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Abstract

The international commitments for carbon capture will require a rapid increase in

carbon capture and storage (CCS) projects. The key to any successful carbon se-

questration project lies in the long term storage and prevention of leakage of stored

carbon dioxide (CO2). In addition to being a greenhouse gas, CO2 leaks reaching the

surface can accumulate in low-lying areas resulting in a serious health risk. Among

several alternatives, some of the more promising CSS storage formations are the hun-

dreds of thousands of depleted oil and gas reservoirs, where by definition the reservoirs

had good geological seals prior to hydrocarbon extraction. With more CSS wells com-

ing online, it is imperative to implement permanent, automated monitoring tools. In

this study we applied machine learning models to automate the leakage detection

process in carbon storage reservoirs using rates of supercritical (CO2) injection and

pressure data measured by simple pulse tests. To validate the promise of this ma-

chine learning based workflow, we implemented data from pulse tests carried out in

the Cranfield reservoir, Mississippi, USA. The data consist of a series of pulse tests

conducted with baseline parameters and with an artificially introduced leak. Here,

we pose the leakage detection task as an anomaly detection problem where deviation

from the predicted behavior indicates leaks in the reservoir. The results obtained

show that different machine learning architectures such as multi-layer feed forward

network, Long Short-Term Memory , convolutional neural network are able to identify

xvi



leakages and can flag an early warning. These warnings can then be used by human

interpreters to take remedial measures.
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Introduction

Carbon capture and storage (CCS) refers to the process of permanently capturing the

CO2 emitted primarily by electricity generation, cement processing, and other fixed

industrial assets into geological formations (Selma et al., 2014). Depleted hydrocarbon

reservoirs serve as an excellent choice for CCS (Jan et al., 2017; Bachu, 2000, 2003)

due to their higher storage capacity with available infrastructure in place. Older

hydrocarbon production/injection wells can be re purposed as injection wells for the

CO2 injection.

Although complex, the physics of fluid flow in geological reservoirs is fairly

well understood by petroleum engineering community. CO2 injection for enhanced oil

recovery (EOR) projects has been used for decades in the oil industry. At atmospheric

conditions, CO2 exits as a gas with with a density of 1.872 kg/m3. During the high

pressure injection, density of CO2 increases causing phase changes (Figure 1). Note

in (Figure 1) when the pressure and temperature exceed beyond critical point (Hoteit

et al., 2019), CO2 exists in supercritical phase which is a desirable condition.CO2 in

supercritical state exhibits higher densities and hence more volume of CO2 can be

injected. All CCS projects exploit this property of CO2 for injection.

The injected CO2 can take a significant time to convert into stable form by

either dissolution, precipitation etc. (Gaus, 2010; Oelkers et al., 2008; Moore et al.,

2005). Hence, key to any successful CCS project is the long term storage of the CO2
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without leaks. Leakage, will not only negate the purpose of a CCS project, the injected

CO2 can migrate to the surface and pose a different set of environmental problems.

Leaked CO2 can mix with the water table and increase its acidity of the water table,

it can also affect severely plant growth at surface soil levels, soil microbiology (Smith

et al., 2013; Fernández-Montiel et al., 2015).

Figure 1. CO2 phase behaviour. Notice at higher pressure and temperature CO2

behaves as a supercritical fluid which is often the case with CCS projects (Rochelle

et al., 2004).
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The process of CO2 injection is not just operationally challenging but also

time dependent. In a CCS project, CO2 is injected into pressure-depleted hydrocar-

bon reservoirs, increasing the reservoir pressure and hence changing the stresses in

the reservoir and potentially reactivating faults in the area (Castelletto et al., 2013;

Rutqvist, 2012; Ivanova et al., 2012). If the faults slip, the stored CO2 in the reservoir

may be able to migrate to the surface.

The detection of CO2 leakage in CCS project can be assessed via several

technologies. Gal et al. (2019) and May and Waldmann (2014), measured CO2 con-

centrations in surface soils. Shao et al. (2019a) found carbon isotopes in the soil

served as a proxy for the CO2 leak, whereas Shao et al. (2019b) showed that surface

measurements of tracers injected with the CO2 can indicate leaks. Although, most

of these methods are economically viable and are direct indicator of CO2 leak, they

do not provide an early warning signal to prevent the leak during the operational

stage. By the time the leak is detected, a significant amount of CO2 may already

have reached to the surface.

Two reliable and well-established field methods for continuous monitoring of

subsurface properties are via seismic monitoring and the hydrocarbon well pressure

monitoring. Stork et al. (2018), Macquet et al. (2017), Roach et al. (2015) and,

Bergmann et al. (2010) showed the usage of seismic data in leak detection in the

hydrocarbon reservoir. Three-dimensional (3D) seismic data provide a 3D image of
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the changes in velocities and density caused by a CO2 plume. A time-lapse analysis

of 3D seismic can provide valuable insights on plume development and migration.

Figure- 2 shows one such study from the Sleipner field in the North Sea (Chadwick

et al., 2009). Notice the ”bright spots” in seismic amplitude after eight years of

continuous CO2 injection (Johnston, 2013).

Figure 2. Time lapse seismic acquired from Chadwick et al. (2009) showing the

CO2 plume development on seismic amplitude in Sleipner field in the North Sea

between 1994 to 2008.The corresponding density changes are recorded as ”bright

spots” in the amplitude data.

