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Abstract 

The explicit prediction of deep, moist convection is challenging because small model and 

initial condition errors rapidly grow and degrade forecast skill.  Microphysics schemes employed 

by convection-allowing models represent a substantial source of model error because 

microphysical processes are poorly understood and simplifying assumptions must be made to 

make simulations and forecasts computationally practical.  Although data assimilation systems 

decrease initial condition errors, analysis and forecast skill is sensitive to the experiment design. 

This dissertation evaluates data assimilation and ensemble forecast system performances at 

convection-allowing/convection-resolving resolutions, when forecast models employ different 

multi-moment microphysics parameterization schemes, and the data assimilation configurations 

are varied.  We address the related issues through detailed case studies that provide insights on 

optimizing the configuration of convection-allowing model forecasts. 

First, high-resolution hail size forecasts are made for a severe hail event on 19 May 2013 

using the Advanced Regional Prediction System (ARPS).  Forecasts using the National Severe 

Storms Laboratory (NSSL) variable density rimed ice double-moment microphysics scheme 

(referred to as NSSL) exhibit more skill than those using the Milbrandt and Yau double-moment 

(MY2) or triple-moment (MY3) schemes when verified against radar-derived hail size estimates.  

Although all three schemes predict severe surface hail coverage with moderate to high skill, MY2 

and MY3 forecasts overpredict the maximum hail size.  The NSSL scheme uses the two variable 

density rimed ice categories to generate large, dense hail through the wet growth of graupel.  Both 

the MY2 and MY3 schemes predict hail to be smaller above the 0 °C isotherm because the category 

is primarily composed of small frozen raindrops; in the melting layer the hail quickly grows 
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because the rimed ice accretes excessive water.  MY2 and MY3 forecasts predict the largest hail 

sizes to be smaller when the accretion water is eliminated beneath the 0 °C isotherm. 

To improve hailstorm forecast initial conditions, CAPS Ensemble Kalman filter (EnKF) 

analyses are generated for the 8 May 2017 Colorado severe hail event using either the MY2 or the 

NSSL scheme in the forecast model.  The results of the EnKF analyses are evaluated.  With each 

microphysics scheme two experiments are conducted where reflectivity (Z) observations update 

either (1) only the hydrometeor mixing ratio or (2) all hydrometeor fields.  Experiments that update 

only hydrometeor mixing ratios can create ensemble error covariances that are unreliable which 

increases analysis error.  Despite improving initial condition estimates, experiments that update all 

hydrometeor fields underestimate surface hail size, which suggests additional constraint from 

observations is needed during data assimilation.  Correlation patterns between observation prior 

estimates (e.g., Z) and model state variables are evaluated to determine the impact of hail growth 

assumptions in the MY and NSSL schemes on the forecast error covariances between 

microphysical and thermodynamic variables. For the MY2 scheme, Z is negatively correlated with 

updraft intensity because strong updrafts produce abundant, small hail aloft.  The NSSL scheme 

predicts storm updrafts to produce fewer but larger hailstones aloft, which causes Z and updraft 

intensity to be positively correlated.  Hail production processes also alter the background error 

covariances for in-cloud air temperature and hydrometeor species. This study documents strong 

sensitivity of ensemble data assimilation results of hailstorms to the parameterization of 

microphysical processes, and the need to reduce microphysics parameterization uncertainties.  

To improve data assimilation configurations for potential operational implementation, 

EnKF data assimilation experiments based on the operational GSI system employed by the Center 

for Analysis and Prediction of Storms (CAPS) realtime Spring Forecast Experiments are 
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performed, followed by 6-hour forecasts for a mesoscale convective system (MCS) event on 28-

29 May 2017. Experiments are run to evaluate the sensitivity of forecast skill to the configurations 

of the data assimilation system. Configurations examined include the ensemble initialization and 

covariance inflation as well as radar observation data thinning, covariance localization radii, 

observation error settings, and data assimilation frequency. Spin-up ensemble forecast surface 

temperatures are most skilled when the initial ensemble mean is centered upon the most recent 

NAM analysis, causing forecasts to predict a strong MCS. Experiments that assimilate radar 

observations every 5 minutes are better at the placement of high Z values near observed storms but 

exhibit a substantial decrease in forecast skill initially because of widespread spurious convection.  

Ensembles that assimilate more observations with less thinning of data or use a larger horizontal 

covariance localization radius for radar data overpredict the coverage of high Z values due to 

enhanced spurious convection. Both parameters have modestly positive impacts on forecast skill 

during the first forecast hour that are quickly lost due to the growth of forecast error.   Forecast 

skill is less sensitive to the ensemble spread inflation factors and observation errors tested during 

this study.  These results provide guidance towards optimizing the GSI EnKF system 

configuration, for this study the data assimilation configuration employed by the 2019 CAPS 

Spring Forecast Experiment produces the most skilled forecasts while remaining viable for 

realtime use. 
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Chapter 1 Introduction 

1.1 Motivation and Background 

In the past decade severe thunderstorms caused an estimated $163.4 billion in property 

damage and the frequency of severe weather events that cause more than a $1 billion in damage 

has steadily increased (NOAA 2019).  Many of these severe weather hazards occur with relatively 

short warning lead-times (e.g., Brooks 2004; Stensrud et al. 2013) because the National Weather 

Service (NWS) issues warnings based upon the detection of a hazard (surface reports, radar 

detections) or an imminent threat as determined by the forecaster (i.e., warn on detection). 

Convection-allowing model (CAM) forecasts, which are run at relatively fine horizontal grid 

spacings (Δx < 4 km) to explicitly resolve deep, moist convection (Weisman et al. 1997), are 

increasingly used to predict the evolution of severe thunderstorms and hazards.  As real-time CAM 

forecasts become feasible given advancements in computing infrastructure, the NWS is gradually 

moving toward a Warn-on-Forecast paradigm (Stensrud et al. 2009, 2013) where short-term CAM 

ensemble forecast guidance is incorporated into the weather decision process. A skilled CAM 

ensemble forecast system can potentially protect both lives and property by extending the 

predictive skill of severe weather hazards; however, developing a skilled prediction system 

represents a substantial challenge. 

CAM forecast skill is highly sensitive to model and initial condition errors because small 

convective-scale errors quickly grow in scale to alter the evolution of the predicted storms (e.g., 

Lorenz 1969). A major source of model error is attributed to microphysics parameterizations (e.g.,  

Morrison et al. 2015) that are used to explicitly predict the evolution of precipitation. This is 

because these parameterizations simulate poorly understood microphysical processes and must 

rely upon simplifying assumptions so that CAM forecasts remain computationally feasible. 
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Additionally, thermodynamic feedbacks from the misrepresentation of hydrometeor fields such as 

cold pool intensification (e.g., Snook and Xue 2008; Dawson et al. 2010) can modify the near 

storm environment and subsequent thunderstorm evolution (Rotunno et al. 1988). 

All operational CAMs employ bulk microphysics schemes (hereafter referred to as MP 

schemes) to predict the evolution of bulk hydrometeor properties. These properties diagnose a 

fixed particle size distribution (PSD), the most common being a three-parameter gamma 

distribution (Ulbrich 1983) where hydrometeor mass, number concentration, and reflectivity (Z) 

correspond most closely to the third, zeroth, and sixth moments of the distribution. To remain 

computationally efficient most MP schemes predict only one or two moments of the PSD; 

however, in doing so the hydrometeor PSD loses flexibility because undiagnosed parameters are 

assigned a constant value. Double-moment schemes (e.g., Milbrandt and Yau 2005a; Morrison 

and Grabowski 2008; Thompson et al. 2008; Morrison and Milbrandt 2015) for example (predict 

hydrometeor mass and number concentration, diagnose PSD slope and intercept parameters) are 

prone to excessive size sorting because they are unable to modify the PSD shape parameter and 

narrow the PSD (e.g,. Milbrandt and Yau 2005b; Dawson et al. 2014; Johnson et al. 2016; 

Morrison et al. 2015).    Triple-moment schemes can modify the shape parameter and mitigate 

excessive size sorting (Milbrandt and Yau 2005b); however, the additional state variables can 

dramatically increase model run times. In addition to predicting PSD moments, MP schemes can 

also prognose hydrometeor characteristics (e.g., rime fraction, density; Mansell et al. 2010; 

Milbrandt and Morrison 2013; Morrison and Milbrandt 2015) so that hydrometeor categories can 

better represent the diverse properties of rimed ice particles. Although these schemes are able to 

represent many different hydrometeor types, there are relatively few observations of microphysical 

relevance that can verify MP scheme accuracy.  
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The next-generation radar (NEXRAD; Crum et al. 1993) system is one of the only 

observational platforms capable of performing full-volume scans of the atmosphere at a temporal 

frequency (approximately 5 minutes) sufficient to capture convective storm evolution. Z is 

proportional to the 6th moment of the hydrometeor PSD and is most sensitive to the largest 

hydrometeors within a scan volume. After a recent polarimetric upgrade radars also provide 

observations including differential reflectivity (Zdr), co-polar correlation coefficient (ρhv), and 

differential phase (Φdp), in addition to Z and radial velocity (Vr).  With these additional 

observations, one can infer hydrometeor properties such as shape, size, orientation, and phase 

(Doviak et al. 2000; Kumjian and Ryzhkov 2008). Radar derived products such as the maximum 

expected size of hail (MESH, Witt et al. 1998a) and hydrometeor classification algorithm output 

(Heinselman and Ryzhkov 2006; Park et al. 2009) can also be used to estimate hydrometeor 

properties such maximum surface hail size and dominant hydrometeor type. Because they offer 

important microphysical information and are frequently updated, radar observations are often used 

for forecast verification and data assimilation.  

Many CAM ensemble forecast systems (e.g., Yussouf et al. 2013; Wheatley et al. 2015; 

Jones et al. 2016; Snook et al. 2016; Johnson et al. 2017; Lawson et al. 2018; Labriola et al. 2019a; 

Stratman et al. 2020) use an ensemble Kalman filter (EnKF; Evensen 1994, 2003) to assimilate 

observations and initialize forecasts. This method is often used because error covariance statistics 

derived from the forecast ensemble allow the filter to update unobserved model state variables. An 

EnKF can also directly assimilate non-linear observation operators, such as Z, to update model 

state variables.  Observation system simulation experiments (OSSEs) and real-data experiments 

demonstrate assimilating observed Z and Vr improves estimated thermodynamic, dynamic, and 

microphysical state variables (e.g., Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; 
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Caya et al. 2005; Tong and Xue 2005; Xue et al. 2010; Dawson et al. 2012; Jung et al. 2012; 

Johnson et al. 2015; Snook et al. 2015; Supinie et al. 2016; Wang and Wang 2017; Putnam et al. 

2019);  however, forecast initial conditions can still contain considerable errors (e.g., Xue et al. 

2010) because model state variables are constrained by a limited number of relevant observations 

and Z can be recreated from a non-unique combination of hydrometeor moments.  The 

configuration of the ensemble data assimilation system  requires careful calibration to optimize 

initial condition estimates (e.g., Zhang et al. 2004; Dowell et al. 2004; Tong and Xue 2005). 

 

1.2 Dissertation Overview 

The purpose of this study is to evaluate analysis and forecast sensitivities to microphysical 

parameterizations and ensemble data assimilation configurations.  Results are used to design a 

more skilled CAM ensemble forecast system for explicit hail prediction and severe weather 

hazards.  Data assimilation is performed using the Center for Analysis Prediction of Storms 

(CAPS) EnKF and the gridpoint statistical interpolation (GSI) EnKF systems; forecasts are run 

using either the Advanced Regional Prediction System (ARPS) or the advanced research Weather 

Research and Forecasting (WRF-ARW) model.  Experiments in this dissertation, which are all run 

at convection-allowing grid spacings (0.5 km ≤ Δx ≤ 3 km), predict hail producing tornadic 

supercell thunderstorms near Oklahoma City on 19 May 2013, mountain-initiated hailstorms that 

impacted Denver on 8 May 2017, and a mesoscale convective system (MCS) event in the Southern 

United states that produced hail, wind, and tornadoes between 28 – 29 May 2017. 

CAPS EnKF-initialized high-resolution (500-m horizontal grid spacing) explicit hail size 

forecasts of the 19 May 2013 Oklahoma City hail event are run using the ARPS in Chapter 2. 

Ensembles are run using multi-moment schemes that predict multiple rimed ice categories 
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including the Milbrandt and Yau double-moment (MY2), the Milbrandt and Yau triple-moment 

(MY3), and the NSSL variable density rimed ice double-moment (NSSL) schemes. Forecast 

maximum hail size is diagnosed from rimed ice PSD information and is evaluated against 

hydrometeor classification algorithm output indicated maximum hail size. To better understand 

biases in explicit hail size forecasts, microphysical budgets extracted from the model forecast 

evaluate hail growth and decay processes for each scheme. Microphysical processes in the MY2 

and MY3 schemes are updated to isolate the cause of hail size forecast biases in this study. 

In Chapter 3, CAPS EnKF-generated analyses are evaluated for the 8 May 2017 mountain-

initiated hailstorms.  Four separate experiments are run using either the MY2 or NSSL scheme 

where the EnKF updates only hydrometeor mixing ratio or all microphysical state variables.  

Analysis estimated hail size and coverage for each experiment is verified against hydrometeor 

classification algorithm output to evaluate EnKF rimed ice PSD estimates.  Ensemble simulated Z 

and Vr root mean square innovations during data assimilation are also evaluated to determine which 

experiment configuration most closely fits radar observations.  For experiments run using both MP 

schemes, the correlation between observation priors (Z and updraft intensity) and model state 

variables (hail and rain state variables, air temperature, updraft intensity) is analyzed.  The 

correlation analyses conducted in this chapter provide insight into the sensitivity of the background 

error covariance to MP scheme.  

The 2019 CAPS storm scale ensemble forecast GSI EnKF system is used to assimilate 

radar and convectional observations and initialize short-term (0-6 hour) forecasts for the 28 – 29 

May 2017 MCS event in Chapter 4.  Experiments evaluate probabilistic forecasts for regions of 

high Z (> 40 dBZ) both subjectively and objectively using reliability diagrams and the brier skill 

score.  Additional experiments determine which aspects of the experiment configuration forecast 
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skill are most sensitive to.  Each experiment methodically alters a different aspect of the 

experiment configuration including ensemble initialization method (e.g., initial condition 

perturbations), spread inflation during data assimilation, data thinning, covariance localization 

radius, observation error, and data assimilation frequency.  Forecast verification of the different 

experiments provides insight into which configuration produces the most skilled forecasts. 

Chapter 5 summarizes and discusses the performance of the CAM ensemble forecast 

systems across the different case studies.  Future work that can further improve ensemble forecast 

system skill is also explored.  

 

 

 

 

 

 

 

 

 



7 
 

Chapter 2 1Explicit Ensemble Prediction of Hail in 19 May 2013 Oklahoma 
City Thunderstorms and Analysis of Hail Growth Processes with Several 
Multi-Moment Microphysics Schemes 
 

2.1 Introduction 

 Each year, hail causes on average more than $1.4 billion in property and crop damage in 

the United States (Changnon et al. 2009). Densely populated regions in particular are susceptible 

to costly hail damage; for example, the 1995 “Mayfest” hailstorm near Fort Worth Texas caused 

more than $2 billion in damage and injured 109 people at an outdoor festival (Edwards and 

Thompson 1998).  The cost of hail-related damage is expected to increase as cities expand; most 

hail events that have caused more than $1 billion in inflation-adjusted insured losses have occurred 

since 2001 and the frequency of occurrence of such events is increasing (Changnon 2009; NCEI 

2017).   

 Extending the warning lead-time for severe hail has the potential to mitigate hail-related 

damage, though this is challenging, as severe hail events often develop quickly.  To extend severe 

weather warning lead time, the National Weather Service (NWS) is shifting from issuing severe 

weather warnings based upon detection by, e.g. radar (warn-on-detection), to a paradigm where 

warnings will be issued based upon high-resolution numerical weather prediction (NWP) model 

guidance (warn-on-forecast; Stensrud et al. 2009, 2013)  Many studies analyze the skill of 

convective-scale forecasts, however only a handful of studies (e.g., Milbrandt and Yau 2006; 

Snook et al. 2016, hereafter S16; Luo et al. 2017; Gagne et al. 2017; Labriola et al. 2017, hereafter 

 
1 A paper based on the material presented in this chapter has been accepted for publication as: Labriola, J., N. Snook, 
Y. Jung, and M. Xue, 2019: Explicit ensemble prediction of hail in 19 May 2013 Oklahoma City thunderstorms and 
analysis of hail growth processes with several multimoment microphysics schemes. Mon. Wea. Rev., 147, 1193–1213, 
https:// doi.org/10.1175/MWR-D-18-0266.1. 
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L17; Adams-Selin and Ziegler 2016; Luo et al. 2018) assess the skill of explicit hail prediction 

(hail size and coverage).  Hail prediction using storm-scale NWP forecasts remains understudied 

due to the difficult and complex nature of hail storm prediction, hail growth processes, and 

challenges associated with hail forecast verification. 

 The skill of explicit hail prediction is dependent upon the NWP model’s ability to predict 

the complex processes and the storm environment that supports the growth of hail; this requires an 

accurate representation of the hailstorm structure, dynamic, thermodynamic, and microphysical 

processes, as well as the surrounding environment.  Hail grows where supercooled liquid accretes 

to the surface of rimed ice; however, growth is limited if a large number of hail embryos depletes 

the supercooled liquid (e.g., Heymsfield 1983). Hail particle growth is strongly correlated with 

storm updraft strength (e.g., Rasmussen and Heymsfield 1987).  Strong updrafts suspend large 

rimed ice particles in regions of supercooled liquid; however, if an updraft is too strong the 

particles are more rapidly advected outside of the optimal growth zone.  Strong vertical wind shear 

also contributes to hail growth (e.g., Nelson 1983; Foote 1984; Dennis and Kumjian 2017).   

Increased deep layer shear extends the storm updraft horizontally and increases the residence time 

of hail within the growth zone.  Due to the complex nature of riming, a large number of 

microphysical parameterizations that have different treatments for rimed ice were developed with 

the goal of improving the representation of rimed ice.   

 Microphysical processes in convective-scale NWP models are mostly parameterized using 

bulk microphysics (MP) schemes (e.g., Lin et al. 1983; Milbrandt and Yau 2005a). Bulk MP 

schemes predict the bulk characteristics for hydrometeor species x such as mixing ratio (qx), total 

number concentration (Ntx), or reflectivity (Zx) to define a commonly used three-parameter gamma 

particle size distribution (PSD): 
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  N(D) = N0x 𝐷$%𝑒'(%)           (1) 

where D is the hydrometeor diameter, λx is the slope parameter, αx is the shape parameter, and N0x 

is the intercept parameter (Ulbrich 1983). qx is converted to mass concentration (mx) when 

multiplied by air density. A few MP schemes (Mansell et al. 2010; Morrison and Milbrandt 2015; 

Morrison et al. 2015; Milbrandt and Morrison 2016) also have the capacity to predict hydrometeor 

volume (vx) and thus explicitly derive density (ρx); this is primarily done for rimed ice hydrometeor 

categories, which undergo large fluctuations in density during growth and melting.  Variable 

density MP schemes (e.g., Mansell et al. 2010) have the ability to update particle fall speeds and 

rimed ice production.     

 To save computational time, one or more PSD parameters are often assumed to be constant, 

though such assumptions can limit the model’s ability to realistically represent microphysical 

processes. For example, most double-moment MP schemes predict the 3rd (qx) and 0th (Ntx) 

moments of a PSD to diagnose λx and N0x, but assume αx to be constant.  Double-moment schemes 

are able to simulate qualitatively polarimetric signatures (Jung et al. 2012; Johnson et al. 2016; 

Putnam et al. 2017b), but the schemes often suffer from excessive size sorting (e.g,. Milbrandt and 

Yau 2005b; Dawson et al. 2014; Johnson et al. 2016; Morrison et al. 2015).  Triple-moment MP 

schemes, which additionally predict the 6th moment of the PSD (Zx) can diagnose αx.  The shape 

parameter narrows the hydrometeor size spectra and limits size sorting by having the weighted fall 

speeds of a hydrometeor type converge towards a singular value (Milbrandt and Yau 2005b; 

Dawson et al. 2014).      

 Convective-scale forecasts have been shown to predict spatial extent and size of hail at the 

surface with some skill.   Multiple studies (e.g., S16; L17; Luo et al. 2017; Luo et al. 2018) have 

used predicted hail quantities (mass, number concentration) to identify regions where hail reaches 
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the surface.  Simulated radar products such as the maximum expected size of hail (MESH; Witt et 

al. 1998a) have also been used to derive surface hail size from model output (S16; L17; Luo et al. 

2017; Luo et al. 2018).  Another method, the Thompson hail method (Thompson et al. 2018), uses 

model diagnosed hail PSDs to approximate the largest “observable” hailstone.   Variants of this 

method have been used to diagnose the maximum surface hail size and distinguish regions of hail 

growth (Milbrandt and Yau 2006; S16; L17; Luo et al. 2018). The skill of hail forecasts derived 

directly from model output is strongly dependent upon choice of MP scheme;  to account for model 

biases machine learning algorithms can be applied to model output (e.g., Gagne et al. 2015, 2017; 

McGovern et al. 2017; Herman and Schumacher 2018a,b; Burke et al. 2020). 

 Convective-scale explicit hail forecasts are subject to significant error associated with the 

NWP model (e.g., initial conditions, microphysics). Many recent convective-scale studies use 

cycled ensemble Kalman filter (EnKF; Evensen 1994, 2003) data assimilation (DA) to generate 

initial conditions (e.g., Dowell et al. 2004; Snook et al. 2011, 2012, 2015; Dawson et al. 2012; 

Jung et al. 2012; Putnam et al. 2014, 2017, Yussouf et al. 2013, 2016; Wheatley et al. 2014; 

Schwartz et al. 2015; Skinner et al. 2018). This technique is preferred because error covariances 

derived from the forecast ensemble allow the DA system to update unobserved variables such as 

temperature, pressure, and microphysical variables from available observations (e.g., Tong and 

Xue 2005; Tong and Xue 2008a). An EnKF DA system can thus use radar observations, which 

indirectly observe hydrometeor information, to improve the microphysical state variables of hail 

producing storms (S16; L17). 

 Hail forecast verification is a substantial challenge. Hail events are underreported in rural 

areas, especially away from major highways, as well as in cases when a more extreme severe 

weather event (e.g., one or more tornadoes) occurs in addition to hail (Doswell et al. 2005; Witt et 
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al. 1998b; Allen and Tippett 2015). Additionally, hail sizes that correspond to familiar circular or 

spherical objects (e.g., dimes, softballs) are over-reported (Sammler 1993), as such objects are 

commonly used as size references in reports from the public.  New observational databases attempt 

to mitigate observed hail size biases. The meteorological phenomena identification near the ground 

(mPING; Elmore et al. 2014) phone application requires users to report hail in size increments of 

0.25 inches, and the severe hail analysis and verification experiment (SHAVE; Ortega et al. 2009) 

directly interviews the public to create a hail observation database with high spatial resolution.  

Nevertheless, surface-based reports remain inadequate for objective hail forecast verification.  

 The next-generation radar (NEXRAD; Crum et al. 1993) system is the only observational 

platform that performs full-volume scans of the atmosphere at a temporal frequency 

(approximately 5 minutes) that captures the rapid evolution of convective storms.  Radar derived 

hail products, such as MESH, serve as a proxy for hail size and can be used for forecast verification 

(e.g., S16).   Although MESH varies in skill throughout the United States, it is not subject to 

population bias and thus superior to ground based reports (Cintineo et al. 2012).  

 Polarimetric radars provide observations such as differential reflectivity (Zdr), co-polar 

correlation coefficient (ρhv), and differential phase (Φdp), in addition to Z and radial velocity (Vr).  

With these additional observations, one is able to infer hydrometeor properties such as shape, size, 

orientation, and phase (Kumjian and Ryzhkov 2008).  Hydrometeor classification algorithms 

(HCAs; Park et al. 2009) apply a fuzzy logic algorithm to both single-and dual-polarization radar 

data to classify the dominant hydrometeor type.  This study implements the Putnam et al. (2017b) 

HCA, along with hail size discrimination algorithm membership functions from Ortega et al. 

(2016) to classify the dominant hail size into one of three bins: non-severe (5 mm), severe (25 
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mm), and significant severe (50 mm). HCAs often classify hail size with more skill than MESH 

(Ortega et al. 2016), although biased observations degrade the skill of the classifications.    

Previous studies (i.e. S16; L17; Luo et al. 2017, 2018) evaluated hail forecasts produced 

using single-moment, double-moment, and triple-moment MP schemes; however, no studies have 

evaluated hail forecasts produced using a variable density MP scheme, which has the ability to 

represent a spectrum of rimed ice particle characteristics.  In this study double-moment, triple-

moment, and variable-density double-moment MP schemes are used to produce explicit ensemble 

hail forecasts for a severe hailstorm event that occurred in the Oklahoma City Metropolitan area. 

Surface hail size forecasts are subjectively and objectively verified against HCA output (Ortega et 

al. 2016) using the Brier skill score (Brier 1950), reliability diagrams, and relative operating 

characteristic curves.  In addition to forecast evaluations, a microphysical budget analysis is 

conducted.  This study analyzes hail growth and decay processes predicted by each MP scheme to 

identify sources of forecast error, and determine the impact of microphysical processes on the 

prediction of hail. 

