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Abstract: Augmented Reality (AR) is the interactive process of introducing virtual objects or 

characters to real-world scenes. An effective way to increase the realism in AR is by 

mimicking real-world lighting conditions on the virtual objects. The process of gathering and 

analyzing real-world lighting information is called inverse-lighting. The surface textures of 

real-world objects may have different levels of glossiness. The goal of this research is to 

compare the effects that different glossiness levels have on the outcomes of the 

calculations. Several models of a regular dodecahedron were created using the Blender 

modeling software. These models were used to calculate and compare inverse-lighting on 

different levels of surface glossiness. Physical dodecahedrons also were created and used 

to see whether the Blender models accurately represent reality. 
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CHAPTER I 

INTRODUCTION 

 

Augmented Reality (AR) is the process of introducing virtual objects or characters into real-

world scenes. It has gained popularity from the masses with games such as Pokémon Go 

[1], Temple Treasure Hunt [2], Harry Potter: Wizards Unite [3] and so on. AR is not just 

restricted to games, it is also used as a tool for medical training of complex surgeries, 

classroom learning, and designing of architecture models.  

AR is different from VR (Virtual Reality), which involves creating an entirely virtual 

environment for the user that is convincingly immersive. AR also is different from MR (Mixed 

Reality). Mixed Reality (MR) involves the creation of new environments and visualisations 

where physical and digital objects co-exist and interact in real time. To achieve the sense of 

immersion in AR, virtual object needs to blend well with objects in the real-world scenes. A 

prominent way to increase the realism in AR is by mimicking the real-world lighting 

conditions for the virtual objects. A common topic of research in the field of AR is inverse-

lighting, which is the process of gathering real-world light information from images. 

To achieve a solution to inverse-lighting, it is very important to have a good knowledge about 

the real-world environment. Some AR implementations do not have much foreknowledge, 

while others can provide detailed information of the environment where the process is to be 

carried out. The more that is known about the environment, the better the inverse-lighting 

results can be.  

1 



Often such cases have drawbacks such as expensive specialized equipment, the inability to 

analyze real-world lighting in real-time and so on. Our target is to do a comparative study to 

see if surface smoothness betters the real-time scene lighting evaluation. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Augmented Reality: 

The process of superimposing virtual characters in real-world scenes is called Augmented 

Reality (AR). There are several ways to overlay virtual objects, including SLAM 

(Simultaneous Localization And Mapping), location-based, and the use of markers. 

SLAM: 

In the world of AR, SLAM is one of the most advanced technologies. To enable AR, it 

requires powerful hardware components. Moreover, to place virtual objects correctly, SLAM-

based apps need the ability to map the real-world environment. Robots, autonomous 

vehicles, and drones use SLAM as a key driver. Point-based detection algorithms help these 

devices understand their surroundings. 

Location-based: 

A location or position-based AR app collects GPS data, mobile device built-in compass 

readings, accelerometer data, and gyroscope information to determine the position and 

orientation (also known as “pose”) of the device. Later, the app utilizes this information (such 

as textual location information or directional information) to place the virtual objects that fall 

within the field of view of the mobile device camera into real-world video. Such an AR app 

can help users to look for restaurants, gas stations, etc. situated in certain places. 
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Markers: 

The most widespread method to perform AR is with the use of fiducial markers, commonly 

known simply as markers. They can be identified easily by software using computer-vision 

algorithms. When the camera of a mobile device detects a marker, it attaches a virtual object 

to the location of the marker. To achieve a unique pose of the virtual object, the markers 

must be asymmetric from every viewing angle. 

Often, markers taken are in the form of 2D images, also called as 2D markers. Markers can 

also be presented as a 3D object. A simple way to create a 3D marker is by attaching 2D 

markers on each face of a 3D model such as a cube, cuboid and so on. An advantage of 

using 3D markers over 2D is to have more and better viewing angles. This serves as a great 

input to inverse-lighting. Light intensity information from each face can be used to improve 

real-world light direction estimation. 

2.2 Inverse Rendering: 

A primary objective in image processing research is to describe a scene in terms depth, 

shape, incident light, and reflection obtained from each visible surface point. These 

characteristics are called the intrinsic characteristics of a scene. Each intrinsic characteristic 

provides a valuable cue enabling better scene understanding. Inverse Rendering is the 

process of estimating these intrinsic scene characteristics from a photo, a set of photos, or a 

video.  

A common field of research in inverse-rendering is inverse-lighting. Inverse-lighting is the 

process of estimating the real-world lighting conditions. Many researchers have contributed 

in the field of inverse-lighting. We will discuss a few of the approaches in the later sections. 

2.3 OpenCV: 

OpenCV (Open Source Computer Vision Library) [26] is an open source cross-platform 
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computer vision and machine learning library developed by Intel. This library contains 

programming functions that successfully solve computer vision problems in real time.  

OpenCV supports several programming languages, such as Python, Java, C++ and so on. 

This library is one of the most widely used packages for implementing video recognition, 

image recognition, motion detection, object recognition, and facial recognition applications.  

