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Abstract

Support for user mobility is the raison d’etre of mobile cellular networks. However,

mounting pressure for more capacity is leading to adaption of multi-band multi-RAT

ultra-dense network design, particularly with the increased use of mmWave based small

cells. While such design for emerging cellular networks is expected to offer manyfold

more capacity, it gives rise to a new set of challenges in user mobility management.

Among others, frequent handovers (HO) and thus higher impact of poor mobility man-

agement on quality of user experience (QoE) as well as link capacity, lack of an in-

telligent solution to manage dual connectivity (of user with both 4G and 5G cells)

activation/deactivation, and mmWave cell discovery are the most critical challenges. In

this dissertation, I propose and evaluate a set of solutions to address the aforementioned

challenges.

The beginning outcome of our investigations into the aforementioned problems is the

first ever taxonomy of mobility related 3GPP defined network parameters and Key

Performance Indicators (KPIs) followed by a tutorial on 3GPP-based 5G mobility man-

agement procedures. The first major contribution of the thesis here is a novel framework

to characterize the relationship between the 28 critical mobility-related network param-

eters and 8 most vital KPIs.

A critical hurdle in addressing all mobility related challenges in emerging networks is

the complexity of modeling realistic mobility and HO process. Mathematical mod-

els are not suitable here as they cannot capture the dynamics as well as the myriad

parameters and KPIs involved. Existing simulators also mostly either omit or overly

abstract the HO and user mobility, chiefly because the problems caused by poor HO

management had relatively less impact on overall performance in legacy networks as

they were not multi-RAT multi-band and therefore incurred much smaller number of

HOs compared to emerging networks. The second key contribution of this disserta-

tion is development of a first of its kind system level simulator, called SyntheticNET

xii



that can help the research community in overcoming the hurdle of realistic mobility

and HO process modeling. SyntheticNET is the very first python-based simulator that

fully conforms to 3GPP Release 15 5G standard. Compared to the existing simulators,

SyntheticNET includes a modular structure, flexible propagation modeling, adaptive

numerology, realistic mobility patterns, and detailed HO evaluation criteria. Synthet-

icNET’s python-based platform allows the effective application of Artificial Intelligence

(AI) to various network functionalities.

Another key challenge in emerging multi-RAT technologies is the lack of an intelligent

solution to manage dual connectivity with 4G as well 5G cell needed by a user to access

5G infrastructure. The 3rd contribution of this thesis is a solution to address this

challenge. I present a QoE-aware E-UTRAN New Radio-Dual Connectivity (EN-DC)

activation scheme where AI is leveraged to develop a model that can accurately predict

radio link failure (RLF) and voice muting using the low-level measurements collected

from a real network. The insights from the AI based RLF and mute prediction models

are then leveraged to configure sets of 3GPP parameters to maximize EN-DC activation

while keeping the QoE-affecting RLF and mute anomalies to minimum.

The last contribution of this dissertation is a novel solution to address mmWave cell

discovery problem. This problem stems from the highly directional nature of mmWave

transmission. The proposed mmWave cell discovery scheme builds upon a joint search

method where mmWave cells exploit an overlay coverage layer from macro cells sharing

the UE location to the mmWave cell. The proposed scheme is made more practical

by investigating and developing solutions for the data sparsity issue in model training.

Ability to work with sparse data makes the proposed scheme feasible in realistic scenar-

ios where user density is often not high enough to provide coverage reports from each bin

of the coverage area. Simulation results show that the proposed scheme, efficiently acti-

vates EN-DC to a nearby mmWave 5G cell and thus substantially reduces the mmWave

cell discovery failures compared to the state of the art cell discovery methods.
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CHAPTER 1

Background

The exponential rise in mobile traffic originating from mobile devices highlights the need

for making mobility management in future networks even more efficient and seamless

than ever before. Ultra-Dense Cellular Network vision consisting of cells of varying sizes

with conventional and mmWave bands is being perceived as the panacea for the eminent

capacity crunch. However, mobility challenges in an ultra-dense heterogeneous network

with a motley of high frequency and mmWave band cells will be unprecedented due

to plurality of handover instances, and the resulting signaling overhead and data inter-

ruptions for miscellany of devices. Similarly, issues like user tracking and cell discovery

for mmWave with narrow beams need to be addressed before the ambitious gains of

emerging mobile networks can be realized. Mobility challenges are further highlighted

when considering the 5G deliverables of multi-Gbps wireless connectivity, <1ms latency,

and support for devices moving at the maximum speed of 500km/h, to name a few.

This dissertation is the first to provide a comprehensive survey on the panorama of mo-

bility challenges in the emerging ultra-dense mobile networks. This dissertation not only

presents a detailed tutorial on 5G mobility approaches and highlight key mobility risks

of legacy networks, but also review key findings from recent studies and highlight the

technical challenges and potential opportunities related to mobility from the perspective

of emerging ultra-dense cellular networks.

Mobility management is a complex process with myriad network parameters, and math-

ematical models become intractable. Similarly, existing network simulators do not in-

corporate detailed mobility criteria as specified in 3GPP standards. This dissertation

overcomes this challenge by explaining the development and some key features of the

SyntheticNET simulator.
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This dissertation also presents the first framework to quantify and optimize the trade-off

between utilization of 5G network and the degradation in QoE due to potential RLF

or potential muting, by leveraging real network data measurements. Finally, I present

a joint search-based mmWave cell discovery approach that can help networks configure

mmWave camping to mobile users while keeping into account the LoS conditions and

maximum allowable distance.

3GPP Mobility criteria is a complicated process and is, therefore, necessary to explain

the 3GPP mobility management process in 5G networks. The following section expli-

cates both the intra-frequency and inter-frequency handover and reselection criteria in

idle and connected mode users respectively.

1.1 Understanding Mobility in Cellular Networks

Mobility in cellular networks plays a pivotal role ensuring an optimal experience to the

subscribers. It guarantees that mobile users won’t just be able to maintain connectivity

but attain the best available connection to the network as they move towards the desti-

nation. Seamless and timely HO and cell reselection has always been a major challenge

in any wireless communication systems including 5G. Mobility has been categorized as

Idle and Connected Mode Mobility in 5G. Note that the mobility procedure in LTE

(4G) is very similar in 5G New Radio (NR) using events A1, A2, A3, A4, A5 and A6

to trigger HOs. Event A2 and A1 are triggered when RF condition of the UE falls

below and exceeds the configured threshold respectively and are used to start and stop

inter-frequency neighbor search. Intra-frequency HO is initiated by event A3 where

the neighbor RF condition becomes higher than serving RF condition by a configured

threshold. Event A4 and A5 are typically used for inter-frequency HO where target

inter-frequency cell has to be higher than an absolute threshold for the event A4 to be

triggered. On the contrary, event A5 in addition to event A4 condition, requires serving

cell RF condition to be below a certain threshold. Finally, event A6 is similar to event
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A3 but is used for intra-frequency HO of the secondary frequency the UE is camped

onto. Event A4 and A5 can also be used for conditional HO management for e.g. for

load balancing. In addition to the events described above, event B1 and B2 (A4 and A5

alike) are also used for inter-technology HO, and for dual-connectivity, but they are not

discussed here to keep the focus of this chapter confined to basic mobility procedures

and the associated challenges. The only difference between 5G and 4G mobility criteria

is in the idle mode where respective idle mode reselection parameters in 5G NR are

present in different SIB# than in LTE. Moreover, the idle mode parameter names and

functionalities in 5G are similar as in 4G. Comprehensive explanation of 5G mobility

procedure while keeping in view the 5G network architecture and interfaces is presented

in the following subsections.

1.1.1 Idle Mode Mobility

UE is in idle mode when it is neither running any active communication service nor

is connected to any cell. UE in idle mode is constantly trying to search and maintain

services such as Public Land Mobile Network selection, cell selection and reselection,

location registration, and reception of system information. By maintaining an idle mode

connection, UE can readily establish a Radio Resource Connection (RRC) for signaling

or data transfer as well as be able to receive any possible incoming connections. UE

always powers ON in idle mode and selects the cell with the maximum signal strength

through a process known as cell selection. However, this initially selected cell will

not always be the best to serve especially when UE moves from one place to another.

Therefore, to maintain the quality of signal, UE has to camp on another optimal cell, a

process known as cell reselection.
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Figure 1.1: 3GPP [1] cell reselection criteria based on SIB2 and SIB4 parameter for intra-
frequency and inter-frequency reselection respectively.
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Table 1.1: 3GPP [1] Intra/Inter-Frequency Reselection Parameters

Parameter SIB# Description

Qrxlevmin SIB1 Minimum RSRP threshold required to camp in idle mode

Qrxlevmin SIB2 RSRPserving threshold required to compute intra-frequency reselection conditions

Qoffsets,n SIB2
Positive or negative bias required to promote or avoid intra-frequency cell

reselection to target cell. * Idle Mode Cell Individual Offset

Qhyst SIB2 RSRPtarget – RSRPserving required to satisfy intra-frequency reselection condition.

treselection SIB2
Time needed to satisfy intra-frequency reselection condition before actual reselection

to the optimal cell

SIntraSearchP/Q SIB2 RSRP/RSRQ threshold below which user searches for intra-frequency target cell.

Qrxlevmin SIB4 RSRPserving threshold required to compute inter-frequency reselection conditions

Qqualmin SIB4 RSRQserving threshold required to compute inter-frequency reselection condition

Qoffsets,n SIB4
Positive or negative bias required to promote or avoid inter-frequency cell
reselection to equal priority target cell. * Idle Mode Cell Individual Offset

Qhyst SIB4
RSRPtarget – RSRPserving required to satisfy reselection condition to equal priority

cell

treselection SIB4
Time needed to satisfy inter-frequency reselection condition before actual reselection

to the optimal cell

SNonIntraSearchP/Q SIB4
RSRPserving / RSRQserving threshold below which user searches for inter-

frequency target cell

ThreshX,LowP SIB4
RSRPtarget threshold required to trigger inter-frequency reselection to lower priority

target cell

ThreshServingLowP SIB4
RSRPserving threshold required to trigger inter-frequency reselection to lower pri-

ority target cell

ThreshX,HighP SIB4
RSRPtarget threshold required to trigger inter-frequency reselection to higher prior-

ity target cell
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Cell Reselection Criteria

In 5G, BS broadcasts nine System Information Block (SIB) messages for the UE as

defined in 3GPP [1]. Out of those messages, SIB 1, 2, 3 and 4 contain critical parameters

to execute idle mode cell reselection to the optimal 5G cell. SIB1 has the serving

cell parameters as well as the cell selection parameters, while SIB2 has the common

parameters used for intra-frequency and inter-frequency reselection. SIB3 is dedicated

to intra-frequency reselection parameters, however, operators can broadcast the related

parameters in SIB2 instead, and thus SIB3 is not broadcasted. SIB4 contains inter-

frequency reselection through target frequency priority and the associated parameters.

Fig. 1.2 illustrates a pictorial demonstration of the reselection conditions and evaluation

in 5G as described by 3GPP. Description of the related reselection parameter, and the

respective location (SIB#) can be found in Table 1.1. LTE uses the same reselection

procedure with the only difference that the contents of SIB2, SIB3 and SIB4 in 5G are

found in SIB3, SIB4 and SIB5 of LTE instead.

User Tracking

The idle mode mobility of the UE is the responsibility of Access and Mobility Function

(AMF) at the Tracking Area (TA) level for RRC idle mode users and at the RAN

Notification Area (RNA) for RRC inactive mode users. Here I only talk about the idle

mode users as the mobility procedure in 5G is similar for RRC idle mode and RRC

inactive mode users. Note that unlike the connected mode, network is unaware of cell-

level UE location in idle mode. After powering ON, UE acquires the Tracking Area List

(TAL) composed of a list of TA codes through the periodic SIB1 broadcast from the

cell. As UE traverses through the network while performing cell reselection procedure,

it compares the TA code of the new cell with its own TAL. If the TA code of a newly

visited cell does not match with its own TAL, it initiates TA Update (TAU) process to

request AMF for location update as seen in the Fig. 1.2(a). TAU helps to track the UE
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Figure 1.2: (a) Tracking Area Update (TAU) procedure in LTE networks, (b) Common Track-
ing Area (TA) planning approaches.
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in case of any incoming call. Bigger TA size reduces signaling overhead of TAU at the

expense of larger paging domain, ultimately resulting in higher paging-based downlink

signaling load at network level.

Common Idle Mode Mobility Risks

In this subsection, I discuss about the common idle mode mobility risks in the existing

LTE network. But since the mobility process is similar in 5G networks, 5G capable UEs

are expected to face similar challenges. In idle mode, data transmission does not take

place, therefore reliability and QoS are not the issues of concern. However, reselection

procedure can incur accessibility and user tracking issues in rare occasions. During

the network attach procedure, idle mode UE first sends connection request and awaits

connection setup message from the BS. If UE does not receive any message from the BS

within a predefined time (t300 timer known to UE via SIB2 ‘SIB1 in 5G [2]’), it restarts

the accessibility procedure. Under special circumstances, if UE sends a connection

request to the serving cell followed by reselection to a neighboring cell, it cannot receive

the connection grant simultaneously. The new serving cell in this case does not become

aware that the UE which just moved under its coverage needs to access the network.

Thus, UE has to wait for a time defined in t300 before re-initiating the access procedure

in the new serving cell. During this time, UE experiences latency and can have serious

impact on the applications requiring ultra-low latency. The delay can be suppressed by

having smaller t300 timer, but at the cost of increased signaling load due to the increase

in redundant connection requests and replies. Moreover, smaller t300 also negatively

impact UE energy consumption (due to recurrent Random-Access Channel ‘RACH’

attempts). Repeated RACH attempts might result in higher Central Processing Unit

(CPU) load of serving cell, especially at busy hour. Similar accessibility delay at TA

border can result in paging failure, since the network can be unaware of the accurate UE

location unless TAU followed by a successful accessibility is performed. TA planning is
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Figure 1.3: General HO procedure. (a) UE performs HO from cell A to cell B at cell-edge as
it moves closer to the cell B. Scenario 1 and 2 represents HF coverage and mmWave narrow

beams, (b) 3GPP [18] based intra-frequency HO process.

a crucial task and two approaches are used in existing networks: a) horizontal approach,

b) vertical approach, as shown in Fig. 1.2(b). TAU procedure initiates for every inter-

frequency reselection in horizontal approach, thus it is deployed where radio condition

is good, and user is least expected to make recurrent inter-frequency reselection. On the

contrary, poor radio condition area should have vertical approach to minimize TAU for

inter-frequency reselection instances. Horizontal approach is favorable for high speed

traffic like train lines or highways. One approach to address this issue in the existing

cellular network is the use of adaptive TA codes, where users are configured with a list

of TA codes to prevent ping-pong TAUs. However, determining the optimal number of

TA codes in a list and the cumulative TA size still remain an open research problem.

1.1.2 Connected Mode Mobility

UE is said to be in connected mode when it has established a connection with its peer

Radio Resource Control (RRC) layer at the serving BS and the network can transmit

and/or receive data to/from the UE. As there is an exchange of data between the UE

and the BS, uninterrupted data transfer needs to take place for a seamless continuity of
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Table 1.2: 3GPP [2] HO Parameters Conveyed to UE in RRC Reconfiguration Layer 3 Message

Parameter Descriptions

s-Measure RSRP threshold below which user searches for optimal intra-frequency target cel

Ofn Frequency offset for target cell

Ofp Frequency offset for serving cell

Ocn
Target cell offset

* Commonly known as Cell Individual Offset ‘CIO’

Ocp Serving cell offset

Hys∗ Hysteresis to prevent ping-pong HOs

A3−Off∗ RSRPtarget – RSRPserving offset required to satisfy A3 condition

A2− Thr∗ Event A2 RSRPserving threshold

A1− Thr∗ Event A1 RSRPserving threshold

A4− Thr∗ Event A4 RSRPserving threshold

A5− Thr1∗ Event A5 RSRPserving threshold

A5− Thr2∗ Event A5 RSRPtarget threshold

timeToTrigger (TTT) Time for which Event (A1-A5) condition need to be satisfied

service when a UE moves from one BS to another BS. This ideally seamless mobility in

connected mode is termed as handover (HO).

UE Side Mobility Trigger

UE triggers an intra-frequency HO request to the next optimal cell by sending A3-

Measurement Report (MR) to its serving cell as shown in Fig. 1.3. The serving cell

then decides whether to entertain the request and perform the HO, by communicating

with the target cell and serving AMF. An intra-frequency HO is the first preference

in cellular networks; however, there are instances in which an inter-frequency HO is

the preferred choice. For example: a) when there is a coverage hole in the serving

frequency, b) when the current serving cell does not support the requested service e.g.

Voice over NR, and c) when load balancing is needed to avoid congestion in the serving

frequency. In Fig. 1.4, I illustrate the 3GPP [2] defined inter-frequency HO criteria.

For a description of each HO parameter, refer to Table 1.2.

Network Side Mobility Trigger

HOs are undoubtedly more complicated than cell reselection. Aside from the source and

target cell, core entities which include Access and Mobility Function (AMF), Session
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Figure 1.4: 3GPP [2] intra-frequency and inter-frequency handover criteria in LTE networks.

Management Function (SMF) and User Plane Function (UPF) need to be updated

as well. Depending on the scenario, data transfer and handling could pose several

challenges. In normal cases, when AMF, SMF and UPF do not change during the HO,

signaling is reasonable and it is termed Xn based HO. Here, the Xn interface is used

for the preparation phase of the HO. However, when the Xn interface does not exist

between the participating cells, an N2 based HO is performed where cells use a longer

path for communication. Signaling flow for the Xn based HO is illustrated in Fig. 1.5.

3GPP [2] named Xn as the interface used to connect 5G BSs directly, and N2 interface

is the logical interface between two 5G BSs connected through the core network (AMF).
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Figure 1.5: Xn based handover without UPF re-allocation in 5G networks.

N2 interface is used if the direct Xn interface between the neighboring BSs do not exists.

Common connected Mode Mobility Risks

Apart from the fast fading effect due to Doppler shift in physical layer, the mobile UE

has to cope with several Layer 3 issues as well, which can be eluded primarily by a timely

HO and an optimal selection of the target BS. Some of the issues mobile UE experiences

during inter-site mobility are presented in Fig. 1.6, with possible solution(s) in Table

1.3.
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Table 1.3: Common HO Issues and Their Solutions

HO Issue Parameter Optimization Solution Possible Cons

Late Intra HO
i. Lower A3 offset, shorter TTT

ii. Positive CIO towards target cell

Prone to unwanted HO’s to non-target cells
Potential Ping-Pong between source and target

especially for static users.

Late Inter HO Higher A2, Accelerate A3/A4/A5, shorter TTT Prone to unwanted HO’s to non-target cells/layers.

Wrong Intra HO
i. Higher A3 offset, longer TTT

ii. Negative CIO towards wrong-target cell

May cause delayed HO to target cell
Stationary users might experience poor

signal quality.

Wrong Inter HO Lower A2, Delay A3/A4/A5, shorter TTT May cause delayed HO to target cell.

Early Intra HO
i. Higher A3, longer TTT

ii. Negative CIO towards target cell
May cause HO delay to target cell

Early Inter HO Lower A2, Delay A3/A4/A5, shorter TTT

1.2 Motivation for Artificial Intelligence (AI) Enabled Mobility Management

Network operators optimize their network by tuning a set of mobility related parameters,

and then by observing the HO attempt, HO success and few other QoE KPIs affected by

those modified network parameters. This approach will soon be impractical due to the

large number of parameters per cell. Moreover, the ultra-densification of heterogeneous

networks having not only multiple frequencies per RAT (Random Access Technology),

but also different RATs (2G, 3G, 4G, 5G) operating in parallel to each other, will make

the traditional approach of hit-and-trial totally useless and unmanageable. The only

answer to the complex optimization requirements of emerging networks can be given by

Artificial intelligence (AI) based approaches, some of which have been described in this

dissertation.

This section explains the complex interplay between mobility related network parame-

ters and Key Performance Indicators (KPIs) deemed essential to maintain reliable and

high-speed network services to the UEs. The complex interplay between parameters and

KPIs will further clarify why the traditional approach of hit-and-trial based optimiza-

tion methods will not suffice the ambitious QoE requirements expected from emerging

networks. Few of the vital mobility related KPIs are outlined below:

• User tracking KPI indicates the paging hit rate when users served under the TA are

notified by an incoming call. The idle mode mobile user must update its location

(via TAU) to the core network when it moves into the neighboring TA. By doing
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Figure 1.6: Common Mobility Related Risks in 4G/5G networks.

so, the respective TA is broadcasted with paging attempt messages in case of any

incoming call. A delay in TAU can result in paging failure and reattempts.

• Mobility oriented HO process or TAU trigger results in the control plane messages

being sent in the air interface and in the core network. The percentage of network

resources used by control plane are measured by signaling data KPI.

• User terminal energy consumption e.g. during data delivery and location update,

can be measured by the UE battery KPI.

• Reliability (or retainability) KPI indicates the percentage of users that dropped

the connection with their participating cells during the HO procedure. Majority

of the HO failure instances are observed due to late HO attempts.

• Ping-pong HO KPI point out the early HO occasions in a cell. UE undergoing
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Figure 1.7: Relationship diagram for mobility related KPIs and their interplay with the asso-
ciated network parameters (grouped in different colors)

Source: [1, 2].

ping-pong HOs leads to back-and-forth HOs between the participating cells and

can lead to higher signaling load and sometimes even low retainability KPI.

• Cell discovery KPI measure the small cell camping rate each time a UE is config-

ured with a cell search process. Timely cell discovery can result in more offloading

opportunities, and hence, efficient utilization of the available resources.

• Latency or data interruption KPI represents the delay UE observe during HO

execution, paging attempt to success duration, accessibility etc.

• Accessibility KPI for a given time interval represents the percentage of idle mode

UEs that were able to successfully acquire network access. Accessibility KPI

indirectly impacts latency and user tracking KPI under rare circumstances for

mobile users.

In most cases the KPI-parameter dependency is multi-pronged and leads to complex

15



and often conflicting interplay between the KPIs and parameters. This interplay in

the mobility KPI and the associated key parameters is summarized in Fig 1.7. The

key challenges that arise from the convolved association between the mobility KPI and

parameter [1, 2] are briefly described below:

1: Smaller qHyst value accelerates reselection, as soon as the target cell RSRP becomes

greater than serving cell RSRP. As a result, accessibility issues related to idle mode

mobility (as discussed earlier in the section) can be addressed. However, too low of a

qHyst can result in unnecessary reselection (for instance, to an over-shooting cell).

2: Shorter Treselection will improve the accessibility KPI at the cell boundary due to

timely reselection. However, too short Treselection will result in ping-pong reselection

especially for stationary users (i.e. due to shadowing).

3: Idle mode Cell Individual Offset (CIO) to accelerate or decelerate reselection to-

wards a neighboring cell. (configuring a positive CIO towards a particular neighbor can

accelerate reselection, and vice versa).

4: Time window to evaluate mobility State [1] of a UE. Number of reselections made

within this time window will dictate mobility state (normal, medium, or high) of a UE.

Reselection criteria is typically eased as mobility state changes from normal to medium

or high.

5: Specify additional time period before UE can enter back to its normal mobility state

with default reselection parameters. Recurrent mobility state change can be avoided by

tuning this parameter.

6: Number of cell change needed (ignoring similar cells) within ’parameter #4’ before

UE changes mobility state from normal to medium or high respectively.

7: Scaling factor by which the default qHyst (parameter #1) is decreased when the

mobility state is changed to medium or high.

8: Scaling factor by which the default treselection (parameter #2) is decreased when
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the mobility state is changed to medium or high.

9: Amount and location of RACH resources to ensure RACH success (providing ad-

equate RACH resources, and avoiding RACH resource conflict between neighboring

cells).

10: Higher target power can increase chances of RACH success at first attempt (bet-

ter accessibility KPI) at the cost of a) higher battery consumption and b) chances of

increased uplink interference for neighboring cells. An optimal target receive power is

vital for better network operations.

11: Increase in the transmission power every time a RACH attempt fails. Higher step

size can increase RACH success but with more battery consumption and vice versa.

12: Maximum allowable UE RACH power - Increasing maximum allowable UE trans-

mission improves RACH success probability but with high energy consumption.

13: Improved accessibility to achieve a faster TAU can ensure accurate user tracking

and prevent paging failure instances for mobile users.

14: Reduce latency through faster accessibility for mobile users (e.g. fast reselection to

best signal cell and appropriate power for RACH success).

15: Smaller TA size will improve UE location estimate and will decrease the core network

signaling due to smaller paging area. However, frequent TAU by mobile users will add

radio access side signaling.

16: Suitable TA design (horizontal/vertical assignment) based on coverage conditions

and type of traffic (e.g. high speed UEs) to ensure accurate user tracking and minimize

TAU and hence, conserve UE battery and network signaling load.

17: Reducing TAU attempts for mobile users to conserve UE battery.

18: Reducing TAU attempts for mobile users to lessen signaling load.

19: Fast and efficient user tracking to reduce latency in accessing the network.
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20: Minimizing signaling helps avoid unnecessary transmission and the UE battery can

be conserved.

21: Higher cell search frequency will be beneficial to offload users to other cells. However,

more battery will be consumed while searching. In addition, signaling load will increase

every time a UE is configured with cell search procedure.

22: Periodic search mode will reduce signaling data generation as search configuration

will be transferred to UE just once. However, small periodicity will waste the UE

battery, and a large periodicity might miss a suitable offloading opportunity. On the

contrary, a smart aperiodic search mode (e.g. location triggered) will be efficient and

will save battery but signaling will be generated with each search configuration.

23: Signaling data generated for cell discovery purposes should be minimized.

24: UE consumes battery during cell search, hence, cell discovery should be minimized

with high hit rate.

25: Timely cell discovery (intra-frequency) will prevent out-of-service (unreachable UE)

occasions and Radio Link Failure (RLF) can be prevented.

26: Timely cell discovery (intra-frequency) will prevent recurrent re-transmissions and

ultimately lead to Radio Link Failure at the cell edge.

27: Timely cell discovery (intra-frequency) will ensure HO success especially for mmWave

cells and the UE will not observe Radio Link Failure.

28: Smaller report interval (HO requests) will have more signaling data and battery

utilization. However, the reliability KPI will improve as there will be more chances of

BS being able to successfully receive and decode the HO request.

29: HO offset/threshold can be tuned to achieve timely HO.

30: Suitable hysteresis parameter will minimize chances of ping-pong HOs.

31: Small timeToTrigger can result in ping-pong HOs (e.g. for non-mobile users), while
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long timeToTrigger can avoid the HO resulting in low reliability/retainability KPI (e.g.

to overshooting cells). Similarly, high speed users should be configured with lower

timeToTrigger to accelerate HO to cell with best RSRP.

32: Frequency based CIO to accelerate or decelerate inter-frequency HOs to all neigh-

boring cell(s). Optimal CIO can prevent late and/or early HO.

33: Relation based CIO to accelerate or decelerate intra/inter-frequency HOs toward

the configured neighboring cell(s). Optimal CIO can prevent late and/or early HO.

34: Configuring a large CIO range can avoid the chances MRO assigns a large CIO (a

large CIO is not recommended as it can have negative consequences especially for static

users)

35: Shorter MRO cycle can recommend suitable CIO configuration based on changing

traffic conditions. However, too short of a cycle should be prevented as it can have

sub-optimal recommendations due to inadequate statistical data required to configure

optimal CIO.

36: Similar to ’parameter #4’ but for connected mode.

37: Similar to ’parameter #5’ but for connected mode.

38: Similar to ’parameter #6’ but for connected mode.

39: Similar to ’parameter #8’ but for connected mode.

40: HO failure results in higher latency and more data interruption occasions.

41: Frequent HOs increases the risk of HO failure both for static and mobile users.

42: Latency and data interruption are intrinsic to break-before-make HOs, hence ping-

pong HOs should be avoided.

Fig. 1.7 illustrates the simplest representation of the complex interaction between var-

ious KPIs and mobility related network parameters. It can act as a foundation, with

the help of which, AI researchers can devise an ideal mobility management scheme that
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aims to minimize the negative impact on KPIs indirectly affected by tuning mobility

related network parameters.

1.3 Research Objectives

In light of the above discussion in section 1.2, the research presented in this dissertation

provides answers to the following questions.

1. Can we characterize the relationship between mobility related network parameters

and the vital network Key Performance indicators (KPIs)?