The expert interpretation of the seismic data is expensive and time-consuming

even for passive monitoring (Verdon et al., 2010a,b; Dondurur, 2018). Additionally,

seismic data are often band limited providing relatively low vertical resolution im-

ages, and hence an only approximate estimate (e.g. within 50-100 m) on the spatial
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location of any leak. The quality of the seismic interpretation is dependent on data

acquisition, data processing, and the initial guess of the geological model itself. The

data acquired from a single geophone is a measurement obtained in the form of a time

series data. The migrated seismic amplitude data however, is obtained by complex

processing with best guesses of geology and velocity models (Olivier et al., 2018; de la

Iglesia et al., 2018). The fluid substitution models used for the time-lapse analysis,

pose its own set of limitations such as assumptions about the fluid properties (Moradi

and Lawton, 2013).

An alternative to the time-lapse seismic data monitoring is pressure data

monitoring. The formation pressure is measured with a pressure gauge which is both

inexpensive and easy to install. The pressure gauge is installed at the desired target

formation of a well. The gauge continuously provides high frequency, high resolution

data in real time via a telemetry system (Hawthorn et al., 2017; Reeves et al., 2011).

The injection of CO2 causes a pressure perturbation and can be induced intentionally

in a process called a ”well test”. One such well test is a pulse test.

A typical pulse test consists of alternative cycles of fluid injection and well

shut-in causing multiple pressure perturbations or sampling the reservoir at multiple

frequencies (Hosseini, 2014; Brigham et al., 1970; Fokker and Verga, 2011; Fokker

et al., 2018). The pressure data are obtained at the bottom of the well and hence

exhibit a high signal to noise ratio.
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The pulse test typically requires at least two wells. The first is an injection

well at which this perturbation is induced by the harmonic injection of a fluid into

the reservoir. The second is an observation well which records the response of the

reservoir due to these pulses. Analyzing the pressure signal at the observation well

provides various insights about the reservoir and the fluid properties such as reservoir

connectivity, fault proximity, permeability etc. Sun et al. (2016) demonstrated the

efficacy of the pressure pulse test in distinguishing the pressure response of a leak

versus the non-leak case in a field test in Cranfield, Mississippi, USA. Section 4 of

this thesis discusses the details of the pulse test. The fact that a pulse test can

distinguish between the leak and no-leak scenarios lay the foundation of this work.

Analysis of pulse test by human interpreters is not an extremely complicated

task. A skilled human interpreter can easily distinguish the difference between leak

and non-leak responses. However, a large CCS project across multiple depleted oil

fields may incorporate thousands of injection wells. Each well will be instrumented,

with pulse tests being conducted every year. Continuous analysis of so many live

pressure feeds can be a challenging task for human interpreters. In contrast, comput-

ers are extremely efficient at repetitive tasks and intuitively, are best suited for this

purpose.In contrast, computers are extremely efficient at repetitive tasks and intu-

itively, are best suited for this purpose. Combined with the fact that a pulse test can

distinguish between a leak and non-leak scenarios and that process can be automated
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is the core of my work.

The use of machine learning in CO2 leakage detection is not a novel idea.

Zhou et al. (2019) demonstrated the use of convolutional neural networks(CNN) with

synthetically modeled seismic data to monitor the CO2 volume. Zhong et al. (2019b)

showed the use of reservoir simulator images for a convolutional-Long Short-Term

Memory (Conv-LSTM architecture). Sun et al. (2014a) proposed segregating the

leak and the baseline pressure response using CNN on spectral domain images. All of

the above methods are either based on seismic data or two-dimensional images which

either suffers from resolution issues or is computationally expensive. In many cases,

the data required for simulation or the tool itself is not available at field limiting the

practicality of these methods.

The aim of this work is to create an early warning detection system for

leakages in CCS projects using pressure data along with rate and cumulative injec-

tion volume of supercritical CO2. We used currently available state-of-the-art deep

learning models and tune them to suit the data. The data consists of time series

data of injection rates and measured pressures from a set of pulse tests conducted at

the Cranfield reservoir, Mississippi, USA. As we do not utilize any two-dimensional

images or three-dimensional voxels in this study, the methodology is computationally

efficient while providing state-of-the-art results.

We implemented deep learning architectures such as multi-layer feed forward
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(MFNN), Long Short-Term Memory (LSTM), convolutional neural networks (CNN)

and a combination of CNN and LSTM, abbreviated as CONV-LSTM. The results

show that if trained on a particular set of data, a machine can identify anomalous

behavior from the learned data and flag it as an anomaly. Sophisticated architectures

such as CNN and LSTM can learn and retain features present in typical pulse test

pressure response. We also show the adaptability of the models for different pulse

test as well as its limitations. The results can be achieved in a fraction of time using

simple inputs but, sophisticated architectures. The final product of this analysis is

an anomaly detector which can differentiate between expected versus the anomalous

pressure behavior.

This thesis is divided into five sections. Section one provides information

about the data used in this manuscript, the problem formulation and data pre-

processing for our workflow. Section two provides a basic introduction of the neural

network architectures used and the tuned version used for analyses. Section three

contains results from the neural network models and the discussion of these results.

Section four describes the novelty of the work and the comparisons to the current

state of the art. Section five presents the thesis conclusions.
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Background

Cranfield site data acquisition

The data utilized in this study was obtained in the Cranfield reservoir, Mississippi,

USA. The Cranfield reservoir is primarily a sandstone reservoir which was used for

CO2 enhanced oil recovery project after the primary and secondary recovery (Sun

et al., 2016). The CO2 injection for sequestration purpose started in July 2008. The

pulse test used in this study was carried out in January 2015, the total injected

volume into the reservoir at the time of the test was more than one million metric

tons. Due to the high injection volumes continuously for seven years prior to the test,

it is assumed that in-situ brine effects are negligible for any practical purposes and

supercritical CO2 is the only in-situ fluid present in the reservoir.

