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Abstract

Due to their accessibility, quadrotors are used as testbeds for guidance, naviga-

tion, and control systems and have been used for a wide variety of applications. These

applications range from commercial aerial photography to military surveillance. In

the latter case, the vehicle can be exposed to danger if opposing agents are present.

The vehicle is incentivized to take cover among obstacles in order to protect it during

surveillance operations. However, current research seeks only to avoid obstacles. This

thesis develops a guidance system capable of generating tactical flight of a quadrotor.

This guidance system consists of three complementary subsystems. The first is fast

model predictive control (FMPC). This algorithm uses the dynamics of the system to

plan several time steps into the future. Using this plan, the algorithm communicates

the optimal action to take and repeats the process. FMPC is advantageous due to

its fast computation subject to the system dynamics and customizable cost functions

that can be used to enforce tactical behavior. However, it is not designed to work

in non-convex environments and is vulnerable to locally optimal points that are not

the goal position. The convexity issue is mitigated by using quadratic discrimina-

tion to find a locally convex region. Local optima are avoided by employing a global

pathfinding algorithm built off of the motion primitive library. Flight test results

demonstrating the capabilities of the resultant guidance system are presented.

Keywords: Quadrotor, model predictive control, guidance systems, constraint gen-

eration, contested environment
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1. Introduction

Quadrotors are small, unmanned aerial vehicles (UAVs) that have grown in pop-

ularity as a testbed for guidance, navigation, and control systems due to their low

cost, high maneuverability, and established dynamics. The research into these sys-

tems have opened the door to a diverse set of applications for quadrotors. Commercial

applications include aerial photography, crop monitoring, package delivery, and search

and rescue operations. Defense applications have significant overlap but tend to focus

more heavily on scouting and surveillance. While these mission profiles differ, several

of these applications incentivize similar flight characteristics. Namely, flight profiles

that avoid obstacles and maneuver through the environment quickly are of particular

interest.

However, this mission profile is not always ideal. In defense applications, the

quadrotor will often operate in contested environments in which opposing agents are

present. Since the quadrotor has no way of actively defending itself, it must either

avoid being detected or avoid being targeted. In either case, it is advantageous to fly

near and among obstacles. This is directly opposite of the profile desired by other

guidance systems as flying near obstacles increases the chances of collision.

In this thesis, we seek build a novel autopilot consisting of guidance, navigation

and control systems that steers the quadrotor near obstacles while traversing the envi-

ronment. The control system, which has already been developed, is a model reference

adaptive control chosen for its ability to reject disturbances due to aerodynamic ef-
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fects near obstacles. The navigation system, still in development, uses a stereoscopic

camera to map the environment and determine the state of the quadrotor. This thesis

focuses on the guidance system where the vehicle is given directions on how to reach

a goal in a tactical manner.

An outline of this thesis is as follows. Chapter 2 presents the history and theory

behind the model predictive control algorithm. This algorithm is tasked with finding

an optimal trajectory to a goal position. Further, we describe how the structure of

the problem is exploited to more quickly find a solution to the problem, forming a fast

model predictive control algorithm (FMPC). Then, we demonstrate the flexibility of

this algorithm’s cost function and describe how changes can be made to fit our mission

profile.

Chapter 3 describes the equations of motion of a quadrotor. First, these equations

are presented in full. However, the full equations of motion are highly nonlinear and

thus cannot be directly applied with FMPC. So, the equations of motion are linearized

and applied with the results of Chapter 2 to create simulations shown in Chapter 4.

Chapter 5 identifies that FMPC struggles in non-convex operating regions. To

rectify this issue, constraint generation methods are developed that identify a locally

convex region within which FMPC can operate. This is not a problem with a triv-

ial solution, so instead an approximate solution is found by finding ellipsoids that

separate the vehicle from surrounding obstacles at regular intervals while the vehicle

traverses the environment. An affine hull based off of this ellipsoid is found.

