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CHAPTER I 

INTRODUCTION 

Fluid power has been utilized for over two centuries. 

Its popularity has continued to increase since it is one of 

the most effective means of transmitting high levels of 

power. As with electricity, fluid power does not utilize 

bulky linkages; and it may be transmitted through long trans­

mission lines and through tight spaces where the utilization 

of mechanical linkages would not be permissible. 

Progressing through the years, fluid power invaded the 

area of control in the early part of the 20th century (1), 

both in digital and analog control. In the area of digital 

control, fluid elements have been proven capable of perform­

ing logical decisions necessary to replace the human opera­

tor. The use of fluid elements eliminates the need of costly 

interfaces when fluids are used as the "muscle power" of the 

controlled system. In addition, fluid elements are very 

reliable when operating under adverse conditions; such as 

heat, vibrations, mechanical impacts, etc. This feature has 

made the utilization of digital fluid elements (or fluid 

logic elements) increasingly popular. 

At the early stages of digital fluid control, the degree 

1 



of automation which was attained was very primitive. In 

designing such systems, both intvition and a rudimentary 

knowledge of logic elements were utilized. The methods of 

design which were employed reflected those of an art rather 

2 

than a science. Progress in the area of fluid logic controls 

have brought with it the demand for more and more sophisti­

cated design methods. Means of designing circuits employing 

intuitive processes have been proven to be time consuming 

and not rewarding, since they reduce to an endless game of 

avoiding errors while searching for the desired solution. 

This study has been directed towards the development of 

computer oriented algorithms needed for synthesizing large 

scale, stochastic type sequential fluid logic networks. In 

addition, applicable combinational synthesis methods are 

assessed in a unique, generalized approach. The possibili­

ties of utilizing special elements such as NOR elements have 

been considered. 



CHAPTER II 

PREVIOUS INVESTIGATIONS 

Ever since the early part of the 20th century, the use 

of sequential networks has served as a substitute for the ) 

decision logic of the human operator (2). Initially, intui-

tive approaches were adequate due to the simplicity of the 

problems and the fact that the art of switching theory was 

very limited. This state began to change with the injection 

of Boolean Algebra to switching theory by C. E. Shannon (J), 

who utilized the algebra for the representation and manipula-

tion of relay networks. Shannon's approach transformed pre-

vious thinking and laid the foundation of modern switching 

theory and design. 

In 19,?3, M. Karnaugh (4) established another milestone 

in the history of switching theory. His contribution con-

cerned the introduction of an effective means for simplifying 

Boolean equations using a map. Karnaugh's map, which is 

basically an improvement of the Veitch Chart (5), provided a 

new insight into the problem of network simplification. It 

was also the basis for the now famous sequential synthesis 

method developed by D. A. Huffman (6) a year later. 

Huffman's sequential logic synthesis method was first: 

formally introduced to the area of fluid logic by E. C. 

J 
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Fitch (?) in 1964, and is now commonly referred to as the 

"Classical Technique". The technique evaluates a logic 

problem using a table which possesses a direct relationship 

with the Karnaugh map. This table is known as the "Primitive 

Flow Table" and is illustrated, in Table I. 

TABLE I 

THE PRIMITIVE FLOW TABLE 

NEXT STATES OUTPUT STATES ( g(i! ,Z ---~ l) 
INPUT STATES f(a,b---) INPUT STATES f(a,b--) ' t. f 2 - - - - • - - fi - - • • - - - - f n t. f 2 - - - -- -fi-- -- ____ f,; 

Y-€) 

1 -9a 

l 
® 8 g~~ 

1 1 ®-a 9y-

® 9.s 

Each circled entry in the table indicates a stable 

state and relates to a distinct machine state, while 

uncircled entries denote unstable states and refer to the 

next possible machine state that may be attained following 

a change of the inputs. Each column of the table is 

reserved for one state of the inputs, while each row relates 

to the internal states of the machine. These internal 
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states are represented by a group of secondary elements 

which are called memory elements. 

Huffman presented a method for modifying the table such 

that a near minimal row flow table is achieved, hence mini-

mizing the number of memory elements required. This row 

minimization technique was reformulated and improved by many 

scientists in order to obtain the absolute minimal row flow 

table in a most convenient manner (8, 9, 10, 11, 12, 13, 14~ 

15). One of the most mechanized schemes was developed by 

A. Grasselli and F. Luccio (16, 17, 18) and N. Biswas (19). 

The improved version of the method is capable of producing 

the minimal row (or merged) flow table in a most efficient 

manner. 

Huffman's method proceeds with the construction of the 

operational flow table (OFT), followed immediately by the 

development of the network maps. The need for an OFT 

actually lies in the potential danger that races may occur 

between the memories, a situation which must be avoided in 

order that an undesired state is not attained accidentally. 

It is the construction of the "optimal" OFT that has 

created a major obstacle in the Classical Synthesis Tech-

nique. Creating a minimal row OFT constitutes a major prob-

lem by itself; since without resorting to pure trial and 

error approaches one would never be sure that the true mini-

mal row OFT has been obtained. One consolation is that 

• possessing a true minimal OFT does not necessarily guarantee 

that a minimal-hardware network can be achieved. 

The inherent problems in the Classical method and the 
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crucial need for a fully mechanized fluid logic synthesis 

method capable of producing near minimal networks prompted 

J. H. Cole (20) to formulate a tabular method for synthesiz­

ing feedback type fluid logic networks. Although his meth­

od, often referred to as the Change Signal Method, is 

effective only for a certain class of deterministic sequen­

tial circuits, it is capable of obtaining near minimal 

solutions. In the establishment of this method, one point 

was clarified; i.e., the minimal hardware network is not 

necessarily obtained by a minimal memory network. 

In 1969, G. E. Maroney (21, 22) developed a concept 

that used the "total" or complete input state. His Diconesyn 

III synthesis method was able to handle virtually any type 

of logic network. Modifications to his method have provided 

total mechanization (23, 24, 25). 

Other attempts to devise better and better techniques 

for synthesizing fluid logic networks are evident in the 

literature. The method introduced by R. M. H. Chan and 

K. Foster (26) must be recognized as the first method that 

uniquely places all memories at the output. This nondis­

criminative memory assignment method often creates major 

difficulties in attempting to eliminate races that have 

resulted from this random memory assignment procedure. Such 

elimination often requires that additional memory elements 

be utilized; and hence 7 an unnecessary increase in the net­

work complexity may occur. 

An attempt to achieve minimal networks by selective 



matching of memory functions to the outputs was made by 

Surjaatmadja (27, 28) in 1973. The approach showed a great 

promise in typical applications in fluid logic as demon­

strated not only by the degree of simplification achieved, 

but also by the ability of reducing the ill-effects of 

hazards. The method was successfully followed by another 

approach, which utilizes a special class of outputs to per­

form memory functions (29). As a correct classification of 

the outputs results in the reduction of the required hard­

ware, it is this direction that is pursued by the author in 

this investigation. 

7 



CHAPTER III 

STATEMENT OF THE PROBLEM 

The purpose of this investigation was to advance compu-

ter oriented algorithms for synthesizing large scale, 

stochastic type sequential fluid logic networks. The 

approach should enable the establishment of near-minimal 

circuits in the most efficient manner. 

The method includes the development of an input-output 

circuit selection criterion, the development or selection of 

appropriate combinational synthesis techniques which forms 

the foundation for the intended sequential synthesis 

technique. 

In general, the plan of attack involves the study of 

previously established methods and the possible incorpora-

tion of such methods in the development of the new synthesis . . 

technique. New algorithms are to be devised whereever nee-

essary. After the formulation, the method is to be 

demonstr.ated. 

8 



CHAPTER IV 

SWITCHING CIRCUIT ALGEBRA 

4.1 Evolution of the Algebra 

Switching circuit theory is based upon pure logic--an 

art that is intrinsically possessed by mankind. With it, 

man has been able to make decisions and perform different 

tasks. Although there are many attempts throughout the 

history towards the formulation of logic, no mathematical 

assessment had been made until G. Boole (JO) formulated a 

unique algebraic representation of logic in 1854. This 

"new" branch of the algebra has been improved throughout the 

years and is currently known as "Boolean Algebra". 

Ironically~ it was not until 1938 that Boolean algebra 

finally found its place in the design of switching circuitso 

This major achievement in the area of switching theory should 

be accredited to C. E. Shannon (J)~ who recognized for the 

first time that each of the three fundamental algebraic 

operators, AND, OR, and NOT, can be represented by actual 

logic hardwareo Shannon demonstrated that Boolean algebra 

provides a mathematical means for simplifying a switching 

circuit. 

As the evolution of switching theory progresses, a need 

9 
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for a more specialized algebra is established. This need is 

reflected by t?.e development of non-conventional logic ele­

ments, such as NOR, NAND, INHIBITOR, EXCLUSIVE OR, and 

COINCIDENCE elements. Although an algebraic representation 

can be made for each of these elements, it is the author's 

opinion that a generalized algebra, which includes each 

available logic element as an algebraic operator would be 

most advantageous in designing circuits which utilize these 

special types of elements. This advantage will become more 

apparent when computers are used for aiding the design of 

the logic networks. 

The following section offers a foundation for the devel-

opment of such an algebra. Even though the completeness of 

the algebra might be challenged, its applicability for some 

non-conventional logic devices demonstrates its practical 

value in switching circuit theory. 

4.2 The Algebra 

Switching circvit algebra is a mathematical s¥stem con­

sisting of variables, operators, constants, and an equiva­

lence; which are governed by a set of postulates defining 

the algebra. The algebra concerns itself with variables 

having only two values, which are the constants of the 

algebra, ¢ and U. It employs a set of symbols which are the 

variables of the algebra; upon which manipulations are per­

formed by four commutative and distributive (or conventional) 

operators, two non-conventional operators, and one 
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complementing function. The term "non-conventional" opera­

tors is used to denote operators which are neither commuta­

tive nor distributive. For example, the operators AND(.) 

and OR (+) are conventional operators; while INHIBITOR's and 

EXCLUSIVE OR's can be classified as non-conventional opera­

torso Let the four conventional operators be represented by 

the four arbitary symbols, o, ¢, @, and~; and let the non­

conventional operators be represented by the symbols v and 

~. As also commonly used in Boolean algebra, the symbols 

-, fi, and ' are used to represent equivalence, non­

equivalence, and complementation, respectively. 

The algebra is defined by the following postulates: 

Postulates 

Eg,uation Dual 

1. oX = oU if oX fi 0~ 1. ¢X = ¢~ if ¢X fi ¢U 

2. @X = @~ if @X fi @U 2. ~X = ~u if ~X fi ~~ 

Jo o(@U,@U) -· o@U J. ¢(~~,~~) = ¢~~ 

4. @(o~,o~) = @o~ 4; ~(¢U,¢U) = ~¢U 

5o o(@U,@~) = o@~ 5G ¢(~U,~~) = ¢~U 

6. o (U 9 ) = o(~) 6. ¢ ( ~ 9 ) = ¢(U) 

7- @( ~·) = @(U) 7- ~(U') = @(~) 

Bo ~(u,u) = ¢ 8. v(~,~) = u 

9. ~(~,~) = ~ 9. v(U,U) = u 

10. 'l'l(U,~) = u 10o v(~,u) = ~ 

In order to aid the user of the algebra with mathe-

matical manipulations, theorems are developed. Unlike the 
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postulates, theorems must be derived entirely from the 

postulates; they cannot contain any assumptions which are 

not reflected by the postulates. The following theorems are 

considered important in switching theory: 

1. Tautology 

2. Commutative 

J. Association 

4. Distribution 

5. Absorption 

a. 

b. 

c. 

d. 

a. 

b. 

c. 

d. 

