributed catchment modeling was to be conducted at the 5 ha scale in an
environment domipated by convective air-mass thunderstorm rainfa]l, knowledge of spatial
variability on the same scale was required. A single raingauge with the standard uniform
rainfall assumption could lead to large uncertainties iﬁ runoff estimation. In a similar study
conducted on a relatively larger watershed (83 km?) Hamlin (1983) observed that a rainfail
obtained from a single gauge resulted in underestimation of peak and the errors in the peak
flow estimation exce‘eded 200%. With the inclusion of an additional gauge the magnitudé
of error was sharply reduced to 100%. Use of three gauges gave a sigrliﬁcantly better result.
Most of the studies conducted to examine the effect of spatiéll variability of rainfafl
on H/WQ process have focused primarily on runoff volume, time to peak runoff, and peak
runoff rate predictions. Very few attempts have been made to study the effect of input
>rainfall spatial variability on the transport of sediment and nutrients. Young et al. (1992)
studied the effecf of rairifaH épatial variability on N, P and sediment transport using th%:
AGNPS model. The rainféll spatial variability was captured using a synthetic storm.
Hamlin (1983) mentioned that the use of synthetic rainfalls raises problems which must be
récognized. The results of thé gﬁﬁge density as it affécts flow prediction depends not only ,
on the catchment and number of gauges used but also on the rainfall pattern and choice o:f
quel. Synthetic rainfall data may not rﬁodel the patterns and amount of real rainfal?l
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adequately. In addition, because of local configuration and site measurement problems of
raingauges, there may be causal relationships between rainfall and stream flow which may
not be médeled inthe sjrnthetic situation. With the availability of radar scanned rainfall ;latejl, ,
it is now possible to study the spatial characterization of rainfall and to incorporate this
rainfall variability in H/WQ models in order to improve the accuracy of the modél
predictions. | |
It is clear from the above diécussion that most of the studies conducted to date usiné
spatially variable rainfall were based on relativély smaller watersheds (4 ha - 77 kmzl)v where
only a few raingauges were available to capturé the rainféll pattern. Since rainfall spatial
variability can be expected to increase with an increase in the watershed size, the result‘s'
reported in the literature rr;ay not be appliéd to a larger watershed. The knowledge qf
uncertainty in the estimated parameters due to rainfall spatial variability is also very limi_ted.
Only one study conducted by Trqutman (1983) aﬁempted to asséss the effect of rainfalfl’
spatial pattern on estimated model parameters. In that study, the model considered was a
rainfall-runoff model. The parameters that affect the transport of sediment, and sedimenf-
attached nutrients were not discussed. The author used a synthetic rainfall to simulate th_é
spatial correlation pattern of an actual rainfall. Because of the sirﬁplicity of thé stochastifc
rainfall model used in the study, the results reported may not be expected to define thfe
variability in acfual rainfall-runoff modeling applications. The simulation was based on an
imaginary watershed and raingauge cbnﬁguration. The results obtained were not verified

using the observed data from a watershed.
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In summary, a very few studies have béen conducted using rainfall spatial Variability
to assess model output uncertainty. Most of the studies were focused on runoff volume and
peak runoff rate and very limited information exists on the effect of rainfall spatial Variatioil
on sediment and nutrient transpoit. Mosf of the studies were conducted on a relatively
smaller watershed using a feiir numlier of raingauges to capturé rainfall spatial patterns. The -
results obtained could not be transferred to the larger Watersheds where a large number (if
gauges may be available to measure rainfal‘l patterns. No study has been conducted ti)
estimate the effect of rainfail spatial Variability on estimated model parameters using
observed rainfall and output data. Also no attempt has b¢en made to use radar scanned
rainfall as an ini)ut to assess the effect of rainfall : spatial variation on m'ode‘l»

parameters/outputs. |
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CHAPTER 3

THEORY

3.1 Interpolation of Rainfall Data

In the application of hydrologic modeling, fainfall often needs to be estimated at a ,
given site because either data are missing or the site is ungauged. Various methods are
available to spatially interpolate rainfall at a point based on data available at other sites. A
number of techniques for spatial interpolation of rainfall with varying degree of complexity
have been suggested>in the literature. These techniques can be grouped into the following
categories (Tabios and Salas, 1985).
1. Theissen Polygon Method
. 2. Polynomial Interpolation
3. Inverse Distance Interpolation
4. Multiquadratic interpolation
5. Optimal interpolation, and
6. Kriging |

Most of the proposed interpdlaﬁon techniques are based on a weighted average ojf
surrounding stations. Let x; and y; denote the coordinates of a point j in two dimensional

space and p; , a function of x; and y;, denotes the observed precipitation depth at n sampling
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points, j=1,2,....... n. An estimate of the precipitation depth p, at any point with coordinates

X, and y, can be represented as a weighted linear combination of the observed values.
p, = E.f:l wjpj (3.1)-

where w; = Weight of sampling point j. Equation (3.1) is the general form of the interpolation
function. The different interpolation techniques differ only in evaluating the weights w;. In
some cases weights are only dependént on distance; in other cases fhe weights are optimizeél
on the basis of a correlation function. All of the above methods are described in the
following sections. The discussion is primarily based on the work reported by Tabios and

Salas (1985).

1. Theissen Polygon Method
This method is based on proximal mapping (i.e., nearest distance neighbor). The
estimate of the rainfall amount p, at any point of interest is equal to the observed value of the

nearest sampling point in the area. Let

d;j = \/(xo - xj)2 + (yO - yj)2 (3.2):

for the minimum point-station distance, so that
w;=0forj =i

and w;=1forj=1i
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2. Polynomial Interpolation
Polynomial intérpolation requires fitting of a global equation in the rainfall ﬁelid
using either an algebraic or trigonometric polynomial function. The global form of tHe

polynomial function can be written as

Py, = X, a,0(x.p) | (3.3)

where p, is the iﬁterpolated value at any point (X,¥,), 2 is the kth polynomial coefﬁcien’f,
(pk(go,yo) the kth mpnomial in terms of x, and y, coofdinates and m is the total number of
monomials determined from ‘the degree of polynomial function fitted in Equation (3.3).
Since the interpolation function (3.1) is in terms of weights, it is convenient to express th¢
polynomial equation (3.3) in the form of (3.1). TWO approaches available for this purpos;
are discussed in the following sectiéns.

a. least Square Approach

This approach provides an estimate of p, for processes having a trend surface
characteristic. Let p; be the measured quantity of the rainfall p at sampling station j=1 ,2,3,.{.

n and p- be the estimate of the same process based on amodel in Equation (3.3). Then

Po= I a,0,(x.y) (3.4)

where @,(x;,y;) is the kth. monomial in terms of the coordinates x; and y; of station ]

Parameter set a,, k=1,2,..... , m is estimated by minimizing the sum of square errors given

by
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— n 192 .
F =X [p-7)] (3.5)

b. Lagrange Approach

This approach is an exact interpolation technique. In this case, the coefficients a, aré
evaluated so that the process p will pass through all the observed values. Thus, this approach
requires that the number of monomials be equal to.the number of gaging stations (m=n). The

equation for the interpolation estimation is

P, = Z [ X B, (xy)]p, B ‘ (3.6)

where B,; is an element of the inverse of the n x n matrix with elements @,(x;y;) for

k=1,2,...,n stations.

3. Inverse Distance Interpolatioﬁ
This type of interpolation scheme belongs to a family of distance weighting
| techniques. The weights of the interpolation function (3.1) are solely a function of the
distance between the point‘ of interest (X,,y,) and the sampling points (x;,y;) for j=l,2,...,n.f
Considering the diéfahce‘ dy; as in Equation (3.2), the weight of a sampling poinft

(X;,y;) is given in general b.y A

- fd)
[ N 3.7
' 2., /d,)

where f(d,;) represents a given function of the distance d,;. A commonly used form of the
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function f(\) is -

1
fd,) = e (3.8)

of

where b is an appropriate constant. Here the weight W; approaches zero as the distance d
and/or the parameter b increases. When the parameter b is given the value one or two, the

interpolation technique is known as reciprocal distance interpolation and inverse square

distance interpolation, respectively.

4. Multiquadratic Interpolation

In multiquadratic interpolation, the influence of each sampling point is represented
by quadratic cones as a function of the coordinates of these points. The estimate for a giveh
point (x,,¥,) is thus obtained by the sum of the contributions from all those quadratic conesé.

This is mathematically represented as

i=1 i oi

p, = Z cd, (3.9)

where c; =il'mu1tiqu'adratic coefficient of sampling point (x,y;) and d; is the distance between

pOintS (XO’YO) and (Xin)'

S. Optimal Interpolation
Let p, be the rainfall depth to be determined and Equation (3.1) is used to estimatge
po- Let p be the estimate of p,. Then in the optimal interpolation technique, the weights arée
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determined by minimizing the variance of the error of interpolation c.? which is given by

2 - _ oA _ _ n
o, = var[p -p 1 = var[p, ijl ijj] (3.10);

Expanding the above equation gives -

>2 o2 n . n n I
¢, =0 -2 ijl w,cov(p ,p) * Z‘,jzlzi=1 w.w.cov(pp) (3.11)%

where o is the variance of the process p, and cov(p,,p;) represents the covariance between

p; and p;.

6. Kriging Interpolation

In hydrologié applicatibns several forms of kriging have been proposed and usedj.
Kriging is similar to the optimal interpolation except that the spatial correlation function 1s
replaced by a variogram. Asin optifnal in’terpolation, kriging interpolétion requires that théa
observed process is second order stationary. Essentially, it assumes homogeneity in thé
means, variances and covariances. In addition, an isotropic spatial covariance structure i;s

assumed. The homogeneous and isotropic semivariogram is defined as

i

Y(d) = D) var[p, —pj] = o - cov(dij) (3.12):

for i,j = 1,2,.....,n and y(d;) is the semivariogram as a function of the distance d; between

points i and j. Therefore, rewriting-équation (3.11) by substituting equation (3.12) for

cov(p;p;) = cov(dy) gives
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Gj = o - 5 er;l wj[02 _ Y(doj)] + E;l:l lel WI,WJ.[(y2 - Y(dij)] (313)

Any of the above six methods can be employed to interpolate rainfall at the gria
points. But before interpolation is‘ dore two issues need to be addressed: (1) how many
observed data points will be considered when estimating rainfall at a point and; (2) which
interpolation techniqﬁe éhould be selecfed. Several reports exist in the literature describing
the spatial correlation pattern of rainfall. Correlation of rainfall decréases with distance aﬁd
rain gauges situated very far from the reference point may be very weakly correlated or
independent (for example Tabios and Salas, 1985; Kruizinga and Yperlaan, 1978). Wilson
and Brandes (1979) mentioned that the maximum u‘seful range of a single adjustment gauge
varies frpm storm to storm. Brandes (1975) defined maximum useful range as the distanc?e
at which storm total rainfalls become essentially uncorrelated. For Oklahoma convective
- storms, he found this distance to be apprqximafely 90 km. Kruizinga and Yperlaan (1978)
reported on the number of surrounding rain gauges and the calculation of interpolatioxfl
weights. The authors éompared interpolation errors derived from considering seven
surrounding stations to errors when all the surrounding stations were considered. When all
of the stations w‘ere‘ cbnsidered, a weight proportional to ‘exp(—r/ro) was given to each statioﬁ
and stations with weights less than 0.001 wefe'omitted. Here r was the distance to th%e
reference point and r, a constant chosen in the order of the mean distance between stations.
Based on the results ébtained the authors reported that the two methods did not giv;e

significantly different results. Thus for Oklahoma rainfalls, either seven surrounding
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raiﬁgauges or all raingauges within a radius of 90 km may be used for interpolation at the
grid points.

Selection of the interpolation technique depends on the ability of the technique t;o
estimate rainfall at the grid cell with the maximum 'possi_blé accuracy. Tabios and Sala:s
(1985) evaluated six techniques by comparing interpolated values with the observed value.s
at the reference point. They suggested 4 different criteria for comparison as follows.

1. Comparison of the mean and variance of the interpolated and observed values.
2. The sum of square errors between the observed and interpoléted values.
3. The proportion of the variance of the observed values accounted férh. by the interpolation,

called the coefficient of efficiency

S
E = 1-= (3.14)

where S, is the sum of the square differences between the observed values and the mean at

point (x,,y,) and is given by

(4]

s =2 [p()-m]T (3.15)

4. Coefficient of determination obtained by regressing observed and interpolated values:
Based on the results obtained from their stud‘y, Tabios and Salas (1985) céncludec!i

that polynomial interpolaﬁon gave inferior results. The inverse square distance method was

found to be somewhat better than the recipfocal distance technique and significantly bette?r

than the Theissen polygon method. Based on the criteria of the sum of square errors and the
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coefficient of efficiency, the Theissen and reciprocal distance methods gave inferior result$.
Based on the coefficient of determination only the Theissen method was significantly inferiojr
to the others.

Seed and Austin (1990) mentioned that the distance weighting schemes suffer froﬁl
a certain arbitrariness in the selection of the parameters and the interpolated surface is ndt
always smooth in the neighborhood of the data points. In order for the interpolated surfac;
to be smooth, thg derivative of the weighting function must tend to zero as the distance tcg
the point tends to zero and the function should decay at a rate faster than the inverse squaré
of the distance. Distance weighting schemeS also do not cope 'w¢11 'With clustered data.

In the inverse distance interpblaﬁon, the distance dependence of chosen weights is
not very important when the distances are of the same ordér; in the other case a distance
dependence of 1/r* will give a better estimate (Kruizinga and Yperlaan, 1978). One majoir
drawback of the inverse distance interpolation approach is that when two or more sampling
points are close to each.other, the redundant information from these stations is not
discriminated against (Tabios and Salas, 1985).

Optimal interpolation and kriging require that the observed process is second-order
stationary. Essentially this assumes homogeneity in the means, variances and coVariancesé.
In addition, an isotropic spatial covariance structure is assumed. Ifthese assumptions are not
met, the accuracy of .the interpoblat‘ion may be questionéble. |

Seed and Austin (1990) stated that rainfall and cloud fields are extremely intermittenit
and variable as compared to some other variables like temperature, pressure and wind. Theéz
underlying cause for this extreme variance is drastic non-linearity involved in cloud and raiﬁ
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formation. The response from a hydrological point of view is to exercise extreme cautioin
about the likely accuracy of any interpolation scheme, including those of great mathematical
complexity.

In genéral, it can be expectéd that as the level of sophistication of an interpolation
technique increases? the expected accuracy will also increase. But very sophisticateid
techniques are more difficult to implement as compared to the relatively simpler schemesj.
Probably, that is the reason why the Theiséen poljgon method which is the simplest methoa

and was developed in 1911 is still widely used in hydrology (Seed and Austin, 1990).

3.2 Calibration of NEXRAD Data

Among the rainfall measuring sensors, raingauges and land-based radar are probably
the two most important in rainfall estimation. Radar measured rainfall can have botil
systematic and random errors of 100% or more (Seo et al., 1990). Estimates of precipitatioh
can be improved when raingauge obseNations are used to calibrate quantitative radar data
as well as to estimate precipitation in areas without radar data. Several researchers have
suggested that radar estimated rainfall calibrated with raingauges can give a rainfall estimate
with the pbint aécuracy of gauges and spatial resolutioﬁ and coverage of a radar. 'However;, '
there are several errors associated with radar measured rainfall depth because radar estimateis
rainfall amount indirectly. Error sources reside in the measurement of radar reﬂectivitjy
factor, evaporation and advection of rprecipitvatidn before reaéhing the ground, and Variatiorfs
in the drop-size distribution and vertical air motions (Wilson and Brandes, 1979).

Seo et al. (1990) gfouped the radar calibration techniques into two classes;:
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deterministic and statistical. The deterministic approach involves calibration of radar rainfafl
against raingauge measurements or the deterministic interpolation of gauge to radar ratio:.
The statistical approach ranges from multivariate analysis to cokriging.

Radar estimated rainfall depth would be an ideal source to obtain rainfall at grid
points but before radar daté can be used, they n¢ed to be calib;ated because of the associated
errors. Brandes (1975) suggested the following steps to derive a calibrated rainfall field from
radar measurements.

1. First of all an uncalibrated radar rainfall field is ob';ained. This can be obtained from
'NEXRAD which is available to the researchers.
2. The radar rainfield is then calibrated with raingauge observations by determining a

multiplicative calibration factor at each raingauge site. Jia (1995) used a calibration factor

(CF) for NEXRAD data defined as follows.

. R :
cp . Gauge Rainfall Ry (3.16)
Radar Rainfall R |

For several raingauge sites, he defined the calibration factor as

1 P
CF = =Y | £ -
n o iml [R ] (3.17)
Where R, is the raingauge measured rainfall and R, is the radar estimated rainfall. Gauge;s
recording very small rainfall should not be used because they can lead to very small or very
large calibratioh factors. The calibration factor obtained using Equations (3.16) and (3.17)
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can be applied uniformly to rainfall fields. He suggested that either one pixel value or an
average of 9 pixels surrounding the raingauge site could be used as the radar measurement
Ry).

Brandes (1975) used an objective analysis scheme to move corrected factors from
raingauge sites onto the grid point field. The weighf (Wt;) each gauge calibration (G )1

receives at a particular grid point is

Wt = exp(-d’/EP) | (3.18):

where d is the distance between gauge aﬁd grid point (km). EP cbntrols the degree of
smoothing and is kept as small as poSsible to. preserve the detail in input observationi
Brandes (1975) suggested EP to be 300 km? for a gauge density of 1 gaugevper 900 km?, To
ensure consideration of more than one gauge-radar comparison at each grid point for rainfallés
in Oklahoma, an influence radius of 70 km can be selected for individual calibration factorsi.

~ Brandes (1975) suggested two passes through the objective analysis grid with th%:
input data to produce the radar calibration field. On the first pass, a first-guess grid poiﬁt

calibration (F,) is computed as

2:‘=1 th Gi i
Fo= 2 3.19)
! Wt 3.19) ‘

i=1 i

where n is the number of gauges. Differences (D;) are calculated at each grid location fronil

D, = G, - F, (3.20).

1
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where the first-guess estimate (F,) is taken at the grid point nearest the raingauge rathef thafn
at the gauge itself.

The second pass uses equation (3.18) with EP reduced by 50% and analyzes the
difference at each observatipn site by the same method. Difference values (corrections)
calculated at each grid point are added to the ﬁrst-guess field and the final grid point

calibration is given by

- 2:;1 Wti Di
F = F + ¥— (3.21).

2 Wt

i=1 i

When this calibrated field is multiplied with the fadar field, the calibrated radar rainfall ﬁelfl
is obtained. | ‘ | |

In the areas where quality radar data are not available or where radar data are rnissing,
it can be treated as if data from raingauges are available. The rainfall depth at grid points ca;l
be obtained by interpolating the raingauge data as outlined in the previous sections.

Corrected radar and gauge derived rainfall distributions can be combined with the
emphasis placed on the calibrated radar field. Several researchers havé shown that a gaug,é
derived rainfall field is a better estimate of rainfall than either of the two individual methodé.
Pereira and Crawford (1995) used a statistical objective analysis scheme to show thét
NEXRAD and Oklahoma Mesonet data could be combined to produce a better estimate df
the precipitation than by using either of the two éione. |

Brandes (1975) estimated that areal precipitatién depth errors for nine rainfalls oveér

a 3000 km? watershed avéraged 13 and 14% (1.5 and 1.6 mm) when the radar was calibrated
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by networks of raingauges having densities of one gauge per 900 and 1600 km?, respectivel)if.
Areal precipitation estimates derived from rainfalls observed at the gauges alone producea
errors of 21 and 24%, respectively. Adjusting the radar data by a single calibration factor
resultgd in error reduction to -1 8%. Radar dafa added to gauge observations also increasea
the explained variance in'point rainfall estimates above that from gauges alone.

Collier (1986) compared the bias and rand(.)m‘v errors in rainfall measured by a
- telemetering gauge network alone, and from a radar calibratéd by usiﬁg data from only a fev?v
gauges. He suggested that évery dense gauge network was needed to measure point rainfalil
very accurately. However, a less dense gauge network w1th a radar systefn calibrated using;_l> -
the data from a few of the telemetering gauges was capable of producing measurementés
which had the same or better accuracy as a sbarse gauge network-m‘/er a large area and th;e
calibrated radar estimatesv were more accurate within 75 km of the radar site than those using;
the telemetric raingauge network alone.. A presencé of bright band was found to increase the
radar estimated rainfall bias. |

Sevéral statistical methods have been suggested in the literature to combine the radaf
and raingauge data to improve the rainfall field estimates. Pereira and Crawford (1995)
developéci a Statistical Obj ective Analysis (SOA) to éstimate rainfall accumulations usiné,
radar and raingauge estimates ‘of rainfall. Based on the comparisons with the observed dataf,
the authors concluded that the expected error variance of the combined data was less than
that obtained from either the error variance of radar estimates or raingauge measurement?s

alone.
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Seo et al. (1990) and Krajewski (1987) have discussed the use of various cokriging
methods, e.g. ordinary, universal, and disjunctive, to utilize both raingauge and radar rainfalfl
data in rainfall estimation. The authors concluded that if the bias in the radar measuremerit
was removed and the error in the radar measured rainfall was low, combining raingauge data
with the radar data may not alter rainfall fields significantly. However, if the error in the
radar rainfall is high, a substantial improvement could be exbected. l

It is clear from the above discussion that when both raingauge anvaEXRAD dat;l
are available, NEXRAD can be calibrated using the raingauge data. Once this calibrateél
radar rainfall ﬁeldv is obtained, it can be used directly to get rainfall at the grid ipoints. One
problem with the estimation of rainfali‘using NEXRAD is vthe grid cell size. NEXRA]?
estimates rainfall at a grid resolution of 4 km x 4 km. The fainfall variability at any ﬁneir

resolution will be very difficult to obtain using the NEXRAD data.

| 3.3 Description of NEXRAD Rainfall Algorithms and Techniques

The -most basic element common to all the geometric computations is the grid
coordinate system used to identify the loc‘ation of stations and geographical boundaries, such
as rivér basins. The grid used by the VN_EXRAD rainfall product is the Hydrblogic Rainfall
Analysis Project or HRAP grid. The prirﬁary purpose of HRAP was to develop the obj ectivfe
techniques for preprocessing, quality controlling, and optimally merging rainfall data froﬁl
multi-radars, raingauges, and satellites for use in various hydrorﬁeteorological applicatioﬁs
(Greene and Hudlow, 1982). The grid is based on a polar stereographic map projection w1th
a standard longitude of 105 West. The mesh length at 60 North latitude is 4.7625 km. Th%e
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mesh length varies between 3.5 and 4.5 km, depending upon latitude, for latitudes of thé
contiguous United States. The grid is positioned such that the HRAP coordinates at thie
North Pole are (401, 1601). All grid coordinates are positive over the United States. The

mesh lengths for other latitudes can be computed from:

. 47625
(1 + sin60°)/(1 + sin@) (3'22):

where Z is the mesh length at latitude ¢ (km).

The coordinates of a point P(x,y) are computed as follows

op . |PARTHR = (1 + sin(60%)

(3.23):

ZMESH |

r . REx cos (XLAT) 3.04)

(1 + sin(XLAT)) (3.24).

WLONG = XLON + 75° (3.25)

X = R *sin(WLONG) + 401 - (3.20),
Y = R * cos(WLONG) + 1601 | 3.27)

where EARTHR is the radius of the earth (6371.2 km), ZMESH is the mesh length at 60§°
latitude (4.7625 km), XLAT is the latitude of the point to be converted (decimal degreesj,

and XL.ON is the long-itude of the point to be converted (decimal degrees).
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The orientation and mesh length of the grid was selected such that it contains the
National MeteorologicalACenter (NMC) Limited Fine Mesh I (LFM) and the National
Weather Service (NWS) Manually Digitized Radar (MDR) grids as subsets. The HRAP grid

mesh length is 1/40th and 1/10th the size of the LFM I and MDR mesh lengths, respectively.

3.4 Bias in Parameter Estimation

Haan (1989) gave a generic répresentation of hydrologic models as

0 = fU,P, 1) +e (3.28)

where O is an n x k matrix of hydrologic responses to be modeled, f is a collection of l
functional relationships; 1 is an n x m matrix of inputs, P, is a vector of p parameters, t is timé,
€ is an n X m matrix of errors, n is the number of data points, k is the number of responseﬁ,
and m is the number of inputs.

, Generallyll represents inputs some of which are time varying such as rainfall,
temperature, etc., while P represents coefficients particular to a watershed which remaih
constant. The values of the most of the model parameters are seldom known. They must b¢
estimated by calibratidn before the model can be applied to make predictions. The error tenﬁ

A

e represents the difference between what actually occurs, O, and what the model predicts, O.

0 = fU P D) | (329)

e = 0-0 (3.30)!
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If we denote [ as the error free true input and P* as the true parameter value for the model,
putting these values in Equation (3.28) will give the relation between actual and predicte?dv
output. Here in Equation (3.28), I is the erroneous input. An erroneous input will inﬂuencé
the value of P and the estimated parémeter values may not be the trué parameter values (E').

Troutman (1983) claésiﬁed the modeling errors into two components: (1) model endr
with correct input [ and E; and (2) error due to érroneous input. The input of interest in thlS
research is rainfall depth. The outputs | considered are runoff volume, total sedimenlt,
sediment-attached N, and sediment-attached P transport at the watershed outlet. Correct
input means that the true rainfall pattern is known as every point in the watershed. Input
error is present when meésurements frorh only a srhall number of gaugeé are used when a
more extensive network rﬁight be necessary to gvi.ve an adequate representatioﬁ of
precipitation over the watershed of interest. Troutman (1983) suggested that even if
measured rainfall at the small number of gauges is equal in expected value to areal average
rainfall, the variance of watershed average precipitation is always less than that of ,poirllt
rainfall and this difference in >variabi1ity could result in serious biasés in runoff predictioﬁ.
Even when using this correct input, there would be some error in the predicted results arising
from the fact that the model itself is only a simplified approximation of the processe;s
occurring in the nature. This type of error is known as model error or model uncertainty and
is not considered in this study. It is only the input error; component (2) above, that is of
interest here.

