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Abstract: Remote sensing has been a promising approach to extracting distributed 

evapotranspiration (ET) information at varying spatial and temporal scales. Performances 

of several vegetation index (VI) based and remotely sensed surface energy balance 

(RSEB) models were evaluated to identify simple and accurate models and apply them to 

study ET variations from field to regional scales. A simple VI model using a single 

Landsat image to estimate annual ET was evaluated and successfully captured inter-

annual riparian ET variations along a section of the Colorado River, U.S. The study 

showed the applicability of a simple and accurate approach for annual ET estimation with 

fewer data and resources. A modeling framework was developed to derive daily time 

series of ET maps using a RSEB model, satellite imagery, and ground-based weather 

data. The daily and annual ET maps obtained from the modeling framework successfully 

captured spatial and temporal ET variations across Oklahoma, U.S. The model also 

identified the regions that are more susceptible to droughts. Finally, five RSEB models 

were evaluated for their performance in estimating daily ET of winter wheat under 

variable grazing and tillage practices in central Oklahoma. The surface energy balance 

algorithm for land (SEBAL) had the best agreement whit eddy covariance estimates. The 
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CHAPTER I 
 

 

INTRODUCTION 

 

1. Background  

Evapotranspiration (ET) is the process of water vapor transfer from earth’s surface to the 

atmosphere. It includes evaporation from the soil surface, waterbodies and canopy interception, and 

transpiration from vegetation through their stomata. ET is the largest outgoing component of the 

earth’s surface water and energy balance, accounting for about 60% of precipitation (Brutsaert, 2005; 

Seckler, Amarasinghe, Molden, de Silva & Barker, 1998) and about 50% of energy (Kiehl & 

Trenberth, 1997; Wild et al., 2013) absorbed at the surface at global scale. Therefore, ET is an 

important variable to understand earth’s climate system, which is largely regulated by the water and 

energy fluxes. Several applications in hydrology, agriculture, water resources management, 

meteorology, and ecology require ET information at varying spatial and temporal scales. In 

agricultural sector, ET information has been applied for irrigation scheduling (Allen, Pereira, Raes, & 

Smith, 1998), water right regulation and planning (Allen, Tasumi, Morse, & Trezza, 2005), assessing 

irrigation and drainage performance (Droogers & Bastiaanssen, 2002; Khand, Kjaersgaard, Hay, & 

Jia, 2017; Taghvaeian, Neale, Osterberg, Sritharan, & Watts, 2018), yield analysis (Cai & Sharma, 

2010), assessing crop water productivity (Zwart & Bastiaanssen, 2004) and monitoring agricultural 

droughts (Anderson et al., 2011; Moorhead et al., 2015). 



2 

Other studies have used ET for a range of applications such as assessing vulnerability of 

forest to fire and drought (Nepstad et al., 2004), estimating groundwater recharge (Healy, 2010), 

capturing the progress of vegetation and wetland restoration (Oberg & Melesss, 2006), estimating 

ecosystem water balances (Sun et al., 2011), and for climate studies capturing water feedbacks 

associated with seasonal cycles and soil moisture deficit at regional scales (Vinukollu, Wood, 

Ferguson, & Fisher, 2011). While ET information have been used across multitude of applications, 

accurate quantification of ET is often challenging because it exhibits high spatial and temporal 

variability (Kustas & Norman, 1996) involving complex interactions between climate (e.g., solar 

radiation, air temperature, wind speed, humidity) and environmental variables (e.g., soil properties, 

crop characteristics, soil moisture, management practices).  

  The governing factors of evaporation have been explored since early 19th century (Dalton, 

1802). In the mid-1990s, Penman (1948) developed an evaporation equation based on available 

energy and turbulent flux theory for surfaces under full water supply conditions. Later, Monteith 

(1964) integrated surface (or canopy) resistance component in the Penman’s evaporation equation to 

obtain the well-known Penman-Monteith equation. During the same period, other empirical 

evaporation estimation approaches were introduced (Blaney & Criddle, 1950; Thornthwaite, 1948). 

The crop specific ET estimation method was advanced by Allen et al. (1998), as a product of 

reference ET and crop coefficient, to account for the reduction in potential crop ET due to limiting 

factors such as water and salinity stresses. Field-based instrumentation approaches such as weighing 

lysimeters (Daamen, Simmonds, Wallace, Laryea, & Sivakumar, 1993), sap flow (Smith & Allen, 

1993), Bowen ratio energy balance (Denmead, Dunin, Wong, & Greenwood, 1993), and eddy 

covariance systems (Baldocchi, Hincks, & Meyers, 1998) have been also used for quantifying ET.   

All of these ET estimation and measurement approaches provide information at a point scale 

or a few meters to a few hundred meters area and do not account for the spatial variability of ET at 

heterogeneous landcovers (Gowda et al., 2008). Remote sensing has proven to be a viable alternative 



3 

for capturing ET variability at varying temporal and spatial scales (Allen et al., 2011; Bastiaanssen et 

al., 2005; Glenn, Huete, Nagler, Hirschboeck, & Brown, 2007). Remote sensing methods for 

estimating ET can be broadly categorized into two major groups: empirical approaches based on 

vegetation indices (VI); and, physical process-based remotely sensed surface energy balance (RSEB) 

method. Both approaches have been applied to estimate ET from agricultural and natural ecosystems. 

The commonly used VI includes normalized difference vegetation index (NDVI; Tucker et al., 1979), 

enhanced vegetation index (EVI; Huete et al., 2002), and soil adjusted vegetation index (SAVI; 

Huete, 1988). These approaches are based on plant-specific VI relationship with biomass and can 

account the transpiration from plants, which is heavily dependent on foliage density. However, the 

direct evaporation from the soil or from leaves following the rainfall events is not incorporated in this 

approach. Further, VIs cannot quickly detect the plant stress due to limited soil moisture, diseases or 

pests, until the suboptimal condition last long enough to affect biomass (Nagler et al., 2005). Thus, VI 

approaches are more suitable to estimate ET for a longer time – over a crop cycle or annual cycle for 

natural vegetation (Glenn et al., 2007).  

In contrast, RSEB method integrates the land surface temperature, which can reflect the 

impact of short-term environmental stressors on ET (Anderson, Norman, Mecikalski, Otkin, & 

Kustas, 2007; Bartholic, Namkem, & Wiegand, 1972; Kustas & Norman, 1999), and can be applied 

over diverse climatic conditions and ecosystems (Gowda et al., 2008). Numerous RSEB models have 

been proposed in the past. Some of the commonly used ones includes: Two-Source Energy Balance 

(TSEB) (Norman, Kustas, & Humes, 1995), Surface Energy Balance Algorithm for Land (SEBAL) 

(Bastiaanssen, Menenti, Feddes, & Holtslag, 1998), Simplified Surface Energy Balance Index (S-

SEBI) (Roerink, Su, & Menenti, 2000), Surface Energy Balance System (SEBS) (Su, 2002), Mapping 

Evapotranspiration at high Resolution with Internalized Calibration (METRIC) (Allen, Tasumi, & 

Trezza, 2007), Atmosphere-Land Exchange Inverse (ALEXI) (Anderson et al., 2007), and 

Operational Simplified Surface Energy Balance (SSEBop) (Senay et al., 2013). Some of the RSEB 
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models such as SEBAL and METRIC use a manual selection of extreme pixels to compute ET, 

whereas, other models do not require human intervention. In general, the RSEB models are data 

intensive and often require multi-step processing compared to the VI approaches. The selection of an 

ET estimation method could vary depending on intended applications of ET information, availability 

of input data, and the resources (time, money, expertise) available. 

  

2. Statement of the Problem  

Simple VI approaches may be adequate when the study is focused over a specific land cover 

(Glenn et al., 2007), but would fail over larger and more complex terrains. The RSEB models provide 

an advantage over VI approaches with potential application for regional and global scale. However, 

these models are not widely applied for the operational decision makings and need further research 

and development (Amatya et al., 2016). In addition, although RSEB models have been able to provide 

accurate ET information for several applications (Liou & Kar, 2014), the performance evaluation of 

these models shows that they tend to provide good estimates under specific land cover or climatic 

conditions (Bhattarai, Shaw, Quackenbush, Im, & Niraula, 2016; Timmermans, Kustas, Anderson, & 

French, 2007). Further evaluation of these models under several hydroclimatic conditions, crop types, 

and management practices could help to identify a suitable model for a specific area and to assess the 

strength and weakness of these models for improvements. Another limitation of remote sensing 

methods is the need of several cloud-free satellite images to cover the study period. Thus, exploring 

the methods that use smaller number of satellite imagery, fewer input data, simpler formulation, and 

with larger temporal coverage could provide a major advancement for obtaining distributed ET 

information.  

 

3. Goals and Objectives 
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The main goal of this research is to assess and identify suitable VI and RSEB approaches for ET 

estimation across agricultural and natural vegetation by addressing the shortcomings mentioned above 

and to develop a framework to provide distributed ET information at a regional scale. The specific 

objectives are:  

1. To investigate the performance of a simple VI-based approach (single-satellite-scene) that 

requires minimal input data to estimate annual ET from riparian vegetation; 

2. To develop an ET modeling framework to produce daily ET maps using a RSEB model and 

to analyze the applicability of this framework to study ET variations across Oklahoma; and, 

3. To evaluate the performances of several RSEB models in capturing ET dynamics in response 

to variable tillage, grazing, and crop-rotation practices.    
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CHAPTER II 
 

 

MAPPING ANNUAL RIPARIAN WATER USE BASED ON THE SINGLE-SATELLITE-

SCENE APPROACH 

 

Abstract: The accurate estimation of water use by groundwater-dependent riparian vegetation is 

of great importance to sustainable water resource management in arid/semi-arid regions. Remote 

sensing methods can be effective in this regard, as they capture the inherent spatial variability in 

riparian ecosystems. The single-satellite-scene (SSS) method uses a derivation of the Normalized 

Difference Vegetation Index (NDVI) from a single space-borne image during the peak growing 

season and minimal ground-based meteorological data to estimate the annual riparian water use 

on a distributed basis. This method was applied to a riparian ecosystem dominated by tamarisk 

along a section of the lower Colorado River in southern California. The results were compared 

against the estimates of a previously validated remotely sensed energy balance model for the year 

2008 at two different spatial scales. A pixel-wide comparison showed good correlation (R2 = 

0.86), with a mean residual error of less than 104 mm∙year−1 (18%). This error reduced to less 

than 95 mm∙year−1 (15%) when larger areas were used in comparisons. In addition, the accuracy 

improved significantly when areas with no and low vegetation cover were excluded from the 

analysis. The SSS method was then applied to estimate the riparian water use for a 23-year period 

(1988–2010). The average annual water use over this period was 748 mm∙year−1 for the entire 

study area, with large spatial variability depending on vegetation density. Comparisons with two 
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independent water use estimates showed significant differences. The MODIS evapotranspiration 

product (MOD16) was 82% smaller, and the crop-coefficient approach employed by the US 

Bureau of Reclamation was 96% larger, than that from the SSS method on average. 

 

1. Introduction 

Large extents of the Colorado River floodplain are currently occupied by invasive 

species, such as tamarisk or salt cedar (Tamarix spp.) and Russian olive (Eleagnus angustifolia), 

that have replaced the native species, such as cottonwood (Populus spp.) and willow (Salix spp.). 

Tamarisk, in particular, has invaded millions of hectares of riparian floodplain in western U.S. 

(Owens & Moore, 2007), particularly in the dry southwestern states of Arizona, New Mexico, 

Texas, Nevada, Utah, and California (Zavaleta, 2000). Glenn and Nagler (2005) reported that 

tamarisk spreads at rates exceeding 20 km∙year−1, becoming a dominant plant on the banks of 

rivers, streams, and ponds from eastern Oklahoma to northwestern California, and from western 

Montana to Sonora, Mexico. In addition, tamarisk has a high tolerance to salinity (Glenn et al., 

1998; Vandersande, Glenn, & Walworth, 2001) and drought (Cleverly, Smith, Sala, & Devitt, 

1997). The negative impacts of tamarisk invasion include, but are not limited to: displacing native 

vegetation (Glenn & Nagler, 2005; Stromberg, 1998), increasing fire frequency (Busch & Smith, 

1993), degrading wildlife habitat (Bailey, Schweitzer, & Whitham, 2001), reducing biodiversity 

(Harms & Hiebert, 2006), and increasing water consumption (Di Tomaso, 1998; Zavaleta, 2000). 

The impact of tamarisk on water availability has been the subject of numerous studies, such as the 

one by Zavaleta (2000), who reported that the financial burden of high tamarisk water use on 

water supplies, hydropower generation, and flood control could reach $285 million U.S. dollars 

per year. Other researchers have found lower rates of tamarisk water use (Murray, Nagler, 

Morino, & Glenn, 2009; Nagler et al., 2009a; Taghvaeian, Neale, Osterberg, Sritharan, & Watts, 
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2014). Since millions of dollars are spent annually on removal and restoration projects, it is 

crucial for decision-makers and water managers, especially in water-scarce areas, to have access 

to tools that can provide accurate estimates of water use by invasive species with reasonable 

financial, computational, and human resources requirements.  

Among the different methods available for quantifying riparian water use, remote sensing 

approaches have the advantage of capturing the high spatial variability common in riparian 

ecosystems. Existing methods for the remote sensing of riparian water use or evapotranspiration 

(ET) can be broadly grouped into two major categories: empirical approaches based on vegetation 

indices (VI); and physically based, remotely sensed energy balance (RSEB) models. The RSEB 

models rely on land surface temperature derived from the thermal bands of air- and space-borne 

imagery to compute ET as the residual of the surface energy balance. On the other hand, VI 

approaches are based on the plant-specific relationships between VIs and ET. An advantage of 

the RSEB models is their potential to detect variations in ET caused by short-term environmental 

stressors (due to the use of land surface temperature), while VI approaches may fail to do so 

unless the suboptimal conditions last long enough to affect biomass (Nagler et al., 2005a, 2009a). 

Another advantage is that RSEB models can be applied over diverse climatic conditions and 

ecosystems (Scott et al., 2008). In contrast, VI approaches may not be easily transferred to 

geographic areas different from the one where they were developed (Murray et al., 2009). On the 

other hand, RSEB models require numerous inputs (Gowda et al., 2008) and depend on a 

complex iterative process to accurately compute surface energy balance components (Irmak et al., 

2012; Kalma, McVIcar, & McCabe, 2008; Morton et al., 2013). The iterative process requires 

selection of end-member pixels with a manual checkup by an experienced operator to ensure the 

calibration accuracy (Morton et al., 2013), and to minimize the constraints associated with 

directional radiometric surface temperature or vegetation fraction cover (Gowda et al., 2008). An 

additional challenge in validating the RSEB models with ground-based measurements is the 
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closure of energy balance, which may not be achieved (Gowda et al., 2008; Kalma et al., 2008). 

The VI approaches benefit from significantly smaller computational costs to run. As a result, they 

are usually preferred in studying inter-annual variations of ET across a region with similar hydro-

climatic conditions, providing similar levels of uncertainty compared to RSEB models (Glenn, 

Huete, Nagler, Hirschboeck, & Brown, 2007; Gonzalez-Dugo et al., 2009; Kalma et al., 2008). 

  The RSEB models have been implemented before to estimate riparian ET at the Middle 

Rio Grande Basin in New Mexico (Bawazir, Samani, Bleiweiss, Skaggs, & Schmugge, 2009), 

along the North Plate River in the Nebraska Panhandle (Kamble et al., 2013), over the Lower 

Virgin River in Nevada (Liebert, Huntington, Morton, Sueki, & Acharya, 2016), and along the 

Lower Colorado River in southern California (Taghvaeian et al., 2014). Multiple VI-based 

approaches have also been developed and applied to estimate riparian ET. For example, the 

Modified Soil Adjusted Vegetation Index (MSAVI: Qi, Chehbouni, Huete, Kerr, & Sorooshian, 

1994) has been empirically related to ET from groundwater-dependent riparian vegetation 

(Nicholas, 2000). The Enhanced Vegetation Index (EVI: Huete et al., 2002) derived from 

Moderate Resolution Imaging Spectroradiometer (MODIS) has been also used in several previous 

studies (Murray et al., 2009; Nagler et al., 2005a; Scott et al., 2008; Taghvaeian et al., 2014; 

Tillman, Callegary, Nagler, & Glenn, 2012). Nagler et al. (2005a, 2005b) developed a method to 

compute riparian ET using MODIS-EVI and maximum daily air temperature (Tair), and reported 

an error of ±25% when compared with flux tower observations from three western U.S. river 

corridors. This empirical relationship was modified by Scott et al. (2008), showing the potential 

application of MODIS land-surface temperature instead of ground-based maximum Tair. Later, 

Nagler et al. (2009b) developed a new linear relation between scaled EVI from MODIS and the 

Blaney–Criddle reference ET (ETo-BC: Brouwer, 1986). This new model had reduced error (within 

20%) when applied to riparian and agricultural areas along the Lower Colorado River in the 

southwestern U.S. In a more recent study, Nagler, Glenn, Nguyen, Scott, and Doody (2013) 
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replaced ETo-BC with the Penman–Monteith ETo (Allen, Clemmens, Burt, Solomon, & 

O’Halloran, 2005), and developed an exponential relation. This newer method had a better 

performance in predicting ET, with an error of 10% when compared with flux tower and water 

balance data from riparian zones and irrigation districts at multiple locations from western U.S., 

Spain, and Australia (Nagler et al., 2013).  

Among all VI approaches developed in the past, the single-satellite-scene (SSS) method 

developed by (Groeneveld and Baugh, 2007a; Groeneveld, Baugh, Sanderson, & Cooper, 2007b) 

has the least computational costs, as it requires only one image during peak vegetation growth to 

map the annual riparian ET. The SSS method relies on Normalized Difference Vegetation Index 

(NDVI) estimates, scaled from zero to one using two NDVI extremes representing zero and full-

cover vegetation obtained from within the selected scene. The scaled NDVI was found to be 

highly correlated with riparian ET estimates from flux towers in California, Colorado, and New 

Mexico, with errors between −45 and 40 mm∙year−1 (less than 13%) (Groeneveld et al., 2007b). 

Similar errors were reported when Landsat derived EVI was used in the SSS method (Beamer, 

Huntington, Morton, & Pohll, 2013). This method has been also applied to study ET and 

groundwater dynamics (Glenn, Jarchow, & Waugh, 2016; Groeneveld, 2008), a cost/benefit 

analysis of tamarisk control (Barz, Watson, Kanney, Roberts, & Groeneveld, 2009), the 

sustainability of vegetation, hydrology, and habitat value (Mexicano et al., 2013), tamarisk leaf 

beetles’ impact on water availability (Nagler et al., 2012), and impacts of Colorado River delta 

pulse flow on riparian water use (Jarchow, Nagler, & Glenn, 2017). To the best of our 

knowledge, no independent study has assessed the performance of the SSS method in the past. 

Considering the potential of this method, evaluating its performance under variable hydro-

ecological conditions would be beneficial to water managers and other potential users. The main 

objective of this study was to evaluate the performance of the SSS method using previously 

validated RSEB results, and to apply it over a 23-year period (1988–2010) to investigate inter-
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annual riparian ET variations across parts of the Cibola National Wildlife Refuge in the Lower 

Colorado River Basin. 

  

2. Materials and Methods 

2.1 Study Area  

The study area included parts of the Cibola National Wildlife Refuge (CNWR), which 

occupies about 70 square kilometers in the floodplains of the lower Colorado River, about 150 

river km downstream of the Parker Dam. The CNWR was established in 1964 by the U.S. Bureau 

of Reclamation (USBR) to serve as a refuge and breeding area for migratory birds and wildlife, 

and to mitigate flooding by the Colorado River. The average annual rainfall is less than 100 mm 

in this low-desert environment (Nagler et al., 2009a). Most of the rainfall occurs in July and 

August with occasional winter rains. The average air temperature ranges from 4.0 °C in 

December to 38.0 °C in August (Nagler et al., 2009a). More than 90% of CNWR is covered by 

tamarisk (Tamarix spp.), followed by mesquite (Prosopis velutina), cottonwood, willow, 

arrowweed (Pluchea sericea), qualibush, and fourwing saltbush (Nagler et al., 2009a; Taghvaeian 

et al., 2014). 