The rest of the chapter is organized as follows. In section 2.2 we provide a brief overview 

of the 19 May 2013 Oklahoma City severe hail event and describe the experimental design, 

including the DA and forecast model settings.  Hail forecast verification statistics and an in-depth 

analysis of hail growth and decay processes are presented and discussed in section 2.3.   A 

summary and some further discussions on the results are given in section 2.4. 
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2.2  Case, experiment configuration, and verification procedures 

2.2.1 Case overview 

On 19 May 2013 an upper-level low pressure system developed in the Northern Plains of 

the United States as a negatively-tilted trough moved over the Southern Plains. An 1800 UTC 

(1300 LST) sounding launched from the Norman Weather Forecast Office (WFO) indicated the 

environment was both highly unstable (CAPE ~ 4878 j kg-1) and strongly sheared (0 – 6 km shear 

~ 49 kts), ideal for the development of supercell thunderstorms.  Thunderstorms initiated along a 

dryline boundary west of Oklahoma City starting at approximately 1945 UTC. Three supercell 

thunderstorms (Fig. 2.1a) produced large regions of severe hail, and localized regions of 

significant-severe hail, in the southwestern Oklahoma City Metropolitan area (Fig. 2.1b, c). Aside 

from producing large hail throughout the region, these storms also produced two long-track 

tornadoes that produced EF-3 damage in Carney, OK and EF-4 damage in Shawnee, OK.  For 

further discussion on this event we refer the reader to Carlin et al. (2017) and Wienhoff et al. 

(2018). 

 
Fig. 2.1. (a) KTLX observed Z at the lowest radar tilt (0.5°), valid for 2220 UTC. (b) A swath of 
the largest observed hailsize between 2155 – 2320 UTC.  Hail size is determined by applying a 
HCA to the lowest radar tilt of KTLX and KINX (0.5°) and merging the subsequent output. (c) 
Surface based hail size reports (SPC and mPING) between 2155 -2320 UTC. On the background 
maps thin black lines are highways and purple lines are urban boundaries. The central and right 
panel color scales correspond to the same range of hail sizes. 
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2.2.2 Prediction model configurations 

All experiments use the Advanced Regional Prediction System (ARPS; Xue et al. 2000, 

2001) as the numerical weather prediction model.  The model domain consists of 573 × 515 × 53 

grid points with a 500-m horizontal grid spacing.  The model grid is stretched in the vertical, with 

a minimum vertical grid spacing of 50-m at the surface and an average vertical grid spacing of 

425-m. The ARPS model settings follow those of S16 and L17.  Model physics (Xue et al. 2000, 

2001) include NASA Goddard Flight Center short- and longwave radiation (Chou 1990, 1992; 

Chou and Suarez 1994), surface fluxes calculated from surface drag coefficients, surface 

temperature and volumetric water, a two-layer soil model, and a 1.5-order turbulent kinetic energy-

based sub grid-scale turbulence parameterization (Deardorff 1980; Klemp and Wilhelmson 1978; 

Moeng 1984).    

Hail forecasts are produced using three different MP schemes: the Milbrandt and Yau 

(2005a) double-moment MP scheme (MY2), the Milbrandt and Yau (2005a) triple-moment MP 

scheme (MY3), and the National Severe Storms Laboratory (NSSL) double-moment variable-

density rimed ice MP scheme (Mansell et al. 2010).  Forecast maximum surface hail size (Dmax) is 

calculated using a variant of the Thompson hail algorithm (Gagne et al. 2019).  Dmax is calculated 

at the first model level above the surface (~25 m AGL) and is defined as the largest diameter for 

which the hail PSD has at least 1 stone per 10,000 m4 (S16).   

The MY2 scheme is selected for this experiment because it has been used in multiple recent 

hail prediction studies and serves as a baseline for esplicit hail prediction (e.g., S16, L17, Luo et 

al. 2017, 2018).  The MY2 and MY3 schemes use the same prognostic equations for hydrometeor 
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mass mixing ratio and number concentration, however MY3 also predicts hydrometeor Z.  Z is 

used to diagnose the PSD shape parameter (Table 2.1); this parameter narrows the size distribution 

and limits further size sorting by causing weighted fall speeds to converge towards a singular value 

(Dawson et al. 2014).  The NSSL scheme (Table 2.1) includes mass mixing ratio and number 

concentration, as well as prognostic equations for both hail and graupel volume (and thus density). 

Variable density is used to update particle fall speeds and conversion rates between hydrometeor 

species (e.g., dense wet-growth graupel is converted to hail; Mansell et al. 2010).  The minimum 

number concentration threshold is set to 10-8 m-3 for the MY2 and MY3 schemes; the default setting 

(10-3 m-3) led to excessive removal of hail, including some large hail near the surface. Unlike the 

MY2 and MY3 schemes, which threshold via number concentration and mass, the NSSL scheme 

only thresholds via mixing ratio, and thus does not remove as many hail gridpoints near the surface.  

 MY2 MY3 NSSL 

Graupel qg, Ntg qg, Ntg, Zg qg, Ntg, Vg 

Hail qh, Nth qh, Nth, Zh qh, Nth, Vh 

Table 2.1. The prognostic rimed ice variables included in each MP scheme  
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Fig. 2.2. Vertical cross-sections taken through the hail core of a supercell thunderstorm after a 60 
minute forecast.  Forecasts are run using the MY2 scheme where the minimum number 
concentration is set to 10-3 m-3 (a, c, e) and 10-8 m-3 (b, d, f).   Cross-sections are of mh (a, b), Nth 
(c, d), and Dmax (e, f). In each plot a brown horizontal line represents the 0 °C isotherm, black 
contours indicate regions where updraft velocity exceeds 5 m s-1.   

 



17 
 

 
Fig. 2.3. Swaths of forecast maximum surface Dmax calculated at every model time step between 
2155 - 2320 UTC.  Forecasts are run using the MY2 (a, c) and MY3 (b, d) schemes, where the 
minimum number concentration threshold is set to 10-3 m-3 (a, b) or 10-8 m-3 (c, d). Background 
maps are the same as in Fig. 2.1 
 

Vertical cross-sections taken through the hail core of a thunderstorm, after a 60-minute 

forecast, are used to demonstrate the impact of reducing the minimum number threshold. The 

default MY2 scheme (Fig. 2.2a ,c, e) removes near-surface hail that is relatively sparse in both 

mass (< 5 × 10-3 g m-3) and number (< 5 ×10-5 m-3); however, the updated scheme (Fig. 2.2b, d, f) 

predicts more hail to reach the surface that is classified by the Dmax algorithm (Fig. 2.2f). 

Decreasing the minimum number threshold in the MY2 and MY3 schemes substantially increases 

surface hail size and coverage (Fig. 2.3c, d) compared to the default scheme (Fig. 2.3a, b) because 

the lower threshold limits the removal of near-surface hail.  Altering the minimum number 
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threshold affects mostly near surface hail size forecasts (Fig. 2.3), while model state variables (e.g., 

w, qh, Nth) remain relatively similar between the forecasts (Fig. 2.2a-d) in the rest of the storm.  

Although additional precipitation in the simulation can alter the storm environment, reducing the 

minimum number concentration threshold does not increase the number of spurious storms for this 

study.   

 

2.2.3 Radar observation operators and EnKF DA configurations 

The EnKF DA requires accurate and efficient radar reflectivity observational operators 

consistent with the MP schemes used.  The Rayleigh scattering approximation (Jung et al. 2008a,b) 

is typically used to simulate the Z of ice hydrometeors in prior EnKF studies (Dawson et al. 2010; 

Snook et al. 2011, 2015, 2016, Jung et al. 2012; Putnam et al. 2014; L17).  While this observation 

operator is computationally efficient, it frequently overestimates the Z of large ice particles that 

cause Mie scattering (e.g., hail).  The T-matrix radar simulator/observation operator (Jung et al. 

2010a) accounts for Mie scattering; it uses the T-matrix calculations (Vivekanandan et al. 1991; 

Bringi and Chandrasekar 2001) to derive the scattering amplitude of hydrometeors for different 

size bins and Z is then calculated by integrating the scattering amplitude over a given PSD.  Recent 

updates have optimized the computational efficiency of the T-matrix method; for example, Putnam 

et al. (2018) calculates scattering amplitude for select PSD parameters and uses lookup tables and 

interpolation to derive Z.  This study uses the Putnam et al. (2018) T-matrix-based operator, which 

accounts for Mie scattering at computational speeds comparable to the Rayleigh scattering 

approximation.  

Adjustments are made to the radar forward observation operator to accommodate the 

different MP schemes.  To reduce the size of scattering amplitude look-up tables, the Rayleigh 
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scattering approximation is assumed for the NSSL snow category, since snow particles are small 

enough that we can assume Rayleigh scattering with little to no error.  To simulate the melting 

layer, a variant of the Jung et al. (2008a) melting model is used to create ice-water mixtures for 

both graupel and hail.  The ice-water hybrid category (which is generated offline) is determined 

via a ratio between ice and rainwater mixing ratios. For example, the hail-water mixing ratio (fwh) 

is: 

   fwh = *+
*+,	*.

,       (2) 

while computationally efficient, this calculation does not account for shedding and thus allows too 

much liquid to accumulate on the surface of an ice particle.  In regions where qr is large, this can 

cause the diameter of melting ice to overinflate.  To maintain computational efficiency but to 

produce more realistic Z we modify the ice-water mixture number concentration so that the mean 

mass diameter (Dmx) of the melting ice species is preserved during melting.   

A 40-member ensemble is used for both the EnKF DA and forecast periods during this 

experiment, and one ensemble experiment is run using each of the microphysical schemes listed 

above (MY2, MY3, NSSL). Hereafter, the ensembles run using the MY2, MY3, and NSSL 

schemes are referred to as EXP_MY2, EXP_MY3, and EXP_NSSL, respectively.  We employ a 

40-member ensemble because the initial and boundary conditions are provided by the Center for 

Analysis and Prediction of Storms (CAPS) EnKF-initialized storm scale ensemble forecast (SSEF; 

Jung et al. 2014).  The EnKF-initialized SSEF is a 40-member ensemble of convection allowing 

(4-km horizontal grid spacing) forecasts that were run using the Advanced Research Weather 

Research and Forecasting model (ARW; Skamarock et al. 2008) for the NOAA Hazardous 

Weather Testbed Spring Forecasting Experiment.  The SSEF model domain spans the contiguous 
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United States, forecasts are initialized on 19 May 2013 at 1800 UTC and are run until 20 May 

2013 at 0000 UTC.  Additional information about the SSEF is provided in CAPS (2013). 

  At 1900 UTC, our 500-m domain ensemble is initialized by interpolating from the 1-hour 

forecast leadtime SSEF.  To introduce additional storm-scale perturbations, a 2-dimensional 

recursive filter is used to create smoothed Gaussian perturbations with horizontal and vertical 

correlation scales of 6 km and 3 km, respectively, which are added to the interpolated 1900 UTC 

SSEF ensemble. The storm scale perturbations have standard deviations of 2 m s-1, 2 K, and 0.5 g 

kg-1 for horizontal wind components (u, v), potential temperature (θ), and water vapor mixing ratio 

(qv), respectively.  Sixty-minute spin-up ensemble forecasts are launched from the perturbed initial 

conditions and run until 2000 UTC when EnKF DA is first performed.  The CAPS EnKF system 

(Xue et al. 2006; Tong and Xue 2008b), which is based upon the Whitaker and Hamill (2002) 

ensemble square-root filter (EnSRF) algorithm, is used to assimilate observations every 10 minutes 

from  2000 to 2150 UTC, the time of final EnKF analysis.  This configuration resulted in the 

improved suppression of spurious storms.  

The assimilated conventional observations are surface (Oklahoma Mesonet, ASOS, and 

AWOS) and profiler observations. Conventional observations are not used to update vertical 

velocity (w) because in preliminary tests, unreliable covariances led to the development of spurious 

updrafts. A list of the model state variables updated by each observation type is provided in Table 

2.2. Observation error settings largely follow S16: surface observation errors are assumed to be 

1.5 m s-1 for u and v, 2.0 K for θ, and 2.0 K for dewpoint temperature (Td).  The surface observation 

covariance localization radius is set to 300 km in the horizontal and 6 km in the vertical.  Wind 

profiler observations are used to update background u and v winds and assume an error of 2.5 m 
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s-1 for both variables and a covariance localization radius of 80 km in the horizontal and 6 km in 

the vertical.   

Observation Updated State Variables 

Surface u, v, θ, qv 

Profiler u, v 

Sounding u, v, θ, qv 

KTLX Z u, v, w, θ, qv, qx 

KTLX Vr u, v, w, qv 

Table 2.2. A list of the assimilated observations along with the corresponding model state variables 
that are updated by each observation.    
 

Radar observations can infer important microphysical information and are assimilated.  

Data from the nearest Oklahoma City NEXRAD radar (KTLX) are interpolated horizontally to the 

model grid column locations but are preserved in the vertical at the height of the radar beam (Xue 

et al. 2006); Z and Vr observations are also thinned in the horizontal to one observation every 1 

km in regions of precipitation (observed Z > 5 dBZ) and to one observation every 2 km in regions 

of clear air (observed Z < 5 dBZ). Radar data are thinned horizontally to control the ensemble 

spread reduction due to assimilation of very dense observations.  KTLX observation errors are 

assumed to be 4.0 m s-1 for Vr and 6.0 dBZ for Z (Snook et al. 2013), and the covariance localization 

function (Gaspari and Cohn 1999) cutoff radius is set to 3 km in both the horizontal and vertical.  

As multi-category microphysical variables are under-constrained by observed Z, large 

uncertainties may exist within analyzed variables. Uncertainties may increase for multi-moment 

schemes because of the larger number of predicted variables (Xue et al. 2010); for example, the 

MY2, MY3, and NSSL schemes predict 12, 17, and 15 state variables, respectively. Multi-moment 
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schemes better represent the non-monotonic relationship between qx and Z, which improves the 

representation of simulated radar variables (e.g., Putnam et al. 2014),  and motivates the use of 

multi-moment schemes in an EnKF during radar DA (Jung et al. 2012).  To limit the influence of 

unreliable covariances, we update only hydrometeor mixing ratio during DA (Table 2.2).  

Updating only hydrometeor mixing ratios may lead to a slower filter convergence rate but the 

system produces fewer spurious storms than updating more variables. 

The relaxation-to-prior-spread method (Whitaker and Hamill 2012) is used to inflate the 

posterior ensemble spread to 95% of the prior ensemble spread for all updated variables. Although 

Ntx, vx, and Zx are not updated (and thus never inflated), the variables are modified to avoid 

unrealistic PSD behavior during inflation.  During inflation, Ntx is updated to preserve hydrometeor 

mean mass diameter, vx is updated to preserve particle density, and Zx is updated to preserve PSD 

shape parameter.  Subjective comparisons between MY3 predicted Z after inflation and radar 

observed Z (not shown) indicate that the diagnostic update can produce a posterior Z that compares 

well with observations. 

 

2.2.4 Verification procedure 

Hail size classifications obtained from the output of the Ortega et al. (2016)HCA applied 

to the two nearest NEXRAD radars (KTLX and KINX) are used to verify hail size forecasts.  

Observations from KTLX and KINX are interpolated to the 500-m model grid and a 9-point 

smoother is applied to the Zdr and ρhv fields to reduce noise.  The HCA is performed for radar data 

on the lowest elevation angle within 120 km of a given radar — 120 km is the maximum distance 

Ortega et al. (2016) used to evaluate hail size. Although the HCA is applied to the lowest radar 

tilt, the membership functions derived by Ortega et al. (2016) are tuned to detect surface hail size.  
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Next, the data are merged (the largest hail size is selected where radar volumes overlap). Due to 

small-scale noise, a final smoothing filter is applied to the merged HCA output.  The smoothing 

filter decreases (increases) hail size detections when the four closest grid points are smaller 

(larger); when a detection is updated, it is set to match the four surrounding grid points.  Merged 

HCA output (Fig. 2.1b) is used for both subjective and objective forecast verification in this study.   

Hail forecast verification is challenging in part because large surface hail is a highly 

localized phenomenon (most hail cores are at most several kilometers wide).  When using a 

traditional neighborhood ensemble probability (NEP; Schwartz et al. 2010) approach, small 

position errors between ensemble members can lead to mostly non-zeros probabilities that are 

difficult to verify.  Neighborhood maximum ensemble probability (NMEP; Ben Bouallègue and 

Theis 2014; Schwartz and Sobash 2017) considers the probability of an event occurrence within 

distance i; this expands both the number of probabilistic and observed events and increases the 

sharpness of the forecast.  For objective verification the NMEP method defined in Schwartz and 

Sobash (2017) is used to verify the probability of an event occurrence within 10 km of a grid point 

with a smoothing Gaussian filter of 10 km. This distance was selected because it accounts for small 

forecast storm displacement errors, but maintains the high spatial resolution necessary for warn-

on-forecast applications. 

Probabilistic hail size forecasts are evaluated using the Brier skill score (Brier 1950), 

reliability diagrams, and relative operating characteristic (ROC; Mason 1982) curves. The Brier 

skill score is defined by three separate components: forecast reliability, resolution, and uncertainty. 

Forecast reliability compares predicted probability of occurrence to observed frequency, which is 

used to infer model bias and is most commonly displayed in terms of a reliability diagram.  In an 

unbiased system observed frequency and predicted probability are similar; if there is a mismatch, 



24 
 

the model suffers an overprediction (underprediction) bias when the predicted probability of 

occurrence is larger (smaller) than the observed frequency.  ROC curves determine the model’s 

ability to discern between events and non-events.  ROC curves are generated by plotting 

probability of detection (POD) against probability of false detection (POFD) for increasing 

probability thresholds.   Forecast skill is usually determined by the area under the ROC curve 

(AUC), if the AUC exceeds 0.7 then a general consensus suggests the forecast is skilled at 

predicting the event (Buizza et al. 1999). Higher AUC values suggests the forecast exhibits 

additional skill.   

 

2.3 Results 

2.3.1 Forecast evaluation and verification 

90-minute-long hail size forecasts starting from the final EnKF analyses at 2150 UTC are 

verified between 2155 - 2320 UTC, a period during which multiple supercell thunderstorms 

produce severe and significant severe hail over the Oklahoma City metropolitan area (Fig. 2.1b, 

c).  Accumulated swaths of the forecast maximum Dmax (calculated at every model time step) are 

verified against accumulated swaths of observed maximum hail size as indicated by HCA output 

(calculated every radar volume scan). We note that radars observe the atmosphere far less 

frequently (~ 5 minutes) than a typical storm-scale model time step (~ 1 second), however the 

higher temporal resolution of the model output better captures the extent and evolution of hail in 

the model storms, and thus choose to perform verification with the highest temporal frequency 

data available.  Hail size forecasts are verified for two separate diameter thresholds including 

severe hail (diameter > 25 mm) and significant severe hail (diameter > 50 mm).   
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Fig. 2.4. The NMEP of (a - c) severe hail and (d - f) significant severe hail predicted using the (a, 
d) MY2, (b, e) MY3, and (c, f) NSSL MP schemes between 2155 – 2320 UTC.  Thick black 
contours represent the locations of observed severe (>25 mm) or significant severe (> 50 mm) hail 
according to HCA output.  Background maps are the same as in Fig. 2.1. 

 

For this study, we first subjectively evaluate the NMEP of severe and significant severe 

hail and note forecast biases.  The predicted probability of severe hail (P[severe hail]) (Fig. 2.4a - 

c) is generally high (> 0.7) in regions where severe hail is observed.  Both EXP_MY3 (Fig. 2.4b) 

and EXP_NSSL (Fig. 2.4c) predict the northernmost hail swath to be oriented towards the 

northeast, suggesting these ensembles predict the rightward deviation in storm motion commonly 

observed in supercell thunderstorms (Bunkers et al. 2000).  Unlike the above two experiments, 

EXP_MY2 (Fig. 2.4a) predicts a bifurcation in maximum P(severe hail) values for the 

northernmost storm. This bifurcation is due to the production of spurious storms in EXP_MY2 

forecasts. EXP_MY2 forecasts produce many spurious storms, this increases the overall coverage 

of severe hail and the total area where P(severe hail) > 0.4 (Fig. 2.4a).  Both EXP_MY2 (Fig. 2.4d) 
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and EXP_MY3 (Fig. 2.4e) predict P(significant severe hail) to exceed 0.5 where HCA output (Fig. 

2.1b) indicates the occurrence of significant severe hail.  

 
Fig. 2.5. Reliability diagrams for the probabilistic (a) severe hail forecasts and (b) significant 
severe hail forecasts shown in Fig. 2.4.  In the diagrams blue lines correspond to EXP_MY2, red 
lines to EXP_MY3, and green lines to EXP_NSSL.  Forecasts exhibit skill when the forecast 
reliability falls within the gray shading.   The number of samples per forecast probability bin is 
provided for both (a) severe hail and (b) significant severe hail.   
 

Reliability diagrams indicate that ensembles predict the spatial coverage of severe hail (Fig. 

2.5a) with relatively little bias.  Although Brier skill scores (Table 2.3) vary slightly (0.532 – 

0.633), all three ensembles produce skillful severe hail forecasts. For significant severe hail 

forecasts, the Brier skill score (Table 2.3) decreases for all three ensembles (0.132 – 0.463), 

indicating the ensembles predict more extreme events with less skill. EXP_NSSL predicts 

significant severe hail with the least skill (Table 2.3), in part because the ensemble produces under 
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confident significant severe hail size forecasts (Fig. 2.5b) and rarely predicts P(significant severe) 

>  0.2 (Fig. 2.4f).  Despite lower Brier skill scores (Table 2.3), EXP_MY2 and EXP_MY3 produce 

reliable significant severe hail forecasts (Fig. 2.5b) and predict significant severe hail with higher 

confidence than EXP_NSSL.  

 Severe Significant Severe 

EXP_MY2 0.532 0.352 

EXP_MY3 0.633 0.463 

EXP_NSSL 0.629 0.132 

Table 2.3. The Brier skill score for EXP_MY2, EXP_MY3, and EXP_NSSL. Skill scores are 
calculated for severe hail and significant severe hail forecasts between 2155 – 2320 UTC.  The 
corresponding NMEP used to derive the Brier skill score is provided in Fig. 2.4. 
 

 
Fig. 2.6. ROC curves for the proabilistic (a) severe and (b) significant severe hail forecasts shown 
in Fig. 2.4. In the diagrams blue lines correspond to EXP_MY2, red lines to EXP_MY3, and green 
lines to EXP_NSSL. Forecast AUC scores are provided, scores that are greater than 0.7 predict 
severe or significant severe hail with skill.   

 



28 
 

Contrary to the other verification metrics, ROC curves (Fig. 2.6) indicate the ensembles 

predict both severe and significant severe hail with a high level of skill (AUC > 0.92). Large 

variations in P(significant severe) between the ensembles does not appear to have a large impact 

on the AUC score.  It is noted that these verifications are performed for only a single event in this 

study, additional case studies conducted show similar results.  

 
Fig. 2.7. Swaths of forecast maximum surface Dmax calculated at every model time step between 
2155 - 2320 UTC. Swaths are created for ensemble members (a - c) 20 and (d - f) 40 which are 
run using the (a, d) MY2, (b, e) MY3, and (c, f) NSSL MP schemes.  These members are 
representative of the other ensemble member forecasts. Black polygons in (a) and (c) highlight the 
locations where hail processes are analyzed later in the study.  Background maps are the same as 
in Fig. 2.1. 

 

Swaths of Dmax produced by single ensemble members (Fig. 2.7) provide insight into hail 

predictions.  EXP_MY2 overpredicts the size of hail at the surface, with both members 20 (Fig. 

2.7a) and 40 (Fig. 2.7d) predicting hail to exceed 150 mm (~ 6 inches) in diameter.  The HCA 

output (Fig. 2.1b) is unable to determine the upper limit on observed hail size for hail exceeding 
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50 mm because the algorithm classifies all hail 50 mm and larger as significant severe; however, 

mPING reports suggest that hail, which occurred during this event, did not exceed 3 inches (~ 75 

mm) (Fig. 2.1c) in diameter.  The MY2 scheme surface hail size overprediction bias is noted in 

several previous studies; both L17 and Luo et al. (2018) note the scheme produces excessively 

large surface hail. The MY3 scheme employs the same mass and number concentration tendency 

equations as the MY2 scheme; as such, EXP_MY3 also overpredicts hail size (Fig. 2.7b, e). 

Despite an overprediction bias, EXP_MY3 members (Fig. 2.7b, e) predict smaller Dmax values than 

EXP_MY2 members (Fig. 2.7a, d). Forecast differences are in part because microphysical 

processes (e.g., sedimentation) are sensitive to variations in the shape parameter (Milbrandt and 

Yau 2005b).  

EXP_NSSL forecasts (Fig. 2.7c, f) qualitatively most closely match HCA output in terms 

of maximum hail size.  EXP_NSSL members predict the northernmost storm to produce more 

severe hail than what is observed in HCA output (Fig. 2.1b), though this is partly because we 

compare low temporal frequency (~ 5 minutes) radar observations to high temporal frequency (~ 

1 second) NWP output.  Additionally, the NSSL scheme predicts the storms to produce hail cores 

that are wider than observations.      

