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CHAPTER I 
 

INTRODUCTION 
 

Desertification of grasslands and changes in vegetation composition have been 

observed globally in recent decades (Geist and Lambin 2004; Leis et al. 2017; Robert et 

al. 2002). However, these phenomena, often studied at local and/or regional scales, are 

not fully understood (Reynolds and Stafford Smith 2002). In one such region, the 

Southern Great Plains of the United States, agriculturalists of Cimarron County, 

Oklahoma and Union County, New Mexico have encountered increasing land 

degradation, particularly in the form of woody plant encroachment. At the same time, 

ranching and farming (henceforth, agriculture) in this community serves as the 

foundation of the economy (USDA 2012b, 2012a; Vadjunec and Sheehan 2010), with 

agriculturalists exhibiting a history of resilience and grit in the face of repeated "natural" 

disasters and extreme weather events. Most prevalent among these disasters are the Dust 

Bowl of the 1930 which caused severe soil erosion as well as subsequent cyclical drought 

events (Cordova and Porter 2015; SCCSC 2013; Wenger, Vadjunec, and Fagin 2017).  

Presently, woody plant encroachment (WPE) in grasslands is emerging as a 

significant hazard facing the region, with researchers and landowners observing increases 

in the abundance and extent of trees and shrubs such as walking stick cholla, one-seed 

juniper, saltcedar, and mesquite (Fagin et al. 2016). Research in other systems has shown 

that increases in woody vegetation can suppress native herbaceous vegetation (Lett and 

Knapp 2005), reduce forage for livestock grazing (Scholes and Archer 1997), disrupt
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nutrient cycling (Satti et al. 2003), intercept water resources (Scott et al. 2006), and 

promote soil erosion (Parizek, Rostagno, and Sottini 2002). Therefore, WPE in an 

agricultural area such as the Southern Great Plains is likely to have both biophysical and 

socioeconomic impacts. Meanwhile, little consensus exists regarding the causes of WPE. 

While environmental factors such as climate and soil are undoubtedly influential drivers 

in a changing landscape (Archer, Schimel, and Holland 1995), substantial evidence also 

implicates land-use behaviors, such as fire suppression and overgrazing, as causes of 

WPE (Ganguli et al. 2011; Bragg and Hulbert 1976).  

Previous research on WPE has employed approaches as varied as the causes and 

consequences of the problem itself (e.g., Jeltsch et al. 1997; Knapp et al. 2008; Lubetkin, 

Westerling, and Kueppers 2017). Despite this, few studies have synthesized multiple 

streams of data to examine the effects of synergistic factors. Analyses are often 

performed at a single scale, typically through ground-level observations or satellite 

remote sensing (see Allen and Allen 1991; Laliberte et al. 2004). Further, social science 

and ethnographic methods are rarely utilized despite the clear implications for 

landowners and stakeholders (though see Dalle, Maass, and Isselstein 2006; Hudak, 

Wessman, and Seastedt 2003). As a result, the current literature on changing plant 

communities tends to raise more questions than it answers. 

The present investigation, by contrast, seeks to gain a more holistic picture of the 

factors influencing vegetation communities in the Southern Great Plains (SGP). 

Specifically, this study seeks to directly answer the following three questions: 

1. How does woody plant encroachment vary across different environmental 

gradients, land-use/management practices, and sociopolitical boundaries?  
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2. What is the relationship between herbaceous plant biodiversity and woody 

plant encroachment? How does it vary across scales? 

3. What are the benefits and limitations of multiple scales of analysis, 

particularly considering the potential role of unmanned aerial systems (UAS) 

as a scalar bridge in rapid vegetation assessments? 

Given the consequences of unmitigated WPE to the ecological integrity of 

grasslands in the SGP, as well as the threat to the livelihoods of farmers and ranchers in 

the region, research in this area is as necessary as it is timely. Past National Science 

Foundation (NSF) research by Vadjunec and colleagues (2018) illustrates socio-

ecological system resilience and sustainability challenges in the region. Relatedly, a five-

year USDA funded initiative is currently seeking to help agriculturalists in southeastern 

Colorado, northeastern New Mexico, and the Oklahoma panhandle increase their 

resilience to climate variability, loss of groundwater, and other hazards (Ganguli et al. 

2018). As part of these larger funded projects, this thesis seeks to understand the 

relationship between landowner perceptions and management actions as they impact 

herbaceous and woody plant biodiversity in the study area. More specifically, this study’s 

participatory approach draws on land use and management surveys, ground-level 

biodiversity inventories, UAS imagery, and satellite remote sensing to identify factors 

affecting vegetation on rangelands as part of the larger, on-going research project.. 

This thesis is structured in a traditional five-chapter format. Chapter 1 

(Introduction) delivers an overview of previous research on WPE, including its associated 

land management practices and environmental contributors, as well as impacts associated 

with changes in plant communities. Additionally, a brief description of the two-county 
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study area, comprised of Union County, New Mexico and Cimarron County, Oklahoma, 

along with its historical context is presented. In Chapter 2 (Literature Review and 

Theoretical Framework), the field of land system science is introduced, with detailed 

discussion of its implications on land degradation, landowner decision-making, and 

remote sensing. Additionally, the chapter discusses biodiversity and the ways scale can 

influence findings in geographic research. Chapter 3 (Methodologies) details the tools 

and approaches utilized in this thesis. Among these methods are satellite detection of 

WPE through the National Land Cover Dataset, UAS imagery classification, ground-

level vegetation sampling, and household surveys with agriculturalists. Additionally, 

Chapter 3 explains the synthesis of these methods used to triangulate the complex factors 

associated with land degradation. Chapter 4 (Results and Discussion) discusses the 

findings of each methodology and explores implications for landowners and LSS 

practitioners alike. Finally, Chapter 5 (Conclusion) summarizes this research, discusses 

the scope and limitations of the study, and lists some potential future directions for 

investigation.  

 

 
Woody Plant Encroachment (WPE) 

The increase in the extent, density, and hazards associated with trees and shrubs 

encroaching on grassland habitats globally, known as woody plant encroachment (WPE), 

has been cited as a concern for agriculturalists, academics, water managers, and 

ecologists alike (Alofs and Fowler 2013; Archer, Schimel, and Holland 1995). WPE 

exacerbates environmental issues such as loss of biodiversity (Naeem 2002), reduced 

streamflow (Zou, Qiao, and Wilcox 2016) and groundwater (Ansley 2005), and 
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degradation of grazing land (Anadón et al. 2014). Further, those who face the greatest 

risk from WPE are likely also those who are most readily able to reduce the effects 

through land-use practices. Thus, WPE is closely tied to land degradation theory 

presented by Blaikie and Brookfield (1987), Turner, Lambin, and Reenberg (2007), and 

others, wherein landscape changes may directly affect agriculture and present 

complications to landowner decision-making. Specifically, land-use behaviors such as 

fire suppression (Ratajczak et al. 2014) and overgrazing (Oztas, Koc, and Comakli 2003) 

have been closely associated with land degradation. As this section continues, a summary 

of WPE-associated land-use practices is provided, followed by an overview of the 

impacts of tree and shrub encroachment.  

 

Land Management Practices Associated with WPE 

Among the most prominently cited land-use behaviors resulting in WPE is fire 

suppression, a practice in which natural and man-made fires are quickly extinguished 

upon discovery and prescribed burns are avoided due to perceived risk (Hudson 2011). 

Although fire is a natural occurrence to which grassland ecosystems are adapted (Collins 

and Wallace 1990), efforts to control fire in North America emerged upon European 

settlement (Fowler and Konopik 2007) and became more widespread as more lands fell 

under government management (North et al. 2015). As a result, grassland biodiversity 

has become reduced (Leach and Givnish 1996; Uys, Bond, and Everson 2004) and soil 

nutrient cycling has decreased (Boerner 1982), causing fire to become arguably the most 

important factor affecting vegetation communities (Bond and Keeley 2005).  
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Further, fire suppression in grasslands allows trees and shrubs to gain a foothold 

and grow to size and age classes that are not typical under natural fire regimes (Mairota et 

al. 2014; Twidwell et al. 2013). For example, Coop and Givnish (2007) analyzed over six 

decades of aerial photographs in the Valles Caldera of New Mexico to determine causes 

of WPE in the area. They found encroachment to be most severe in rugged terrain where 

fires cannot easily spread across the landscape, while valleys where regular fire was 

common had much less severe WPE.  

Additionally, fire suppression can counterintuitively cause more severe fires by 

creating added fuel on the landscape (Baker 1992). For example, Juniperus virginiana, a 

closely related species to Juniperus monosperma found in this project’s study area, has 

been implicated in extremely severe fire events because of its highly combustible oil 

content and its dense presence on the landscape (Weir and Scasta 2014). Similar 

conditions have resulted in abundant fuel which, when coupled with a changing climate, 

have dramatically increased fire severity in the West (Westerling et al. 2006). Further 

complicating the situation, many land managers view prescribed burns as too risky. 

Morton and colleagues (2010) found that roughly half of landowners surveyed in the 

Midwest thought of prescribed burns as a viable land management tool, though only 25% 

had participated one. In the West, given drier conditions and additional fuel on the 

landscape, landowners may be more reluctant to burn land in the future (Harr et al. 2014). 

Grazing practices are also frequently cited as an important contributor to WPE (D' 

Odorico, Okin, and Bestelmeyer 2012; Watkinson and Ormerod 2001). Increased climate 

variability, economic pressures, and complicated land tenure regimes can force some land 

managers to periodically overgraze, resulting in rangeland degradation and potentially 
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WPE (Vadjunec and Sheehan 2010). Allen and Allen (1991) found that overgrazing 

creates open spaces in rangelands where fragments of Cylindropuntia imbricata (cane 

cholla—a key species of concern in the Southern Great Plains cited by Fagin and 

colleagues (2016)), can drop to the ground and propagate. Animals are commonly 

identified vectors of woody vegetation dispersal, including both livestock (Bartuszevige 

and Endress 2008; Radford et al. 2001; Tews, Schurr, and Jeltsch 2004) and birds 

associated with ranching operations (Coppedge et al. 2004). In addition to changing the 

physical structure of the grasslands by causing patchiness in the sod, overgrazing can also 

reduce herbaceous species biodiversity (McIntyre, Heard, and Martin 2003; Tallowin, 

Rook, and Rutter 2005).  

 

WPE Impacts 

While WPE can have negative effects on a number of different stakeholders, the 

greatest impact is likely to be felt by agriculturalists, especially ranchers experiencing 

reductions in forage. Even a 1% increase in woody vegetation can reduce forage for cattle 

and other livestock by more than 2.5% (Anadón et al. 2014, 12951), and in some systems 

has reduced forage by over 300% (Richter, Snyman, and Smit 2001, 106). Encroachment 

of woody plants can also directly suppress herbaceous plant productivity (Belay, Totland, 

and Moe 2013; Dalle, Maass, and Isselstein 2006; Lett and Knapp 2005), reduce 

herbaceous species richness (Clark et al. 2007; Ratajczak, Nippert, and Collins 2012), 

and lower nutrient availability (Hudak, Wessman, and Seastedt 2003; Satti et al. 2003), 

further compounding effects on ranchers. With agriculture serving as the main economic 

driver in the Union/Cimarron county study area, an increase in tree and shrub landcover 
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would clearly raise questions regarding the sustainability of ranching operations 

(Wenger, Vadjunec, and Fagin 2017). 

Beyond the impacts to forage, WPE will also negatively affect water resources, 

both for ranchers and farmers inside and outside of the region. The structure of woody 

plants such as juniper can intercept precipitation before it ever reaches the ground 

(Wilcox 2008). Water that does reach the ground is then less likely to infiltrate the soil in 

woody systems (Parizek, Rostagno, and Sottini 2002). Further, the large water budgets of 

trees and shrubs can cause wasteful evapotranspiration (Munson and Lauenroth 2012), 

with some species consuming or transpiring as much as 32 gallons of water per day 

(Mounsif 1992). As a result, soil salinity (Owens and Moore 2007) and erosion (Parizek, 

Rostagno, and Sottini 2002) has increased in some systems. Additionally, deep taproots 

in some plants such as mesquite and saltcedar can exploit valuable groundwater (Ansley 

2005; Rundquist and Brookman 2007), potentially impacting downstream farmers reliant 

on irrigation (Wenger 2015). Zou, Qiao, and Wilcox (2016) modeled Oklahoma 

streamflow rates under hypothetical WPE regimes, examining how water levels in 

streams might change under an extreme, but not unrealistic scenario where rangelands in 

the area converted entirely to Juniperus virginiana coverage. The authors found that the 

resulting vegetation change would reduce water levels by up to 40% in the upper reaches 

of their study area, and an average of 20% throughout the entire basin (Zou, Qiao, and 

Wilcox 2016, 813-814). Remarkably, these changes were predicted to occur regardless of 

future climate change conditions. Considering these impacts, changing vegetation 

communities in the Southern Great Plains are poised to affect both local agriculturalists 

and downstream stakeholders. 
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Study Area 

The geographic extent of this investigation includes two neighboring counties in 

the Southern Great Plains: Cimarron County, Oklahoma and Union County, New 

Mexico. A predominantly rural and agricultural landscape, the region is composed 

primarily of EPA Level III Ecoregion 9.4.1 (High Plains) marked by a cold semi-arid 

climate, shortgrass prairie, and terrain ranging from flat to rolling hills (EPA 2013; 

Hoekstra, Molnar, and Jennings 2010). Additionally, Ecoregion 9.4.3 (Southwestern 

Tablelands) is present along the region’s northern edge, featuring vast basalt mesas and 

dry river gorges (Lewis and Richter 2015) and vegetation ranging from shortgrass prairie 

to sagebrush (EPA 2013). The elevation ranges from 8,707 ft in the west, at the peak of 

Mt. Capulin, to 2,400 ft toward the east (USGS 2015).  

As the epicenter of the Dust Bowl of the 1930s, agriculturalists in the region have 

exhibited remarkable resilience in the face of natural hazards, with woody plant 

encroachment appearing to be a growing issue for the future (Egan 2006; Fagin et al. 

2016; Vadjunec and Sheehan 2010). While the two counties share many biophysical and 

socioeconomic traits, land-use/land-cover change (LULCC) between the two counties has 

been variable both in terms of agricultural practices (Wenger, Vadjunec, and Fagin 2017) 

and vegetation (Fagin et al. 2016). As this section continues, a summary of the climate, 

socioeconomic structure, and vegetation of the study area is presented. 
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Figure 1: Map of Study Area 

 
Data source: Created by the author using data from USGS State and County Boundaries (USGS 2014b, 
2014a), USGS National Elevation Dataset (USGS 2016a), USGS Cities and Towns of the United 
States(USGS 2014c), USGS National Transportation Dataset (USGS 2016b). 

 

Climate, Water Resources, and Drought 

Climate in the region is generally cool, with average mean temperature highs of 

72ºF and lows of 40ºF (Fick and Hijmans 2017). The area receives roughly 18 inches of 

precipitation annually (SCCSC 2013), most frequently in the form of short thunderstorms 

that move southeasterly, often becoming weaker in the eastern portions of Cimarron 

County (NCDC 2016). Winter precipitation often comes in the form of snow, providing 

crucial subsurface moisture for agriculturalists (Hughes and Robinson 1996). Small 

ephemeral snowpack can form, particularly along Johnson Mesa and Black Mesa to the 

north, much of which flows into the Dry Cimarron River valley (Trauger and Kelley 

1987). A future of higher temperatures, reduced precipitation, and a smaller snowpack 
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due to climate change is expected to strain agriculture in the region (Union of Concerned 

Scientists 2016). 

Although many agriculturalists do rely on surface water (Rawling 2015), much of 

the region is hydrologically isolated from the snowpack of the Rocky Mountains by the 

Sierra Grande Arch and topographic boundaries near Mt. Capulin (Trauger and Kelley 

1987; USGS 2016a). As a result, groundwater obtained from springs and wells is more 

widely used in the area than surface water (Wenger, Vadjunec, and Fagin 2017). Most 

landowners in Cimarron County can access the High Plains (Ogallala) Aquifer (HPA), 

while Union County is underlain by patches of the Dakota Sandstone, Morrison 

Formation, and HPA (Zeigler 2011). While HPA recharge comes primarily in the form of 

summer rain (Meixner et al. 2016), snowpack runoff from outside the topographic basin 

may be a more significant contributor to other formations (Trauger and Kelley 1987; 

Zeigler 2011). 

Cyclical drought is an intrinsic trait of drylands (Allen et al. 2007) and the region 

has faced six major drought events in the past century (Vadjunec et al. 2018). The most 

infamous of these, the Dust Bowl of the 1930s, completely disrupted agriculture across 

the Southern Great Plains (Worster 2004), causing widespread dust storms and erosion of 

croplands (Lal, Reicosky, and Hanson 2007) forcing hundreds of thousands to leave the 

region (Gregory 1989). Another notable drought in the 1950s was called one of the most 

severe on record (Nace and Pluhowski 1965). Most recently, a drought lasting from 

2000-2015 presented temperature and precipitation conditions that were at times even 

harsher than the Dust Bowl (U.S. Drought Monitor 2019). Agriculturalists in the region 
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have naturally faced difficulty with production in the face of unreliable precipitation 

(Wilhite 1993). 

 

Socioeconomic Influences 

The socioeconomic landscape of the study area is primarily rural and agricultural. 

Cimarron County is Oklahoma’s westernmost county, with a total area of 1,835 sq. mi 

(USCB 2018a). Its population has consistently decreased since its heyday in the 1930s, to 

a current level of 2,154 individuals, with 971 households (USCB 2018a). The population 

density is low, at 1.3 persons per square mile (USCB 2018a). In 2012, there were 554 

farms in the county, covering 1,157,186 acres (98.5% of the entire county) (USDA 

2012b). Of this, 63.3% was used as pastureland, helping to put Cimarron County among 

the top 3% of cattle producing counties in the nation (USDA 2012b). The remainder of 

agricultural land in the county is primarily cultivated; wheat, sorghum, and corn are the 

leading crops (USDA 2012b). While the former two crops may be grown dryland 

(without irrigation), farmers increasingly use center pivot irrigation (CPI) to help reduce 

vulnerability to drought or to enable cultivation of corn, which yields greater profits but 

requires large amounts of water (Wenger 2015). Between 1985 and 2013, the number of 

center pivot systems nearly doubled in Cimarron County, covering nearly 800,000 acres 

(Wenger, Vadjunec, and Fagin 2017, 10). 

Union County occupies the northeastern corner of New Mexico and at 3,824 sq. 

mi. is substantially larger than Cimarron County, (USCB 2018b). Its population has also 

decreased, to a current total of 4,187, with 1,454 households (USCB 2018b). The 

population density is slightly lower than Cimarron County, with just 1.2 persons per 
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square mile (USCB 2018b).  Union County was home to 353 farms in 2012, accounting 

for 80.4% of the total county land (1,967,370 acres) (USDA 2012a). The county ranks in 

the top 6% of cattle producing counties in the U.S. (USDA 2012a). Agricultural land in 

Union County is largely dominated by rangeland (95.4% of all county agricultural land) 

(USDA 2012a). In contrast to Cimarron County, few operators choose to grow crops in 

Union County due to marginal soils and less reliable groundwater resources (Wenger 

2015; Zeigler 2011). Despite this, CPI installations have also increased dramatically since 

installations began in the 1970s, covering over 50,000 acres in 2014 (Wenger, Vadjunec, 

and Fagin 2017, 10).  