The location of the study area within the Colorado River basin is presented in Figure 2.1 

(left panel). The new and old Colorado River channels are specified in the satellite image (right 

panel) along with six subareas used in analyzing ET signals in this study. The old river channel 

serves as the border between California (CA) and Arizona (AZ). Subareas 2, 3, and 4 are located 

in AZ, while subareas 1, 5, and 6 are in CA. Since 1964, when most of the river flow was 

diverted to the new channel, the old channel has been carrying agricultural return flows from the 

Palo Verde Irrigation District (PVID) upstream of CNWR, as well as a small, regulated flow to 

support the wildlife. 
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Figure 2.1. Location of the study area in the Lower Colorado River Basin (left). The six subareas 

in the right panel indicate parts of the Cibola National Wildlife Refuge (CNWF) included in this 

study. 

2.2 Single-Satellite-Scene (SSS) Approach 

The Single-Satellite-Scene (SSS) is a simple method of estimating annual riparian ET 

based on just one mid-summer satellite image and some ground-based meteorological data 

(Groeneveld et al., 2007a, 2007b). In this method, the annual riparian ET is a function of NDVI*, 

reference ET (ETo), and precipitation as:  

ET = (ETo - Precipitation) × NDVI* + Precipitation (2.1) 

where NDVI* is a scaled NDVI, computed using the relationship presented in [36] as: 

NDVI* = (NDVI - NDVIo) / (NDVIs - NDVIo)  (2.2) 



19 

where NDVIo is NDVI at zero vegetation cover and NDVIs is NDVI at saturation, both extracted 

from the same satellite scene to be used in ET estimation. The conversion of NDVI to NDVI* is 

performed to remove the variations inherent in this parameter caused by atmospheric, soil, and 

vegetation factors (Groeneveld et al., 2007a; Huete & Liu, 1994; Liu & Huete, 1995), making it 

possible to use NDVI estimated by different sensors at different times and locations. The 

selection of NDVIo and NDVIs is a critical step. These parameters are estimated by developing a 

cumulative frequency distribution graph of NDVI values for the selected scene (Groeneveld et al., 

2007a). At the low end of this graph, the relationship (NDVI vs. cumulative pixel count) becomes 

asymptotic and choosing an appropriate NDVIo becomes subjective (Groeneveld et al., 2007a). 

To minimize such subjectivity, a line is fitted to the near-linear lower portion of the NDVI 

cumulative frequency distribution and the x-intercept of the fitted line is taken as NDVIo. NDVIs 

is chosen from a region with the maximum possible NDVI (e.g., irrigated crops with full-cover or 

thick riparian forests). Further details of this method are presented in Groeneveld et al. (2007a) 

and Groeneveld et al. (2007b). The main assumptions of the SSS method are the presence of 

shallow groundwater, arid/semi-arid environments, and similar conditions before and after 

(homeostasis) the mid-summer satellite image (Groeneveld et al., 2007b). 

A major question for potential users of the SSS method could be the selection of the 

single scene to be used in the analysis. The sensitivity of estimated annual riparian ET to the 

selected image was investigated by applying the method to three Landsat images from mid-

summer 2008. The three NDVI maps used in this study were processed by the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2012), which applies the 

Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer models to 

minimize the radiometric errors. The performance of the SSS method was then assessed on a 

distributed basis through comparing its result with that obtained from a previously validated 

remotely sensed energy balance (RSEB) model. This RSEB model was a modified Surface 
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Energy Balance Algorithm for Land (SEBAL) model (Taghvaeian et al., 2014). SEBAL has been 

extensively validated before under variable land covers and hydro-climatic settings (Bastiaanssen 

et al., 1998; Bastiaanssen et al., 2005). The land surface energy balance components considered 

in SEBAL are presented in equation 2.3, assuming energy consumed in photosynthesis and 

energy stored in the canopy are insignificant. 

LE = Rn - G – H  (2.3) 

where LE is the latent heat flux, and is estimated as a residual of net radiation (Rn), soil heat flux 

(G), and sensible heat flux (H). The LE estimated based on equation 2.3 represents the 

instantaneous flux at the time of satellite overpass. Extrapolation of this instantaneous flux to 

daily ET in SEBAL is accomplished by using evaporative fraction (EF), estimated as the ratio of 

instantaneous LE to instantaneous available energy (Rn - G). Instantaneous EF is assumed to be 

the same as the 24-h (daily) EF, representing the ratio of daily LE to Rn (Alllen, Tasumi, & 

Trezza, 2007; Bastiaanssen et al., 1998). Details on the computational steps of SEBAL are 

presented in Bastiaanssen et al. (1998).  

Taghvaeian et al. (2014) applied the modified SEBAL model over the study area 

(CNWR), using 21 Landsat TM images acquired in 2008. In the modified SEBAL application at 

CNWR, an adjustment coefficient was adopted to account for the canopy temperature 

contamination caused by shadows of tall riparian vegetation (Taghvaeian et al., 2014). The results 

were compared against the estimates of two independent methods: the Bowen ratio flux tower and 

the White method, which is based on the diurnal fluctuations of groundwater (White, 1932). On a 

seasonal basis, ET estimates of the modified SEBAL were within 2% and 10% of those from the 

White method and Bowen ratio, respectively (Taghvaeian et al., 2014). This difference was less 

than the expected error of each method, giving confidence to the accuracy of this RSEB model. 
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Hence, the modified SEBAL was used as the reference to evaluate the performance of the SSS 

method. 

Comparisons were made at two scales: pixel-based and area-wide. At the pixel-based 

scale, ET values were extracted for each method using a randomly scattered collection of 1571 

circular sampling features with a diameter of 120 m. At the area-wide scale, comparisons were 

made for the six subareas demonstrated in Figure 2.1, with average and total areas of 5.12 and 

30.74 km2, respectively. After obtaining the ET data from each method, the residual and percent 

error were calculated as: 

Residual error = SSS-ET - RSEB-ET  (2.4) 

Percent error = 
Residual Error

RSEB−ET
 × 100  (2.5) 

where SSS-ET is the ET estimated by the SSS method, and RSEB-ET is the ET from the 

modified SEBAL model. 

2.3 Long-Term Estimates 

After evaluating the performance of the SSS method, long-term ET estimates were 

obtained over a 23-year period from 1988 to 2010. The meteorological data were obtained from 

the Palo Verde weather station, which is operated and maintained by the California Irrigation 

Management Information System (CIMIS). This weather station is located about 4.5 km north of 

the study area, and is the closest weather station in the region. A mid-summer Landsat image was 

selected in each study year and used for computing NDVIo, NDVIs, and NDVI*, which was 

integrated with annual grass-based reference ET (ETo) (ASCE-EWRI, 2005) and precipitation to 

map annual riparian ET based on equation 2.1. The average annual ET was estimated for the 

subareas in CA (1, 5, 6) and the subareas in AZ (2, 3, 4), and was compared with two independent 

ET estimates: the remotely sensed MODIS ET product known as MOD16 (Mu, Heinsch, Zhao, & 
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Running, 2007; Mu, Zhao, & Running, 2011) averaged over the same subareas, and the crop-

coefficient approach implemented by USBR in the Lower Colorado River Accounting System 

(LCRAS) and reported for the CA and AZ sections of the study area. 

The MOD16-ET was downloaded from the University of Montana’s Numerical 

Terradynamic Simulation Group data archive (http://www.ntsg.umt.edu). The MOD16 global ET 

dataset is primarily based on the Penman–Montheith equation (Monteith, 1965; Mu et al., 2007, 

2011), and has a spatial resolution of 1.0 km. Although this resolution was much coarser than the 

resolution of the SSS estimates used in this study, MOD16 was included in the comparison 

because it is available to water managers at no cost. A comparison of the MOD16-ET and the 

SSS-ET was made only for the 11-year period of 2000 to 2010 due to the unavailability of 

MOD16 before the year 2000. 

In the USBR LCRAS approach, daily riparian ET is estimated as a product of ETo and 

crop coefficients (Kc) and summed to obtain the annual ET. Climatological data from the 

California Irrigation Management Information System (CIMIS) and the Arizona Meteorological 

Network (AZMET) are used for these ET estimations. The details on ET estimation methods and 

procedures, as well as annual riparian ET from the CA and AZ areas of CNWR, are presented in 

the LCRAS reports (USBR, 2007, 2014). For comparison with SSS estimation, LCRAS-ET 

estimates in acre-feet were divided by the CNWR area at each state (provided in the same report) 

to obtain the annual ET in units of water depth. The spatial extent of the CA and AZ regions in 

the LCRAS and SSS methods were not exactly the same, but similar enough to warrant a 

comparison between the two approaches. The LCRAS reports are available from 1995 to 2011. 

However, to be consistent with MOD16 data, a LCRAS–SSS comparison was conducted for the 

period from 2000 to 2010. 
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3. Results and Discussion 

3.1 SSS Evaluation 

The SSS method requires only a single satellite image during peak riparian growth to 

estimate ET. Figure 2.2 demonstrates the evolution of NDVI, averaged over the study area, for all 

cloud-free Landsat TM5 scenes acquired in 2008. The average NDVI varied from 0.22 in March 

to 0.49 in September. The maximum NDVI over the CNWR occurred during summer, with the 

highest values of 0.49, 0.47, and 0.49 observed on day of year (DOY) 195 (13 July), 227 (14 

August), and 259 (15 September), respectively. To examine the sensitivity of the SSS method to 

the selection of a Landsat scene, each of these three dates was used separately in estimation of the 

annual ET. 

 

Figure 2.2. Average Normalized Difference Vegetation Index (NDVI) of the study area for all 

cloud-free Landsat scenes in 2008. DOY, day of year.  

The selection of NDVIo and NDVIs for each of the three scenes was facilitated by 

plotting cumulative NDVI frequency graphs with the x-intercept (NDVIo) of the fitted line to the 

near-linear lower portion of the cumulative frequency graph and the maximum possible NDVI 
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(NDVIs). The NDVIo was 0.07, 0.05, and 0.07, for DOYs 195, 227, and 259, respectively, and the 

NDVIs was 0.90, 0.84, and 0.94 for the same DOYs (Figure 2.3). This information was used in 

mapping NDVI* and eventually the SSS-ET. The annual SSS-ET averaged over the entire study 

area was 677, 676, and 658 mm∙year−1 for DOYs 195, 227, and 259, respectively. The average 

annual RSEB-ET was smaller, at 571 mm∙year−1. 

 

Figure 2.3. Cumulative NDVI frequency distribution for DOYs 195 (a); 227 (b); and 259 (c). 

For the pixel-based evaluation, both the SSS-ET and RSEB-ET estimates were extracted 

using 1571 randomly located samples. In general, the pixel-based comparison showed good 

correlation between the two methods, with a coefficient of determination (R2) larger than 0.86. 

The residual error varied between 84 and 104 mm∙year−1 for the three DOYs (Table 2.1). This 

translated to percent errors from 14.3 to 17.7%. Figure 2.4 demonstrates a scatterplot of ET 

estimates and how they populate around the 1:1 line. Two distinct areas can be observed in the 

scatterplot with higher densities of points. The majority of points in the lower-left cluster in 

Figure 2.4 were from subareas 1, 2, and 3, where vegetation was sparse, with average NDVI less 

than 0.31 for all three DOYs. The overestimation of the SSS-ET over the low-vegetation areas 

(lower-left cluster in Figure 2.4) can be attributed to the inclusion/exclusion of surface 

temperature in the RSEB model and SSS method. Due to the exclusion of surface temperature, 

the reduced ET from the low vegetation and bare soil is not fully accounted for by the SSS 

method. However, a minimum NDVI threshold can be set based on local vegetation and weather 

data to minimize the errors while applying the SSS method under low-vegetation conditions. The 
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higher ET cluster mostly contained samples from subareas 4, 5, and 6, with average NDVI 

ranging from 0.37 to 0.55. 

 

Figure 2.4. Comparison of annual single-satellite-scene evapotranspiration (SSS-ET) and 

remotely sensed energy balance evapotranspiration (RSEB-ET) for randomly selected samples 

within the CNWR. 

Table 2.1. Summary of pixel-based and area-wide comparison of SSS-ET and RSEB-ET 

Scale DOY 
SSS-ET 

(mm∙year−1) 

RSEB-ET 

(mm∙year−1) 
R2 

Residual 

Error 

(mm∙year−1) 

Percent 

Error 

Pixel-

based 

195 693 589 0.86 104 17.7 

227 692 589 0.87 103 17.5 

259 673 589 0.86 84 14.3 

Area-

wide 

195 732 637 0.97 95 14.9 

227 727 637 0.96 90 14.1 

259 708 637 0.98 71 11.1 

R2 = coefficient of determination 

The evaluation of SSS performance was also conducted at the area-wide scale, where a 

comparison of the SSS-ET and RSEB-ET was made on all DOYs (195, 227, 259) over the six 
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subareas within the CNWR. The reason behind performing an area-wide comparison was that the 

SSS method will most likely be implemented by water managers to obtain estimates over larger 

areas and to use the information in making decisions, as opposed to research applications that 

may require more details. Similar to the pixel-based comparison, the area-wide results had good 

agreement (R2 ≥0.96) with RSEB-ET estimates (Figure 2.5). The residual errors were smaller at 

95, 90, and 71 mm∙year−1 for DOYs 195, 227, and 259, respectively. The percent errors were 

14.9, 14.1, and 11.1% for the same DOYs, respectively. 

 

Figure 2.5. (a-c) Comparison of annual SSS-ET and RSEB-ET for six subareas within the 

CNWR. 

The percent errors found in this study for the pixel-based (<17.7%) and area-wide 

(<14.9%) comparisons are promising, since they are within typical ranges of errors in the 

measurements of other water balance components in riparian ecosystems. These errors are also 

close to the lower end of errors of VI approaches, which typically range from 15% to 40% (Allen, 

Pereira, Howell, & Jensen, 2011) depending on the knowledge and experience of an operator. 

Based on this metric, the estimated error of the SSS method is acceptable considering the fact that 

it requires minimal operator knowledge and that the entire process can be automated using 

computer programming. 

The area-wide comparison revealed a potential relationship between the magnitude of 

SSS-ET error and the vegetation density. The greatest difference between the two methods was 
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206 mm∙year−1 from subarea 3 for DOY 227. This subarea had the smallest average NDVI of 

0.18. In contrast, the smallest difference in annual ET estimates was 4 mm∙year−1 from subarea 5 

for DOY 259. The average NDVI was 0.54 over this subarea. To further investigate this 

relationship, the differences between the SSS-ET and RSEB-ET were plotted against the average 

NDVI of each subarea (Figure 2.6). The differences were greatest for NDVI values smaller than 

0.25, but were reduced significantly and remained insensitive beyond this NDVI threshold. 

Subareas 1 and 3 had average NDVI values less than 0.25 for all three DOYs. Removing these 

subareas from the analysis resulted in a significant reduction in average residual errors to 58, 42, 

and 20 mm∙year−1 for DOYs 195, 227, and 259, respectively. The percent errors were also 

smaller, at 6.8%, 5.0%, and 2.4% for the same DOYs, respectively. The inverse relationship 

between the SSS-ET error and NDVI is expected, as this method was developed and calibrated to 

estimate the water use of riparian species. Thus, it underperforms over bare soil and low-

vegetation areas. 

 

Figure 2.6. Evapotranspiration (ET) differences (SSS-RSEB) versus NDVI for the three DOYs in 

2008. Each point represents a subarea within the CNWR.  
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No significant differences in SSS-ET estimates were found among the three selected 

scenes, and all performed satisfactorily based on acceptable errors for VI approaches. The 

Landsat image of 17 August (DOY 227) was selected for the annual ET estimation for the 

validation year 2008. Previous studies (Allander, Smith, & Johnson, 2009; Gooeneveld et al., 

2007b; Smith, Laczniak, Moreo, & Welborn, 2007) have suggested June to August as a 

representative period to characterize peak biomass and water use of riparian vegetation in western 

U.S. A visual representation of annual ET estimated by SSS, RSEB, and MOD16 for the year 

2008 is shown in Figure 2.7. Missing pixels in the MOD16 map represent barren or sparsely 

vegetated areas where ET values are not estimated. 

 

Figure 2.7. Annual ET based on SSS, RSEB, and MOD16 for the year 2008. 

3.2 Inter-Annual Variation of Water Use 

Annual riparian water use was mapped over the study area for a 23-year period from 

1988 to 2010, after the selection of an appropriate mid-summer Landsat image. For most of the 

studied years (18 out of 23), the selected scene was from August, and the remaining scenes were 

from July and September. The procedure explained in previous sections was followed for 

estimating NDVIo and NDVIs. NDVIo had a range of 0.06 to 0.10, and NDVIs varied between 

0.83 and 1.0 (Table 2.2). Comparatively, lower variation (0.04) was observed in NDVIo than in 

NDVIs (0.17). The reference ET (ETo) values were between 1644 mm∙year−1 to 2015 mm∙year−1, 
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with an average of 1785 mm∙year−1 (Table 2.2). Annual precipitation varied from 1 mm∙year−1 to 

177 mm∙year−1, with an average of 66 mm∙year−1 during the study period. 

Table 2.2. Day of year (DOY) of selected Landsat images, their respective NDVIo and NDVIs, 

reference ET (ETo), precipitation, and estimated annual SSS-ET for 23 years of study. 

Year DOY NDVIo NDVIs ETo (mm∙year−1) 

Precipitation 

(mm∙year−1) 

SSS-ET 

(mm∙year−1) 

1988 220 0.08 1.00 1836 129 762 

1989 238 0.07 0.92 1752 39 762 

1990 241 0.06 0.94 1855 53 854 

1991 244 0.07 0.88 1746 78 793 

1992 215 0.08 0.83 1790 161 769 

1993 217 0.09 1.00 1960 126 783 

1994 236 0.08 0.89 2015 40 915 

1995 223 0.09 0.88 1866 144 826 

1996 226 0.08 0.95 1868 53 898 

1997 212 0.08 0.93 1732 80 787 

1998 215 0.09 0.96 1738 89 762 

1999 218 0.08 1.00 1793 55 816 

2000 221 0.07 0.87 1748 6 750 

2001 223 0.07 0.87 1754 80 851 

2002 226 0.08 0.87 1805 1 746 

2003 229 0.07 0.92 1709 177 849 

2004 248 0.08 1.00 1696 80 677 

2005 218 0.10 0.90 1668 72 754 
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2006 237 0.07 0.91 1768 10 NA 

2007 224 0.08 0.91 1774 10 508 

2008 227 0.05 0.84 1815 1 598 

2009 229 0.09 0.88 1728 19 524 

2010 232 0.10 0.91 1644 19 483 

NA = Not applicable due to wildfire 

The long-term (1988–2010) average annual ET over the CNWR was 748 mm∙year−1, with 

the smallest value observed in 2010 at 483 mm∙year−1 and the largest in 1994 at 915 mm∙year−1. 

This annual average SSS-ET (748 mm∙year−1) was about 42% of long-term average ETo. The 

annual average precipitation was 66 mm∙year−1, only about 9% of the average SSS-ET during the 

study period. The annual ET for the year 2006 was excluded due to the violation of a major 

assumption in the SSS method. Based on this assumption, the conditions before and after the 

single satellite scene should be similar (homeostasis conditions) (Groeneveld et al., 2007b), 

which was not fulfilled for the year 2006 due to a massive wildfire. This wildfire, which occurred 

in mid-July 2006, can also explain the considerable (33%) reduction in riparian water use after 

2006. The average values of SSS-ET were 754 and 508 mm∙year−1 before and after 2006, 

respectively. Another factor that may have played a role is the release of tamarisk leaf beetles 

(Diaorhabda carinulata), which started in 2001 in some riparian forests upstream of the study 

area (Nagler et al., 2012). Pre- and post-beetle studies in the western U.S. have reported a 50% 

reduction in daily midsummer ET (Nagler et al., 2014) and a 16% (204 mm∙year−1) reduction on 

an annual basis (Liebert et al., 2016). A graphical representation of inter-annual variations of 

SSS-ET during the study years and the impact of the 2006 wildfire on tamarisk ET over the 

CNWR is shown in Figure 2.8. 
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Figure 2.8. Annual ET from the CNWR obtained by the SSS method from 1988 to 2010.  