2.4 Blender: 

Blender [27] is a free and open source 3D computer modeling software. It is a cross-platform 

software and runs well on Linux, Windows and MacOS. Blender helps in creating 3D 

animations, 3D models, simulations, visual effects, motion graphics, product rendering, 

architectural visualization, game development, video editing and many more. These features 

make Blender much more advanced than many other 3D modeling software tools. Thus, 

Blender is referred as a 3D creation suite. 
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2.5 Other Related Work: 

Kanbara and Yokoya [4] presented a novel, vision-based AR system to represent the 

attached and cast shadows on a virtual object in real time, where cast shadows are created 

due to light blockage coming from a light source by an object and attached shadows are 

surface patches away from the light source. The tracking system consists of a 2D square 

marker and a 3D mirrored ball placed at the center of the 2D marker. The 3D object is 

painted black to avoid dynamic range problem. The program first locates the 2D marker and 

then determines its pose (i.e. the position and orientation) by finding the position of the 3D 

mirrored ball. The relationship between the 2D square marker and the 3D mirrored ball is 

known to the system ahead of time. 

The next step is to identify the position of the light source. For this, the camera detects the 

highlighted pixels. Once detected, the camera determines the angle of reflection of the 

highlighted points by taking the surface normal from the highlighted points with respect to its 

pose. The angle of reflection further helped to locate the light source that creates the 

highlight. The obtained information is stored in a light source map. Using this data, virtual 

objects are rendered with proper attached and cast shadows in real-world scenes. 

Supan et al. [5] proposed a method to render appropriate shadows in an Augmented Reality 

application. This work included three different setups to test the approach. The first setup 

includes a single camera and a mirrored sphere such that both the real scene and the 

mirrored sphere are in the field view of the camera. The second setup includes two cameras 

and a mirrored sphere. One camera tracks the real scene, while the other tracks the 

mirrored sphere. The third setup consisted of a two-camera setup and a fisheye lens that 

captures the real environment directly. 

After obtaining the images from one or two cameras (depending on the setup), the images 

are blurred to obtain the irradiance map. Further, this map is converted into a cube map that  

then is used to light while rendering virtual objects. The environmental maps are further 
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sampled to extract light information from each texture cell and set color to the texture cell. 

Shadows are cast using standard shadow mapping techniques. But rendering shadow maps 

each frame can be expensive. To avoid such a circumstance, they are updated in each 

frame. The system does not depend on any pre-processed data, which helps it to adjust to 

any change in light setting during runtime. However, this process increases the 

computational cost of the system. 

Jensen et al. [6] developed a real-time image-based lighting system for outdoor AR. This 

method is sound in reciprocating the change in lighting conditions dynamically. To achieve 

this in real- time, a special environment called an albedo map stores the diffuse color of the 

surrounding environment along with a normal map to do so. To estimate the light, the scene 

is calibrated to a 3D model (environment map); later the user marks all visible diffuse 

surfaces. The sun intensity or direct intensity and indirect intensity are estimated from the 

light reflected by the surfaces in the scene. The proposed method requires many conditions 

to be considered; the use of outdoor scenes, the sun acting as the primary light source, 

diffuse surfaces in scene to be augmented, and a rough 3D model of the environment was 

required. 

Later, Madsen et al. [7], extended his previous work [6] by describing an AR system that 

uses high range environment maps for representing the real-scene illumination. The novelty 

of this approach is rendering shadows created by virtual objects without disturbing the real 

shadows. They first obtain the environment map and determine the light sources with the 

median-cut algorithm. To cast shadows of the virtual objects, Madsen et al. model parts of 

the real-world scene in 3D. These 3D models occlude the virtual objects to achieve the 

virtual shadows. 

Their work also addresses the double-shadow problem. To do this, they first consider the 

shadow appearance in the absence of irradiance. Using this information, they further identify 

the areas affected by the real-world shadows on the environment map. The real–world 
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irradiance is calculated using the 3D environment model simulations thereby obtaining the 

diffuse albedo of those surfaces. Finally, the virtual shadows are overlaid on real-world 

shadows using shadow mapping. 

Ohta et al. [8], proposed an approach to enhance the genuineness of virtual shadows in a 

mixed-reality scene. The focus of their work is to simplify the light source models to generate 

convincing virtual shadows. This approach has a series of tests. The first test includes a 

proper relation between the size and arrangement of the light sources, and their impression 

on humans (volunteers) about the virtual shadows due to real light source is obtained. To do 

this, two cones, one a real object (Cone A) and the other a virtual object (Cone B), are used. 

Volunteers provide views on how closely matched the virtual cone shadow is to the real cone 

shadow in real-world lighting condition. The second test includes changes in the distance 

between two cones until a shadows obtained from both the cones is convincingly different. 

The lighting conditions are captured using a fisheye lens. As a part of the test, AR images 

are rendered using six different AR light maps ranging from low to high resolution. 

Resolutions range from 8 x 8 pixels to 2,048 x 2,048 pixels. The four highest resolution maps 

represent identical solutions. They show more believable virtual light and shadow situations 

in a real-lit environment, unlike the lower resolution light-maps. 