Theorems 

o(X,X) 

¢(X,X) 

@(X,X) 

~(X,X) 

o(X,Y) 

¢(X,Y) 

@(X,Y) 

~(X,Y) 

= o(X) 

¢(X) 

= @(X) 

= ~(X) 

= o(Y,X) 

¢(Y,X) 

= @(Y,X) 

~(Y,X) 

a. o(~X,~(Y,Z)) = o(~(X,Y),~Z) 

b. ¢(@X,@(Y,Z)) = ¢(@(X,Y),@Z) 

c. @(¢X,¢(Y ,Z)) = @(¢(X,Y) ,¢Z) 

d. ~(oX,o(Y,Z)) = ~(o(X,Y),oZ) 

a. o(@X,@(Y,Z)) = ¢(~(X,Y),~(X,Z)) 

b. ¢(~X,~(Y,Z)) = o(@(X,Y),@(X,Z)) 

c. @(oX,o(Y,Z)) = ~(¢(X,Y),¢(X,Z)) 

d. ~ (¢X,¢ ( Y, Z) ) = @ ( o (X, Y) , o (X, Z) ) 

a. o(@X,@(X,Y)) = o@(X) 

b. ¢(~X,~(X,Y)) =¢@(X) 

c. @(oX,o(X,Y)) = @o(X) 

d. @(¢X,¢(X,Y)) = ¢%(X) 



6. Inclusion 

7~ Universe Class 

8. Null Class 

9. Complementation 

10. Contraposition 

11. Double Negation 

12. Expansion 

13. DeMorgan 9 s 
Theorem 

13 

a. o(¢X,¢(X,Y)) = o¢(X) 

b. ¢(oX,o(X,Y)) = ¢o(X) 

c. @(~X,~(X,Y)) =@~(X) 

d. ~(@X,@(X,Y)) =~@(X) 

ao o(@X,@U) = o®(X) 

b. ¢(~X,~U) = ¢~(U) 

a. o(@X,®¢) = o®(¢) 

a. o(@X,@X•) = o®(¢) 

b • ¢ ( ~X , ~X r ) = ¢ ~ ( U ) 

a. If o(X) = o(Y'), then o(X') = o(Y) 

b • If ¢ ( X ) = ¢ ( Y 1 ) , then ¢ ( X ' ) = ¢ ( Y ) 

c. If @(X) = @(Yt), then @(X 1 ) = @(Y) 

d. If ~ (X) = ~ ( Y ' ) , then ~ (X' ) = ~ ( Y ) 

a. o(X") = o(X) 

b. ¢ (X" ) = ¢ (X) 

c. @(X 11 ) =@(X) 

d. ~(X") = ~(X) 

a. o(@(X,Y),@(X,Y 1 )) = o@(X) 

b. ¢(~{X,Y),~)X,Y•)) =¢~(X) 

c ~ @ ( o (X, Y) , o) X, Y' ) ) = ®o (X) 

d ~ ~ ( ¢ (X, Y ) , ¢ (X , Y 1 ) ) = ~¢ (X ) 

a. o(X,Y)' = ¢(X',Y') 

b. ¢(X,Y) 1 = o(X',Y') 

c. @(X,Y) 1 = ~(X',Y') 

d~ ~(X,Y)' = @(X',Y') 

e. '!l(X,Y)'·= v(X',Y') 



14. Reflection 

15. Transition 

16. Equivalence 

17. Transposition 

f. v(X,Y)' = r](X' ,Y') 

a. o(@X,@(X' ,Y)) = o(@X,@Y) 

b • ¢ ( ~X , ~ ( X t , Y ) ) = ¢ ( ~X , ~y ) 

c. @(oX,o(X'~Y)) = @(oX~oY) 

d. ~(¢X~¢(X~ ,Y)) = ~(¢X,¢Y) 

a. o(@(X,Y) ,@(X' ,Z) ,@(Y ,Z)) = 

o(@(X,Y) ,@(X' ,Z)) 

b. ¢(~(X,Y) ,~(X' ,Z) ,~(Y ,Z)) = 

¢(~(X,Y) ,~(X' ,Z)) 

c. @(o(X,Y) ,o(X' ,Z) ,o(Y ,Z)) = 

@(o(X,Y) ,o(X' ,Z)) 

d. ~(¢(X,Y),¢(Xv,z),¢(Y,Z)) = 

~(¢(X,Y) ,¢(XV ,Z)) 

a. r](X,X) = ¢ 

b. v(X,X) = U 

a. o(@(X,Y) ,@(X' ,Z)) = @(o(X,Z) ~ 

o(X',Y)) 

b. ¢(~(X,Y) ,~(Xv ,Z)) = ®(¢(X,Z), 

¢(X',Y)) 

c. @(o(X,Y) ,o(xv ,Z)) = o(@(X,Z), 

@(X' ,Y)) 

do ~(¢(X,Y) ,¢(X 1 ,Z)) = ¢(~(X,Z), 

~(X',Y)) 

Up to this point~ the algebra has been presented in a 

generalized manner. No attempts were made to assign specific 

operators or constants to replace the six operators and the 

two values of the algebra. It is maintained by the author, 
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that there exist many sets of numerals and operators which 

satisfies the algebra. Among them, a few known combinations 

of logical operators and constants are listed in Table II 

and Table III. Note that the entries of each row of these 

tables must be used in its entirety. For example, when "o" 

is replaced by the "OR" symbol, "U" must represent the logi­

cal constant "0" (see Row 2 of Table II). It should also be 

noted, that in these tables the notations~' t, INH, IMP, e, 

=, .are used to represent the logical operators NOR, NAND, 

INHIBITOR, IMPLY, EXCLUSIVE-OR, and COINCIDENCE, 

respectively. 

4.3 Effects of the New Algebra in 

Switching Circuit Theory 

The application of the new algebra in switching circuit 

theory provides a new insight into formal combinational 

logic synthesis. In particular, the feature of having 

arbitrary operators permits the designer to perform alge­

braic manipulations without concern of the types of the 

operators; in other words, the manipulations of the equa­

tions can be performed independently from the actual opera­

tors that are utilized. This feature is especially practical 

for the computer-aided design of logic systems. 

For example, the Karnaugh Map simplification method can 

be generalized to satisfy the theorems and postulates of the 

algebra. For this purpose, the Karnaugh map can be defined 

as a map which consists of cubes, each of which is 
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TABLE II 

CONVENTIONAL OPERATORS OF THE ALGEBRA 

SET 
@ @ u 0 No. 

0 

1 + .... 1 0 

2 .... ;-. 0 1 

3 ~ ·t ' t 1 0 

4 t ~ • 0 1 

TABLE III 

NON-CONVENTIONAL OPERATORS 

SET 
9 u 0 

No. 

1 INH IMP l 0 

2 IMP INH 0 l 

3 Ei' - l 0 

4 - CB 0 1 
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represented by "a unique combination of the variables of the 

logic system. A logic operator governs every variable rep-

resentation of each cube, while another operator defines the 

relationship between one cube and another. A set consist~ng 

of all available cubes (or the universe of the map) repre-

sents a constant of the algebra, while the other constant is 

defined by the empty set. The valid combinations of opera-

tors and constants which can be utilized in the generalized 

Karnaugh map are listed in Table IV. Similar to the pre-

vious identical tables, each row of Table IV reflects a 

valid combination of operators and constants and hence, it 

must be used in its entirety. 

TABLE IV 

KARNAUGH MAP OPERATORS AND CONSTANTS 

Set 
Noe 

1 

2 

Lines 

0 

¢ 

Cube 

@ 

Uni­
verse 

u 

Empty 

u 

As an illustration, the generalized Karnaugh Map is 

utilized to simplify the following expression: 

Z = o(@(A,B,C) ,@(At ,B,D) ,@(A,B,C')) (4-1) 
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Without considering the actual logical operators, Equation 

Ut-1) can be projected on the Generalized Karnaugh Map, 

resulting in the map shown in Figure 1. As the 11 Cube 11 repre-

sentation in the above equation is an 11 @11 , while the "Line" 

representation (the representation between cubes) is an 11 o 11 , 

it is established that the universe of' th~ map·is "¢"while 

the empty map correspond with an "U''. The simplified solu-

tion can be directly derived f'rom the map; which is: 

Z = o(@(A,B),@(B,D)) (lt-2) 

When both 11 @11 and 11 o 11 are designated NOR's (J,), the 

universe of' the map is 11 0 11 , while 11 1 11 is reflected by the 

empty map. Interpretation of' Equation (lt-2) is simply: 

Z = l(~(A,B), ~(B,D)) 

CD 
00 

01 

11 

10 

AB 
00 01 

J 

1 

11 10 

1 

1 

1 

1 

Figure 1. Karnaugh Map 
of' Equation 
(lt-1) 

(lt-3) 
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A similar approach can be made when dealing with non-

conventional operators. For example, the following 

equation: 

'll(X,Y)r =\J(Xr,yr) (4-4) 
(deMorgan 9 s Theorem) 

can be interpreted as either: 

INH(X,Y)' = IMP(X',Y') (4-5) 

or: 

e(X,Y)' = =(xr,yr) (4-6) 

The above demonstrations show the flexibility of the 

algebra. It eliminates the necessity of individual synthesis 

approaches for each set of operators. Although no meaningful 

synthesis approach has been explored for the effective 

utilization of the non-conventional operators, a quite 

promising direction for future investigations has been 

established. 



CHAPTER V 

COMBINATIONAL LOGIC SYNTHESIS 

5.1 Philosophy of the Synthesis 

Logic synthesis is the process of constructing a desired 

network based upon a given set of instructions. When the 

resulting network does not require the utilization of 

memories, the synthesis is termed as combinational. 

In general, there are three objectives which are to be 

achieved in a logic synthesis. These are: 

1. Minimal element networks 

2. High speed networks 

J. Correct and dependable operation. 

The importance of these three goals is apparent. 

Minimal element networks offers many advantageous features, 

such as low hardware and operating costs, the possibility of 

obtaining higher speed networks and convenience in analyzing 

the network. It should be realized, however, that in most 

cases increasing the speed of a network depends upon its 

implementation. 

In relation to this study, the combinational synthesis 

process includes the selection of the appropriate techniques 

in order to apprach the above objectives. Various useful 

20 
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techniques and their particular applications are discussed 

in this chapter. 

5.2 The Consensus or the *-Product 

The consensus approach was introduced for the first 

time by W. V. Quine (J1) in 1952. His approach was extended 

in a unique format by J. P. Roth (32, JJ) in 1955. The 

method utilizes a combination of the Reflection, the Expan-

sion, and the Transition theorems. The product is repre-

sented as follows: 

f = f * f c a b (5-1) 

where fa' fb and fc are algebraic terms, each of which is 

represented by n literals as the following: 

f = o(a1 , a2, . . . ' a ) (5-2a) a n 

fb = o(b 1 , b2' Ill • • ' b 
n 

) (5-2b) 

f = o (c 1 ,· c2' ••• ' i c ) (5-2c) c n 

where "o" is a conventional operator. Each variable, a., b. 
l. l. 

and c. can be represented by either a 11 0 11 , a 11 1 11 , or an l. 

indeterminate variable value, which is indicated by a "-". 

The product is performed one variable at a time, the results 

of which is best represented by the table shown in Table V~ 

The rows of this table are represented by the values of ai' 

while the columns are represented by the values of b .• 
l. 
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TABLE V 

TABLE FOR c. = a. * b. 
1. 1. 1 

bi 
ci 

0 1 

0 0 cp 0 

a. 1 cp 1 1 
1. 

0 1 

The entries in the table are the values of the product, ci' 

which are four-valued, e.g., 1, 0, -, and cp. After the 

product has been applied to each variable of the expression, 

the composite of the results can be interpreted by the fol-

lowing rules: 

1. a * b = ~ or empty, if 

than one i. 

a. 
1. 

* b. = 
1 

cp for more 

2. a * b = c if otherwise, where c is represented 

by (c 1 ,c 2 , • Cl • 'J 

rrcprr by a "-". 

c ), replacing the 
n 

As an illustration, consider for example the *-product 

between the following two algebraic terms: 

Z = o(A,B' ,C' ,D,F) * o(B,C' ,E,F,G,H) (5-J) 

which can be represented in the numerical form as follows: 

Z = o(1001-1--) * o(-10-1111) (5-4) 
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One at a time assessment of each va~iable results in 

the following: 

Z = o(1cp011111) (5-5) 

As this expression has only one 11 cp 11 , using Rule 2, Z can be 

interpreted as: 

Z = o(1-011111) 

= o(A,C•,D,E,F,G,H) (5-6) 

It can be noted that the variable-by-variable assess­

ment as performed in this synthesis approach offers unlimited 

possibilities of the method in solving large, multi-variable 

systems. Roth realized that an iterative application of the 

operation under certain conditions would result in the devel­

opment of all prime implicants; from which near minimal 

forms can be obtained. The approach soon became popular as 

it ~the only simplification approach that can tolerate 

switching functions with extremely large numbers of vari­

ables. This is evident from the numerous attempts towards 

the perfection and the computerization of the approach (34, 

35, 36, 37, 38). One such method which was developed by the 

author has been successfully computerized and is capable of 

deriving both the minimal and the minimal stat~c hazard free 

solutions of large algebraic expressions (38). 
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5.3 Complementation and Distribution 

Complementation and distribution of switching circuit 

equations has been shown to be effective in the simplifica-

tion of logic networks in many ways (39). They provide 

means not only for exploring equivalent expressions in dif-

ferent forms, but also for the identificati.on of unknown 

machine states. It is therefore realized, that a computer-

oriented method capable of performing such operations is 

very valuable. 

The Complementation and Distribution operations can be 

best represented by the Karnaugh map as shown in Figure 2. 

CD 
00 

01 

11 

10 

AB 
00 01 

1 1 

1 0 

1 0 

1 1 

11 10 

1 1 

0 1 

0 0 

0 0 

Figure 2. Karnaugh Map of 
Equation (5-7) 

The generalized expression represented by the map is: 

Z = o(@(C' ,D' ),@(A'B' ),@(A,B',C' ),@(A',C,D' )) (5-7) 



As it is apparent from the map~ the complement of the 

expression is: 
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Z' = o(@(B,D) ,@(A,C)) (5-8) 

Performing the DeMorgan's operation upon Z 1 will result in a 

solution that is identical to the Distributive equivalence 

of Z, which is: 

While the Karnaugh Map is an effective aid in general­

izing both the complement and the distributive equivalent 

solution of small switching equations, it loses its potential 

practicality when dealing with large~ multivariable equa­

tions. Fortunately, mechanized methods exist; and one 

method which is capable of generating the prime implicants 

of the complement and those of the distributive equivalent 

has been perfected and successfully computerized (40). 