2. Are existing simulators capable to implement and validate mobility related re-

search proposals?

3. Dual 4G and 5G connectivity enables UE to access the key 5G features, however,

UE needs to maintain strong connection with both 4G and 5G network. How can

UE make reliable and effective dual connectivity - E-UTRAN New-Radio Dual

Connectivity (EN-DC)?

4. mmWave cells require beamforming to deliver good signal strength but the pencil

like beams incur a challenging mmWave cell discovery procedure. Is there a way to

achieve an efficient mmWave cell discovery that minimizes cell discovery failures,

and the delay in cell search procedure?

This dissertation addresses the aforementioned research questions. Real mobile network

data is collected, and synthetic data is generated from a 3GPP compliant SyntheticNET

simulator. 3GPP-compliant rigorous simulation studies are carried out to find and

validate the answers to the above questions. The key contributions of the dissertation

are outlined in the following section.

20



1.4 Contributions

The contributions of this dissertation can be summarized as follows:

• The heterogeneous multi-band multi-RAT ultra-dense network deployment to in-

crease the area spectral efficiency may hamper the ambitious QoE goals if the

optimal mobility management approaches are not employed. To date, the iden-

tification of mobility related network parameters and KPIs remain implicit in

literature. The dissertation not only presents a detailed taxonomy of the key mo-

bility related 3GPP defined network parameters and KPIs, but also establishes a

framework to characterize the relationship between the vital 28 mobility parame-

ters and 8 related KPIs. The first major contribution of the thesis here is a novel

framework to characterize the relationship between the 28 critical mobility-related

network parameters and 8 most vital KPIs. The dissertation also lays down the

first comprehensive tutorial on 3GPP-based 5G mobility management procedures

for both a) idle/inactive mode, and b) connected mode mobile users. This tutorial

acts as a base to correlate all mobility management related network parameters

with all mobility management related KPIs.

• Mathematical models to incorporate the realistic mobility and HO process be-

comes intractable due to the myriad mobility related network parameters and

KPIs involved. Moreover, existing network simulators do not support comprehen-

sive mobility criteria conditions due to the complexity, and the resource hungry

requirements required to integrate user mobility. To overcome the hurdle of re-

alistic mobility and HO process modeling in multi-band multi-RAT ultra-dense

networks, this dissertation discusses the development of SyntheticNET - the very

first python-based simulator that fully conforms to 3GPP Release 15 5G standard

and is upgradable to future releases. The key distinguishing features of Synthetic-

NET compared to existing simulators include: 1) a modular structure to facilitate
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cross validation and upgrading to future releases; 2) flexible propagation modeling

using empirical model based, measurement based, ray tracing based, or AI-based

propagation modeling; 3) ability to import data sheet based on realistic vendor

specific base station features such as antenna and energy consumption pattern; 4)

support for 5G standard adaptive numerology; 5) realistic and user-specific mobil-

ity patterns that are yielded from actual geographical maps; 6) detailed handover

(HO) process implementation; and 7) incorporation of database-aided edge com-

puting. Another key feature of the SyntheticNET is the ease with which it can be

used to test AI-based network automation solutions. Being the first python-based

5G simulator, this facilitates the SyntheticNET’s built-in capability to process and

analyze large data sets and integrated access to Machine Learning libraries.

• A key challenge in emerging multi-RAT technologies is the lack of an intelligent

solution to manage dual connectivity with 4G as well as 5G cell needed by a user

to access 5G services. This dissertation presents a framework to quantify and

optimize the trade-off between 5G network utilization and QoE degradation due

to potential radio link failures (RLF) or potential muting during EN-DC activation

leveraging real network data measurements. The framework leverages a two-stage

AI model capable of accurately detecting potential RLF and muting instances to

tune the parameters used to activate EN-DC.

• Futuristic mobile networks face an unprecedented challenge of mmWave cell dis-

covery accentuated by the highly directional nature of mmWave transmission cru-

cial to compensate the severe propagation losses. This dissertation presents a

novel mmWave cell discovery approach in which AI is leveraged to build an opti-

mal mmWave coverage map build using realistic mmWave network data of RLFs,

coverage holes, and serving mmWave cell identifiers. This dissertation also demon-

strates a case study in which existing network operators can facilitate EN-DC ac-

tivation using the proposed joint search based mmWave cell discovery approach.
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Results when compared to state-of-the-art cell discovery approaches, quantify the

gains in terms of mmWave cell discovery failure avoidance and the increase in

number of EN-DC activations due to successful mmWave cell discovery to optimal

cell.

1.5 Dissemination and Publications

Throughout the course of preparation for this dissertation, several dissemination activ-

ities were carried out. These activities have resulted in the following presentations and

(accepted or pending) peer reviewed articles.

1.5.1 Journals

1. M. Manalastas, H. Farooq, S. M. Asad Zaidi, A. Abu-Dayya, and A. Imran, “AI-

Based Handover Failure Prediction Model for Handover Success Rate Improvement

in 5G,” IEEE Global Communications Conference (GLOBECOM), 2021 (under

review).

1.6 Organization

The dissertation is structured as follows. Chapter 2 presents a detailed literature re-

view and the state-of-the-art work done in mobility management in emerging cellular

networks. Chapter 3 presents a system level simulator in Python platform, named Syn-

theticNET. This chapter discuss the reasons behind the development of SyntheticNET

simulator, and its attributes that makes it feasible platform to implement and validate

the mobility management proposals. Chapter 4 discusses the QoE aware 4G and 5G

dual connectivity activation criteria after taking into account the radio link failures and

voice muting anomalies. A mmWave discovery approach keeping in view the mmWave
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signal blockage condition is presented in chapter 5. Finally, chapter 6 discusses the con-

clusions and future work, and it thus concludes the dissertation. In this chapter we also

outline some possible directions for future work that can be built on the work presented

in this dissertation.
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CHAPTER 2

Literature Survey

2.1 Introduction

The unprecedented rise in the Internet traffic volume seen in recent years is attributed

to high speed internet, and the advent of smart phone technology. It is anticipated that

the number of 5G subscriptions will be 2.8 billion by the year 2025 [4]. Furthermore,

the insatiable demand for new bandwidth-hungry applications will lead to an avalanche

of traffic volume growth. Mobile data traffic will increase from 10.7 exabytes/month

in 2016 to 83.6 exabytes/month by 2021 [5], and that number will further increase

exponentially in the years to follow. The emerging cellular networks including 5G mobile

network standard as the next revolution of mobile cellular technology needs to support

the ever-increasing mobile users, provide adequate data rate for the bandwidth hungry

applications, address the QoS issues of delay tolerant applications and realize the concept

of Internet-of-Things (IoT) [6, 7]. 5G promises to deliver “more” of everything [8]: a)

top speeds of up to 1 Gbps, b) 100 Mbps data rate per end user even at the cell edge,

c) RTT (Round-Trip-Time) latencies in the millisecond range, d) higher connection

densities (1 million connections per km2 [9]), and e) support for mobile devices at the

speed of up to 500 km/h. Currently, Signal to Interference and Noise Ratio (SINR) is

considered as the primary metric for planning, dimensioning and optimization of the

existing cellular networks [6]. However, for a few exceptions like fixed IoT services, an

additional network planning/design criterion in the future may be the mobility related

QoE. This is likely the outlook in the backdrop of the following observations:

1. Coverage and SINR provisioning will become a relatively easy challenge given

the anticipated higher Base Station (BS) density in emerging cellular networks,
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along with the sophisticated interference management schemes and massive MIMO

assisted beamforming.

2. However, the very same advances in the network design i.e. densification, beam-

forming, massive MIMO make the mobility management a more challenging prob-

lem. The challenges stem not only from the increased number of handovers (HOs)

but also, beam management to maintain the expected QoE. Challenges related to

beam management includes focusing narrow beams on the mobile users, cell dis-

covery in narrow beam cells, and large signaling overheads when the user moves

from one massive MIMO cell to another cell.

3. With the advent of mmWave, narrow beams of mmWave bands will have limited

overlap with each other, making HO a challenging problem (see Fig.4 for observing

the difference in HO scenarios in low frequencies and mmWave frequencies).

The growing demand for mobile services in public transport, highways, open-air gath-

erings etc. [10] will be critical to customer experience. Providing a satisfactory Quality

of Experience (QoE) to a relatively large number of mobile users and a miscellany of

the devices including phones, tablets, sensors etc. at the speed up to 500km/h imposes

extreme challenges to the future mobile networks. Mobility requirements in emerging

cellular networks require high efficiency of the HO mechanism, which makes the cell-

change seamless for the users. Unlike the legacy technologies (i.e. 3G and 4G) that do

not give primary importance to high mobility, future mobile networks will treat mobility

as an integral part of the communication standard. Moreover, the mobility management

schemes in Long Term Evolution (LTE) systems (also known as 4G system) and to a

certain extent, even in the latest 5G New Radio (NR) standard are not well adapted to

the typical deployment of the futuristic mobile networks due to multiple factors, few of

which are highlighted below:

• The legacy LTE architecture makes use of a centralized network control entity
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Table 2.1: Comparison of LTE latency with 5G expected goals

Parameter LTE Requirement 5G Goal

Control Plane Latency

(Accessibility)
100ms 10ms

User Plane Latency 20ms 1ms

HO Execution 49.5ms 0ms

called MME (Mobility Management Entity) located in the core network. The

emerging cellular networks are expected to have 10-folds higher density [11], with

a larger fraction of mobile users. Thus, without a mobility centric redesign of the

architecture, future networks should have 10 times more MME’s just to achieve a

similar QoS as in LTE.

• To achieve the logistic feasibility for high density deployment, BS placement in

future mobile networks are likely to be impromptu or much less planned [11]. This

will increase mobility related signaling load that is bound to complicate the core

network management and planning.

• HO decision in existing networks is made by participating BSs without considering

the deployment of the BSs and backhaul limitations. In futuristic mobile networks

with flexible BS deployment, the chances of User Equipment (UE) in selecting the

optimal target BS may become smaller.

• While the capacity crunch will be addressed by small cells (SC), a large number of

inter-SC HOs will take place leading to frequent session interruptions during HO.

• With smaller inter-site-distance as in SCs, the performance of the existing mobile

network reduces sharply owing to the risk of HO failures due to high radio link

variability as shown in [12].

• In existing mobile networks, UE context has to move from one BS to another for

every HO. This will impose unprecedented signaling overhead in the future ultra-

dense network architecture. While signaling is already growing 50% faster than

data traffic [13], network efficiency will drop by many folds using the current HO
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approaches.

• HOs in 4G networks are based on the broadcast signal called Reference Signal

(RS). The mmWaves with narrow beams cannot have RS broadcast to the whole

coverage area within the cell range. Hence, cell discovery, especially for mobile

UEs is another key mobility challenge in emerging cellular networks not faced by

the traditional mobile networks.

• With SON stepping up the automatization of network configuration and opti-

mization in LTE, myriad of mobility management parameters associated with the

large number of closely deployed 5G BSs need to be well managed. For that, the

existing SON solutions will not be sufficient.

• 5G applications with Ultra Reliable Low Latency Communications (URLLC) e.g.

self-driven cars demand very low latency requirements as shown in Table 2.1 [14].

• When UE perform HO to a better cell, it experiences a latency and data inter-

ruption period. HO management in the future mobile networks should ensure a

seamless and latency-free transition from the source to the target cell.

• With mobile phone traffic on the rise, and with the advent of self-driven cars and

drones needing robust connectivity, seamless and reliable mobility management

has become more significant than ever. The adaptation of ultra-dense cellular

networks and mmWave BSs makes the mobility management even more complex

challenge requiring significant research effort.

In light of the above discussion, I can conclude that mobility management will have much

stronger impact on the design and architecture of upcoming cellular networks, than

it had on the legacy networks. The futuristic networks will incorporate high mobility

requirements as an integral part, and appreciable efforts are required to attain ubiquitous

top-notch QoE. Majority of mobility oriented surveys in the literature target adhoc
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Figure 2.1: Layout of the contents and outline of this chapter on mobility survey.

networks [15, 16, 17]. Mobility surveys on cellular networks do exists e.g. Xenakis et

al. [18] presented survey on HO decision algorithms for the femtocells in LTE-Advance.

Another survey on high mobility wireless communication has recently been presented

in [19], however, the attributes and intricacies of the 5G architecture have not been

addressed. To the best of the authors’ knowledge, this survey is the first to address the

novel contributions by research community targeting mobility in emerging ultra-dense

mobile networks. The contributions in this chapter and its organization are as follows:

• This chapter gives the first comprehensive tutorial on 3GPP based 5G mobility

management procedures for both a) idle/inactive mode, and b) connected mode

mobile users.

• Mobility related surveys do exist in the literature (e.g. [15, 16, 17] on adhoc

networks), but none of the aforementioned surveys addresses the futuristic mobile
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networks. This chapter presents a single go-to manuscript where future researchers

not only understand the 3GPP mobility procedure and the existing mobility re-

lated literature but also assist them in finding the research directions they might

undertake.

• It presents a first of its kind framework to correlate all mobility management

related parameters with all mobility management related KPIs. To facilitate easy

understanding, this framework is presented in the form of a flow chart shown in

Fig. 1.7.

• It presents a comprehensive and taxonomized review of the literature on mobility

management.

• It identifies the need for a new paradigm for mobility management deemed essential

to meet the quality of experience (QoE) requirements of the emerging applications

and use-cases.

• It proposes a novel proactive mobility management framework to meet the require-

ments of the emerging mobile networks. Since the challenges of 5G networks (e.g.

low latency, less overhead and high quality of experience) cannot be addressed by

the current reactive mobility management techniques, I discussed the proactive

mobility management in section 2.4.

• It highlights the need to come up with Mobility oriented Network planning and

dimensioning

• It provides a collection of the latest AI-based techniques to smartly address mo-

bility related challenges.

• It identifies the future research direction and few open research problems to achieve

this paradigm shift.
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Table 2.2: List of Acronyms

Acronyms Descriptions Acronyms Descriptions

3GPP Third Generation Partnership Project 4G Fourth Generation

5G NR Fifth Generation New Radio AMF Access & Mobility Function

BS Base Station CDR Call Detail Record

CIO Cell Individual Offset CoMP Co-Ordinated Multi Point

CQI Channel Quality Indicator CSI Channel State Identifier

gNB 5G Base Station (Next Generation NodeB) HF High Frequency

HO Hand Over HOM Hand Over Margin

IMMCI Idle Mode Mobility Control Information ICIC Inter Cell Interference Coordination

IoT Internet of Things KPI Key Performance Indicator

LB Load Balancing LoS Line of Sight

LTE Long Term Evolution (4G) MLB Mobility Load Balancing

MME Mobility Management Entity MR Measurement Report

MRO Mobility Robustness Optimization MIMO Multiple Input Multiple Output

MDT Minimization of Drive Test NLoS Non-Line of Sight

PCI Physical Cell Identifier P-GW PDN Gateway

QoE Quality of Experience RAT Random Access Technology

RRC Radio Resource Control RTT Round Trip Time

RS Reference Signal RSRP Reference Signal Receive Power

RSRQ Reference Signal Receive Quality RSSI Receive Signal Strength Indicator

RwR Release with Redirect RLF Radio Link Failure

SC Small Cell SINR Signal to Interference plus Noise Ratio

S-GW Serving Gateway SON Self-Organizing Networks

SDN Software Defined Networking SIB System Information Base

TA Tracking Area TAL Tracking Area List

TAU Tracking Area Update UPF User Plane Function

UE User Equipment URLLC Ultra-Reliable Low Latency Communication

Fig. 2.1 outlines the structure of the chapter. It also provides a taxonomy of the

literature on mobility.

2.2 Mobility Challenges and Research Proposals

Seamless mobility experience at a very high-speed is considered as one of the major use

cases for 5G networks, particularly in wake of advent of autonomous cars, low altitude

drones, and emerging high-speed commute systems. The mobility characteristics of

the emerging networks, such as densification and adaptation of mmWave narrow beam

cells (discussed in section 2.1), combined with the intrinsic complexity of the mobility

management process (discussed in section 1.1) means that the mobility management in
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5G and beyond requires significant research efforts by wider community. In this section,

I review the recent contributions made by the research community to address 5G and

beyond mobility challenges, by categorizing them in six sections as shown earlier in Fig.

2.1. Studies focused on reliability goals that involve achieving seamless and timely HO

while preventing HO failures and ping-pong HOs are discussed in the first sub-section.

Studies focused on achieving mobility while maintaining small delay are discussed in the

Latency Requirements sub-section. Signaling Minimization approaches are presented

in the next sub-section, followed by User Tracking in futuristic ultra-dense networks.

Subsequent sub-section covers studies on cell discovery including the goal to perform

timely offloading from macro-cells to small cells in order to prevent network congestion

and efficiently utilize network resources. Finally, research work focused on lessening

energy consumption are presented in the last sub-section.

2.2.1 Reliability Goals

Mobility casts a serious threat to reliability especially when HO is being performed from

one cell to another. Now I will discuss different research work on different HO types

and the respective reliability goals.

Break-Before-Make and Reliability

5G NR employs break-before-make (hard) HO approach [2] where UE breaks the con-

nection with the serving BS before resuming the new connection with the target BS,

and this process makes the mobile UE prone to undesirable service interruption. Repe-

tition of this type of HO under ping-pong scenario makes it even more susceptible to call

drops. An effort to deal with the frequent HO case has been presented in [20]. This chap-

ter focuses on the multi-objective learning-based mobility management strategy where

a learning model is described to obtain a comprehensive network information. Then

a multi-objective mobility management method is proposed taking into consideration
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user QoE and number of HOs. Results are compared with 3GPP based HO scheme,

and the authors show that number of HOs are reduced by more than 5 times. As a

future step, simulations can be presented by using a stochastic network model. Much of

the reliability concerns are studied while keeping in view the UE downlink performance

only. Authors in [21] studied reliability for uplink channel of multi-user MIMO channel.

Authors employed Quadrature Spatial Modulation (QSM) to lower the uplink Bit Error

Rate (BER) from 10-1 (when using spatial multiplex) to the order of 10-3. As a future

work, BER results can be shown with different user velocity to evaluate the efficacy of

the proposed approach for a realistic scenario of mobile users.

Make-Before-Break and Reliability

Unlike 5G NR and LTE, 3G uses an alternative of break-before-make HO, i.e. make-

before-break vis-a-vis soft HO. 3G UE apply macro diversity where it can establish

simultaneous connection to more than one cell, and the set of participating cells are

referred to as Active Set (AS). Authors in [22] propose a 3G like soft HO approach where

multiple serving cells are represented by AS. The results show that fixed AS window

can prevent RLF to a great extent. However, throughput degradation is observed as

radio resources of the weaker cells are unnecessarily wasted by the user. To counter this

problem, the authors propose a dynamic AS window where add/remove parameters are

adapted based on the slope of the linear curve that creates the dependency between the

add/remove offset and the size of AS. AS based approach will result in more signaling,

computation and energy requirements in maintaining and updating the connectivity

to different cells in the AS. One drawback of make-before-break HO scheme is the

complexity at UE side to process multiple RF chains. Note that the advent of narrow

mmWave beams in 5G that is likely to lower the source link reliability for the mobile

users, further undermines the perceived advantages of make-before-break HO. Authors

in [23] analyzed the pros and cons of make-before-break HO in more detail and concluded
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that they are unsuitable for 5G networks. For similar reasons, 3GPP RAN WG2 during

its meeting #94 decided to discard make-before-break like procedures from the scope.

For the above-mentioned reasons and to achieve higher reliability and retainability goals,

the 5G networks have employed hard HO process requiring successful break-before-

make procedures. Reliability goals in literature are usually addressed through multi-

connectivity approaches.

Reliability Through Multi-Connectivity

Multi-Connectivity (MC) can be employed in conjunction with break-before-make HO

approach to mitigate interference through coordination. MC can attain ultra-reliability,

low latency, and interruption-free communication by preparing the target cell before

the transmission is broken. Furthermore, it tackles connection failures by using a co-

ordinated transmission among the serving cells. As a result, HO failures and RLFs

are drastically suppressed. However, drawback of MC includes added complexity in

adding/removing MC participant cells. A study by Tesema et al. [24] on intra-frequency

MC shows that the RLFs can be avoided while enhancing throughput through joint

transmission of BSs. The authors in [24] then extended their idea in [25] to inter-

frequency MC and prove availability benefits in that scenario. However, stationary users

were considered with focus on modeling of the best server association. Their study did

not incorporate reliability for mobile users. In a separate study [26], the same group

of authors deal with mobility concerns and evaluated reliability performance through

different intra/inter frequency cells. For intra frequency, Dynamic Single Frequency

Network (DSFN) is proposed to dynamically add BSs to the coordination set. This in

turn helps to achieve reliability and low latency of less than 1ms. For inter-frequency on

the other hand, redundant transmissions are performed on the different frequency layers,

such that the UE selects the best transmission, i.e., selection combining is applied. The

proposed approach can avoid poor SINR of <-6dB (marked as RLF) and achieve higher
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reliability of 99.999% or greater. Tesema et al. further enhanced their work in [27]

by proposing a novel multi-connectivity scheme that uses fast selection of serving cell

from a set of prepared cells similar to Co-ordinated Multi-Point Transmission (CoMP).

Fig. 2.2 shows different types of CoMP. Control plane in CoMP is served by a primary

cell only, and if radio condition of the respective control channel degrades, then user

plane data may not be guaranteed even if radio condition of user plane cell is better.

On the contrary, Fast Cell Select (FCS) is proposed in which the selected cell from the

set of pre-arranged cells is used for transmission of both data and control signals. The

presented work provides gain in the quality of the control and data signals, which ulti-

mately solves RLF problem and improve throughput of cell-edge user. CoMP, although

beneficial, has an intrinsic conflict with the hard-HO methods used in 5G networks,

as connection with source cell terminates before setting up a connection to the target

cell. In [28], authors addressed this conflict by introducing a new HO mechanism based

on CoMP joint transmission scheme in order to minimize inter-cell-interference (ICI)

level between the adjacent cells during the HO execution. Their algorithm consists of

Coordination set (CS) and Transmission set (TS) of BSs. CS selection is assisted by

the UE through sending periodic measurement report which contains UE velocity and

RF condition. Velocity metric is used to avoid small cells for high velocity UEs, and

RF condition is used to determine TS. Performance evaluation results show that ICI is

reduced considerably leading to a better average throughput per user during the HO

procedure. Benefits are achieved at the cost of higher complexity and increase in signal-

ing data. A study on optimal TS size to improve reliability, and throughput, taking into

consideration the processing complexity and the magnitude of the control data would

be a good research contribution.
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Figure 2.2: Types of Downlink CoMP.

2.2.2 Latency Requirements

Besides reliability, another mobility management objective of paramount importance

is to minimize the length of transmission disruption during the HO process. In this

subsection, I review the studies and research efforts aimed to minimize HO delay.

RACH-less Handover

Authors in [23] identified that RACH takes about 8.5ms out of 50ms interval required to

accomplish HO task in LTE. Based on this assumption, they proposed a RACH-less HO

technique to improve the latency by 17%. Authors suggest alternate means to perform

the same functionalities as of RACH. For instance, RACH helps target BS to compute

Timing Advance, though with lower accuracy. In the proposed RACH-less HO, UE

can estimate timing advance from the time difference between the source and target
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cell signals. Accuracy evaluation of the proposed approach will help gain confidence

to the researchers. Such timing advance estimation method has been further evaluated

in [29]. Alternatively, target BS can also compute timing advance through Sounding

Reference Signals (SRS) which is used in LTE for uplink channel estimation as shown

in [30]. However, this process might result in the timing advance estimation delay as

it requires UE to be configured with SRS first. Initial uplink power, Physical Uplink

Shared Channel (PUSCH) in LTE, normally known after successful RACH procedure,

can be determined through source BS prior to HO initiation. Eliminating RACH is

a novel proposal. However, UE in turn has to do more processing to compute timing

advance that may lead to decreased battery life in a dense network. While RACH-

less HO has its merits, the aforementioned challenges call for alternative approaches to

reduce HO latency. One example of such approach is mobility aware caching.

Mobility Aware Caching

From the mobile users’ perspective, more data rate alone is not enough to ensure better

user experience. Any bottleneck in the distribution network between RAN and content

servers can result in a prolonged Round-Trip-Time (RTT). During a HO, the chances of

such bottleneck increase as momentarily the UE’s QoE becomes dependent on two cells

instead of one. This makes caching in the BS a useful tool to help accelerate the data

delivery to the intended user. However, mobility degrades cache efficiency when UE

moves to another BS. A study in [31] proposes to incorporate caching and computing

ability deep into the base stations. The authors in [31] proposed a seamless RAN-cache

HO framework based on mobility prediction algorithm (MPA). In the proposed scheme,

the target BS is predicted for a UE with unfinished transmission during HO. This

prediction is then used to pre-trigger the source RAN cache. This notifies the target

RAN cache associated with the target BS to prepare for serving the UE and ultimately

reducing latency. As a result, false probability of RAN-cache HO pre-trigger through
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MPA though recorded to be less than 1.36% show an 8% increase in the maximal RAN-

cache HO processing time. Researchers should benefit from the history of user mobility

to come up with an improved algorithm. Mobility aware caching has been investigated

in [32] to maximize the cache hit ratio that is defined as the number of requests delivered

by the cache server, divided by the total number of requests. Compared to [31], authors

in [32] considered both macro-cells and small cells. The first priority is given to the local

cache followed by small-cell. However, if data is not received within the set deadline,

macro-cell is then accessed to acquire data. Results assert that the proposed caching

strategy outperforms prior caching strategies. The proposed cache scheme has a better

cache hit ratio and low latency requirement for 5G networks.

paging-less Approach

Authors in [33] presented a novel frame structure with sub-millisecond subframe du-

ration operating in Time Division Duplex (TDD) mode aimed for 5G networks. The

frame structure carries UL beacon resources to enable a pagingless system for idle mode

users. For connected mode users, UL beacons provide channel state information (CSI)

for improved frequency selective scheduling. However, a caveat of this approach is that

it can lead to an excessive amount of uplink messages. This in turn, may cause acceler-

ated UE battery drainage and thus smaller battery life which is contradictory to one of

the major 5G requirements.

2.2.3 Signaling Minimization

In both LTE and 5G NR, the processing unit is shifted to the edge, i.e., BS, primarily to

reduce latency. However, this comes at the expense of increased signaling generated as

the UE context is shifted from one cell to another during the HO procedure. This issue

aggravates with the ultra-dense BS deployment. High signaling not only chokes the CPU

of BSs, but also results in lower effective spectrum efficiency by consuming a substantial
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amount of resources in the air interface. Too much signaling between neighboring BSs

and BS-Core can result in potential congestion in the backhaul for the 5G networks with

ultra-dense BS deployment. Reason being the expected myriad of mobile UEs, ultra-

dense BS deployment, and added features that require high coordination e.g. multi-

connectivity, carrier aggregation, and interference mitigation techniques. Thus, there is

a possibility of network being paralyzed especially in busy hours due to the avalanche of

signaling traffic. Signaling avalanche is an eminent threat in future ultra-dense networks.

The research efforts by the research community to minimize the mobility signaling load

can be loosely categorized in the following four sub-categories.

HO Signaling Reduction Through Mining HO Patterns

One basic but effective way to reduce HO signaling is to characterize HO behavior among

cells to identify cells with an unusually large number of HOs or otherwise abnormal HO

pattern e.g. ping-pong. Authors in [34] study the HO behavior of cells and propose a

clustering model using K-means, to group cells with similar HO behavior. Further eval-

uation was done using actual HO attempt and HO success KPI of nearly two thousand

WCDMA cells. The idea is to forecast the number of HOs and detect abnormal HO

behavior among cell pairs using linear regression and neural network techniques. The

detection is then used to perform targeted optimization of HO parameters in respective

cells to minimize HO signaling. Adding a temporal component to training data can

further increase the accuracy of the prediction.

Mobility Signaling Reduction Through RAN Centralization

Another method to reduce mobility signaling is to leverage the centralization of RAN

e.g. using Cloud-RAN (C-RAN). Uladzamir et al. [35] recently proposed mobility

aware hierarchical clustering approach (HIER) to group Virtual Base Stations (VBSs).