Aittala [9], developed a photorealistic rendering pipeline for augmented reality that responds 

to the real-world lighting conditions from the diffusions obtained from surfaces. The entire 

process is executed using a regular white ping pong ball and a 2D marker. The author gives 

two main reasons for choosing the ping pong ball. First, it has a known geometry and 

second, the matte surface of the ping pong ball. The ball being spherical makes the 

calculation of the surface normal simple and easy. The matte surface of the ball enables 

determining the direction of light falling on the ball much more easily.  

In this approach, the system first looks for the marker. Once it was detected, a ping pong ball 

is used to calibrate the AR scene. The illumination on the ball surface is used further to 
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estimate the direction and intensity of the real-world lighting. For this process, the user either 

needs to show the regular ball, or rotate the marker for some number of seconds in front of 

the camera.  

The approach of Noh and Sunar [10] generates soft shadows in an AR scene using a black 

reflective sphere placed over a 2D marker. Their approach is an extension to the work done 

by Kanbara et al. [3]. The initial stage of geometric registration executed by the former is 

same as the latter. The steps includes camera tracking the 2D marker, thereby determining 

the pose of the ball. Once that is complete, the information is utilized to create an 

environment map. Then it estimates the real-world light using the median-cut algorithm to 

create the virtual shadows. 

Their contribution in extending the work of Kanbara et al. [3] was done by creating soft 

shadows. This is done by overlapping multiple hard shadows and then a soft shadow is 

created using the varying opacity information of each of the hard shadows. This method is 

named the Heckbert and Herf method. Though this method produces convincing soft 

shadows, it has a major drawback. High-quality soft shadows lead to a degradation of the 

system performance. 

Pessoa et al. [11] proposed a few approaches to increase the realism of augmented reality. 

Briefly, they use a high-dynamic range environment map of the real scene to extract lighting 

information and render convincing virtual objects. The program starts by capturing images of 

the surrounding environment, further creating the environment map. Their approach to 

create the environment map was novel as compared to previous approaches. For each 

virtual object, four environment maps are calculated in every frame. An advantage of this 

was that it ensured the presence of all other virtual objects and phantom objects in the 

scene.  

Once the first step is accomplished, the program performs a pre-filtering of the 

environmental illumination. This process is computationally expensive. Thus, to avoid this 
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expense, computations often are executed offline. Finally, with all the results obtained, 

virtual objects are rendered onto the real scene.  

In 2010, Jensen et al. [12] proposed a method which started as an extension to Kanbara et 

al. [4] and Supan et al. [5]. Jensen et al. use a reflected-sphere marker to collect light 

information, thereby rendering convincing shadows of virtual objects. The marker used in 

their work includes a standard 2D ARToolKit marker with a black glossy ping pong ball 

placed at the center of the 2D marker. The specular properties of the ball are used to gather 

real-world lighting conditions using median-cut algorithm. Surface normal from those 

specular or highlighted points are taken to project light onto the environment map. 

Next, the authors worked on rendering perceptually-correct shadows on virtual objects using 

the results obtained from previous collected data. To make the shadows convincing, they 

layered multiple shadows and applied various visual effects such as blurring to the shadows. 

To analyze the performance, the authors arranged an online survey. The results obtained 

from this survey were bit unexpected as the unaugmented control images received only 60% 

of positive views. From the survey results, the authors concluded a minimum of 64 

overlapping of shadows were required to achieve a convincing shadow.  

Jiang et al. [13] developed an algorithm to detect shadows for single images. In this 

approach, the program first performs a color segmentation algorithm, and then creates 

illumination environment maps for multiple light frequencies (high or low) and for different 

surface orientation. The color segmentation and illumination map are used to construct a 

shadow edge map. Once the shadow edge map is created, it goes through a couple of 

filtering steps. Once all the filtering steps are complete, the algorithm labels each pixel either 

“shadow” or “not shadow”.   

To reduce the computational time, the algorithm looks only for color segment edges to find 

the shadow edges. The success of this is ensured by using three color spaces instead of 

one color space.  
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Chen, Wang and Jin [14] estimated illumination of a single image for lighting virtual objects. 

Their approach includes no prior knowledge of the 3D geometry or lighting information of the 

scene to light the virtual objects. The program first takes the input image to determine its 3D 

geometry of the image. To do this, there are two existing algorithms that were created using 

a common model called Markov Random Field (MRF) model. One is based on edge 

detection and the other on linear regression. They use one of the above algorithms to get the 

3D geometry. Immediately after this, the program performs a reduction on the obtained 

model to get the intrinsic components (the shadow component and the reflective 

component). With all the above information, i.e. 3D geometry and intrinsic components, the 

program develops a sparse radiance map. The major contribution of this work is the sparse 

radiance map. This map contains M light sources placed at regular intervals inside a 

hemisphere. This map mimics real scene lighting conditions. So, each light source in the 

map has different light intensity. Thus, with all the information, the virtual object finally is 

rendered to the scene.  

