
® 1976

JIM BASUKI SURJAATMADJA

ALL RIGHTS RESERVED

A SYNTHESIS TECHNIQUE FOR THE

RESOLUTION OF LARGE SCALE

FLUID LOGIC NETWORKS

By

JIM BASUKI SURJAATMADJA
!;

Bachelor of Engineering
Institute of Technology of Bandung

Bandung, Indonesia
1970

Master of Engineering
Institute of Technology of Bandung

Bandung, Indonesia
1971

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1972

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1976

Tl1es1·s
J 9 7~ J)

3 q(QJ 5
cop. a

A SYNTHESIS TECHNIQUE FOR THE

RESOLUTION OF LARGE SCALE

FLUID LOGIC NETWORKS

Thesis Approved:

997121
ii

ACKNOWLEDGMENTS

The study is concerned with the development of a new

synthesis technique for asynchronous sequential logic net~

works. The primary objective of the research effort is to

provide the logic designer with a powerful tool for synthe-

sizing extremely large digital control systems. All steps

which have been selected to be used in the synthesis were
J

evaluated extensively; and only steps which are sui~able for

large scale synthesis were retainedo

It is my pleasure to utili~e this opportunity_to express

my appreciation to my major adviser, Professor E. C. Fitch,

for his continuous guidance and encouragements throughout

this study. I am especially indebted to him for all the

time and effort which he has contributed throughout the

pursuance of the research effort. Sincere appreciation is

also extended to all of my committee members, Professors

P. Ao McCollum, Jo E. Bose, and D. D. Lingelbach for their

invaluable a~sistance during the study and in the prepara-

tion of the manuscript.

Special thanks are also extended to the Fluid Power

Research Center Staff for their assistance and contributions

during the study. Also, appreciation is acknowledged to the

Fluid Power Research Center and its sponsoring companies,

iii

also to the National Science Foundat~on for the grant during

the period of the research effort.

Finally, special gratitude is expressed to my.wife 1

Agnes 1 and my parents 1 for their understanding 1 encourage­

ment and sacrifices during the pursuance of this study.

iv

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. PREVIOUS INVESTIGATIONS

III.

IV.

STATEMENT OF THE PROBLEM .

SWITCHING CIRCUIT ALGEBRA

4.1
4.2
4.J

Evolution of the Algebra • • . • • • •
The Algebra . • • • • • • • • • •
Effects of the New Algebr~ in

Switching Circuit Theory •

V. COMBINATIONAL LOGIC SYNTHESIS

5.1
5.2
5.3
5.4

5.5

5.6

5-7

Philosophy of the Synthesis • • •
The Consensus or the *-Product
Complementation and Distribution •
The Term Simplification or the

&-Product . • o • • • • • • • •

The Synthesis of
Networks

The Synthesis of
Networks

Single Terminal

Multi-Terminal

Three-Level Synthesis of NOR-
Logic Network~ • . • •

VI. SEQUENTIAL LOGIC SYNTHESIS •

6.J

6.4

6.5
6.6

6.7

Philosophy of the Synthesis
The Formulation of the Logic

Description o • • o • • • • • • • •

The Selection of Peripheral
Equipment o • • o • • •

The Simplification of the
Problem Description . • • • • .

The Assignment of Memories . . • • • •
The Formulation of the Network

Equations • • • • .
Procedure Outline

v

Page

1

J

8

9

9
10

15

20

20
21
24

25

28

J1

36

40

40

41

53
80

Chapter

VII. VERIFICATION OF THE METHOD •

General
Comparisons to Other Techniques • • .
Computer Programming •.•.••.

VIII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

BIBLIOGRAPHY

APPENDIX

8.1
8.2
8.3

Summary . . • . . . o • • • , • • • •

Conclusions • • • • • • • • • • .
Recommendations for Further Study.

vi

Page

97

97
97
99

101

101
102
103

105

110

LIST OF TABLES

Table

I. The Primitive Flow Table

II. Conventional Operators of the Algebra •

III. Non-Conventional Operators

IV. Karnaugh Map Operators and Constants

V. Table for Ci = ai * bi .••.• • • ·

VI. Truth Table • • •

VII. Multi-Terminal Synthesis Table

VIII. The Synthesis Table • .

IX. The Logic Specification Chart

X. Truth Table Portraying Active and
Passive Outputs • • • • • •

XI. An LSC With a Redundant Input State •

XII. The Reduced LSC • •

XIII. The Unmodified LSC

XIV. The Modified LSC

XV. The Reduced LSC • •

XVI. LSC Showing Duplication and Obviation
of States o o • • • • • • • •

XVII. LSC for a Deterministic Problem •

XVIII. Partitioning Table Q 0 • ~ 0 0 • g • • ~ u • •

XIX. The Reduced Specification Chart •

XX. LSC for the Stochastic Problem

XXI. RSC for the Stochastic Problem

vii

Page

16

16

17

22

29

33

42

44

52

57

58

61

63

64

66

69

73

76

78

79

Table

XXII. The RSC With Memory Assignments

XXIII. RSC for a Deterministic Problem and Its
Memory Augmentation • • • • • • • . • • •

XXIV. The Input Simplification Table

XXV. Comparisons of the Implemented Results

XXVI. Problem I •

XXVII. Problem II

XXVIII. Problem III o

XXIX. Problem IV

XXX. Problem V • •

XXXI. Problem VI • 0 • • • • ~ •

XXXII. Problem VII .

XXXIII. Problem VIII

viii

Page

83

88

91

98

110

111

112

113

113

114

114

115

LIST OF FIGURES

Figure

1. Karnaugh Map of Equation (4-1)
2. Karnaugh Map of Equation (5-7') . . .

Karnaugh Map Showing the &~Product . J.

4. Circuit Representation of the System
Represented in Table VI

Network Representation of Equation (5-22)

6. Network Representation of Equation (5-23)

7- Network Representation of Equation (5-29)

8. The Sequ~nce Matrix Representation •

9. Various Input Sensing Devices

10. An Input Reduction Scheme

11. A Typical Input Circuit

12. Output Circuit Implementation

13e The Assigned Output Circuit

.

.

.

.

14. The Selected Output Circuits for z1 and z2

15.

16.

The Equivalent Pairs Chart •

The EPC for the Stochastic Problem .

ix

. .
0 .
. . . .

. . . .

. 0 . .

Page

18

24~

26

31

35

35

38

43

46

47

48

53

61

62

70

78

CHAPTER I

INTRODUCTION

Fluid power has been utilized for over two centuries.

Its popularity has continued to increase since it is one of

the most effective means of transmitting high levels of

power. As with electricity, fluid power does not utilize

bulky linkages; and it may be transmitted through long trans­

mission lines and through tight spaces where the utilization

of mechanical linkages would not be permissible.

Progressing through the years, fluid power invaded the

area of control in the early part of the 20th century (1),

both in digital and analog control. In the area of digital

control, fluid elements have been proven capable of perform­

ing logical decisions necessary to replace the human opera­

tor. The use of fluid elements eliminates the need of costly

interfaces when fluids are used as the "muscle power" of the

controlled system. In addition, fluid elements are very

reliable when operating under adverse conditions; such as

heat, vibrations, mechanical impacts, etc. This feature has

made the utilization of digital fluid elements (or fluid

logic elements) increasingly popular.

At the early stages of digital fluid control, the degree

1

of automation which was attained was very primitive. In

designing such systems, both intvition and a rudimentary

knowledge of logic elements were utilized. The methods of

design which were employed reflected those of an art rather

2

than a science. Progress in the area of fluid logic controls

have brought with it the demand for more and more sophisti­

cated design methods. Means of designing circuits employing

intuitive processes have been proven to be time consuming

and not rewarding, since they reduce to an endless game of

avoiding errors while searching for the desired solution.

This study has been directed towards the development of

computer oriented algorithms needed for synthesizing large

scale, stochastic type sequential fluid logic networks. In

addition, applicable combinational synthesis methods are

assessed in a unique, generalized approach. The possibili­

ties of utilizing special elements such as NOR elements have

been considered.

CHAPTER II

PREVIOUS INVESTIGATIONS

Ever since the early part of the 20th century, the use

of sequential networks has served as a substitute for the)

decision logic of the human operator (2). Initially, intui-

tive approaches were adequate due to the simplicity of the

problems and the fact that the art of switching theory was

very limited. This state began to change with the injection

of Boolean Algebra to switching theory by C. E. Shannon (J),

who utilized the algebra for the representation and manipula-

tion of relay networks. Shannon's approach transformed pre-

vious thinking and laid the foundation of modern switching

theory and design.

In 19,?3, M. Karnaugh (4) established another milestone

in the history of switching theory. His contribution con-

cerned the introduction of an effective means for simplifying

Boolean equations using a map. Karnaugh's map, which is

basically an improvement of the Veitch Chart (5), provided a

new insight into the problem of network simplification. It

was also the basis for the now famous sequential synthesis

method developed by D. A. Huffman (6) a year later.

Huffman's sequential logic synthesis method was first:

formally introduced to the area of fluid logic by E. C.

J

4

Fitch (?) in 1964, and is now commonly referred to as the

"Classical Technique". The technique evaluates a logic

problem using a table which possesses a direct relationship

with the Karnaugh map. This table is known as the "Primitive

Flow Table" and is illustrated, in Table I.

TABLE I

THE PRIMITIVE FLOW TABLE

NEXT STATES OUTPUT STATES (g(i! ,Z ---~ l)
INPUT STATES f(a,b---) INPUT STATES f(a,b--) ' t. f 2 - - - - • - - fi - - • • - - - - f n t. f 2 - - - -- -fi-- -- ____ f,;

Y-€)

1 -9a

l
® 8 g~~

1 1 ®-a 9y-

® 9.s

Each circled entry in the table indicates a stable

state and relates to a distinct machine state, while

uncircled entries denote unstable states and refer to the

next possible machine state that may be attained following

a change of the inputs. Each column of the table is

reserved for one state of the inputs, while each row relates

to the internal states of the machine. These internal

5

states are represented by a group of secondary elements

which are called memory elements.

Huffman presented a method for modifying the table such

that a near minimal row flow table is achieved, hence mini-

mizing the number of memory elements required. This row

minimization technique was reformulated and improved by many

scientists in order to obtain the absolute minimal row flow

table in a most convenient manner (8, 9, 10, 11, 12, 13, 14~

15). One of the most mechanized schemes was developed by

A. Grasselli and F. Luccio (16, 17, 18) and N. Biswas (19).

The improved version of the method is capable of producing

the minimal row (or merged) flow table in a most efficient

manner.

Huffman's method proceeds with the construction of the

operational flow table (OFT), followed immediately by the

development of the network maps. The need for an OFT

actually lies in the potential danger that races may occur

between the memories, a situation which must be avoided in

order that an undesired state is not attained accidentally.

It is the construction of the "optimal" OFT that has

created a major obstacle in the Classical Synthesis Tech-

nique. Creating a minimal row OFT constitutes a major prob-

lem by itself; since without resorting to pure trial and

error approaches one would never be sure that the true mini-

mal row OFT has been obtained. One consolation is that

• possessing a true minimal OFT does not necessarily guarantee

that a minimal-hardware network can be achieved.

The inherent problems in the Classical method and the

6

crucial need for a fully mechanized fluid logic synthesis

method capable of producing near minimal networks prompted

J. H. Cole (20) to formulate a tabular method for synthesiz­

ing feedback type fluid logic networks. Although his meth­

od, often referred to as the Change Signal Method, is

effective only for a certain class of deterministic sequen­

tial circuits, it is capable of obtaining near minimal

solutions. In the establishment of this method, one point

was clarified; i.e., the minimal hardware network is not

necessarily obtained by a minimal memory network.

In 1969, G. E. Maroney (21, 22) developed a concept

that used the "total" or complete input state. His Diconesyn

III synthesis method was able to handle virtually any type

of logic network. Modifications to his method have provided

total mechanization (23, 24, 25).

Other attempts to devise better and better techniques

for synthesizing fluid logic networks are evident in the

literature. The method introduced by R. M. H. Chan and

K. Foster (26) must be recognized as the first method that

uniquely places all memories at the output. This nondis­

criminative memory assignment method often creates major

difficulties in attempting to eliminate races that have

resulted from this random memory assignment procedure. Such

elimination often requires that additional memory elements

be utilized; and hence 7 an unnecessary increase in the net­

work complexity may occur.

An attempt to achieve minimal networks by selective

matching of memory functions to the outputs was made by

Surjaatmadja (27, 28) in 1973. The approach showed a great

promise in typical applications in fluid logic as demon­

strated not only by the degree of simplification achieved,

but also by the ability of reducing the ill-effects of

hazards. The method was successfully followed by another

approach, which utilizes a special class of outputs to per­

form memory functions (29). As a correct classification of

the outputs results in the reduction of the required hard­

ware, it is this direction that is pursued by the author in

this investigation.

7

CHAPTER III

STATEMENT OF THE PROBLEM

The purpose of this investigation was to advance compu-

ter oriented algorithms for synthesizing large scale,

stochastic type sequential fluid logic networks. The

approach should enable the establishment of near-minimal

circuits in the most efficient manner.

The method includes the development of an input-output

circuit selection criterion, the development or selection of

appropriate combinational synthesis techniques which forms

the foundation for the intended sequential synthesis

technique.

In general, the plan of attack involves the study of

previously established methods and the possible incorpora-

tion of such methods in the development of the new synthesis . .

technique. New algorithms are to be devised whereever nee-

essary. After the formulation, the method is to be

demonstr.ated.

8

CHAPTER IV

SWITCHING CIRCUIT ALGEBRA

4.1 Evolution of the Algebra

Switching circuit theory is based upon pure logic--an

art that is intrinsically possessed by mankind. With it,

man has been able to make decisions and perform different

tasks. Although there are many attempts throughout the

history towards the formulation of logic, no mathematical

assessment had been made until G. Boole (JO) formulated a

unique algebraic representation of logic in 1854. This

"new" branch of the algebra has been improved throughout the

years and is currently known as "Boolean Algebra".

Ironically~ it was not until 1938 that Boolean algebra

finally found its place in the design of switching circuitso

This major achievement in the area of switching theory should

be accredited to C. E. Shannon (J)~ who recognized for the

first time that each of the three fundamental algebraic

operators, AND, OR, and NOT, can be represented by actual

logic hardwareo Shannon demonstrated that Boolean algebra

provides a mathematical means for simplifying a switching

circuit.

