
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SAR IMAGE FORMATION VIA SUBAPERTURES AND 2D

BACKPROJECTION

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

CALLIN SCHONE
Norman, Oklahoma

2020



SAR IMAGE FORMATION VIA SUBAPERTURES AND 2D
BACKPROJECTION

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Nathan Goodman, Chair

Dr. Jay McDaniel

Dr. Justin Metcalf



© Copyright by CALLIN SCHONE 2020

All Rights Reserved.



Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 SAR Theory and Signal Model 9

2.1 Introduction to SAR . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 SAR Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Keystone Transform . . . . . . . . . . . . . . . . . . . . . . . 17

3 2D Range-Doppler Backprojection 23

3.1 Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Imaging Signal Model . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 34

4.1 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Simulation Architecture . . . . . . . . . . . . . . . . . . . 35

4.1.2 Images of Simulated Data . . . . . . . . . . . . . . . . . . 36

4.2 Images of Large Scene Gotcha Dataset . . . . . . . . . . . . . . . . 45

iv



4.3 Moving Target Imaging . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Computational Savings & Requirements 60

5.1 Reductions in Computation . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Computation Time of Gotcha Dataset . . . . . . . . . . . . . . . . 68

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion 71

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



List of Figures

2.1 SAR platform / pixel geometry . . . . . . . . . . . . . . . . . . . . 11

2.2 Range migration of simulated target moving away from the radar at

10 m/s for a CPI duration of 5.12 seconds . . . . . . . . . . . . . . 19

2.3 Range migration mitigation and range-Doppler focusing achieved

by applying the Keystone transform to simulated data with param-

eters given in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Imaging algorithm pipeline of 2D backprojection as compared to

traditional backprojection. . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Traditional backprojection compared to 2D backprojection on the

same dataset. 1,040 pulses were used for each, and 2D backprojec-

tion partitioned the CPI into 26 sub-CPIs with 40 pulses in each. . . 37

4.2 Traditional and 2D backprojection images of a point scatterer like

the one at the center of Figure 4.1. . . . . . . . . . . . . . . . . . . 38

4.3 Image formed by performing 2D backprojection on (a) 10 sub-CPIs

of length 104 pulses and (b) 8 sub-CPIs of length 130 pulses. . . . . 39

4.4 Cuts of imaging function in range and cross-range for various sub-

CPI lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Measured grating lobes in imaging function of dataset broken into

20 sub-CPIs compared to the theoretical physical array that is em-

ulated by the synthetic array. . . . . . . . . . . . . . . . . . . . . . 43

vi



4.6 Effective imaging function of a single sub-CPI for sub-CPIs of

length (a)104 and (b)130 pulses. . . . . . . . . . . . . . . . . . . . 44

4.7 Traditional backprojection performed on SAR large scene Gotcha

data. All 30,000 pulses were used to create the image. Windowing

was performed across fast-time and slow-time to reduce side lobe

output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 2D backprojection performed SAR large scene Gotcha data. CPI

was broken into 966 sub-CPIs containing 31 pulses each. 29,946

pulses were used in total. Windowing was performed across fast-

time and sub-CPIs to reduce side lobe output. . . . . . . . . . . . . 48

4.9 Comparison of traditional backprojection and 2D backprojection

performed on the Gotcha Dataset. . . . . . . . . . . . . . . . . . . 49

4.10 Percent difference between images formed by traditional and 2D

backprojection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 Results of increasing sub-CPI length to 249 and 499 pulses. High-

quality Doppler interpolation used in the final image shows the im-

portance of interpolation quality in preventing aliasing artifacts. . . 53

4.12 Image of a moving target with stationary target hypothesis. . . . . . 55

4.13 Images of a moving target using (a) the correct motion hypothesis

imaged to a grid of starting locations and (b) the correct starting

location hypothesis imaged to a grid of velocities. . . . . . . . . . . 56

4.14 Moving target imaging (a) without using the Keystone transform

and (b) with using the Keystone transform. . . . . . . . . . . . . . 57

vii



List of Tables

2.1 Radar and target parameters for simulated dataset showcasing range

migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Radar parameters used for simulating data. . . . . . . . . . . . . . . 36

5.1 Computation times of different implementations of the 2D backpro-

jection. Image quality of 2D backprojection was comparable to that

of traditional backprojection until the upsampling factor (USF) was

decreased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



Abstract

Radar imaging requires the use of wide bandwidth and a long coherent pro-

cessing interval, resulting in range and Doppler migration throughout the obser-

vation period. This migration must be compensated in order to properly image a

scene of interest at full resolution and there are many available algorithms having

various strengths and weaknesses. Here, a subaperture-based imaging algorithm

is proposed, which first forms range-Doppler (RD) images from slow-time sub-

intervals, and then coherently integrates over the resulting coarse-resolution RD

maps to produce a full resolution SAR image. A two-dimensional backprojection-

style approach is used to perform distortion-free integration of these RD maps.

This technique benefits from many of the same benefits as traditional backprojec-

tion; however, the architecture of the algorithm is chosen such that several steps are

shared with typical target detection algorithms. These steps are chosen such that

no compromises need to be made to data quality, allowing for high quality imaging

while also preserving data for implementation of detection algorithms. Addition-

ally, the algorithm benefits from computational savings that make it an excellent

imaging algorithm for implementation in a simultaneous SAR-GMTI architecture.
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Chapter 1

Introduction

1.1 Motivation

Synthetic aperture radar (SAR), first introduced in 1951, brought forward a new

realm of radar imaging that greatly enhanced surveillance potential. Whereas large

antenna apertures were previously needed to achieve fine resolution in azimuth, it

had now been determined that a single antenna could synthesize the same array by

transmitting pulses while moving, allowing integration into airborne platforms, and

achieving twice the resolution of the real aperture [1, 2]. A radar’s range resolu-

tion is inversely proportional to its bandwidth, i.e. as bandwidth is increased range

resolution becomes more fine. A radar’s azimuth, or cross-range, resolution is in-

versely proportional to its aperture size, which is no longer limited by the physical

size of the aperture. The introduction of SAR has garnered a wide range of applica-

tions: from militaristic reconnaissance and intelligence gathering to general terrain

mapping of Earth and other celestial bodies.

As the demand for higher and higher image quality increases, the amount of

data required grows as well. Digital processors often require compromises to be

made to image quality so that the data can be processed efficiently, often limiting

the size or resolution of the image. Early imaging algorithms relied heavily on
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these compromises, but over time, algorithms have become more robust to allow

for higher image quality without reliance on compromises. This increase in image

quality comes at the cost of increased computation, but as modern computing im-

proves, the increased computational requirements can be realized more and more

efficiently. However, even with improved computing, high quality images are still

formed relatively slowly. The best algorithms produce full resolution images, lim-

ited only by the operating parameters of the system, in the most efficient manner

possible.

1.2 Background

Numerous imaging algorithms exist that make compromises between image

quality and computational efficiency. One algorithm that can be used to produce

an optimal SAR image is the matched filter algorithm. The matched filter algo-

rithm applies a filter that is matched to a particular target’s characteristics, i.e. a

target’s position in the scene; however, a new matched filter is required for every

target hypothesis, requiring O(N4) operations to form an NxN image [3]. The

computational requirements of this algorithm are tremendous and prevent its use

in most applications. The backprojection algorithm, mathematically equivalent to

the matched filter algorithm, is a technique that can be used to produce a very

high-quality image while benefiting from reduced computation [3]. This algorithm

aligns and coherently sums the returns from scatterers over a coherent processing

interval (CPI). The returns are summed once per pulse, allowing the backprojection

algorithm to produce images as phase history is recorded. While the backprojec-

tion algorithm is significantly more efficient than the matched filter algorithm and

its architecture allows for real-time implementation, it is still extremely computa-
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tionally intensive, making real-time image formation impractical with modern day

computing. The backprojection algorithm requires O(N3) operations to form an

NxN image, a factor of N smaller than the matched filter algorithm but still very

large compared to other fast transform-based algorithms.

One such algorithm is the polar format algorithm (PFA), whose use of the ex-

tremely efficient fast Fourier transform (FFT) allows near real-time imaging. The

reduced computational requirements of the PFA are very significant, requiring only

O(N2logN) operations to form the same NxN image; however, the PFA suffers

from a severe reduction in image quality [1, 4, 5]. The PFA forms an image by

performing a highly efficient 2D FFT on polar-formatted data. Proper imaging by

the PFA requires that the far-field approximation hold, i.e. the platform is far away

when compared to the spatial extent of the scene, imposing strict limitations on

scene size [4]. Images formed by the PFA exhibit geometrical warping and defo-

cusing that become more prominent for large scene sizes. Using a second-order

Taylor Series expansion, it can be shown that proper imaging of a scene is limited

to a radius of 1,100 m for a SAR system operating at X-band with a 1 foot range

resolution at a range of 110 km [6, 7]. This may seem like adequate area cover-

age, but when compared to the arbitrary scene size allowed by the matched filter

algorithm and backprojection, the PFA is at a severe disadvantage.

Several techniques have been proposed that increase the properly imaged scene

size allowed by the PFA, but these come at the cost of increased computation.

Several methods increase area coverage by applying a spatially-variant filter that

compensates for phase errors after the image has been formed [8, 9]. The spatially-

variant nature of the filter requires that a new filter be created for each desired pixel

within the scene of interest. Each new filter depends on the range and cross-range

of each desired pixel, making pixel specific filtering highly inefficient. Instead, fil-
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ters are typically approximated for a group of pixels such that the residual quadratic

phase error of each pixel in the group falls below a specified level, typically between

π/4 and π/2 radians [7]. After this filter is applied, an interpolation is usually per-

formed that mitigates distortion by compensating for the remaining linear phase

errors. Filter calculation can also be simplified by the use of the dual format algo-

rithm (DFA) which, instead of forming an image directly to a Cartesian grid and

filtering, forms an image on an arbitrary grid that is chosen such that the quadratic

phase errors to be corrected are a function of only range [7]. Each new filter for the

DFA can be computed once for an entire row of pixels within the image, reducing

computational requirements further. An interpolation is then required to transform

the image from the arbitrary grid to the Cartesian grid desired for image output.

Another advantageous use of the FFT is the ability to perform Doppler process-

ing with tremendous efficiency. Implementing an FFT across slow-time will yield a

range-Doppler map of the CPI; however, targets will migrate in range and Doppler

over the course of the CPI. Due to the SAR collection geometry, even stationary

targets and clutter will exhibit some migration for any reasonably sized CPI. This

migration is extremely undesirable as it results in a range-Doppler map with de-

graded resolution. This migration could be mitigated by limiting the radar’s band-

width or CPI duration, but this would negatively impact image quality, as discussed

further in Chapter 2. To avoid these compromises, another method must be used;

linear range migration can be fully accounted for by the Keystone Transformation

without any compromise to the data collection parameters [10, 11]. However, even

stationary targets have a higher-order motion profile due to SAR collection geome-

try, resulting in the inability of the Keystone transform to fully compensate for the

range migration present in a full CPI. While the Keystone transform may not be

suitable for application to a full CPI, it can be applied to subintervals of the full CPI
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that are chosen such that range migration is approximately linear. These sub-CPIs,

or subapertures, containing only approximate linear range migration, allow the Key-

stone transform to fully focus target energy in each sub-CPI’s range-Doppler map.

Each subaperture creates an image that is fully focused with coarse resolution and

poor image quality.

The inherent resolution achievable by a SAR system is defined by its oper-

ating parameters, and in order to obtain the full resolution image, all data must

be used. For subaperture-based approaches, this means all subapertures must be

used in the production of the full resolution image. There are various subaperture-

based techniques that can be used for SAR image formation, but all such techniques

must perform the same two key steps: first, low resolution images are formed for

each subaperture, then these images are aggregated into a full resolution image.

Subaperture-based PFA can utilize subapertures to increase area coverage over the

traditional PFA. In this technique, discussed in [5], tiers of subapertures in range

and azimuth are used to mitigate migration and phase errors, allowing for increased

area coverage. The factorized backprojection (FBP) has been introduced as a back-

projection style combination of subapertures [12]. First, the FBP forms beams from

the polar formatted data of each subaperture, then combines sets of these subaper-

tures by interpolating their beams to create the beams of the larger subapertures.