Gruber et al. [15] proposed a method to estimate environment lighting in real-time without 

any probe such as reflective ball. A praiseworthy achievement of this approach is the 

Fig-1: Adaptive radiance transfer for probeless light estimation in AR [15] 
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adaptive radiance transfer in real time. As shown in Figure-1, the system is designed with 

the ability to cast shadow on a virtual object if the user puts his or her hand between the 

real-world light and the virtual object. To implement this approach, a depth-sensor camera 

(Xbox Kinect) is required, such that both the scene geometry data and the visual information 

can be acquired. The process begins by creating an image of the real-world scene. This 

image then is used for extracting the color information, further comparing it with the real-

world scene to determine the light positions of the scene. This is done using simple 

Lambertian reflection calculations. The use of a depth sensing camera plays a major part in 

this approach. Occlusion of the virtual objects due to real-world objects is determined using 

the depth information provided by the camera.  

Kamboj and Liu [16] use the variance cut algorithm instead of medium cut algoithm for 

estimating real light sources in augmented reality. The process takes an input image through 

a fish-eye lens. The fish-eye camera is oriented upwards to help in obtaining a 180° 

environment map. The program then identifies the light sources from the environment map 

by implementing the variance cut algorithm. Using MATLAB, a script is generated to show 

the light directions. In the virtual environment, virtual light sources are placed in the 

estimated direction of real light sources using software called 3DS MAX (a product 

somewhat similar to Blender). With the estimated light source positions, virtual objects are 

rendered onto the scene. 

Michiels et al. [17] proposed a method based on omni-directional video. In this approach, the 

authors use a custom designed, omni-directional camera that was mounted on the top of a 

car. The custom camera was built with six cameras, each placed at an interval of 60° such 

that two adjacent cameras have an view overlap of 50%. This was designed to capture the 

image from all directions. The identification of the real scene lights is different than the 

previous approaches. The shadows in the surrounding environment are studied to estimate 

the direction of the light source. Virtual objects are made visible using voxel cone-tracing.  
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The alignment of the virtual objects is done using offline feature tracking, depending on the 

car being in motion. Feature tracking is done on the input from each camera and finally the 

results re filtered using bundle adjustment to finally obtain the car trajectory. 

Rohmer et al. [18] developed a real-time differential illumination method for illuminating 

virtual objects on mobile devices consistently. This method is restricted only to indoor 

scenarios. The environment map is captured in real-time using HDR cameras fitted with fish-

eye lenses. The approach of acquiring the map is different than the previous processes, 

which require the environment map to be captured beforehand or acquired immediately after 

the program begins to process.  

Most of the data processing is done on the mobile device itself to prevent delays. Some of 

the operations are executed using a PC, such as the processing of environment data 

captured by the cameras. The PC interprets the captured environment data and also 

performs the radiance-transfer calculations. The results are sent to one or more mobile 

devices. The scene geometry models are created ahead of time. The PC projects 

surrounding environment radiance onto the model and the obtained results are stored in a 

radiance atlas. This map keeps track of both direct and indirect radiance. The direct radiance 

mimicks the colored point-light information inserted in the scene and indirect radiance 

mimics the pre-calculated radiance transfer function. 

Alhajhamad et al. [19] proposed an algorithm for fetching information about multiple light 

sources from images of indoor scenes. Figure-2 shows an illustration of the setup. The color 

images are converted from RGB to HSV (Hue, Saturation, Value) and finally converted to a 

black-white image using Otsu’s threshold algorithm. This result is filtered further using 

Gaussian blur for smoother approximations. This filtered image goes through contour 

detection to find the shadowed regions. Light direction is estimated by comparing the center 

of mass of the real scene light and image shadow to obtain a vector. Light intensity is 
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determined by comparing the angles between the shadows. To determine which light caused 

the shadow, the nearest light is considered as the source of the shadow.  

 

 

This algorithm is computationally effficient. It maintains above 40 frames per second 

throughput. This method also is dynamic in estimating shadows with changing scene lights. 

This approach has many exemplary achievements based on a major constraint or 

assumption – a room of specific size – to achieve all results.  

In 2016, Soulier et al. [20] used a low-cost light sensor to estimate the illumination direction 

for augmented reality. In this method, the author’s use eight light-dependent resistors 

(LDRs). Figure-3 shows the arrangement of the LDRs, placed at an intervals of 45° along 

the greatest diameter of a sphere and one additional LDR on the top of one hemisphere. 

Each LDR is connected to an Arduino microcontroller. This entire system is connected to a 

PC that computes the light data, further feeding the results to a mobile device that is used to 

control the AR program. The AR app was designed using the Unity game engine and the 

Vuforia plugin for Unity.  

Fig-2: The pipeline of the illumination sources detection model. [19] 
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Kasper et al. [21] proposed a method to estimate the light sources in a real-world scene 

using path-tracing. The process first generates a 3D virtual geometry of the environment 

using depth camera and triangulation algorithm. The albedo with respective vertex of the 

mesh is required to render the RGB image of light estimation. An environment map is used 

to establish scene lighting conditions. Light sampling is performed using ray tracing and 

finally, the weights of per pixel sampled lights are adjusted using Monte Carlo filtering. 

Glen Straughn [22] used a dodecahedron marker (DM) to determine the light direction of the 

primary light source. The obtained results are used further to achieve real-time inverse 

lighting for augmented reality. In this approach, light sample results of each visible face of 

the DM are used to determine if the face is exposed to the real light source or in shadow. 