The problem in using an erroneous input in a H/WQ model is tﬁat thé predicted
output is no longer equal to the acfual output. Evaluating a model with erroneous input;l
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introduces a bias in the output given by the Equation (3.29). On the other hand, if the correct
output is known, using an erroneous input in estimating model parameters will result in

erroneous model parameters (P). The bias in model parameters g, can be given as

-P (3.31)

where P is parameter estimated using correct input value I'. Several parameter estirn,atio;n '
techniques such as method of moments, least squares, Bayesian estimation criteria or any
other arbitrary objective function defined by the user can be used to estimate the model

parameters.
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CHAPTER 4

METHODOLOGY
4.1 Descriptibn of the Study Area

The study was conducted using data from the Little Washita basin in Southwesit
Oklahoma. This basin covers 610 km2 and is a tributary of the Washita river in Southwest
Oklahoma (ARS, 1991). Figure 4.1 ‘shows the location of the watershed in Oklahoma. The
watershed is primarily a rural basin. The rcasoﬁs for selecting the watershed were (1) DEM,
soil, and land ﬁse data were available iﬁ digital fdrm for this Watershed; (2) adense recording
raingauge network héé been operated by USDA-ARS for a long time; and (3) NEXRAD
weather radar is located in Twin Lakgs, OK and covers the study area. Moreover, severél
stream gauges are operated by the USGS within the watershed and a subwatershed of tﬁe

desired size could be delineated for the purpose of this research.

| Climate
The watershed has a typical continental climate. The climate is characterized as moiét
and subhumid with aver‘ageiannulavl précipifation of 747 mm (29.42 inches). Approximatefy
98% of the annual precipitation in the basin is rain and the remainder is snow and sleet (M;J.,

1993).
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Figure 4.1. Location of the Little Washita basin in Oklahoma
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Summers are typically hot and relatively dry. The average high temperature for J uly
is 34°C and the average rainfall accumulation for July is 56 mm. Winters are typically short,
temperate, and dry but are usually very cold for a few weeks. The average déily 10\37v
temperature for January is -4° C and the average aécumulative precipitation for January is

- 27 mm. Much of the annual precipitation and most of the large floods occur in the spring aﬁd

fall (ARS, 1991).

Geology
The primary geolqgical sur\;ey 6f the area Was coﬁducted‘by Davis (1955). The
bedrock exposed in the watgrshed consists of Pénnian age sedimentary rocks. The surfac_‘e
drainage is generally to the east althdugh the formation dips generally to the southwest. The
oldest formation in the Watershed is the Chickasha formation which outcrops in the eastem
or outlet side of the watershed and comprises 4.65% of the totél watershed area. THe
Chickasha formation is several hundred feet thick, is relatively impermeable and consists cj>f
a heterogeneous mixture of sandstones, shales, and silt stones. The Marlow formatioh
comprises 14.2% of the watershed and consists mostly of even-bedded, brick-réd sandy shale
that is gypsiferous. The predominanf formation in the catchment is Rush Springs formatio%n
“which overlies the Marlow formation, and compﬁsés 45.6% of the watershed area. The Rusil
Springs formation cons‘ists' of fine-grained sand stone and silt ston¢ strata that are evenly to
highly cross-bedded. The Cloud Chief formétion overlies the Rush Springs formation and
consists of irpegular, impure gypsum beds interbedded with gypsiferous shales. ThiIS
formation comprises 16.6% of the watershed. It outcrops the watershed as outliers, so onfy
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its lower parts-can be seen.

Soils

Figure 4.2 shows the main soil groups of the basin. The Natural Resourcés
Conservation Service (NRCS) have extensively surveyed the soils in the watershed and have
classified 64 different soil series. Within these soil series, 162 soil phases have been mappéd
to reflect differences in characteristics that affect land use. Several other soil characteristiés
are also defined for each soil group such as depth to bedrock, typical téxture found at each
depth, permeabili;cy, available water capacity, pH, shrink-swell potential, corrosivity, and
suitability for use in construction projects such as road ﬁlls,‘ pond embankments, building
foundations, and septic tank filter fields. Hydrologic soil groups and average crdp yield
under irrigated and nonirrigated conditions are also listed. The watershed soils are groupe;d

into the following nine associations:

1. Grant-Pond- Creek-Lucien-Minco soils are deep and shallow, loamy and the slope ranges
from nearly level to sfeep on uplands.

2. Port’-Pulaski-Graéémont éoils are deep, loamy and éandy and the élope is nearly level én
flood plains. |

3. Konawa-Dougherty-Eufala soils are deep, sandy, well drained to somewhat excessively
drained in upland; slope ranges from nearly level to rolling.

4. Cobb soils are prairie soils that are moderately deep, loamy and slope ranges from neariy
level to greatly slopping.
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Figure 4.2. Soil groups of the Little Washita Basin
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5. Renfréw-Kirkland-Bethany éoi_ls are well drained, loamy and slope ranges from nearly
level to gently sloping. ‘
6. Dale-Reinach-McLain soils are well drained or moderately well drained, loamy and slope
nearly level.

7. Stephenville-Eufala soils‘ are well drained or somewhat excessively drained, loamy Qr
sandy, and slope ranges from gently sloping to mocierately steep.

8. Stephenville-Noble-Darnell-Windthorst soils are deep or shallow, moderately well drainéd
to well drained, loamy or sandy on uplands, and slope ranges from very gently sloping to
hilly.

9. Nash-Lucien-Stephenville soils ére well drained, loamy or sandy, and slope ranges from

very gently sloping to moderately steep.

Land use and Cover

Land use and cover is primarily rangeland, winter wheat and woodland. Vegetatidn
is mainly influenced by the underlying Permian Age bedrock. Land use and cover data were
obtained from the UDSA-ARS station at El Reno, Oklahoma.

Figure 4.3 shows the land use and cover data for the watershed. Rangeland is the
dominant type v‘of land covér accounting ‘for 63% of the total watershed area. Winter wheait,
and woodland share about 20, and 12% of the area, réspectively. Winter wheat is primariiy
distributed in the flat and feﬁile soil areas near flood plains. The next category is summer
crops occupying about 4% of the basin area. Quarry and impervious areas comprise less
than one percent of the area mainly in the towns of Cyril and Cement. Water bodies are oniy
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Figure 4.3. Land use and cover of the Little Washita basin
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0.4% of the total area.

Topography,

The upland topography of the wat"ershéd is gently te moderately rolling, except forja
few rocky, steep hills near Cement, OK. Maximum relief in the watershed is about 200 m.
Surface slopes are Vei'y geﬁtle in most of the watershed. The channel system is Very weil
developed throughqut the watershed and extends pfactically to the drainage divide in moet
areas. Flatter upland soils are dev‘el(‘)ped from the finer textured Dog Creek Shale and Blaine
formation near the eastern part of the watershed; and the western part of the watershed 1s
developed from the éloud Chief formation (ARS, 1991). The topogréphy of the watershed
is shown in Figure 44 -‘ ’

At the time of this study, land use and cover data for the entire watershed were net
availabie. This was a major constraint in using the entire watershed for the study. Twéo
subwatersheds were delineated. The first watershed, known as Cyril, was delineated based
on the stream gauge station located near Cyril. The stream gauge near Cement was used to
delineate the second watershed. The locations of the Cyril and Cement watersheds within the
Little Washita basin are shown in F igures 4.5 and 4.6, respeeti,vely. The characteristics of
these watersheds are shown 1n Table 4.1. The fotal area of the Cyril watershed is 30.6 km2

and of the Cement watershed is 159 km?.
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Figure 4.4. DEM data of the Little Washita basin
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Figure 4.5. Location of the Cyril watershed in the Little Washita basin
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Figure 4.6. Location of the Cement watershed in the Little Washita basin and the

Micronet stations used

55



Table 4.1. Characteristics of the Cyril and Cement watersheds

Characteristic Cyril watershed Cement watershed
Total Area 30.6 km?* - . 159 km?
Average slope ' 1.6% 3.7%
No. of Raingauges ) 8 : 17
Land use and Cover (% of the total area)

Range 25 32

Poor Range 23 26
Winter Wheat ' 47 31
Summer Crops 2 2

Bare Soil : 0.01 0.05
Water 0.13 0.4
Woodland ’ 3 8
Quarry/Impervious 0.01 : 0.25

4.2.'Descript.ion of the Model

The hydrology/water quality (H/WQ) model used to assess the effect of rainfall spatial
variability was the Agriculturél Non-Point Source Pollution model (AGNPS). It is an evenﬁ-
based médel that simulates surface runoff, sediment and nutrient transport primarily ﬁom
agricultural watersheds (Young et al., 1989). The nutrients considered are nitrogen (N) and
phosphorus (P). Basic model components include hydrology, erosion, and sediment a.nd
chemical transport. In addition, point sources of water, sediment, nutrients, and chemicél
oxygen demand (COD) frofn aninial feedlots and springs are also conéidered. Wate;r
impoundments such as tile-outlet teﬁacés, are considered as depositional areas of sedimeﬁt
and sediment-bound nutrients. The model cah output water quality characteristics at

intermediate points throughout the watershed network.

56



The model operates on a geographic cell basis (Dirichlet tessellation) that is used to
represent upland and channel conditions. Dirichlet tessellation is a process of splitting up and
grouping a study area into cells or tiles, also known as Theissen or Boronoi polygons. Celis
are uniform square areas subdividing the watersheds, allowing analyses at any point within
the watershed. Potenﬁal pollutants are routed through cells from the watershed divide to the
outlet in a stepwise maﬁner so that ﬂow-ét any point between cells can be examined. AEII
watershed characteristics and inputs are expressed at the cell level. Results from an AGNPES
model simulation can be used to provide objective characterization of the water qualitiy _
conditions in the watershed and fo assess the effectiveness of alternative lénd managemeht
- practices in enhancing watershed water qﬁality (Youﬁg et al., 1989).

The ‘different comp;ments of the AGNPS model are discussed in the followiﬁg

paragraphs. More details may be found in Young et al. (1989).

Hydrology
The hydrologic component of the model estimates the runoff volume and peak flow

rate. The volume of runoff is calculated using the SCS curve number method

P - 0.28)? ' | 5
g = (P + o.ss) “.1)

where Q is the runoff volume, P is the rainfall, and S is a retention parameter, all expressed
as the depth of water. The retention parameter in mm is defined in terms of a curve numbér
(CN) as follows
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- 254 4.2)

The CN depends upon land use, soil type, and hydrologic soil conditions (Young et al., 1989).

The peak runoff rate for each cell is estimated using

g = 3794°7CS™RO/25HC™ DLy @4.3)

where Q, is the peak flow rate (m%/s); A is the drainage area (km?); CS is the channel slope
(m/km); RO is the runoff volume (mm); and LW is the watershed length-width ratio,

calculated by LA where L is the watershed length.

Erosion and Sediment Transport
Erosion from a single storm at a cell level is calculated using a modified form of tHe

universal soil loss equation (USLE) as follows.

SL = (EI)KLSCP (SSF) (4_4):

where SL is the soil loss (kg), EI is the product of the storm total kinetic energy and
maximum 30-minute rainfall intensity, K is the soil efodibility factof, LS is the topographi‘fc
factor, C is the cover factor, P is the supporting practices factor, and SSF is a factor to adjug,t
for slope shape within the cell. Eroded soil and sedimént yield are divided into five particlfe
classes-cléy, silt, small aggregates, large aggregates and saﬁd.

AGNPS considers only three sources of sediment: (1) sheet and rill erosion from th:e
in-cell processes; (2) channel scour from the in-stream processes; and (3) gullies from the ir;-
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cell processes. After runoff and upland erosion are calculated, detached sediment is routed
from cell to cell through the watershed to the outlet. Sediment load for each of the five

particle classes leaving the cell is calculated from

14

v . |
(o) a0 -g,0) - q(x)gs(x)}H 4.5)
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0 (0)+0

[ 20
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where Q,(x) is the sediment discharge af the downstream end of the channel reach (kg), Q,(0)
is the sediment discharge into the upstream end of the channel reach (kg), Q, is the lateral
sediment flow rate (kg/ha), x is the downstream distance (m), L is the reach length (m), w is
the channel width (), q(x) is the discharge per unit width, and g (x) is the effective transport

capacity per unit width.

Nutrient Transport

The pollutant transport part of the model estimates transport of N, P, chemical oxygeh
demand, and pesticides throughout the watershed. Pollutant transport is subdivided into
soluble pollutants and sediment-attached pollutants. The following assumptions are made to
- calculate the nutrient transport:
1. Surface runoff is assumed to interact with a 1 cm soil surface layer.
2. Chemicals on the soil surface are assuniéd to Be uniformly mixed within the surface 1ayer.
3. Infiltration must first pass throrugh the surface layer.

4. The initial abstraction is the first increment of rainfall prior to the surface runoff.
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Sediment-bound nutrient yield is calculated based on the total sediment yield as

follows.

Nutsed = Nuff Qx(x)Er (4.6);

where Nut,, is the nuirient transported in the sediment-bound form (kg/ha), Nut is; the

nutrient content of the field soil, and E, is the enrichment ratio, calculated as

. ' | -0.2T i '
E = 740 (x) @.7)
where T is the correction factor for soil texture.
Effects of nutrient levels in rainfal‘l, fertilization, and leaching are considered whilé

calculating the soluble nutrient transport as follows

sol

Nut, = C,MNu,Q | @48

where Nut, is the soluble nutrient concentration in the runoff (ppm), C,, is the mea§n
concentration of soluble N or P at the soil surface during runoff, Nute,;t is the- extractioh
coefficient df nutrient by rﬁnoff, and Q is the total runoff (mm).

The céntributions of soluble N and P ﬁom each of the cells are calculated first and
routed into the ch’annei. Once soluble nutrients reach concentrated flow, they are assumed t:o
remain constant.

Since its development, the AGNPS model has undergone several modiﬁcationsj.
Generally the model requires specification of 20 different input parameters for each grid celi,
either manually or through a spreadsheet interface supplied with the program. A summary
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of the different input parameters required by the model is shown in Table 4.2. The primary
input parameters for version 5.0 of the model consist of two user-supplied categoried:
program control file header or Watershed-level input parameters; and cellflevel information.

Various output options available with the mddel are shown in Table 4.3. Preliminariy
output includes Watershed area and cell size, storm precipitation and erosivity, estimates df
runoff volume and peak flow rate at the watershed outlet, and area-weighted erosion, botil
upland and channel. The model also calculates sediment delivery ratio, mean sedimedt
concentration, and total sediment yield for each of five sediment particle size classes. In the
_ nutrient analysis part, nutrient loss per unit area for the sediment bound and dissolved forms

and nutrient concentration are calculated. - -

4.3 Description of the GRASS-AGNPS Modeling Tool
Preparation of the input parameters for AGNPS is very time idtensive. Fora relativele
large watershed With fine grid cell size (e.g. less than 1 ha), generating, organizing and
managing the model input data and analyzing and displaying the model output data can be
tedious, time-consuming and problematic. The WATERSHEDSS GRASS-AGNPS modeling
tool developed by Osmond et al. (1997) was used to develop the input file. This modeling todl
is based on the GRASS-AGNPS interface developed by Srinivasan and Engel (1994). It has

some added capabilities of inputting point source, pesticide and channel information.
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Table 4.2. Summary of AGNPS (version 5.0) input parameters

1. Watershed level input parameters

Watershed identification
Description of the watershed
Area of the watershed
Number of cells
Precipitation

Nitrogen concentration in rainfall
Energy-intensity value
Storm duration

Storm type

Peak flow calculation
Geomorphic calculation

2. Cell Level inpuf parameters
Cell number
Cell division
Receiving cell number
Aspect/flow direction
SCS curve number
Average land slope
Slope shape
Slope length
Manning's n
USLE K factor
USLE C factor
USLE P factor
Surface Condition
Soil texture number
Fertilizer indicator -
Pesticide indicator
Point source indicator
Additional erosion
Impoundment indicator
Channel Indicator

62



Table 4.3. Summary of AGNPS outputs

1. Hydrology Outputs
Runoff volume (inches or cm)
Peak runoff rate (ft*/s or m%/s)
Fraction of runoff generated in the grid cell

2. Sediment Output
Sediment yield (tons or kg)
Sediment conccntratibn (mg/L)
Sediment particle size distribution:
Upland erosion (tons/acre or kg/ha)
Amount of deposition (percent)
Sediment generated within the cell (tons or Kg)
Enrichment ratios by particle size :
Sediment delivery ration by particle size:

3. Chemical output ' L
Sediment bound N (Ib/acre or kg/ha)
Soluble N in cell runoff (Ib/acre or kg/ha)
Soluble N concentration (mg/L)
Total Soluble N (Ib/acre or kg/ha)
Sediment bound P (Ib/acre or kg/ha)
Soluble P in cell runoff (Ib/acre or kg/ha)
Soluble P concentration (mg/L)
Total Soluble P (Ib/acre or kg/ha)
Sediment bound pesticide (Ib/acre or kg/ha)
Soluble pesticide in cell runoff (Ib/acre or kg/ha)
Cell chemical oxygen demand (Ib/acre or kg/ha)
Total soluble chemical oxygen demand (Ib/acre or kg/ha)
Soluble chemical oxygen demand concentration (mg/L)

63



In the WATERSHEDSS modeling tool; AGNPS is loosely coupled with Geographicerl
‘Resource Analysis Support System (GRASS) to generate, organize and display the model
input and output data. GRASS is a raster-based GIS system (USACERL, 1993). Datrl
generated ‘from GRASS is organized as inputs to the model, while the output data from th;:
model are subsequently transferred to the GIS for analysis and display. The data arze
transferred between the model and GRASS by simply formatting the output data generateéi
by each system. |
The GRASS rrrap layers required by the rnput file generator include the watershea
boundary, topogrérphy, ’rillage, USLEC and K factors, nutrient/fertilizer épplication rate, land
use, management i)racticg, hydrologic soil group, percent sarld, percent clay, and pesticidé:
application rates. The following is a brief explanation of each map layer unit.
Watershed Boundary: This layer should have a category value of 1 or greater within thge
watershed area and 0 outside the area. This layer defines the watershed or analysis boundar&
for all map layers. All other input map layers must extend beyond the boundErry of this layer.
~ Topography: Elevation in meters must be a category value for each cell. For the calculation
of slope and aspect, this layer must extend at least 2 cells beyond the watershed boundary al}
the way around.
USLE K Factor: A raster rna.p‘layer of the soil series map with K factors as a category Valué
for each map unit is required. »
Hydrologic Soil Gr(rup: Eaéh map unit should be assigned a category label of A, B, C, or

D based on the hydrologic group of the soil.
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Percent Sand: Percentage of sand sized soil particles is assigned as one of the category

values for each map layer unit for this coverage.

Percent Clay: For this layer, the category values should be the percentage of clay-sizeid

particles in the soil for each map layer unit.

Land Use: One of the following categories should be assigned to each map unit: fallow, row

crop, small grain,- rotation meadow, close-seeded legumes, pasture (poor), pasturé (good),

range, meadow, woods, hard surface, farmsteads, roads (dirt), water, aﬁd marsh. The poor and

good conditions are for the hydrologic conditions and are used to determine the curve number.

Fertilizer/nutrient Applicavtvion‘Rate: Four fertilization rates are specified in this layer 45

follows: O=none, 1=56 kg/ha N and 22 kg/ha P, 2=112 kg/ha N and 45 kg/ha P, and 3=224

kg/ha N and 90 kg/ha P. The user can also enter custom fertilizer application rates for

individual cells, if desired.

Tillage: Each map layer unit should be given one of the followiﬁg category labels: large

offset disk, moldboard piow, lister, chisel plow, disk, field cultivator, row cultivatof,
.anhydrous applicator, rod weeder, planter, smooth, or no till. Urban, water, marsh, and

farmstead land use areas can be no till or smooth. These values are used to determine thf:

nutrient availability factor. |

Management Practice: One of the following management practices should be specified afs

the cell label in this layer: straight row, contoured; or c‘dntoured and terraced.

USLE C Factor: This map layer should contain the value of USLE C factor as the categorjy

label for each cell.
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Pesticide application rate: This map layer is optional and is needed only when the usejr
wants to simulate pesticide transport. Up to three pesticide application scenarios can be
entered as the category values. A scenario contains a unique set of pesticide type, application
rate, application timing, and application metho}d,
Channel Slope: This data ‘layer is optional. The category values for each cell should be th;e
channel slope in percent for each cell. The user alsn has the option of entering channel
information for each cell individually in the interactive part of the input file generator. In tht:
absence of the layér, the channel slope is assumed to be 50% of the overland slope for each
cell unless the user changes the value of the cell.

In addition to the maps, several general watershed parameters must be known. Thesg:
include rainfall depth and duration, soil antecedent molistureb condition, N concentration nf

rainfall, area of each cell, and a short watershed description.

4.4. Modification of the AGNPS to input grid-based rainfall and energy-intensity
values |
One of the limitations of the AGNPS model, like most of the F/WQ models, is that
it allows only one value of 'rzviinfall assnming that it is homogeneous across the watershed qf o
interest. The model was mobdiﬁe(‘i tn input. grid-based‘rainfall and energy-intensity. Tne
modifications were based on the work done by Grunwald and Freede (1996) at the ARS
National Sedimentation Laboratory locatt:d at Purdue University, West Lafayette, Indianzt.

The energy-intensity for each cell was calculated from
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R = : 4.9).

where R, is the energy-intensity R factor, P is the cell rainfall in inches corresponding to a

duration D in hours, a; and b, are constants. f(D) was calculated as

f(D) = 2.119D%%%¢ (4.10)l

Values of a, and b, were taken from Haan et al. (1994). For Oklahoma; a and b are 17.9 and
0.4134, respectively.

The modified AGNPS was verified to see if it prb’duced the same results as th§
original AGNPS. The‘model' was run using a hqmngeneous rainfall for all cells and thé
outputs obtained were compared with the results from the original AGNPS. Under thie

assumption of rainfall homogeneity, the outputs obtained from the two models were identicai.

4.5. Sensitivity Analysis of AGNPS |
, Sénsitivity analysié is the process of identifying model component processes and
~ parameters that have the greatest impact on model output. Majkowski et al. (198i) suggesteii
that sensitivity analysis can be performed to ’eiaxa‘inine the inﬂ‘uence'.of input parameter enons
on predictions made by the m(idel. The acceptance level of output uncertainty depends on thé
system under ,considéra’tion,bthe modeling objecti{reg and the modeler's knowledge of the
system. Therefore, sensitivity analysis provides a rational method of identifying additionail
research needs and/or additional data collection to improve parameter estimates and to redu(;e
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model uncertainty.
A number of methods have been developed for the purpose of sensitivity analysis.

Haan et al. (1995) described a sensitivity coefficient as follows

. a0
S = — .
a aP » (411)

where S, is the absolute sensitivity, O is j:he particular output; aqd P is the particular inpu%[.
One of the problems with the absolute senS‘i-tiVity is that it has the unifs of the input and outpﬁt
parameters. Parameters can not be ranked on the basis of sensitivity because they may hav;e
different units. To overcome th‘is‘problem, a relative sensitivity index (S,) can be used as

follows

30 P
s =

r 3P O (4.12):

.....

because S, is dimensionless giving the change in O for a unit change in P. The parameter§s
with the highest S, have the greatest impact on model output. This provides a basis for
comparing various parameters and concentrating research and data collection on mopé
sensitive parameters.

When applying this ;nethodology to a H/WQ model, it is irﬁpo ssible to soive BO/BP

directly. Relative sensitivity can be numerically approximated as

o f
5 = - 4.13):
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where P and O are the base values of input and output. The base values are changed by a
certain percentage to get P;, P, and the corresponding O,, and O,. When applying Equation
4.13 to calculate S,, it is assumed that the model response is linear in the range of interest.
A H/WQ model may be linear for certain processes and/or over limited ranges. When a
H/WQ model is nonlinear, an extensive sensitivity analysis nsing this method can be done te
estimate relative sensitivity over a variety of conditions.

The outputs considered vi/ere runoff Vovlume, total sediment, sediment-bound N, and
sediment-bound P. Sensitivity analysis ef AGNPS wats performed using 26 parameters. The
base parameter values were changed by ilO% to estirnate S,. The relative sensitivity values
for these outputs are shown in Table 4.4. The relative sensitivity of totatl soluble N and total
soluble P is not shown in Table 4.4. For these nutrients, the output obtained was zero and the

relative sensitivity values could not be calculated.

4.6. Description of the rainfall events and the data set
There are 36 continuous recording gauges operating since 1962 and 12 additionatl
gauges were installed and have been operational since May 1994. Figure 4.7 shows the
location of these Micionet stations within the Little Washita watershed. ‘The charaeteristic;s
of the Micronet stations are shown in Table 4.5. Also a NEXRAD (WSR-88D) radar 1s
located northeast of the basin in Twin Lakes, near Oklahoma City, and covers the study area.
Rainfall data for the Micronet stations were obtained from USDA-ARS. The
raingauges used in the Micronet are Belfort 5-780 series dual-traverse weighing bucket

raingauges. An automatic data logger is used to measure the rainfall amounts.
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Table 4.4. Relative sensitivity of the AGNPS parameters for the output considered.