As the evolution of switching theory progresses, a need

9

10

for a more specialized algebra is established. This need is

reflected by t?.e development of non-conventional logic ele­

ments, such as NOR, NAND, INHIBITOR, EXCLUSIVE OR, and

COINCIDENCE elements. Although an algebraic representation

can be made for each of these elements, it is the author's

opinion that a generalized algebra, which includes each

available logic element as an algebraic operator would be

most advantageous in designing circuits which utilize these

special types of elements. This advantage will become more

apparent when computers are used for aiding the design of

the logic networks.

The following section offers a foundation for the devel-

opment of such an algebra. Even though the completeness of

the algebra might be challenged, its applicability for some

non-conventional logic devices demonstrates its practical

value in switching circuit theory.

4.2 The Algebra

Switching circvit algebra is a mathematical s¥stem con­

sisting of variables, operators, constants, and an equiva­

lence; which are governed by a set of postulates defining

the algebra. The algebra concerns itself with variables

having only two values, which are the constants of the

algebra, ¢ and U. It employs a set of symbols which are the

variables of the algebra; upon which manipulations are per­

formed by four commutative and distributive (or conventional)

operators, two non-conventional operators, and one

11

complementing function. The term "non-conventional" opera­

tors is used to denote operators which are neither commuta­

tive nor distributive. For example, the operators AND(.)

and OR (+) are conventional operators; while INHIBITOR's and

EXCLUSIVE OR's can be classified as non-conventional opera­

torso Let the four conventional operators be represented by

the four arbitary symbols, o, ¢, @, and~; and let the non­

conventional operators be represented by the symbols v and

~. As also commonly used in Boolean algebra, the symbols

-, fi, and ' are used to represent equivalence, non­

equivalence, and complementation, respectively.

The algebra is defined by the following postulates:

Postulates

Eg,uation Dual

1. oX = oU if oX fi 0~ 1. ¢X = ¢~ if ¢X fi ¢U

2. @X = @~ if @X fi @U 2. ~X = ~u if ~X fi ~~

Jo o(@U,@U) -· o@U J. ¢(~~,~~) = ¢~~

4. @(o~,o~) = @o~ 4; ~(¢U,¢U) = ~¢U

5o o(@U,@~) = o@~ 5G ¢(~U,~~) = ¢~U

6. o (U 9) = o(~) 6. ¢ (~ 9) = ¢(U)

7- @(~·) = @(U) 7- ~(U') = @(~)

Bo ~(u,u) = ¢ 8. v(~,~) = u

9. ~(~,~) = ~ 9. v(U,U) = u

10. 'l'l(U,~) = u 10o v(~,u) = ~

In order to aid the user of the algebra with mathe-

matical manipulations, theorems are developed. Unlike the

12

postulates, theorems must be derived entirely from the

postulates; they cannot contain any assumptions which are

not reflected by the postulates. The following theorems are

considered important in switching theory:

1. Tautology

2. Commutative

J. Association

4. Distribution

5. Absorption

a.

b.

c.

d.

a.

b.

c.

d.

Theorems

o(X,X)

¢(X,X)

@(X,X)

~(X,X)

o(X,Y)

¢(X,Y)

@(X,Y)

~(X,Y)

= o(X)

¢(X)

= @(X)

= ~(X)

= o(Y,X)

¢(Y,X)

= @(Y,X)

~(Y,X)

a. o(~X,~(Y,Z)) = o(~(X,Y),~Z)

b. ¢(@X,@(Y,Z)) = ¢(@(X,Y),@Z)

c. @(¢X,¢(Y ,Z)) = @(¢(X,Y) ,¢Z)

d. ~(oX,o(Y,Z)) = ~(o(X,Y),oZ)

a. o(@X,@(Y,Z)) = ¢(~(X,Y),~(X,Z))

b. ¢(~X,~(Y,Z)) = o(@(X,Y),@(X,Z))

c. @(oX,o(Y,Z)) = ~(¢(X,Y),¢(X,Z))

d. ~ (¢X,¢ (Y, Z)) = @ (o (X, Y) , o (X, Z))

a. o(@X,@(X,Y)) = o@(X)

b. ¢(~X,~(X,Y)) =¢@(X)

c. @(oX,o(X,Y)) = @o(X)

d. @(¢X,¢(X,Y)) = ¢%(X)

6. Inclusion

7~ Universe Class

8. Null Class

9. Complementation

10. Contraposition

11. Double Negation

12. Expansion

13. DeMorgan 9 s
Theorem

13

a. o(¢X,¢(X,Y)) = o¢(X)

b. ¢(oX,o(X,Y)) = ¢o(X)

c. @(~X,~(X,Y)) =@~(X)

d. ~(@X,@(X,Y)) =~@(X)

ao o(@X,@U) = o®(X)

b. ¢(~X,~U) = ¢~(U)

a. o(@X,®¢) = o®(¢)

a. o(@X,@X•) = o®(¢)

b • ¢ (~X , ~X r) = ¢ ~ (U)

a. If o(X) = o(Y'), then o(X') = o(Y)

b • If ¢ (X) = ¢ (Y 1) , then ¢ (X ') = ¢ (Y)

c. If @(X) = @(Yt), then @(X 1) = @(Y)

d. If ~ (X) = ~ (Y ') , then ~ (X') = ~ (Y)

a. o(X") = o(X)

b. ¢ (X") = ¢ (X)

c. @(X 11) =@(X)

d. ~(X") = ~(X)

a. o(@(X,Y),@(X,Y 1)) = o@(X)

b. ¢(~{X,Y),~)X,Y•)) =¢~(X)

c ~ @ (o (X, Y) , o) X, Y')) = ®o (X)

d ~ ~ (¢ (X, Y) , ¢ (X , Y 1)) = ~¢ (X)

a. o(X,Y)' = ¢(X',Y')

b. ¢(X,Y) 1 = o(X',Y')

c. @(X,Y) 1 = ~(X',Y')

d~ ~(X,Y)' = @(X',Y')

e. '!l(X,Y)'·= v(X',Y')

14. Reflection

15. Transition

16. Equivalence

17. Transposition

f. v(X,Y)' = r](X' ,Y')

a. o(@X,@(X' ,Y)) = o(@X,@Y)

b • ¢ (~X , ~ (X t , Y)) = ¢ (~X , ~y)

c. @(oX,o(X'~Y)) = @(oX~oY)

d. ~(¢X~¢(X~ ,Y)) = ~(¢X,¢Y)

a. o(@(X,Y) ,@(X' ,Z) ,@(Y ,Z)) =

o(@(X,Y) ,@(X' ,Z))

b. ¢(~(X,Y) ,~(X' ,Z) ,~(Y ,Z)) =

¢(~(X,Y) ,~(X' ,Z))

c. @(o(X,Y) ,o(X' ,Z) ,o(Y ,Z)) =

@(o(X,Y) ,o(X' ,Z))

d. ~(¢(X,Y),¢(Xv,z),¢(Y,Z)) =

~(¢(X,Y) ,¢(XV ,Z))

a. r](X,X) = ¢

b. v(X,X) = U

a. o(@(X,Y) ,@(X' ,Z)) = @(o(X,Z) ~

o(X',Y))

b. ¢(~(X,Y) ,~(Xv ,Z)) = ®(¢(X,Z),

¢(X',Y))

c. @(o(X,Y) ,o(xv ,Z)) = o(@(X,Z),

@(X' ,Y))

do ~(¢(X,Y) ,¢(X 1 ,Z)) = ¢(~(X,Z),

~(X',Y))

Up to this point~ the algebra has been presented in a

generalized manner. No attempts were made to assign specific

operators or constants to replace the six operators and the

two values of the algebra. It is maintained by the author,

15

that there exist many sets of numerals and operators which

satisfies the algebra. Among them, a few known combinations

of logical operators and constants are listed in Table II

and Table III. Note that the entries of each row of these

tables must be used in its entirety. For example, when "o"

is replaced by the "OR" symbol, "U" must represent the logi­

cal constant "0" (see Row 2 of Table II). It should also be

noted, that in these tables the notations~' t, INH, IMP, e,

=, .are used to represent the logical operators NOR, NAND,

INHIBITOR, IMPLY, EXCLUSIVE-OR, and COINCIDENCE,

respectively.

4.3 Effects of the New Algebra in

Switching Circuit Theory

The application of the new algebra in switching circuit

theory provides a new insight into formal combinational

logic synthesis. In particular, the feature of having

arbitrary operators permits the designer to perform alge­

braic manipulations without concern of the types of the

operators; in other words, the manipulations of the equa­

tions can be performed independently from the actual opera­

tors that are utilized. This feature is especially practical

for the computer-aided design of logic systems.

For example, the Karnaugh Map simplification method can

be generalized to satisfy the theorems and postulates of the

algebra. For this purpose, the Karnaugh map can be defined

as a map which consists of cubes, each of which is

16

TABLE II

CONVENTIONAL OPERATORS OF THE ALGEBRA

SET
@ @ u 0 No.

0

1 + 1 0

2 ;-. 0 1

3 ~ ·t ' t 1 0

4 t ~ • 0 1

TABLE III

NON-CONVENTIONAL OPERATORS

SET
9 u 0

No.

1 INH IMP l 0

2 IMP INH 0 l

3 Ei' - l 0

4 - CB 0 1

17

represented by "a unique combination of the variables of the

logic system. A logic operator governs every variable rep-

resentation of each cube, while another operator defines the

relationship between one cube and another. A set consist~ng

of all available cubes (or the universe of the map) repre-

sents a constant of the algebra, while the other constant is

defined by the empty set. The valid combinations of opera-

tors and constants which can be utilized in the generalized

Karnaugh map are listed in Table IV. Similar to the pre-

vious identical tables, each row of Table IV reflects a

valid combination of operators and constants and hence, it

must be used in its entirety.

TABLE IV

KARNAUGH MAP OPERATORS AND CONSTANTS

Set
Noe

1

2

Lines

0

¢

Cube

@

Uni­
verse

u

Empty

u

As an illustration, the generalized Karnaugh Map is

utilized to simplify the following expression:

Z = o(@(A,B,C) ,@(At ,B,D) ,@(A,B,C')) (4-1)

18

Without considering the actual logical operators, Equation

Ut-1) can be projected on the Generalized Karnaugh Map,

resulting in the map shown in Figure 1. As the 11 Cube 11 repre-

sentation in the above equation is an 11 @11 , while the "Line"

representation (the representation between cubes) is an 11 o 11 ,

it is established that the universe of' th~ map·is "¢"while

the empty map correspond with an "U''. The simplified solu-

tion can be directly derived f'rom the map; which is:

Z = o(@(A,B),@(B,D)) (lt-2)

When both 11 @11 and 11 o 11 are designated NOR's (J,), the

universe of' the map is 11 0 11 , while 11 1 11 is reflected by the

empty map. Interpretation of' Equation (lt-2) is simply:

Z = l(~(A,B), ~(B,D))

CD
00

01

11

10

AB
00 01

J

1

11 10

1

1

1

1

Figure 1. Karnaugh Map
of' Equation
(lt-1)

(lt-3)

19

A similar approach can be made when dealing with non-

conventional operators. For example, the following

equation:

'll(X,Y)r =\J(Xr,yr) (4-4)
(deMorgan 9 s Theorem)

can be interpreted as either:

INH(X,Y)' = IMP(X',Y') (4-5)

or:

e(X,Y)' = =(xr,yr) (4-6)

The above demonstrations show the flexibility of the

algebra. It eliminates the necessity of individual synthesis

approaches for each set of operators. Although no meaningful

synthesis approach has been explored for the effective

utilization of the non-conventional operators, a quite

promising direction for future investigations has been

established.

CHAPTER V

COMBINATIONAL LOGIC SYNTHESIS

5.1 Philosophy of the Synthesis

Logic synthesis is the process of constructing a desired

network based upon a given set of instructions. When the

resulting network does not require the utilization of

memories, the synthesis is termed as combinational.

In general, there are three objectives which are to be

achieved in a logic synthesis. These are:

1. Minimal element networks

2. High speed networks

J. Correct and dependable operation.

The importance of these three goals is apparent.

Minimal element networks offers many advantageous features,

such as low hardware and operating costs, the possibility of

obtaining higher speed networks and convenience in analyzing

the network. It should be realized, however, that in most

cases increasing the speed of a network depends upon its

implementation.

In relation to this study, the combinational synthesis

process includes the selection of the appropriate techniques

in order to apprach the above objectives. Various useful

20

21

techniques and their particular applications are discussed

in this chapter.

5.2 The Consensus or the *-Product

The consensus approach was introduced for the first

time by W. V. Quine (J1) in 1952. His approach was extended

in a unique format by J. P. Roth (32, JJ) in 1955. The

method utilizes a combination of the Reflection, the Expan-

sion, and the Transition theorems. The product is repre-

sented as follows:

f = f * f c a b (5-1)

where fa' fb and fc are algebraic terms, each of which is

represented by n literals as the following:

f = o(a1 , a2, . . . ' a) (5-2a) a n

fb = o(b 1 , b2' Ill • • ' b
n

) (5-2b)

f = o (c 1 ,· c2' ••• ' i c) (5-2c) c n

where "o" is a conventional operator. Each variable, a., b.
l. l.

and c. can be represented by either a 11 0 11 , a 11 1 11 , or an l.

indeterminate variable value, which is indicated by a "-".

The product is performed one variable at a time, the results

of which is best represented by the table shown in Table V~

The rows of this table are represented by the values of ai'

while the columns are represented by the values of b .•
l.

22

TABLE V

TABLE FOR c. = a. * b.
1. 1. 1

bi
ci

0 1

0 0 cp 0

a. 1 cp 1 1
1.

0 1

The entries in the table are the values of the product, ci'

which are four-valued, e.g., 1, 0, -, and cp. After the

product has been applied to each variable of the expression,

the composite of the results can be interpreted by the fol-

lowing rules:

1. a * b = ~ or empty, if

than one i.

a.
1.

* b. =
1

cp for more

2. a * b = c if otherwise, where c is represented

by (c 1 ,c 2 , • Cl • 'J

rrcprr by a "-".

c), replacing the
n

As an illustration, consider for example the *-product

between the following two algebraic terms:

Z = o(A,B' ,C' ,D,F) * o(B,C' ,E,F,G,H) (5-J)

which can be represented in the numerical form as follows:

Z = o(1001-1--) * o(-10-1111) (5-4)

23

One at a time assessment of each va~iable results in

the following:

Z = o(1cp011111) (5-5)

As this expression has only one 11 cp 11 , using Rule 2, Z can be

interpreted as:

Z = o(1-011111)

= o(A,C•,D,E,F,G,H) (5-6)

It can be noted that the variable-by-variable assess­

ment as performed in this synthesis approach offers unlimited

possibilities of the method in solving large, multi-variable

systems. Roth realized that an iterative application of the

operation under certain conditions would result in the devel­

opment of all prime implicants; from which near minimal

forms can be obtained. The approach soon became popular as

it ~the only simplification approach that can tolerate

switching functions with extremely large numbers of vari­

ables. This is evident from the numerous attempts towards

the perfection and the computerization of the approach (34,

35, 36, 37, 38). One such method which was developed by the

author has been successfully computerized and is capable of

deriving both the minimal and the minimal stat~c hazard free

solutions of large algebraic expressions (38).