The average annual tamarisk ET was 748 mm∙year−1. If the entire tamarisk monoculture 

area of 182 × 106 m2 (18,200 ha) (Nagler et al., 2009a) in the lower Colorado River Basin is 

similar to that of the CNWR, the annual water loss would be about 136.3 × 106 m3 (110,514 acre-

foot). This amount of water consumed by tamarisk would be less than 1.5% of the long-term 
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(1988–2010) average annual flow (1.12 × 1010 m3) of the Colorado River measured at Lee’s 

Ferry, AZ and about 18% of the long-term (1991–2010) average annual water use (620,835 acre-

foot: LADWP, 2015) by the city of Los Angeles, CA. 

The annual riparian water use estimates in this study were within the range of ET rates 

reported by previous studies. Murray et al. (2009) reported annual ET from 608 to 1005 

mm∙year−1, with an average of 825 mm∙year−1 from the entire CNWR during the study period 

2000 to 2008 based on MODIS EVI. However, Nagler, et al. (2008) found an average annual ET 

of 1110 mm∙year−1 from the CNWR for the period of 2000 to 2006. This is significantly larger 

(44%) than the results of this study, with a maximum annual ET of 851 mm∙year−1 during the 

same period. Potential reasons for the observed differences include, but are not limited to, 

differences in implemented methods, possible differences in the weather parameters used in 

analysis (weather station selected), and differences in space-born imagery. The studies by 

(Murray et al., 2009; Nagler et al., 2008) applied MODIS imagery with a 250 m ground 

resolution, which can potentially include non-target or multiple land covers within a pixel 

(Murray et al., 2009), whereas the present study used finer resolution (30 m) Landsat imagery. 

3.3 Comparison with MOD16 and LCRAS 

The comparison between SSS, MOD16, and LCRAS water use estimates was conducted 

for 10 years from 2000 to 2010, excluding the year 2006 due to the wildfire that occurred in the 

study area. The annual ET estimates from MOD16 were significantly smaller than those based on 

the SSS method, with a minimum and maximum of 92 and 187 mm∙year−1 during the comparison 

period, respectively. On average, the MOD16 estimate of riparian water use over the study area 

was 122 mm∙year−1 (excluding 2006), which is about 82% smaller than the average SSS-ET for 

the same period (674 mm∙year−1). This difference could be due to the MOD12 land cover product 

(Friedl et al., 2002; Friedl et al., 2010) used in estimating MOD16, which has a coarse spatial 
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resolution (500 m) and classifies most of the CNWR as croplands with some open/closed 

shrublands. In addition, MOD16 has a spatial resolution of 1 km, much coarser than the 30 m 

resolution of Landsat imagery used in the SSS. This introduces a significant contamination from 

nearby desert areas. The finer spatial resolution of Landsat is achieved at the cost of coarser 

temporal resolution. Nevertheless, most riparian corridors in western U.S. are narrow in extent 

and do not experience rapid temporal variations. This makes Landsat a better option than MODIS 

when it comes to studying spatially heterogeneous riparian water consumption. The 

underestimation of MOD16 has been reported for croplands in previous studies (Biggs, Marshall, 

& Messina, 216; Ruhoff et al., 2013; Velpuri, Senay, Singh, Bohms, & Verdin, 2013). The 

MOD16-ET from the CA portion was 34% greater than the AZ areas. Similar to the MOD16-ET, 

the SSS method estimated greater (24%) ET from CA. 

In contrast to MOD16, the annual riparian ET estimates reported in LCRAS were greater 

than the SSS-ET estimates (Figure 2.9). The annual ET based on LCRAS varied between 787 

mm∙year−1 (2010) and 1530 mm∙year−1 (2001), with an average of 1320 mm∙year−1 during the 

comparison period (excluding 2006). This was 96% larger than the average SSS-ET (674 

mm∙year−1) during the same period. The difference between the LCRAS and SSS estimates of ET 

was greater than 600 mm∙year−1 for the years from 2000 to 2009. However, the difference was 

significantly reduced to 304 mm∙year−1 in 2010. For the year 2010, LCRAS reported an annual 

ET of 787 mm∙year−1, which was about 56% lower compared to the 2009 ET of 1231 mm∙year−1. 

This abrupt decrease can be attributed to an adjustment made in 2010 on crop coefficients (Kc), 

which reduced riparian ET by 30 to 40% (USBR, 2014). In the original LCRAS method, the 

maximum Kc (mid-season stage) was 1.15 (Jensen, 2003), which was reduced to 0.76 

(Westenberg, Harper, & DeMeo, 2006) in the 2010 estimation. The updated Kc values in LCRAS 

are consistent with those reported by (Taghvaeian et al., 2014) over dense tamarisk stands within 
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the CNWR based on the RSEB model and the groundwater-based method. The overestimation 

error of LCRAS has been also reported in Murray et al. (2009) and Nagler et al. (2009a). 

 

Figure 2.9. Comparison of annual ET over the California (CA) (solid) and Arizona (AZ) (dotted) 

regions of the CNWR. SSS-ET was not estimated for 2006 due to wildfire. 

While both of the remotely estimated ET products (SSS and MOD16) were able to 

capture ET differences between CA and AZ, the Kc-based LCRAS was not able to account for 

those ET variations. After the wildfire of 2006, the 4-year (2007–2010) average SSS-ET from the 

CA portion was 60% greater compared to the AZ portion. This difference was 10% on average 

during the 4 years before the wildfire (2002–2005). However, the Kc-based LCRAS reported 

only 1% greater ET from CA after the 2006 wildfire, and no difference before the wildfire. 

3.4 Impact of Wildfire on Water Use 

The massive wildfire of 2006 in the CNWR had a significant impact on riparian water 

use. The 4-year average annual SSS-ET after the wildfire (2007–2010) was 528 mm∙year−1, 30% 

smaller than the average (797 mm∙year−1) for the 4-year period before the fire (2002–2005). The 

wildfire had a greater impact in the northern parts of the CNWR (subareas 1, 2, and 3) as shown 

in Figure 2.10. The largest ET reduction was observed in subarea 3, where the ET reduced from 
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738 mm∙year−1 in 2005 to 227 mm∙year−1 in 2007 (69% reduction). Similarly, the annual ET over 

subareas 1 and 2 was reduced by 64% and 43%, respectively. Subareas 4, 5, and 6 showed a small 

reduction (3%), no change, and a small increase (6%) in water use between 2005 and 2007, 

respectively (Figure 2.11). This indicates that ET reductions in the northern subareas can be 

mainly attributed to the wildfire and not water stress caused by declines in groundwater levels. 

The potential impact of variable atmospheric demand was also ruled out, since ETo was 1774 

mm∙year−1 in 2007, only 6% larger compared to ETo in 2005 (1668 mm∙year−1). The average 4-

year ETo before and after the wildfire was 1720 mm∙year−1 and 1740 mm∙year−1, respectively. The 

lower ET rates over the northern parts of the CNWR due to wildfire of 2006 were also reported 

by Nagler et al. (2009a). 
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Figure 2.10. Landsat false color composite, NDVI, and annual ET before (top) and after (bottom) 

the wildfire of 2006. 

 

Figure 2.11. Annual SSS-ET for each CNWR subarea before and after the wildfire of 2006. 

Another wildfire occurred in the southern part of the CNWR in August 2011. Lewis 

(2016) used a groundwater-based method to investigate changes in riparian water use pre- and 

post-fire at three locations in southern CNWR, and found both increases and decreases in ET after 

the wildfire of 2011. They reported that, after the wildfire, riparian ET decreased by 59% and 

31% at two of the locations and increased by 8% at the third location. The study found 

groundwater depth was an important factor for defining ET rates before wildfire, whereas it was 

not a limiting factor after the wildfire, and that frequent burns in the CNWR most likely reduce 

annual ET rates. A wildfire’s impact on riparian water use may vary depending on multiple 

factors (Devitt et al., 1998), including water availability, canopy development after wildfire, and 

advection of energy along riparian zones. In the short-term, riparian water use could increase by 

the abundance of sprouting shoots (Busch et al., 1993). In the long-term, however, changes in 

forest composition by shifts in tree-age structure may reduce the forest leaf area compared to a 

pre-fire condition, ultimately decreasing the ET rates (Stormberg & Rychener, 2010). 
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4. Conclusions 

The single-satellite-scene (SSS) approach was applied to estimate the annual riparian 

water use over parts of the Cibola National Wildlife Refuge (CNWR) using Landsat TM5 

imagery. The performance of the SSS method was assessed through comparing its results with 

those of a previously validated remotely sensed energy balance model at two distributed scales. 

At the pixel-based scale (comparisons for 1571 samples), the mean residual error was less than 

104 mm∙year−1 (18%). The area-wide comparison was similar, showing an error of less than 95 

mm∙year−1 (15%). The errors reduced by more than a half to less than 58 mm∙year−1 (7%) after 

excluding the areas with no to low vegetation from the analysis. These errors are in agreement 

with the reported errors of similar remote sensing approaches. In addition, they are within the 

error ranges of other major components of water balance for riparian ecosystems. Moreover, the 

results were not sensitive to the single image selected for analysis as long as that image was 

acquired during the peak vegetation cover. Hence, the SSS method can be used effectively to map 

annual water use over heterogeneous riparian forests.  

The method was then applied to estimate riparian ET over a 23-year period from 1988 to 

2010. The average annual ET varied from 483 to 915 mm∙year−1 during the study period, with an 

average of 748 mm∙year−1. A comparison with two readily available, independent sources of 

water use information revealed significant differences. The ET from the MODIS product 

(MOD16) was on average 82% smaller than the result of the SSS method. On the other hand, the 

U.S. Bureau of Reclamation’s Lower Colorado River Accounting System estimates were almost 

double that of the ET from the SSS method. Considering the simplicity and accuracy of the SSS 

approach, it has great potential to be the method of choice in estimating riparian ET and making 

informed water management decisions, especially in arid/semi-arid regions. 
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Despite significant advantages, the SSS method has three main limitations that must be 

considered before any application. As this method relies on remotely sensed NDVI and 

meteorological information, it may not able to account for factors that are not accounted for by 

NDVI. For example, water stresses that limit the ET rates are not instantly reflected in NDVI 

(Nagler et al., 2005a, 2009a). The second limitation is that this method requires homeostasis 

conditions, and thus will not provide accurate estimates if disturbances with significant impact on 

water use (e.g., wildfires, floods, and disease outbreaks) occur during part of the study year. 

Finally, the SSS method cannot account for direct evaporation from shallow groundwater. 
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CHAPTER III 
 

 

A MODELING FRAMEWORK FOR DERIVING DAILY TIME SERIES OF 

EVAPOTRANSPIRATION MAPS USING A SURFACE ENERGY BALANCE MODEL 

 

Abstract: Surface energy balance models have been one of the most widely used approaches to 

estimate spatially distributed evapotranspiration (ET) at varying landscape scales. However, more 

research is required to develop and test an operational framework that can address all challenges 

related to processing and gap filling of non-continuous satellite data to generate time series of ET 

at regional scale. In this study, an automated modeling framework was developed to construct 

daily time series of ET maps using MODIS imagery and the Surface Energy Balance System 

model. The ET estimates generated from this modeling framework were validated against 

observations of three eddy-covariance towers in Oklahoma, United States during a two-year 

period at each site. The modeling framework overestimated ET but captured its spatial and 

temporal variability. The overall performance was good with mean bias errors less than 30 W m-2 

and root mean square errors less than 50 W m-2. The model was then applied for a 14-year period 

(2001–2014) to study ET variations across Oklahoma. The statewide annual ET varied from 841 

to 1100 mm yr-1, with an average of 994 mm yr-1. The results were also analyzed to estimate the 

ratio of estimated ET to reference ET, which is an indicator of water scarcity. The potential 

applications and challenges of the ET modeling framework are discussed and the future direction 

for the improvement and development of similar automated approaches are highlighted.
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1. Introduction 

 Time series of remotely sensed evapotranspiration (ET) maps have extensive applications 

in agricultural, hydrological, and environmental studies as they capture the spatiotemporal 

variability of vegetation consumptive use from field to continental scales. For example, spatial 

ET data have been used in agriculture sector for water right regulation, planning, and monitoring 

(Allen, Tasumi, Morse, & Trezza, 2005), assessing irrigation and drainage performance 

(Droogers & Bastiaanssen, 2002; Santos, Lorite, Tasumi, Allen, & Fereres, 2010; Taghvaeian, 

Neale, Osterberg, Sritharan, & Watts, 2018), closing water balance at irrigation scheme levels 

(Taghvaeian & Neale, 2011), and managing agricultural water resources (Anderson et al., 2012; 

Bastiaanssen et al., 2005; Folhes, Rennó, & Soares, 2009). Recent studies have shown that 

remotely sensed ET can be used effectively for monitoring agricultural droughts (Anderson et al., 

2011; Yao, Liang, Qin, & Wang, 2010; Zhang & Mu, 2016) with the future potential of 

improving the performance of ET-integrated agricultural drought indices (Moorhead et al., 2015). 

ET maps have been also used in assessing crop water productivity (Ahmad, Turral, & Nazeer, 

2009; Li et al., 2008; Teixeira, Bastiaanssen, Ahmad, & Bos, 2009) and crop yield analysis 

(Anderson et al., 2016; Cai & Sharma, 2010). Numerous studies have demonstrated the use of 

time series ET maps for ecological applications, such as capturing the progress of vegetation and 

wetland restoration (Oberg & Melesss, 2006), assessing the vulnerability of forest to fire and 

drought (Nepstad et al., 2004), and accounting water use from riparian vegetation and invasive 

species (Bawazir, Samani, Bleiweiss, Skaggs, & Schmugge, 2009; Khand, Taghvaeian, & 

Hassan-Esfahani, 2017; Nagler, Glenn, Nguyen, Scott, & Doody, 2013; Taghvaeian, Neale, 

Osterberg, Sritharan, & Watts, 2014). Remote sensing based ET products have also been applied 

in improving the performances of hydrological models (Chen, Chen, Ju, & Geng, 2005; Herman 

et al., 2018; Immerzeel, Gaur, & Zwart, 2008) and for climate studies to capture water feedbacks 
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associated with seasonal cycles and soil moisture deficit at regional scales (Vinukollu, Wood, 

Ferguson, & Fischer, 2011). 

Among different approaches developed for mapping ET, the remotely sensed surface 

energy balance (RSEB) approach has been widely used to acquire distributed ET at varying 

geographical scales (Gowda et al., 2007, Kalma, McVicar, & McCabe, 2008; Li et al., 2009; Liou 

& Kar, 2014). Numerous RSEB models have been proposed, including but not limited to Surface 

Energy Balance Index (SEBI) (Menenti & Choudhary, 1993), Two-Source Energy Balance 

(TSEB) (Norman & Becker, 1995; Kustas & Norman, 1999), Surface Energy Balance Algorithm 

for Land (SEBAL) (Bastiaanssen, Menenti, Feddes & Holtslag, 1998), Simplified Surface Energy 

Balance Index (S-SEBI) (Roerink, Su, & Menenti, 2000), Surface Energy Balance System 

(SEBS) (Su, 2002), Mapping Evapotranspiration at high Resolution with Internalized Calibration 

(METRIC) (Allen, Tasumi & Trezza, 2007), Atmosphere-Land Exchange Inverse (ALEXI) 

(Anderson, Norman, Mecikalski, Otkin, & Kustas, 2007), Regional ET Estimation Model 

(REEM) (Saman & Bawzir, 2007), Remote Sensing Evapotranspiration model (ReSET) 

(Elhaddad & Garcia, 2008), Operational Simplified Surface Energy Balance (SSEBop) (Senay et 

al., 2013), and Hybrid Dual-Source Scheme and Surface Energy Framework-Based 

Evapotranspiration Model (HTEM) (Yang & Shang, 2013). Some of these models such as 

SEBAL and METRIC use manual selection of extreme pixels to compute sensible heat flux, 

which could result in variations in estimated ET (Timmermans, Kustas, Anderson & French, 

2007) and may add uncertainty and errors based on the user’s experience (Allen, Pereira, Howell 

& Jensen, 2011). Other models such as TSEB, SEBS, and SSEBop do not require human 

intervention so that the associated uncertainties are minimized. The selection of the RSEB model 

and the quality of input data are likely key factors to determine the accuracy of modeled ET 

(Fisher, Whittaker, & Malhi, 2011). 
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Developing time series of ET maps requires complex, multi-step analyses to deal with 

issues associated with pre-processing of remote sensing data and post-processing of resulting ET 

products. The choice of the RSEB model and satellite data could vary depending on intended 

applications of ET maps, availability and requirements of input data, and availability of resources 

(time, money, and expertise) to run the model. In general, the RSEB-based ET estimation process 

can be divided into six steps: i) collection of remotely sensed and ground-based input data, ii) 

quality assessment of collected datasets and preparation of all necessary inputs for the selected 

RSEB model, iii) running the RSEB model (including all modules and algorithms) to obtain the 

instantaneous ET at the time of satellite overpass, iv) extrapolation of instantaneous ET to daily 

estimates, v) filling the gaps due to cloud coverage over a portion of the map, and vi) 

interpolation of daily ET between image acquisition dates to obtain ET for longer time scales. 

The first two steps are performed to ensure the quality of input data, a critical 

requirement for any remote sensing data analysis. A thorough QA/QC procedure for weather data 

as presented in Allen (1996) and ASCE-EWRI (2005) is necessary as the accuracy of final ET 

product depends on the quality of these datasets. The quality assurance of weather dataset is more 

critical in case of RSEB models as they are sensitive to weather parameters. For example, 

Webster, Ramp, and Kingsford (2016) found air temperature and wind speed as influential inputs 

for HTEM and SEBS models, whereas, S-SEBI was less sensitive to meteorological inputs. 

For small-scale applications with similar climatic conditions, weather data from a single 

ground station are usually used as input in most RSEB models. However, for regional 

applications with varying climatic conditions, gridded datasets are required. Several recent 

studies (Biggs, Marshall, & Messina, 2016; Senay, Friedrichs, Singh & Velpuri, 2016) have 

applied gridded weather datasets for mapping daily ET due to the ease of their application for 

regional studies. However, users need to confirm the integrity of the datasets before processing 

the RSEB model. A study (Moorhead et al., 2015) found overestimation of reference ET due to 
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biases in air temperature and wind speed in the widely used reanalysis data – North American 

Land Data Assimilation System when compared to reference ET estimates from the Texas High 

Plains ET Network (Porter et al., 2012). The study recommended using weather station datasets 

within agricultural settings, whenever possible, for precise applications of time series ET 

information such as in irrigation scheduling. A few studies have explored the applicability of 

developing distributed weather data from the point measurements of a network of ground stations 

to account for the spatial variability of weather parameters (Elhaddad & Garcia, 2011). 

The third step is to run the selected RSEB model, which involves several sub-models to 

solve the RSEB equation as shown in equation 3.1.  

LE = Rn − G − H   (3.1) 

where LE is the latent heat flux, Rn is net radiation, G is soil heat flux, and H is sensible heat 

flux. All parameters are in units of W m-2. Based on the sensible heat flux computation approach, 

RSEB models can be categorized into single-source and two-source models. The sensible heat 

fluxes for soil and vegetation are computed separately in two-source models, while a single value 

for each pixel is computed in single-source models. Each approach has its own advantages and 

caveats. In theory, two-source models could provide more accurate ET over sparse vegetation as 

they close the energy balance separately for soil and vegetation. Timmermans, Kustas, Anderson 

and French (2007) found better accuracy from a TSEB model compared to SEBS across sparsely 

vegetated grasslands in the Southern Great Plains. Kustas, Humes, Norman, and Moran (1996) 

reported that two-source performed better in sub-humid tallgrass prairie, whereas greater 

accuracy was found for a single-source model in semiarid rangeland. 