Figure 3 shows the setup used in the pulse test as described by Sun et al.

(2016). Three wells are utilized in the study F1, F2, and F3. The distance between

the wells is also shown in the Figure 3. The CO2 is injected in well F1 which is the

injection well, well F2 is the monitoring well, and F3 is a well that can be used to add

an artificial leak by venting off CO2 via a surface valve to simulate a real life leakage

scenario.

Hereinafter, we refer as baseline, the cases on which the pulse tests are

conducted without the introduction of a leak, and an alternating sequence of injection
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and shut-in is carried out. Two baseline tests, one of 90-minutes and one of 150-

minutes, were conducted on 19th January and January 20th of 2015, respectively.

Leak tests are similar to baseline tests, but with an artificial leak introduced at well

F3 by opening a surface valve. Two leak tests were conducted ten days after the

baseline tests, one on 30th of January 2015 and another on 31st of January 2015 with

a duration of 90-minutes and 150-minutes respectively. Well F2 remains shut-in as

Figure 3. Schematic illustration of the wells used in this study and their con-

figuration. F1 is the injection well, F2 is the monitoring well and F3 is the well

where leak is introduced. Pressure utilized in this study is obtained from the well,

F2.

an observation well during all tests and pressure data acquired at well F2 is used in

our analysis. Table 1 summarizes the pulse test schedule for all four tests. Figure 4

shows the measured pressure recorded at well F2 during the test, along with the

injection rates at well F1. We only provided the necessary details about the data
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Test Date Rate Pulse

Baseline - 90 min 19th Jan 2015 3,620 45

Baseline - 150 min 20th Jan 2015 3,620 75

Leak - 90 min 30th Jan 2015 3,620 45

Leak - 150 min 31st Jan 2015 3,620 75

Table 1. Injection schedule for the baseline and leak test. Pulse duration is

identical in respective baseline and leak tests. All rates are measured in Bbl/D

and the pulse half cycle times are in minutes.

for the objectives of this study. A complete description of the data acquisition is

provided by Sun et al. (2016).

The pressure gauge sampling rate used in the baseline tests is one sample

every two seconds i.e., a sampling rate of 0.5 samples/second. The sampling rates used

in the leak tests are one sample every five seconds i.e., a sampling rate of 0.2 samples/

second. Before any analysis, we matched the sampling rates of both baseline and leak

data to 1 sample/second. As very limited data is available to train the models, we used

the Fourier method to re-sample the signal to 1 sample/second instead of decimating

the signal (Heideman et al., 1984). The data pre-processing steps are summarized in

Figure- 5.
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Figure 4. Unprocessed/raw pressure data obtained from the pressure gauge in-

stalled at well F2. The rates are plotted on secondary axis. It can be observed

from the image that the pressures exhibit a net upward trend due to continued

injection. A detrending is required for pressure data set.

Data processing

Figure 5. Data processing workflow for this study. The data is de-spiked and

re-sampled before modeling.

Once we re-sampled the data, and both baseline and leak tests have the same sampling

rates, we need to de-spike the data. The re-sampled data has 38,912 points. To de-

spike the data, we used a Hann window of 21 samples and convolved the samples in
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the Hann window with the scaled data.

Figure 6. 150- minutes baseline test pressure response before( in green) and

after( in red) detrending the data.

A Hann function of length L (Harris, 1978) is defined as :

w0(x)
4
=


1
2
(1 + cos(2π x

L
)) = cos2(π x

L
), |x| < L

2

0, |x| > L
2

(1)

This can then be re-sampled for a discrete signal as :

w(n) = w0

{
1
2
[1− cos(2π n

N
)] = sin2(π n

N
) 0 ≤ n ≤ N

(2)

where, N+1 is the length of the window.
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For a signal, s(t) this window can then be convolved over the signal as:

S(t)∗ = s(t) ∗ w(N + 1) (3)

where S(t)* is the smooth signal in the time domain, and H(N+1) is a Hann

window of N+1 samples.

As injection rates remain the same for all tests, the rates alone cannot be

used to predict the different pressures for the same rates. To overcome the issue,

we created an additional feature of injected cumulative volume. This feature is then

added as an input along with the injection rates to predict the given pressure response.

Cumulative volume feature is nothing but the integral of the injection rates over a

given period as:

C =
∫ T
0 q dt (4)

where, C is the cumulative injected volume, q is the instantaneous rate and T is

the time until injection is completed. We used de-spiked surface pump rates as the

injection rates to compute the cumulative injection rate.

Figure 6 shows that there is a linear upward trend in the measured pressure

in green and hence a detrending of the data is required. Without detrending, the

machine learning models would have to extrapolate the input behavior, which is not

ideal for anomaly detection tasks. The resampled and detrended data is shown in

red. Notice that the number of samples are now higher and the linear upward trend is
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removed. As a final step for the input preparation, we used the min-max scalar from

the Python 3.7 distribution Scikit-Learn library (Pedregosa et al., 2011) to rescale

the inputs for modeling.

Figure 7 shows a comparison between the measured pressures in monitor-

ing well F2 for the 90-minutes baseline and 90-minutes leak cases. The data in 7

shows that the pulse test is an effective method to distinguish between the leak and

baseline scenarios and two pressure signals can be segregated. However, The absolute

difference in pressure baseline and leak tests is minimal 0.5 Psi. Hence, the modeling

techniques for prediction requires excellent accuracy.

Figure 7. Comparison of pressure response between the leak vs. non leak 90-

minutes test obtained from pressure gauge installed at well F2. It can be observed

that pulse test pressure response can distinguish between the leak vs. the non -leak

case.
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Problem formulation as anomaly detection

Anomaly/outlier detection in a multivariate time series data is a well-defined problem

in statistics and is investigated in depth by various authors e.g., Kandhari et al. (2009),

Zimek and Filzmoser (2018) and, Wu et al. (2008). Simply put, an anomaly is an

observation point for which the error exceeds a threshold for the given trained model.