24

5.3 Complementation and Distribution

Complementation and distribution of switching circuit

equations has been shown to be effective in the simplifica-

tion of logic networks in many ways (39). They provide

means not only for exploring equivalent expressions in dif-

ferent forms, but also for the identificati.on of unknown

machine states. It is therefore realized, that a computer-

oriented method capable of performing such operations is

very valuable.

The Complementation and Distribution operations can be

best represented by the Karnaugh map as shown in Figure 2.

CD
00

01

11

10

AB
00 01

1 1

1 0

1 0

1 1

11 10

1 1

0 1

0 0

0 0

Figure 2. Karnaugh Map of
Equation (5-7)

The generalized expression represented by the map is:

Z = o(@(C' ,D'),@(A'B'),@(A,B',C'),@(A',C,D')) (5-7)

As it is apparent from the map~ the complement of the

expression is:

25

Z' = o(@(B,D) ,@(A,C)) (5-8)

Performing the DeMorgan's operation upon Z 1 will result in a

solution that is identical to the Distributive equivalence

of Z, which is:

While the Karnaugh Map is an effective aid in general­

izing both the complement and the distributive equivalent

solution of small switching equations, it loses its potential

practicality when dealing with large~ multivariable equa­

tions. Fortunately, mechanized methods exist; and one

method which is capable of generating the prime implicants

of the complement and those of the distributive equivalent

has been perfected and successfully computerized (40).

5.4 The Term Simplification or the

&-Product

The term simplification operation or the "&-Product" is

an operation which involves one term and a group of terms~

and which performs the maximal simplification of the first

term as such that it does not conflict with the terms con­

tained in the group. The operation was initially conceived

by J. B. Surjaatmadja and E. C. Fitch (41) in 1975. The

product can be represented as:

26

(5-10)

where "A" and 11 a 11 are terms o:f n variables and 11 B11 is a set

of terms, all of the same type; e.g., only one operator is

used for representing each of the terms. When projected in

the Karnaugh Map, the 11 &-Product performs a critical expan-

sion of the term "a" cube as such that it will not inter-

sect the 11 B11 cube (see Figure J).

x1xzx3

000 001 011 010 110 111 101 100

Figure 3. Karnaugh Map Showing the
&-Product

The product is best performed using a "clause table"

format as follows:

B11'B12' ••• , Bln

B21 'B22' "•" ' B2n

27

. . . ' A) =
n

... , a) &
n 5-11)

B 1 ,B 2 , ••• , B m m · m

A clause table is an array repres·entation of the terms with-

out the inclusion of their operators. Each term is repre-

sented by a row, while each column relates to a variable of

the system. Unrepresented variables are listed as 11 ..,... 11 s,

denoting indeterminate variable values. The operation is

most conveniently perform~d in two steps:

1. Modify the 11 B11 matrix by replacing each Bij-

element (or literal) by element a.,. provided by
. J

B. . is not equal to a and none of the two
1J J

elements is a 11 - 11 •

2. Select a minimal combination of variables

(columns) such that each term (or row) of "B"

is represented at least once by the combina-

tion. This minimal combination represents the

result of the &-product.

J. The product is termed as unsuccessful if no

such combination exists; in other words, the

product will not be successful if one of the

rows of the modified B-matrix i,s empty.

As an illustration of the procedure, consider the fol-

lowing equations:

28

(5-12)

The matrix representation of B would be:

x1 ' x2 ' XJ '
B = XJ x4 x5 (5-14)

x2 x5 x6

Modification of the "B" matrix relative to "a" gives:

x1 XJ

B = x4 v (5-15)

x2 ' X6'

It can be verified that a minimal coverage of all

B-terms is obtained by three variables,__which can be satis-

fied by four solutions:

A = @(X1 ,X4 r ,X6') (5-16a)

= @(2}1 ,x2' ,x4 v) (5-16b)

= @(x2 v ~x3 ,x4 v) (5-16c)

= @(XJ jXq r ,x6 v) (5-16d)

Each of these solutions is the minimal reduction of term

"a" with respect to "B".

5.5 The Synthesis of Single

Terminal Networks

There are unlimited possibilities as to how a designer

can formulate a desired network. However, it is generally

29

accepted that simplification of the network expression would

at least provide an intermediate step towards the optimal

reduction of the network implementation. This is especially

true for networks having only one output~ where optimal

simplification of the output expression would generally lead

towards a near minimal network implementation.

For the simplification of functions having less than 6

variables, the use of Karnaugh Maps for performing the

synthesis is irrefutable. However, for systems with higher

numbers of inputs the utilization of maps is not practical.

For such systems\ the application of the consensus approach

together with the complementation approach has been proven

to be very successful. In this approach, the consensus is

used to generate the prime implicants of the network equa-

tions while complementation produces the don't cares of the

system. The practicality of the method can be demonstrated

using the 10-variable example problem presented in the

Truth Table of Table VI.

TABLE VI

TRUTH TABLE

a b c d e f g h i j z

1 0 1 0 1 0 1 0 1 0 1
1 1 0 1 1 0 1 0 1 1 1
0 1 0 1 1 0 1 1 1 1

1 0 0 1 0 1 0 0 1 0 0
0 1 0 0 1 0 1 0 1 0 0

30

It is assumed that all other unknown machine states are

don't cares. The representation of Z is as follows:

Z = o(@(a,b 1 ,c,d 1 ,e,f 1 ,g,h 1 ,i,j') ,@(a,b,c' ,d,e,f' ,g,

hV ,i,j),@(a' ,b,c 1 ,d,e,f' ,g,i,j))
(5-17)

It can be verified that the only consensus operation that

can be performed is between the second and the third term,

which results in:

z2 = @(b,c 1 ,d;e,f' ,g,h' ,i,j) (5-18)

which replaces the second term of Equation (5-17).

Furthermore, complementation of the zr function gives

the expression of both the don't cares and the Z-expression

in combination. The complement can be derived to and will

result in the following:

Zd = o (@ (c, e) , @ (d, e) , @ (a, b) , @ (a r , b r) ,
0 c • (5-19)

By selecting only the necessary terms of Zd needed to • c •

cover Z, the minimal representation of Z is as follows:

Z = o(®(c,e),@(d,e)) (5-20)

which shows a substantial reduction of z. The absolute mini.-

mal implementation is obtained by applying the Distribution

theorem; resulting i.n the following minimal expression:

Z = ¢(~e,~(c,d)) (5-21)

If Z is an AND-OR-NOT relationship, with an AND for ¢ and an

OR for ~' the circuit representation is the two-element

circuit shown in Figure 4.

z

Figure 4. Circuit Representation of
the System Represented
in Table VI

5.6 The Synthesis of Multi-

Terminal Networks

When the network that is to be synthesized has more

31

than one output, individual minimization of each output may

fail to produce a minimal network (39). Under such circum-

stances, the importance of synthesizing the network as one

unified system cannot be ignored.

There are various techniques available for performing

multi-terminal network synthesis (43, 43, 44, 45). However,

the application of these methods in Fluid Logic pose a

serious problem; as the success of these methods depends

upon the utilization of unlimited fan-in elements--a feature

not generally found in fluid logic elements. Therefore, it

32

is important that the selected simplification method be con­

structed as such that it is effective for limited fan-in

elements as well.

The method advanced in this research effort performs

the simplification using the following steps:

1. For each machine state, group the outputs

which have an ON or 11 1 11 state~

2. Using the &-Product, simplify each input

state with respect to all "Zero states" of the

associated group of outputs. Classify as

"Zero States" all input states which have a

zero output for one or more outputs of the

group under consideration.

J. Tabulate the coverage of each simplified term

over the original terms. Here, Term "A" is

said to cover Term 11 B11 if all elements of "A"

are contained in "B".

4. Based upon the term coverage, select a minimal

combination of terms to represent each output.

As an illustration, consider the "Truth Table" as rep­

resented by the first three columns of the Multi-Terminal

Synthesis Table of Table VII. The first term of this table

produces only one output, e.g., z3 • Therefore, the "group"

of outputs relating to the first input state contain only

z3 ; and as the zero states of z3 are States 4, 5, 6, and 7,

the &-Product of State 1 must be performed relative to these

zero states; which results in the term "a" (see Column 4).

JJ

TABLE VII

MULTI-TERMINAL SYNTHESIS TABLE

Outputs Input States Simplified Term
No. Term Coverage

z I z2 z3 a b c d e f a b c d e f Term No.

I 0
,..,

I I 0 I 0 I 0 I I v - - - - -2 0 I I 0 0 I 0 I 0 0 0 - - - - 2,8
3 I I I 0 I I 0 I 0 - I I - - - 3
4 I I 0 0 I 0 0 I 0 - - 0 0 - - 4,8
5 I 0 0 0 I 0 I I 0 - - - I 1 - 5
6 0 0 0 0 I 0 I 0 0 - - - I 0 0 6
7 I I 0 0 I 0 I 0 I - - - - - I 7
8 I I I 0 0 0 0 0 0 - 0 0 - - - 8

Similarly, State (2) has two outputs -- z2 and z3 -- and

hence the &-Product is performed against States 1 , 4, 5, 6,

and 7- The simplified terms are tabulated in the fourth

column of Table VII.

After the fourth column has been completed, the next

important step is the accounting of the term coverage of

each simplified term. As an illustration consider the

second simplified term of Tabl.e VI I. Because of the fact,

that ab = 00 is contained in Terms 2 and 8 (see Column 2),

this simplified term is said t,o cover both Terms 2 and 8;

and this information is tabulated in Column 5.

The final task is the selection of the minimal repre-

sentation of the network. This selection can be performed

by using any of the available accounting techniques; which

results in the following equations:

zt = o(@(b,c) ,@(c' ,d') ,@(d, e) ~@(f))

z2 = o(@(a' ~b') ,@(b,c) ~@(c' ,d') ,@(f))

ZJ = o(@(a) ~@(a' ,b') ,@(b,c))

= o(@(a) ,@(b') ,@(c))

(5-22a)

(5-22b)

(5-22c)

As the third term of Equation (5-22c) also covers the first

machine state, the Term "a" is redundant, and hence it can

be eliminatedo Furthermore, in order to avoid individual

complementation of "b", the earlier form of the second term

should be retained; which gives the following simplified

version of Equation (5-22c):

z3 = o(®(a' ,b') ,@(c)) (5-22d)

When the expressions of z 1 , z 2 , z 3 are conventional

disjunctive equations, only nine elements are required for

their implementation. The network representation is shown

in Figure 5. Note that the application of individual

synthesis may result in a more simplified expression; how­

ever, the implementation of such expressions do not always

result in a simplified network. For example, by individual

synthesis~ the above example will produce:

z1 = o(@(b 9 ,e 1),@(b,e),@(f))

z2 = o(@(b',e'),@(a',c),@(cv,dv),@(f))

z 3 = o(@(c),@(b 1))

(5-2Ja)

(5-23b)

(5-2Jc)

d

e

b

c

c

d

a

b

Figure 5.

b-0

Network Representation of
Equation (5-22)

Figure 6. Network Representation of
Equation (5-23)

35

36

Implementation of the above equations shows that the

simplicity of the equations are not reflected in the actual

network construction as shown in Figure 6.

5.7 Three-Level Synthesis of

NOR-Logic Networks

NOR logic elements play an important role in Fluid

Logic. This is attributed to the fact, that NOR elements

are not only functionally complete, but also that they are

basically constructed to have many inputs--a feature which

is a key towards both simplification and increasing circuit

speed.

The synthesis of NOR logic networks requires special

attention. It is believed, that a minimal network configura-

tion can be obtained when the circuit is constructed with

three levels--the complementation level, the conjunction

level, and the disjunction level. The term "level" is used

to represent the number of elements through which an input

signal to an element under consideration must transgress in

order to reach the output.

Basically, a three-level network can be obtained from a

two-stage expression as follows:

eoo),@(X ,X' ooo) •••) n m (5-24)

where each X. can be substituted by a complemented, uncomple-l .

mented, or indeterminate variable value; and where both

operators o and @ are NOR operators. While the

37

implementation of such expressions is quite obvious, it is a

fact that the commonly found problem descriptions are not

given in NOR formso In fact, most problem descriptions are

given in disjunctive, AND-OR-NOT forms. In such cases, the

NOR-forms can be developed using the following steps:

1. Simplify the 11 0 11 states of the disjunctive

function; using all unspecified machine states

as don't cares.

2. Using the DeMorgan 1 s law, complement the

expression in order to obtain its complementary

conjunctive expression.

J. The NOR-form can be constructed directly from

the resulting conjunctive equation, by replacing

all operators by 11 ,.i, 11 s.

In order to illustrate this procedure, consider the

truth table shown in Table VI. Having assumed that the

terms represented in the table are conventional product

terms, the equation of the complement Z1 is:

Z ' ((b' 'd v f v h'. "t) ('b.' d' f' =+.a, ,c , ,e, ,g, ,l,J ,. a, ;c , ,e, ,

(5-25)

The unknown don't cares can be generated by complementing

the Z expression, which results in the combination of both

the Z1 and the don't care expressions as follows:

Zd' = +(.(e 9),.(f),.(g'),.(i'),.(c',j') •••) .c. (5-26)

Using ayailable accounting techniques, it can be derived

)8

that the minimal coverage can be obtained by the fifth term

of Z' ; and hence: d.c.

Z 1 = +.(c 1 ,j 1) (5-27)

Complementation using the DeMorgan's law results in:

Z = .+(c,j) (5-28)

The final step is the substitution of 11 ~ 11 operators for all

the operators of Equation (5-28), which becomes:

Z =t~· (c,j) (5-29)

which can be represented by the two element network shown in

Figure 7.

t-----~~--z

Figure 7. Network Representation of
Equation (5-29)

Although, in general, near minimal networks are obtained

by this approach, in some special types of problems further

simplification can be obtained by rearranging the network

implementation. A most successful technique has been

presented in References (39) and (46) 1 which will not be

discussed in this presentation.