 

Flora and Fauna 

Vegetation in the study area is composed primarily of shortgrass prairie, with 

areas of juniper woodlands and shrublands interspersed particularly in areas of greater 

relief (Fagin et al. 2016). The two counties represent areas of unique vegetation relative 

to their respective states, though unfortunately are largely understudied (Hoagland 2000; 

NPS 2004). Cimarron County has been called a “distinct biotic district” in Oklahoma 

(Blair and Hubbell 1938), boasting Juniperus monosperma woodlands, rare stands of 

Pinus ponderosa, highly diverse playa lakes (Hoagland 2000), and over 23 rare plants at 

Black Mesa alone (The Nature Conservancy 2019). Unique plant communities in Union 

County vary by elevation and include juniper-oak and pinyon pine woodlands (NPS 

2004), stands of Pseudotsuga menziesii (Douglas fir), and Pinus ponderosa (ponderosa 

pine) (Guyette 2006). 
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Cimarron County is home to 852 documented plant species (Oklahoma Vascular 

Plants Database 2019), while 583 plant species have been documented in Union County 

(New Mexico Biodiversity Collections Consortium 2019). Grasslands in the region are 

comprised most commonly of Buchloe dactyloides (buffalograss) and Bouteloua gracilis 

(blue grama). In addition, Bouteloua curtipendula (sideoats grama), Schizachyrium 

scoparium (little bluestem), and Boutela hirsuta (hairy grama) are observed in sandier, 

wetter areas (Tyrl et al. 2007). Drier localities may contain grasses including Pascopyrum 

smithii (western wheatgrass), Stipa comata (needle-and-thread), and Sporobolus 

cryptandrus (sand dropseed) (Hazlett 2009). 

A number of additional herbaceous species are commonly observed in grasslands 

including thistle, milkweed, slender scurpea, and a variety of additional forbs (Castetter 

1956). Sandsage grasslands are common in sandy soil in the northern reaches of the study 

area, and feature mixed communities of Artemisia filifolia (sandsage), Rhus aromatica 

(fragrant sumac), and Yucca glauca (plains yucca) (Tyrl et al. 2007). Sandy areas are also 

home to a variety of shrubs, half-shrubs, and cacti including Gutierrezia spp. (broom 

snakeweed) Chrysothamnus spp. (rabbit brush), Cylindropuntia imbricata (walking stick 

cholla), Prosopis glandulosa (mesquite), and Opuntia phaeacantha (New Mexico prickly 

pear) (Castetter 1956). While these species are native to the study area, past research has 

indicated their abundance has increased in recent decades. 

Grasslands in the study area support a variety of fauna, which play a crucial role 

in herbivory and nutrient cycling (Ford and McPherson 1996). Among the major 

herbivores are pronghorn antelope, mule deer, bighorn sheep and elk (Clark 1968a, 

1968b; The Nature Conservancy 2019). A variety of additional megafauna have been 
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observed including black bear, coyote, mountain lion, swift fox, and bobcat (Hazlett 

2009). Although the region has relatively low small mammal diversity, black-tailed 

prairie dog is present and plays a major role in nutrient cycling in soils (Clark 1968a). 

Biodiversity is high, however, for arthropods, with over 25 species of grasshoppers in the 

region and diverse assemblages of ants, spiders, and beetles (Ford and McPherson 1996). 

Additionally, grasslands in the study area serve as important habitat for hundreds of bird 

species, including spotted towhee, Ferruginous hawk, long-billed curlew, burrowing owl, 

and mountain plover (Hazlett 2009; Johnson et al. 2003). An increase in woody 

vegetation in the area, however, threatens to reduce this available habitat (Johnson et al. 

2003). 

 

WPE in Union and Cimarron Counties  
 

Ground-based vegetation observations in the area have indicated that the extent 

and abundance of woody species such as Juniperus monosperma are increasing (Johnson 

et al. 2003; NPS 2004). However, previous research has been limited mostly to local 

scales, though one study utilized satellite-based remote sensing to examine vegetation 

change in the region. Fagin et al. (2016) used a temporal analysis of the National Land 

Cover Dataset (NLCD) to examine the extent of WPE on public and private lands in the 

same bi-county study area. Between 1992 and 2011, Cimarron County’s total area 

experienced a 631% increase in shrubland, while Union County saw a 104% increase. 

Herbaceous land-cover remained the dominant category, covering nearly 76% of the 

study area (Fagin et al. 2016, 7). However, the increase in woody vegetation, which was 

most severe in the northern portions of the study area along the Dry Cimarron River, 
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raises questions regarding the long-term sustainability of cattle ranching in the region. 

WPE was most severe in Cimarron County’s state leased lands, and least severe on 

federal lease lands, implying that land tenure and governance may result in differential 

land management practices. As Vadjunec and Sheehan (2010) note, open bidding policies 

and short lease terms on state lands may result in a lack of incentives for lessees to 

consider the long-term implications of their land management decisions.  
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CHAPTER II 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 
 
 
 

 As plant communities in rangelands of Cimarron County and Union County are 

altered, a number of interrelated knock-on effects have emerged. Specifically, 

biophysical feedbacks involving soil erosion and loss of biodiversity can accelerate land 

degradation, which then trigger additional feedback cycles affecting land management 

decisions (Claessens et al. 2009). Acknowledging the complexity of WPE and its 

associated effects, this thesis uses a land system science (LSS) approach to untangling the 

people, patterns, and processes of land degradation (Frazier, Vadjunec, et al. 2019). In the 

sections that follow, a general overview of the field of LSS is provided, followed by 

specific examples of LSS applications in land degradation, landowner decision-making, 

and remote sensing. Additionally, a description of biodiversity is presented, followed by 

a brief discussion of the issue of scale in LSS and remote sensing.  

  

Land System Science and its Antecedents 

While all organisms modify their environment, the influence of human land-use 

through mechanisms such as agriculture, construction, and manufacturing has yielded 

dramatic effects on earth’s biotic and abiotic landscape (Schlesinger et al. 1990; Turner 

and Gardner 2015; Zube 1987). Human modifications to land have contributed to mass 
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extinctions (Ceballos, Ehrlich, and Dirzo 2017; Stuart and Peter 2000; Wake and 

Vredenburg 2008), climate change (Parmesan and Yohe 2003), loss of ecosystem 

services and productivity (Dube and Pickup 2001), and reduction in available freshwater 

(Carpenter et al. 1992), among many other effects. Notably, the synergistic relationships 

of these factors tend to produce feedback cycles which further intensify their effects 

(Geist and Lambin 2004). Further, interactions between anthropogenic change and 

natural environmental variation also add complexity to these systems (Ravi et al. 2010).  

As human modifications to earth continue to expand and intensify, investigations 

into the effects of the Anthropocene—the current geologic period in which humans are 

the most significant drivers of change—have also been intensified (Zalasiewicz et al. 

2010). While remote sensing has long been used to measure these modifications (Lambin 

and Strahler 1994), a number of theoretical foundations for such research have been 

proposed (Wu 2019), including land-use/land-cover change (LULCC) and Land System 

Science (LSS).  

LULCC emerged in the 1980s as an interdisciplinary approach examining both 

changes in the biophysical characteristics of the landscape, as well as the anthropogenic 

drivers of these changes (Meyer and Turner 1992). By the mid-1990s, the International 

Geosphere-Biosphere Programme (IGBP) and Human Dimensions of Global 

Environmental Change Programme (HDP) formalized an international joint research plan 

to study global environmental change (Turner et al. 1995). Acknowledging a need to 

more fully understand the causes and extent of LULCC, (Turner et al. 1995, 20), the 

research agenda prioritized three major foci: (1) case studies of land-use dynamics, (2) 
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remote sensing and field studies of land-cover dynamics, and (3) modeling of regional 

and global change (Brannstrom and Vadjunec 2014, 4). 

 However, as LULCC matured and evolved, geographers saw the need for a more 

nuanced "systems" framework (Turner et al. 2013; Verburg et al. 2013). For example, the 

Global Land Project proposed as a more holistic approach examining the “people, biota, 

and natural resources (air, water, plants, animals, and soil)” associated with the land 

(GLP 2012, 1). The approach to LULCC, continued to evolve, since the landscape and its 

associated processes and feedbacks evolve over time (Aspinall and Hill 2007). As a 

result, over the past 25 years, LSS has grown in tandem with LULCC studies (Rounsevell 

et al. 2012).  

LSS implements a dynamic, integrative approach to answering questions of global 

environmental change, going beyond measuring LULCC by also examining “how human 

actions affect natural processes” and evaluating “the consequences of these changes” 

(GLP 2005, 1), often examining land management decisions (Turner, Lambin, and 

Reenberg 2007; Moran, Skole, and Turner 2004), socio-economic factors (Ellis and 

Ramankutty 2008), and the feedbacks between the two (Turner et al. 2013). In these 

feedback cycles, land management decisions are influenced by the existing land 

characteristics, which then further act to alter the land, and vice versa (Verburg et al. 

2013). These interrelated factors and feedbacks demonstrate the complexity of human-

environment systems. As Liu et al. (2007, 1513) explains, human-environment systems 

are not simple balance sheets of ecosystem inputs and outputs, but “they also exhibit 

nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, 
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heterogeneity, and surprises.” Further, LSS interrogates not only how the land is changed, 

but also why landowners make decisions to change it (Hecht 1993).  

In terms of methodology, this approach often involves modeling of the economic, 

environmental, political, or social factors involved in decision-making and subsequent 

land-use/land-cover changes as a means of systematically explaining the complex 

interactions of these factors (Rounsevell et al. 2012; Lambin and Meyfroidt 2010; 

Rindfuss, Walsh, Turner, et al. 2004). Further, consistent with its antecedents, remote 

sensing and/or field observations are often implemented to measure land degradation 

(Wu 2019). This considered, detecting land degradation is often not a simple task, but is 

complicated by the subjective ways in which it may be defined. 

 

Land Degradation in LSS 

While definitions of land degradation vary, most focus on a decrease in 

biodiversity or biomass, typically in response to human modification. For example, 

Johnson and Lawrence (2007, 2) presents two critical criteria for identifying a decline in 

land condition: “First, there must be a substantial decrease in the biological productivity 

of a land system, and second, this decrease is the result of processes resulting from 

human activities rather than natural events.” Similarly, Blaikie and Brookfield (1987) 

emphasize a decrease in productivity, with a focus on the resultant "cost" to labor. In this 

sense, land degradation impacts not just the land itself, but also its biota including 

livestock and vegetation, its water systems that support these organisms, and the humans 

that rely on the entire system.  
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Others argue that no single definition can exist for land degradation since 

different stakeholders may have subjective opinions (Warren 2002). Blaikie and 

Brookfield (1987, 4-5), for example, define degradation as a “reduction to a lower rank,” 

while acknowledging that rank is a “scale of relative measurement” established by 

various land users with different perceptions of what constitutes value or proper use. For 

example, biophysical scientists examining nutrients and species composition may draw 

different conclusions about land quality than economists simply measuring land potential 

(IPCC 2019). Further, landowners may have entirely different environmental perceptions, 

especially in cases where cultural differences and even land-use priorities cause different 

parties to disagree on current land conditions (Bürgi, Li, and Kizos 2015).  

Additionally, while some stakeholders may focus on short-term gains, others 

prioritize long-term sustainability (Shiferaw and Holden 2001), such as in issues of 

afforestation (Schneider et al. 2001). Further, while many traditional definitions of land 

degradation describe decreases in biological productivity, an increase in vegetation could 

also be cited as an example of degradation, such as when invasive species emerge and 

outcompete native vegetation (Turner, Lambin, and Reenberg 2007). Three types of land 

degradation relevant to this thesis—soil erosion, overgrazing, and desertification—are 

detailed below. 

 

Soil Erosion 

Many prominent examples of land degradation involve soil erosion (Blaikie 1985; 

Pickup, Bastin, and Chewings 1998), often with agriculture as the primary cause. At least 

1/3 of topsoil on U.S. cropland has been eroded over the past two centuries (Pimentel et 
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al. 1976), decreasing agricultural potential and increasing sediment loads that may harm 

water resources (Geist and Lambin 2004; Pimentel et al. 1976). The Dust Bowl of the 

1930s is perhaps the most well-known example of widespread soil erosion. In this 

example, key indicators of land degradation are clearly present: vegetative cover on 

cultivated lands was significantly reduced through tillage (Lee and Gill 2015), resulting 

in further disturbance to agriculture.  

An LSS perspective is especially relevant to this case because of the complex 

feedback cycles emerging both from new land-use processes and unique environmental 

conditions. To this point, some have argued that the Dust Bowl was not just a 

consequence of problematic agricultural practices, but was also an outcome of expanding 

agriculture into a semi-arid region (Reisner 1986). According to Johnson (2007, 10) "it 

represents the prototype example of ecological failure resulting from drought in areas 

where rainfed agriculture has been extended beyond the limits of humid areas.” To 

illustrate this, Cook, Miller, and Seager (2009) constructed a model showing that both 

land use and environmental factors (anomalous sea surface temperature and drought) 

worked in tandem to create the Dust Bowl. Therefore, while land degradation by 

definition is associated with human modification of lands, feedback cycles can emerge in 

which climate amplifies the effects of anthropogenic degradation. Further, though crop 

cultivation has become widespread, grazing also can result in degradation of land.  

 

Overgrazing 

Managed grazing occupies roughly one-quarter of the global land surface, 

covering more area than any other land use (Asner et al. 2004). While responsible grazing 
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can have positive benefits in some systems (Bakker 1985), overgrazing can cause bare 

soil patches and increase susceptibility to erosion or invasion by non-native species 

(Oldeman 1992). Overgrazing has been observed on a global scale, but began in 

rangelands of the United States around 1875 (Dube and Pickup 2001; Pickup, Bastin, and 

Chewings 1998), causing a variety of ecological issues and threats to agricultural 

sustainability with profound consequences for the global food supply (Wilcox and Huang 

2010).  

As a prominent integrative case study in grazing effects, Schlesinger et al. (1990) 

observed a delicate balance wherein native black grama grasses rely on specific patterns 

of precipitation and soil moisture which dictate seasonal photosynthesis and the 

development of shallow root structures. However, the introduction of livestock disrupts 

sensitive soil moisture and nutrient profiles through removal of vegetative cover, 

trampling, and compaction. Grasses then become degraded through increased 

heterogeneity of nutrients (most importantly, N and C), moisture, and soil density 

(Manley et al. 1997; Schuman et al. 1999). Subsequently, feedbacks with soil erosion 

processes may occur (Schlesinger and Jones 1984), which can increase albedo and 

promote desertification of grasslands (Gong Li et al. 2000). 

 

Desertification 

Closely linked with grassland degradation is desertification, wherein both 

anthropogenic modifications and climate variability cause further desiccation of drylands. 

According to Geist and Lambin (2004, 817), “there is a great deal of debate […] on the 

degree to which these causes are local or remote, and on how variables interact across 
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organizational levels in different regions of the world and at different time periods”. 

Although these dynamic interactions differ from the solely human-caused criteria of 

degradation presented by Johnson and Lawrence (2007), desertification is certainly 

emblematic of an overall reduction in biological productivity and agricultural potential 

(Dregne 1977).  

Consistent with LSS feedbacks, desertification involves a reduction in vegetative 

cover, accompanied by increasing soil surface and air temperatures, and consequent 

reductions in relative humidity, cloud production, and precipitation (Otterman 1974; 

Taylor et al. 2002). Balling (1988) observed this effect in the Sonoran Desert, where 

fencing between Mexico and the United States delineated zones of dramatically different 

grazing practices. Overgrazing on the Mexico side resulted in shorter grasses and 

increased bare soil, causing a warmer, drier regional climate compared to that of the 

intact grasslands on the north side of the border. Of course, this effect was in part a result 

of landowner decision-making regarding grazing intensity, which itself is complex and 

influenced by a variety of factors.  

 

Landowner decision-making 

In coupled human and natural systems, exposure to environmental hazards and 

stressors can cause humans to react in a variety of ways (Munroe et al. 2019; Roche et al. 

2015). Lambin and Meyfroidt (2010) proposed a dualistic system of forces that influence 

land-use decisions: (1) endogenous socio-ecological feedbacks, and (2) exogenous socio-

economic changes. In the former category, landowners consider the availability of natural 

resources when making decisions (e.g., “Do I have enough grass for my cattle?” or 
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“When will the next rain come?”). In the latter category, decisions are affected by market 

forces, policy prescriptions, and technological innovation (e.g., “Should I wait to sell my 

cattle until prices increase?” or “Is it cheaper to buy feed or lease more land?”). Land 

tenure, cost, and availability are also important exogenous factors (Vadjunec and 

Sheehan 2010; Dube and Pickup 2001).  

Often, endogenous and exogenous factors work in tandem. For example, Vassilis, 

Helen, and Constantinos (2017) found that landowners in Greece often chose to intensify 

grazing despite land degradation (endogenous) due to of a lack of economic alternatives 

(exogenous). As a result, long-term consequences can arise from short-term situations. 

Therefore, landowners, policy makers, and academics may disagree about best practices, 

since decision-making is subjective in the same manner as degradation itself (Warren 

2002). The feedbacks of these decisions, however, are well documented, where land 

degradation frequently results in intensification of grazing, which further reduces land 

potential (Liu et al. 2007; Otterman 1974; Taylor et al. 2002) and may result in increased 

vulnerability for those using the land. 

 

Vulnerability and Resilience in Grasslands 

Ultimately, land-use decisions may act to increase vulnerability (e.g., overgrazing 

which can produce feedbacks that further degrade land) or increase resilience (e.g., 

decreasing cattle stocking rates to benefit land but suffer economically in the short-term) 

(Turner et al. 2003). However, there is little consensus on specifically which biophysical 

traits constitute resilience in grasslands. Johnson and Lawrence (2007, 9) defines 

resilience as the ability of the land to “absorb change without significantly altering the 
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relationship between the relative importance and numbers of individual species that 

compose the community” (see also Folke 2006; Walker et al. 2004).  

Grasslands have been observed to recover from degradation, particularly after 

significant precipitation events (Cowling, Richardson, and Pierce 1997). However, Dube 

and Pickup (2001) argue that the potential for recovery becomes decreased as stocking 

intensity and extent increases, since N turnover is reduced with further agricultural 

intensification (Schlesinger et al. 1990) and invasive species may outcompete native 

vegetation (Alofs and Fowler 2013). Additionally, attempts to improve land in the short-

term through the use of fertilizers, herbicides, or pesticides may be counterproductive by 

reducing soil biota and available carbon (Matson et al. 1997). As Reynolds et al. (2007) 

note, the cost of intervention in these scenarios increases non-linearly with additional 

degradation. One strong indicator of a grassland’s recovery potential, however, is its 

biodiversity, or the assemblage of species present (Vogel, Scherer-Lorenzen, and Weigelt 

2012) 

 

Biodiversity 
 

A loss of biological diversity is a common consequence of land-use change and 

degradation (Jenkins 2003). Biodiversity may be defined in a variety of ways, but at its 

most basic refers to the assemblage of various species that occupy an ecosystem 

(Gregorius 2016). Measurement of biodiversity may involve a number of metrics, 

ranging from simple species richness (the number of unique species), to more complex 

analyses of the distribution, relative abundance, and phylogenetic diversity of species 

(Magurran 1988; Schulze et al. 2004; Walker 1992). Assessments of biodiversity change 
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can also take many forms, including four main types: “species extinctions, species 

abundance and community structure, habitat loss and degradation, and shifts in the 

distribution of species and biomes” (Pereira et al. 2010, 1496). Biodiversity can also be 

subjective, as explained by Mapinduzi et al. (2003) who observed that indigenous 

systems of rangeland assessments and indicator species implemented by Maasai 

pastoralists helped to determine grazing suitability and preserve communities of native 

species long-term.  

Ecologists have proposed that greater biodiversity confers increased ecosystem 

stability by strengthening interspecies interactions and filling a variety of ecological 

niches (Pennekamp et al. 2018), potentially increasing resilience to environmental 

hazards such as drought or floods (Naeem 2002; Zavaleta and Hulvey 2004). Isbell and 

Wilsey (2011), for example, found that increased species richness in grasslands improves 

resilience to grazing by increasing aboveground productivity and reducing degradation of 

fine root biomass. Additionally, biodiversity may provide temporal stability, since many 

systems experience successions of species over time or may be expanded or reduced 

seasonally (Cardinale et al. 2012; Zemunik et al. 2016). Conversely, a decrease in 

biodiversity has been associated with decreased ecosystem function (Srivastava and 

Vellend 2005). Unfortunately, in the midst of the Anthropocene and earth’s sixth mass 

extinction, biodiversity has rapidly decreased, particularly in the last 50 years (Metzger et 

al. 2006), with over half of all species experiencing anthropogenic impacts (Ceballos, 

Ehrlich, and Dirzo 2017; Meyers et al. 2000). As a result, a small number of generalist 

species have in many cases expanded to take over habitat previously occupied by a rich 

diversity of species (McKinney and Lockwood 1999). Considering this apparent global 
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anthropogenic land degradation, measurements of biodiversity can be immensely useful 

in LSS studies. 