This concept can be extended from a single location to a sequence of observations. In

this work, we defined anomaly using the squared error (ε) from the model predicted

value to the actual observation. To further refine the analysis, we set thresholds on

the (ε) to highlight the regions of anomaly. For all the analyses, the (ε) is defined as:

ε = (yi − ŷ)2 (5)

where, yi is the measured value and ỹ is the predicted value.
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Neural Network Architectures

Modeling terminology used in the study

For all the deep learning architectures, we used a sliding window (Glumov et al., 1995;

Vafaeipour et al., 2014) of 1000 samples to make the future prediction. Through trial

and error, we found that a window of 1000 samples can sufficiently represent the

features present in the data. Smaller windows are incapable of capturing the cyclical

events properly, while larger windows leave subtle inflections in the pressure data.

The inputs for all models remain as: pressure measured at the monitoring

well F2, injection rates obtained from injection well F1, and cumulative injection

volumes which is computed from the injection rates at well F1. Hence, the input in

all cases is a three-dimensional vector of 1000 samples each and the output is one or

multiple pressure data points ahead in the future.

We used 150-minutes baseline and 90- minutes leak data for the analysis.

The 150-minutes leak test was not included in this workflow. We implemented a total

of 39,202 data points for analysis after re-sampling of the data. Out of these, 24,542

samples belong 150-minutes baseline test and 14,660 samples belong to 90-minutes

leak test. For training purposes, we used 15,000 samples from 150-minutes baseline

test to train the models — roughly 40% of the data. For the test set, we used the

remainder of 9,452 samples from 150-minutes baseline and all 14660 samples from
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leak test. These data points are separated by various color arrows showing the train,

test, baseline and leak boundaries on all result plots. The color coding of the data is

explained in the results section.

The models are not trained on the leak test data, because the ultimate

goal of our study is to determine the anomalous pressure behavior as compared to

a baseline test. If the leak test was included in the analysis, the model could not

distinguish between the baseline and leak test. Therefore,it would not be able to

detect anomalous behavior of pressure data. In addition, we used mean squared error

(MSE) as a loss metric in all models.

The chronological order of the tests shown in Table 1 shows that the 90-

minutes leak test follows the 150-minute baseline test. As the reservoir pressure is a

dynamic property and changes with injection, we used the 150-minute baseline and

90-minutes leak in the analysis.

The neural networks are intrinsically stochastic hence, we generated 20 re-

alizations of each model to report the average training MSE and computational time.

In all the architectures described below in the following sections we tested the model

performance in terms of MSE and computational time to achieve best results in the

least computational times. To avoid over-fitting, we used 20% dropout in hidden

layers (Srivastava et al., 2014). Also. we attempted to forecast multiple points in

the future in a multivariate and multistep fashion, to test the ability of a model to
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forecast more than one sample in the future. Figure 8 shows the models and their

variations included in this study.

Figure 8. Deep learning methods and their variants used in this study. A

multistep forecast is added to the analysis to test the ability of the model to predict

multiple samples in the future.

Multilayer Feedforward Neural Network (MFNN)

An MFNN is a class of feed forward artificial neural network (ANN) which uses

neurons as the basic computational unit (Yilmaz and Kaynar, 2011; Rynkiewicz,

2012; Amid and Mesri Gundoshmian, 2017). An artificial neuron is a computation

unit consists of weighted inputs and outputs. The output signal is triggered by an

activation function. One such simple computational unit is shown in Figure 9.
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The weights on the inputs are analogous to the regression coefficients in

simple linear regression. These are often initialize with random values. These weights

are updated during the ”learning process” of the model and are the desired model

parameters.

Figure 9. A single computational unit i.e., a neuron. The inputs are biased

by weights and the neuron is activated via an activation function to produce an

output (Brownlee, 2018)

.

An activation function/ transfer function governs the threshold after which the

output signal is generated. We used the term activation function in the rest of this

thesis. An array of activation functions have been developed over the years such as

sigmoid, hyperbolic tangent, rectified linear unit (ReLU), leaky ReLU, Exponential

Linear Unit ( ELU) etc. Nwankpa et al. (2018) discussed these activation functions

in detail.
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Figure 10. Various activation functions commonly used in the deep learning

architectures (Jia et al., 2014)

.

Figure 10 show these activation functions and their activation behaviour. In this

thesis, we used ReLU as the activation function.

A network of such artificial neurons form a layer and modern deep learning

architectures use multiple layers of these neurons to form extremely, complex and

dense multi-layer models. One such network architecture is MFNN. The network

must have an input layer that receives the inputs. One or multiple hidden layers and

an ouput layer. Output layer is the layer which produces the desired prediction. The

network learns by using backpropagation algorithm Mozer (1995); Sathyanarayana

(2014) based on some loss function metric e.g., MSE. The learning of the network

is optimized by an array of available optimizers such as stochastic gradient descent

(SGD), RMSprop, Adaptive gradient (Adagrad), Adaptive moment tensor (ADAM)
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etc.

Figure 11. Typical MFNN architecture. A basic MFNN architecture has an

input layer, a set of hidden layers and an output layer.

After testing both the number of layers and the number of neurons per layer, we

selected a MFNN model composed of three hidden layers, respectively with 20, 20,

and 10 neurons with Rectified Linear Unit (ReLU) as an activation

function(Behnke, 2003). The final output is the pressure at the next time step, and

hence the last layer has just one output. We used adaptive moment estimation

(ADAM) (Kingma and Ba, 2014) with a learning rate of 1e-04.