39

CHAPTER VI

SEQUENTIAL LOGIC SYNTHESIS

6.1 Philosophy of the Synthesis

Sequential Logic Synthesis is the process of transform­

ing a sequential problem into one or more combinational

logic problems in a most efficient manner. A successful

synthesis is one which leads to the development of minimal

hardware networks.

As initially conceived by Huffman (6) in 1954, a

sequential circuit synthesis is best performed by reducing

it to the problem of deriving the intended outputs, called

the primary outputs, and the problem of deriving the

secondary outputs which are necessary for the activation and

deactivation of memory elements needed by the sequential

systemo Memory elements are required in sequential networks

as they are the only means for recording the history of the

past machine states--a charactBristic feature which dis­

tinguishes sequential from combinational networks.

In order to provide a convenient basis for the discus­

sion of the approach, the various steps involved. in the

synthesis are discussed individually. These are:

1. The formulation of the logic description

2. The selection of the peripheral circuits

40

J. The simplification of the logic description

4. The assignment of memories

5. The formulation of the network equations.

6.2 The Formulation of the Logic

Description

41

There are various ways a designer can represent his

problem: by a Timing Chart, a Primitive Flow Table, a

Synthesis Table, a Sequence Matrix, and by a Logic Specifica­

tion Chart. The utilization of timing charts are restricted

to regularly activated or deterministic circuits; while

primitive flow tables are not practical for systems with

large numbers of variables. This leaves three equally impor­

tant discriptive methods which will be discussed in this

presentation.

The Synthesis Table is the easiest one to construct.

It essentially lists all machine states in one column while

recording the next possible states in another column. A

typical synthesis table is shown in Table VIII. The first

column of the table contains the identification numbers of

each machine state, while in the next column, the output

states are listed. The third column contains the input

states of each machine state. Finally, all next possible

states of each machine state are listed in Column 4. The

remaining section of this table is reserved for performing

the synthesis.

TABLE VIII

THE SYNTHESIS TABLE

No. Outputs Inputs
Next States Synthesis z1 z2 z3 a b c

1 0 0 0 0 0 0 2, 8
2 0 0 1 1 0 0 1, 3

3 0 0 1 1 1 0 4, 6
4 1 0 1 1 0 0 3, 5
5 1 1 1 1 0 1 2, 6
6 1 1 1 1 1 1 5, 7
7 1 0 1 1 1 0 6, 8

8 1 0 0 0 1 0 1

The interpretation of the synthesis table is quite

obvious, as it merely is a compilation of states and their

associated next states. For example, State 3 has an output

state z1 rz 2 vz3 and an input state abc'. States 4 and 6 are

listed as the next possible states of State 3 following

input signal changes of b and c, respectively. Note that

conventional product terms are still utilized, as they pro-

vide the best logical interactions between the syst~m and

its designer.

The Sequence Matrix Representation resembles closely

the Synthesis Table, with one major difference where the

recording of the next states is performed in a matrix format.

In this matrix representation, next states are recorded as

11 1"s in the columns of the "Next State Matrix" that correspond

to the next states under consideration. To illustrate this

representation method, the problem of Table VIII is again

reflected in Figure 8, but in a sequence matrix format.

OutEuts InEuts Next States
No. z1 z 2 z 3 a b c 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 0 1 1 0 0 1 0 1 0 0 0 0 0
3 0 0 1 1 1 0 0 0 0 1 0 1 0 0
4 1 0 1 1 0 0 0 0 1 0 1 0 0 0
5 1 1 1 1 0 1 0 1 0 0 0 1 0 0
6 1 1 1 1 1 1 0 0 0 0 1 0 1 0
7 1 0 1 1 1 0 0 0 0 0 0 1 0 1
8 1 0 0 0 1 0 1 0 0 0 0 0 0 0

Figure 8. The Sequence Matrix Representation

Comparing Figure 8 to the Synthesis Table of Table

VIII, it can be agreed that the output and input matrices of

Figure 8 is identical to the second and third column of the

synthesis table. The fourth column is trans.formed into a

"Next State Matrix", which is the third matrix of Figure 8o

The interpretation of this matrix can be most conveniently

performed by observing the locations of the 11 1 11 entries in

the matrix. For example, the next states of State 5 are

States 2 and 6, which are reflected as "1"s in Row 5 1

Columns 2 and 6.

Although a substantial expansion of the next state

representation is apparent in the matrix format, it is

44

realized that the Sequence Matrix is most appropriate for

synthesizing by digital computers, as it requires a minimal

amount of computer core.

The third logic description medium is the Logic Specifi-

cation Chart (LSC)Q An LSC is a modified primitive flow

table where the input states are arranged in a random

manner. Unused input states are not represented in the

chart, as can be seen in the LSC of Table IX. Note that the

example problem of Table VIII is utilized for comparison

purposes.

The mechanics of the LSC is identical to that of the

Primitive Flow Table. Shown in parentheses are the "stable"

states of the system, while the non~paranthetical entries

indicate the next states or the "unstable states". A machine

state is called stable if it does not change state without a

change in the inputs.

TABLE IX

THE LOGIC SPECIFICATION CHART

Outputs In~ut States (abc)
z1 z2 z3 000 100 110 101 111 010

0 0 0 (1) 2 8
0 0 1 1 (2) 3
0 0 1 4 (3) 6
1 0 1 (4) 3 5
1 1 1 2 (5) 6
1 1 1 7 5 (6)
1 0 1 (7) 6 8
1 0 0 1 (8 ~

Because of its format, the LSC provides a convenient

means for an in-depth observation of the logic system. Its

potential as a descriptive means of recording a logic prob­

lem has been demonstrated by the many complex procedures

which has been developed based upon its forerunner, the

primitive flow table.

6.3 The Selection of Peripheral

Equipment

In the past, the selection of peripheral equipment has

been totally excluded from the synthesis. No attempt was

made to select such equipment to be commensurate to the prob­

lem description, and the synthesis was performed based upon

the preselected input-output circuits. It is realized,

however, that the utilization of different types input-output

circuits may cause a complete modification of the network

function. Therefore, it is the intention of this section to

formulate a selection criterion which may result in the

development of minimal hardware networks.

While there are different types of input elements that

are available, their utilization in fluid logic circuits are

basically identical. For moving part input elements, they

may be normally closed or normally open three-way valves; or

they may even be constructed using four-way valves (see

Figures 9a, b). There are also various non-moving part

sensing devices, such as the "proximity sensor" and the

"interruptable jet sensor" shown in Figures 9c, d.

46

In the formulation of the logic specification, addi-

tional input variables generally would add to the complexity

of the specification. Therefore, input reduction schemes

have been attempted in the past in order to avoid unneces-

sary proliferation of the input variables. A most practical

scheme can be observed in Figure 10. The following limita-

tion is imposed in order that two input signals can be

combined:

(a)

object

f'-'\\~ '\\. "0. ~1 -1r
~j~-~

a.

I

-.-+----+--_.,. 0. L!.J

(b)

(c) (d)

Figure 9. Various Input Sensing Devices

"Two logic signals can be combined to form one single

variable and its complement if and only if the two signals

never occur simultaneously and if a change of one always

leads to the change of the other".

_Q '

Q.

s c
F-f

0 R
c

b

Figure 10. An Input Reduction Scheme

A classic example where such substitution can be per-

formed is the cylinder circuit shown in Figure 11. If the

recognized conditions of the cylinder are only its fully

extended and fully retracted positions, a new variable can

be introduced to replace the two original variables, a and b.

It is realized, that the utilization of such input reduction

schemes not only reduces the complexity of the logic specifi­

cation, but also eliminates the need for individual variable

complementations of the associated inputs.

~1ile the selection criterion of i~put circuits are

most straightforward, the task of selecting the most suit­

alJle type of output circuits is not as simple. This is

attributed to the fact that the selection of the output

circuits influences the synthesis of the network; and there­

fore, incorrect selection of such circuits may proliferate

the complexity of the implemented network.

[I

p p

p
b

c'
Figure 11. A Typical Input Circuit

Although there are many types of output circuits avail­

able, basically two types should be recognized; which are:

a. Output circuits with spring-return actuated

power elements,

b. Output circuits with detented power elements.

Basically, the spring-return type power elements trans­

mits power only when it is actuated; while the detented type

retains its actuated state until another signal causes it to

change. It is obvious that each of these types of circuits

has its own effective regions, each type being more advan­

tageous in its designated operating conditions.

In order to enable further discussion concerning the

output selection approach, the definition of "active" and

"passive" outputs need to be considered. An output is said

to be "active" at a particular machine state if the stat~

under discussion may cause the particular output to switch.

In other words~ an active output is characterized by one or

more previous outputs which have a different output state.

On the other hand, an output which inherits its current

state from its previous states is termed as a passive output.

When the system output exhibits a large number of pas­

sive states, the utilization of a detented output element is

advantageous as it permits the assessment of the passive

states as don't care states. Note, however, that the imple-

mentation of such detented output elements requires the

generation of two individual signals--the 11 Set 11 and "Reset"

signals--compared to the single signal configuration when

spring-return power elements are used~ A trade-off point

between the two implementation schemes is, therefore,

recognized; which in one argument involves the simplification

that is obtained when additional don't cares are available,

50

while the other involves the obvious reduction achieved when

a single signal representation is utilized.
j

Because of the random nature of logic problems, no

method exists which actually can predict the degree of sim-

plification that can be gained by each of the above imple-

mentation schemes. Fortunately, there are only very few

solutions which can be gener~ted by the two schemes; and

therefore, direct comparisons between the resulting expres-

sions seem to be quite suitable.

When such a comparative approach is not desired, a sta-

tistical means can be conducted for predicting the probable

simplification which can be achieved by each implementation

scheme. It is known that an association of two terms can

either be or not be simplified; and if it is assumed that

each case can occur with equal probability, then it is con-

eluded that the utilization of detented output valve.s would

be favorable if the following conditions are satisfied:

(6-1a)

(6-1b)

where N1 a and N0 a denotes the number of active 11 1" and "0"

states, respectively; while N1p and NOp are the number of

passive "1" and "0" states.

In order to illustrate the latter approach, the two

situations as reflected in Table X are considered. In this

table, the subscripts "a" and "p" are used to denote the

active and passive states of the outputs, respectively.

51

In Case 1, the number of active 11 1 11 and 11 0 11 states exceeds

the number of passive 11 0 11 and 11 1 11 states, respectively; and

therefore, according to Equations (6-1a, b), the utilization

of detented power elements would not be beneficia~. This

can be demonstrated by the single output representation of Z

as follows:

Z = +(.(a 1 ,c 1),.(b 9 ,c)) (6-2)

while the 11 Extend 11 / 11 Retract 11 output representation for the

detented peripheral element is:

ZE = +(.(a 1 ,c 1),.(b',c))

ZR = +(.(b,c),.(a,c'))

(6-Ja)

(6-Jb)

which, when c9mbined, are obviously more complex than the

expression of Equation (6-2). When more passive states pr~­

vail (such as in Case 2), the utilization of detented output

elements may b~ rewardingo This is evident from the simpli­

fication of the "Extend/Retract" expressions of Case 2;

which are:

ZE = • (a 1 , c ')

ZR = • (b, c)

(6-4a)

(6-4b)

TABLE X

TRUTH TABLE PORTRAYING ACTIVE AND
PASSIVE OUTPUTS

Inputs Case 1 Case

a b c z z

0 0 0 1 1
a a

0 0 1 1 1
p p

0 1 1 0 0 a a

0 1 0 1 1
a a

1 1 0 0 0 p p

1 1 1 0 0 p p

1 0 1 1 1 a p

1 0 0 0 0 a p

52

2

Note that the single output representation remains the

same for both cases. Implementation of Equations J6-2) and

(6~4a, b) reveals that the utilization of a detented output

element for Case 2 results in a mo~e simplified network than

when spring-return elements are used (see Figures 12a and b).

53

(a) Using a Spring-Return Output Element

1
T T

I I
r--

c

LA.. X
...11-1

tl
a.

- 4 •

:--iD
...... p

(b) Using a Detented Output Element

Figure 12. Output Circuit Implementation

6.4 The Simplification of the

Problem Description

The simplification or reduction of problem descriptions

has been considered as an important step in the synthesis.

Such simplification steps may range from a simple elimina-

tion of repetitive states, or it may be as extensive as

compressing the problem description in order to obtain a

minimal memory circuit. The utilization of such reduction

schemes has been quite rewarding; not only in reducing the

complexity of the problem, but also in reducing the amount

of hardware necessary for the final implementation of the

network.

The first known reduction method was applied by Huffman

(6) in his sequential synthesis technique in 1954. The main

purpose of the method is to minimize the number of memory

elements necessary for implementing the desired network by

minimizing the number of rows in the problem description,

which in this case is the primitive flow table. It was con-

tended that such minimal row representation would lead to

the development of a minimal element network.

However, such minimal reduction approaches have been

contested by many scientists (20, 21, 22, 23, 24, 25, 26,

27, 28, 29) who realized that a minimal row reduction scheme

would most likely not result in a minimal element network.

Yet, it has been shown that the elimination of unnecessary

states is a vital step for reducing the amount of hardware

required in the network implementation.

There are two types of machine state eli~ination

schemes. These are:

1. The elimination of all machine states having an

"uninfluential input state".

2. The elimination of machine states which can be

represented by other states.

55

The term "uninfluential input states" is used to repre­

sent input states which can be either included or excluded

from the logic description without altering the logical

interpretation of the specification.

When an LSC is used for the logic description of the

problem, the first reduction scheme involves the elimination

of columns, while the second scheme depicts the deletion of

rows of the charto It is therefore appropriate that the

terms "column reduction" and "row reduction" be utilized if

such charts are used in the synthesis. However, in order to

maintain the generality of the approach, these state reduc­

tion schemes are termed as "input state elimination" and

"redundant state elimination" in later parts of this

presentation.

6.4.1 Input State Elimination

Input state elimination is the process of eliminating a

group of machine states which has a common uninfuential

input state. Such a process, if successful, obviously would

result in a major simplification of the logic description;

and therefore an attempt should be made for detecting such

possibilities.

The following conditions must be satisfied in order

that an input state (or LSC column) can be eliminated:

a. All "circuit outputs" of the machine states which

are represented by the particular input state are

either don't cares (11 - 11) or zero.

b. There is only one next state listed for each

machine state under consideration.

c. For every machine state of the group there

should be no previous state that is also the

next state.

56

The term "circuit outputs" is used to denote the outputs

which are actually generated by the logic circuit. The term

is used to distinguish such types of outputs from the

"intended outputs", which may be emitted from the imple~

mented output element.

The input-eliminating procedure can be outlined as

follows:

1. Select a group of machine states having an input

state (or an LSC column) which satisfies Condi-

tions a, b, and c. If more than one such group

exist, select the largest group.