 

Biodiversity in LSS 
 

Despite the increasing similarities between landscape ecology and LSS (Roy 

Chowdhury and Turner 2019) and the imminent global threats to biodiversity (Dinerstein 

et al. 2019), few studies have integrated biodiversity in land systems research (Frazier, 

Bryan, et al. 2019). Because biodiversity provides critical ecosystem functions (Schwartz 

et al. 2000), effective LSS investigations could move beyond simply making remote 

sensing observations by directly measuring ecosystem functions such as soil fertility, 

erosion control, habitat for wildlife, crop pollination, and agricultural production, among 

others (Martínez et al. 2009; Olschewski et al. 2006; Zavaleta and Hulvey 2004). 

Additionally, landowner decision making often plays a direct role in biodiversity; short-

term economic gains achieved through reductions in biodiversity (e.g., through 

monocropping or deforestation) present quandaries when they later reduce agricultural 

productivity (Corbera, Estrada, and Brown 2010; Siewe, Vadjunec, and Caniglia 2017).  

 

Scale in Biodiversity 
 

Just as the method of measuring biodiversity can influence the results of an 

investigation, so too can the scale of measurement. As Seppelt, Lautenbach, and Volk 

(2013, 1) note, “any global analysis benefits from systematic synthesis of sub-global 

research from various scales, while sub-global investigations require embedding in global 

scenarios.” Because human activities are the most direct drivers of biodiversity loss, local 
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scale observations lend themselves to associations with individual land-use practices 

(Newbold et al. 2015; Schulze et al. 2004). To elaborate, strictly local investigations in 

biodiversity may fail to acknowledge feedbacks at broader scales such as climate or 

exogenous political and economic forces. Conversely, global scale observations may not 

always scale down to local observations, which typically exhibit greater variation in 

biodiversity (Bennett et al. 2015). Further, links between biodiversity and ecosystem 

services are often identified at local and regional scales, but may be obscured at broader 

scales (Turner et al. 2007).  

A similar pattern has been observed in examining the relationship between 

biodiversity and resilience to invasive species at varying scales (Alofs and Fowler 2013; 

Zavaleta and Hulvey 2004). The so-called “invasion paradox” claims that fine-scale 

studies often associate loss of biodiversity with increased invasion vulnerability, since 

fewer species are present to outcompete non-native ones. However, at larger scales, 

ecosystems with high species richness facilitate more invasive species because generalists 

can readily adapt to the favorable climate or resources that had initially resulted in the 

abundance of species (Levine 2000). Numerous reports have examined these trans-scalar 

effects, however few have acknowledged the subjectivity of biodiversity, particularly 

with regard to short-term decision-making by landowners. 

While the theoretical foundations of scale in biodiversity have been thoroughly 

discussed, assessment of biodiversity in the field presents a number of practical 

considerations that may complicate assessments. Surveys and sampling efforts may 

require considerable time or financial resources, depending on the assessment techniques 

involved (Archaux et al. 2006; Stohlgren, Bull, and Otsuki 1998). As Kent and Coker 
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(2011) explain, the choice of sampling methods typically depends on the purpose and 

scale of the study; the increase in time and cost associated with surveys becomes 

amplified as the spatiotemporal extent of the investigation increases. Rapid assessment 

techniques have emerged in response to these concerns, with some researchers proposing 

that use of indicator species (Oliver and Beattie 1993) or extrapolated species counts 

(Oliver and Beattie 1996) may reduce required time and effort with only a minor impact 

on data quality.  

Another approach, commonly used in vegetation assessments involves a hierarchy 

of multiple scales, because, as Noss (1990, 357) puts it, “big questions require answers 

from several scales.” A common method proposed by Peet, Wentworth, and White 

(1998), and implemented in the International Forestry Resources and Institutions (IFRI) 

Research Program (Wertime et al. 2007), involves a system of nested plots at multiple 

scales. Through this method, all species are recorded within a small area, while certain 

other species (typically shrubs are trees) are recorded in larger scale plots. Through this 

approach, the theoretical foundation proposed by Montello (2001) is satisfied, in which 

the scale of analysis reflects the scale of the phenomena (i.e., the size of various species) 

being observed. By the same token, nested plots utilize scale that reflects the variation in 

patterns and distribution across the landscape, as recommended by Moellering and Tobler 

(1972). 

Although nested biodiversity plots can resolve scalar issues in some instances, the 

time and resources required for ground-based observations limit their spatial extent 

(Wiens 1989). As a result, remote sensing is frequently implemented at regional and 
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global scales as a means of collecting data across broader spatial extents with reduced 

time and financial resources (Franklin 2010). 

 

Remote Sensing 
 

Use of remote sensing techniques, such as classification of satellite or aerial 

imagery has long been a crucial component to investigations in LULCC (see Hansen and 

Loveland 2012; Hansen et al. 2013; Wulder et al. 2008; Zhan et al. 2002), with integrated 

remote sensing/social science research appearing by the early 1970s (Estes, Jensen, and 

Simonett 1980). Acknowledging that land-use change and its underlying socioeconomic 

drivers are deeply interwoven, a movement emerged to more purposefully link “people to 

pixels” (Wood and Skole 1998), particularly in cases of agricultural expansion, 

deforestation, or land degradation (Roy Chowdhury and Turner 2019). As Rindfuss and 

Stern (1998, 6) note, “remote sensing can provide measures for a number of dependent 

variables associated with human activity—particularly regarding the environmental 

consequences of various social, economic, and demographic processes.” Such 

investigations often implement remote sensing as an “objective” measure of change, 

coupled with household surveys to interrogate the underlying reasons for change.  

This fusion of data sources has been demonstrated in numerous case studies 

ranging from fires in Indonesia (Dennis et al. 2005) and drought effects on pastoralists in 

east Africa (Galvin et al. 2001) to loss of grass and savannah woodlands in Ghana (Yiran, 

Kusimi, and Kufogbe 2012) and rubber tapper activities in the Brazilian Amazon 

(Vadjunec 2007). Notably, findings from these different data streams may yield 

contradictory results. For example, Herrmann, Sall, and Sy (2014) used satellite imagery 
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to identify areas of re-greening in the Sahel, as well as focus groups, key informants, and 

participatory mapping exercises to help identify local perceptions of re-greening. 

However, areas of degradation and re-greening differed between remote sensing and 

social science methods, indicating that different aspects of degradation may be relevant to 

different groups, as proposed by Warren (2002). In mixed methods approaches, others 

have incorporated additional information such as ground-level observations or census 

data to further triangulate patterns and causes of land change (e.g., Galvin et al. 2001; 

Homer et al. 2012; Wood and Skole 1998), acknowledging that phenomena such as 

biodiversity can be difficult to capture through remote sensing. Further, bridging 

household-level observations with biodiversity or remote sensing data at different scales 

can present additional challenges. 

 

Issues of Scale in LSS 

Just as scale of analysis can influence biodiversity and remote sensing, 

investigations in LSS more broadly can be biased by scale. Because LSS often 

implements mixed methods to examine local-scale processes through household surveys 

and regional/global-scale processes through remote sensing (Liverman and Cuesta 2008), 

contradictory findings may arise (Warren 2002). For this reason, landscape-level 

investigations have been crucial in helping to connect local land use with broader scale 

change (Wu 2011). Such “intermediate-scale” studies benefit from using the landscape as 

a focal unit of analysis, while also directly considering processes at other scales (Kates 

2012; Wu 2019).  
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Research that ignores meso-scale observations may face challenges in linking 

processes at vastly different scales (Wiens 1989). Issues can arise in linking “people to 

pixels” because land ownership changes periodically or because pixel resolution may be 

insufficient to rectify against parcel resolution (Rindfuss, Walsh, Turner, et al. 2004, 

13977). Additionally, the phenomenon of the ecological fallacy states that evidence 

collected at one scale cannot reliably yield conclusions about a different scale (Harris 

2006). Further, it must be noted that the driving forces of land change operate at multiple 

scales. While individual plot-based decision-making occurs at a microscale (Blaikie 

1985), regional scale processes such as climatic factors (Geist and Lambin 2004) and 

governance (Buizer, Arts, and Kok 2011) can each alter land systems but be detected 

only at certain scales. Thus, integrating multiple scales of analysis can help to clarify 

scalar limitations and provide a more holistic picture connecting process to patterns (Li et 

al. 2017). 

Additionally, while spatial scale clearly matters, the relevance of temporal scale 

should not be understated. As Dearing et al. (2010) note, long-term analyses of land 

systems help to clarify whether degradation has occurred as part of natural processes, or 

if anthropogenic factors have played a more significant role in the recent term. This issue 

intersects with methodological approaches, where the temporal scale of remote sensing 

data, for example, might affect conclusions (Rindfuss, Walsh, Turner, et al. 2004). 

 

Effects of Remote Sensing Resolution 
 

As with LSS more broadly, the issue of scale in remote sensing may dramatically 

influence findings, with different resolutions each exhibiting varying benefits and 
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tradeoffs. Remote sensing analyses of vegetation change using satellite imagery have 

become more prevalent in recent years (Starks et al. 2011; Wang et al. 2018; Fagin et al. 

2016), with the obvious advantages that data may be collected quickly with little effort 

compared to ground-level assessments, and multiple time series may be analyzed as 

frequently as new imagery is captured. However, the spatial resolution of satellite 

imagery may not meet the needs of some research questions. For example, in forestry 

studies, fine-resolution imagery has been implemented to identify individual trees, while 

coarser resolution imagery can help provide data related to forest density or the 

occurrence of large stands of trees (Woodcock and Strahler 1987). Nested/hierarchical 

approaches to scale have also been advocated in remote sensing because of the 

advantages of examining data at multiple scales. Goodchild (2011) highlights the 

tradeoffs between various scales, wherein coarser-scale data often confers broader spatial 

extents, while fine-scale data typically provides greater detail within a smaller area. This 

observation was corroborated by Homer et al. (2012), who used three different scales of 

satellite imagery to detect degradation of sagebrush ecosystems in Wyoming, finding that 

the highest resolution imagery conferred the greatest classification accuracy.  

In bridging the gap between scales, a novel approach might involve examining the 

same system from multiple perspectives, including satellite imagery, ground-level 

vegetation sampling, and a social science (or household) component to help describe the 

land-use behaviors underlying land change. For example, Vadjunec and Rocheleau 

(2009) implemented this approach to describe deforestation patterns in the Chico Mendes 

Extractive Reserve in Brazil. The authors used Landsat imagery to quantify overall forest 

cover change, plot-level vegetation sampling to measure loss of biodiversity, and 
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household surveys to understand resource extraction processes. Although this type of 

multi-scale investigation certainly provides an important level of detail and nuance in 

LSS (Liverman and Cuesta 2008; Dennis et al. 2005), it remains uncommon. Perhaps one 

reason is the significant time and resources required to complete such an exhaustive 

study; Vadjunec and Rocheleau (2009) implemented rapid vegetation appraisals to 

improve efficiency, but now, a decade later, the topic of rapid assessment in multi-scale 

LSS investigations is due for reexamination.  

Unmanned aerial systems (UAS) have emerged as a promising candidate for 

increasing the efficiency and accuracy of rapid assessments, as they have been used in a 

variety of applications including rapid assessment of disaster damage (Restas 2015), fire 

(Laszlo, Agoston, and Xu 2018), wildlife surveys (Brack, Kindel, and Oliveira 2018; 

Christie et al. 2016; Watts et al. 2010), and vegetation (Husson, Reese, and Ecke 2017; 

Visser, Wallis, and Sinnott 2013; Zweig et al. 2015). Despite its potential, UAS imagery 

has been mostly confined to geophysical investigations, very few studies directly linking 

UAS to anthropogenic effects and social science (though see Paneque-Gálvez et al. 2017; 

Cummings et al. 2017). The utility of fine-scale remote sensing serves to better inform 

LSS investigations by providing data both on larger-scale patterns, while also improving 

detail of vegetation analyses beyond those capable with satellite imagery. Further, while a 

theoretical foundation exists regarding the scalar difference between satellite and UAS 

remote sensing, few investigations have assessed these differences empirically. 
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Summary 

Through an LSS framework, the interconnectedness and relevance of land 

degradation, climatic interactions, landowner decision-making, biodiversity, and the 

methodology/scale by which each is investigated becomes critically important to 

triangulating the causes and effects of landscape change. Central to this approach is the 

identification of feedback cycles and processes in which components affect and 

potentially amplify one another. In this investigation specifically, the interrogation of 

synergistic biophysical and land management factors helps to more clearly elucidate the 

causes and patterns of woody plant encroachment in Union and Cimarron Counties. 

Additionally, through examining the biodiversity component of WPE and herbaceous 

species in this system, this thesis explores how species richness may confer resilience to 

natural hazards, how landowner practices affect biodiversity, and what ecosystem 

services may be provided as a result of diverse community assemblages. While past 

research has used a variety of methods to examine these interrelated processes, this 

investigation serves as a novel implementation of UAS imagery as a bridge in scale and 

rapid assessment tool which may help to improve the quality and detail of data collected 

without sacrificing efficiency. In the following chapters, these methods are explained in 

detail, followed by a discussion of the research outcomes and its implications for LSS 

more broadly. 
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CHAPTER III 

METHODOLOGIES 
 

Implementing an LSS approach, and collecting data from a range of sources and 

at a variety of scales, this investigation seeks to identify the complex and interconnected 

forces affecting each of the three research questions stated in Chapter 1. As this chapter 

continues, methodologies are presented in order from the smallest scale of analysis to the 

largest. This structure is also paralleled in Chapter 4. At the finest scale, household 

surveys with landowners and land managers provide a foundation upon which all other 

analyses are based. Next, ground-level vegetation sampling in nested plots on the survey 

respondents’ property provides ground-truthed data used in biodiversity calculations. 

Next, UAS imagery provides a meso-scale perspective useful for quantifying herbaceous 

cover, woody plants, and bare soil. Additionally, Structure from Motion Multi-View 

Stereo (SfM-MVS)-derived data provided through UAS remote sensing allows fine-scale 

detection of vegetation heights to aid in species-level classification. Finally, satellite 

remote sensing in the form of the National Land Cover Dataset (NLCD) provides a 

coarser but broader perspective on the entire region. Integrating climatic, terrain, and 

soils data with the NLCD through multiple regression then further elucidates the role of 

environmental factors in woody plant encroachment (WPE). 

The synthesis of these varied methods ultimately informs the three research 

questions through bridging multiple spatial scales and methodologies, as described in 

Table 1. 
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Table 1: Methods and Synthesis of Research Questions 
 Question 1 

How does woody plant 
encroachment vary across 
different environmental 
gradients, land-
use/management 
practices, and 
sociopolitical 
boundaries? 

Question 2 
What is the relationship 
between herbaceous plant 
biodiversity and woody 
plant encroachment? How 
does it vary across 
scales? 
 

Question 3 
What are the benefits and 
limitations of multiple 
scales of analysis, 
particularly considering 
the potential role of 
unmanned aerial systems 
(UAS) as a scalar bridge 
in rapid vegetation 
assessments? 

Methods • Household Surveys 
• UAS Imagery 
• NLCD Modeling 

• Ground-Level 
Vegetation Assessments 

• UAS Imagery 
 

• Ground-Level 
Vegetation Assessments 

• UAS Imagery 
• NLCD Modeling 

Synthesis • T-tests comparing 
observations between 
different land 
use/management types 

• Linear regression 
comparing ground-level 
biophysical observations 
with biodiversity and 
UAS-derived land cover 

• T-tests and Chi square 
tests evaluating 
differences between 
counties 

• Linear regression and 
paired t-tests comparing 
metrics obtained through 
ground- and UAS-based 
observations 

• Correlation matrix 
comparing different 
levels of measurement 

 

• Linear regression, paired 
t-tests, and ANOVA 
comparing results of 
different scales 

 

As this chapter continues, a detailed description of how each dataset was acquired and 

was analyzed is presented, followed by further discussion of how these datasets were 

synthesized and compared to address each research question.  

 

Household Surveys 
 
 In alignment with common LSS practices, this investigation uses household 

surveys as a means of leveraging local knowledge and perspectives to provide context 

(Rindfuss, Walsh, Mishra, et al. 2004). As part of a larger USDA-funded project called 

ARID (Ganguli et al. 2018), survey participants (n=20, a subset of the project’s 135 total) 

were recruited during the summer of 2018 through community meetings, local events 
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such as senior and community lunches, fishing derbies and county fairs, key informant 

interviews, already existing research in the region, and/or names garnered from county 

plats and/or USDA agricultural subsidy records (EWG 2018). This research expands on 

the knowledge garnered from previous household surveys completed in the study area 

(Vadjunec et al. 2013). All human subjects research was conducted under approval from 

the Oklahoma State University Institutional Review Board, application number AS-18-24 

(Appendix I). 

 Household surveys were conducted in May and June 2018, primarily in 

participants’ homes (n=20, 10 in each county), and typically lasted 1.5-3 hours. Surveys 

were typically followed by planning of vegetation sampling and UAS flights on the 

participants’ property. The household survey asked participants to rate how they perceive 

the severity of various species on their land on a scale from 1 through 5 (with higher 

numbers indicating greater severity). Lists of species were generated from previous 

research in the area (Colston, Vadjunec, and Fagin 2019; Fagin et al. 2016), though 

respondents were encouraged to add any species they perceived as a “nuisance.”  

Additionally, participants provided details regarding efforts for prevention and 

removal of problematic species at two scales: (1) efforts made in general across their 

entire landholdings (Appendix II), and (2) land history and management actions over the 

past ten years related specifically to plots where vegetation sampling and UAS 

photography were conducted (Appendix III). Relevant land management actions were 

sourced from the literature (Van Auken 2009) and extension specialists in the area, and 

included the use of prescribed fire, mowing, manual removal of vegetation (e.g., 

chaining, use of backhoe, etc.), herbicide applications, or any other actions deemed 
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relevant by respondents. Respondents also detailed grazing intensity or participation in 

the Conservation Reserve Program (CRP) for the vegetation sampling/UAS plots. 

Examining land use and history at two scales helps to provide both a broad-picture 

overview of landowner awareness and actions related to nuisance plants as well as 

detailed plot-level data that can be associated directly to broader-level sampling and 

remote sensing.  

Upon completion of household surveys, a codebook was generated to ensure 

consistent database entry of survey forms. A Microsoft Excel file was created with fields 

representing each survey question, including both quantitative responses such as acreage 

or Likert scale responses, as well as qualitative responses to open-ended questions. The 

spreadsheet was then populated with responses from the 135 respondents according to 

codebook specifications. Data was then queried to obtain proportions of respondents 

sharing common perceptions and land-use practices. Frequency plots for Likert scale 

questions were produced using Microsoft Excel. Where appropriate, data was pooled at 

multiple scales of analysis, including county-level and by landowner perception (intact or 

encroached plots). Significant differences between groups were analyzed using two-tailed 

t-tests in Microsoft Excel and the software package R. 

 

Ground-Level Vegetation Sampling, Rangeland Health, and Biodiversity 
 
 As a means of assessing ground-level data related to vegetation and 

environmental characteristics, rapid assessment measures of species presence, rangeland 

health metrics, and soil traits were collected on each survey respondent’s property. 

Following each household survey, respondents were asked to select two rangeland plots 



41 

of roughly 12 acres each, in which one had perceived issues with invasive or nuisance 

species (hereafter referred to as “encroached”), and another which had fewer or no issues 

with problematic vegetation (“intact”). In preserving the integrity of participatory 

methods and the subjectivity of land degradation, landowners were asked to select their 

plots based on any species of personal concern, which ranged from woody plants such as 

juniper, yucca, and cholla, to other problematic rangeland issues such as locoweed, which 

produces phytotoxins harmful to livestock, and prairie dogs, which create borrows that 

can injure cattle. Once the plots were selected, participants drew a planned flight area on 

printed satellite imagery maps. In some cases where participants were more comfortable 

using technology, researchers and participants worked together to configure a flight plan 

using the DroneDeploy app for iPad. 