Output Parameter Relative Sensitivity
Runoff Volume CN 3.03
Total Sediment CN ' 1.91
Land Slope 0.31
K factor =~ 0.35
C factor 0.35
P factor 0.34
Sediment-N CN ' 1.53
Land Slope 0.24
K factor 0.36
C factor 0.36
P factor 0.36
Soil N ’ 1.07
Sediment-P CN 1.53
Land Slope 10.25
K factor , 0.28
C factor 0.28
P factor - 028
Soil P ' 0.50

For each gauge location, cumulative rainfall depths were available at 5 minute
intervals. The rainfall data‘start at 0 GMT hour and end af 2355 GMT hour. All the rainfail
data were converted to CDT time. |

Stream flow data for the C&ril and Cement watersheds were obtaingd from the USGS. '
Daily discharge in‘cubi‘c meter per second a;[ both sites was available. USGS classiﬁés
stream flow data as excellent, good, fair, and poor. The accuracy of the stream flow recordjs
depends primarily on two factors: (1) the stability of the stage-discharge relation or, if tﬁe

control is unstable, the frequency of discharge measurements; and (2) the accuracy of
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Figure 4.7. Location of the Micronet stations in the Little Washita basin
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Table 4.5. Characteristics of the Micronet Stations

Number  Station ID Name City North Lat.* East Long.*
501 All0 110" Norge 35.0144 -98.0096
502 Alll 111 Chickasha 35.0158 -97.9517
503 Al2] 121 Ninnekah - 34,9586 -97.8986
504 Al22 122 Ninnekah 34.9728 -97.9528
505 Al23 123 Norge 34.9711 -98.0056
506 Al24 124 Norge 34.9728 -98.0581
507 Al125 125 Cement 34,9858 -98.1281
508 A130 130 Stecker 34.9564 -98.2847
509 Al31 131 Cyril 34.9503 -98.2336
510 Al32 132 Cement' 34.9428 -98.1819
511 Al133 133 Cement 34.9492 -98.1281
512 Al34 134 Cement 34.9367 - -98.0753
513 Al135 135 Cement 34.9272 -98.0197
514 Al36 136 . Ninnekah 34,9278 -97.9656
515 Al137 137 Ninnekah 34.9450. -97.9231
516 Ald4 - 144 Agawam 34.8789 -97.9172
517 Al45 145 Agawam 34.8842 -97.9714
518 Al46 146 - Agawam- 34.8853 -98.0231
519 Al47 147 Cement 34.9069 -98.0758
520 Al48 148 - Cement ©34.8992 -98.1281
521 Al49 149 “Cyril 34.8983 -98.1808
522 Al150 150 Cyril 34.9061 -98.2511
523 Al51 151 Stecker 349133 -98.2928
524 Al152 152 Fletcher 34.8611 -98.2511
525 Al53 153 Cyril 34.8553 -98.2000
526 Al54 154 Cyril 34.8553 -98.1369
527 AlSS 155 Agawam 34.8408 -98.0203
528 Al56 156 Agawam 34.8431 -97.9583
529 Al157 157 Rush Springs 34.8247 -97.9122
530 Al158 158 Rush Springs 34.7836 -97.9328
531 Al59 159 Rush Springs 34,7967 -97.9933
532 Al160 160 Rush Springs’ 34.8003 -98.0369
533 Alé6l 161 Sterling 34.7972 -98.0906
534 Al62 162 Sterling 34.8075 -98.1414 -
535 Al63 163 F'létcher 34.8100 -98.1981
536 Al64 164 Fletcher 34.8207 -98.2789
537 Al65 165 Sterling 34.7828 -98.1456
538 A166 166 Sterling 34.7539 --98.0894
539 Al67 167 Rush Springs 34.7544 -98.0367
540 Al68 168. Rush Springs 34.7542 -97.9775
541 Al81 181 Apache 34.8697 -98.3014
542 Al182 182 Cement 34.8450 -98.0731

* North Lat = North Lattitude; East Long = East Longitude
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measurements of stage, measurements of discharge, and interpretation of records. A record
classified as "excellent", "good", and "fair" means that about 95% of the daily discharges are
within 5, 10, and 15% of the frue values, re;i)eétively. Records that do not meet this criterié
are rated "poqr". The USGS has not classiﬁed the data for the watersheds used in this study.

A total of 12 rainfall dates were selected for the yeaf 1996. For the Cyril watershed,
8 raingauges locétcd Wimin and around the watershed were used. For the Cement watershed,
17 raingauges were used for the analysis of the rainfall. The location of the 17 gauges use:d
with the Cement watershed are shown in Figure 4.6. The base flow was separated from thie-
total flow to get the surface runoff.' In the ,c'ompufation of the runoff, a hbrizontal line from
the start of the rainfall evg_nt ‘was drawn:ﬁntil it intersected the storrﬁ hydrograph. This V\"as
termed as the base ﬂéw line; Totall\bzolume above the base flow line was considered as thfe
runoff volume. Often severai days elapsed as this runoff volume was occurring. This methoid
of runoff computati.on minimized the effect of various ﬂood retardation structured present 1n
the watershed. F dr March 27 and 28, April 21 and 23’, August 1 and 3, May 31 and June 1,
and July 9 and 10, it was not possible to separate the base flow from the total ﬂpw for thé
rainfall on each day. The total rainfall for the two days was considered as one rainfall eveﬁt
and was used in ﬂ“le analysis. Thus, the total number of rainfall evénts considered was sevcrji.
The events are indicated by the ﬁrstv déy of the event. For the Cement watershed, the rainfali
observed at several gauges within tI;e wateréhed Was erroneo”us on 8/1/96. The rainfall on th1$
date was discarded from the analysis for this watershed. The rainfall on 11/6/96 observéd at
the majority of the gaugés was too small to run the AGNPS model. Since AGNPS we;s

developed to predict the erosion losses, it does not work very well for the very small rainfall
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events. This event was also not considered for the Cement watershed. The rainfall on 4/21/96
was then included in the analysis to have at least five different rainfall events analyzed.
Rainfall four days precéding the event date were also obtained to characterize the antecederfﬁ
moisture conditions used in CN calculations. |
The GRASS-AGNPS modeling tqol (Osmond et al., 1997) was used to generate the
input file for AGNPS. The GIS layers required were watershed boundary, topography, tillage
practices, USLE K factor, USLE C factor, hydrologic soil group, percent sand, percent clay,
nutrient application vrate, land use, and management p_ractice map. Soil type, land use and
elevation data wére obtained from the USDA-ARS station at El-Reno, Oklahoma. All the
input layers required by the GRASS-AGNPS modeling tool were prepared in raster formgt
using a 30 m cell resolution. ‘The input layers needed for the Cement watershed are show;n
in Figures 4.8-4.17. Information about the tillage practices, nutrient application rate, and
management practice were obtained from personnel at the USDA-ARS station at Chickasha;,
Oklahoma. Watershed boundary and topographic fnaps were prepared from the digitél
elevation model (DEM) data. USLE K factor, hydrologic soil group, percent sand, and
percent clay coverages were prepared from the soil data of the watershed. USLE C factor was
based on the watershed land use information. The cell size used in AGNPS modeling was
200m x 200m. This cell size was used to insure the adequate representatioﬁ of the watershed
properties without increasing the compléxity of the input file and the AGNPS run time. In
a study done on the Upp;ar Little Washita basin which encompasses the two watersheds usea
in this study, Ma (1993) conciuded that spatial structure of the landscape complexity had ga
significant impact on the spatial scaling and high runoff-generating areas played an importaﬁt

74



role in surface runoff processing. The author concluded that a cell size less than 300 m X 300
- m should be used to preserve the presence of high runoff generating areas.

Once the input file for AGNPS was prepared using the GRASS-AGNPS modelinig
tool, the cell-based rainfall values were added to the input file. For any rainfall event, if a
gauge had erroneous rainfall of did not seem to be functional, then the data from that gaugie
were completely discarded and it was assumed that the gauge was-not present for the even%c.
Erroneous rainfall data were indicated by large negative numbers. A nonfunctional gauge was

indicated by the rainfall of -998.
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Figure 4.8. Boundary of the Cement watershed
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Figure 4.9. Elevation map of the Cement watershed
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Figure 4.10. USLE K factors for the Cement Watershed
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Figure 4.11. Hydrologic groups of the Cement watershed
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Figure 4.12. Percent sand for the Cement watershed
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Figure 4.13. Percent clay for the Cement watershed
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Figure 4.14. Land use and cover of the Cement watershed
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112 kg/ha N, 45 kg/ha P

Figure 4.15. Fertilizer/nutrient application rates for the Cement watershed
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Figure 4.16. Tillage practices for the Cement watershed
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Figure 4.17. USLE C factors for the Cement watershed
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4.7 Description of the Radar Data

NEXRAD producté are available either in graphical format or in digital format witih
polar coordinates. The NEXRAD rainfall data were Digital Precipitation Array (DPA) da‘éa
stored in a binary format. The coordinate system used with the DPA data is HRAP as
_described in the previous chapter. Rainfall in the DPA data is available at five minute ‘
intervals with hourly cumulative rainfall preceding the time at which the rainfall was scanneci.
For each date, the time specified is GMT. For example, the rainfall at 1200 hours will give
the cumulative rainfall that occurred over a one hour period precéding 1200 GMT.

The DPA data are in a two dimensional arréy fofmat with 131 rows and 131 columns.
The radar rainfall wés obtained for the rainfall on 7/9/96 for tﬁe radar located at Twih Lakes,
Oklahoma. This radai cévers the Little Washité watershed. The DPA data were converted

to the corresponding rainfall values for each cell using the following equation.

_ (DPAvalue * 0.125 - 6) :
EXP = o | (4.14)

Rainfall = 105 4.15)

The unit of rainfall obtained by Equétion (4.15) is mm.

The geographic location of each radar rainfall cell was not known directly. Instead
the location of the radar was known and the location of each raiﬁfall cell was determined
indirectly from this information. .Thg radar was located at the center of the rainfall are:a
scanned. In the HRAP coordinate system, it captures the rainfall values that extend 65 cells
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in all directions. The size df the cells varies with latitude in the HRAP coordinate system.
Since all of the input layers were prepared in GRASS, it was not possible to use the rainfail,
information in HRAP coordinate system directly because the GRASS requires a uniform cell
size. The cell size was calculated at the Northeast and Southwest corner of the Little Washita
watershed using Equation (3.22). The cell sizes at these corners were 3.95 and 4.05 km,
respectively. This gives the minimum and maximum cell size for the watershed. In this
research the average cell size (4 km) from thésé two values was calculated and used as the
uniform cell size in all calculations. .Although this is an approximation of the rainfall
oc;curring in each grid, it was assumed that the error intrqduced was nst significant. Hourly
cumulative rainfall was added for the event to get thé daily total rainfall values for each cell.

The cell size used in AGNPS was 200 m X 200 m. The rainfall information was
available at a cell size 4000 m X 4000 m. Thus, 400 cells in the watershed were assigned
rainfall value that occurred within one radé.r cell. ‘Rainfall at a resolution of 200 m X 200 m

~was used for all analyses.

4.8 Calibration of Radar Rainfall
The calibration féctor for radar rainfall values at each gaugé loéétion was determinea
using Equatioh, (3.16). Rainfall observed at only one cell that contained the raingauge was
~ used to determine the calibration factor. A calibration factor. at each of the 13 gauges used
to capture the rainfall pattérn for the ‘Cement watershed was calculated. | The calibrated radar

rainfall field was obtained using
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R, = CF *R, @.16)

where R, is the calibrated radaf-scanned rainfall value for any particular cell, and R, is tlfe
uncalibrated radar rainfall value for that cell, and CF, is the appropriate calibration factor for
the cell under consideration.

An arbitrary lower and upper limit of 0.1 and 10.0 for the calibration factor was ﬁxed
to insure that a Very small or large calibration factor was not used. The parameter and output
uncertainty induced in the AGNPS model was estimated by using the data from the Cement
watershed only. The rainfall event on 7/9/96 consisted of rainfall occurring on 7/9/96 and
7/10/96. The gauge measured rainfall was available for these two dates. The hourly rainfali
on each date _waS added 0 get the total daily rainfall. Then the calibration factors for rainfall
on these two dates were determined separately. Equation (4.16) was used to calibrate the
radar rainfall values. ‘T‘he calibration factor ‘corresponding to each gauge location was used
for all cells falling within the area as.sociated with that gauge as delineated by the Theissen
polygon method. The calibrated reinfall for the two days at each grid was then added to get

the total rainfall for the event.

4.9 Estimation of p‘arameter uncertainty due to spatial variability of rainfall
AGNPS requires 26 input parameters. The variability -induced in all parameters due
to the spatial variability of rainfall was not studied because it would have been very time
intensive. Also the output of the model is not equally sensitive to all pararﬁeters. To reduce
the time of the analysis, only the most sensitive parameters that affect runoff volume, totel
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sediment transport, sediment-N, and sediment-P transport at the outlet of the watershed based
on the sensitivity analysis of AGNPS were used. The most sensitive parameters were curve
number (CN), USLE K, C, P factors, and land slope (S). For the AGNPS model, USLE K,
C, and P factors always appear as the prcduct KCP and thus can not be separated for
parameter estimation. Therefore, for the parameter Variability'ainalysis, only one of the three
parameters can be considered and the other two parameters will show the same Variability.
The K factor was usecl for this study. Thus ;Lhe three parameters considered were CN, S, aﬁd
K.

The only available obsefved data were t}’iebrai»nféll and runoff volume. No observed
water quality or sediment data wefe available. Two stecs were used to estimate the pararnetcr
uncertainty due to the spatial Vaiiability of réinfall. In the ‘ﬁrstbstep, grid-based rainfali
depths, considered as the ‘true’ rainfall, were captured using the_Theissen polygon method.
AGNPS was calibrated for CN using observed ‘true’ rainféll and runcff volume by adjusting
the individual cell curve numbers either all upward or downward by a constant percentage
until predicted runoff volume equaled observed runoff volume. The AMC was assumed to
be II for CN throughout the parameter estimation process for all rainfall events. All other
parameters were estimated based on the observed watershed characteristics. Runoff 'Volumc,
total sediment, sediment-N, and sediment-P were obtained by running the model using
calibrated CN, and “true’ raiﬁfall values for each event. These outputs were considered as the
‘observed’ values for the further analysis. Charactefistics of‘réinfall, runoff, sediment, and

nutrient data for all events analyzed are shown in Table 4.6.
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Table 4.6. "Observed" rainfall, runoff, sediment and nutrient values

Rainfall Date Rainfall Runoff Total Sediment Sediment-N Sediment-P

(mm)  (mm) (Mg) (kg/ha) (kg/ha)
Cyril Watershed

3/27/96 31 0.3 , 13.6 0.02 0.01
5/31/96 78 0.8 128 0.15 0.07
7/9/96 112 3 401 0.36 0.18
8/1/96 26 4.1 - 67.1 0.09 0.04
10/27/96 o 12 0.3 5.44 0.01 0.01
11/6/96 12 0.3 10.9 0.02 0.01

Cement Watershed
3/27/96 .33 0.5 242 0.07 0.03
4/21/96 25 0.8 443 0.1 0.06
5/31/96 83 3 3395 0.53 0.27
7/9/96 64 1.5 2367 0.39 0.2
10/27/96 23 . 0.3 68 0.02 0.01
Radar (7/9/96) 65 1.5 3338 0.53 0.26
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‘In the second stép, parameter uncertainty due to spatial variability of rainfall was
estimated. It was assumed that each of the eight raingauges, considered one at a time, in the
case of the Cyril watershed, and 17 gauges in the case of the Cement watershed, was theé only
gaugé available for the rainfall measurement and the rainfall depth recorded by that gauge was
spatially homogeneous across the watershed. Model parameters were estimated using the
rainfall observed at each gauge loéation, one at a time, and the ‘observed’ runoff, total
sediment, sediment-bound N, and sediment-bound P values. The objective function used ih
the parameter estimation was the sum of absolute value of relative errdrs for runoff, sediment

and nutrients. The relative error was defined as

. | . (Observed value — Predicted value)
Relative Error = ‘ 4.17
_ Observed value

A two stage “brute force” opti‘m}ibzaﬁvon” procedure described by Allred and Haan
(1996) was used the find the optimum parameter values. In the first optimization stage, a
rough estimate of the optimum parameter set was obtained by setting a percentage by which
- each pafameter was to be changed. The parameter values in each cell were increased or
decreased by this percentage. Eight increments or decrements were ,performed for each’
parameter. Curve numbers Were always increased or decreased by a whole number. For thrée
parameters a total of 512 model runs were performed a.nd objective function values calculated
for every possible permutation of the parametefs. If fhe opﬁmum values of aﬁy of the three
parameters were obtained at the uppér or lower boundary of the parameter values, the step
siz¢s of the parameter values were increased and the same procedure was repeated ‘to insure

91



that the optimﬁm parameter estimates did not fall at the boundary values. Mathematically,
the optimum parameter value can be represented as (P;);, where P, is the average optimunﬁ
value of parameter i obtained at step j (j=1,2,....8). If j was equal to one or eight, then the
range of the step size was increased, and the optimization procedure was repeated. The first
estimate of the optimum i)arafneter set was cﬁosen that had the minimum objective function
value.

The second optimization was conducted in a similar manner as the first one by fulther
refining the parameter values. Reﬁnement was accomplished using a much narrower range
of parameters obtained from the first optimization. If the optimum paré.nieter obtained by the
first approximation was (P)),, thenvthe range of the parameters in the second optimization‘wa“s
(P to (P, At soiné instances, more tilan one set of parameter Values:, very close to each
other, were obtained that fni_nimized the objective function. In that case, the range was set
such that all the parameters minimizing the objective function were bracketed. In the second
optimization, a step size in the form of a fraction for each paiameter was calculatedvthat
divided the range of the parameter into 10 evenly distributed values. Each parameter at the
cell level was then increased or decreased by this fraction and model runs were performed.
In this step also, the cufve numbers were increased or decfeased by a whole number. A totgl
of 1000 model simulations were performed for each possible permutation of the parameter
values. The set of pa;ameters that minimized the objective function were considered as the
final optimum parameter set. This “brute feree” optimization procedure, although being
computationally less efficient than other methods, has the advantage of not being affected by
local minimums in the objective function (Allred and Haan, 1996). |
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For the Cyril watershed, eigiit sets of parameters, one for each gauge-measured
rainfall, that minimized the objective function were obtained for each rainfall event. For the
Cement watershed, 17 sets of parameters were obtained. Since the parameter values were
different at the cell level, the valuea shown in the subsequent sections represent the average
parameter values for the watershed.

The same procedure was repeated for the radar data. The calibrated radar rainfall was
assumed to be the “true” rainfall for the Cement watershed. The p‘ara.meters were estimated
using the two steps described in the previous paragraphs and the parameter uncertainty
induced by the spatial variability of rainfall was eé,timated when the “true” rainfall pattern was
captured using the calibrated radar rainfall. The parameters were estimated using the
calibrated rainfall at the gauge locations only. This gave 17 sets of different parameters for

the calibrated radar rainfall field.

'4.10 Estimation of output uncertainty due to spatial variability of rainfall

AGNPS was run using the rainfall observed at each gauge location, one at a time,
assuming that the rainfall depth was uniform across the watershed. Calibrated values of CN
using ‘true’ rainfall pattern and other best estimates of parameters for each event obtained
from the previous section were used. The parameters were fixed for each event. Eight and 17
sets of outputs for the Cyril and Cement watersheds, respectively, were obtained for each
rainfall event.

For the calibrated radar rainfall, two sets of the model output uncertainty were
obtained. In the first set, the model was run using the rainfall value observed at each gauge
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location as described in the previous paragraph and the output uncertainty was estimated
using the 17 sets of outputs for the Cement watershed for rainfall on 7/9/96. In the second sef,
the model was run using all of the different rainfall values from the calibrated radar rainfail
field. This gave 43 sets of outputs for the watershed representing 43 different rainfall values.
A summary flow chart of parameter/output uncertainty estimation is shéwn in Figure 4.18.

The variability in the model parameters and outputs induced by the spatial variability
of rainfall is termed the parameter/output uncertainty. The uncertainty in the modél
parameters and oufputs was quantitatively estimated using Average Error (AE), Relative Error
(RE), Standard Error (SE), and éoefﬁcient of Variation (C.V.). These error statistics can be

defined as follows

4E = 2P, - 0D (4.18)
RE = % @.19)
cv :» %5 4.21)



where P, is the predicted value, O is an observed output or the parameter value, O is the mean
of the observed data, and n (i=1,2,3,....,n) is the number of data pairs. In this case, since th:e
observed value of parameter/output is fixed for each eveﬁt, O isequal to O. The average error
quantifies parameter/output variability in the units of O and P (e.g., kg, m/m, mg/L). In order
to compare the parameters/outputs having different units, Average Error must be expressed
in unitless terms. The relative error, RE, gives the percent deviation of the parameter/outpﬁt
value from the mean observed value. ‘The standard error, SE, and the coefficient of variation,
C.V., are numericéi indicators of fhe variability in predicted data.

The variability in the rainfall amounts»obs‘erved at each location was quantified using
Equations 4.18-4.21. Here Pi is the rainfall observed at thé gauge i, O is the average rainfail

for the area, and n is the number of gauges used to capture the rainfall spatial Variability. ‘
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Figure 4.18. Summary flow chart of parameter/output uncertainty estimation
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Spatial Variability of Rainfall

Consideration of spatial variébility of rainfall is very important in studying the process
of generation and»t,ransport of runoff, sediment, and nufiients from a watershed. In modeling
the hydrologic Behavior of Watersheds, most of the m_édels available to date assume spatial
homogeneity of rainfall. Figure 5.1 shows the hourly distribution of rainfall that occurred on
8/3/97 over the Little Washita \Aiatershed as recorded at 42 Micronet stations. Total area of
the watershed is 610 km® A large yariation in the cumulative rainfall"depth over the area is
evident. The event rainfall depth varied from almost zero to 43 mm. Traditionally, rainfall
is measured at a few gauges (possibly only one) 'scattered thioughout the basin and these point
measured values are used to determine the average rainfall depth for use in hydrologic/water
quality (H/WQ) models. In an idea.l condition, iivhere the density and distribution of gauges
are adequété, raiinfall d‘epth’caI‘l be estimated with sufﬁcierit ilccuracy at any point in the basin
by using a spatial interpolation techniqué. 'Unfortunately, this ideal condition rarely exists.
In fact, it is not uncommon to have no rain gauge within the basin of interest. If each of tlie
42 gauges in the Figure 1 is assumed to be the representative gauge for the watershed, the

result obtained using the rainfall recorded at each gauge location, one at a time, will have a
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Figure 5.1. Hourly distribution of rainfall on 8/3/96 over Little Washita watershed
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large variability. A H/WQ model like AGNPS may not predict any significant output using
the low rainfall values as compared to a larger rainfall depth (>30 mm) observed at some
other gauge locations.

Eight gauges located within and around the Cyril watershed were used in the analysis
of rainfall spatial variability. Figure 5.2 shows the location of these gauges. The
characteristics of the rainfall observed by thé eight galiges é.re shown in Table 5.1. Table 52
shows the rainfall ;haracteristics for thevﬁvze events analyzed for the Cement watersheél.
Spatial variability of rainfall for the Little Washita basin is shown 1n the Table 5.3. For the
Cement watershéd, eight of the 17 gauges had erroneous rainfall amounts recorded on 8/1/96.
Most of these gauges were located within the basin. This event was not considered for this
watershed. However, this problem wés not encountered with the Cyril watershed, becau%e
the watershed size was small, and gauges considered for this watershed did not have any
problem. When analyzing the results with the Little Washita basin, all gauges which did not
seem to be functional for any of the two days that made an event were discarded from ﬂie
analysis. The number of gauges considered to capture the rainfall spatial variability ranged
from 13 to 17 for the Cement watershed, and 23 to 42 for the Little Washita basin.

For the Cyril watershed, the six events analyzed vaiied in terms of the rainfall depth.
The average rainfall varied from 11 mmto 84 mm. The range of the rainfall recorded by eig}it
gauges, average erro‘r,ivrelative error, standard error, and C.V. were calculated for all events.
The C.V. ranged from 0.07 to 0.7 for the five events.‘: The: rainfall on 5/31/96 was moét
hoinogeneous in nature which is evident by the smallest C.V., standard error and relative error
(Table 5.1). The iainfall on 8/1/96 was the most heterogenous as shown by the largest C.V.
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Table 5.1. Spatial Variability of rainfall for the Cyril watershed

Stastistic Rainfall Date
3/27/96  5/31/96 7/9/96 8/1/96  10/27/96 11/6/96

Average (mm) 2921  83.06  84.20 27.18 = 2003  10.80

AW. Avg. (mm)  30.92 78.57 111 26.95 12.88 12.06
Range (mm)  18.0-40.9 76.5-94.5 42.4-137 5.33-68.1 9.65-38.4 1.27-21.8
Avg. Error (mm) 8.13 5.21 31.56 14.92 8.28 5.05
Rel. Error 0.28 0.06 037 0.55 0.41 0.47
Std. Error (mm)  8.90 5.91 34.7 19.0 9.33 6.00
C.V. 0.30 0.07 - 0.41 0.70 0.47 0.56
No. of Gauges 8 8 8 8 8 8

Table 5.2. Spatial variability of rainfall for the Cement‘watershed _

Statistic Rainfall Date v
3/27/96  4/21/96  5/31/96 7/9/96 10/27/96

Average (mm) 32.0 26.2 717.8 69.2 18.5
AW. Avg. (mm)  32.5 24.6 83.3 64.3 234

Range (mm)  18.0-40.9 16.7-50.3 57.15-94.5 30.7-137 0-44.5
Avg. Error (mm) 6.35 7.15 6.47 27.0 " 9.34
Rel. Error 0.20 0.27 0.08 0.39 0.51
Std. Error (mm) 7.95 9.08 8.87 31.6 11.7
C.V. 0.25 0.35 0.11 0.46 0.64

No. of Gauges 13 . 16 - 17 17 17
A.W. Average = area weighted average; Avg. Error = average error

Rel. Error = relative error; Std. Error = standard error
No. of Gauges = Number of gauges used within and around the watershed
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Table 5.3. Spatial Variability of rainfall for the Little Washita basin

Statistic Rainfall Date

3/27/96 4/21/96  5/31/96  7/9/96 8/1/96  10/27/96  11/6/96
Average (mm)  27.8 303 74.1 66.2 38.0 15.8 - 16.0
Range (mm) 1.02-40.9 0.76-57.7  0.25-103 14.7-137 = 11.7-59.9  0-44.5 0-44.7
vg. Error (mm)  9.48 9.17 10.3 274 117 7.84 10.0-

Rel. Error 0.34° 030 ~  0.14 0.41 0.31 0.50 0.63
Std. Error (mm)  10.9 11.8 15.5 31.7 14.0 - 10.2 12.4
C.V. 0.40 0.39 0.21 0.48 037 0.5 0.78

No. of Gauges = 23 41 42 42 26 42 37

A.W. Average = area weighted average; Avg. Error = average error
Rel. Error = relative error; Std. Error = standard error ,
No. of Gauges = Number of gauges used within and around the watershed



For the Cement watershed, the average rainfall ranged froﬁ 19 to 78 mm for the ﬁvé
events analyzed (Table 5.2). The C.V. ranged from 0.11 to 0.64. The smallest C.V. and
relative error were associated with the rainfall on 5/31/96 and largest with the rainfall on
'10/27/96. The standafd erro? was smallest for the rainfall on 3/27/96.