Clustering based on the location of Radio Resource Heads (RRH) aims to reduce costly
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HOs and thus, minimize signaling data. They also proposed location aware packing

algorithm (LA) where inter-cluster mobility statistics are obtained by keeping track of

UE movement, UE history to predict the traffic intensity between BSs. In addition, the

history of inter-RRH HOs is considered as well. The proposed scheme when compared

with affinity propagation clustering [36] can reduce up to 34.8% HOs, but at the cost

of much higher requirement of RRHs. The approach can be beneficial for urban areas,

but for less dense sub urban and rural areas, network deployment at this scale won’t be

feasible.

Mobility Signaling Reduction Through Cell Extension

An Extended Cell (EC) concept is proposed in [37] to dynamically form groups of several

adjacent cells. HO performance improvement is rendered by increasing the overlapping

area between two adjacent cells in the Radio over Fiber (RoF) indoor networks. The

proposed approach reduces the number of HOs and the call drop probability during

the HO by 70%. Although proven effective, it lacks the dynamic procedures to define

ECs to optimize network resources. Shortcomings were addressed by authors in [38]

by extending the idea and coming up with a proposal on the Moving Extended Cell

(MEC). Here, each mobile UE is covered by 7-cell EC where each EC transmits the

same user data at every instance. This in turn, reduces HO latency through early

preparation. Evaluation results show the proposed architecture can totally avoid call

drop and packet loss for UE’s with a velocity of up to 40 m/s. The authors in [38]

suggested that MEC is very efficient in tackling HO for mmWave cells but is vulnerable

to throughput inefficiency as all seven cells in the cluster transmit for a single user.

Mobility Signaling Reduction Through Virtualization

Virtual Cell (VC) has been proposed as a solution by Hossain et al. in [39] to reduce

mobility signaling while increasing the throughput efficiency of 60 GHz RoF network.
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VC is a central part of an actual cell, and the remaining boundary area is divided into

numbered tiles. Wireless Sensor Network keeps track of the UE location and periodically

sends report to a centralized controller. Multiple Antenna Terminals (AT) cover a single

cell, and only a single AT is activated at an instant. When the UE steps on one of

the boundary-located tiles, the controller activates respective neighbor AT to transmit

similar data. In the VC scheme proposed in [39], maximum of only two ATs can be

activated for HO preparation in contrast to 6 in MEC [38]. End results of using VC

concept show an increase of 33% throughput efficiency in comparison to MEC. Drawback

of the proposal involves management of a wireless sensor network to track and report

UE location. And if the UE velocity is high, the low powered sensors may not be able

to timely report or even identify the presence of a high-speed user.

2.2.4 User Tracking

Location management, sometimes referred to as mobility tracking or user tracking, is

defined as the set of procedures that determines UE location at any instance. User

tracking is inevitable in cellular networks, so that incoming data from the core network

can be delivered to the user. Densification of both cells and users, as well as increased

mobility focused use cases such as Intelligent Transportation Systems (ITS)/Unmanned

Aerial Vehicles (UAV) etc. bring new challenges to user tracking in 5G environment.

The recent attempts to address these challenges can be loosely categorized into following

three subcategories:

Distributed Tracking Area Update

A framework to minimize conflicting metrics, Tracking Area Update (TAU) and pag-

ing, is presented in [40] by distribution of Tracking Area (TA) into Tracking Area Lists

(TAL) in two phases. First phase is offline, which is responsible to assign TAs to TALs

using three different approaches. The first two favors paging overhead and TAU respec-
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tively, while the third one uses Nash bargaining game to ensure fairness between paging

overhead and TAU. Second phase is online which controls the probabilistic distribution

of TALs on UEs by taking into account their behavior, incoming transmission frequency

and mobility patterns. Numerical results were shown for the three approaches of the

first phase, where the third solution provides a fair tradeoff between paging overhead

and TAU. As a future step, results should be compared with prior schemes. No research

work focusing on the horizontal or vertical deployment of TAs is present, therefore re-

searchers can come up with smarter and more effective ways for operators to define

Tracking Areas.

Hybrid Tracking Area Update and Paging

5G network will have large range of UEs and dense network deployment as discussed

earlier. Hence, a huge amount of paging especially for millions of IoT devices is expected.

As a result, signaling associated with paging may become enormous if currently available

approach is used. To address this problem, authors in [41] propose a hybrid scheme in

which either RAN or core network can initiate paging. RAN based paging with Tracking

Area (TA) of just one BS is proposed for the RRC inactive [42] UEs to have low latency

at the expense of high buffering capacity to transfer the content to the neighboring BS

in case of user mobility. Meanwhile, core network-based paging is recommended to be

used for idle UEs. Authors also proposed a hierarchical paging and location tracking

scheme to minimize signaling load by assigning an anchor BS for location management.

They conclude that RAN based paging is not efficient for high mobility UEs as TA

is limited to a single BS. For hierarchical approach on the other hand, there should

be more data management and processing for every user at anchor BS which becomes

another single point of failure. Processor overload or X2 (inter-cell communication link

in LTE) congestion, as a result, can disrupt the paging process.
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Dynamic/Adaptive Tracking Area Update

Authors in [43] proposed an adaptive method that employs smart TAs to reduce the

frequencies of TAUs and the sizes of paging areas. The proposed scheme uses the

interacting multiple model (IMM) algorithm [43] to determine the estimated location

of a UE at the time of the latest registration and provide a predicted location after

a certain time frame. An experimental evaluation with an artificial trajectory showed

that this approach cuts half of the extra location registrations compared with non-

adaptive methods. Aside from that, this method also determines TA adaptively to

significantly reduce the average paging sizes resulting in to lesser signaling for each

paging attempts. As a future step, comparison results can be added for different types

of mobile users at different speeds and trajectories to prove the effectiveness of their

approach. Authors in [44] employed Apriori algorithm [45] for dynamic Location Area

planning using call logs of several mobile users. Apriori algorithm finds frequent itemset

using an iterative level-wise search procedure. By taking minimum support of 100%,

Apriori algorithm can highlight those cells which serve mobile users every day. Based

on this approach, authors in [44] suggested to create a dynamic TA based on more

than 80% minimum support. Authors in [44] categorized mobile users into predictable,

expected, and random groups based on the minimum support value. For each category,

the authors propose to minimize location management cost by employing a suitable

algorithm. However, the exact algorithms needed to minimize location updates, in this

scheme, remain to be investigated as future work.

2.2.5 Cell Discovery

Traditional networks with High Frequency (HF) bands broadcast the reference signals

(pilot symbols) for cell discovery as mandated by 3GPP. Majority solutions proposed

in literature for cell discovery involve periodic scanning by the UE of these broadcast

signals. The higher frequency of this periodic scanning ensures timely cell discovery but
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results in increased battery consumption leading to trade-off between energy efficiency

on UE side, network side, QoE, overall capacity and load distribution. In the following I

discuss studies that have investigated these trade-offs and proposal solution to optimize

one KPI or other.

Cell Discovery with UE Energy Constraints

5G networks will have heterogeneity of BSs with a motely of macro-cells and small-cells.

A mobile UE connected to a macro-cell must scan for potential small cells to benefit

from the high data rate and traffic offloading opportunity. If a mobile UE uses high

scanning periodicity, it is likely to discover small cells in a more timely fashion. Thus,

it may avail better offloading opportunities, but at the cost of reduced battery life due

to increased amount of energy consumed by the scanning process, and vice versa. The

investigation of this tradeoff is interesting and yet a challenging research problem as

the optimal scanning periodicity, if exists, might be dependent on the cell density and

user speed among several other factors. Authors in [46] use a rigorous approach that

leverages stochastic geometry-based modelling of the network and empirical modeling

of UE mobility. Analytical expressions have been derived to characterize and quantify

the dependency of the UE energy efficiency on the cell density, cell discovery periodicity

and the user velocity. Through analytical as well as Monte Carlo simulation results,

it’s been shown in [46] that UE battery life reduces significantly with increased cell

discovery rate, while the UE throughput increases and vice versa. The key finding of

this analysis is that, there exists an optimal cell discovery frequency for a given cell

density and user speed statistics. This optimal cell discovery frequency maximizes the

UE energy efficiency (EE) by achieving a Pareto optimal point between the capacity

lost by missing cells with low cell discovery frequency and energy saved at UE in doing

so and vice versa. Daniel et al. [47] proposed an energy efficient small cell discovery

technique using radio fingerprints. In this proposed solution, network configures UE
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with several radio fingerprints which are lists of cell-IDs and RSRP strength at different

intervals. As a normal procedure, users served by the macro-cell performs the neighbor

cell measurement as it moves around and compares those to the configured radio finger-

prints. Upon a successful match, macro-cell is reported back which in return configures

the corresponding small-cell. Authors show that energy efficiency of 70-80% is achieved

on UE side by avoiding unnecessary small cell discovery measurements, and up to 45%

on network side by small cell activation/deactivation. Practical use of this approach will

be limited to shadowing since RSRP at a given point changes with time and the effect of

environmental changes like rain/snow also affects the standard deviation of shadowing.

Moreover, MDT will reveal better results as the location of the UE with respect to the

small cell location can be known, followed by the successful small cell association.

Cell Selection with Network Energy Efficiency Perspective

The Information and Communications Technology (ICT) sector contributes around 2-

3% to world’s carbon emissions and is doubling every four years [48]. Since mobility is

closely coupled with uneven and dynamic user distribution, the mobility patterns can be

exploited to turn OFF/ON cells for enhancing energy efficiency. A solution to conserve

network energy using such mobility leveraging approach is proposed in [48]. Decision of

powering OFF the BSs is made using the UE velocity, receive power, BS load and energy

consumption. In addition, HO to the small cell can be made only if the UE velocity and

the cell load is lower than the respective thresholds. As a result, the low load cells can

be powered OFF. However, the paper does not address when and how to turn ON the

cell, as the powered OFF cell in the presence of the candidate UEs can have negative

impacts on the capacity, efficiency, and user satisfaction. Random way point mobility

models and the stochastic geometry theory are utilized in [49] to evaluate the energy

efficiency of 5G networks. The network capacity and energy efficiency are evaluated

for Ultra-Dense Cellular Networks (UDN) considering the user mobility. Results were
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Figure 2.3: mmWave tracking. (a) Refresh procedure through 12 directions, (b) Refinement
procedure through 2 directions.

demonstrated using Monte Carlo scheme where a user will keep stationary for a certain

time, and then start moving to a random direction with variable but bounded velocity

range. Results indicate that the energy efficiency decreases exponentially with increase

in the small cell density. Energy efficiency decreases from 160bits/J to 155bits/J and

144bits/J when small cell density was increased from 10 cell/km2 to 15 cell/km2 and

20 cell/km2 respectively.

mmWave Beam Alignment and Tracking

The studies discussed in the last two subsections do not consider the several idiosyn-

crasies arising from the advent of mmWaves cells, as discussed in the following. mmWave

band cell discovery becomes far more complex compared to the high frequency (HF)

cells because of the high penetration loss and narrow beams [50]. Directional path in

mmWave can deteriorate sharply due to rapid changes in the environment which calls

for an intense tracking and alignment. The situation can be aggravated when consid-

ering mobile users. To address these issues, authors in [51] proposed two innovative
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schemes by which UE can alternately scan the whole angular space exhaustively and

select the beam with the best SINR. They propose the mmWave BS to send pilots in the

configured finite directions at regular intervals, one at a time. The UE then scans for

the mmWave-cell beam using two mechanisms: a) periodic refresh (PR) – The UE scans

in all directions one at a time and the direction with the maximum SINR is selected; b)

periodic refinement and refresh (PRaR) – The first optimal beam with the maximum

SINR is selected as per the PR, and then the UE performs a refinement procedure by

scanning the neighboring direction to adapt according to the changing condition or due

to the UE mobility. This mmWave tracking approach is depicted in Fig. 2.3. Compar-

ison between both schemes were done using the real-world measurement data collected

in New York city on carrier frequency of 28GHz. As expected, PRaR is less energy ef-

ficient than PR because of the much frequent refinement procedure. However, they did

not compare their schemes with the broadcasting approach or direct alignment schemes.

Also, the scenario might arise where both the mmWave BS (in sending pilots) and the

UE (in scanning pilots) are not synchronized with each other in terms of direction.

Such a scenario is likely to lead to the tracking and alignment delay. Alignment process

is done by scanning the adjacent beams only and can give sub-optimal results for the

high-speed users. Esmaiel et al. [52] proposed a novel mmWave multi-level beamform-

ing approach. mmWave link is established after multi-level beam search is conducted

using a compressive sensing-based channel estimation. The estimated UE location is

used to determine the number of beams and the bandwidth required for constructing

the sensing matrix used in each beam searching level. Results show an increase in the

spectral efficiency by 40% under good radio conditions. Authors in [52] also proposed

a novel concept [53] of two-level control and user data (2CU/U) planes splitting, where

the LTE BS and the WiFi access point provides control over the distributed sub-clouds

and distributed mmWave BSs respectively. With the proposed approach, mmWave

miss-detection probability as low as 10% can be obtained compared to 90% with the

conventional approach when mmWave BS are deployed in a sparse manner. The result

47



can be further improved by incorporating the user movement historical data, and to

observe the result for different UE speed.

HO in mmWave Band: Traditional HO is based on the Received Signal Strength

(RSS) wherein pilot signal strength measured by the UE determines the cell-edge and

thus lends assistance in performing HO to the target cell. This approach is ineffective

for addressing the unique challenges associated with the mmWaves. In mmWave cells,

the RF reception changes drastically with UE speed and direction. Hence relying on the

RSS to anticipate a cell edge may not suffice. Authors in [54] suggest a novel Inter-Beam

HO Class (IBHC) concept combined with the HO control and radio resource manage-

ment functionalities. Initially, the user is assigned to a mobility classes depending on

its estimate speed. The corresponding HO frequency is defined such that the high ve-

locity UEs are expected to observe more HOs than the pedestrians. The mobile user

is assigned a group of beams as per mobility class, load conditions and the expected

path of UE. Each beam in the group contains similar resource allocation to improve

the reception quality. HO is thus performed only at the edge of the beam-group. The

underlying assumption in the proposed scheme is that the individual signals of each

beam are perfectly synchronized. This can be true for low speed users; however, it may

not hold for the high-speed users. Another strong assumption is the perfect estimation

of UE velocity. UE velocity estimation is a big challenge even in the existing mobile

networks, where the number of HOs in a moving time window are used to estimate

UE velocity. Emerging networks with dense deployment of multi-frequency networks

will make the prediction of UE velocity even a bigger challenge. Concept presented in

the [54] can be extended by considering the relationship between the maximum user

velocity and the mmWave footprint where its beneficial for the mobile user to camp to

the mmWave cell. The study should include the signaling cost and energy consumption

in scanning for the mmWave cells. In [55], authors leverage the concept of moving cell

for train communication using 60 GHz band. To avoid the large number of HOs in high

speed train, authors propose to employ the Radio over Fiber (RoF) technique. The key
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idea is to make the serving cells move together with the train and thus provide smooth

uninterrupted transmission to the passengers. However, for this scheme to be practical,

the train’s velocity and the direction needs to be pre-known to achieve synchronization.

Furthermore, due to the inability to cope up with randomness of user mobility, this

concept is not appropriate for mobility management in indoor environments. The state-

of-the-art literature work reviewed in this section is focused on managing mobility in a

reactive way. Two of the key challenges in mobility management in emerging networks

that are not addressed by the current reactive mobility management paradigm in the

industry and the associated literature in academia are high latency of the HO process

and the large signaling overhead. These challenges become more important with the

increasing fraction of mobile UEs, more bandwidth hungry applications and the advent

of delay sensitive use-cases like self-driven vehicles. Proactive mobility management is

an emerging paradigm that has the potential to address these challenges. It’s a vital

component by which the network operators can guarantee the success of the futuristic

mobile networks. Key concept of the proactive mobility management and the recent

studies that have presented few novel ideas to achieve the proactive mobility manage-

ment are discussed in the next section.

2.3 Proactive Mobility Management

It is a well-researched fact that people tend to visit the same places repeatedly in their

daily life, e.g. workplace, school, gym, parks, shopping venues, etc. This makes their

movement to feature a high degree of repetition and hence predictability. According to

some large-scale studies, this perceptibility can be as high as 93% [56]. This intrinsic

predictability in human mobility can be leveraged to build models to predict the UE

mobility patterns. In cellular networks, these models can be built by harnessing the large

volumes of UE mobility related data such as call detail records (CDRs), GPS traces,

and data traffic from existing networks. Following is the list of some of the potential
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use cases of mobility prediction in the current and emerging cellular networks:

• Enhancing the overall QoS and QoE by reserving and managing radio resources a

priori for users expected to arrive in a cell [57].

• Prevent failures and minimize HO delay e.g. by proactively triggering HO [58, 59].

• Prevent ping-pong HOs.

• Efficient load balancing e.g. by predicting cell loads and emergence of hot spots.

• Assist in cell activation/deactivation, and hence, conserve energy consumption.

Mobility prediction models in literature can be classified into three broad groups:

1. History based prediction models: In this type of prediction models, UEs next

target cell is predicted based on the statistical analysis of historical records such

as HO records or CDR records.

2. Measurement based prediction models: Such prediction schemes derive probability

of user transition to next cell based on the real time measurements e.g. RSSI,

SINR, distance, etc.

3. Location based prediction models: Current user location and in some cases urban

transportation infrastructure is used to predict the future user location in the

location-based prediction models.

In the following, I discuss the recent studies in literature that have made use of the two

types of prediction approaches for various use cases.

2.3.1 History Based Prediction

History based mobility prediction approaches can be further divided into the following

categories:
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CELL TRACE BASED PREDICTION

Location prediction based on cellular network traces has recently attracted a lot of

attention. Zhang et al. propose NextCell scheme [60] that utilizes social interplay fac-

tor to enhance mobility prediction. Social interplay is characterized by the convolution

between entropy of the average call duration between two users, and the probability dis-

tribution of these two users to be co-located in the same cell. NextCell predicts the user

location at cell tower level in the forthcoming one to six hours. It shows that inclusion

of the social interplay improves prediction accuracy by 20% when compared to behav-

ior periodicity-based predictor. However, results were not compared with the existing

prediction schemes. Authors in [61] presented a HO prediction scheme that combines

signal strength/quality to physical proximity along with the UE context in terms of

speed, direction, and HO history. The presented scheme achieves 33.6% reduction in

HO latency when compared with conventional HO approach.

MACHINE LEARNING BASED PREDICTION

Complex interaction between different components of a network can be well captured

by Machine Learning approaches. For the same reason, much of the history-based

prediction works revolve around machine learning based approaches. Authors in [34]

argue that most of the research involving behavior prediction of a single UE is an

infeasible and impractical approach. The argument is backed by the fact that some

HOs are coverage based, while some are network initiated (e.g. load balancing). They

propose to address these challenges by employing the K-means algorithm to group the

cells with the most similar HO behavior into a cluster. Next, the future HOs were

forecasted, and abnormal HOs were identified. The main target of the proposal is to

minimize the signaling load by avoiding the abnormal HOs. Now I present some of the

research work done on specific machine learning algorithms:

Support Vector Machine: Authors in [62] capitalize on Support Vector Machine (SVM)
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to predict the user location in the next 5 seconds. A framework to minimize HO delay

using mobility prediction is proposed. However, they did not validate the framework,

neither did they compare their work with the existing proposals. In [63], SVM predicts

the next cell in a real-time manner, by combining GPS data, short-term Channel State

Information (CSI), and long-term HO history. The presented model was applied on a

synthetic Manhattan grid scenario. Results show that CSI results in almost 100% better

prediction accuracy compared to using HO history alone. Using different shadowing

values to represent different terrain and environment can further strengthen the idea

practicality.

Neural Networks: Few works in [64, 65] have leveraged neural networks for mobility

prediction. The basic idea is to utilize the neural network to learn mobility-based model

for every user and then make prediction about the future serving cell. Authors in [64]

performed clustering of the input RSS samples through k-means. The clusters and input

RSS samples were then fed to a classifying model, where neural network was used to

predict the user position. Results show that the prediction accuracy increase by just

5% when compared to the prediction using neural networks alone.

Markov Chain Based Prediction

A large number of research studies have used Markov chain-based approaches for mo-

bility prediction for their ability to yield better accuracy than most other predictors

with lower complexity [66]. In the following, I review recent studies for commonly used

Markov Chain (MC) variants:

Standard Markov Chain: Standard Markov Chain is a memory-less algorithm as the

next state depends only on the current state and not on the sequence of the events that

preceded it. Authors in [67] extracted trajectories of 4,914 individuals using 27-day log

of the mobile network traffic data. They compared the original Markov algorithm with

the Lempel-Ziv (LZ) family algorithm [68]. The core operation of the LZ predictor is
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by maintaining a prediction tree which adds more complexity compared to Markov. It

was concluded that although slightly more accurate, LZ family algorithm consumes a

lot more resources and time than Markov algorithm. Most of the mobility prediction

algorithms only consider spatial factors to predict future movements. Authors in [68] im-

proved Markov Chain based model by adding a temporal factor and achieved 6% higher

accuracy. Humans usually follow regular paths as discussed earlier, however, they may

deviate from their accustomed routine at some instances. Authors in [69] proposed a

practical model based on State Based Prediction (SBP) method to predict the place to

be visited when the user’s trajectory exhibits unexpected irregularities. When user di-

verts from the routine, SBP is employed to conduct the prediction. Experiments reveal

that the accuracy of proposed model can reach more than 83%, which is higher than

the accuracy of 60% achieved by LZ predictor used in [68]. Authors in [70] proposed

an implementation architecture for the MOBaaS (Mobility and Bandwidth prediction

as a Service). The MOBaaS can be readily integrated with any other virtualized LTE

component to provide the prediction information. Spatial information (location history)

and temporal information (time and day data) are collected and analyzed. The results

show a 33% reduction in access time for the requested content using the MOBaaS pre-

diction information can be achieved. Due to its appeal, several extensions of MOBaaS

were proposed later. For example, in [71], authors stressed that MOBaaS can be im-

plemented in a cloud based mobile network architecture and can be used as a support

service by any other virtualized mobile network service. Authors also evaluated the

feasibility and effectiveness of the proposed architecture. Fazio et al. [72] propose Dis-

tributed Prediction with Bandwidth Management Algorithm (DPBMA). The algorithm

uses Markov Chains to predict the user movement at each BS in a distributed way.

This makes the proposed solution different from many other studies [67, 69, 70] where

Markov chains are used to improve system utilization by reserving resources prior to the

HO. This helps in preventing the call drop occurrences. However, distributed algorithm

means BS needs to do a lot of processing making this solution not an attractive option
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for low cost BS or small-cells.

Enhanced-Markov Chain: In [73], subscriber’s mobility is predicted using the enhanced

Markov chain algorithm. The core idea is to add the behavior pattern and temporal

data of the users from CDR into the Local Prediction Algorithm (LPA) and the Global

Prediction Algorithm (GPA). LPA and GPA are based on first and second order Markov

processes where transition probability to next cell depends only on the present cell, and

both present and previous cell respectively. Results show that the proposed prediction

methodology achieves prediction accuracy of 96% compared to GPA with prediction

accuracy of 81.5%. However, users without any historical record in the training process

showed poor prediction accuracy. Techniques such as particle filter or Kalman filter can

be employed to increase accuracy for new users.

Semi-Markov Model: Authors in [74] argue that both discrete and spatial Markov

Chain assume human mobility as memory less. By using these approaches, I can achieve

spatial prediction of future cell, but time factor cannot be incorporated. To address this

concern, authors predicted HO to the neighboring BS using Semi-Markov Model. Semi

Markov process allows for arbitrarily distributed sojourn times. Experimental evaluation

leveraging on the real network traces generated by the smartphone application showed

prediction accuracy of 50% to 90%. An extension of this approach can be to have

ping-pong HO predictions.

Hidden-Markov Model (HMM): Ahlam et al. [75] proposed HO decision algorithm

(OHMP) using HMM predictor to accurately estimate the next femto-cell using a) the

current and historical movement information, and b) the strength of the received signals

of the nearby BSs. The performance of OHMP is validated by comparison with the

nearest-neighbor and random BS selection strategies. Results show that the number of

ping-pong HOs reduce by 7 times when considering dense deployment of femto cells.

Results in [75] are demonstrated for a single user scenario only and does not portray

futuristic cellular networks with large number of users. To address this concern, same
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set of authors extended their idea in [76] by incorporating multiple UEs. They take into

consideration the available BS resources of serving femto-cell and interference level from

the target femto-cell. The presented OHMP-CAC algorithm introduced a proactive

HO scenario where HO is triggered when SINR of the serving cell reaches a predefined

threshold. OHMP-CAC minimized the number of HOs by 64% and reduced the average

HO decision delay by up to 75% when compared with the traditional RSSI based scheme.

As discussed earlier, mobility prediction using Markov chain is a memory-less system as

future state can only be determined by the current state. On the other hand, enhanced

Markov Chains are based on historical data, but their application is very complex.

Moreover, mobile operators may not be allowed by the customers to use their historical

data due to privacy concerns. Even if historical records are accessible, HO delay might

still be observed due to the extraction and processing complexity of historical records.

Due to these factors, history-based prediction algorithms might render impractical.

2.3.2 Measurement Based Prediction

Measurement based mobility prediction approaches are more accurate than history-

based mobility prediction schemes. However, the processing complexity due to the

measurement procedure cannot be ignored.

RSSI Based Prediction

Soh and Kim [77] introduced RSSI based mobility prediction while keeping in view

different UE velocities. They incorporated UE trajectory and road topology information

to yield better prediction accuracy. The prediction goal is to achieve timely HO and limit

the probability of forced termination during HOs. In addition, bandwidth reservation

scheme was proposed that dynamically reserves radio resources at both participating

BSs during the HO procedure. Results show that proposed mobility prediction scheme

helps achieve almost similar forced termination probability as the benchmark scheme
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with perfect knowledge of the mobile UE’s next cell and HO time. Authors in [78]

proposed an RSSI-based prediction scheme to reduce VoLTE end-to-end delay and HO

delay under different UE velocities in mixed femto-cell and macro-cell environments.

The core idea is to send the measurement reports based on user velocity and predict

when and where to trigger HO procedure. As a result, HO delay is reduced by 28%.

For ultra-dense BS deployment, mobile UE may not perform HO to each BS on its

trajectory. Future work can include the consideration of load condition, so that both

low latency and adequate resources can be guaranteed for improved QoE. The decision

to skip the HO to a better radio condition cell can be based on dwell time or cell

load condition. Next femto-cell prediction based on radio connection quality and cell

load status is presented in [79]. Authors proposed two cell selection methods; a) BS

prediction after analyzing the collected data of average RSSI from nearby femtocells, b)

using cognitive radio to sense neighboring femtocells load before triggering HO. Results

show that appreciable number of HOs can be avoided when compared with only RSS

based HO approach. Thus, data interruption during HO and chances of Radio Link

Failure e.g., due to ping-pong HOs can be avoided. Authors in [80] argue that RSS

alone should not be considered when performing inter-RAT HO. Instead current RSS

predicted RSS and available bandwidth should be considered. They proposed Fuzzy

logic based Normalized Quantitative Decision (FNQD) scheme which aids in eliminating

ping-pong effects in HetNets. This work can help realize improved mobility management

for LTE-Unlicensed (LTE-U). However, the key performance metrics such as throughput

and HO delay should be added for validation purposes.

Measurement Report Based Prediction

Song et al. used Grey system theory in [81] to predict the (N+1)th measurement report

(MR) from Nth MR for high speed railways. The key idea is to utilize the predicted

MR to make proactive HO trigger decisions. Their findings showed that the difference
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between predicted MR and actual MR is within 1%. Thus, the proposed scheme is

capable of proactively triggering HO in advance and HO success probability is enhanced

from 5% to 10%.

User Direction Based Prediction

Authors in [82] present a user mobility prediction method for ultra-dense networks using

Lagrange’s interpolation. They predicted user’s arrival into their neighboring femtocells

based on users moving direction and the distance between users and neighboring cells.

The presented approach increases the prediction accuracy when compared with only dis-

tance based and direction based mobility prediction. However, the performance of their

proposed prediction scheme is not compared with other existing schemes to quantify the

performance gains.