Determination of the face being exposed to light, or not, was done by taking its surface 

normal vector. If the face is found to be in shadow, then the surface normal of the face is 

reversed. An average of all the surface normal vectors was used to determine the direction 

of the primary light source in the real environment. Figure-4 shows the setup used for in this 

experiment.  

The research makes an assumption of a single light source in the real-world scene for 

simplicity of testing. This work was conducted using a DM covered with matte material.  

Fig-3: Low-cost sensor [20] 
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Jiddi, Robert and Marchand [23] proposed a method to estimate the 3D position and 

intensity of multiple light sources. This method required no light probe or user interaction to 

estimate light intensity and cast shadows. The process took the following as inputs: a) a 

rough 3D model of the environment captured by an Intel R200 sensor, b) simulation of 

ambient lighting and finally, c) color pictures of the scene that were used to detect the real 

light in the scene. 

Straughn made a couple of assumptions: a static scene geometry that contains a primary 

planar surface onto which shadows are cast, and scene reflectance described by the 

Lambertian reflection model.  

This method first computes the scene geometry (this is done once in the entire computation). 

Then the texture/albedo is separated from the illumination in the current frame. After this, the 

program proceeds to detect the position of the 3D position of the light sources. A subset of 

point lights is extracted, provided that the shadow map and estimated illumination ratio map 

Fig-4: Straughn’s experimental setup. Web camera mounted on the top of the cardboard 

box. [22] 
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are same for each frame. Finally, the intensity of the light sources are estimated using the 

Phong reflection model.  

Schwandt, Kunert and Broll [24] studied the glossy reflections in an AR/MR environment to 

achieve realistic reflections in real-time on a mobile device. The team had performed a prior 

work to identify light sources from all directions (360°). This approach combines the camera 

image obtained in each frame to construct the environment map. Each camera image is 

reduced to a cube map. This cube map is used as the environment illumination of the scene.  

A drawback of the above discussed method is the amount of transparency in the reflections. 

In their paper, the team addresses a way to mend it with a process known as stitching. The 

existing images inside the cube map are combined with the current image stream. This helps 

to achieve a more realistic environmental map. Depending on all the evaluated values, 

virtual objects are rendered to the real-world scenes. 

In 2019, Alhakamy and Tuceryan [25] presented a three step method to extract the physical 

illumination to render virtual objects to the scene in real-time. The system begins by 

capturing a 360° live camera video with an AR device such as a head-mounted display, 

phone or web cam. This video serves as an input to the first phase of the entire process. The 

direction and angle of incidence of the incoming light is estimated from the input video. The 

second phase includes extracting information of the reflected light or indirect illumination. 

The 2D texture of the region over which the virtual element to be projected is captured using 

the image-based lighting model.  

The result obtained from the second phase is used further for the processing of the third 

phase. Shader language and the CG technique are used to estimate the light and shadow 

conditions on the virtual objects to be  rendered. Both GLSL (Open GL Shader Language) 

and the Cg programming language were used to help identify numerous features of a virtual 

object before and during rendering. To obtain complete shading information, both direct and 

indirect influences on illumination are required. These were achieved using surface shaders 
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and unlit shaders, respectively, on the virtual objects. Though this approach is convincing to 

make the entire system interactive, it has the incapability to differentiate between white area 

and the light reflected areas from the light-sources. 
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Fig-5: Reflection of a diffused surface 

CHAPTER III 

 

PROPOSED METHOD 

3.1 Problem statement review:   

As discussed in Section 2.1, augmented reality (AR) is the process of introducing virtual 

objects into an image or video feed of a real-world environment. One of most common 

research challenges in AR concerns introducing virtual objects seamlessly into real-world 

scenes. To achieve this, virtual objects must have enough realism so that they blend well 

into the real-world scene. Immersion experience in AR can be increased by enhancing the 

real-world environment lighting conditions over virtual objects. This process of gathering 

real-world lighting conditions is called inverse-lighting (IL). 

As described in section 2.5, Straughn [22] used a dodecahedron marker (DM) covered with 

12-unique 2D matte markers, one on each face of the DM. The light sampling information 

from each visible face of the DM was used to 

determine the amount of light and shadow on the 

visible faces. An average of the normal light vectors 

from the faces was used to calculate a vector 

indicating the direction toward the primary light 

source in the real environment.  

This method had great efficiency in speed, ease of use, and the ability to work in real-time; 

but it achieved a low accuracy in estimating light intensity. A possible reason, apart from the 

variability in marker detection and tracking, could be the use of matte material for the 
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markers. Light rays on a matte surface suffer diffusion (Fig 5), which might lead to loss of 

intensity of the incident rays. Introduction of glossier material markers might help to better 

the performance. The factors affecting the intensity of light reflected from a glossy surface 

are light absorption of the surface material and the angles of incidence and reflection. 

3.2 Overview of the proposed method: 

A promising solution to problems encountered in Straughn’s method could be the use of 

glossy surface instead of matte materials for the markers. In this research, we analyse 

whether the accuracy gets enhanced on introducing gloss surfaces. The proposed method 

comprises three primary stages: identifying visible faces of the dodecahedron marker (DM), 

luminance sampling, and estimation of direction of the real-world light source. This process 

assumes a single light source. The results were tested on both virtual and physical DMs. 