To extend this idea of predicting one point forward in time, we attempted to

forecast multiple points in the future to see the ability of the model to predict multiple

points before the window is slid to the next set of input data. This technique is known
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as multivariate, multi-point prediction. The network architecture is similar to the one

in multivariate single point described above. However, there are essential differences

in the data preparation of both these methodologies. We used the 1000 samples to

predict the first one, then ten, and finally 1000 samples in the future. The results

of the model are summarized in section three. The prediction is not included in the

input data to predict the future samples but the input is divided into 1000 samples

window and then 1, 10, 100 and 1000 samples are used for prediction forward.

Long Short-Term Memory (LSTM)

LSTM falls under recurrent neural network architecture. Recurrent neural networks

(RNN) intrinsically have a feedback loop allowing for memory retention in longer

sequences of data LeCun et al. (1995); Hochreiter et al. (2001); Nguyen et al. (2019).

RNN family of network architectures thus, are naturally suited for time series pre-

diction. LSTM are trained via backpropagation in time to avoid vanishing gradients

which a typical RNN structure suffers from.

The network consists of memory blocks instead of a single neuron which

connect into sequential layers to make dense layers. The memory block is ”gated”

where each gate has its own activation functions. The gates decide which information

to keep or discard. A typical block has three gates, namely, input gate, output gate

and the forget gate. Figure 12 shows the conceptual layout of such memory gate.
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The forget gate decides which information to keep/discard. The input gate updates

the memory state and the output gate decides the output of that memory block. A

series of gated memory blocks/cells allows the network to read sequences of data and

not just single point.

Figure 12. Long Short-Term Memory (LSTM) unit. The LSTM unit has four

input weights (from the data to the input and three gates) and four recurrent

weights (from the output to the input and the three gates). Peepholes are extra

connections between the memory cell and the gates, but they do not increase the

performance by much and are often omitted for simplicity (Greff et al., 2017).

LSTM is a state-of-the-art class of RNN which are highly effective in pre-

dicting the future response based on the past training history of some of the most
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complicated tasks such as language translation (Volkova et al., 2013). Stacked with

multiple layers of LSTM they become even more powerful (Fernández et al., 2007). In

our case, a simplistic LSTM has proven to be sufficient to characterize our problem.

To train our model, we employed a series of 100 such units in a densely

connected network with RELU as the activation function and ADAM as the optimizer,

as well as a learning rate of 1e-04. Furthermore, to determine the model scalability

we followed a similar methodology as in the MFNN architecture, using a window of

1000 samples to forecast one, ten, 100 and then 1000 samples.

Convolutional Neural Networks (CNN)

A CNN architecture commonly consists of three set of layers: convolutional layers,

pooling layers, and fully connected layers. A convolutional layer convolves the input

with a series of filters to produce a filtered output. The filtered result then is com-

monly used as input to a pooling layer which reduces the dimensionality of the data.

The output from the pooling layer is flattened and passed to a fully connected dense

layer or a series of layers Khan et al. (2019); Zeiler and Fergus (2014); Simonyan

and Zisserman (2014); Gu et al. (2018). The neurons in a CNN architecture, unlike

MFNN, may not receive the inputs from all previous neurons but only from a selected

”patch” from the previous layer hence reducing the chance of overfitting as compared
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Figure 13. Major components of a CNN architecture (Hidaka and Kurita,

2017)

to the MFNN. Figure 13 shows a conceptual implementation of the CNN.

The CNN model consists of a single convolutional layer with filter of size three, and

RELU activation function, a max pooling layer of size two and stride two, followed

by two fully connected layers comprising 50 neurons and RELU activation function.

The output of the network is a single neuron that contains the pressure at a future

time step. We included ADAM as the optimizer with a learning rate of 1e-04.

Convolutional- LSTM (CONV- LSTM)

As discussed earlier, the merit of LSTM lies in keeping the temporal aspect of sequence

data. CNN on the other hand is a powerful architecture for extracting features in both

image and sequence data. Therefore, we selected a hybrid version of CNN and LSTM

for the pressure forecasting. CNN was implemented to extract complex shapes from

the time series data, and LSTM to keep track of these features over longer sequences.
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Hybrid models are very efficient in fulfilling both tasks (Xingjian et al., 2015a).

We divided the 1000 samples window of three features into ten subsets of

100 samples, each which is fed first to the CNN for feature extraction. CNN then

forwards this information to LSTM for temporal updates. To achieve this task, we

used time distributed layers in the architecture (Xingjian et al., 2015b). The CONV-

LSTM model is composed of one convolutional layer with 64 filters with size three

and RELU activation function, followed by a max-pooling layer, the output then is

flattened and passed as input to a LSTM layer with 50 units that outputs a sequence.

The final LSTM sequence is then used as input to the output layer for the prediction

of the pressure data.
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Results

Evaluation metrics and terminology

This section discusses the results from the various network architectures described

previously. Hereinafter, the terminology used for multistep varies according to the

number of samples predicted in the future. For example MFNN 100 represents the

case where 1000 samples fixed window is used to predict 100 samples in the future.

The results show both 150-minutes baseline and 90-minutes leak data.

In a real life scenario, the models can be used for detecting anomalies on

live data streams. In this case study, a real pressure behaviour with baseline and leak

scenario is available. However, we need a model architecture to forecast a baseline

pressure in the future to compare it with the recorded future pressures. Hence, we

used a multi-step forecast. A model which can forecast 1000 samples in the future

with confidence has a better scalability than a model that can only forecast 100

samples in future.