2. Replace every next state entry which is one of the

machine states in the group under consideration

by its listed next \state.

J. Eliminate all machine states represented in the

group and rearrange the logic specification.

4. Steps 1j 2, and 3 are performed iteratively

until all groups are considered.

It can be agreed that the above conditions and proce­

dures are strai&htforward. As an illustration, consider the

logic specification represented by the LSC shown in Table XI.

Assuming that all outputs listed in this table are circuit

outputs, it can be observed that all states contained in

Column I 2 have zero outputs. Furthermore, it can be veri-

fied that every state of Column I 2 satisfies Conditions b

and Co

TABLE XI

AN LSC WITH A REDUNDANT INPUT STATE

Outputs Input States

z1 z2 I1 I2 I3 I4 I5

1 0 (1) 2 3
0 0 (2)

0 1 6 (3) 5
1 1 7 (4) 5
0 1 6 3 (5)
1 1 (6) 8 9
0 0 1 (7)

0 0 (8) 4

1 0 1 (9) 10
1 1 9 (10)

The next step is modifying the specification in order

that the redundancy of Column I 2 is established. This is

performed by replacing all next state conditions by their

57

respective next states such that a "lock-up" which excludes

all machine states of I 2 is obtained. For example, State 1

has State 2 as its next state. As State 2 is to be I

58

eliminated, its substitution by State 4 in Column 3 would

provide a "bypassing" condition of State 2. Similarly,

Stat~ 1 becomes the next state of State 4 as it was the next

state of State 7. Elimination of Column I 2 results in the

reduced LSC shown in Table XII. j

TABLE XII

THE REDUCED LSC

Outputs Input States

z1 z2 I1 I3 I4 I5

' 1 0 (1')'' ' 4 3

0 1 6 (3) 5
1 1 1 (4) 5
0 1 6 3 (5)

1 1 (6) 4 9
1 0 1 (9) 10

1 1 9 (10)

It is apparent from; the r~duced LSC that a major sim­

plification of the chart was obtained. However, the fact

that only very few unmodified logic specifications can satis-

fy the conditions for input. state elimination, overshadows

the potential effectiveness of the approach. It is, there-

fore, realized that there exists a critical need for a

method capable of recogni~ing and .modifying logic

59

specifications such that it satisfies the input eliminating~

conditions. Such modifications can be performed by using

the following steps:

1. Select an input state which satisfies Input

Elimi~ating Conditions b and c. If more than

o~e such input state exist, select the one

representing the largest group of machine

states. For identification purposes, let this

input state be called "Input State A11 •

2. Inspect each output variable individually and

determine whether or not it satisfies Condition

a. If this condition is satisfied, proceed to

the next output variable.

J. For each output which does not satisfy Condition

a, observe whether or not there are active out­

put conditions represented by Input State A. If

such active outputs are present, proceed to

Step 6.

4. Replace the existing output element by a detented

output element.

5. Consider the next output variable and return to

Step 2. The procedure is completed if all out­

puts have been considered.

6. In the group of states under consideration,

observe whether or not all output conditions are

11 1"s. When only 11 1 11 states are found, replace

the existing output element by a spring return,

normally open (passing) output element.

7. If both "1" and "0" states are found, the respec-

tive input state cannot be eliminated. Proceed

to consider the next input state and return to

Step 1.

8. Otherwise, consider another output variable and

return to Step 2.

Basically, these modifications are concerned with the

selection of the proper output circuits in order that the

60

input state elimination can be performed. For example, the

utilization,of detented elements permits the assessment of

all passive states as zero or don't care states, which is a

necessary condition in the input elimination process. Step

6 of the above procedure reflects a "primitive" complementa­

tion approach for the generation of the intended zero states.

In order to illustrate the procedure 7 consider the

example problem represented by the LSC shown in Table XIII.

If it is assumed that the LSC was constr~cted in relation to

the spring return shown in Figure 1) 7 then the value of z1 =

1 indicates the extension of cylinder z1 while a zero

relates to the retraction process.

The active and passive outputs can be determined by

careful observation of Table XIII; underlining every output

which has a different previous state. Further inspection on

this table reveals that Column I 2 is the only column which

satisfies Input Eliminating Conditions b and c. However, it

is also realized that both outputs do not satisfy Condition

TABLE XIII

THE UNMODIFIED LSC

Outputs Input States

z1

1 -
1

0
-

0

1
-
1

0

1

1

0

z2 I~ I2 I3 I4 I_S_

0 (1) 2 3

1 (2) 4 -
1 6 (3) 5

0 7 (4) 5

0 6 3 (5)

1 (6) 8 9
1 1 (7)

1 (8) 4

0 1 (9) 10

0 4 9 (1 0)

1 •

z __.. X tV\

LU ...

p

Figure 13. The Assigned Output
Circuit

61

62

a as there are 11 1 11 outputs at States 2, 7, and 8; and

therefore, further assessment of these outputs is necessary.

Evaluation of Output z1 shows that all output conditions

are passive during the times the system is at input state.I2 ;

and hence, a detented output element is assigned to the z1

output circuit. Output z2 exhibits the other situation

·11111 outputs are found in all states of Column r 2 --which

requires the implementation of a normally extending output

circuit for z2 • These selected output circuit configura­

tions are shown in Figure 14.

p

Figure 14. The Selec'ted Output Circuits
for z1 and z2

63

After the selected output circuits are implemented, it

is necessary that the LSC be modified in order to incorpo-

rate the new circuit outputs, Zle' Zlr' and z 2r. This

modified LSC can be observed in Table XIV.

TABLE XIV

THE MODIFIED LSC

Outputs Input States

zle z lr z2r I1 I2 IJ I4

1 0 1 (1) 2 J

0 (2) 4

0 1 0 6 (J)

0 1 1 7 (4)

1 0 1 6 J

1 0 0 (6) 8 9

0 1 (7)

0 (8)

1 0 1' 1 (9)

0 1 1 4 9

I5

5

5

(5)

10

(10)

Observation of this modified LSC reveals that the cir-

cuit outputs zle' zlr' and z2r satisfy the input eliminating

Condition aa Therefore, Column I 2 can be eliminated;

resulting in the Reduced LSC shown in Table XV. It can be

agreed that the ability to modify the LSC provides

64

additional possibilities t'or the simplification of the logic

specificati~,on.

TABLE: XV

THE REDUCED LSC

Outputs Input Sta,_es

zle zl z I1 IJ I!± I5 r 2r

1 0 1 (1) 4 J
0 1 0 6 (J) 5

0 1 t .. ,. --.. - 1 (4) 5

1 0 1 6 J (5)

1 0 0 (6), 9
1 0 1 1 (9) 10

0 1 1 9 (10)

6.4.2. Redundant State Elimination

Redundant states are states which have been represented

by other states; either directly or indirectly. Therefore,

the presence of such states would unnecessarily complicate

the network description. In addition, a superfluous network

specification would lead towards the development of more

complex circuits, as each unnecessary state would require an

individual representation by the implemented network.

There are two types of redundancies which can occur in

a logic specification:

1. Duplication

2. Obviation

Duplication is a situation where a machine state, or a

group of machine states are represented more than once in

the logic specification. Obviation reflects a more complex

situation; in which a state, or a group of states are

indirectly represented by other machine states. For example~

States 1 and 5 of Table XVI are duplicates as they have

identical outputs and next states. It is, therefore, con­

cluded that State 5 is State 1 and, hence, State 5 can be

eliminated without changing the logic of the specification.

A different situation occurs between States 3 and 8.

This situation reflects an "obviation" condition as a new

State 9 can be constructed as such that it obviates both

States 3 and 8. This new state is tabulated at the bottom

part of Table XVI.

At this point, it is important to conclude that the

elimination of redundancies resulting from duplication would

not change the next state representation of the retained

state; while the combination of states in the obviation

process would generally increase the number of the next

state entries. Relating this fact to deterministic sequen­

tial networks 1 it can be agreed that the process of obviation

would transform such networks into stochastic type networks.

Although min~mal memory machines are obtained by the process~

the additional complexity created by such stochastic systems

would result in additional costs in the implementation of

the network (20~ 26). Therefore, the redundant state

elimination procedure discussed in this presentation would

distinguish two types of state reduction schemes--the

redundant state elimination for deterministic networks and

the one for stochastic networks.

TABLE XVI

LSC SHOWING DUPLICATION AND OBVIATION
OF STATES

Outputs Input States

z1 z2 I1 I2 I3 I4

0 0 (1) 2

0 1 1 (2) 4

1 1 6 (3)
1 0 7 (4) 3
0 0 (5) 2

1 0 7 (6) 8
0 1 5 (7) 6
1 5 (8)

1 1 5 6 (9)

6.4.3 The Redundant State Elimination for

Deterministic Networks

The redundant state elimination for deterministic

66

networks involves the detection of the duplication of states.

In order to provide a basis for further discussion of the

subject, the term "Duplicative State Equivalency" is

defined as follows:

Two machine states can be classified as "Duplicative

Equivalent" if the following conditions exist:

A. The two states have the same input state

B. The outputs are either identical~ or 1 where

disagreement occurs, don't cares (11 - 11) are

involved.

Co They have either the same or duplicative equiva-

lent next states.

Condition C shows that a duplicative equivalency may

depend upon the equivalency of other states. In order to

tackle this problem in a most efficient manner, the Equiva­
~

lent Pairs Chart (EPC), which has been widely used in the

Classical Synthesis Approach, will be used. An EPC is

basically a group of cells 1 constructed in a matrix form.

Each cell in the matrix represents the equivalency of its

coordinates; and by inserting an "X" in the cell, a non-

equivalent condition is given. One or more pairs of states

in the cell indicates a conditional equivalency; while an

empty cell means an unconditional equivalency. A conditional

equivalency requires that the pairs of states indicated in

the cell be equivalent in order 1that the pair of states

under consideration can be class'ified as equivalent. If

such equivalency is not achieved, an 11 X11 is entered in the

respective location.

68

As an illustration, consider the LSC of a deterministic

problem shown in Table XVII. Condition A states that a

duplicative equivalency between two states can only occur if

they have the same input; and therefore the construction of

one EPC for each LSC-column would be most appropriate.

Observation on the LSC reveals that the duplicative equiva­

lency of States 1 and 3 depends upon the equivalence of

States 2 and 4; and this latter, pair of states is entered

in the first cube, first column of the EPC of Column I 1

(see Figure 15). Furthermore, as States 1 and 7 has differ­

ent outputs 1 an X is inserted at location (1, ?).

Following the completion of the EPC, all conditional

equivalencies are observed whether or not they depend upon a

non-equivalent pair of states. If this is true, the condi-

tional equivalency becomes a non-equivalency and an X is

entered in the respective location. For example, the con-

ditional equivalency between States 1 and 9 depends upon the

equivalence of States 2 and 10 1 which happen to be

non-equivalent. An X is therefore inserted in location

(1, 9) to indicate the non-equivalency of these two states.

The finalized EPC 1 s can be observed in Figure 15; where each

remaining un-X-ed position indicates the duplicative

equivalency between its two candidates.

TABLE XVII

LSC FOR A DETERMINISTIC PROBLEM

Outputs Input States

z1 z2 I1 I2 I3 I4

0 1 (1) 2

0 0 3 (2)

0 1 (3) 4

1 1 (4) 5
1 0 (5) 6

0 0 7 (6)

1 1 (7) 8

0 1 9 (8)

0 1 (9) 10

1 1 (10) 11

1 0 (11) 12

0 0 13 (12)

1 (13) 14

0 3 (14)

70

3 4 X
7 8 X X

X 5,11 X 9 .~ 4,10 >< 10
/

13 2,14 X 14 X 3,9 X
1 3 7 9 2 4 8 10

Column r1 Column 12

Column 13 Column 14

Figure 15. The Equivalent Pairs Chart

6.4.4 The Substitution of Mod±fied

Machine States

Once the EPC's are completed, the equivalent states

must be combined in order to form a minimal state network.

In this step, an attempt is made to group the largest possi-

ble number of states to form new states; followed by the

careful selection of these new states to form the minimal

state machine. These groups, containing maximal combina­

tions of states which can co-exist together to form new

machine states, are defined as the "maximal equivalent

sets" of stateso

71

There are many approaches available which can be uti­

lized for deriving these maximal equivalent sets. However,

for extremely large problems, the partitioning method

advanced by A. Grasselli and F. Luccio (16, 17, 18) is con­

sidered to be most appropriate and is given in tabular form

in this presentation. The method can be performed using

the following steps:

1. Form an N-column array, each column being

related to a state of the N-state EPC. For

the convenience of this discussion, let the

columns of the array relate to the columns

of the EPC (with the exception of the last

column of the array which is not represented

in the EPC).

2. Start the iteration process by entering "1"s

in all columns of Row 1.

3o Consider the first column of the EPC.

4o Partition every row represented in the array

into two rows-~one containing all entries

except the one related to the column under

consideration; while the other containing the

excluded entry and all entries which relate

to the "un-X~ed" cells of the EPC-column

under consideration. Dashes are inserted in

locations where entires are being excluded.

5. Eliminate the row being partitioned.

6. Compare each newly generated row to the other

rows and eliminate the ones that are tdtally

contained in the other.

7. Consider the next EPC column and perform

Steps 3-7 until all EPC columns have been

assessed.

8. Each of the remaining rows reflects a maximal

equivalent set.

In order to illustrate this procedure, consider the

first EPC of Figure 15. As there are 5 states involved in

this EPC, a five column array is formed. Initially, the

72

array is a l~row array as shown in Row 1 of Table XVIII.

Considering the first column of the EPC, Row 1 can be par­

titioned into two rows as illustrated by Rows 2 and 3. Note

that Row 2 does not contain the first entry while Row 3

contains this first entry and the entry relating to State 13,

which is the only un-X-ed entry in the first EPC-column.

Following the generation of these two rows, Row 1 is elimi­

nated; which is shown as a checkmark in Table XVIII.

The next step involves the partioning of Rows 2 and 3

with respect to the second EPC-column. The partioning of

Row 2 results in the generation of Rows 4 and 5, which are

the group that excludes State 3 and the group that contains

State 3, respectively. Row 3 exhibits a different

73

situation~-the absence of State J in its representation

causes this row to be unchanged during the second stage of

this process. Progressing through the iteration, it can be

seen in Table XVIII that Rows J, 7, and 9 remain unchecked

andj hence, they represent the maximal equivalent sets of

the first LSC column.