Using methods adapted from the International Forestry Resources and Institutions 

sampling protocol (Ostrom 1999), one 1 square meter subplot was selected within each 

12 acre plot by walking sufficiently far from roads or fence lines to an area in which 

vegetation appears homogenous, and tossing a 1m square constructed from PVC. Within 

the 1m plot, all herbaceous and woody plants were identified to species level, with 

percent cover recorded for each. Using a nested plot approach, a larger 5m subplot was 

sampled for all shrubs and all woody plants with a diameter at breast height (DBH) of 

<10cm. Finally, in a 25m subplot, the DBH, height, and condition of all woody 

vegetation with a DBH of >10cm was recorded (Figure 2).  
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Figure 2: Nested Plot Diagram 

 
Source: UAS Ground Truthing Protocol, Boardman 2018. Adapted from Wertime et al. (2007). 

 

Using vegetation data collected from plot-level sampling, a number of 

biodiversity metrics were calculated to quantify species richness (the count of unique 

species identified). Additionally, the Shannon index (H) was calculated as an indicator of 

species diversity for each subplot, using the formula:  

! = −$%& ln	( %&)
,

&-.
 

where S represents the total number of species in each plot and Pi represents the 

proportion of S made up of the ith species (Magurran 1988).  

The use of a variety of biodiversity indices is commonly recommended as a 

method of providing greater insights into the inter-species interactions and the causes of 

differing community composition (Morris et al. 2014). While species richness is the most 

straightforward metric and can be used as a basic indicator of the number of species in a 
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given system, the Shannon index provides a metric of the heterogeneity or equity of 

species composition (Peet 1974). Although many studies have indicated that a diverse 

species assemblage (i.e., greater species richness) promotes temporal stability in 

grasslands (Isbell et al. 2011; Pennekamp et al. 2018), systems with more equal 

proportions of species (i.e., greater Shannon index) tend to be more stable than those with 

a dominant species (Sanderson 2010; Sasaki and Lauenroth 2011). 

Because vegetation sampling represents a limited spatial extent and finite sample 

size, first-order jackknife and Chao 2 predictive estimates of species richness were 

prepared both at county-level and in pooled groups of landowner perceptions 

(“Encroached” and “Intact”) (Magurran 1988). Estimates were generated using the 

EstimateS program with 100 randomizations and bias-corrected formulas for Chao 2, as 

recommended by Colwell (2013). 

In addition to vegetation data, a number of rangeland characteristics and health 

metrics were collected, as described by Pellant et al. (2005). Characteristics of interest 

include description of livestock, percent bare ground, and slope, as well as a number of 

rangeland health indicators including the presence and severity of rills, water flow 

patterns, pedestals, gullies, erosion, and litter movement. Additionally, soil characteristics 

were documented as specified by IFRI (Ostrom 1999), including the depth of the O, A, 

and B horizons, the Munsell color, and the soil texture. 

Field observation data was stored in a method similar to survey data, with forms 

entered into a Microsoft Excel spreadsheet. Results were then pooled at multiple scales of 

analysis, including county-level and by landowner perception (intact or encroached 
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plots). Significant differences between groups were analyzed using two-tailed t-tests in 

Microsoft Excel and the software package R. 

 

UAS Imagery Collection, Processing, and Classification 
 
 In an effort to collect data at broader spatial scales, while still capturing 

occurrences of individual plants and identifying vegetation to species level, UAS imagery 

was captured for each 12 acre plot, typically in tandem with vegetation sampling. All 

UAS missions were conducted between June 18 and July 12, 2018 to ensure consistent 

plant phenology. A DJI Phantom 3 Pro was used, equipped with a stock 1/2.3” CMOS 

RGB sensor, capable of obtaining an image resolution of 3000x4000 pixels. Missions 

were planned and executed using DroneDeploy, with 75% forward overlap and 65% side 

overlap used as the optimal parameters for SfM processing (Frazier and Singh 2018). 

Flight altitude was set to 150ft AGL, resulting in a spatial resolution of approximately 

1.2cm. In some cases, terrain variation required a slightly higher altitude, up to a 

maximum of 200ft AGL. All flights were conducted in accordance with Federal Aviation 

Administration regulations by pilots certified under CFR Part 107 guidelines. When 

possible, missions were conducted between the hours of 1000 and 1400 local time with 

no cloud cover, to ensure optimal lighting conditions (as recommended by Watts et al. 

2010). However, due to time constraints, other project requirements, and the large size of 

the study area, exceptions were sometimes made in extenuating circumstances.  
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Figure 3: DroneDeploy Flight Planning Interface on iOS 

 

Imagery Post-Processing 
 

Photos for each plot were merged into a single orthophoto using Pix4Dmapper 

photogrammetry software. Consistent with a participatory strategy, orthophotos were 

provided to landowners via an online portal, as a means of educating landowners on the 

extent of invasive and nuisance species on their property. Additionally, SfM-MVS 

algorithms in Pix4D generated dense point clouds depicting the 3D structure of terrain 

and features on the landscape (see Gillan et al. 2014). 

Because the UAS platform produced only 3-band RGB imagery, SfM-MVS-

derived vegetation heights were merged as a fourth band in a DEM data fusion approach 

which has been shown to improve classifications (Alonzo, Bookhagen, and Roberts 2014; 

Ellis and Mathews 2019; Kabolizade, Ebadi, and Ahmadi 2010; Swatantran et al. 2011; 

Trinder and Salah 2012). To achieve this, dense point clouds for each orthophoto 

obtained from Pix4Dmapper were imported into a Python point classification script 

created by the author. The script utilizes tools in the 3D Analyst extension of ArcPy to 
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classify points into ground and non-ground (full code shown in Appendix IV). Next, 

ground points were interpolated into a digital terrain model (DTM). Both ground and 

non-ground points were interpolated into a digital surface model (DSM). Finally, a 

normalized digital surface model (nDSM), representing the height of vegetation or other 

features on the plot, was generated by subtracting the DTM from the DSM using raster 

calculator (Li, Zhu, and Gold 2004). The nDSM was then merged as a fourth band in 

each RGB image (Figure 4) (Singh et al. 2012). In rare cases where terrain was too 

complex or vegetation too dense to produce an accurate nDSM through the Python script, 

some manual point classification was executed in ArcGIS Pro (Figure 5). 

 

Figure 4: Point Cloud Processing and nDSM Generation 

 

 

The final four-band orthophotos were then classified into land-cover classes using 

object-based image analysis (OBIA) in ArcGIS Pro. Individual segments, resulting from 

the OBIA, were grouped using a supervised approach. In order to most effectively 

compare UAS land-cover classes with ground-level vegetation sampling and household 

survey data, a separate classification scheme was created for each plot according the 
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landowner’s species of concern. For example, one plot may contain only two classes 

(e.g., grass and bare) if the landowner cited no nuisance species concerns, while another 

might contain five (e.g., grass, bare, cholla, yucca, and broom snakeweed) if all were 

cited as problematic by the participant. In instances where a nuisance species was cited, 

but did not occur in appropriate abundance for effective classifier training, such species 

were ignored.  

 
Figure 5: Orthophoto Classification Workflow 

 

Prior to classification, each orthophoto was clipped to remove any irregularities, 

including areas with edge effects (e.g., fences, roads, etc.), structures, or erroneous or 

noisy nDSM data. As a pilot to determine the most effective classification method, five 

randomly selected plots were classified using six unique approaches. For the first three 

approaches, segments in the 4-band imagery (with vegetation heights) were classified 

using (1) a support vector machine algorithm, (2) random forest classification, and (3) 

maximum likelihood classification. The next three approaches used the same three 
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classification schema, but with 3-band RGB imagery (no vegetation heights). Each plot 

was segmented into “objects” of similar spectral values by modifying parameters in the 

ArcGIS Pro segmentation tool to optimize delineation of woody plants and bare soil from 

surrounding grass, while also minimizing the number of objects that comprised each 

patch (Laliberte et al. 2010; Rango et al. 2009). Next, training samples were collected for 

each land-cover type (n = 10 × [number of bands] × [number of classes]) (Mather 

2004). Finally, classification was executed on each set of orthophotos, segmented 

orthophotos, and training samples.  

Classification accuracy assessments and confusion matrices were calculated by 

randomly placing points across each classified orthophoto (n = 10 × [number of 

classes]2) (adapted from Mather 2004) and manually determining the appropriate land-

cover class for each point based on the apparent class shown in the high resolution 

imagery (Stehman 2009). While separate reference data such as ground-truthed points or 

aerial photographs are often consulted for accuracy assessments in coarser resolution 

imagery, visual inspection alone is adequate for ultra-high resolution imagery (Husson, 

Ecke, and Reese 2016). This approach has been shown to identify vegetative land cover 

to species level with 95% accuracy (Husson, Hagner, and Ecke 2014). 

Once the most accurate classification method was determined, all 40 UAS 

orthophotos were classified and assessed for accuracy using the same protocol. In 

instances where overall accuracy fell below 85% (threshold set by Anderson 1976), 

orthophotos were reclassified until either the threshold was met, or three attempts were 

completed. Accuracy metrics including user’s accuracy (errors of commission or “map 

reliability”), producer’s accuracy (errors of omission), and total accuracy (the percentage 
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of correctly classified points) were calculated for each plot from confusion matrices as 

described by Congalton (1999). Additionally, a Kappa statistic was calculated as a test of 

significant disagreement between classification and reference data (Monserud and 

Leemans 1992), where values of >0.8 indicate strong agreement, values between 0.4 and 

0.8 indicate moderate agreement, and values below 0.4 are poor (Landis and Koch 1977). 

Upon completion of classification and accuracy assessment, the total acreage and 

proportion of each land-cover class for each plot was calculated. These data were stored 

in a Microsoft Excel spreadsheet and were pooled at multiple scales of analysis, including 

county-level and by landowner perception (intact or encroached plots). Significant 

differences between groups were analyzed using two-tailed t-tests in Microsoft Excel and 

the software package R. 

 

National Land Cover Dataset Change Detection 
 
 As the coarsest but broadest scale data source of this analysis, and the only 

temporally variable data, 30m resolution National Land Cover Dataset (NLCD) data was 

obtained from the years 1992 and 2016 to examine land-cover change across the entire 

extent of the study area. The 1992 dataset, as the oldest available version of NLCD, 

provides historical context for vegetation in the region during a period of normal 

precipitation (Fagin et al. 2016, 5). Comparing 1992 to 2016 provides an important time 

series both because 2016 represents a landscape emerging from a historic 15-year drought 

(U.S. Drought Monitor 2019) and is temporally the closest available data to UAS 

observations. 
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Using methods described by Fagin et al. (2016), the 1992 dataset was modified to 

conform to current NLCD classification categories using the NLCD 1992/2001 Retrofit 

Land Cover Change dataset (Fry et al. 2009). For both years, data was reclassified to a 

modified Anderson Level I classification scale (Anderson et al. 1976), which collapses 

NLCD categories into just seven groups, including three which are relevant to this 

investigation: herbaceous, forest, and shrubland. To quantify change in vegetation over 

time, the Raster Calculator tool in ArcGIS Pro was used to isolate pixels that converted 

from Herbaceous to Forest or Shrubland land-cover categories. The resulting raster layer 

exhibits the specific localities of woody plant encroachment from 1992 to 2016, albeit 

without details related to the exact species of concern. 

 

NLCD Regression with Environmental Variables 
 

To more clearly evaluate the role of environmental variables on plant 

communities, a spatial error regression model was implemented to directly measure the 

relationship between WPE severity and climate, terrain, and soil. Because land use 

undoubtedly also plays a role in WPE (Fagin et al. 2016; Vadjunec et al. 2018; Wenger, 

Vadjunec, and Fagin 2017), individual land parcels were implemented as the unit of 

analysis under the assumption that these parcels largely represent delineations of land 

management practices, since a single owner is likely to use the same judgements in 

making management decisions across the parcel. Further, despite changing management 

actions across parcel lines, environmental variables are typically consistent within the 

parcel extent. 
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To map these parcels, a 2018 Union County CAD file was purchased from the 

county GIS office and Cimarron County parcels were sourced from a 2014 paper plats 

and digitized as part of the larger project. Within each parcel, the percent vegetation 

change from the NLCD layer was calculated using the Zonal Statistics tool in ArcGIS 

Pro. Six climatic variables were obtained from the WorldClim Global Climate Database 

Version 2.0 (Fick and Hijmans 2017). WorldClim provides a global dataset of 

interpolated climate variables in raster format at 30 second resolution, which are 

frequently used in species distribution modeling and mapping (Beaumont, Hughes, and 

Poulsen 2005). For each of the six variables, the Zonal Statistics tool was used to 

calculate the mean value within each parcel. The variables used include Annual 

Temperature, Annual Precipitation, Temperature Seasonality, Precipitation Seasonality, 

Vapor Pressure, and Solar Radiation. 

In addition to the six climatic variables, the role of complex topography on WPE 

was investigated. A metric of terrain ruggedness was calculated using the USGS National 

Elevation Dataset at 1/3 arcsecond resolution (USGS 2016a). A raster surface for slope in 

degrees was generated using the Slope tool in the ArcMap 10.4 Spatial Analyst toolbox, 

at the same spatial resolution as the original dataset. Within each parcel, standard 

deviation of slope was calculated using the Zonal Statistics tool, as a proxy for 

ruggedness. Additionally, soil data from the USDA SSURGO database (NRCS n.d.) was 

used to determine the role of soil texture variables including percent sand, silt, and clay. 

Prior to use in regression, some variables were transformed to achieve a normal 

distribution, as needed. Because many of the environmental variables chosen for the 

model exhibit similar gradients across the study area, principal components analysis 
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(PCA) was implemented in SPSS v25 to reduce multicollinearity, using a varimax 

rotation to optimize component loadings. Finally, a linear regression special error model 

was created in Geoda 1.12 to interrogate the relationship between environmental 

variables and the severity of WPE. This special form of regression uses a spatial error 

component to account for spatial autocorrelation in the dependent variable and corrects 

for effects of unknown variables (Baltagi, Song, and Koh 2003).  

 

Synthesis 
 
 While each of the three questions are addressed through independent data streams 

and methodologies, higher level conclusions will be drawn by examining the synergistic 

relationships between the various methods, especially in how they might relate to the 

uniqueness of the study area and exhibit geographic, scalar, and temporal variation. More 

specifically, synthesis of the multiple study components directly addresses Question 3 

(What are the benefits and limitations of multiple scales of analysis, particularly 

considering the potential role of unmanned aerial systems (UAS) as a scalar bridge in 

rapid vegetation assessments?) by linking multiple spatial scales. Further, given the 

novel approach of UAS as a rapid assessment tool, using benchmarks of other rapid 

assessments provides contexts upon which to evaluate the efficacy of UAS in this study 

and LSS more broadly. 

 

Linking Household Surveys to Ground-Level and UAS-Level Vegetation Assessments 

 Due to extensive research demonstrating how land management behaviors affect 

WPE severity (Archer, Schimel, and Holland 1995; Dullinger, Dirnböck, and Grabherr 
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2004; Van Auken 2009), relationships between household survey responses and 

vegetation community composition (at both ground- and UAS-level) were closely 

examined. Prior to analysis, survey responses were recoded in a variety of ways to reflect 

ecological relevance. For example, qualitative descriptions of past herbicide application 

were recoded into a binary variable (herbicide applied or not applied), the number of 

years since last application, or a count of the number of applications in the past ten years. 

Since no clear consensus exists on exactly which land management practices or 

frequencies best combat species invasions (Asner et al. 2004), all of these recoded 

responses were combined in a correlation matrix along with biodiversity metrics and 

UAS-derived land-cover proportions to identify potential trends. From this exploratory 

approach, t-tests were calculated in Microsoft Excel to examine whether the 

presence/absence of specific land management actions yielded significant differences in 

the land’s vegetation and health. 

 

Linking Ground-Level Vegetation Sampling to UAS Classification 
 
 Ultimately, the ground-level and UAS-level analyses sought to quantify many of 

the same metrics, including percent woody vegetation at species level, percent bare soil, 

and terrain variability. Notably, these metrics clearly influence each other, such as the 

well-documented relationship between bare soil and WPE (Allen and Allen 1991; Alofs 

and Fowler 2013) and between terrain complexity and some tree species (Coop and 

Givnish 2007). Additionally, other relationships, such as those between herbaceous plant 

biodiversity and woody plant abundance, are less clear (Levine 2000). To resolve these, 

and more directly answer Questions 2 and 3, linear regression was used to probe the 



54 

relationship between biodiversity metrics (including species richness, diversity, and 

evenness) and the percent woody plant cover derived from each UAS flight. Additionally, 

results of ground-based and UAS-derived bare soil estimates and woody plant estimates 

will be compared, using a paired t-test to detect a significant difference between the two 

as described by (Laliberte et al. 2010). 

 

Examining Differences between UAS and Coarse-Scale Satellite Imagery 
 

A pitfall of satellite imagery is its poor resolution when compared to UAS, 

particularly because species of interest for this investigation are typically <3m in 

diameter, while NLCD data is obtained at 30m resolution. As a result, individual plants 

are not distinguishable, and land-cover classifications are determined based on the 

majority land cover (Xian et al. 2015). After obtaining percent woody plant cover for 

each UAS plot, percent shrubland/forest were derived for the same areas using NLCD 

data. The relative values were then compared using a paired t-test to determine whether 

NLCD data may under- or overestimate WPE. Additionally, linear regression was used to 

examine the relationship between the two. Residuals from the regression were mapped to 

identify whether there is a spatial pattern in NLCD classification error and metrics of 

spatial autocorrelation such as Moran’s I were be calculated to determine if these patterns 

are statistically significant.  

 

Summary 
 
 Because such a wide array of explanations have been proposed for desertification 

and changing vegetation communities in rangelands, a number of methodologies must 
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also be implemented to examine which factors are most relevant in Cimarron and Union 

Counties. By starting with household surveys, issues of greatest importance to 

landowners provide context for all broader-scale analyses, and land management 

practices are directly evaluated. Further, the use of ground-, UAS-, and satellite-level 

detection of vegetation patterns provide a novel approach that both informs species 

distributions at multiple scales while also helping to evaluate the utility of UAS as a rapid 

assessment tool. Further, modeling of broad-scale environmental factors with satellite 

remote sensing provides a perspective on environmental effects to compliment the finer 

scale land management analysis. 

 As Chapter 4 (Results and Discussion) continues, the findings of each method are 

presented, with their relevance and relationship to others discussed in depth. The chapter 

then discusses the benefits and drawbacks of approaching this investigation through an 

LSS approach, detailing the ways that a more complete picture of causes and effects 

might be teased out of a mixed methods approach. 
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CHAPTER IV 

RESULTS AND DISCUSSION 
 
Household Surveys 

 Surveys were conducted with 20 household, 10 from each county. While the 

majority of respondents were cattle ranchers, four were farmer-ranchers, and two were 

farmers managing grasslands as part of the Conservation Reserve Program (CRP). 

Participants were 80% male and nearly all were long-term residents of the area.  

 

Landowner Perceptions 
 

Household survey questions related to landowner perceptions revealed that 

respondents have a keen knowledge of the landscape and the biophysical features that 

characterize it. Further, many survey respondents provided thoughtful answers related to 

invasive nuisance species, detailing not only which species occurred on their property, 

but what consequences its presence might have and what actions they have taken to 

reduce them. The most commonly cited nuisance species by landowners was black-tailed 

prairie dog. When asked whether or not they were concerned about the species, 61% of 

respondents indicated as a concern (Figure 6). Many landowners said the rodent disturbs 

soil and grass, and that burrows can cause injury to cattle that inadvertently step into 

them. As an additional non-vegetation concern, 30% of respondents named grasshoppers 

as a nuisance species on their property. Many claimed drought exacerbated the densities 
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Figure 6: Nuisance and Invasive Species of Concern among Landowners  
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of the insect, which competes with cattle for forage. Of landowners who said they were 

“concerned” and were asked to rate the severity of each nuisance species on their 

property on a Likert scale (1-5, where 5 is most severe), respondents were more likely to 

rank these two species a “5” than any other species. 