The FBP continues the aggregation of adjacent subapertures and beam formation

until all subapertures are used. The resulting beams now lie on a Cartesian gird,

allowing a 2D FFT to produce a full resolution image.

While there exists a plethora of imaging algorithms, new algorithms are still

required to increase the efficiency at which data can be processed. This thesis will

serve as a focused discussion on one such algorithm, called 2D range-Doppler back-

projection. This technique is a subaperture-based approach that utilizes the highly
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efficient FFT to first create range-Doppler maps for each subaperture. Each sub-

aperture is chosen such that targets exhibit only linear range migration, allowing

the Keystone transform to fully focus the range-Doppler maps of each. While tar-

get energy is focused in the range-Doppler map of each sub-CPI, range and Doppler

values vary across sub-CPIs as the SAR platform traverses its flight path. This

variation is accounted for by a backprojection-style summation of the returns from

multiple sequential subapertures. This summation accounts for phase changes from

sub-CPI to sub-CPI, allowing for coherent integration of all sub-CPIs. The coherent

integration of all sub-CPIs will yield a full resolution image. This technique dif-

fers from previously described subaperture-based approaches by the use of the Key-

stone transform to focus individual sub-CPIs and the interpolation of range-Doppler

maps to form coarse resolution images from the sub-CPIs. The greatest advantage

of this 2D backprojection approach over traditional backprojection is the reduced

number of interpolations needed to form a full resolution image. While traditional

backprojection requires a single 1D interpolation for each pulse, 2D backprojection

requires only a single 2D interpolation for each sub-CPI, often composed of tens

or hundreds of pulses. Performing a 2D interpolation is more computationally in-

tensive than a 1D interpolation, but the reduced number of interpolations needed

makes 2D backprojection much more efficient. The architecture of the 2D back-

projection has been chosen such that several processing steps are shared with many

post-Doppler GMTI techniques [13, 14, 15, 16, 17], allowing for a simultaneous

SAR-GMTI pipeline that can efficiently process data to be imaged and tested for

moving targets [18, 19, 20].

Several techniques have been proposed for efficient simultaneous SAR-GMTI.

One popular choice for simultaneous processing is the displaced phase center an-

tenna (DPCA) technique [21]. Here, multiple antenna elements are used to create
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multiple images of the scene. The spacing between these elements is chosen such

that the second pulse of the second element is transmitted and received from the

same location as the first pulse by the first element. This is achieved by spacing

the elements such that the platform moves by one interelement spacing between

each transmitted pulse. The images formed by the first and second elements will,

therefore, be identical for stationary targets, but moving targets will have a non-

stationary location in the scene and will result in differences in the images. By

subtracting one image from the other, the difference between the images will yield

returns from moving targets only. While this technique is useful for locating mov-

ing targets, it does little to help identify target parameters. DPCA can be used in

conjunction with along-track interferometric SAR (AT-InSAR) to allow for calcula-

tion of target velocity [19]. AT-InSAR takes advantage of the same displaced phase

centers as DPCA and also forms SAR images for each element. However, unlike

DPCA, AT-InSAR looks at the phases of the images instead of the magnitudes.

Using the phases of the images allows for AT-InSAR to determine target radial ve-

locity. Using multiple phase centers would allow 2D backprojection to be used in

a SAR-GMTI architecture such as this; however, the data is formatted such that

post-Doppler GMTI techniques can also be utilized with little extra computation,

allowing for a wide range of possible applications.

Relevant SAR theory will be introduced in Chapter 2. Chapter 2 will then fully

describe the signal model needed for development of the imaging algorithm. Chap-

ter 3 will derive the imaging algorithm, including all relevant math and algorithm

steps needed for efficient processing. Chapter 4 will provide an in-depth analysis

of the results on simulated and real data. Chapter 5 will discuss the computational

requirements of the algorithm, including memory requirements and relative com-

putation times of this method compared to traditional backprojection. Finally, in
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Chapter 6, conclusions will be drawn on the capabilities of the algorithm, and fu-

ture work on developing GMTI processing will be discussed.
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Chapter 2

SAR Theory and Signal Model

In the previous Chapter, several existing SAR imaging algorithms were intro-

duced. These imaging algorithms all exhibit different image formation capabilities

that serve a wide range of purposes. From these, 2D backprojection, a subaperture-

based imaging technique, was introduced as a computationally efficient simulta-

neous SAR-GMTI imaging algorithm. This technique performs a backprojection-

style combination of subapertures to form a high resolution image while also re-

taining data in a format that is useful for implementation of GMTI techniques.

In this Chapter, relevant SAR background information will be provided. Next,

the general SAR signal model used for deriving the 2D backprojection algorithm

will be introduced. Finally, the Keystone Transformation, used for range migration

correction, will be introduced for a simplified geometry that will later be expanded

for application to SAR geometry by 2D backprojection.

2.1 Introduction to SAR

SAR systems utilize platform motion to create a synthetic array of data. As the

platform travels, pulses are transmitted periodically at a specified interval, known

as the pulse repetition interval (PRI), given by the inverse of the pulse repetition
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frequency (PRF). Returns are collected for each pulse and sampled by the ADC

once converted to baseband. The returns are passed through a filter that is a copy of

the time-reversed conjugated transmitted signal. This filter is known as the matched

filter, and passing returns through it equates to convolving the received signal with

the matched filter, yielding the autocorrelation function of the baseband waveform.

Fundamentally, the autocorrelation is a measure of how similar the received signal

is with the matched filter at different time delays. When a target is present, the

received signal should be nearly identical to the transmitted signal, so the output of

the matched filter will result in a strong peak. When no target is present, the output

of the matched filter will be very weak as the received signal is primarily noise and

does not match the transmitted signal.

The width of the peak of the matched filter response defines the resolution of

the waveform. A simple rectangular pulse has a peak width equal to the time du-

ration of the pulse, requiring exceptionally short pulses to achieve fine resolution.

While short pulses exhibit very high bandwidth, they are undesirable as they limit

the amount of energy that can be transmitted in a single pulse without also in-

creasing peak power requirements. Long pulses are therefore required; however,

lengthening the pulse decreases instantaneous bandwidth and degrades resolution.

Therefore, modulation schemes must be employed that decouple the time duration

and bandwidth of the waveform, allowing each to be independently specified. These

modulation techniques allow the output of matched filtering to be compressed into

a more narrow peak, giving rise to the name pulse compression. Whereas the reso-

lution of a simple pulse is determined by the time-duration of the pulse, modulation

techniques allow bandwidth, β, to be chosen independently of time-duration, al-

lowing a resolution of 1/β. This peak width has units of seconds, but can easily be

10



Figure 2.1: SAR platform / pixel geometry

converted into range units, giving the range resolution of the system as

∆R =
c

2β
, (2.1)

where the factor of two in the denominator results from the two-way propagation

of the wave as it travels to the target and back.

The cross-range resolution is now desired to find the achievable resolution of

the SAR system. As the platform travels past the scene shown in Figure 2.1, a

target will be observed for Ta seconds. The Doppler resolution, ∆Fd, of the system

is given by 1/Ta, requiring long observations for a fine azimuth resolution. The

measured Doppler value of any target within the scene is dependent on the velocity

of the platform and its location within the scene. Using the geometry defined in
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Figure 2.1, we see that the radial component of the velocity, vrad, is the projection

of radar velocity, vr, onto the line-of-sight vector. Equivalently, vrad is the product

of vr and the cosine of the angle between the velocity vector and the line-of-sight

vector. Therefore, the radial component of the radar’s velocity is

vrad = vrcos(θ) = vr
y0
R0

, (2.2)

where the radar is assumed to be located at t = 0 and R0 is the magnitude of the

line-of-sight vector and can be approximated as constant for determining resolution.

Cross-range resolution, ∆CR, can now be determined by substituting 2vrad
λ

for Fd,

giving

∆CR =
R0λ

2vrTa
, (2.3)

where 2vrTa is equivalent to the total distance traversed by the SAR platform during

the observation. It is important to note that while resolution in range is dependent

only on radar operating parameters, cross-range resolution is spatially variant. This

variance is accentuated for larger scenes and scenes that are near the radar. In

practice, cross-range resolution can be higher than this theoretical value. If a non-

linear flight path is chosen, e.g. circular SAR flight path, the angle subtended is

such that the achievable resolution is much higher than the value derived here for

a linear flight geometry. Therefore, to achieve high resolution in range and cross-

range, SAR systems typically utilize wide bandwidth and long observation times.

Long observations allow the platform to travel the distance required to create the

desired synthetic aperture. The remainder of this chapter will derive the signal

model needed for the derivation of 2D backprojection.

12



2.2 SAR Signal Model

Consider a SAR system with an idealized two-dimensional geometry and a lin-

ear flight path as shown in Figure 2.1. The system transmits a general bandpass

waveform of the form

x̃t(t) = a(t)cos(2πF0t+ θ(t)), (2.4)

with complex baseband equivalent of

xt(t) = a(t)exp(jθ(t)), (2.5)

where F0 is the center frequency of the band, θ(t) represents a time-varying phase

modulation, and a(t) represents a time-varying amplitude modulation. The received

signal (ignoring amplitude factors resulting from target parameters) is a delayed

copy of the transmitted bandpass waveform given by

x̃r(t) = a(t− τ)cos(2πF0(t− τ) + θ(t− τ)), (2.6)

with complex baseband equivalent

xr(t) = a(t− τ)exp(−j2πF0τ)exp(jθ(t− τ)), (2.7)

where τ is the two-way propagation delay to a particular scatterer. The received

baseband signal is passed through a matched filter, which is the time-reversed,

complex conjugate of the transmitted waveform. Therefore, h(t) = x∗t (−t), and
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the output of the matched filter, given by w(t), is

w(t) = h(t) ∗ xr(t) =

∞∫
−∞

xr(u)h(t− u) du

= exp(−j2πF0τ)

∞∫
−∞

a(u− τ)exp(jθ(u− τ))a(t− u)exp(jθ(t− u)) du

= exp(−j2πF0τ)Rxx(t− τ)

(2.8)

which is the autocorrelation function of the baseband waveform, delayed by the

propagation delay of the received signal and scaled by a propagation phase term.

During a CPI, the waveform is transmitted N times at a uniform PRI, given

by Tr. Adding this slow-time dimension, the baseband signal received on the nth

pulse, where n ∈ [−(N − 1)/2, (N − 1)/2], due to a single scatterer is a delayed

version of the transmitted signal given by

xr(t, n) = a(t− τn)exp(−j2πF0τn + jθ(t− τn)). (2.9)

where τn is the two-way propagation delay to a particular scatterer on the nth pulse.

Using (2.8), the output of the matched filter due to the reflected signal on the nth

pulse is then

w(t, n) = exp(−j2πF0τn)Rxx(t− τn), (2.10)

with a Fourier transform in the fast-time dimension of

z(F, n) = exp(−j2π(F0 + F )τn)Sx(F ), (2.11)

where Sx(F ) is the Fourier Transform of Rxx(t) and F is the fast-time frequency
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axis. The slow-time varying time delay, τn, introduces a phase rotation that also

varies from pulse to pulse.

The range to a particular scatterer on the ground is now desired. A continuous

slow-time variable, ts, will be used to derive the range to any given scatterer on the

ground, then the derived ranges will be sampled in slow-time at the PRF to obtain

data in the traditional fast-time vs. slow-time format. The range to a scatter for any

slow-time value is given by

r(ts) =
√
r20 + (vrts − y0)2, (2.12)

where vr is the radar velocity, and y0 and r0, as shown in Figure 2.1, are the along-

track and cross-track scatterer coordinates, respectively. The Taylor expansion of

the range expanded around ts = 0, ignoring third-order and higher terms, is

r(ts) = r(0) +
r′(0)

1!
(ts − 0) +

r′′(0)

2!
(ts − 0)2 + . . . , (2.13)

where r′(0) and r′′(0) represent the first and second time derivatives of r(ts) with

respect to slow-time variable ts, evaluated at the expansion point ts = 0. We now

differentiate r(ts) to find

r′(ts) = vr
(
r20 + (vrts − y0)2

)− 1
2
(
vrts − y0

)
, (2.14)

and again to find

r′′(ts) = v2r

[(
r20 + (vrts − y0)2

)− 1
2

−
(
vrts − y0

)2(
r20 + (vrts − y0)2

)− 3
2

]
.