User Velocity Based Prediction

Higher UE velocity imposes additional threat to reliability making prediction of UE

velocity extremely important to help tune the parameters more effectively. 3GPP based

solution assigns mobility states (high, medium, low) depending on certain number of

HOs in a moving time window. However, this technique will be inefficient in 5G net-

works with unplanned and highly dense deployment of heterogeneous BS having variable

cell radius. UE velocity was estimated in [83] based on the sojourn time sample and

accuracy was analyzed via Cramer Rao Lower bound. Numerical results show that the

velocity prediction error decreases with the increase in BS density. The authors in [83]

further extended their idea in [84]. The predicted UE velocity was used to assign the

appropriate mobility state. Validation was done by gathering statistics of the number

of HOs as a function of UE velocity, small cell density, and HO count measurement time

window. The results show similar conclusion as in [83] that the accuracy of a suitable

mobility state detection (known from UE velocity) increases with increasing small cell
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density. Authors in [85] observed that mobility in urban areas depends on the traffic

laws and is affected by the behavior of other people (red signal, other driver brakes etc.).

They predicted user mobility based on the observation that a UE with constant velocity

will probably go straight, while a UE decreasing in velocity might indicate stoppage on

red light or a turn to a different direction. User location in their model is estimated

from uplink time difference of arrival or provided by the UE via AGPS while velocity

estimation is achieved by increasing sampling rate of location or by Doppler shift. Re-

sults showed that overall throughput can be enhanced by 39%, 31%, and 19% for UE

velocities ranging from 25, 50, 75 km/h respectively.

2.3.3 Location Based Prediction

The knowledge of UE location can assist in an improved mobility prediction. Effective

localization when combined with the mobility prediction algorithms can yield more ef-

ficient HO related QoE results. Soh and Kim in [86] presented a decentralized Road

Topology Based mobility prediction technique where the GPS equipped UEs shall per-

form mobility prediction based on approximated cell boundary data that was shared by

the serving BS. Cell boundary data is represented by a set of points at the cell edge and

is populated based on historical measurement reports sent by UEs. UE at the cell edge

will thus report the corresponding location ID back to the BS, and proactive resource

reservation at potential BS can be achieved. Results show considerable reduction in

forced termination compared to a reactive HO approach without mobility prediction.

This approach can be applied to the macro-cells but is not reasonable to small cells as

mobile UEs will have to send a lot of high-powered uplink messages at cell edge (high

path loss condition). This can lead to an increase in HO failure due to high uplink

RSSI. Moreover, UE battery consumption will be high. Authors in [86] proposed mo-

bility prediction scheme based on road topology information. The main idea is based

on the approximated cell boundary based on prior HO instances, being configured by
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Figure 2.4: Directional network deployment using RRHs [3].

the serving cell. The authors in [86] extended their idea in [87] to add the temporal

component to mobility prediction. The scheme uses linear extrapolation from a UE

positioning data to predict its HO cell and time. 70% mobility prediction accuracy was

achieved compared to 60% in their prior work [86]. Location based mobility prediction

approaches assume all cell phones to have an accurate position information, which can-

not always be guaranteed. Moreover, security concerns of the subscribers may hinder the

collection of necessary data to realize accurate cell boundaries. While proactive mobility

management seems to be a great fit to address the stringent QoE requirements in the

emerging cellular networks, the trivial network dimensioning tasks should be planned

while keeping in view the effect of mobility on the deployed network.

2.4 Mobility Oriented Network Planing and Optimization

Realizing massive potential of network densification to address the capacity crunch has

introduced additional network planning challenges as discussed by Azar et al. in [88].

One such challenge will be faced due to larger fraction of the mobile users in the network;
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hence, the network must be planned while considering mobility management in mind.

Suitable network architecture can help achieve QoS goals while keeping the cost (e.g.

signaling) to a minimum, and ultimately help attain higher network efficiency.

2.4.1 Signaling Minimization by Reduction in Handovers in High Speed

Trains

Since considerable signaling overhead is being generated due to a single HO, network

planning and architecture aimed to reduce the number of HOs can certainly be very

effective. High speed train users are subjected to frequent HO as they move along the

track. Apart from a huge amount of signaling data generation, they can also encounter

severe issues like RACH failure, late HO, Radio Link Failure (RLF), and Release with

Redirect (RwR). Futuristic mobile networks with smaller footprint small cells will cast an

even bigger risk. To address this problem, authors in [89] presented a HO minimization

technique where they propose to install an antenna on top of the train that will perform

connectivity and trigger HO with covering BSs. Network deployment approach has been

demonstrated in Fig. 2.4. This elevated antenna interfaces with an inner-train network

to serve the passengers. Thus, instead of several users performing HOs simultaneously,

only one HO will be performed by the elevated antenna. This not only reduces signaling

load, but also minimizes the risk of HO failure as UEs will not experience penetration

loss of 20-30 dB inside the train. Field trial conducted on a 2.4km run showed downlink

throughput of 1.25Gbps. The concept of elevated antenna seems practical and is studied

even by 3GPP [3]. However, single point of failure lies on its very foundation; if elevated

antenna fails and observes HO failure then the multiple users being served under that

antenna will have disrupted data transmission. Intelligent switching of the elevated

antennas based on proximity to the BS can not only avoid HO failure but also deliver

high throughput due to better SINR, but at the cost of complexity and cost. Another

drawback will be the latency due to the addition hop between the top-mounted antenna
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and the inside-train UEs. As a result, self-driven trains in the near future might not

achieve the required latency QoE goal.

2.4.2 Changing Core Network (CN) to Achieve Latency Goals

Authors in [14] studied the latency, HO execution time, and coverage of four live LTE

networks based on 19,000 km of drive tests. The test was conducted in a mixture of rural,

suburban, and urban environments. Their measurements reveal that the lion’s share of

latency comes from the core network rather than the air interface. Based on the study in

[14], Johanna et al. [90] proposed a new entity called the edge node that integrates MME

and control plane part of SGW and PGW. Each edge node covers several BS, and when

UE moves to coverage of another edge node, the application server and gateway is also

shifted to minimize the latency. This approach helps to reduce latency for every HO done

within BSs connected to the same edge node. However, HO associated with inter-edge

node is followed by IP address reassignment and application-server transfer, which adds

to delay and data interruption. Keeping in view that the number of 5G subscriptions will

be 2.6 billion by the year 2025 [4], authors in [8] suggested a simplified 5G core network

which will be connectionless, and will incorporate the best effort without the support

for node mobility. The core idea is to have a legacy internet-like core network that will

not be QoS centric, and the majority of the traffic will flow through default bearers

only. Experiments were conducted on a smartphone to show that video streaming, web

browsing, and messaging will work well, thus, the future core network can be radically

simplified, resulting in a cost-effective solution. The authors in [8] mainly focused on

a simplified core network with low complexity. Over-simplification of core network is

not a practical approach as major functionalities of billing and access control cannot

proceed. Similarly, IP re-allocation at every single HO is not feasible and may result in

high latency or even packet loss.
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2.4.3 C/U Plane Split

With improvement and advancement in the hardware technology, telecom operators can

benefit from decoupling control and user plane (see Fig. 6.1). By doing so, future mobile

networks with the composite of macro-cells and small cells can be used intelligently for

efficient resource utilization. Moreover, signaling overhead from large number of HOs

can be minimized by assigning control plane and user plane to macro-cells and small

cells respectively. Authors in [91] address mobility support for high density, flexible

deployment of small cell architecture with flexible backhaul using Localized Mobility

Management (LMM) technique. The first step centralizes control-plane from small cells

to a Local Access Server (LAS). The second step allows individual small cells to handle

the mobility events, but still requires the LAS to act as a mobility anchor. Analytical

model based on discrete time Markov chain is used to evaluate the average HO signaling

cost, average packet delivery cost, average HO latency and average signaling load to the

core network. Results show that average HO latency decrease by 10ms compared to the

3GPP scheme [14]. Authors in [92] minimized signaling overhead in a 5G network with

a high density of mmWave BSs serving users under the umbrella of macro BSs. C/U

split was employed where macro BS provides the control plane and several mmWave

cells were group into clusters. Inter-cell HO signaling was curtailed by using a gateway

cluster controller, resulting in signaling reduction in the core network as well. Results

show that normalized X2 signaling overhead reduces from 100% to 10% as the density

of the deployed mmWave cells increases. Authors in [93] targeted latency minimization

in their proposed novel mobility management scheme for intro-domain handover (HO

within the same SDN domain) and inter-domain handover (HO across different SDN

domains). Layer 2 information and buffering approach was used to achieve HO latency

of just 400ms compared to the legacy DMM with 100ms of HO latency. While proactive

mobility management and mobility-oriented network planning seem to deliver promising

results, the constant temporal variations in a live network and the importance of key
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Figure 2.5: Frame structure for legacy LTE vs C/U plane split architecture.

landmarks can be addressed by introducing Artificial Intelligence (AI) to the cellular

network domain.

2.5 AI-Assisted Mobility Management

In recent years, AI has gained much popularity for proactively managing mobility in

future cellular networks. This is primarily because of an increasing number of configu-

ration parameters and due to the complex interaction between network parameters and

associated KPIs (as illustrated in Fig. 1.7). Once the research community is able to

overcome those complex challenges, AI-assisted solutions will have a revolutionary effect

on the telecom industry. The tutorial section of this chapter can help researchers un-

derstand the convoluted interplay between the network parameters and affected KPIs.

Now I present some of the AI enabled mobility management solutions present in the

literature.

2.5.1 Mobility Prediction using AI

The mobility prediction algorithm is presented in [94]. Authors use realistic mobility

patterns to capture the human movement and a 3GPP compliant 5G simulator was used
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to represent the HetNets scenario. Results show that mobility prediction accuracy of

almost 87% can be achieved for 2dB shadowing with XGBoost compared to 78% with

Deep Neural Network (DNN). The work can be extended by using time series predictors

such as recurrent neural network or LSTM.

Based on HO attempts per hour, authors in [34] cluster cells into different groups with

similar HO profiles using the K-means algorithm. For each cluster, hourly HO attempts

were forecasted using linear regression, polynomial regression, neural networks and gaus-

sian processes. the highest R2 value of 0.99 was obtained when using the gaussian

process. The proposed model then checks for abnormal HO behavior e.g. ping-pong.

Future work can be to proactively predict abnormal HO behavior ahead of time and to

recommend suitable proposed parameters to prevent HO KPI degradation.

2.5.2 Leveraging AI to improve HO in HetNet

Authors in [95] employed XGBoost supervised machine learning algorithm to perform

partially blind HOs from sub-6GHz to co-located mmWave cell. Authors show that this

machine learning-based algorithm to achieve partially blind HOs can improve the HO

success rate in a realistic network setup of co-located cells. The proposed algorithm

should be compared with the existing HO approach in terms of energy efficiency and

RLF to further validate the efficacy of the algorithm.

The idea of inter-frequency HO from a macro-cell to a non-co-located high frequency

cell with a much lower footprint is presented in [96]. The authors use the Random

Forest classification approach and also presented a use case of load balancing by which

an efficient resource utilization for the static users can be achieved. The shortcoming

in the presented approach is that for high-speed users, the load balancing based HO to

smaller footprint cell may be inefficient due to large HO rate and the resultant signaling

overhead and chances of HO failure.

Authors in [97] develop a Reinforcement Learning (RL) based HO decision algorithm
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for the mmWave cells by taking into account the user experience as a weighted sum

of throughput and HO cost. Based on the user’s mobility information, the optimal

beamwidth is selected by considering the trade-off between the a) directivity gain and

b) beamforming misalignment. The algorithm approves the HO trigger for mobile users

depending on UE velocity and BS density. The work can be extended by evaluating the

signaling overhead reduction and throughput gain achieved when compared with other

existing algorithms in the literature.

2.5.3 AI-Assisted RLF Avoidance

Authors in [98] predicted the RSRP of the serving and the HO target cell using Long

Short-Term Memory (LSTM) and Recurrent Neural Network (RNN). The algorithm

also predicts RLF instances with an accuracy of 84% using only RSRP as an input

feature. An extension to [98] has been made in [99] where other features like SINR,

out-of-sync identifier, RACH issues, and max RLC retransmission have been used for

RLF prediction. A wrong HO avoidance algorithm has been proposed in [100]. It uses

neural networks to prevent the HO to BSs which are affected by the undesirable radio

propagation scenarios in the network, e.g., coverage hole caused by an obstacle. The

proposed algorithm enables a UE to learn from past experiences (coverage unavailability)

to select the best cell for HO in terms of QoE. The authors show that their algorithm

helps achieve users to successfully complete the downlink transmissions more than 93%

of the time. However, the simulation environment is quite simplistic where the UE

traverses a straight line with only three BSs along the way. Hence, the movement of

UE is almost deterministic, and the Neural Network can easily learn its pattern and can

identify the optimal BS to perform HO. Furthermore, a single test UE gives a limited

evaluation of the proposed algorithm. Elaborated results with a HetNet scenario and

arbitrary movement of multiple users will have more realistic results.
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CHAPTER 3

SyntheticNET: A 3GPP Compliant Simulator for AI Enabled 5G and

Beyond

3.1 Introduction

Mobile cellular networks are one the most complex and expensive engineered systems

in existence today. Given a typical modern Base Station (BS) has thousands of con-

figuration parameters, optimal planning, configuration and continuous post-deployment

optimization of the nation-wide mobile network often containing hundreds of thousands

of diverse sites is already one the most challenging and resource hungry engineering

problem. In wake of internet of everything, e-governance, e-commerce, e-health and

ubiquitous consumption of infotainment, optimal design and operation of emerging mo-

bile networks is one the key propellers of the emerging digital society.

While rapid evolution of the cellular technologies towards 5G and beyond is a vital step

forward to meet the capacity crunch, it further aggravates the complexity challenge

being faced by the operators today. This is because the number of parameters per site

and number of sites per unit area continue to rise making mobile network too complex

to optimally design, configure, operate, and manage. This calls for tools that can enable

investigation and realistic evaluation of a myriad of new system level configurations and

features in various deployments and use case scenarios.

Academic research community has heavily relied on mathematical models e.g., such as

ones employing stochastic geometry, to get insights into the system level performance

of various deployment scenarios [101, 102, 103, 104, 105, 106]. However, to achieve

tractability, these models have to build on countless restrictive assumptions and sim-

plifications with respect to user and BS location distributions, transceiver architecture
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Figure 3.1: Role of Simulators in Network Performance Analysis.

and configurations and propagation characteristics to name a few. Furthermore, such

models are static in nature and fail to capture the impact of dynamics that are peculiar

to mobile networks such as user mobility, handover (HO) and so on.

Field trials offer the most realistic evaluation of a new network design, solution, or

feature. However, relying on field trials alone to test every proposed design, solution

or feature is not practical owing to the cost, time and effort required to conduct field

trials. For this reason, only the most promising designs can be worthy of investment

and resources needed for the field trials. In addition, given the large investments and

stakes at risk, mobile operators want to minimize the chances of significant network

performance impairment of a live mobile network even during the trial phase.

For 5G networks, given further increase in complexity, the process of designing an opti-

mal network configuration that can maximize all the Key Performance Indicators (KPI)

such as coverage, capacity, retainability and energy efficiency is even more challenging

task. Identifying and maintaining the optimal network configuration is necessary for

network operators to fulfill the promises of the much anticipated 5G networks. De-

ploying the new 5G network and innovative network functionalities and solutions being

proposed for efficiency enhancement in 5G and beyond, particularly AI based network

automation solutions as proposed in [107, 108, 109], in a real world without prior testing,

will be a costly process and cannot be done practically. (See Fig. 3.1).
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To address this problem, system level simulators are widely used in both industry and

academia. Many 5G simulators emerged to date but, as per survey conducted by the

authors and concluded in Table 3.1, none of them comprises of all the key components of

5G standard. Most importantly, as can be seen in Table 3.1, none of the existing known

simulators have the specific features and flexibility needed to implement and evaluate an

AI based design and zero touch automation framework envisioned for emerging networks

as proposed for the first time in [107]. To tackle this problem, I have newly developed

a system level simulator in Python platform, named SyntheticNET. The SyntheticNET

simulator is modular, flexible, microscopic, versatile, and built in compliance with the

3GPP Release 15 [110]. The presented simulator supports a large number of unique

features such as adaptive numerology, actual HO criteria and futuristic database-aided

edge computing to name a few. Instead of an Objected-Oriented Programming (OOP)

based structure like existing simulators [111, 112, 113, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123], SyntheticNET simulator supports commonly used database files

(like SQL, Microsoft Access, Microsoft Excel). Site and user information, configuration

parameters, antenna pattern etc. can be directly imported to the simulator. As a result,

the simulation environment is more realistic and closer to actual deployment scenarios.

Python based platform and the flexibility of different input and output data formats in

SyntheticNET simulator allows validation of different Self Organizing Networks (SON)

related features as well as new AI based network automation solutions [107]. Mobile

operators can use it for planning, evaluating or even optimizing 5G networks. Research

community can also benefit from it by implementing the new ideas on a true 3GPP-based

realistic 5G system level simulator.

3.1.1 Related Work

Recently many simulators targeting 5G network characteristics have been developed

[111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123]. However, the survey of
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Table 3.1: Comparison of SyntheticNET simulator with existing 5G simulators.

Name Platform
Adaptive
Numer-
ology

HO
Support

Realistic
Mobility

QCI
Support

Sched-
uling

Support

mmW
Sup-
port

Cloud
Based

Short Description

SyntheticNET Python X X X X X X Xa

Link-Level simulator
System-Level simulator

Conforms to 3GPP-based
5G standard

Support of Database-aided
edge computing

Matlab/Simulink
[111]

Matlab X X X Link-Level simulator

ns-3 [112] C++ X X

Link-Level simulator
Event Driven:

a. Not suitable for
large networks

b. Takes long time

OMNeT++
[113]

C++ X X X
Event Driven:

a. Not suitable for
large networks

b. Takes long time

OPNET [114] C/C++ X
Event Driven:

a. Not suitable for
large networks

b. Takes long time

OpenAirInterface
[115]

C++ X
Network-Level simulator
Support of core network:
a. Increased complexity
b. Limits the #nodes

5G-K [116] C++ X X
Link-Level simulator

System-Level simulator
Network-Level simulator

Vienna-5G [117] Matlab X X X Improved version of Vienna 4G

NYUSIM [118] Matlab X mmWave heterogeneous
networks

C-RAN [119] Matlab X X X 5G Cloud Based Networks

GTEC [120] N/A Link-Level simulator

X.Wang et al.
[121]

Matlab X Link-Level simulator
System-Level simulator

V.V.Diaz et
al.[122]

N/A X

Pathloss model for different
scenarios:

a. Rural/Urban
b. Macro/Small Cell

c. LoS/NLoS

Ke Guan et al.
[123]

N/A
Ray Tracing with

use-case of
V2V communication

aSyntheticNET supports database-aided edge computing.
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these concluded in Table 3.1, reveals that each of this simulator represents only a selected

set of features present in 5G standard [110]. Among the available 5G simulators, Matlab

[111] is the most advance 5G link-level simulator having the support of flexible frame

structure, ability to select one of different resource scheduling techniques available and

can incorporate mmWave channels as well. However, unlike SyntheticNET, it is not

a system level simulator. Few important features that MATLAB based 5G simulator

does not support include realistic mobility and HO mechanism, categorization of User

Equipment (UE) as per QoS Class Identifier (QCI) and having cloud-based network

deployment to name a few. Another popular simulator is Vienna 5G simulator [117] that

is an open source system-level simulator for academic purposes and is based on Matlab

platform. Unlike [111], Vienna does support cloud computing as well. However, this

simulator lacks a key feature i.e., realistic mobility modelling and HO support.simulator

also lacks some vital features to mimic a real cellular network such as realistic mobility

modeling and HO support.

There are few other popular discrete-event 5G network simulators such as ns-3 [112],

OMNeT++ [113] and OPNET [114]. Event driven simulators have a major portion of

the protocol stack implemented in them, and the packet-oriented nature of these simu-

lators exhibits quite accurate link-level results. However, their high computational and

network deployment complexity hinders them from modeling large Radio Access Net-

works (RAN) needed for more realistic analysis. These simulators are more suitable for

core side modeling and they cannot provide visualization of the crucial RAN KPIs such

as coverage and capacity. The need of implementing and testing large RAN deploy-

ments can be highlighted from the fact that 5G networks will have an ultra-dense BS

deployment with huge number of mobile subscribers which will include sensory devices,

self-driven cars etc.
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3.1.2 Contributions

The need for a Python based system level simulator for 5G and beyond stems from

the new use cases and design features anticipated in 5G and beyond [124]. These

include smart vehicles and transport, critical control of remote devices, human machine

interaction, and broadband and media everywhere.

During the planning and development of SyntheticNET simulator, I make sure flexibility

and modularity when implementing both existing network functions (e.g., propagation

models, scheduling algorithms) and new network functions (user mobility, HO criteria,

database-aided edge computing etc.). Thanks to the modular code structure, the Syn-

theticNET simulator is well-suited to the requirements of emerging network scenarios

and its use cases, even beyond the scope of 5G.

For academic purposes, a free version of SyntheticNET will be available soon. In the

following, I highlight the key features that make SyntheticNET simulator fit for the

simulation of emerging cellular networks.

• SyntheticNET simulator is first python-based 5G network simulator and thus has

the capability to handle large amount of data and access to Python based Machine

Learning (ML) libraries. This unprecedented capability makes SyntheticNET sim-

ulator the first simulator that is purpose-built to test AI based network automation

at all layers and validate the already standardised SON and next generation SON

features.

• First microscopic simulator where each cell can have a unique parameter config-

uration that can be loaded in various industry compliant formats to model real

datasheet-based features such as antenna patterns, clutter, BS amplifier, etc. Un-

like OOP based BS deployment where BSs are deployed as per an underlying

distribution, SyntheticNET simulator can import a database of site information

corresponding to real deployment. Such is maintained by mobile network opera-
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tors with a detailed description corresponding to individual BSs. The database

constitutes of location, tilt, power, azimuth, height, signal propagation descrip-

tion, and even other low-level details.

• Similar to BS database, SyntheticNET simulator can import UE specific details

such as location, type (static/mobile), height, number of antennas from a real

database.

• Ease of calibration through ML based models [125] from traces of real RSRP

data, and then predicting accurate RSRP information on the bins where real

measurement data is unavailable or has similar characteristics (terrain, BS tilt,

user mobility).

• Support of vendor specific or measurement realistic antenna pattern specifications

for individual cells.

• Apart from having well known mobility patterns like random way point, SLAW

model etc., SyntheticNET simulator can replicate realistic user mobility patterns

through integration of Simulation of Urban MObility (SUMO) simulator [126].

This realistic mobility path not only includes the user commute from home to

office and back, but random trips to marketplace and entertainment areas can be

configured as well. This can help us achieve realistic spatial and temporal load

distribution across the deployed network area.

• The SUMO based mobility module in SyntheticNET simulator can also incorpo-

rate actual street, highway, walkway topographic data in various formats.

• Historical UE mobility paths can be imported directly from a real network, and

can be leveraged by SyntheticNET simulator to have better insights related to

mobility, load distribution, user experience etc.

• SyntheticNET simulator supports flexible frame structure of 5G and corresponding

Physical Resource Block (PRB) size and Transmission Time Interval (TTI).
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Figure 3.2: SyntheticNET simulator high-level block diagram.

• SyntheticNET simulator models realistic HO criteria where each cell can have

individual HO related parameter configurations. This feature alone makes Syn-

theticNET simulator unique as existing simulators model mobility and HO using

at most few parameters such as CIO and cell offset. On the other hand, Syn-

theticNET simulator models the mobility management to its utmost depth by in-

corporating dozens of parameters that affect the mobility related KPIs and other

system level KPIs in an intricate and interdependent fashion.

• SyntheticNET simulator incorporates both cell-level parameters (e.g. A3 offset)

and relation-level parameters (parameters affecting adjacent BSs on same fre-

quency and inter-frequency e.g. CIO.)

• Database-aided edge computing support where KPIs known through simulation

or by importing csv files can be used to test AI enabled proactive network features

(e.g. proactive mobility management, proactive resource allocation, proactive load

balancing).
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This chapter describes the key features of SyntheticNET simulator. The rest of the

chapter is organized as follows. Section 3.2 provides high-level overview and explains

the execution flow of the simulator. Section 3.3 then presents the key salient features

of SyntheticNET simulator that makes it distinct from existing simulators. These in-

clude adaptive numerology, realistic propagation modeling, detailed 3GPP compliant

HO triggering and execution mechanism modeling, database-aided cloud computing

and the support of realistic mobility pattern. In section 3.4, I present a use case where

I show how SyntheticNET simulator features such realistic mobility pattern integra-

tion and HO procedure can aid in realistic evaluation of different mobility prediction

techniques. Section 3.6 concludes the chapter.

3.2 Simulator Structure and Execution

One of the goals of SyntheticNET simulator is to act as a key enabler for AI based

revolutionary planning and optimization solutions for 5G cellular networks and beyond.

To have an overview of the structure of the presented simulator is thus necessary to

understand the capabilities and usefulness of SyntheticNET simulator. In this section,

I provide this high-level overview of the simulator without attempting to explain the

functionality of each simulator module in detail.

3.2.1 Simulator Block Description

The overall structure of the SyntheticNET simulator is shown in Fig. 3.2. As shown in

this figure, the SyntheticNET simulator can be divided into eight basic blocks. These

blocks are briefly described below.

Network Deployment Unlike the existing OOP based simulators, SyntheticNET takes

the input in the form of commonly used database format. such as the widely used csv

format. This block imports the individual BS characteristics which include location, cell
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Figure 3.3: Sample heterogeneous network layout with sectorized BSs, omni-directional BSs
(square), small cells (triangle) and UEs (dots).

id, type of BS, operating frequency, transmission power, electrical/mechanical tilt, az-

imuth angle, number of available antennas, Cell Individual Offset (CIO - herein referred

to as cell bias) and even antenna pattern. The screen shot of a sample heterogeneous

network deployment has been shown in Fig. 3.3.

Prorogation Modeling Module SyntheticNET allows incorporation of wide range of

propagation models and associated data. Custom pathloss empirical models, measure-

ment data based models or ray tracing based models can be used for realistic signal

strength calculation. SyntheticNET also allows importing of the detailed topographic

data in various industry compliant formats for more realistic pathloss modeling. One key

feature of SyntheticNET is its ability to support newly emerging AI based propagation

models such as [125].

User Association Module UE location can be imported to the simulator in a similar

fashion as the network configuration file described above. This module’s main respon-

sibility is to compute the signal strength of each UE located in the defined network

bound. UE is associated to the serving cell with the smallest distance to the UE, or to

the BS having the highest Reference Signal Receive Power (RSRP). UE is associated

with the cell only if the RSRP is higher than a certain threshold (defined as qRxLevMin

in 3GPP [110]). The latter approach is recommended for heterogeneous BS scenario

where transmission power of each BS can vary due to location, surrounding, type of BS

75



etc. While calculating the signal strength, height of BS and UE, and the angular sepa-

ration between the UE and the respective BS azimuth angle is taken into consideration.

A key unique feature of this module in SyntheticNET is that it allows testing of custom

AI enabled more sophisticated user association criteria that can take into account ad-

vance KPIs such as cell current and future load, network energy consumption, mobility

pattern, QoE requirements, caching requirements, caching on edge statistics, and UE

battery.

User Mobility Location of mobile UEs are modelled by this block. UE location is

updated based on the vselocity assigned for that individual mobile UE, and the direction

is known from one of the selected model (Manhattan model, Random Waypoint, SLAW

model etc.). In addition to predefined or historical UE path, SyntheticNET also supports

realistic mobility pattern by integrating SUMO [126] in its mobility pattern modeling

module (Section 3.3.4). This feature can help advance AI enable proactive and holistic

mobility management solutions.

HO Procedure HO procedure module provides a realistic 3GPP-based HO criteria

evaluation so that vital retainability KPIs like HO attempt and HO success rate can

be evaluated. For HO procedure, configuration files which include the cell level and

relation level parameters can be configured internally or can be imported to model a

newly proposed or vendor specific HO implementation. More detail on this can be found

in Section 3.3.2.

A unique feature of SyntheticNET in this context is that unlike most existing simula-

tors that consider only one or two basic HO parameters thus offer inaccurate results

on mobility related KPIs, the HO module in SyntheticNET incorporates all 20+3GPP

defined configuration parameters that affect mobility in a real network. Modeling these

parameters in a simulator is a key step to enable holistic AI enabled network automa-

tion. These parameters not only affect mobility related KPIs but also determine overall
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signaling overhead, capacity, UE battery life and QoE.

Traffic Modelling This block first creates a resource map relative to each participating

BS. Resource map constitutes of several Physical Resource Block (PRB) arranged in

accordance with the µ parameter. µ defines the Sub Carrier Spacing (SCS) as per

3GPP release 15 [110]. Resource map size is dependent on the bandwidth of the central

frequency BSs are operating on.