5.4 The Term Simplification or the 

&-Product 

The term simplification operation or the "&-Product" is 

an operation which involves one term and a group of terms~ 

and which performs the maximal simplification of the first 

term as such that it does not conflict with the terms con­

tained in the group. The operation was initially conceived 

by J. B. Surjaatmadja and E. C. Fitch (41) in 1975. The 

product can be represented as: 
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(5-10) 

where "A" and 11 a 11 are terms o:f n variables and 11 B11 is a set 

of terms, all of the same type; e.g., only one operator is 

used for representing each of the terms. When projected in 

the Karnaugh Map, the 11 &-Product performs a critical expan-

sion of the term "a" cube as such that it will not inter-

sect the 11 B11 cube (see Figure J). 

x1xzx3 

000 001 011 010 110 111 101 100 

Figure 3. Karnaugh Map Showing the 
&-Product 

The product is best performed using a "clause table" 

format as follows: 



B11'B12' ••• , Bln 

B21 'B22' "•" ' B2n 
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. . . ' A ) = 
n 

... , a ) & 
n 5-11) 

B 1 ,B 2 , ••• , B m m · m 

A clause table is an array repres·entation of the terms with-

out the inclusion of their operators. Each term is repre-

sented by a row, while each column relates to a variable of 

the system. Unrepresented variables are listed as 11 ..,... 11 s, 

denoting indeterminate variable values. The operation is 

most conveniently perform~d in two steps: 

1. Modify the 11 B11 matrix by replacing each Bij-

element (or literal) by element a.,. provided by 
. J 

B. . is not equal to a and none of the two 
1J J 

elements is a 11 - 11 • 

2. Select a minimal combination of variables 

(columns) such that each term (or row) of "B" 

is represented at least once by the combina-

tion. This minimal combination represents the 

result of the &-product. 

J. The product is termed as unsuccessful if no 

such combination exists; in other words, the 

product will not be successful if one of the 

rows of the modified B-matrix i,s empty. 

As an illustration of the procedure, consider the fol-

lowing equations: 
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(5-12) 

The matrix representation of B would be: 

x1 ' x2 ' XJ ' 
B = XJ x4 x5 (5-14) 

x2 x5 x6 

Modification of the "B" matrix relative to "a" gives: 

x1 XJ 

B = x4 v (5-15) 

x2 ' X6' 

It can be verified that a minimal coverage of all 

B-terms is obtained by three variables,__which can be satis-

fied by four solutions: 

A = @(X1 ,X4 r ,X6') (5-16a) 

= @(2}1 ,x2' ,x4 v) (5-16b) 

= @(x2 v ~x3 ,x4 v) (5-16c) 

= @(XJ jXq r ,x6 v) (5-16d) 

Each of these solutions is the minimal reduction of term 

"a" with respect to "B". 

5.5 The Synthesis of Single 

Terminal Networks 

There are unlimited possibilities as to how a designer 

can formulate a desired network. However, it is generally 



29 

accepted that simplification of the network expression would 

at least provide an intermediate step towards the optimal 

reduction of the network implementation. This is especially 

true for networks having only one output~ where optimal 

simplification of the output expression would generally lead 

towards a near minimal network implementation. 

For the simplification of functions having less than 6 

variables, the use of Karnaugh Maps for performing the 

synthesis is irrefutable. However, for systems with higher 

numbers of inputs the utilization of maps is not practical. 

For such systems\ the application of the consensus approach 

together with the complementation approach has been proven 

to be very successful. In this approach, the consensus is 

used to generate the prime implicants of the network equa-

tions while complementation produces the don't cares of the 

system. The practicality of the method can be demonstrated 

using the 10-variable example problem presented in the 

Truth Table of Table VI. 

TABLE VI 

TRUTH TABLE 

a b c d e f g h i j z 

1 0 1 0 1 0 1 0 1 0 1 
1 1 0 1 1 0 1 0 1 1 1 
0 1 0 1 1 0 1 1 1 1 

1 0 0 1 0 1 0 0 1 0 0 
0 1 0 0 1 0 1 0 1 0 0 
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It is assumed that all other unknown machine states are 

don't cares. The representation of Z is as follows: 

Z = o(@(a,b 1 ,c,d 1 ,e,f 1 ,g,h 1 ,i,j') ,@(a,b,c' ,d,e,f' ,g, 

hV ,i,j),@(a' ,b,c 1 ,d,e,f' ,g,i,j)) 
(5-17) 

It can be verified that the only consensus operation that 

can be performed is between the second and the third term, 

which results in: 

z2 = @(b,c 1 ,d;e,f' ,g,h' ,i,j) (5-18) 

which replaces the second term of Equation (5-17). 

Furthermore, complementation of the zr function gives 

the expression of both the don't cares and the Z-expression 

in combination. The complement can be derived to and will 

result in the following: 

Zd = o (@ ( c, e) , @ ( d, e) , @ (a, b) , @ (a r , b r ) , 
0 c • (5-19) 

By selecting only the necessary terms of Zd needed to • c • 

cover Z, the minimal representation of Z is as follows: 

Z = o(®(c,e),@(d,e)) (5-20) 

which shows a substantial reduction of z. The absolute mini.-

mal implementation is obtained by applying the Distribution 

theorem; resulting i.n the following minimal expression: 

Z = ¢(~e,~(c,d)) (5-21) 

If Z is an AND-OR-NOT relationship, with an AND for ¢ and an 



OR for ~' the circuit representation is the two-element 

circuit shown in Figure 4. 

z 

Figure 4. Circuit Representation of 
the System Represented 
in Table VI 

5.6 The Synthesis of Multi-

Terminal Networks 

When the network that is to be synthesized has more 
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than one output, individual minimization of each output may 

fail to produce a minimal network (39). Under such circum-

stances, the importance of synthesizing the network as one 

unified system cannot be ignored. 

There are various techniques available for performing 

multi-terminal network synthesis (43, 43, 44, 45). However, 

the application of these methods in Fluid Logic pose a 

serious problem; as the success of these methods depends 

upon the utilization of unlimited fan-in elements--a feature 

not generally found in fluid logic elements. Therefore, it 
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is important that the selected simplification method be con­

structed as such that it is effective for limited fan-in 

elements as well. 

The method advanced in this research effort performs 

the simplification using the following steps: 

1. For each machine state, group the outputs 

which have an ON or 11 1 11 state~ 

2. Using the &-Product, simplify each input 

state with respect to all "Zero states" of the 

associated group of outputs. Classify as 

"Zero States" all input states which have a 

zero output for one or more outputs of the 

group under consideration. 

J. Tabulate the coverage of each simplified term 

over the original terms. Here, Term "A" is 

said to cover Term 11 B11 if all elements of "A" 

are contained in "B". 

4. Based upon the term coverage, select a minimal 

combination of terms to represent each output. 

As an illustration, consider the "Truth Table" as rep­

resented by the first three columns of the Multi-Terminal 

Synthesis Table of Table VII. The first term of this table 

produces only one output, e.g., z3 • Therefore, the "group" 

of outputs relating to the first input state contain only 

z3 ; and as the zero states of z3 are States 4, 5, 6, and 7, 

the &-Product of State 1 must be performed relative to these 

zero states; which results in the term "a" (see Column 4). 



JJ 

TABLE VII 

MULTI-TERMINAL SYNTHESIS TABLE 

Outputs Input States Simplified Term 
No. Term Coverage 

z I z2 z3 a b c d e f a b c d e f Term No. 

I 0 
,.., 

I I 0 I 0 I 0 I I v - - - - -2 0 I I 0 0 I 0 I 0 0 0 - - - - 2,8 
3 I I I 0 I I 0 I 0 - I I - - - 3 
4 I I 0 0 I 0 0 I 0 - - 0 0 - - 4,8 
5 I 0 0 0 I 0 I I 0 - - - I 1 - 5 
6 0 0 0 0 I 0 I 0 0 - - - I 0 0 6 
7 I I 0 0 I 0 I 0 I - - - - - I 7 
8 I I I 0 0 0 0 0 0 - 0 0 - - - 8 

Similarly, State (2) has two outputs -- z2 and z3 -- and 

hence the &-Product is performed against States 1 , 4, 5, 6, 

and 7- The simplified terms are tabulated in the fourth 

column of Table VII. 

After the fourth column has been completed, the next 

important step is the accounting of the term coverage of 

each simplified term. As an illustration consider the 

second simplified term of Tabl.e VI I. Because of the fact, 

that ab = 00 is contained in Terms 2 and 8 (see Column 2), 

this simplified term is said t,o cover both Terms 2 and 8; 

and this information is tabulated in Column 5. 

The final task is the selection of the minimal repre-

sentation of the network. This selection can be performed 

by using any of the available accounting techniques; which 



results in the following equations: 

zt = o(@(b,c) ,@(c' ,d') ,@(d, e) ~@(f)) 

z2 = o(@(a' ~b') ,@(b,c) ~@(c' ,d') ,@(f)) 

ZJ = o(@(a) ~@(a' ,b') ,@(b,c)) 

= o(@(a) ,@(b') ,@(c)) 

(5-22a) 

(5-22b) 

(5-22c) 

As the third term of Equation (5-22c) also covers the first 

machine state, the Term "a" is redundant, and hence it can 

be eliminatedo Furthermore, in order to avoid individual 

complementation of "b", the earlier form of the second term 

should be retained; which gives the following simplified 

version of Equation (5-22c): 

z3 = o(®(a' ,b') ,@(c)) (5-22d) 

When the expressions of z 1 , z 2 , z 3 are conventional 

disjunctive equations, only nine elements are required for 

their implementation. The network representation is shown 

in Figure 5. Note that the application of individual 

synthesis may result in a more simplified expression; how­

ever, the implementation of such expressions do not always 

result in a simplified network. For example, by individual 

synthesis~ the above example will produce: 

z1 = o(@(b 9 ,e 1 ),@(b,e),@(f)) 

z2 = o(@(b',e'),@(a',c),@(cv,dv),@(f)) 

z 3 = o(@(c),@(b 1 )) 

(5-2Ja) 

( 5-23b) 

(5-2Jc) 
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c 

c 

d 

a 

b 

Figure 5. 

b-0 

Network Representation of 
Equation (5-22) 

Figure 6. Network Representation of 
Equation (5-23) 
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Implementation of the above equations shows that the 

simplicity of the equations are not reflected in the actual 

network construction as shown in Figure 6. 

5.7 Three-Level Synthesis of 

NOR-Logic Networks 

NOR logic elements play an important role in Fluid 

Logic. This is attributed to the fact, that NOR elements 

are not only functionally complete, but also that they are 

basically constructed to have many inputs--a feature which 

is a key towards both simplification and increasing circuit 

speed. 

The synthesis of NOR logic networks requires special 

attention. It is believed, that a minimal network configura-

tion can be obtained when the circuit is constructed with 

three levels--the complementation level, the conjunction 

level, and the disjunction level. The term "level" is used 

to represent the number of elements through which an input 

signal to an element under consideration must transgress in 

order to reach the output. 

Basically, a three-level network can be obtained from a 

two-stage expression as follows: 

eoo),@(X ,X' ooo) ••• ) n m (5-24) 

where each X. can be substituted by a complemented, uncomple-l . 

mented, or indeterminate variable value; and where both 

operators o and @ are NOR operators. While the 
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implementation of such expressions is quite obvious, it is a 

fact that the commonly found problem descriptions are not 

given in NOR formso In fact, most problem descriptions are 

given in disjunctive, AND-OR-NOT forms. In such cases, the 

NOR-forms can be developed using the following steps: 

1. Simplify the 11 0 11 states of the disjunctive 

function; using all unspecified machine states 

as don't cares. 

2. Using the DeMorgan 1 s law, complement the 

expression in order to obtain its complementary 

conjunctive expression. 

J. The NOR-form can be constructed directly from 

the resulting conjunctive equation, by replacing 

all operators by 11 ,.i, 11 s. 

In order to illustrate this procedure, consider the 

truth table shown in Table VI. Having assumed that the 

terms represented in the table are conventional product 

terms, the equation of the complement Z1 is: 

Z ' ( ( b' 'd v f v h'. "t) ('b.' d' f' =+.a, ,c , ,e, ,g, ,l,J ,. a, ;c , ,e, , 

(5-25) 

The unknown don't cares can be generated by complementing 

the Z expression, which results in the combination of both 

the Z1 and the don't care expressions as follows: 

Zd' = +(.(e 9 ),.(f),.(g' ),.(i' ),.(c',j') ••• ) .c. (5-26) 

Using ayailable accounting techniques, it can be derived 
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that the minimal coverage can be obtained by the fifth term 

of Z' ; and hence: d.c. 

Z 1 = +.(c 1 ,j 1 ) (5-27) 

Complementation using the DeMorgan's law results in: 

Z = .+(c,j) (5-28) 

The final step is the substitution of 11 ~ 11 operators for all 

the operators of Equation (5-28), which becomes: 

Z =t~· (c,j) (5-29) 

which can be represented by the two element network shown in 

Figure 7. 

t-----~~--z 

Figure 7. Network Representation of 
Equation (5-29) 

Although, in general, near minimal networks are obtained 

by this approach, in some special types of problems further 

simplification can be obtained by rearranging the network 

implementation. A most successful technique has been 



presented in References (39) and (46) 1 which will not be 

discussed in this presentation. 
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CHAPTER VI 

SEQUENTIAL LOGIC SYNTHESIS 

6.1 Philosophy of the Synthesis 

Sequential Logic Synthesis is the process of transform­

ing a sequential problem into one or more combinational 

logic problems in a most efficient manner. A successful 

synthesis is one which leads to the development of minimal 

hardware networks. 