(2.15)
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We can now define R0 = r(0) and evaluate equations (2.14) and (2.15) at ts = 0,

giving

r′(0) = −vry0
R0

, (2.16)

r′′(0) = −v
2
ry

2
0

R3
0

+
v2r
R0

. (2.17)

Using equations (2.16) and (2.17), the slow-time dependent range to a scatterer is

r(ts) = R0 −
vry0
R0

ts −
1

2

v2ry
2
0

R3
0

(ts)
2 +

1

2

v2r
R0

(ts)
2, (2.18)

We can now use this slow-time varying range to calculate a range rate and convert

this to Doppler frequency, given by

Fd(ts) = −2

λ

dr(ts)

dt

= −2F0

c

(
− vry0

R0

− v2ry
2
0

R3
0

ts +
v2r
R0

ts

) (2.19)

where λ is the wavelength of the carrier frequency. Using (2.18), the slow-time

dependent range to the scatterer calculated on each pulse (i.e., at ts = nTr where

ts ∈ [−T/2, T/2]) is given by

r(nTr) = R0 −
vry0
R0

nTr −
1

2

v2ry
2
0

R3
0

(nTr)
2 +

1

2

v2r
R0

(nTr)
2. (2.20)

We can now use this range to calculate the pulse-dependent two-way propagation

delay, τn, yielding

τn =
2

c

[
R0 −

vry0
R0

nTr −
1

2

v2ry
2
0

R3
0

(nTr)
2 +

1

2

v2r
R0

(nTr)
2

]
. (2.21)
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The pulse-varying, instantaneous Doppler shift on each pulse is, therefore,

Fd(nTr) = −2

λ

dr(nTr)

dt

= −2F0

c

(
− vry0

R0

− v2ry
2
0

R3
0

nTr +
v2r
R0

nTr

)
.

(2.22)

The complete received signal from each pulse is the superposition of returns

from all scatterers in the scene on the nth pulse. An imaging algorithm must focus

each pixel’s contributions in order to produce a full resolution image of the scene.

The received signal as sampled by the receiver, given in (2.10), is in the fast-time

vs. slow-time format that is ideal for implementation of traditional backprojection,

as the backprojection algorithm requires interpolation of the range-axis and sum-

mation for every pulse. However, this format is not useful for other algorithms such

as the PFA. Reformatting of the data is the first step performed by any algorithm

that requires a specific format for processing. As the name of the algorithm implies,

the PFA requires the data to be in a polar format. For 2D backprojection, fast-time

frequency vs. slow-time is the most desirable as discussed further in Chapter 3.

Chapter 3 will use the signal given in (2.11) combined with the expressions for

the pulse-dependent propagation delay and pulse-dependent Doppler shift, given in

(2.21) and (2.22), to derive the signal model of 2D backprojection.

2.3 The Keystone Transform

The exponential term in (2.10) contains the pulse-dependent propagation delay

to a target, resulting in a varying phase measured on each pulse. For simplicity of

the initial derivation of the Keystone Transformation, we now assume a stationary

radar. Therefore, the two-way propagation delay, τn, now depends only on the mo-
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tion of the target. In general, the ability to perform the Keystone transform only

depends on the motion of the target relative to the platform, so we could equiv-

alently assume a stationary target with a moving platform. For a target moving

radially at some constant velocity, vrad, the pulse-dependent range and propagation

delay are

r(nTr) = R0 − vradnTr, (2.23)

τn =
2

c

(
R0 − vradnTr

)
, (2.24)

where vradnTr is the pulse-to-pulse range migration. This term is typically very

small, but high-velocity targets and long observation times will result in a non-

trivial range migration. We can now substitute this expression for τn into (2.11) and

have

z(F, n) = exp(−j4π(F0 + F )(R0 − vradnTr)/c)Sx(F )

= exp(−j4π(F0 + F )R0/c)exp(j4π(F0 + F )vradnTr/c)Sx(F )

(2.25)

The first exponential term in this expression is the range-dependent phase term,

while the second exponential contains information on the slow-time phase progres-

sion. Performing an FFT in the slow-time dimension allows us to extract Doppler

information from the second exponential via the pulse-to-pulse phase progression.

However, it is clear that the pulse-to-pulse phase progression is dependent on fast-

time frequency, F . If range migration during the full CPI, given by vradNTr, is

small relative to the range resolution of the system, the effects of the coupling be-

tween n and F can be neglected, and a target will remain in a single range bin for the

entire CPI. However, use of wide bandwidth and long observation times will often

result in range migration that will be greater than the range resolution, resulting in a
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non-trivial phase progression dependence on F . The dependence on F means that

the slow-time phase progression for frequencies greater than F0 will be faster than

for frequencies less than F0. Target range will, therefore, change throughout the

CPI, resulting in target energy being spread over multiple range bins. Additionally,

frequency dependent phase progression will result in a blurred Doppler response.

Figure 2.2 shows a simulated target that exhibits moderate range migration and the

resulting unfocused range-Doppler map. Simulation parameters for this data are

given in Table 2.1. Over the course of the CPI, the target will migrate 5.12 meters

away from the radar. The range resolution of this system with 400 MHz of band-

width is .375 meters, resulting in target range migration that spans several range

bins. Target energy is spread over multiple range-Doppler bins, resulting in poor

Parameter Value
β 400 MHz

PRI .5 ms
N 1024
R0 5 km
vrad 10 m/s

Table 2.1: Radar and target parameters for simulated dataset showcasing range mi-
gration
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Figure 2.2: Range migration of simulated target moving away from the radar at 10
m/s for a CPI duration of 5.12 seconds
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focusing of the range-Doppler map.

Obviously the response in the previous figure is highly undesirable and must

be accounted for to preserve adequate image quality. The desired response in the

Doppler domain is a sinc function centered at Doppler frequency, Fd, with an in-

verse FFT of exp(j4πF0vradnTr/c). To obtain this form, we can simply multiply

(2.25) by a phase of exp(−j4πFvradnTr/c). While this would completely remove

the dependence on F and yield the desired range-Doppler response, it will only

work for a single value of vrad. A more general technique is desired that will work

for any arbitrary value of vrad, and by clever choice of a rescaling of the slow-time

axis, this can be accomplished. The received signal is sampled at an interval of nTr,

but if we perform a frequency-dependent scaling of the slow-time axis to some new

slow-time variable, τ ′, given by

(nTr)
′ =
(F0 + F

F0

)
nTr, (2.26)

the slow-time axis is scaled such that the time interval between pulses, (nTr)
′, will

be larger for frequencies greater than F0 and less for frequencies smaller than F0.

This scaling results in a keystone shape of the scaled data, giving rise to the trans-

form’s name. For frequencies larger than F0, the sample-to-sample phase progres-

sion is faster than desired. The rescaling of the axis doesn’t change this; however,

this rescaling does increase the time between samples, resulting in a slow-time phase

progression that is now the same for all values of F . Substituting (nTr)
′ into (2.25),

we have

z(F, (nTr)
′) = exp(−j4π(F0 + F )R0/c)exp(j4πvradF0(nTr)

′/c)Sx(F ). (2.27)
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It is clear that vrad and F have been decoupled, resulting in the desired slow-time

phase progression. When implemented, this rescaling requires a different inter-

polation of the slow-time axis for each frequency value. Specifically, a uniform

slow-time axis is desired that samples the original data at a constant interval of Tr,

requiring interpolation of the data at values of
(

F0

F0+F

)
nTr. While this seems to di-

rectly conflict with the earlier choice or rescaling factor, interpolating the original

data at these locations is exactly the same as sampling the Keystoned data at the

original sample locations separated by Tr. Figure 2.3 shows the results of applying

the Keystone transform to the same data set shown in Figure 2.2. It is clear that the

Keystone transform is able to fully correct for linear range migration of targets.

When the Keystone transform is applied to SAR data, the motion profile of sta-

tionary scatterers within the scene will generally not be a simple linear equation.

For a typical collection, bandwidth will be large enough and observation time long

enough that significant range migration is present, and due to the collection ge-

ometry, higher order motion profiles will also be present, resulting in a scene that

cannot be fully focused via the Keystone transform. As proposed in Chapter 1, the
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Figure 2.3: Range migration mitigation and range-Doppler focusing achieved by
applying the Keystone transform to simulated data with parameters given in Table
2.1.
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Keystone transform can be applied to sub-CPIs of the dataset. These sub-CPIs are

chosen such that the range migration is approximately linear, allowing the Key-

stone transform to fully compensate for the migration. The following chapter will

serve to fully describe 2D backprojection. The chapter will then go on to derive the

necessary equations for implementation of this technique, including the Keystone

transform which will be used to help focus individual sub-CPIs prior to aggregation

over sub-CPIs into a final image.
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Chapter 3

2D Range-Doppler Backprojection

Now that a general SAR signal model has been introduced, 2D backprojec-

tion can be derived. First, a general processing pipeline will be introduced for 2D

backprojection. This pipeline will help to showcase the similarity to traditional

backprojection, as well as help highlight the usefulness of 2D backprojection as a

SAR-GMTI imaging algorithm. Next, 2D backprojection will be derived in full, in-

cluding all relevant processing steps and resulting phase shifts needed to allow for

coherent combination of sub-CPIs. Theses equations will serve as the foundation

for the implementation of the algorithm in Chapters 4 and 5.

3.1 Processing Pipeline

The 2D backprojection will produce high resolution images of a full observa-

tion while also maintaining a processing architecture that can serve as a foundation

for common GMTI techniques. The architecture of this algorithm is designed such

that image formation by the 2D backprojection shares several processing steps with

standard GMTI techniques, allowing for simultaneous implementation. The algo-

rithm first divides the full CPI into several sub-CPIs, or subapertures, where range

migration is approximately linear. Next, the Keystone transform is applied to ac-
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count for any linear range migration within the sub-CPI. While range migration

may be small within a sub-CPI, the Keystone transform will help to increase the

focus of each sub-CPI. Mitigation of range migration is also essential for GMTI, as

migration of moving targets will degrade detector performance. For this reason, the

Keystone transform is a very useful step in a shared processing pipeline. Finally,

inspired by the well-known backprojection algorithm, coherent integration across

sub-CPIs will be performed to produce a full-resolution image of the desired scene.

For the side-looking linear flight geometry shown in Figure 2.1, a scatterer’s

range will change approximately quadratically over slow-time. While the differ-

ence in range to a scatterer between pulses may be small compared to the scene

size or resolution of the system, the varying propagation phase at the carrier wave-

length will introduce incoherency that inhibits proper integration of returns without

proper compensation. This undesired phase must be accounted for in any coherent

imaging algorithm. The traditional backprojection algorithm accounts for varying

propagation phase by applying a range-dependent phase shift to the scatterer’s re-

turns on each pulse, thus allowing for coherent integration of returns over all pulses.

The range-dependent phase shift applied by traditional backprojection is simply the

conjugate of the undesired additional phase measured by the radar due to a scat-

terer’s migration between pulses. To create an image of the full scene, a range

interpolation and phase correction are required for every pixel within the scene. 2D

backprojection aims to integrate returns in the same way as traditional backpro-

jection but uses the scatterer’s location in the range-Doppler map of each sub-CPI

rather than the scatterer’s range for each pulse.