In Chapter 6, we identify that FMPC is susceptible to finding locally optimal

points and thus failing to find the goal position. This issue is fixed by identifying a
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global path planning algorithm based off of the motion primitive library. This path

planner is updated to enable tactical flight. FMPC is used to avoid obstacles and

refine the global plan. Chapter 7 brings all of these elements together and presents

flight tests that demonstrate several capabilities of the guidance system.
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2. Model Predictive Control

2.1 Background

Model Predictive Control (MPC) is a technique to find optimal control laws that

optimize multi-input, multi-output (MIMO) systems subject to state and control

constraints. According to this technique, at each time instance a sequence of control

inputs, which minimize a cost function and verify the given constraints, is computed.

The controller then applies the first control input of this sequence. Successively,

the MPC algorithm calculates a new sequence of control inputs and the process is

iterated until the system reaches its goal [2]. This approach offers several benefits.

Deviations in the system behavior due to disturbances or uncertainties are inherently

compensated for by the recalculation of the control plan. All the while, MPC ensures

that constraints are verified at all time and the prediction is based on the system

dynamics [2].

MPC was developed by Shell in 1978 for use in large scale industrial processes [3].

This original implementation relied on antiquated computers and was slow to execute.

The dynamics of petroleum and chemical plants are slow and hence, MPC algorithms

were suitable for these applications. MPC has advanced along with technology due

to improved hardware, software, and algorithms, greatly increasing the number of

MPC applications [4]. However, industrial applications continue to be the primary

implementation of MPC. Adoption of MPC in systems with faster dynamics, such as
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those found in the aerospace industry, has been hampered by computational methods

that require sampling times separated by several seconds or even minutes [5]. This

kind of slow calculation would be disastrous outside of the current applications for

which MPC is currently used.

Several methods have been introduced to reduce the computational cost of MPC.

The first step for many of these methods is to limit the optimization problem to a

certain class so that the structure of the problem can be exploited for efficiency. In this

thesis, a linear dynamical model, polyhedral constraints, and a quadratic cost function

are assumed so that the resulting optimization problem is a quadratic program (QP)

[5]. Reducing the problem to a QP has the inherent advantage of ensuring that a

solution exists to the optimization problem. In order to compute the solutions of

QP problems underlying an MPC algorithm, Wang and Boyd proposed in [5] a new

approach that has a relatively low computational cost. Specifically, the QP problem

is rearranged so that the differential constraints involve tri-diagonal state transition

matrices. In doing so, the time complexity of solving the MPC problem is reduced

from cubic to linear [5]. Further reduction of the computational cost is possible

by implementing a warm-start method, whereby the prediction from the previous

iteration is used to create an initial guess for the solution of the next prediction.

Specifically, since the solution at a future iteration is likely to be similar to the solution

of the previous iteration, the number of steps needed to solve the problem is reduced

drastically [6]. Lastly, the QP does not need to be solved to full accuracy to find a

solution that is capable of controlling the system. This property is a consequence of

the nature of MPC as a planner. Since only the first step of the plan is utilized, the
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plan does not need to be perfectly accurate in order to find a solution that stabilizes

the system. In general, only 3 to 5 iterations are needed to provide high quality

control [5]. For its reduced computational cost, Wang and Boyd’s approach can be

considered as a Fast Model Predictive Control (FMPC) algorithm. This algorithm is

the foundation of the autopilot for multi-rotor UAVs presented in this thesis.

2.2 Model Predictive Control as a QP Problem

FMPC, as discussed previously, is an algorithm that seeks to control the discrete-

time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t) + w(t), x(0) = x0, t = 0, 1, . . . , T − 1, (2.1)

where t denotes a time step, x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm denotes

the control vector, w(t) ∈ Rn captures disturbances, A ∈ Rn×n, and B ∈ Rn×m. In

the following, we assume that w(·) is independent identically distributed with known

distributions for different values of t = 0, . . . , T − 1, and define w̄ , Ew(t), t =

0, . . . , T − 1 as the mean value of w(·) [5].