The average rainfall bfor the Little Washita basin ranged from 16 to 74 mm for the
seven events (Table 5.3). The range of C.V. was 0.21 to 0.78. The smallest and lmgeét
staﬁdard errors reéulted on 10/27/96 and 7/1/96, respectively. The rainfall on 5/31/96 resulteéd
in the smallest relétive error, while the rainfall on 11/6/96 resulted in the blargest relétive error.
For this watershed, the rainfall on 5/31/96 was also the most homogeneous in nature as showﬁ
by the smallest C.V. ( Table 5.3).

Fér the Cyriyl Watérshed a true rainfall pattern was cabtured using four gauges and the
Theissen polygon ,metﬁdd. For the Cement watershed rainfall observed by 13 gauges'wajs
-used to capture the true rainfall patt.em. Tﬂe area weigﬁted rainfall shown in Tables 5.1 and
5.2 were obtained from the rainfall observed by these gauges and the Theissen polygon
method.  The average rainfall was obtained from the 8 gauges in C?ril watershed and 17
gauges in Cement wétershed. The average rainfall and the area-weighted average rainfall
were not same for all events, except 8/ 1/96 for thév Cyril watershed. For the Cemer}t
watershed, the area—weighted rainfall was different from the average rainfall for all dates,
except 3/27/96; Inclusion of additional gauges that were in the vicinity of the watershed
introduced a bias in thé average rainfall esﬁmate. In actual conditions, it is not uncommon

to have a raingauge located outside the watershed of interest. As the number of raingaugés
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available to estimate the area-weighted rainfall increases, this bias can be expected to
decrease.

The common events analyzed for the Cyril and Cement watersheds were 3/27/96,
5/31/96, 7/9/96, and 10/27/96. For Cement watershed, C.V., relative error, and range of
rainfall was larger for all dates except 3/27/96. Standard error was larger for the events on
5/31/96 and 10/27/96. For the event on 3/27/96, the range of rainfall observed by 8 gauges
for Cyril watershed and 17 gauges for Cement watershed was same. The inclusion df
| additional gauges that had rainfall within the same range decreased the C.V.,, standard, and
relative errors.

For the Little Washita basin, when range and error statistics of rainfall are compared |
with the Cyril and Cernent Watersheds, a 1arger variation in the rainfall is evident. The range
and C.V. of rainfall are larger for Little Washita basin as compared to the two smaller
watersheds. As compared to the Cyril watershed, standard error was larger for all events,
except 8/1/96. AVerage error was larger for 3/27/96, 5/31/96, and 11/6/96. When compared
to the Cement watershed, standard error was larger _fer all events except on 7/9/96, and
10/27/96. The average rainfall was also different for the three watersheds.

In general, the rainfall spatial variability increased with an increase in the watershed
size. This is evident from the fact that the rainfall range increased with the watershed area.
The minimum rainfall observed by raingauges decreased as the size of the watershed
increased. For the Little Washita basin, the minimum raihfall observed was very close to zero
for five of the seven events analyzed. These rainfall data will not predict any signiﬁcarlt
output as compared to the output obtained when the maximum rainfall was used. This shows
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that the use of a single gauge to measure rainfall for application in H/WQ models can
introduce significant errors in model results.

Contour maps of the rainfall depth for all the seven dates are shown in Figures 5.3-5.5.
The contour map was made using inversé distance interpolation. The rainfall was interbolated
at each point using seven surrounding gauges. Considerable variation in the rainfall depth is
evident. Here for the aféa shown in thes¢ figures, the maximﬁm distance in the Eaét-Weét
direction is 41 km and in the North-South direction is 25 km. The rainfall depth gradient and
the direction of the rainfall depth gradient is different for each storm.

For four of the six eventis’analyzed for the Cyril watershed, rainfaH observed by gauge
150 was closest to thearea—Weighted rainfall. For rainfall on 11/6/96, gauge 131 recorded a
rainfall depth similar to the area-weighted rainfall. Figure 5.2 shows that gauge 150 is locate:d
near the center of the watershed. There are only two gauges, 131 and 150, located within t11§e
watershed (Figure 5.2). Together ;these two gauges 6bserved a rai;lfall depth similar to the
area-weighted rainfall for all events analyzed, except oﬁ 8/1/96. For the rainfall on 8/1/96,
gauge 132 was the best representative gauge from the area-weighted rainfall point of view.

For the Cement watershed, gauges 149 and 150 recorded a rainfali similar to the areé—
weighted rainfall on 3/27/96. For the rainfall on.4/21/96 and 5/31/96, gauge 147 was the best
representative gauge for the watershed. Gauge 154 on 4/21/96 and 152 and 154 on 5/3 1/96
also observed rainfall depth similar tloithe‘ ‘area-weighted rainfall. Gauges 148 and 154 were

the most representative gauge for the rainfall on 7/9/96 and 10/27/9'6, respectively.
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Figure 5.3. Contour map of rainfall depth (mm) for storm on 3/27/96
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Figure 5.4. Contour map of rainfall depth (mm) for storm on 4/21/96

107



Figure 5.5. Contour map of rainfall depth (mm) for storm on 5/31/96
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Figure 5.6. Contour map of rainfall depth (mm) for storm on 7/9/96
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Figure 5.7. Contour map of rainfall depth (mm) for storm on 8/3/96
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Figure 5.8. Contour map of rainfall depth (mm) for storm on 10/27/96
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Figure 5.9. Contour map of rainfall depth (mm) for storm on 11/6/96
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In general, for the Cyril watershed, the gauges located within the basin were the mo$t
representative gauges for the rainfall in the watershed for the most of the events. Fof tHe
Cement watershed, although the gauges located near the center of the watershed had rainfail
recorded that was a better representation of the ‘area-weighted rainfall, the best representativ:e
gauge was not always located neaf the center of the watershed. Gauges 149 and 153 are
located near the center of the Watershed, however, gauge 149 was the most representativ‘je

gauge for only one of the five events analyzed.

5.2 Calibi‘ation of .Rédar Rainfall Data

Table 5.4 shows that for the rainfall on 7/9/ 96;'the calibration factor ranged from 0.08
to 7.45. Since the lower limit for the calibration factor was 0.1, the radar rainfall
corresponding to the calibration facfor 0.08 was not used. As compared to the gaug;e
measured rainfall the radar iover. estimated the rainfall at six gauge locations and under
estimated the rainfall at seven gauge locations. For the rainfall on 7/10/96, the calibration
factor ranged from 1.125 to 3.93 (Table 5.5). Radar underestimated the rainfall at all gauge
locations for the rainfall on this date. For the rainfalls in Oklahoma, Smith et al. (1996)
concluded that underestimation of rainfall was pronounced beyond 150 km in spring-summér
and beyond 100 km in winter-fall due to iﬁcomplete Beam filling and bvershooting (;f
precipitation. For the warm séason‘ tﬁe raingauge observations were found to be 48% larger
than radar rainfall estimates in the range 0-40 km, 18%.larger in the rahge 40-160 km, and
40% larger in the range greater than 160 km. The maximum and minimum distance betwegn
a raingauge and radar for the watershed Cement is 104 km and 85 km, respectively. The
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Table 5.4. Radar rainfall calibration factors for rainfall on 7/9/96

Gauge # Radar value Gauge value  C.F.

(mm) (mm)

130 9 45 5

131 11 82 7.45
132 13 43 3.31
133 12 36 3

148 37 26 07
149 33 19 0.58
150- - 24 50 208
151 13 57 438
152 42 12 0.29
153 45 7 0.16
154 . 38 5 0.13
162 17 23 135
163 49 4 70.08
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Table 5.5. Radar rainfall calibration factors for rainfall on 7/10/96

Gauge # Radar value Gauge value C.F.

(mm) = (mm)
130 19 57 3
131 14 55 3.93
132 20 31 1.55
133 23 42 1.83
148 23 41 1.78
149 19 28 1.47
150 23 48 2.09
151 19 69  3.63
152 18 35 1.94
153. 24 36 1.5
154 21 31 1.48
162 13 23 177
163 16 18 1.125
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raingauges corresponding to the maximum and miniﬁlum distances were 151 and 134,
respectively. The results obtained here were consistent with the results reported by Smith et
al. (1996) except that the underestimation of rainfall by radar was more pronounced for tﬁe
events analyzed in this research. Ifthe radar rainfall is not calibrated using the raingauge data,
the calibration factors show the error in the rainfall one may expect. For example, the
uncalibrated radar rainfall on 7/9/96 has a range of error from 0.08 to 7.45 factors. This
rainfall should be corrected before it can be used in any hydrologic applications. |
The average and range in the radar scanned rainfall over the watershed were 65 mm,
and 21-189 mm, respectively. The area weighted rainfail using data from raingauges alone
and the Theissen polygon method wés 64 mm. This shows that the calibrated rainfail
produced an average rainfall over the Cement Waters‘hed similar to the area-weighted rainfaill
obtained using 13 raingauges. The standard deviation and C.V. were 37.5, and 0.59 | ,
respectively. The variability in the radar-scanned rainfall as indicated by range and C.V. 1s
larger than the corresponding rainfall variability when the rainfall was captured using tﬁe
raingauges alone. It shows that when only a limited number of raingauges are used to capture
the rainfall, the variation in the rainfall may be lower than the true but unknown variation. |
A calibrated radar rainfall may give a better estimate of true rainfau pattern over the

watershed area.
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5.3 Effect of Rainfall Spatial Variability on Parameter Estimation

5.3.1 Effect of Rainfall Spatial Variability on Model Parameter Uncertainty

Parameter variability induced by épatial Variability of rainfalvl is shown in Table 56
for the Cyril watershed. AGNPS isa distributed paiameter model. The model parameters
vary from cell to cell. The parameter estimates discussed here represent the average
parameter value ,énd all the statisﬁcs were based on the average parameter estimates for thée
watershed. In AGNPS, land slope is used to calculate the amount of sediment and nutrients
eroded within each cell and the subsequent routing of the sediment and nutrients from each
cell to the watershed outlet. The K factor is used in Univérsal Soil Loss Equation (USLE) to
calculate the amount of sediment and nutrients eroded at each cell. YCN indicates the runoff
potential of an area. Coefﬁcient of variation (C.V.) in estimated‘CvN ranged from 0.06 to 0.54
for the six events considered. The lafgest standard error (SE) iﬁ ‘CN was produced by tl{e
rainfall that had the largest standard error (7/9/96). The smallest C.V. and SE in CN were
associated with the rainfall with the smallest C.V. and SE (5/31/96). Coefficient of variation |
and SE are numerical representations of the variability in the data. It means that a rainfall
with a large variation in obseﬁed de;pth will produce a higher variability in CN. This can be
expected since for a fixed runoff there is a one-to-one correspondence between rainfall and
CN. For a small observed rainfall Valué, CN must be higher to produce a volume of runoff
equal to the measured runoff and vice-versa. |

Table 5.7 shows thé pararheter Variability induced by rainfall spatial variability for thé
Cement watershed. The C.V. in CN ranged from 0.11 to 0.51 for the five events consideregl.
The SE ranged from 4.85 to 16.85. Here again the largest SE in the rainfall was associateLl
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with the largest SE in CN. In general, the standard error in CN decreased with a decrease in
the SE for rainfall depth.

The C.V. in the estimated slope ranged from 0.06 to 1.64 for the Cyril watershed and
0.12 to 0.58 for the Cement watershed. The range of SE were 0.09 to 2.62 for the Cyril
watershed and 0.46 to 2.15 for the Cement watershed, respectively. Out of the total six
rainfall events anaiyzed, the rainfall on 7/9/96 and 8/ 1/9‘6‘ were the most heterogeneous 1n
nafure for the Cyril watershed. _T_hese two events produced the highest variation in t};e
estimated slope for the Cyril watershed. For the Cement watérshed, élthough the largest C.V.
and SE in the estirﬁated slope were not associated with the rainfall having largest C.V. aﬁd
SE, in genefal a higher variability in rainfall resulted in a higher _variability in estimated slope.
The rainfall on 5/3 1/96 was the rﬁost homogeneous in nature. Th15 resulted in the smallest
C.V; in the slope estimates.

For the Cyril watershed, C.V. and SE in the K factor ranged from 0.08 to 0.79, and
0.03 to 0.27, respectively. Here again, the smallest C.V. and SE were associated with the
rainfall event most uniform in nature (5/31/96). The variability in the estimated K factér
increased with an increase in rainfall heterogeneity. For the Cement watershed, the C.V.
rangecl..from 0.08 to 0.85 for K factor. The corresponding range in SE was 0.03 t0 0.28. .

Coefficient of variation in retention parameter‘(S) ranged from 0.11 to 0.81 for tﬁe
Cyril watershed and 0.17 to 0.49 for the Cement watershed, respectively. The correspondihg
ranges in SE were 28.2 to 84‘;1 mm, and 46.7 to 251 mm, respectively. Similar to the CN, the

smallest variation in S resulted from the rainfall most homogeneous in nature (5/31/96).
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Table 5.6.° Parameter variability induced by spatiél variability of rainfall
for Cyril watershed

Statistic Parameter values for rainfall dates

3/27/96 - '5/31/96 7/9/96 8/1/96 10/27/96 11/6/96
CN
Average 62 36 46 73 68 77
Range 52-71 - 32-38 32-62 46-90 52-77 66-82
C.V. 0.15 0.06 0.54 0.19 0.14 0.08
Std. Error 8.42 2.37 17.7 13.6 10.6 6.31
Avg. Error 6.63 1.63 13.1 "11.0 1.175 5.57
Rel. Error 0.11 0.04 0.4 0.15 0.10 0.07
Slope
Average 1.69 1.50 2.52 2.44 1.14 1.54
Range - 0.93-2.75 1.2-1.87 1-4.05 0.4-82  0.55-1.8 1.44-1.6
C.V. 0.45 0.16 0.92 1.64 0.43 0.06
Std. Error 0.73 0.25 1.47 2.62 0.69 - 0.09
Avg. Error 0.66 0.21 1.19 1.53 0.57 0.06
Rel. Error 0.41 0.13 0.75 0.96 0.36 0.04
K factor
Average 041 0.33 0.50 0.30 025 0.23
Range 0.32-0.58 0.29-0.36 0.28-0.79 0.09-0.87 0.05-0.48 0.19-0.38
C.V. 0.40 0.08 0.72 0.79 0.50 0.37
Std. Error 0.13 0.03 0.25 0.27 0.17 0.13
Avg. Error 0.09 0.03 0.18 0.23 0.14 0.12
Rel. Error 0.26 0.07 0.53 0.67 04 0.36
Retention Parameter (S)
Average 164 461 344 108 128 75.9
Range 103-234 415-5490 156-540 27.9-298 75.9-234 55.9-132
C.V. 0.29 - 0.11 045 0.81 0.73 0.33
Std. Error 54.1 49.5 232 84.1 65.3 282
Avg. Error 442 333 183 60.5 45.0 24.4
Rel. Error 0.24 0.08 0.36 0.58 0.5 0.29

Std. Error = stadard error; Avg. Error = average error

Rel. Error = relative error

119



Table 5.7. Parameter variability induced by spatial variability of rainfall
for Cement watershed

Statistic Parameter values for the rainfall dates
3/27/96 4/21/96 - 5/31/96 7/9/96 10/27/96

CN :
Average 58 65 43 - 44 66
Range '51-70 47-72 36-52 23-64 47-76
C.V. 0.12 0.11 0.12 0.51 0.26

~ Std. Error 6.83 6.98 4.85 16.9 14.2
Avg. Error 438 5.81 3.75 13.8 12.7
Rel. Error 0.07 0.09 0.1 0.42 0.23
Slope
Average 3.96 5.69 3.93 4,12 - 3.62
Range 3.11-524  3.33-6.79 3.32-5.14 2.07-6.22  2.1-5.54
C.V. 0.20 0.58 0.12 0.33 0.26
Std. Error 0.75 2.15 0.46 1.24 0.95
Avg. Error 0.48 2.02 0.30 1.02 0.77
Rel. Error 0.13 0.55 0.09 0.28 0.21
K factor
Average 0.35 0.44 0.32 0.51 0.36
Range 0.23-0.58 ~ 0.25-0.68 0.28-0.38 0.27-0.87 0.14-0.59
C.V. 0.38 0.54 0.08 0.85 0.50
Std. Error 0.13 0.18 0.03 0.28 0.16
Avg. Error 0.08 0.14 0.02 0.21 0.15
Rel. Error 0.23 0.43 0.08 0.62 045
Retention Parameter (S)
Average 188 ‘ 144 351 388 139
Range 109-244 98.9-287 234-452 "143-850 80.3-287
C.V. 0.23 0.33 0.17 0.49 0.44
Std. Error 46.7 485 67.1 251 92.2
Avg. Error 31.2 37.6 54.9 223 84.6
Rel. Error 0.16 0.25 _0.14 0.43 0.41

Std. Error = stadard error; Avg. Error = average error
Rel. Error = relative error
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In general, a wide range in estimated parameters resulted when the rainfall measured
at each gauge location was used indrvidually, one at a time. None of the parameters can b?e .
considered unlikely when viewed individually for each event. Together the sets of parameter
values obtained illustrate the possible range dependirrg' upon the rainfall variability across the
watershed. |

‘A larger range in the rainfall values within a sirrgle event reSulted in a higher range 1n
all estrmated parameters. When corrlpared to the true parameter values, the variation was Very
large for all events. For slope, K, and S the range was several orders of magnitude for some
events for both watersheds. Parameter uncertainty eQmes into play when developing and
testing a model. One might have several observed events and use each to estimate model
pararneters. The result may be quite inconsistent estimates. Usually the uncertainty in the
model parameters is attributed to the structure of the model because the mathematical modeis
are simplified description of the processes occurring in the nature. Results of this Study
indicate that even in the case of physically-based distributed-parameter models, an uncertainty
in the parameter estimates would be observed because of the input error coming from the
spatial variability of rainfall. The input error is present when measurements frem only one
gauge ‘or a small number of gauges is used when a more extensive network might be

necessary to give an adequate representation of the rainfall pattern over a basin.
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| 5.3.2 Biases in the Estimated Parameters Due to Rainfall Spatial Variability

Biases in the estimated parameters obtained are shown in Table 5.8. Here a bias 1s
deﬁngd as the difference between true and estimated average parameter value. A positive bias
means the parameter was underestimated and a negative bias mean that the parameter was
overestimated. The parameters were estimated using obsei'ved output and rainfall measuréd
at each gauge location, one at a time. The objective function used-t'»o‘estimate the pmametefs
was the sum of absolute values of relative 'errors“deﬁned by Equation 4.17. For the Cyril ‘
watershed, the values sﬁown in the Table 5.8 fepre'sent the average of the 8 sets of parameters
obtained for 8 different rainfall measurémént fbf each event. For the Ccmeﬁt watershed, the
parameter values shown are th¢ average of 17 differént realizations of the parameters, each
corresponding to one gauge location for each event. |

Here it should be noted that the true paramefer values for slope and K factor weﬁe
obtained using the observed characferiétiés of the wateréhed. CN were obtained by using tﬁe
true pattern of rainfall captured by 4 gauges using Theissen polygon method for Cyril
watershed, and 13 gauges for Cement watershed. Retention parameter (S) was derived from
CN. Here it was assumed that CN obtained using a spatially variable rainfall pattern for the
two watersheds gave the true CN and S estimates. In the case of Slope and K, it was assumed
that the observed watershed characteristics yielded the true estimates of these parameters.

For the Cyril watershed, for all events ,éxcept on 8/1/96, area-weighted rainfall is
different from the average rainfall obtained using 8 gauges. This bias in rainfall produced a

bias in CN and S. For the Cement watershed, a bias is evident in average and area-
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Table 5.8. Biases in the estimated parameters induced by the rainfall

spatial variablity
Rainfall date CN S (mm) Slope (%) K
Cyril Watershed
327196 -4 19.6 0.09  -0.07
5/31/96 1 284 011 0.02
7/9/96 -13 171 092  -0.16
8/1/96 2 457 084 0.04
10/27/96 6 293 046 0.09
11/6/96 2 8.64 0.06 0.11
Cement Watershed :
3/27/96° 2 112 <025  -0.02
421/96° 2 1533 -198  -0.11
531/96° 3 460 022 001
7/9/96° 11 128 041 -0.18
10/27/96° -11 69.1 0.09 -0.03

a = Average of 13 gauges
b = Average of 16 gauges
¢ = Average of 17 gauges
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weighted rainfall for all rainfall events. This resulted in a biased average estimate of CN and
S for all events.

The true parameter values of slope and K did not depend on the true rainfall patterr;.
 They were derived from the watershed characteristics. When the slope and K factors were
estimated using the rainfall depth observed at each gauge location one at a time, the bias in
the recorded rainfall at each gauge location was compensated for by adjusting the parameter
-values to get the fnodél predictions closer to the observed output values. In this case, a bias
in the amount of recorded rainfall was translated to parameter bias and affected the resulting
parameter estimates. As' the number of rainfall observations for a-watershed increases, the

bias in the estimated parameters can be expected to 'd_ecrease.