The virtual DMs was created using Blender [27] while the physical DMs were created by 

painting the faces of a DM using gloss paints thereby testing for different levels of 

glossiness: gloss, semi-gloss and matte. 

During the first stage of DM face identification, an image (both for virtual and physical DM 

respectively) is obtained from the camera and the position and orientation (also known as 

pose) of the DM is determined. This step is followed by luminance sampling and light 

direction estimation stages. 

In the luminance sampling stage, the mean RGB value of each face is evaluated to find the 

best lit DM face. The RGB color model has three color parameters: Red, Green, and Blue. 

The each parameter (red, green, and blue) defines the intensity of a color as an integer 

between 0 and 255. When each parameter of RGB has at its maximum integer value of 255, 

i.e. rgb(255, 255, 255), the color obtained is pure white. Similarly, for a perfect black, each 

parameter of RGB must have the lowest integer value of 0, i.e. rgb(0, 0, 0). So, to determine 

the best lit face, the average RGB of each face is evaluated and ranked from highest to 

lowest RGB values. In the later sections, the process has been discussed in detail. 
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3.3 Dodecahedron Marker and Face Detection: 

3.3.1 Designing of the virtual and physical DM: 

In this research, a 3D dodecahedron model was used to determine the lighting of real-world 

scenes. As discussed above, the virtual dodecahedron was made using Blender. In the 

newer versions of Blender (2.75+ versions) the regular solids (such as cube and sphere) 

have been extended to permit the creation of higher polyhedrons (tetrahedron and above) 

with ease. The glossiness of the dodecahedron is controlled using the Glossy BSDF node. 

The maximum surface glossiness was obtained with roughness parameter of 0.05 and 

minimum glossiness with 1. 

For the glossy, physical DMs, card stock paper faces were painted with gloss paints and 

attached to each face of the DM; the paints used were of different level of glossiness: semi-

gloss and gloss. For a matte surface, colored card stock paper was used to make the faces.  

3.3.2 Reasons for choosing dodecahedron over other 3D models as a marker: 

In section 2.1, different ways to overlay virtual objects in real-world scenes are discussed 

briefly. The most common approach to perform AR is with the use of markers. In this 

research, a 3D marker (dodecahedron marker) was used because of several reasons. 3D 

markers can be viewed from any angle unlike 2D markers. Moreover, a 3D marker can 

provide information about the real-world lighting conditions from the direction it is facing. In 

this research, the marker was required to serve as a light probe. So, 3D marker was chosen 

over 2D marker because of the above stated reasons.  

Now, a dodecahedron was chosen over most simple 3D models like a cube or cuboid 

because of a hitch. Standard 3D models of cube or cuboid can be viewed in such a way that 

only one face is visible at a time. Thus, both polyhedrons disqualify the above mentioned 

advantage of 3D models. A regular polyhedron with greater number of faces was a better 

solution. A regular dodecahedron is a polyhedron composed of 12 regular pentagonal faces. 
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Thus, dodecahedron was chosen as it qualifies the advantage of 3D marker and easier 

geometric pentagonal face. 

3.3.3 Determining pose and faces: 

To detect the position and orientation (pose) of the DM, Straughn’s method used a marker 

identification to find the 2D markers printed on the faces of the DM. Once any face marker 

was identified, the pose if the DM relative to the camera could be determined using the AR 

software. In our method, the DM does not contain any 2D markers attached to the faces. 

Thus, to determine the visible faces of the DM, the program first takes the image of the DM. 

For the virtual DM, a high quality image was obtained by setting the rendering samples at 

500 in blender and then performing a screen capture from the computer. Images of the 

physical DM were taken with a OnePlus 7 Pro mobile camera. 

The next target is to detect the edges of the RGB image which was done using Sobel 

operator (also known as Sobel-Feldman operator). Sobel operator is a differentiator 

operator. It computes an approximation of the gradient of an image. It marks the gradient 

changes along the horizontal (Gx) and vertical (Gy) direction, where Gx, Gy can be 

represented by 3 X 3 kernels as follows: 

    [
                     
                     
                     

]                   

and         [
                   
                             
                   

]                  (3.1) 

and the common value of G is given by:  

   √  
         

      (3.2) 

         |  |  |  |      (3.3)  

The obtained RGB image is converted to a grayscale image and passed through the 

laplacian operator, which helps finding the derivative of the image thereby giving the high 
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and low intensity of the image. In other words, it gives the gradient of the image. This 

gradient value is further differentiated with respect to the horizontal and vertical axis to give 

the    and    values. The    and    were combined together to achieve sharp edges. Fig 6 

shows determined edges for respective DMs. 

The determination of the edges is the basis for identifying the faces of the DM. For this, all 

possible shapes that can be obtained from the DM edge image are identified. This was 

achieved by drawing contours on the edge image. This step is performed to get all vertices of 

the DM. Instead of finding the contours of the RGB image straight away, the additional step 

of edge detection is performed to ensure that only the edges contributing to the pentagonal 

face is processed during this step. 

 
Fig-6: (a), (c): Virtual DMs placed with different pose.  

(b), (c): Determined edges of the respective DMs.  
 