 As mentioned before, some single-source models require an additional step in running the 

model, which involves the manual selection of extreme hot and cold pixels by user. To remove 

the subjectivity in the selection of extreme pixels in SEBAL, Long and Singh (2012) introduced a 

trapezoidal approach to define boundary conditions for the selection of these pixels based on the 
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relationship between vegetation fraction and surface temperature. Automated approaches have 

been proposed in Allen et al. (2013), Bhattarai, Quackenbush, Im, and Shaw (2017), and 

Kjaersgaard, Allen, Garcia, Kramber, and Trezza (2009) to replace human intervention. 

Alternative approaches are also applied by Trezza, Allen, and Tasumi (2013) and Khand, 

Numata, Kjaersgaard, and Vourlitis (2017) to estimate ET from a cold pixel as a function 

normalized difference vegetation index when an ideal cold pixel is difficult to find within a 

satellite image. 

The fourth step is to extrapolate the instantaneous ET to daily values. Evaporative 

fraction (Λ) (Brutsaert and Sugita, 1992; Bastiaanssen et al., 1998; Su, 2002; Kustas et al., 1994) 

and ETrF (fraction of reference ET) (Allen et al., 2007; Terezza, 2002) are the common methods 

to obtain daily ET. Both of these methods assume the instantaneous Λ or ETrF is the same as for 

the daily Λ or ETrF. However, a study (Gentine, Entekhabi, Chehouni, Boulet, & Duchemin, 

2007) reported that this assumption was not satisfied when the fractional vegetation cover was 

close to a maximum. In the Texas Panhandle, Colaizzi, Evitt, Howell, and Tolk (2006) found a 

better agreement of ETrF method for cropland and Λ method for bare soil when compared with 

lysimeter measurements. Chávez, Beale, Prueger, and Kustas (2008) evaluated six extrapolation 

approaches on corn and soybean fields and found smaller error from Λ method when compared 

with eddy covariance measurements. Another study (Delogu et al., 2012) found Λ method 

advantageous during several water stress events, whereas ETrF approach performed better under 

advective conditions (Allen et al., 2007; Trezza, 2002), which could be significant in arid 

environments. 

The fifth step is to fill the gaps caused by cloud coverage over a portion of the daily ET 

maps. One approach is to apply linear interpolation of nearest reliable values within an image 

(Senay et al., 2016). This method is suitable when the nearest pixels are under the same land 

cover as that of missing pixels. However, it may not be appropriate when the area with data gap is 
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large and encompasses heterogeneous terrain. Another approach includes the use of time-

weighted interpolation of preceding and following images (Kjaersgaard et al., 2010). This method 

adjusts the vegetation development using normalized difference vegetation index (NDVI) across 

vegetated areas and residual soil moisture differences for the areas with bare soil surface. 

Anderson et al. (2007) applied the available water for the root zone and soil surface layer to fill 

the gaps. The available water for the clear and cloudy days are used to estimate the daily water 

depletion due to ET from the root zone and soil surface layer, and the fraction of available water 

is used to fill the gaps (Anderson et al., 2007). 

The final step is the interpolation of daily ET maps between consecutive satellite 

overpass dates to construct daily ET time series. Several Interpolation and data-fusion approaches 

have been implemented for this purpose. A common approach is to apply linear interpolation of Λ 

or ETrF images between consecutive satellite overpass dates (Singh, Liu, Tieszen, Suyker, & 

Verma, 2012). Another approach is to apply a curvilinear function using more than two Λ or 

ETrF images. For example, at least one cloud-free image for each month was used for spline 

interpolation within METRIC to obtain monthly and seasonal ET (Allen et al., 2007; Khand, 

Kjaersgaard, Hay, & Jia, 2017; Kjaersgaard, Allen, & Irmak, 2011). Singh, Liu, Tieszen, Suyker, 

and Verma (2012) evaluated the performance of several interpolation methods and found no 

significant difference in seasonal ET among cubic spline, fixed ETrF, and linear interpolations. A 

backward-average iterative approach has been also proposed to estimate ET in between Landsat 

overpass dates (Dhungel, Allen, Trezza, & Robinson, 2016). 

While numerous studies have been conducted to address the issues related to specific 

steps involved in generating remotely sensed ET time series based on SEB models, only a few 

have focused on developing automated modeling frameworks, covering all hierarchical steps 

mentioned above. Such modeling frameworks, if validated, could have significant value in 

providing end-users with daily ET time series for practical applications in improving land and 
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water management. Furthermore, a comprehensive and detailed documentation of the entire 

process of deriving daily ET maps at regional scales could be a useful resource to potential end-

users who currently need to understand and select appropriate approaches for each of the six steps 

from many sources. Developing and documenting a comprehensive framework that generates 

complete ET time series from raw input data enables potential users outside the research 

community to utilize this framework for making more informed decisions and policies. The main 

goal of this study was to develop and document a modeling framework to construct daily time 

series of ET maps for the entire state of Oklahoma, USA. The performance of this framework was 

also evaluated by comparing its results with ET estimates of flux towers in Oklahoma. Finally, 

long-term variations in ET across Oklahoma were investigated. 

 

2. Materials and Methods 

2.1 Study Area 

 The study area covered the entire state of Oklahoma, USA, with an area of about 181,200 

km2 (Figure 3.1). Oklahoma Climate is classified as humid subtropical at most parts of the state 

and cold semi-arid at far west (Kottek, Grieser, Beck, Rudolf, & Rubel, 2006). The state has nine 

climate divisions (CD) delineated based on precipitation and temperature gradients. The normal 

(1981-2010) annual precipitation is about 925 mm yr-1, with significant spatial variation across 

CDs. While southeast (CD9) receives the largest amount of 1,301 mm yr-1 on average, the 

Panhandle (CD1) holds the smallest record of 520 mm yr-1. The normal annual mean air 

temperature is 15.6 ºC, with July and January being the hottest and coldest months, respectively. 

The southcentral (CD8) has the highest mean annual temperature of 16.7 ºC, whereas the 

Panhandle region has the lowest value at 13.6 ºC. The top two land cover categories in Oklahoma 

are grassland (36.4%) and pastureland (11.3%) (Homer et al., 2015). The elevation varies 
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between 88 m above mean sea level at the southeast border with Arkansas and 1516 m at far-west 

border with New Mexico. 

 

Figure 3.1. Map of Oklahoma and its nine climate divisions. The locations of Mesonet stations 

and flux towers are also specified. 

2.2 Modeling Framework 

 The modeling framework was designed to use daily images from the MODIS Terra 

satellite as input data. The single-source SEBS model (Su, 2002) was selected as the SEB model 

for estimating energy fluxes. The main reason for the selection of SEBS over other SEB models 

was its applicability over large areas with heterogeneous surfaces (Liou & Kar, 2014). In 

addition, this model does not require intermittent human intervention, which facilitates the 

automation process. A graphical illustration of the proposed framework is shown in Figure 3.2, 

followed by detailed explanation of specific approaches selected for each of the six computational 

steps mentioned before. 
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Figure 3.2. A descriptive flow diagram of the daily time series of evapotranspiration (ET) 

modeling framework 

2.2.1 Collation of Input Data 

 The daily surface reflectance (MOD09GA, Vermote & Wolfe, 2015), daily land surface 

temperature (LST) and emissivity (MDO11A1, Wan, Hook, & Hulley, 2015) data were 

downloaded from the US Geological Survey Land Processes Distributed Active Archive Center 
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(https://lpdaac.usgs.gov/). Ground-based meteorological data included hourly air temperature, 

relative humidity, incoming shortwave solar radiation, wind speed and atmospheric pressure. 

These data were obtained from the Oklahoma Mesonet (Brock et al., 2015; McPherson et al., 

2007) weather stations installed across the state (Figure 3.1). The Oklahoma Mesonet is a world-

class environmental monitoring network (https://www.mesonet.org/) consisting of 120 active 

stations with at least one station at each of the 77 counties in Oklahoma. 

2.2.2 Quality Assessment and Preparation of Inputs 

 The initial quality assessment of suitable MODIS images was based on cloud coverage. 

Images with less than 10% cloud cover were selected for further processing. Hence, any day 

when the cloud coverage was above 10% was assumed as a day with missing remotely sensed 

data. When the period of missing imagery was more than 10 consecutive days, images with less 

than 15% cloud cover were also included as acceptable quality. Then, cloud-covered pixels in 

each selected image were masked by applying a threshold of LST smaller than 250 K. These 

steps were repeated for all selected reflectance, LST and emissivity images. Since a single 

MODIS image tile was not sufficient to cover the entire state of Oklahoma, two image tiles 

(h09v05 and h10v05) were merged. 

The quality assessment of each weather variables was performed as described in Allen (1996) and 

ASCE-EWRI (2005). The solar radiation was checked against the upper limit under clear sky 

condition. Daily average temperature was compared against the average extreme temperatures to 

ensure the difference between them was within the acceptable range (2 ºC) (ASCE-EWRI, 2005). 

The quality of wind speed was maintained by considering gust factor threshold of more than 1. 

Relative humidity data were considered when the values were less than 100%. The missing 

weather data were filled by an average value of that parameter from four nearest Mesonet 

stations. Hourly alfalfa reference ET (ETr) (ASCE-EWRI, 2005) was then computed at each 

https://lpdaac.usgs.gov/
https://www.mesonet.org/
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station during the study period using the Bushland ET Calculator (Gowda, Ennis, Howell, Marek, 

& Porter, 2012). Daily ETr estimates were obtained by summing 24-hour ETr values. To 

incorporate the weather variability between the weather stations, spatial input data were generated 

by applying inverse distance weighted interpolation for all weather variables, including hourly 

and daily ETr. As mentioned in the previous section, the Oklahoma Mesonet is a densely 

distributed weather station network, with about 1,510 km2 per station. This is a significantly finer 

spatial resolution than the 5,000 km2 per station value recommended by the World 

Meteorological Organization for evaporation stations on interior plains (WMO, 2008). Hence, the 

adjustment of meteorological parameters with elevation was not considered during interpolation. 

2.2.3 The RSEB Model 

 As mentioned before, the Surface Energy Balance System (SEBS) model of Su (2002) was 

selected as the SEB model in the present study. However, other SEB models such as those 

reviewed in the Introduction section can be used in this step based on user resources, availability 

of input data and desired accuracy. Like other SEB models, SEBS estimates the latent heat flux 

(LE) as a residual of the land surface energy balance as shown in equation 3.1. The Rn was 

calculated by applying the surface radiation balance equation: 

Rn = (1 − α)Rs + εs εa σ TA
4 − εs σ (3.2) 

where RS is incoming shortwave solar radiation, α is surface albedo (dimensionless) estimated 

following (Linag, 2001), εa and εs are emissivities (dimensionless) of atmosphere and surface, 

estimated following (Brutsaert, 1982) and (Liang, 2005), respectively. σ is the Stefan-Boltzmann 

constant (5.67 × 10-8 W m-2 K-4), TA is air temperature (K) and Ts is the surface temperature (K), 

estimated as a ratio of brightness temperature to εs
-0.25. The G was estimated by applying the 

relationship developed by [35]: 

G

Rn
=

(Ts − 273.15)

100 α
(c1 α + c2 α2)(1 − 0.98 NDVI4)  (3.3) 
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where c1 and c2 are calibration coefficients and were considered as 0.24 and 0.46, respectively. 

 SEBS uses similarity theories to estimate H: the bulk atmospheric similarity (BAS) 

theory for atmospheric boundary layer (ABL) scaling (Brutsaert, 1999) and the Monin-Obukhov 

similarity (MOS) for atmospheric surface layer (ASL) scaling (Monin, & Obukhov, 1954). The 

ABL is a part of the atmosphere that is directly impacted by earth’s surface and responds to 

surface forcing with a timescale of an hour or less, whereas ASL is usually the bottom 10% of 

ABL (Su, 2002). During unstable conditions, an appropriate atmospheric (BAS or MOS) scaling 

is determined as presented in Brutsaert (1982). For stable conditions, functions given by Brutsaert 

(1982) and Beljaars and Holtslag (1991) are used for ABL and ASL scaling, respectively. In the 

ASL, the similarity relationships for mean wind speed (u) and the difference between potential 

temperature profiles are derived using the MOS theory as: 

u =
u∗

k
[ln (

z − d0

z0m
) − ψm (

z − d0

L
) + ψm (

z0m

L
)]  (3.4) 

θ0 − θa =
H

k u∗ ρa Cp
[ln (

z−d0

z0h
) − ψh (

z−d0

L
) + ψh (

z0h

L
)]  (3.5) 

L = −
ρaCpu∗

3θv

kgH
  (3.6) 

where u* is the friction velocity (m s-1), k is the von Karman’s constant (0.41), z is the height 

above the surface (m), d0 is the zero plane displacement height (m), z0m is the roughness height 

for momentum transfer (m) estimated using an empirical relationship with NDVI (Gupta, Prasad, 

& Vijayan, 2002), z0h is roughness height for heat transfer (m), θ0 is the potential air temperature 

at surface (K), θa is the potential air temperature at z (K), θv is the potential virtual temperature 

near the surface (K), ρa is the air density (kg m−3), Cp is the specific heat capacity of air (1,013 J 

kg−1 K−1) and g is the gravitational acceleration (9.8 m s-2). ψm and ψh are the stability correction 

functions for momentum and sensible heat transfer, respectively and L is the Monin–Obukhov 

length (m). 
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 The scalar roughness height for heat transfer, z0h, is an important parameter to regulate 

the heat transfer between the land surface and the atmosphere and estimated as: 

z0h =
z0m

exp(kB−1)
   (3.7) 

where kB-1 is the Stanton number, a dimensionless heat transfer coefficient, estimated using a 

formulation from Su, Schmugge, Kustas, and Massman (2001) as: 

kB−1 =
kCd

4Ct 
u∗

u(h)
 (1−e

−nec
2 )

fc
2 + 2 fc fs

k(
u∗

u(h)
)(

z0m
h

)

Ct
∗ + kBs

−1 fs
2  (3.8) 

 The heat transfer coefficient in equation 3.8 was formulated to account for three different 

land surface conditions. The first term follows the Choudhury and Monteith (Choudhary & 

Monteith, 1988) model for full canopy, the second term accounts for the interaction between the 

vegetation and soil surface and the third term is for the bare soil surface given (Brutsaert, 1982). 

In this equation, fc and fs are canopy and soil fraction coverage, respectively, Cd is the drag 

coefficient for the foliage with a value of 0.2; Ct and Ct
* are the heat transfer coefficients of the 

leaf and soil, respectively. The value of Ct was taken as 0.03 and Ct
* was computed from Prandtl 

number and roughness Reynolds number (Re*) (Su, 2002). The u(h) in equation 3.8 is the 

horizontal wind speed at the canopy top (m s-1) and h is canopy height (m) estimated as a ratio of 

z0m to 0.136 (Su, 2002). The nec (within-canopy wind speed profile extinction coefficient) and 

Brutsaert term kBS
-1 (for bare soil surface) were calculated as:   

nec =
Cd LAI

2u∗
2

u(h)2

    (3.9) 

kBs
−1 =  2.46(Re∗)0.25 − ln(7.4)  (3.10) 

where LAI is the leaf area index and estimated as a functional relation with NDVI (Gowda et al., 

2007). 

SEBS requires estimation of H for dry (Hdry) and wet (Hwet) boundary conditions. Under 

dry conditions, the Hdry is equivalent to the available energy (Rn − G) as there is no evaporation 
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due to the limitation of water availability and Hwet is calculated using the Penman-Monteith 

equation (Monteith, 1965, 1981). After computing H for boundary conditions, the relative 

evaporative fraction (Λr), the evaporative fraction (Λ) and ET are estimated. The steps and 

explanation are detailed in Su (2002). 

2.2.4 Extrapolation of Instantaneous to Daily ET 

 The SEBS uses the Λ approach for scaling instantaneous ET to daily ET, assuming the Λ 

at the time of overpass is equal to the daily Λ. In this study, a modified approach was 

implemented where either Λ or ETrF is used for extrapolation of each pixel based on its NDVI 

value as shown in equation 3.15. 

Λr = 1 −
H−Hwet

Hdry−Hwet
   (3.11) 

Λ =
Λr(Rn−G−Hwet)

Rn−G
     (3.12) 

ETinst = (
Rn−H−G

λ
)  x 3600    (3.13) 

ETrF =
ETinst

ETr
      (3.14) 

ET24 = [Λ × ETr24 for NDVI < 0.30] or [ETrF × ETr24 for NDVI ≥ 0.30]                (3.15) 

where ETinst and ETr are the actual and reference ET at the hour of satellite overpass (mm hr-1), λ 

is the latent heat of vaporization (~2.45 MJ kg-1). ETr24 is the daily reference ET and ET24 is the 

daily actual ET (mm d-1). This modification was made to take the advantage of Λ and ETrF 

approach to better represent the water limited and energy limited conditions, respectively. The 

ETrF was estimated as a ratio of ET obtained from Step 3 to reference ET at the satellite overpass 

time (MODIS Terra satellite overpass local time around 10:30 AM). 

2.2.5 Filling the Gaps Due to Cloud Cover 

 Data-gaps due to cloud cover is a common issue in all space-borne satellites. In this 

study, crop coefficient (Kc) was used to fill the data-gaps. The Kc maps were created for all 
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images as the ratio of ET24 and respective daily ETr. To fill the Kc of a cloud covered (missing) 

pixel for a specific image date, the Kc value of the same pixel from the preceding image date was 

first used. If the same pixel was missing in the preceding image, the Kc value was obtained from 

the next Kc map. The latter step was repeated if the next day was missing until a date was found 

with a Kc value estimated for the same pixel. This interpolation method was suitable to fill the 

data gaps as most of the selected images were less than 10 days apart during the crop growing 

season (April to October). 

2.2.6 ET for Longer Periods 

 After filling the data gaps in daily ET maps due to clouds, the ET maps needed to be 

created for days when the cloud coverage was more than 10% (or 15%) and thus no input 

imagery was available. To fill these gaps, the average Kc of the preceding and following images 

closest to the image date of interest was used. The Kc images were then multiplied with 

respective daily ETr to obtain complete time series of daily ET maps. Construction of weekly, 

monthly, seasonal and annual ET maps was accomplished by summation of daily ET maps over 

corresponding periods. The processing of all steps was executed in Python language within the 

ArcGIS environment. 

2.3 Comparison with Flux Tower Data 

 Daily ET time series from the modeling framework explained above were compared 

against observed ET from three flux towers: US-ARc (35.5464 N, 98.0400 W), US-ARb (35.5497 

N, 98.0402 W) (Fischer et al., 2012) and US-AR2 (36.6358 N, 99.5975 W) (Billesbach et al., 

2015). The US-ARc and US-ARb were located close to each other over native grassland in 

central Oklahoma. The US-AR2 was located over planted switchgrass in northwest Oklahoma. 

The 30-minute flux data from the towers were downloaded from the AmeriFlux data archive 

(http://ameriflux.lbl.gov/) for years 2005 and 2006 for US-ARc and US-ARb sites and years 2010 

http://ameriflux.lbl.gov/
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and 2011 for the US-AR2 site. The flux tower data usually have the issue with energy balance 

closure, therefore, the closure error was corrected by maintaining constant Bowen-ratio following 

(Twine et al., 2000). The corrected 30-min data were averaged to obtain daily data. The daily 

observed ET was then compared with the average values of 3 × 3 pixels (~1390 m x 1390 m) 

from the SEBS ET at the flux tower locations. It should be noted that the three flux towers used 

for validating the performance of the modeling framework in this study represent only two land 

covers (native and managed grassland). Hence, the performance of the framework may be 

different from what is documented here over different types of land covers not included in the 

present analysis. 