Next, the UEs served by the respective BSs are allocated resources according to selected

scheduling scheme. The scheduling scheme can be custom or standard such as Round

Robin, Proportional Fair, Max C/I etc. While allocating resources, priority criteria can

also be defined. In default criteria, priority is given to UEs as per their QCI. Delay

and jitter sensitive voice users are scheduled with the highest priority, followed by UEs

corresponding to Vehicle to Everything (V2X) QCI. The remaining PRBs are allocated

uniformly to FTP users. For each QCI class, UEs are allocated resources as per the

scheduling approach described earlier.

Interference Measurement The SINR plays a vital role in determining the perfor-

mance, quality and hence user experience in cellular networks. A large set of accessi-

bility, performance, and retainability metrics, such as coverage, capacity, and mobility

related KPIs are heavily dependent on SINR [107]. In most simulators reported in liter-

ature, for simplicity just RSRP based interference estimation is done. This abstraction

introduces error that makes KPIs estimated by these simulators far different from the

performance in a real network. To avoid this source of error, SyntheticNET uses the ac-

tual PRB level interference calculation. More detail on the PRB level SINR calculation

can be found in Section 3.3.1.

Performance Evaluation User level and network level performance is evaluated in per-

formance evaluation module. In this module, accessibility KPI can be estimated based
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on the number of static and mobile users located in areas where RSRP or SINR is be-

low the cell association threshold. The default cell association threshold is the RSRP

or SINR level below which UE is unable to camp on the cellular network due to lower

message decode % in either or both uplink\downlink direction. Uplink messages are

not decoded properly due to higher pathloss (low RSRP) where UE transmission power

is not adequate to maintain the desired signal quality at the BS. On the other hand,

low downlink message decodes % is mainly due to high interference (low SINR). Re-

tainability KPI can be computed in a similar manner as accessibility KPI, if during

the connected mode or HO phase, RSRP or SINR remains below the Radio Link Fail-

ure (RLF) threshold for a certain duration. Configured HO parameters can thus be

evaluated from retainability KPI. This feature can thus enable design of AI enabled

algorithms to determine optimal HO parameters - an important use case for industry.

SyntheticNET supports a variety of data rate calculation methods to represent vendor

specific implementations and deployment. In SyntheticNET simulator, default UE spe-

cific and cell level maximum throughput (Mbps) is computed by employing the 5G NR

[110] max data rate (Γ) equation:

Γ = 10−6

J∑
j=1

(
vjLayersQ

j
mf

jRmax
NBW j,µ

PRB · 12

T µs
(1−OHj)

)
, (3.1)

where J is the number of component carriers, vjLayers is the maximum number of layers,

Qm is the maximum modulation order, f is the scaling factor, Rmax = 948/1024 , µ is the

numerology which denote SCS as described earlier, Ts is the OFDM symbol duration,

NBW
PRB is the number of PRBs allocated to UE and OH is the overhead.

Another distinct feature of SyntheticNET simulator is to identify the silence period

where voice users cannot communicate due to either uplink or downlink issues. Silent

period is usually observed when UE experiences RLF or the RSRP and SINR drops

below the silence threshold.

Accessibility, RLF and silence thresholds are typically dependent on associated network
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parameters and to a certain extent the equipment vendor. SyntheticNET simulator

supports the use of AI based techniques to identify the respective threshold for a current

network deployment. Detail procedure to identify the respective threshold for a given

network layout is beyond the scope of this chapter.

3.2.2 Simulator Execution Overview

Initial setup of SyntheticNET simulator requires setting up following items:

• Simulation duration.

• Transmission Time Interval (TTI) length - which is dependent on the 5G µ pa-

rameter.

• Network deployment - BS types, tilt, azimuth, power, scheduling scheme, operat-

ing frequency, bandwidth, number of tiers etc.

• Network-level parameter configuration - which may be unique for individual BSs

e.g. HO parameters.

• Relation-level parameter configuration - which includes parameters affecting ad-

jacent BSs on same frequency and different frequency as well, such as CIO.

• UE description - location, static/mobile, height, number of antennas etc.

• UE mobility features - Random waypoint, SLAW Model, Manhattan model, real

traces etc.

• (optional) UE historical location - to help evaluate AI based advance mobility

management for example proactive HO management, load balancing and energy

efficiency.

• (optional) Database of historical KPIs and parameter value pairs for enabling AI

based network automation.
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Upon execution, SyntheticNET simulator starts processing the data through each mod-

ule described earlier. In each TTI, network level KPIs and user experience KPIs are

calculated. As the simulation proceeds, SyntheticNET simulator executes the HO to a

better cell if the HO criteria are met. Next, the resource allocation takes place based

on the selected resource scheduling scheme and then PRB-level interference measure-

ment takes place for all scheduled UEs. When the number of TTI elapsed reach the

simulation duration, an output file is generated which gives the UE level and network

level KPIs. Moreover, a log file is generated which contains signal level from all the

nearby BSs along with other network level statistics of interest. This log file provides

additional insights that can be leveraged to propose better interference mitigation and

mobility management solutions.

3.3 Detailed Feature Description

Elaborating each of the 5G specification [110] features incorporated in SyntheticNET

simulator is not possible within the scope of this chapter. Therefore, I present four of the

key features that make SyntheticNET simulator superior to existing 5G simulators[111,

112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123]. These are the vital compo-

nents of 5G standard, and are hence, essential to accurately and realistically simulate

a 5G network. To the best of authors’ knowledge, none of the existing 5G simulator

incorporates all four network features described in following subsections.

3.3.1 NR Adaptive Numerology

In 5G, 3GPP provides adaptive numerology in order to accommodate diverse services

(eMBB, mMTC, URLLC) and the associated user requirements. The key idea is to

adapt the transmission configuration to address the stringent QoE constraints consid-

ering the effect of UE mobility and varying channel conditions.
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Figure 3.4: 5G NR adaptive numerology.

5G frame structure in SyntheticNET simulator supports adaptive numerology where the

TTI duration and the number of PRBs per TTI vary in accordance with the flexible

SCS. Structure of the 5G flexible frame and the SCS is governed by the µ parameter.

When importing site info, the value of µ associated with each carrier frequency should

be assigned so that PRB allocation and interference calculation takes place according

to the respective frame structure.

3.3.2 NR Handover Criteria

User mobility has been the raison d’etre of wireless cellular systems. To maintain reliable

connection, it is incumbent upon the mobile users to perform HO from serving cell to

the next suitable cell along their trajectory. HO frequency is mainly dependent on the

mobile user speed and network deployment characteristics (BS density, heterogeneity,

HO parameter configuration etc.). 5G networks will have a large HO rate, primarily

because of network densification and a large fraction of mobile UEs. 5G standard

follows break-before-make HO approach similar to LTE where mobile user may observe

HO failure due to poor signal strength of participating BSs, sub-optimal HO parameter

configuration or high user velocity.

Therefore, apart from coverage and capacity, retainability is a vital KPI to measure

user experience in 5G. For this reason, SyntheticNET simulator models the detailed
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Figure 3.5: 5G intra-frequency HO parameters.

3GPP-based HO evaluation and execution process for mobile users. For each cell, intra-

frequency Hand Over Margin (HOM) is calculated based on A3-offset, A3-hysteresis,

serving cell CIO (Ocp or cell bias) and target cell CIO (Ocn). HO evaluation procedure

initiates when RSRP of target cell exceeds the RSRP of serving cell by HOM. Next,

SyntheticNET simulator’s mobility block ensures HOM condition is fulfilled for each

(Transmission Time Interval) TTI up till when the Time-To-Trigger (TTT) timer is

expired. This is followed by a HO execution from serving to target cell and during

this procedure, serving RSRP and SINR are recorded to help realistically quantify user

throughput and retainability KPI for evaluating QoE metric. For more details of 3GPP

defined HO execution mechanism, as implemented in SyntheticNET, see [109] and Fig.

1.7 therein.

HO parameter configuration files corresponding to each cell in the network are imported

to SyntheticNET simulator as discussed in Section 3.2. For HOM calculation, two types

of configuration files are needed: a) cell-level HO parameter list, and b) relation-level

parameter list. Respective parameters needed for intra-frequency HO criteria evalua-

tion are shown in Fig. 3.5. A more detailed diagram detailing all 28 mobility related

parameters and their associations with all 8 mobility related KPIs dictated by these

parameters is given in Fig. 1.7, in [109]. SyntheticNET simulator also supports 3GPP

based inter-frequency HO. Description of inter-frequency HO has been omitted in this

chapter and can be found in [109].
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Figure 3.6: SINR CDF of a mobile user traveling across the network layout (Fig. 3.3).

Fig. 3.6 shows the SINR CDF of a mobile user traversing through the network layout

shown in Fig. 3.3. During HO criteria evaluation (Fig. 3.5) i.e., during the time

needed to execute HO, mobile user penetrates through the coverage of the neighboring

cell without performing HO. As a result, UE observes temporal negative SINR (on dB

scale) due to strong interference from the best server (HO target cell). The magnitude

of negative SINR during HO phase increases with user velocity as user penetrate deeper

into the coverage of neighboring cell. Similarly, larger HOM and/or TTT may contribute

to more severe SINR dilapidation. This is illustrated in Fig. 3.6 for different user velocity

and HO parameter configuration.

For example, Fig. 3.6 illustrate that for 0dB HOM and 0ms TTT, UE always stays on

the best server while interference is observed from non top-1 cells. Consequently, UE

observes positive SINR (dB) most of the time. However, there are instances where UE

observes negative SINR due to strong interference from multiple non top-1 cells. Since

UE always stays on the top-1 cell and HO delay due to 3GPP HO criteria (Fig. 3.5) is

not observed, the effect of user velocity on SINR distribution is negligible. This can be

verified in Fig. 3.6 where UE velocity is changed from 100km/h to 200km/h, but the

SINR CDF remains unchanged.

Fig. 3.6 also shows SINR distribution plot for various HO configuration parameters.

UE SINR decreases with more stringent HO criteria. This is in line with the temporal
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Figure 3.7: Network area binning (5x5m bins) based on Top-1 Physical Cell Identifier (PCI)
and RSRP with 5dB shadowing standard deviation and realistic antenna patterns.

SINR degradation during HO criteria evaluation discussed earlier. There is a trade-off

between ping-pong HOs and HO delay duration. Because of shadowing, ping-pong HOs

increase dramatically when HO configuration demands UE to stay on best server or

when UE HO criteria is easily fulfilled. Conversely, ping-pong HO reduces for tighter

HO condition, but HO delay increases causing negative SINR or sometimes Radio Link

Failure (RLF) especially for high speed users. More detail on this can be found in [109].

It is worth highlighting that most existing simulators do not model HO procedures and

associated configuration parameters in such detail to capture aforementioned and other

mobility related important phenomena and the associated impact on overall throughput

and user QoE that is inevitably experienced in real network.

3.3.3 Futuristic Database Aided Edge Computing

SyntheticNET simulator also supports database aided edge computing approaches deemed

essential for futuristic mobile networks [127]. SyntheticNET simulator divides the target

area into a custom bin map whose size can be user defined (see Fig. 3.7). For a given

network layout, SyntheticNET simulator quantifies several KPIs which include SINR

distribution, Channel Quality Indicator (CQI) distribution, spectral efficiency, available

resources, VoLTE Silence%, HO rate, HO failure% etc.
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Figure 3.8: Realistic Road Map from SUMO.

SyntheticNET simulator then allows to build and store historical database of the above

KPIs and selected measurements for the bands of interest such as RSRP, SINR, CQI,

PRB usage, mobility traces, QoE indicators such as RLF reports etc. Using tools

from machine learning and stochastic optimization, this database can be then leveraged

to design algorithms for Data Base Station (DBS) aided cell discovery and selection,

proactive radio resource allocation and switching ON/OFF DBS proactively instead of

reactively, to jointly maximize both spectral efficiency and energy efficiency without

compromising QoE.

In addition to highlighting the areas with poor coverage or high interference, the database

of a list of key KPIs can be utilized to propose and evaluate novel SON and AI based

network automation features. For example, by feeding the historical UE location, we

can predict user location and can proactively perform inter-frequency HO to avoid low

retainability KPI. Similar approaches can be designed and tested to achieve better load

balancing in a multi-tier heterogeneous network.

3.3.4 Realistic Mobility Pattern

Existing 4G or even 5G simulators [111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123] are limited to much simpler and non-realistic mobility models like random

waypoint, SLAW model, Manhattan model etc. SyntheticNET simulator on the other

hand, incorporates realistic mobility pattern by integrating the Simulation of Urban
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Figure 3.9: Performance of AI-assisted mobility prediction techniques in HetNets.

MObility (SUMO) [126]. SUMO is an open source, highly portable, microscopic and

continuous road traffic simulation package designed to handle large road networks. It

allows for more realistic simulation including pedestrians and comes with a large set of

tools for scenario creation.

SUMO can help simulate a given traffic demand where the network scenario consists

of individual vehicles moving through a given road network. Each vehicle can be mod-

eled explicitly, has an own route, and moves individually through the network. Mo-

bility patterns in SUMO are deterministic by default but there are various options for

introducing randomness. Randomness can be added for certain aspects of test case

scenario which include speed distribution, departure times, number of vehicles, vehicle

type, route distribution etc. SUMO also supports traffic stops, departure speed, arrival

speed, intersections, yield lane with low priority etc.

Thus, SUMO empowered extremely realistic mobility modelling capability of Synthet-

icNET that can also incorporate realistic road maps and mobility traces, makes Syn-

theticNET simulator first of its kind 5G simulator capable to investigate a large set of

mobility management and optimization problems.
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3.4 A Case Study Using SyntheticNET: AI-Assisted Mobility Prediction for HetNets

In this section, I give one example utility of SyntheticNET simulator through a case

study that is not possible with simulators that do not realistically model mobility pat-

terns and mobility management and HO procedures in the network.

This case study briefly shows how we can achieve AI-assisted mobility prediction of mo-

bile subscribers through realistic traffic modeling obtained from SUMO. User Mobility

Prediction can be one of the key enablers for AI based network automation and next

generation proactive SON [128]. This can enable the reservation of network resources in

future identified cells for seamless HO experience [104] as well as for traffic forecasting

purposes for load balancing [129] and driving the energy saving SON functions [130, 105]

as well as optimizing battery life [103].

In the first stage, I setup the network deployment by importing the site-info having

the location of several macro and small cells, along with other associated parameters

(power, height, tilt, azimuth etc.). Then I feed the realistic user mobility traces taken

from SUMO into the SyntheticNET simulator. To get the required user mobility data

from SUMO, SyntheticNET first passes the network file and population definition file to

SUMO. The network file describes roads and intersections where the simulated vehicles

move during the simulation. The population definition file has a general statistical

information which includes the number of households, locations of houses, schools and

workplaces, free time activity rate, etc. Mobile users by default travel from home to

workplace and vice versa. However, additional trips where users visit the entertainment

area or grocery shop as per a defined percentage are configured as well. The additional

trips are considered as a proxy for increasing randomness in user trajectories. Moreover,

randomness in the daily user routes between home and workplace is configured as well.

SUMO then performs the simulation on the input data from SyntheticNET and gen-

erates realistic mobility pattern for the mobile users over the configured time interval.
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The realistic mobility traces generated by the SUMO are then used for mobile users in

the user mobility module of the SyntheticNET simulator. During the trajectory, users

perform HO as they move across cells. SyntheticNET simulator also keeps track of user

location and serving cell id to be used as an input to AI enabled solutions for mobility

prediction purposes.

In the exemplary scenario, I run the simulation for 10 days over the map of city of Tulsa

obtained from open source map (see Fig. 3.8). Several macro BSs and small cells are

deployed in the test area. After assigning the home, workplace and entertainment loca-

tions, I obtain the realistic mobility traces with different degrees of randomness in user

paths. Scenario 1 (SC1) represents zero randomness between user trajectories, whereas

in medium randomness scenario 2 (SC2), user makes equal number of random trips to

any entertainment location as between home and workplace. For high randomness sce-

nario (SC3), in addition to randomness in the user trips as defined in SC2, users follow

different routes between home and office 50% of the time.

Finally, I run eXtreme Gradient Boosting trees (XGBoost) and Deep Neural Network

(DNN) multi-class classification algorithms on the data obtained from the simulation

scenarios described above. Data is split into 70% training data and the remaining 30%

into test data. Results of the AI-assisted mobility prediction techniques on test data

for different shadowing standard deviation of RSRP can be found in Fig. 3.9. Fig. 3.9

shows that prediction accuracy of more than 90% can be achieved for certain scenarios.

However, the prediction accuracy decreases as the randomness in the training data

increase.

Mobility prediction will be one of the key enablers AI enabled network automation

including next generation proactive SON solutions that aims at efficient resource man-

agement of emerging cellular networks. SyntheticNET simulator can help the research

community implement their novel research ideas on a realistic 3GPP complaint network

simulator and thus can have a better proposal evaluation. Detail description of the
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algorithm is out of scope for this chapter and has therefore been exempted here. For

detailed description, see [131].

3.5 Future Work

The viability, usefulness and uniqueness of SyntheticNET can only be ensured by putting

continuous efforts in the development phase of SyntheticNET. In the following, I have

identified few of the key features I will incorporate in SyntheticNET:

1. Matrix Pre-Calculation: Existing mobile network simulators take significant amount

of time when executed for a realistic network deployment with considerably large

number of both BSs and UEs. SyntheticNet will use a novel approach to lower

this simulation processing time by pre-generating matrices of signal strength and

signal quality across the deployed network while still maintaining the effect of

shadowing. In a similar manner, UE mobility patterns will also be pre-generated.

This approach can reduce simulation interval by avoiding the calculation of the

UE location and UE association related signal indicator values every TTI.

2. Support of Multiple Frequency: Futuristic mobile networks heavily rely on the

deployment of several layers of frequency to meet the capacity crunch. By em-

ploying, SyntheticNET should be able to support multiple frequency deployment

and have the capability of simulating events involving different layers such as

inter-frequency handover.

3. Measurement Gap and Inter frequency Handover: Most of the currently available

simulators only supports intra-frequency handovers or hand-over between base

stations with similar frequency due to its convenience in terms of implementation.

Due to its additional complexity such as modeling measurement gap, incorpo-

ration of inter-frequency handover or handover between different frequencies is

mostly taken for granted. With SyntheticNet, I understand the importance of
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inter-frequency handover in terms of its effect on the network performance. I

therefore find it as a must to include inter-frequency modelling and implementa-

tion to SyntheticNet.

4. Radio Link Failures: One of the most common problem experienced by mobile

users is Radio Link Failure (RLF). RLF affects some of the core network KPI’s

such as retainability and throughput. Realistic implementation of RLF will be

beneficial in learning why this event happens and in finding ways how it can be

avoided. Thus, is it essential to capture and incorporate RLF event to Synthetic-

Net.

5. Support of Complete List of Mobility Events (A1, A2, A3, A4, A5): 3GPP-

standardized mobility events used in LTE will still be utilized in 5G. As a simulator

that supports legacy and futuristic network, this necessitates intricate modeling

and implementation of the most commonly used HO parameters to SyntheticNet.

This will ease experimentation to learn how KPI behaves with changes on these

parameters.

6. Load Balancing Algorithms: Though heavily researched, load balancing is still a

challenge in today’s cellular network. Since 3GPP left the load balancing algorithm

for innovative purposes, SyntheticNet will model the approach being used by major

telecom vendors. Moreover, I will develop new innovative load balancing features

and will evaluate the efficacy of the developed algorithms by comparison with the

load balancing algorithms currently employed by major telecom vendors.

7. Idle Mode Mobility: Modeling of idle mode users is frequently left untouched in

most simulators available. However, it is essential to model these users in order

to realistically capture the network dynamics. Even though idle mode users don’t

transmit any data, they do use signaling which affects the network specially in

the uplink direction. With that in mind, SyntheticNet will include modeling of
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idle mode UEs to capture the key KPIs like signaling, battery consumption and

accessibility.

3.6 Conclusion

The importance of a realistic yet practical simulator adhering to 3GPP standard for

cellular networks can be mirrored by the expected complexity of 5G and beyond net-

works. However, simulators which are currently available are bounded by too much

simplifications, unrealistic assumptions and are lacking in implementation of vital net-

work features making them insufficient in capturing the complexity and dynamics of

a real cellular network. To address these challenges, I have developed the first 3GPP

5G standard (Release 15) compliant network simulator called SyntheticNET simulator.

SyntheticNET provides a more realistic and practical evaluation of different network

scenarios as well as implementation of several key network features.

Unlike existing OOP based simulators where BS locations depend on an underlying

distribution and cannot be preassigned, SyntheticNET simulator is microscopic where

individual elements (BS and UE) of the network can have unique and hard coded pa-

rameters (azimuth, tilt, antenna pattern, height, transmission power etc.) which is the

case in an actual network deployment. With the modular approach of SyntheticNET

simulator, it is effortlessly possible to further extend the already implemented network

functionalities with 3GPP release 16 and upcoming updates making this simulator fu-

ture proof. With the flexible implementation of SyntheticNET simulator, it is possible

to simulate large-scale networks with several thousand active heterogeneous BSs and

several user types, without the need for specialized simulation hardware.

SyntheticNET simulator is the first and only simulator built to date which model more

than 20 parameters essential to implement a detailed 3GPP-based HO process. With

the added support of realistic user mobility traces, vital mobility KPIs like retainability

and HO success rate can be precisely evaluated. In addition to mobility, other key com-
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ponents of SyntheticNET simulator includes ray tracing-based models to give accurate

signal strength calculation, and adaptive frame structure to help meet several 5G use

cases (eMBB, URLLC, mMTC) requirements.

SyntheticNET simulator is the first Python based simulator with inherent ease to pro-

cess, manipulate and analyze large data sets. Similarly, it has easy access to wide range

of machine learning algorithms. This makes SyntheticNET simulator relatively easier

to implement and evaluate AI based solutions for autonomous configuration and opti-

mization of network parameters in a given multi-tier heterogeneous network deployment

making it beneficial for research community and industry alike.

The presented use case on mobility prediction showcased the power of SyntheticNET

in providing practical network deployment, hand over procedure and ease of incorpo-

rating realistic mobility patterns from other sources to provide a realistic evaluation of

several machine learning techniques in predicting user mobility which would have been

impossible or inaccurate using the currently available network simulators.
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CHAPTER 4

QoE-Aware Smart EN-DC Activation Using Artificial Intelligence

4.1 Introduction

5G New Radio (NR), with innovative use cases of enhanced Mobile Broadband (eMBB)

for large volume transmissions, massive Machine Type Communications (mMTC) for

sensors and IoT devices, and Ultra Reliable Low Latency Communications (URLLC)

for self-driven vehicles comes with unprecedented Quality of Experience (QoE) goals.

Studies project that 5G subscriptions will top 2.6 billion by the end of 2025 [132]. While

in 5G, the capacity crunch will be addressed primarily by ultra-dense Base Station (BS)

deployment and mmWave band utilization [107], ensuring QoE with a conglomeration

of new and legacy technologies remains an open challenge of utmost importance.

As per 3GPP Release 15 specification 37.863 [133], E-UTRAN New Radio Dual Connec-

tivity (EN-DC) allows 5G capable User Equipments (UEs) to simultaneously connect to

an LTE eNodeB (eNB) that acts as a master node and a 5G gNodeB (gNB) acting as a

secondary node. This non-standalone 5G network deployment will meet the UE capac-

ity demands, help mobile operators to reduce the CAPital EXpenditure (CAPEX), and

will accelerate the penetration of 5G networks. However, the added complexity involves

primarily the signaling overhead, and the decision when to activate/deactivate EN-DC

mode.

EN-DC activation comes with an intrinsic trade-off between 5G network utilization

and potential QoE degradation due to RLF and voice call muting. To the best of au-

thors’ knowledge, there does not exist a framework to quantify and optimize this trade-

off. While the goal is to effectively activate EN-DC to benefit from the 5G features,

sub-optimal configuration can lead to excessive amount of ping-pong EN-DC activa-
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tion/deactivation, recurrent Radio Link Failures (RLFs), and exasperating voice call

muting. RLF is the radio interface disruption between Base Station (BS) and UE, and

is typically caused by coverage hole or poor signal quality as a result of high interference.

UE observes high interference either during handover (HO) process due to sub-optimal

HO parameter configuration, or due to the interference from neighboring cells usually

at the cell-edge. On the other hand, voice call muting refers to the instances where the

either of the UEs from the call originating or call terminating side are unable to receive

audio packets. This situation is observed mostly due to poor radio conditions at either

of the voice call participating UEs.

By accelerating the EN-DC activation in an attempt to increase network efficiency,

EN-DC may be triggered at poor Radio Frequency (RF) conditions at either 4G or

5G network. This can result in call disconnect, and service interruption. Following

the service disruption, repeated re-accessibility attempts not only increase signaling but

degrade UE energy efficiency as well. Thus, optimal configuration to activate/deactivate

EN-DC is essential to maintain the expected QoE and network efficiency of 5G network.

4.1.1 Related Work

The concept of dual-connectivity has been studied extensively in literature [134, 135,

136]. A detailed review of these studies can be found in a recent survey on the topic of

mobility management in emerging networks [109]. More specifically, the analysis of dual-

connectivity gain in terms of delay and throughput [137], mobility [138], energy efficiency

[139], reliability [140], and low latency [141] exists in literature as well. However, to the

best of authors’ knowledge, no study in existing literature addresses the QoE-aware

criteria to activate dual-connectivity between two different mobile technologies viz a viz

4G and 5G. Particularly, RLF and muting instances in the context of dual-connectivity,

have not been studied at all.

Most of the RLF related literature [142, 143, 144, 145] addresses intra-frequency HO
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issues by controlling the system common parameters. For example, in [142], time-to-

trigger (TTT) and HO margin are adjusted based on the type of RLF observed during

HO. Similarly, [143] considers tuning another know parameter called A3-offset to prevent

RLF between intra-frequency neighbors. Authors in [144] categorize HO failure into too

early, too late and wrong cell HO to adjust TTT and A3-offset accordingly. Apart from

optimizing intra-frequency HO parameters, authors in [145] propose transmission power

changes to adjust coverage holes in an attempt to avoid RLF. RLF detection approach

in [146] uses an RF threshold to detect possible RLF situation and accelerates HO to a

better cell if available. However, the mechanism of setting appropriate RF threshold, is

not defined.

On the other hand, voice call muting (specifically IP based Voice over LTE ’VoLTE’

muting) is rarely studied by the research community, and the primary reason for that is

bi-fold; a) the low penetration rate of VoLTE calls - most subscribers are redirected to

circuit switch based 3G networks when making voice calls (this is due to incapability of

mobile handset, inability of BS, or reluctance of the network operators to enforce VoLTE

calls), b) the voice muting prevention techniques are normally based on traditional op-

timization methods (coverage hole avoidance, SINR improvement, seamless and timely

handover, resource availability). Research community up till now assumes those tradi-

tional optimization techniques can suffice to avoid call muting. However, although the

RLF avoidance approaches discussed above [142, 143, 144, 145, 146] may help minimize

voice call muting as well, the optimization techniques aimed specifically at voice muting

prevention, need to meet more stringent criteria than traditional approaches. This is

because unlike traditional HTTP/FTP traffic, voice call requires real-time low-latency

packet transfer for high definition, jitter-free communication. For the same reason, in

an attempt to camp the voice call UE on the best available frequency, network operators

use a different set of mobility parameters compared to when an ordinary data call is

active.
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In the context of voice call muting, only the study of mobility (HO between WiFi access

points and not cellular tower) [147] and resource scheduling [148] exists in literature.

However, none of the existing studies aims to investigate a scheme for a QoE-aware

dual-connectivity (EN-DC) establishment. Furthermore, as concluded earlier, most of

the RLF prevention approaches proposed in literature target intra-frequency HO opti-

mization and do not identify actual measurement thresholds to detect possible RLF.

Therefore, there is dire need for a framework to detect potential RLF threshold and

potential muting threshold (signal strength and quality), and utilize that information

to configure optimal inter-RAT (Random Access Technology) parameters for resource

efficient and QOE aware EN-DC activation.