 

2.3.2 Hail production processes 

Similar to the microphysical budget analysis conducted in L17, this study analyzes hail 

growth and decay process predicted by each MP scheme to identify sources of forecast error.  Hail 

microphysical tendency terms (e.g., accretion, sublimation, melting) from a single time step are 

integrated along a horizontal plane that spans the verification domain (Fig. 2.4).  Terms are plotted 

as a function of average model level height in order to illustrate the model’s treatment of hail both 
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above and below the 0 °C isotherm.  Vertical cross-sections are taken through the hail core of a 

supercell thunderstorm during the microphysical budget analysis to illustrate the impact of 

microphysical processes on the representation of hail.  We conduct the microphysical analysis at 

2250 UTC; this is one hour into the forecast period when multiple supercell thunderstorms are 

producing hail.     

Hail growth assumptions in MP schemes impact the representation of hail within the 

model.  In EXP_MY2 (Fig. 2.8b) and EXP_MY3 (Fig. 2.8d), hailstones are almost exclusively 

created by the three-component accretion of rain; this was first reported in Johnson et al. (2016).  

Three-component accretion of rain occurs when rainwater freezes to the surface of a frozen 

hydrometeor species to produce a subsequent third ice hydrometeor type (e.g., rain freezing onto 

snow to create hail). A static threshold is used to determine the resulting hydrometeor category.  

The NSSL scheme hail category does not contain frozen raindrops (Mansell et al. 2010), instead 

hail is created from dense graupel (ρg > 800 kg m-3) in wet growth conditions (Fig. 2.8f).  

EXP_NSSL Nth tendencies (Fig. 2.8f) are approximately 1 – 2 orders of magnitude smaller than 

EXP_MY2 (Fig. 2.8b) or EXP_MY3 (Fig. 2.8d) Nth tendencies because dense, wet-growth graupel 

particles are much less numerous than frozen raindrops.    
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Fig. 2.8. Microphysical source and sink terms for mh (a, c, e) and Nth (b, d, f) predicted by (a - b) 
EXP_MY2, (c - d) EXP_MY3, and (e - f) EXP_NSSL at 2250 UTC.  Microphysical terms are 
integrated over each model vertical level spanning the verification domain shown in Fig. 2.4. The 
terms are plotted as a function of average model height per vertical level.  Terms are summed for 
each ensemble member, the interquartile range of the ensemble is shaded and median value is 
denoted as a dark line.  Only terms that contribute greater than 10 kg m-1 for mh and 10 m-1 for Nth 
are plotted. In each plot the upper horizontal dashed black line is the average 0 °C isotherm height 
and the lower horizontal dashed line is the average wet-bulb temperature 0 °C isotherm height. 
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The three-component accretion of rain increases the number of hailstones above the 0 °C 

isotherm in the EXP_MY2 (Fig. 2.8b) and EXP_MY3 (Fig. 2.8d) forecasts; however this process 

contributes relatively little to the total mass of hail aloft because frozen raindrops are relatively 

small (Fig. 2.8a, c).  The two largest mh growth processes for the MY2 (Fig. 2.8a) and MY3 (Fig. 

2.8c) schemes are the accretion of rain and cloud water.   Similar to L17, the MY2 (Fig. 2.8a) and 

MY3 (Fig. 2.8c) schemes both predict hail to accrete rainwater near the surface despite the wet-

bulb temperature exceeding 0 °C. The consequences of this process are discussed later in section 

c of this chapter. Unlike MY2 and MY3, the NSSL scheme assumes all accreted water is shed in 

and beneath the melting layer for hail, eliminating the possibility of mh growth.  EXP_NSSL mh 

tendencies (Fig. 2.8e) are smaller in magnitude than either EXP_MY2 (Fig. 2.8a) or EXP_MY3 

(Fig. 2.8c) because the rate of accretion and melting is proportional to hail number concentration. 

The NSSL scheme predicts fewer hailstones than the MY2 and MY3 schemes, and thus predicts 

less rain and cloud water droplets are accreted.  

Vertical cross-sections of hail-related microphysical variables (Fig. 2.9) are evaluated to 

understand the impact of microphysical processes on the behavior of hail. Although the EXP_MY2 

(Fig. 2.7a, d) and EXP_MY3 (Fig. 2.7b, e) predict storms to produce Dmax > 100 mm at the surface, 

cross-sections indicate hail is much smaller above the 0°C isotherm (Fig. 2.9g, h).  The NSSL 

scheme predicts storms to produce smaller Dmax values at the surface (<=75 mm) (Fig. 2.7c, f); 

however, the hail mean mass diameter (Dmh) remains large throughout the vertical depth of the 

updraft (Fig. 2.9i).  Differences in microphysical assumptions cause EXP_MY2 and EXP_MY3 

to predict larger hail than EXP_NSSL beneath the 0 °C isotherm, but smaller hail aloft.  
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Fig. 2.9. A vertical cross-section taken through the hail core of northernmost supercell 
thunderstorm predicted by member 20 of (a, d, g) EXP_MY2, (b, e, h) EXP_MY3, and (c, f, i) 
EXP_NSSL at 2250 UTC.  Cross-sections are of (a - c) mh, (d - f) Nth, and (g - i) hail mean mass 
diameter (Dmh). In each plot a brown horizontal line represents the 0 °C isotherm, black lines 
contour regions where updraft velocity exceeds 5 m s-1.   

 

Both the MY2 (Fig. 2.9d) and MY3 (Fig. 2.9e) schemes predict Nth to be large above the 0 

°C isotherm at 5 km above mean sea level; this is the approximate level where the three-component 

accretion of rain is maximized (Fig. 2.8b, d).  Since frozen raindrops are relatively small in 

diameter, the three-component accretion of rain decreases the Dmh above the 0 °C isotherm for 

both EXP_MY2 (Fig. 2.9g) and EXP_MY3 (Fig. 2.9h) members.   The small hail particles aloft 
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are advected downwind of the updraft, creating a plume of hail that extends more than 40 km. 

Although the MY2 and MY3 schemes produce large plumes of hail aloft, the small hail particles 

in the plumes mostly melt before reaching the surface.  S16 previously noted the MY2 scheme 

melts hail too quickly and under-predicts the spatial coverage of hail at the surface.  The 

underprediction bias noted in S16 is mitigated when a less stringent minimum Nth threshold (10-8 

m-3) is used, this allows hailstones that are more sparse in number concentration to reach the 

surface.   

Above the 0 °C isotherm, the NSSL scheme produces fewer but larger hailstones than either 

the MY2 or MY3 schemes because hail is created from wet-growth graupel.  Large hail behaves 

differently from small rimed ice particles: first, upper-level winds do not advect the NSSL scheme 

hail as far downstream, and most large hail (Dmh > 4.5 mm) thus remains confined to the boundaries 

of the storm updraft region (Fig. 2.9i).  Second, the larger hailstones have an increased terminal 

velocity, and thus higher fall speeds.  An increased fall speed causes a higher percentage of 

hailstones to reach the surface before melting and produces relatively wide swaths of severe hail 

(Fig. 2.7c, f) that closely match observations (Fig. 2.1b, c).   Despite producing qualitatively more 

skilled forecasts, we are unable to verify the predicted hail fall speed.  

 

2.3.3 Hail melting processes 

In this study, EXP_MY2 forecasts (Fig. 2.7a, d) predict Dmax to frequently exceed 150 mm 

(approximately 6 inches), despite HCA output (Fig. 2.1b) indicating that surface hail is mostly 

non-severe or severe (< 50 mm in diameter). Much of the hail growth in EXP_MY2 forecasts 

occurs in the melting layer; EXP_MY2 member 20, which is representative of most EXP_MY2 

members, predicts Dmax to increase from 25 mm to more than 150 mm while traversing the 0 °C 
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isotherm (Fig. 2.10a). L17 suggests much of this growth is because hail in the MY2 scheme 

accretes rain and cloud water in and beneath the melting layer.   

 
Fig. 2.10. (a) A vertical cross-section of Dmax taken through the hail core of the northernmost storm 
predicted by EXP_MY2 member 20 at 2250 UTC. The total microphysical tendency for mh and 
Nth are also provided in (b) and (c), respectively. The total microphysical tendency is integrated 
over each model vertical level in the storm hail core, which is highlighted by the black polygon in 
Fig. 2.7a. The tendencies are plotted as a function of average model level height. In the vertical 
cross-section (a) the horizontal brown line represents 0 °C isotherm and the black contour 
represents where updraft velocity exceeds 5 m s-1. In (b, c) the upper horizontal dashed black line 
is the 0 °C isotherm and the bottom dashed line is the wet-bulb 0 °C isotherm. 

 

To better understand MY2 scheme hail growth, we integrate the total microphysical 

tendency of mh and Nth over a subdomain that encompasses only the hail core of EXP_MY2 

member 20 (Fig. 2.7a).  Microphysical tendencies vary substantially throughout a single storm, 

integrating the tendencies over the hail core (Fig. 2.10b, c) provides more insight into hail growth 

processes than integrating over the verification domain (Fig. 2.8a, b).  Above the 0 °C isotherm 

Nth increases rapidly due to the three-component accretion of rain (Fig. 2.10c). The introduction 

of many small, frozen raindrops decreases the mean size of hail aloft.  Beneath the 0 °C isotherm, 

mh increases (Fig. 2.10b) because hail accretes more rain and cloud water than it melts and sheds. 

At approximately the same layer below the freezing level, Nth slowly decreases due to melting 



36 
 

(Fig. 2.10c), this is because accretional growth does not increase Nth.   When mh increases but Nth 

decreases the slope parameter of the hail PSD λh becomes shallow (Fig. 2.11b) and causes Dmax to 

exceed 150 mm (Fig. 2.10a).  Accretional growth maintains or expands hail size, allowing more 

hail to reach the surface.     

 
Fig. 2.11. (a) A Swath of forecast maximum surface Dmax calculated at every model time step 
between 2155 - 2320 UTC for EXP_MY3 member 5.  A black polygon indicates where hail PSDs 
are sampled for the MY3 scheme. Background maps are the same as in Fig. 2.1(b) A comparison 
of hail core PSDs for EXP_MY2 member 20 (Fig. 2.7a), EXP_MY3 member 5 (Fig. 2.11a), and 
EXP_NSSL member 20 (Fig. 2.7c) at 2250 UTC. PSDs are sampled from within the black 
polygons in Fig. 2.7a, Fig. 2.11a, and Fig. 2.7c, respectively.  Because the minimum y-axis value 
is 10-4 m-3 mm-1 the x-intercept is considered to be the maximum observable hail size Dmax. For 
EXP_MY3, a rightward shift in the PSD peak is caused by an increased shape parameter. 

 

EXP_MY3 predicts Dmax (Fig. 2.7b, e) to exceed 150 mm less frequently than EXP_MY2 

(Fig. 2.7a, d), even though both MP schemes use the same mh and Nth tendency equations.  Hail 

PSDs selected from three gridpoints within a hail core of EXP_MY3 member 5 (Fig. 2.11a) 

indicate that when αh > 0 the PSD follows a gamma distribution which narrows the PSD and 

moderates Dmax (Fig. 2.11b).  Multiple studies (e.g., Milbrandt and Yau 2005b; Kumjian and 

Ryzhkov 2012; Dawson et al. 2014) have documented that αh increases due to sedimentation. 

Although the MY3 scheme moderates Dmax, hail continues to accrete liquid in and beneath the 
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melting layer, which causes EXP_MY3 to predict hail greater than 100 mm in diameter (Fig. 2.7b, 

e). 

 
Fig. 2.12. Swaths of forecast maximum surface Dmax calculated at every model time step between 
2155 - 2320 UTC.  Forecasts are initialized from member 20 analyses of (a) EXP_MY2 and (b) 
EXP_MY3.  Forecasts (a) EXP_MY2_NOAC and (b) EXP_MY3_NOAC are run with modified 
MY2 and MY3 schemes, respectively, where the accretion of rainwater and cloud water does not 
occur beneath the 0 °C isotherm.  Background maps are the same as in Fig. 2.1. 

 

EXP_MY2 and EXP_MY3 member 20 forecasts are rerun without the accretion of rain 

and cloud water beneath the 0 °C isotherm (EXP_MY2_NOAC and EXP_MY3_NOAC, 

respectively) to demonstrate the sensitivity of surface hail size to the accretion of water beneath 

the 0 °C isotherm.  EXP_MY2_NOAC (Fig. 2.12a) and EXP_MY3_NOAC (Fig. 2.12b) predict 

the maximum surface hail size to be smaller in diameter than EXP_MY2 (Fig. 2.7a) and 
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EXP_MY3 (Fig. 2.7b) forecasts, and more closely resemble observations (Fig. 2.1b, c). It is noted 

that EXP_MY2_NOAC (Fig. 2.12a) predicts hail to exceed 100 mm; however, most of this hail is 

attributed to initialization from the EXP_MY2 member 20 analysis, and within 10 minutes of 

forecast initialization most of the storms cease to produce hail greater than 100 mm in diameter. 

Forecast experiments EXP_MY2_NOAC (Fig. 2.12a) and EXP_MY3_NOAC (Fig. 2.12b) are in 

agreement with the conclusions of this study and suggest the accretion of liquid water beneath the 

0 °C isotherm is important to the production of large hailstones (Dmax > 100 mm).   

Coverage of severe hail increases at the surface for EXP_MY2_NOAC (Fig. 2.12a) and 

EXP_MY3_NOAC (Fig. 2.12b) when compared to EXP_MY2 (Fig. 2.7a) and EXP_MY3 (Fig. 

2.7b) forecasts.  In all three MP schemes the Nth melting tendency term is used to preserve Dmh 

during melting; however, both the MY2 and MY3 schemes reduce the Nth melting term by 90% 

when accretional growth occurs.  Except in updrafts where large quantities of liquid water are 

accreted, when the Nth melting term is reduced Dmh decreases because mh decreases more quickly 

than Nth. When accretion of liquid water is eliminated beneath the 0°C isotherm the Nth melting 

tendency is not reduced, and thus EXP_MY2_NOAC and EXP_MY3_NOAC predict hail to more 

frequently exceed 25 mm in diameter (Fig. 2.12).  

EXP_NSSL exhibits limited hail growth across the 0 °C isotherm.  EXP_NSSL member 

20, for example, predicts a change of only 0 - 5 mm across the melting layer (Fig. 2.13a), compared 

to a change of 150 mm across the melting layer in EXP_MY2 member 20 (Fig. 2.11a).  

Microphysical tendency terms in the hail core of EXP_NSSL member 20 (Fig. 2.7c) suggest mh 

(Fig. 2.13b) and Nth (Fig. 2.13c) decrease at approximately the same rate beneath the 0 °C isotherm. 

Both terms decrease at the same rate because hail sheds all accreted liquid when the air temperature 

is warmer than 0 °C.  Although the NSSL scheme limits hail growth within the melting layer, 
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EXP_NSSL forecasts severe and significant severe hail (Fig. 2.4c, f) because large hailstones are 

created from the wet-growth of graupel above the 0 °C isotherm. 

 
Fig. 2.13. (a) A vertical cross-section of Dmax taken through the hail core of the northernmost 
supercell predicted by EXP_NSSL member 20 at 2250 UTC. The total microphysical tendency for 
mh and Nth are also provided in (b) and (c), respectively.  The total microphysical tendency is 
integrated over each model vertical level in the storm hail core, which is highlighted by a polygon 
in Fig. 2.7c. The total tendency is plotted as a function of average model level height. In the vertical 
cross-section (a) the horizontal brown line represents 0 °C isotherm and the black contour 
represents where updraft velocity exceeds 5 m s-1. In (b, c) the upper horizontal dashed black line 
is the 0 °C isotherm and the bottom dashed line is the wet-bulb 0 °C isotherm. 

 

Most MP schemes assume ice is dry; this assumption has important consequences on the 

treatment of hail beneath the 0 °C isotherm.  Collection of water beneath the 0 °C isotherm will 

increase the ice water fraction and potentially hail size (Lesins and List 1986); however, if too 

much liquid water is collected then the hailstone will shed and evaporate excess liquid (Rasmussen 

and Heymsfield 1987; Chong and Chen 1974).  Instead of representing the collection of water, the 

MY2 and MY3 schemes freeze rain and cloud water onto the surface of hail (i.e., accretion).  Since 

the accreted water is frozen, excess liquid cannot be removed via shedding, and instead mh 

increases even when the air temperature is well above freezing (Fig. 2.10b).   In contrast, the NSSL 

scheme does not allow any liquid water collection beneath the 0 °C isotherm (Fig. 2.13b); this 
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limits a potential hail growth process within the scheme and thus potentially limits the maximum 

surface hail size.  Without the ability to represent ice-water hybrid categories these MP schemes 

must continue to make assumptions on the treatment of hail during melting. 

   

2.4 Summary and discussion 

In this study we evaluate 90 minute-long EnKF-initialized explicit hail ensemble forecasts 

at 500-m grid spacing for the 19 May 2013 Oklahoma City supercell hailstorm event. For the initial 

conditions, we assimilate all available surface, profiler, and radar (reflectivity and radial velocity) 

observations every 10 minutes, over a 110 minute period ending at the final analysis time of 2150 

UTC.  Three ensembles, consisting of 40 members each, are run for both the data assimilation and 

forecast periods. Each ensemble is similarly configured but uses one of three microphysics (MP) 

schemes: the Milbrandt and Yau (2005a) double-moment MP scheme (MY2), the Milbrandt and 

Yau (2005a) triple-moment MP scheme (MY3), or the NSSL double-moment variable density 

rimed ice MP scheme (Mansell et al. 2010).  Ensembles run using these schemes are hereafter 

referred to as EXP_MY2, EXP_MY3, and EXP_NSSL, respectively. 

Surface hail size forecasts are verified against output from a hydrometeor classification 

algorithm (HCA).  We determine the forecast maximum hail size (Dmax) via hail particle size 

distributions (PSDs), which approximates the largest observable hailstone at each model grid 

point.  Area under the relative operating characteristic (AUC) scores indicate all three MP schemes 

predict the coverage of severe (diameter > 25 mm) and significant severe (diameter > 50 mm) hail 

with a high level of skill (≥ 0.92); albeit Brier skill scores suggest the schemes predict significant 

severe hail coverage with less skill than severe hail coverage. The ensembles produce reliable hail 

size forecasts, with the exception of EXP_NSSL, which produces under confident significant 
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severe hail forecasts.   Although EXP_MY2 and EXP_MY3 produce skillful severe and significant 

severe hail forecasts, both ensembles overestimate the maximum surface hail size. Qualitatively, 

EXP_NSSL most closely resembles HCA output but the scheme predicts limited significant severe 

hail coverage.  

Hail production tendencies are evaluated during the forecast period to understand hail size 

forecast differences and biases.  Storms predicted by either EXP_MY2 or EXP_MY3 generally 

produce a large number of small hail particles above the 0 °C isotherm because the MP schemes 

create hail via the three-component accretion of rain (i.e., frozen raindrops).  The small hail 

particles are advected downstream of the updraft to produce large plumes of hail aloft that extend 

more than 40 km downstream of the updraft. EXP_NSSL predicts storms to produce fewer but 

relatively larger hail particles above the 0 °C isotherm because the NSSL scheme hail category 

consists of only dense graupel that has undergone wet growth.      

Hail size forecast skill is also determined by how MP schemes model hail in and beneath 

the melting layer. Because water fraction is not predicted by the MY2, MY3, or NSSL schemes, 

neither scheme is able to represent the collection of liquid water in the melting layer. Both the 

MY2 and MY3 MP schemes assume all water collected by hail is converted to ice both above and 

beneath the melting layer; this process causes model predicted hail to exceed 150 mm (~6 inches) 

in diameter beneath the 0 °C isotherm.  In regions where hail is exceptionally large the MY3 

scheme often increases the shape parameter (αh) of hail.  Increasing αh narrows the hail PSD and 

moderates the most extreme hail sizes (diameter > 150 mm), however EXP_MY3 continues to 

overpredict hail size.  The NSSL scheme sheds all accreted liquid water when the air temperature 

is warmer than 0 °C.  While this assumption prevents the rapid growth of hail in the melting layer, 
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it is not realistic when compared to observations (e.g., Rasmussen et al. 1984) and neglects 

potential hail growth via the collection of water (Lesins and List 1986).  

To further improve the hail forecast skill, we must use MP schemes that accurately model 

hail growth processes.  MP schemes such as the predicted particle properties (P3; Morrison and 

Milbrandt 2015; Morrison et al. 2015; Milbrandt and Morrison 2016) scheme and the Ice-

Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL; Jensen et al. 2017) scheme 

explicitly predict the mass and volume of accreted rime to avoid converting between pre-defined 

hydrometeor species.  Hydrometeor conversion between un-rimed and rimed ice categories is a 

large source of model error, this is most evident in EXP_MY2 and EXP_MY3 forecasts when 

frozen rain is converted to hail. ISHMAEL also predicts particle shape, which is shown to impact 

the spatial distribution of ice due to size sorting (Jensen et al. 2018). Further investigation into the 

inclusion of prognostic water fraction equations such as those in Ferrier (1994) could also improve 

representation of ice within the melting layer. Integrating these novel MP schemes into a hail 

prediction system could be part of an investigation of the benefit of including additional 

microphysical variables and processes.   

Data assimilation can also be used to improve the microphysical state of hailstorms, 

however we must determine if microphysical variables are being realistically updated by the DA 

system.  Performing data assimilation when using a multi-moment MP scheme is non-trivial.  Due 

to the large number of predicted hydrometeor properties, microphysical variables are typically 

under constrained by observations (i.e., reflectivity).  Microphysical variables also have very 

nonlinear relations with observations; Xue et al. (2010) notes this introduces large errors into the 

initial conditions. For this study, we update only hydrometeor mixing ratios to limit the degrees of 

freedom of the model that are updated.  Although this technique produces a stable configuration, 
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the resulting analysis is suboptimal because Dmax is often too large in early cycles when forecast 

errors are large.  An optimal data assimilation procedure for multi-moment MP schemes should be 

developed to improve initial condition estimates and produce a more skilled hail size forecast.    

A limited number of studies have analyzed hail forecasts for storm modes other than 

supercell thunderstorms. Many non-rotating storms produce large hail and cause extensive 

damage, one such hail event caused more than $1.4 billion in hail damage in Colorado (Fritz 2017).  

Studies such as Luo et al. (2017) have evaluated the skill of next-day CAM forecasts for a severe-

hail-producing pulse thunderstorm, but to our knowledge no studies have evaluated hail forecasts 

for non-rotating storms using a frequently updated, high-resolution ensemble forecast framework.   
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Chapter 3 2Evaluating Ensemble Kalman Filter Analyses: Effects of State 
Variable Updating and Multi-Moment Microphysics Schemes on State 
Variable Cross-Covariances 
 

3.1 Introduction 

Hail causes significant damage to both crops and personal property in the United States—

often exceeding $1 billion in damage annually (Changnon 2009). Increasing the warning lead time 

of severe hail events can potentially mitigate damage by allowing more time for preparation. 

Current warning lead times for severe hail are limited because the National Weather Service 

(NWS) issues warnings based upon the detection of severe hail (diameter > 1.0 inch).  Generally, 

hail detections are based upon either surface-based reports or radar signatures that are indicative 

of severe hail.  To extend severe hail warning lead times the NWS is investigating a warn-on-

forecast framework (Stensrud et al. 2009, 2013), where instead of issuing warnings based upon 

the detection of severe hail, the NWS will issue warnings based upon high-resolution, frequently-

updated NWP model guidance.  While convection-allowing forecasts can skillfully predict 

convective hazards (e.g., Kain et al. 2008, 2010; Clark et al. 2012; Dawson et al. 2012; Snook et 

al. 2016, 2018; Yussouf et al. 2015; Yussouf and Knopfmeier 2019; Johnson et al. 2015; Johnson 

and Wang 2017; Schwartz et al. 2015; Skinner et al. 2018; Dawson et al. 2017; Labriola et al. 2017, 

2019a; Jones et al. 2016, 2019; Supinie et al. 2016, 2017; Gallo et al. 2019; Stratman et al. 2020), 

forecast skill is sensitive to initial conditions and model physics errors.   

Previous studies have shown, either through observing system simulation experiments 

 
2 A paper based on the material presented in this chapter has been accepted for publication as: Labriola, J., N. 
Snook, Y. Jung, and M. Xue, 2020: Evaluating Ensemble Kalman Filter Analyses of Severe Hailstorms on 8 May 
2017 in Colorado: Effects of State Variable Updating and Multi-Moment Microphysics Schemes on State Variable 
Cross-Covariances. Mon. Wea. Rev. 
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(OSSEs) or real-data experiments (e.g., Snyder and Zhang 2003; Zhang et al. 2004, 2006; Dowell 

et al. 2004; Tong and Xue 2005; Caya et al. 2005; Xue et al. 2006; Snook et al. 2011; Dawson et 

al. 2012; Romine et al. 2013; Schwartz et al. 2015; Johnson and Wang 2017; Lawson et al. 2018; 

Stratman et al. 2020) that an EnKF (Evensen 1994, 2003) can be successfully applied to 

convection-resolving forecasts.  EnKF methods employ an ensemble of forecasts to sample error 

covariance.  Flow-dependent error covariances derived from ensemble forecasts are used to correct 

errors in unobserved variables during data assimilation (DA) that strongly influence convective-

scale dynamics such as updraft speed, in-cloud temperature, and microphysical properties (Tong 

and Xue 2005, hereafter TX05; Tong and Xue 2008a).  This feature of EnKF is particularly useful 

when assimilating radar data (e.g., Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; 

Tong and Xue 2005; Caya et al. 2005; Dowell and Wicker 2009; Aksoy et al. 2009), which provide 

indirect but high spatial and temporal resolution observations.    