The control input u(·) must minimize the objective function

J [x0, u(·)] = lim
T→∞

1

T
E
t+T−1∑
τ=t

`(x(τ), u(τ)), (2.2)
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where

`(x, u) =

x
u


T Q S

ST R


x
u

+ qTx+ rTu, (x, u) ∈ Rn × Rm (2.3)

Q = QT ∈ Rn×n, R = RT ∈ Rm×m, S ∈ Rn×m, q ∈ Rn, and r ∈ Rm are user-defined

parameters. To guarantee the existence of a solution of the given QP problem, we

assume that Q S

ST R

 ≥ 0, (2.4)

where ≥ denotes non-negative definiteness. In this thesis, the state and control con-

straints are separated, that is S = 0. Therefore, it is assumed that Q ≥ 0 and R ≥ 0.

While not necessary to satisfy (2.4), it is typical to enforce R > 0 and Q > 0. Lastly,

the control input u(·) must be chosen so that the dynamical model (2.1) verifies linear

inequality constraints

Fxx(t) + Fuu(t) ≤≤ f, t = 0, 1, . . . , T − 1, (2.5)

Ffx(t+ T ) ≤≤ ff , (2.6)

where Fx ∈ Rl×n, Fu ∈ Rl×m, Ff ∈ Rk×n, f ∈ Rl, ff ∈ Rk, T ∈ N denotes the time

horizon, and ≤≤ denotes the component-wise inequality. In general, the constraints

are not assumed to be constant. Indeed, constraints can be modified to vary over

time and space. However, doing so means that the affinity of the constraint set may

not be retained. Therefore, we assume that the constraints are constant at each step
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of the FMPC algorithm and update them at each iteration, if necessary.

It follows from the dynamic programming principle [7] that the optimization prob-

lem captured by (2.1), (2.2), and (2.3) is equivalent to

minimize: J [x0, u(·)] = `f (x(t+ T )) +
t+T−1∑
τ=t

`(x(τ), u(τ)), (2.7)

subject to: Fxx(τ) + Fuu(τ) ≤≤ f, (2.8)

Ffx(t+ T ) ≤≤ ff (2.9)

x(τ + 1) = Ax(τ) +Bu(τ) + w̄, (2.10)

τ = t, . . . , t+ T − 1, (2.11)

where T denotes the time horizon, that is the number of time steps in the future that

MPC uses to plan a control input, and

`f (x) = xTQfx+ qT
f x, x ∈ Rn, (2.12)

denotes the terminal cost function where Qf = QT
f ≥ 0.

To illustrate how FMPC solves the problem captured by (2.7)-(2.11), a conceptual

interpretation is presented here. At the beginning of the current time step t, the

MPC controller takes the current state x(t) and determines the optimal control u∗(t)

that minimizes the cost function J [x0, u(·)] and verifies the constraints (2.7)-(2.11).

Successively, the state vector at the next time step t + 1 is calculated by applying

u∗(t) to (2.1). This process is repeated for each time step within the planning time

horizon T and the planning process results in an optimal solution that is captured
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by u∗(t), . . . , u∗(t + T − 1) and x∗(t + 1), . . . , x∗(t + T ). The control vectors can be

interpreted as a plan of action for the next T time steps, while the state vectors can be

interpreted as the predicted effect of the plan of action. The FMPC controller applies

u(t) = u∗(t), that is, only the first control vector of the plan of action. The system

reacts to this input and the entire process is repeated. Note, this explanation is a

purely conceptual illustration of the philosophy of the FMPC controller. Enforcing

the system dynamics through equality constraints allows for all steps in the time

horizon to be computed simultaneously instead of sequentially as described here.

2.3 Fast Solution of the QP Problem

With the overall structure of the QP established, the problem can be rearranged

creating a more compact form that we will later exploit to reduce computation costs.