533 Relaﬁvé Errors in Estimated Parameters Due to Rainfall Spatial Variability
Relative errors for estimated parameters ag compared to the calibrated parametér
values were calculated for all events for the two watersheds. Table 5.9 shows the relativ:e
. errors in éstimated parameters as compared to the calibrated parémeter values for the Cyril
watershed. The corresponding parameter relative errors for the Cement watershed are shown
in Table 5.10. The maximum and minimum relative errors as compared to the afea—weighted
average rainfall for all events analyzed are shown in Table 5.11. For each event, parametets
were estimated using eight rainga,uges for the Cyril watershéd and 13 to 17 raingauges fdr
Cement watershed. Rainfall observedv‘ at each gauge 1ocation gave a different set Qf

parameters that minimized the objective function defined by Equation 4.17.
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Table 5.9. Relative errors in estimated parameters for Cyril watershed

Rainfall Date Parameter Relative Error

Maximum Minimum

3/27/96 CN 0.22 0
S 0.44 0

Slope 0.72 0.17

K 0.71 0

5/31/96 CN 0.4 | 0
S 0.25 0

Slope  0.25 0.03

K 132 0

7/9/96 CN 0.88 0.03
S 07 0.05

Slope = 1.53 0.03

K 1.32 0

8/1/96 | CN 0.35 0.04
S 1.87 014

Slope 4.13 0

K 1.56 | 0.11

10/27/96 CN 0.3 0
S 1.63 0

Slope 0.66 0.05

K 085 ~0.03

11/6/96 - CN . 0.12 0.01
'S 055 0.05

Slope 0.1 0

K 0.44 - 0.12
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Table 5.10. Relative errors in estimated parameters for Cement watershed

Rainfall Date Parameter Relative Error

Maximum Minimum

3/27/96 CN 0.23 0.02

S 0.46 0.04

Slope 0.41 R 0.01

K 0.75 0

4/21/96 CN 0.25 0

: S 0.92 0

~ Slope 0.83 0.1

K 1.06 0.03

5/31/96 | CN 0.33 , 0

- 8 0.4 0

Slope 0.39 ‘ 0.02

K 0.15 0.03

7/9/96 CN 094 0.03

S 072 0.04

Slope 0.67 0.01

K 1.63 0

10/27/96 CN 0.38 0.03

S 0.61 0.08

Slope 0.49 0

K 078 0.03
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Table 5.11. Relative errors in rainfall values

Rainfall Date Relative Error
Maximum Minimum
Cyril Watershed

3/27/96 0.42 0.01
5/31/96 0.2 0
7/9/96 - 0.62 0.09
8/1/96 1.57 0.15

10/27/96 2.08 0.02
11/6/96 0.89 0.17

Cement Watershed

3/27/96 0.45 -0.01
4/21/96 104 0
5/31/96 0.31 - 0.02
7/9/96 - 1.13 - 0.05

10/27/96 0.9 0.13
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The minimum and maximum relative errors shown in the Table 5.9 for each parameter are the
minimum and maximum relative errors obtained from the eight sets of parameters for eacfh
event. For the Cement watershed (_Taiblg: 5.10), the minimum and maximum relative error;
for the parameters represent the minimum and maximum relative error values from 13 to 17
sets of parameters for each event. For the Cyril watershed, the maximum relative error in CN,
S, Slope and K factor were 0.88, 1.87, 4.13, and 1.56,v respectively, for all events consideredi.
The maximum relative error in CN occurred for rainfall observed at gauge location 153 0;1
7/9/96. The maximum relative error in thé»slope estimates resulted from the rainfall obsefved
at gauge 152 on 8/ 1/96. The minimum relative eﬁqr for these parameters was Zero. Table
5.9 shows that the minimum relative error was very near to zero for all of the events for all
parameters. The corresponding rainfall error observed at these gauge location was alsc}
relatively smaller. For the rainfall observed at gauge 151, the relative error in slope estimate-
was zero although the relative error in rainfall at this gaﬁge location was highest for the event.
For the Cement watershed, the maximum relative error in CN, S, slope, and K factor
were 0.94, 0.92, 0.83 and 1.63, respectively, for all events considered. The corresponding
rainfall relative errors were 0.52, 1.04, 0.32, and 0.52, respectively. Maximum relative error .
in CN was obtained at ‘Lhe gailge 161 for rainfall on 7/9/96. Thé rainfall obtained at this gauge
‘ location was minimum for't}vlis event. For S, the maximum relative error occurred at gauge
163 on 4/21/96. For this event, rainfall relative ’error was maximum at this gauge location.
Also, the rainfall observed at this gauge was the maximum for the event. Maximum relative
error in slope estimate was at the gauges 132 and 150 on 4/21/96. The rainfall observed by
these gauges was the minimum for the event. The maximum relative error in estimated K
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factor was associated with the minimum rainfall observed at the gauge 161 on 7/9/96.
The minimum relative errors for CN, S, slope, and K factor for the Cement watershed ‘

were zero. The corresponding rainfall relative errors were 0.09, 0.26, 0.09, and 0.15,
respectively. The minimum relative eﬁor was close to zero for all events for all parameters.
Here it shoﬁld be noted that the minimum relative errors were not associated with the rainfall
minimum relative errors. For example, rainfall on 4/21/96 had the rainfall measured at the
gauge 147 very similar to the area-weighted rainfall value. But the relative errors in thé
parametérs were not minimum at this gauge location. .This might havé come from the routing
of the runoff from cell to cell, and subsequently té the watershed outlet. For a large
watershed, if the éenter of the storm is located towards the watershed outlet, the spatially
variable rainfall will produce larger runoff Volumé than a .spatially}homogeneous rainfaﬂ
equal to the area-weighted rainfall depth. This was evident from the fact that the average CN
for the watershed for rainfall at gauge 147 was higher than the average true CN obtained using
~ true rainfall pattern on 4/21/96, although the rainfall observed at this gauge was very close
to the area-weighted mean rainfall. In other words, in order to produce the given amount of
runoff with a given CN, rainfall observed at the gauge location should be higher than the area-
weighted rainfal,l. It meaﬂs that for large watersheds, an area-weighted average rainfall may
not result in the true parameter estimates. vHowever, a bias in the parameter using ared—
weighted rainfall will be smaller as compared to th¢ parameter estimated using rainfall
observed at only one gauge location. This biasican be expécted to decrease with a decreasé

in the watershed size. Similar results were obtained for other events for this watershed.
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Maximum relative errors in CN and S were associated with the minimum rainfall
observed at a gauge ‘location for all events, except on 4/21/96. For the rainfall on 4/21/96, the
maximum rainfall observed at the gauge 163 produced the maximurh relative error in CN, and
S. For estimated slope and K factor, the maximum relative error resulted from the gauges that
observed the minimum rainfall. This shows that if the rainfall is observed by several gauges,
and the parameters of the model are estimated using rainfall one gauge at time, the maximum
relative error may result from the mihimum rainfall recorded for the event. However, thi.s
result should be tested with other models before it caﬁ Vbe extrapolated for all H/WQ models.
Since AGNPS is designed to predict erosidn‘eveﬁts, not low flow events, the bias and relative

errors in parameter estimates can be expected to be large for smaller rainfall events.

5.3.4 Correlation Structure Among the Parameters

The correlation among the parameters and the input rainfall was calculated for all
events for the two watersheds. The results of the correlation analysis for the Cyril watershed
are shown in Table 5.12. Table 5.13 shows the correlation among the input parameters for
the Cement watershed. The correlation of S with other parameters is not shown in these
Tables. S is derived from CN, and hence its correlation will be similar to that shown for CN.

The correlation analysis shows that rainfall, CN, slope, and K factors are highly
correlated. In the parameter estimation process, réinfall was the only input variable, and tﬁe
values of CN, slope and K factor were adjusted to get the best estimates of parameters thét
met the objective function given by Equation 4.17. For the Cyril watershed, the maximufn
and minimum correlation between CN-slope was -0.99, and -0.28, respectively.
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Table 5.12. Correlation among the estimated parameters for Cyril watershed

Rainfall  Slope CN K

3/27/96

Rainfall 1

Slope -0.99 1

CN -1 0.99 1

K -0.92 094  0.94 1
5/31/96

Rainfall 1

Slope -0.9 1 _

CN 099 092 1

K. -0.27¢  -0.12*  0.15*% 1
7/9/96

Rainfall 1

Slope 099 1

CN -0.97 0.98 1

K  -095 096 098 . 1
8/1/96

Rainfall 1

Slope  -0.48* 1

CN -1 0.47* 1

K -0.68 0.91 0.68 1
10/27/96
‘Rainfall |

Slope -0.71 1

CN -1 0.73 1

K  -0.73 0.81 0.7 1
-11/6/96. |

Rainfall 1

Slope 023* 1

CN -0.99  -0.28* 1

K 0.71 0.6* -0.76 1
Overall’ '

Rainfall 1

Slope  -0.14* 1

CN 093  0.25* 1

K 0.71 0.8 0.06* 1

* Not significant at a. =0.05.
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Table 5.13. Correlation among estimation parameters for Cement watershed

Rainfall  Slope CN K

3/27/96 |
Rainfall 1

Slope -0.96 1

CN 1 09 1

K -0.99 097 099 1
4/21/96
Rainfall 1

Slope = -0.98 1 :

CN -1 0.98 1

K -0.86 0.87 0.89 1
5/31/96 -
Rainfall 1 -

Slope  -0.98 1

CN = -l 0.98 1

K. 091 08 091 1
7/9/96 A
Rainfall - 1 ,

Slope  -0.97 1

CN 097 098 1

K -0.89 091  0.96 1
10/27/96
Rainfall 1

Slope -0.94 1

CN -1 095 = 1

K -0.87 0.92 0.89 1
Overall
Rainfall 1

Slope -0.54 1

CN 097 - 0.64 1

K -0.38 0.73 0.48 1
Radar S
Rainfall 1

Slope -0.94 1

CN 098  0.99 1

K -0.92 0.92 0.95 1
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The maximum correlation between CN-K, and CN-rainfall were found to be 0.98, and -1.0,
respectively. The minimum correlation between these parameter pairs were 0.15, and -0.97,
respectively. Although there is a one to one correlation between rainfall and CN for a fixed
runoff, the relation between ;ainféll and CN is nonlinear. A high correlation betweeﬁ
optimized CN and rainfall was expected. The maximum correlation between slope;rainfall
and slope-K were -0.99, and 0.96, respectively. The minimum correlation between thesé
parameter pairs were 0.23, and -0; 12, respectively. The maximum and minimum correlation
bétween rainfall-K factor were -0.95‘, and -0.27, respectively.

A t-test was perfbrmed to see if thé correlation coefficients among the parameters were
~ significantly different from zero. The t-test assumes the data to be ﬁormélly distribufeci.
Because some of the pafameters may not have a normal distribution, the results obtained heré
are approximations of the true results. Nevertheless, it gives an idea about the associatiorsl
among different parameters. Table 5.12 shoWs that for the Cyril watefshed, the correlatioﬁ
between K-rainfall, K-CN, and K-slope was not significantly different from zero (a=0.05) for
rainfall on 5/31/96. The correlation between slope-rainfall, and slope-CN was not significant
(0=0.05) for the rainfall on 8/ 1/97. | Slope-rainfall, slope-CN, and K-CN were not significantly
correlated (a=0.05) for the réinfall event that occurred on 11/6/96. |

For the Cement watershed,v the mﬁximum correlation between CN-rainfall, CN-slope,
and CN-K factor was, -1.0, 0.98, and-0.99, respectively. The corresponding minimum
correlation between these parameters were -0.97, 0.95, and 0.88, respectively. Slope—rainfail
and slope-K factor had a maximum correlation of -0.98, and 0.97, respectively. The
minimum correlation between these parameters were -0.94, and 0.88, respectively. Rainfall-K
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factor had a maximum and minimum correlation of -0.99, and -0.86, respectively. For the
Cement watershed, all correlation coefficients were significantly different from zero (aZO.OS)
for all events analyzed (Table 5.13).

In AGNPS, land slope is used to calculate the amount of sediment and nutrienfs
eroded within each cell and the subsequenf routing of the sediment and nutrients from each
cell td the watershed outlet. A high significant negative correlatioh between slope-rainfaf;l
means for a given ainount of sediment and nutrient transported at the watershed outlet, if the
rainfall is higher, slope should be lower, and vice-versa to predict the sediment/nutrient
| transport equal to the observed output. The K factor is used in the Universal Soil Loss
Equation (USLE) to calculate the amount of sedimentv and nutrients eréded ateach cell. A
high-éorrelation between slope-K factor was expected.

The correlation among the parameters for the six events combined together for the
Cyril watershed and for five events »for‘ the Cements watershed were calculated. The
correlation among parameters for all events in the Table 5.12 were Based on 46 differenf
estimates for each parameter. The correlations among parameters shown for all events
together were derived from 77 parameter estimates. Tables 5.12 and 5.13 show that the‘
correlations were less when the para.meters'for all events were combined tbgefher. For the
Cyril watershed only CN—féinfall, and slope-K were signiﬁcaﬁtly correlated (0=0.05). All
parameters were significantly correlated (a=0.05) for the Cement watershed (Table 5.11).

In general, rainfall, CN, slopé, and K factors were highly correlated for all events
analyzed for both watersheds. This correlation is a major contributor to the difficulty of
estimating parameters for H/WQ models. A high correlation between two parameters means
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that one parameter can not be estimated without adjusting the value of other. At the same

time there can exist a large number of combinations that will give similar outputs.

5.3.5 Probability structure of the estimated parameters

Probability plots of estimated parameters for all events for the Cement watershed are
shown in Figures 5.10-5.12. The assurhption made in the probability plotting was that th;e
individual observations are independent’df each other and that the sample data obtained heré
are representative of the populatibn. Figures 5.10 and 5.11 show thatvthe estimates of the
-slopes and the K factors are not nbrmally distributed. Retention parameter (S) is plotted on
a lognormal scéle (Figure 5.12) because S is assumed to have a lognofmal distribution. It
" shows that the estimated S does nbt follow a lognormal dist.:ribu‘.[ion.b The totalvnumber of daté
points available for all eilents ranged from 13 to 17. These numbers of data points are
relatively small to shéw the probab>ility distribution function of the pérameters.

In all figures, the probability on the Y-axis represents the percent cumulative
probability that a value of the parameter obtained will be less than a given value.
. Mathematically it can be represented as P(Xéx). Here X is the parametér for which the
cumulative probability is desired and x is the value of the parameter. The probability of
getting the parameter estimate less thén or equal to the true parameter value can be éalculatedv.
If this probability is less than 0.5, filen it can be conciuded that the parameter was
overestimated using the rainfall observed at a majority of the gauges. On the other hand, if
the probability is more than 0.50 then the parameter was underestimated for the majority of
the gauge rainfall values.
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Figure 5.10. Probability plot of estimated slopes for Cement watershed
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Figure 5.10 shows that the probability of estimating a slope less than the true slope
(3.71%) is greater than 0.50 for the rainfalls on 3/27/96 and 10/27/96. | It means that for a
rainfall pattern like this slope will be underestimated using the rainfall observed at majority
of the gauges. For the other events aﬁalyzed, Figure 5.10 shows that the probability of
estimating a slope less than‘tksle true slope is less than 0.50 and the slope is overestimated
using the rainfall observed at the majority of the gauges.

The true parameter value for the K factor was 0.33. Figure 5.11 shows that K factor
is overestimated for the rainfalls on 4/21/96 and 7/9/96 using the rainfall at a majority of the
gauges. For the other events, the K factor is underestimated. The base values for the
retention parameter were 188, 144,’ 351, 410, and 139 @, respectively, for the rainfallé on
3/27/96, 4/21/96, 5/31/96, 7/9/96, and 10/27/96. The retention paraméter was ovérestimated
for the rainfall on 3/27/96, and uridcr’estimated for the rainfalls on the ,cher events when thé

‘rainfall at each gauge location was used, one at a time, to estimate the parameter.

5.3.6 Model Parameter Uncertainty Obtained with Radar Rainfall Data

For the rainfall on 7/9/96, the variability induced in estimated parameters due to
rainfall spatial variability is shown in Table 5.14 when the true rainfall pattern was captured
using radar. The results presented here are based on the 17 sets of different parameter values
each corresponding to the calibrated rainfall at gauge locations. The average CN, S factor
(mm), slope (%), and K .factor obtained were 44, 390, 5.02, and 0.49, respectively. A
comparison of the statistics of éstimated parameters obtained from radar data and fron;
raingauge data shows that the average, range, C.V., standard error, average error, and relativé
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error were larger for estimated CN and slope when the parameter estimates were obtained
using the radar data (Tables 5.7 and 5.14). For retention factor (S), the average was less when
radar rainfall was used. The range and C.V. in radar-scanned rainfall was higher than the
corresponding values obtained when the rainfall variability was captured using raingauges
alone. When compared with the error estifnates from raingauge data, a higher variability in
the radar-scanned rainfall resulted in a higher variation and etrors invthe estimated parameters.
For the K factor, the average and rénge were larger when the radar rainféll was used. The
C.V,, standard error, average error, and relative error in estimated K were very similar when
the radar rainfall was used.

Although the average rainfall for the watershed using th¢ radar was very similar to the
area-weighted rainfall obtained from gauges alone, the average CN, retention factor, and slope
were -different. The estimates of average CN, slope and K factor | were larger than the’
corresponding estimates obtained using data frofn gauges alone. Table 4.6 shows that thé
observed values of total sediment, sediment-attached N, and sediment-attached P were higher
when the radar data was used. When the parameters were estimated using these higher
observed Vélues, the average parameter values had to be higher to minimize the objective
function d.eﬁne'd by Equation 4. 1 7. A larger range in the rainfall resulted ih a larger range in

the estimated parameters
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Table 5.14 Parameter Variability induced by rainfall spatial variability
with radar measurement of rainfall

Statistic CN S factor - Slope K factor

(mm) (%)
Average 44 390 5.02 0.49
Range  22-64 143-900 2.96-7.45 0.22-0.86
C.V. 0.64 0.51 0.55 0.7
Std. Error  19.15 303 2.03 0.23
Avg. Error  15.65 268 1.59 0.18
Rel. Error  0.52 0.45 043 0.56

Std. Error = standard error; Avg. Error = average error
Rel. Error = relative error
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5.‘4 Effect of Rainfall Spatial Variability on Model Outputs
5.4.1. Uncertaihty in the Model Outputs due to Rainfall Spatial Variability

The effect of rainfall spatial variability on model outputs for watersheds Cyril and
Cement are shown in Tables 5.15 and 5.16, respectively. For all rainfall events, variability
in the measured rainfall resulted in variability in the model outputs based on a fixed set of
parameters. Table 5.15 shows that for the Cyril watershed, five of the six events considerea
had rainfall at some of the gauge 1o§ations too small to produce aﬁy significant runoff,
sediment, and nutrient transport at the watershed oﬁtIet.

In case of the modeled runoff volume, the C.V. ranged from 0.52 to 1.82 for the six
events. Ranges of C.V. for total sediment, sedimént-'attached N, and sediment-attached P
- were 0.34-1.64, 0.5 6-1.7, and 0.27-1.44, respectively. The smallest C.V. for all outputs was
obtained with rainfall on 5/31/96. Rainfall on this date was most uniform in nature aé
indicated by the lowest C.V. (Table 5.1); For all évents, the CV in output was larger than
the C.V. in the rainfall. |

The ranges of SE and RE for runoff volume, total sedirﬁent, sediment-attached N, and
sediment-attached P are shown in Table 5.15. In general, a larger SE in rainfall resulted in
a larger SE in outputs, except for rainfall on 3/27/96. AV larger RE in Outbut was associated
with a larger RE in input rainfall. ‘

FOr the Cement watershed, range in C.V. in estimated runoff volume, total sediment,
sediment-attached N, and scdimeﬁt—attéched P was 0.5-2.29, 0.43-2.4, 0.36-2.15, and 0.37-
2.17, respectively (Table 5.16). For modeled outputs, the smallest C.V. was obtained for
rainfall on 5/31/96 which had the smallest C.V. and was most uniform in nature (Table 5.25.
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The largest C.V. in output occurred on 10/27/96. Table 5.2 shows that this event had the
largest rainfall C.V. The range of SE for runoff volume, tetal sediment, sediment—attached

| N, and sediment attached P was 0.51-2.54 mm, 211-3930 Mg, 0.04-0.48 kg/ha, and 0.02-0.25
kg/ha, respectively. For all outputs the Smaliest SE in rainfall resulted in the smallest SE in
outputs. The SE in estimated output increased with an increase in rainfall SE. The same
result is evident with the relative error. The smallest RE in output occurred on 5/31/96 and
was associated with the rainfall with the smallest RE.

Coefficient of Va.fiatiOn and RE in estimated outputs were larger than the
corresponding C.V. and RE in rainfall forvall"events. This shows that the uncertainty in
estimated runoff, total-sediinent, sediment-attached N, and sediment-attached P using a single
raingauge as measured by C.V. and RE can be expected to exceed the input rainfali
uncertainty. A isimilar result was reported by Faures et al. (1995) on a small watershed (<5
ha). This has an important implication fe‘r parameter estimation dﬁring model calibration if
a single raingauge is used to measure input rainfall. If the spatial homogeneity of rainfall is
assumed during the parameter estimation process, the variation in the modeled outputs could

be mistakenly attributed to the model shortcomings.
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Table 5.15. Output uncertainty induced by the spatial variability of rainfall in Cyril watershed

‘Output Statistic Output values for rainfall dates

3/27/96 5/31/96 7/9/96 8/1/96 10/27/96  11/6/96

Runoff Volume = Observed 0.33 0.76 3.05 4.06 0.15 0.30

(mm) Average 0.51 1.27 2.03 4.06 1.78 0.25
Range 0-1.27 0.51-2.29 0-7.37 0-19.8 0-7.62 0-2.03

C.V. 1.13 0.52 1.42 1.65 142 1.82

Std. Error 0.51 0.76 2.8 6.35 2.79 0.76

Rel. Error 1.04 0.65 0.85 1.1 13.0 1.41

Total Sediment ~ Observed 13.9 128 401 67.0 - 4.99 104

Mg) Average 16.2 169 233 727 349 9.43
Range 0-44.2 110-271 0-732 0-317 1.81-124 0-44.8

C.V. 1.05 0.34 1.23 1.46 1.24 1.64

Std. Error 17.8 73.3 350 110 55.5.. 16.0

Rel. Error 1.01 0.39 0.68 1.03 7.14 1.06

Sediment-N Observed 0.02 0.15 0.36 0.09 0.01 0.02

(kg/ha) Average 0.02 0.18 0.20 0.08 0.04. 0.01
Range . 0-0.07 0.12-0.26 - 0-0.58 0-0.30 10-0.15 0-0.67

C.v. 1.03 0.26 1.16 1.24 1.12 1.7

Std. Error 0.02 0.06 0.27 0.09 0.06 0.02

Rel. Error 0.89 0.28 0.63 0.8 3.9 0.83

Sediment-P Observed 0.01 0.07 0.18 0.04 0.01 0.01

(kg/ha) Average 0.01 0.09 0.10 004 002 0.01
Range 0-0.03 0.07-0.13 0-0.29 0-0.15 0-0.07 0-0.03

CV. 0.99 0.27 1.16 1.25 1.06 1.44

Std. Error 0.01 0.02 0.13 0.04 0.03 0.01

Rel. Error 0.82 - 0.29 0.62 0.81 3.96 0.87

Std. Error = standard error; Rel. Error = relative error



Table 5.16. Output uncertainty induced by the spatial variability of rainfall in Cement watershed

Output Statistic output values for rainfall dates
3/27/96 4/21/96 5/31/96 7/9/96 10/27/96

Runoff Volume Observed 0.51 0.76 3.05 1.52 0.25
.(mm) Average 0.51 1.02 +2.03 1.52 0.25
Range 0-1.27  0-6.10  0.25-4.32 0-9.14 0-1.52

. C.V. 0.75 1.56 0.5 - 1.84 2.29

Std. Error - 0.51 1.52 1.52 2.54 0.51

Rel. Error 0.67 1.15 0.41 1.27 1.09

Total Sediment Observed 242 443 3390 2370 68.0
Mg) Average 282 267 2760 2450 934
Range 0-621 - 9-1610  398-5240 0-13580 0-802

C.V. 0.76 1.54 0.43- 1.65 2.4

Std. Error 211 436 1320 3930 219

Rel. Error 075 0.82 0.3 1.23 1.82

Sediment-N  Observed 0.07 0.10 0.53 0.39 0.02
(kg/ha) Average 0.07 0.06 0.44 034  0.02
Range 0-0.13 0-029  0.10-0.75 0-1.60 0-0.17

C.V. 0.71 1.29 0.36 147 2.15

Std. Error 0.04 0.09 0.18 0.48 0.04

Rel. Error 0.59 0.73 0.25 1.01 14

Sediment-P Observed ~ 0.03 0.06 . 027 0.20 ~0.01
(kg/ha) Average 0.03 0.03 0.22 0.17 0.01
Range 0-0.07 0-0.15  0.04-0.37 - 0-0.81 0-0.08

C.V. 0.7 1.24 0.37 147 2.17

Std. Error 0.02 0.04 0.09 0.25 0.02

Rel. Error 0.61 0.72 0.26 1 1.36

Std. Error = standard error; Rel. Error = relative error

145



The SE in modeled out;iuts were less than the SE in rainfall values. It shows that if the
uncertainty in the input rainfall vélue is quantiﬁed in terms of SE, this uncertainty will be:
damped out in the modeled runoff volume, total sediment, sediment-attached N, and
sediment-attached P. |

~ In general, a larger rarige in input rainfall values in a single event resulted in a larger
range in modeled runoff volume, total sediment, sediment-attached N, and sediment-attached
Pvtransport. When compared with the obseriléd output values, a large variability in the
estimated output is evident for all events for both watersheds. All of the events, except on
5/31/96, had rainfall measured by at least one gauge which was too .small to produce any
signiﬁcaiit output. Rainfall input error measured as C.V. and RE resulted in magnified output
errors with a fixed set of parameters. Estimated out;iutlvaried from one to several orders of
magnitude when compared with the observed outputs.

Faures et al. (1995) demonstrated that the .u‘se of the data from the non-recording
gauges could improve the results of the modeled runoff when only one recording gauge was
available for the rainfall measurement. The authors suggested that if several gauges were
available, their measurements could help reduce the uncertaintieé resulting from measurement

error and spatial variability of rainfall.

5.4.2 Bias in Modeled Outpiit due to Rainfall Sbatial Variability

Biases in modeled runoff VOlumé, total sediment, sedimi:nt-attached N, and sedixnen’;—
attached P are SilOWIl in Table 5.17. The bias was obtained by taking the difference between
the observed output and the average modeled output. For the Cyril watershed, the modeled
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average outputs represented are the average of 8 model runs, using rainfall observed at each
- gauge location one at a time. For the Cement watershed, the modeled average outputs are the
average of 17 model outputs, each corresponding to one rainfall at a time. The positive value:s
of bias represent the underestimation and negative values represent the overestimation of the
modeled outputs as comparéd to thé observed outputs.