4.1.2 Contribution

This chapter presents the first framework whereby leveraging real network data mea-

surements, I have quantified and optimized the tradeoff between 5G network utilization

and QoE degradation due to potential RLF or potential muting. This work is an exten-

sion to our work in [149] where I have only presented a preliminary study on potential

RLF identification. Potential RLF and potential muting refers to the UE RF condi-

tion where actual RLF or muting may not be observed, however, the UE is under the

RF environment that can ultimately lead to actual RLF or muting (e.g. through the

expiry of relevant timers and counters). I first obtained the potential RLF thresholds

by taking into account the 3GPP [150] based low level measurements (N310, T310,

maxRACHattempts, maxRLCretransmissions) from the real network.

I first gather RLF and call muting related data from the real network and investigate

several approaches to address the data imbalance issue, which include Random over

sampling, SMOTE, NearMiss, CNN, Tomek Links, ENN, NCL and GAN. More detail

on these algorithms can be found in section 4.3. I then design, develop and evaluate

various machine learning algorithms including regression, KNN, SVM, Naive Bayes,
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XGBoost and deep learning algorithms, each with a range of hyper parameters. Results

show that the best performance for the potential RLF identification model is obtained

when data augmentation is performed using Tomek Links, and the enriched data is

trained using deep learning technique. The trained deep learning based potential RLF

model gives 25% more accuracy than the raw data where data augmentation is not

performed.

UEs with voice service requirements are typically configured with a separate set of pa-

rameters to ensure successful transmission and reception of the real-time voice packets.

Keeping in view the stringent requirements of voice calls, I train, develop and evaluate

a two stage AI model, where potential RLF model with stricter potential RLF identifi-

cation criteria is used as a first stage model. I use data from the actual voice call in the

training phase of this two-stage model. Similar as for potential RLF model, I evaluate

the results of the second stage AI model using several machine learning techniques. The

best accuracy is obtained when Generative Adversarial Networks (GAN) enriched data

is used to train the deep learning model. With GAN, I am able to increase the F1 score

from 0.45 to 0.87.

I then formulate two different QoE aware activation of EN-DC problems solving which

can allow operators to fine tune the trade-off between maximizing 5G utilization and the

risk of RLF and call muting respectively. I establish the non-convexity of the formulated

problems and leverage Genetic Algorithm (GA) to obtain the optimal EN-DC activa-

tion criteria. Results show that GA can yield near optimal solutions in just 335 and 969

iterations for non-voice and voice service UEs, compared to 741,321 iterations needed

with brute force. The overarching contribution of the chapter is a data driven optimiza-

tion framework (Fig. 4.2) to optimally activate EN-DC while taking into account QoE

by adjusting the 4G and 5G RSRP and SINR thresholds. Our results show that for

equal weight (w=0.5) between EN-DC activations and RLF, the proposed framework

can reduce RLF 1328 to just 229 while reducing number of EN-DC activations from
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6125 to 4051. Similarly, number of mute instances can be decreased from 3208 to just

360 while reducing number of EN-DC activations from 6125 to 3571.

The contributions of the chapter are summarized below:

• First of its kind QoE-aware dual connectivity criteria using real network data.

• Leverage deep domain knowledge to identify

– potential RLF occasions using low-level counters specified by 3GPP.

– potential muting instances based on stringent potential RLF criteria.

• Two stage AI model trained on domain knowledge-based problem identification,

that identifies potential RLF/mute for a given RF condition in a 4G or 5G network.

• Novel work that utilize real world VoLTE call data to build a classification-based

AI-model.

• Using unconventional techniques such as Tomek links and GAN to address the

class imbalance.

• Simple yet effective objective function where operators can assign weightage to

control the rate of EN-DC activations, and RLF/muting avoidance.

The rest of the chapter is organized as follows. In Section 4.2, I briefly describe the

3GPP based a) EN-DC activation procedure, b) RLF trigger conditions, and c) the

support of voice calls over cellular networks. Real LTE network measurement data col-

lection, exploration and development of AI model to predict potential RLF and potential

muting is presented in Section 4.3 and Section 4.4 respectively. Optimization problem

formulation for an efficient RLF/mute-aware EN-DC activation criteria can be found in

Section 4.5. Simulation results in Section 4.6.1 shows how Minimization of Drive Test

(MDT) data can be used to determine suitable EN-DC activation configuration param-

eters while minimizing chances of RLF by making use of the AI based RLF prediction

model developed in Section 4.3. Finally, I conclude the chapter in Section 4.7.
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Figure 4.1: (a) EN-DC signaling and data connections, (b) EN-DC activation process.

4.2 Background

In this section, I briefly describe the 3GPP standard based procedures of EN-DC acti-

vation, RLF trigger criteria, and the support of voice calls over cellular networks.

4.2.1 EN-DC in 3GPP Release 15

A major focus of 3GPP Release 15 [133] is to get a first incarnation of 5G NR into the

field that complements 4G LTE. Primarily, due to the higher frequency bands standard-

ized in 5G networks, it is deemed better to enable UEs to connect simultaneously to

4G and 5G NR. This is referred to as Dual Connectivity option 3X or EN-DC. UE tra-

ditionally camps on 4G eNB, referred to as Master Node (MN) in EN-DC terminology.

Later on, the network may configure EN-DC if the UE initiates the services that can

benefit from EN-DC. Fig. 4.1(a) illustrates EN-DC signaling and data connections.

EN-DC activation process starts by the MN sending the EN-DC configuration (having

the 5G frequency information and event B1 measurement criteria) to the UE. Event

B1 configuration defines the 5G RF threshold which UEs are required to meet before

initiating EN-DC request. EN-DC capable UE sends event B1 to the MN if as per the
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configuration, the Reference Signal Received Power (RSRP), Reference Signal Received

Quality (RSRQ) or Signal to Interference and Noise Ratio (SINR) of the 5G cell becomes

better than the B1-threshold (see Fig. 4.1(b)). Mathematical form of event B1 fulfilment

is shown in (4.1) where Mn is the measurement result of the inter-RAT neighbor cell,

not taking into account any offsets, Hys is the hysteresis parameter, Ofn and Ocn are

optional frequency and cell offset parameters respectively.

Mn+Ofn+Ocn˘Hys > B1− threshold (4.1)

As per the 3GPP standard, the UE has to transmit event B1 measurement report to

the MN if it measures 5G radio condition to be higher than the configured event B1

threshold. The (4.1) shows that the 3GPP standard requires event B1 configuration to

be either RSRP or SINR based, and not both. This can lead to a situation where 5G

RSRP is above the configured B1 threshold, however, 5G SINR is poor due to excessive

interference from the neighboring cells. Since the B1 measurement report encapsulates

RSRP and SINR of both the serving 4G cell (MN), and the candidate 5G cell, in this

work, I extend this process by applying another filtration inside the BS. By having

another condition set inside the MN, we can ensure that the RSRP and SINR of both

4G and 5G networks is above an optimal threshold. This ensures that the QoE is not

degraded due to RLF or voice muting after EN-DC activation. This is vital because

EN-DC requires signaling data to be transmitted through the LTE BS. Hence, while

good 5G radio condition is essential to deliver high quality service, having an additional

check on both 4G and 5G radio condition before the EN-DC activation ensures that

LTE connection to the UE can reliably serve the UE well. More detail on this can be

found in Section 4.5.

Upon B1 reception, MN communicates with the 5G gNB and EN-DC is activated after

the admission control check, and capability enquiry. 5G gNB upon EN-DC activation

is referred to as Secondary Node (SN).
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4.2.2 Radio Link Failure in 3GPP

The event where the UE abnormally detaches its connection with the serving cell is

known as Radio Link Failure, commonly abbreviated as RLF. RLF procedure in 5G

networks is same as in 4G, and is observed when either of the following three conditions

are met continuously for a certain period. Each of these RLF condition is controlled by

one or more parameters.

• Upon timer T310 expiry after configured consecutive out-of-sync indication (n1)

represented by N310 parameter.

where t1 represents the timer activated when n1 equals or exceeds the value of

configured parameter N310. Algorithm 1 gives a detailed explanation of this RLF

criteria.

• After the configured number of consecutive unsuccessful RACH attempts (n2) have

been reached, as explained in the algorithm 2 below.

• When the number of consecutive RLC retransmissions represented by n3 equals

the value of the parameter maxRLCretransmissions. See following algorithm

for details.

A network operator may prevent RLF by configuring higher thresholds mentioned above.

However, in that case, UE would remain stuck in the poor RF condition. Though RLF

causes service disruption, it gives the UE under poor RF condition a chance to reset

its struggling connection, and UE can camp on the cell offering a better coverage.

Optimization of these RLF related parameters to minimize the RLF are beyond the

scope of this chapter and can be the subject of a future study. Here I am interested

in developing a model that can predict the RLF. Such model will be then used for an

intelligent EN-DC activation decision.
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Algorithm 1: (RLF Criteria 1)

Initialize local counters n1, n
′
1 and timer t1 to zero;

while UE in connected mode do
for Every wireless frame do

if UE is out of sync then
Increment n1 by 1;
if n1 ≥ N310 then

; // Start timer if n1 = N310

Increment t1 by 1;
if timer t1 equals T310 then

; // timer expires

Execute RLF;

else
Do nothing;

end

else
Do nothing;

end

else
; // UE is in sync

if timer t1 has not started then
Reset n1 to zero;

else
Increment n′1 by one;
if n′1 equals N311 then

Reset n1, n
′
1, t1 to zero;

else
Do nothing;

end

end

end

end

end
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Algorithm 2: (RLF Criteria 2)

Initialize local counter n2 to zero;
while UE in idle or connected mode do

for Every RACH attempt do
if RACH fails and timer t1 not running then

Increment n2 by 1;
if n2 equals maxRACHattempts then

; // Maximum Number of consecutive RACH fail attempts reached

Execute RLF;

else
Do nothing;

end

else
; // Upon RACH success

Reset n2 to zero
end

end

end

Algorithm 3: (RLF Criteria 3)

Initialize local counter n3 to zero;
while UE in connected mode do

for Every instance of downlink data schedule do
if RLC retransmission is required then

Increment n3 by 1;
if n3 equals maxRLCRetransmission then

; // Maximum allowable consecutive retransmissions reached

Execute RLF;

else
Do nothing;

end

else
; // Upon successful decoding

Reset n3 to zero
end

end

end
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Figure 4.2: High level overview of the proposed AI-enabled EN-DC activation FRAMEWORK.

4.2.3 Voice Over Cellular Networks

Voice telephony is the primary reason why the cellular network came into existence.

The legacy 4G networks and the latest 5G NR networks support voice services through

VoLTE and Voice over NR (VoNR) respectively. The prerequisite of both VoLTE and

VoNR call establishment are the UE capabilities and network configuration to support

voice services. 3GPP [151] standardises QoS Class Identifier (QCI) value of 5 for voice

call signaling. As a result, voice capable UE is configured with a QCI 5 bearer as

soon as it comes under the coverage of the BS providing voice services. However,

the voice packets themselves are sent through QCI 1 which is established only during

the duration of an active call session. Session Initiation Protocol (SIP) is used for

control signaling, while Real-time Transport Protocol (RTP) is used for the delivery

of voice packets. Resource scheduling for a voice activated user is achieved through

Semi-Persistent Scheduling (commonly known as SPS). SPS allocates with high priority
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a fixed number of resources in a periodical manner and at predefined location within

the bandwidth. This is done to minimize the scenario where a UE with an active voice

call is being starved of the shared resources due to resource congestion.

The packet switch-based VoLTE and VoNR delivers high definition voice with much

lesser jitter and delay than traditional circuit switch networks. However, the voice call

is susceptible to muting under poor RF conditions. Due to the drop or loss of voice

packets, a UE under poor radio condition cannot hear or transmit the audio to the call

participant. Under worst circumstances, the voice muting can extend even for seconds,

and this can be detrimental to user experience.

Unlike RLF which has underlying counters that dictate the network operations when

to trigger RLF, voice muting is not dependent on any underlying parameters. This

is due to the real-time flow of packets between the two participants, and call muting

can be observed almost instantly whenever the signal strength or quality deteriorates.

Nevertheless, voice muting is observed whenever the UE observes RLF or when the UE

RSRP or SINR degrades. Thus, we can expect call muting to happen whenever actual

RLF, or the condition that can lead to an actual RLF (referred herein as potential

RLF) is observed. Note that the real-time nature of voice packets calls for a stringent

condition to classify the radio condition under which a UE can observe call muting. This

requirement has been taken into consideration in the two-stage deep learning model

presented in Section 4.4, where I develop an AI model to predict voice call muting using

actual muting data from a live network.

4.3 AI Model for RLF Prediction to Enable Smart EN-DC Activation

This section describes how actual measurement data from a real 4G network are collected

to develop a deep learning based AI-model to help identify the set of RSRP and SINR

conditions that correspond to potential RLF. This model is then used to design criteria

to activate EN-DC mode after the MN receives the RSRP and SINR of the 4G and
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Figure 4.3: Potential RLF occurrences versus the UE RSRP and SINR measurements.

Figure 4.4: Decision boundary of THE potential RLF models shown in Table 4.1

5G cell inside the B1 measurement report from the EN-DC capable UE. Since the RLF

criteria in 4G and 5G NR is same, the proposed RLF prediction AI model is applicable

for both 4G and 5G NR [133]. Fig. 4.2 illustrates the high-level overview of the proposed

AI-powered EN-DC activation method.

4.3.1 Data Collection, Cleansing and Pre-Processing

A drive test in a commercially deployed LTE network is conducted for a total of 13

hours, and RSRP and SINR measurements are recorded at a time interval of 100ms.
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Table 4.1: Applying data-imbalance resolution techniques on the potential RLF class.

Classification
Algorithm

Metric Raw
Data

Random
over

sampling

Smote
Random

under
sampling

Near
Miss

CNN
Tomek
Links

ENN NCL Cluster
Centroids

GAN

Regression Accuracy 97% 88% 89% 88% 95% 95% 97% 98% 97% 90% 97%

KNN Accuracy 98% 98% 95% 98% 88% 97% 97% 96% 97% 98% 97%

SVM Accuracy 97% 89% 89% 89% 89% 97% 89% 89% 97% 94% 97%

Naive Bayes Accuracy 97% 88% 90% 97% 95% 95% 96% 95% 96% 90% 96%

Decision
Trees

Accuracy 97% 93% 90% 90% 48% 93% 97% 96% 96% 88% 96%

Random For-
est

Accuracy 79% 94% 93% 93% 57% 97% 98% 97% 97% 94% 97%

XGBoost Accuracy 78% 93% 91% 91% 78% 97% 98% 97% 97% 94% 97%

Deep Learn-
ing

Accuracy 74% 89% 89% 89% 72% 97% 99% 72% 98% 94% 97%

Regression F1 0.75 0.88 0.49 0.88 0.68 0.67 0.74 0.74 0.74 0.53 0.75

KNN F1 0.78 0.78 0.68 0.78 0.44 0.75 0.78 0.72 0.77 0.69 0.79

SVM F1 0.73 0.88 0.88 0.88 0.88 0.75 0.88 0.88 0.74 0.63 0.76

Naive Bayes F1 0.7 0.88 0.5 0.7 0.62 0.69 0.7 0.66 0.69 0.51 0.72

Decision
Trees

F1 0.75 0.89 0.9 0.9 0.16 0.57 0.75 0.73 0.74 0.47 0.75

Random For-
est

F1 0.86 0.9 0.92 0.92 0.2 0.77 0.79 0.78 0.79 0.66 0.8

XGBoost F1 0.88 0.91 0.91 0.91 0.31 0.76 0.88 0.78 0.74 0.64 0.79

Deep Learn-
ing

F1 0.87 0.88 0.88 0.88 0.1 0.76 0.93 0.1 0.8 0.62 0.76
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Moreover, the low level RLF related parameters mentioned in Section 4.2.2 are also

registered. Out of the 0.45 million data samples recorded, only 543 actual RLF are

observed (∼7 RLF every 10 minutes). This data, if used as it is to train an AI model,

can lead to a poorly performing model due to the class imbalance in the training data.

For that reason, and to incorporate all the chances of possible RLF, using domain

knowledge, I mark those rows of the data as potential RLF where even though actual

RLF is not observed but the underlying RLF related parameters (T310, N310, N311,

maxRACHattempts,maxRLCretransmissions) showed abnormality.

Next, some of the RLF related higher layer parameters were not received in sync with

the physical layer RSRP and SINR data during the logging of drive test data. The

incomplete data as a result of the sync issues were filled in with the appropriate RF

information. For example, as UE attempts RACH with the target cell only during the

HO procedure, the RF data of the target cell was filled in against the respective RACH

results. The processed RF data with potential RLF instances label has been plotted in

the Fig. 4.3. The tail of the scatter plot in the bottom left area are poor RSRP samples

due to late HO instances, where UE is unable to perform HO to the best cell due to

poor SINR.

I incorporate the low-level RLF related parameters to have a better insight to the RF

condition leading to actual RLF. This also alleviate the data imbalance issue as I obtain

27,794 potential RLF samples as compared to just 543 actual RLF instances. However,

even 27,794 potential RLF samples are a small fraction of of the total 0.46 million total

samples. This data when fed into the training phase of machine learning gives very poor

performance as the non-potential RLF data is dominant. This has been shown under

the Raw Data column of table 4.1.

108



Figure 4.5: Effect of Tomek Links in addressing data imbalance and improving class isolation.

4.3.2 Addressing Data Imbalance

A key challenge in creating an RLF model is the training data class imbalance. If used

without a class balancing technique, most machine learning models trained on our data

will be biased towards the majority class i.e. no RLF. The resultant accuracy paradox,

where the high accuracy of machine learning model is driven by the majority class,

and the minority class showing poor performance will be detrimental to the fidelity of

the RLF model. In our context, minority class (potential RLF class) is actually the

class of interest, and for that reason data imbalance problem must be addressed to have

meaningful results. In the following, I briefly discuss the approaches I have leveraged

to address data imbalance problem. Here I represent minority class and majority class

as Cmin and Cmaj respectively.

• Random over sampling randomly duplicates observations from the Cmin to rein-

force its signal.

• Synthetic Minority Oversampling Technique (Smote) synthesises new minority

instances.

• Random under-sampling randomly removes observations from the Cmaj.

• After identifying the two nearest samples in the distribution belonging to different

classes, the near miss algorithm eliminates the majority class data point, thereby
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trying to balance the distribution.

• Condensed Nearest Neighbor Rule (CNN) works by classifying each majority sam-

ple using kNN, and mis-classified sample is assigned to Cmin.

• A pair of data instances (xi, xj) where xi ∈ Cmin, xj ∈ Cmaj and d(xi, xj) is the

distance between xi and xj, is called a Tomek link if there is no data instance xk

(xk ∈ Cmin or xk ∈ Cmaj) such that d(xi, xk) < d(xi, xj) or d(xj, xk) < d(xi, xj).

The Tomek link algorithm removes the unwanted overlap between Cmin and Cmaj

by removing majority class sample from Tomek link data pair. This is done based

on the assumption that for the data points that form a Tomek link, either one of

them is a noise or both are in the borderline.

• Edited Nearest Neighbor Rule (ENN) removes any instance whose class label is

different from the class of at least two of its three nearest neighbors.

• Neighborhood Cleaning Rule (NCL) modifies the ENN where three neighbors of

each data data point are found. If the classification of the data point xj ∈ Cmaj

given by its three neighbors contradicts the original class of xi, then xi is removed.

Conversely, if the data point xi ∈ Cmin and the three neighbors miss-classify xi as

a majority class sample, then the nearest neighbors that belong to the majority

class are removed.

• Cluster Centroids find the clusters of the majority class with K-mean algorithms.

Then it replaces the cluster points with cluster centroids as the new majority

samples.

• In Generative Adversarial Network (GAN), two neural networks contest with each

other in the training phase. The goal of the first neural network is to befool the

second neural neural network by generating synthetic data that resembles the

input training data. The role of the second neural network is to correctly identify
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the synthetically produced data. In the context, GAN can be used to oversample

the Cmin.

Of the aforementioned techniques to address class imbalance, our results indicate that

Tomek links outperforms other techniques (see table 4.1). The highlighted blue rectangle

in Fig. 4.5 illustrates that Tomek Links focus on the class boundary to help improve the

isolation between the overlapped classes by removing majority samples at the border

area.

In the following I describe the training, testing, and validation of the machine learning

algorithms after applying the data imbalance resolution approaches discussed above.

4.3.3 Model Building and Validation

The prepared data is scaled and used to train and test several AI techniques for creating

a best performing model for RLF prediction as function of observed RSRP and SINR.

After splitting the processed data into a training and a test dataset, I develop and

validate several classification algorithms that include KNN, decision trees, regression

and deep learning-based models. Table 4.1 shows the accuracy and F1 score of the

minority class (potential RLF class) for various machine learning models trained on the

same data to predict RLF. F1 score observed for majority class for all the machine

learning algorithms is higher than 0.9 and has not been included in Table 4.1. Deep

learning with data imbalance problem addressed by Tomek Links shows the best results

in terms of accuracy, F1 score and domain knowledge (decreasing RSRP and SINR

induces more chance of RLF). The decision boundary for the aforementioned model is

shown in the Fig. 4.4(h).

Deep Neural Network algorithm belongs to a special class of machine learning, called

deep learning and creates a multi-layer perceptron to find the input-output associations.

Its basic structure consists of an input layer, output layer and one or more hidden layers
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Figure 4.6: Structure of the deep learning based model for predicting potential RLF. The
model is trained, tested and validated after addressing data imbalance using Tomek link.

between them, each containing several neurons (or nodes). The number of neurons in

the input layer are typically equal to the number of input features, whereas output

layer in case of binary classification model consists of a single neuron that holds the

prediction output. Number of hidden layers and its neurons are variable and depends

on the complexity of the model it is trying to learn. To avoid under or over fitting,

I investigate a variety of Deep learning neural network architectures with a range of

hyper-parameters as shown in Table 4.2. Our experiments show that a deep learning

model with fully connected three hidden layers having 16, 16 and 8 neurons respectively

as shown in the Fig. 4.6, yields the best results. The model was trained using epoch

size of 50 and batch size of 1.

Table 4.2: Deep Learning Hyperparameters for potential RLF model.

Hyperparameter Name Search Range/Value

DNN depth d {1,2,3,5}

DNN width w {5,8,10,16}

Activation Function (Hidden Layers) Relu

Activation Function (Output Layers) Sigmoid

Optimizer Adam (Gradient Descent)

Loss Metric Binary Cross Entropy

4.4 AI Model for Voice Muting Prediction to Enable Smart EN-DC Activation

Similar to Section 4.3 but for voice call muting, this section describes how actual mea-

surement data from a real VoLTE network is collected and used to develop a deep
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learning based AI-model to help identify the set of RSRP and SINR conditions that

correspond to potential voice call muting. This model is then used to help activate EN-

DC mode if the UE requiring voice bearers send EN-DC activation request (event B1) to

the MN having the RSRP and SINR of the MN and SN. Since the handover criteria in

5G is same as in 4G, with the assumption that the same RSRP and SINR measurements

of 4G and 5G networks correspond to similar voice muting performance, we can apply

the learned voice muting prediction AI model on both LTE and 5G NR. Both 4G and

5G networks broadcast specific signals at different but known frame locations for the

UE to measure RSRP, while the SINR is calculated as the ratio of signal to interference

and noise. Hence, it can be safely assumed that same pair of RSRP and SINR for both

4G LTE and 5G NR exhibits exactly same muting behavior. However, note that this

assumption may be untrue if the difference between the 4G and 5G carrier frequencies

is large. This is because of dissimilar channel characteristics and different uplink per-

formance of the two carrier frequencies. Similarly, huge deviance in transmission power

can have dissimilar results as well. In that case the presented framework will work but

the exact model will have to be retrained using data from the 5G network.

Fig. 4.2 illustrates the high-level overview of the proposed AI powered EN-DC activation

framework. For muting prediction, I develop a cascaded 2-stage AI model where the

labels obtained from stage-1 potential RLF model (Section 4.3) are used alongside actual

voice muting samples obtained from real world measurements. Finally, the second stage

AI model is trained to predict potential voice muting.

Figure 4.7: Structure of the deep learning based model for predicting potential voice muting.
The model is trained, tested and validated using GAN enriched real data.
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Table 4.3: Applying data-imbalance resolution techniques on the potential mute class.

Classification
Algorithm

Metric
Raw
Data

Random
over

sampling

Smote
Random

under
sampling

Near
Miss

CNN
Tomek
Links

ENN NCL Cluster
Centroids

GAN

Regression Accuracy 99% 91% 89% 91% 98% 99% 99% 99% 99% 91% 99%

KNN Accuracy 99% 95% 97% 93% 95% 99% 99% 99% 99% 98% 99%

SVM Accuracy 99% 94% 96% 93% 94% 99% 99% 99% 99% 87% 99%

Naive Bayes Accuracy 99% 89% 86% 90% 91% 99% 99% 99% 99% 87% 99%

Decision
Trees

Accuracy 99% 97% 97% 89% 88% 97% 99% 99% 99% 90% 99%

Random For-
est

Accuracy 99% 97% 98% 92% 92% 99% 99% 99% 99% 97% 99%

XGBoost Accuracy 99% 96% 97% 93% 91% 99% 99% 99% 99% 29% 99%

Deep Learn-
ing

Accuracy 99% 93% 96% 93% 94% 99% 99% 99% 99% 96% 99%

Regression F1 0.41 0.61 0.11 0.71 0.3 0.45 0.41 0.44 0.43 0.12 0.51

KNN F1 0.43 0.59 0.21 0.73 0.28 0.45 0.48 0.45 0.48 0.39 0.57

SVM F1 0.41 0.63 0.27 0.73 0.28 0.43 0.44 0.47 0.49 0.24 0.76

Naive Bayes F1 0.4 0.6 0.09 0.7 0.27 0.37 0.39 0.42 0.4 0.09 0.79

Decision
Trees

F1 0.41 0.6 0.2 0.69 0.29 0.17 0.45 0.46 0.44 0.11 0.46

Random For-
est

F1 0.43 0.59 0.33 0.62 0.31 0.42 0.44 0.49 0.49 0.41 0.84

XGBoost F1 0.41 0.6 0.33 0.63 0.35 0.45 0.45 0.5 0.48 0.47 0.86

Deep Learn-
ing

F1 0.45 0.63 0.22 0.62 0.32 0.47 0.51 0.47 0.48 0.26 0.89
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Figure 4.8: Effect of GAN in mitigating class imbalance issue.

4.4.1 Data Collection, Cleansing and Pre-Processing

VoLTE call based drive test is conducted for eight hours and RSRP, SINR measurement

are recorded every 100ms. Muting can be observed due to poor RF condition at either

the caller or callee location. To accurately identify the RF condition that can lead to

call muting, I place one of the call participant static UE under good RF conditions.

The other participant UE is placed under a moving vehicle with continuously changing

RF condition, and the call muting related data is recorded. Out of the 0.3 million data

samples recorded, I observe 2092 actual voice mute occasions (∼4.36 mute occasions

per minute). Real-time Transfer Protocol (RTP) packets are continuously exchanged

between the UE and BS during the call period, and the absence of RTP packets is

observed not only during muting occasions, but also when no call is ongoing. For that

reason, I label the rows of data as voice mute only if RTP packets are absent while the

voice call is in established phase.

4.4.2 Model Building and Validation

I took the similar model building procedure as for potential RLF model in Section

4.3, hence, for the sake of conciseness I skip the initial details. Table 4.3 shows the

performance of various machine learning algorithms that I investigate to determine the

best performing potential mute prediction model.
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Figure 4.9: Comparison of the original minority class (mute data) and the synthetic data
generated from GAN.

Unlike potential RLF model, here I use GAN to address class imbalance, as it shows the

best results in terms of F1 score. KL and JS divergence of the GAN generated samples

from the real data, along with the probability density function (PDF) of the original

minority class and the synthetically generated data is shown in the Fig. 4.9. The results

show that GAN manage to produce synthetic data that closely resembles real data.

Fig. 4.8 shows that the class separation in the collected voice call data is much pro-

nounced than the data collected for RLF prediction (see Fig. 4.5 for comparison). This

difference in the class distribution stems from the fact that: a) both classes belong to

different metrics i.e., potential RLF and potential muting, b) network configures voice

bearer activated UE with a different and more aggressive set of mobility parameters to

keep the UE in a better RF condition at all times. In the potential RLF case, the class

distribution in Fig. 4.5 is more overlapped and Tomek Links successfully improves the

class border isolation, resulting in an improved AI model. On the contrary, here I have

applied GAN on the minority class alone to have more synthetic samples representing
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Figure 4.10: Objective function of (a) RLF (4.5) and (b) Mute (4.6) optimization problem.

the minority class. The resultant enhancement of the minority class helps to improve

model accuracy.