The above mentioned process was tested on many DM poses. Notably, this method could 

successfully identify the extreme outer polygon and at least one pentagon. For instance, for 

the DM pose as shown in Fig 6(a), the program could identify of the extreme outer polygon 

and the central pentagon. While for the DM pose as shown in Fig 6(c), the program could 

identify the outer polygon and the two of the pentagons. This was implemented with OpenCV 

(a) 

(d) 

(c) 

(a) 

(b) 
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library function approxPolyDP, which draws contours on the image to identify their geometric 

shape. This function returns the coordinates of the vertices of the identified polygons. In any 

polyhedron, each face shares its edge with the neighbouring faces. So, with the vertex 

information of the pentagon(s), the other visible pentagons can be identified easily. Once the 

DM faces has been identified, the program performs luminance sampling. 

3.3.4 Luminance Sampling: 

After the information of each face has been yielded from the previous step, the program 

determines the brightest face by evaluating its mean RGB value. This step would be 

essential to DMs whose brightest face has a consistent RGB value throughout. Considering 

merely the mean color, might not provide sufficient information to estimate the direction of 

the real-world light source for a DM pose in which the face contains uneven color distribution 

(as shown in Fig 6(a)). Thus, the aforementioned step is extended to find the mean color 

around the corners and the centre of that face. Fig 7 shows the division of the brightest face 

along the vertices (corners) and the centre.  

To achieve RGB information around the corners, triangles were chosen for the ease of 

calculation, while for the centre – circles. To find the vertices of the corner triangles 

respectively of the brightest face, a vertex was chosen as pivot and an equidistant point was 

evaluated on the line connecting the neighbouring points. A point along a line at a certain 

distance can be found by:  

                                       (3.4) 

where,          : start point 

          : end point 

          : point at distance  t 
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    √                  : distance between start and end point 

This step was repeated unless all the corners of the pentagonal face has been identified. The 

RGB value of each corner triangle and the centre is evaluated and surface normal from the 

brightest section is taken. This normal gives the estimated direction of light source, 

Fig-7: Dividing the faces into sections of the DM face with greatest RGB value 
 

 

3.3.5 Estimate light direction: 

The final step of our approach is determining the real-world light source direction. The 

evaluation of the light vector is dependent on one of the following discussed cases: 

Case – 1: More than one bright faces 

When there are more than one visible bright faces with same (or approximately same) RGB 

mean values, than an average of the surface normal from each face is evaluated to achieve 

the final light vector. 

 

Case – 2: Significantly bright face amongst all visible faces 

Brightest corner 
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When there is exactly one face with the highest RGB value, the corners and the centre of the 

face is reconsidered to find the brightest sections (discussed in section 3.2.3). The surface 

normal is calculated from the highest RGB value section. 

Case – 3: Average RGB is close to color black 

When the average face mean color is close to darker region, then the surface vector is 

rotated at a 180. This case would happen when the incident light is shining behind the DM 

such that the camera can capture the faces in shadow. 

3.3.5.1 Calculation of surface normal: 

In this research, the polygons that are considered include triangle, circle and pentagon. If the 

program found the situation as mentioned in case-2 has been satisfied, it further checked 

whether the section is a triangle. This was easily implemented as the vertices of the triangles 

were stored in an array. The next step was to find the surface normal of the triangle. The 

cross product of two sides of the triangle gives the surface normal [29]. So, if 

vector            , vector            , and surface normal vector N would be: 

     (      )   (      ),   (3.5) 

                       ,   (3.6) 

     (      )   (      )   (3.7) 

such that                                       (3.8) 

For the brightest section being about the centre of the pentagon (circular section), the 

program computes surface normal for the inner pentagon, that is formed by connecting the 

mid-points of the pentagonal face. This was done as computing surface normal of any 

polygon is simpler compared to circle. 

Surface normal for any polygon can be computed by: 

normal(v
0
, v

1
, ..., v

n-1
) = ∑v

i
 ₓ v

i+1, where: vi with i = {0, 1, 2, …, n-1}     (3.9)  
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The surface normal information gives the estimated direction of the real-world light source. 
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CHAPTER IV 

 

RESEARCH METHODOLOGY 

4.1 Implementation:   

The first step is designing the algorithm that would perform light estimation using the 

technique discussed in Chapter 3: Proposed Method. 

The code was written in Python, using Python 3.8.5 specifications. In this research, 

PyCharm 2020.1.2 IDE was used to compile and debug the code. The code used several 

libraries for achieving the steps discussed in Chapter 3. 

The tasks like edge detection, shape detection, mean color value estimation was performed 

using OpenCV [26]. OpenCV is an open-source cross-platform computer vision and machine 

learning library. The plot of the detected edges was plot with matplotlib. Matplotlib is the 

plotting library for the Python programming language. This research includes many large 

mathematical operations on arrays. Performing each of these calculations would be tedious. 

Thus, for these critical operations, the NumPy library of the Python programming language 

was used. 