We used three diagnostic plots in the model architectures. In first diagnostic

plot we compared the actual versus the measured value of the pressure. The second

plot consists of the training process and the corresponding MSE after every training

epoch, with a total of 100 epochs for training. The third plot is the key output of

the study which is point wise squared error also referred as anomaly plot throughout

28



this section. We included different errors in the diagnostic plots for the model. To

generate the anomaly plot, we computed the squared error for every sample as:

MSE =
1

n

n∑
i=1

(yi − ỹ)2 (6)

where MSE is the mean squared error, yi is the actual pressure measurement

and ŷ is the predicted pressure. Higher error indicates anomaly. We filtered this error

by setting all errors less than 10e-03 to zero and amplifying the errors higher than

10e-03 by a factor of 100. This is referred to as filtered error in the diagnostic plots.

As smaller errors are suppressed and higher errors are amplified, it is easier for human

interpreter to identify the anomalous pressure behaviour. The other error metric used

is the mean squared error i.e., MSE. This is a metric to evaluate the machine learning

models. Higher training MSE values imply a less accurate model during training. We

made two different types of comparisons to evaluate the models:

1. Models which are scalable i.e., models which can forecast higher number

of samples with same amount of training data. These are referred by a subscript in

all the relevant Figures. For example MFNN100 refers to a multi-layer feed forward

network where 1000 samples window is used to predict 100 samples in the future. If

a fixed number of input samples are used to forecast a higher number of samples in

the future, the model is expected to have higher errors. But, a model which gives

unusually high errors as the number of samples in the future increases, is unstable

and hence, undesirable. We used the log-loss (MSE) as a metric to evaluate if the
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models are scalable, and we repeated the multi-step forecasting process for 1, 10, 100

and 1000 samples for all the model architectures.

2. Models which are the best, overall. For this criterion, we compared

different model architectures. The comparison includes various observations such as

: can a model sufficiently capture the sinusoidal pressure behaviour and not raise the

false alarms during rising or falling pressure cycles? Can the model be trained in a

reasonable time with technology available today? can the model take advantage of

hardware such as graphics processing unit (GPU)?

In all the Figures, the first 15,000 samples corresponding to baseline tests

are used for training and rest of the samples are used for prediction. The model

training ends at 15,000 samples which is highlighted by a green arrow in the figures.

Baseline test ends at 24,542 samples which is highlighted by a brown arrow. Table 2

summarizes the average results from 20 realizations of each model.

MFNN results

Figure 14 through Figure 16 show the results from the MFNN architecture. From

Figure 14 it can be noticed that the model performs exceptionally well for both

training and test set and predicted pressures are very close to the actual pressure

values.

As the model is trained on baseline, it expects a baseline equivalent response
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Figure 14. MFNN results for baseline pressure and the predictions for the dif-

ferent models. Target pressure is shown in color green while the model outputs are

shown in various colors. Green and brown arrows show the end of training and

end of baseline test respectively. It is observed that the model produces excellent

results for the pressure prediction for only 15,000 samples.

everywhere and hence can detect the anomaly in the leak portion of the data. This is

further highlighted in Figure 16 where the filtered MSE response shows the difference

in predicted and actual values. We set all MSE below 10 e-3 to zero, and we amplified

the MSE above 10 e-3 by a factor of 100. It can be observed from the filtered MSE

in Figure 16 that except one stem of the data, the leak and no leak portions of the

data can be clearly be identified as an anomaly or not.

The model is unable to capture some of the trough portions of the pressure

waveform and unpredictable towards the last pumping cycle of 150 -minutes baseline
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Figure 15. Log-Loss (MSE) with number of trained epochs for all the cases, It

can be observed that as the number of predictions in the future increases, both 1

step, ten steps and 100 steps yield consistent results with losses gradually increas-

ing towards higher number of samples forecasted.

test. It is essential to mention that in the final segment of the 150-minutes baseline

is a pressure fall off, the surface pumps are shutting down, and hence the behavior

is expected to be abnormal. Usually, with pump shut-downs, there is venting at the

surface, which is essentially an induced leak.
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Figure 16. Filtered error versus the number of samples. All errors less than

0.001 are set to zero and errors greater than 0.001 is amplified by a factor of 100.

The end of training is shown by a green arrow and leak portion is shown by a

brown arrow on x-axis. It can be observed that the MFNN can separate the leak

and no-leak portions of the data.
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LSTM results

Figure 17 through Figure 19 shows that LSTM scales better than MFNN when same

window size is used to predict various points forward in time. Figure 17 shows the

pressure prediction from the LSTM architecture and Figure 18 shows the losses for

different prediction interval cases. The MSE increases gradually as more points are

added but there is a clear separation between the baseline and leak data.

Figure 17. LSTM pressure prediction. The target pressure is shown in color

green and the predictions forward are shown in various colors in the legend. The

end of training is shown by a green arrow while the start of leak test is shown by

a yellow arrow.

For anomaly detection, it is of utmost importance that the data are segre-

gated instead of lower MSE values. Notice in Figure 19 , which is the LSTM anomaly

the drastic differences between the baseline and the leak stems of the data. It is much
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Figure 18. LSTM log losses. It is observed that as the prediction interval

increases, the net losses increase.