In general, a bias in input rainfall resulted in a bias in model outputs. For botil
watersheds, the ruﬁoff bias was very smallﬁ for all events analyzed. For the Cyril watershed,
the minimum and maximum bias in total sediment was 1.81 Mg and 168 Mg, respectively.
The minimum and maximum bias in modeled sediment-attached N was 0 and 0.16 kg/ha,
respectively. The corresponding values for sedimenf—attached P \;vere 0, and 0.08 kg/ha,
respectively. For the Cement watershed, the biases in modeled runoff volume, sediment-
attached N, and sediment-attached P were also very small. For the sediment transport
prediction, the minimum and maximum bias was -25.4 Mg and 632 Mg, respectively.. Thesé
biases can be compared to the observed outputs shown in Tables 5.15 and 5.16 to assess their
importance. The bias in predicted results can be expected to decrease with an increase in the

number of raingauges to capture the rainfall pattern.
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Table 5.17. Bias in modeled output due to rainfall spatial variability

Rainfall Date Runoff Total Sediment Sediment-N  Sediment-P
(mm) Mg) (kg/ha) (kg/ha)
Cyril Watershed
3/27/96 0 2.72 0 0
5/31/96 -0.51 - -40.8 -0.03 -0.02
7/9/96 1.02 168 0.16 0.08
8/1/96 - 0 -5.44 0.01 0
10/27/96 -1.52 29.9 -0.03 0.02
11/6/96 0 1.81 0.01 0
Cement Watershed ,
3/27/96 0 . -39.9 0 0
4/21/96 - -0.25 176 0.04 0.02
5/31/96 1.02 632 0.09 0.04
7996 0 -84.4 10.06 0.03
25.4 0 0

10/27/96 0
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5.4.3 Relative Errors in Modeled outputs due to Rainfall Spatial Variability

Relative errors in modeled runoff volume, total sediment, sediment-attached N, and
sediment-attached P are shown in Table 5.18 for the Cyril watershed. Outputs were obtained
by running the AGNPS model with the célibrated parameter values and rainfall observed at
each gauge location, one at a time. For the Cyril watershed, for each rainfall event eight sets
of outputs were obtained,} each corresponding to the rainfall observed at one gauge location.
Thirteen to 17 sets of outputs were obtained for the Cement watershed for each rainfall event.
The maximum and minimum relative errors shown in Table 5.18 represent the maximum and
minimum relative error from the eight sets of outputs for each rainfall event. Table 5.19
represent the maximum and minifnum error obtained from 13 to 17 different sets of output
for each rainfall eveﬁt. The maximﬁm relative érrors in runoff volume, total sediment,
sediment-attached N, and gedimentéaﬁached P were 49.1, 24.1, 12, and 12.1, respectively.
All of these values were obtained on 10/27/96 at the gauge 153. Area-weighted average
rainfall for this event was 12.4 mm. Rainfall depth recorded at gauge 153 was 38.4 mm. This
represents more than 300% more rain than the area-weighted average rainfall depth. The
relative error in the rainfall depth at this gauge location was the highest for all the rainfall
events analyzed. The largest relative error in rainfall resulted in the lérgest output error. For
other events, the maximum relative error was considerably smaller than the relétive error on
10/27/97. When no rainfall was recorded at a gaugé location, fhe relative error at that location

was one.
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Table 5.18. Relative errors in modeled outputs due to rainfall spatial
variability for the Cyril watershed

Rainfall Date Output Relative Error
Maximum Minimum

3/27/96  Runoff Volume 2.54 0.03
‘Total Sediment 2.17 0.14
Sediment-N 2 0
Sediment-P 1.52 0.11
5/31/96  Runoff Volume  2.07 0
Total Sediment 1.11 0.01
Sediment-N' 0.77 0
Sediment-P 0.82 0
7/9/96  Runoff Volume  1.42° - 0.45
 Total Sediment 1 0.28
Sediment-N 1 0.22
Sediment-P 1 0.23
8/1/96 Runoff Volume 3.87 0.33
Total Sediment 3.73 0.11
Sediment-N 2.38 0.13
Sediment-P 2.46 0.09
10/27/96  Runoff Volume 49.2 0.05
Total Sediment 24.1 0.04
‘Sediment-N 12 0
Sediment-P 12.1 - 0.04
11/6/96  Runoff Volume 5.53 0.45
Total Sediment 328 0.3
Sediment-N . 2 0
Sediment-P 2.2 0.23
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Table 5.19. Relative errors in modeled outputs due to rainfall spatial
variability for the Cement watershed

Rainfall Date Output " Relative Error
Maximum Minimum

3/27/96  Runoff Volume 142 0.16

Total Sediment 1.57 0.15 .

Sediment-N 1 0.17

Sediment-P 1.13 0.12

4/21/96  Runoff Volume = 6.74 0.04

| Total Sediment  2.64 1 0.07
Sediment-N . 1.89 0

Sediment-P - L81 0.06

5/31/96  Runoff Volume  0.91 0.03

Total Sediment 0.88 0.07

‘Sediment-N  0.81 ~ 0.04

Sediment-P =~ 0.82 - 0.05

7/9/96 Runoff Volume 5.39 - 0.16

Total Sediment 4.73 0.17

Sediment-N 3.09 0.14

Sediment-P 3.05 0.13

10/27/96 = Runoff Volume ~ 3.47 - 038

Total Sediment 10.74 0.29
Sediment-N 6.5 0

Sediment-P 6.16 0.24
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The minimum relative errors in runoff volume, total sediment, sediment-attached N,
and sediment-attached P were 0, 0.01, 0, and 0, respectively. The relative error in rainfall at
these gauge locations was very close to zero. In other words, the rainfall depths observed af
the gauge locations corresponding to the minimum output error were very similar to the area-
weighted average rainfall value.

For the Cement watershed, the relative errors in predicted outputs due to the rainfall
spatial variability are shown in Table 5.'1’9. The maximum relative errors in predicted runoff
volume, total sediment, sediment-attached N, and sedirﬁént-aﬁached P were 6.74, 10.74, 6.5,
and 6.16, respectively, for all events analyzed. The maximum relative error in runoff volume
occurred»at gauge lobcation 163 on 4/21>/96. ‘The rainfall relative errof in totél sediment,
sediment-attached N, and s¢dirﬁent-attached P océurred at thé gaugé 133 on 10/27/96. This
gauge also observed the maximum rainfall relative error and the maximum rainfall depth for
the event.

The smallest relative errors in runoff volume, total sediment, sediment-attached N, and
sediment-attached P were 0.03, 0.07, 0, and 0.05, respectiv.ely. The corresponding rainfall
relative errors were 0.03, 0.29, 0.29, and 0.29, respectively. The minimum relative error in

| runoff volume occurred on 5/31/96 at géUge 153. The rainfall relative error at this gaugé
location was not minimum for the event. The smallest relative error in total sediment,
sediment-attached N, and sediment-attached P oc;curred”at gauge 155 on 4/21/96. Here again
the rainfall relative error at this gauge locatit)_n was not‘minimum. For the Cement watershed,
the rainfall minimum relative error did not result in the output minimum relative etror. For
example, a rainfall relative error very close to zero was observed at gauge 154 on 4/2‘1/96.
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However, this rainfall did not produce the minimum output relative error. A gauge-observed
rainfall higher than the area-weighted rainfall was needed to get the minimum.output relativé
error. This may have been due to the routing of the output from cell to celi, and subsequentlsl
to the watershed outlet. Whenv the model was run using the correct parameter values and true
rainfall pattern, the outbut observed was termed as the obsewéd output in the case of total
sediment, sediment—atfached N, and sediment-attached P. The area-weighted average rainfalil
was obtained from the true rainfall pattern. When the model was ruh, assuming the rainfall
tov be spatially homogeneous and uSing area-weighted rainfall depth, the runoff volume, totai
sediment, sediment-attached N; and sediment-attéched P Were lower than the observed values.
It may be because (1) weighted average rainfall averages out the spatiél Variabilify of rainfall,
and (2) a Watershéd résponds to a spatially distributed input of rainfall rather than a spatially
averaged input. This may also c§m§ from the non-linearity of the model under consideration.
, Assuming that the oﬁtpﬁt modeled by Equaﬁon (3.28) is non-linezif in terms of input I, and
parameters P, the average response of the non linear systems will not be equal to the average
of the fesponses evaluated at average ‘input parameter values. Mathematically it can be

. represented as

6 +i@ P 0 | | 4.22)

where O is the modeled average output, L is the average input values and P~ is the average
parameter values. In other words, the expected value of the output is not equal to the

functional relationship of the expected values of the input variables.
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This shows if the spatial homogeneity of the rainfall is assumed, a rainfall greater than
the area-weighted rainfall is needed to produce the output similar to the observed output for
a fixed set of parameters. However, when the sum of relative errors in runoff volume, total
sediment, sediment-attached N, and sédiment-attached P was considered, rainfall similar to
the area-weighted rainfall produced the minimum total relative error in two of the five events
analyzed for the Cement watershed. For éther events also it gave a relatively better result.:
| HAOWCVCI‘,‘ t’he‘ same result was not true for the Cyril watershed. A gauge-measured
rainfall very similar to the area-weighted average rainfall produéed the minimum relative error
in all of the predicted outputs. The .sﬂm of the relative errors in the predicted outputs was also
mlmmum for the gaﬁge—observed rainfall values similar to the area-weighted rainfall depth.
- This shows that with an increase in thé size of the watershed, a rainfall higher than the area-
weighted average rainfall is needed to produce a given output fqr a fixed set of parameteré.
A similar result was evident in the case of the estimated parameters. For the Cement
watershed, for a given output a rainfall higher than the area—weighted rainfall was needed to
produce the parameter estimates similar to the true parafnetér values.

- Similar relative errors in the model outputs are reported in a limited number of studies
vconducte_d using spatially variable rainfall inputs. Faures et al. (1995) reported that even for
a very small watershed (<5 ha), spatial variability in input rainfall could translate into a large
variation in the modeled runoff. The C.V. in runoff rate was found to range from 2 to 65%
when five model outputs were obtained using input frofn one of tﬁe five reéording gauges, one

at atime. Goodrich (1995) reported a relative variation in modeled runoff volume up to 0.43
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when two gauges were used independently as input for a runoff model in three small
catchments 0.4 to 4.4 ha in size.

Young et al. (1992) applied a spatially variable synthetic storm on a 6475 ha
watershed. The maximum relative errors in runoff volume, sediment yield, total N, and total
P.transport predicted by AGNPS were found to be 0.85, 3.26, 3.29, and 5.15, respectively.
Luzio and Lenzi (1995) applied grid-based rainféll values on a 77 km? watershed. The true
rainfall pattern was captured using five raingauges and a spline method of interpolation. Thé
authors reported maximum relativé errors in predicted runoff volume, total Sediment, total N,
and total P as 0.84,.0.17, }0.21, and 0.19, respectiflely, using the AGNPS model. The main
difference between this study and the research reported By Young et al. (1 992) and Luzio and
Lenzi (1995) is the size of the watershed and number c;f gauges available to capture the
rainfall spatial variability.. The results reported by Young et al. (1992) were based on the
synthetic rainfall data. Synthetic rainfall data méy not modei ‘the patterns and»avmounts of real
rainfall adequately. In addition, because of the local configuration and site measurement
problems of real gauges, there is a causal felationship between rainfall and stream flow which
may not be modeled in the synthetic situaﬁon (Hamlin, 1983). The study of Luzio and Lenzi
was based on a small Wétershed With a émall number of gauges available to measure the true

.rainfall pattern. In this study a larger number of raingauges were available to measure the true
rainfall pattern. The results of this sﬁ;dy indicate that the rainfall spatial variability increasgs
with an increase in the watershed size. Since the errors in thé modeled outputs are magnified
when an erroneous rainfall from observation made at a single gauge location is input, the
results obtained by Luzio and Lenzi (1995) may not be generalized for larger watersheds.
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The variability in the modeled runoff volume, total sediment, sediment-attached N,
and sediment-attached P was significantly larger than the variability reported by Faures et al.
(1995) and Luzio and Lenzi (1995). This could be a better representation of the relative errors
in the predicted output for a watershed size étudied in this research. This variability can be
expected to increase with an increase in the watershed size because the rainfall variability

increases with watershed size and the rainfall input error is magnified in the modeled outputs.

5.4.4. Impact of Gauge Location on Output Uncertainty

Troutman (1983) reported that one source of uncertainty in thé model outputs may be
the lack of information about the location of stérm center. When the rainfall information at
only a single gauge is available, it is not known whether‘the,overéll storm magnitude was
small or whether the storm was large with a center located at some distance from the gauge.
The authc;r speculated that this could result in éonsiderable error in predicted runoff,
especially if the gauge was not centrally located. Based on the simulation results from a 25.1
km? watershed, Dawdy and Bergman (1969) reported that the most representative gauge was
that closest to the center of the basin; the least representative was on the perimeter énd at the
highest elevation of'the basin..
| In this research, the effect of gauge location on model predictions was analyzed for
the Cyril and the Cement watersheds. The sum of relative errors in predicted runoff volume,
total sediment, sedirﬁent-attached N, and sedirﬁent—attached P was considered. The sum of

the relative errors was termed the total error.
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For the Cyril watershed, the miniﬁium total error was obtained for the gauge 149 on
3/27/96. Figure 5.2 shows that this gauge is not centrally located within the watershed. For
the rainfall on 5/31/96 the minimum total error occurred at gauge 150. The total errors at
gauges 131, 150, and 151 were considerably less than the total errors at other gauge locations.
For rainfall on 7/9/96, relatively lower total errors were obtained at gauges 130, 150, and 151.
~ Gauge 130 had the minimum total error for this event. Gauges' 130 and 131 on 8/9/96 énd
gauge 150 on 10/2 7/96 had the minimum total error, respectively. For the rainfall on 11/6/96,
gauge 131 had the minimum total error. The centrally located gaugé (15 1) had the minimum
total error for only two of the six events anélyzed. |

For the-Cement watershed, the gauges located within the Wateréhed are 131, 148, 149,
150, 153, and 154 (Figure 4.6). For rainfall on 3/21/96 the fninimurh total error was observed
at gauge 154. Gauges 149 and 153 also héd relatively lower total errors. The maximum total
error was observed at gauge 130. The" niinimum and maximum total error on 4/21/96
occurred at gauges 155 and 163; respectively. Figure 4.6 éhows that neither of these two
gauges is lécated within the watershed. In fact gauge 155 is the farthest gauge from the center
of the watershed. Gauges 147 and 152 observed the minimum total error on 5/31/96. These
gauges are also not located within thé watershed, although fof this event, gaugé 153 also had
relatively lower total error. For the rainfall on 7/9/96, gauge 134 had the lowest total outpﬁt
error. Gauge 149 showed the minimum total error on 10/27/96. |

In general for the two watersheds,  the géuges located within the watershed had
relatively smailer total error in predicted outputs. The minimum total error did not always
- occur at the gauge located at the center of the Wateréhed. At least for one event, a gauge
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located outside the watershed area had a better predicted output than the gauges located withih
the basin. The representativeness of the gauge will depend upon the size of the watershed as
well as on the size and orientation of the storm event. Based on the results of this stufly nb
definite conclusion can be made regarding the best location of a gauge if the rainfall is
measured usingvonly one gauge. In the midst of the rainfall spatial variability, it will be bett¢r
to capture the rainfall spatial variability using more than one gauge. If several gauges are
available to measure rainfall, and model oufputs are obtained using the rainfall observed at
each gauge location, one at a time, the average of the multiple realizations of the outputs for

each event will also imprdve the accuracy of the predicted results.

5.4.5 M’_odelvOutput Uncertainty Obtained with Radar Rainfall Data |

The effect of rainfall spatial variability on modeled outputs is shown in Table 5.20
when the true rainfall pattern was captured by radar. The third column represents the results
of the model simulation when the rainfall data at the 17 gauge locations were used, one at a
time. The calibrated radar rainfall had 43 different rainfall values. Some of these values were
observed at the cells where no gauge Was available. The last column in Table 5.20 shows the
model results whén all differént rainféll values ﬁom’the‘calibrated radar weré used to predict
output, one at a time. Here the outputs were obtained by running the model using rainfall
observed at each gauge location, one at a time. The parameter§ us_ed‘were f_he true parameterv
values. The true estimate bf CN wés obtained by calibrating the model for CN using
calibrated radar rainfall and observed runoff volume. True values of slopes and K factors
were obtained from the observed watershed characteristics.
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Table 5.20 Output uncertainty induced by spatial variability of rainfall when
radar data was used

Output Statistic =~ Estimated outputs using
’ ' 17 gauges Radar rainfall

Runoff Volume Observed 1.52 1.52

(mm) Average 1.02 1.78
Range o 0-6.60 0-18.8

C.V. 2.01 2.22

Std. Error 1.78 4.06

Rel. Error ~1.06 0.04

Total Sediment Observed 3340 3340
(Mg) Average 2050 3570
| Range 0-12760  0-31230

C.V. 1.84 2.03

Std. Error 3890 7150

Rel. Error 1.01 0.11

Sediment-N ~ Observed . , 0.53 0.53
(kg/ha) Average 0.28 0.43
Range 0-1.52 0-3.13

C.V. , 1.65 1.85

Std. Error 0.52 0.77

Rel. Error 0.89 0.22

Sediment-P ~ Observed 0.26 0.26

(kg/ha) Average 0.15 0.21
Range 0-0.76 0-1.57

C.V. ' 1.65 1.85

Std. Error ' 0.26 0.39

Rel. Error 0 0.89 0.11

Std. Error = standard error; Rel. Error = Relative error
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The minimum estimates of runoff volume, total sediment, sediment-attached N, and
sediment-attached P were zero. At least 15 of the 43 different rainfall values from the
-calibrated radar rainfall were too small to predict any significant output with AGNPS. Six
of these rainfall values were observed at different gauge locations. Averagg, range, C.V., and
standard érror for all the outpﬁts were larger when all the different rainfall values were used
to estimate the outputs. Output uncertainty, when measured in terms of the relative error, was
less for all of the outputs when all different rainfall values were used. ~The variability in the
rainfall as measured by CV and range was larger when all 43 different rainfall values were
used. This larger variability 1n the rai}nfall field resulfedl in larger average, range, and C.V.
in all estimated outputs. |
Table 5.21 shows the bias in the ‘modeled‘runoff volumie‘, total sediment, sediment-
attached N, and Sedimént-attached P when using the calibrated radar data. In general the bias
in the modeled outputs decfeased when the outputs were obtained by running the model using
all the different rainfall vaiﬁes. This -shows that as the number of gauges available to capture

the rainfall pattern increases, the bias in the modeled outputs decreases.
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Table 5.21. Bias in estimated parameters with calibrated radar data

Output Bias obtained using
17 gauges. Radar rainfall

Runoff Volume (mm) 051 025
Total Sediment (Mg) 1280 -234
Sediment-N (kg/ha) ' 025 . 0.1

Sediment-P (kg/ha) 0.11 0.04
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The maximum relative errors in runoff volume, total sediment, sediment-attached N,
and sediment-attached P were 12.1, 8.4, 4.9, and 5.1, respectively. All of these errors
occurfed at one location where the rainfall observed was maximum for the event. The relative
error in rainfall at this location was 1.93. The corresponding minimum erfors for these .
outputs were 0.08, 0.07, 0.06, and 0.04, respectively. The rainfall errors at these locations
were 0.52, 0.46, 0.46, and 0.46, respectively. The minimum output errors were not associated
with the minimum rainfall errors for all ou'tputs.. ‘

The output: uncertainty due to rainfall »sp'atial variability is shown in Table 5.1‘6 when
the true rainfall pattern was captured using the rainfall observed at 13 gauges and Theissen
polygon method. The comparié.oﬁ of the outputs obtained uéing the two estimates of true
rainfall pattern shows that a larger variability in the outputs; as indicated by C.V., is obtained
when calibrated radar rainfall is used. This may have resulted from fﬁe fact that the range and
C.V. of the true rainfall pattern were larger when the rainfall variability was captured using
calibrated radar data. This difference can be expected to decrease with an inérease in the
number of gauges available to capture the rainfall. For example, in the case of radar scanned

‘rainfall, if the raingauges were located at each cell in the rainfall field where a different
rainfall value was observed, the results obtained from the raingauge data would be similar to
the results from the calibrated radar data. However, installation and maintenance of such a
high density of raingauge network would be cost prohibitive. In that case, the radar-scanned
rainfall field calibrated with the raingauge data would be an ideal resort to capture the true

rainfall pattern for application in H/WQ models.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

Impact of various agricultural activities on surface water quality has been reported to
be a serious problem. One of the most convenient ways to study the pollution of surface
water from agricultural activities is the use of hydrolbgic/water quality (H/WQ) models.
Historically, in the application of H/WQ models, rainfall is assumed to be a homogeneous
process and is assumed not to contribute to parameter and output uncertainty. Consequently,
a single rainfall depth is input in the models. With the advent of modern precipitation
measurement techniquesb like radar and dense networks of raingauges, itis now known that
rainfall is not spatially uniform, but it varies from place to place. This spatial variability in
the rainfall may introduce significant errors in model parameters and outputs when the spatial
homog¢neity of rainfall is assumed in th¢ application of H/WQ models. -

The overall goal of thié study was to assess the variability induced in H/WQ model
parameters and outputs solely due to the spatial variability of rainfall. This will help isolate
thé variability in the model paramétersloutputs caused by the spatial variability of rainfall
which is otherwise assumed to be a homogeneous process and is usually assumecl not to

contribute to the model parameter/output uncertainty.
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This study was conducted on the Little Washita basin. Two subwatersheds of area
30.6 km? and 159 km?, known as Cyril and Cement watersheds, were delineated and used.
A dense network of 42 raingauges, known as a Micronet, is operated withiﬁ the Little Washita
basin. In addition, the stream flow data were obtained from the USGS. The H/W Q model
used was the Agricultural Non-Point Source Pollution (AGNPS) model. It is an event-based,
d.istributed"parameter‘ model that sirhul;cltés surface runoff, sediment and nutrient transport
primarily from agriculunal watersheds. The model was modified to input grid-based rainfall
and energy intensity values. The WATERSHEDSS GRASS-AGNPS modeling tool was used
to generate the input file for the modél.

Six rainfall events ih 1996 were selected and used with the Cyril watershed. The total
number of rainfall events used with the Cement watershed was five. The outputs considered
were runoff volume, tofal sediment transport, sediment-attached N, and sediment-attached P.
Curve Number (CN), land slope, aﬁd USLE K factor were the model parameters selected for
the study based on the sensitivity analysis of the model.

The only observed data were the rainfall and runoff volume. The uncertainty induced
in the model parameters/outputs was estimated in two steps. In the first step, grid-based
rainfall depths, considéred as the true rainfall pattern, were captured using.the Theissen
polygon method. AGNPS was calibrated for CN based on observed runoff and true rainfall
pattern. All other model parameters were estimated using observed watershed characteristics.
The outputs obtained using the true rainfall pattern and calibrated parameters were termed as

‘observed’ outputs.
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In the second step, parameter and output uncertainty due to spatial variability of
rainfall was’ estimated. It was assumed that each of the raingauges was the only raingauge
available and the rainfall depth was homogeneous across the watersheds. Model parameters
were estimated usiﬁg the rainfail obselb've.d‘ at each gauge location, one at a time, and the
“observed’ outputs. For each rainfall event, eight sets of parameters for the Cyril watershed
and 17 sets of parameters for the Cement Watcrshed were obtained.

Uncertainty in the model output was estimated by‘running the model using rainfall
observed at each gauge location, one at a tifne, assuming that the rainfall was homogenous
across the watershed. The calibrateci values of parameters for each rainfall were used. For
each rainfall event, eight sets of outpu’ts‘ for the Cyril watershéd and 17 séts of outputs for the
Cenient watershed were obtained. The variability observed in the model parameters and
outputs was termed the parameter/output uncertainty.

NEXRAD rainfall data were obtained for the rainfall on 7/9/96 and 7/10/96 from the
WSR-88D radar loéated at Twin Lakes, Oklahoma. This rainfall was calibrated using the
data from the Micronet stations. Calibrated radar rainfall data were then used as the input in
the AGNPS model and the model parameter/output uncertainty due to rainfall spatial
variability Was estimated when the true rainfall pattern was captured using tlylebradar_ data. The
methods outlined in the prévious sections were used.-

A summary 6f<the findings related to each objective of this study are discussed in the

following sections.
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Objective 1. To combine raingauge and radar data to capture spatial variability of
rainfail.

" The calibration factor of radar rainfall at each gauge location was determined. The
calibration factor ranged from 0.08 to 7.45. For the rainfall on 7/9/96, the radar
underestimated the rainfall at seven gauge locations and overestimated it at six gauge
locations. For the rainfall on 7/10/96, the radar underestimated the rainfall at all gauge
locations. The reeults from thecomparis‘onx of raingauge data to the radar data indicate the
need for the calibration of radar-scanned rainfall before it can be applied in H/WQ models.
However, after the radar rainfall was calibrated, the area weighted rainfall from the radar data
was very similar to the area weighted rainfall obtained using a network of 13 raingauges and
the Theissen polygon method}.» The variability in the radar rainfall was larger than the
corresponding variability when the rainfall was captured using the raingaugés alone. It shows
that when only a limited number of raingauges are used to capture the rainfall, the observed

variation in the rainfall may be lower than the true variation.

Objective 2. To estimate parameter uncertainty in H/WQ models solely due to the
spatial variability of rainfall. |

In general, a wide range in estimated parameters resulted when the rainfall measured
at each gauge location was used individually, one at a time, to estimate the model parameters.
A llarger range in the rainfall values within a single event resulted in a higher range in all
estimated parameters. The smallest parameter uncertainty resulted from the rainfall that was
most spatially homogeneous in nature. The variations were very large when compared to the
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true parameter values. For slope, K, and retention parameter the range waé several orders of
magnitude for some events for both watersheds. Traditionally, variability in the estimated
parameters is considered as the model uncertainty because the models are vsimpliﬁed
descriptions of the processes occurring 1n the field. Results of this study indicate that even
in the case of physically—baséd distributed parameter models, vuncertainty in the parameter
estimates would be observed because of the input error coming frofn the spatial variability of
rainfall. To eliminate this input error, a “true” fainfall pattern should be captured and used
in H/WQ models.

For the Cyril watershed, the true faiﬁfall patternwas captured using four raingauges.
However, the paré.meter uﬁcertainty was estimated by using the rainfall from eight gauges
located within and around the watershed. Fof the Cement watershed, 13 raingauges were used
to capture the true rainfall pattern and 17 raingauges were used to estimate the param/eter
uncertainty. A bias in the average ahd afea—Weighted rainfall resulted in a Bias in the
estimated parameters. As the number of raingaugés used to capture the rainfall increases in
a watershed, the bias in the estimated parameters can be expected to decrease.