Even when forecasts are initialized from relatively accurate initial conditions, forecast error 

will continue to increase with time due to model errors including those associated with sub-grid 

scale processes (Zhu and Navon 1999; Houtekamer et al. 2005; Zhang et al. 2006; Hawblitzel et 

al. 2007; Melhauser and Zhang 2012; Zhang et al. 2015).  For convective-allowing model  

simulations, microphysical parameterizations are a large source of model uncertainty is (e.g., 

Morrison et al. 2015; Johnson et al. 2016).  These parameterizations represent fine, sub-grid scale 

processes that undergo rapid, non-linear transformations at convective scales and often rely upon 

ad-hoc procedures due to the limited understanding of microphysical processes.   

Bulk microphysics schemes (referred to as MP schemes) are the most commonly used type 

of microphysical parameterization in convective modeling studies.  MP schemes predict the 

evolution of an assumed hydrometeor PSD that typically follows a gamma distribution (Ulbrich 
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1983). The 0th, 3rd, and 6th moments of a PSD are most commonly predicted by MP schemes and 

are proportional to hydrometeor number concentration (Ntx), mixing ratio (qx), and reflectivity (Zx), 

respectively.  The number of predicted moments corresponds to the number of diagnosed PSD 

parameters. All undiagnosed parameters are typically assumed to be constant.   

While single-moment MP schemes (e.g., Lin et al. 1983) are generally computationally 

efficient because they predict only hydrometeor mixing ratio, they are unable to accurately 

represent microphysical processes such as selective melting/evaporation and size sorting. Multi-

moment MP schemes (e.g., Ferrier 1994; Milbrandt and Yau 2005a; Morrison et al. 2005; Morrison 

and Grabowski 2008; Thompson et al. 2008; Mansell et al. 2010; Milbrandt and Morrison 2013; 

Morrison and Milbrandt 2015; Milbrandt and Morrison 2016; Lim and Hong 2010) can replicate 

these microphysical processes and improve the representation of storm structure.  Double-moment 

schemes that predict both qx and Ntx (diagnose N0x, λx), can reproduce observed polarimetric radar 

signatures (Jung et al. 2012; Johnson et al. 2016; Putnam et al. 2014, 2017a,b); however, multiple 

studies (e.g. Milbrandt and Yau 2005b; Dawson et al. 2014; Johnson et al. 2016; Morrison et al. 

2015) note these schemes suffer from excessive size sorting.  Excessive size sorting can be 

mitigated using a correction mechanism (Thompson et al. 2008; Mansell 2010), a diagnostic shape 

parameter, or by using a triple-moment scheme (Milbrandt and Yau 2005b).    

In some newer MP schemes, instead of predicting many static hydrometeor categories (e.g., 

Straka and Mansell 2005), the scheme predicts the evolution of particle characteristics such as 

density (Mansell et al. 2010; Milbrandt and Morrison 2013; Morrison and Milbrandt 2015; 

Morrison et al. 2015; Milbrandt and Morrison 2016).  MP schemes generally predict the density 

of rimed ice; this is because ice particle density can vary substantially, and because ice particles 

can undergo large fluctuations in density during the riming process.  Prognostic density equations 
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allow the MP scheme to update rimed ice fall speeds and improve the representation of hail 

production processes (Labriola et al. 2019a).  

Predicted microphysical variables can be used to diagnose surface hail size in a NWP 

forecast, either via simulated radar-derived hail products (e.g., Snook et al. 2016; Luo et al. 2017, 

2018; Labriola et al. 2017) such as the MESH (Witt et al. 1998a), or by using hail PSDs to diagnose 

the largest observable hail size (e.g., Snook et al. 2016; Labriola et al. 2017, 2019a,b; Luo et al. 

2018; Gagne et al. 2019).  Hail size forecasts not only provide useful information for forecasters 

but are also useful in evaluating MP scheme treatment of hail growth and decay processes.  Due 

to the limited coverage and biased nature of surface hail reports (e.g. Sammler 1993; Witt et al. 

1998b; Doswell et al. 2005), most hail size forecasts are evaluated against radar-derived hail 

products that serve as a proxy for hail size such as MESH or output from a HCA (Heinselman and 

Ryzhkov 2006; Park et al. 2009; Ryzhkov et al. 2013; Ortega et al. 2016). 

Over the continental United States, the NEXRAD system (Crum et al. 1993) provides full 

volumetric scans at a temporal resolution sufficient to observe the rapid evolution of convective 

storms.  Reflectivity (Z) is proportional to the 6th moment of a hydrometeor PSD and is strongly 

influenced by larger particles within a radar volume. After a recent polarimetric upgrade to the 

NEXRAD system, radars now emit both horizontally and vertically polarized signals. Dual-

polarization variables such as differential reflectivity (Zdr), co-polar cross-correlation coefficient 

(ρhv), and specific differential phase (Kdp), which in addition to single-polarization products, Z and 

radial velocity (Vr), provide information about hydrometeor size, orientation, phase, and shape 

(Doviak et al. 2000; Kumjian and Ryzhkov 2008). Due to the large amount of hydrometeor 

information that can be inferred from polarimetric radar products, several recent studies have used 

simulated or observed polarimetric variables (e.g., Jung et al. 2010a, 2012; Ryzhkov et al. 2011; 
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Kumjian et al. 2014; Dawson et al. 2014; Putnam et al. 2014, 2017a,b, 2019 Johnson et al. 2016, 

2018, 2019; Snook et al. 2016; Snyder et al. 2017a,b) to evaluate microphysical parameterizations.   

Generally, Z is the primary observation of microphysical relevance assimilated during DA.  

Despite a limited number of observations, OSSEs have shown that an EnKF system can reasonably 

update single-moment MP scheme variables when assimilating Z and Vr (TX05). Multi-moment 

schemes, which predict approximately twice as many microphysical variables as a single-moment 

scheme, are even more under-constrained by observations.  Although Xue et al. (2010) (hereafter 

XJZ10) obtained a reasonably good analysis using a double-moment scheme in an OSSE, it was 

noted that Z alone may be insufficient to constrain the increased number of variables in multi-

moment schemes because many different microphysical configurations can correspond to the same 

Z. Additionally, the large number of predicted variables introduces error into the analysis because 

increasing the number of error-containing parameters decreases the accuracy of the estimation 

(Aksoy et al. 2006; Tong and Xue 2008b; Jung et al. 2010b) 

Relatively few studies have considered developing an optimal EnKF-based framework for 

updating multi-moment MP scheme variables during DA. Previously, to improve constraint of 

microphysical variables, XJZ10 assimilated both radar Z and Vr, and Labriola et al. (2019a) used 

an EnKF system to update only hydrometeor mixing ratio; however, both studies conclude that 

there is a need to further analyze the ability of an EnKF system to update multi-moment scheme 

variables.  This study evaluates EnKF analysis sensitivity to selective state variable updating and 

the microphysical assumptions made within two double-moment MP schemes used in the 

prediction model.  Knowledge gained through this study provides information that can be used to 

optimize EnKF configurations when using such multi-moment MP schemes. To this end, EnKF 

analyses are evaluated for the 8 May 2017 Colorado severe hail event. The rest of the chapter is 
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organized as follows: in section 3.2 a brief overview of the 8 May 2017 Colorado severe hail event 

is provided along with the experimental design, including the EnKF and prediction model settings.  

Verification statistics and ensemble correlation analyses are provided in section 3.3. Finally, 

section 3.4 contains a summary and discussion of the results. 

 

3.2 Methods 

3.2.1 Case overview 

On 8 May 2017, multiple hail producing thunderstorms occurred over North-Central 

Colorado.  According to surface-based hail reports received by the Storm Prediction Center (SPC), 

these storms produced severe (diameter > 25 mm) and significant severe (diameter > 50 mm) hail 

starting at approximately 2000 UTC.  One storm that impacted downtown Denver (Fig. 3.1) caused 

a particularly large amount of damage; due to heavy traffic volume during evening rush hour, a 

large number of cars sustained major hail damage during the storm (Fritz 2017).  As of 2018, an 

estimated $2.3 billion in insurance claims (NOAA 2018) have been filed in Colorado for  hail 

damage sustained during this severe weather event.   

Atmospheric conditions were conducive for the development of supercell thunderstorms 

with moderate shear (0-6 km shear: 30 – 40 knots) and instability (mixed layer CAPE: 1000 – 

1500 J kg-1) (Marsh 2017).  On 8 May 2017, Colorado was located downstream of a trough 

associated with an upper-level low-pressure system located over Baja California.  Cyclonic 

vorticity advection from the trough paired with low-level convergence along a weak frontal 

boundary initiated multi-cellular storms to the south and east of Denver at approximately 1930 

UTC.  Additional, more isolated storms initiated along the front-range of the Rocky Mountains via 

upslope flow, one of these storms later produced significant severe hail over Denver (Fig. 3.1c).  
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For additional information regarding this severe weather event we refer the reader to Labriola et 

al. (2019b). 

 
Fig. 3.1. (a) An areal map of the Denver region. (b) Observed Z from the lowest radar tilt (0.5°) of 
KFTG (Denver) at 2040 UTC. (c) Merged HCA output between 2000 – 2040 UTC.  The HCA is 
applied to the lowest radar tilts (0.5°) of the two closest radars: KFTG (Denver) and KCYS 
(Cheyenne). Purple contours represent urban boundaries, thin black lines represent major 
highways.  All regions of the domain that are more than 2.5 km above mean sea level are shaded 
gray.  

 

3.2.2 Prediction model settings 

All experiments use the ARPS; Xue et al. 2000, 2001) NWP model on a domain of 483 × 

443 × 53 grid points with a horizontal grid spacing of 500 m.  The model grid is stretched in the 

vertical, with a minimum grid spacing of 50 m at the surface and an average vertical grid spacing 

of 425 m.  Model physics include NASA Goddard Flight Center short- and longwave radiation 

parameterization (Chou 1990, 1992; Chou and Suarez 1994); surface fluxes calculated from 

surface drag coefficients, surface temperature, and volumetric water; a two-layer soil model; and 

a 1.5-order turbulent mixing and planetary boundary layer parameterization (Xue et al. 2000, 

2001).   
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Ensemble forecasts are run using either the Milbrandt and Yau (2005a) double-moment 

(MY) MP scheme or the NSSL double-moment variable density rimed ice MP scheme (Mansell et 

al. 2010). These MP schemes were selected for this study because they are commonly-used multi-

moment MP schemes used for hail prediction (Milbrandt and Yau 2006; Snook et al. 2016; Luo et 

al. 2017, 2018, Labriola et al. 2017, 2019a,b) and the hail growth processes are well understood 

as demonstrated in the previous chapter.  Following Labriola et al. (2019a), the minimum 

hydrometeor number concentration threshold is set to 10-8 m-3 for both schemes to avoid excessive 

removal of hail near the surface which can result when using the MY default setting (10-3 m-3) .  

Initial and boundary conditions are interpolated from the Center for Analysis and 

Prediction of Storms (CAPS) EnKF storm scale ensemble forecast (SSEF; Jung et al. 2018)—a 

40-member ensemble of forecasts run using the Advanced Research version of the Weather 

Research and Forecasting model (WRF-ARW; Skamarock et al. 2008).  The SSEF uses 3-km 

horizontal grid spacing, and its model domain spans the contiguous United States.  The SSEF was 

initialized via EnKF on 8 May 2017 at 1800 UTC from the North American Mesoscale Forecast 

System (NAM; Environmental Modeling Center 2017) analysis, with initial perturbations 

introduced by the Short-Range Ensemble Forecast (SREF; Du et al. 2015).  The SSEF is run until 

9 May 2017 at 0000 UTC.  At 1903 UTC the 500-m domain is interpolated from the SSEF, with 

boundary conditions obtained from the SSEF every 9 minutes; these times were selected because 

the SSEF outputs model data every 9 minutes. Following (Labriola et al. 2017), no microphysical 

information is provided along domain boundaries to avoid development of spurious convection,.  

For additional information regarding the 2017 CAPS SSEF, we refer the reader to CAPS (2017). 
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3.2.3 DA and observation operator settings 

After initialization, the 500-m ensemble forecasts undergo a ~60-minute spin-up period 

until 2000 UTC, when DA cycling begins (Fig. 3.2).  The spin-up period is constrained to only 60 

minutes because the CAPS SSEF is initialized at 1800 UTC. In the future it is recommended 

additional tests examine the optimal spin-up period length for high-resolution forecasts. The CAPS 

EnKF system (Xue et al. 2006; Tong and Xue 2008b), which is based upon the Whitaker and 

Hamill (2002) ensemble square-root filter (EnSRF) algorithm, assimilates all available 

observations every 5 minutes  between 2000 and 2040 UTC (Fig. 3.2). 

 
Fig. 3.2. The experiment configuration for ensembles MY-Q, MY-ALL, NSSL-Q, and NSSL-ALL.  
The blue region represents the approximate 1-hour spin-up period and the orange region represents 
the 40-minute period when 5-minute DA cycling occurs.  Downward pointing arrows indicate 
where assimilation occurs. 

 

Surface (ASOS and AWOS) observations and data from the Denver NEXRAD radar 

(KFTG) are assimilated during the experiment. Observation error settings follow Snook et al. 

(2016).  For surface observations, errors are assumed to be 1.5 m s-1 for horizontal wind 

components u and v, 2.0 K for potential temperature θ, and 2.0 K for dewpoint temperature Td. 

The covariance localization radius is set to 300 km in the horizontal and 6 km in the vertical.  

Surface observations update only select model state variables (i.e., u, v, θ, qv), as was done in 

Labriola et al. (2019a) because unreliable covariances led to the intensification of spurious updrafts 
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during DA. KFTG observation errors are assumed to be 4.0 m s-1 for Vr and 6.0 dBZ for Z. These 

values are larger than typical instrument errors associated with NEXRAD radars (e,g., Doviak and 

Zrnić 1993; Ryzhkov et al. 2005), but for data assimilation purposes, the errors also include 

representative errors and other sources of uncertainties. Also, specifying relatively large 

observation errors can help alleviate under-dispersion problems of the EnKF ensemble and past 

sensitivity studies have shown better performance of the ensemble analyses and subsequent 

ensemble forecasts (e.g., Dowell et al. 2004; Snook et al. 2013). The Gaspari and Cohn (1999) 

covariance localization cutoff radius is set to 3 km in both the horizontal and vertical. KFTG data 

are interpolated horizontally to the model domain, but the height of the radar beam is preserved in 

the vertical (Xue et al. 2006). Z and Vr observations are pre-processed in the horizontal directions 

to 1 km grid spacing in regions of precipitation (Z > 5 dBZ) and to 2 km spacings in regions of 

clear air (Z < 5 dBZ).   Given that the radar observations have average resolution of about 1 km, 

such observation density preserves most useful information in the observations.   The relaxation-

to-prior spread (Whitaker and Hamill 2012) algorithm is used to inflate the posterior ensemble 

spread to 95% of the prior spread for all thermodynamic variables (i.e., u, v, w, θ, p) and 

hydrometeor mixing ratio qx. Inflating all hydrometeor state variables (i.e., qx, Ntx, and vx) can 

potentially cause PSDs to become unbalanced, and cause hydrometeor properties to becomes 

unrealistic (e.g., hail is too dense). Following Labriola et al. (2019a), Ntx and vx are updated during 

inflation to preserve EnKF estimated mean mass diameter and density, respectively.   

The radar observation operator used during this experiment, which is a variant of the Jung 

et al. (2010a) T-matrix method, uses look-up tables based upon PSD parameters to calculate the 

hydrometeor scattering amplitude; an in-depth discussion of this observation operator is provided 

in Putnam et al. (2019). Generally, MP schemes do not track melt water, instead the water fraction 
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is diagnosed in the observation operator. The Jung et al. (2008a) melting model is used to create 

an ice-water hybrid mixture for both hail and graupel in the observation operator. The mixing ratio 

of the ice-water hybrid category is determined via a ratio between ice and rainwater mixing ratios, 

the number concentration is updated to preserve particle mean mass diameter and prevent the 

excessive accumulation of rainwater on the surface of ice particles (Labriola et al. 2019a).  

  A total of four experiments are conducted during this study; ensembles run using either 

the MY or NSSL schemes will assimilate observations where either Z updates: (1) hydrometeor 

mixing ratios only or (2) all microphysical state variables (qx, Ntx, vx); in addition to dynamic and 

thermodynamic variables (u, v, w, θ, qv). To determine the impact of assimilating Z observations, 

no other observations update microphysical state variables. Experiments (Table 3.1) are named 

after the MP scheme used and the microphysical variables that are updated (i.e., MY-Q, MY-ALL, 

NSSL-Q, NSSL-ALL). In addition to assimilating Z, Vr is used in all experiments to update u, v, 

and w, along with water vapor mixing ratio (qv).  The Vr forward observation operator does not 

consider hydrometeor terminal velocities due to the large uncertainties in hydrometeor size 

distribution and fall speed assumptions and small elevation angles of radar beams. 

 

 Z Updates Only qx Z Updates all Hydrometeor State 
Variables  

MY Scheme  MY-Q MY-ALL (qx, Ntx) 

NSSL Scheme  NSSL-Q NSSL-ALL (qx, Ntx, vg,h) 

Table 3.1. A list of the experiments conducted in the chapter. 

 

Analyses and forecasts during the DA period (2000 – 2040 UTC) are objectively and 

subjectively evaluated to determine which experiment produces the most accurate initial state 



55 
 

estimate. This time period was selected for evaluation because radar derived hail products (i.e., 

HCA output) indicate that multiple thunderstorms were producing significant severe surface hail, 

the largest HCA hail size bin.  While more substantial damage reports were received from the 

public for these storms after 2040 UTC when they impacted downtown Denver, they produced 

similarly large hailstones both during and after the DA period.  Forecast evaluation after 2040 UTC 

is beyond the scope of this study, instead we refer the reader to previous studies (e.g., Snook et al. 

2016; Luo et al. 2018) that evaluate surface hail size forecasts.   

 

3.3.4 Analysis evaluation procedure 

Due to the nature of this severe weather event, estimated surface hail size is verified against 

radar-based hail size estimates. Surface-based hail reports are generally too sparse and unreliable 

to be used for verification; severe hail occurrences are underreported in rural areas and away from 

highways, as well as when a more severe weather event, such as a tornado, occurs nearby (Doswell 

et al. 2005; Witt et al. 1998b; Allen and Tippett 2015).  For example, there are only 4 hail reports 

recorded by the SPC during the DA period (2000 – 2040 UTC) and all reports are in Denver. Radar 

observations during the same period (Fig. 3.1c) indicate multiple hail producing storms were 

present in the experiment domain. Further, hail sizes that correspond with familiar circular objects 

(e.g., quarters, golfballs) are over-reported by the public (Sammler 1993), skewing reported hail 

sizes. Radar derived hail products such as MESH (Witt et al. 1998a) and HCA output (Heinselman 

and Ryzhkov 2006; Park et al. 2009; Ryzhkov et al. 2013; Ortega et al. 2016; Putnam et al. 2017b) 

have been shown to be superior to surface based reports for hail size verification because they have 

a high spatial resolution and fewer systematic biases (Cintineo et al. 2012).   

When working with unbiased observations, HCA output is shown to better discriminate 
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hail size than the MESH algorithm (Ortega et al. 2016).  Subjective comparisons also demonstrate 

the HCA output closely resembles surface-based hail reports (when available) both in terms of hail 

size and the location of the report. Output from the Ortega et al. (2016) HCA (Fig. 3.1c) along with 

radar observed Z (Fig. 3.1b) is used to evaluate ensemble analyses and forecasts during the DA 

period.   

 In this study, the HCA is applied to NEXRAD radar observations from both Denver 

(KFTG) and Cheyenne (KCYS); these are the two closest radars to the hail producing storms. 

Radar observations are interpolated to the 500-m model grid for verification, with a 9-point 

smoother applied to Zdr and ρhv to reduce noise. Environmental information is obtained from the 

ensemble forecasts. HCA output is considered within a 120 km radius of a given radar, this is the 

maximum distance Ortega et al. (2016) uses to diagnose surface hail size.  HCA output from KFTG 

and KCYS is merged by taking the maximum detected hail size at each grid point and applying a 

smoothing filter that decreases hail size detections by one size bin (e.g., significant severe to 

severe) when the majority of grid points within a 1 km radius are smaller than the given HCA 

detection (Labriola et al. 2019a).  

NWP models do not explicitly predict surface hail size, instead hail PSDs are frequently 

used to diagnose the maximum observable hail size at a grid point (e.g., Snook et al. 2016; Labriola 

et al. 2017, 2019a,b; Luo et al. 2018; Gagne et al. 2019). This study uses the Snook et al. (2016) 

maximum hail size definition, which defines the maximum hail size (Dmax) as the largest diameter 

for which the PSD predicts at least 1 hailstone in a 100 m × 100 m box located in the lowest meter 

of the atmosphere (Ntmin = 10-4 m-4).  This criteria is similar to minimum number concentration 

thresholds defined for hail in previous studies (e.g., Milbrandt and Yau 2006; Gagne et al. 2019). 

Although the minimum number concentration threshold can be modified, the average Dmax value 
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does not substantially change (approximately 1 – 2 mm) when the threshold is increased or 

decreased by an order of magnitude.  The spatial coverage of analysis estimated Dmax at the lowest 

model height (~25 m AGL) is compared subjectively and objectively to the HCA output (Fig. 3.1c).   

 

3.3 Results 

3.3.1 Evaluating ensemble forecast and analysis innovations 

The root-mean square innovation (RMSI) and ensemble spread of Z and Vr (Fig. 3.3) 

quantitatively evaluate EnKF analyses and forecasts. The RMSI is defined as: 

RMSI = 2〈𝑑5〉            (1) 

where 〈𝑑5〉  is the mean squared innovation or difference between the observation and model 

mapped to observation space and averaged across the ensemble.  d is defined as: 

d = yo−	𝐻(𝑥)<<<<<<<                 (2) 

where yo is the observation, H is the forward operator that maps the model state vector to 

observation space, and x is either the model state forecast or analysis vector, respectively.   

Innovations are averaged over the KFTG volume in regions where either the observed or ensemble 

mean simulated Z exceeds 15 dBZ.  This criterion includes both observed precipitation and 

spurious echoes, but eliminates potentially large regions of clear air and light precipitation from 

the statistics  (Snook et al. 2011; Jung et al. 2012).  
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Fig. 3.3. The ensemble RMSI (solid lines) and spread (dotted lines) for Z (a,b) and Vr (c,d). The 
performance of ensembles MY-Q (a,c) and NSSL-Q (b,d) are marked with red lines, MY-ALL 
(a,c) and NSSL-ALL (b,d) are marked with black lines.  Statistics are calculated over the 
experiment domain from 2000 to 2040 UTC, calculations are limited to locations where the 
observed and/or model (ensemble mean) Z exceeds 15 dBZ. 
 

Although innovations are relatively similar between NSSL-Q and NSSL-ALL (Fig. 

3.3b,d), RMSIs differ substantially between MY-Q and MY-ALL for Z (Fig. 3.3a). The MY-Q and 

MY-ALL RMSIs for Vr are relatively similar (Fig. 3.3c); this is partly because only winds in the 

precipitation regions are included in the statistics while differences in the outflow regions are not 

included.  MY-Q RMSIs for Z exhibit only a small reduction during DA cycling, suggesting 

updating only one PSD parameter for multi-moment schemes may lead to an unreasonable PSD in 

MY-Q (Fig. 3.3a).   RMSIs for MY-Q and MY-ALL Vr are more similar than RMSIs for Z and 
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decrease with time during DA.  Wind speed is indirectly influenced by microphysical state 

variables through thermodynamic feedbacks, and therefore unlike Z, is less affected by updates to 

total number concentrations during assimilation. When only parts of PSD variables are updated, 

the RMSI for MY-Q Vr does not change much with cycles (Fig. 3.3c). This behavior is not observed 

in NSSL-Q for reasons that will be discussed later in this section. 

Analysis mean simulated Z (Fig. 3.4) and KFTG observations (Fig. 3.1b) are subjectively 

compared at the time of the final DA cycle (2040 UTC) to identify why the RMSI for MY-Q Z 

(Fig. 3.3a) is larger than any other ensemble (Fig. 3.3a,b). The ensemble analysis mean is analyzed 

instead of individual members because the mean is used to derive the RMSI.  Although there are 

slight variations in simulated Z intensity, MY-ALL (Fig. 3.4b), NSSL-Q (Fig. 3.4c), and NSSL-

ALL (Fig. 3.4d) analyses closely match observed Z (Fig. 3.1b).  MY-Q (Fig. 3.4a) Z is somewhat 

different from observations (Fig. 3.1b); storm structure is less organized, and the MY-Q analysis 

frequently underestimates Z.  Throughout the storms MY-Q ensemble spread is often small (< 5 

dBZ), suggesting the EnKF gives less weight to observations during DA. Additionally, MY-Q 

predicts reflectivity to be spuriously intense in regions of relatively little observed precipitation, 

such as to the east of Denver (Fig. 3.4a).  Poor MY-Q Z estimates that increase the RMSI for MY-

Q Z (Fig. 3.3a), are due in part to unreliable error covariances that develop as a consequence of 

unbalanced updates of hydrometeor mixing ratios and number concentrations.   
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Fig. 3.4. Ensemble mean simulated Z interpolated to the lowest tilt (0.5°) of KFTG at the time of 
the final analysis (2040 UTC) for ensembles MY-Q (a), MY-ALL (b), NSSL-Q (c), and NSSL-
ALL (d).  5 dBZ ensemble spread is contoured in black.  A black square in each figure marks the 
subdomain analyzed in  Fig. 3.6, the background map is the same as Fig. 3.1.   