Figure 19. LSTM anomaly. We observed that the LSTM can efficiently separate

the leak and non-leak data. Notice the difference in results between the MFNN

and the LSTM anomaly. The anomaly is more pronounced in the case of LSTM

than the MFNN anomaly.

easier to identify the anomaly in case of LSTM as compared to MFNN. Hence, for

anomaly detection, LSTM is a preferred choice over MFNN in our case.
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CNN results

Figure 20 through Figure ?? show the results from the training and the test data

from the CNN architecture. Results in Figure 20, show that the CNN architecture

can capture the sinusoidal wave forms efficiently. Figure 22 show that the overall

MSE is higher in case of CNN as compared to LSTM, however in cases where smaller

number of samples are used for future prediction, the model can distinguish between

the leak and the baseline portions efficiently. CNN can also be parallelized on a

graphical processing unit(GPU) and hence provide a computational edge over LSTM

architecture.

It is evident that LSTM provides overall better results than CNN however

CNN is not just computationally more efficient on a GPU device but also has he

ability to capture the sinusoidal waveforms efficiently.

CONV-LSTM results

The hybrid architecture utilizes the features of both convolutional layer and the con-

volutional layer can be parallized on a GPU. Hence, state-of-the-art results can be

obtained faster without training for larger epochs like recurrent network/LSTM se-

quential updates. We showed the results obtained from this architecture from Fig-

ure 23 to Figure 25. From Figure 23 we observed that this hybrid architecture is able

to capture the sinusoidal features of the pressure signal efficiently. Figure 24 shows
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Figure 20. CNN pressure prediction. The target pressure is shown in green

and the predictions are shown in different colors. The end of baseline test is

shown by a green arrow. The start of the leak test is shown by a yellow arrow.

Except for 1000 samples prediction, all the other cases can capture the sinusoidal

waveform efficiently. The green and yellow arrows show the end of training data

and beginning of leakage data respectively.

the log-loss MSE for this architecture with training epochs.

Notice from Figure 24, although similar epochs compared to any other ar-

chitecture, CONV-LSTM takes the highest amount of time for training. However,

the log loss shows that the algorithm converges rapidly thus eliminating the need for

training for higher number of epochs, giving it an advantage over other architectures.

The filtered MSE anomaly shows that the architecture can differentiate between the

baseline and the leak tests.
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Figure 21. CNN training log-losses. As the number of samples foretasted in

future increases, the training losses increase. For smaller number of predicted

samples in the future, the CNN results are comparable to that of LSTM network.
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Figure 22. MSE CNN anomaly. The CNN can effectively distinguish the leak

and the non leak portions of the data except the CNN 1000 case (shown in light

grey color). The end of training data is shown by a green arrow and start of leak

is shown by the yellow arrow. Notice the anomaly spikes after the yellow arrow

which is the data corresponding to 90-minutes leak.
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Figure 23. CONV-LSTM pressure predictions. The CONV-LSTM results are

comparable to LSTM. The architecture is able to capture the subtle features of the

sinusoidal pressure signal.

Figure 24. Log loss (MSE) for the CONV- LSTM architecture. It is observed

that the model converges rapidly with the least training MSE of all architectures

discussed before.

40



Figure 25. The CNN-LSTM prediction and the MSE. It can be observed that the

model can distinguish between the leak and non-leak portions of the data efficiently.
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Model Training MSE Training epochs Processor time (seconds)

MFNN 1 5.8 e-05 100 82

MFNN 10 6.6 e-05 100 83

MFNN 100 1.2 e-04 100 81

MFNN 1000 2.1 e-04 100 80

LSTM 1 5.5 e-05 100 328

LSTM 10 1.01 e-05 100 332

LSTM 100 1.4 e-05 100 334

LSTM 1000 2.1 e-05 100 328

CNN 1 3.5 e-05 100 226

CNN 10 6.4 5e-05 100 213

CNN 100 6.3 e-05 100 209

CNN 1000 8.3e-05 100 193

CONV-LSTM 1 1.2e-06 25 3800

Table 2. Results summary for all models used in the study.
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Model extension to different scenarios

We discussed earlier in the manuscript, the dynamic nature of the hydrocarbon reser-

voir under CO2 injection. As the injection continues, the average reservoir pressure

increases, and the stresses across the sealing faults change. In addition to rock prop-

erties such as porosity and permeability, that can change as function of the stress

regime as well.

Hence, a natural question arises: can our workflow be possibly borrowed and

applied to any other pulse test? To answer this question, we included another set of

data. This data set consists of: 90-minutes baseline test, 150-minutes baseline test

and 90-minutes leak test. Before in all our analysis we have only utilized 150-minutes

baseline test and 90-minutes leak test.

This is shown in Figure 26. We used first 10,000 samples from the 90-minutes

baseline test to train a MFNN model and is shown by the black arrow. The end of

90-minutes baseline test or start of 150-minutes baseline test is shown by a green

arrow. The start of 90-minutes leak test is shown by a yellow arrow. This convention

is held throughout this section. Using the trained model from first 10,000 samples

belonging to 90- minutes baseline, we predicted the pressure behavior for both 150-

minutes baseline test and the 90-minutes leak test. The results are summarized in

Figure 26 and Figure 27.

We noticed that when the model is trained only on 90-minutes baseline
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Figure 26. Pressure prediction using MFNN for: 90-minutes baseline + 150-

minutes baseline + 90-minutes leak test. 10,000 samples from 90-minutes baseline

test is used for training the MFNN and rest of the samples are used for prediction.

The end of pressure waveform used for training is shown by a black arrow. The

end of 90- minutes baseline test is shown by a green arrow and the start of the

90-minutes leak test is shown by a yellow arrow. Notice that the model prediction

is worse in case of both 150-minutes baseline and 90-minutes leak tests.

test, it identifies the 150-minutes baseline as well as 90-minutes leak test, both as an

anomaly. MSE is higher in case of 90-minutes leak test than 150-minutes baseline

test but both are much greater than the 90-minutes baseline test which the model

is trained on. Hence, as expected a model can only learn from the training data

distribution and will address everything else as an anomaly.