First, we coalesce the state and control variables for each step of the time horizon

into a single optimization variable of the form

z = [uT(t), xT(t+ 1), . . . , uT(t+ T − 1), xT(t+ T )]T ∈ RT (m+n). (2.13)

With this change, the QP problem (2.7)-(2.11) is equivalent to the following problem:

minimize: zTHz + gTz, (2.14)

subject to: Pz ≤≤ h, (2.15)

Cz = b, (2.16)

where
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H ,



R 0 0 . . . 0 0 0
0 Q S . . . 0 0 0
0 ST R . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . Q S 0
0 0 0 . . . ST R 0
0 0 0 . . . 0 0 0


, (2.17)

P ,


Fu 0 0 . . . 0 0 0
0 Fx Fu . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . Fx Fu 0
0 0 0 . . . 0 0 Ff

 , (2.18)

C ,



−B I 0 0 . . . 0 0 0
0 −A −B I . . . 0 0 0
0 0 0 −A . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . I 0 0
0 0 0 0 . . . −A −B I


, (2.19)

g ,



r + 2STx(t)
q
r
...
q
r


, (2.20)

h ,


f − Fxx(t)

f
...
f
ff

 , (2.21)

b ,



Ax(t) + w̄
w̄
w̄
...
w̄
w̄


. (2.22)

Note that H,P, and C are block tridiagonal and, hence, large portions of the matrices

are trivial when performing matrix multiplication. By recognizing the patterns in
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these matrices, we can use factorization and specialized linear algebra libraries such

as Lapack [8] or Eigen [9] to efficiently perform matrix multiplications involving these

matrices.

Wang and Boyd utilize an infeasible start primal barrier method [10] to solve the

QP. To illustrate this method, we discuss the primal barrier method first. According

to the primal barrier method, inequality constraints are replaced by a new term in the

cost function so that the optimization problem given by (2.14)-(2.16) is equivalent to

minimize zTHz + gTz + κφ(z), (2.23)

subject to Cz = b (2.24)

where

φ(z) ,
lT+k∑
i=1

−log(hi − piz), z ∈ RT (n+m), (2.25)

denotes a logarithmic barrier function associated with the inequality constraints, κ >

0 denotes a weighting parameter on the barrier function, p1, . . . , plT+k denote the rows

of P in (2.18), and h1, . . . , hlT+k denote corresponding partitions h. The function

φ(·) introduces a constraint so that Pz ≤≤ h. Importantly, φ(·) is a smooth, convex

function within its domain. Since the objective function (2.14) is convex and the sum

of convex functions is convex, (2.23) is also convex. Therefore, convex optimization

solution methods can be applied to solve the constrained optimization problem given

by (2.23) and (2.24).

In order to implement an infeasible start Newton method, the problem described

11



by (2.23) and (2.24) is solved by finding z ∈ RT (m+n) where the gradient of the

equation is zero. To achieve this goal, a Lagrange multiplier ν ∈ RTn associated with

the equality constraint is added to the gradient. This yields the dual and primal

residuals [11, pp. 215-273]

rd(z) = 2Hz + g +∇κφ(z) + CTν = 0, z ∈ RT (m+n), (2.26)

rp(z) = Cz − b = 0, (2.27)

where κ∇φ(z) denotes the gradient of the barrier function. It follows from (2.25) that

κ∇φi(z) =
κpT

i

hi − piz
, z ∈ RT (m+n), (2.28)

and hence,

κ∇φ(z) = κ
lT+k∑
i=1

∇φi(z) = κPTd(z), (2.29)

where di(z) , 1/(hi − piz). Substituting (2.29) into (2.26) yields the final residual

equations necessary to solve the problem in (2.23):

rd(z) = 2Hz + g + κPTd+ CTν = 0, z ∈ RT (m+n) (2.30)

rp(z) = Cz − b = 0. (2.31)

The system is optimal when both the primal and dual residuals are equal to zero.

This is checked by creating a vector r , [rT
d , r

T
p ]T and computing ||r||2.

At the beginning of each iteration of FMPC, the residual is calculated with an

12



initial z that satisfies the inequality constraints and any initial ν. If the norm of the

residual is greater than a set tolerance value, then z and ν are modified by adding

correction terms ∆z and ∆ν, respectively. The correction terms are found by solving

the linear approximation

Φ(z) CT

C 0


∆z

∆ν

 = −

rd(z)

rp(z)

 , z ∈ RT (m+n) (2.32)

where

Φ(z) = 2H + κPTdiag(d(z))2P (2.33)

and κPTdiag(d(z))2P is the Hessian of κφ(z). Once ∆z and ∆ν are calculated, they

are placed into a backtracking line search. In particular, this search seeks a step

size s ∈ (0, 1] such that the norm of the residual is below the tolerance value for

z := z+s∆z and ν := ν+s∆ν. The initial value of s is equal to one and is multiplied

by some α ∈ (0, 1) after each attempt so that the step size decreases until the residual

reaches an acceptable value.