Building on insights from training RLF prediction model, that show that a deep learning-

based model out performs other machine learning models, here I focus on deep learning

models only. I investigate a range of deep learning architectures with a variety of hyper-

parameters to prevent under- or over-fitting as shown in table 4.2. Our experiments

show that for voice mute prediction problem, with used training data, a deep learning

model with fully connected three hidden layers having 8, 8 and 4 neurons respectively

as shown in the Fig. 4.7 out performs all other experimented architectures. The model

was trained using epoch size of 50 and batch size of 1.

4.5 QoE Aware EN-DC Activation

Following are the objectives mobile network operators should take into consideration

when enabling EN-DC in their network:

• Maximize EN-DC request by the EN-DC capable UE to have more chances to

leverage 5G NR features.

• Facilitate EN-DC activation for every EN-DC request, i.e.,

minimize (
∑

EN-DC Requests -
∑

EN-DC Activations).
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• Avoid degradation in retainability due to RLF at either 4G or 5G network after

EN-DC activation.

• Prevent voice muting after activating EN-DC for UE with voice service demands.

Table 4.4: List of acronyms used in optimization problem formulation.

Symbol Description Symbol Description

U Set of all UEs u Any user u ∈ U

Uc Set of UEs with EN-DC con-
figuration

Ua Set of EN-DC activated UEs

δu5R 5G RSRP of u θB1 5G RSRP threshold

δu4R 4G RSRP of u θ4R 4G RSRP threshold

δu5S 5G SINR of u θ5S 5G SINR threshold

δu4S 4G SINR of u θ4S 4G SINR threshold

∆u [δu5R, δ
u
4R, δ

u
5S , δ

u
4S ] Θ [θB1, θ4R, θ5S , θ4S ]

∆u,4 [δu4R, δ
u
4S ] ∆u,5 [δu5R, δ

u
5S ]

α EN-DC Activation function ζ Potential RLF AI-Model

β RLF function η Potential Muting AI-Model

γ Muting function - -

Using the notations defined in Table 4.4, I can write EN-DC activation function as:

α(∆u,Θ, Uc) =
∑
u∈Uc

1 [∆u
i > Θi ∀ i] (4.2)

where 1 is the indicator function, and the subset Uc ⊆ U is the set of EN-DC capable

UEs configured with B1 measurement report. ∆u
i is the i-th element of the set of RF

condition of user u ∈ U , i.e., for any user u, ∆u
1 = δu5R, ∆u

2 = δu4R, ∆u
3 = δu5S, ∆u

4 = δu4S.

Similarly, the i-th element of the set of thresholds is Θi, where Θ1 = θB1, Θ2 = θ4R,

Θ3 = θ5S, Θ4 = θ4S.

UEs upon EN-DC activation may experience RLF due to poor RF condition. RLF

function denoted here by β can be defined as:

β(∆u, ζ, Ua) =
∑
u∈Ua

max
(
ζ(∆u,4), ζ(∆u,5)

)
(4.3)

where Ua ⊆ Uc is the set of UEs with EN-DC activated, and ζ is the potential RLF

AI-Model, which takes in ∆u as input and outputs a prediction of 1 or 0 representing
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occurrence of potential RLF and no RLF respectively. The output of the potential RLF

AI-model is represented as ζ(∆u).

Similarly, for the set of UEs requiring voice services, function of mute η is denoted as:

η(∆u, η, Ua) =
∑
u∈Ua

max
(
η(∆u,4), η(∆u,5)

)
(4.4)

The potential muting AI-Model η takes in ∆u as input and outputs a prediction of 1 or

0 representing occurrence of potential muting and no muting respectively. The output

of the potential muting AI-model is represented as η(∆u).

Operators can increase EN-DC activations by configuring lower values of EN-DC thresh-

olds Θ. This, however, can lead to RLF or voice muting soon after EN-DC activation,

rendering the dual connectivity procedure useless. Keeping in view this tradeoff, the

optimization problem in subsection 4.5.1 and 4.5.2 is formulated to achieve maximum

utility and resource efficiency.

4.5.1 RLF Aware EN-DC Optimization

I formulate a multi-objective optimization problem to smartly maximize EN-DC acti-

vations while preventing the chances of RLF occurrences:

maximize
Θr=[θrB1,θ

r
4R,θ

r
5S ,θ

r
4S ]

αw

β(1−w)

subject to θrB1,low ≥ θrB1 ≤ θrB1,high,

θr4R,low ≥ θr4R ≤ θr4R,high,

θr5S,low ≥ θr5S ≤ θr5S,high,

θr4S,low ≥ θr4S ≤ θr4S,high,

w ≤ 1.

(4.5)

where w is the operator defined weight that can be used to adjust the relative impor-

tance of EN-DC activations (α), and RLF (β). The range of optimization variables
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and constraints indicate (4.5) is a large-scale non-convex NP-hard problem due to the

inherent coupling of optimization parameters and the EN-DC requests. Non convexity

stem from the fact that I am dealing with four integer metrics (RSRP and SINR of 4G

and 5G) in a heterogeneous multi-RAT network deployment where randomness in UE

location, and resource requirement results in variable cell loads that affect 4G and 5G

SINR metric. In addition, the 4G and 5G RSRP metric does change with the distance

from the BS, however, non-uniform BS deployment along with user mobility makes the

RSRP metric non deterministic. For the RSRP range [-120dBm, -90dBm], and the SINR

range [-10dB, 10dB], I have total 741,321 distinct combinations of the four optimization

parameters. The plot of the RLF and mute objective function using brute-force is shown

in the Fig. 4.10 wherein RSRP categories are defined as: L: <-110dBm, M: -110dBm to

-100dBm, and H: >-100dBm. Similarly, SINR rages are defined as <-3dB for L, >3dB

for H, and -3dB to 3dB for M category. The non-convex nature of the problem can be

seen from the visualizations in Fig. 4.10(a) and 4.10(b).

4.5.2 Voice Muting Aware EN-DC Optimization

Similar to (4.5), optimization function for potential mute model can be formulated as

below:

maximize
Θm=[θmB1,θ

m
4R,θ

m
5S ,θ

m
4S ]

αw

γ(1−w)

subject to θmB1,low ≥ θmB1 ≤ θmB1,high,

θm4R,low ≥ θm4R ≤ θm4R,high,

θm5S,low ≥ θm5S ≤ θm5S,high,

θm4S,low ≥ θm4S ≤ θm4S,high,

w ≤ 1.

(4.6)

where w is the operator defined weight that can be used to adjust the relative importance

of EN-DC activations (α), and mute (γ). Compared to UEs with an active HTTP/FTP
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Figure 4.11: Proposed smart EN-DC activation framework.

session, the UEs with an active voice bearer are configured with a different set of mobility

and retainability parameters. The goal of this approach is to keep the UE undergoing

a voice call to good radio conditions, and other factors like load balancing and HO rate

are given less priority. The optimization problem in (4.6) is formulated while keeping in

view the same strategy where UEs with voice services will have a different set of EN-DC

activation thresholds.

4.6 Proposed Smart EN-DC Activation Framework and Simulation Results

The proposed smart EN-DC activation framework effectively use the learning from the

AI model presented in section 4.3 and 4.4. The framework requires the data collected

from a live network to be fed into the AI engine where RLF (or mute) prediction takes

place. Next, the optimization agent evaluates the multi-objective KPI optimization

problem formulated in the previous section. This is done keeping in view the operator

defined weightage to the number of EN-DC activations and the number of RLF/mute.

I solve this non-convex problem using GA heuristic. As illustrated in the Fig.4.11,

the optimization agent frequently pools the RLF/mute prediction from the AI engine,

and the optimal Configuration and Optimization Parameters (COPs) that yield the

maximum utility function are obtained.
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Figure 4.12: RSRP plot of deployed 4G and 5G network.

Figure 4.13: Number of UE generated B1 reports (EN-DC activation requests) against RSRP
threshold.

4.6.1 Simulation Setup

I implement the proposed framework in a state of the art 3GPP compliant network

simulator called SyntheticNET [152]. SyntheticNET has many key features missing in

other simulators including 3GPP based mobility management, adaptive numerology,

and allocated resource element(s) based SINR calculation.

Table 4.5: Simulation details for Smart EN-DC activation.

Technology 4G LTE 5G NR

Frequency 2.1GHz 3.5GHz

Cell Type Macro Cell Small Cell

Antenna Type Directional Omni

Number of Cells 27 16

Transmit Power 40dBm 30dBm

Base Station Height 30m 20m

A multi-RAT (Random Access Technology) network with nine macro 4G eNBs each hav-

ing three sectors, and sixteen higher frequency omni directional 5G gNBs are deployed

in a square of 25km2 area. LTE eNBs are laid out uniformly in a grid form, while 5G

small cells are deployed randomly representing hotspot locations. A total of 300 mobile
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Figure 4.14: Number of EN-DC activations and RLF observed when using optimal parameters
in Table 4.6.

Figure 4.15: Number of EN-DC activations and RLF observed when using optimal parameters
in Table 4.7.

UEs traverse the area following random way point mobility model. RSRP plot of the

deployed network is shown in the Fig. 4.12. Speed of the users is set to 120km/h and

the simulation run for 12,000ms. More detail about the network configuration can be

found in Table 4.5.

UEs are configured to measure RF condition of 5G gNB every 0.5s, and event B1

measurement report is sent to the MN if the B1 criteria is met. Fig. 4.13 shows the

Table 4.6: Optimal parameters obtained from genetic algorithm (GA) for a UE with a data
call requirement.

w Algo Iterations Utility
Optimal Parameters

Θr = [θrB1, θ
r
4R, θ

r
5S , θ

r
4S ]

1
BF
GA

741,321
335

1246.5
1225.5

-120dBm, -120dBm, -6dB, -7dB
-120dBm, -119dBm, -8dB, -6dB

0.5
BF
GA

741,321
2890

47.2
46.1

-112dBm, -118dBm, -3dB, -2dB
-112dBm, -118dBm, -7dB, -2dB

0
BF
GA

741,321
5543

2.2
2.1

-108dBm, -118dBm, -1dB, -2dB
-108dBm, -118dBm, -2dB, -2dB
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Table 4.7: Optimal parameters obtained from genetic algorithm (GA) for UEs requiring voice
call services.

w Algo Iterations Utility
Optimal Parameters

Θr = [θrB1, θ
r
4R, θ

r
5S , θ

r
4S ]

1
BF
GA

741,321
969

1142
1130.4

-120dBm, -120dBm, -6dB, -7dB
-120dBm, -120dBm, -7dB, -10dB

0.5
BF
GA

741,321
5607

49
46.6

-115dBm, -110dBm, -5dB, -1dB
-115dBm, -110dBm, -10dB, 0dB

0
BF
GA

741,321
10987

2.2
2.1

-112dBm, -110dBm, 0dB, -1dB
-111dBm, -110dBm, -6dB, -1dB

effect of changing B1 threshold on the number of B1 reports (EN-DC requests), potential

RLF and potential mute occurrences. Fig. 4.13 signifies the need for a smart EN-DC

activation scheme i.e., the importance of optimally assigning B1 threshold. An incorrect

B1 threshold may deteriorate retainability Key Performance Indicator (KPI) or integrity

KPI through large number of RLF instances, and voice muting.

4.6.2 Performance Evaluation

The AI models (Fig. 4.2) are developed from the real world data, however, I evaluate

the performance of our proposed framework using the simulated data obtained from

SyntheticNET - a realistic 3GPP compliant network simulator.

Table 4.6 shows the optimal parameter set for w = [1, 0.5, 0], where the optimization

techniques of Brute-Force (BF), and Genetic Algorithm (GA) are compared. A larger

value of w tends to maximize EN-DC requests while giving low priority to RLF/mute

reduction. Fig. 4.14 shows the number of EN-DC requests, EN-DC activations and the

predicted RLF occurrences when w is varied. Results show that for the three values of

w used during the evaluation, GA shows slightly less ENDC activations compared to

BF. However, note that for the given network deployment, GA converges to the optimal

parameters in much smaller number of iterations than BF (see Table 4.6). This is critical

if the operators want to have separate set of optimal EN-DC parameters per cell, or if

with the temporal change in load condition, the optimal EN-DC activation parameters

124



are changing, and new set of parameters need to be updated dynamically.

With no-condition scenario of w=1 in (4.5), the optimization function maximizes EN-DC

activations and disregard RLF/mute occurrences. This is shown in the Fig. 4.14 where

1328 of the 6025 EN-DC activations results in RLF. Fig. 4.14 also shows that we can

help reduce RLFs by decreasing w, and can totally eliminate the chances of RLF with

w=0. This however comes at ∼50% loss of EN-DC activations. One more observation I

can induce from the Fig. 4.14 is that for the given network model, although GA results

in slightly lower EN-DC requests and activations than BF, the difference between EN-

DC requests and activations is less in GA. This will lower the signaling overhead and UE

energy consumption will be more efficient, as most of EN-DC requests will be successfully

acknowledged with EN-DC activations. For w=0, BF solution results in 3501 EN-DC

requests and 2413 EN-DC activations (1088 EN-DC requests were not entertained due

to chances of RLF from poor RF condition). On the contrary, only 914 EN-DC requests

were discarded when the optimal parameters obtained from GA were used that resulted

in 3209 and 2295 EN-DC requests and activation respectively.

Similar behavior can be observed for the UEs with the requirement of voice services.

Table 4.7 shows the optimal set of parameters needed to activate EN-DC while consid-

ering different weightage assigned to minimize the chances of voice muting. Similar as

for Table 4.6, GA performs almost similar EN-DC activation count and chances of mute

with much lesser iterations than BF.

Fig. 4.15 shows that zero chances of mute instances can be achieved by assigning more

weightage to mute using w=0. However, since UE is more susceptible to mute rather

than RLF, zero mute occasions can be obtained at the cost of lower EN-DC activations

(2085) compared to the similar case with w=0 in Fig. 4.14 (where zero RLF chances

are observed with 2295 number of EN-DC activations).
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4.7 Conclusion

EN-DC mode addresses strict QoE requirements of the UE by enabling multi-connectivity

to 4G and 5G cells. However, multi-connectivity can be beneficial only if the RF condi-

tion of participating 4G and 5G cells are above a certain threshold. Currently, there does

not exist EN-DC mode selection scheme in literature that takes into account the risk

of RLFs and voice mute. This chapter proposes a smart EN-DC triggering scheme by

which RLF and mute due to poor RF conditions can be minimized. The scheme works

by selecting the best B1 thresholds based on insights from a deep learning based AI

model to predict RLF and mute. The core RLF prediction model is developed, trained,

and validated using real network measurements of RSRP, SINR and underlying 3GPP

based RLF related parameters. The value of these low-level parameters are used to iden-

tify potential RLF against RSRP, SINR values. I use Tomek Links approach to address

the class imbalance and enhance the classification accuracy. The mute prediction model

on the other hand, is a two-stage AI model that employs potential RLF AI-model along

with the voice call muting samples extracted from real network measurements during

a voice call. The class imbalance issue in the potential mute model is addressed using

GAN.

Simulation results based on a state of the art 3GPP compliant network simulator show

that for the analyzed network deployment, compared to the state of the art i.e., no

smart conditioning on EN-DC, our proposed scheme can totally eliminate the RLF and

mute occurrences. The optimal RSRP and SINR thresholds obtained from the presented

optimization function help reduce RLF and mute occurrences from 1328 and 3208 cases

to zero potential RLF and potential mute cases respectively.
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CHAPTER 5

AI-Assisted Joint Search Method for mmWave Cell Discovery

5.1 Introduction

5G New Radio (NR), with innovative use cases of enhanced Mobile Broadband (eMBB)

for large volume transmissions, massive Machine Type Communications (mMTC) for

sensors and Internet of Things (IoT) devices, and Ultra Reliable Low Latency Commu-

nications (URLLC) for self-driven vehicles will provide much-anticipated use cases and

innovative ideas that will benefit both commercial and consumer side in urban as well

as rural areas of the world. Connected devices will be three times the global population

in 2023 [153]. Studies project that global mobile data traffic will increase from 50 Exa

Bytes per month to almost 230 Exa Bytes per month in 2026 [154].

The resultant spectrum gridlock will be broken primarily by a) utilizing wide-band

mmWave frequency cells [107, 109], and b) by the re-use of Shannon’s capacity through

ultra-dense Base Station (BS) deployment in both High Frequency (HF) and mmWave

band. However, ensuring the availability of the spectrum to the User Equipment (UE)

remains an open challenge of utmost importance. 3GPP standards on Carrier Aggre-

gation [155], and Dual Connectivity [149] make use of excessive signaling exchanges be-

tween the BS and UE to configure, activate and deactivate respective multi-connectivity

approaches. Moreover, access to the mmWave band resources is yet another unprece-

dented challenge.

The wideband mmWave BSs though dramatically scales up the system capacity, comes

with an unprecedented challenge to the cell availability for the UEs. The peculiar nature

of the 30-300 GHz frequency range of mmWave spectrum due to the hallmarks of high

path loss, directional transmissions, and sensitivity to minute environmental variation
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Figure 5.1: Comparison of mmWave Cell Discovery Approaches.

and obstacles hinders the initial access procedure. Initial access procedure consists of cell

discovery, extraction of system information, and random access procedure. Successful

mmWave cell discovery in addition to beam alignment between UE and mmWave cell

also requires Line-of-Sight (LoS) transmission path. Unlike HF cells, mmWave beams

with Non-Line-of-Sight (NLoS) scenario won’t be decoded at the UE terminal due to

dramatic link quality deterioration.

5.1.1 Related Work and Motivation

Researchers are working on devising suitable strategies to achieve an efficient cell dis-

covery process in mmWave systems, that reduces latency and overhead (number of pilot

symbols). Table 5.1 summarizes some of the literature work directed towards mmWave

cell discovery [156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,

171, 172, 173].

While most of the research papers [156, 157, 158, 159, 160, 161, 162, 163, 164, 165,

166, 167, 168, 169, 170, 171, 172, 173] address the mmWave alignment issue between

UE and BS, none of the proposed idea incorporate the realistic LoS scenario deemed

essential for successful mmWave cell discovery. Authors in [157] make use of a heavily

used exhaustive search method to propose optimal beamwidth design taking into account
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the tradeoff between mmWave cell search delay and beamforming gain. Authors in [158]

introduced the concept of beam discovery signal to help identify the beam used during

the exhaustive search method. The beam discovery signals are also used to identify

interfering beams, and later interference mitigation takes place using orthogonal codes.

The comparison of the exhaustive search method and hierarchical search method can

be found in [161]. Authors in [161] concluded that hierarchical search can achieve

similar beam alignment performance to exhaustive search with low overhead (fewer pilot

symbols used). A hybrid method with the strengths of the exhaustive and hierarchical

method has been proposed in [163] that outperforms the hierarchical search method in

terms of miss-rate% (probability of misdetection), and exhaustive in terms of discovery

delay.

Authors in [167] discusses the context-based cell search approach where intelligent

mmWave BSs steers their beams through a known populated area for UE discovery.

Unlike other approaches, this scheme increases hit-rate% by avoiding beam transmission

towards sparsely populated areas, or towards blockages like trees, buildings, rivers, etc.

Another promising cell discovery approach has been proposed in [169, 170, 171, 172, 173]

where joint collaboration between macro BS and mmWave BS efficiently discovers the

UE with the macro BS feeding the UE location to the mmWave BS. Authors in [173]

exploit a probabilistic neural network to suggest the optimal beamwidth to achieve suc-

cessful cell discovery. Simulation results in [173] show that latency can be decreased

from 1.6ms using an exhaustive search method to just 0.18ms using the proposed joint

search-based method. Moreover, a misdetection probability of as low as 0.08 can be

achieved.

While research ideas like in [157, 171] presents analytical model for coverage probability,

none of the proposed schemes in literature [156, 157, 158, 159, 160, 161, 162, 163,

164, 165, 166, 167, 168, 169, 170, 171, 172, 173] incorporates Non-Line-of-Sight (NLoS)

induced coverage hole in the cell search procedure. This is critical due to the high
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sensitivity nature of mmWave to blockages as UEs under NLoS conditions might render

the BS efforts taken towards mmWave cell search procedure totally useless. Moreover,

the user experience of the mobile UEs served by mmWave cells may deteriorate rapidly

once the mobile UEs enter NLoS areas due to blockage. This is detrimental both to the

bandwidth-hungry eMBB applications and time-critical URLLC use-cases.

5.1.2 Contribution

The main contributions of this work can be summarized as follows:

• To the best of authors’ knowledge, this is the first joint search-based mmWave

cell discovery framework build using realistic mmWave network data of radio link

failures (RLFs), coverage holes, and serving mmWave cell identifiers.

• I employ domain knowledge-assisted data sparsity techniques to predict the op-

timal mmWave cell in areas with sparse UE distribution. The optimal mmWave

cell prediction on the unlabeled bins obtained from a real mobile network is made

using

– traditional interpolation techniques of Inverse Distance Weighted (IDW),

Moving Average, and Natural Neighbor and Nearest Neighbor.

– domain knowledge-based custom Algorithms of Nearest Neighbor Count (NNC),

and Weighted nearest Neighbor Count (WNNC).

– machine learning and deep learning models each with optimized hyper-parameters

(Regression, Naive Bayes, Support Vector Machine (SVM), K-Nearest Neigh-

bor (KNN), Decision Trees, XGBoost, and Deep Learning (DL)).

• A key output of the proposed framework is a map of optimal mmWave cell, which

can then be used to attempt mmWave cell discovery. Similarly, UE in coverage hole

due to no proximity to a mmWave cell or due to NLoS condition can be exempted
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from the mmWave cell discovery procedure, hence conserving the resources of

both UE and BS. This will ultimately lead to an efficient mmWave cell discovery

procedure with a higher hit rate%.

• I leverage the architecture of E-UTRAN New-Radio Dual Connectivity (EN-DC)

[149] to facilitate the proposed joint search-based mmWave cell discovery.

– A case study is presented to show how 4G macro cells with known UE

GPS location can be fed into the proposed framework to identify optimal

5G mmWave cells that can reliably service the EN-DC capable UE.

– I compare the EN-DC activation rate after mmWave discovery procedure

proposed in this chapter to the a) mmWave cell discovery method to the

nearest mmWave cell and b) mmWave cell discovery based on the sparse

data only (without addressing data sparsity).

– Results show that compared to the other two approaches, our proposed frame-

work effectively activates EN-DC for most of the UEs while keeping the un-

successful mmWave search attempts to a minimum.

The rest of the chapter is organized as follows. Section 5.2 discusses the data collection

from a realistic mmWave environment. The approaches to optimal mmWave cell iden-

tification for a given UE location have been demonstrated in Section 5.3. Section 5.4

discusses a case study to efficiently activate EN-DC for 5G leg of mmWave. Finally, I

conclude the chapter in Section 5.5.

5.2 Synthetic Data Collection From a Realistic mmWave Environment

5.2.1 Challenges in Real Network mmWave Data Collection

Collecting the mmWave related network data from a live network though plausible in

theory is impractical because of several reasons that include:
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• mmWave networks are not fully deployed in our location.

• Even for other areas like Los Angeles where some network operators have already

deployed mmWave network, data acquisition is difficult and might not be even

useful because

– Currently the number of mmWave enabled UEs is in scarce and we will not

be able to collect adequate data samples.

– Existing techniques of mmWave cell discovery are based on exhaustive search

and the associated inefficiency in cell discovery will contribute to low UEs

camping on mmWave cell. As a result, the number of available data samples

will be very few. This further adds to the significance of our work, through

which mmWave cell camping can be enforced for the candidate UEs.

– Subscriber data confidentiality further hinders data collection from the ex-

isting mmWave UEs.

– Drive test-based data collection in a congested place like Los Angeles would

be expensive both in terms of time and resources. Furthermore, we will get

data only from a subset of the target area, and that can lower the effectiveness

of the presented framework.

5.2.2 SyntheticNET Upgrade

In the backdrop of the aforementioned challenges, I exploit a 3GPP-compliant state-of-

the-art system-level simulator named SyntheticNET [152]. SyntheticNET simulator has

been calibrated against real network measurements to ensure the validity of the data

generated through it. However, although SyntheticNET, in its current form, supports

features related to cell discovery such as 3GPP-based initial cell selection [174], it is

tailored more to mimic a network operating on lower frequency bands (i.e. maximum

3.5GHz). To address this issue, I incorporate several upgrades to make Synthetic more
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Figure 5.2: (a) System model with macro cell, mmWave cell and blockage locations. mmWave
optimal cell coverage map for (b) Use Case 1 - 5% uniform sparse data, (c) Use Case 2 - 10%
uniform sparse data, (d) Use Case 3 - uniform sparse 20% data, (e) Use Case 4 - uniform

sparse 30% data, (f) Use Case 5 - non uniform sparse data, and (g) Ground Truth.

suitable for mmWave simulation.

To cater to the macroscopic propagation effects in a mmWave simulation environment,

first, I utilize a real antenna patterns from a mmWave antenna available commercially

[175]. The use of realistic antenna pattern helps in a more accurate mmWave propa-

gation modeling. Instead of using two pathloss models for LoS and NLoS, I utilize a

single pathloss model for LoS scenario. For NLoS situations, I model the attenuation

caused by blockage by incorporating actual obstructions in the simulator. This approach

is more realistic and practical as the location, dimensions and even signal degradation

respective to each unique obstruction can be accurately configured instead of analytical

approximations.
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5.2.3 System Model Used for Data Collection

As previously mentioned, for both LoS and NLoS conditions, I utilize a single pathloss

model. Using the calculated path loss, I determine the received power of the user. The

downlink RSRP Rs
u from the serving mmWave cell s to user u is given by:

Rs
u = P s

t GuG
s
uδ
s
uα(rsu)

−β (5.1)

where P s
t is the transmit power of serving mmWave cell s, Gu is the gain of user

equipment, Gs
u is the transmitter antenna gain of the mmWave cell s towards user

u, δsu is the shadowing observed from the mmWave cell s at the location of user u, α is

the pathloss constant, β is the pathloss exponent and rsu represent the distance of user

u from cell c. The values of α, β, and δ are based from the study conducted in [176].

5.2.4 Simulation Setup and Data Generation

I use an area of size 5km x 5km for the simulation as shown in Fig. 5.2(a). I deploy

a heterogeneous network with two macro BSs radiating at 2.1GHz frequency, and five

omni-directional mmWave BSs operating in the 28GHz band. Fig. 5.2(a) shows the

system model diagram of the deployed 5km × 5km network area with the location of

macro and mmWave cells. Moreover, several obstructions are put in place to realistically

model the NLoS scenario.

5.2.5 Sparsity in Realistic Traffic Modeling

Even with the number of connected devices to be three times the global population by

2023 [153], certain areas of the globe will have incomplete traffic map due to sparse

human populations. Similarly, industrial areas and high-tech factories with few IoT

devices and robotics will result in a sparse UE distribution chart over the geographical

area. Emerging mobile networks with mmWave bands will initially observe low traffic
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Table 5.1: Description of Simulation Parameters

Parameter Description Value

Simulation area 25 km2

Number of macro BSs 2

Macro cell frequency 2.1 GHz

Number of mmWave BSs 5

mmWave cell frequency 28 GHz

mmWave cell height 10 m

mmWave Transmission Power 20 dBm

Pathloss Exponent 5

Shadowing Standard Deviation 8

Number of UEs per Use Case (UC)
UC1: 30, UC2: 60, UC3: 120,

UC4: 240, UC5: 190

% of Mobile UEs 70%

Mobile UE velocity 60 km/h

Total Simulation Time 15000 ms

due to a low number of mmWave supported devices readily available. As a result, the

mmWave network data from a real network is anticipated to be sparse.

To simulate sparsity, I utilize SyntheticNET and present five different use cases (UC) of

user distribution, where UC1 to UC4 represents uniform user distribution of 5%, 10%,

20%, and 30% respectively. Additionally, UC5 represents a more realistic non-uniform

distribution of UEs. 70% of all UEs in all five use cases are considered mobile. The

network-level simulation parameters are summarized in Table 5.1.

During the simulation, UEs were configured to camp initially on 2.1GHz macro cells,

that were providing coverage to UEs within the target area. I assume macro cell to have

error-free UE location to share with the mmWave cells, thus conforming to the joint

search method. Moreover, perfect alignment is considered between UE and mmWave

cells. UEs served by macro cell then attempt mmWave cell camping to the nearest

BS. Upon failure, UE attempts to camp on the second nearest mmWave BS, and the

process continues unless no suitable mmWave cell is found or the distance between UE

and BS exceeds cell-range denoted by κ. The parameter κ is a common parameter used

in existing mobile networks that prevent far away UEs to camp on the overshooting cell.