Relative errors for estimated parameters 'as compared to the calibrated parameter
- values weré calculated for'the 'ﬁzvo watersheds. For the Cyril watershed, the mmlmum relative
errors were observed at the gauges which recorded a rainfall very similar to the area-weighted
rainfall. This result was not true for the Cement watershed. A rainfall larger than the area-
weighted rainfall was needed to best estimate the parameters. In general, a gauge located at
or near the center of the watershed resulted in a lower total relative error in the parameter

estimates.
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The correlation analysis among iﬁput rainfall and parameters shéwed that rainfall, CN,
slope, K factors were highly correlated. For the Cyril watershed CN-rainfall, and slope-K
were found to be significantly correlated when the correlation was estimated for all the
parameter estimates combined together for the six events. For the Cement watershed all of
thé parameters were significantly correlated. This correlation is a major contributor to the
difficulty of estimating parameters in H/WQ models. A high correlation between two
parameters means that one pafameter can not be}est‘imated without adjusting the value of the
other.

When the model parameters were éstiniated using the calibrated radar rainfall, the
variability in the estimated parametérs was larger as compared to the parameter variability
obtained when the true rainfall pattern was captured using gauge ciéta alone. The estimated
average CN, slopé, and K factor were larger than the corresponding estimates obtained using
data from gauges alone. The observed values of the runoff volume, tétal sediment, sediment-
attached N, and sediment-.attached P were also higher when the true rainfall pattern was

captured by calibrated radar rainfall field.

Objective 3. To study the impact of spatial variability of rainfall on model outputs i.e.,
runoff, sediment and nutrient losses.

For all events, variability in the measured rainfall resulted in variability in the model
outputs based on a fixed set of parameters. Five of the six events considered for the Cyril
watershed and four of the five events considered for the Cement watershed had rainfall at

some of the gauge locations too small to produce any significant output. Rainfall error
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measured as C.V. and relative error resulted in magnified output errors. Estimated output
varied from one to several orders of magnitude when compared with the observed outputs.
In general, a bias in the input rainfall resulted in a bias in the model outputs. This bias can
be expected to decrease with an increase in the numbér of raingauges to capture the rainfall
pattern.

For the Cyril watershed, raingauges that resultéd in the minimum output relative error
had a rainfall very similar to the areé—weighted rainfall value. But for the Cement watershed,
a rainfall larger than the area-weighted rainfall was needed to produce the minimum output
relative error. The maximum relative error in rainfall measurement was associated with the
~ maximum relative ’errors‘ in model outputs. |

In general for the two watersheds, the gauges located within the watershed area had
relatively smaller total error in predicted results. The minimum total error did not always
occur at the gauge located at the center of the waferéhed. Based on the results of this study,
no definite conclusion could be drawn regarding the best location of a gauge if the rainfall
was measured using only one gauge. If several gauges are available fo measure rainfall, and
the model outputs are obtained using the rainfall observed at each gauge location, one at a
time, the éVerage éf all the' outputs for each event will improve the accuracy of the predicted
results.

A larger variability in the outputs as indicated by C.V. was obtained when the true
rainfall pattern was captured using calibrated radar data. In general, the bias in the modeled
outputs decreased when the outputs were obtained by running the model using all the different
rainfall values with the calibrated radar rainfall field. This shows that as the number of
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gauges available to capture the rainfall pattern increases, the bias in the modeled outputs

decreases.

6.2 Conclusions
The following conclﬁsions were drawn from this study:

1 In the application of H/WQ models, the assumption of the spatial homogeneity of the
rainfall may not be valid. The rainfall spatial variation increases with an increase in
the size of the watershed. If only one gauge is used to measure the rainfall, the gauge
located at the center of the watershed is not always the bestrepresentative gauge,
although a gauge ‘located ator near the center of the watershed gives a relatively better
representation of the area-weighted rainfall.

2 The radar-scanned rainfall may be in error by ’u'p to a factor of ten as compared to
raingauge rainfall. These data should be calibrated using raingauge data before it is
used in H/WQ models.

3 Rainfall data error produces two types of errors in the results. The first is the error in -
the estimation of an optimum set of parameters. The second type of error introduced

is output error.. |

4  Alarge uncertainty in the estimated parameters results from the spatial variability of
the rainfall. An input rainfall error results in an erroneous estimate of the model
parameters. |

5 The uncertainty in the estimated parameters using a single gauge, as measured by C.V.
and relative error, exceeds the measurement uncertainty. Even in the case of
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physically-based distributed pﬁrameter models, the rainfall uncertainty will result in
pafameter uncertainty.

Spatial variability of rainfall introduces uncertainty into model outputs when rainfall
measured at a single gauge is uséd. A larger range in the input rainfall values in a
single event results in é larger range in model outputs.

Rainfall variability, when measmed in terms of C.V. and relative error, results in
larger output errors with a fixed set of parameters.

For individual évents, a gauge located at the center of the watershed does not always
result in the minimum output errbr.

Since the installation and maintenance of a dense network of raingauges may be cost
prohibitive, a fadar—scé.nned rainfall field calibrated with the raingauge data should be
used to capture the true rainfall pattern for application in H/WQ models.

Spatial variability of rainfall should be captured and used in H/WQ models in order
to accurately assess the release and transport of pollutants. Since rainfall is a dfiving
force behind many kinds of pollutant release and subsequent transport and spread
mechanisms, ignoring this property of rainfall in the application of H/WQ models will

put a limit on the accuracy of the model results.
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6.3 Recommendations for Future Research
The directions for recommended future research include:
The effect of rainfall spatial variability on model parameters/outputs was estimated
using the dafa from the two subwatersheds from the Little Washita basin. Since the
rainfall spatial Variability increases with the size of the watershed, the data frdm the
entire Little Washita basin should be used. Comparison with similar studies shows
that the errors introduced in model parameters and outputs increase with the size of
the watershed. The reéult# of this study should be tested with larger watersheds.
Application of radar data to capture the rainfall variability is a problem if the radar
data is not ’calibratea. Research should be doné to see how many gauges are needed
to calibrate the rada;' data before it can be appli‘éd ;to H/WQ models.
Rainfall spatial variability was capfured using the Theissen polygon method. A study
should be done to assess the effect of rainfall spatial variability on model
parameters/outputs by using a better method like kriging or inverse distance method
~ to interpolate the rainfall data at the grid level.
The only observed data available in this study was rainfall volume. The sediment and
nutrient data were simulated using best estimate of parameters and were assumed as
the observed outputs. Research should be conducted using data frofn a watershed

where measured water quality data are available.
Only a few outputs and parameters were considered in this research. The effect of

rainfall spatial variability on other parameters and outputs should be assessed.
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"~ APPENDIX -1

Rainfall observed by'Micronet stations for the rainfall dates analyzed
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Table A1.1 Rainfall observed by micronet stations for the rainfalt dates analyzed

STID 3/27/96 = 3/28/96 Eventtotal 4/21/96  4/22/96 Event total

(mm) (mm)
110 16.36 7.05 23.41 5.83 21.51 27.34
111 30.01 -33.87 386 . 025 31.28 31.03
121 17.78 584 2362 2.68 36.81 39.49
122 0.76 02 096 6.24 17.62 23.86
123 28.65 7.15 35.8 4.47 19.99 24.46
124 28 777 35.77 462 12.96 17.58
125 23.91 9.68 33.59 4.03 28.45 32.48
130 31.92 8.89 40.81 1449 13.31 27.8
131 27.75 7.25 35 11.58 8.39 19.97
132 9.91 8.65 1856 = 6.2 10.57  16.77
133 24.74 11.03 35.77 5.98 15.65 21.63
134 26.87 272 033 - -0.37 22.54 22.17
135 29.53 -33.53 -4 437 13.89 18.26
136 3.62 4.92 8.54 2.72 25.31 28.03
137 12.91 593 °  18.84 2.34 34.97 37.31
144 3824  -39.96 -1.72 2.18 42,67 44.85
145 2927 . -26.9 2.37 -0.21 27.85 27.64
146 3009 -31.95 -1.86 32 2381 27.01
147 3342  -34.15 -0.73 9.57 15.53 25.1
148 28.34 - 9.78 38.12 8.43 18.55 26.98
149 23.87 8.24 32.11 7.97 11.52 19.49
150 24.96 6.59  31.55 11.05 58  16.85
151 10.56 7.37 17.93 5.58 1.7 17.28
152 10.99 7.56 18.55 11.85 8.66 20.51
153 2914  10.09 39.23 13.01 21.71 34.72
154 23.49 9.3 32.79 3.01 21.78 24.79
155 23.04  -23.39 -0.35 -0.45 32.27 31.82
156 2479 2472 0.07 48 36.48 41.28
157 23.67 -23.43 0.24 10.92 428 53.72
158 38.88  -39.37 -0.49 8 33.83 41.83
159 32.561  -33.34 -0.83 2.85 27.26 30.11
160 3476  -34.32 0.44 6.02 47.68 53.7-
161 -998 -998 1996  -998 -998 -1996
162 31.95  7.82. 39.77 9.59 - 27.05 36.64
163 26.57 8.81 35.38 15.62 34,78 50.4
164 26.06 6.61 32.67 11.55 18.41 29.96
165 23.24 236 -0.36 464 4557 50.21
166 3254  -32.81  -0.27 9.94 4763  57.57
167 33.68 -34.12 -0.44 8.72 2461 33.33
168 15.42 -15.45 -0.03 7.49 17.35 24.84
181 2.32 8.56 10.88 -0.19 0.7 0.51
182 23.67 -23.51 0.16 5.48 26.86 32.34

Numbers in the boid represent the gauges used in this study.
Negative numbers represent an erroneous rainfalt.
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Table A1.1 Cont.

STID 5/31/96 6/1/96 Eventtotal 7/9/96 7/10/96 Event total

(mm) (mm)
110 11.64 56.14 67.78 48.34 49.22 97.56
111 13.2 54.48 67.68 '52.28 55.7 107.98
121 15.23 53.38 68.61 -76.05 28.48 104.53
122 12.53 49.48 62.01 55.38 39.64 95.02
123 1949 . 49.93 69.42 4122 - 52.91 94.13
124 1813 . 57.12 7525 . 32.57 49.76 82.33
125 19.27 61.8 81.07 32.82 34.71 67.53
130 31.84 44.61 76.45 44.71 57.22 101.93
131 28.39 50.88 79.27 82.45 54.57 137.02
132 24.47 64.96  89.43 43.04 30.77 - 73.81
133 20.59 60.56 81.15 36.13 42.07 78.2
134 2218 46.28 68.46 37.57 49.24 86.81
135 19.58 53.24 72.82 50.23 37.26 87.49
136 13.9 50.31 64.21 77.38 36.76 114.14
137 162  47.49 63.69 80.26  35.32 115.58
144 34.6 58.49  93.09 56.34 14.15 70.49
145 12.77 48.04  60.81 - 49.32 18.68 68
146 25.63 41.24 66.87 486 15.96 64.56
147 29.08 52.31 81.39 35.29 45.14 80.43
148 35.12° 44.63 79.75 26.46 41.34 67.8
149 39.87 54.72 94.59 19.1 27.59 46.69
150 37.75 40.65 78.4 50.41 47.83 98.24
151 38.52 40.5 79.02 57.22 68.94 126.16
152 34.61 46.65 81.26 12.4 35.28 47.68
153 36.29 49.85 86.14 6.89 35.6 42.49
154 27.05 53.54 80.59 4.71 30.82 35.53
155 17.85 45.45 63.3 27.43 13.7 4113
156 44.62 58.67 103.29 25.97 13.36 39.33
157 25.4 66.18 91.58 32.46 14.28 46.74
158 15.14 60.36 75.5 27.59 7.44 35.03
159 21.98 - 68.17 90.15 = 14.77 11.95 26.72
160 24.38 60.8 85.18 20.24 . 10.11 30.35
161 18.62 38.47 57.09 15.42 15.38 30.8
162 19.34 49.62 68.96  23.02 17.52 40.54
163 23.05 54.44 7749  3.64 36.85 40.49
164 16.29 45.37 61.66 10.61 36.81 47.42
165 026 0.03 0.29 566 2076 . 26.42
166 17.54 55.53 73.07 7.13 7.56 14.69
167 19.86 54.44 74.3 15.25 6.09 21.34
168 . 12.53 67.93 80.46 23.15 5.15 28.3
181 13.36 47.51 60.87 17.1 58.93 76.03
182 31.86 46.54 78.4 18.91 22.53 41.44
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Table A1.1 Cont.

STID 8/1/96 8/3/96 Eventtotal 10/27/96  11/6/96
(mm) (mm) (mm)
110 4.26 33.66 37.92 14.34 9.04
111 8.51 27.3 35.81 24.52 14.53
121 14.84 33.15 47.99 8.14 11.19
122 15.44 38.11 53.55 27.43 13.21
123 17.56 41.24 58.8 8.86 6.19
124 20.84 39 59.84 11.74 11.09
125 -39.78 37.77 -2.01 40.76 14.67
130 -12.87 21.62 8.75 9.56 21.72
131 -19.12 30.5 11.38 14.39 14.27
132 -33.33 30.22 341 26.7 6.96
133 19.91 31.85 51.76 44.51 9
134 22 30.06  52.06 11.25 7.31
135 10.75 23.55 343 10.6 -6.21
136 18.2 25.52 43.72 30.57 4.62
137 10.06 36.6 46.66 16.02 5.6
144 15.93 29.88 45.81 6.01 34.28
145 11.14 . 20.19 31.33 11.17 29.88
146 11.12 15.98 271 7.86 2.1
147 15.95 34.57 50.52 13.72. -6.23
148 19.07 15.17 34.24 30.39 7.9
149 214 18.4. 39.8 28.11 8.5
150 -12.89 12.65 -0.24 12.8 8.28
151 29,33 13.42 4275 10.47 16.55
152 -21.5 7.99 -13.51 17.28 8.94
153 -19.58 5.24 14.34 38.25 1.14
154 13.1 8.66 21.76 20.21 -0.65
155 0.16 11.57 11.73 -0.61 28.8
156 23.33 28.83 52.16 9.99 44,72
157 11.82 27.32 39.14 10.69 24.08
158 -37.17 13.36 -23.81 7.23 18.62
159 10.74 8.17 18.91 12.65 43.46
160 -33.15 12.34 220.81. . 17.89 42.28
161 -26.15 10.21 1594  -0.21 18.8
162 10.39 7.5 17.89 15.81 7.68
163 -24.43 8.03 164  20.13 2.98
164 -19.66 -0.12 = -19.78 18.31 5.93
165 - -32.95 0.02 -32.93 1043 4.35
166 -36.66 0.13 -36.53 9.13 39.32
167 -24.12 2.09 -22.03 16.39 30.37
168 -21.1 2.4 -18.7 9.28 17.5
181 -3.09 -0.05 -3.14 3.06 -0.11
182 8.35 11.11 19.46 7.08 -1.66
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APPENDIX -2

Optimum parameter estimates for the rainfall events analyzed
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Table A2.1 Optimum parameter estimates for the rainfall event on 3/27/96

using the individual gauge rainfall values for the Cyril watershed

Gauge # Rainfall Slope CN S parameter K factor
(mm) (%) (mm)

130 40.9 0.93 52 234 0.34
131 351 1.16 56 200 0.32
132 18.5 2.53 71 104 0.58
149 32.0 1.33 58 184 0.32
150 315 1.33 60 169 0.34
151 18.0 2.75 71 104 0.51
152 185 2.53 71 104 0.58
153 39.1 0.97 54 216 0.32
Base 31.0 1.6 58 184

Table A2.2 Optimum parameter estimates for the rainfall event on 5/31/96

0.34

using the individual gauge rainfall values for the Cyril watershed

Gauge # Rainfall Slope CN S parameter K factor
mm) (%) (mm)
130 76.5 1.87 38 414 0.3
131 79.2 1.65 37 432 0.32
132 894 12 34 493 0.31
149 94.5 1.24 32 540 0.29
150 78.5 1.65 37 432 0.34
151 79.0 1.65 37 432 0.32
152 81.3 1.4 36 452 0.36
153 86.1 1.3 34 493 0.36
Base 78.5 1.6 37 432 0.34

Table A2.3 Optimum parameter estimates for the rainfall event on 7/9/96

using the individual gauge rainfall values for the Cyril watershed

Gauge # Rainfall . Slope CN S parameter K
(mm) %) (mm)
130 102 1.65 36 452 0.41
131 137 1 32 540 - 0.28
132 73.7 2.7 46 298 0.48
149 46.7 3.7 61 162 0.72
150 98.0 2.15 37 432 0.34
151 126 1.1 32 540 0.33
152 47.8 3.8 59 177 0.67
153 424 4.05 62 156 0.79
base 112 1.6 33 516 0.34
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Table A2.4 Optimum parameter estimates for the rainfall event on 8/1/96

using the individual gauge rainfall values for the Cyril watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) (mm)

130 21.6 2.7 78 71.6 0.38
131 30.5 0.4 74 89.2 0.09
132 30.5 0.4 74 89.2 0.09
149 39.6 22 65 137 0.09
150 142 - 1.6 85 44.8 0.43
151 68.1 1.6 46 298 0.15
152 1.87 8.2 90 28.2 0.87
153 -5.33 '

Base 264 1.6 71 104 0.34

Table A2.5 Optimum parameter estimates for the rainfall event on 11/6/96

using the individual gauge rainfall values for the Cyril watershed

S parameter

Gauge# - Rainfall Slope "CN K
(mm) ) (mm)
130 9.65 1.8 77 75.9 0.38
131 145 0.77 72 98.8 0.17
132 26.7 0.55 62 156 0.05
149 282 12 59 177 0.26
150 12.7 1.69 74 89.2 0.48
151 10.4 1.74 77 75.9 0.28
152 17.3 0.3 69 114 0.33
153 38.4 0.55 52 234 0.05
Base 124 1.6 74 89.2 0.34

Table A2.6 Optimum parameter estimates for the rainfall event on 11/6/96

using the individual gauge rainfall values for the Cyril watershed

Rainfall

Gauge # - -Slope CN S parameter K
f (mm) %) (mm) |

130 21.8 1.6 66 131 038
131 14.2 1.44 74 89.2 023
132 6.86 1.6 82 55.8 0.2
149 8.38 1.58 82 55.8 0.19
150 8.38 1.58 82 55.8 0.19
151 16.5 1.44 74 89.2 0.19
152 8.89 1.55 82 55.8 0.23
153 1.27

Base 12.1 1.6 75 84.7 0.34
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Table A2.7 Optimum parameter estimates for the rainfall event on 3/27/96
using the individual gauge rainfall values for the Cement watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) (mm)
151 18.0 524 70 109 0.55
132 18.5 5.21 69 114 0.58
152 185 5.21 69 114 0.58
150 315 3.9 58 184 0.32
149 32.0 3.69 58 184 0.32
154 .32.8 3.69 57 192 0.33
131 351 3.63 55 , 208 ©0.31
163 35.3 3.61 55 _ 208 0.3
133 35.8 3.57 55 T 208 0.27
148 38.1 3.11 54 216 0.28
153 39.1 3.60 - 52 ©234 0.26
162 39.9 3.43 52 234 0.24
130 40.9 . 3.57 51 244 0.23
Base 325 . 3.71 56 © 200 0.33

Table A2.8 Optimum parameter estimates for the rainfall event on 4/21/96
using the individual gauge rainfall values for the Cement watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) (mm)
132 16.8 679 72 98.8 0.68
151 17.3 6.78 72 98.8 0.59
149 19.6 6.11 70 109 0.56
131 20.1 6.11 69 114 0.56
152 20.6 6.05 69 114 0.5
133 21.8 5.94 68 120 0.46
134 22.1 5.89 68 120 .44
154 24.6 567 65 137 0.39
147 25.1 5.78 65 137 0.36
148 269 537 63 149 0.38
130 27.7 536 63 149 0.34
155 31.8 5.31 59 177 0.28
153 34.8 5.0 57 192 0.25
162 366 4.7 56 200 0.25
163 50.3 3.33 47 286 0.25
150 16.8 6.79 72 98.8 0.68
Base 24.6 3.71 63 149 0.33

187



Table A2.9 Optimum parameter estimates for the rainfall event on 5/31/96
~ using the individual gauge rainfall values for the Cement watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) (mm)

161 57.2 5.14 52 234 0.38
134 68.6 432 47 286 0.35
162 68.8 4.26 46 298 0.36
130 76.5 417 43 337 0.3
163 715 4.02 43 337 0.3
150 185 3.91 42 351 0.32
151 79.0 3.91 42 351 0.31
131 79.2 3.83 42 351 0.31
148 79.8 3.82 42 ' 351 0.31
154 80.5 3.80 41 366 0.32
133 813 379 . 41 . 366 031
153 86.1 3.55 39 397 0.31
132 89.4 348 38 414 0.29
149 94.5 3.32 36 452 0.28
147 . 813 3.79 41 - 366 0.31
152 81.3 379 41 . 366 0.31

Base 83.3 371~ - 39 : 397 0.33

Table A2.10 Optimum parameter.estimates for the rainfall event on 7/9/96
using the individual gauge rainfall values for the Cement watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) (mm)
161 30.7 6.22 64 143 0.87
154 356 6 60 169 0.7
163 40.4 5.02 57 192 0.74
162 40.6 5.02 56 200 0.77
155 41.1 4.94 56 200 0.76
153 424 - 4.94 55 208 071
149 - 46.7 466 52 234 0.66
152 47.8 461 51 . 244 0.66
148 678 . 397 41 366 0.4
132 73.9 3.88 39 397 0.33
133 78.2 3.67 37 432 0.33
147 80.5 3.61 36 452 0.32
134 86.9 3.33 34 493 0.31
150 98.3 2.98 30 593 0.3
130 102 2.76 29 622 0.31
151 126 2.31 24 804 0.27
131 137 2.07 23 850 0.28

Base 64.3 . 3.71 33 516 0.33
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Table A2.11 Optimum parameter estimates for the rainfall event on 10/27/96
using the individual gauge rainfall values for the Cement watershed

Gauge # Rainfall Slope CN S parameter K
(mm) (%) . (mm) '

130 9.65 5.54 76 80.2 0.59
131 145 394 72 98.8 0.37 -
132 26.7 3.01 . 60 169 0.2
133 44.5 2.1 47 286 0.14
134 11.2 4.47 75 84.7 0.52
148 30.5 2.54 57 - 192 0.2
149 282 2.71° 59 177 - 0.19
150 12.7 436 73 93.9 . 0.59
151 - 104 4.45 76 80.2 0.52
152 17.3 3.7 - 69 114 0.32
153 384 2.15 51 244 - 018
154 - 203 344 66 131 0.25
162 15.7 3.91 70 © 109 0.46
163 20.1 . 3.57 66 131 0.25
147 11.9 441 4 89.2 0.56

Base 234 3.71. 55 .. 208 - . 033

Table A2.12 Optimum parameter estimates for the rainfall event on 7/9/96 using the
individual gauge rainfall values from calibrated rainfall for the Cement watershed

Gauge# .- Rainfall - - - Slope CN S parameter K

(mm) (%) (mm)
130 102 7.45 64 143 0.86
131 137 2.96 22 901 0.22
132 739 4.06 39 397 0.43
133 78.0 406 37 432 0.39
134 86.9 35 34 493 0.4
147 80.5 3.64 36 452 0.45
148 678 449 41 366 0.45
149 467 = 622 53 225 0.5
150 98.3 3.32 30 593 035
151 - 126 - 302 . 24 804 . 025
152 4738 5.96 52 234 053
153 424 6.3 55 208 0.63
154 35.6 6.86 60 169 076
155 41.1 6.7 56 200 0.59
161 307 7.45 64 143 0.86
162 406 661 57 192 0.59
163 404 668 57 192 0.59
Base 64.5 3.71 30 593 033
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APPENDIX - 3
AGNPS outputs obtained usihg optimum parameters and rainfall observed at each gauge -

location one at a time
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Table A3.1 Model outputs estimated for the rainfall event on 3/27/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) Mg) (kg/ha) (kg/ha)
151 18.0 0.003 0.01 0 0
132 18.5 0.003 0.01 ‘ 0 0
152 18.5 :0.003 0.01 0 0
150 315 0.185 9.87 0.02 0.01.
149 32.0 T 0.340 15.8 0.02 0.01
131 35.1 0.554 24.4 0.03 0.02
153 39.1 0.831 35.4 0.06 0.03
130 40.9 1.17 42 0.07 0.03
Base 31.0 0.330 " 139 0.02 0.01

Table A3.2 Model outputs estimated for the rainfall event on 5/31/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall -~ Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) Mg (kg/ha) _(kg/ha)
130 76.5 060 - 110 0.12 0.06 .
150 78.5 . 0.76 129 0.15 0.07
151 79.0 0.76 131 0.15 0.07
131 79.2 0.76 132 0.15 10.07
152 81.3 0.96 153 0.17 0.08
153 86.1 1.43 198 0.20 0.10
132 89.4 1.71 224 0.22 0.11
149 94.5 234 271 0.26 0.13

Base 78.5 0.76 128 - 0.15 0.07

Table A3.3 Model outputs estimated for the rainfall event on 7/9/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) Mg) _ (kg/ha) (kg/ha)
153 424 0 0 0 0
149 46.7 0o 0.01 0 0
152 47.8 0 0.01 0 0
132 73.7 0.11 : 13.6 0.02 0.01
150 98.0 143 256 0.25 0.13
130 102 1.68 290 0.28 0.14
151 126 536 577 0.48 0.24
131 137 738 732 0.58 0.29
Base 112 3.05 401 036 0.18
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Table A3.4 Model outputs estimated for the rainfall event on 8/1/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) Mg) (kg/ha) (kg/ha)
152 7.87 0 002 0 0
150 14.2 0.12 438 001 0.00
130 21.6 0.97 26.17 0.04 0.02
131 30.5 2.74 59.83 0.08 0.04
132 30.5 2.74 59.83 0.08 0.04
149 39.6 6.18 114 0.13 0.07
151 68.1 19.8 S 317 0.30 0.15
153 5.33 0 0 0 0
Base 26.4 4.06 67.1 0.09 0.04