For statistical analysis, correlation coefficient (r), the coefficient of determination (R2), mean 

absolute error (MAE), mean bias error (MBE) and root mean square error (RMSE) were used: 

MAE =
1

n
∑ |SEBS‐ET − FT‐ET|n

i=1    (3.16) 

MBE =
1

n
∑ (SEBS‐ET − FT‐ET)n

i=1   (3.17) 

RMSE = √
1

n
∑ (SEBS‐ET − FT‐ET)2n

i=1   (3.18) 

where FT-ET is the observed flux tower daily ET and SEBS-ET is the estimated daily ET from 

the SEBS model. 

2.4 Application of the Modeling Framework 

 After evaluating the accuracy of the modeling framework, it was used to estimate annual 

ET maps over the entire state of Oklahoma during the 2001–2014 period. The annual ET were 

also compared with publicly available MOD16 ET dataset (Mu, Heinsch, Zhao, & Running, 

2007; Mu, Zhao, & Running, 2011) over the same period, which covers the most recent drought 

episode of 2011–2014. The degree of water availability for each pixel and CD within Oklahoma 

was assessed by estimating the ratio of annual ET from the modeling framework and the 
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reference ET. This ratio is an indication of the portion of the atmospheric demand that is supplied 

at each pixel and CD. Areas with smaller ratios represent water scarcity since the actual ET from 

the model is far from the potential limits of ET. The information on annual ET variations and 

water availability across Oklahoma can assist state water managers with making critical decisions 

based on long-term objective data from the implemented framework. As mentioned before, the 

validation dataset only represented native and managed grassland. About half (47%) of all lands 

in Oklahoma are under rangeland and grassland. With winter wheat being the most dominant 

crop, the majority of croplands have similar canopy characteristics. Nevertheless, the lack of 

representation of other land covers (e.g. 21% of forest in Oklahoma) should be considered in 

applications and interpretations of the results of the modeling framework. 

 

3. Results and Discussion 

3.1 Comparison with Flux Tower Data 

 The comparison with flux tower data showed good agreement between daily SEBS-ET 

and FT-ET. The modeling approach captured the spatial and temporal variations in ET. However, 

the model overestimated ET at all sites and years (Figure 3.3), with average MBE of 20.1 W m-2. 

The range of MBE was between 1.7 W m-2 at US-AR2 in 2011 and 29.3 W m-2 at US-ARb in 

2006 (Table 3.1). The mean MAE and RMSE were 33.0 W m-2 and 42.7 W m-2, respectively. The 

correlation coefficients varied from 0.61 to 0.81 and R2 from 0.37 to 0.66.  
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Figure 3.3. Comparison of daily ET from surface energy balances (SEBS) and flux tower (FT). 

Table 3.1. Statistical indicators between SEBS and flux tower ET. 

Site Year r R2 MAE (W m-2) MBE (W m-2) RMSE (W m-2) 

US-ARc 

2005 0.78 0.61 39.6 19.1 40.1 

2006 0.77 0.59 36.7 27.5 49.2 

US-ARb 

2005 0.81 0.66 31.9 26.6 43.3 

2006 0.78 0.61 35.9 29.3 47.7 

US-AR2 

2010 0.61 0.37 29.4 16.4 41.7 

2011 0.62 0.39 24.7 1.7 34.1 

  

The errors in the ET estimates of the modeling framework are due to errors generated in 

each of the six steps outlined in previous section. A major step for error introduction is step three, 
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that is, the surface energy balance model. Previous studies have reported uncertain 

characterization of kB-1 in water limited environments (Bhattarai, Mallick, Brunsell, Sun, & Jain, 

2018; Gibson, 2013; Gokmen et al., 2012; Paul et al., 2014) and in low vegetation cover 

conditions (Bhattarai et al., 2018). Overestimating kB-1 under these conditions would lead to 

overestimating z0h, underestimating H and consequently overestimating ET (Gokmen et al., 

2012). The overestimation errors observed in this study were within the range of errors in 

previous studies when using MODIS as the input imagery to SEBS model. For example, Khan, 

Hong, Vieux, and Liu (2010) reported ET overestimation with MBE of 6.1 W m-2; Liaqat and 

Choi (2017) found MBE of 20.1 W m-2 and RMSE of 34.7 W m-2; Yang, Zhang, Yang, Hao, and 

Zhang (2016) reported MBE of 144.9 W m-2 when comparing SEBS-ET from cropland and 

grassland with flux tower estimates; Li et al. (106) found overall MBE of 31 W m-2 and RMSE of 

76 W m-2; and, Huang, Li, Gu, Lu, and Li (2015) reported MBE of 95.1 W m-2 and RMSE of 

122.2 W m-2 across several land covers and climatic conditions. While several studies have 

reported overestimation error from SEBS, the mean absolute error from the current study was 

smaller than the threshold of 50 W m-2 suggested by Kustas and Norman (2000). 

 Errors in other steps of the framework can contribute to biases in final ET estimates. A 

common source of error in estimating ET from satellite imagery is due to cloud contamination. A 

thin layer of cloud or a shaded area due to cloud presence over nearby pixels can result in 

underestimation of LST and consequently, overestimation of ET. In practical applications, it is 

impossible to remove all these contaminated pixels from the entire image even after applying the 

LST thresholds during quality control. In this study, there were days with underestimated LST 

due to cloud presence. For example, the LST at the flux tower pixel area dropped by 10.6 K from 

Day of Year (DOY) 113 to 114, while both DOYs were identified as cloud-free and no 

precipitation was recorded. The instantaneous TA increased by 3.2 K over the same period. The 
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smaller LST on DOY 114 affected ET estimation for this day and the following days until another 

cloud-free image was obtained for DOY 117 (Figure 3.3a). 

 A sensitivity analysis study (Van der Kwast et al., 2009) on SEBS model reported LST as 

the most sensitive parameter, with up to 70% error in H from irrigated fields expected with 0.5 K 

bias in LST. Another study (Liaqat, Choi, & Awan, 2015) found that error in H varied between 

−41% and 152% when LST bias ranged from -4 K to 10 K. These studies show that a small bias 

in LST can significantly impact H and ultimately ET. The magnitude of error may depend upon 

the sensitivity of SEBS to LST, including other parameters such as TA, u, ∆t (Wang, Li, & Tang, 

2013) and could vary depending on whether the wet or dry limits have been reached (Gibson, 

Munch, & Engelbrecht, 2011; Liaqat et al., 2015). 

 In this study, the filtering criteria of less than 15% cloud cover limited the availability of 

cloud-free images. Applying this filter resulted in 125 and 154 cloud-free images for processing 

during 2005 and 2006, respectively. For the days with no cloud-free images, the ET estimate was 

dependent on the Kc approach explained before. However, the Kc approach may fail to account 

for the variability in pixel conditions, especially if land and weather conditions change 

dramatically during long periods of gaps in imagery. In this study, 10 to 15 cloud-free images 

each month were available for most months, which was assumed sufficient to capture general 

daily soil moisture and weather variations. In other periods, however, it was not possible to keep 

the length of gap periods short. For example, cloud-free images were not available for 17 

consecutive days from DOY 270 to 286 in 2005, when larger differences between FT-ET and 

SEBS-ET were observed (Figure 3.3a and c).  

The combined impact of LST bias due to cloud contamination and unavailability of 

cloud-free images significantly increase biases in ET estimation. The 15% cloud cover filter 

could be reduced to reduce cloud contamination issue but this would come at the cost of 
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increasing the length of periods with no imagery at all. Increasing the filtering limit will have an 

opposite effect (more available imagery with larger cloud contamination within each image). 

Another solution is to manually inspect and select images. However, this increases the processing 

time and interrupts the automated nature of the ET modeling framework. Another factor that 

could play a significant role in increasing ET errors is the availability and quality of input weather 

data. Su, Wood, McCabe, and Su (2007) reported about 40% increase in RMSE (from 73 W m-2 

to 102 W m-2) when using reanalysis dataset - Global Land Data Assimilation System within 

SEBS instead of ground-based weather data. In this study, the impact of this source of error is 

expected to be minimal since rigorous quality control was conducted on ground-based data and 

only less than 2% of data were missing during the study period. 

As highlighted before, the daily ET results, uncertainty and potential biases of the 

proposed ET modeling framework were evaluated and discussed based on flux tower 

measurements over native and managed grassland at central and northwest Oklahoma. Flux tower 

data across other land covers were not available for comparison, thus the results from the 

framework may need further assessment to warrant the similar level of accuracy and uncertainty 

while applying the results to different land covers and climates across the state. In particular, the 

analysis and interpretation of results from current study may differ for vegetation with different 

canopy structure compared to grassland. 

3.2 Application of the Modeling Framework 

The automated operational ET modeling framework proposed in this study was used to 

create annual ET maps covering the entire state of Oklahoma for the period from 2001 to 2014. 

As expected, the annual ET followed the precipitation pattern and increased from southeast to 

Panhandle (Figure 3.4). When averaged over the entire 14 years, the southeast climate division 

(CD9) had the largest annual ET of 1,272 mm yr-1 and the Panhandle climate division (CD1) had 
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the smallest annual ET of 588 mm yr-1 (Table 3.2). The reference ET (ETr) had an opposite 

pattern, with CD1 having the largest amount at 2,140 mm yr-1 and CD9 the smallest (1,360 mm 

yr-1). This means that on average, about 94% of atmospheric demand was fulfilled at southeast, 

compared to only 27% in the Panhandle during the study period. In other words, water scarcity is 

a larger issue in CD1 compared to CD9 as available resources were not sufficient to keep up with 

atmospheric demand. The statewide average annual ET was 994 mm yr-1, about 57% of the 

average annual ETr of 1,755 mm yr-1. 

 

Figure 3.4. Annual ET maps (SEBS-ET) of Oklahoma from 2001 to 2014. The solid lines 

represent boundaries of the nine climate divisions. It should be noted that CDs 6 and 9 in 

southeast have a forested area of more than 29%. Hence, their ET estimates may not be accurate 

since the flux towers used in validation did not include forest land cover. 

Table 3.2. Average annual SEBS-ET, MOD16-ET, ETr and the ratio of SEBS-ET to ETr for all 

Oklahoma climate divisions (CD) during the 2001–2014 period. 

Climate Division SEBS-ET (mm yr-1) 

MOD16-ET 

(mm yr-1) 

ETr  

(mm yr-1) 

SEBS-ET ETr
-1 

CD1 (Panhandle) 588 259 2140 0.27 
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CD2 (North Central) 918 364 1871 0.49 

CD3 (Northeast) 1098 657 1521 0.72 

CD4 (West Central) 790 338 2018 0.39 

CD5 (Central) 1095 531 1700 0.64 

CD6 (East Central)* 1175 736 1492 0.79 

CD7 (Southwest) 845 363 2009 0.42 

CD8 (South Central) 1163 599 1683 0.69 

CD9 (Southeast)* 1272 798 1360 0.94 

Oklahoma 994 516 1755 0.57 

* These CDs have a forested area of more than 29%. The results presented in this table may not 

be accurate for these CDs since the flux towers used in validation did not include forest land 

cover. 

 The average annual ET comparison between MOD16 and SEBS indicated large 

differences across all Oklahoma CDs (Table 3.2). The differences between MOD16-ET and 

SEBS-ET varied between 37% at CD9 to 60% at CD2, with an average of 48% lower ET rates 

from MOD16. Three eastern humid CDs (CD3, CD6, CD9) had smaller differences between 

MOD16-ET and SEBS-ET compared to three western CDs (CD1, CD4, CD7). The difference 

between SEBS-ET and MOD16-ET is possibly due to a combination of overestimations from 

SEBS and underestimation from MOD16. The underestimation of ET from MOD16 has been 

reported in previous studies, particularly in semi-arid and arid climates (Feng et al., 2012; Hu, Jia, 

& Menenti, 2015). 
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The ratio of SEBS-ET to ETr can be estimated on a pixel wise basis to provide 

information on water scarcity at a finer resolution for local water management and planning. This 

ratio is mapped in Figure 3.5. The general patterns are similar to those presented in Table 3.2, 

with western parts of the state under relatively larger water scarcity compared to the eastern parts. 

However, significant variability can be observed within some CDs. In CD1, for example, the 

western half of CD (Cimarron and Texas counties) had smaller ratios compared to the eastern 

half, suggesting a more severe water scarcity. CD2 was similar in terms of variations in the ET 

ratios across the CD. The surface water resources in western Oklahoma were visible in regions 

with a ratio value of more than 0.5. Examples include the riparian areas of Cimarron and North 

Canadian rivers in southwest of CD2, as well as Canton Lake and Foss reservoir in CD4 and the 

five reservoirs in CD7 (Lugert-Altus, Tom Steed, Lawtonka, Ellsworth and Fort Cobb). Maps 

similar to the one in Figure 3.5 can be developed at varying temporal and spatial scales to monitor 

changes in water availability more closely. The ratio of actual ET to reference or potential ET has 

been used in the past in monitoring water stress and drought, such as in the Evaporative Stress 

Index (Anderson et al., 2016). 
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Figure 3.5. The ratio of average annual SEBS-ET to ETr across Oklahoma during the period 

2001–2014. It should be noted that CDs 6 and 9 in southeast have a forested area of more than 

29%. Hence, their ET estimates may not be accurate since the flux towers used in validation did 

not include forest land cover. 

 The inter-annual variations in ET were also examined for each CD and for the entire 

state. Figure 3.6 demonstrates deviations in SEBS-ET as percentage of the average annual ET 

during the 2001–2014 period. The impact of the 2011–2014 drought in western Oklahoma can be 

observed in this graph, with the maximum reduction in ET occurring in 2011 for the three 

western CDs of CD1, CD4 and CD7. The percent deviations from average was −22%, −21% and 

−33% for the same CDs, respectively. According to the U.S. Drought Monitor (USDM) (Svobada 

et al., 2002), more than 80% of the three CDs was under extreme drought (D3 category) from 

June. The drought condition worsened in July and remained under D4 category until December 

2011. The three eastern CDs of CD3, CD6 and CD9 were above average in 2011, with percent 

deviations of 9%, 8% and 10%, respectively. The USDM indicated almost no drought at CD3 in 

2011, whereas CD6 and CD9 had less than 40% of their area under extreme drought from August 

to November 2011. The middle three CDs registered close to long-term average ET. The largest 

positive deviations for the three western CDs occurred in 2007, a year that was characterized by 

above normal precipitation. 

 



75 

Figure 3.6. Annual ET deviation across climate divisions of Oklahoma from 2001 to 2014. 

 The ET modeling framework proposed in this study can automatically generate time 

series of daily ET maps on a continuous basis, with several applications beyond those mentioned 

in previous sections. For example, ET maps over agricultural areas can be analyzed in 

conjunction with yield data to evaluate the water use efficiency. However, this modeling 

framework has some limitations that must be considered and improved in future applications. One 

limitation is the size of MODIS pixels, which practically hinders the possibility of using the ET 

data at field scale. This limitation can be overcome by modifying the framework to use satellite 

imagery at finer resolution (e.g., Landsat). Another challenge is identifying and removing cloud 

contaminated pixels. The filters used in this study were not always effective in identifying pixels 

that were covered by thin layers of cloud or were in the shadow of a cloud. Thus, further 

investigation and application of robust methods to examine cloud contamination are needed. 

Finally, there were periods when no images were available for several days due to clouds 

covering the entire scene. This negatively affects the ability to capture ET fluctuations during 

those periods. Data-fusion approaches can be implemented in the modeling framework as a 

potential solution to improving ET interpolation for days with missing images. 

 

4. Conclusions 

 An ET modeling framework was proposed to automatically construct daily time series of 

ET maps across Oklahoma by integrating MODIS imagery, ground-based weather data and 

surface energy balance model. The comparison of the results with daily observations at three flux 

towers (two years of data at each site) showed good performance of the modeling framework with 

mean bias errors less than 30 W m-2 and root mean squared errors less than 50 W m-2. The results 

were then used to investigate spatial and temporal variations in ET across the state and its nine 
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climate divisions (CD). The statewide annual ET varied between 841 and 1100 mm yr-1 during 

the period from 2001 to 2014, with an average of 994 mm yr-1. A large difference in ET was 

observed among CDs, with Oklahoma Panhandle (CD1) having the smallest and southeast (CD9) 

the largest average annual ET of 588 and 1272 mm yr-1, respectively. The ratio of estimated ET to 

reference ET was used as an indicator of water scarcity at pixel and CD levels. The deviations in 

annual ET from the 2001–2014 average ET were also studied and found to be in good agreement 

with temporal and spatial variations in drought. The proposed ET modeling framework provided 

a pathway to construct daily time series of ET maps with potential for a range of applications. 

However, further improvements are necessary to resolve the issues highlighted in the current 

study. 

 

 

 

 

 

 

 

 

 

 

 



77 

References 

Ahmad, M. U. D., Turral, H., & Nazeer, A. (2009). Diagnosing irrigation performance and water 

productivity through satellite remote sensing and secondary data in a large irrigation 

system of Pakistan. Agricultural Water Management, 96(4), 551-564. 

Allen, R. G. (1996). Assessing integrity of weather data for reference evapotranspiration 

estimation. Journal of Irrigation and Drainage Engineering, 122(2), 97-106. 

Allen, R. G., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., ... & Trezza, R. 

(2013). Automated calibration of the metric‐landsat evapotranspiration process. JAWRA 

Journal of the American Water Resources Association, 49(3), 563-576. 

Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011). Evapotranspiration 

information reporting: I. Factors governing measurement accuracy. Agricultural Water 

Management, 98(6), 899-920. 

Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping 

evapotranspiration with internalized calibration (METRIC)—Model. Journal of 

irrigation and drainage engineering, 133(4), 380-394. 

Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat-based energy balance and 

evapotranspiration model in Western US water rights regulation and planning. Irrigation 

and Drainage systems, 19(3-4), 251-268. 

Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal 

imagery in monitoring evapotranspiration and managing water resources. Remote Sensing 

of Environment, 122, 50-65. 

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. (2011). 

Evaluation of drought indices based on thermal remote sensing of evapotranspiration 

over the continental United States. Journal of Climate, 24(8), 2025-2044. 



78 

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007). A 

climatological study of evapotranspiration and moisture stress across the continental 

United States based on thermal remote sensing: 1. Model formulation. Journal of 

Geophysical Research: Atmospheres, 112(D10). 

Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Yilmaz, M. T., ... & 

Tetrault, R. (2016). The Evaporative Stress Index as an indicator of agricultural drought 

in Brazil: An assessment based on crop yield impacts. Remote Sensing of 

Environment, 174, 82-99. 

Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, 

R. G. (2005). SEBAL model with remotely sensed data to improve water-resources 

management under actual field conditions. Journal of irrigation and drainage 

engineering, 131(1), 85-93. 

Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing 

surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of 

hydrology, 212, 198-212. 

Bawazir, A. S., Samani, Z., Bleiweiss, M., Skaggs, R., & Schmugge, T. (2009). Using ASTER 

satellite data to calculate riparian evapotranspiration in the Middle Rio Grande, New 

Mexico. International journal of remote sensing, 30(21), 5593-5603. 

Beljaars, A. C. M., & Holtslag, A. A. M. (1991). Flux parameterization over land surfaces for 

atmospheric models. Journal of Applied Meteorology, 30(3), 327-341. 

Bhattarai, N., Mallick, K., Brunsell, N. A., Sun, G., & Jain, M. (2018). Regional 

evapotranspiration from an image-based implementation of the Surface Temperature 

Initiated Closure (STIC1. 2) model and its validation across an aridity gradient in the 

conterminous US. Hydrology and Earth System Sciences, 22(4), 2311-2341. 



79 

Bhattarai, N., Quackenbush, L. J., Im, J., & Shaw, S. B. (2017). A new optimized algorithm for 

automating endmember pixel selection in the SEBAL and METRIC models. Remote 

sensing of environment, 196, 178-192. 

Biggs, T. W., Marshall, M., & Messina, A. (2016). Mapping daily and seasonal 

evapotranspiration from irrigated crops using global climate grids and satellite imagery: 

Automation and methods comparison. Water Resources Research, 52(9), 7311-7326. 