 In terms of vegetation, the most commonly cited nuisance plant was Russian 

thistle (Kali tragus), commonly known as tumbleweed. Although no landowners claimed 

deleterious ecological effects, the plant can become a management issue by damaging 

fences, creating fuel for fires, and even “high-centering your truck,” as one respondent 

noted. Again, many said the species is more prevalent during drought. In a similar vein, 

locoweed (Oxytropis spp. and others) was mentioned by 43% of respondents as 

problematic because of its toxicity to cattle. Similarly, no larger ecological effects of the 

plant were mentioned, but many landowners have taken steps to remove the plant and the 

threat to their livestock. 

 Though landowners identified the aforementioned species as problematic, none 

were included in the remote sensing portion of this investigation due to low detection 

probability. However, several trees and shrubs cited by landowners were later identified 

in UAS imagery, including Great Plains yucca (Yucca glauca, 48%), cane cholla 

(Cylindropuntia imbricata, 39%), one-seed juniper (Juniperus monosperma, 39%), 

broom snakeweed (Guterrezia spp., 27%), and sand sage (Artemisia filifolia, 14%). 

Notably, respondents tended to rate the severity of these species on the lower end of the 

Likert scale. Although surveyors asked specifically about each of these species, since 

they were documented as species of concern by Fagin et al. (2016), some respondents 

questioned characterizing them strictly as a “nuisance.” For example, many landowners 
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had observed Great Plains yucca on their property, but saw it as beneficial because cattle 

can eat the blossoms in early spring. Similarly, some saw a benefit in juniper and cholla 

on the landscape, as the plants can serve as a windbreak or snow fence in the harsh 

winters. However, despite these outliers, most respondents agreed that many woody 

species were becoming problematic as they left less grass for cattle. 

 A majority (76%) of landowners indicated they had experienced at least one of 

the three major types of land degradation mentioned in the survey, including soil erosion, 

grass degradation, and soil compaction, while 13% had experienced all three. The most 

commonly cited issue was soil erosion, affecting 45% of respondents, though most rated 

the severity on the bottom half of the Likert scale (Figure 7).   

 
Figure 7: Land Degradation Issues among Landowners  
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 In general, respondents indicated that maintaining healthy plant communities on 

their property involved high levels of effort. When asked, “How much effort have you 

put into removing nuisance/invasive species from your land?”, 75% of respondents gave 

a Likert ranking of 3 or higher, while 27% responded with a 5—the highest level of 

effort.  

 

Land Management Practices 
 

Land management practices for the 40 ground observation/UAS plots were 

somewhat variable (Table 1), though the most common land use by far was traditional 

cow-calf grazing with few modifications to the land. Twenty-nine plots grazed cattle at 

traditional stocking rates, while six more only used the pasture for short-term intensive 

grazing. Seven plots were registered under the Conservation Reserve Program (CRP), 

some of which were periodically grazed. Only four of the plots had been burned for 

nuisance plant management, while two had been mowed, and five had used herbicide 

applications. Two additional plots had undergone some light manual removal of invasive 

species. The vast majority of the plots were privately owned, though two were state 

leases.  

At the county level, there was little difference in land-use/management practices 

among the 40 plots (Table 1). One state-owned plot was present in each county, while the 

remainder were privately owned. Grazing was the dominant land use in both counties, 

though one quarter of Cimarron County plots were enrolled in CRP, compared to just 

10% of Union County plots. Land management practices did seem to differ across county 

lines. Four plots in Union County were burned and two had vegetation manually 
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removed, though these practices were not used on any Cimarron County plots. By 

contrast, mowing occurred in two Cimarron County plots, but no Union County plots. 

Landowners perceived both of the two state-owned plots as “Intact”. A majority 

of grazed plots were also “Intact”, though five of the seven CRP plots were perceived as 

“Encroached”. Management actions such as burning, mowing, and manual removal were 

fairly evenly split between the "Intact" and “Encroached” groups. However, 80% of plots 

with herbicide applications were identified as “Intact.” 

 

Table 2: Plot Land-Use and Management Descriptions 
  County-Level (# plots) Landowner Perception (# plots) 

  Cimarron (OK) Union (NM) “Intact” “Encroached” 

Ownership 
Private 19 (95%) 19 (95%) 18 (90%) 20 (100%) 
State 1 (5%) 1 (5%) 2 (10%) 0 (0%) 
Total 20 20 20 20 

Land Use 
Grazing 15 (75%) 18 (90%) 18 (90%) 15 (75%) 
CRP 5 (25%) 2 (10%) 2 (10%) 5 (25%) 
Total 20 20 20 20 

Management 
Actions 

Burning 0 (0%) 4 (20%) 2 (10%) 2 (10%) 
Mowing 2 (10%) 0 (0%) 1 (5%) 1 (5%) 
Herbicide 3 (15%) 2 (10%) 4 (20%) 1 (5%) 
Manual 
Removal 0 (0%) 2 (10%) 1 (5%) 2 (10%) 

Total 5 8 8 6 
 

Ground-Level Observations 

Forty plots for ground-level observations (and by association, UAS imagery) were 

distributed across Cimarron and Union Counties. Although though few plots were located 

in the primarily cultivated lands of eastern Cimarron County due to intensive land 

modifications in the areas, plots were systematically distributed across all other regions 

of the study area.  
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Biophysical Observations and Rangeland Health 
 

Ground-level biophysical observations revealed a wide diversity in land quality 

and degradation, reflecting the varied responses of landowner perceptions regarding land 

quality. For example, the estimated percent bare soil within sampling plots ranged from 

0% (i.e., totally covered in vegetation) to 70% (highly degraded). Plots varied 

dramatically in terrain features as well; many were completely flat, while the slope on 

others was estimated as high as 10°. In terms of rangeland health metrics, including 

presence of rills, water flow patterns, and pedestals, nearly all plots scored on the lower 

end of the 1-5 scale, indicating low degradation (Table 3). Rills were the most commonly 

identified indicator of degradation, occurring in 26 of the 40 plots at varying severities. 

Additionally, evidence of livestock was observed on 33 of the 40 plots. 

 

Table 3: Ground-level Land Degradation Assessments 

Metric All Plots 
County-Level  Landowner Perception 

Cimarron (OK) Union (NM) Intact Encroached 

Percent Bare Soil 18 (16) 25* (18) 13* (12) 17 (17) 20 (14) 

Estimated Slope 1.7° (3.1°) 2.4° (3.7°) 0.9° (2.3°) 2.2° (3.5°) 1.1° (2.5°) 

Rills 1.7 (0.6) 1.6 (0.6) 1.8 (0.6) 1.7 (0.6) 1.7 (0.6) 

Water Flow Patterns 1.5 (0.8) 1.5 (0.9) 1.4 (0.6) 1.3 (0.6) 1.6 (0.9) 

Pedestals/Terracettes 1.4 (0.7) 1.5 (0.8) 1.4 (0.5) 1.4 (0.7) 1.5 (0.6) 

Gullies 1.3 (0.8) 1.4 (1.1) 1.2 (0.5) 1.3 (0.7) 1.4 (1.0) 

Wind Scoured or 
Deposition 1.2 (0.5) 1.2 (0.6) 1.1 (0.3) 1.2 (0.5) 1.2 (0.5) 

Litter Movement 1.1 (0.3) 1.1 (0.4) 1.0 (0.0) 1.0 (0.0) 1.1 (0.4) 

All values displayed as means (standard deviations). *Significant difference between counties 
(p<.05) 
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A wide range of soil types were also observed in ground observations. Coarser soil 

textures (e.g., coarse sandy, moderately coarse loamy) were more common, though 13 

plots had moderately fine loamy soils. In nearly all plots, soil was extremely dry. O 

horizons were rarely present, and cores could not be driven into the B horizon due to 

dryness and compaction. Despite this, disturbance by prairie dogs was very common with 

networks of deep burrows often extending across and beyond entire plots.  

 
 

Table 4: Soil Texture Classes 

Soil Texture Class All Plots 
County-Level Landowner Perception 

Cimarron (OK) Union (NM) “Intact” “Encroached” 

Coarse Sandy 13 (33%) 9 (45%) 4 (20%) 5 (25%) 8 (40%) 

Moderately Coarse Loamy 9 (23%) 5 (25%) 4 (20%) 6 (30%) 3 (15%) 

Medium Loamy 1 (3%) - 1 (5%) - 1 (5%) 

Moderately Fine Loamy 13 (33%) 6 (30%) 7 (35%) 6 (30%) 7 (35%) 

Clayey 4 (10%) - 4 (20%) 3 (15%) 1 (5%) 

Total 40 20 20 20 20 

 

 At the county level, bare soil was significantly more severe in Cimarron County 

than in Union County (t=2.41, p<.05), with bare soil exceeding 20% in nearly half of 

Cimarron County plots (Table 2). For other rangeland health indicators, Cimarron County 

plots tended to have slightly higher scores on average, indicating greater degradation, 

though the difference between counties was not significant. Sandier soils were more 

commonly observed in Cimarron County, where the most common soil textures were 

“sand,” “loamy sand,” and “sandy loam.” By contrast, soils were more variable in Union 
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County, with “clay loam” and “silty clay loam” observed as the most common textures 

(Table 3). 

 There was no significant difference in rangeland health indicators between 

“Intact” and “Encroached” plots, though mean scores for percent bare soil, water flow 

patterns, pedestals, and gullies were slightly higher. Additionally, a full spectrum of soil 

types were observed in both Intact and Encroached plots. Therefore, differences in soil 

and rangeland indicators appear to be more important at county-level scale than 

household scale. 

 

Vegetation and Biodiversity 
 

Sixty-one unique plant species were identified during vegetation sampling across 

the 40 plots (Appendix VI). Predictive estimates of study area-wide species richness 

reached 68 (Chao 2) or as high as 73 (first-order jackknife) (Table 5). Notably, these 

values are much lower than the hundreds of species identified in county-wide vegetation 

surveys (Oklahoma Vascular Plants Database 2019, New Mexico Biodiversity 

Collections Consortium 2019), though these estimates represent minimum species 

richness values (Chao et al. 2009) and are based only on small n sampling in specific 

agricultural rangelands. Elsewhere, species richness in Great Plains tall- and midgrass 

prairie systems has been observed in the range of 100-300 (Risser 1988). Species richness 

in semi-arid shortgrass prairies is often at the low end of this range, though over 50 

species have been observed in a single shortgrass prairie plot (Singh, Bourgeron, and 

Lauenroth 1996). Taken together, this suggests that species richness in Cimarron and 

Union Counties is likely greater than predictive estimates.  
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Most plots contained an assemblage of at least one warm season shortgrass (e.g., 

buffalograss or blue grama), often accompanied by one or more forbs (e.g., Plantago 

patagonica or Ambrosia psilostachya). The most common grass was buffalograss 

(Buchloe dactyloides), occurring in 23 of the 40 plots, followed by blue grama 

(Bouteloua gracillis) in 15 plots. Cool season grasses were not as commonly observed; 

for example, western wheatgrass (Pascopyrum smithii) was identified in just 5 plots and 

needle-and-thread (Stipa comata) in just 2. Additionally, 9 plots had positive IDs for a 

species of locoweed. Many plots also included members of the Fabaceae family, 

including wild alfalfa (Psoralea tenuiflora) and yellow clover (Melilotus officinalis), 

many of which serve important ecological functions such as nitrogen fixation. Woody 

plants, including trees such as one- seed juniper (Juniperus monosperma), shrubs such as 

broom snakeweed (Gutierrezia spp.), and cacti such as cane cholla (Cylindropuntia 

imbricata) and yucca (Yucca glauca) were identified in 32 of the 40 plots (hereafter, 

referred to as “woody plots”). Broom snakeweed was by far the most common woody 

plant, observed in 17 plots. By contrast, the next most common woody plants were 

prickly pear (7 plots) and yucca (6 plots). The majority of woody plots (21 of 32) hosted 

just one woody species, though as many as six woody species were observed in one 

highly diverse riparian plot.  

 No clear patterns emerged between herbaceous biodiversity and woody 

vegetation. Although there was a significant positive relationship between Shannon Index 

obtained at the 1m and 5m plots (Figure 7B), 1m plots frequently contained some woody 

species (especially broom snakeweed), and therefore cannot be used as a proxy for 

herbaceous vegetation.  
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Table 5: Plot Biodiversity Metrics 
 

 
All Plots 

County-Level  Landowner Perception 
Cimarron (OK) Union (NM) “Intact” “Encroached” 

1m Plots 
(All Species) 

Species 
Richness 

Mean (S.D.) 4.20 (1.90) 4.3 (1.87) 4.1 (1.92) 3.95 (1.63) 4.45 (2.11) 

Range 1 - 8 1 - 8 2 - 8 2 - 8 1 - 8 

Species 
Richness 
Estimates 

Jackknife 1 73.45 (4.83) 58.05 (4.46)* 39.35 (3.45)* 56.90 (5.32) 59.95 (4.46) 

Chao 2 68.09 (9.09) 52.50 (7.64)* 37.59 (7.86)* 60.36 (14.01) 59.95 (11.64) 

Shannon  
Index 

Mean (S.D.) 0.80 (0.36) 0.77 (0.39) 0.73 (0.39) 0.67* (0.31) 0.92* (0.36) 

Range 0 - 1.58 0 - 1.58 0 - 1.58 0.14 - 1.22 0 - 1.58 

Species. 
Richness 
(Poaceae) 

Mean (S.D.) 1.53 (0.63) 1.45 (0.59) 1.6 (0.66) 1.4 (0.66) 1.55 (1.4) 

Range 0 - 3 0 - 2 1 - 3 0 - 3 0 - 6 

5m Plots 
(Woody 
Species) 

Species. 
Richness 

Mean (S.D.) 1.38 (1.26) 1.55 (1.53) 1.2 (0.87) 1.2 (1.08) 1.55 (1.4) 

Range 0 - 6 0 - 6 0 - 3 0 - 4 0 - 6 

Shannon  
Index 

Mean (S.D.) 0.19 (0.17) 0.19 (0.19) 0.19 (0.15) 0.17 (0.14) 0.21 (0.2) 

Range 0 - 0.67 0 - 0.67 0 - 0.58 0 - 0.51 0 - 0.67 

*Significant difference between groups (p<.05) 
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As with physical landscape data, biodiversity metrics for the 40 plots were likewise 

highly variable (Table 4). Species richness in 1m plots ranged from 1 (indicating just one 

species present) to 8, with a median of 4 and a slight right skew to the distribution. 

Shannon index for 1m plots ranged from 0 (indicating one species; i.e., no diversity) to a 

maximum of 1.58. The mean Shannon index value was 0.80, with a standard deviation of 

0.36, consistent with species evenness metrics observed in similar semi-arid systems 

(Brockway, Gatewood, and Paris 2002; Knapp et al. 2002). For the 5m plots, where only 

woody plants were recorded, Shannon index values were lower, ranging from 0 to 0.67. 

The distribution was heavily skewed right, with 11 of the 40 plots exhibiting a 5m 

Shannon index value of 0 indicating no woody vegetation. 

A significant difference in many rangeland health indicators was observed 

between woody and non-woody plots. Woody plots were significantly more likely to 

have more severe rankings for water flow patterns (t=-2.09, p<.05), pedestals/terracettes 

(t=-4.19, p<.05), and wind scouring/deposition (t=-2.24, p<.05). Additionally, woody 

plots on average had 8% more bare soil area (t=-2.05, p<.05). However, no relationship 

was detected between soil texture and presence of woody plants (X2 = 2.78, p=0.952), 

nor between soil texture and Shannon index (t=-1.33, p=.192).  

County-wide species richness estimates were significantly higher in Cimarron 

County than Union County, as observed both by the first-order jackknife and Chao 2 

estimates. However, plot-level difference of means tests revealed no significant 

differences between counties in woody vegetation diversity, nor in woody cover. 

Cimarron County plots on average had 9.1% woody cover, compared to 8.3% in Union 

County plots.  



68 

 “Encroached” plots had significantly greater Shannon index values for 1m 

subplots than “Intact” plots (t=2.23, p<.05). Additionally, “Encroached” plots were home 

to 0.35 more woody species than “Intact” plots, though there was no significant 

difference in proportion of woody cover between the two plot types.  

 

Figure 8: Woody Plant Species Richness vs. Shannon Index 

  

 

UAS Imagery Classification 
 
UAS Classification Accuracy Assessments 
 
 In the initial pilot study to evaluate the optimal classification methods for UAS 

imagery, the Support Vector Machine (SVM) algorithm performed most accurately, and 

was improved by the addition of the fourth band containing vegetation height data (Table 

5). The Random Forest (RF) method without height data was least accurate, with an 

average classification accuracy of just 80.3%. In both the SVM and RF tests, 4-band 

imagery with height data significantly increased classification accuracy by 3.2% on 

average, compared to RGB imagery (t=3.27, p<.01). Results were mixed for Maximum 



69 

Likelihood Classification, however. Based on the results of this assessment, the SVM 

with heights method was implemented for all 40 UAS images. 

 

Table 6: Accuracy of Various Classification Methods 

Classification Method 

RGB  
Total Accuracy 
Mean (S.D) 

RGB + Heights  
Total Accuracy 
Mean (S.D) 

Maximum Likelihood Classification 82.5% (3.5%) 80.7% (7.3%) 

Random Forest 80.3% (7.1%) 83.5% (4.0%) 

Support Vector Machine 84.4% (4.1%) 92.7% (2.3%) 

 

 Total accuracy of SVM classification in the 40 UAS images ranged from 81% to 

97% (µ=88.9%, σ=4.5%), with 32 of the images meeting the desired 85% accuracy 

benchmark (Table 6). The mean Kappa value was 70.9% (σ=9.5%), suggesting moderate 

agreement in general between SVM classification and human identification, though 

classification for seven plots indicated strong agreement (Kappa > 0.8). Classification 

schema and categories varied depending on the species of interest cited by landowners. In 

half of plots, classification schema included just three classes (grass, bare, and one woody 

plant species), while 13 plots were classified into four classes, six plots had five classes, 

and one plot had six classes. While there was no significant relationship between the 

number of categories and the total accuracy, anecdotal observations suggest that SVM 

performed more poorly when two spectrally similar species (e.g., broom snakeweed and 

juniper) were present in the same plot. Additionally, plants with complex structure and 

texture (e.g., juniper or mesquite, with distinct patches of gray branches and green 

foliage) tended to result in inaccurate, patchy classifications. In fact, total accuracy in 
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plots with juniper or mesquite present was 3.5% lower than in plots without (t=2.12, 

p<.05). 

Table 7: UAS Image Classification Accuracy Assessment 

  Mean St. Dev. Number of Plots 
Total Accuracy  88.9% 4.5% 40 
Kappa  0.709 0.095 40 

User's Accuracy 

Bare 72.0% 19.0% 40 
Grass 95.0% 5.0% 40 
Snakeweed 75.0% 24.0% 21 
Yucca 35.0% 17.0% 18 
Sage 86.0% 18.0% 5 
Clover 70.0% — 1 
Cholla 58.0% 22.0% 7 
Juniper 78.0% 19.0% 12 
Mesquite 58.0% 2.0% 2 
Water 70.0% — 1 
Cottonwood 97.0% — 1 

Producer's 
Accuracy 

Bare 79.0% 19.0% 40 
Grass 91.0% 7.0% 40 
Snakeweed 84.0% 14.0% 21 
Yucca 83.0% 18.0% 18 
Sage 72.0% 10.0% 5 
Clover 78.0% — 1 
Cholla 96.0% 8.0% 5 
Juniper 87.0% 12.0% 12 
Mesquite 70.0% 10.0% 4 
Water 100.0% — 1 
Cottonwood 81.0% — 1 

 

 At the class level, the Bare Soil class had a user’s accuracy of 72%, but a 

producer’s accuracy of 79%, indicating the class was frequently overestimated. By 

contrast, the Grass class was slightly underestimated, though generally more accurate, 

with a user’s accuracy of 95% and a producer’s accuracy of 91%. Reliability of 

classification of woody plants, as indicated by user’s accuracy, was moderate (µ=69.8%, 
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σ=16.9%), but was observed as high as 97% (cottonwood). The lowest reliability was 

observed for yucca (35% user’s accuracy), which was frequently segmented into many 

objects because of its textural inconsistency and was often confused for grass due to its 

low height and spectral similarity. For most woody plant species, SVM overestimated 

coverage, as indicated by higher producer’s accuracy (i.e., lower errors of omission). 