In 2D Range-Doppler backprojection, a scatterer will have a range and Doppler

value that changes during the course of the full CPI. The full CPI will be broken

into sub-CPIs, and with the additional range migration correction from the Key-
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stone transform, a scatterer will be localized in range and Doppler for each sub-

CPI. While the differences from one sub-CPI to the next may be small, the range-

Doppler migration results in a phase term that introduces incoherency and prevents

proper integration of returns from all sub-CPIs. This incoherency is accounted for

in 2D backprojection by applying both a range-dependent and Doppler-dependent

phase shift to the scatterer’s returns for each sub-CPI. Just as range variation re-

quires a range interpolation and phase correction in the traditional backprojection

approach, these range and Doppler variations require range and Doppler interpola-

tions and phase corrections in order to coherently sum the returns over sequential

range-Doppler maps. This procedure must be performed for every pixel within the

scene to create an image.

Figure 3.1 shows the processing pipeline of traditional backprojection versus 2D

backprojection. The image on the left of the figure shows the quadratically chang-

ing range of a stationary target across slow-time, consistent with the side-looking

geometry used here. As described previously, the traditional backprojection algo-

rithm interpolates the value of the range profile corresponding to a target’s range

for each pulse and applies a phase correction that allows for coherent integration of

returns over the full CPI.

The right side of the figure shows the general procedure for SAR imaging via 2D

backprojection. First, sub-CPIs are created and the Keystone transform is applied

to each sub-CPI to account for linear range migration. Next, an FFT is performed

across slow time to produce range-Doppler maps of each sub-CPI. Because a tar-

get’s range and Doppler are varying during the full CPI, the target’s location in the

range-Doppler map will change from sub-CPI to sub-CPI, as shown in the figure.

However, as long as a target’s contributions are still localized within each range-

Doppler map, their contributions can be obtained by 2D interpolation, analogous
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Figure 3.1: Imaging algorithm pipeline of 2D backprojection as compared to tradi-
tional backprojection.

to 1D interpolation of a range profile performed by traditional backprojection. In

order to support coherent integration, we now need to apply a phase shift that fully

accounts for the undesired phase shift resulting from the target’s sub-CPI-dependent

location in each range-Doppler map. The following section will derive the phase

shift expected when the data is processed in this way; we can then apply the con-
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jugate of this phase shift to the target’s interpolated value, allowing for coherent

integration of the target’s contributions over the full CPI. Once in the Doppler do-

main and before imaging, we can also apply post-Doppler GMTI techniques to pro-

duce a moving target statistic, allowing for computationally efficient simultaneous

imaging and target detection.

3.2 Imaging Signal Model

The received signal’s Fourier transform, given in (2.11), is now split into several

sub-CPIs in preparation for linear range migration compensation by performing the

Keystone transform on each of the sub-CPIs. We now define the pulse index, n, in

terms of a sub-CPI center pulse, m′, and a local pulse index, m, giving

n = m′ +m, (3.1)

where −(M − 1)/2 ≤ m ≤ (M − 1)/2 and M is the number of pulses within

a sub-CPI. Indexing the data in this way results in (2.11) now being a function of

fast-time frequency, F , a sub-CPI center pulse, and a local index centered at the

sub-CPI center. Performing the Keystone transform and Doppler FFT on this local

pulse index allows us to perform them on each individual sub-CPI defined by center

pulse m′. This indexing scheme also allows us to isolate terms that are dependent

on the sub-CPI center pulse, i.e. the terms that change from one sub-CPI to the next.

These terms must be accounted for to support coherent combination of sub-CPIs.

To find the pulse-dependent propagation delay based on the new indexing scheme,
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we will substitute (3.1) into (2.21), giving

τm =
2

c

[
R0 −

vry0
R0

(m′ +m)Tr −
1

2

v2ry
2
0

R3
0

((m′ +m)Tr)
2 +

1

2

v2r
R0

((m′ +m)Tr)
2

]
.

(3.2)

Substituting (3.2) into (2.11) to find z(F,m′,m), we have

z(F ,m′,m) = Sx(F )exp

(
− j2π(F0 + F )

2

c
R0

)
×

exp

(
j2π(F0 + F )

2

c

vry0
R0

(m′ +m)Tr

)
×

exp

(
j2π(F0 + F )

2

c

1

2

v2ry
2
0

R3
0

((m′ +m)Tr)
2

)
×

exp

(
− j2π(F0 + F )

2

c

1

2

v2r
R0

((m′ +m)Tr)
2

)
.

(3.3)

This equation can now be rearranged into m-independent terms and m-dependent

terms. Squaring the terms as necessary within the arguments of the various expo-

nentials, the m-independent terms include

Ψ1(F ) = exp
(
− j4π(F0 + F )

R0

c

)
, (3.4)

Ψ2(F,m
′) = exp

(
j4π(F0 + F )

vry0
R0c

m′Tr
)
, (3.5)

and

Ψ3(F,m
′) = exp

(
j2π(F0 + F )

(v2ry20
R3

0c
− v2r
R0c

)
(m′)2T 2

r

)
. (3.6)

These terms are independent of the slow-time index, m, that will be operated on

by the Keystone transform. Therefore, m′ will have no effect on the output of the

Keystone transform. For this reason, we will now combine Ψ1, Ψ2, and Ψ3 into one
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exponential term, given by

Ψ(F,m′) = exp

(
−j 4π

c
(F0+F )

(
R0−

vry0
R0

m′Tr−
v2ry

2
0

R3
0

(m′Tr)
2− v2r

R0

(m′Tr)
2
))

.

(3.7)

We can now rewrite equation (3.3) in terms of Ψ and m-dependent terms, resulting

in

z(F,m′,m) = Sx(F )Ψ(F,m′)exp

(
j2π(F0 + F )

2

c

vry0
R0

mTr

)
×

exp

(
j2π(F0 + F )

2

c

1

2

v2ry
2
0

R3
0

(2m′m+m2)T 2
r

)
×

exp

(
− j2π(F0 + F )

2

c

1

2

v2r
R0

(2m′m+m2)T 2
r

)
.

(3.8)

We notice that the sample-to-sample phase rotation is dependent on fast-time fre-

quency, F , and vr, exactly as shown when deriving the Keystone transform. Using

the Keystone transform to uncouple these terms, the sample-to-sample phase ro-

tation can be made to be a function of only vr. Once decoupled, the linear range

migration will be accounted for, fully focusing the range-Doppler map of the sub-

CPI.

We now perform the Keystone transform by transforming the data in slow time

to the new keystone-shaped grid of points. This step equates to rescaling the data

to modified pulse index locations of m̂ = m (F0+F )
F0

for every value of fast-time

frequency. This substitution results in

z(F,m′, m̂) = Sx(F )Ψ(F,m′)exp

(
j2π(F0 + F )

2

c

vry0
R0

(
F0

F0 + F
m̂)Tr

)
×

exp

(
j2π(F0 + F )

2

c

1

2

v2ry
2
0

R3
0

(2m′(
F0

F0 + F
m̂) + (

F0

F0 + F
m̂)2)T 2

r

)
×

exp

(
− j2π(F0 + F )

2

c

1

2

v2r
R0

(2m′(
F0

F0 + F
m̂) + (

F0

F0 + F
m̂)2)T 2

r

)
.

(3.9)
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This equation can be rearranged to a more convenient form, given by

z(F,m′, m̂) = Sx(F )Ψ(F,m′)×

exp

(
j2π

2F0

c

(
vry0
R0

+

(
v2ry

2
0

R3
0

− v2r
R0

)
m′Tr

)
m̂Tr

)
×

exp

(
jπ

2F0

c

(
v2ry

2
0

R3
0

− v2r
R0

)
F0

F0 + F
(m̂Tr)

2

)
.

(3.10)

After rearranging, we can see that the first exponential contains the Doppler shift of

the pixel, given by (2.22), evaluated at the center of the sub-CPI, i.e., the Doppler

shift of the pixel at nTr = m′Tr, which can be denoted Fd(m′Tr). Additionally,

this exponential does not depend on F , meaning that the Keystone has successfully

decoupled radial velocity and F . This exponential is the ideal slow-time response

desired for a well-behaved Doppler response, yielding a sinc function when con-

verted to the Doppler domain.

The second exponential contains the time derivative of the Doppler frequency

given in (2.22). The rate of change of Doppler is constant, a result of limiting

the Taylor expansion to only include second-order terms. Fundamentally, this ad-

ditional exponential results from the fact that Doppler frequency is not constant

throughout a sub-CPI, resulting from some non-trivial acceleration. This accel-

eration, while small, results in a slightly nonlinear motion profile. The Keystone

transform is unable to compensate for this term; however, it has been assumed that

the sub-CPIs are adequately short that target migration can be approximated as lin-

ear. Additionally, this term is independent of m′ and does not affect our ability

to coherently sum subsequent sub-CPIs; therefore, the affects of this term can be

assumed to be negligible. Later, we will discuss the implications of violating this

assumption.

We now wish to convert each sub-CPI into the Doppler domain by taking the
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DTFT over the new, local slow-time pulse index, m̂. This step is described by

Z(F,m′, fd) =
m̂=M−1∑
m̂=0

z(F,m′, m̂− M − 1

2
)exp(−j2πfdm̂) (3.11)

where the data index of z(F,m′, m̂) must be shifted by −(M − 1)/2 because the

DTFT is typically defined with a starting index of zero, but the data index of each

sub-CPI has a starting index of −(M − 1)/2. This shift in the index results in the

traditionally-indexed DTFT multiplied by a phase shift, which can be shown via a

change of variables in the DTFT expression. Converting the shifted data to a phase

shift, the result is now

Z(F,m′, fd) = exp

(
− j2πfd

(
M − 1

2

)
Tr

) m̂=M−1
2∑

m̂=−M−1
2

z(F,m′, m̂)exp(−j2πfdm̂).

(3.12)

Plugging the expression for z(F,m′, m̂) from (3.10) into this expression, we have

Z(F,m′, fd) = Sx(F )Ψ(F,m′)exp

(
− j2πfd

(
M − 1

2

)
Tr

)
×

m̂=M−1
2∑

m̂=−M−1
2

exp

(
j2πFd(m

′Tr)m̂Tr

)
exp

(
− j2πfdm̂

)
×

exp

(
jπ

2F0

c

(
v2ry

2
0

R3
0

− v2r
R0

)
F0

F0 + F
(m̂Tr)

2

)
.

(3.13)

As discussed, the last exponential in the summation contributes a small phase rota-

tion that is independent of sub-CPI center pulse, m′, so it will not affect our ability

to coherently sum over all sub-CPIs; therefore, this term will be ignored for now.

We now take the DTFT of the remaining exponential, which will be a “digital sinc

function” in the Doppler domain centered at normalized Doppler shift, TrFd(m′Tr),
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and denoted Dx(fd − TrFd(m′Tr)). The phase term outside of the summation con-

tributes an extra phase rotation that depends on sub-CPI via the scatterer’s Doppler

shift evaluated at m′. This term is the Doppler-dependent phase shift that needs to

be accounted for on each sub-CPI. Substituting Dx(fd − TrFd(m′Tr)) into (3.13)

we have

Z(F,m′, Fd(m
′Tr)Tr) = Sx(F )Dx(fd − TrFd(m′Tr))×

Ψ(F,m′)exp(−j2πFd(m′Tr)
(
M − 1

2

)
Tr).

(3.14)

Finally, we can expand Ψ and take the inverse Fourier transform over fast-time

frequency of the data, and we are left with data that is ready for interpolation and

aggregation, given by

Z(t,m′, fd) = Rxx

(
t− 2r(m′Tr)

c
)Dx(fd − TrFd(m′Tr))×

exp

(
− jπFd(m′Tr)(M − 1)Tr

)
exp

(
− j2πF0

2r(m′Tr)

c

)
.