TABLE XVIII

PARTITIONING TABLE

Row States
No. 1 J 7 9 1J

1 1 1 1 1 1/

2 1 1 1 1~
J 1 1

4 1 1 tV
5 1 1 -~
6 1 1 ~
7 1 1

8 1 -~
9 1 1

10 1 v
11 1 v

After all columns of the LSC has been considered, the

next step is to select a minimal combination of maximal

equivalent sets for representing each state of the chart.

This can be performed by means of available accounting tech­

niques (e.g., the method by W. V. Quine (31). For the

previous example, it can be shown that all equivalent sets

must be drafted in order- to represent all states of the LSC.

6.4.5 The Formulation of the Reduced

Logic Specification

Having selected the minimal number of equivalent sets

to cover the states of the logic specification, an attempt

is made towards the construction of a new compacted logic

specification, which is referred to as the "Reduced Logic

Specification" (RLS). When the LSC format is used, the term

"Reduced Specification Chart" (RSC) is commonplace. The

main objective of this attempt is to utilize the selected

equivalent sets and to project their output and next states

from the logic specification onto the RLS.

The approach is initiated by identifying the "Next

State Sets" which result from the grouping of states in the

maximal equivalent sets. A next state set is a group of

states which are the next states of states contained in an

equivalent set, and which have the same input state. For

example, the next state set of the equivalent set (1, 13) is

(2, 14) (see Table XVII). Similarly, the next state set of

Set (6, 12) is (7, 1J). Note that in deterministic cases

there are only one next state set for each equivalent set;

which may not be true for stochastic problems.

After the next state sets of each equivalent set have

75

been identified, the formulation of the RLS can be performed

using the following steps:

1. Identify each selected equivalent set by using

new state numbers. Assign each new state to a

row of the new logic specification.

2. In the first column of the RLS, list the combined

outputs of the selected sets in the respective

rowso The combination of the outputs can be

obtained by the *-product of all output states

represented in each set.

J. The logic interaction between the machine

states is formed by identifying each next state

set using a selected set which fully covers the

next state set under consideration. If no such

selected sets exist which can represent one or

more next state sets, use the least combination

of maximal equivalent sets in order to satisfy

these next state requirements.

In order to illustrate the formulation of the RLS, the

example problem represented in Table XVII is considered. As

the problem has been given in an LSC format, the retaining

of this format results in the development of the RSC. By

assigning the maximal equivalent sets (1, 1J), (2, 14),

(J, 9), (4, 10), (5, 11), (6, 12), (7, 1J) and (8.14) with

the new state numbers (1', 2', J', .Q., 8t), respectively,

the RSC can be constructed as shown in Table XIX. Note for

example that the next state set of "New" State 7 '(originally

76

States 7, 1J) is the set (8, 14); which is covered by the

11 New 11 State 8•.

TABLE XIX

THE REDUCED SPECIFICATION CHART

Outputs InJ?Ut States

z1 z2 I1 I2 IJ I4

0 1 (1') 2'

0 0 J' (2')

0 1 (J I) 4t

1 1 (4 r) 5'
1 0 (5') 6'
0 0 7' (6')

1 1 (79) 8'
0 1 J' (8')

It can be agreed that a major reduction of the problem

description has been achieved. At this moment it is impor-

tant to point out that the deterministic condition of the

problem has been retained in the RSCa

6a4.6 The Redundant State Elimination

for Stochastic Networks

Basically, the process of reducing a stochastic system

is identical to that of a deterministic network, with one

77

exception: that is the criterion of the equivalency. When

dealing with deterministic networks, the process of com­

bining the states is limited to the duplication of states.

Such an approach was selected in order that the given

deterministic problem remain deterministic throughout the

synthesis process. However, when the switching problem is

stochastic in nature, no limitation whatsoever is imposed as

to which states can or cannot coexist together to form the

new state. Therefore~ the main objective of this approach

should be the optimal reduction of the logic specification.

Therefore~ the formulation of the equivalency criterion

can be based upon both the obviation and duplication of

machine states~ which results in the following definition of

the machine sta~e equivalency:

Two machine states can be classified as equivalent if

the following conditions are met:

A. The two states are r.epresented by the same input

state.

B. The outputs are either identical, or, where

disagreement occurs, don 9 t cares ("-") are

involved.

C9 They have either the same~ or equivalent states;

or, when disagreement prevails, it should in­

volve stat'es with different input states.

In order to illustrate the reduction approach, the LSC

shown in Table XX is considered. The EPC 1 s of this LSC can

be constructed as shown in Figure 16o Note that States 2

7

8

TABLE XX

LSC FOR THE STOCHASTIC
PROBLEM

Outputs

z1

0

0

0

0

0

1

1

2,4
5 3. 7

6. 10

1

z2

0

1

1

0

1

1

1

0

Column I1

1. 5
6,10

9. 10 'X . '\.
3 7

Column I3

11

(1)

5

(5)

5

Input States

I2 13 14

2 3 6

(2) 10

(3) 10
(4) 8 9
4 7 10

4 3 (6)

(7) 6

(8) 9
2 3 (9)
2 7 (1 O)

·B
2

Column I2

9 X
10

2,4
3,7

3,7

6 9

Column I4

Figure 16~ The EPC for the
Stochastic Problem

78

79

and 4 are not equivalent when a duplicative criterion is

used.

The remaining steps in the reduction process is identi-

cal to the process conducted in solving the deterministic

case. It can be shown, that the maximal equivalent sets of

the LSC is as follows:

(1, 5), (2, 4), (3, 7), (3, 8), (6, 10), (9, 10).

Again, it can be observed that all the above maximal

equivalent sets are essential for the coverage of all states

of the machine. Numbering these sets consecutively by

1 1 , 2 1 , ••• , 6 1 , the RSC can be constructed as shown in

Table XXI.

TABLE XXI

RSC FOR THE STOCHASTIC PROBLEM

Outputs Input States

z1 z2 I1 I2 I3 I4

0 0 (1') 2' 3' 5'
0 1 11 (2') 41 6•

0 1 1 I (3') 5 I

1 1 1' (4 I) 6'
1 1 2' 3' (5 I)

1 0 21 .3' (6')

6.5 The Assignment of Memories

A sequential network is characterized by the presence

of memory functions--an important ingredient which enable

80

the network to record the history of the past machine states.

There are two ways a memory function can be satisfied; and

these are:

1. The application of available output variables

to perform the memory functions;

2. The implementation of actual memory elements

in the circuit.

It is realized that the utilization of available output

variables as memory variables would be desirable as they do

not require additional implementation for the "updating"

(or SET/RESET) of the memory functions. Unfortunately, not

all output variables can be used effectively for performing

the specified recording task. Moreover, available outputs

may not suffice the memory requirements of the network

specification. Therefore, actual memory elements may still

be required for complementing this task.

There are various conditions which must be followed in

order that this "output feedback" approach can be successful.

For instance, the state of an output variable can be effec­

tively used as a memory state of a machine state only if the

output is passive in the particular machine state. The

utilization of active outputs would lead to the generation

of races, and therefore, it will not be condoned in this

presentation. Furthermore, as the pattern of the output

81

actuation does not have any relationships which correspond

to the necessity for memory states, a utilization of an out-

put as a memory variable may not always result in the reduc-

tion of the memory elements required by the network. Under

such circumstances, it can be agreed that the output under

consideration should not be selected for performing the

particular memory function.

The assignment of the "actual" memories and the "output

feedback" memories is performed in a similar manner as in

the "non-classical" synthesis approaches, where each input

state is governed by an individual set of memory variables.

Such an approach would have permit the utilization of each

memory element as passive elements~~a feature which would

reduce the number of implemented elements by at least one

AND element.

The output assigning approach can be outlined as

follows:

1. For each input state~ count the number of states

2.

in the logic specification. The number of neces~

sary memories for each input state is represented

by the larger integer value of log2 (Ns)' where

N is the number of states having the particular
s

input state.

Select one output variable. The pairs of out-

puts which are representJng detented power ele-

ments are not considered individually but are

replaced by their 11 intended outputs".

J. Select one input state, which has not yet been

assigned an output feedback variable.

4. Partition the set of states represented by this

input state into two groups--the one which has

passive zero outputs and the one with passive

one outputs. Include all states which do not

satisfy these two partitioning conditions into

both ,groups.

5. Count the number of states of' the larger group

Determine the value of

log2 (N1)~ which represents the number of actual

memory elements that are still required for the

particular input state. If the larger integer

of this value is less than the value obtained

previously in Step 1, then, the application of

the output under consideration is successful.

If not~ disregard the results~ select the next

input state which has not yet been assigned an

output feedback variable and return to Step 4.

Perform Steps 2 to 5 iteratively until all out­

puts have been considered.

82

After the output feedback variables are selected and

applied, memory elements are assigned to the remaining non­

unique statesa The augmentation of these memories should

be performed such that minimal SET-ing and RESET-ing opera­

tions occur during the machine cycle.

In order to illustrate this output feedback and memory

83

augmentation procedure, consider the example problem given

in Table XXII. In this table, the active outputs are under~

lined as shown in the first two columns of the table. By

counting the number of states in each of the columns of the

LSC, it is realized that one memory element is required for

each input state. Partitioning the machine states of

Column I 1 with respect to Output z 1 results in two states

containing one state, which does not require the augmenta~

tion of actual memory devices. This shows that Output z 1

can be used as a memory variable in connection to Input

State I 1 • This information is recorded by listing the

passive states which are utilized as the memory states in

the "memory assignment" subtable (see Table XXII).

TABLE XXII

THE RSC WITH MEMORY ASSIGNMENTS

Outputs Input States Memory Assignment

z1 z2 It I2 I3 I4 zt z2 y1 y2

0 1 (1) 2 3 ,o 0 R 0 R

1 1 4 (2) 5 0 ~ -
4

',
6 (3) 1 0 ~ 0 - -

1 0 (4) 7 8 1 1 s 1 s -
0 1 2 (5) 8 1 0 R 1 s -
1 0 7 (6) 3 0 1 s 0

0 1 1 (7) 5 1 -- -
1 1 4 5 (8) - 1 - -

84

Partioning Column I 2 with respect to z2 proves to be

unsuccessful: The partitioned sets are Sets (2, ?) and (?),

which still requires the utilization of a memory; and, there­

fore, z2 cannot serve as a memory variable for Input State

I 2 • Further observation on Table XXII reveals that Output

z2 can perform a successful partitioned between States 5 and

6 (Column I 3).

As Columns I 1 and I 3 have been "memory augmented"

using the feedback outputs 1 only,Columns I 2 and I 4 need to

be considered further for additional memory elements. The

augmentation of the memory elements is performed by assign~

ing a different memory state for each non-unique machine

state. In order that a minimal number of SET-ing and

RESET-ing takes place, ari assignment in a Gray code form as

suggested by G. E. Maroney (21) is most appropriate. In the

example problem of Table XXII, it has been established that

each column requires only one memory element, and therefore,

a 11 0 11 is assigned to one non~unique state while the other

state is assigned a 11 1 11 • The memory augmentation can be

observed in the Y1 and Y2~columns where 11 0 11 s are assigned to

State 2 in Column Y1 and State 3 in Column Y2 ; and "1"s are

placed at States 7 and 8 in Columns Y1 and Y2 , respectively.

Aft.er the "0" and 11 1 11 states of the memory elements

have been determined, additional outputs are to be consid­

ered. These outputs are commonly known as th~ "secondary

outputs" of the sequential system. Secondary outputs are

output signals which are utilized for actuating the memory

85

elements. Basically, there are two actuating signals which

should be considered; namely, the SET and the RESET signals.

The SET state must be achieved in the machine states pre­

vious to the states where the "1 11 memory state is required.

Similarly~ the RESET state must occur prior to the states

where a 11 0 11 state is desired.

The assignment of the SET and RESET states are most

conveniently determined by the following steps:

1. For each augmented 11 0 11 condition~ assign 11 0 11

to all its previous states. Simi~arly, 11 1 11 s

are assigned to all previous states of an

augmented "1 11 condition.

2. For each memory element~ observe all 11 0 11 s and

11 1 11 s of the table and substitute RVs for 11 0 11 s

and S's for 11 1 11 s if they have a different

previous state.

As an illustration~ in the previous example, 11 0 11 s are

placed in the Y1 column at States 1 and 5 as these states

are the previous states of State 2. Examining States 1 and

5 reveals that the previous condition of Y1 is not a 11 0" and

therefore 11 R 9 s are inserted to indicate RESET states. The

completed memory assignment can be observed in Table XXII.

Actually~ memory actuation can be performed at any

state provided that the intended memory state is achieved.

In relation to this~ a SET and RESET state can be replaced

by all its previous states if conditions permit. For

example, in Column Y2 of the previous example~ the SET signal

86

of State 5 can be replaced by SET signals at States 2, 7,

and 8. However, in stochastic type problems (as in the

previous example) such substitution would generally increase

the complexity of the secondary output representations.

This is caused by,the fact that in stochastic problems, the

machine states may have multiple previous states.

On the other hand, deterministic problems will benefit

from such signal substitution schemes. A selection can be

made as where a SET or RESET should occur in order to avoid

the generation of seldomly used signals. Oftentimes, a

proper selection may lead towards a major reduction of the

network implementation.

Basically, the actuation signal selection approach

attempts to distinguish between states which have been used
J

for generating an output (either primary or secondary) and

states which are never used previously. The approach also

stresses the utilization of unaugmented machine states in

order to avoid the utilization of unessential memory

deviceso The selection criterion can be outlined as

follows:

1. Isolate the machine states which represent

solely "0 11 or "-" circuit outputs. Classify

these states as "unessential" states, while

the remaining states are termed as essential.

It should be noted that for detented output

elements, unessential states relate to the

passive states of the outputs.

2. Reclassify as essential all unessent~al states

which are connected to essential memory ele~

ments. Essential memory elements are memory

elements which have been used to represent

essential states.

3. Select one essential memory element.

4. Observe the SET state and inspect whether or

not it occurs in an augmented state. If so,

try to relocate the SET state by successively

moving it to a previous state until either an

unaugmented essential state is achieved or a

11 0 11 state prohibits further relocations of the

SET state. When no such unaugmented essential

state is found, try to locate an unaugmented

(unessential) state in a similar manner. If

the relocating scheme is still unsuccessful,

the final attempt is to locate an essential

augmented state. When all the above efforts

are fruitless, return the SET state to its

original state and classify this state and all

states that are connected to the augmented

memories as essential.

5. Observe the RESET state and perform relocations

as in Step 4. It should be noted that a 11 1!1

state would prohibit further relocation of a

RESET state.

6. Enter ll1 11 s in all states occurring between a

87

88

relocated SET state anq the required 11 1 11

location. Similarly, "0"s are inserted in all

locations between the relocated RESET and the

desired "0" states.