 

Despite predicting weaker Z values in the convective core of the observed storms, MY-Q 

predicts the total mass and number of rain (Fig. 3.5a, c) and hail (Fig. 3.5b, d) to be larger than 

MY-ALL. This is partly because MY-Q predicts more spurious Z throughout the domain during 

DA (Fig. 3.4a); however, the ensemble also predicts observed storms to produce more 

precipitation. NSSL-Q (Fig. 3.4c) and NSSL-ALL (Fig. 3.4d) predict more intense Z than either 
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MY ensemble (Fig. 3.4a, b) despite both experiments predicting substantially less hail in terms of 

both mass and number (Fig. 3.5b, d). This is because although the NSSL scheme predicts storms 

to produce relatively large hail aloft that contributes to high Z values.  Results agree with previous 

studies (e.g., Johnson et al. 2016, 2019) which note the MY scheme predicts storms to produce a 

large number of small hailstones aloft while the NSSL scheme predicts storms to produce fewer 

but larger hailstones.  Differences in simulated Z between the experiments demonstrate that Z is 

not a monotonic function of hydrometeor mixing ratio but is sensitive to changes in the 

hydrometeor particle size distribution.  

 
Fig. 3.5. Ensemble mean (forecast and analysis) total mass (a-b) and number (c-d) of rain (a, c) 
and hail (b, d) between 2000 – 2040 UTC.    Hydrometeor concentrations are summed over a 
volume that spans the experiment subdomain. 
 

For an EnKF system to accurately estimate model state variables that are not directly 
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observed, the filter must develop reliable multivariate covariances during the assimilation period. 

The cross-covariance between state variables and observation priors is used to retrieve unobserved 

variables and modify storm structure. Previous studies, such as TX05 and XJZ10, analyzed 

forecast cross-correlations between model state variables and an observation prior at an assumed 

observation location.  Such correlation analyses demonstrate the expected impact of assimilating 

that observation on analyzed model state variables; a positive (negative) correlation between state 

variables and observation prior suggests the EnKF will adjust both variables in the same (opposite) 

direction. For instance, if the Z observation prior and vertical velocity are positively correlated the 

EnKF will strengthen the storm updraft (i.e., intensify the storm) when the Z prior is adjusted 

upward toward the observed Z value by the filter. Figure 1 of Snyder and Zhang (2003) illustrates 

this idea for radial velocity observation and vertical velocity.” 

Examples of an ensemble correlation analysis are provided in Fig. 3.6a-h. The ensemble 

correlation analysis is performed over a subdomain containing spuriously strong Z values in MY-

Q, highlighted in Fig. 3.4. The assumed Z observation prior (sampled at the location of the white 

star) and hydrometeor mixing ratios are interpolated to the lowest radar tilt of KFTG (0.5°) from 

the closest model grid points both above and below the radar beam prior to calculating correlation; 

this allows for comparison between simulated (Fig. 3.6j-m) and observed Z (Fig. 3.6i). In previous 

OSSEs (e.g., Zhang et al. 2004, Caya et al. 2005, TX05), analyzed state variable estimates are 

often poor during the first several DA cycles because the error covariance between model state 

variables and observation priors is unreliable. Ensemble covariances are typically examined when 

the state estimation and ensemble covariance become reasonably reliable in later cycles (e.g., 

TX05). In this study, all correlation analyses are performed on the ensemble forecasts prior to the 

final DA at 2040 UTC when multivariate ensemble covariances can be reasonably good (Fig. 3.2).   
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Fig. 3.6. Forecast error correlations for ensembles MY-Q (a,e), MY-ALL (b,f), NSSL-Q (c,g), and 
NSSL-ALL (d,h). The location of the subdomain is shown in Fig. 3.4.  Correlations are calculated 
between the mass of rain qr (a – d) or mass hail qh (e -h) and an assumed Z observation (white star) 
interpolated to the lowest tilt of (0.5°) KFTG prior to the final assimilation cycle at 2040 UTC. 
Positive correlations (solid lines) and negative correlations (dashed lines) are plotted in increments 
of 0.15 between -0.3 and 0.3. Stronger correlations (0.3 and -0.3) are contoured with a thick black 
line, weaker correlations (0.15, -0.15) are contoured with a thin black line. To reduce noise, the 
correlation field is smoothed using a 9-point filter.  Color shading represents ensemble forecast 
mean qr (a-d) or qh (e -h). Observed Z (i) and ensemble analysis mean Z for ensembles MY-Q (j), 
MY-ALL (k), NSSL-Q (l), NSSL-ALL (m) are provided at the same time and location. 

 

MY-Q predicts high Z values where no organized convection is observed (Fig. 3.4a); such 

spurious precipitation develops within the model during the DA cycles near 2030 UTC and is not 

effectively suppressed by the filter in this case.  A correlation analysis is conducted to understand 

why the MY-Q EnKF intensifies Z in a spurious storm to the east of Denver.  Although MY-Q 

analyses predict the storm to produce large Z values, the updraft is weak and disorganized which 

remains unchanged during DA.  In the vicinity of the spurious storm, Z and qr simulated in MY-Q 

are relatively uncorrelated (Fig. 3.6a), consequently the EnKF is unable to decrease qr in the 
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spurious storm when assimilating Z observations. In the same location MY-Q Z and qh are 

negatively correlated (Fig. 3.6e), this relationship intensifies reflectivity in the spurious storm 

during DA (Fig. 3.6j) because the EnKF increases qh when decreasing spuriously large model 

diagnosed Z. While experiment MY-Q exhibits the weakest correlations between Z and qr (Fig. 

3.6a), the other ensembles exhibit mostly strong positive correlations throughout much of the 

subdomain (>0.3) (Fig. 3.6b-d). Differences in the forecast error covariance structure between MY-

Q (Fig. 3.6a) and MY-ALL (Fig. 3.6b) suggest the importance of correctly updating all model state 

variables.  MY-ALL, NSSL-Q, and NSSL-ALL analyses predict weaker Z values that better fit 

observations in the subdomain (Fig. 3.6k-m). This is in part because the background better fits 

observations (i.e., no spurious storm prior to assimilation) and the background error covariance 

produces a more optimal analysis.  

 Updates to microphysical state variables, such as qr, also impact thermodynamic state 

variables.  For example, enhanced evaporational cooling attributed to an increase in precipitation 

during data assimilation (Fig. 3.5a,b) may cause MY-Q to predict more intense cold pools (Fig. 

3.7a,b) and stronger (Fig. 3.7c,d) winds than MY-ALL.   Winds modified by spurious storms also 

increase the RMSI for MY-Q Vr (Fig. 3.7c) more than for MY-ALL Vr (Fig. 3.7d).  
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Fig. 3.7. Ensemble mean forecast temperature (a-b) at the lowest model grid level above the surface 
and radial velocity (c-d) at the lowest KFTG grid tilt for MY-Q (a,c) and MY-ALL (b,d) prior to 
the final assimilation cycle at 2040 UTC. Observed KFTG radial velocity (e) at the same time is 
provided. Thick black contours represent the 30 dBZ ensemble forecast mean Z smoothed using a 
9-point filter. Background maps are the same as Fig. 3.1. 

 

3.3.2 Evaluating surface hail size 

For an analysis to skillfully estimate surface hail size, microphysical variables must be 

properly updated so that the analyzed hail PSD produces reasonable hail size estimates.  Box-and-

whisker plots (Fig. 3.8) compare the ensemble member analysis estimated areal surface coverage 

of non-severe, severe, and significant severe hail to HCA output (Fig. 3.1c).  Additional subjective 

comparisons are performed by comparing the probability-matched mean (Ebert 2001) of the 

ensemble analysis Dmax (Fig. 3.9) to HCA output (Fig. 3.1c).  Unlike a simple ensemble mean, 

which typically smooths out extreme values (i.e, large hail sizes), the probability-matched mean 
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maintains the spatial distribution of the mean and the frequency distribution of the ensemble to 

preserve extreme values and create a single best-guess forecast.      

 
Fig. 3.8. Analysis estimated coverage of non-severe (green), severe (blue), and significant severe 
(purple) hail according to Dmax between 2000 – 2040 UTC for ensembles MY-Q (a), MY-ALL (b), 
NSSL-Q (c), and NSSL-ALL (d). Hail coverage is only considered within the domain shown in 
Fig. 3.1 and where land elevation is less than 2.5 km above mean sea level.  Actual coverage of 
non-severe, severe, and significant severe hail based upon HCA output (Fig. 3.1c) is marked with 
a thick horizontal line of the corresponding color. Although the largest observed hailstone on this 
day was approximately 70 mm, the coverage of Dmax > 100 mm (yellow) is included to identify 
hail size overestimation biases.   
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Fig. 3.9. The probability match mean of Dmax for ensemble analyses MY-Q (a), MY-ALL (b), 
NSSL-Q (c), and NSSL-ALL (d) between 2000 – 2040 UTC. A black “x” in (a) and (b) marks the 
location where hail PSDs are sampled in Fig. 3.10. Horizontal dashed lines in (b) and (d) mark the 
locations where vertical cross-sections are taken in Figs. 3.11 – 3.15. 

 
 

All ensembles overestimate the spatial coverage of non-severe hail (Fig. 3.8); in addition, 

MY-Q overestimates the coverage of severe and significant severe hail (Fig. 3.8a).  In the 

probability-matched mean of the ensemble analyses, Dmax in MY-Q (Fig. 3.9a) predicts the largest 

hail (Dmax > 200 mm) in spurious convection located to the south and east of Denver.  HCA output 
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is unable to identify the maximum hail size because all hail greater than 50 mm in diameter is 

classified as “significant severe”; however, the largest hail report recorded by the SPC for this 

event is 70 mm, suggesting that MY-Q substantially overestimates surface hail size.  Further, 

almost all MY-Q estimated severe and significant severe hail coverage occurs in spurious 

convection away from where HCA output indicates large hail to occur (Fig. 3.1c).  Although 

NSSL-Q underestimates the coverage of significant severe hail  (Fig. 3.8c), the analyses (Fig. 3.9c) 

exhibit some qualitative skill and much of the largest hail occurs in regions where significant 

severe hail is detected in HCA output (Fig. 3.1c).  MY-ALL (Fig. 3.8b) and NSSL-ALL (Fig. 3.8d) 

underestimate the spatial coverage of severe and significant severe hail, and their probability-

matched means (Fig. 3.9b,d) suggest the analyses rarely indicate hail exceeding 25 mm in 

diameter.   

 
Fig. 3.10. Hail PSDs diagnosed from model level 15 (1.96 km above ground level) of MY-Q (a) 
and  MY-ALL (b) ensemble mean forecasts and analyses at 2040 UTC.  The grid point where the 
MY-Q and MY-ALL hail PSDs are diagnosed is marked with an “X” in Fig. 3.9a and Fig. 3.9b, 
respectively. The hail variables used to diagnose the PSDs are provided in Table 3.1.  PSDs were 
selected to highlight examples of how the EnKF updates a hail PSD during assimilation. 
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 MY-Q  
Forecast 

MY-Q  
Analysis 

MY-ALL 
Forecast 

MY-ALL 
Analysis 

qh (g kg-1) 1.64 × 10-2 6.94 × 10-2 6.02 × 10-2 2.68 × 10-1 

Nth (m-3) 4.55 4.55 24.19 92.32 

Dmax (mm) 17 28 17 19 

Table 3.2.  MY-Q and MY-ALL forecast and analysis mean qh , Nth, and Dmax at 2040 UTC.  The 
locations where the MY-Q and MY-ALL hail variables are sampled is marked with an “X” in Fig. 
3.9a and Fig. 3.9b, respectively.  Hail state variables diagnose the hail PSDs shown in Fig. 3.10.   

 

Hail size changes as the DA system modifies qh and Nth.  The MY-Q filter, which does not 

modify Nth, frequently estimates large hailstones (Fig. 3.9a), primarily because the EnKF makes 

large adjustments to qh in regions where relatively little hail is present. When large quantities of 

added ice mass are shared between a relatively small number of hailstones, the average hailstone 

diameter greatly increases.  To demonstrate this behavior a PSD is sampled from a hailstorm 

southeast of Denver (“x” in Fig. 3.9a) using the MY-Q ensemble mean both before and after 

assimilation at 2140 UTC.  At the MY-Q sampled grid point qh increases by 5.3 × 10-2 g kg-1 (Table 

3.1) during DA.  Because qh increases but Nth remains constant, the slope of the analysis hail PSD 

becomes more shallow than the forecast (Fig. 3.10a) and Dmax increases by approximately 11 mm 

(Table 3.1).  In extreme instances DA causes Dmax to exceed 200 mm in MY-Q (Fig. 3.9a).  NSSL-

Q estimates hail sizes (Fig. 3.9c) that more closely resemble HCA output (Fig. 3.1c). A more 

reliable multivariate covariance, due in part to fewer spurious storms in the NSSL-Q background 

forecasts compared to the MY-Q background forecasts (not pictured), prevents large updates to qh 

and limits the most extreme hail sizes.   

Hail PSDs sampled from the MY-ALL ensemble forecast and analysis mean at 2140 UTC 

in a hailstorm to southeast of Denver (“x” in Fig. 3.9b) demonstrate how the EnKF adjusts hail 
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size through changes to both qh and Nth (Fig. 3.10b). During DA, the MY-ALL EnKF increases qh 

by approximately 2.08 × 10-1 g kg-1 and nearly triples Nth (Table 3.1). Although qh in MY-ALL 

increases more than in MY-Q (Table 3.1), Dmax remains relatively unchanged because of the 

increase in Nth. The slope of the MY-ALL analysis hail PSD is similar to that of the forecast PSD 

(Fig. 3.10b) and subsequently Dmax increases by only 2 mm (Table 3.1).  For this analyzed grid 

point (Fig. 3.10b) Dmax is classified as non-severe, despite the HCA output (Fig. 3.1c) detecting 

significant severe hail in the surrounding region.  Microphysical variables, such as Nth, need 

additional constraint to accurately estimate hail size; previous work by XJZ10 suggests 

assimilating additional data improves initial condition estimates by further constraining 

microphysical variables. 

Although MY-ALL and NSSL-ALL analyses estimate microphysical properties, such as Z 

with a moderate to high level of skill (Fig. 3.3a,b), there are an insufficient number of observations 

to constrain all microphysical variables associated with multi-moment microphysics schemes and, 

as a result, the performance of hail size forecast is limited. To the west of Denver where the HCA 

detects significant severe hail (Fig. 3.1c), MY-ALL (Fig. 3.9b) and NSSL-ALL (Fig. 3.9d) analyses 

underestimate hail size in part because the EnKF modifies moments of the hail PSD so that  the 

slope of the PSD remains relatively constant (e.g., Fig. 3.10b). This causes hail mass to be split 

amongst more hailstones, limiting the ability to increase the mean hailstone diameter.  

 

3.3.3 Ensemble correlation analysis 

Differences in the microphysical parameterizations cause hydrometeor properties (e.g., 

size, density, fall speed) to differ substantially between MP schemes.  For example, Johnson et al. 

(2016) note that hail behavior differs between the MY and NSSL schemes primarily due to 
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differences in hail production processes.  Typically, the MY scheme produces many small hail 

particles aloft because the MY hail category is primarily composed of small, frozen raindrops that 

have been converted into hail particles (Johnson et al. 2016). The NSSL scheme produces fewer 

and larger hailstones because hail is produced from dense graupel that has undergone wet growth 

(Mansell et al. 2010).  Simulated Z is intrinsically related to such microphysical assumptions (e.g., 

Jung et al. 2008b, 2010a, 2012; Dawson et al. 2014; Putnam et al. 2014, 2017b, Johnson et al. 

2016, 2018); these assumptions also determine the forecast error covariance (TX05, XJZ10).  

The ensemble correlation between observation prior Z and model state variables (i.e., w, θ, 

qh, Nth, qr, Ntr) illustrates how different hail treatments in MP schemes impact the analysis 

increments.   Ensemble correlation analyses are performed on the hailstorm located to the west of 

Denver over Interstate-70 (Fig. 3.1) prior to the final DA cycle at 2040 UTC.  Vertical cross-

sections are taken through the updraft of the hailstorm (locations shown in Fig. 3.9b, d) and 

coincide with where most hail growth processes occur.  The correlation analysis is performed in 

the vertical to capture the variation of hail particle behavior both above and below the 0 °C 

isotherm. 

When an assumed observation is taken from the ice-phase dominant region of the MY-ALL 

updraft, w and Z become negatively correlated (Fig. 3.11a). This correlation pattern was first 

observed in XJZ10 and was attributed to microphysical assumptions made in the MY scheme.  

Stronger updrafts loft more rain and cloud water aloft, leading to a positive correlation between w 

and rainwater throughout much of the updraft above the 0 °C isotherm (i.e., supercooled water) 

(Fig. 3.12b,d). Supercooled raindrops are converted into hail within the MY scheme, hence updraft 

intensity is also positively correlated with Nth (Fig. 3.12e) throughout much of the storm.  Because 

raindrops are relatively small, the mean mass diameter of hail decreases in strong updrafts (e.g., 
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Johnson et al. 2016, XJZ10), and thus Z is negatively correlated with w in MY-ALL forecasts.  

Weaker updrafts advect less supercooled liquid above the 0 °C isotherm and lower the production 

rate of small hailstones; additionally larger hailstones aloft fall through the weaker updrafts to 

enhance Z. 

 
Fig. 3.11. Vertical cross-sections of MY-ALL ensemble forecast mean w (a), qr (b), qh (c),  θ (d), 
Ntr (e), and Nth (f) prior to the final assimilation cycle at 2040 UTC. Cross-sections are taken 
through the Denver hailstorm, denoted as east-west line in Fig. 3.9b.  Forecast error correlations 
between an assumed Z observation taken from within the hail growth zone (white star) and state 
variables are plotted.  The same plotting convention is used to contour correlation as in Fig. 3.6. 
The horizontal brown line represents the 0 °C isotherm. 
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Fig. 3.12. Same as Fig. 3.11, but for θ (a), qr (b), qh (c), Ntr (d), and Nth (e). Plotted correlations are  
between an assumed w observation in the hail growth zone and the plotted model state variables.  
 

MY-ALL correlations determine how model state variables are modified during reflectivity 

assimilation. Similar to XJZ10, Z at the observation location is negatively correlated with θ in the 

updraft region (Fig. 3.11d) because w and θ are positively correlated in the updraft region (Fig. 

3.12a).  Hydrometeor state variables: qr (Fig. 3.11b), Ntr (Fig. 3.11e), and Nth (Fig. 3.11f) are 

negatively correlated with Z between 4 – 8 km above MSL;  this is where frozen raindrops are 

converted to hail.  Unlike with Nth, Z exhibits mostly positive correlations with qh (Fig. 3.11c) 

above the 0 °C isotherm, suggesting the complex relationship between Z and the hail size spectrum. 

Unlike MY-ALL, Z at the observation location is positively correlated with w (Fig. 3.13a) 
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throughout much of the NSSL-ALL storm updraft; however similar to MY-ALL, w is positively 

correlated with both rain and hail state variables (Fig. 3.14b-e). Strong updrafts in the NSSL-ALL 

storm loft liquid water above the 0°C isotherm. Instead of being converted into small hail particles, 

the supercooled liquid is accreted by graupel and hail, and causes rimed ice particles to increase in 

size (Labriola et al. 2019a). It is also noted that Z and θ are positively correlated throughout the 

updraft in the NSSL-ALL storm (Fig. 3.13d) due to the same processes in MY-ALL. 

 
Fig. 3.13. Same as Fig. 3.11, except for NSSL-ALL w (a), qr (b), qh (c), θ (d), Ntr (e), Nth (f). Plotted 
correlations are  between an assumed Z observation in the hail growth zone and the plotted model 
state variables. Cross-sections are taken through the Denver hailstorm, denoted as east-west line 
in Fig. 3.9d. 
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Fig. 3.14. Same as Fig. 3.13, except for θ (a), qr (b), qh (c), Ntr (d), Nth (e). Plotted correlations are  
between an assumed w observation in the hail growth zone and the plotted model state variables.  
 

Prognostic graupel and hail volume (vg and vh, respectively) equations allow the NSSL 

scheme to vary rimed ice density during the forecast and modify both particle sedimentation and 

hail production processes.  In the storm updraft region, Z and vh are positively correlated (Fig. 

3.15a). Hail accreting more liquid water in the stronger updraft increases hail volume and Z in the 

updraft (Fig. 3.15a, b).   It is noted that hail density is a non-unique solution, and that an infinite 

combination of qh, vh pairs can produce the same density value; correlations are therefore not 

indicative of modifications to hail density.   
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Fig. 3.15. Same as Fig. 3.13, but for vh. Plotted correlations are between vh and an assumed Z 
observation (a) or w observation (b) in the hail growth zone.  

 

While this study primarily evaluates the ensemble background error correlation fields 

within strong thunderstorms at 2040 UTC, it is noted the background error covariance evolves 

with time through the DA cycles. Correlations between observation prior Z and w taken from 

within the updraft of a storm to the east of Denver are evaluated throughout the DA window (Fig. 

3.16). This storm is selected because it is present in observations throughout the DA window. Prior 

to the first DA cycle both MY-ALL and NSSL-ALL are not confident in the location of organized 

convection, which causes correlations between w and Z to be noisy (Fig. 3.17a,d). Both ensembles 

predict storm updrafts to be weak (w < 15 m s-1) at 2020 UTC (Fig. 3.17b,e).  Because of that, the 

MY scheme predicts the storm to produce little hail. Instead, the weak updrafts loft precipitation 

above the 0 ºC isotherm and enhance Z.  w and Z become negatively correlated with time as the 

storm intensifies and strong updrafts increase the number of small hail stones aloft; these 

correlation fields are similar to those observed in the Denver hail storm (Fig. 3.11a).  Unlike MY-

ALL, w and Z are positively correlated in NSSL-ALL between 2020 and 2040 UTC (Fig. 3.17f,i) 
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because the updrafts advect more precipitation above the 0 ºC isotherm and enhance the production 

of large hailstones.  The evolving correlation fields demonstrate the sensitivity of the background 

error covariance to the microphysical assumptions made within MP schemes as well as other 

factors including the quality of the state estimation. In this paper, we focus more on the later time 

(2040 UTC) when the state estimation becomes better. 

 
Fig. 3.16. KFTG observed Z at the lowest radar tilt (0.5º).  Thick black lines denote the 
approximate location of where vertical cross-sections are taken in Fig. 3.17. 
 

Correlations between model state variables (i.e., w and θ) and Z have important 

consequences on the representation of analyzed storms.  The correlation patterns observed in this 

study were also observed in other strong storms at 2040 UTC (e.g., Fig. 3.17c, f) and during earlier 

DA cycles (not shown).  When MY-ALL underestimates (overestimates) Z, the filter will decrease 

(increase) w (Fig. 3.11a) and make the updraft air temperature cooler (warmer) (Fig. 3.11d).  In 

effect the EnKF in MY-ALL weakens the analyzed storm.  Both w (Fig. 3.13a) and θ (Fig. 3.13d) 

are positively correlated with Z in NSSL-ALL and cause the filter to intensify the storm under 

similar circumstances. Z is generally a function of the diameter of a hailstone to the sixth power 

although it becomes more complex for a large or wet hailstone due to the Mie scattering effect. In 
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addition, numerous observational studies (e.g., Heymsfield 1983; Nelson 1983; Ziegler et al. 1983; 

Foote 1984; Dennis and Kumjian 2017) have suggested that hail size is not a monotonic function 

of updraft strength, but is also influenced by vertical wind shear, environmental moisture, and 

updraft volume. More observations are needed to determine which analysis increment that more 

closely reflects reality.  

 
Fig. 3.17. Vertical cross-section of the MY-ALL (a-c) and NSSL-ALL (d-f) ensemble mean w at 
(a, d) 2000 (b, e) 2020, and (c, f) 2040 UTC.  Cross-sections are taken from within a storm to the 
east of Denver. Forecast error correlations between an assumed Z observation taken from within 
the hail growth zone (white star) and w are plotted. The same plotting convention is used to contour 
correlation as in Fig. 3.6.  The horizontal brown line represents the 0 °C isotherm. 

 

3.4 Summary and further discussion 

Newer multi-moment bulk microphysics schemes (MP schemes) are increasing in 

complexity and predicting more state variables in order to improve the representation of 
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microphysical processes (e.g. riming, sedimentation).  As the number of degrees of freedom within 

a MP scheme increases, initial state estimation using an EnKF becomes more challenging, in part 

because the large number of microphysical state variables predicted by a MP scheme are 

insufficiently constrained by the limited number observations that can infer microphysical 

properties, e.g., radar reflectivity (Z).  