Misclassifications frequently occurred in shadows or in areas where segmentation could 

not distinguish spectral differences between foliage and neighboring grass. Sand sage, a 

species that was underestimated, tended to be confused for grass particularly in areas 

where there was little difference in height between the two classes.   

 

UAS-Derived Land Cover 
 
 UAS images, as with ground observations, were varied in their coverage of bare 

soil, woody plants, and grass. Bare soil coverage in plots was generally low (µ=9.1%, 

σ=9.8%), though was reported as high as 53%. Woody plant cover ranged from 1% to 

29% (µ=9.4%, σ=8.3%), while grass was the dominant cover in all but one plot 

(µ=81.5%, σ=16.0%). Broom snakeweed was the most commonly observed woody 

species in UAS images, occurring in 21 of 40 plots, followed by yucca in 19 plots, and 

juniper in 11 plots. Cottonwood, though observed in just one plot, occurred in the greatest 

density, occupying 14.1% of a single plot. Additionally, mesquite covered on average 

10.3% of the four plots where it was present, while sand sage occupied 8.5% of the five 

plots where it was present. Other more commonly observed woody species were more 

moderate in their densities, with yucca covering just 5.6% on average, followed by 

juniper (4.8% coverage), broom snakeweed (4.4% coverage), and cholla (4.2%).    
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Table 8: UAS Image Classification Results 

 
All Plots 

County  Landowner Perception 
Cimarron (OK) Union (NM) Intact Plots Encroached Plots 

Acres 14.4 (3.1) 14.2 (3.2) 14.6 (3.0) 13.8 (2.6) 15.1 (3.4) 
# Classes 3.7 (0.8) 3.7 (0.8) 3.7 (0.8) 3.8 (0.8) 3.6 (0.8) 
% Woody 9.4 (8.3) 10.4 (8.6) 8.4 (8.1) 8.2 (6.9) 10.6 (9.5) 
% Bare 9.1 (9.8) 9.8 (11.9) 8.5 (7.2) 7.4 (6.2) 10.8 (12.3) 
% Grass 81.5 (16.0) 80.0 (18.1) 83.1 (13.5) 84.5 (11.9) 78.6 (18.8) 

All values presented as means (standard deviations). No significant differences were detected between 
means at either grouping level. 
 

 At the county level, UAS imagery classification revealed no significant difference 

between counties in coverage of grass, bare soil, nor overall woody plant cover (Table 7). 

However, certain species-level differences were observed. Broom snakeweed was 

observed in fourteen Union County plots, but just seven Cimarron County plots. Further, 

the species exhibited significantly greater coverage in Union County, occupying 4.3% of 

plots on average, compared to just 0.4% in Cimarron County (t=2.93, p<.05). By 

contrast, yucca coverage was significantly greater in Cimarron County (µ=4.3%, 

σ=6.5%) than in Union County (µ=1.0%, σ=1.5%; t=2.07, p<.05). 

 Although no significant differences were observed in land cover between 

“Encroached” and “Intact” plots, “Encroached” plots had slightly higher mean woody 

cover values (µEncroached = 10.6%, µIntact = 8.2%) and higher bare soil values (µEncroached = 

10.8%, µIntact = 7.4%). 

 Supporting the notion that bare soil patches indicate land degradation, and 

therefore may cause the landscape to be more susceptible to woody plant encroachment, 

percent bare soil was significantly positively correlated with woody plant coverage 

(Figure 8A, R2=.306, p<.001).  There was no relationship, however, between the number 

of woody plant species classified and bare soil coverage (F=.482, df=39, p=.697). 
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Additionally, grass coverage was significantly negatively correlated with woody plant 

coverage (Figure 8B, R2=.736, p<.0001). 

 

Figure 9: Relationships between UAS-Derived Land-Cover Classes 

 
 

National Land Cover Dataset Regression 

 Comparisons of shrubland and forest coverage between the 1992 and 2016 

National Land Cover Dataset (NLCD) revealed that 990,352 acres within the study area 

were encroached by woody vegetation, comprising 33.2% of Union and Cimarron 

Counties.  

WPE was more severe in Union County, where 40.4% of land was converted to a 

woody land-cover class, compared to just 18.1% in Cimarron County (Figure 9). Further, 

encroachment was not only more severe overall for Union County, but tended to affect a 

greater proportion of landowners’ parcels than in Cimarron County (t=-49.364, 

p<.0001). Large portions of Cimarron County experienced little-to-no increase in 

shrubland or forest land cover, particularly in areas of cultivated agriculture. In fact, 33% 
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Figure 10: Change in Forest/Shrubland Cover from 1992-2016 

 
Data sources: NLCD 1992 (Vogelmann et al. 2001), NLCD 1992-2001 Retrofit Product (Fry et al. 2009), 
NLCD 2016 (Yang et al. 2018), USGS State and County Boundaries (USGS 2014b, 2014a). 
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of Cimarron County parcels had no change in woody vegetation, according to NLCD 

data. By contrast, the same was true for just 4% of parcels in Union County. While 

encroachment intensity for Union County was still skewed right, with a greater 

proportion of parcels experiencing lower levels of encroachment, the likelihood of severe 

encroachment in Cimarron County was much lower (Figure 10).  

 

Figure 11: County Comparison of Distribution of Parcel-level Percent Encroachment 

 

 Nine environmental variables were used in regression to predict WPE severity at 

he the parcel level: annual mean temperature, temperature seasonality, annual 

precipitation, precipitation seasonality, vapor pressure, soil percent sand, percent clay, 

and percent silt, and standard deviation of slope (a proxy for terrain ruggedness). Prior to 

regression, some variables were transformed or combined in a factor analysis to improve 

model performance and parsimony. The slope standard deviation variable was highly 

right skewed due to many parcels of land that had very little terrain variation. To improve 

normality of distribution, the variable was transformed using a square root 
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transformation. Despite the skew of the percent encroachment variable, no transformation 

was implemented because neither a square root nor log transformation improved 

skewness and kurtosis metrics.  

Additionally, soil texture data was comprised of three variables: percent sand, 

percent silt, and percent clay. Soils in the study area tended to range from sandy to silty-

clay, showing a strong negative correlation between sand and clay (r=-0.91) and a 

positive association between silt and clay (r=0.72). As a result, all three soil texture 

variables were collapsed into a single principal component, accounting for 90.6% of the 

variation in soil texture observed in the study area. For this principal component, low 

values were associated with sandier soils, while higher values were richer in silt and clay 

(Table 8). 

Table 9: Soil Principal Component Description 

 Component Loadings Extraction Communalities 
Percent Sand -1.000 0.999 
Percent Clay 0.919 0.845 
Percent Silt 0.935 0.874 

 

Similarly, strong multicollinearity was observed for several climate variables. 

Temperature was strongly positively correlated with temperature seasonality (r=0.81) 

and with vapor pressure (r=0.97), indicating that warmer areas tend to have greater 

variability in temperature and greater vapor pressure (i.e., less evapotranspiration). 

Additionally, precipitation was inversely related to precipitation seasonality (r=-0.71). To 

reduce multicollinearity in the final model, these five climate variables were merged into 

two principal components, accounting for 94.9% of variance in the climate data (Table 

9). Higher values in PC1 were associated with warmer, more variable temperatures and 
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with higher vapor pressure. Higher values in PC2 were associated with greater 

precipitation and less seasonal variability in precipitation.   

 Significant differences were observed between counties for all variables. Soils in 

Cimarron County were significantly sandier (t=4.42, p<.0001) and the climate was 

warmer (t=115.8, p<.0001) and wetter (t=79.61, p<.0001). Additionally, terrain was 

more rugged in Union County, with an average slope standard deviation of 2.53° per 

parcel, compared to 1.18° in Cimarron County (t=-32.92, p<.0001). 

 

Table 10: Climate Principal Components Description 

 Component Loadings Extraction 
Communalities 

 PC1 PC2 

Temperature 0.989 0.028 0.979 

Temp. Seasonality 0.831 0.509 0.950 

Precipitation -0.017 0.969 0.939 

Precip. Seasonality -0.480 -0.819 0.901 

Vapor Pressure 0.973 0.168 0.975 

 

 

A total of 12,632 parcels distributed across the two-county study area comprised 

the units of analysis for regression (Figure 9B). The dependent variable, percent increase 

in woody vegetation from 1992-2016, was predicted strongly by just five model 

components (Figure 11A, R2=0.783, S.E.=14.3%, F=1856.44, p<.0001). The most 

significant environmental variable contributing to the model was slope standard deviation 

(e.g., terrain ruggedness), which was strongly positively associated with WPE (Table 11, 

z=30.24, p<.0001). Soil texture was also strongly associated with WPE, with sandier 
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soils being significantly more susceptible to tree and shrub encroachment (z=-16.89, 

p<.0001). Additionally, climate data was a strong predictor of vegetation change, with 

the most severe encroachment occurring in areas of cooler, more stable temperatures and 

lower vapor pressure (PC1, z=-7.05, p<.0001) and in drier areas with more variable 

precipitation (PC2, z=-8.69, p<.0001). The strongest predictor of WPE according to the 

model was the spatial error component, lambda, which accounts for spatial 

autocorrelation between units of observation that are not explained by other variables.  

 

Table 11: Contribution of Variables in NLCD Spatial Error Regression 
Variable Coefficient Std. Error z-value Probability 

Constant 0.201 0.009 21.37 0.0000 

Slope S.D. 0.114 0.004 30.24 0.0000 

Soil PC1 -0.052 0.003 -16.89 0.0000 

Climate PC1 -0.056 0.008 -7.05 0.0000 

Climate PC2 -0.065 0.007 -8.69 0.0000 

Lambda 0.856 0.006 151.64 0.0000 

 

 Standard error of predicted values in the model was relatively low, at 14.3%. 

Residuals were randomly distributed across the study area (Moran’s I=-0.44), through 

the lowest residuals were observed in areas where WPE was already low (Figure 11B). 

These areas tended to have lower sand content in soils, and were also often areas of 

cultivated land, particularly in Cimarron County.  
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Figure 12: NLCD Regression Output 

 
Data sources: USGS State and County Boundaries (USGS 2014b, 2014a). 
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Synthesis 

 Because each method and result described above was measured through a unique 

scale and approach, similarities and differences have emerged that merit further 

inspection. As this section continues, different methods and results are directly compared 

to evaluate their levels of agreement or dissimilarity, both on a quantitative and 

qualitative level. Further, data is tested to examine how different metrics obtained 

through different methods may bridge together to form a more complete picture of how 

vegetation communities are changing.  

 

Linking Household Surveys to Ground-Level and UAS-Level Vegetation Assessments 

Due to low sample size for most land management variables (e.g., for mowing, 

n=2, for manual removal, n=1), survey responses were coded simply as binary variables, 

rather than year of action or frequency. Several moderate correlations were observed 

between management actions and land observations (Table 12). Grazing was positively 

correlated with all ground-level biodiversity metrics, providing evidence to support the 

beneficial ecological effects of “hoof action” cited by many survey respondents. Notably, 

these positive correlations held true both for herbaceous species biodiversity as shown in 

the 1m plots (r=.27), as well as woody plant diversity in the 5m plots (r=.32). Further, 

Shannon Index values for 5m plots (woody species) were significantly greater in grazed 

plots (Figure 12A, t=2.72, p<.05).
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Table 12: Correlation Matrix of Land Use, Ground Observations, and UAS Land-Cover 
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Land Use: Grazed 1.00 
                

Land Use: CRP -0.43 1.00 
               

Land Management: 
Burned -0.04 -0.15 1.00 

              
Land Management: 
Mowed -0.17 0.20 -0.08 1.00 

             
Land Management: 
Herbicide 0.14 -0.13 -0.09 -0.07 1.00 

            
Land Management: 
Manual Removal 0.08 -0.07 -0.05 -0.04 -0.05 1.00 

           
Species Richness 
(All Plants) 0.25 -0.01 -0.17 0.04 0.07 0.15 1.00 

          
Species Richness 
(Herbaceous Plants) 0.13 0.03 -0.14 -0.22 0.10 -0.16 -0.03 1.00 

         
Shannon Index (1m, 
Herbaceous Plants) 0.16 0.01 -0.09 -0.37 0.05 0.20 0.55 0.20 1.00 

        
Species Richness 
(Woody Plants) 0.20 -0.19 -0.03 0.02 -0.01 0.08 0.05 0.02 0.03 1.00 

       
Shannon Index (1m, 
All Plants) 0.27 -0.05 -0.16 -0.08 0.05 0.30 0.81 -0.04 0.74 0.11 1.00 

      
Shannon Index (5m 
Plot) 0.32 -0.13 -0.05 -0.04 -0.09 0.35 0.31 -0.02 0.16 0.82 0.37 1.00 

     
Woody Species 
Present 0.22 0.07 -0.04 0.11 -0.33 0.08 -0.01 -0.08 -0.12 0.55 -0.04 0.55 1.00 

    
Number of UAS 
Classes 0.05 -0.23 0.23 -0.06 -0.01 -0.14 -0.25 -0.18 -0.16 0.13 -0.16 0.06 0.12 1.00 

   
UAS-Derived 
Percent Woody 0.04 0.10 0.07 -0.01 -0.08 0.26 -0.04 0.03 -0.02 0.49 0.02 0.60 0.41 0.31 1.00 

  
UAS-Derived 
Percent Bare -0.01 0.04 -0.01 0.11 -0.20 -0.08 0.07 -0.02 -0.17 0.34 -0.09 0.27 0.32 -0.05 0.55 1.00 

 
UAS-Derived 
Percent Grass 0.00 -0.07 -0.04 -0.06 0.17 -0.09 -0.02 0.00 0.12 -0.46 0.05 -0.47 -0.40 -0.13 -0.86 -0.90 1.00 

n=40. Correlation coefficients shown in bold when -0.2<r<0.2. Significance not shown, as many variables were binary.



 82 

Plots managed through the Conservation Reserve Program (CRP, n=7) tended to 

have lower woody vegetation biodiversity (Table 12). Notably, species richness of trees 

and shrubs for CRP plots was significantly lower than grazed plots, as judged both by 

ground observations (t=2.26, p<.05), and the number of woody species classified in UAS 

plots (t=2.12, p=.051). It was unclear, however, whether CRP had any effect on the 

severity of woody plant cover. 

Figure 13: Significant Differences in Land Observations Based on Land Management 

 

 

Herbicide application appeared to be the most effective management practice for 

increasing grass coverage. All landowners surveyed indicated that herbicide applications 

were strategically planned to target specific woody species, with no intended effects on 
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herbaceous vegetation. While there was no relationship between biodiversity and 

herbicide use, bare soil coverage was significantly lower in treated plots (t=4.50, 

p<.0001), and grass coverage was significantly higher (t=-2.73, p<.05). 

 

Linking Ground-Level Vegetation Sampling to UAS Classification 

Land cover percentages estimated through ground-level observations were generally 

moderately correlated with UAS-derived metrics (Figure 13). Paired t-tests indicated that 

there was no significant difference between the two methods in estimates of herbaceous 

vegetation cover, nor woody vegetation cover. However, bare soil cover was greater in 

ground observations (µ =18.3%) compared to UAS classification (µ=9.3%, t=4.64, 

p<.0001). Despite this, linear regression comparing the percent cover in each plot 

revealed that bare soil had the greatest correlation coefficient of the three classes (Figure 

XXB, R2=.462). Woody vegetation coverage was less strongly correlated (Figure XXF, 

R2=.290), followed by herbaceous vegetation (Figure XXD, R2=.113). All correlations 

were significant at α=.05. 

As an additional observation regarding scale of analysis, UAS imagery tended to 

identify more woody plant species than ground observations, averaging 1.7 woody 

species per UAS plot (σ=0.8), while ground observations identified just 1.4 (σ=1.5).  

 In terms of the relationship between biodiversity and UAS observations, a 

significant negative relationship was observed between UAS-derived herbaceous 

vegetation cover and the 5m Shannon index (r=-0.47), suggesting that herbaceous and 

woody cover are inversely associated. Similarly, a significant positive correlation was 

observed between UAS-derived woody vegetation cover and the 5m Shannon index  
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Figure 14: Comparison of Land Cover Percentages in Ground Observations and UAS 
Classification 
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(r=0.60), providing additional support for agreement between UAS- and ground-based 

vegetation observations. 

 

Table 13: Correlation Matrix of Biodiversity Metrics and UAS Classification 

  

UAS-
Derived % 
Bare 

UAS-
Derived % 
Grass 

UAS-
Derived % 
Woody 

Species 
Richness 

Shannon 
Index (1m 
Plots) 

Shannon 
Index (5m 
Plots) 

UAS-Derived % Bare 1.00      

UAS-Derived % Grass -0.90** 1.00     

UAS-Derived % Woody 0.55** -0.86** 1.00    

Species Richness 0.07 -0.02 -0.04 1.00   

Shannon Index (1m Plots) -0.09 0.05 0.02 0.81 1.00  

Shannon Index (5m Plots) 0.27 -0.47** 0.60** 0.31 0.37* 1.00 

n=40. *Significant at p<.05; **Significant at p<.001.  
 

 
 
Examining Differences between UAS and Coarse-Scale Satellite Imagery 
 
 Parcel-level estimates for percent woody vegetation cover were significantly 

different depending on method of measurement. NLCD 2016-derived measurements of 

woody vegetation (i.e., shrubland or forest land-cover classes) were on average three 

times greater than those derived through UAS remote sensing (t=4.14, p<.0001). This 

observation held true both for Cimarron County (µNLCD=29.9% µUAS=10.4%, t=2.56, 

p<.05) and Union County (µNLCD=30.9% µUAS=8.4%, t=3.27, p<.01).  

 Linear regression comparing NLCD and UAS-derived woody cover for the 40 

plots showed the correlation between the two methods was significantly stronger than 

random (ANOVA F=7.20, df=39,  p<.05), however the R2 of 0.159 indicated a weak 
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association overall. Standard error for regression was 0.320, indicating that the average 

difference in woody vegetation between the two methods was 32%—a remarkably high 

value considering the standard deviation between plots for UAS observations was just 

8.4%. Plots located in areas of greater woody vegetation had greater disagreement 

between the two methods, as evidenced by moderate spatial autocorrelation of residuals 

(Moran’s I=0.445). However, there was no significant difference in residuals between 

counties. As with UAS-derived estimates, there was no significant difference in NLCD-

derived woody cover between “Intact” and “Encroached” plots.  

 

Discussion 

 Based on the rich array of data presented above, a number of conclusions may be 

drawn to help answer the three primary research questions of this thesis. Further, findings 

may be critiqued and additional commentary regarding the provenance, peculiarities, and 

prognosis of the data can be provided. As this section continues, interpretation and 

elucidation of the results are discussed, following the same order in which they were 

presented.  

 

Household Surveys 
 
 Although household surveys focused primarily on vegetation, respondents 

indicated that species such as prairie dogs and grasshoppers were their greatest concerns. 

Notably, these species tended to increase in abundance over shorter periods of time, 

particularly during drought, and were generally more charismatic compared to nuisance 

plant species. This raises questions of potential retrospective bias (Pearson and Ross 
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1992) where survey respondents focus more heavily on recent observations, while 

forgetting older or more slow-changing observations. Further, the finding underscores the 

continuing importance of studying slow-onset disasters which may be more difficult to 

detect (Cutter 2005; Vadjunec et al. in review). Additionally, survey results reflect trends 

of science writ large, which tends to emphasize the importance of charismatic species 

(Donaldson et al. 2016). The relatively low severity scores for plant species represents 

dissonance between landowners and the range management literature, which is generally 

concerned about changing vegetation communities and typically emphasizes woody 

vegetation only as forage in extreme circumstances (Endecott et al. 2005; Wood, 

Mayeux, and Garcia 1990).  

Of course, despite voicing worry about nuisance animals, many respondents did 

express concerns about woody vegetation and have taken extensive steps to remove these 

species. In fact, some respondents expressed disagreement with state agencies about the 

role of woody vegetation, which sometimes argue that it should be preserved as a wind 

break or natural snow fence. Thus, a wide range of opinions is present in the community 

indicating social science data is an undeniably powerful tool in gaining insights into the 

direct observations of those who use the land on a daily basis. 