Billesbach, D., Bradford, J., & Margaret, T. (2015). AmeriFlux US-AR2 ARM USDA UNL 

OSU Woodward Switchgrass 2; U.S. Department of Agriculture: Washington, DC, 

USA; University of Nebraska: Lincoln, NE, USA. 

Brock, F. V., Crawford, K. C., Elliott, R. L., Cuperus, G. W., Stadler, S. J., Johnson, H. L., & 

Eilts, M. D. (1995). The Oklahoma Mesonet: a technical overview. Journal of 

Atmospheric and Oceanic Technology, 12(1), 5-19. 

Brutsaert, W. (2013). Evaporation into the atmosphere: theory, history and applications (Vol. 1). 

Springer Science & Business Media. 

Brutsaert, W., & Sugita, M. (1992). Application of self‐preservation in the diurnal evolution of 

the surface energy budget to determine daily evaporation. Journal of Geophysical 

Research: Atmospheres, 97(D17), 18377-18382. 

Cai, X. L., & Sharma, B. R. (2010). Integrating remote sensing, census and weather data for an 

assessment of rice yield, water consumption and water productivity in the Indo-Gangetic 

river basin. Agricultural Water Management, 97(2), 309-316. 

Chávez, J. L., Neale, C. M., Prueger, J. H., & Kustas, W. P. (2008). Daily evapotranspiration 

estimates from extrapolating instantaneous airborne remote sensing ET values. Irrigation 

Science, 27(1), 67-81. 



80 

Chen, J. M., Chen, X., Ju, W., & Geng, X. (2005). Distributed hydrological model for mapping 

evapotranspiration using remote sensing inputs. Journal of Hydrology, 305(1-4), 15-39. 

Choudhury, B. J., & Monteith, J. L. (1988). A four‐ layer model for the heat budget of 

homogeneous land surfaces. Quarterly Journal of the Royal Meteorological 

Society, 114(480), 373-398. 

Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2006). Comparison of five models to 

scale daily evapotranspiration from one-time-of-day measurements. Transactions of the 

ASABE, 49(5), 1409-1417. 

Delogu, E., Boulet, G., Olioso, A., Coudert, B., Chirouze, J., Ceschia, E., Le Dantec, V., Marloie, 

O., Chehbouni, G., & Lagouarde, J. P. (2012). Reconstruction of temporal variations of 

evapotranspiration using instantaneous estimates at the time of satellite 

overpass. Hydrology and Earth System Sciences, 16(8), 2995-3010. 

Dhungel, R., Allen, R. G., Trezza, R., & Robison, C. W. (2016). Evapotranspiration between 

satellite overpasses: methodology and case study in agricultural dominant semi‐arid 

areas. Meteorological Applications, 23(4), 714-730. 

Droogers, P., & Bastiaanssen, W. (2002). Irrigation performance using hydrological and remote 

sensing modeling. Journal of Irrigation and Drainage Engineering, 128(1), 11-18. 

Elhaddad, A., & Garcia, L. A. (2008). Surface energy balance-based model for estimating 

evapotranspiration taking into account spatial variability in weather. Journal of irrigation 

and drainage engineering, 134(6), 681-689. 

Elhaddad, A., & Garcia, L. A. (2011). ReSET-raster: surface energy balance model for 

calculating evapotranspiration using a raster approach. Journal of Irrigation and 

Drainage Engineering, 137(4), 203-210. 



81 

Environmental and Water Resources Institute for the American Society of Civil Engineers 

(ASCE-EWRI) (2005). The ASCE Standardized Reference Evapotranspiration Equation. 

Report of the ASCE-EWRI Task Committee on 566 Standardization of Reference 

Evapotranspiration.  

Feng, X. M., Sun, G., Fu, B. J., Su, C. H., Liu, Y., & Lamparski, H. (2012). Regional effects of 

vegetation restoration on water yield across the Loess Plateau, China. Hydrology and 

Earth System Sciences, 16(8), 2617-2628. 

Fischer, M. L., Torn, M. S., Billesbach, D. P., Doyle, G., Northup, B., & Biraud, S. C. (2012). 

Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass 

prairie. Agricultural and forest meteorology, 166, 169-174. 

Fisher, J. B., Whittaker, R. J., & Malhi, Y. (2011). ET come home: potential evapotranspiration in 

geographical ecology. Global Ecology and Biogeography, 20(1), 1-18. 

Folhes, M. T., Rennó, C. D., & Soares, J. V. (2009). Remote sensing for irrigation water 

management in the semi-arid Northeast of Brazil. Agricultural Water 

Management, 96(10), 1398-1408. 

Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., & Duchemin, B. (2007). Analysis of 

evaporative fraction diurnal behaviour. Agricultural and forest meteorology, 143(1-2), 

13-29. 

Gibson, L. A. (2013). The application of the surface energy balance system model to estimate 

evapotranspiration in South Africa (Doctoral dissertation, University of Cape Town). 

Gibson, L. A., Münch, Z., & Engelbrecht, J. (2011). Particular uncertainties encountered in using 

a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area 

in South Africa. Hydrology and earth system sciences, 15(1), 295-310. 



82 

Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., & Van der Tol, C. (2012). 

Integration of soil moisture in SEBS for improving evapotranspiration estimation under 

water stress conditions. Remote sensing of environment, 121, 261-274. 

Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2007). 

Remote sensing based energy balance algorithms for mapping ET: Current status and 

future challenges. Transactions of the ASABE, 50(5), 1639-1644. 

Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Howell, T. A., Schwartz, R. C., & Marek, T. H. 

(2007). Relationship between LAI and Landsat TM spectral vegetation indices in the 

Texas Panhandle. In 2007 ASAE Annual Meeting (p. 1). American Society of Agricultural 

and Biological Engineers. 

Gowda, P. H., Ennis, J., Howell, T. A., Marek, T. H., & Porter, D. O. (2012). The ASCE 

Standardized Equation-Based Bushland Reference ET Calculator. In World 

Environmental and Water Resources Congress 2012: Crossing Boundaries(pp. 2198-

2205). 

Gupta, R. K., Prasad, T. S., & Vijayan, D. (2002). Estimation of roughness length and sensible 

heat flux from WiFS and NOAA AVHRR data. Advances in Space Research, 29(1), 33-

38. 

Herman, M. R., Nejadhashemi, A. P., Abouali, M., Hernandez-Suarez, J. S., Daneshvar, F., 

Zhang, Z., Anderson, M. C., Sadeghi, A. M., Hain, C. R., & Sharifi, A. (2018). 

Evaluating the role of evapotranspiration remote sensing data in improving hydrological 

modeling predictability. Journal of Hydrology, 556, 39-49. 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., 

Wickham, J, & Megown, K. (2015). Completion of the 2011 National Land Cover 



83 

Database for the conterminous United States–representing a decade of land cover change 

information. Photogrammetric Engineering & Remote Sensing, 81(5), 345-354. 

Hu, G., Jia, L., & Menenti, M. (2015). Comparison of MOD16 and LSA-SAF MSG 

evapotranspiration products over Europe for 2011. Remote Sensing of Environment, 156, 

510-526. 

Huang, C., Li, Y., Gu, J., Lu, L., & Li, X. (2015). Improving estimation of evapotranspiration 

under water-limited conditions based on SEBS and MODIS data in arid regions. Remote 

Sensing, 7(12), 16795-16814. 

Immerzeel, W. W., Gaur, A., & Zwart, S. J. (2008). Integrating remote sensing and a process-

based hydrological model to evaluate water use and productivity in a south Indian 

catchment. Agricultural Water Management, 95(1), 11-24. 

Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating land surface evaporation: A 

review of methods using remotely sensed surface temperature data. Surveys in 

Geophysics, 29(4-5), 421-469. 

Khan, I. S., Hong, Y., Vieux, B., & Liu, W. (2010). Developmentevaluation of an actual 

evapotranspiration estimation algorithm using satellite remote sensingmeteorological 

observational network in Oklahoma. International Journal of Remote Sensing, 31(14), 

3799-3819. 

Khand, K., Kjaersgaard, J., Hay, C., & Jia, X. (2017). Estimating impacts of agricultural 

subsurface drainage on evapotranspiration using the Landsat imagery-based METRIC 

model. Hydrology, 4(4), 49. 

Khand, K., Numata, I., Kjaersgaard, J., & Vourlitis, G. L. (2017). Dry Season Evapotranspiration 

Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the 

Landsat-Based METRIC Model. Remote Sensing, 9(7), 706. 



84 

Khand, K., Taghvaeian, S., & Hassan-Esfahani, L. (2017). Mapping Annual Riparian Water Use 

Based on the Single-Satellite-Scene Approach. Remote Sensing, 9(8), 832. 

Kjaersgaard, J. H., Allen, R. G., Garcia, M., Kramber, W., & Trezza, R. (2009). Automated 

selection of anchor pixels for landsat based evapotranspiration estimation. In World 

Environmental and Water Resources Congress 2009: Great Rivers (pp. 1-11). 

Kjaersgaard, J., Allen, R., & Irmak, A. (2011). Improved methods for estimating monthly and 

growing season ET using METRIC applied to moderate resolution satellite 

imagery. Hydrological Processes, 25(26), 4028-4036. 

Kjaersgaard, J., Allen, R., Trezza, R., Robison, C., Oliveira, A., Dhungel, R., & Kra, E. (2012). 

Filling satellite image cloud gaps to create complete images of evapotranspiration. IAHS 

Publ, 2012, 102-105. 

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-

Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. 

Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions 

using a simple two-source model with radiometric temperatures for partial canopy 

cover. Agricultural and Forest Meteorology, 94(1), 13-29. 

Kustas, W. P., & Norman, J. M. (2000). Evaluating the effects of subpixel heterogeneity on pixel 

average fluxes. Remote Sensing of Environment, 74(3), 327-342. 

Kustas, W. P., Humes, K. S., Norman, J. M., & Moran, M. S. (1996). Single-and dual-source 

modeling of surface energy fluxes with radiometric surface temperature. Journal of 

Applied Meteorology, 35(1), 110-121. 

Kustas, W. P., Perry, E. M., Doraiswamy, P. C., & Moran, M. S. (1994). Using satellite remote 

sensing to extrapolate evapotranspiration estimates in time and space over a semiarid 

rangeland basin. Remote sensing of environment, 49(3), 275-286. 



85 

Li, H., Zheng, L., Lei, Y., Li, C., Liu, Z., & Zhang, S. (2008). Estimation of water consumption 

and crop water productivity of winter wheat in North China Plain using remote sensing 

technology. Agricultural Water Management, 95(11), 1271-1278. 

Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., & Li, X. (2017). Mapping daily evapotranspiration 

based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural 

areas in the Heihe River Basin, Northwest China. Agricultural and Forest 

Meteorology, 244, 82-97. 

Li, Z. L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., & Zhang, X. (2009). A review 

of current methodologies for regional evapotranspiration estimation from remotely 

sensed data. Sensors, 9(5), 3801-3853. 

Liang, S. (2001). Narrowband to broadband conversions of land surface albedo I: 

Algorithms. Remote sensing of environment, 76(2), 213-238. 

Liang, S. (2005). Quantitative remote sensing of land surfaces(Vol. 30). John Wiley & Sons. 

Liaqat, U. W., & Choi, M. (2017). Accuracy comparison of remotely sensed evapotranspiration 

products and their associated water stress footprints under different land cover types in 

Korean peninsula. Journal of cleaner production, 155, 93-104. 

Liaqat, U. W., Choi, M., & Awan, U. K. (2015). Spatio‐ temporal distribution of actual 

evapotranspiration in the Indus Basin Irrigation System. Hydrological processes, 29(11), 

2613-2627. 

Liou, Y. A., & Kar, S. (2014). Evapotranspiration estimation with remote sensing and various 

surface energy balance algorithms—A review. Energies, 7(5), 2821-2849. 

Long, D., & Singh, V. P. (2012). A modified surface energy balance algorithm for land (M‐

SEBAL) based on a trapezoidal framework. Water Resources Research, 48(2). 



86 

McPherson, R. A., Fiebrich, C. A., Crawford, K. C., Kilby, J. R., Grimsley, D. L., Martinez, J. E., 

... & Melvin, A. D. (2007). Statewide monitoring of the mesoscale environment: A 

technical update on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic 

Technology, 24(3), 301-321. 

Menenti, M., & Choudhary, B. (1993). Parameteraization of land surface evaporation by means 

of location dependent potential evaporation and surface temperature range. Proceedings 

of IAHS conference on Land Surface Processes. 

Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of 

the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151(163), e187. 

Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of 

the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151(163), e187. 

Monteith, J. L. (1965). Evaporation and Environment. The state and movement of water in living 

organism. Symposium of the Society for the Experimental Biology 19. 

Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal 

Meteorological Society, 107(451), 1-27. 

Moorhead, J. E., Gowda, P. H., Singh, V. P., Porter, D. O., Marek, T. H., Howell, T. A., & 

Stewart, B. A. (2015). Identifying and evaluating a suitable index for agricultural drought 

monitoring in the Texas high plains. JAWRA Journal of the American Water Resources 

Association, 51(3), 807-820. 

Moorhead, J., Gowda, P., Hobbins, M., Senay, G., Paul, G., Marek, T., & Porter, D. (2015). 

Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas 

High Plains. JAWRA Journal of the American Water Resources Association, 51(5), 1262-

1271. 



87 

Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global 

evapotranspiration algorithm based on MODIS and global meteorology data. Remote 

sensing of Environment, 111(4), 519-536. 

Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial 

evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781-1800. 

Nagler, P. L., Glenn, E. P., Nguyen, U., Scott, R. L., & Doody, T. (2013). Estimating riparian and 

agricultural actual evapotranspiration by reference evapotranspiration and MODIS 

enhanced vegetation index. Remote Sensing, 5(8), 3849-3871. 

Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solórzano, L., 

Moutinho, P., Ray, D., & Guerreira Benito, J. (2004). Amazon drought and its 

implications for forest flammability and tree growth: A basin‐wide analysis. Global 

change biology, 10(5), 704-717. 

Norman, J. M., & Becker, F. (1995). Terminology in thermal infrared remote sensing of natural 

surfaces. Remote Sensing Reviews, 12(3-4), 159-173.  

Oberg, J. W., & Melesss, A. M. (2006). Evapotranspiration dynamics at an ecohydrological 

restoration site: an energy balance and remote sensing approach 1. JAWRA Journal of the 

American Water Resources Association, 42(3), 565-582. 

Paul, G., Gowda, P. H., Prasad, P. V., Howell, T. A., Aiken, R. M., & Neale, C. M. (2014). 

Investigating the influence of roughness length for heat transport (zoh) on the 

performance of SEBAL in semi-arid irrigated and dryland agricultural systems. Journal 

of hydrology, 509, 231-244. 

Porter, D., Gowda, P., Marek, T., Howell, T., Moorhead, J., & Irmak, S. (2012). Sensitivity of 

grass-and alfalfa-reference evapotranspiration to weather station sensor accuracy. Applied 

engineering in agriculture, 28(4), 543-549. 



88 

Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to 

estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: 

Hydrology, Oceans and Atmosphere, 25(2), 147-157. 

Samani, Z., Bawazir, A. S., Skaggs, R. K., Bleiweiss, M. P., Piñon, A., & Tran, V. (2007). Water 

use by agricultural crops and riparian vegetation: an application of remote sensing 

technology. Journal of Contemporary Water Research & Education, 137(1), 8-13. 

Santos, C., Lorite, I. J., Tasumi, M., Allen, R. G., & Fereres, E. (2010). Performance assessment 

of an irrigation scheme using indicators determined with remote sensing 

techniques. Irrigation Science, 28(6), 461-477. 

Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. 

(2013). Operational evapotranspiration mapping using remote sensing and weather 

datasets: A new parameterization for the SSEB approach. JAWRA Journal of the 

American Water Resources Association, 49(3), 577-591. 

Senay, G. B., Friedrichs, M., Singh, R. K., & Velpuri, N. M. (2016). Evaluating Landsat 8 

evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing 

of Environment, 185, 171-185. 

Singh, R. K., Liu, S., Tieszen, L. L., Suyker, A. E., & Verma, S. B. (2012). Estimating seasonal 

evapotranspiration from temporal satellite images. Irrigation science, 30(4), 303-313. 

SU, H., Wood, E. F., McCabe, M. F., & Su, Z. (2007). Evaluation of remotely sensed 

evapotranspiration over the CEOP EOP-1 reference sites. Journal of the Meteorological 

Society of Japan. Ser. II, 85, 439-459. 

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat 

fluxes. Hydrology and earth system sciences, 6(1), 85-100. 



89 

Su, Z., Schmugge, T., Kustas, W. P., & Massman, W. J. (2001). An evaluation of two models for 

estimation of the roughness height for heat transfer between the land surface and the 

atmosphere. Journal of applied meteorology, 40(11), 1933-1951. 

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., 

Palecki, M., Stooksbury, D., Miskus, D., & Stephens, S. (2002). The drought 

monitor. Bulletin of the American Meteorological Society, 83(8), 1181-1190. 

Taghvaeian, S., & Neale, C. M. (2011). Water balance of irrigated areas: a remote sensing 

approach. Hydrological Processes, 25(26), 4132-4141. 

Taghvaeian, S., Neale, C. M., Osterberg, J. C., Sritharan, S. I., & Watts, D. R. (2018). Remote 

Sensing and GIS Techniques for Assessing Irrigation Performance: Case Study in 

Southern California. Journal of Irrigation and Drainage Engineering, 144(6), 05018002. 

Taghvaeian, S., Neale, C. M., Osterberg, J., Sritharan, S. I., & Watts, D. R. (2014). Water use and 

stream-aquifer-phreatophyte interaction along a Tamarisk-dominated segment of the 

Lower Colorado River. Remote Sensing of the Terrestrial Water Cycle; John & Sons, 

Inc.: Hoboken, NJ, USA, 95-113. 

Teixeira, A. D. C., Bastiaanssen, W. G., Ahmad, M. U. D., & Bos, M. G. (2009). Reviewing 

SEBAL input parameters for assessing evapotranspiration and water productivity for the 

Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and 

validation. agricultural and forest meteorology, 149(3-4), 462-476. 

Timmermans, W. J., Kustas, W. P., Anderson, M. C., & French, A. N. (2007). An 

intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-

source energy balance (TSEB) modeling schemes. Remote Sensing of 

Environment, 108(4), 369-384. 



90 

Trezza, R. (2002). Evapotranspiration using a satellite-based surface energy balance with 

standardized ground control. 

Trezza, R., Allen, R. G., & Tasumi, M. (2013). Estimation of actual evapotranspiration along the 

Middle Rio Grande of New Mexico using MODIS and landsat imagery with the 

METRIC model. Remote Sensing, 5(10), 5397-5423. 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P., Meyers, T. P., ... & Wesely, 

M. L. (2000). Correcting eddy-covariance flux underestimates over a 

grassland. Agricultural and Forest Meteorology, 103(3), 279-300. 

Van der Kwast, J., Timmermans, W., Gieske, A., Su, Z., Olioso, A., Jia, L., Elberts, J., 

Karssenverg, D., de Jong, S., de Jong, Steven. (2009). Evaluation of the Surface Energy 

Balance System (SEBS) applied to ASTER imagery with flux-measurements at the 

SPARC 2004 site (Barrax, Spain). Hydrology and Earth System Sciences 

Discussions, 6(1), 1165-1196. 

Vermote, E., & Wolfe, R. (2015). MOD09GA MODIS/Terra Surface Reflectance Daily L2G 

Global 1 km and 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 

Available online: https://lpdaac. usgs. gov/dataset_ 

discovery/modis/modis_products_table/mod09ga_v006 (accessed on 16 October 2016). 

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011). Global estimates of 

evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation 

of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. 

Wan, Z., Hook, S., & Hulley, G. (2015). MOD11A2 MODIS/Terra Land Surface 

Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land 

Processes DAAC, 10. 