In this study a cycled EnKF framework is used to update the microphysical properties of 

hail-producing storms for the 8 May 2017 Colorado severe hail event. Four ensemble forecast 

experiments are conducted using either the Milbrandt and Yau (2005a) double-moment (MY) 

scheme or the NSSL double-moment variable density rimed ice scheme (Mansell et al. 2010). An 

EnKF is used to update either only hydrometeor mixing ratios (MY-Q, NSSL-Q) or all 

microphysical state variables (MY-ALL, NSSL-ALL); in addition to dynamic and thermodynamic 

information.  While most previous studies use observed Z to update all microphysical variables, 

this study examines whether updating a limited number of particle size distribution moments (i.e., 

mass mixing ratio) provides sufficient constraint for an ensemble system run using a multi-moment 

scheme.  The model forecasts and analyses are evaluated against observed Z in addition to output 

from a hydrometeor classification algorithm (HCA) to determine which configuration produces 

the more realistic state variable estimates related to hail.   

For ensembles that update only hydrometeor mixing ratio, in particular MY-Q, the forecast 

error covariance is often unreliable and limits the accuracy of state variable estimates.  We suspect 

that the forecast error covariance is unreliable because updating a limited number of microphysical 

variables introduces large imbalances into the ensemble prediction system during assimilation. For 

example, negative correlations between Z and hydrometeor mixing ratios in experiment MY-Q 

cause spurious radar echoes to be enhanced during assimilation, even if clear-air reflectivity data 
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are assimilated.  Further, due to the poor multivariate error covariance structure, the EnKF in MY-

Q was unable to replicate Z intensity or structure within mature storms.  Generally, the forecast 

error covariance of MY-ALL and the NSSL ensembles (NSSL-Q and NSSL-ALL) is more reliable 

than that of MY-Q, allowing the ensemble analyses to estimate Z and radial velocity (Vr) with less 

error.   

Comparison (and verification) of analyzed surface hail size against HCA output provides 

insight into how the different EnKF configurations update hail particle size distributions.  

Generally, ensembles that update only mixing ratio (MY-Q, NSSL-Q) estimate large surface hail 

sizes because large quantities of hail mass can be distributed amongst a relatively small number of 

hailstones. Ensembles that update all microphysical variables (MY-ALL and NSSL-ALL) tend to 

underestimate surface hail size because these ensembles typically predict larger hail number 

concentrations and cause hail mass to be split between many small hailstones.  Results suggest the 

need to assimilate additional observations of microphysical relevance in order to better constrain 

the increased number of state variables (e.g., number concentration).   

Hail production and growth assumptions made by MP schemes substantially influence the 

forecast error covariance.  The MY scheme generates hail primarily from small frozen raindrops; 

this process increases the number of small hailstones above the 0 °C isotherm and causes Z to be 

negatively correlated with air temperature and updraft strength.  Due to differences in hail 

production processes, the opposite correlation patterns are observed in the NSSL scheme forecasts 

for intense hail storms. Hail growth assumptions also influence correlation patterns for 

hydrometeor state variables. For this study the NSSL-ALL experiment favors more positive 

correlations between Z and hail variables (mass and number) than the MY-ALL experiment.  While 

this study provides insight into the complexities of updating microphysical variables via an EnKF, 
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it is noted that only a limited number of the available schemes are evaluated.  A large number of 

multi-moment schemes (e.g., Thompson et al. 2008; Morrison et al. 2005, 2009; Lim and Hong 

2010; Morrison and Milbrandt 2015; Morrison et al. 2015; Milbrandt and Morrison 2016) are used 

in weather prediction systems; however, relatively few studies have analyzed how underlying 

microphysical assumptions made within these schemes impact multivariate ensemble background 

error covariances and state variable updates within ensemble DA. We have also shown that the 

multivariate ensemble covariances can be sensitive to the quality of storm analysis and possibly 

also the storm intensity and morphology. 

Due to the many possible combinations of variables that are able to produce a given Z 

value, microphysical state variables will remain insufficiently constrained by observed reflectivity. 

The assimilation of polarimetric observations is shown to provide additional constraint in 

observation system simulation experiments (OSSEs) conducted by Jung et al. (2008b, 2010b) and 

a real case study conducted by Putnam et al. (2019), however assimilating polarimetric variables 

remains non-trivial.  Although MP schemes can replicate basic polarimetric signatures (e.g., 

Johnson et al. 2016, 2019; Putnam et al. 2017a, b, 2019), the NWP output from these schemes is 

often biased in intensity and coverage. To benefit from the assimilation of polarimetric 

observations, more effort is needed to improve the representation of microphysical processes that 

generate polarimetric signatures and to find the optimal configurations that can maximize the 

impact of polarimetric data.  Improving the representation of microphysical processes has the 

potential to not only improve EnKF estimates, but also mitigate misrepresentations of sub-grid 

scale processes and reduce model errors.   
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Chapter 4 Evaluating Sensitivity to the GSI EnKF Data Assimilation 
Configuration and Forecast Performance with Experiments for the 28 – 29 
May 2017 Mesoscale Convective System Case  
 

4.1 Introduction 

Severe storms have caused approximately $200 billion in property damage (NOAA 2019) 

since the beginning of the millennium.  Most severe weather hazards occur with only tens of 

minutes of advance warning (average tornado warning lead time ≈ 17 minutes) because the 

National Weather Service issues warnings based upon the detection of a hazard, either from surface 

reports, radar detections, or an imminent threat as determined by the forecaster (Stensrud et al. 

2013). Based on the current warning paradigm (i.e., warn-on-detection), the average warning lead 

time for detected tornadoes has remained relatively constant since 1986 (Stensrud et al. 2013) and 

is unlikely to increase without degrading warning skill (e.g., increasing the number of false alarms) 

(Brooks 2004).  To extend warning lead time, the NWS is working on adopting the Warn-on-

Forecast paradigm (Stensrud et al. 2009, 2013) where frequently updated, convection-allowing 

model (CAM) ensemble forecast guidance is incorporated into the warning process. Due to the 

rapid error growth of convective scale forecasts, in addition to limiting sources of forecast model 

error, one key component of a skilled forecast system is to limit initial condition errors by 

developing a skilled data assimilation (DA) system. 

Various Warn-on-Forecast prototype systems (e.g., Yussouf et al. 2013; Wheatley et al. 

2015; Jones et al. 2016; Snook et al. 2016; Johnson et al. 2017; Lawson et al. 2018; Labriola et al. 

2019a; Stratman et al. 2020) use an EnKF (Evensen 1994, 2003)  to assimilate observations and 

initialize CAM forecasts. This technique is particularly attractive at the convective scale because 

flow-dependent error covariance statistics derived from the forecast ensemble allow the filter to 
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update unobserved model state variables using often a limited number of observed parameters.  

This is the case with radar observations where typically only radar reflectivity (Z) and radial 

velocity (Vr) are available at the convective scale. Many observation system simulation 

experiments (OSSEs) and real-data experiments have demonstrated that assimilating Z and Vr 

observations improves estimated thermodynamic, dynamic, and microphysical state variables 

(e.g., Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; Caya et al. 2005; Tong and 

Xue 2005; Xue et al. 2010; Dawson et al. 2012; Jung et al. 2012; Johnson et al. 2015; Snook et al. 

2015; Supinie et al. 2016; Wang and Wang 2017; Putnam et al. 2019). While EnKF systems have 

demonstrated their potential, performance of the DA system and skill of subsequent forecasts is 

contingent upon the optimization of the DA configurations. Each DA system contains many tuning 

parameters and further, the optimization is sensitive to the model configurations and observations 

assimilated (e.g., Dowell et al. 2004; Tong and Xue 2005; Sobash and Stensrud 2013; Johnson and 

Wang 2017). 

Previous studies (e.g., Zhang et al. 2004; Dowell and Wicker 2009; Johnson and Wang 

2017) have found ensemble forecasts and DA system configurations can have a substantial impact 

on the subsequent forecast skill. The remainder of this introduction discusses many commonly 

used techniques that improve the skill of EnKF initial condition estimates.  

EnKF systems tend to underestimate the ensemble error covariance derived from the 

ensemble forecasts (e.g., Houtekamer and Mitchell 1998). This is partly because of the ensemble 

size is much smaller than the degrees of freedom of the system and partly because model errors 

and other sources of uncertainties remain unaccounted (e.g., Romine et al. 2014).  Various methods 

are employed to better account for the sources of uncertainties in the ensemble so that the ensemble 

spread better represents the forecast error.  The ensemble forecasting system should be initialized 
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with suitable initial perturbations while lateral boundary condition perturbations should be 

included in limited area ensembles. Their setup and configurations often require tuning.  To 

initialize the ensemble when starting EnKF DA cycling, random perturbations with or without 

spatial correlations are often used for idealized storm simulations (e.g., Snyder and Zhang 2003; 

Dowell et al. 2004; Tong and Xue 2005) while real-data experiments often start from perturbations 

derived from an operational ensemble (e.g, Kong et al. 2009) or a combination of the above 

methods are used (e.g., Snook et al. 2016).  Due to the sensitivity of CAM forecasts to model 

physics (e.g., Putnam et al. 2014; Cohen et al. 2015; Morrison et al. 2015; Johnson et al. 2016; 

Cohen et al. 2017; Johnson et al. 2019; Labriola et al. 2019b), varying ensemble member physics 

(e.g., microphysics, planetary boundary layer, surface) can increase ensemble variance even more 

than initial condition perturbations (e.g., Stensrud et al. 2000; Gallus and Bresch 2006). When 

properly configured, multi-physics ensembles (e.g., Schwartz et al. 2010; Duda et al. 2014; 

Johnson and Wang 2017) exhibit improved diversity and skill when predicting convection 

(Johnson and Wang 2017), but can also produce larger biases than a single-physics ensemble 

(Romine et al. 2013). Even with these spread enhancement techniques, ensembles tend to remain 

spread deficient and additional treatments are required during DA to further increase variance. 

Underestimating the background error variance under-realizes the influence of 

observations during DA. Repeated assimilation of dense observations can reduce ensemble spread 

so much that the EnKF can no longer effectively assimilate observations because it becomes over-

confident about the ensemble forecast, leading to filter divergence (Jazwinski 1970; Anderson and 

Anderson 1999). Spread maintenance algorithms artificially increase ensemble variance to better 

represent the true uncertainty of the atmospheric state during DA (Anderson 2001; Hamill et al. 

2001). Some spread inflation algorithms add noise to the posterior ensemble (e.g., Dowell and 
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Wicker 2009; Sobash and Wicker 2015) while some, such as the relaxation-to-prior-spread (RTPS) 

algorithm (Whitaker and Hamill 2012), increase the spread of posterior ensemble to a fraction of 

the spread of the prior ensemble. All methods are met with varying degrees of success between 

experiments, and often a combination of these methods is used to optimize EnKF performance 

(Jung et al. 2012). 

The quality of background error covariance is often poor because it is computed from an 

insufficient number of ensemble members. Such sampling errors cause grid points to become 

spuriously correlated with distant observations, and consequently the filter erroneously updates 

the background forecasts. A distance-based Gaussian weighting function (Gaspari and Cohn 1999) 

is often used to localize the influence of observations; the optimal cutoff radius is contingent upon 

many factors including ensemble size, observation type, density, location, computational cost, 

model resolution, and correlation length scale from model dynamics (Sobash and Stensrud 2013; 

Ying et al. 2018). Most studies (e.g., Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 

2004; Caya et al. 2005; Tong and Xue 2005; Aksoy et al. 2009; Jung et al. 2012; Sobash and 

Stensrud 2013; Johnson et al. 2015; Wheatley et al. 2015) use a relatively small cutoff radius for 

radar observations (4 – 18 km horizontal, 4 – 8 km vertical) because they are relatively dense and 

the convective scale flows have small spatial correlation length scales.  

Radar data require pre-processing prior to assimilation because observations are provided 

on radar polar coordinates at resolutions finer than most forecast models. Most EnKF experiments 

assimilate coarsened radar data that are interpolated to a regular grid or the model grid itself.  For 

example, Xue et al. (2006) assimilates radar observations that are interpolated to the horizontal 

model grid but kept the radar elevation levels in the vertical.  After interpolation, some experiments 

assimilate a fraction of the available radar observations to decrease the computational expense 
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(Gao and Xue 2008) or mitigate the effects of spatially correlated observation errors by removing 

neighboring observations (Chang et al. 2014).  Thinning assimilated observations can also 

decrease the ensemble spread reduction during EnKF DA, though this does not necessarily 

improve forecast skill (Aksoy et al. 2012). Radar data are most commonly thinned at regular user-

specified intervals throughout the model domain.. Despite potential benefits, thinning observations 

can remove important in-storm observational information during DA and limit the analysis skill. 

Errors on the convective scale are poorly understood and thus represent a challenge when 

assimilating radar observations. While unrealistic, most EnKF-based studies assume radar 

observation errors are Gaussian in nature, constant in standard deviation, and spatially 

uncorrelated. Well-calibrated WSR-88D radars have observational errors of approximately 1 dBZ 

(Z) and 1 m s-1 (Vr)  (Doviak and Zrnić 1993; Ryzhkov et al. 2005), but DA experiments typically 

assume larger errors to account for representativeness errors and other uncertainties (such as those 

with observation operators). Increasing observation errors also alleviates ensemble under-

dispersion by decreasing spread reduction during DA and is shown to improve performance of 

ensemble analyses (e.g., Dowell et al. 2004; Snook et al. 2013). 

To obtain accurate initial conditions for convective storms, radar observations are often 

assimilated at high frequencies. Real-time systems often assimilate radar observations every 15 

minutes (e.g., Wheatley et al. 2015; Johnson et al. 2017; Snook et al. 2019), although 

improvements to computational infrastructure and new weather radar technology such as phased-

array radars (Weber et al. 2007; Zrnic et al. 2007; Heinselman and Torres 2011; Curtis and Torres 

2011) provide the opportunity to assimilate observations more frequently in the future. OSSEs that 

assimilate rapid-scanning radar information note a decrease the spin-up time for convection and a 

reduction in errors in both observed and unobserved variables (Zhang et al. 2004; Xue et al. 2006; 
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Yussouf and Stensrud 2010). Real-data cases have successfully assimilated radar information at 

relatively high frequencies (≤ 5 minutes) (Snook et al. 2011, 2016; Jung et al. 2012; Supinie et al. 

2017; Labriola et al. 2017; Stratman et al. 2020); however, rapid updates can introduce imbalances 

that are unable to adjust to the model before the next DA cycle and can degrade both analysis and 

forecast skill (Wang et al. 2013; Johnson and Wang 2017) unless extra care is taken.  

Most CAM studies evaluate forecast and analysis sensitivity to only one or two EnKF 

parameters. This study evaluates short-term (0 - 6 hour) forecasts for a mesoscale convective 

system (MCS) event on 28 – 29 May 2017 that are initialized using an EnKF system based on the 

NCEP operational gridpoint statistical interpolation (GSI) framework, using a DA configuration 

that is based upon the Center for Analysis and Prediction of Storms (CAPS) Storm Scale Ensemble 

Forecast (SSEF) run during the 2019 Hazardous Weather Testbed Spring Forecast Experiment 

(Clark et al. 2019). Experiments also investigate forecast sensitivity to many important aspects of 

the EnKF system design including the methods used to generate initial ensemble perturbations and 

enhance spread as well as covariance localization, data thinning, observation error, and DA 

frequency for radar observations. Knowledge gained from this study identifies which aspects of 

the EnKF configuration forecasts are most sensitive to and will guide the design of future data 

assimilation systems.  

The rest of the chapter is organized as follows: section 4.2 provides a brief overview of the 

case study, a description of the experiments, and verification procedures. Experiment results 

including objective and subjective forecasts evaluations are discussed in section 4.3 and  section 

4.4 summarizes the results of this study and discusses potential future directions for research. 
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4.2 Event overview, experiment configuration, and verification methodology 

4.2.1 Case overview 

The focus of this study is to forecast the evolution of an MCS and nearby isolated 

convective storms that produced strong winds, hail, and tornadoes in Texas, Louisiana, and 

Mississippi on 28 – 29 May 2017 (Fig. 4.1).  Upper-level wind patterns were favorable for 

convective development during this event; a trough was located over the Central United States and 

Texas, and was to the right of a jet entrance region. At approximately 2000 UTC on 28 May 

multiple thunderstorms initiated along a frontal boundary extending from Arkansas towards the 

Texas-Mexico border.  Thunderstorms that initiated over eastern Texas quickly grew in scale 

between 2200 and 0000 UTC as they ingested unstable air (CAPE > 2200 j kg-1).  The storms 

eventually merged to form a squall line that impacted Louisiana and Mississippi between 0000 

and 0600 UTC on 29 May (Fig. 4.2). Storms embedded within the line produced several weak 

tornadoes and multiple wind reports extending from Shreveport to Jackson (Fig. 4.1).  Between  

0000 and 0200 UTC isolated thunderstorms in Texas (Fig. 4.2a-b) produced multiple hail and wind 

reports (Fig. 4.1), but by 0300 UTC (Fig. 4.2c) many of these storms weakened and formed a large 

region of mostly stratiform precipitation.   With the exception of convection near Houston and the 

MCS located east of Jackson, precipitation remains stratiform through 0600 UTC (Fig. 4.2d). The 

presence of active MCS convection within the DA period before the forecast initial condition time, 

and during several hours of forecast make this case suitable for investigating impact of DA and its 

configurations on subsequent storm forecasts. For forecasts, we will focus on the Texas, Louisiana, 

and Mississippi regions. 
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Fig. 4.1. A diagram of the 28-29 May 2017 forecast domain, states and countries are labeled in 
bold.  A legend for hail, wind, and tornado SPC storm reports is provided in the upper left-hand 
corner.  Cities referred to during the study are marked with a fuchsia “X”. 
 

 
Fig. 4.2. MRMS observed column maximum Z valid at (a) 0015, (b) 0100, (c) 0300 UTC, and (d) 
0600 UTC.  Cities referred to during the study are marked with a fuchsia “X” and are the same as 
Fig. 4.1. 
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4.2.2 Control experiment DA system settings  

This subsection describes the control experiment (hereafter referred to at CTRL) DA 

configuration (Table 1), modified DA configuration parameters are discussed in section 4.2.4. This 

study uses the GSI-based EnKF system for DA. The GSI system performs observation quality 

control (QC) and applies forward observation operators to the model background to generate 

observation priors. A version of the ensemble square root filter (Whitaker and Hamill 2002) that 

pre-calculates observation priors then updates them together with the state variables within the 

filter (Anderson and Collins 2007) is used. Recently, the GSI EnKF system was updated to 

assimilate radar observations; radar forward operators were added to the GSI suite and the EnKF 

system was given the capability to update hydrometeor variables (e.g., Johnson et al. 2015; Jones 

et al. 2018a; Tong et al. 2020).  CAPS recently added radar reflectivity forward operator consistent 

with the Thompson microphysics scheme.  The new operator follows Jung et al. (2008a), which 

uses the T-matrix method (Vivekanandan et al. 1991; Bringi and Chandrasekar 2001) for raindrops 

and Rayleigh scattering approximation for ice hydrometeor species (i.e., snow, hail, graupel) to 

calculate scattering amplitudes. In this study, radar observations undergo automatic QC including 

velocity dealiasing, using a procedure developed by CAPS (Brewster et al. 2005). These 

enhancements allow the GSI EnKF system to be used in several storm-scale modeling studies (e.g., 

Johnson et al. 2015; Johnson and Wang 2017; Johnson et al. 2017; Jones et al. 2018b; Jung et al. 

2018a,b; Chipilski et al. 2020). 
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Fig. 4.3. Flow diagram detailing the CTRL DA experiment configuration. A bold vertical line at 
1800 UTC marks when the ensemble of forecasts is first initialized.  Downward pointing arrows 
mark when DA occurs. The final free forecasts start at 0000 UTC, after 6 hours of DA cycles. 
 

CTRL (Table 1) closely resembles the configuration of the 2019 CAPS storm-scale 

ensemble based on GSI EnKF initial conditions as part of the Community-Leveraged Unified 

Ensemble (CLUE) (Clark et al. 2019). A schematic on the setup of DA cycles is shown in Fig. 4.3.  

To create the initial ensemble, the 1800 UTC North American Mesoscale (NAM) Model analysis 

is first interpolated to the model grid to serve as the initial ensemble mean. 3-hour forecast 

perturbations from the 1500 UTC operational Short-Range Ensemble Forecast (SREF)  as well as 

their negative versions are added to the interpolated NAM analysis to generate a 40-member 

ensemble.  Corresponding SREF forecasts also provide lateral boundary conditions. Conventional 

observations (e.g., surface stations, buoys, soundings) are assimilated hourly between 1900 – 0000 

UTC, and radar (Z and Vr) observations are assimilated every 15 minutes in the last hour.  

Covariance localization uses the Gaspari and Cohn (1999) weighting function with user-specified 

cutoff radii.  In this study the horizontal cutoff radius is 300 km for conventional observations and 

12 km for radar observations. The vertical cutoff radius for all observations is 0.7 scale height 

(natural log of pressure). The RTPS covariance inflation algorithm is used that restores the spread 

of the analysis to 99% of the background spread. At 0000 UTC an ensemble of 10 free forecasts 
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are initialized from the final analyses and run to 0600 UTC; the forecast configuration is discussed 

in the following subsection.  Ensemble members selected to initialize forecasts employ a diverse 

suite of model physics options, and are chosen to enhance forecast diversity. 

Initial Conditions 1800 UTC NAM analysis 
with 1500 UTC SREF 

perturbations 

Assimilation Frequency 60 Minutes 1800 – 2300 
UTC (conventional only) 
15 Minutes 2300 – 0000 

UTC  
(radar and conventional when 

available) 

Radar Localization radius (Horizontal / Vertical) 12 km / 0.7 scale height 

Conventional Localization Radius (Horizontal / Vertical) 300 km / 0.7 scale height  

Observation errors (reflectivity / radial velocity) 6 dBZ / 3 m s-1 

Inflation 99% RTPS 

Radar data thinning interval (horizontal / vertical) 6 km / 1 km 

Table 4.1. CTRL experiment configuration 
 

For radar DA,  Z observations are from the Multi-Radar Multi-Sensor (MRMS; Smith et 

al. 2016) products. The MRMS system performs QC on 140 WSR-88D radars and generates a 

mosaic of the observations on a three-dimensional grid with a horizontal resolution of 0.01° 

latitude × 0.01° longitude and 33 vertical levels.  Vr observations are processed by ourselves using 

CAPS’s software package that includes QC. The data are interpolated to the model grid 

horizontally and kept on radar elevation levels in the vertical for each radar site (Xue et al. 2006). 

Z and Vr observations are thinned horizontally to every 6 km during assimilation. Z observations 
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are also thinned vertically to every 1 km in radar echoes (Z > -90 dBZ) and to every 2 km in clear 

air regions (Z < -90 dBZ). Such thinning is done to fit the GSI EnKF analyses into available 

computer memory, which is necessary when a large continent-size domain is used during, e.g., the 

CLUE experiment (the GSI memory usage is inefficient). The Vr and Z observation errors are 

assumed to be 3 m s-1 and 6 dBZ, respectively, in the DA. 

 

4.2.3 Prediction model settings 

Aside from the smaller forecast domain focused on the MCS impacted region, the grid 

specifications and model physics largely follow the CAPS GSI EnKF-initialized ensemble (Jung 

et al. 2018b) that is part of the CLUE (Clark et al. 2018). Forecasts are run using the advanced 

research Weather Research and Forecast Model (WRF-ARW; Skamarock et al. 2008) version 

3.8.1. The forecast domain spans much of Texas, Louisiana, and Mississippi (Fig. 4.1) with 433 × 

241 grid points in the horizontal and 51 vertical levels in sigma-pressure coordinates. The 

horizontal grid spacing is 3 km. The vertical grid follows the 2017 CLUE configuration (Clark et 

al. 2018) where the finest vertical grid spacing is located near the surface. All ensemble members 

use the Rapid Radiative Transfer Model (RRTM; Mlawer et al. 1997) for general circulation model 

(RRTMG: Iacono et al. 2008) to represent short- and longwave radiation. During DA (1800 – 0000 

UTC), forecasts are run with the aerosol aware Thompson microphysics scheme (Thompson et al. 

2008; Thompson and Eidhammer 2014) but with varying graupel density across the members; 

0000 UTC EnKF-initialized forecasts vary microphysics schemes (Thompson [Thompson et al. 

2008], Morrison [Morrison and Grabowski 2008], Milbrandt and Yau [MY; Milbrandt and Yau 

2005], National Severe Storms Laboratory [NSSL; Mansell et al. 2010], and Predicted Particle 

Properties [P3; Morrison and Milbrandt 2015]) between ensemble members.  Ensemble members 
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also employ different planetary boundary layer physics parameterizations (Mellor-Yamada-Janjić 

[MYJ; Janjić 1990, 1996, 2001], Yonsei University [YSU; Hong et al. 2006], and Mellor-Yamada-

Nakanishi-Niino [MYNN; Nakanishi and Niino 2009]) and the Noah land surface model (Chen 

and Dudhia 2001) both during the DA and forecast periods.  An in-depth overview of ensemble 

member physics options is provided in CAPS (2017).  