2.4 Soft Constraints in FMPC

As seen in the previous section, the constraints modeled in Wang and Boyd’s

FMPC algorithm are hard constraints. That is, the constraints cannot be violated

under any circumstances. Ideally, MPC ensures that constraints are never violated

by diverting the system from constraints detected within the planning horizon. How-

ever, there are cases where relying solely on hard constraints can be problematic. In

particular, it is desirable to compute control inputs that allow reaction to constraints

13



well before constraints are encountered.

The need to avoid constraints early on manifested itself during the development

of the autopilot described in this thesis. For instance, in one of our first test cases,

the constraints on the control vector were so strict that the quadcopter struggled

to change its momentum. When combined with a short time horizon, the system

was unable to avoid collisions in simulation forcing the program to exit. Evidently,

a similar issue would have also occurred in actual flight tests. In particular, if a

new obstacle was detected within the time horizon, the MPC’s prediction would have

struggled to divert the system.

The need to take control actions and avoid constraints early on is evident also in

the case that the navigation system provides erroneous information about the envi-

ronment and detects obstacles that do not exist. Violating non-existent constraints

would cause the program to exit assuming that the quadrotor has crashed, although

no physical collision actually occurred. Even if the program underlying the guidance

system were rewritten to not exit when hard constraints are violated, the FMPC

algorithm would have no information on the gradient of the cost function.

Introducing soft constraints helps alleviate all these issues. In particular, soft

constraints allow the system to take corrective action well before the actual, hard

constraints are met. This property is especially useful in implementing safety margins

when defining constraints.

There are several methods to apply soft constraints. One approach is to introduce

slack variables to transform inequality constraints into equality constraints [11, pp.

131]. This method comes with the downside of adding a new decision variable for every

14



step in the time horizon [12]. It is possible to mitigate this issue by introducing a slack

variable that captures the worst case violation [13]. However, the FMPC algorithm

introduced by [5] relies on specific sparsity patterns in the QP and adding this slack

variable may disrupt this pattern. To preserve the block-tridiagonal structure of the

matrices H,P, and C in (2.17)-(2.19), the authors of [12] implement soft constraint

directly into the cost function of the QP, bypassing slack variables entirely.

The method presented in [12] to implement soft constraints involves the Kreissel-

meister-Steinhauser (KS) function [14]. Given a set of k functions g : Rn → Rk, the

KS function is defined as

KS[g(x)] ,
1

ρ

[∑k
j=1 e

ρgj(x)

]
, x ∈ Rn (2.34)

where ρ > 0 is a user-defined parameter. The KS function is such that KS[g(x)] →

maxjgj(x) as ρ → ∞, where gj(·) denotes the jth component of g(·). Large values

of ρ may cause the exponential to grow to the point of causing numerical issues. To

prevent this problem from happening, a modified KS function can be employed and

is defined by

KS[g(x)] = gmax(x) +
1

ρ
log

[∑k
j=1 e

ρ[gj(x)−gmax(x)]

]
, (2.35)

where gmax(x) , maxjgj(x), x ∈ Rn.
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The modified KS function (2.35) can be applied to the soft constraints

P̃ z ≤≤ h̃, (2.36)

where P̃ ∈ Rα×T (m+n), h̃ ∈ Rα, and α is the number of soft constraints. Each soft

constraint is given a penalty according to the equation

θexact(P̃ z − h̃) =
α∑
i=1

max{0, p̃iz − h̃i}, z ∈ RT (m+n), (2.37)

where p̃i denotes the ith row of P̃ and h̃i denotes the ith element of h̃. This penalty

is equal to zero if the constraint is violated or verified with an equality, and increases

as the constraint is violated. The penalty can be smoothed by employing the KS

function for each i = 1, . . . , α. If the constraint is not violated, then gmax = 0 and