91 

Wang, Y., Li, X., & Tang, S. (2013). Validation of the SEBS-derived sensible heat for 

FY3A/VIRR and TERRA/MODIS over an alpine grass region using LAS 

measurements. International Journal of Applied Earth Observation and 

Geoinformation, 23, 226-233. 

Webster, E., Ramp, D., & Kingsford, R. T. (2016). Spatial sensitivity of surface energy balance 

algorithms to meteorological data in a heterogeneous environment. Remote Sensing of 

Environment, 187, 294-319. 

WMO. (2008). Guide to Hydrological Practices. Volume I. Hydrology–From Measurement to 

Hydrological Information. 

Yang, Y., Long, D., & Shang, S. (2013). Remote estimation of terrestrial evapotranspiration 

without using meteorological data. Geophysical Research Letters, 40(12), 3026-3030. 

Yang, Z., Zhang, Q., Yang, Y., Hao, X., & Zhang, H. (2016). Evaluation of evapotranspiration 

models over semi‐ arid and semi‐ humid areas of China. Hydrological 

Processes, 30(23), 4292-4313. 

Yao, Y., Liang, S., Qin, Q., & Wang, K. (2010). Monitoring drought over the conterminous 

United States using MODIS and NCEP Reanalysis-2 data. Journal of Applied 

Meteorology and Climatology, 49(8), 1665-1680. 

Zhang, J., Mu, Q., & Huang, J. (2016). Assessing the remotely sensed Drought Severity Index for 

agricultural drought monitoring and impact analysis in North China. Ecological 

Indicators, 63, 296-309. 

 



92 

CHAPTER IV 
 

 

MODELING EVAPOTRANSPIRATION OF WINTER WHEAT UNDER VARIABLE 

GRAZING AND TILLAGE MANAGEMENTS USING MULTIPLE REMOTELY SENSED 

SURFACE ENERGY BALANCE MODELS 

 

Abstract: Remotely-sensed surface energy balance (RSEB) models are being widely used to map 

winter wheat (Triticum aestivum L.) evapotranspiration (ET) across the globe. However, RSEB 

models’ ability to capture ET from rainfed winter wheat in Oklahoma (OK), U.S, where it is 

currently being managed under various grazing (grain-only, graze-grain, graze-out) and tillage 

(conventional tillage and no-till) conditions has not been evaluated yet. Hence, we evaluated five 

RSEB models: mapping evapotranspiration at high resolution with internalized calibration 

(METRIC), surface energy balance algorithm for land (SEBAL), triangular vegetation 

temperature (TVT), surface energy balance system (SEBS) and two-source energy balance 

(TSEB) against observed daily ET data from eight eddy covariance towers covering rainfed 

winter wheat fields under different management systems. Model performances based on daily ET 

retrieved using 28 near cloud-free Landsat image dates during the growing seasons showed wide 

variations among the five RSEB models. Considering all plots under all management conditions, 

SEBAL was found to be the best performing model (lowest root mean square error and mean 

absolute error) and TSEB was the poorest performing model. SEBAL results showed that grain-

only wheat had the highest mean daily ET, followed by graze-grain and graze-out wheat. Among 
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the tillage treatments, conventional tillage had larger ET than no-till treatment. However, none of 

the differences among grazing and tillage practices were statistically significant (p>0.05). 

 

1. Introduction 

Evapotranspiration (ET) is a key phenomenon in the Earth’s system that links water, 

energy, and carbon cycles (Fisher, 2017; Monteith, 1965; Wong, Cowan, & Farquhar, 1979). In 

agricultural systems, ET is also considered as a crop response to water availability and an 

indicator of agricultural productivity (Doorenbos and Kassam, 1979). Thus, accurate ET 

information is crucial for decision making, especially in areas with limited water resources. 

However, estimating ET is challenging as the process involves complex feedbacks between 

weather, soil, crop, and environment (Allen, Pereira, Raes, & Smith, 1998). Major limitations in 

the commonly used field-based ET estimation methods (e.g., eddy flux towers, sap flux, 

lysimeter, Bowen ratio) are their inability to accurately capture ET from large heterogeneous 

areas (due to small footprint) and extensive maintenance requirements. Remote sensing 

approaches can provide spatially distributed ET at varying temporal and spatial resolutions 

(Anderson et al., 2011; Gowda et al., 2007) and require no maintenance by user in case of space-

borne imaging. In particular, models developed on the principle of remotely-sensed surface 

energy balance (RSEB) based on the thermal infrared (TIR)-derived land or radiometric surface 

temperature (Ts) have been promising for reliable mapping of ET (Liou and Kar, 2014). ET from 

RSEB models is estimated as a residual of the surface energy balance: 

LE = λET = Rn – G – H      (4.1)                                                                  

where LE is the latent heat flux (W m-2), λ is latent heat of vaporization (J kg-1), Rn is net 

radiation (W m-2), G is the soil heat flux (W m-2), and H is the sensible heat flux (W m-2). 
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Several RSEB models have been developed in the past (Allen, Tasumi, & Trezza, 2007; 

Anderson, Norman, Mecikalski, Otkin, & Kustas, 2007; Bastiaanssen, Menenti, Feddes & 

Holtslag, 1998; Jiang and Islam, 1999; Norman, Kustas, & Humes, 1995; Roerink, Su, & 

Menenti, 2000; Senay et al., 2013; Su, 2002). Based on the scaling of ET within an image, RSEB 

models can be broadly categorized into contextual-based (CB) and pixel-based (PB). The CB 

models use actual end-member (hot and cold) pixels or theoretical hot/dry and cold/wet surfaces 

representing the extreme ranges of ET within an image (Price, 1990). On the other hand, PB 

models are independent of the contextual information (i.e. Ts values from other pixels) within an 

image. Studies on the evaluation of RSEB models have shown varying performances of models 

across different land covers and climatic conditions (Bhattarai, Shaw, Quackenbush, Im, & 

Niraula, 2016; French, Hunsaker, & Torp, 2015; Losgedaragh and Rahimzadegan, 2018; Lian and 

Huang, 2016; Timmermans, Kustas, Anderson, & French, 2007; Wagle, Bhattarai, Gowda, & 

Kakani, 2017). Distributed ET information from RSEB models has been applied in a range of 

applications in agriculture. For example, in estimating productivities of land and water 

(Bastiaanssen, Thiruvangadachari, Sakthivadivel, & Modlen, 1999), predicting crop yield (Mo et 

al., 2005), assessing the performances of irrigation schemes (Taghvaeian, Osterberg, Sritharan, & 

Watts, 2018; Yang, Shang, & Jiang, 2012), and administering water rights and regulations (Allen, 

Tasumi, Morse, & Trezza, 2005). Field-scale ET maps can assist with developing precision 

irrigation scheduling and minimizing water losses in irrigated agriculture.   

Wheat (Triticum aestivum L.) is one of the major crops grown worldwide. Winter wheat 

constitutes about 80% of global wheat production (Becker-Reshef, Vermote, Lindeman, & 

Justice, 2010) and between 70-80% of the wheat production in the US (Vocke and Ali, 2013). In 

Oklahoma (OK), winter wheat occupies about 75% of total cropland (Vitale, Godsey, Edwards, & 

Taylor, 2011) and is often integrated with cattle production systems for grazed forage. Grazing 

management practices in OK, similar to many other states in the southern Great Plains, include 
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three main options of no grazing (grain-only), graze-grain (dual propose), and graze-out (no-grain 

production) (Phillips, Alberts, Albin, & Hatfield, 1999). Grazing reduces crop biomass and 

canopy cover, potentially decreasing crop transpiration and increasing water loss from soil 

evaporation. Alternatively, grazing delays shoot biomass accumulation (Winter and Thompson, 

1987), potentially reducing soil water uptake during the early season and increasing root zone 

water availability at the later stages of the growing season. Mapping ET over winter wheat fields 

can provide valuable information on crop water consumption under varying grazing 

managements, which is an indication of soil moisture availability for the next cropping season. 

The information can also be used to investigate the response of wheat systems to extreme weather 

events. 

Previous studies (Yan and Wu, 2014; Zwart et al., 2010) have applied RSEB models for 

estimating ET from wheat systems. Li et al. (2008) evaluated Surface Energy Balance Algorithm 

for Land model (SEBAL; Bastiaanssen et al., 1998) in semi-arid and semi-humid climates in 

eastern China and reported that SEBAL seasonal ET estimates were within 4.3% of lysimeter 

measurements. Another study (Bala, Rawat, Mishra, & Srivastava, 2015) in semi-arid climates in 

India reported mean absolute error of 0.19 mm d-1 from SEBAL when compared with lysimeter. 

Limited studies have considered RSEB model evaluation under variable management practices. 

For example, French et al. (2007) evaluated the Two Source Energy Balance model (TSEB; 

Norman et al., 1995) using very high-resolution (0.5 m) aerial imagery in arid central Arizona, 

US, under variable plant densities and fertilizer managements and found a better performance of 

TSEB model over sparse and low-nitrogen treatments. However, model biases were up to 1.29 

mm d-1 (36.6 W m-2) when compared with ET estimates based on soil water depletion. Only 

limited studies, such as Tang et al. (2011) have considered multiple RSEB models in a single 

study. This study evaluated the performance of three RSEB models (two PB and one CB) in a 

semi-humid region and reported a better agreement from PB models when compared against the 
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estimates from large aperture scintillometer observations. The study also highlighted the higher 

uncertainty in H and LE from PB models with uncorrected Ts and leaf area index inputs. 

Current literature on RSEB-based ET over wheat systems provides no clear evidence on 

which model is considered better under different management and climatic conditions. This is 

largely because the majority of studies on winter wheat only considered single or a few (up to 3) 

models, which and a single validation site across all image. Use of single-pixel validation across 

all images provide no clear guidance on the ability of a RSEB model to derive accurate spatially 

explicit ET maps, since ET varies highly across a spatial scale with response to changes in land 

cover and land use, soil moisture, climate, and other variables. As such, evaluation of multiple 

pixels over a single image can provide more useful guidance on the accuracy of spatially 

distributed ET maps. To the best of our knowledge, only limited studies have considered such for 

evaluating winter wheat ET maps. In addition, no study has evaluated RSEB models for 

estimating winter wheat ET under variable grazing and tillage managements. We aim to 

overcome these shortcomings in this study by evaluating five RSEB models over eight eddy 

covariance (EC) sites covering winter wheat under various tillage and grazing practices in the 

southern Great Plains. The major objectives of this study were to: i) identify the best RSEB 

model for characterizing ET from winter wheat under different tillage and grazing management 

practices and ii) evaluate the response of daily ET obtained from the best RSEB model to variable 

tillage and grazing practices in the study area. 

 

2. Materials and Methods 

2.1 Site Description  

The study site was the Grazinglands Research on agroEcosystems and the ENvironment 

(GREEN) farm, which is part of the U.S. Department of Agriculture (USDA), Agricultural 
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Research Service, Grazinglands Research Laboratory and the Long-Term Agroecosystem 

Research (LTAR) network. The GREEN farm (35°33’29” N, 98°1’50” W, ~414 m above sea 

level) is located near El Reno in central Oklahoma (warm temperate climate) and has a total area 

of 178 ha. The primary soils are Bethany silt loams, Renfrow-Kirkland silt loams, and Norge silt 

loams, characterized as deep, well-drained, loamy soils with clayey or loamy subsoil (NRCS, 

1999). This research farm has five zones with different exposures facing north, south, and east, as 

well as a rolling and undulating landscape without a dominant exposure (Wagle et al., 2018). Out 

of five zones in the GREEN farm, four were under four-year crop rotation of canola, grain-only 

wheat, graze-grain wheat, and graze-out wheat. The remaining zone was under continuous graze-

out wheat. In addition, each zone was divided into two plots, one under no-till and the other under 

conventional tillage. This resulted in a total number of 10 experiment plots. Figure 4.1 

demonstrates the location of each experimental plot along with the eddy covariance flux towers 

that were installed near the center of eight plots. 

 

Figure 4.1. Layout of the experimental plots. The stars represent the flux towers location. 
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All plots were under rainfed conditions. The tillage management started in 2015 with 

conventional till and no-till. All conventional till experiment plots (E2, RU2, C2, S2) were tilled 

between 5.0 to 15.0 cm (2 to 6 inches) deep for seedbed preparation and weed control. All 

experimental plots were managed for fertilizer, herbicide, and pesticide using common practices 

in the region for a high production potential (Wagle et al., 2018). The data for this study were 

collected during two winter wheat/canola growing seasons (September-June) of 2016-2017 and 

2017-2018. The seasonal rainfall in 2016-2017 was 741 mm, which was 20 mm greater than the 

normal (1981-2010) rainfall of 721 mm. The 2017-2018 season was drier with only 476 mm 

rainfall (36% less than normal). Graze-out wheat was planted earliest during mid-September and 

grazed twice. The first grazing period was from mid-November to mid-March and the second 

grazing period from mid-March to mid-May. The graze-grain wheat was planted next during the 

third week of September, grazed during mid-November to the first week of February, and 

harvested in the first week of June. The grazing rates were one stocker per 0.607 ha (1.5 acre) in 

the fall and one stocker per 0.405 ha (1 acre) in the spring. Grain-only wheat was planted in mid-

October and harvested in mid-June. Both crops were planted at the approximate rate of 90 kg 

seeds ha-1 on ~19 cm (7.5 inch) row spacing with an east-west orientation. More information 

about the grazing and tillage practices of each plot during the study period is presented in Table 

4.1. 

Table 4.1. Summary of tillage and grazing management during the study period 

Site ID 

Area 

(ha) 

Tillage 

Management 

Grazing Management 

2016-2017 2017-2018 

E1 15 No-Till Grain-only wheat Graze-grain wheat 

E2 22 Till Grain-only wheat Graze-grain wheat 
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RU1 21 No-Till Canola Grain-only wheat 

RU2 20 Till Canola Grain-only wheat 

C1 10 No-Till Graze-out wheat Graze-out wheat 

C2 11 Till Graze-out wheat Graze-out wheat 

S1 13 No-Till Graze-grain wheat Graze-out wheat 

S2 13 Till Graze-grain wheat Graze-out wheat 

 

2.2 RSEB Models 

Five commonly used RSEB models were selected for evaluation in this study: three 

contextual-based (CB) and two pixel-based (PB) models. The selection of these models was 

based on their wide applicability and computational complexity. A brief explanation of each 

model is presented in the following sections. 

2.2.1 CB Models 

The three CB models included SEBAL, mapping evapotranspiration at high resolution 

with internalized calibration (METRIC; Allen et al., 2007) and triangle vegetation temperature 

(TVT; Jiang and Islam, 1999). SEBAL and METRIC use hot (minimum ET) and cold (maximum 

ET) pixels selected from each image to scale ET across all pixels through internal calibration of 

H. TVT relies on the triangular relationship between the NDVI and Ts and uses the hot and cold 

surfaces of the NDVI-Ts triangular structure to scale ET across all pixels without the need for 

calculating H. Rn is estimated by surface radiation balance as: 

Rn = (1 − α)Rs + εs εa σ Ta
4 − εs σ Ts

4     (4.2) 
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where Rs is the incoming shortwave solar radiation (W m-2), α is surface albedo (dimensionless) 

estimated using atmospheric corrections which is based on humidity data and digital elevation 

model (Tasumi, Allen, & Terezza, 2008), εs is surface emissivity (dimensionless) estimated as a 

function of leaf area index (LAI) for vegetation and using a normalized difference vegetation 

index (NDVI; Tucker, 1979) threshold (NDVI>0) for soil surface. For water and snow, εs was 

considered as a constant value (Allen et al., 2007). The LAI was estimated as a functional 

relationship with NDVI as described in Ershadi, McCabe, Evans, Chaney, and Wood, 2014. The 

εa is atmospheric emissivity and was estimated from atmospheric transmissivity (Bastiaanssen, 

1995) which is a function of elevation (Allen et al., 1998). The Ta is air temperatures (K) and 

surface temperature Ts is estimated as a ratio of brightness temperature to εs
-0.25. σ is the Stefan-

Boltzmann constant (5.67 × 10-8 W m-2 K-4). G is estimated using empirical equations, such as 

given by Bastiaanssen, Menenti, Fddes, & Holtslag (1998) in relation to Rn, NDVI, and Ts.   

G

Rn
=

(Ts − 273.15)

 α
(0.0038 α + 0.0074 α2)(1 − 0.98 NDVI4)    (4.3) 

To estimate H, SEBAL and METRIC use hot and cold pixels as a boundary and 

representing opposite ET extremes within an image. The hot pixel is usually selected from the 

bare soil surface area within an image with smaller NDVI and larger Ts. The cold pixel is selected 

from well-irrigated high vigor (larger NDVI) area with smaller Ts. For the hot pixel, SEBAL 

assumes ET to be zero, however, METRIC uses a water balance equation (Allen et al., 1998) to 

account for possible residual evaporation from the hot pixel due to prior rainfall. For the cold 

pixel, SEBAL assumes H equal to zero, thus ET from the cold pixel is at the potential rate, 

whereas METRIC estimates H by rearranging equation 4.1 and assuming ET to be 5% higher 

than reference ET (ETr; ASCE-EWRI, 2005). In this study, the selection of hot and cold pixels 

was made by an automated exhaustive search algorithm (Bhattarai, Quackenbush, Im, & Shaw, 

2017). Both SEBAL and METRIC apply a linear relationship between dT (temperature difference 
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between two reference heights) and Ts at hot and cold pixels to estimate H by iteratively solving 

the equations for aerodynamic resistance (rah) and friction velocity (u*) as shown in equation 4.5 

and equation 4.6, respectively. 

H =
ρ × cp × dT

rah
           (4.4) 

rah =
1

Ku∗
[ln (

z−d0

z0h
) − ψh(z−d0) + ψh(z0h)]      (4.5) 

u∗ =
kub

ln(
zb

z0m
)−ψm(zb)

        (4.6) 

where ρ is air density (kg/m3), cp is air specific heat capacity (J kg-1 K-1), K is Von Karman’s 

constant (0.41), z is the reference height (m), d0 is the zero-displacement height (m), ub is the 

wind speed (m s-1) at blending height zb (200 m). The z0m is the roughness length (m) for 

momentum transfer and estimated using an empirical relation with NDVI (van der Kwast et al., 

2009), zoh is the roughness length (m) for heat transfer. The ψm and ψh are the stability correction 

for momentum and heat transport, respectively. After computing H, Rn, and G, LE is estimated as 

a residual of the surface energy balance as shown in equation 4.1. METRIC estimates the 

instantaneous fraction of reference ET (ETrF) as a ratio of actual ET to ETr and SEBAL estimates 

instantaneous evaporative fraction (Λ) as a ratio of LE to available energy (Rn – G). 

Unlike the single set of hot and cold pixels in the SEBAL and METRIC models, the TVT 

model uses hot and cold edges derived from the NDVI-Ts triangular space to scale ET across all 

pixels within an image. This model uses a modified form of Priestley-Taylor’s equation (Priestley 

and Taylor, 1972) as:  

ET=ϕ [
Δ

Δ + γ 
] (Rn − G)       (4.7) 
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where Φ (0 to 1.26) is a modified form of coefficient α and is calculated for each pixel (Φi) in the 

image using linear interpolation between maximum and minimum Ts for a given NDVI class. 

Readers are referred to Jiang and Islam (1999, 2003) for a detailed explanation of the model. 