 

4.2.4 DA configuration experiments  

Sensitivity experiments are designed to evaluate the impact of EnKF DA configurations on 

the forecast skill.  Each experiment repeats the CTRL DA procedure (Table 1) except one aspect 

of the DA configuration (e.g., DA frequency, covariance localization radius) is modified. 

Experiment results are broken into three categories that analyze forecast sensitivity to 1) ensemble 

initialization, 2) radar DA parameters (i.e., data thinning, covariance localization, covariance 

inflation, and observation errors), and 3) how frequently radar observations are assimilated.     

To start the EnKF DA cycles, an ensemble of forecasts needs to be initialized. The 

ensemble is often started from an ensemble of another forecasting system (e.g., Wheatley et al. 

2015; Schwartz 2019), by adding perturbations to a control initial condition (e.g., Snyder and 

Zhang 2003; Dowell et al. 2011; Johnson et al. 2015), or by combing the two perturbations (e.g., 

Snook et al. 2016; Jung et al. 2018b). One experiment in this study investigates the impact of 

different methods of the initial ensemble initialization. CTRL is initialized from the 1800 UTC 

NAM analysis plus perturbations derived from 3-hour forecasts of the 1500 UTC cycle SREF 

(Table 1). The SREF ensemble has 24 members, allowing for the construction of 12 pairs of 

independent positive and negative perturbations. The first member of CNTL used NAM analysis 

without SREF perturbation. The remaining 15 members reuse some of the perturbations out of the 
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first 24 members. The second experiment directly interpolates initial conditions from the SREF 3-

hour forecasts without using the NAM analysis (hereafter NO_NAM). To initialize the 40-member 

NO_NAM ensemble, 16 of the 24 SREF forecasts provide initial conditions twice.  Corresponding 

SREF forecasts used to generate initial conditions also provide lateral boundary conditions in 

CTRL and NO_NAM.  The boundary conditions of CTRL member 1 is provided by the NAM 

forecast. Because of the use of different physics options, no two members have the same 

configuration, even though share the same initial and boundary conditions. Ensemble initialization 

experiments provide insight into forecast sensitivity to the initial ensemble initialization, even with  

many DA cycles performed. 

The second set of experiments evaluates the impact of different radar DA parameters 

including data thinning, covariance localization radius, assumed observation errors, and 

covariance inflation.  Data thinning experiments assimilate radar observations thinned over 

increasingly large intervals either horizontally (3 km, 6 km, 9 km) or vertically (500m, 1 km, 2 

km) and are labeled by the direction observations are thinned in the horizontal and vertical 

directions (ThinH3V1, ThinH6V1, ThinH9V1, ThinH3V0.5, ThinH3V2).  Following CTRL, all 

experiments thin Z observations over twice as large of a vertical interval in clear air regions. Vr 

observations are not further thinned during this study because the data are preserved on about a 

dozen radar elevations and thus already sparser than MRMS Z. The covariance localization 

experiments vary the localization radius for radar observations either horizontally (6 km, 12 km, 

18 km) or vertically (0.4 scalar height, 0.7 scalar height, 1.0 scalar height) during DA and are 

referred to by the length of the applied radius in the horizontal and vertical directions 

(CovH18V0.7, CovH12V0.7, CovH6V0.7, CovH12V0.4, CovH18V1.0).  The covariance inflation 

experiments vary the percentage (80%, 90%, 99%, 110%) that posterior ensemble spread is relaxed 
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to that of the prior ensemble via the RTPS algorithm when radar observations are assimilated (2300 

– 0000 UTC).   Experiments are referred to by the inflation factor applied (Inf80, Inf90, Inf99, 

Inf110). Observation error experiments vary observation errors for Vr  (3 m s-1, 6 m s-1) and Z (6 

dBZ, 9dBZ) and are referred to by the assumed errors (3ms6dBZ, 6ms9dBZ).  

Experiments that assimilate radar data at higher frequencies have demonstrated mixed 

success in previous studies.  Stratman et al. (2020) suggest that assimilating observed Z more 

frequently can cause predicted storms to spin up more quickly and better suppress spurious 

convection.  Frequently assimilating observations can also introduce imbalances into the ensemble 

that propagate with time to degrade forecast skill (Hu and Xue 2007; Johnson and Wang 2017).  

To determine the impact of radar DA frequency, Z and Vr observations are assimilated at 5, 10 and 

15 minute intervals during the final hour of DA (2300 – 0000 UTC).  These intervals roughly 

correspond to the frequency that WSR-88D radars sample the atmosphere (~ 5 minutes) and the 

frequency some current real-time systems assimilate radar observations (e.g., Wheatley et al. 2015; 

Jung et al. 2018a).  DA frequency experiments are referred to by how frequently observations are 

assimilated (5Min, 10Min, 15Min). 

 

4.2.5 Forecast evaluation 

The 0000 – 0600 UTC forecast Z is subjectively and objectively verified against 

observations to evaluate the predicted evolution of storm structure.  This forecast evaluation period 

corresponds to when the impact of assimilated radar observations is most prominent (Kain et al. 

2010a), and when the Warn-on-Forecast paradigm is expected to offer the most benefit to 

operational forecasters (e.g., Stensrud et al. 2009).  

During forecast evaluation small errors in storm placement can substantially degrade 
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objective performance by double penalizing a forecast i.e., adjoining grid points may receive a 

false negative and false positive.  This problem is exacerbated when verifying localized events 

(e.g., convective storms) but can be ameliorated by verifying the occurrence of an event within a 

prescribed radius.  The neighborhood maximum ensemble probability (NMEP; Schwartz et al. 

2010; Schwartz and Sobash 2017) method is used to generate probabilistic forecasts. This study 

verifies the probability Z exceeding 40 dBZ (P[Z > 40 dBZ]) within a 12-km neighborhood. This 

neighborhood radius reduces impact of small forecast displacement errors but ensures the short-

term forecast remains precise enough to detect local impacts.  To smooth probabilistic forecasts a 

Gaussian filter with a smoothing length scale of 12-km is applied to the output.  It is noted this 

study verifies a relatively large Z threshold; this is done to verify the location of predicted storm 

cores and to eliminate regions of stratiform precipitation from the statistics. 

Probabilistic forecast skill is objectively evaluated using the Brier Skill Score (BSS; Brier 

1950), which can be decomposed into three distinct components (Murphy 1973): reliability, 

resolution, and uncertainty (Table 4.2).  Reliability is the difference between predicted probability 

and observed frequency, forecast skill improves when this difference is minimized.    Resolution, 

which should be maximized to improve ensemble performance, is the difference between the 

climatological probability and the observed relative frequency for a given probability threshold. 

Unlike the other two components, forecast uncertainty cannot be changed through calibration and 

is a function of the climatological probability.  Reliability diagrams provide a visual representation 

of the BSS by plotting forecast probability against observed frequency over increasingly large 

thresholds.  In an unbiased system forecast probability is equal to observed frequency and the 

reliability curve falls along the one-to-one line. If forecast probability is larger (smaller) than 

observed frequency then the curve falls below (above) the one-to-one line and the forecast is high 
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(low) biased.  Reliability diagrams also provide the frequency occurrence of each probability to 

evaluate forecast sharpness. 

Metric Formula 

Reliability 𝟏
𝑵?𝒏𝒌(𝒑𝒌 − 𝒐D𝒌)𝟐

𝑲

𝒌'𝟏

 

Resolution 𝟏
𝑵?𝒏𝒌(𝒐D𝒌 −	𝒐D)𝟐

𝑲

𝒌'𝟏

 

Uncertainty 𝒐D(𝟏 − 𝒐D) 

Brier Skill Score 𝑹𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 − 𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚
𝑼𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒊𝒕𝒚  

Table 4.2. Scores used to evaluate forecasts in the study.  The number of forecasts is N, the number 
of forecasts for a given k probability threshold is nk,  �̅� is the observed climatology, and �̅�U is the 
observed relative frequency, and pk is the forecast probability. 

 

4.3 Results 

4.3.1 CTRL evaluation 

Shortly after the start of forecast at 0015 UTC (Fig. 4.4a) CTRL predicts the P(Z > 40 dBZ) 

to be relatively high (> 0.90) within the confines of observed storms including the MCS located 

near Shreveport, Louisiana. Although CTRL predicts the P(Z > 40 dBZ) to exceed 0.7 for isolated 

storms located along the Mexico-Texas border at 0005 UTC (not shown), probabilities quickly 

diminish to approximately 0.4 by 0015 UTC (Fig. 4.4a).  This region is cooler and drier than 

locations near the coast, suggesting that the environment is less conducive for convective 

development. Several forecasts in the CTRL ensemble (Fig. 4.4a) also predict spurious storms to 

initiate to the north and east of San Antonio. Reliability diagrams show probabilistic 0015 UTC 

forecasts exhibit a slight overprediction bias for both low and moderate probability threshold 
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events (P[Z > 40 dBZ] < 0.7) (Fig. 4.5a) primarily due to the spurious convection in Texas.  Despite 

this bias, the BSS at 0015 UTC is relatively high (0.39) because CTRL is unbiased for high-

probability events (P[Z > 40 dBZ] > 0.8).   

 
Fig. 4.4. The P(Z > 40 dBZ) predicted by (a-d) CTRL and (e-h) NO_NAM valid at the labeled 
times.  Thick black contours represent locations where observed Z > 40 dBZ. Dashed squares in 
(a-c) and (e-g) mark the subdomains plotted in Fig. 4.6. Background maps are the same as Fig. 
4.2. 

 

 
Fig. 4.5. Reliability diagrams for the probabilistic forecasts shown in (a) Fig. 4.4a-d and (b) Fig. 
4.4e-h.  Line colors correspond to when the forecasts are valid, the BSS for each forecast time is 
included in the legend.   

 

As the MCS moves eastward through Louisiana (0100 – 0300 UTC), CTRL predicts the 

P(Z > 40 dBZ) to remain relatively high (> 0.7) near the observed storms (Fig. 4.4b-c).  CTRL 
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predicts the isolated convection near San Antonio to grow in scale and form a line of storms (Fig. 

4.4b) that spans Central Texas by 0100 UTC.  This line of storms is spurious; the observed storms 

south and west of Houston at 0100 UTC are isolated (Fig. 4.2b) and the observed MCS is further 

east.  By 0300 UTC, most of the observed storms in Central Texas weaken (Fig. 4.2c) and leave 

behind a large swath of stratiform precipitation and some weak storms.  CTRL also predicts the 

storms in Central Texas to weaken around 0300 UTC, which causes forecast probabilities near San 

Antonio to decrease (Fig. 4.4c).  The BSS at 0100 UTC is lower than at 0300 UTC (Fig. 4.5a) 

because more spurious storms are predicted at the earlier time.  Spurious storms also cause the 

0100 UTC reliability curve (Fig. 4.5a) to become high-biased for moderate and high probability 

events (P[Z > 40 dBZ] > 0.4). By 0300 UTC, when the spurious storms begin to weaken, the 

reliability curve (Fig. 4.5a) becomes less biased and more closely follows the one-to-one line. 

CTRL predicts storms to move too quickly, and by 0600 UTC the predicted MCS (Fig. 

4.4d) is east of the observed storms. Storm motion biases, such as this, are commonly observed in 

CAM forecasts and are often a consequence of model errors (e.g., Yussouf et al. 2016). 

Displacement errors cause the BSS at 0600 UTC to become negative and the reliability curve to 

become high-biased (Fig. 4.5a), suggesting CTRL exhibits no objective skill at this time. It is noted 

that the P(Z > 40 dBZ) exceeds 0.4 to the east of the observed MCS (Fig. 4.4d).   Increasing the 

neighborhood radius when calculating the NMEP could improve forecast performance but would 

make forecasts less precise, thus this is not performed.  Despite displacement errors, CTRL 

demonstrates some qualitative skill and predicts the MCS to begin weakening between 0500 – 

0600 UTC, which is approximately the same time as observations (Fig. 4.2d).  
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4.3.2 Ensemble initialization  

Forecast skill is highly sensitive to the fields used to initialize the initial ensemble.  CTRL 

and NO_NAM Z forecasts (Fig. 4.4a, e) are qualitatively similar at 0015 UTC because both 

experiments are recently initialized using the same GSI EnKF configuration.  As the forecasts 

continue the experiments become less similar; at 0300 UTC NO_NAM (Fig. 4.4g) predicts the P(Z 

> 40 dBZ) to be lower near the observed MCS (on the Louisiana-Mississippi border) and to be 

higher between San Antonio and Houston.  Many of the NO_NAM-predicted storms in Central 

Texas (Fig. 4.4g) produce spuriously intense Z but correspond with weak storms observed between 

Houston and San Antonio (Fig. 4.2c). Unlike CTRL, which predicts the MCS to remain organized 

through 0600 UTC (Fig. 4.4d), NO_NAM predicts the MCS to weaken faster than observations.  

This causes NO_NAM to predict the P(Z > 40 dBZ) to be low (0 – 0.05) near the observed MCS 

in Mississippi (Fig. 4.4h).   

Although CTRL qualitatively predicts the evolution of the MCS with more skill than 

NO_NAM, objective verification measures provide mixed results.  During the first forecast hour 

NO_NAM (Fig. 4.4e-f) predicts the P(Z > 40 dBZ) to be lower than CTRL (Fig. 4.4a-b) for 

spurious convection located near San Antonio.  Due to these spurious storms, the NO_NAM 

reliability curve at 0100 UTC (Fig. 4.5b) exhibits less of an overprediction bias than CTRL (Fig. 

4.5a) and its BSS is larger.  By 0300 UTC the NO_NAM BSS (Fig. 4.5b) is less than CTRL. 

Although the NO_NAM 0300 UTC reliability curve (Fig. 4.5b)  is relatively unbiased for low and 

moderate probability threshold events (P[Z > 40 dBZ]  < 0.6), the ensemble lacks sharpness (i.e., 

does not predict the P[Z > 40 dBZ] > 0.9) and overpredicts high probability threshold events (> 

0.7).  Both experiments score negative BSSs at 0600 UTC (Fig. 4.5); however, CTRL (Fig. 4.4d) 

is qualitatively more skilled because NO_NAM predicts no MCS in Mississippi (Fig. 4.4h).  
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Differences in forecast performance are attributed to the methods used to initialize each respective 

ensemble.  

 
Fig. 4.6. (a-c) CTRL and (d-f) NO_NAM predicted air temperature at the lowest model grid level 
above the surface valid at the labeled times.  Thick black contours mark where the column 
maximum updraft exceeds 1 m s-1.  A fuschia “x” marks the location of mentioned cities. 

 

The predicted evolution of convection is highly sensitive to small-scale errors (e.g., Zhang 

et al. 2006; Hawblitzel et al. 2007; Melhauser and Zhang 2012). Deterministic forecasts initialized 

from the 0000 UTC CTRL and NO_NAM ensemble mean analyses and run with the same physics 

configuration evaluate how differences between the two initial conditions evolve to impact the 

predicted MCS.  Both experiments predict a weak cold front moving south through Louisiana and 

Mississippi. At 0015 UTC CTRL (Fig. 4.6a) predicts air near the front to be approximately 2 °C 

warmer than NO_NAM (Fig. 4.6d). The relatively warm surface air is believed to enhance 

atmospheric instability and cause the MCS to intensify and form a robust updraft that extends 

along the Louisiana-Mississippi border by 0300 UTC (Fig. 4.6a-c).  In contrast, NO_NAM predicts 

storm updrafts to be weaker and more fragmented at 0300 UTC because the MCS ingests cooler 



103 
 

and more stable air (Fig. 4.6d-f).   

 
Fig. 4.7. Surface air temperature observations at 0000 UTC. 

 

In a well observed environment, the GSI EnKF system should correct surface air 

temperature errors; however, Northern Louisiana is relatively rural and surface observing stations 

in this region are sparse (Fig. 4.7).  Due to a limited number of surface observations, the EnKF 

more heavily weights observations taken outside this region and the ensemble background when 

generating the initial condition. This potentially causes analyses to become susceptible to errors 

originating from the initial ensemble at 1800 UTC. For example, CTRL predicts surface air 

temperature with a smaller root mean square innovation than NO_NAM (2.13 °C and 2.46 °C, 

respectively) prior to the first DA cycle at 1900 UTC. This is likely because the CTRL ensemble 

mean at 1800 UTC is from the 1800 UTC NAM analysis, which assimilates more recent 

observations than the 1500 UTC cycle SREF.  These results demonstrate the importance of 

reducing initial condition errors both when initializing an experiment and during DA, for the 

current experiment setup at least. 
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Fig. 4.8. Reliability diagrams for the forecast P(Z > 40 dBZ) valid at 0015 UTC for the labeled 
experiments including (a-b) radar data thinning, (c-d) covariance localization radius, (e) 
covariance inflation, and (f) observation errors.  Experiments correspond to different colors, the 
BSS for each experiment is included in the legend.   

 

4.3.3 Radar DA parameters 

Many studies show radar observations provide important storm scale information, and 

when assimilated by an optimally configured EnKF, improve analyzed storm structure (e.g., 
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Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005) and subsequent forecasts (e.g., 

Snook et al. 2012, 2015).  Modifying parameters directly related to radar DA, including data 

thinning, covariance localization radius and inflation, and observation errors initially impacts 

storm structure and the near-storm environment. The differences between experiments are most 

prominent during the first forecast hour because small-scale errors grow quickly (e.g., Melhauser 

and Zhang 2012) and degrade the initial benefits of radar DA. At 0015 UTC reliability curves (and 

BSSs) are already similar between all experiments (Fig. 4.8). Despite considerable overlap 

between the reliability curves, experiments that assimilate more radar observations (i.e., smaller 

data thinning intervals; Fig. 4.8a-b) or employ a larger horizontal covariance radius (Fig. 4.8c) 

have larger overprediction biases.   Impacts of radar DA are often localized and not readily obvious 

in objective verification metrics that consider the full model domain and multiple storm systems. 

Subjectively evaluating probabilistic forecasts  identifies how these parameters impact Z forecasts 

for individual storm systems (i.e., isolated convection and MCS).  

Thinning radar observations potentially removes important fine-scale details on the storms.  

For small storms, such as those near San Antonio, thinning radar observations removes many if 

not all available in-storm observations.  ThinH6V0.5 (Fig. 4.9d) predicts the P(Z > 40 dBZ) to be 

larger than ThinH6V2 (Fig. 4.9e), particularly for small storms located near San Antonio, because 

the experiment assimilates more in-storm observations. Assimilating more radar observations also 

causes ThinH6V0.5 (Fig. 4.9d) to predict more spurious convection in Central Texas, which 

contributes to the overprediction bias observed in the reliability diagram for low to moderate 

probability thresholds (P[Z > 40 dBZ] < 0.7)  (Fig. 4.8b).  The predicted MCS is less sensitive to 

data thinning (Fig. 4.9) because the storm system is much larger in scale and therefore all data 

thinning experiments assimilate a large number of observations from within the storm.  Although 
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probabilistic forecasts of the vertical data thinning experiments are primarily discussed, similar 

but less extreme trends are observed in ThinH3V1 (Fig. 4.9b), ThinH6V1 (Fig. 4.9a), and 

ThinH9V1 (Fig. 4.9c). This is to be expected because the radar data are thinned over different 

intervals in the horizontal and vertical directions. 

 
Fig. 4.9. The P(Z > 40 dBZ) predicted by (a) CTRL and the (b-c) horizontal and (d -e) vertical 
radar data thinning experiments valid at 0015 UTC.  Thick black contours represent locations 
where observed Z > 40 dBZ. Background maps are the same as Fig. 4.2. 

 

Many of the overprediction biases observed in experiments that assimilate near full-

resolution radar observations (i.e., ThinH3V1, ThinH6V0.5) can be mitigated by reducing the 
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covariance localization radius for radar observations.  When the most dense radar observations in 

this study are assimilated (ThinH3V0.5), the P(Z > 40 dBZ) increases outside of observed storm 

cores when the covariance localization radius is increased from 6 km (Fig. 4.10a) to 12 km (Fig. 

4.10b). The reliability curve for the ThinH3V0.5 6 km horizontal localization radius experiment 

exhibits a smaller overprediction bias and larger BSS than the 12 km experiment (Fig. 4.10c) 

because the experiment predicts fewer spurious storms.  A smaller localization radius is likely 

appropriate for experiments that assimilate more dense observations because the radar information 

does not need to be spread over large regions to fill data gaps.   

 
Fig. 4.10. (a-b) The P(Z > 40 dBZ) predicted by ThinH3V0.5 with a horizontal covariance 
localization radius of (a) 6 km and (b) 12 km during data assimilation.  Forecasts are valid at 0015 
UTC.  Thick black contours represent locations where observed Z > 40 dBZ. Background maps 
are the same as Fig. 4.2.  (c) The reliability diagram for the two probabilistic forecasts. 
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Fig. 4.11. The P(Z > 40 dBZ) predicted by (a) CTRL and the (b-c) horizontal and (d -e) vertical 
covariance localization experiments valid at 0015 UTC.  Thick black contours represent locations 
where observed Z > 40 dBZ. Dashed squares in (a-c) mark the boundaries of the Fig. 4.12 domain.  
Background maps are the same as Fig. 4.2. 
 

 
Increasing the horizontal covariance localization radius for radar observations causes 

ensembles to become more confident in high Z values located near observed storms for short-term 

forecasts.   CovH6V0.7 (Fig. 4.11b) predicts the P(Z > 40 dBZ) to be smaller than either 

CovH12V0.7 (Fig. 4.11a) or CovH18V0.7 (Fig. 4.11c) for the isolated storms located near the 

Mexico-Texas border.  CovH18V0.7 also predicts more spurious storms to be located between San 
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Antonio and Houston (Fig. 4.11c) than CovH6V0.7 (Fig. 4.11b), which increases the coverage of 

moderate forecast probabilities (> 0.4) outside observed storm cores.  The CovH18V0.7 reliability 

curve is more high-biased than CovH6V0.7 at 0015 UTC (Fig. 4.8c) because the ensemble predicts 

more spurious convection in Texas, but BSSs are relatively similar because CovH18V0.7 predicts 

high forecast probabilities near observed storms and has improved resolution.  Increasing vertical 

localization radius modestly increases the BSS (Fig. 4.8d) but probabilistic forecasts appear to be 

insensitive to this EnKF parameter (Fig. 4.11d-e). Although Z forecast skill is relatively insensitive 

to the vertical covariance localization radius in this study, Sobash and Stensrud (2013) suggest 

ensembles that employ a smaller vertical localization radius produce analyses with smaller root-

mean square errors.  

CovH18V0.7 predicts more spurious convection to develop because the ensemble is 

initialized at 0000 UTC (Fig. 4.12c) with more spurious, albeit weak, storm updrafts than the 

CovH6V0.7 (Fig. 4.12a) or CovH12V0.7 (Fig. 4.12b).  Further, CovH18V0.7 (Fig. 4.12c) predicts 

the storm inflow region (southeast corner of the subdomain) to be moister than CovH6V0.7 (Fig. 

4.12a) or CovH12V0.7 (Fig. 4.12b) because the EnKF makes larger adjustments to the background 

field (Fig. 4.12d-f). Although analyzed surface temperatures do not substantially change between 

the experiments (not pictured), the enhanced surface moisture makes the analyzed environment in 

CovH18V0.7 less stable than CovH6V0.7, which causes many of the weak storm updrafts to 

intensify shortly after DA. The localization radius employed by CTRL (CovH12V0.7) offers a 

compromise between CovH6V0.7 and CovH18V0.7.  CovH12V0.7 (Fig. 4.11a) predicts the P(Z 

> 40 dBZ) to be larger than CovH6V0.7 (Fig. 4.11b) near observed storms but also predicts fewer 

spurious storms than CovH18V0.7 (Fig. 4.11c). This horizontal radius is smaller than the optimal 

radius determined by Sobash and Stensrud (2013) (18 km) but larger than what was used in Tong 
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and Xue (2005) (6 km).  Discrepancies between these studies are attributed to differences in 

ensemble configuration (e.g., grid spacing, radar data density, ensemble size, DA system).   

 
Fig. 4.12. (a-c) 0000 UTC analysis mean water vapor mixing ratio (qv) at the lowest model level 
above the surface for the horizontal localization radius experiments. (d-f) qv analysis increment at 
the same time and location.  Thick black contours mark where the column maximum updraft 
exceeds 1 m s-1 in (a-c), the fuschia “x” marks the location of San Antonio. 

 

The Z forecast skill does not substantially change between the covariance inflation 

experiments conducted,  which is demonstrated by the reliability curves that exhibit considerable 

overlap (Fig. 4.8e).   Although Z forecast skill is insensitive to the RTPS inflation factor, it remains 

important to perform ensemble covariance inflation to prevent collapse of ensemble spread and 

potential filter divergence when assimilating a dense network of observations.  With some minor 

differences, 3ms6dBZ and 6ms9dBZ reliability curves are also quite similar at 0015 UTC (Fig. 

4.8f) and consequently both ensembles have the same BSS. Because there are only minor 
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differences between probabilistic forecasts (not pictured), both sets of experiments will not be 

further discussed. 