As initially conceived by Huffman (6) in 1954, a 

sequential circuit synthesis is best performed by reducing 

it to the problem of deriving the intended outputs, called 

the primary outputs, and the problem of deriving the 

secondary outputs which are necessary for the activation and 

deactivation of memory elements needed by the sequential 

systemo Memory elements are required in sequential networks 

as they are the only means for recording the history of the 

past machine states--a charactBristic feature which dis­

tinguishes sequential from combinational networks. 

In order to provide a convenient basis for the discus­

sion of the approach, the various steps involved. in the 

synthesis are discussed individually. These are: 

1. The formulation of the logic description 

2. The selection of the peripheral circuits 
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J. The simplification of the logic description 

4. The assignment of memories 

5. The formulation of the network equations. 

6.2 The Formulation of the Logic 

Description 

41 

There are various ways a designer can represent his 

problem: by a Timing Chart, a Primitive Flow Table, a 

Synthesis Table, a Sequence Matrix, and by a Logic Specifica­

tion Chart. The utilization of timing charts are restricted 

to regularly activated or deterministic circuits; while 

primitive flow tables are not practical for systems with 

large numbers of variables. This leaves three equally impor­

tant discriptive methods which will be discussed in this 

presentation. 

The Synthesis Table is the easiest one to construct. 

It essentially lists all machine states in one column while 

recording the next possible states in another column. A 

typical synthesis table is shown in Table VIII. The first 

column of the table contains the identification numbers of 

each machine state, while in the next column, the output 

states are listed. The third column contains the input 

states of each machine state. Finally, all next possible 

states of each machine state are listed in Column 4. The 

remaining section of this table is reserved for performing 

the synthesis. 



TABLE VIII 

THE SYNTHESIS TABLE 

No. Outputs Inputs 
Next States Synthesis z1 z2 z3 a b c 

1 0 0 0 0 0 0 2, 8 
2 0 0 1 1 0 0 1, 3 

3 0 0 1 1 1 0 4, 6 
4 1 0 1 1 0 0 3, 5 
5 1 1 1 1 0 1 2, 6 
6 1 1 1 1 1 1 5, 7 
7 1 0 1 1 1 0 6, 8 

8 1 0 0 0 1 0 1 

The interpretation of the synthesis table is quite 

obvious, as it merely is a compilation of states and their 

associated next states. For example, State 3 has an output 

state z1 rz 2 vz3 and an input state abc'. States 4 and 6 are 

listed as the next possible states of State 3 following 

input signal changes of b and c, respectively. Note that 

conventional product terms are still utilized, as they pro-

vide the best logical interactions between the syst~m and 

its designer. 

The Sequence Matrix Representation resembles closely 

the Synthesis Table, with one major difference where the 

recording of the next states is performed in a matrix format. 

In this matrix representation, next states are recorded as 

11 1"s in the columns of the "Next State Matrix" that correspond 



to the next states under consideration. To illustrate this 

representation method, the problem of Table VIII is again 

reflected in Figure 8, but in a sequence matrix format. 

OutEuts InEuts Next States 
No. z1 z 2 z 3 a b c 1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 
3 0 0 1 1 1 0 0 0 0 1 0 1 0 0 
4 1 0 1 1 0 0 0 0 1 0 1 0 0 0 
5 1 1 1 1 0 1 0 1 0 0 0 1 0 0 
6 1 1 1 1 1 1 0 0 0 0 1 0 1 0 
7 1 0 1 1 1 0 0 0 0 0 0 1 0 1 
8 1 0 0 0 1 0 1 0 0 0 0 0 0 0 

Figure 8. The Sequence Matrix Representation 

Comparing Figure 8 to the Synthesis Table of Table 

VIII, it can be agreed that the output and input matrices of 

Figure 8 is identical to the second and third column of the 

synthesis table. The fourth column is trans.formed into a 

"Next State Matrix", which is the third matrix of Figure 8o 

The interpretation of this matrix can be most conveniently 

performed by observing the locations of the 11 1 11 entries in 

the matrix. For example, the next states of State 5 are 

States 2 and 6, which are reflected as "1"s in Row 5 1 

Columns 2 and 6. 

Although a substantial expansion of the next state 

representation is apparent in the matrix format, it is 
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realized that the Sequence Matrix is most appropriate for 

synthesizing by digital computers, as it requires a minimal 

amount of computer core. 

The third logic description medium is the Logic Specifi-

cation Chart (LSC)Q An LSC is a modified primitive flow 

table where the input states are arranged in a random 

manner. Unused input states are not represented in the 

chart, as can be seen in the LSC of Table IX. Note that the 

example problem of Table VIII is utilized for comparison 

purposes. 

The mechanics of the LSC is identical to that of the 

Primitive Flow Table. Shown in parentheses are the "stable" 

states of the system, while the non~paranthetical entries 

indicate the next states or the "unstable states". A machine 

state is called stable if it does not change state without a 

change in the inputs. 

TABLE IX 

THE LOGIC SPECIFICATION CHART 

Outputs In~ut States (abc) 
z1 z2 z3 000 100 110 101 111 010 

0 0 0 ( 1 ) 2 8 
0 0 1 1 (2) 3 
0 0 1 4 ( 3) 6 
1 0 1 (4) 3 5 
1 1 1 2 ( 5) 6 
1 1 1 7 5 (6) 
1 0 1 ( 7) 6 8 
1 0 0 1 ( 8 ~ 



Because of its format, the LSC provides a convenient 

means for an in-depth observation of the logic system. Its 

potential as a descriptive means of recording a logic prob­

lem has been demonstrated by the many complex procedures 

which has been developed based upon its forerunner, the 

primitive flow table. 

6.3 The Selection of Peripheral 

Equipment 

In the past, the selection of peripheral equipment has 

been totally excluded from the synthesis. No attempt was 

made to select such equipment to be commensurate to the prob­

lem description, and the synthesis was performed based upon 

the preselected input-output circuits. It is realized, 

however, that the utilization of different types input-output 

circuits may cause a complete modification of the network 

function. Therefore, it is the intention of this section to 

formulate a selection criterion which may result in the 

development of minimal hardware networks. 

While there are different types of input elements that 

are available, their utilization in fluid logic circuits are 

basically identical. For moving part input elements, they 

may be normally closed or normally open three-way valves; or 

they may even be constructed using four-way valves (see 

Figures 9a, b). There are also various non-moving part 

sensing devices, such as the "proximity sensor" and the 

"interruptable jet sensor" shown in Figures 9c, d. 
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In the formulation of the logic specification, addi-

tional input variables generally would add to the complexity 

of the specification. Therefore, input reduction schemes 

have been attempted in the past in order to avoid unneces-

sary proliferation of the input variables. A most practical 

scheme can be observed in Figure 10. The following limita-

tion is imposed in order that two input signals can be 

combined: 

(a) 

object 

f'-'\\~ '\\. "0. ~1 -1r 
~j~-~ 

a. 

I 

-.-+----+--_.,. 0. L!.J 

(b) 

(c) (d) 

Figure 9. Various Input Sensing Devices 



"Two logic signals can be combined to form one single 

variable and its complement if and only if the two signals 

never occur simultaneously and if a change of one always 

leads to the change of the other". 

_Q ' 

Q. 

s c 
F-f 

0 R 
c 

b 

Figure 10. An Input Reduction Scheme 

A classic example where such substitution can be per-

formed is the cylinder circuit shown in Figure 11. If the 

recognized conditions of the cylinder are only its fully 

extended and fully retracted positions, a new variable can 

be introduced to replace the two original variables, a and b. 

It is realized, that the utilization of such input reduction 

schemes not only reduces the complexity of the logic specifi­

cation, but also eliminates the need for individual variable 

complementations of the associated inputs. 



~1ile the selection criterion of i~put circuits are 

most straightforward, the task of selecting the most suit­

alJle type of output circuits is not as simple. This is 

attributed to the fact that the selection of the output 

circuits influences the synthesis of the network; and there­

fore, incorrect selection of such circuits may proliferate 

the complexity of the implemented network. 

[ I 

p p 

p 
b 

c' 
Figure 11. A Typical Input Circuit 

Although there are many types of output circuits avail­

able, basically two types should be recognized; which are: 

a. Output circuits with spring-return actuated 

power elements, 



b. Output circuits with detented power elements. 

Basically, the spring-return type power elements trans­

mits power only when it is actuated; while the detented type 

retains its actuated state until another signal causes it to 

change. It is obvious that each of these types of circuits 

has its own effective regions, each type being more advan­

tageous in its designated operating conditions. 

In order to enable further discussion concerning the 

output selection approach, the definition of "active" and 

"passive" outputs need to be considered. An output is said 

to be "active" at a particular machine state if the stat~ 

under discussion may cause the particular output to switch. 

In other words~ an active output is characterized by one or 

more previous outputs which have a different output state. 

On the other hand, an output which inherits its current 

state from its previous states is termed as a passive output. 

When the system output exhibits a large number of pas­

sive states, the utilization of a detented output element is 

advantageous as it permits the assessment of the passive 

states as don't care states. Note, however, that the imple-

mentation of such detented output elements requires the 

generation of two individual signals--the 11 Set 11 and "Reset" 

signals--compared to the single signal configuration when 

spring-return power elements are used~ A trade-off point 

between the two implementation schemes is, therefore, 

recognized; which in one argument involves the simplification 

that is obtained when additional don't cares are available, 
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while the other involves the obvious reduction achieved when 

a single signal representation is utilized. 
j 

Because of the random nature of logic problems, no 

method exists which actually can predict the degree of sim-

plification that can be gained by each of the above imple-

mentation schemes. Fortunately, there are only very few 

solutions which can be gener~ted by the two schemes; and 

therefore, direct comparisons between the resulting expres-

sions seem to be quite suitable. 

When such a comparative approach is not desired, a sta-

tistical means can be conducted for predicting the probable 

simplification which can be achieved by each implementation 

scheme. It is known that an association of two terms can 

either be or not be simplified; and if it is assumed that 

each case can occur with equal probability, then it is con-

eluded that the utilization of detented output valve.s would 

be favorable if the following conditions are satisfied: 

(6-1a) 

(6-1b) 

where N1 a and N0 a denotes the number of active 11 1" and "0" 

states, respectively; while N1p and NOp are the number of 

passive "1" and "0" states. 

In order to illustrate the latter approach, the two 

situations as reflected in Table X are considered. In this 

table, the subscripts "a" and "p" are used to denote the 

active and passive states of the outputs, respectively. 
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In Case 1, the number of active 11 1 11 and 11 0 11 states exceeds 

the number of passive 11 0 11 and 11 1 11 states, respectively; and 

therefore, according to Equations (6-1a, b), the utilization 

of detented power elements would not be beneficia~. This 

can be demonstrated by the single output representation of Z 

as follows: 

Z = +(.(a 1 ,c 1 ),.(b 9 ,c)) (6-2) 

while the 11 Extend 11 / 11 Retract 11 output representation for the 

detented peripheral element is: 

ZE = +(.(a 1 ,c 1 ),.(b',c)) 

ZR = +(.(b,c),.(a,c')) 

(6-Ja) 

( 6-Jb) 

which, when c9mbined, are obviously more complex than the 

expression of Equation (6-2). When more passive states pr~­

vail (such as in Case 2), the utilization of detented output 

elements may b~ rewardingo This is evident from the simpli­

fication of the "Extend/Retract" expressions of Case 2; 

which are: 

ZE = • ( a 1 , c ' ) 

ZR = • ( b, c) 

(6-4a) 

(6-4b) 



TABLE X 

TRUTH TABLE PORTRAYING ACTIVE AND 
PASSIVE OUTPUTS 

Inputs Case 1 Case 

a b c z z 

0 0 0 1 1 
a a 

0 0 1 1 1 
p p 

0 1 1 0 0 a a 

0 1 0 1 1 
a a 

1 1 0 0 0 p p 

1 1 1 0 0 p p 

1 0 1 1 1 a p 

1 0 0 0 0 a p 
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2 

Note that the single output representation remains the 

same for both cases. Implementation of Equations J6-2) and 

(6~4a, b) reveals that the utilization of a detented output 

element for Case 2 results in a mo~e simplified network than 

when spring-return elements are used (see Figures 12a and b). 
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(a) Using a Spring-Return Output Element 
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(b) Using a Detented Output Element 

Figure 12. Output Circuit Implementation 

6.4 The Simplification of the 

Problem Description 

The simplification or reduction of problem descriptions 

has been considered as an important step in the synthesis. 

Such simplification steps may range from a simple elimina-

tion of repetitive states, or it may be as extensive as 



compressing the problem description in order to obtain a 

minimal memory circuit. The utilization of such reduction 

schemes has been quite rewarding; not only in reducing the 

complexity of the problem, but also in reducing the amount 

of hardware necessary for the final implementation of the 

network. 

The first known reduction method was applied by Huffman 

(6) in his sequential synthesis technique in 1954. The main 

purpose of the method is to minimize the number of memory 

elements necessary for implementing the desired network by 

minimizing the number of rows in the problem description, 

which in this case is the primitive flow table. It was con-

tended that such minimal row representation would lead to 

the development of a minimal element network. 

However, such minimal reduction approaches have been 

contested by many scientists (20, 21, 22, 23, 24, 25, 26, 

27, 28, 29) who realized that a minimal row reduction scheme 

would most likely not result in a minimal element network. 