Soil erosion was the most common land management issue, according to 

respondents, which is consistent with the region’s historical association with dust storms. 

While changing land management practices such as no-till agriculture have reduced the 

severity of the issue (Lal, Reicosky, and Hanson 2007), respondents reported that 

ongoing drought has resulted in continued erosion.  
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Land-use practices were variable throughout the study area, though grazing was 

the most common. While landowners reported their typical grazing rates during surveys, 

the data was difficult to standardize into direct grazing impacts, since year-to-year and 

month-to-month stocking rates were highly variable and impacts were highly dependent 

on grass quality, precipitation, and other factors. All respondents expressed a desire to 

preserve their land through conservative grazing, particularly since many were tending to 

land that had been in their family for generations. Some respondents, however, voiced a 

concern about balancing financial needs with best grazing practices; stocking rates in 

some cases exceeded ideal numbers if a mortgage payment was due and there were no 

other forage options.  

Another common land use, the Conservation Reserve Program, was observed for 

18% of plots and was more common in Cimarron County. The program, which was 

designed after the Dust Bowl to help restore highly eroded lands, was almost universally 

praised by survey respondents but has had a mixed reception in the literature (Popper and 

Popper 1987). Notably, these lands were more frequently classified as “Encroached” by 

landowners, though woody plant cover biodiversity was lower on CRP lands than grazed 

lands.   

 

Ground-Level Observations 

 Reflecting responses from landowners regarding their strategic prevention of land 

degradation, as well as the goals of the Conservation Reserve Program, land degradation 

across the study area was low. Rangeland health metrics indicated low occurrence of rills, 

gullies, wind scouring, and other evidence of degradation. Despite this, bare soil patches 
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were remarkably high in some areas, reflecting many survey respondents’ assessment that 

soil erosion was a major concern. In general, soil was very dry during sampling efforts, 

preventing examination of soils below the A horizon. All sampling was conducted during 

a period when most survey respondents said a drought was in progress, and surveyors 

witnessed multiple large dust storms during fieldwork. Generally, these storms and 

erosion appeared more severe in Cimarron County, where soil texture was coarser and 

cultivated agriculture is more prevalent. Consistent with these anecdotal observations, 

most rangeland health metrics were lower for Cimarron County. 

 Biodiversity metrics were consistently higher in “Encroached” plots, both in 

terms of herbaceous and woody vegetation. A significant association between land use 

and biodiversity was observed, though the specific relationship was not expected. The 

greater biodiversity in grazed lands contradicts literature arguing that livestock 

production reduces species diversity (Alkemade et al. 2013). Rather, it supports the idea 

that responsible, conservative grazing practices actually increase biodiversity in 

rangelands (West 1993). This considered, woody vegetation also contributes to 

biodiversity, therefore the role of livestock in contributing to healthy grazing lands is 

unclear. 

Additionally, while CRP was intended to help conserve and improve land, and 

greater biodiversity is typically associated with greater rangeland health (Symstad and 

Jonas 2011), biodiversity was lower on CRP lands than on grazed lands. It is unclear 

whether this finding is due to reduced grazing, legacy effects, the application of 

prescribed seed mixes with limited species composition, or some other factor. Regardless, 

CRP lands did have lower proportions of woody plant cover. 
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 There was not a clear link between herbaceous plant biodiversity and the 

presence/absence of woody plants. Past research has suggested that certain environments 

can support more diverse species assemblages, herbaceous or otherwise (Fridley et al. 

2007), or that herbaceous species diversity confers some sort of protection against 

invasive species (Isbell and Wilsey 2011). In the present study, there were weak negative 

non-significant relationships between herbaceous species Shannon Index and the number 

of UAS classes (r=-.16), as well as between herbaceous Shannon Index and percent bare 

soil (r=-0.17). Additionally, species richness was slightly lower in plots where woody 

species were present, though the difference was not significant. Factors affecting 

biodiversity may be associated with environmental variables, but also with land use since 

livestock can facilitate the spread of species across the landscape (Brown and Carter 

1998). Additionally, seeding that sometimes occurs on CRP lands has been shown to 

reduce species richness compared to native pastures (Munson and Lauenroth 2012).  

 Overall, woody plots were more strongly associated with poorer rangeland health 

metrics. Notably, plots with a higher percentage of bare soil had greater species richness 

of woody vegetation. However, because this observation represents only one point in 

time, it is unclear whether bare soil patches create opportunities for species invasions 

(Bestelmeyer, Goolsby, and Archer 2011) or if the presence of woody species results in 

herbaceous vegetation declines (Hobbs and Mooney 1986). The answer to this chicken-

and-egg question may vary from plot-to-plot or species-to-species.  
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UAS Imagery Classification 

 Based on the results of the pilot project, the Support Vector Machine algorithm 

demonstrated the greatest classification accuracy for UAS imagery, consistent with 

observations reported by Pande-Chhetri et al. (2017), Li et al. (2015), and Sonobe et al. 

(2014). Additionally, classification accuracy was improved through the addition of a 

DSM representing vegetation heights. In the present study, total accuracy increased by 

3.2% compared to RGB alone—slightly higher than the 1.9% increase reported by Ellis 

and Mathews (2019) but less than the 16% increase in accuracy observed by Husson, 

Reese and Ecke (2017) for species with high spectral similarity.  

 Overall accuracy for the 40 plots was good, at 88.9%, and was on-par with or 

better than many other examples of species-level UAS imagery classifications (e.g., 

Husson, Reese and Ecke 2017, up to 85%; Pande-Chhetri et al. 2017, 70.8%; Sonobe et 

al. 2014, 89.1%). Thirty-two of the forty plots met the threshold of 85% total accuracy 

proposed by Anderson (1976). This considered, user’s accuracy (errors of commission) 

for certain species was relatively low, particularly for species with highly variable heights 

or spectral composition such as the spiky yucca plant. However, the overall utility of 

UAS imagery for rangeland management should not be understated, particularly 

considering the high accuracy of grass and bare soil estimates, and the potential to 

dramatically improve species-level classification through hyperspectral imagery or the 

use of textural and shape data.  

UAS data could reasonably considered the benchmark for data accuracy in this 

study, since land cover was measured objectively, the accuracy was evaluated 

thoroughly, and the data covers adequate spatial extents to avoid sampling bias from 
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spatial heterogeneity. By contrast, ground observations for percent land cover were 

quickly estimated from ground-level and covered only a maximum area of 25 sq. m. 

Additionally, the 1992 NLCD accuracy was poor compared to UAS classification, 

averaging just 74% accuracy for the study area (Wickham et al. 2004). 

 According to UAS observations, densities of some woody species were 

remarkably high, with one plot exceeding 29% woody vegetation cover—effectively 

inhibiting any use for forage. Despite this, 39 of the 40 plots were dominated by 

herbaceous cover. Curiously, the woody species that occurred in the greatest densities 

tended to be ranked less severe by landowners. While the severity of juniper and broom 

snakeweed was more likely to be ranked a 3 or higher during surveys, these species 

occurred in the lowest densities. By contrast, sand sage covered 8.5% on average for the 

plots where it was observed. Yucca occurred on nearly half of plots, covering 5.6% on 

average, but more than half of landowners ranked it on the lower end of the severity 

scale. It is unclear whether landowners perceive other species (e.g., juniper, chollas) as 

more severe because of their height, an ecological effect, or some other factor. 

A number of connections were observed between ground-level sampling and UAS 

woody plant detection. For example, the relationship between bare soil and woody 

vegetation was consistent whether observed at the ground-level, UAS-level, or cross-

compared between methods. This finding holds true even when examining the 

phenomenon at county-level. Predictive estimates of species richness and UAS-derived 

estimates of woody cover were both higher for Cimarron County. This considered, a 

greater number of woody plant species were observed using UAS imagery, again 
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highlighting the limitations of ground-level rapid assessments and providing additional 

support for the use of UAS as an effective rapid assessment tool.   

In some cases, discrepancies arose when comparing ground-based and UAS-

derived metrics. The apparent discrepancy between t-test and regression results indicates 

that ground-based bare soil estimates were consistently high relative to UAS-derived 

values. Meanwhile, greater residuals were observed for the herbaceous and woody 

vegetation cover, though they were more homoscedastic in their distribution, suggesting 

there was not a pattern of over- or underestimating coverage from plot-to-plot. One 

explanation for the differences in correlation coefficients between classes is the different 

measurement protocols implemented during ground observations. Per the ground 

observation protocol, bare soil was estimated for the entire UAS plot after walking 

around a sufficient area to make a reasonable assessment. By contrast, woody vegetation, 

with a lower R2, was estimated just based on the 5m plot. Herbaceous vegetation, with a 

still lower R2, was estimated from the 1m plot. Though ground observations required the 

survey area to be small enough for rapid assessment, the goodness of fit between ground- 

and UAS-based observations appears to diminish for data obtained in smaller plots. 

 While the data obtained through UAS is undoubtedly high in quality and provides 

a perspective and spatial extent not easily obtained through ground observations, the 

argument could be made that the method is not “rapid.” While all flights for this project 

took less than 20 minutes each to complete, significant post-processing was required to 

produce data that could be directly compared to ground observations. Considering the 

time required to construct orthophotos from individual images, create point clouds, 

process points into ground and non-ground, create and composite nDSMs, segment 
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images, select training samples, run algorithms, conduct accuracy assessments, and 

export statistics, the minimum post-processing time was 20 hours per image. Further, this 

process was repeated several times for many images if satisfactory results were not 

produced. By contrast, most ground observations were completed in under one hour of 

fieldwork with less than half an hour of subsequent species identification and data entry.  

Although high resolution imagery has often been implemented for rapid 

assessments of vegetation (e.g., Blumenthal et al. 2007; Booth, Cox, and Berryman 2006; 

Sankey, Moffet, and Weber 2008), the utility of methods such as UAS is highly 

dependent on the desired measurements, methodology of analysis, and spatial extent at 

which data is collected. Notably, the nascent technology is not yet capable of identifying 

herbaceous vegetation to species in diverse systems. Therefore, while UAS imagery 

certainly has benefits in terms of the quality of data produced and potential for novel 

analyses, ground observations still have merit in obtaining detailed species-level data 

across small extents. 

 

National Land Cover Dataset Regression 

 While ground observations and UAS imagery measured woody vegetation as a 

single snapshot in time, the NLCD portion of this analysis was unique in its examination 

of vegetation change over a 24-year period, from 1992 to 2016. Additionally, NLCD data 

continuously covered the entire study area, rather than small sampling plots. As a result, 

the overall severity of WPE across Union and Cimarron Counties could be distilled into a 

single metric of change. According to NLCD data, one-third of the study area was 

converted from shrubland to forest cover over the 25-year period of analysis, indicating 



95 

dramatic change with substantial potential effects for agriculturalists. Land-cover change 

was more severe in Union County, contradicting UAS-derived land cover which showed 

higher woody cover in Cimarron County. 

 The multiple regression predicting severity of WPE performed well, accounting 

for 78.3% of variation in the data. While the high R2 might be interpreted to indicate that 

environmental variables are 78% of the cause of WPE, a more nuanced explanation may 

also be valid. To this point, the spatial error component, lambda, which accounts for 

spatial autocorrelation in the data, nearly doubled the R2; without incorporating lambda, 

environmental variable alone explain 42.4% of woody plant encroachment. While lambda 

could certainly account for unknown gradients in environmental variable, there is likely 

also spatial autocorrelation in land-use and management practices, as evidenced by 

household survey data. For example, perceptions of prescribed fire were generally much 

more positive in Union County than in Cimarron County. Despite the uncertainty in 

lambda, there is significant evidence that climate, soil, and terrain factors do influence the 

distribution of WPE severity. Therefore, certain parcels may be more vulnerable to 

vegetation change, suggesting the same land use/management on different parcels might 

result in different outcomes depending on the environment. Underlying this trend is an 

abundance of state school lands, which comprise approximately 20% of Cimarron County 

and 18% of Union County (Fagin et al. 2016, 4-5) and are often managed differently than 

private lands (Vadjunec and Sheehan 2010). 

 Terrain ruggedness was the most important environmental variable in the model. 

This metric is positively associated with topographic wetness index, a variable strongly 

linked to WPE in previous research (Fagin et al. 2016; Wu and Archer 2005). Soil texture 
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was the next most important contributor. Sandy soils tended to have more severe WPE, 

likely because water drains more rapidly through coarser soils giving woody vegetation 

an advantage in water access compared to herbaceous vegetation (Knoop and Walker 

1985; Walker and Langridge 1997; Wu and Archer 2005). These biophysical traits were 

also linked to WPE in ground observations. 

Climatic variables were also significant contributors, with cooler, drier areas 

exhibiting greater WPE. A likely explanation is that many shrub and cactus species of 

concern in the study area developed adaptations to desert environments (Chávez-Moreno, 

Tecante, and Casas 2009), where precipitation is rare and low vapor pressure increases 

evapotranspiration potential (Zhou et al. 2014). 

 Though satellite-based remote sensing was immensely beneficial in its ability to 

provide both data for the entire study area as well as a time-series change analysis, the 

method was limiting in other ways. The 30m resolution was coarse in comparison to the 

2cm resolution of UAS imagery. While individual shrubs were visible in UAS imagery, 

forest or shrubland pixels in NLCD were generalizations comprised of mosaics of smaller 

patches of herbaceous, bare, and shrub land cover. For example, Xian et al. (2015) found 

that on average, just 27% of a given NLCD shrubland pixel was comprised of shrubs. 

Because of this, shrub cover estimates provided by NLCD are likely dramatically 

inflated. The weak relationship between UAS- and NLCD-derived shrub cover in the 

present study supports this. However, while there are undoubtedly differences in the 

results of two approaches to remote sensing, one is not necessarily better than the other. 

Each seeks to answer a different question and illustrates the trade-off between spatial 
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resolution and spatial extent (Goodchild 2011). As UAS becomes more commonly used 

in LSS, its role as a bridge between finer and coarser scales of analysis will emerge. 

 

An LSS Approach to Changing Vegetation Communities 

  At the heart of Land System Science is the use of mixed methods to interrogate 

complex questions from a variety of angles. While the vast majority of research on 

changing plant communities and land degradation has been conducted by rangeland 

managers, biologists, or remote sensors, this thesis represents a more robust analysis that 

synthesizes the findings of multiple scales and methods of investigation. However, 

interpreting the findings of a mixed methods analysis can be complicated by confounding 

results and an abundance of data addressing multiple interconnected facets of the research 

topic. For the subject of changing vegetation communities in Union and Cimarron 

Counties, however, each method provided a unique perspective that helped to more 

completely answer the research question than if a single approach were used.  

 By using household surveys as a foundation for subsequent analysis, this 

investigation captured the perspective of those who have the most intimate knowledge of 

the land being studied, and who are most directly affected by the plant communities on 

the land that supports their livelihoods. Though research with human subjects can be 

error prone (Muchnik, Aral, and Taylor 2013; Stephens-Davidowitz 2017), household 

surveys revealed that land use and management have a major impact on vegetation. Data 

provided by landowners showed that herbicide applications are effective at reducing the 

severity of nuisance trees and shrubs. Additionally, CRP may have unintended effects on 

biodiversity, especially considering that landowners were more likely to perceive CRP 
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lands as “Encroached”. Further, observations made at the household level effectively 

scaled up to land-cover data obtained from UAS. 

 Biodiversity data collected through ground observations also played an important 

role in providing context for observations at different scales. Neither UAS imagery nor 

NLCD data could identify herbaceous vegetation to species level, making ground-level 

observations were the only method to directly evaluate inter-species interactions. 

However, quantification of woody species and bare ground cover was arguably more 

effectively measured through UAS observations. The improved spatial extent provided 

by UAS yielded additional species observations and gave a more representative sample of 

patterns across entire pastures. This considered, the use of multiple methods to measure 

the same phenomenon helps to validate the quality of data and ensure consistent results.  

 UAS imagery classification provided a highly accurate and spatially explicit 

illustration of vegetation patterns and land degradation, at a scale relevant to land 

managers. This ultra-high resolution imagery was arguably the most accurate method of 

measuring the extent and severity of WPE, though certainly lacked detail provided by 

finer-scale analyses and the spatial extent provided by NLCD data. UAS data, as a 

moderate-level analysis, was easily linked to survey data to reveal land management 

trends, demonstrated high levels of agreement with ground observations, and provided 

finer details than coarser remote sensing. Despite these benefits, the method required 

significant time to produce usable classified orthophotos. 

 As the broadest scale of analysis, NLCD regression revealed that climate, soil, 

and terrain undeniably play a role in WPE severity. This method was advantageous in its 

ability to measure change over time, while other methods represented conditions only in 
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the summer of 2018. However, the major jump in scale caused some dissonance between 

NLCD findings and observations made at finer scales. For example, county-level 

observations in ground- and UAS-based data suggested that WPE was more severe in 

Cimarron County, while NLCD data showed the opposite. All things considered, each 

method represented in this thesis carries its own strengths and weaknesses, with each 

revealing a different perspective on the analysis.  

 Ultimately, an evaluation of the efficacy of a mixed methods approach must 

address whether the study questions were answered. As the next chapter continues, the 

findings of this thesis are presented on a question-by-question basis, to conclusively 

answer the questions set at the beginning of the project. Additionally, Chapter 5 discusses 

the scope and limitations of the research and its broader impacts for Land System Science 

and studies in vegetation change.
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CHAPTER V 

CONCLUSION 
 
 In light of climate change, desertification, increasing economic pressures, and 

reductions in global biodiversity, the importance of research in the socio-ecological 

resilience of agricultural communities in drylands has become increasingly amplified. 

This thesis implemented a Land System Science approach to investigating the causes and 

consequences of land degradation in rangelands of Union a County, New Mexico and 

Cimarron County, Oklahoma. Through the synthesis of multiple avenues of investigation, 

this study concludes that woody plant encroachment is affected by both environmental 

and land management factors, that it is associated with greater herbaceous plant 

biodiversity, and that UAS imagery can provide much of the same data obtained through 

ground observations, though with greater detail and across larger spatial extents.  

 Interpreting the results of this type of investigation can be complex, particularly 

when mixed methods are implemented (Bryman 2006) and when multiple spatial scales 

are analyzed (Wiens 1989). As this thesis concludes, each of the three research questions 

are addressed. 

1) How does woody plant encroachment vary across different environmental gradients, 

varying land-use/management practices, and sociopolitical boundaries?
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To first address the environmental aspect of the question, regression of NLCD 

change in woody vegetation from 1992-2016 indicated that WPE was positively 

associated most strongly with terrain ruggedness, possibly because terrain features trap 

precipitation and increase soil moisture in ways that disproportionately benefit woody 

vegetation (Wu and Archer 2005). Similarly, sandy soils were also positively associated 

with WPE, likely for similar reasons. Further, WPE was greatest in areas of more desert-

like climate. This suggests that species like cholla and yucca, which are adapted to drier 

climates with lower vapor pressure, have an evolutionary advantage over herbaceous 

vegetation in these areas.  

Land use and management also played a significant role in vegetation 

composition. Woody vegetation was more severe on pastures where cattle grazed 

regularly, while less woody vegetation was observed on lands enrolled in the 

Conservation Reserve Program. Household surveys revealed that many landowners have 

taken action to reduce woody vegetation on their land. By linking survey responses to 

UAS imagery, plots where herbicide was applied were shown to have significantly less 

woody vegetation than untreated plots. Additionally, landowner perceptions of land 

quality were largely validated, with “Encroached” plots having more bare soil patches, 

greater biodiversity, and more woody cover as measured through UAS imagery.  

As evidenced by NLCD data, WPE was more severe in Union County, due in part 

to rugged terrain and sandy soils. However, an ambiguous or contradictory finding was 

observed at finer scales. Vegetation composition did change across county lines, with 

greater species richness in Cimarron County. In terms of woody vegetation, broom 

snakeweed was more common in Union County while yucca was more common in 
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Cimarron County. However, significant differences in woody vegetation densities were 

not observed either in UAS imagery or ground-level observations. Land-use/management 

actions did vary by county, with burning and manual removal more common in Union 

County, while mowing and CRP were more common in Cimarron County. 