 
Fig. 4.13. The P(Z > 40 dBZ) predicted by (a,d) 5Min, (b,e) 10Min, and (c,f) 15Min valid at the 
labeled times. Thick black contours represent locations where observed Z > 40 dBZ. Dashed 
squares in (a-c) mark the boundaries of the Fig. 4.14 domain. Background maps are the same as 
Fig. 4.2. 

 

4.3.4 DA frequency 

Z forecast skill is highly sensitive to how frequently radar observations are assimilated by 

the GSI EnKF system.  5Min (Fig. 4.13a) predicts the P(Z > 40 dBZ) to be larger than either 10Min 

(Fig. 4.13b) or 15Min (Fig. 4.13c) for isolated storms that occur along the Mexico-Texas border at 

0015 UTC.  Forecast probabilities are larger because 5Min assimilates many more radar 

observations than any other experiment.  5Min (Fig. 4.13a) also predicts more spurious storms to 

develop and predicts more widespread moderate and high forecast probabilities (P[Z > 40 dBZ] > 

0.4) than either 10Min (Fig. 4.13b)  or 15Min (Fig. 4.13c). 5Min predicts additional spurious 

convection to develop because ensemble analyses (Fig. 4.14a) contain more storm updrafts than 

either 10Min (Fig. 4.14b) or 15Min (Fig. 4.14c).  Many of the spurious storms diminish in intensity 

by 0300 UTC, which causes the three DA frequency experiments to become more similar (Fig. 
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4.13d-f), though 5Min (Fig. 4.13d) predicts higher forecast probabilities near observed storms in 

Texas at this time. 

 
Fig. 4.14. Analysis mean column maximum updraft at 0000 UTC for the data assimilation 
frequency experiments. The fuschia “x” marks the location of San Antonio. 

 

The 5Min reliability curve (Fig. 4.15a) exhibits a large overprediction bias at 0015 UTC 

because the ensemble is initialized with a large number of spurious storms.  The overprediction 

bias is large enough to eliminate almost all Z forecast skill (5Min BSS ≈ 0). 10Min and 15Min 

reliability curves (Fig. 4.15a) also have an overprediction bias at 0015 UTC, but it is smaller in 

magnitude and has less of an impact on Z forecast skill (BSS > 0.35).  Although the 5Min reliability 

curve remains high-biased at 0300 UTC (Fig. 4.15b), the BSS increases to be more similar to 

15Min because many of the spurious storms weaken.  
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Fig. 4.15. Reliability diagrams for the probabilistic forecasts shown in (a) Fig. 4.13a-c and (b) Fig. 
4.13d-f.  DA frequency experiments correspond to different colors, the BSS for each experiment 
is included in the legend.   

 

The balance of model states for each DA frequency experiment is evaluated using the 

absolute mean surface pressure tendency (N) (Lynch and Huang 1992; Hu and Xue 2007; Pan and 

Wang 2019).  N, which is averaged over the domain and ensemble members, is defined by: 

N = V W
X%×XZ×X[\[
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_
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fgW
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where nx and ny are the dimensions of the domain, nmem is the number of ensemble members, and 

_`ab
`c
_ is the absolute change in air pressure at the lowest grid point above the surface.  N values are 

calculated every 5 minutes during the 6-hour forecast period. For all experiments N values are 

initially large (~40 – 55 pa min-1) but decrease with time to approximately 5 pa min-1 as the model 

adjusts to any imbalances that originate from DA (Fig. 4.16). To a large extent this is done through 

acoustic waves and hydrostatic adjustment.  Many of the storms also weaken during the forecast 

period, further minimizing changes in pressure.  5Min produces the largest N values throughout 

the forecast period (Fig. 4.16), while 10Min and 15Min N values are smaller and more similar in 

magnitude. Large pressure tendencies suggest that the more frequent DA cycling causes 5Min 
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forecasts to become less balanced. Since 10Min and 15Min N values are more similar in 

magnitude, small increases in the DA frequency (i.e., 10Min) does not appear to cause the 

ensemble to become as unbalanced. 

 
Fig. 4.16. The ensemble mean absolute pressure tendency during the first six forecast hours for the 
three DA frequency experiments. 
 

Results of the DA frequency experiments concur with previous studies (e.g., Wang et al. 

2013; Johnson et al. 2017; Pan and Wang 2019). Johnson and Wang (2017) hypothesize that 

imbalances introduced during DA do not have enough time to adjust to the model before the next 

assimilation cycle. It is noted that  many other studies (e.g., Aksoy et al. 2009; Jung et al. 2012; 

Dawson et al. 2012)  have successfully assimilated radar observations much more frequently (≤ 5 

minute intervals). Stratman et al. (2020), who assimilates phased array radar observations every 

minute, suggests frequent DA cycling can quickly spin up thunderstorms and suppress spurious 

convection. Given that most of the adjustment occurs within the first few forecast minutes so that 
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all experiments have similar levels of surface pressure noise after 5 minutes (Fig. 4.16), the 

negative impact of assimilating 5 minute data is likely insignificant given the potential benefit 

quickly spinning up observed storms within the model.  It is likely 5Min skill can be further 

improved by more thoroughly tuning the GSI EnKF system. For realtime forecasting systems 

where computational cost is a significant issue, assimilating radar observations at 10 to 15 min 

intervals yields good results is encouraging.   

 

4.4 Summary and discussion 

This study evaluates short-term (0 – 6 hour) convection-allowing model (CAM) forecasts 

initialized using the GSI EnKF system enhanced with radar data assimilation capabilities.  

Forecasts are run for a mesoscale convective system (MCS) event that occurred in the Southern 

United States on 28 – 29 May 2017 and produced multiple tornado, wind, and hail reports.  The 

control configuration of the GSI EnKF system resembles the Center for the Analysis and Prediction 

of Storms (CAPS) storm scale ensemble forecast run during the 2019 Hazardous Weather Testbed 

Spring Forecast Experiment as part of the CLUE. In addition to verifying forecasts run using this 

configuration, sensitivity experiments are run to evaluate the impact of GSI EnKF configurations, 

including the initial ensemble initialization, as well as data thinning, covariance localization and 

inflation, observation error specification, and DA frequency for radar observations. Ten-member 

multi-physics ensemble forecasts and deterministic forecasts from the final EnKF ensemble and 

mean analyses, respectively, are run for the assessment of DA impacts on forecasts.  

The CTRL DA configuration creates the most skilled forecasts in this study while 

remaining viable for realtime use.  The initial ensemble of CNTL is centered on the 1800 UTC 

NAM analysis with perturbations derived from 3 hour SREF forecasts.  The DA system assimilates 
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thinned radar observations (6 km horizontally, 1 km vertically for in-storm regions, and 2 km 

vertically for clear air regions) every 15 minutes to remain computationally efficient for 

experiment run over the CONUS domain. Although forecast skill can be further improved when 

assimilating more observations (i.e., less data thinning, increased DA frequency) the experiment 

becomes prohibitively expensive for realtime use when run over the CONUS domain. The 

covariance localization radius for Z and Vr  is set to 12 km in the horizontal and 0.7 scalar height 

in the vertical to update unobserved regions.  CTRL skillfully predicts the evolution of the MCS 

during the first three forecast hours; however, the predicted storm becomes displaced from 

observations at later times because it moves too quickly.  Despite displacement errors that limit 

objective forecast skill, CTRL predicts the MCS to weaken during the final forecast hour, which 

is approximately the same time as observations.  CTRL predicts isolated convection with less skill.  

The ensemble predicts small storms located near the domain boundary with less confidence and 

predicts nearby spurious convection.   

Other experiments modify the CTRL configuration to determine which DA parameters the 

forecast is most sensitive to or how they impact the forecast skill. To evaluate the impact of initial 

ensemble initialization at the beginning of DA window, two experiments are conducted. CTRL is 

initialized from the 1800 UTC NAM analysis plus perturbations derived from 3-hour SREF 

forecasts, and the second experiment (NO_NAM) is initialized by directly interpolating from the 

3-hour SREF forecasts valid at 1800 UTC.  NO_NAM forecasts exhibit less skill than CTRL 

because the ensemble predicts the atmosphere to be cooler and more stable, which causes the 

predicted MCS to weaken too quickly. EnKF temperature updates are limited because the region 

ahead of the MCS is relatively rural and surface observing stations are sparse.   To generate an 

analysis the EnKF relies mostly on distant observations and the ensemble background, causing 
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analyses to be more susceptible to errors that originate from ensemble initialization. CTRL initial 

conditions are generally more skilled because of the additional observations contained in the 1800 

UTC NAM analysis.  

Modifying the radar DA parameters, including data thinning, covariance localization radii 

and inflation, and observation errors, has a relatively small impact on forecast skill.  Further, the 

radar DA parameter experiment differences are most prominent during the first forecast hour 

because small-scale errors grow rapidly to degrade the benefits of radar DA that mainly improve 

storm-scale structures.  Results show increasing the horizontal covariance localization radius or 

assimilating more radar observations (i.e., less data thinning) increases forecast confidence in high 

reflectivity values near observed storms but also modestly increases the coverage of spurious 

convection.  Small, isolated convection is most sensitive to changes in these parameters. In 

contrast, the predicted MCS is relatively insensitive to the covariance localization radius or data 

thinning because the storm is larger in scale so many more in-storm observations are available for 

assimilation.   Changing the assumed radial velocity and reflectivity observation errors (3 - 6 m s-

1  and 6 – 9 dBZ, respectively) does not substantially impact forecast skill in this study. Forecast 

skill is also relatively insensitive to the range of relaxation-to-prior-spread inflation factors (80% 

- 110%) employed in this study.  Still, covariance inflation is an important aspect of EnKF DA and 

prevents the collapse of ensemble spread when assimilating a dense network of observations (e.g., 

radar observations).   

DA frequency experiments demonstrate that assimilating radar observations more 

frequently (i.e., every 5 minutes) increases forecast confidence for observed storms, but 

substantially reduces forecast skill initially because the analysis produces too many spurious 

storms. Results of this study concur with Johnson and Wang (2017), which hypothesizes 
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assimilating observations too frequently degrades forecast skill because the DA-induced 

imbalances are unable to adjust to the model before the next cycle.  Although assimilating 

observation less frequently (e.g., every 15 minutes) improves objective forecast skill in this study, 

Stratman et al. (2020) note more frequent DA cycling can reduce the spin up time for storms and 

suppress spurious convection.  It is believed the GSI EnKF system requires additional tuning to 

assimilate radar observations more frequently and produce more skilled analyses and forecasts. 

Although this study evaluates several key aspects of the experimental design, many other 

factors that impact forecast performance should be investigated. For example, future studies should 

compare forecast differences between mixed physics and single physics ensembles.  CTRL is a 

mixed physics ensemble which can enhance forecast diversity (Snook et al. 2012; Johnson and 

Wang 2017) but can also introduce more systematic biases into the forecast system than a single 

physics ensemble (e.g., Romine et al. 2013). Future studies should also evaluate forecast sensitivity 

to conventional observation (ground-based observations, soundings) DA parameters because these 

observations modify atmospheric environmental conditions and can substantially impact storm 

evolution (e.g., Sobash and Stensrud 2015; Snook et al. 2015). It is noted the conclusions of this 

work is limited to a single case study, additional experiments are required to ensure results are 

robust for a variety of cases.  Even with these limitations, results provide useful insights into the 

development of future ensemble DA systems. 
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Chapter 5 Summary and Future Work 

5.1 Dissertation summary 

Designing a convection-allowing model (CAM) ensemble forecast system that skillfully 

predicts the evolution of convective storms represents a substantial challenge because the non-

linear growth of small initial condition and model errors alters thunderstorm evolution and 

degrades forecast skill.  To improve forecast skill, sources of model error must be identified and 

minimized.    For example, microphysics (MP) schemes are a major source of model error because 

they simulate poorly understood microphysical processes and make simplifying assumptions to 

remain computationally feasible. Initial condition errors can also limit forecast skill.  Data 

assimilation systems can improve initial condition estimates; however, their skill is dependent 

upon many factors including experimental design. This dissertation evaluates the skill of forecasts 

run using different MP schemes and data assimilation configurations and provides insights relevant 

to the development of a skilled CAM ensemble forecast system.  

Results evaluate the skill of three case studies including supercell thunderstorms near 

Oklahoma City on 19 May 2013, mountain-initiated hailstorms that impact Denver on 8 May 2017, 

and a mesoscale convective system (MCS) event on 28 – 29 May 2017 that occurred in the 

Southern United States. All experiments assimilate radar and convectional observations using an 

ensemble Kalman filter (EnKF) framework and the forecast model employs advanced 

microphysics schemes including the NSSL double-moment variable density rimed ice scheme 

(NSSL) as well as the Milbrandt and Yau double-moment (MY2) and triple-moment (MY3) 

schemes. Forecast and analysis skill is evaluated using simulated radar variables, maximum 

estimated hail size (Dmax) diagnosed from rimed ice particle size distributions (PSDs), 

microphysical process budgets, and ensemble correlation analyses. 



120 
 

An ensemble of high-resolution hail size forecasts run using the MY2, MY3, and NSSL 

schemes are verified against hydrometeor classification output for a supercell hailstorm event that 

occurred near Oklahoma City on 19 May 2013.  Probabilistic forecasts show ensembles run using 

all three MP schemes skillfully predict the coverage of severe hail.  Although reliability diagrams 

show the MY2 and MY3 schemes skillfully predict the coverage of significant severe hail (Dmax> 

50 mm), both ensembles predict hail to be too much larger (Dmax > 150 mm) than surface-based 

reports (~ 75 mm).  NSSL deterministic hail size forecasts qualitatively resemble HCA output 

more closely than the other ensembles, but forecasts underpredict the coverage of significant 

severe hail (Dmax > 50 mm). 

 Hail production tendencies are evaluated during the forecast period for each MP scheme 

to determine the hail growth and decay mechanisms that cause surface hail size forecast biases.   

Both MY schemes predict storms to produce many small hailstones above the 0°C isotherm that 

are created from frozen raindrops.  These storms produce large plumes of hail aloft because the 

small hailstones are advected more than 40 km downstream of the updraft.  The NSSL scheme 

predicts storms to produce fewer, but larger hail particles above the 0 °C isotherm because the hail 

category consists of dense graupel that has undergone wet growth.    Beneath the 0 °C isotherm, 

the MY2 and MY3 schemes predict hail to accrete water, which causes model predicted hail to 

exceed 150 mm in diameter near the surface.  The MY3 scheme can increase the hail shape 

parameter, this causes the PSD to narrow and often limits the most extreme hail sizes (Dmax > 150 

mm). Extreme Dmax values decrease in both MY2 and MY3 forecasts when the schemes no longer 

allow hail to accrete rainwater beneath the 0 °C isotherm.  The NSSL scheme predicts all accreted 

water to be shed beneath the 0 °C isotherm; however, this is not realistic when compared to 
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observational studies (e.g., Rasmussen et al. 1984) and potentially limits hail growth due to the 

collection of water (Lesins and List 1986).  

In the third chapter of this dissertation, a cycled EnKF framework updates hailstorm 

microphysical properties for the 8 May 2017 Colorado severe hail event.  Four experiments are 

conducted. Each is run using the MY2 or NSSL schemes, where assimilated Z observations update 

either only hydrometeor mixing ratio (MY_Q, NSSL_Q) or all microphysical state variables 

(MY_ALL, NSSL_ALL), in addition to thermodynamic and dynamic information.   Analysis and 

forecast Z and Dmax are verified against observed Z and HCA output, respectively, to determine 

which configuration produces the most realistic state variable estimates. 

 Experiments that update only hydrometeor mixing ratio (i.e., MY-Q), often cause the error 

covariance to become unreliable and limit analysis skill.  For example, negative correlations 

between the observation prior Z and rain mixing ratios causes the EnKF to intensify spurious Z.  

The forecast error covariance is more reliable for MY_ALL and the NSSL ensembles during data 

assimilation, all have relatively small Z and radial velocity root mean square innovations.  

Ensembles that update only hydrometeor mixing ratio (MY_Q, NSSL_Q) estimate large surface 

hail because the EnKF can distribute large quantities of hail mass amongst a relatively small 

number of hailstones.  MY_ALL and NSSL_ALL underestimate hail size because the EnKF 

updates the hail PSD so that mass is distributed amongst many more hailstones. Results suggest 

additional observations of microphysical relevance are needed to constrain the microphysical state 

variables. 

The cross-correlation between observation priors (i.e., Z and updraft intensity) at an 

assumed observation location and model state variables is analyzed.  These correlation analyses 

show the background error covariance is sensitive to the rimed ice growth assumptions made 
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within each MP scheme.  Hail predicted by the MY2 scheme is composed of small frozen 

raindrops. This process causes the mean size of hail above the 0 °C isotherm to decrease in strong 

storms and causes Z to become negative correlated with both updraft intensity and air temperature.  

Since the NSSL scheme predicts strong storms to produce large hail above the 0 °C isotherm, the 

opposite correlation patterns are observed.  Hail growth assumptions also influence how the EnKF 

updates hydrometeor state variables. Generally, correlations between Z and hail state variables are 

more positive for the NSSL experiment than the MY2 experiment.  Differences in the multivariate 

covariance show that under similar circumstances model state variables can be updated in different 

directions if different MP schemes are used.   

Finally, in the fourth chapter of this dissertation, the 2019 CAPS storm-scale ensemble 

forecast gridpoint statistical interpolation (GSI) EnKF system is used to assimilate observations 

(conventional and radar) and initialize short-term (0 – 6 hour) CAM forecasts for a mesoscale 

convective system (MCS) event that occurred in the Southern United States on 28 – 29 May 2017.  

Forecasts predict the MCS with skill during the first three forecast hours but exhibit less skill later 

because the predicted storm system moves too quickly.  Forecasts predict small, isolated 

convection located near the MCS with less skill because the storms near the domain boundary 

weaken too quickly, and nearby spurious convection is predicted.  

Experiments also evaluate forecast sensitivity to the configuration of GSI EnKF system.  

Analyzed parameters include ensemble initialization and spread inflation as well as radar 

observation data thinning, covariance localization radius, observation errors, and data assimilation 

frequency. Results show errors that originate from ensemble initialization can alter EnKF analyses 

and degrade forecast skill. When the ensemble is initialized from 1500 UTC SREF, instead of 

1800 UTC NAM with SREF perturbations (default configuration), the predicted MCS weakens 
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too quickly because the storm inflow environment is relatively cool and more stable.  The NAM 

initialized ensemble predicts the MCS to be stronger and more closely resemble observations 

Modifying the radar data assimilation parameters has a relatively small impact on forecast skill 

during the first forecast hour. Ensembles that assimilate more radar observations (i.e., less thinning 

of data) or increase the horizontal covariance localization radius for radar observations predict 

higher Z values near observed storms but also predict more spurious convection.  Both ensembles 

predict more spurious convection occurs because the ensemble analyses contain more storm 

updrafts that quickly intensify because the storm inflow environment is relatively moist and 

unstable.  Similar trends are also observed when radar observations are assimilated more 

frequently.  Experiments that assimilate radar observations more frequently (i.e., 5 minutes) 

predict high Z values near observed storms but exhibit a substantial decrease in skill for the first 

three forecast hours because of widespread spurious convection.  Forecast skill is relatively 

insensitive to the range of ensemble spread inflation factors and observation errors that were tested 

during this study.   

 

5.2 Future work 

The studies in this dissertation demonstrate that no single experiment configuration can 

produce a skilled CAM ensemble forecast system for all event types because forecast skill is 

dependent upon many factors including horizontal grid spacing, other employed physics options, 

event type, and data assimilation system.  Although no optimal configuration exists, forecast skill 

can be improved by choosing model physics/microphysics options (e.g., MP schemes) that better 

represent observed sub-grid scale processes and a data assimilation system that uses reliable 

multivariate covariances to update the many unobserved model state variables. 
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Due to the sensitivity of forecast skill to MP schemes, model physics must be improved to 

better represent physical processes. For example, hail size forecasts produced using the NSSL MP 

scheme qualitatively exhibit more skill than those run using the MY2 and MY3 schemes because 

the NSSL scheme prognoses total volume for two rimed ice categories. Having the ability to 

diagnose hydrometeor volume for two rimed ice categories allows the NSSL scheme to better 

represent the growth of large and dense hail through the wet growth of graupel.  Since the hail size 

forecasts produced using the NSSL scheme exhibits more skill than the MY3 scheme, it can also 

be inferred predicting hydrometeor characteristics is equally important as predicting additional 

moments of the hydrometeor PSD.  

Future studies should evaluate MP schemes that prognose hydrometeor characteristics to 

determine which methods improve forecast skill and guide future parameterization development. 

For example, the predicted particle properties (P3) scheme (Morrison and Milbrandt 2015) predicts 

rime fraction and rime volume in addition to ice mass and number concentration. Although the 

scheme represents multiple hydrometeor types within a single category, it rarely predicts large 

fully-rimed ice (i.e., hail) because the scheme employs a maximum ice number-weighted mean 

diameter (Johnson et al. 2019) and the ice category is often dominated by small partially rimed ice 

(Labriola et al. 2019b).  This demonstrates that predicting additional hydrometeor characteristics 

does not necessarily improve skill and that careful calibration is required so that MP schemes can 

accurately represent diverse event types (e.g., hailstorms, MCS, stratiform precipitation).  Other 

recently developed MP schemes that should be investigated under a diverse number of cases 

predict hydrometeor characteristics such as water fraction (Cholette et al. 2019) and axis ratio 

(Jensen et al. 2017).   
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Although the case studies in this dissertation provide insight into hail growth and decay 

mechanisms, additional microphysically relevant observations are needed to verify these simulated 

processes. Few case studies directly observe in-storm hydrometeors (e.g., Waugh et al. 2015) 

because in-storm observations are too costly and dangerous to collect. Remotely sensed radar 

observations are instead used to verify forecasts. Z provides important information on the largest 

hydrometeors present within a volume; however, analyses are limited because the signature can 

be recreated by a non-unique combination of hydrometeor moments. Future studies must rely more 

heavily upon simulated polarimetric radar products to infer more hydrometeor properties including 

shape, size, orientation, and phase (Doviak et al. 2000; Kumjian and Ryzhkov 2008).  Recent 

studies (e.g., Jung et al. 2012; Johnson et al. 2016; Putnam et al. 2017b) evaluate MP scheme rimed 

ice treatments using simulated polarimetric fields such as differential reflectivity (Zdr) and cross-

correlation coefficient (ρHV).  Aside from verification, these fields should be used to correct for 

biases within schemes (e.g., Johnson et al. 2019). Such as done in this study with verifying hail 

size forecasts, additional novel methods of forecast verification should be investigated to gain 

additional insights into forecast biases (e.g., hail pads, lightning, satellite observations). 

 As MP schemes grow in complexity to represent the diverse range of hydrometeor types 

found in convective storms, initializing CAM forecasts becomes more difficult. Results of this 

work show assimilating observed Z can improve initial condition estimates; however, hydrometeor 

state variables remain under constrained which can prevent hydrometeor PSDs from being 

properly initialized (e.g., Xue et al. 2010). Additional microphysically relevant observations are 

needed to correctly initialize model state variables. Polarimetric radar observations can potentially 

be assimilated via an EnKF; Putnam et al. (2019) successfully assimilated Zdr in the lowest 2 km 

of the atmosphere. Although assimilation of Zdr improves microphysical moment estimation, large 
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uncertainties in the treatment of mixed-phase and frozen hydrometeors in the radar emulator 

prevents the assimilation of observations further aloft. To get the full benefit of polarimetric radar 

data assimilation, the treatment of melting must be better understood and simulated, such as 

developing MP schemes that explicitly predict the water fraction (e.g., Ferrier 1994; Cholette et 

al. 2019).  

While improvements can be made to the weather forecast systems, operational CAM 

ensemble forecasts will continue to be run at horizontal grid spacings that are unable to resolve 

severe weather hazards (e.g., tornado, severe wind, maximum hail size). Post-processing 

techniques must be improved to extract as much useful information as possible from model output 

to determine where potential severe weather hazards are located.  In this dissertation hail size 

forecasts are diagnosed from the model particle size distributions using a method similar to the 

Thompson hail method (Gagne et al. 2019) and convective storms are verified by identifying 

regions of high Z (> 40 dBZ).  Although these method produces skilled forecasts, they use limited 

information and are sensitive to arbitrary thresholds. Similar problems are observed when using 

updraft helicity (Kain et al. 2008). Although this storm-surrogate variable highlights regions of 

potential severe weather (e.g., Sobash et al. 2011), the technique is subject to high false alarm 

rates, favors rotating thunderstorms, and relies upon subjective thresholds to delineate between 

non-severe and severe events (e.g., Gagne et al. 2017).   New methods such as machine learning 

models can be used to infer trends from model output and determine the probability of a severe 

event occurrence while correcting biases (e.g., intensity, location) that degrade forecast skill. 

Previous studies have shown machine learning models can be designed to skillfully predict severe 

weather hazards such as strong winds, heavy rainfall, and hail (Gagne et al. 2014; Gagne et al. 

2017; Lagerquist et al. 2017; Burke et al. 2020). 
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This dissertation presents the results of only three case studies.  While the results provide 

useful insight into the performance of the different microphysics schemes and data assimilation 

configurations, additional work is needed to determine the results are robust and remain the same 

under a wide variety of atmospheric conditions.  Evaluating forecasts that predict many different 

event types (e.g., supercell, disorganized storm cells, MCS) that occur in different environments 

will provide more insight into forecast sensitivities. 
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