Yet, it has been shown that the elimination of unnecessary 

states is a vital step for reducing the amount of hardware 

required in the network implementation. 

There are two types of machine state eli~ination 

schemes. These are: 

1. The elimination of all machine states having an 

"uninfluential input state". 

2. The elimination of machine states which can be 

represented by other states. 
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The term "uninfluential input states" is used to repre­

sent input states which can be either included or excluded 

from the logic description without altering the logical 

interpretation of the specification. 

When an LSC is used for the logic description of the 

problem, the first reduction scheme involves the elimination 

of columns, while the second scheme depicts the deletion of 

rows of the charto It is therefore appropriate that the 

terms "column reduction" and "row reduction" be utilized if 

such charts are used in the synthesis. However, in order to 

maintain the generality of the approach, these state reduc­

tion schemes are termed as "input state elimination" and 

"redundant state elimination" in later parts of this 

presentation. 

6.4.1 Input State Elimination 

Input state elimination is the process of eliminating a 

group of machine states which has a common uninfuential 

input state. Such a process, if successful, obviously would 

result in a major simplification of the logic description; 

and therefore an attempt should be made for detecting such 

possibilities. 

The following conditions must be satisfied in order 

that an input state (or LSC column) can be eliminated: 

a. All "circuit outputs" of the machine states which 

are represented by the particular input state are 

either don't cares ( 11 - 11 ) or zero. 



b. There is only one next state listed for each 

machine state under consideration. 

c. For every machine state of the group there 

should be no previous state that is also the 

next state. 
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The term "circuit outputs" is used to denote the outputs 

which are actually generated by the logic circuit. The term 

is used to distinguish such types of outputs from the 

"intended outputs", which may be emitted from the imple~ 

mented output element. 

The input-eliminating procedure can be outlined as 

follows: 

1. Select a group of machine states having an input 

state (or an LSC column) which satisfies Condi-

tions a, b, and c. If more than one such group 

exist, select the largest group. 

2. Replace every next state entry which is one of the 

machine states in the group under consideration 

by its listed next \state. 

J. Eliminate all machine states represented in the 

group and rearrange the logic specification. 

4. Steps 1j 2, and 3 are performed iteratively 

until all groups are considered. 

It can be agreed that the above conditions and proce­

dures are strai&htforward. As an illustration, consider the 

logic specification represented by the LSC shown in Table XI. 

Assuming that all outputs listed in this table are circuit 



outputs, it can be observed that all states contained in 

Column I 2 have zero outputs. Furthermore, it can be veri-

fied that every state of Column I 2 satisfies Conditions b 

and Co 

TABLE XI 

AN LSC WITH A REDUNDANT INPUT STATE 

Outputs Input States 

z1 z2 I1 I2 I3 I4 I5 

1 0 ( 1 ) 2 3 
0 0 ( 2 ) 

0 1 6 (3) 5 
1 1 7 ( 4) 5 
0 1 6 3 ( 5) 
1 1 ( 6) 8 9 
0 0 1 ( 7) 

0 0 ( 8) 4 

1 0 1 ( 9) 10 
1 1 9 (10) 

The next step is modifying the specification in order 

that the redundancy of Column I 2 is established. This is 

performed by replacing all next state conditions by their 
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respective next states such that a "lock-up" which excludes 

all machine states of I 2 is obtained. For example, State 1 

has State 2 as its next state. As State 2 is to be I 
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eliminated, its substitution by State 4 in Column 3 would 

provide a "bypassing" condition of State 2. Similarly, 

Stat~ 1 becomes the next state of State 4 as it was the next 

state of State 7. Elimination of Column I 2 results in the 

reduced LSC shown in Table XII. j 

TABLE XII 

THE REDUCED LSC 

Outputs Input States 

z1 z2 I1 I3 I4 I5 

' 1 0 ( 1')'' ' 4 3 

0 1 6 ( 3) 5 
1 1 1 ( 4) 5 
0 1 6 3 ( 5) 

1 1 ( 6) 4 9 
1 0 1 ( 9) 10 

1 1 9 (10) 

It is apparent from; the r~duced LSC that a major sim­

plification of the chart was obtained. However, the fact 

that only very few unmodified logic specifications can satis-

fy the conditions for input. state elimination, overshadows 

the potential effectiveness of the approach. It is, there-

fore, realized that there exists a critical need for a 

method capable of recogni~ing and .modifying logic 
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specifications such that it satisfies the input eliminating~ 

conditions. Such modifications can be performed by using 

the following steps: 

1. Select an input state which satisfies Input 

Elimi~ating Conditions b and c. If more than 

o~e such input state exist, select the one 

representing the largest group of machine 

states. For identification purposes, let this 

input state be called "Input State A11 • 

2. Inspect each output variable individually and 

determine whether or not it satisfies Condition 

a. If this condition is satisfied, proceed to 

the next output variable. 

J. For each output which does not satisfy Condition 

a, observe whether or not there are active out­

put conditions represented by Input State A. If 

such active outputs are present, proceed to 

Step 6. 

4. Replace the existing output element by a detented 

output element. 

5. Consider the next output variable and return to 

Step 2. The procedure is completed if all out­

puts have been considered. 

6. In the group of states under consideration, 

observe whether or not all output conditions are 

11 1"s. When only 11 1 11 states are found, replace 

the existing output element by a spring return, 



normally open (passing) output element. 

7. If both "1" and "0" states are found, the respec-

tive input state cannot be eliminated. Proceed 

to consider the next input state and return to 

Step 1. 

8. Otherwise, consider another output variable and 

return to Step 2. 

Basically, these modifications are concerned with the 

selection of the proper output circuits in order that the 
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input state elimination can be performed. For example, the 

utilization,of detented elements permits the assessment of 

all passive states as zero or don't care states, which is a 

necessary condition in the input elimination process. Step 

6 of the above procedure reflects a "primitive" complementa­

tion approach for the generation of the intended zero states. 

In order to illustrate the procedure 7 consider the 

example problem represented by the LSC shown in Table XIII. 

If it is assumed that the LSC was constr~cted in relation to 

the spring return shown in Figure 1) 7 then the value of z1 = 

1 indicates the extension of cylinder z1 while a zero 

relates to the retraction process. 

The active and passive outputs can be determined by 

careful observation of Table XIII; underlining every output 

which has a different previous state. Further inspection on 

this table reveals that Column I 2 is the only column which 

satisfies Input Eliminating Conditions b and c. However, it 

is also realized that both outputs do not satisfy Condition 



TABLE XIII 

THE UNMODIFIED LSC 

Outputs Input States 

z1 

1 -
1 

0 
-

0 

1 
-
1 

0 

1 

1 

0 

z2 I~ I2 I3 I4 I_S_ 

0 ( 1 ) 2 3 

1 (2) 4 -
1 6 ( 3) 5 

0 7 (4) 5 

0 6 3 (5) 

1 (6) 8 9 
1 1 (7) 

1 (8) 4 

0 1 (9) 10 

0 4 9 (1 0) 

1 • 

z __.. X tV\ 

LU ... 

p 

Figure 13. The Assigned Output 
Circuit 
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a as there are 11 1 11 outputs at States 2, 7, and 8; and 

therefore, further assessment of these outputs is necessary. 

Evaluation of Output z1 shows that all output conditions 

are passive during the times the system is at input state.I2 ; 

and hence, a detented output element is assigned to the z1 

output circuit. Output z2 exhibits the other situation 

·11111 outputs are found in all states of Column r 2 --which 

requires the implementation of a normally extending output 

circuit for z2 • These selected output circuit configura­

tions are shown in Figure 14. 

p 

Figure 14. The Selec'ted Output Circuits 
for z1 and z2 
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After the selected output circuits are implemented, it 

is necessary that the LSC be modified in order to incorpo-

rate the new circuit outputs, Zle' Zlr' and z 2r. This 

modified LSC can be observed in Table XIV. 

TABLE XIV 

THE MODIFIED LSC 

Outputs Input States 

zle z lr z2r I1 I2 IJ I4 

1 0 1 ( 1 ) 2 J 

0 ( 2) 4 

0 1 0 6 ( J ) 

0 1 1 7 ( 4) 

1 0 1 6 J 

1 0 0 ( 6 ) 8 9 

0 1 ( 7) 

0 (8) 

1 0 1' 1 ( 9) 

0 1 1 4 9 

I5 

5 

5 

( 5) 

10 

(10) 

Observation of this modified LSC reveals that the cir-

cuit outputs zle' zlr' and z2r satisfy the input eliminating 

Condition aa Therefore, Column I 2 can be eliminated; 

resulting in the Reduced LSC shown in Table XV. It can be 

agreed that the ability to modify the LSC provides 
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additional possibilities t'or the simplification of the logic 

specificati~,on. 

TABLE: XV 

THE REDUCED LSC 

Outputs Input Sta,_es 

zle zl z I1 IJ I!± I5 r 2r 

1 0 1 (1) 4 J 
0 1 0 6 ( J) 5 

0 1 t .. ,. --.. - 1 ( 4) 5 

1 0 1 6 J ( 5 ) 

1 0 0 ( 6), 9 
1 0 1 1 ( 9 ) 10 

0 1 1 9 (10) 

6.4.2. Redundant State Elimination 

Redundant states are states which have been represented 

by other states; either directly or indirectly. Therefore, 

the presence of such states would unnecessarily complicate 

the network description. In addition, a superfluous network 

specification would lead towards the development of more 

complex circuits, as each unnecessary state would require an 

individual representation by the implemented network. 

There are two types of redundancies which can occur in 



a logic specification: 

1. Duplication 

2. Obviation 

Duplication is a situation where a machine state, or a 

group of machine states are represented more than once in 

the logic specification. Obviation reflects a more complex 

situation; in which a state, or a group of states are 

indirectly represented by other machine states. For example~ 

States 1 and 5 of Table XVI are duplicates as they have 

identical outputs and next states. It is, therefore, con­

cluded that State 5 is State 1 and, hence, State 5 can be 

eliminated without changing the logic of the specification. 

A different situation occurs between States 3 and 8. 

This situation reflects an "obviation" condition as a new 

State 9 can be constructed as such that it obviates both 

States 3 and 8. This new state is tabulated at the bottom 

part of Table XVI. 

At this point, it is important to conclude that the 

elimination of redundancies resulting from duplication would 

not change the next state representation of the retained 

state; while the combination of states in the obviation 

process would generally increase the number of the next 

state entries. Relating this fact to deterministic sequen­

tial networks 1 it can be agreed that the process of obviation 

would transform such networks into stochastic type networks. 

Although min~mal memory machines are obtained by the process~ 

the additional complexity created by such stochastic systems 



would result in additional costs in the implementation of 

the network (20~ 26). Therefore, the redundant state 

elimination procedure discussed in this presentation would 

distinguish two types of state reduction schemes--the 

redundant state elimination for deterministic networks and 

the one for stochastic networks. 

TABLE XVI 

LSC SHOWING DUPLICATION AND OBVIATION 
OF STATES 

Outputs Input States 

z1 z2 I1 I2 I3 I4 

0 0 ( 1 ) 2 

0 1 1 ( 2) 4 

1 1 6 ( 3) 
1 0 7 (4) 3 
0 0 ( 5) 2 

1 0 7 ( 6 ) 8 
0 1 5 ( 7 ) 6 
1 5 (8) 

1 1 5 6 ( 9) 

6.4.3 The Redundant State Elimination for 

Deterministic Networks 

The redundant state elimination for deterministic 
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networks involves the detection of the duplication of states. 

In order to provide a basis for further discussion of the 

subject, the term "Duplicative State Equivalency" is 

defined as follows: 

Two machine states can be classified as "Duplicative 

Equivalent" if the following conditions exist: 

A. The two states have the same input state 

B. The outputs are either identical~ or 1 where 

disagreement occurs, don't cares ( 11 - 11 ) are 

involved. 

Co They have either the same or duplicative equiva-

lent next states. 

Condition C shows that a duplicative equivalency may 

depend upon the equivalency of other states. In order to 

tackle this problem in a most efficient manner, the Equiva­
~ 

lent Pairs Chart (EPC), which has been widely used in the 

Classical Synthesis Approach, will be used. An EPC is 

basically a group of cells 1 constructed in a matrix form. 

Each cell in the matrix represents the equivalency of its 

coordinates; and by inserting an "X" in the cell, a non-

equivalent condition is given. One or more pairs of states 

in the cell indicates a conditional equivalency; while an 

empty cell means an unconditional equivalency. A conditional 

equivalency requires that the pairs of states indicated in 

the cell be equivalent in order 1that the pair of states 

under consideration can be class'ified as equivalent. If 



such equivalency is not achieved, an 11 X11 is entered in the 

respective location. 
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As an illustration, consider the LSC of a deterministic 

problem shown in Table XVII. Condition A states that a 

duplicative equivalency between two states can only occur if 

they have the same input; and therefore the construction of 

one EPC for each LSC-column would be most appropriate. 

Observation on the LSC reveals that the duplicative equiva­

lency of States 1 and 3 depends upon the equivalence of 

States 2 and 4; and this latter, pair of states is entered 

in the first cube, first column of the EPC of Column I 1 

(see Figure 15). Furthermore, as States 1 and 7 has differ­

ent outputs 1 an X is inserted at location (1, ?). 