(3.15)

To perform 2D RD backprojection, we will calculate the range and Doppler

locations of all pixels in the scene at the center time instant of each sub-CPI. Next,

we interpolate the sub-CPI’s range-Doppler map at those particular values. Range-

Doppler interpolation gives a pixel’s contribution to the range-Doppler map for each

sub-CPI, which then must be aligned in phase for coherent integration over multiple

sub-CPIs. Therefore, we now apply a phase correction given by the conjugate of the

two exponential terms shown in (3.15), one term for the change in range from each

sub-CPI to the next and one term for the change in Doppler. This is performed for

each sub-CPI and then returns are integrated over sequential sub-CPIs to produce

an image. Using these derived equations, Chapter 4 will present results obtained

by performing 2D backprojection. These results will be compared to traditional
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backprojection to explore some of the benefits and trade-offs of this algorithm.
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Chapter 4

Results

The previous Chapter showed that a target with a specific location in the range-

Doppler map of a sub-CPI will have a location-dependent phase shift. This location

changes from one sub-CPI to the next and must be accounted for in order for range-

Doppler maps to be coherently combined into a full resolution SAR image. To

create an image of a distributed scene, range and Doppler values are calculated

for all pixels within the scene. Range-Doppler maps are then interpolated at these

locations and the corresponding phase shifts are applied to each pixel. Returns

from subsequent sub-CPIs are then combined, forming a high quality image. This

Chapter will show results of performing 2D backprojection on simulated and real

data. Image quality will be discussed, as well as artifacts of 2D backprojection.

A brief demonstration of this technique’s ability to perform moving target imaging

will also be shown at the end of the Chapter.
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4.1 Simulated Results

4.1.1 Simulation Architecture

Data were simulated efficiently using an idealized linear flight geometry that

allowed for calculation of the returns produced by the superposition of many scat-

terers in a scene of interest. The radar’s location on each pulse is set to change in

the along-track dimension by an integer number of scatterer positions, allowing for

the reuse of previously computed range profiles. The recycling of ranges to scatter-

ers in the scene provides significant computational savings and allows for efficient

production of distributed scenes. The simulation also saves computation time by

pre-computing the pulse compression profiles of the waveform. Typically the re-

ceived signal is passed through the matched filter, but for simulation purposes, the

autocorrelation of the waveform can be used as the ideal response of the system.

Therefore, passing the transmitted waveform through the matched filter is equiv-

alent to calculating the autocorrelation function of the waveform to pre-compute

pulse compression profiles. These pre-computed profiles are sampled very finely

to mitigate the effects of target straddling range bins, then shifted and centered at a

target’s location in the range-profile.

Typically, pulse compression is performed after the received waveform is sim-

ulated for a target, resulting in a measured phase-shift that depends on the two-way

propagation delay of the signal. However, here the pulse compression profile is

pre-computed, requiring a phase shift to be manually applied to the returns from

the target. This procedure for simulation of data is very efficient and accurately

replicates real data. While efficient, this approach breaks down if the waveform is

not chosen such that it is Doppler tolerant. If the waveform is not Doppler tolerant,

Doppler shift exhibited by a target can deform and shift the matched filter output,
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an effect that is not present in the pre-computed pulse compression profiles. While

a Doppler tolerant waveform is always desired, the method used here relies on the

ability to assume Doppler tolerance.

4.1.2 Images of Simulated Data

A distributed scene was simulated with radar parameters given in Table 4.1

and imaging was performed using 2D RD backprojection, as well as traditional

backprojection for a baseline comparison. Figure 4.1 shows the results of the two

methods performed on a full scene. The two images are almost identical, and the

same artifacts can be observed in both. Figure 4.2 shows a closeup view of a point

scatterer like the one located at the center of the scene in Figure 4.1. This point

response represents the effective imaging function of the algorithm, and again, the

two are almost identical. However, the imaging function of the 2D backprojection

is dependent on several factors that can improve or diminish the output of the al-

gorithm. If the underlying operation parameters, such as bandwidth or observation

time, are changed, the imaging functions of both algorithms are affected accord-

ingly; however, because of the extra steps taken and choices made when performing

2D backprojection, its imaging function is much more reliant on parameter choices.

One of the many benefits of performing imaging via 2D backprojection is that

Table 4.1: Radar parameters used for simulating data.

Parameter Value
fc 10 GHz
β 200 MHz

PRI 1 ms
N 1040
R0 5 km
vr 125 m/s
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Figure 4.1: Traditional backprojection compared to 2D backprojection on the same
dataset. 1,040 pulses were used for each, and 2D backprojection partitioned the
CPI into 26 sub-CPIs with 40 pulses in each.

37



1D Backprojection
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Figure 4.2: Traditional and 2D backprojection images of a point scatterer like the
one at the center of Figure 4.1.
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many assumptions required for other fast imaging algorithms are not required. Nev-

ertheless, many parameters within the algorithm, such as sub-CPI length, i.e., the

time duration of the sub-CPI, have a non-trivial effect on the performance of the

algorithm. To reduce computation, the full CPI should be divided into as few

sub-CPIs as possible, reducing the number of interpolations and phase corrections

needed to form the final image. However, this results in long individual sub-CPIs,

and as sub-CPI length is increased, the linear range migration approximation as-

sumed for each sub-CPI no longer accurately models target motion. The second

exponential in the summation of (3.3), once assumed to have very little effect on

the focus of the sub-CPI’s range-Doppler map, now can have a significant impact

on image quality. This exponential is quadratic in m̂, so it can very quickly degrade

algorithm performance. The increased effect of this exponential results in poor fo-

cusing by the Keystone transform; therefore, individual range-Doppler maps are

blurred, and the final image is blurred as well, implying an upper limit on sub-CPI

length.

Figure 4.3 shows the imaging function for sub-CPIs that are longer than the

2D RD Backprojection
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Figure 4.3: Image formed by performing 2D backprojection on (a) 10 sub-CPIs of
length 104 pulses and (b) 8 sub-CPIs of length 130 pulses.
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sub-CPI length used in Figure 4.2. On the left, 10 sub-CPIs each containing 104

pulses were used to image the point target at the center of the scene. On the right,

8 sub-CPIs each containing 130 pulses were used to image the same point target. It

is immediately clear that there are very high side lobes in cross-range that were not

present when a shorter sub-CPI was used. These side lobes act much like grating

lobes in a phased array, i.e. as the sub-CPI length is increased, the aliased copies of

the target become more closely spaced and additional adjacent copies become vis-

ible as their peaks become stronger. Clearly, these aliasing artifacts are dependent

on the number of pulses within the sub-CPI and, therefore, the spacing between the

sub-CPI centers.

Figure 4.3 shows that as the sub-CPI length is increased, these artifacts appear

closer to the true target at the center. This behavior is consistent with the behavior

of grating lobes in a phased array. The best practice to prevent grating lobes in a

phased array is to ensure that the element separation is smaller than λ/2. However, a

λ/2 spacing is extremely small; if sub-CPIs were limited such that their subsequent

centers were separated by λ/2, 2D backprojection would no longer be a useful

technique for imaging. Therefore, sub-CPIs will need to be spaced by substantially

more than λ/2. However, like grating lobes, these aliased copies move closer to the

true target as the length of the sub-CPIs is increased. The aliased copies are weaker

the further away from the true target they are; the simple solution to this problem is

to limit the sub-CPI length such that aliasing is minimal, i.e. such that aliasing does

not degrade image quality. This implies an upper limit to the length of sub-CPI that

can be used in 2D backprojection.

Figure 4.4 shows cuts from range and cross-range of the imaging function for

various sub-CPI lengths. The range cuts show that the imaging function in this di-

mension is invariant of sub-CPI length and identical to traditional backprojection.
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Intuitively, this makes sense as the resolution in range is determined by the band-

width whereas the the resolution in cross-range is achieved by processing of the

synthetic aperture. For this reason, the 2D backprojection exhibits cross-range cuts

that rely on processing technique and choice of parameters. The cross-range behav-

ior of the imaging function, found in earlier figures, is confirmed here; as sub-CPI

length is increased, aliased copies of the target act much like grating lobes by de-

creasing their spacing. Again, we see that the artifacts are stronger and approach

the target in the center as sub-CPI length is increased. For sub-CPI lengths that

show multiple sets of artifacts, we see that each subsequent artifact is weaker than

the previous. Additionally, the peak of each subsequent grating lobe rises above

the backprojection side lobe level (SLL) less than the previous, i.e., while the first
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Figure 4.4: Cuts of imaging function in range and cross-range for various sub-CPI
lengths.
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grating lobe in the eight sub-CPI cut rises 25 dB above the backprojection SLL,

the grating lobe at the leftmost extent of the figure for the same sub-CPI length

rises only about 17 dB above the backprojection SLL. Far from the main lobe, this

grating lobe is more than 25 dB weaker than the main lobe level; however, near the

main lobe in cross-range, this grating lobe is slightly less than 4 dB weaker than the

main lobe level. This response is detrimental to image quality; using long sub-CPIs

in this fashion would only be suitable for extremely limited scene extent in along-

track. Obviously this limitation is undesired as the along-track scene extent would

be limited to less than 10 meters if the use of 8 sub-CPIs was desired. For this

reason, shorter sub-CPIs are favorable; while the use of shorter sub-CPIs increases

computation as more interpolations are needed to form an image, the increased

imaging performance will often be much more desirable than saving computation.

More details will be given in chapter 5 regarding computational requirements and

savings in using 2D backprojection with various sub-CPI lengths.

Shorter sub-CPIs also exhibit weaker grating lobes than longer sub-CPIs grating

lobes that fall at the same cross-range location. The first grating lobe of the 20 sub-

CPI imaging function shown in Figure 4.4 coincides with the second grating lobe

of the 10 sub-CPI imaging function; however, the 20 sub-CPI imaging function’s

grating lobe is 3 dB below that of the 10 sub-CPI imaging function. Ideally, sub-

CPI length could be chosen to prevent grating lobes all together, but this may not

be necessary if the grating lobe level falls below some desired level. Preventing

grating lobes also requires the ability to predict where they will appear.

Figure 4.4 shows that the grating lobes appear to be well-behaved. The grating

lobes of a physical aperture array containing N elements spaced by d, where N is

chosen to be the same as the number of sub-CPIs and d is chosen to be twice the

spacing between the center of the sub-CPIs, are perfectly matched with the locations
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Figure 4.5: Measured grating lobes in imaging function of dataset broken into 20
sub-CPIs compared to the theoretical physical array that is emulated by the syn-
thetic array.

of the artifacts seen in the imaging function. The element spacing of twice the sub-

CPI spacing arises from the fact that the synthetic array synthesizes a physical array

twice the length of the synthetic aperture.

Figure 4.5 shows this theoretical array and how well it matches the locations

of the artifacts of the 20 sub-CPI imaging function. The discontinuity between

sub-CPI centers is on the order of the sub-CPI length, resulting in the artifacts

coinciding with the location of grating lobes of a theoretical array. This means

that these grating lobes are inherent to the 2D backprojection, but based on array

processing, their behavior is predictable. Sub-CPI length can be chosen such that

the first grating lobe fall outside the cross-range extent of the desired scene, or an

acceptable grating lobe level can be defined to determine sub-CPI length.

Instead of observing the imaging function of all sub-CPIs integrated together,

we can look at the imaging function of a single sub-CPI to isolate the effects of poor

Doppler resolution We see in Figure 4.6 that the imaging functions exhibit interest-

ing characteristics. We expect that the cross-range resolution of a single sub-CPI is

worse than the full observation as the observation time is significantly shorter, and
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both imaging functions in Figure 4.6 are consistent with this expectation, i.e. the

cross-range resolution of the single sub-CPI is significantly worse than integrating

all sub-CPIs together. We would also expect that the sub-CPI with 130 pulses would

exhibit slightly better cross-range resolution than the sub-CPI with 104 pulses as a

larger subaperture was used to create the image; however, the longer sub-CPI re-

sults in an imaging function with significant smearing in cross-range. This smearing

is a result of interpolating the pixels from the poorly focused range-Doppler map

of the long sub-CPI. In general, longer sub-CPIs will exhibit better resolution, but

as sub-CPI length is increased, the approximation of linear range migration breaks

down. This results in poorly focused range-Doppler maps that, once combined, de-

crease final image quality. While the resolution obtained from a single sub-CPI of

any length may be coarse, the full CPI will be used to form the final full resolution

image, allowing the freedom to choose sub-CPI length. For this reason, it is often

more favorable to choose a short sub-CPI such that range-Doppler maps are focused

and grating lobes are mitigated.