Table A3.5 Model outputs estimated for the rainfall event on 10/27/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall Runoff volume  Total Sediment = Sediment-N Sediment-P

(mm) (mm) ) (kg/ha) (kg/ha)
130 9.65 0.05 1.80 0 10.00
151 104 005 1.80 0 000
150 12.7 0.13 474 0.01 0.01
131 14.5 0.33 10.74 0.02 - 0.01
152 17.3 0.66 = - 18.89 0.03 0.02
132 26.7 2.36 52.35 0.07 0.04
149 28.2 3.14 64.97 - 0.08 0.04
153 38.4 7.01 124 0.15 0.07
Base 12.4 0.14 494 0.01 0.01

Table A3.6 Model outputs estimated for the rainfall event on 11/6/96 using the individual
gauge rainfall and optimum parameter values for the Cyril watershed

Gauge # Rainfall Runoff volume . Total Sediment Sediment-N Sediment-P

(mm) (mm) -~ (Mg) (kg/ha) (kg/ha)
149 838 0.03 . 0.79 0 0
150 - 8.38 0.03 10.79 0 0
152 8.89 0.03 0.79 0 0
131 14.2 0.44 13.6 0.02 0.01
151 16.5 0.44 13.8 0.02 0.01
130 21.8 199 44.8 0.07 0.03
132 6.86 0.03 0.78 0 0
153 1.27 0 -0 0 0
Base 12.1 0.30 10.5 0.02 0.01
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Table A3.7 Model outputs estimated for the rainfall event on 3/27/96 using the individual
gauge rainfall and optimum parameter values for the Cement watershed

Gauge # Rainfall = Runoff volume  Total Sediment Sediment-N Sediment-P

(mm) (mm) (Mg) (kg/ha) (kg/ha)
151 18.0 0.01 1.12 0 0
132 18.5 001 1.47 0 0
152 18.5 0.01 1.47 0 0
150 31.5 036 . 153 0.04 - 0.02
149 320 039 174 004 - 0.02
154 32.8 0.45 , 205 0.06 0.03
131 351 0.64 306 0.08 0.04
163 353 0.67 319 0.08 C O 0.04
133 358 0.72 343 0.09 0.04
148 38.1 098 461 0.11 - 0.05
153 39.1 110 517 0.11 0.06 -
162 39.9 1.20 561 0.12 0.06
130 40.9 1.34 622 0.13 0.07

Base 325 0.56 242 0.07 0.03

Table A3.8 Model outputs estimated for the rainfall event on 4/21/96 using the individual
gauge rainfall and optimum parameter values for the Cement watershed

Gauge # Rainfall ~ Runoff volume = Total Sediment-  Sediment-N Sediment-P

(mm) (mm) - Mg) ~ (kg/ha) (kg/ha)
132 16.8 0.06 8.71 -0 0
151 17.3 0.07 10.6 0 0
149 19.6 0.14 31.6 0.01 0.01
131 20.1 017 - - 378 0.01 0.01
152 206 0.19 449 0.01 0.01
133 21.8 0.26 ' 65.8 0.02 0.01
134 22.1 0.28 70.6 0.02 0.01
154 24.6 0.48 136 0.04 -0.02
147 251 053 152 0.04 0.02
148 26.9 072 212 0.06 0.03
130 27.7 0.82 240 . 0.07 0.03
155 31.8 1.42 S 4n 0.10 0.05
153 348 1.98 563 0.12 0.06
162 36.6 235 1659 . . 015 0.07
163 50.3 6.03 161 0.29 0.15
150 16.8 0.06 8.71 0 0

Base 24.6 ' 0.78 443 0.10 0.05
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~ Table A3.9 Model outputs estimated for the rainfall event on 5/31/96 using the individual
gauge rainfall and optimum parameter values for the Cement watershed

Gauge # Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) Mg) (kg/ha) (kg/ha)
161 57.2 029 398 0.10 0.05
134 68.6 0.96 1509 , 0.28 0.14
162 68.8 098 1539 0.28 0.14
130 76.5 1.74 2493 041 . 0.21
163 77.5 1.86 " 2629 0.44 © 022
150 785 1.99 2766 0.45 0.22
151 790 2.05 2836 0.46 023
131 79.2 L0208 2871 0.46 023
148 79.8 o215 2941 0.47 0.24
154 80.5 2.25 3052 C 048 0.24
133 81.3 2.35 3165 0.50 0.25
153 86.1 3.04 3887 . 0.59 0.30
132 89.4 3.56 4403 . 065 0.33
149 94.5 443 5240 0.75 037
147 81.3 2.35 3165 0.50 0.25
152 81.3 2.35 3165 050 0.25
155 63.2 0.58 898 018 0.09
Base 83.3 313 3395 0.53 027

Table A3.10 Model outputs estimated for the rainfall event on 7/9/9’6 using the individual
gauge rainfall and optimum parameter valies for the Cement watershed

Gauge # Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) (Mg) (kg/ha) (kg/ha)
161 30.7 0 0.13 0 0
154 35.6 0 0.54 0 0
163 40.4 0 1.18 0 0
162 40.6 0 1.22 0 0
155 . 41.1 0 1.31 0 0
153 424 0o 1.55 0 0
149 46.7 0.01 3.07 0 0
152 47.8 0.01 393 0 0
148 67.8 0.21 : 402 0.10 0.05
132 73.9 0.41 924 0.19 0.09
133 78.2 0.61 1388 0.26 0.13
147 80.5 073 1728 031 015
134 86.9 1.18 2769 0.45 0.23
150 98.3 2.32 4735 , 0.70 0.35
130 102 2.76 5395 0.76 0.38
151 126 6.74 10727 1.33 0.67
131 137 9.02 13585 1.60 0.80
Base 64.3 1.41 2367 0.39 0.20
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Table A3.11 Model outputs estimated for the rainfall event on 10/27/96 using the individual
gauge rainfall and optimum parameter values for the Cement watershed

Gauge # Rainfall ~ Runoff volume = Total Sediment = Sediment-N Sediment-P

(mm) (mm) Mg) (kg/ha) (kg/ha)
130 9.65 0 0.02 0o 0
131 14.5 o 024 0 0
132 26.7 0.00 . 2635 001 0.01
133 44.5 1.65 802 0.17 0.08
134 11.2 -0 0.06 0 - 0.00
148 1305 023 954 0.03 0.02
149 282 0.14 482 0.02 0.01
150 - 12.7 -0 - 014 0 0
151 10.4 0 0.04 0 0
152 17.3 0 0.51 . 0 0
153 384 084 429 0.10 0.05
154 203 0.02 2.24 0 0
162 15.7 0 0.34 ' 0 0
163 20.1 0.02 2.00 0 0
147 11.9 0 . 010 0 0

Base 23.4 © 037 . 683 002 -~ 0.01
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Table A3.12 Model dutputs estimated for the rainfall event on 7/9/96 using the individual
calibrated radar rainfall and optimum parameter values for the Cement watershed

Rainfall Runoff volume Total Sediment Sediment-N Sediment-P

(mm) (mm) (Mg) (kg/ha) (kg/ha)
21.3 0 0 0 0
226 0 0 0 0
30.0 0 0 0 0
30.2 0 0 0 0
307 0 0 0 0
31.0 0 0 0 0
31.8 0 0 0 0
32.5 0 0 0 0
33.8 0 0.10 0 0
36.1 0 0.27 0 0
37.1 0 0.36 0 0
38.9 0 0.56 0 0
414 0 0.89 0 0
42.7 0 1.07 0 0
432 0 1.15 0 0
447 0 1.41 0 0
46.0 0 1.64 0 0
47.0 0 1.86 0 0
49.5 0 2.51 0 0
51.6 0.01 3.29 0 0
55.4 0.01 7.57 0 0
56.9 0.02 ' 10.6 0 0
57.7 0.02 12.5 0.01 0
59.9 0.03 19.5 . 0.01 0
61.5 0.04 : 25.4 0.01 0.01
62.5 0.05 30.1 0.01 0.01
66.8 0.08 59.8 0.02 0.01
67.1 0.09 62.2 0.02 0.01
69.6 0.11 88.7 0.03 0.01
71.1 0.13 139 0.04 0.02
94.5 1.06 3100 0.49 0.25
98.0. 1.32 3777 057 0.29
102 - 1.67 . 4566 0.67 034
107 2.18 5587 0.78 0.39
112 266 . 6491 0.89 0.45
112 269 6546 - - 090 ° 0.45
122 404 8859 1.14 0.57
126 4.66 . 9855 - 1.24 0.62
137 6.50 12695 1.52 0.76
142 7.41 14047 1.65 0.83
167 13.0 22367 2.40 1.20
171 14.1 24002 2.53 1.27
189 18.7 31226 3.13 1.56
Base 645 1.43 3337 0.53 0.26
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APPENDIX - 4

Computer program to estimate the AGNPS parameters
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/*

sk sk ok ok ook ok s ok sk ot sk ok ok ok ok ok s sk sk ok sk ok ke ok ke ok ook sk ok sk ok sk sk ok ok ok s s sk o o sk ok ok ok ok st ok ok ok s ok ok ok ok ok ok ok ok sk ok s kok ok

This program is used to estimate the parameter uncertainty induced in the AGNPS parameters
due to spatial variability of rainfall. It is also used to estimate the output uncertainty due to
rainfall spatial variability. This program estimates the parameters

using the following steps

1. Read the rainfall depth and observed output values from a data file “rainfall.dat”.
2. Calculate the slope, K and CN for the specified step size, ‘

3. Update the AGNPS input file for each permutation of slope and K, and CN for the
number of increments specified. It runs the modified AGNPS using the updated input
information for each events. _

4. Record the predicted output values and then calculate the relative error for each output.

5. This method is known as the brute force” method and is described by Allred and Haan
(1994).

User of this program is expected to be familiar with the AGNPS input file format
and description. o o :
Indrajeet Chaubey

ok ko ok ok ok ok Rk Rk kR sk ok Rk Rk ok ks ok ok ok ok ok ok kR sk ok Rk ok ok ook ok ok ok Rk ok ok

/*

*

O K K K X K K X K KK X K K K K X X

s sk ok ok ok ok ok sk s ok ok sk ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok e ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ook sk sk sk ok sk ok sk ok

List of Variables
ncell = Number of cells in the watershed
N = Number of rainfall values used to estimate parameters
deltaS = Slope increment (fraction)
deltaCN = CN increment
deltaK = USLE K factor increment (fraction)
S_incr = Number of slope increments used
CN_incr = Number of CN increment used
K_incr = Number of K factor increments used
amc = Antecedent moisture condition |
slength = Slope length
sed = Observed sediment transport at the watershed outlet
runoff = Observed runoff volume at the watershed outlet
sedmntN = Observed sediment-attached N at the watershed outlet (kg)
sedmntP = Observed sediment-attached P at the watershed outlet (kg)
tot_sol N = Observed total soluble N at the watershed outlet (kg)
tot_sol P = Observed total soluble P at the watershed outlet (kg)
energy = Energy intensity value for the rainfall
cfact = USLE C factor
kfact = USLE K factor
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pfact = USLE P factor

scc = Surface conditioning constant

n = Manning’s roughness constant

eng = Energy intensity value calculated by AGNPS
duration = Rainfall duration

rainfall = Total event rainfall volume (1nches)
nitro = N concentration in rainfall (ppm)

rv = Runoff volume predicted by ANPS at the watershed outlet (inches)

*

*

*

*

*

*

*

*

* area = Area of the watershed (acres)

* areac = Area of each cell (acres)

* ropk = Runoff rate at the outlet cell (cfs)

* tss = Total sediment yield at the watershed outlet (tons)
* sederr = Relative error in total sediment prediction
* rverr = Relative error in runoff volume prediction

* sedNerr = Relative error in sediment-N prediction
* sedPerr = Relative error in sediment-P prediciton

* TSNerr = Relative error in soluble N prediction

* TSPerr = Relative error in soluble P prediction

* sumerr = Total relative errors in outputs considered
* CellRain = Grid-based rainfall value for each AGNPS cell (1nches)
*

*

*************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <math.h>
#include <io.h>
#include <string.h>

/* This is total number of cells in the watershed. It should be changed to

a watershed-specific number from AGNPS before the program is run. */

#define ncell 4027
#define N 3

- #define deltaS 1.0
#define deltaCN 1
‘#define deltaK 1.0

#define S_incr 1

#define CN_incr 1
#define K _incr 1

199



int main ()

{

int i, j, k, m, curve,check;

int amc[N],CN, OM, COD;

int slength;

float rain[N], sed[N], runoff[N]; y

float sedmntN[N], sedmntP[N], tot_sol N[N], tot sol P[N];
float energy[N]; '

float cfact, kfact, pfact, scc, n;

char soil[10]; ,
float BaseN, BaseP, poreN, poreP; .
float runoffN, runoffP, leachN, leachP;
float sedN, TSN, sedP, TSP;'

float eng, duration, rainfall, nitro:

float rv, area, areac; .

float ropk, tss;

float sederr, rverr, sumerr;

float sedNerr, sedPerr, TSNerr, TSPerr;
char type[3], string[81], string1[81];
inta,b,c,d,f, g; ,

int al, a2, a3, a4, a5, a6, a7,

float CellRain, e; '

char temp1[80], *p1, *p4;

int p0, p2, p3, p3S, pb, X, x1;

int prl, pr2, pr3; /* used to increment K, C, and P factors */

long sumCN, avgCN;
float sum_slope, avg. slope;
float sum_kfact, avg_kfact;

FILE *ifp;
FILE *temp, *ofp;

/* “rainfall.txt” file contains observed raifall and outputs */
if( (ifp = fopen("rainfall.txt", "r'")) == NULL)

printf("\n Error: Cannot open rainfall.txt file");

exit (1); '
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/* Initiate all arrays to zero */

for(i=0; i<N; i++)

{

b

amc(i]=0;
rain[i]=0.0;
sed[i]=0.0;
runoff{i]=0.0;
energy(i]=0.0;
sedmntN[i]=0.0;
sedmntP[i]=0.0;
tot_sol N[i]=0.0;
tot_sol P[i]=0.0;

/* Initiate all error values to zero */

felose(ifp);

sederr=0.0;
rverr=0.0;
sedNerr = 0.0;
sedPerr = 0.0;
TSNerr = 0.0;
TSPerr = 0.0;
sumerr=0.0;

for(i=0;i<N;i++)

{

fscanf{(ifp, "%d %of %f %f %f %f Y%of Yof",

&amc[i],&rain[i],&runoff]i],&sed[i], &sedmntN[i],
&sedmntP[i], &tot _sol NJi], &tot_sol P[i]); .
fgets(string1,80,ifp);

/* ,
Calculate the rainfall enetgy for each rainfall

*/

energy[i] = 17.90 * pow(rain[i], 2.0619);
energy[i] = energy[i] / pow(24.0, 0.4134);
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/*
The following part of the program updates the data file for AGNPS (input.dat)

for every rainfall value. It runs the AGNPS model for every possible combination

of slope, K factor, and CN and records sediment yield and runoff volume loading
for each run

*/

ofp = fopen("cnslp.txt", "wt");

fprintf(ofp, " Slope CN K rain RV TSS SedN TSN SedP TSP rverr Sederr
SedNerr SedPerr TSNerr TSPerr Sumerr\n\n");
felose(ofp);

for(k=0; k<N; k++) .

{

for(i=0; i<S_incr; i++)
{

for(pr1=0; pri<K_incr; pri++)
{ o
for(j=0; j<CN_incr; j++)

{

sumCN = 0; -

avgCN =0;

sum_kfact =0.0;

avg_kfact = 0.0;

sum_slope = 0.0;

avg_slope =0.0;

/* “input.dat” is the input file for AGNPS. “temp.dat” is the “input.dat” file

modified by this program. This file is used by this program to run the AGNPS
*/

ifp = fopen("input.dat", " ")
temp = fopen("temp.dat", "w'");

for(m=0; m<5; m++)
{
fgets(string, 80, ifp);
fputs(string, temp);
}

/* update the file input.dat */
fscanf(ifp, "%s%f%{%f%f\n", type, &eng, &duration, &rainfall, &nitro);
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/* update energy value and rainfall value */

fprintf(temp, "%165%8.2{%8.1{%8.2{%8.2f\n",
type,energy[k],duration,rain[k],nitro);

for(m = 0; m <ncell; m++)

{
fscanf(ifp, "%d %d %d %d %d %d %f %d",
&a,&f,&b,&g,&c,&CN,&e,&d);

/* The following one line is used to get to the grid point of optimum CN.
It must be commented out when estimating the parameter */

* CN=CN -40; */

/* Change the CN by the specified step size */
"CN =CN + j*deltaCN;
if(CN >= 100)
CN = 100;

/* 1 think it is a bug in the AGNPS program. If the curve number
for any of the cells is zero, the program terminates with an
error message that 'floating point error detected and could
not be handled.' I have put this condition to make CN a non
zero positive number. -Indrajeet */

if(CN <= 0)
CN=35;

/* The following one line is used only to get the starting
values for the parameter estimation. It should be commented .
out when actually estimating the parameters. */

/* - e=e*1.0; ‘ X/
e +=e*i*deltasS;
if(e <= 0.0).
e=10.0;
fprintf(temp,"%8d%8d%8d%8d%8d%8d%8.2f%8d\n",
a,f,b,g,c,CN,e.d);
sumCN +=CN;
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sum_slope +=e;

/* The following lines reads the grid rainfall value and
modifies it from the input rainfall file */
fgets(string, 65, ifp); ‘
/* USLE Parameter are extracted here */
fscanf(ifp, "%d %f %f Yof %f %f %d", &slength, &n, &kfact,
&cfact, &pfact, &sce, &COD);

/* The following one line is used to get the starting point for K */
/* kfact = kfact * 1.0; */

kfact += kfact*pr1*deltaK;
/* Check for the boundary conditions (0< K < 1.0)
if(kfact >= 1.0)

kfact=1.0;
“if(kfact <= 0.0)

~ kfact =0.0;
sum_kfact += kfact;

fprintf(femp, "0/516d %8.3f %8.3f %8.4f %8.2f %8.2f %38d\n",
slength, n, kfact, cfact, pfact, scc, COD); .'

fscanf(ifp, "%d%d%d%d%d%d%d% 1",

~ &al,&a2,&a3,&a4,&a5,&a6,&a7,&CellRain);
fprintf(temp, "%16d%8d%8d%8d%8d%8d%8d%8.2f\n",
al,a2,a3,a4,a5,a6,a7,rain[k]); /* change to rain[k] */

/* 2 lines of soil information is read here */
fscanf(ifp, "%s %of %f %f %f",
- soil, &BaseN, &BaseP, &poreN, &poreP);
fprintf(temp, "%ods %8.4f %8.4f %8.2f %8.2f\n",
soil, BaseN, BaseP, poreN, poreP);
fscanf(ifp, "%f %of %f %f %d",
&runoffN, &runoffP, &leachN, &leachP, &OM);
~ fprintf(temp, "%16.3f %8.3f %8.3f %8.3f %8d\n",
“runoffN, runoffP, leachN, leachP, OM);

fgets(string, 80, ifp);

fgets(string, 80, ifp);
strepy(templ, string);
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pl = strtok(temp1, " ");

p0 = stremp(pl, "Fert:");
p2 = stremp(pl, "Pest:");
p3 = strcmp(pl, "Channel:");

if(p0 == 0)
{

fputs(string, temp);
fgets(string, 80, ifp);
strepy(templ, string);
p4 = strtok(templ, " ");
p5 = stremp(p4, "Pest:");
p6 = stremp(p4, "Channel:");

if(p5==0)

{
fputs(string, temp);
for(x1=0; x1<7; x1++)
o -
fgets(string, 80, ifp);
fputs(string, temp);
}
}
if(p6==0)
{
fputs(string, temp);
for(x1=0; x1<3; x1++)
{
fgets(string, 80, ifp);
fputs(string, temp);
B
}
}
if(p2==0)
{
fputs(string, temp); -
for(x1=0; x1<7; x1++)
{
fgets(string, 80, ifp);
fputs(string, temp);
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}

if((p2!=0) && (p3==0))

{
fputs(string, temp);
for(x1=0; x1<3; x1++)
¢ _
~ fgets(string, 80, ifp);
fputs(string, temp);
}
}
}
fclose(ifp);
fclose(temp);

/¥ AGNPS is run here using the input file “temp.dat” */
/* Note that the agrain is the modified AGNPS that uses grid-based rainfall and
energy intensity values */ “
check=system("agrain temp.dat 0 0 0");
printf("%d\n",check);

/* Get the relevent results from the outputfile
and write it to the CNSLP.OUT file */

ifp = fopen("temp.nps", "r");

for(m = 0; m<4; m++)

{
}

fscanf(ifp, "%of% %% %d%s%fYof%S", &area, &areac, &rainfall, &eng,
' &a, &g, &rv, &ropk, &tss);
fscanf(ifp, "%f %f %*f %f %f %*f Y%o*f %o*{",
&sedN, &TSN, &sedP, &TSP);

fgets(string, 80, ifp);

/* Absolute relative errors for each outpu{ is calculated here */
/* Here the residual is defined as -
"Measured value - simulated value " */

sederr = fabs((sed[k] - tss)/sed[k]);
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rverr = fabs((runoff[k] - rv)/runoffk]);
if(sedmntN[k] = 0.0)

sedNerr = fabs((sedmntN[k] - sedN)/sedmntN[k]);
if(sedmntN[k] == 0.0)

sedNerr = 0.0;
if(sedmntP[k] != 0.0) ‘

sedPerr = fabs((sedmntP[k] - sedP)/sedmntP[k]);
if(sedmntP[k] == 0.0)

sedPerr = 0.0;
if(tot_sol N[k] !=0)

TSNerr = fabs((tot_sol N[k] - TSN)/tot_sol N[k]);
if(tot_sol N[k] == 0.0)

TSNerr = 0.0;
if(tot_sol P[k] !=0.0)

TSPerr = fabs((tot_sol P[k] - TSP)/tot_sol P[k]);
if(tot_sol P[k]==0.0)

TSPerr = 0.0; ‘ _
sumerr = sederr+rverr+sedNerr+sedPerr+TSNerr+TSPerr;

felose(ifp);

/* Here the average parameter estimates for the watershed is calculated */
avgCN = (long) sumCN/ncell; '
avg_slope = sum_slope/ncell;

avg_kfact =sum_kfact/ncell;

/* The error statistics and the output and parameter estimates are written
in the “cnslp.txt” file for each permutation of slope, K, and CN. */
ofp = fopen("cnslp.txt", "at");

fprintf(ofp,"%4.2f %41d %4.2f %4.2f %5.4f %5.2f %5.2f Y%7.4f %7.4f %7.4f
%5.4f %5.41 %5.4f %5.4f %5.4f %5.4f %5.4f\n", ‘
avg_slope, avgCN, avg_kfact, rain[k], rv, tss, sedN, TSN, sedP, TSP,
rverr, sederr, sedNerr, sedPerr, TSNerr, TSPerr, sumerr);

fcIose(ofp);
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. APPENDIX -5

-Computer program'to process DPA rainfall data
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/**********************#***********************************************

This program is used to read the NEXRAD rainfall file stored in DPA format.
It reads the binary rainfall data, converts that to the hourly total rainfall (mm) and
stores that to another file that can be imported into a GIS as an ascii file.

Indrajeet Chaubey

ook ok ok ok ok okok ok ok Rk ok Rk kR Rk bk ok ok ook ok ok R kR kR kR Rk Rk sk kR kR ok Rk ok K/

#include <stdio.h>
#include <math.h>

#define min_value -6
#define increment 0.125

main(int argc, char *argv([] )
{ .
int precip_array[131][131]; .
char buffer[146];
unsigned char row[1024];
short num_bytes; '
short value;
short num_cells;
char file_name[1024];
int1,j, k;
int row_total;
float expl, valuel;
int value_mm;
FILE *ip, *fp;

ip= fopen(arg'v[l], "rb");

if(lip)

{ _ ‘
printf("\nCannot open the file");
exit(1);

}

fp= fopen(argv[Z],"w")j

/* This is the header file to display the rainfall data into ARC/INFO or ARC/VIEW.
To display it into another GIS package, the header information must be changed
accordingly. */
fprintf(fp, "ncols 131\n");
fprintf(fp, "nrows 131\n");
fprintf(fp, "xllcorner 396507.61933\n");
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fprintf(fp, "yllcorner 3651134.3594\n");

fprintf(fp, "cellsize 4000\n");
/* End of the header information. */

/* Read the header of the DPA file and ignore it. */
fread(buffer, sizeof(char), 146, ip); "
for(i=0;i<131;it++)
|
row_total = 0;
fread(&num_bytes, sizeof(short),1,ip);
printf("\nNum_bytes = %d", num_bytes);
fread(row, sizeof(char),num_bytes,ip);
for(j=0; j<num_bytes/2; j++)
{ .
num_cells = row[2%}];
value = row[2*j+1];
printf("\nvalue = %d", value);
if( value ==0) '
value_mm = 0;-
else if((value ==255) || (value ==-1) )
value_mm = 999; '

else
{ - }
expl = (value * increment + min_value)/10.0;
valuel = pow(10.0, exp1);
value_mm = (int) (valuel+0.5);
-}
for(k=0; k<num_cells;k++)
{ .
precip_array[i][(row_total - 1) +k] = value_mm;
- fprintf{fp, "%d ",value_mm);

row_total +=num_cells;
printf(" Row total = %d", row_total);
) :
fprintf(fp,"\n");
printf("\nColumn total = %d", 1);
}
fclose(ip);
fclose(fp);

}
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