2.2.2 PB Models 

 The two PB models included TSEB and the surface energy balance system (SEBS; Su, 

2002). SEBS uses a similar approach to SEBAL/METRIC in estimating Rn and G, and estimates 

H by solving the similarity equations for the wind speed profile (u) and the difference between 

the potential temperatures (θ0 – θa): 

u =
u∗

k
[ln (

z−d0

z0m
) − ψm (

z−d0

L
) + ψm (

z0m

L
)]                                                  (4.8) 

θ0 − θa =
H

Ku∗ρaCp
[ln (

z−d0

z0h
) − ψh (

z−d0

L
) + ψh (

z0h

L
)]                                  (4.9) 

where L is the Monin-Obukhov length (m). SEBS computes H at dry (Hdry) and wet (Hwet) limits 

to maintain extremes for H. At the dry limit, LE is considered zero and at wet limit, it is assumed 

to be at a potential rate and estimated using the Penman-Monteith (P-M) equation (Monteith, 

1965). After computing H, LE is estimated as the residual of SEB. After stabilization of H (see Su 

2002 for details), estimated Hdry and Hwet, are used to compute relative evaporation (Λr), which is 

further used to compute Λ as: 

Λr = 1 −
H−Hwet

Hdry−Hwet
                                                                                (4.10) 

Λ =
Λr(Rn−G−Hwet)

Rn−G
                                                                                    (4.11) 

Unlike all other models considered in this study (i.e. single-source SEB models), TSEB 

differentiates the canopy and soil layer and estimates Rn for each layer as:   

Rn,c = Hc + LEc                                                                                    (4.12) 
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Rn,s = Hs + LEs + G                                                                               (4.13) 

where c and s subscripts denote canopy and soil components of each surface energy flux. Rn,c and 

Rn,s are estimated based on a method proposed by Kustas and Norman (1999). G is estimated only 

for the soil layer as a constant fraction of Rn,s proposed by Choudhary, Idso, and Reginato (1987).  

 To estimate LEc and LEs, Ts is disaggregated into soil (Ts,s) and canopy (Ts,c). Ts is 

assumed to be linked with vegetation fraction (fc) (Norman et al., 1995) as: 

Ts=[fcTs,c
4 +(1-fc)Ts,s

4 ]
1/4

                                                                           (4.14) 

 LEc is estimated using the Priestley-Taylor equation (Priestly and Taylor, 1972) 

considering unstressed vegetation as: 

LEc=αPTfg [
Δ

Δ + γ 
] Rn,c                                                                               (4.15) 

where αPT is the Priestley-Taylor parameter, fg is the fraction of LAI that is green (assumed to be 

actively transpiring), ∆ is the slope of the saturation vapor pressure-temperature curve (kPa K-1), 

and γ is the psychrometric constant (kPa K-1).  

 Initially, αPT is set to 1.26 and after estimating LEc, Hc is estimated using series resistance 

network in TSEB (Norman et al., 1995). With the first estimate of Ts,c, Ts.s is estimated from 

equation 4.14, and Hs and LEs are estimated. If LEs is negative, LEc is reduced with an 

incremental decrease in αPT, which increases Ts,c and decreases Ts,s. The process is iterated until 

Ts,c and Ts,s agrees with Ts in equation 4.14, and realistic values of LEc (≥0) and LEs (≥0) are 

obtained. Further details are explained in Norman et al. (1995) and Kustas and Norman (1999). 

2.3 Instantaneous to Daily ET 
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The instantaneous Λ and ETrF estimated from RSEB models during the satellite overpass 

was assumed to be constant for the day under clear-sky conditions (Brutsaert and Suginta, 1992; 

Allen et al., 2007). Thus, instantaneous Λ from SEBAL, SEBS, TVT and TSEBS was multiplied 

by daily Rn and a conversion factor of 86,400 and divided by λ to obtain daily ET in units of mm 

d-1. For METRIC, instantaneous ETrF was multiplied by daily ETr to compute daily ET. 

2.4 Remote Sensing and Meteorological Data 

Out of 42 Landsat images during two growing seasons, daily ET comparison was 

possible only for 28 days due to missing data from flux tower and filtering applied on ET data. 

The filtering included removing days with daily ET values less than 0.01 mm d-1 from flux tower 

or RSEB models, as well as days with potential biases in Ts estimation (Ts smaller than Ta due to 

the presence of thin cloud and/or cloud shadow). The at-surface reflectance, surface reflectance-

based NDVI, and top-of-atmosphere (TOA) brightness temperature (Tb) images for selected dates 

were downloaded from the US Geological Survey Earth Resources Observation and Science 

Center Science Processing Architecture on Demand Interface. These products were 

atmospherically corrected and processed by the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) for Landsat 7 images (Masek et al., 2012) and the Landsat 8 

Surface Reflectance Code (LaSRC) for Landsat 8 images (Vermote, Justice, Claverie, & Franch, 

2016). The cloud and cloud shadow pixels from all remote sensing images were removed using 

the C programming language implementation of FMask algorithm (Zhu and Woodcock, 2012; 

Zhu, Wang, & Woodcock, 2015). The 30-m ground resolution 2011 National Land Cover 

Database (Homer et al., 2015) was used to identify the land covers for facilitating the selection of 

hot and cold pixels in SEBAL/METRIC. A common spatial subset of ~70 km×70 km covering 

the EC towers was used to process each Landsat image. Processing of all RSEB models except 

TSEB was carried out in Matlab (The Mathworks Inc., Natick, MA). TSEB was processed in 

Python using the algorithms available at https://github.com/hectornieto/pyTSEB.  

https://github.com/hectornieto/pyTSEB
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The hourly weather data were obtained from four Oklahoma Mesonet stations (Brock et 

al., 1995; McPherson et al., 2007) located near the research site and within the spatial subset used 

in image processing. The quality assessment of hourly air temperature, solar radiation, wind 

speed, and relative humidity was performed as described in ASCE-EWRI (2005). The hourly ETr 

was estimated following ASCE-EWRI (2005) and summed for 24-hour to obtain daily ETr. An 

inverse distance weighted interpolation (power of two) was applied to create a 30-m grid 

equivalent to the spatial resolution of Landsat for each meteorological input parameter for use in 

the RSEB models. 

2.5 Flux Data 

The 30-min flux data were obtained from the eight eddy covariance towers installed near 

the center of research plots. The towers were 2.5 m tall and equipped with 3-D sonic anemometer 

(CSAT3, Campbell Scientific Inc., Logan, Utah, USA) and open path infrared gas analyzer (Li-

7500-RS, LI-COR Inc., Lincoln, Nebraska, USA). The detailed description of the installation and 

instrumentation of towers is presented in Wagle et al. (2018). The energy balance closure was 

0.77 during the study period. This error was corrected for 30-min data by following the constant 

Bowen-Ratio method of Twine et al. (2000). The corrected 30-min data were aggregated to obtain 

daily ET for comparison with estimates from RSEB models. 

2.6 Model Evaluation 

Considering the land use homogeneity around the flux tower locations, pixel subset-based 

analysis was conducted to evaluate the performance of RSEB models. The average ET of 3×3 

pixels (90 m×90 m) centering the flux towers was used in comparison with flux tower ET. For 

statistical analysis mean absolute error (MAE) and root mean square error (RMSE) (Moriasi et 

al., 2007) were used. Linear regression lines with slope ‘a’ and intercept ‘b’ were also plotted and 

coefficient of determination (R2) was estimated to evaluate the fitness of models. A perfect fit is 
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represented by R2 equal to one, a slope of one and intercept of zero. Model performance was 

evaluated for all data combined. Daily ET from canola plots (RU1 and RU2 in 2016-2017) were 

not included for comparison. 

2.7 Impacts of Grazing and Tillage on ET 

After selecting the best RSEB model, the average daily ET from experimental plots were 

applied to evaluate the impact of grazing and tillage managements. Out of 42 available Landsat 

images, 33 images (15 in 2016-2017 and 18 in 2017-2018) were used for statistical analysis since 

some of the images were filtered as described in section 2.4. This number of images, however, 

was larger than the number of images used for daily ET comparisons against flux tower (28) since 

there was no limitation imposed by availability of flux data. The statistical evaluation of daily ET 

from different tillage and grazing managements was made by applying the linear mixed-effects 

models package (lme4) (Bates et al., 2015) in R software (R Foundation for Statistical 

Computing, Vienna, Austria). The evaluation was made by comparing the log-odds ratios of 

linear models at a significance level of 0.05 to analyze the impact on daily ET from tillage, 

grazing, and their interactions (main effects), considering experiment plots and growing season as 

random effects. Tukey’s HSD test was applied to evaluate the differences among the mean daily 

ET from grazing and tillage managements. 

 

3. Results and Discussion 

3.1 Model Evaluation 

The comparison of daily RSEB-based ET with flux towers showed an acceptable 

performance for all models with MAE less than 31 W m-2 and RMSE less than 42 W m-2 (Figure 

4.2 and Table 4.2). METRIC and TSEB overestimated ET, whereas other models underestimated 

ET. SEBAL had the smallest MAE and RMSE, followed by TVT. Among all models, TSEB had 

https://www.r-project.org/
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the largest MAE and RMSE. Overall, the three CB models had smaller RMSE and MAE than PB 

models.

 

Figure 4.2. Comparison of daily ET between flux tower observations (y-axis) and RSEB models 

(x-axis).  

Table 4.2. Statistical comparison of observed and estimated daily ET 

Statistic 

Contextual-Based Pixel-Based 

METRIC SEBAL TVT SEBS TSEB 

MAE (W m-2) 25.8 22.5 22.8 25.2 30.5 

RMSE (W m-2) 33.7 28.5 29.9 35.6 41.1 

 
Based on regression lines plotted between observed and estimated daily ET, SEBAL had 

the largest R2 of 0.71, followed by METRIC, TVT, TSEB, and SEBS (Table 4.3). In terms of 
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slope (a), SEBAL and TVT had the better fit than other models. METRIC had the smallest 

intercept (b) while the value of this parameter was similar for other regression models. Overall, 

regression lines of CB models had better fit than PB models. 

Table 4.3. Slope, intercept and coefficient of determination of regression lines 

Parameter 

Contextual-Based Pixel-Based 

METRIC SEBAL TVT SEBS TSEB 

a (slope) 0.62 0.71 0.71 0.61 0.51 

b (intercept) 17.97 27.72 27.63 28.72 28.68 

R2 0.68 0.71 0.66 0.43 0.53 

 

Previous studies on evaluating RSEB models have shown varying performances over 

different land covers and climates when compared with flux tower estimations. For example, 

Bhattarai et al. (2016) compared five RSEB models and reported a better performance from 

SEBS in daily ET estimation using Landsat images with RMSE of 20.1 W m-2 over multiple land 

covers under a humid climate of the southeast US. After SEBS, SEBAL provided the lowest 

RMSE of 23.5 W m-2. Lian and Huang (2016) found a better performance from METRIC in the 

oasis-desert region of northwest China across multiple land covers with RMSE of 20.1 W m-2 and 

MBE of 12.5 W m-2. In the high biomass sorghum in central Oklahoma, Wagle et al. (2017) 

reported the best performance (RMSE of 25.5 W m-2) from Simplified Surface Energy Balance 

model (S-SEBI; Roerink et al., 2000), followed by SEBAL (27.5 W m-2). Over native grassland 

and managed switchgrass in central and western Oklahoma, SEBS provided RMSE less than 50 

W m-2 when using MODIS images (Khand et al., 2019). While the performances varied across 
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models, the biases from the present study are within a range of errors reported in previous studies 

for daily ET estimations. 

RSEB models require several inputs representing crop characteristics and local weather, 

and the model performance differs with sensitivity to input parameters. Evaluating the models 

sensitivity is outside the scope of this study. However, an analysis was made to evaluate the 

performance of models with three main inputs representing crop characteristics, weather, and soil 

moisture. NDIV and/or LAI is a primary input representing crop characteristics. Results from this 

study show larger biases from all models at lower values of LAI (Figure 4.3a-e). When LAI was 

greater than 3, METRIC had the smallest mean bias of 5.4 W m-2, followed by other CB models 

(SEBAL, TVT). These results show the inverse relation between ET estimation bias and LAI in 

CB models. However, such a relation did not exist for PB models. 

 

Figure 4.3. ET biases (estimated-observed) of RSEB models with respect to leaf area index (LAI, 

first row), instantaneous air temperature (Ta, second row), and surface temperature (Ts, third row). 
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PB models had a clear pattern of increasing ET bias (overestimation) with Ta, while this 

pattern was not as clear in the case of CB models (Figure 4.3f-j). For Ta > 300 K, TSEB showed 

largest mean bias of 116 W m-2, followed by SEBS (74 W m-2), while, mean biases from the CB 

models were less than 34 W m-2. A similar response was observed in case of Ts, which is another 

key input parameter for all RSEB models. Biases from all models increased with an increase in Ts 

(Figure 4.3k-o), suggesting relatively poor performance of the models under drier conditions. 

Larger ET overestimation errors were observed from PB models (Figure 4.3n,o) at higher Ts 

compared to CB models (Figure 4.3k-m). The mean ET bias from PB models were up to 95 W m-

2 (TSEB), whereas CB models provided bias within 41 W m-2 when Ts > 300 K. 

The impact of Ts on modeled ET estimates could arise from uncertainties associated with 

Ts derivation or the approaches and assumptions made in the RSEB models to derive extreme 

surfaces (hot and cold pixels/edges). All three CB models are highly sensitive to the selection of 

domain (Long et al., 2011; Tang et al., 2013; Xia et al., 2016), as it could change the values (and 

locations) of extreme pixels used in these models. A different set of hot and cold pixels in 

SEBAL and METRIC produces completely different ET results for all other pixels in the image, 

if the Ts values of the new hot/cold pixels were significantly different (Tang et al., 2013). Long et 

al. (2011) reported that H might be biased by up to 25 W m-2 for a 2 K bias in the selected 

hot/cold pixel in SEBAL. Antecedent soil moisture at the bare ground or fallow agricultural land 

could induce biases in ET estimates from CB models, as LE may not be zero due to residual 

evaporation. Though METRIC uses the water balance to account residual evaporation from hot 

pixel (ETrFhot), ET estimation biases may increase if the maximum value for ETrFhot is not 

limited (Choi, Kustas, Anderson, & Allen, 2009). There might be cases when dry and wet 

surfaces are not well represented within an image, which could lead to biased ET estimates across 

a pixels from CB models. Xia et al. (2016) highlighted the sensitivity of the triangular ET model 

to spatial domain size and potential non- representation of dry and wet surfaces within the image. 
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Unlike CB models, PB models such as SEBS and TSEB use pixel level LAI and Ts 

information to scale ET for each pixel independent of ET values across the neighboring pixels. 

However, this makes the model more sensitive to the absolute values of LAI/Ts. For example, the 

characterization of aerodynamic conductance in SEBS is based on excess resistance parameter 

(kB-1) based on LAI and surface roughness. Hence, any errors in these parameters will propagate 

to kB-1 and consequently H and LE. SEBS uses kB-1 to account for the difference between Ts and 

aerodynamic temperature (To), which is impossible to measure through remote sensing. This is 

semi-empirical in nature and could induce additional uncertainty in ET estimates (Bhattarai, 

Mallick, Brunsell, Sun, & Jian, 2018). TSEB relies on the Priestley-Taylor coefficient, which is 

variant with space and time (Komatsu, 2003; Yang et al., 2015) and is a major source of 

uncertainty (Colaizzi et al., 2012; Song et al., 2018). Apart from the uncertainties in the RSEB 

models, some errors are associated with flux tower observations and this should be considered 

when comparing the results with estimates of RSEB models. For example, flux tower data often 

lag the energy closure in order of 20% (Wilson et al., 2002) and the performance of RSEB 

models may vary depending on the energy balance closing approach used (Xia et al., 2016). 

3.2 Impacts of Grazing and Tillage on ET 

The mean daily ET from the two grazing managements (graze-grain and graze-out) are 

plotted versus daily ET from grain-only for each day of available Landsat imagery (Figure 4.4a). 

As this scatterplot shows, the ET from grain-only wheat was larger, especially for daily ET 

estimates larger than 2.0 mm d-1. Daily ET from tilled wheat is also plotted against no-till ET in 

Figure 4.4b. Although a difference between the two tillage managements appeared to exist at 

daily ET estimates larger than 2.0 mm d-1, the overall difference between tillage practices was 

considerably smaller than the difference between grazing practices. To demonstrate ET 

differences on a distributed basis, one ET map from mid-March of each growing seasons is also 

presented in Figure 4.5. These maps show the potential impacts of grazing managements as this 
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time is closer to the end of first grazing (mid-March) at graze-out plots and the end of grazing 

(first week of February) at graze-grain plots. As expected, the daily ET rates were higher from 

grain-only plots (E1 and E2 in 2016-2017 and RU1 and RU2 in 2017-2018). The impact of 

grazing on wheat ET may vary depending on grazing intensity and duration. Grazing reduces 

canopy cover and exposes the soil surface for more evaporation; however, transpiration may be 

lowered due to reduced biomass. Thus, the combined impact of evaporation and transpiration 

may increase or decrease ET. A study (Harrison, Evans, Dove, & Moore, 2012) in south-eastern 

Australia reported both increase and decrease in ET based on grazing intensity and duration. 

Grazing may also decrease water stress in rainfed winter wheat and enhance leaf photosynthesis 

(Harrision, Kelman, Moore, & Evans, 2010), which may increase transpiration rates when 

sufficient soil moisture is available in the root zone. 

 

Figure 4.4. Mean daily ET comparison form grazing (a) and tillage (b) managements 
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Figure 4.5. Daily ET maps of experiment plots during early March of 2016-2017 (a) and 2017-

2018 (b) growing seasons.  

When averaged over all overpass dates in the two studied seasons, the mean daily ET was 

higher from grain-only wheat, followed by graze-grain wheat and graze-out wheat (Table 4.4). 

Grain-only mean daily ET was 2.25 mm d-1, which was 26% greater than graze-grain and 49% 

greater than graze-out. Statistical analysis, however, indicated the differences in mean daily ET 

from grazing managements were not significantly different (Table 4.4). The mean daily ET from 

tilled plots was 12% higher than no-till plots, but these mean ET were not statistically different 

either (Table 4.5). It should be noted that no significant interactions between grazing and tillage 

managements were found (p=0.824). 

Table 4.4. Mean daily ET from grain-only, graze-grain and graze-out winter wheat. The different 

letters following the mean daily ET represent statistically significant differences at the 0.05 level. 

Grazing managements Grain-only Graze-grain graze-out 

ET (mm d-1) 2.25a 1.79a 1.51a 
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Table 4.5. Mean daily ET from till and no-till winter wheat. The different letters following the 

mean daily ET represent statistically significant differences at the 0.05 level. 

Tillage managements Till No-till 

ET (mm d-1) 1.90a 1.70a 

 

4. Conclusions 

Five RSEB models were evaluated to estimate daily ET from rainfed winter wheat under 

variable grazing (grain-only, graze-grain, graze-out) and tillage (till, no-till) management. The 

study was conducted for two winter wheat growing seasons (2016-2017 and 2017-2018) in 

central Oklahoma, U.S. All RSEB models provided reasonably good performance, with SEBAL 

being the best performing model (MAE=22.5 W m-2, RMSE=28.5 W m-2) when compared with 

flux tower estimations. The daily ET from SEBAL model was then used to evaluate the impact of 

variable grazing and tillage managements on ET. On average, daily ET from grain-only wheat 

was 2.25 mm d-1, which was 26% greater than graze-grain and 49% greater than graze-out 27%. 

However, these differences were not statistically significant. Mean daily ET from tilled plots was 

1.90 mm d-1, which was 12% more than that from no-till plots. This difference was not 

statistically significant either. The study showed the potential application of RSEB models for 

capturing field-scale ET variations from different grazing/tillage management.  
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CHAPTER V 
 

 

CONCLUSIONS 

 

Vegetation index (VI)-based and remotely sensed surface energy balance (RSEB) models 

were evaluated and a framework was developed to construct daily time series of ET maps using a 

RSEB model. The study showed the application of a simple VI-based model using a single 

Landsat image for mapping annual riparian ET within good accuracy, which can be useful for 

rapid assessment of interannual variation in riparian ET with fewer data and resources. The daily 

and annual ET maps from the modeling framework captured the spatial and temporal variability 

of ET across nine climate divisions of Oklahoma. The study highlighted a range of applications of 

the modeling framework, such as for identifying water-scarce regions and areas with larger 

impact of drought on crop water use, and for integration in decision and policy making. 

Evaluation of five RSEB models in central Oklahoma identified the best performing RSEB model 

that can capture field-scale ET variability of rainfed winter wheat under variable grazing and 

tillage managements. 
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