As a result, UEs can be ensured to have good signal strength and high uplink interference

135



from distance UEs can be reduced. In our simulation, I use κ value of 1500m to limit

mmWave band small cells coverage to far away UEs. This conforms with the mmWave

environment where mmWave cells with beamforming will have pencil-like beams and

mmWave UE will have better signal reception than in the case of macro cells.

I record the radio link failure of the mobile UEs camped on mmWave cell as they

travel through the designated network area. The radio link failure is observed due to

dramatic signal deterioration from the NLoS reception induced by the blockage between

UE and mmWave BS. Similarly, radio link failure can be observed due to UE getting

further from the serving mmWave BS by a distance equal to the configured κ parameter.

Similarly, the failed mmWave cell camping attempts due to no optimal mmWave cell for

the static and mobile UEs are recorded as well. Both the radio link failure and failed cell

camping is marked as coverage hole in this work. Fig. 5.2(b-f) illustrates the different

sparsity levels in UC1 to UC5, and the resultant coverage hole and optimal mmWave

cell coverage obtained from the simulation results. Finally, I increase the number of

UEs to 2000 and uniformly dispersed the UE before running the simulation in order to

obtain the ground truth (Fig. 5.2(g)) to verify our results presented in the next section.

5.3 Identifying Optimal mmWave Cell

In this section, I analyze various techniques to address the sparse data typically ob-

tained from the mobile network. Addressing data sparsity is essential to predict optimal

mmWave cell even for those areas where I do not have prior information of mmWave

cell camping due to no UE activity. Using joint search method, a macro cell serving a

mmWave capable UE can share the UE location to the known optimal mmWave cell

for efficient and effective mmWave camping. The data sparsity techniques I study for

optimal mmWave cell identification include traditional interpolation techniques, domain

knowledge-based custom algorithms, and Artificial Intelligence algorithms.
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5.3.1 Applying Traditional Interpolation Techniques to Determine Opti-

mal mmWave Cell

Different spatial interpolation techniques could be leveraged to address the data sparsity

challenge in cellular networks. In this work, I leverage some of the most common

interpolation techniques including moving average, inverse distance weighted, natural

neighbor, and nearest neighbor. These techniques work best if sparse available data is

somewhat representative of the whole data or exhibits some degree of spatial correlation

[177]. However, in situations where the available data is sparse and non-representative,

these methods are likely to perform poorly. A brief description of each technique is

shown below:

• Inverse Distance Weighted (IDW) - The simplest form of IDW method is also

known as Shepard’s method. It is based on the assumption that the distribution

of signal samples is strongly correlated with distance. Some of the advantages of

simple IDW method include its efficiency and ease of comprehension since it is

intuitive. This interpolation works best with evenly distributed points. However,

the simple IDW method’s disadvantages are that it leads to the production of the

“bull’s eyes” effect, it is sensitive to measurement outliers, it introduces significant

errors in case of non-uniform distribution measurements or unevenly distributed

data clusters, the computational error becomes highly significant in the neighbor-

hood of a data point, the calculation of missing value increases proportionally with

the number of data points, leading to inefficiency of the method when the number

of data points is large.

• Natural Neighbor - The natural neighbor (NaN) interpolation is based on Voronoi

decomposition (tessellation) of a set of given points in the plane. The received

signal strength value at a particular location is found from a weighted average of N

from all available measurements which fall within its ‘natural neighborhood’. The
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Algorithm 4: Weighted Nearest Neighbors Count (WNNC)

Initialize K, GPSaccuracy, BINsize, and Label ; // Label: vector of mmW PCIs

with 0 representing Coverage Hole

for Every bin b do
if b is unlabeled then

Initialize CUMweight ; // CUMweight: vector representing cumulative

weight against each entry of Label vector

for tier k = 1 to K do
fetch binsk from tier k compute weight wk for index i = 1 to size(Label)
do
CUMweight[i] += wk × count(Label[i] in binsk)

end

end
if max(CUMweight) > 0 then

label b with PCI having maximum CUMweight
else

Do Nothing; // Not enough data. Surrounding bins are empty

end

else
Do nothing;

end

end

natural neighbor interpolation method performs well with the non-homogeneous

distribution of measurements as well. However, its major drawback is that it can-

not find missing signal values that lie outside the convex hull of Voronoi polygons

since it requires that the points to be interpolated be in the convex hull of the

measurement locations as the Voronoi cells of outer data points are open-ended

polygons with an infinite area.

• Nearest Neighbor - The nearest neighbor (NeN) method is also known as proximal

interpolation or point sampling. Although the nearest neighbor approach is of low

complexity, it results in sharp transitions between the individual signal level zones

and increases noise, especially at the boundary of a given area, since it does not

consider the influence of the sample data points apart from the nearest neighboring

data point.
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Figure 5.3: Optimal mmWave cell identification for Use Case 1-5 using (a) Traditional Inter-
polation techniques, (b) Custom Algorithms, (c) Machine Learning.

5.3.2 Custom Algorithms for Optimal mmWave Cell Identification

This subsection discusses two domain knowledge based algorithms to address the spar-

sity in the UE data fetched from the real networks.

Nearest Neighbors Count (NNC)

NNC fills up the unlabeled bin using the label with the maximum number of occurrences

in surrounding tiers (represented as K).

NNC, when used with large number of tiers (K) tends to complete more empty bins,

and this is useful for areas with ultra-sparse populations, or in industrial areas with only

a few amounts of IoT sensors. However, using a large K might not be favorable under

the mmWave environment. High LoS dependency of mmWave frequencies may tend to

mislabel the empty bins where the UEs cannot be serviced by the mislabeled cell due to

some narrow blockage(s). The problem can also aggravate when using large bin sizes.

Fig. 5.3(b) illustrates the accuracy for all five use cases obtained with K of 5, 10, and

20. Lower K may fail to predict 100% of the target area, and the bar chart is exempted

therefore. This effect can be observed with more sparse data (UC1 and UC2). On the

contrary, higher K will incorporate more neighboring bins to predict the missing bin at
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Table 5.2: Deep learning hyper-parameters for optimal mmWave cell identifier model.

Hyper-parameter Name Search Range/Value

DNN depth d {1,2,3,4,5,6}

DNN width w {5,8,10,12,16}

Activation Function (Hidden Lay-
ers)

Relu

Activation Function (Output Lay-
ers)

Sigmoid

Optimizer Adam (Gradient De-
scent)

Loss Metric Binary Cross Entropy

Figure 5.4: Structure of the deep learning based model for predicting optimal mmWave cell
for a given UE location.

the cost of lower accuracy. K of 10 yields best accuracy in predicting optimal mmWave

cell.

Weighted Nearest Neighbors Count (WNNC)

WNNC addressed the aforementioned problem by applying a unique weight w to each

tier around the unlabeled bin. The weight w decreases gradually as I move away from

the unlabeled data to the outer tier. Since the GPS accuracy varies globally with certain

areas of the planet having lower accuracy than the others [178], the w in addition to

bin size encapsulates GPS accuracy as well. The weight wk assigned to a tier k ∈ [1, K]

can be represented mathematically as:

wk =
ψ

k × ω
(5.2)
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Table 5.3: Time to build optimal mmWave cell map.

Use Labeled Unlabeled Time to Build Optimal mmWave Map

Case Bins Bins
Nearest

Neighbor
WNCC
(K=10)

DL

UC1 50,000 950,000 6.4sec 21Hrs 10mins 12mins

UC2 100,000 900,000 6.9sec 20Hrs 51mins 45mins

UC3 200,000 800,000 7.7sec 19Hrs 23mins 43mins

UC4 300,000 700,000 8.7sec 18Hrs 41mins 48mins

UC5 187,176 812,824 7.4sec 19Hrs 31mins 57mins

where ψ represents GPS accuracy and bin size is denoted by ω. Detail of WNCC has

been shown in algorithm 4.

With the similar reason as for NNC, WNNC shows best result for K = 10 compared to

K of 5 and 20, as shown in Fig. 5.3(b). WNNC yields better results than NNC with

the inclusion of domain knowledge assisted weight metric that gives more weightage to

lower-tier neighboring bins. Accuracy of as high as 96% can be achieved when using

WNNC.

5.3.3 Artificial Intelligence (AI) Assisted Optimal mmWave Cell Identi-

fication

This subsection describes how machine learning algorithms can alleviate sparsity issues

and can build up a map representing optimal mmWave cell. The available sparse data

is scaled and used to train and test several AI techniques for creating a best-performing

model for optimal mmWave cell as a function of UE location. After splitting the data

into a training and a test dataset, using a range of hyper-parameters, I develop and

validate several classification algorithms which include KNN, decision trees, regression,

and deep learning-based models. Fig. 5.3 shows the accuracy of the predicted mmWave

cell for various machine learning models trained on the same data. Deep learning yields

the best results in terms of accuracy. The decision boundary for the aforementioned

model is shown in Fig. 5.3.

Deep Neural Network algorithm belongs to a special class of machine learning, called
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Figure 5.5: Optimal mmWave cell map predicted using Nearest Neighbor, WNNC (K=10),
and Deep Learning.

deep learning, and creates a multi-layer perceptron to find the input-output associations.

Its basic structure consists of an input layer, output layer, and one or more hidden layers

between them, each containing several neurons (or nodes). The number of neurons in

the input layer is typically equal to the number of input features, whereas the output

layer in the case of a binary classification model consists of a single neuron that holds

the prediction output. The number of hidden layers and its neurons are variable and

depend on the complexity of the model it is trying to learn. To avoid under or over-

fitting, I investigate a variety of deep learning neural network architectures with a range

of hyper-parameters as shown in Table 5.2. Our experiments show that a deep learning

model with fully connected three hidden layers having 16, 16, and 8 neurons respectively

as shown in Fig. 5.4, yields the best results. The model was trained using an epoch size

of 200 and a batch size of 10.

142



Figure 5.6: Comparison of EN-DC activation KPIs for 5G mmWave cells.

Fig. 5.3(c) illustrates the accuracy of optimal cell prediction increase with the increase

in available samples (UC1 to UC4). It also shows that the DL model gives the best result

with an accuracy of almost 95%. Deep learning-based models are effective especially for

the scenarios where signal reception at different times of the day varies due to different

UE mobility and traffic dynamics. As a result, the optimal mmWave cell needs to be

continuously tuned with the dynamically changing conditions mentioned above.

Comparison of the accuracy metric obtained from all the approaches in subsection 5.3.1,

5.3.2, and 5.3.3 in Fig. 5.3 highlights WNNC as the best performing approach with

accuracy of 96%. This however comes at the cost of high processing and delay where

WNNC takes 18 to 21 hours in building the optimal mmWave coverage map. On

the contrary, the deep learning model takes 45 minutes to build an optimal mmWave

coverage map with high accuracy of 95%.

Fig. 5.5 shows the decision boundary plot for approach that yields the best results in

each of the subsection 5.3.1, 5.3.2, and 5.3.3.

5.4 Case Study - EN-DC Activation for mmWave Band

The proposed joint search-based mmWave cell discovery framework is well suited for

E-UTRAN New-Radio Dual-Connectivity (EN-DC) activation. As per 3GPP Release
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15 specification 37.863 [133], EN-DC allows 5G capable UEs to simultaneously connect

to a 4G and 5G BS. EN-DC activation requires UE to first establish a user-plane and

control-plane to a 4G mobile network. Later on, UE searches for an optimal 5G BS

and establishes a user plane upon successful discovery of a nearby 5G BS. This non-

standalone 5G network deployment will help mobile operators to reduce the capital

expenditure (CAPEX) and will accelerate the penetration of 5G networks in developing

countries. More detail on EN-DC can be found in [149].

The huge resource requirements of bandwidth-hungry applications keeping in view

the over-congested high-frequency bands can be addressed by activating EN-DC us-

ing mmWave band of 5G cells. EN-DC requires UE to first camp on an LTE cell, herein

assumed to be a macro cell having accurate UE information through UE GPS location

sharing or using Minimization of Drive Test (MDT). 5G mmWave cell discovery can be

enabled through the proposed framework. The historical data from UE traces collected

from both the 5G standalone, and EN-DC activated UEs contains the serving mmWave

cell information against the UE location. The UE trace data also contains the poor

radio link failure data observed due to either NLoS induced signal deterioration or due

to a high pathloss situation (where UE and BS distance exceeds cell-range κ). The ap-

proaches mentioned in Section 5.3 can be applied to the data collected from the network

to identify the optimal 5G mmWave cell. This can help not only in 5G mmWave cell dis-

covery but also for mmWave cell alignment required to maintain reliable communication

for mobile UEs.

I run a simulation for 300 EN-DC capable UEs, 70% of which move with a constant

velocity of 60km/h using random waypoint model. The system model used is the same

as shown earlier in Fig. 5.2(a), where 4G macro BSs act as coverage layer and 5G

mmWave cells take the role of the capacity layer to address the needs to bandwidth-

hungry applications by activating EN-DC where applicable. UEs already camped on

4G macro cell periodically request EN-DC activation, followed by macro cell initiating
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mmWave cell discovery using joint search method where the UE accurate location is

shared by the 4G macro cell to the respective 5G mmWave cell. I use the following

three approaches to identify optimal 5G mmWave cell before initiating mmWave cell

discovery:

• mmWave cell discovery to nearest BS - 4G macro cell directs the 5G mmWave cell

located nearest to the candidate UE to establish the EN-DC connection, without

taking into consideration the location of the blockage.

• mmWave cell discovery based on sparse data - historical data obtained at the UE

location is leveraged to identify the optimal mmWave cell. mmWave cell discovery

for EN-DC activation terminates if the UE is located in the bin where prior UE

trace data is absent.

• mmWave cell discovery using proposed framework - Optimal 5G mmWave cell

coverage map obtained after addressing sparsity on historical data, keeping in

view the mmWave coverage hole induced by NLoS condition and large UE-BS

distance is used for mmWave cell discovery.

Results in Fig. 5.6 show that the first approach with mmWave cell discovery to the

nearest mmWave BS results in a large number of EN-DC attempts (21194), however,

successful EN-DC activations are much less due to 4367 EN-DC failures. 4G macro cell

in this case is unaware of the blocking locations and the absence of NLoS aware coverage

map results in a large number of EN-DC failures. Note that EN-DC failure here refers

to the UE with failed mmWave cell discovery or due to UE camping to the sub-optimal

mmWave cell. On the other hand, the second approach outcomes zero EN-DC failures,

but with very few numbers of EN-DC attempts. This is due to only 30% available bins

being labeled i.e., sparsity of 30% considered in this case (similar as UC4). Fig. 5.6

shows that 18090 bins are unlabeled and for the UE in any of the unlabeled bin, the

macro cell does not proceed with mmWave cell discovery due to the absence of optimal
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mmWave cell information.

Finally, the best EN-DC KPIs are obtained using mmWave cell discovery as per the

proposed scheme. Deep learning-assisted optimal mmWave coverage map has been used

in this example. Fig. 5.6 shows that when compared to the other two approaches

discussed above, the maximum number of EN-DC activations are observed when at-

tempting mmWave cell discovery using our proposed approach. This is due to the

interpolation of the sparse data which allows macro BS to effectively predict the op-

timal mmWave cell against the UE location. Moreover, macro BS avoid unnecessary

mmWave cell search attempts due to knowledge of the UE location under coverage hole

due to either a) the distance of the UE from mmWave BS being larger than cell-range

κ, or b) UE under NLoS due to any blockage in the surrounding area. Approach one

which attempts cell discovery to the nearest mmWave BS has only the knowledge of

the number of UEs farther from the BS than κ. On the contrary, the proposed scheme

knowing the number of UEs out of the configured cell radius κ, along with the NLoS

aware coverage map results in an efficient EN-DC activation with just ∼5% EN-DC

failures (991 failures out of 18557 EN-DC attempts).

5.5 Conclusion

One of the most effective ways to avoid the looming capacity crunch in emerging mo-

bile networks is by efficiently make use of the wide channel mmWave band cells. The

joint search method is the most promising cell discovery approach where the high-

frequency macro cell aids mmWave cell discovery by sharing the UE location to the

nearby mmWave cell. However, the knowledge of optimal mmWave cell is crucial to

the success of-f mmWave cell discovery. This is due to the peculiar nature of mmWave

cells where signal level deteriorates dramatically when UE goes under NLoS scenario.

To address this issue, I propose a joint search-based mmWave cell discovery approach,

where UE past traces can be leveraged to build an NLoS aware coverage map. This
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map can then aid macro cell to identify the optimal mmWave cell against the given UE

location. The optimal mmWave cell map is built while taking into account the data

sparsity, a phenomenon common in mobile networks. Results from a mmWave-enable

3GPP-compliant simulator SyntheticNET show that I can predict optimal mmWave

cell for cell discovery with an accuracy of 96% using a domain knowledge-based custom

WNNC algorithm. Since UE mobility and traffic dynamics may affect signal reception

in different times of the day, I demonstrate how deep learning can be used to build the

optimal mmWave cell map in much lesser time than the WNNC algorithm, and with

the accuracy of 95%.

I also present a case study where the proposed mmWave cell discovery can be utilized

to efficiently enforce EN-DC transmissions between the EN-DC capable UEs and the

participating 4G macro cells and 5G mmWave cells. Simulation results show that we can

enable 17566 EN-DC activations to optimal mmWave cells, while keeping the number of

unnecessary mmWave cell discovery attempts due to UE location in the coverage hole,

to a minimum.
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CHAPTER 6

Conclusion and Future Research Directions

6.1 Conclusion

The dissertation presents the mobility management frameworks in multi-RAT multi-

band ultra-dense cellular networks. State-of-the-art 3GPP-based mobility criteria are

studied in the light of futuristic mobile networks and user requirements. The panorama

of mobility challenges arising in emerging mobile networks implies that if no drastic and

timely measures are taken to rethink mobility management for future ultra-dense net-

works, user mobility management can become the bottleneck in practical deployments

of ultra-dense networks despite advances in the hardware design of mmWave and con-

ventional spectrum based small-cells. The dissertation not only presents the first-ever

detailed taxonomy on mobility-related 3GPP network parameters and KPIs, but also

presents the intricate interplay between the mobility-related network configuration pa-

rameters and the affected network KPIs. In addition, the dissertation also explicates a

tutorial on 3GPP-based 5G mobility management procedures.

Since the mathematical models and existing network simulators fail to incorporate the

realistic mobility management dynamics, this dissertation discusses the development

and key attributes of SyntheticNET - the very first Python-based simulator that fully

conforms to 3GPP Release 15 5G standard. The development of SyntheticNET is vital

to incorporate the futuristic network and traffic modeling scenarios, and the python-

based platform allows the effective application of Artificial Intelligence (AI) to various

network functionalities.

This dissertation discusses the first-ever intelligent QoE-aware EN-DC triggering scheme

by which RLF and mute due to poor RF conditions are minimized. The scheme works
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by selecting the best B1 threshold based on insights from deep learning-based 2-stage

AI model to predict radio link failure and voice mute. Using SyntheticNET, we show

how our proposed scheme can eliminate the RLF and mute occurrences vis-a-vis state-

of-the-art approaches i.e., no smart conditioning on EN-DC. The optimal RSRP and

SINR thresholds obtained from the presented optimization function help reduce RLF

and mute occurrences from 1328 and 3208 cases to zero potential RLF and potential

mute cases respectively.

Finally, the dissertation presents a novel framework where real network data can be

leveraged to provide database-aided mmWave cell discovery. A case study has also

been presented that shows how efficient EN-DC can be activated to 5G mmWave leg

keeping in view the out of coverage areas due to blockage. Simulation results on the

3GPP compliant SyntheticNET simulator show the proposed framework outperforms

both the state-of-the-art mmWave cell discovery techniques and database-aided real

data-oriented cell discovery method in terms of the number of EN-DC activations to

optimal mmWave cell.

The results of the frameworks presented in this dissertation illustrate that AI together

with domain knowledge has the potential to enable an efficient mobility management

system required to achieve the ambitious QoE goals of the futuristic mobile networks.

6.2 Future Research Directions

Now I will discuss a few of the key points related to future research directions:

6.2.1 HO Delay Based SINR Distribution

Current SINR modeling is based on best-server association, however, the UE always

camp on the second-best cell prior to HO. This is the result of the HO evaluation process

[2] which ensures that the target cell is the best candidate cell for HO. A mobility-
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oriented SINR distribution that capture the temporal negative SINR [179] before HO

needs to be studied for more realistic throughput estimation.

6.2.2 HO Delay Based Uplink Interference

Current researchers do not consider the practical situation where due to intra-frequency

HO delay, high mobility users are closer to the target cell while still being served by

the comparatively farther located serving cell. Under those circumstances, high uplink

power to achieve target SINR in the serving cell can cause strong temporal interference

in the target cell. The issue can be aggravated under highly dense BSs deployed in an

impromptu fashion. However, this problem can be tackled by utilizing an eICIC ABS

(Almost Blank Subframe) scheme for highly mobile users. A proactive HO trigger can

also eliminate the possibility of high uplink RSSI by performing timely HO.

6.2.3 Latency Goals

Another challenging aspect of the small cell deployment is that the small cells are typ-

ically not directly connected to the core network and lack Xn or N2 interfaces (for

inter-cell communication) which are the real means of coordinating mobility procedures

in the macro-cells. The lack of a low latency connection to the core network can con-

tribute to significant HO signaling delays.

6.2.4 Energy-Efficiency

Achieving both UE and network-level energy efficiency is a big challenge for futuris-

tic cellular networks, especially when considering ultra-dense BS deployment and the

addition of a wide variety of user devices. Most of the existing energy-saving schemes

have a common tenancy; cells are switched ON/OFF reactively in response to changing

cell loads. A meritorious effort has been made by Hasan et al. in [57], where authors
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Figure 6.1: Load Balance (LB) opportunities (i, ii, iii, iv) in different stages of 5G UE con-
nection.

proposed the AURORA framework in which the past HO traces are utilized to deter-

mine future cell loads. The prediction is then used to proactively schedule small cell

sleep cycles. Load balancing is also achieved through the use of an appropriate Cell

Individual Offset (CIO).

6.2.5 Smart Intra-Frequency Search

Dense deployment poses challenges for small cell discovery as conventional cellular net-

works broadcast a neighbor list for the user to learn where to search for potential HO

cells. However, such a HO protocol does not scale to the large numbers of neighboring

small cells and the underlying network equipment is not designed to rapidly change the

neighbor cell lists as small cells come and go.

6.2.6 Smart Inter-Frequency Search

Inter-Frequency (IF) mobility is a vital component of cellular networks but has not got

the attention it deserved in the research community. IF-mobility requires event A2 to be

triggered, which is followed by the BS to configure measurement gap periodicity to the

UE. However, this process interrupts data transmission and reception. This is because

UE shifts the radio to measure appropriate IF-cell(s). Futuristic mobile networks with a

variety of frequencies ranging from HF to mmWave band may require the UE to undergo

an extensive search of available frequencies before initiating a mobility decision. This

issue can be aggravated when considering the latency goal of <1ms.
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6.2.7 Improving Mobility Load Balancing

Mobility Load Balance (MLB) is a vital component of heterogeneous multi-layer cellular

networks and are open to the following challenges:

• LB can be achieved at four different instances as shown in Fig. 6.1. It can be

triggered through i) idle mode SIB4 configuration, ii) after network access using

A4 or A5 measurement report, iii) in connected mode using A4 or A5 measurement

report (as configured), iv) when UE is released from connected to idle mode using

3GPP proposed IMMCI (Idle Mode Mobility Control Info). In IMMCI, traffic

steering is achieved by varying the idle mode SIB5 priority of the serving or target

layer. LB in idle mode is the most optimal as signaling and data interruption

associated with connected mode LB can be avoided. Moreover, complexity in

parameter configuration and management by IMMCI can be minimized. Research

contributions are currently lacking for idle mode load balancing. Similarly, a new

variant of IMMCI (SON-based) is needed which can adaptively steer traffic to

achieve load balancing under varying load conditions.

• LB detail procedure has not been provided by 3GPP and is left intentionally to

vendors for innovation purposes. LB requires the exchange of load information

between participating BSs via the Xn interface. However, different vendors have

their own proprietary version of LB implementation, thus, inter-vendor BS cannot

perform LB due to a mismatch in LB metrics. The existing LTE networks deploy

offloading features, where high load cell offload users to another vendor cell without

considering its load condition. This can cause service rejection and ping-pong HO

conditions. The frequent IF-search will disrupt continuous reception and will result

in higher latency. 5G heterogeneous network can assume numerous vendors, and

to benefit from the load balancing feature, a standard inter-vendor LB mechanism

needs to be devised.
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• Cells with smaller footprints will have few serving UEs, and mobility-based ingress

and egress of even a single user can have drastic load imbalance among available

frequency bands. Hence, ways to achieve proactive LB are mandatory to have

fairness and efficient resource utilization.

6.2.8 Mobility in mmWave Networks

mmWave with bandwidth as large as 500MHz is the remedy to the spectrum saturation

in the HF band, however, an intrinsic feature of narrow beams can pose serious challenges

in supporting mobility in the emerging cellular networks. A few of the main challenges

are presented here:

• Simic et al. [180] practically demonstrates mmWave to prove multi-Gbps connec-

tivity but conclude that supporting mobility is a very challenging task due to the

outage area of as high as 40% with 90BS/km2 deployment. The reason for the

coverage hole is the high diffraction phenomena in mmWaves, and the absence of

Non- Line of Sight (NLoS) paths.

• Corner Effect: Indoor areas have cell edge near doors, where the user is more

likely to make a sharp turn and hence, time available for HO would be very

less especially in the 60GHz mmWave scenario. This issue suggests that some

sophisticated techniques, other than conventional methods are required for the

HO trigger.

• Current mmWave standards such as IEEE 802.11ad follows the max-RSSI-based

approach for UE-BS association, however, this solution appears rudimentary and

ineffective for an emerging network with an ultra-dense BS density. There will

be chances of an unbalanced number of users per BS, and ping-pong HOs will be

highly likely.
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• In addition, cell discovery for mobile users is a major challenge due to the absence

of Reference Signal (RS) broadcast as in HF bands.

Presently, an overwhelming understanding of the research circle is to use mmWave-cells

for static users only. Intricacies of mobility between the beams (of both intra-frequency

cells and inter-frequency cells) need to be addressed to support mobility. One possible

solution is to come up with a hybrid solution where HF macro-cells with much accurate

UE location guide the UEs how, when and to which small cell they need to connect.

This is similar to control-data split architecture with mmWave providing data support

while UE is under the coverage of macro-cell providing control signals.

6.2.9 Low-Cost Multi-Connectivity

Dual connectivity architecture has been proposed to mitigate mobility management

problems in HetNets by allowing UE to connect with the macro-cell for control connec-

tivity as well as simultaneous data connectivity with small-cells. The effect of the user

association on dual connectivity performance is an interesting research problem that

needs to be investigated in detail. Researchers need to study the gain dual connectivity

can yield in terms of HO overhead reduction, synchronization complexity, and radio

resource efficiency. Most of the research work addresses reliability and latency goals

through multi-connectivity, however, signaling load increment is not addressed. More

efficient proposals with special consideration of signaling load need to be devised.

6.2.10 Accurate and Efficient Mobility Prediction

The mobility prediction schemes are seen as a driving force for context-aware cellu-

lar networks as they are used to proactively reserve resources, trigger LB, and acti-

vate/deactivate small-cells. Few challenges associated with mobility prediction are:

• Users not willing to share location information due to privacy reasons.
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• GPS data acquisition consumes user battery and intermittent accessibility requests

resulting in signaling or RACH issues (some RACH failure issues cannot be seen

in the KPI data).

• Accuracy and reliability of 3GPP proposed Minimization of Drive Test (MDT)

feature is needed to be evaluated since a multitude of factors like the GPS er-

ror [181], quantization resolution etc. affect the accuracy of the measurements

reported by the UE.

• Although human trajectory exhibits high predictable component [56], however,

mobility prediction is always bound to have some inaccuracy as can be under-

stood through an example: an office employee may have lunch in a canteen, in

a conference room, with colleagues in an outside restaurant, etc. These random

variations are almost impossible to predict.

A possible solution can be resource reservation to be done in the multiple neighbors,

however, the cost of signaling and available resource for other UEs especially during

busy hours needs to be considered.
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