The following section will show results of applying 2D backprojection to real
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Figure 4.6: Effective imaging function of a single sub-CPI for sub-CPIs of length
(a)104 and (b)130 pulses.
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data. High-quality Doppler interpolation is required to ensure that aliasing artifacts

are not worsened by poor interpolation quality. This oversampling of the Doppler

axis helps to smooth out some of the discontinuity between sub-CPIs, allowing the

use of longer sub-CPIs at the cost of increased computation. Nevertheless, the 2D

backprojection is able to produce extremely high resolution images with a drastic

reduction in computation.

4.2 Images of Large Scene Gotcha Dataset

Application to real data introduces several additional steps to account for the

imperfections associated with collecting data in a nonideal environment. As with

any SAR imaging algorithm, exact knowledge of the platform location is required

for proper imaging of the scene, and any deviation from the ideal flight path results

in imperfections and defocusing. One of the benefits of traditional backprojection is

the ability to compensate for motion errors on a pulse-by-pulse basis. The platform

location is used on every pulse to calculate the range to every pixel and correct

for phase errors in traditional backprojection; however, 2D backprojection uses the

platform location and velocity at the center time instant of the sub-CPI to calculate

range and extract Doppler information for phase corrections.

In simulated data, the pulse at the center of the sub-CPI occurs exactly at the lo-

cation corresponding to the center time instant of the sub-CPI. However in real data,

errors in IMU measurements and deviation from a linear flight path can result in the

center pulse of the sub-CPI being misrepresentative of the center time instant of the

sub-CPI. Additionally, individual measurements can be more or less erroneous; for

this reason, it is best to use an approximation technique for determining platform

location and velocity. The ideal geometry also assumes the velocity and PRI are
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constant. While the PRI is typically constant in real data, the velocity vector will

change over the course of a single sub-CPI, further necessitating approximation.

Traditional backprojection and 2D backprojection were implemented on the Air

Force Research Labratory (AFRL) Large Scene Gotcha Data for testing of the algo-

rithms’ capabilities. This dataset was collected at X-band with 600 MHz of band-

width, yielding a range resolution of roughly 0.25 m. The platform was roughly 10

kilometers from the scene center and collected range samples for a range swath of

just over 5 kilometers. Thirty thousand slow-time samples were collected, and the

platform location was recorded for each pulse of data. Figure 4.7 shows a section

of the full scene as imaged by traditional backprojection using all 30,000 pulses.

Figure 4.8 shows the same section as imaged by 2D range-Doppler backprojection

using 966 sub-CPIs each containing 31 pulses. The total number of pulses used

amounts to slightly less than 30,000, a result of freely choosing sub-CPI length. By

comparison we see that the images are essentially identical. With the current choice

of sub-CPI length and scene size, we see that grating lobes have no effect on image

quality. Previously in Figure 4.4, we saw that the SLL of traditional backprojection

and 2D backprojection were essentially identical, provided grating lobes were not

present. Simulated data showed that ideal geometry resulted in an imaging func-

tion that is almost identical for both algorithms, and here, real data confirms that

identical image resolution is possible. Even with the inability to account for motion

errors on a pulse-by-pulse basis, 2D backprojection is able to fully focus the image

in the same way that traditional backprojection can.

Figure 4.9 shows a smaller section of the image for both methods. Again, we

see that image quality is identical; the large scale features aligned perfectly in Fig-

ure 4.7 and 4.8, and here, the fine scale features match for both algorithms. Addi-

tionally, the value of individual pixels are almost identical for each of the methods.
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1D Backprojection

-500 -400 -300 -200 -100 0 100 200 300 400 500

x(m)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000
y
(m

)

Figure 4.7: Traditional backprojection performed on SAR large scene Gotcha data.
All 30,000 pulses were used to create the image. Windowing was performed across
fast-time and slow-time to reduce side lobe output
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2D RD Backprojection
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Figure 4.8: 2D backprojection performed SAR large scene Gotcha data. CPI was
broken into 966 sub-CPIs containing 31 pulses each. 29,946 pulses were used in
total. Windowing was performed across fast-time and sub-CPIs to reduce side lobe
output.
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Figure 4.9: Comparison of traditional backprojection and 2D backprojection per-
formed on the Gotcha Dataset.
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The corner of the building in the upper left of both images in Figure 4.9 has a bright

point that can be used to determine the difference in pixel intensity for both. The

intensity of the brightest pixel at this corner differs by less than a tenth of a dB

between each image. This means the processing gain achieved by both algorithms

is roughly identical; intuitively, this makes sense as we are still using the full CPI

to coherently sum returns, but it shows that we are not losing any coherence due to

unaccounted motion errors.

Another more meaningful comparison of the two images shown in figures 4.7

and 4.8 is the formation of a difference image. By taking the difference of the two

images, then converting to a percent difference, the performance of 2D backprojec-

tion can be further analyzed. Figure 4.10 shows the percent difference between the

two images. It is important to note that the color axis has been limited to range from

0% to 200%. It is clear that a majority of the image lies in this range, but there are

several areas within the image that are very bright and even saturate this color axis.

The general structure of the image is clear, however, the bright spots in the dif-

ference image lie in the regions of the scene that are very dark in figures 4.7 and

4.8. Since the values of pixels in these dim regions are relatively small, even small

differences between the two images result in a relatively large percent difference.

There appears to be a slight reduction in contrast that results from the use of 2D

backprojection. Additionally, some of the artifacts that were observed in simulated

data become visible for this dataset. Specifically, the dense concentration of bright

pixels in the bottom right of the image is likely one of these artifacts resulting from

a bright scatterer. In general, the percent differences are very small, however, large

percent errors between the two images show that adding another dimension of in-

terpolation has a nontrivial effect on the image. Nevertheless, overall image quality

of 2D backprojection is still very similar to that of traditional backprojection.
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Figure 4.10: Percent difference between images formed by traditional and 2D back-
projection.
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To demonstrate the effects of increasing sub-CPI length on the image, images

were formed for an increasing number of pulses in each sub-CPI. We expect that

increasing the sub-CPI length will result in the aliasing artifacts, or grating lobes,

observed in simulated data. Figure 4.11 shows three cases: 249 pulses per sub-CPI,

499 pulses per sub-CPI, and again 499 pulses per sub-CPI. The first two images are

formed from sub-CPIs that have upsampled the Doppler axis during the Doppler

FFT by a factor of four, whereas the last image is formed from a sub-CPI that

upsampled the Doppler axis by a factor of sixteen.

We see that increasing from 31 pulses to 249 and then again to 499 results in

grating lobes centered in cross-range at the brightest corner of the building seen

in the previous figure. These grating lobes appear closer to this corner for a sub-

CPI length of 499 pulses than 249, confirming the trend observed in simulated

data. When the quality of the Doppler interpolation is poor, the effects of the grat-

ing lobes are more pronounced; therefore, the higher-quality Doppler interpolation

used in the final image results in grating lobes being weaker. The copies still ap-

pear at the same location as the image using a low-quality Doppler interpolation

but are only noticeable in very dark regions of the image. The cost of this high-

quality Doppler interpolation is an increased memory requirement, as well as in-

creased computation time. The 2D linear interpolation implemented on the finely

upsampled range-Doppler maps is slowed for larger matrices. Additionally, the

Fourier transforms needed to create the finely sampled range-Doppler maps require

increased computation.
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2D Backprojection with 249 Pulses per Sub-CPI
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2D Backprojection with 499 Pulses per Sub-CPI
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2D Backprojection with 499 Pulses per Sub-CPI
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Figure 4.11: Results of increasing sub-CPI length to 249 and 499 pulses. High-
quality Doppler interpolation used in the final image shows the importance of inter-
polation quality in preventing aliasing artifacts.
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4.3 Moving Target Imaging

One of the many benefits of the 2D backprojection is the ability to perform

moving target imaging for any arbitrary motion profile. This capability requires no

additional assumptions beyond those required to perform imaging of a stationary

scene, i.e. range migration within the sub-CPI is limited to be only linear. Just

like imaging of a scene, pixel range and Doppler value must be calculated at the

center of each sub-CPI. Here, each pixel will have an additional range and Doppler

component depending on the motion profile of the pixel. Generally unknown, the

motion profile must by hypothesized to accurately image a moving target. While

difficult to predict the motion profile of a moving target, hypothesizing motion pro-

files of a pixel can be performed in a very similar manner to calculating motion

profiles of stationary pixels in traditional imaging. Instead of using only a grid of

ground-referenced pixel locations to calculate the motion profile, i.e. range and

Doppler, for each sub-CPI, a grid of target velocities can also be used to calculate

additional range and Doppler migration resulting from target motion. The result of

this method yields a 4D image, I(x, y, vx, vy), now also depending on vx and vy.

While difficult to visualize in 4 dimensions, 2D cuts can be taken to image an entire

scene at some given velocity or image a single pixel at all velocity hypotheses. Ob-

viously this added capability comes at the cost of added computational complexity;

every additional velocity hypothesis requires interpolation of every pixel within the

scene for each new motion profile. Much too computationally intensive for imag-

ing a large scene, an efficient implementation would be using a small set of velocity

hypotheses to image only a small portion of the scene.

Figure 4.12 shows an example of an image of a simulated stationary scene con-

taining a moving point-target. The target, moving at 5 m/s at a 45◦ angle from the
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scene center, has not been focused and results in a smear across the stationary back-

ground. To image this moving target, we now perform 2D backprojection for a grid

of pixel locations, x and y, and a grid of target velocities, vx and vy. The output

of this approach can be interpreted as a grid of location-dependent pixel intensities,

each calculated for specific motion hypotheses, given by vx and vy ; alternatively,

this output can be interpreted as a grid of velocity-dependent pixel intensities, each

calculated for a specific starting location of the target, x and y. Interpreting the

output as the former, a 2D distributed image can be produced for a specific tar-

get velocity hypothesis; if this velocity hypothesis matches the true motion of the

target, a well-focused image will be formed. On the left of Figure 4.13, the point

target in Figure 4.12 is imaged in spatial coordinates, x and y, for a particular ve-

locity hypothesis. It is clear that choosing the correct velocity hypothesis allows

the algorithm to produce a fully focused image of the target; however, only targets

moving with this exact motion profile will be imaged properly. Performing imaging

for a non-zero target velocity results in the stationary scene becoming unfocused.
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Figure 4.12: Image of a moving target with stationary target hypothesis.
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On the right of Figure 4.13, the point target at the center of Figure 4.12 is imaged at

a single starting location for a grid of velocities, vx and vy. Again, we see that the

moving target is focused at the location corresponding to its velocity components

in x and y; however, we notice a significant difference in resolution between radial

and tangential velocity. The radar is able to make direct measurements of range and

radial velocity, resulting in the high resolution observed. whereas tangential veloc-

ity is not directly measured by the radar. It is only possible to resolve tangential

velocities through differences in range and Doppler, which are small for tangential

velocities, hence the poor resolution in this dimension.

Imaging in this way can be very beneficial depending on the application desired.

It is important to note that performing moving target imaging is not limited to a

linear velocity hypothesis. Any arbitrary motion profile can be used to perform

imaging; however, hypothesizing a higher order motion profile would drastically

increase computational requirements. If the motion profile is known, there is no

increase in computation over normal stationary imaging; the added computation
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Figure 4.13: Images of a moving target using (a) the correct motion hypothesis
imaged to a grid of starting locations and (b) the correct starting location hypothesis
imaged to a grid of velocities.
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comes from the hypothesis and calculation of multiple motion profiles.