7. Perform Steps J through 6 iteratively until no

essential memories exist. The remaining

unessential memories are eliminated from the

tablee

In order to illustrate this procedure, consider the RSC

for the deterministic problem as shown in Table XXIII. Note

that the outputs z 1 and z 2 have been used as memory vari­

ables for columns I 2 and I 3 , respectively.

Outputs

z1 z2 I1

0 0 (1) - -
0 0

1 0 -
1 0

1 0

1 1 -
1 1

1 1 1

TABLE XXIII

RSC FOR A DETERMINISTIC PROBLEM
AND ITS MEMORY AUGMENTATION

Input States Memory Assignment

I2 IJ - I4 z1 z2 y1

2 R

(2) J 0 0

4 (J) 0 0

(4) 5 1 0

(5) 6 0

7 (6) s
8 (7) 1 1

(8) 1 1

y2

R

0

0

s
1

The essential states of this table are States 1, 3 1 and

6; and therefore 1 at this moment, only Memory Y2 is classi­

fied as essential. Furthermore, according to Step 2, State

5 is classified as essential due to its association with Y2 •

Observation of Y2 r~veals that the SET state cannot be

relocated as it is encompassed by the "0" and 11 1 11 required

states of Y2 • The RESET state shows a different situation.

It occurs in an augmented State 2; and a relocation can be

made to an unaugmented essential State 1.

Finally 1 the utilization of State q by Y2 causes Y1 to

be essential and, therefore, its SET and RESET should also

be considered. The relocated actuating signals can be

observed in Table XXIII.

6.6 The Formulation of the

Network Equations

Having reached this stage, the sequential part of the

synthesis has actually been completed. The remaining part

of the synthesis is pure combinational 1 as it involves only

the interpretation of the synthesized charts and simplifying

them in order to obtain the desired! minimal configuration.

6.6.1 The Simplification of the Input States

The simplification of the input states is a necessary

intermediate step towards the simplification of the network

representation. Such a step is especially useful when

multiple outputs (primary or secondary) are present, which

90

is a characteristic possessed by sequential systems.

The simplification process can be most conveniently

pursued using the &-product which has been discussed in

Chapter V. The process is initiated by tabulating all input

states including the input states which have been eliminated

in the previous simplification steps. The &-product is then

performed upon each input state with respect to all other

states. As an example~ consider the Input State Simplifica­

tion Table shown in Table XXIV, in which the input states

are presented in a numerical form.

The simplification of the first input state, for

example, is achieved by the following product:

0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 1 0 0

0 0 0 1 0 0

A = (1 0 0 0 0 O) & 0 0 1 1 0 0 = (1 0 - 0 - -)

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

(6-5)

The remaining input states are simplified in a similar

manner. Note that the final input state of Table XXIV has

been eliminated previously, and is therefore not simplified.

91

TABLE XXIV

THE INPUT STATE SIMPLIFICATION TABLE

Original Input Simplified Input
States States

a b c d e f a b c d e f

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1

1 0 0 1 0 0 1 0 1

0 0 0 1 0 0 0 0 1

0 0 1 1 0 0 1 1

0 0 1 0 0 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 1

*0 0 0 0 0 0

*eliminated in previous steps.

6.6.2 The Interpretation of the

Synthesis Results

After the input states have been individually simpli~

fied 9 the interpretation of the synthesis results is quite

straightforward. The representation of each. machine state

is simply the combination of the input state and its

memory augmentation.

It should be noted, that there are various types of out-

puts which should be considered. These are:

1. The primary outputs which relates to spring

return output elements or other "single"

output representations.

2. The primary outputs which relate to detented

output elements.

J. The secondary outputs.

Spring return output elements would duplicate the

actuating signal and, therefore 9 the output representations

of such elements are derived by equating the "1"s of the

92

desired output. All 11 -"s and unspecified states can be con-

sidered as don't cares.

The detented outputs have two circuit output represen­

tations for each intended output, which are opposing each

other. Depending upon their particular function, they are

often denoted as SET/RESET signals or as EXTEND/RETRACT

sig~als. The circuit output representation for the SET

signal is obtained by replacing all passive "1"s of the

intended output by "-"s, while the representation for the

RESET signal is derived by replacing all active "O"s by

11 1"s, all passive "0" by "-"s, and all "1"s by 11 0"s. Using

this substitution approach, no conflicting outputs can

occur. The secondary outputs are treat~d in the same manner

as the detented outputs; by assuming the "S"s as active "1"s

and the 11 R1'1 s as active 11 0 11 s.

It is realized, that outputs represented by more than

one machine state, or outputs which includes some don 9 t care

states may be further simplified. However, due to the

93

presence of other outputs (either primary or secondary) a

simplification which includes the further reduction of the

input states is useless; it may even complicate the imple-

mentation of the network equation. Simplification should,

therefore, be performed in relation to the memory elements,

and this is best realized by simplifying the representation

in parts, where each part possesses the same input state.

For example, considering the synthesized chart of Table

XXII, the representation of th z 1-SET signal is:

z1 = +(.(I2,Y1'),.(I4, Y2'),.(I4,Y2)) (6-6)

As all unspecified states and the 11 1 11 states are con-

sidered as donVt cares, the complementation approach would

be most appropriate. Hence, the complement is derived as

follows:

z v
1

= +(.(I1,z1v),.(I2,Y1),.(I3,Z2),.(I4,0))

(6~7)

Or, representation of z1 v relative to each input state

results in the following representat~ons for input states I 2

(6-Ba)

(6-8b)

Complementing the above expressions while confining the

complement in the respective columns, results in the

following:

z1 = • (+ I 2 , + (I 2 ' ,Y 1 1)) = 0 (I2' y ')
I2

1 (6-9a)

z1 = .(+I4,+(I4',1)) = .(I4, 1)
I4

(6-9b)

The z 1 expression is, therefore, simplified as follows:

(6-10)

It should be noted at this time that the direct complementa-

tion of the z 1 r expression of Equation (6-7) may not be

successful as each input state may have been optimally

simplifiedo

The interpretation of the synthesis results concludes

the presentation of the sequential logic synthesis, which

has been thoroughly discussed in this chapter. Simple

example problems have been used throughout the discussion in

order to provide a clear i~sight into the procedure.

6.7 Procedure Outline

The necessary steps and operations required for syn-

thesizing asynchronous sequential networks have been

compiled and presented in this chaptero In order to aid the

designer in the utilization of the operations in a most

efficient manner, the synthesis method is summarized in a

step-by-step outline as follows:

1. Develop the logic specification from the

2.

problem description.

Recognize the type of the problem. Determine

whether it is a combinational, deterministic

sequential 1 or a stochastic sequential network.

J. Simplify the input states by using the 11 &~

product 11 o This step can actually be performed

at any stage in the synthesis 1 without alter­

ing the final results.

4. Eliminate the uninfluential input states, if

any. When this step is performed 1 the utiliza­

tion of the selected output elements is

mandatory.

5. Eliminate the redundant states in the system.

6. Determine the active and passive outputs.

7. When Step 4 is unsuccessful 1 determine the most

appropriate output elements for each output

variable.

8. Try to incorporate the output variables as

memory variables of the system. An output

variable should not be used for representing

more than one input state.

9. Assign the remaining unaugmented states by

actual memory variables.

10. Assign SET and RESET signals to each of the

memory elements.

11. Derive the primary and secondary output equa~

Utilize the complementation approach

95

96

for the simplification of the memory states.

12. Implement the network equations.

CHAPTER VII

VERIFICATION OF THE METHOD

7.1 General

The combinational and sequential synthesis approaches

discussed in this presentation offers a powerful means for

assessing complex fluid logic problems. It is also claimed

that the method offers near minimal simplification of the

network implementation.

It is the purpose of this chapter to properly justify

these claims and show the effectiveness of the method rela~

tive to existing synthesis methods.

7.2 Comparisons to Other Techniques

It is realized that no mathematical proof exists which

can be used for verifying the capability of a synthesis

method for producing minimal networks. This is catised by

the random behavior of the logic problem. Therefore, the

only means for verifying the minimality of a synthesis

result is by comparing it to the results of other existing

synthesis methods. For the purpose of this discussion,

three known synthesis techniques were selected, which are

the Classical 1 the Change Signal (20) and the Total Signal

methods (21). Eight problems of different types are

97

re~olved using each of these techniques, and are implemented

with available logic elements. These eight problems are

presented in the Appendix of this presentation.

After each result was obtained and implemented, the

number of logic elements used were counted, and they are

tabulated in Table XXV. Compilation of the results show

that the method advanced in this presentation produces less

complex networks than the ones resulting from other

synthesis methods. Although the degree of reduction varies

from one problem to the other, no case of network expansion

was encountered.

TABLE XXV

COMPARISONS OF THE IMPLEMENTED RESULTS

Number oflmplementedEl'ements :WE!ductioir Relative to:

Pro- Class- Change Total Class- Change Total
btem

New
ical Sign<il · Signal ical Signal Signal

No.: Method Method Method Method Method Method Method

1 11 15 * 13 26. 6o/o - 15.7%

' 2 19 27 ... 22 29.6% 13.6o/o -
3 11 15 13 20 26.6% 15. 7o/o 45.0o/o

4 10 13 ... 25 25. 7o/o 60 .Oo/o .,. -
5 11 30 * 13 63.3o/o - 15. 7o/o

6 0 6 6 8 100.0o/o 100. Oo/o 100.0o/o

7 7 16 9 7 56. 2o/o 22.2o/o 0. Oo/o

8 12 41 12 36 70. 7o/o 0. Oo/o 66. 6o/o

':' Not applicable.

99

7.3 Computer Programming

Undoubtedly, the existence of computerized synthesis

programs would be most valuable to designers who want to

design large scale fluid logic systems. The use of digital

computers would most likely avoid the creation of "common

human errors" during the synthesis process of the network.

Such errors tend to occur during an enduring process of

manual synthesis. It is, therefore, realized that computer

programming should be directed towards the synthesis of

large scale networks. Note that a computer program capable'

of resolving only small networks is worthless; as such small

networks are most conveniently resolved manually.

Therefore, a synthesis method can be classified as

suitable for large scale systems only if it is developed as

such that it can be computerized. Moreover, the capacity of

the computer program relative to the computer core utiliza­

tion and execution time would reflect the effectiveness of

the synthesis algorithm.

While keeping the above arguments in mind, a computer

aided synthesis program based upon the technique presented

in this thesis has been designed using the FORTRAN IV pro­

gramming language. The program uses the Sequence Matrix

format for performing the manipulations necessary in the

synthesis, as this format occupies the minimal amount of

computer core. Although the program is currently not yet in

its refined stage, the ability of the program for resolving

extremely large problems is evident. At present, the

100

program has been designed to resolve problems which have up

to 200 input variables, 200 outputs, 200 memories, and 200

states. The computer core requirements for executing the

program is relatively small (140 Kbytes) 7 which shows the

effectiveness of the program.

CHAPTER VIII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8o1 Summary

A procedure which is capable of deriving complex

asynchronous sequential logic networks has been developed.

The presentation has been divided into three major parts~­

the algebra~ the combinational logic synthesis, and finally,

the sequential logic synthesiso

The presentation commences with the discussion of a new,

gener~lized algebra. A universal set of operators is used

in the algebra in order to provide a convenient means for

assessing various types of logical operators. Next, the

various combinational synthesis methods are presented for

supporting the sequential synthesis approach which was given

in the succeeding chapter of this thesis.

The sequential synthesis approach consists of various

steps, and these steps were presented according to the five

classifications of the operations; which are the formulation

of the logic specification, the selection of the peripheral

equipment, the simplification of the speci:Lication, the

assignment of the memories and finally the formulation of

the network equations. The presentation is concluded with

an outline of ths integrated procedure.

101

102

8.2 Conclusions

A new insight into the theory of fluid switching cir­

cuits has been revealede The algorithmic type presentation

provides convenience in executing the synthesis method

formulated herein, especially when digital computers are

employed.

The development of the generalized "switching circuit

algebra" off:ers a unique in-depth view of logical expression

which utilizes non-standard operatorsQ This generalization

also allows convenient assessment of the algebra using

digital computers, as the operators of the expression can be

considered independently from the desired operations of the

algebra. Various algebraic operations may, therefore, be

realized without prior knowledge of the actual operators

involved.

There are basically three combinational synthesis

approaches which have been selected and presented in Chapter

V. These three approaches are of great importance for com­

puter aided synthesis, as they are most suited for synthe­

sizing extremely large problems with large numbers of

variables.

New directions were also offered in the area of sequen-

tial logic synthesis. For the first time, the selection of

the peripheral equipment is performed in the synthesis. It

is realized.that a correct selection of such input--output

circuits would result in additional simplification of the

103

implemented network; as the utilization of different output

circuits completely alters the specification of the problema

Furthermore, the method features the utilization of

output signals as inputs to the logic circuit. This reduces

the need for memory elements and their excitation; and fur-

ther simplification of the synthesized networks may occur.

Finally, it is concluded that several advancements in

the area of Fluid Logic have been realized in this study.

The development of the new method will hopefully aid the

future designer in solving complex logic problems in a most

efficient manner.

8.3 Recommendations for Further Study

After completing this study, the author feels that

additional work in this area would be beneficial to future

implementations of logic systemse The following points are

still lacking as of today and is, therefore, suggested as

topics for further study:

1o The further advancement of the "Switching

Circuit Algebra11 e It is realized that the

algebra presented earlier in this thesis is

far from complete.. Additional postulates
I

and/or theorems would !be necessary for the

effective utilization of the "non-conventional"

operators. The study 'Should not exclude the

possibilities of developing new, practical

operators which satj,sfy the algebra.

2. The direct application of different operators

in logic system synthesis. Up to now the

synthesis of sequential networks has been per­

formed in a conventional AND-OR~NOT fashion.

The transformation to other operators (such as

NOR's and NAND's) was performed in the combina­

tional portion of the synthesis. The author

feels that a sequential synthesis method which

directly synthesizes the problem using the

intended operators would be most practical.

). The adaptation of the method to synchronous

systems~ As with all other synthesis tech­

niques1 the method advanced in this thesis is

applicable to electronic circuits as well.

Due to the fact that most electronic logic

problems deal with synchronous networks, the

modification of the new synthesis method to

accept synchronous systems is necessary.

4. The modification of the Classical technique to

include "output i~eedback". The classical

Huff'man technique has been continuedly used in

the past as a 11 referee 11 method; and therefore~

it should be subsequently improved in order to

assess other synthesis approaches.