Since both environmental and land-use factors play a role in WPE, future research 

on the topic should examine both in tandem. While certain environmental factors may 

make land differentially vulnerable to degradation, outcomes appear to be most directly 

determined by land managers’ actions.  

 

2) What is the relationship between herbaceous plant biodiversity and woody plant 

encroachment? How does it vary across scales? 

 Complex, nuanced relationships were observed between herbaceous plant 

biodiversity and woody plant encroachment. It has been observed in other systems that 

diverse assemblages of grasses and forbs confer stability to help stay woody species 

invasions. In the present study, weak negative associations between herbaceous and 

woody species biodiversity were observed. Plots without woody species present had 

higher herbaceous species biodiversity, on average. Further, bare soil severity was lower 

in plots with higher herbaceous species biodiversity, suggesting these plots may be less 

vulnerable to invasions. Future work should more closely examine the relationship 

between biodiversity and the severity of woody cover, as well as how woody cover 

increases over time. Further, a closer examination of herbaceous species phenology may 

help to clarify this relationship.  
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3) What are the benefits and limitations of multiple scales of analysis, particularly 

considering the potential role of unmanned aerial systems (UAS) as a scalar bridge in 

rapid vegetation assessments? 

 Imagery obtained through UAS was useful in this investigation and served as the 

benchmark by which other data were evaluated. In some ways, findings of UAS imagery 

were redundant with ground observations, though UAS imagery was preferable because 

of its spatially explicit data and larger spatial extent. However, ground observations were 

advantageous in providing data on herbaceous species. While UAS observations could 

potentially be used to measure herbaceous vegetation, this study focused exclusively on 

using UAS to identify woody vegetation to species level.  

 While satellite remote sensing provided continuous data on the entire study area 

and illustrated change over time, the resolution was too coarse to effectively link “people 

to pixels”. The 30m resolution of NLCD data caused some ambiguity in measuring shrub 

coverage when scaling down to the plot level, and was only weakly associated with the 

results of UAS imagery. While the ultra-high resolution of UAS imagery allowed 

analysis of individual trees and shrubs in a spatially explicit manner, satellite remote 

sensing was better suited to measuring broader patterns. 

 Because LSS seeks, in part, to connect “people to pixels,” UAS should be more 

broadly used in LSS investigations because of its ability to more accurately compare fine-

scale land-use actions with remotely sensed land-cover data. 
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Scope and Limitations 

 While each method implemented in this thesis carries its own benefits and 

shortcomings, the overall study design, as with all research, has limitations. Perhaps most 

notably, the LSS approach emphasizes breadth over depth. While the mixed methods 

approach certainly helped to construct a more complete illustration of the dynamic causes 

of vegetation change, time was ultimately a limiting factor. As a result, vegetation 

sampling used rapid assessment protocols, and satellite remote sensing utilized NLCD, a 

product with documented limitations (Wickham et al. 2004). Additionally, while direct 

comparison of 2016 NLCD to 2018 field and UAS observations was useful as a 

demonstration of scalar linkages, the researchers acknowledge some changes in 

vegetation occurred during this two-year period. All things considered, the present 

investigation offers less detail into specific phenomenon such as temporal changes in 

herbaceous vegetation (e.g., Jurena and Archer 2003) or the biogeochemical processes 

behind fire suppression (e.g., Biggs 1997), but a more diverse breadth of analyses to help 

untangle how these factors might interact synergistically. 

 Small sample sizes were another limitation encountered when employing multiple 

modalities with finite time and resources. This investigation studied 20 households and 

40 ground/UAS plots, reducing the likelihood of making statistically significant 

observations. While this sample cannot account for variation across the entire region, the 

use of jackknife predictive estimates and NLCD observations of the region as a whole 

help to contextualize small n observations. 

 Sampling methodology or the small sampling size could also be a factor affecting 

biodiversity findings. Emphasizing the utility of rapid assessments, this study used the 
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IFRI protocol to quickly examine biodiversity in small areas, at a single snapshot in time. 

Most of the species observed during sampling were perennial, warm-season species. 

Cool-season species may not have been captured in surveys and the temporal stability 

conferred through greater biodiversity (Zemunik et al. 2016) may not be represented in 

the dataset. Further, spatial heterogeneity in grasslands can be difficult to capture in a 

single plot (Parker et al. 2011). Despite this, the adaptation of IFRI methods for 

grasslands was useful as a rapid assessment approach, and the nested plot design was 

effective for comparison to UAS observations. 

In terms of UAS classification, high resolution and modern classification methods 

helped to produce a highly accurate land-cover product. This considered, a discrete 

classification has its limitations in measuring, for example, the quality of grass cover, 

even at such a high resolution. As research in UAS imagery classification progresses, 

exploration into continuous classifications that might capture these gradients will be 

necessary to more effectively capture pattern-process relationships (Cushman et al. 

2010). Additionally, while the scope of this investigation primarily utilized UAS imagery 

as a direct comparison to other scales and methods of observation, numerous other 

potential uses for the UAS dataset exist, such as studying fine-scale spatial patterns of 

shrub distributions, detecting possible allelopathic relationships between species, and 

examining microhabitats provided by terrain features.  

 

Future Directions 
 
 Considering the limitations of collecting data during a single snapshot in time, 

particularly in such a dynamic use case, UAS flights will be repeated five years from 
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their original date to examine how the landscape changes over time. Acquiring a time 

series dataset through UAS is imperative to fully evaluating the role of the novel 

technology in land change studies, and LSS more broadly. Further, this repeat 

photography project will allow a more direct comparison to vegetation change measured 

through satellite remote sensing. Additionally, measuring change over time will more 

directly address questions of which land management methods are most effective in 

reducing woody vegetation; several research participants will be conducting prescribed 

burns during the intervening five years, providing more data on that management method. 

 The potential for detection of herbaceous vegetation through UAS is promising, 

particularly considering the emergence of hyperspectral sensors that can identify certain 

wavelengths of light associated with particular species (Sankey et al. 2017). To more 

effectively evaluate the role of UAS as a “bridge,” further exploration into its possible 

use measuring herbaceous biodiversity in rangelands is merited. Additionally, research on 

herbaceous vegetation could help measure ranchers’ species of greatest concern, such as 

locoweed, as well as herbaceous weeds of concern for farmers. 

 Structure-from-motion height data obtained through UAS flights also has 

promising applications including volumetric analysis of above-ground biomass (Carrivick 

2016; Gillan et al. 2014) or modeling of species growth potential and fine-scale 

distribution patterns (Mairota et al. 2014). Future analyses can make use of these data to 

help rangeland managers more effectively make decisions and ensure the long-term 

sustainability of their lands. 
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APPENDIX B: Relevant Household Survey Questions 
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APPENDIX C: UAS Plot Land Management Questionnaire 
 

PLOT 1 (with nuisance species) 
o PRIVATELY OWNED   o STATE    o FEDERAL 

If leased, what year did your lease begin? ________ 
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PLOT 2 
(without nuisance species) 

 
o PRIVATELY OWNED   o STATE    o FEDERAL 

If leased, what year did your lease begin? ________ 
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APPENDIX D: Point Cloud Processing Python Script 
 
import arcpy 
print("imported arcpy") 
 
if arcpy.CheckExtension("3D") == "Available": 
    arcpy.CheckOutExtension("3D") 
else: 
    # raise a custom exception 
    print("LicenseError1") 
 
if arcpy.CheckExtension("Spatial") == "Available": 
    arcpy.CheckOutExtension("Spatial") 
else: 
    # raise a custom exception 
    print("LicenseError2") 
 
arcpy.env.workspace = r"G:\Thesis\Classification.gdb" 
print("workspace set") 
scratch = r"G:\Thesis\Scratch" "\\" 
raw = r"G:\Thesis\Raw" "\\" 
plotList = ["a010202_1", "a010202_2", "a010502_1", "a010502_2", 
"a010801_1",\   
  "a010801_2", "a011002_1", "a011002_2", "a011602_1", "a011602_2",\ 
  "a012002_1", "a012002_2", "a012101_1", "a012101_2", "a012502_1",\   
  "a012502_2", "a012803_1", "a012803_2", "a013002_1", "a013002_2",\  
  "a020002_1", "a020002_2", "a020103_1", "a020103_2", "a020302_1",\ 
  "a020302_2", "a020702_1", "a020702_2", "a021302_1", "a021302_2",\ 
  "a021402_1", "a021402_2", "a022103_1", "a022103_2", "a022802_1",\ 
  "a022802_2", "a023002_1", "a023002_2", "a023302_1", "a023302_2"] 
 
for currentPlot in plotList: 
    print("The current plot is "+currentPlot) 
    currentLas = raw+currentPlot+".las" 
    print("LAS file found in directory "+currentLas) 
    print("vars defined") 
    arcpy.conversion.LasDatasetToRaster(currentLas, 
currentPlot+"_dsm",\ 
      "ELEVATION", "BINNING AVERAGE LINEAR", "FLOAT", "CELLSIZE", 0.02, 
1) 
    print("dsm generated") 
    # 
    arcpy.ddd.ClassifyLasGround(currentLas, "CONSERVATIVE",\ 
      "RECLASSIFY_GROUND", "0.3 Unknown", "NO_COMPUTE_STATS", 
"DEFAULT",\ 
      None, "PROCESS_EXTENT") 
    print("classification completed") 
    # 
    arcpy.management.MakeLasDatasetLayer(currentLas,\ 
      scratch+currentPlot+"_laslyr", "2") 
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    print("ground las layer generated, saved as\ 
      "+scratch+currentPlot+"_laslyr") 
    arcpy.conversion.LasDatasetToRaster(scratch+currentPlot+"_laslyr",\ 
      currentPlot+"_dtm", "ELEVATION", "BINNING AVERAGE LINEAR", 
"FLOAT",\ 
      "CELLSIZE", 0.02, 1) 
    print("dtm generated") 
    dsm=currentPlot+"_dsm" 
    dtm =currentPlot+"_dtm" 
 
    from arcpy.sa import * 
    nDSM = Raster(dsm)-Raster(dtm) 
    arcpy.CopyRaster_management(nDSM,currentPlot+"_ndsm") 
    print("raster calculator completed, ndsm generated") 
 
    currentPlotTif = rawfs+currentPlot+".tif" 
    currentPlotnDSM = currentPlot+"_ndsm" 
    compIn = "'"+currentPlotTif+"';'"+currentPlotnDSM+"'"   
    print(compIn) 
    arcpy.CompositeBands_management(compIn,currentPlot + "_rgbh") 
 
arcpy.CheckInExtension("3D") 
arcpy.CheckInExtension("Spatial") 
print("Geoprocessing complete.") 
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APPENDIX E: UAS Classification Accuracy Assessment 
 

Plot ID Total 
Accuracy Kappa 

User's Accuracy Producer's Accuracy 

Bare Grass 
Snake-  
weed Yucca Sage Clover Cholla Juniper Mesquite Water 

Cotton- 
wood Bare Grass 

Snake- 
Weed Yucca Sage Clover Cholla Juniper Mesquite Water 

Cotton- 
wood 

1 97.2% 0.907 100% 100% 70% — — — — — — — — 100% 97% 100% — — — — — — — — 

2 90.8% 0.648 40% 98% 100% 30% — — — — — — — 57% 92% 100% 100% — — — — — — — 

3 88.5% 0.580 50% 98% — — 50% — — — — — — 100% 89% — — 71% — — — — — — 

4 91.5% 0.779 100% 90% — — 100% — — — — — — 83% 100% — — 59% — — — — — — 

5 95.4% 0.855 80% 97% 100% — — — — — — — — 80% 98% 91% — — — — — — — — 

6 91.3% 0.790 60% 96% 100% — — 70% — — — — — 100% 93% 83% — — 78% — — — — — 

7 89.8% 0.716 90% 92% — 70% — — — — — — — 64% 95% — 88% — — — — — — — 

8 81.3% 0.707 66% 94% — 50% — — — 36% — — 97% 89% 80% — 71% — — — 80% — — 81% 

9 82.1% 0.695 94% 89% — 50% 93% — — — — — — 68% 85% — 94% 76% — — — — — — 

10 88.5% 0.580 80% 98% — 20% — — — — — — — 89% 89% — 67% — — — — — — — 

11 89.9% 0.725 70% 98% 60% 50% — — 70% — — — — 78% 92% 100% 56% — — 100% — — — — 

12 88.8% 0.719 77% 99% 50% 68% — — 8% 100% — — — 100% 88% 83% 94% — — 100% 91% — — — 

13 82.2% 0.629 75% 96% — 36% — — — — — — — 88% 79% — 100% — — — — — — — 

14 81.3% 0.567 79% 100% — 22% — — — — — — — 100% 78% — 100% — — — — — — — 

15 81.3% 0.697 79% 72% — — — — — 100% — — — 84% 64% — — — — — 100% — — — 

16 91.5% 0.722 70% 95% 70% — — — — 80% — — — 50% 96% 88% — — — — 89% — — — 

17 85.8% 0.554 71% 95% 20% — — — 50% — — — — 60% 89% 100% — — — 100% — — — — 

18 88.4% 0.603 27% 100% — — — — 70% — — — — 100% 87% — — — — 100% — — — — 

19 86.2% 0.701 36% 92% — — — — 70% 86% — — — 50% 91% — — — — — 100% 76% — — 

20 85.1% 0.581 50% 91% — — — — 60% 69% — — — 36% 91% — — — — — 100% 69% — — 

21 94.4% 0.810 100% 99% — 50% — — — — — — — 91% 95% — 100% — — — — — — — 

22 89.1% 0.583 70% 97% 60% 20% — — — — — — — 58% 93% 75% 67% — — — — — — — 

23 90.8% 0.741 75% 98% — 40% — — 80% 60% — — — 89% 92% — 80% — — 80% 75% — — — 

24 93.8% 0.770 50% 100% — — — — — 80% — 70% — 100% 93% — — — — — 100% — 100% — 

25 84.3% 0.753 59% 95% — — — — — 100% — — — 89% 77% — — — — — 95% — — — 

26 88.4% 0.722 100% 91% — 30% — — — 100% — — — 61% 98% — 50% — — — 71% — — — 

27 90.7% 0.715 100% 93% 100% 30% — — — — — — — 63% 99% 53% 100% — — — — — — — 

28 91.6% 0.735 82% 98% 100% 10% — — — — — — — 100% 94% 71% 100% — — — — — — — 

29 88.5% 0.806 97% 93% 50% 29% 96% — — — — — — 82% 93% 50% 80% 88% — — — — — — 

30 89.7% 0.674 50% 97% 50% 20% 89% — — — — — — 63% 95% 83% 50% 63% — — — — — — 
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Plot ID Total 
Accuracy Kappa 

User's Accuracy Producer's Accuracy 

Bare Grass 
Snake-  
weed Yucca Sage Clover Cholla Juniper Mesquite Water 

Cotton- 
wood Bare Grass 

Snake- 
Weed Yucca Sage Clover Cholla Juniper Mesquite Water 

Cotton- 
wood 

31 89.4% 0.641 50% 97% 50% — — — — — — — — 71% 91% 88% — — — — — — — — 

32 89.5% 0.714 85% 96% 50% — — — — — — — — 92% 91% 71% — — — — — — — — 

33 89.5% 0.725 73% 92% 90% — — — — — — — — 57% 94% 100% — — — — — — — — 

34 94.1% 0.808 70% 99% 80% — — — — — — — — 100% 94% 89% — — — — — — — — 

35 97.1% 0.906 70% 100% 100% — — — — — — — — 100% 96% 100% — — — — — — — — 

36 96.2% 0.884 80% 98% 100% — — — — — — — — 100% 98% 83% — — — — — — — — 

37 87.5% 0.733 40% 92% 95% — — — — — — — — 67% 90% 87% — — — — — — — — 

38 91.6% 0.754 90% 93% 80% — — — — — — — — 75% 96% 73% — — — — — — — — 

39 81.7% 0.519 64% 89% — 10% — — — 67% 60% — — 41% 91% — 100% — — — 67% 55% — — 

40 80.7% 0.626 76% 88% — — — — — 64% 56% — — 67% 85% — — — — — 78% 82% — — 

Average 88.9% 0.709 72% 95% 75% 35% 86% 70% 58% 78% 58% 70% 97% 79% 91% 84% 83% 72% 78% 96% 87% 70% 100% 81% 

St. Dev. 4.5% 0.095 19% 5% 24% 17% 18% 0% 22% 19% 2% 0% 0% 19% 7% 14% 18% 10% 0% 8% 12% 10% 0% 0% 
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APPENDIX F: List of Plant Species in Ground Observations 
 

Family Scientific Name Common Name 
# of Plots 
 Present 

Agavaceae Yucca glauca Great Plains yucca 7 
Amaranthaceae Amaranthus arenicola Sandhills pigweed 1 
Amaranthaceae Kali tragus Russian thistle 2 
Amaranthaceae Kochia scoparia Kochia 1 
Anacardiaceae Rhus aromatica Fragrant sumac 1 
Asteraceaae Ambrosia psilostachya Western ragweed 8 
Asteraceae Artemisia filifolia Sand sage 4 
Asteraceae Cirsium ochrocentrum Yellow spine thistle 1 
Asteraceae Conyza canadensis Horseweed 2 
Asteraceae Dyssodia papposa Fetid marigold 7 
Asteraceae Erigeron modestus Plains fleabane 3 
Asteraceae Gutierrezia sarothrae Broom snakeweed 17 
Asteraceae Leucelene ericoides White aster 1 
Asteraceae Lygodesmia juncea Skeletonweed 1 
Asteraceae Machaeranthera tanacetifolia Tansy aster 1 
Asteraceae Ratibida tagees Shortray prairie coneflower 2 
Asteraceae Thelesperma filifolim Greenthread 1 
Asteraceae Zinnia grandiflora Rocky Mountain zinnia 1 
Boraginaceae Cryptantha minima Little cryptantha 1 
Brassicaceae Descurainia sophia Tansy mustard 1 
Cactaceae Cylindropuntia imbricata Walking stick cholla 8 
Cactaceae Escobaria missouriensis Missouri foxtail cactus 1 
Cactaceae Opuntia phaeacantha Prickly pear 7 
Cannabaceae Celtis reticulata Western hackberry 1 
Chenopodiaceae Chenopodium simplex Maple-leaved goosefoot 1 
Convolvulaceae Convolvulus arvensis Field bindweed 2 
Cupressaceae Juniperus monosperma One-seed juniper 3 
Euphorbiaceae Euphorbia prostrata Prostrate sandmat 1 
Fabaceae Caesalpina jamesii James' rush-pea 3 
Fabaceae Dalea candida White prairie clover 1 
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Family Scientific Name Common Name 
# of Plots 
 Present 

Fabaceae Dalea enneandra 9-anther prairie clover 1 
Fabaceae Dalea jamesii James' prairie clover 1 
Fabaceae Dalea tennuifolium Slim-leaf prairie clover 1 
Fabaceae Melilotus officinalis Yellow clover 2 
Fabaceae Oxytropis lambertii Purple locoweed 1 
Fabaceae Prosopis glandulosa Honey mesquite 3 
Fabaceae Psoralea tenuiflora Wild alfalfa 5 
Fabaceae Sophora nuttaliana White locoweed 3 
Onagraceae Gaura villosa Hairy gaura 1 
Pinaceae Pinus edulis Pinyon pine 1 
Plantaginaceae Plantago patagonica Wooly plantain 10 
Poaceae Aristida purpurea Purple threeawns 3 
Poaceae Bothriochloa bladhii Old world bluestem 3 
Poaceae Bouteloua curtipendula Sideoats grama 4 
Poaceae Bouteloua gracillis Blue grama 15 
Poaceae Bouteloua hirsuta Hairy grama 8 
Poaceae Buchloe dactyloides Buffalograss 23 
Poaceae Chloris verticillata Windmillgrass 1 
Poaceae Panicum obtusum Vine mesquite 1 
Poaceae Pascopyrum smithii Western wheatgrass 1 
Poaceae Sitanion hystrix Squirreltail 2 
Poaceae Stipa comata Needle-and-thread 2 
Poaceae Vulpia octoflora Sixweeks fescue 2 
Salicaceae Populus deltoides Eastern cottonwood 1 
Ulmaceae Ulmus pumila Siberian elm 1 
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