Throughout this chapter, the Keystone transform has been applied to each sub-

CPI to correct for linear range migration. When short sub-CPIs are used, range

migration over the course of the sub-CPI is likely small, but as sub-CPI length is

increased, it will become more pronounced. This effect was shown in Figure 4.6

for sub-CPIs of two different lengths. When moving target imaging is introduced,

additional range migration will result from target motion. Even if sub-CPIs are

sufficiently short such that range migration due to platform motion is negligible

and the Keystone transform is not required, moving targets can exhibit additional

range migration that require the Keystone transform. Figure 4.14 shows two im-

ages, each imaged to the exact motion profile of a very fast moving target. The

image on the left shows the effect of foregoing the Keystone transform and relying

only on Doppler processing to focus a sub-CPI’s range-Doppler map. Clearly, the

2D backprojection is not able to fully focus the target in the final image. The point

target exhibits a very weak response and aliasing artifacts are very high, resulting

from the interpolation of the poorly focused range-Doppler maps. The image on the
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Figure 4.14: Moving target imaging (a) without using the Keystone transform and
(b) with using the Keystone transform.
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right uses the Keystone transform to focus target energy in each sub-CPI’s range-

Doppler map, then coherently combines sub-CPIs. Application of the Keystone

transform to each sub-CPI results in image quality that appears to be identical to

that of imaging a stationary scene. While application of the Keystone transform

adds computation, the increase in focus for moving target imaging and target de-

tection is highly desirable and outweighs the need to increase efficiency, as focus

is directly related to detector performance. Additionally, range migration can be

detrimental to the ability to accurately detect targets. Therefore, the application

of the Keystone transform lends itself very well to the simultaneous SAR-GMTI

architecture for which 2D backprojection was designed. The added computation

of performing the Keystone transform on each sub-CPI may be unnecessary for

traditional imaging, but it is critical for moving target imaging and target detection.

4.4 Conclusions

In this chapter, results of imaging via 2D backprojection were presented and

compared to traditional backprojection. The results showed that 2D backprojection

is capable of achieving image quality that rivals that of traditional backprojection.

However, aliasing artifacts that result from an increase in sub-CPI length can re-

duce image quality, requiring consideration when performing the algorithm. These

aliasing artifacts act as if they are the grating lobes of the synthetic array, resulting

from discontinuities in the method of coherently integrating returns from sub-CPIs.

High-quality Doppler interpolation is required to prevent the impact of grating lobes

being accentuated by poor interpolation quality; however, grating lobes will always

be present unless sub-CPI length is chosen such that they fall outside the scene of

interest. Additionally, the effects of these grating lobes can be ignored if they are
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sufficiently weak; when applied to real data, only the brightest of scatterers within

the scene show these aliasing artifacts. Even when present, they are often weak

enough that overall image quality is unaffected. It is important to recall again that

2D backprojection was designed to serve as an imaging algorithm that is synergistic

with GMTI processing. While image quality might be slightly degraded by choice

of sub-CPI length, specific choice of sub-CPI length may be required for the GMTI

technique performed on the sub-CPI. 2D backprojection also supports moving tar-

get imaging, just as traditional backprojection does. While the Keystone transform

has a small effect when imaging a stationary scene, its application is required to

properly image moving targets.

This chapter has focused entirely on image quality and imaging results of per-

forming 2D backprojection in numerous ways. Throughout, the mention of compu-

tational requirements has been made several times, but only a surface level descrip-

tion has been supplied. Chapter 5 gives a more detailed analysis of computational

differences of 2D backprojection as compared to traditional backprojection. The

chapter will discuss several increases in computational requirements and will give

examples of how the new requirements can be handled. In addition, the increased

memory requirements of the algorithm will be discussed. The AFRL SAR Gotcha

Large Scene Dataset will be used to discuss requirements of a typical application.

Relative memory requirements and computation times will be given to demonstrate

the requirements and capabilities of the algorithm.
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Chapter 5

Computational Savings & Requirements

In Chapter 4, images were shown using 2D backprojection. These images were

compared to results from traditional backprojection, and 2D backprojection was

shown to exhibit comparable image quality. However, image quality was depen-

dent on choice of sub-CPI length. Long sub-CPIs result in grating lobes that are

undesirable and can become detrimental to image quality. Throughout the Chapter,

mentions were made of computational requirements of 2D backprojection; here, a

detailed discussion will be presented on these computational requirements. After

computational saving are discussed, memory requirements of performing 2D back-

projection will be discussed. The Gotcha dataset will be used to provide examples

of typical memory requirements as well as computation times.

5.1 Reductions in Computation

With almost identical image resolution, it is important to note that the 2D back-

projection benefits from several computational savings. While the traditional back-

projection performs a 1D interpolation on each pulse, the 2D backprojection per-

forms a 2D interpolation on each sub-CPI. A single 2D interpolation is slower than

a single 1D interpolation; however, results show that the reduction in number of in-
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terpolations dominates and overall computation time is decreased. Furthermore, a

pixel’s range and Doppler shift need only be calculated once per sub-CPI instead of

computing the same pixel’s range for every single pulse. Calculating the Euclidean

distance to each pixel is extremely inefficient, so a sizable reduction in computa-

tions is achieved solely from the reduced number of range calculations.

While the Doppler shift of each pixel must also be calculated, relatively little

computation is added by doing so. To determine what the measured Doppler shift

of each pixel should be, we need the radial component of the radar’s velocity. This

radial velocity can be determined by first finding the angle between the radar’s

velocity vector and the line of sight to each individual pixel. This angle can be

found by projecting one vector onto the other, described by

vr · L
||vr|| ||L||

= cos(θ), (5.1)

where vr is the radar’s velocity vector and L is the line of sight vector for a par-

ticular pixel. For simulated data, vr is precisely known and can be chosen to have

non-zero value in only one dimension, making the dot product much more simple.

For real data, such as the Gotcha dataset, some approximation technique is used to

find the velocity vector. The line of sight vector must be calculated for every single

pixel that is to be imaged, requiring the x, y, and z coordinates of every pixel. Ad-

ditionally, the magnitude of L is needed, requiring another expensive square root;

however, this magnitude is simply the Euclidean distance from the radar to the pixel,

previously calculated for use in the range interpolation and phase correction of the

algorithm, so no extra computation has been added by this. The inverse cosine

needed to find θ is also computationally expensive, but the cosine of the angle be-

tween the two vectors is needed when finding the radial velocity, vrad = vr cos(θ).
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Therefore, once the left side of (5.1) has been evaluated, it takes only one additional

matrix multiply to find the radial component of velocity.

Another benefit of 2D backprojection is the ability to implement high quality

upsampling while performing the Keystone transform. In traditional backprojec-

tion, interpolation of the range profile is performed in two steps to achieve full res-

olution and maintain computational efficiency. First, a fine upsampling of the range

profile is performed, then a simpler interpolation method, such as linear interpola-

tion, is used to interpolate values from the finely sampled profile. The upsampling

can be performed by taking the FFT of the range profile, padding with zeros, then

taking the inverse FFT to produce a range profile with a more finely-spaced range

axis. For the traditional backprojection approach, this upsampling must be per-

formed on each pulse. The 2D backprojection approach already converts the range

axis into the frequency domain in order to implement the Keystone transform, so

the interpolation can be directly built in by simply padding zeros before taking the

inverse FFT to convert the data back into the time domain. The same strategy can

also be applied when converting the sub-CPI data into the Doppler domain. Prior

to performing the FFT in the pulse dimension, zeros can be padded to create very

finely sampled range-Doppler maps. These range-Doppler maps will be interpo-

lated using a simpler interpolation technique to form a full resolution image via 2D

backprojection.

The Keystone transform is efficiently incorporated into the subaperture archi-

tecture of the 2D backprojection. The Keystone transform requires a fast-time

frequency-dependent interpolation of slow-time data for each sub-CPI. There are

several options for interpolation method, but a sinc-based interpolation is favorable

for the 2D backprojection. This sinc-based interpolation requires the calculation

of sinc-weights dependent on fast-time frequency and the slow-time sample loca-
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tion that is desired. Calculating these weights involves calculating numerous sinc-

weights needed to interpolate every single new sample location, one pulse at a time

for each frequency sample in F . Typically performed in a nested for loop, inter-

polating in this way is much less efficient than implementing other interpolation

techniques, such as a Fourier transform based interpolation. However, the struc-

ture of the sinc-based interpolation and the need to perform the Keystone transform

on every sub-CPI allows for a key exploitation. The locations of the sinc-weights

needed to perform the interpolation are dependent on only fast-time frequency and

local slow-time sample locations.

If each sub-CPI is chosen to be structured the exact same way, i.e. each sub-CPI

has the same frequency content and the same slow-time axis, sinc-weights can be

computed once and recycled for use in all sub-CPIs. Additionally, the sinc-weights

can be pre-computed for a know frequency axis and pulse scheme. Once sinc-

weights are calculated, a single matrix multiplication performs the interpolation

needed for the Keystone transform. Using this method provides a significant speed

up over other interpolation methods, especially when many sub-CPIs are used. The

results from the Gotcha dataset presented in the previous section used 966 sub-CPIs

each containing 31 pulses. While another interpolation method may be faster on a

single sub-CPI, calculation of the sinc-weights one time reduces the interpolation

complexity down to a single matrix multiply per sub-CPI.

Given all the computational savings achieved by the use of sub-CPIs, it seems

clear that the ideal implementation would be to use long sub-CPIs to further de-

crease the number of range calculation, upsamplings, and interpolations. The ef-

fects this has on image quality have been discussed extensively in the previous

chapter, but now we can analyze the computational requirements of doing so. If

sub-CPI length is increased, the reduced number of range calculations, upsam-
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plings, and interpolations would drastically increase computational efficiency. If

sub-CPI length is doubled, the number of these calculations needed is cut in half,

theoretically cutting computation time in half as well. This trend would be observed

until grating lobes appear and oversampling of the Doppler axis is required for mit-

igation. This oversampling increases computational complexity of the upsampling

step, as well as increasing computational complexity of the 2D interpolation of the

range-Doppler map.

5.2 Memory Requirements

It is important to point out the significant increase in memory requirement for

this technique. Traditional backprojection finely upsamples a single range profile

and holds it in memory for only one pulse; however, 2D backprojection must finely

upsample a range-Doppler map for each sub-CPI. This range-Doppler map uses

tens or hundreds of pulses to convert to Doppler and must also finely upsample

the Doppler axis. Performing the same high quality upsampling of the range axis

as traditional backprojection, required for adequate image quality, now results in

a memory requirement that can be several hundred times more than the traditional

backprojection. Luckily, modern computing can often handle this increased mem-

ory requirement, but workstation limitations can limit the ability to perform the 2D

backprojection. Specifically, sub-CPI length will need to be limited to prevent the

range-Doppler maps from using too much memory. Also, mitigation of aliasing

artifacts discussed in the previous section requires even higher upsampling of the

Doppler axis, further decreasing the number of pulses that can be used in a single

sub-CPI. However, the use of more pulses in the sub-CPI, hence the sub-CPI separa-

tion, is what causes the aliasing artifacts to diminish image quality. Decreasing the
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number of pulses in the sub-CPI will decrease memory requirement and increase

image quality.

Using the Gotcha dataset to determine typical memory requirements and com-

putation times for 2D backprojection, we may perform a quantitative analysis of the

computational benefits of this algorithm. This dataset consists of 21,232 fast-time

frequency samples and 30,000 slow-time samples. The range axis for traditional

backprojection, as well as 2D backprojection, was oversampled by a factor of 10 to

yield a finely-sampled range axis containing 212,320 range bins. By default, MAT-

LAB stores arrays as double-precision floating point numbers, requiring 8 bytes of

memory per array entry. By nature, radar data is complex valued, now requiring

16 bytes of memory per array element. Again, traditional backprojection need only

upsample the range axis one pulse at a time, resulting in an array consuming only

about 3.4 MB of memory. Obviously, modern workstations are well-suited to han-

dle arrays of this size. However, 2D backprojection uses these same upsampled

range axes, but instead uses several pulses to create a range-Doppler map.

For the image shown in Figure 4.8, 31 pulses were used per sub-CPI. The slow-

time axis of each sub-CPI was then padded to length 512 and converted to the

Doppler domain, resulting in a matrix consuming 1.74 GB of memory. Again,

modern computing is more than capable of handling matrices of this size. How-

ever, as sub-CPI length is increased, additional upsampling must be performed.