(2.37) can be captured as KS[P̃ z − h̃]. Applying (2.35), the soft constraints (2.36)

can be approximated by

θ(P̃ z − h̃) =
α∑
i=1

1

ρ
log

[
e0 + eρ(p̃iz−h̃i−0)

]
, z ∈ RT (m+n), (2.38)

which simplifies to

θ(P̃ z − h̃) =
1

ρ

∑
i

log

[
1 + eρ(p̃iz−h̃i)

]
, z ∈ RT (m+n). (2.39)

The term θ(P̃ z − h̃), z ∈ RT (m+n) is added to the cost function (2.23) so that the
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optimization problem considered in this thesis is now given by

minimize: zTHz + gTz + κφ(z) + θ(z), (2.40)

subject to: Cz = b, (2.41)

where θ(z) denotes θ(P̃ z − h̃) for brevity.

Following the same procedure that is used in the previous section, the residuals

and correction terms can be calculated. First, the gradient of the cost function is

found. To avoid reworking the problem, the residual accounting for soft constraints

is expressed in terms of the old residual terms:

r̃d(z) = rd(z) +∇θ(z), z ∈ RT (m+n) (2.42)

r̃p(z) = rp(z). (2.43)

It follows from (2.39) that the gradient of the soft constraint penalty function is given

by

∇θi(z) =
1

ρ

[
ρp̃T

i e
ρ(p̃iz−h̃i) 1

1 + eρ(p̃iz−h̃i)

]
, z ∈ RT (m+n), i = 1, . . . , α. (2.44)

In order to avoid calculations involving large exponentials and find a more concise

representation of (2.44), two exponential functions are defined. The first of these

functions, which is used when the constraint is verified, is defined as

e+
i (z) , eρ(p̃iz−h̃i), z ∈ RT (m+n), (2.45)
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while the second exponential function, which is used when the constraint is violated,

is defined as

e−i (z) , eρ(h̃i−p̃iz) =
1

e+
i (z)

. (2.46)

It follows from (2.44) - (2.46) that

∇θi(z) = p̃T
i d̃i(z), z ∈ RT (m+n), i = 1, . . . , α, (2.47)

where

d̃i(z) ,
e+
i (z)

1 + e+
i (z)

=
1

1 + e−i (z)
, (2.48)

and thus

∇θ(z) =
α∑
i=1

∇θ(z) = P̃Td̃(z). (2.49)

Further, the Hessian of the soft constraint penalty function is given by

∇2θ(z) = ρP̃Tdiag(d̂(z))P̃ , z ∈ RT (m+n) (2.50)

where

d̂i(z) =
e+
i (z)

(1 + e+
i (z))2

=
e−i (z)

(1 + e−i (z))2
. (2.51)

With the Hessian established, the Newton step formula (2.32) modified to account

for soft constraints can be established as

Φ̃(z) CT

C 0


∆z

∆ν

 = −

r̃d(z)

r̃p(z)

 , z ∈ RT (m+n) (2.52)
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where

Φ̃(z) = Φ(z) + ρP̃Tdiag(d̂(z))P̃ , (2.53)

and

r̃d(z) = rd(z) + P̃Td̃(z). (2.54)

It is improtant to remark that, in the residual equations, the soft constraint term

P̃Td̃(z) is of the same form as the term arising from the hard constraint barrier

function κPTd(z). Likewise, the Hessian of the soft constraint penalty function used

in computing the Newton step ρP̃Tdiag(d̂(z))P̃ is directly related to the Hessian of

the hard constraint barrier function given by κPTdiag(d(z))2P . By modeling the soft

constraints in this manner, the block structure of Φ(z) is the same as the structure

of Φ̃(z). Preserving this block structure allows the same solution process to be used

when soft constraints are added to the QP.
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3. Quadrotor Dynamics

3.1 Introduction

In this thesis, we consider unmanned Class 1 quadrotors, that is, aerial vehicles

equipped with four coaxial propellers similar to the one schematically shown in Figure

3.1. In recent years, these platforms have seen an increase in popularity both in

industrial and academic applications, since they are fairly cheap and easy to maintain.