Following the completion of the EPC, all conditional 

equivalencies are observed whether or not they depend upon a 

non-equivalent pair of states. If this is true, the condi-

tional equivalency becomes a non-equivalency and an X is 

entered in the respective location. For example, the con-

ditional equivalency between States 1 and 9 depends upon the 

equivalence of States 2 and 10 1 which happen to be 

non-equivalent. An X is therefore inserted in location 

(1, 9) to indicate the non-equivalency of these two states. 

The finalized EPC 1 s can be observed in Figure 15; where each 

remaining un-X-ed position indicates the duplicative 

equivalency between its two candidates. 



TABLE XVII 

LSC FOR A DETERMINISTIC PROBLEM 

Outputs Input States 

z1 z2 I1 I2 I3 I4 

0 1 ( 1 ) 2 

0 0 3 ( 2) 

0 1 ( 3) 4 

1 1 ( 4) 5 
1 0 ( 5 ) 6 

0 0 7 ( 6) 

1 1 ( 7) 8 

0 1 9 (8) 

0 1 ( 9) 10 

1 1 (10) 11 

1 0 (11) 12 

0 0 13 (12) 

1 (13) 14 

0 3 (14) 
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3 4 X 
7 8 X X 

X 5,11 X 9 .~ 4,10 >< 10 
/ 

13 2,14 X 14 X 3,9 X 
1 3 7 9 2 4 8 10 

Column r1 Column 12 

Column 13 Column 14 

Figure 15. The Equivalent Pairs Chart 

6.4.4 The Substitution of Mod±fied 

Machine States 

Once the EPC's are completed, the equivalent states 

must be combined in order to form a minimal state network. 

In this step, an attempt is made to group the largest possi-

ble number of states to form new states; followed by the 

careful selection of these new states to form the minimal 



state machine. These groups, containing maximal combina­

tions of states which can co-exist together to form new 

machine states, are defined as the "maximal equivalent 

sets" of stateso 
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There are many approaches available which can be uti­

lized for deriving these maximal equivalent sets. However, 

for extremely large problems, the partitioning method 

advanced by A. Grasselli and F. Luccio (16, 17, 18) is con­

sidered to be most appropriate and is given in tabular form 

in this presentation. The method can be performed using 

the following steps: 

1. Form an N-column array, each column being 

related to a state of the N-state EPC. For 

the convenience of this discussion, let the 

columns of the array relate to the columns 

of the EPC (with the exception of the last 

column of the array which is not represented 

in the EPC). 

2. Start the iteration process by entering "1"s 

in all columns of Row 1. 

3o Consider the first column of the EPC. 

4o Partition every row represented in the array 

into two rows-~one containing all entries 

except the one related to the column under 

consideration; while the other containing the 

excluded entry and all entries which relate 

to the "un-X~ed" cells of the EPC-column 



under consideration. Dashes are inserted in 

locations where entires are being excluded. 

5. Eliminate the row being partitioned. 

6. Compare each newly generated row to the other 

rows and eliminate the ones that are tdtally 

contained in the other. 

7. Consider the next EPC column and perform 

Steps 3-7 until all EPC columns have been 

assessed. 

8. Each of the remaining rows reflects a maximal 

equivalent set. 

In order to illustrate this procedure, consider the 

first EPC of Figure 15. As there are 5 states involved in 

this EPC, a five column array is formed. Initially, the 
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array is a l~row array as shown in Row 1 of Table XVIII. 

Considering the first column of the EPC, Row 1 can be par­

titioned into two rows as illustrated by Rows 2 and 3. Note 

that Row 2 does not contain the first entry while Row 3 

contains this first entry and the entry relating to State 13, 

which is the only un-X-ed entry in the first EPC-column. 

Following the generation of these two rows, Row 1 is elimi­

nated; which is shown as a checkmark in Table XVIII. 

The next step involves the partioning of Rows 2 and 3 

with respect to the second EPC-column. The partioning of 

Row 2 results in the generation of Rows 4 and 5, which are 

the group that excludes State 3 and the group that contains 

State 3, respectively. Row 3 exhibits a different 
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situation~-the absence of State J in its representation 

causes this row to be unchanged during the second stage of 

this process. Progressing through the iteration, it can be 

seen in Table XVIII that Rows J, 7, and 9 remain unchecked 

andj hence, they represent the maximal equivalent sets of 

the first LSC column. 

TABLE XVIII 

PARTITIONING TABLE 

Row States 
No. 1 J 7 9 1J 

1 1 1 1 1 1/ 

2 1 1 1 1~ 
J 1 1 

4 1 1 tV 
5 1 1 -~ 
6 1 1 ~ 
7 1 1 

8 1 -~ 
9 1 1 

10 1 v 
11 1 v 

After all columns of the LSC has been considered, the 

next step is to select a minimal combination of maximal 

equivalent sets for representing each state of the chart. 



This can be performed by means of available accounting tech­

niques (e.g., the method by W. V. Quine (31). For the 

previous example, it can be shown that all equivalent sets 

must be drafted in order- to represent all states of the LSC. 

6.4.5 The Formulation of the Reduced 

Logic Specification 

Having selected the minimal number of equivalent sets 

to cover the states of the logic specification, an attempt 

is made towards the construction of a new compacted logic 

specification, which is referred to as the "Reduced Logic 

Specification" (RLS). When the LSC format is used, the term 

"Reduced Specification Chart" (RSC) is commonplace. The 

main objective of this attempt is to utilize the selected 

equivalent sets and to project their output and next states 

from the logic specification onto the RLS. 

The approach is initiated by identifying the "Next 

State Sets" which result from the grouping of states in the 

maximal equivalent sets. A next state set is a group of 

states which are the next states of states contained in an 

equivalent set, and which have the same input state. For 

example, the next state set of the equivalent set (1, 13) is 

(2, 14) (see Table XVII). Similarly, the next state set of 

Set (6, 12) is (7, 1J). Note that in deterministic cases 

there are only one next state set for each equivalent set; 

which may not be true for stochastic problems. 

After the next state sets of each equivalent set have 
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been identified, the formulation of the RLS can be performed 

using the following steps: 

1. Identify each selected equivalent set by using 

new state numbers. Assign each new state to a 

row of the new logic specification. 

2. In the first column of the RLS, list the combined 

outputs of the selected sets in the respective 

rowso The combination of the outputs can be 

obtained by the *-product of all output states 

represented in each set. 

J. The logic interaction between the machine 

states is formed by identifying each next state 

set using a selected set which fully covers the 

next state set under consideration. If no such 

selected sets exist which can represent one or 

more next state sets, use the least combination 

of maximal equivalent sets in order to satisfy 

these next state requirements. 

In order to illustrate the formulation of the RLS, the 

example problem represented in Table XVII is considered. As 

the problem has been given in an LSC format, the retaining 

of this format results in the development of the RSC. By 

assigning the maximal equivalent sets (1, 1J), (2, 14), 

(J, 9), (4, 10), (5, 11), (6, 12), (7, 1J) and (8.14) with 

the new state numbers (1', 2', J', .Q., 8t), respectively, 

the RSC can be constructed as shown in Table XIX. Note for 

example that the next state set of "New" State 7 '(originally 
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States 7, 1J) is the set (8, 14); which is covered by the 

11 New 11 State 8•. 

TABLE XIX 

THE REDUCED SPECIFICATION CHART 

Outputs InJ?Ut States 

z1 z2 I1 I2 IJ I4 

0 1 ( 1' ) 2' 

0 0 J' ( 2' ) 

0 1 ( J I) 4t 

1 1 ( 4 r ) 5' 
1 0 ( 5' ) 6' 
0 0 7' ( 6' ) 

1 1 ( 79) 8' 
0 1 J' ( 8' ) 

It can be agreed that a major reduction of the problem 

description has been achieved. At this moment it is impor-

tant to point out that the deterministic condition of the 

problem has been retained in the RSCa 

6a4.6 The Redundant State Elimination 

for Stochastic Networks 

Basically, the process of reducing a stochastic system 

is identical to that of a deterministic network, with one 
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exception: that is the criterion of the equivalency. When 

dealing with deterministic networks, the process of com­

bining the states is limited to the duplication of states. 

Such an approach was selected in order that the given 

deterministic problem remain deterministic throughout the 

synthesis process. However, when the switching problem is 

stochastic in nature, no limitation whatsoever is imposed as 

to which states can or cannot coexist together to form the 

new state. Therefore~ the main objective of this approach 

should be the optimal reduction of the logic specification. 

Therefore~ the formulation of the equivalency criterion 

can be based upon both the obviation and duplication of 

machine states~ which results in the following definition of 

the machine sta~e equivalency: 

Two machine states can be classified as equivalent if 

the following conditions are met: 

A. The two states are r.epresented by the same input 

state. 

B. The outputs are either identical, or, where 

disagreement occurs, don 9 t cares ("-") are 

involved. 

C9 They have either the same~ or equivalent states; 

or, when disagreement prevails, it should in­

volve stat'es with different input states. 

In order to illustrate the reduction approach, the LSC 

shown in Table XX is considered. The EPC 1 s of this LSC can 

be constructed as shown in Figure 16o Note that States 2 
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TABLE XX 

LSC FOR THE STOCHASTIC 
PROBLEM 

Outputs 

z1 

0 

0 

0 

0 

0 

1 

1 

2,4 
5 3. 7 

6. 10 

1 

z2 

0 

1 

1 

0 

1 

1 

1 

0 

Column I1 

1. 5 
6,10 

9. 10 'X . '\. 
3 7 

Column I3 

11 

( 1) 

5 

(5) 

5 

Input States 

I2 13 14 

2 3 6 

(2) 10 

(3) 10 
(4) 8 9 
4 7 10 

4 3 (6) 

(7) 6 

(8) 9 
2 3 (9) 
2 7 ( 1 O) 

·B 
2 

Column I2 

9 X 
10 

2,4 
3,7 

3,7 

6 9 

Column I4 

Figure 16~ The EPC for the 
Stochastic Problem 
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and 4 are not equivalent when a duplicative criterion is 

used. 

The remaining steps in the reduction process is identi-

cal to the process conducted in solving the deterministic 

case. It can be shown, that the maximal equivalent sets of 

the LSC is as follows: 

(1, 5), (2, 4), (3, 7), (3, 8), (6, 10), (9, 10). 

Again, it can be observed that all the above maximal 

equivalent sets are essential for the coverage of all states 

of the machine. Numbering these sets consecutively by 

1 1 , 2 1 , ••• , 6 1 , the RSC can be constructed as shown in 

Table XXI. 

TABLE XXI 

RSC FOR THE STOCHASTIC PROBLEM 

Outputs Input States 

z1 z2 I1 I2 I3 I4 

0 0 ( 1' ) 2' 3' 5' 
0 1 11 ( 2' ) 41 6• 

0 1 1 I ( 3' ) 5 I 

1 1 1' ( 4 I ) 6' 
1 1 2' 3' ( 5 I ) 

1 0 21 .3' ( 6' ) 



6.5 The Assignment of Memories 

A sequential network is characterized by the presence 

of memory functions--an important ingredient which enable 
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the network to record the history of the past machine states. 

There are two ways a memory function can be satisfied; and 

these are: 

1. The application of available output variables 

to perform the memory functions; 

2. The implementation of actual memory elements 

in the circuit. 

It is realized that the utilization of available output 

variables as memory variables would be desirable as they do 

not require additional implementation for the "updating" 

(or SET/RESET) of the memory functions. Unfortunately, not 

all output variables can be used effectively for performing 

the specified recording task. Moreover, available outputs 

may not suffice the memory requirements of the network 

specification. Therefore, actual memory elements may still 

be required for complementing this task. 

There are various conditions which must be followed in 

order that this "output feedback" approach can be successful. 

For instance, the state of an output variable can be effec­

tively used as a memory state of a machine state only if the 

output is passive in the particular machine state. The 

utilization of active outputs would lead to the generation 

of races, and therefore, it will not be condoned in this 

presentation. Furthermore, as the pattern of the output 
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actuation does not have any relationships which correspond 

to the necessity for memory states, a utilization of an out-

put as a memory variable may not always result in the reduc-

tion of the memory elements required by the network. Under 

such circumstances, it can be agreed that the output under 

consideration should not be selected for performing the 

particular memory function. 

The assignment of the "actual" memories and the "output 

feedback" memories is performed in a similar manner as in 

the "non-classical" synthesis approaches, where each input 

state is governed by an individual set of memory variables. 

Such an approach would have permit the utilization of each 

memory element as passive elements~~a feature which would 

reduce the number of implemented elements by at least one 

AND element. 

The output assigning approach can be outlined as 

follows: 

1. For each input state~ count the number of states 

2. 

in the logic specification. The number of neces~ 

sary memories for each input state is represented 

by the larger integer value of log2 (Ns)' where 

N is the number of states having the particular 
s 

input state. 

Select one output variable. The pairs of out-

puts which are representJng detented power ele-

ments are not considered individually but are 

replaced by their 11 intended outputs". 



J. Select one input state, which has not yet been 

assigned an output feedback variable. 

4. Partition the set of states represented by this 

input state into two groups--the one which has 

passive zero outputs and the one with passive 

one outputs. Include all states which do not 

satisfy these two partitioning conditions into 

both ,groups. 