104

(1) Holbrook~ E. L.
Control."
1965)~

BIBLIOGRAPHY

11 A Design Approach to Pneumatic
Hydraulics and Pneumatics (October

(2) Kutti~ A. K. 11 0 graficheskom izobrazhenii rabochego
skhem." Trud Lenin radskoi Ex erimental'noi
Elektrotekhnicheskoi Laboratorii, Vol. 1928),
11-28; Tr. Moore, Eo .F. "On a Graphical Repre­
sentation of the Operating Regime of Circuits."
Sequential Machines : Selected Papers, 1st. Ed.
Mass.: Addison Wesley Pub. Co., 1964, 228-235.

(3) Shannon, C. E. "A Symbolic Analysis of Relay and
Switching Circuits." Trans. AlEE, Vol. 57 (1938),
713~723.

(4) Karnaugh, M. "The Map Method for Logic Synthesis of
Combinational Logic Circuits." AlEE Trans. on
Communications and Electronics~ Vol. 72 (1953),
593-599.

(5) Veitch~ E. W. 11 A Chart Method for Simplifying Truth
Functions." Proc. Assoc. Computing Machinery
(May 2 & J~ 1952)~ 127~133.

(6) Huffman, D. A. "The Synthesis of Sequential Switching
Circuits." Journ. of the Franklin Inst. 7 Vol.
257~ Noo 3 (March, 1954), 161-190; and No. 4
(April~ 1954), 275-303.

(7) Fitch, Eo C. 9 Jr. "The Synthesis and Analysis of
Fluid Control Networks." (PhoD. Dissertation,
University of Oklahoma, 1964.)

(8) Paull, M. C., and S. H. Unger. "Minimizing the Number
of States in Incompletely Specified Sequential
Switching Functions." IRE Trans. on Elect.
Computers, Vol. EC-8 (1959), 356-367.

(9) Ginsburg, S. 11 0n the Reduction of Superfluous States
in a Sequential Machine." Journ. Assoc. Computing
Machinery, Vol. 6 (April, 1959)~ 259-282.

105

106

(10) Ginsburg~ S. "A Technique for the Reduction of a
Given Machine to a Minimal State Machine." IRE
Trans. on Elect. Comp.~ Vol. EC-8 (1959)~ 34~
356.

(11) Ginsburg~ S. "Synthesis of Minimal State Machines."
IRE Trans on Elect. Comp.~ Vol. EC-8 (1959)~
446~449.

(12) Narashiman, R. "Minimizing Incompletely Specified
Sequential Switching Functions." IRE Trans. on
Elect. Comp.~ Vol. EC-10 (1961), 531~532.

(13) Eichelberger, E. B. "Obtaining a Minimum-State
Compressed Flow Table." Digital Systems Lab.,
Princeton University, Technical Report No. 20
(April 1962).

(14) McCluskey, E. J., Jr. "Minimum-State Sequential
Circuits for a Restricted Class of Incompletely
Specified Flow Tables." Bell System Tech. Journ.~
Vol. 41 9 No. 6 (November 1962), 1759-1768.

(15) Marcus~ M. P. "Derivation of Maximal Compatibles
Using Boolean Algebra.H IBM Research & Develop­
ment Journal, Vol. 8 (November, 1964), 537-538.

(16) Grasselli, A.~ and F. Luccio. "A Method for Minimizing
the Number of Internal States in Incompletely
Specified Sequential Networks." IEEE Trans. on
Elect. Comp., Vol. EC~14 (1965), 350-359.

(17) Graselli 9 A. "Minimal Closed Partitions for Incom­
pletely Specif'ied Flow Tables. 11 IEEE Trans. on
Elect. Comp., Vol. EC-15 (1966), 245-249.

(18) Luccio 9 F. "Extending Definition of Prime Compatibil~
ity Classes of States in Incomplete Sequential
Machine Reduction." IEEE Trans. on Elect. Comp. 9

Vol. C-18 (1969), 537-540.

Biswas, N. N. "State Minimization of Incompletely
Specified Sequential Machines." IEEE Trans. on
Elect. Comp., Vol. C~23 (1974), 8o-84.

(20) Cole 9 J. H. "Synthesis of Optimum 9 Complex Fluid
Logic Sequential Circuits." (Ph.D. Dissertation 9

Oklahoma State University, 1968.)

(21) Maroney, G. E. "A Synthesis Technique for Asynchronous
Digital Control Networks." (M.S. Report, Okla­
homa State University, 1969.)

107

(22) Maroney, G. E., and E. C. Fitch. 11 Stochastic Type
Digital Fluid Control System Synthesis." Controls
and Systems Conference, Chicago, Ill. (May, 1970).

(23) Surjaatmadja, J. B. 11 A Generalized Meth~d for
Synthesizing Optimal Fluid Logic Networks."
Annual Fluid Power Research Conference, Oklahoma
State University, Report No. R73-FL-3 (1973).

(24) Surjaatmadja, J. B. "Maximizing Decision-Making
Capabilities While Minimizing Fluid Logic
Hardware." Annual Fluid Power Research Conference,
Oklahoma State University, Paper No. P73-FL-5
(1973).

(25) Fitch, E. C., Jr.~ and J. Be Surjaatmadja. 11 A
Universal Synthesis Method for Fluid Logic
Networks." Annual Fluid Power Res. Conf.,
Oklahoma State University, Paper No. P76-43 (1976).

(26) Chen, R. M. H., and K. Foster. 11 A Computer Aided
Desig;t Method Specially Applicable to Fluidic­
Pneumatic Sequential Control Circuits." ASME-WAM,
Fluidics Comm., Paper No. 70-WA/Flcs-17 (1970).

(27) Surjaatmadja, J. B. "Arguments for Promoting the
Effective Utilization of Memory Logic Hardware."
Annual Fluid Power Res. Conf.4; Oklahoma State
University, Paper No. P73-FL- (1973).

(28) Surjaatmadja, J. B. "Output to Memory Matching for the
Synthesis of Hazard-Free Fluidic Networks."
Annual Fluid Power Res. Conf. (Oklahoma Stat.e
University, Paper No. P74-30 1974).

(29) Surjaatmadja, J .. B., and E. C. Fitch. "Unique Machine
States Through Output Consideration." Annual
Fluid Power Res. Conf., Oklahoma State Univer­
sity, Paper No. P75-55 (1975).

(30) Boole, G. An Investigation of the Laws of Thought.
London: Mcmillan Co., 1854; Reprinted, New York:
Dover Pub., 1958.

(31) Quine, W. V. 11 The Problem of Simplifying Truth
Functions." American Math. Monthly, Vol. 59,
No. 8 (1952), 521-531.

(32) Roth, J. P. "Algebraic Topological Methods for the
Synthesis of S·wi tching Systems, I. 11 Princeton
University Press. (July.1958), 301-326
(Presented: December 29, 1955).

108

(33) Roth, J. P. "Minimization Over Boolean Trees. 11 IBM
Journal (November 1960), 548-558.

(34) Myers, G. E. "Model for Boolean Polynomial Simplifica­
tion (POL-SIM)." (Unpub. MBA Thesis, Oklahoma
State University 1 1972.)

(35) Dietmeyer, D. L. Logic Design of Digital Systems 1 Ed.
Boston 1 Mass.: Allyn & Bacon 9 Inc., 1970.

(36) Zissos 1 D., and F. G. Duncan .. "Boolean Minimization."
The Computer Journal, Vol. 16, No. 2 (March 1973),
174-179.

(37) Surjaatmadja, J. B. "A Computer Oriented Method for
Boolean Simplification and Potential Hazard
Elimination." Annual Fluid Power Res. Conf.,
Oklahoma State University, Report No. R73-2
(1973).

(38) Surjaatmadja, J. B. YITAB II-Revised Program and Users
Guide for the Simplification and Static Hazard
Elimination of Colossal Boolean Expressions."
Annual Fluid Power Res. Conf., Oklahoma State
University, Report No. R75-2 (1975).

(39) Fitch, E. C., and J. B. Surjaatmadja. Introduction to
Fluid Logic, (Manuscript). Stillwater, Oklahoma:
Fluid Power Press, 1975. New York: McGraw-Hill
(in press).

(40) Surjaatmadja, J. B. "A Computer-Oriented Method for
Complementing Boolean Expressions." Annual Fluid
Power Res. Conf., Oklahoma State University,
Paper No. P75-59 (1975).

(41) Surjaatmadja 1 J. B., and E. C. Fitch. "Logic Specifi­
cations ~- Their Descriptions and Simplifications."
Annual Fluid Power Res. Conf., Oklahoma State
University, Paper No. P75~56 (1975).

(42) McCluskey, E. J. and H. Schorr. 11 Essential Multiple
Output Prime Imp lie ants. 11 Digital Syst. Lab.,
Princeton University, Techn. Report No. 23
(April 1962).

(43) Bartee, T. C. ncomputer Design of Multiple Output
Networks. n IRE Trans. on Elect. Camp. 1 Vol.
EC~10 (1961) 1 21~30.

(44) Schneider, P. R., and D. L. Dietmeyer. "An Algorithm
for Synthesis of Multiple Output Combinational
Logi." IEEE Trans. on Elect. Comp. 1 Vol. EC-18
(1969), 117-128.

109

(45) Su, Y. H., and De L. Dietmeyer. "Computer Reduction
of' Two Level, Multiple Output Switching Circuits,"
IEEE Trans. on Elect. Comp., Vol. EC-18 (1969),
58-63.

(46) Surjaatmadja, J. B. "The Transformation and Implemen­
tation of NOR Logic Circuits." Annual Fluid
Power Res. Conf. 1 Oklahoma State University,
Paper No. P76-44 (1976).

APPENDIX

Eight example problems were utilized for the compari-

sons of the different synthesis approaches. These problems

are given in an LSC format as shown in Tables XXVI-XXXIII.

TABLE XXVI

PROBLEM I

Ou~.puts Input States (abc)

z1 z2 z3 000 100 110 101 111 010

0 0 0 (1) 2 8
0 0 1 1 (2) 3

0 0 1 4 (3) 6
1 0 1 (4) 3 5
1 1 1 2 (5) 6
1 1 1 7 5 (6)
1 0 1 (7) 6 8
1 0 0 1 (8)

110

111

TABLE XXVII

PROBLEM II

Outputs Input States (abc)

z1 z2 001 000 010 101 011

1 0 (1) 2 J
1 1 (2) 4

0 1 6 (3) 5
0 0 7 (4) 5
1 0 6 3 (5)

1 1 (6) 8 9
0 1 1 (7)

1 1 (8) lJ.

1 0 1 (9) 10

0 0 It 9 (10)

112

TABLE XXVIII

PROBLEM III

Outputs Input States (ab)

z1 z2 00 01 11 10

0 1 (1) 2

0 0 3 (2)

0 1 (3) LJ:

1 1 (4) 5
1 0 (5) 6

0 0 7 (6)

1 1 (7) 8

0 1 9 (8)

0 1 (9) 10

1 1 (10) 11

1 0 (11) 12

0 0 13 (12)

1 (1 3) 14

0 3 (14)

11J

TABLE XXIX

PROBLEM IV

Outputs Tnrl!lt St;d es (ab)

z1 z2 00 01 ll 10

0 0 (1) 2 3 6
0 5 (2) 10

1 (3) 10
0 1 (4) 8 9
0 0 (5) 4 7 10

1 4 3 (6)
0 1 5 (7) 6

1 1 (8) 9

0 2 3 (9)

2 7 (1 0)

TABLE XXX

PROBLEM V

Outputs Input States (abed)

/',1 z2 0001 0010 0100 1000

0 (l) 2 3

4 (2) 5
0 4 6 (3)

0 (4) 7 8
0 2 (5) 8

0 7 (6) 3
0 1 (7) 5

4 5 (8)

114

TABLE XXXI

PROBLEM VI

Outputs Tnput St:J.tes (abed)

z1 z2 1000 0100 0010 0001

0 0 (1) 2

0 0 (2) 3

1 0 4 (3)

1 0 (4) 5

1 0 (5) 6
1 7 (6)

1 1 8 (7)

1 1 1 (8)

TABLE XXXII

PROBLEM VII

Outputs Input States (abc)

z1 z2 Z3 000 100 010 001

1 0 0 (1) 2
0 0 0 3 (2)

1 0 0 (3) 4

0 0 0 5 (4)

0 1 0 (5) 6
0 0 0 7 (6)
0 1 0 (7) 8
0 0 0 9 (8)

0 0 1 (9) 10

0 0 0 1 (10)

115

TABLE XXXIII

PROBLEM VIII

Outputs Input States (abcdef)

z1 Zz 111011 111010 011010 001010 000010 111001 111101

1 0 (1) z
1 0 (Z) 3

1 0 (3) 4

1 0 (4) 5

0 0 6 (5)

0 0 7 (6)

0 0 8 (7)

0 0 9 (8)

1 0 (9) 10

1 0 (l 0) 11

1 0 (11) 12

0 0 13 (12)

0 0 14 (13)

0 0 15 (14)

1 0 (15) 16

1 0 (16) 17

0 0 18 (17)

0 0 19 (18)

0 1 (19) 20

0 1 (2 0) 21

0 0 22 (21)

0 0 1 (2 2)

Jim Basuki Surjaatmadja

Candidate for the Degree of

Doctor of Philosophy

Thesis: A SYNTHESIS TECHNIQUE FOR THE RESOLUTION OF LARGE
SCALE FLUID LOGIC SYSTEMS

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born April 17th, 1945, in Malang,
Indonesia; the son of Dr. Retna Wi~asantosa and
Rudolph Surjaatmadja.

Education: Graduate from the St. Albertus High School,
Malang, Indonesia, in August, 1963; received the
Sarjana I (Bachelor of Engineering) and the
Sarjana (Master of Engineering) degrees from the
Institute of Technology of Bandung, Bandung,
Indonesia, in July, 1970 and March, 1971,
respectively. Received the Master of Science in
Mechanical Engineering from Oklahoma State Univer~
sity, in December, 1972; and completed the require­
ments for the degree of Doctor of Philosophy in
December, 1976.

Professional Experience: Practical Training at Gruno
Nasional 9 Ltd., Sourabaya, Indonesia and at Caltex
Pacific Indonesia, Dumai, Indonesia; for six
months for partial fulfillment of the Sarjana
degree. Employed by IBM Indonesia as a systems
engineer, 1970-1971. Graduate teaching assistant
at Oklahoma St.ate University, January-May 1972,
Graduate research assistant at Oklahoma State
University, from 1972 until present.

Professional Organizations: Member of the American
Society of Mechanical Engineers, and the Toast­
masters International.