Figure 4.11 showed that oversampling is required to obtain adequate image quality

when using sub-CPIs of increasing length. Here, sub-CPIs contained 499 pulses

each, then padded to length 8,192 and converted to the Doppler domain. This ma-

trix is substantially larger than the previous case, requiring 27.83 GB of memory.

Additionally, this is not the only matrix that must be stored in memory for the al-

gorithm. For large scenes containing millions of pixels, holding pixel values, as
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well as all the values needed for interpolation, i.e. the range and Doppler of ev-

ery pixel, is non-trivial and can require significant memory. The full Gotcha scene

size is roughly 5km x 5km with range and cross-range resolution of about .25 m,

resulting in a scene containing 400 million pixels and requiring 6.4 GB of memory

just for the image itself. Range and Doppler values are each stored as real-valued

doubles, requiring an additional 6.4 GB of memory. Moderate workstations will

still typically possess enough RAM to handle the large memory requirements of the

2D backprojection; however, the major downfall of this increased memory usage is

the inability to utilize highly efficient GPUs.

The use of GPU computing in radar image processing can provide significant

speed up over general CPU computing [22]. The ease of implementation in MAT-

LAB is aided by the extensive library of built-in functions that can be used for CPU

and GPU computing. In general, GPU computing is much faster than general pur-

pose computing on a CPU. However, the increase in efficiency is controlled by sev-

eral factors, including the task being performed and the overhead of the data transfer

required to send data between the CPU and GPU. Tasks that are highly parallel, such

as the FFT, are much faster when processed via GPU, which is specifically designed

to handle tasks of this nature. Additionally, it is extremely inefficient to send data

back and forth between the CPU and GPU. It is ideal to send over all the required

data, perform all processing required by the GPU, then send all the processed data

back to the CPU. For 2D backprojection, this would mean holding the radar data,

all the variables required for calculating range and Doppler values of every pixel,

and pixel intensities. The size of the array containing the pixel locations alone is

substantially large, and transferring it back and forth on each sub-CPI would vastly

decrease the efficiency achieved by using the GPU. Therefore, peak efficiency is

achieved when all GPU-based processing parameter are transferred once, held for
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all sub-CPIs while the GPU continues to process the data, then returned to the CPU

once all sub-CPIs have been processed. This imposes strict memory requirements

on the GPU.

Recently, GPUs have improved substantially, but even a high end GPU pos-

sess significantly less memory than a CPU has in RAM. The NVIDIA Titan RTX

used for processing this data has 24 GB of memory, an enormous amount by GPU

standards, but it is clear that limitations will now be imposed on the 2D backprojec-

tion. First, the use of larger sub-CPIs is restricted to some extent; using a sub-CPI

length of 499 pulses, requiring 8,192 Doppler samples for adequate image qual-

ity, is clearly not possible as the memory requirement of the data alone, nearly 28

GB, surpasses the available memory of the GPU. Shorter sub-CPIs don’t violate

this requirement, so implementation on a GPU is possible, but considerations are

required when determining sub-CPI length desired. Additionally, the large scene

desired to be imaged in this dataset introduces significant memory requirements.

As discussed earlier the range and Doppler values needed for interpolation require

6.4 GB of memory, and once interpolated, pixel intensity must be stored on the

GPU to allow for summation of each subsequent sub-CPI, requiring an additional

6.4 GB.

While calculating Doppler requires little extra computation, the line of sight

vector must be calculated for each pixel within the scene, requiring a 3D vector for

each of the 400 million pixels. This requires nearly 20 GB of memory, nearly ex-

ceeding the capabilities of the Titan RTX. Holding any other data in memory would

result in fully saturating the memory of the GPU. While traditional backprojection

images a scene of the same size, it does not require the calculation of Doppler;

therefore, the calculation of the line of sight vector is also not required. This allows

the traditional backprojection to handle the memory requirement of the full scene.
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Therefore, smaller scenes will be necessary for the 2D backprojection to utilize the

efficiency of GPU processing.

5.3 Computation Time of Gotcha Dataset

Now that the computational savings achieved by, as well as the memory require-

ments of, 2D backprojection have been discussed, we will look at the computation

times measured when implementing this algorithm. We will also use computation

times of traditional backprojection to provide a baseline for comparison. Table 5.1

shows the computation times of several different implementations of the algorithms.

For all implementations, it was assumed the data was in the correct format and the

data was already loaded into MATLAB for processing. It is clear that 2D backpro-

jection provides a significant reduction in computation time over traditional back-

projection. Additionally, we see that increasing sub-CPI length results in a slight

reduction in computation time; however, this reduction is very small. While the

sub-CPI length has more than doubled and the number of sub-CPIs has been cut

in half, the Doppler axis contains twice as many points as compared to the shorter

sub-CPI. This fact results in larger range-Doppler maps that must be interpolated

for each sub-CPI.

The results shown in Table 5.1 show that the reduction in computation gained

Algorithm N Sub-CPIs M Scene Size Time
BP 30,000 N/A N/A 1km x 1km 0:38:10.6

2D BP USF 16 29,946 966 31 1km x 1km 0:8:30.6
2D BP USF 16 29,988 476 63 1km x 1km 0:8:14.1
2D BP USF 8 29,972 236 127 1km x 1km 0:4:59.5

Table 5.1: Computation times of different implementations of the 2D backprojec-
tion. Image quality of 2D backprojection was comparable to that of traditional
backprojection until the upsampling factor (USF) was decreased.
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by using longer sub-CPIs is about even with the increase in computation resulting

from the use of larger range-Doppler maps. When sub-CPI length is again roughly

doubled to 127 pulses, the number of sub-CPIs is reduced to about half. However,

the Doppler axis is only upsampled by a factor of 8 here, resulting in a Doppler

axis that is the same length as that of the length 63 sub-CPI. Decreasing the number

of sub-CPIs and holding the length of the Doppler axis constant results in a reduc-

tion in computation that is much more significant. While the reduction in com-

putation time is significant, the decrease in image quality is also very significant;

grating lobes become much more apparent when the sub-CPI length is increased

and upsampling is decreased. With any algorithm, trade-offs are required between

efficiency and quality, and without sacrificing quality, 2D backprojection is still

able to increase efficiency significantly. However, there is a limit to the increase

in efficiency that can be achieved while still maintaining high image quality. The

implementations used for calculating computation times in Table 5.1 are not opti-

mized, but show how simple changes to sub-CPI length and Doppler oversampling

can affect relative processing times.

5.4 Conclusions

In this chapter, the resulting computational requirements of 2D backprojection

were discussed. The 2D backprojection technique benefits from several computa-

tional savings over the traditional backprojection. While traditional backprojection

must perform range calculations and interpolations for every pixel in the scene of

interest once for every pulse, the 2D backprojection requires these only once per

sub-CPI. While there are far fewer interpolations needed, 2D backprojection re-

quires a 2D interpolation that is more computationally intensive than the 1D inter-

69



polation of traditional backprojection. This 2D interpolation requires calculation of

range and Doppler for every pixel within the scene; however, calculation of Doppler

comes with little extra computation. Implementation shows that the 2D backpro-

jection is much more efficient than the traditional backprojection, but actual com-

putation times vary depending on several factors. This increase in computational

efficiency comes at the cost of increased memory requirements. While modern day

hardware can handle these requirements, limitations may be set that limit efficient

calculation. Namely, smaller scene sizes may be required in comparison to tradi-

tional backprojection as the range-Doppler maps can require a significant portion

of available memory. Results of applying the algorithm to the Gotcha Large Scene

Dataset show that 2D backprojection is much more efficient than traditional back-

projection. In addition to higher computational efficiency and comparable image

quality, the algorithm’s architecture is structured such that a post-Doppler GMTI

technique can be performed simultaneously to efficiently produce an image and

perform target detection.
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Chapter 6

Conclusion

6.1 Conclusions

A 2D backprojection technique, modeled after the well-know backprojection

algorithm, has been studied in great detail. 2D backprojection has been derived and

implemented on real and simulated data. An analysis of image quality and artifacts

of 2D backprojection has been performed. Algorithm performance in terms of both

quality and efficiency was analyzed and compared to traditional backprojection.

Just like traditional backprojection, 2D backprojection produces high-fidelity SAR

images; however, 2D backprojection can be implemented in substantially less time.

This computational efficiency is gained from the reduction in number of interpola-

tions needed to form a SAR image; while traditional backprojection requires a 1D

interpolation for each pulse, 2D backprojection requires a 2D interpolation for each

sub-CPI. The number of sub-CPIs within the data collection is subject to choice,

allowing for variable computation time with variable image quality. Longer sub-

CPIs seem to be the most efficient choice. However, results show that maintaining

acceptable image quality limits the ability to increase efficiency; adequate Doppler

oversampling can result in increased memory usage and slower interpolations. The

increase in computational efficiency gained from using 2D backprojection comes
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at the cost of an increased memory requirement. Often, this increased memory re-

quirement is suitable for implementation on common hardware; however, the mem-

ory requirement depends on many parameters and implementation can be limited

by the abilities of the workstation being used. The ability to produce high qual-

ity images in less time than traditional backprojection makes 2D backprojection

an effective imaging algorithm, but it is important to recall that the architecture of

2D backprojection has been chosen to be well-suited for simultaneous SAR-GMTI

processing. Therefore, efficient imaging isn’t the only capability of the algorithm;

the algorithm may eventually be used in an architecture that favors computational

efficiency of GMTI processing.

6.2 Future Work

The obvious next step that should be taken with this algorithm is determining the

method in which GMTI processing will be implemented. The data format is such

that each sub-CPI is converted to the Doppler domain, beneficial to any practical

post-Doppler GMTI technique. The most rudimentary GMTI processing would be

treating each sub-CPI as a single dwell, performing a post-Doppler GMTI algorithm

on each sub-CPI independently. A more interesting approach is the aggregation of

GMTI outputs to coherently integrate returns of all sub-CPIs. These returns could

be integrated using a backprojection style approach similar to the approach taken

here by the 2D backprojection technique. Just as a target has a very specific location

in the range-Doppler map of a sub-CPI, a target will have a very specific location

in the range-Doppler-angle cube of a sub-CPI. Each stationary target exhibits a

very specific migration through the cube from sub-CPI to sub-CPI. Moving targets

also have a unique migration through the cube that depends on the specific motion
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profile of the target. It is theoretically possible to hypothesize a target’s motion

profile, then to use this motion profile to interpolate values from the datacube for

that particular motion profile. If the post-Doppler GMTI technique used to create

the output statistic conserves phase, it is then possible to coherently integrate returns

over the full CPI. This would allow for returns from slow moving targets, typically

difficult to detect as they are embedded within background clutter, to be coherently

integrated. This approach would improve minimum detectable velocity and detector

performance.

There is a severe increase in computational requirements that comes with this

backprojection style combination; a 3D interpolation now must be performed on

each sub-CPI of data to pull values from the radar datacube. The 2D backprojection

already requires calculation of range and Doppler, so the only additional variable

needed to perform the 3D interpolation is angle. However, the angle of each pixel

has already been calculated when determining Doppler. These values would then

be used to interpolate the output statistic of each sub-CPI. It is only possible to

integrate the returns of moving targets if the correct motion hypothesis is used, a

difficult task to accomplish without a priori knowledge of target motion.

The ability to improve GMTI performance through a backprojection style in-

tegration is an enticing possibility. Future work on this algorithm will be needed

to determine the effects of the processing steps chosen prior to GMTI implementa-

tion. In particular, application of the Keystone transform, beneficial in preventing

the undesired range migration present in a sub-CPI, may affect the ability to per-

form GMTI processing properly. Ideally, the Keystone works only to mitigate range

migration, having no residual effect on GMTI processing. Once developed, simul-

taneous SAR-GMTI can be performed. The benefits of this algorithm could then be

compared to other simultaneous SAR-GMTI techniques. A more detailed study of
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computational requirements of 2D backprojection could also be performed in future

work. Here, relative computation times were used to compare the computational re-

quirements of 2D backprojection to that of traditional backprojection; however, this

is an ad hoc way of measuring computational requirements. An actual analysis of

computational requirements would provide a much more advanced comparison of

this algorithm to other existing algorithms.
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