5. Count the number of states of' the larger group 

Determine the value of 

log2 (N1 )~ which represents the number of actual 

memory elements that are still required for the 

particular input state. If the larger integer 

of this value is less than the value obtained 

previously in Step 1, then, the application of 

the output under consideration is successful. 

If not~ disregard the results~ select the next 

input state which has not yet been assigned an 

output feedback variable and return to Step 4. 

Perform Steps 2 to 5 iteratively until all out­

puts have been considered. 
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After the output feedback variables are selected and 

applied, memory elements are assigned to the remaining non­

unique statesa The augmentation of these memories should 

be performed such that minimal SET-ing and RESET-ing opera­

tions occur during the machine cycle. 

In order to illustrate this output feedback and memory 
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augmentation procedure, consider the example problem given 

in Table XXII. In this table, the active outputs are under~ 

lined as shown in the first two columns of the table. By 

counting the number of states in each of the columns of the 

LSC, it is realized that one memory element is required for 

each input state. Partitioning the machine states of 

Column I 1 with respect to Output z 1 results in two states 

containing one state, which does not require the augmenta~ 

tion of actual memory devices. This shows that Output z 1 

can be used as a memory variable in connection to Input 

State I 1 • This information is recorded by listing the 

passive states which are utilized as the memory states in 

the "memory assignment" subtable (see Table XXII). 

TABLE XXII 

THE RSC WITH MEMORY ASSIGNMENTS 

Outputs Input States Memory Assignment 

z1 z2 It I2 I3 I4 zt z2 y1 y2 

0 1 ( 1 ) 2 3 ,o 0 R 0 R 

1 1 4 ( 2 ) 5 0 ~ -
4 

', 
6 ( 3) 1 0 ~ 0 - -

1 0 (4) 7 8 1 1 s 1 s -
0 1 2 ( 5) 8 1 0 R 1 s -
1 0 7 ( 6) 3 0 1 s 0 

0 1 1 ( 7 ) 5 1 -- -
1 1 4 5 (8) - 1 - -
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Partioning Column I 2 with respect to z2 proves to be 

unsuccessful: The partitioned sets are Sets (2, ?) and (?), 

which still requires the utilization of a memory; and, there­

fore, z2 cannot serve as a memory variable for Input State 

I 2 • Further observation on Table XXII reveals that Output 

z2 can perform a successful partitioned between States 5 and 

6 (Column I 3 ). 

As Columns I 1 and I 3 have been "memory augmented" 

using the feedback outputs 1 only,Columns I 2 and I 4 need to 

be considered further for additional memory elements. The 

augmentation of the memory elements is performed by assign~ 

ing a different memory state for each non-unique machine 

state. In order that a minimal number of SET-ing and 

RESET-ing takes place, ari assignment in a Gray code form as 

suggested by G. E. Maroney (21) is most appropriate. In the 

example problem of Table XXII, it has been established that 

each column requires only one memory element, and therefore, 

a 11 0 11 is assigned to one non~unique state while the other 

state is assigned a 11 1 11 • The memory augmentation can be 

observed in the Y1 and Y2~columns where 11 0 11 s are assigned to 

State 2 in Column Y1 and State 3 in Column Y2 ; and "1"s are 

placed at States 7 and 8 in Columns Y1 and Y2 , respectively. 

Aft.er the "0" and 11 1 11 states of the memory elements 

have been determined, additional outputs are to be consid­

ered. These outputs are commonly known as th~ "secondary 

outputs" of the sequential system. Secondary outputs are 

output signals which are utilized for actuating the memory 
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elements. Basically, there are two actuating signals which 

should be considered; namely, the SET and the RESET signals. 

The SET state must be achieved in the machine states pre­

vious to the states where the "1 11 memory state is required. 

Similarly~ the RESET state must occur prior to the states 

where a 11 0 11 state is desired. 

The assignment of the SET and RESET states are most 

conveniently determined by the following steps: 

1. For each augmented 11 0 11 condition~ assign 11 0 11 

to all its previous states. Simi~arly, 11 1 11 s 

are assigned to all previous states of an 

augmented "1 11 condition. 

2. For each memory element~ observe all 11 0 11 s and 

11 1 11 s of the table and substitute RVs for 11 0 11 s 

and S's for 11 1 11 s if they have a different 

previous state. 

As an illustration~ in the previous example, 11 0 11 s are 

placed in the Y1 column at States 1 and 5 as these states 

are the previous states of State 2. Examining States 1 and 

5 reveals that the previous condition of Y1 is not a 11 0" and 

therefore 11 R 9 s are inserted to indicate RESET states. The 

completed memory assignment can be observed in Table XXII. 

Actually~ memory actuation can be performed at any 

state provided that the intended memory state is achieved. 

In relation to this~ a SET and RESET state can be replaced 

by all its previous states if conditions permit. For 

example, in Column Y2 of the previous example~ the SET signal 
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of State 5 can be replaced by SET signals at States 2, 7, 

and 8. However, in stochastic type problems (as in the 

previous example) such substitution would generally increase 

the complexity of the secondary output representations. 

This is caused by,the fact that in stochastic problems, the 

machine states may have multiple previous states. 

On the other hand, deterministic problems will benefit 

from such signal substitution schemes. A selection can be 

made as where a SET or RESET should occur in order to avoid 

the generation of seldomly used signals. Oftentimes, a 

proper selection may lead towards a major reduction of the 

network implementation. 

Basically, the actuation signal selection approach 

attempts to distinguish between states which have been used 
J 

for generating an output (either primary or secondary) and 

states which are never used previously. The approach also 

stresses the utilization of unaugmented machine states in 

order to avoid the utilization of unessential memory 

deviceso The selection criterion can be outlined as 

follows: 

1. Isolate the machine states which represent 

solely "0 11 or "-" circuit outputs. Classify 

these states as "unessential" states, while 

the remaining states are termed as essential. 

It should be noted that for detented output 

elements, unessential states relate to the 

passive states of the outputs. 



2. Reclassify as essential all unessent~al states 

which are connected to essential memory ele~ 

ments. Essential memory elements are memory 

elements which have been used to represent 

essential states. 

3. Select one essential memory element. 

4. Observe the SET state and inspect whether or 

not it occurs in an augmented state. If so, 

try to relocate the SET state by successively 

moving it to a previous state until either an 

unaugmented essential state is achieved or a 

11 0 11 state prohibits further relocations of the 

SET state. When no such unaugmented essential 

state is found, try to locate an unaugmented 

(unessential) state in a similar manner. If 

the relocating scheme is still unsuccessful, 

the final attempt is to locate an essential 

augmented state. When all the above efforts 

are fruitless, return the SET state to its 

original state and classify this state and all 

states that are connected to the augmented 

memories as essential. 

5. Observe the RESET state and perform relocations 

as in Step 4. It should be noted that a 11 1!1 

state would prohibit further relocation of a 

RESET state. 

6. Enter ll1 11 s in all states occurring between a 
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relocated SET state anq the required 11 1 11 

location. Similarly, "0"s are inserted in all 

locations between the relocated RESET and the 

desired "0" states. 

7. Perform Steps J through 6 iteratively until no 

essential memories exist. The remaining 

unessential memories are eliminated from the 

tablee 

In order to illustrate this procedure, consider the RSC 

for the deterministic problem as shown in Table XXIII. Note 

that the outputs z 1 and z 2 have been used as memory vari­

ables for columns I 2 and I 3 , respectively. 

Outputs 

z1 z2 I1 

0 0 ( 1 ) - -
0 0 

1 0 -
1 0 

1 0 

1 1 -
1 1 

1 1 1 

TABLE XXIII 

RSC FOR A DETERMINISTIC PROBLEM 
AND ITS MEMORY AUGMENTATION 

Input States Memory Assignment 

I2 IJ - I4 z1 z2 y1 

2 R 

(2) J 0 0 

4 ( J) 0 0 

(4) 5 1 0 

( 5) 6 0 

7 ( 6) s 
8 ( 7) 1 1 

(8) 1 1 

y2 

R 

0 

0 

s 
1 



The essential states of this table are States 1, 3 1 and 

6; and therefore 1 at this moment, only Memory Y2 is classi­

fied as essential. Furthermore, according to Step 2, State 

5 is classified as essential due to its association with Y2 • 

Observation of Y2 r~veals that the SET state cannot be 

relocated as it is encompassed by the "0" and 11 1 11 required 

states of Y2 • The RESET state shows a different situation. 

It occurs in an augmented State 2; and a relocation can be 

made to an unaugmented essential State 1. 

Finally 1 the utilization of State q by Y2 causes Y1 to 

be essential and, therefore, its SET and RESET should also 

be considered. The relocated actuating signals can be 

observed in Table XXIII. 

6.6 The Formulation of the 

Network Equations 

Having reached this stage, the sequential part of the 

synthesis has actually been completed. The remaining part 

of the synthesis is pure combinational 1 as it involves only 

the interpretation of the synthesized charts and simplifying 

them in order to obtain the desired! minimal configuration. 

6.6.1 The Simplification of the Input States 

The simplification of the input states is a necessary 

intermediate step towards the simplification of the network 

representation. Such a step is especially useful when 

multiple outputs (primary or secondary) are present, which 
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is a characteristic possessed by sequential systems. 

The simplification process can be most conveniently 

pursued using the &-product which has been discussed in 

Chapter V. The process is initiated by tabulating all input 

states including the input states which have been eliminated 

in the previous simplification steps. The &-product is then 

performed upon each input state with respect to all other 

states. As an example~ consider the Input State Simplifica­

tion Table shown in Table XXIV, in which the input states 

are presented in a numerical form. 

The simplification of the first input state, for 

example, is achieved by the following product: 

0 1 0 0 0 0 

1 1 0 0 0 0 

1 0 0 1 0 0 

0 0 0 1 0 0 

A = (1 0 0 0 0 O) & 0 0 1 1 0 0 = (1 0 - 0 - -) 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

(6-5) 

The remaining input states are simplified in a similar 

manner. Note that the final input state of Table XXIV has 

been eliminated previously, and is therefore not simplified. 
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TABLE XXIV 

THE INPUT STATE SIMPLIFICATION TABLE 

Original Input Simplified Input 
States States 

a b c d e f a b c d e f 

1 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 1 

1 1 0 0 0 0 1 1 

1 0 0 1 0 0 1 0 1 

0 0 0 1 0 0 0 0 1 

0 0 1 1 0 0 1 1 

0 0 1 0 0 0 1 0 

0 0 0 0 1 0 1 

0 0 0 0 0 1 1 

*0 0 0 0 0 0 

*eliminated in previous steps. 

6.6.2 The Interpretation of the 

Synthesis Results 

After the input states have been individually simpli~ 

fied 9 the interpretation of the synthesis results is quite 

straightforward. The representation of each. machine state 

is simply the combination of the input state and its 

memory augmentation. 

It should be noted, that there are various types of out-

puts which should be considered. These are: 



1. The primary outputs which relates to spring 

return output elements or other "single" 

output representations. 

2. The primary outputs which relate to detented 

output elements. 

J. The secondary outputs. 

Spring return output elements would duplicate the 

actuating signal and, therefore 9 the output representations 

of such elements are derived by equating the "1"s of the 
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desired output. All 11 -"s and unspecified states can be con-

sidered as don't cares. 

The detented outputs have two circuit output represen­

tations for each intended output, which are opposing each 

other. Depending upon their particular function, they are 

often denoted as SET/RESET signals or as EXTEND/RETRACT 

sig~als. The circuit output representation for the SET 

signal is obtained by replacing all passive "1"s of the 

intended output by "-"s, while the representation for the 

RESET signal is derived by replacing all active "O"s by 

11 1"s, all passive "0" by "-"s, and all "1"s by 11 0"s. Using 

this substitution approach, no conflicting outputs can 

occur. The secondary outputs are treat~d in the same manner 

as the detented outputs; by assuming the "S"s as active "1"s 

and the 11 R1'1 s as active 11 0 11 s. 

It is realized, that outputs represented by more than 

one machine state, or outputs which includes some don 9 t care 

states may be further simplified. However, due to the 
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presence of other outputs (either primary or secondary) a 

simplification which includes the further reduction of the 

input states is useless; it may even complicate the imple-

mentation of the network equation. Simplification should, 

therefore, be performed in relation to the memory elements, 

and this is best realized by simplifying the representation 

in parts, where each part possesses the same input state. 

For example, considering the synthesized chart of Table 

XXII, the representation of th z 1-SET signal is: 

z1 = +(.(I2,Y1'),.(I4, Y2'),.(I4,Y2)) (6-6) 

As all unspecified states and the 11 1 11 states are con-

sidered as donVt cares, the complementation approach would 

be most appropriate. Hence, the complement is derived as 

follows: 

z v 
1 

= +(.(I1,z1v ),.(I2,Y1),.(I3,Z2),.(I4,0)) 

(6~7) 

Or, representation of z1 v relative to each input state 

results in the following representat~ons for input states I 2 

(6-Ba) 

(6-8b) 

Complementing the above expressions while confining the 



complement in the respective columns, results in the 

following: 

z1 = • ( + I 2 , + ( I 2 ' ,Y 1 1 ) ) = 0 ( I2' y ' ) 
I2 

1 (6-9a) 

z1 = .(+I4,+(I4',1)) = .(I4, 1) 
I4 

(6-9b) 

The z 1 expression is, therefore, simplified as follows: 

(6-10) 

It should be noted at this time that the direct complementa-

tion of the z 1 r expression of Equation (6-7) may not be 

successful as each input state may have been optimally 

simplifiedo 

The interpretation of the synthesis results concludes 

the presentation of the sequential logic synthesis, which 

has been thoroughly discussed in this chapter. Simple 

example problems have been used throughout the discussion in 

order to provide a clear i~sight into the procedure. 