Now, a second question arises, can the model learn from a new data set
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Figure 27. Filtered MSE for the model when trained only on 90-minutes baseline

data set. All MSE below 10e-03 are set to zero and all MSE above 10e-03 are

amplified by a factor of 10e+02. Notice the beginning of the 150-minutes baseline

test shown by the green arrow. The high MSE between the green arrow and the

yellow arrow (start of 90-minutes leak) indicates an anomaly even in 150-minutes

baseline case i.e. a leak. Hence, the model fails to distinguish between the 150-

minutes baseline and 90-minutes leak tests. The 90-minutes baseline test is still

classified as no-leak.

and incorporate the additional features and reservoir behavior at different states? To

answer this question, we included only one-half cycle of the 150-minute baseline test

into our training in addition to 10,000 samples from 90-minutes baseline test. This

is shown in Figure 28. The black arrow shows the 10,000 samples used for training

from 90-minutes baseline test. The two cyan arrows show the section of the 150-
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minutes test included in training. The green and yellow arrows show the beginning

of 150-minutes baseline test and 90-minutes leak test respectively.

Figure 28. Pressure prediction for 90-minutes baseline, 150-minutes baseline

and 90-minutes leak tests. The cyan arrows show the data utilized from 150-

minutes baseline test in the training process in addition to the 10,00. samples from

90-minutes baseline test. Notice that even 5,000 samples increase the pressure

predictions dramatically.

Figure 28 and Figure 29 show the MFNN results on the new training data.

It can be observed from the results that the model can now easily distinguish between

the baseline and leak tests effectively. Thus, even if a small portion of a different data

set is included in the training, the model is powerful enough to learn new features.

In a nutshell, deep learning architectures are powerful enough to learn new features

quickly; however, as expected they can only make a prediction based on the data
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distribution of the data set used for training. Deep learning models lack intuition,

unlike human interpreters. Hence, for full-scale field deployment, the models have to

be trained on a particular set of test parameters.

Figure 29. Filtered MSE for the case in which 5,000 samples from the 150-

minutes baseline test is included in the analysis. The portion of data included

from the 150-minutes baseline test is shown by cyan arrows. Notice that the 90-

minutes leak test is now clearly distinguished from the baseline test as compared

to Figure 17 and highlighted as an anomaly.

Based on the model’s capability on multi-step forecasting, a model can be used for

future prediction. As the system is dynamic, once a forecast with the high degree of

confidence interval has already occurred, this data must be included in the training,

and the model has to be updated. As our workflow utilizes time-series data, the
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additional training is fast and efficient, making the model practically scalable and

field-deployable.
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Novelty of the Study

This work automates the process of leak detection in CCS projects using deep learning

on time series data which is computationally efficient than processing two dimensional

images or three dimensional voxels. We employed this methodology on experimental

data obtained from Cranfield reservoir, Mississippi, USA. However, the method can

be extended to live pressure feeds recorded continuously from the wells when the

reservoir is on planned injection schedule.

The multi step forecast in my models show promise in forecasting multiple

data points in the future and hence can be used as a proxy for forecasting instead

of reservoir simulation. These forecasts then can be included in training data and

model can be updated in time. This eliminates the need for multiple physics based

simulation forecasts and reduce the computational cost.

Figure 30. Input data preparation for the CONV-LSTM study. The data con-

sists of both static and dynamic data for reservoir characterization (Zhong et al.,

2019a)

Figure 30 and Figure 31 shows the input data and the workflow adopted
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Figure 31. Workflow adopted by Zhong et al. (2019a). Notice that the CONV-

LSTM requires spatio-temporal analysis of two-dimensional images.

by Zhong et al. (2019a). The architecture used in their study is CONV-LSTM but it

utilizes two dimensional images obtained from a physics based tool such as a reservoir

simulator. Prior to simulation a through reservoir characterization is necessary in
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their proposed workflow. The results are compared once a model is trained with the

actual simulator and differences in the pressure responses between baseline and leak

cases is used as an leak detection. The model also is very sensitive to the number

of layers used in the modeling as well as permeability of the reservoir.Training these

models are computationally inefficient. The field conditions such as injection rates

change dynamically which will ultimately requires to re-train the models.

Another such study was conducted by Sun et al. (2014b). The authors

show that by analyzing the pressure response of the baseline versus the leak well in

frequency domain the two responses can be distinguished. This methodology requires

computing the DTFT from the pressure response continuously and then analyzing the

results. The automation of the spectral responses will require not just computing the

DTFT but also using different machine learning architectures to distinguish them on

two dimensional images thus adding computational cost.
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Conclusions

In this work, we discussed the applications of deep learning architectures for leak-

age detection in carbon sequestration projects. In our findings, MFNN architecture

performs excellent for training and test data sets but struggles to clearly distinguish

between baseline and leak test as prediction in time interval increases. When it

comes to predicting the future response, the LSTM architecture performs the best in

our results overall, but the convolutional neural network (CNN) makes an excellent

case for capturing the sinusoidal waveform like features in our dataset. CNN also

can be parallelized on a GPU device, giving a computational advantage over LSTM

which is processed sequentially. The hybrid architecture of CNN and LSTM, i.e.,

CONV-LSTM, provides the best of both worlds in terms of leak identification and

computational times. However, computational times can be a limitation on this ar-

chitecture. All machine learning algorithms, including deep learning architectures,

learn from training data, and CCS are a dynamic system affected by complex geology

and operational parameters. However, we showed that deep learning architectures

can be extremely useful for an automated early warning system for leak detection in

CCS projects which can then be investigated with conventional engineering methods

by human interpreters.
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