4.2 Experimental Design: 

In this research, we designed a virtual DM and a physical DM. The inclusion of the physical 

DM was to verify whether virtual models created using any 3D modeling software could 

mimic the nature of a real or physical model. Thus, the virtual model was created using 3D 

modeling software, Blender. In section 3.2.1, a detailed discussion on designing for both the 

DMs has been illustrated in detail. In this section, we shall discuss the setup for both the 
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DMs (Fig 8(a)). In both the setup, we considered for a single light. The physical DM was 

placed 38 cm away from the light source. The picture of the setup and the DMs was taken 

using by mobile phone camera (OnePlus 7 Pro). 

 

Fig 8: (a) – Shows the entire setup of the physical DM; (b), (c): Gloss and matte DMs 

respectively 

The virtual DM was created for using math function for regular solids in Blender. The virtual 

model was tested for several angles to understand the performance of the gloss, semi-gloss 

(a) 

(c) (b) 
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and matte surfaces. The roughness of the DM surface was adjusted accordingly to match 

the gloss, semi-gloss and matte surface. For the gloss surface, the roughness level was set 

to 0.1, for the semi-gloss surface – roughness = 0.5 and for the matte surface the roughness 

level was at 1.0. Fig 9 shows the DMs with different surface roughness. These DMs is 

rotated at 40 relative to the initial position. 

  

Fig 9: Virtual DMs of different surface roughness. Gloss (roughness = 0.1) 
(left); Semi-gloss (roughness = 0.5) (center); Matte (roughness = 1) (right). 

The DMs have been rotated at 40 from the initial position such that it facing 
the light directly relative to the camera. 

 

The accuracy of estimation of light direction was determined by the angle of incident light to 

the surface of the DM and the light direction vector estimated by the proposed method. Fig 9 

shows the percentage of error due for every 20 rotation made to the object with respect to 

previous pose along the horizontal axis. 

4.3 Testing for the accuracy of the method: 

The goal of this research is to estimate the light source direction. Hence, the accuracy of this 

method would be to find how the estimate direction was to the real light source. For this, the 

angle between the real light source vector and vector for the estimate direction of light 

source is calculated. For the virtual DMs, vector for the real light source could be found 

easily. In the recent versions of blender, a node property called Lamp Data Node has been 

added. This property helps in obtaining all information related to a specified lamp object [28]. 
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It provides with information such as color of the lamp, light vector – a unit vector in the 

direction of the lamp and the shading point, distance - for obtaining the distance between 

lamp and shading point, to name a few. Thus, solving both the vector – gives the required 

angle difference between the two vectors. Lesser the angle difference between the two 

vectors, lesser the percentage of error and vice–versa. Further, these angle information is 

plotted (Fig 10) in a graph. 

 

 

 

 

 

 

  

31 



 

 

 

CHAPTER V 

 

OBSERVATIONS AND ANALYSIS 

5.1 Notable Issues Encountered During Research: 

The virtual dodecahedron marker (DM) was designed using 3D modeling software Blender. 

These models were extremely flexible so perform actions like surface roughness and 

rotations of the DM relative to the camera and so on. This was not the situation with the 

physical DM. The images of the physical DM irrespective of having different roughness level 

looked almost the same. The key factor of this method was to do with RGB values. In theory, 

with a light shining brightly on the surface of the DM makes the color on the region exposed 

to light would have lighter color compared to the area that is not exposed to light. Since, the 

incident light could not bring any possible change to the appearance of the image, physical 

DM did not respond to the system like the virtual DMs did.  

5.2 Light Estimation Results: 

The graph in Fig 10, shows the light estimation achieved by different surface roughness for 

different angles. In the following graph, the angle at 0 indicates the DM in its original 

position. The angles in negative indicate the conditions when the light source is facing the 

DM relative to the camera. Contrarily, positive angles indicate for the conditions in which the  

Finally, after all the estimation is complete, this information is applied on to a virtual object to 

see its performance (as shown in Fig 11 and Fig 12). 
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F 

Fig 10: The above graph shows the percentage error due to change of the pose of the virtual 

DM for every 20 . The negative degree indicates that the light source facing the DM while 

positive degree indicates that the light source is behind the DM relative to the camera pose. 

 

 

 

 

 

 

 

 

 

 

Fig 11: Inverse lighting effects on the virtual objects on a physical DM 
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Fig 12: Inverse-lighting effects on virtual objects using virtual DM, where: (a) 

shows the virtual object without applying the inverse-lighting algorithm, (b) 

shows the effect of the IL due to a gloss DM, (c) IL on semi-gloss DM and (d) 

shows IL effects due to complete matte DM. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

In this research, the goal was to compare the performance of inverse-lighting effects for 

different surface: matte, semi-gloss, and gloss. Also for the testing of the viability of the 

model, we used both the physical and virtual DM. Firstly, from the above results we can 

conclude that gloss produces more impressive results for inverse-lighting than the surfaces 

of higher roughness. This is because in theory, gloss allows incident light to reflect back at 

the same angle. The test results for other surface roughness also support for the same. 

From Fig 10, we can clearly see that with the increase in surface roughness the average 

percentage of error goes high. Therefore, gloss surfaces would help in getting better results 

for inverse-lighting. Secondly, Blender is not efficient in creating virtual that can mimic 

physical models enough convincingly. In future, this research can be extended to develop 

virtual model that would actually mimic real models. 
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