6.7 Procedure Outline 

The necessary steps and operations required for syn-

thesizing asynchronous sequential networks have been 

compiled and presented in this chaptero In order to aid the 

designer in the utilization of the operations in a most 

efficient manner, the synthesis method is summarized in a 

step-by-step outline as follows: 

1. Develop the logic specification from the 
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problem description. 

Recognize the type of the problem. Determine 

whether it is a combinational, deterministic 

sequential 1 or a stochastic sequential network. 

J. Simplify the input states by using the 11 &~ 

product 11 o This step can actually be performed 

at any stage in the synthesis 1 without alter­

ing the final results. 

4. Eliminate the uninfluential input states, if 

any. When this step is performed 1 the utiliza­

tion of the selected output elements is 

mandatory. 

5. Eliminate the redundant states in the system. 

6. Determine the active and passive outputs. 

7. When Step 4 is unsuccessful 1 determine the most 

appropriate output elements for each output 

variable. 

8. Try to incorporate the output variables as 

memory variables of the system. An output 

variable should not be used for representing 

more than one input state. 

9. Assign the remaining unaugmented states by 

actual memory variables. 

10. Assign SET and RESET signals to each of the 

memory elements. 

11. Derive the primary and secondary output equa~ 

Utilize the complementation approach 
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for the simplification of the memory states. 

12. Implement the network equations. 



CHAPTER VII 

VERIFICATION OF THE METHOD 

7.1 General 

The combinational and sequential synthesis approaches 

discussed in this presentation offers a powerful means for 

assessing complex fluid logic problems. It is also claimed 

that the method offers near minimal simplification of the 

network implementation. 

It is the purpose of this chapter to properly justify 

these claims and show the effectiveness of the method rela~ 

tive to existing synthesis methods. 

7.2 Comparisons to Other Techniques 

It is realized that no mathematical proof exists which 

can be used for verifying the capability of a synthesis 

method for producing minimal networks. This is catised by 

the random behavior of the logic problem. Therefore, the 

only means for verifying the minimality of a synthesis 

result is by comparing it to the results of other existing 

synthesis methods. For the purpose of this discussion, 

three known synthesis techniques were selected, which are 

the Classical 1 the Change Signal (20) and the Total Signal 

methods (21). Eight problems of different types are 
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re~olved using each of these techniques, and are implemented 

with available logic elements. These eight problems are 

presented in the Appendix of this presentation. 

After each result was obtained and implemented, the 

number of logic elements used were counted, and they are 

tabulated in Table XXV. Compilation of the results show 

that the method advanced in this presentation produces less 

complex networks than the ones resulting from other 

synthesis methods. Although the degree of reduction varies 

from one problem to the other, no case of network expansion 

was encountered. 

TABLE XXV 

COMPARISONS OF THE IMPLEMENTED RESULTS 

Number oflmplementedEl'ements :WE!ductioir Relative to: 

Pro- Class- Change Total Class- Change Total 
btem 

New 
ical Sign<il · Signal ical Signal Signal 

No.: Method Method Method Method Method Method Method 

1 11 15 * 13 26. 6o/o - 15.7% 

' 2 19 27 ... 22 29.6% 13.6o/o .... -
3 11 15 13 20 26.6% 15. 7o/o 45.0o/o 

4 10 13 ... 25 25. 7o/o 60 .Oo/o .,. -
5 11 30 * 13 63.3o/o - 15. 7o/o 

6 0 6 6 8 100.0o/o 100. Oo/o 100.0o/o 

7 7 16 9 7 56. 2o/o 22.2o/o 0. Oo/o 

8 12 41 12 36 70. 7o/o 0. Oo/o 66. 6o/o 

':' Not applicable. 
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7.3 Computer Programming 

Undoubtedly, the existence of computerized synthesis 

programs would be most valuable to designers who want to 

design large scale fluid logic systems. The use of digital 

computers would most likely avoid the creation of "common 

human errors" during the synthesis process of the network. 

Such errors tend to occur during an enduring process of 

manual synthesis. It is, therefore, realized that computer 

programming should be directed towards the synthesis of 

large scale networks. Note that a computer program capable' 

of resolving only small networks is worthless; as such small 

networks are most conveniently resolved manually. 

Therefore, a synthesis method can be classified as 

suitable for large scale systems only if it is developed as 

such that it can be computerized. Moreover, the capacity of 

the computer program relative to the computer core utiliza­

tion and execution time would reflect the effectiveness of 

the synthesis algorithm. 

While keeping the above arguments in mind, a computer 

aided synthesis program based upon the technique presented 

in this thesis has been designed using the FORTRAN IV pro­

gramming language. The program uses the Sequence Matrix 

format for performing the manipulations necessary in the 

synthesis, as this format occupies the minimal amount of 

computer core. Although the program is currently not yet in 

its refined stage, the ability of the program for resolving 

extremely large problems is evident. At present, the 
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program has been designed to resolve problems which have up 

to 200 input variables, 200 outputs, 200 memories, and 200 

states. The computer core requirements for executing the 

program is relatively small (140 Kbytes) 7 which shows the 

effectiveness of the program. 



CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

8o1 Summary 

A procedure which is capable of deriving complex 

asynchronous sequential logic networks has been developed. 

The presentation has been divided into three major parts~­

the algebra~ the combinational logic synthesis, and finally, 

the sequential logic synthesiso 

The presentation commences with the discussion of a new, 

gener~lized algebra. A universal set of operators is used 

in the algebra in order to provide a convenient means for 

assessing various types of logical operators. Next, the 

various combinational synthesis methods are presented for 

supporting the sequential synthesis approach which was given 

in the succeeding chapter of this thesis. 

The sequential synthesis approach consists of various 

steps, and these steps were presented according to the five 

classifications of the operations; which are the formulation 

of the logic specification, the selection of the peripheral 

equipment, the simplification of the speci:Lication, the 

assignment of the memories and finally the formulation of 

the network equations. The presentation is concluded with 

an outline of ths integrated procedure. 
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8.2 Conclusions 

A new insight into the theory of fluid switching cir­

cuits has been revealede The algorithmic type presentation 

provides convenience in executing the synthesis method 

formulated herein, especially when digital computers are 

employed. 

The development of the generalized "switching circuit 

algebra" off:ers a unique in-depth view of logical expression 

which utilizes non-standard operatorsQ This generalization 

also allows convenient assessment of the algebra using 

digital computers, as the operators of the expression can be 

considered independently from the desired operations of the 

algebra. Various algebraic operations may, therefore, be 

realized without prior knowledge of the actual operators 

involved. 

There are basically three combinational synthesis 

approaches which have been selected and presented in Chapter 

V. These three approaches are of great importance for com­

puter aided synthesis, as they are most suited for synthe­

sizing extremely large problems with large numbers of 

variables. 

New directions were also offered in the area of sequen-

tial logic synthesis. For the first time, the selection of 

the peripheral equipment is performed in the synthesis. It 

is realized.that a correct selection of such input--output 

circuits would result in additional simplification of the 
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implemented network; as the utilization of different output 

circuits completely alters the specification of the problema 

Furthermore, the method features the utilization of 

output signals as inputs to the logic circuit. This reduces 

the need for memory elements and their excitation; and fur-

ther simplification of the synthesized networks may occur. 

Finally, it is concluded that several advancements in 

the area of Fluid Logic have been realized in this study. 

The development of the new method will hopefully aid the 

future designer in solving complex logic problems in a most 

efficient manner. 

8.3 Recommendations for Further Study 

After completing this study, the author feels that 

additional work in this area would be beneficial to future 

implementations of logic systemse The following points are 

still lacking as of today and is, therefore, suggested as 

topics for further study: 

1o The further advancement of the "Switching 

Circuit Algebra11 e It is realized that the 

algebra presented earlier in this thesis is 

far from complete.. Additional postulates 
I 

and/or theorems would !be necessary for the 

effective utilization of the "non-conventional" 

operators. The study 'Should not exclude the 

possibilities of developing new, practical 

operators which satj,sfy the algebra. 



2. The direct application of different operators 

in logic system synthesis. Up to now the 

synthesis of sequential networks has been per­

formed in a conventional AND-OR~NOT fashion. 

The transformation to other operators (such as 

NOR's and NAND's) was performed in the combina­

tional portion of the synthesis. The author 

feels that a sequential synthesis method which 

directly synthesizes the problem using the 

intended operators would be most practical. 

). The adaptation of the method to synchronous 

systems~ As with all other synthesis tech­

niques1 the method advanced in this thesis is 

applicable to electronic circuits as well. 

Due to the fact that most electronic logic 

problems deal with synchronous networks, the 

modification of the new synthesis method to 

accept synchronous systems is necessary. 

4. The modification of the Classical technique to 

include "output i~eedback". The classical 

Huff'man technique has been continuedly used in 

the past as a 11 referee 11 method; and therefore~ 

it should be subsequently improved in order to 

assess other synthesis approaches. 
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APPENDIX 

Eight example problems were utilized for the compari-

sons of the different synthesis approaches. These problems 

are given in an LSC format as shown in Tables XXVI-XXXIII. 

TABLE XXVI 

PROBLEM I 

Ou~.puts Input States (abc) 

z1 z2 z3 000 100 110 101 111 010 

0 0 0 ( 1 ) 2 8 
0 0 1 1 ( 2 ) 3 

0 0 1 4 ( 3) 6 
1 0 1 ( 4) 3 5 
1 1 1 2 ( 5) 6 
1 1 1 7 5 ( 6 ) 
1 0 1 ( 7 ) 6 8 
1 0 0 1 (8) 

110 
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TABLE XXVII 

PROBLEM II 

Outputs Input States (abc) 

z1 z2 001 000 010 101 011 

1 0 ( 1 ) 2 J 
1 1 ( 2 ) 4 

0 1 6 ( 3) 5 
0 0 7 ( 4 ) 5 
1 0 6 3 ( 5 ) 

1 1 ( 6) 8 9 
0 1 1 ( 7 ) 

1 1 ( 8) lJ. 

1 0 1 ( 9 ) 10 

0 0 It 9 (10) 
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TABLE XXVIII 

PROBLEM III 

Outputs Input States (ab) 

z1 z2 00 01 11 10 

0 1 ( 1 ) 2 

0 0 3 ( 2 ) 

0 1 ( 3) LJ: 

1 1 ( 4) 5 
1 0 ( 5 ) 6 

0 0 7 ( 6) 

1 1 ( 7) 8 

0 1 9 ( 8) 

0 1 ( 9) 10 

1 1 (10) 11 

1 0 ( 11) 12 

0 0 13 ( 12) 

1 ( 1 3 ) 14 

0 3 ( 14) 
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TABLE XXIX 

PROBLEM IV 

Outputs Tnrl!lt St;d es (ab) 

z1 z2 00 01 ll 10 

0 0 ( 1 ) 2 3 6 
0 5 (2) 10 

1 (3) 10 
0 1 ( 4) 8 9 
0 0 (5) 4 7 10 

1 4 3 (6) 
0 1 5 ( 7) 6 

1 1 (8) 9 

0 2 3 (9) 

2 7 ( 1 0) 

TABLE XXX 

PROBLEM V 

Outputs Input States (abed) 

/',1 z2 0001 0010 0100 1000 

0 (l) 2 3 

4 (2) 5 
0 4 6 (3) 

0 (4) 7 8 
0 2 (5) 8 

0 7 (6) 3 
0 1 (7) 5 

4 5 (8) 



114 

TABLE XXXI 

PROBLEM VI 

Outputs Tnput St:J.tes (abed) 

z1 z2 1000 0100 0010 0001 

0 0 ( 1) 2 

0 0 (2) 3 

1 0 4 (3) 

1 0 (4) 5 

1 0 (5) 6 
1 7 (6) 

1 1 8 (7) 

1 1 1 (8) 

TABLE XXXII 

PROBLEM VII 

Outputs Input States (abc) 

z1 z2 Z3 000 100 010 001 

1 0 0 (1) 2 
0 0 0 3 (2) 

1 0 0 (3) 4 

0 0 0 5 (4) 

0 1 0 (5) 6 
0 0 0 7 (6) 
0 1 0 (7) 8 
0 0 0 9 (8) 

0 0 1 (9) 10 

0 0 0 1 (10) 
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TABLE XXXIII 

PROBLEM VIII 

Outputs Input States (abcdef) 

z1 Zz 111011 111010 011010 001010 000010 111001 111101 

1 0 (1) z 
1 0 (Z) 3 

1 0 (3) 4 

1 0 (4) 5 

0 0 6 ( 5) 

0 0 7 (6) 

0 0 8 (7) 

0 0 9 (8) 

1 0 (9) 10 

1 0 (l 0) 11 

1 0 ( 11) 12 

0 0 13 ( 12) 

0 0 14 (13) 

0 0 15 (14) 

1 0 ( 15) 16 

1 0 ( 16) 17 

0 0 18 ( 17) 

0 0 19 ( 18) 

0 1 ( 19) 20 

0 1 (2 0) 21 

0 0 22 (21) 

0 0 1 (2 2) 
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