Additionally, the small size of quadrotors allows for indoor testing in safe and self-

contained environments.

Figure 3.1: Kinematic diagram of a quadrotor in flight
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In order to apply the FMPC algorithm presented in Chapter 2 and outline refer-

ence trajectories for automaton quadcopters, in this chapter we recall the continuous-

time equations of motion of quadrotors. Successively, we provide a discrete-time

dynamical model of these vehicles in a format that is suitable for FMPC.

3.2 Equations of Motion of a Quadcopter in Continuous Time

Figure 3.1 gives a pictorial representation of a quadrotor in flight [15]. position and

orientation of this vehicle is captured in the inertial reference frame I = {O;X, Y, Z}

that is centered at the point O and has orthonormal axes X, Y, and Z; note that the

positive Z axis is collinear to the gravitational acceleration vector g. In particular,

the position of the quadcopter is identified by the reference point A, whose distance

from O is captured by rA : [s0,∞)→ R3.

The reference frame J = {A;x(s), y(s), z(s)}, s ≥ s0, is fixed with the quadcopter,

and is such that x(·) and y(·) pass through two rotors. The ith propeller’s spin rate

is denoted by ΩP,i : [s0,∞) → R, i = 1, . . . , 4, and the corresponding thrust force is

denoted by Ti(s), s ≥ s0. Also, gravity acts on the vehicle’s center of mass C. In

general, there is no guarantee that the reference point A coincides with the center of

mass C. The position of C with respect to A is denoted by vector rC : [s0,∞)→ R3.

The attitude of the body reference frame J with respect to I is defined using a

3-2-1 Euler angle rotation sequence. According to this sequence, the rotation around

the z(·) axis is captured by the yaw angle ψ : [s0,∞) → [0, 2π), the rotation about

the y(·) axis is captured by the pitch angle θ : [s0,∞) → (−π
2
, π

2
), and the rotation

about the x(·) axis is captured by the roll angle φ : [s0,∞)→ [0, 2π).
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The equations of motion of a quadrotor are given by four interconnected differen-

tial equations. In particular, the translational kinematic equation is given by [15]

ṙIA(s) = R(φ(s), θ(s), ψ(s))vA(s), rIA(s0) = rIA,0, s ≥ s0, (3.1)

where

R(φ, θ, ψ) ,


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ,

(φ, θ, ψ) ∈ [0, 2π)×
(
−π

2
,
π

2

)
× [0, 2π), (3.2)

and vA : [s0,∞) → R3 denotes the velocity of the reference point A with respect to

O. Similarly, the rotational kinematic equation is given by [15]


φ̇(s)

θ̇(s)

ψ̇(s)

 = Γ(φ(s), θ(s))ω(s),


φ(s0)

θ(s0)

ψ(s0)

 =


φ0

θ0

ψ0

 , s ≥ s0, (3.3)

where

Γ(φ, θ) ,


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 , (φ, θ) ∈ [0, 2π]×
(
−π

2
,
π

2

)
, (3.4)
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and ω : [s0,∞) ∈ R3 denotes the angular velocity of J with respect to I [16, p. 6].

Assuming that the mass of the quadrotor is constant for all time, the translational

dynamic equation is given by [15]

Fg(φ(s), θ(s))− FT (s) + F (s) = m[v̇A(s) + ω×(s)vA(s) + r̈C(s) + ω̇×(s)rC(s)

+2ω×(s)ṙC(s) + ω×(s)ω×(s)rC(s)],

vA(s0) = vA,0, s ≥ s0, (3.5)

where

Fg(φ, θ) = mg[− sin θ, cos θ sinφ, cos θ cosφ]T, (φ, θ) ∈ [0, 2π)×
(
−π

2
,
π

2

)
, (3.6)

denotes the weight of the quadrotor, −FT (s) = [0, 0, u1(s)]T denotes the thrust force,

and F (s) denotes aerodynamic forces. Making the further assumptions that the

quadrotor and payload joined together form a rigid body and the propellers are mod-

eled as thin spinning discs, the rotational dynamic equation is given by [15]

MT (s) +Mg(rC(s), φ(s), θ(s)) +M(s) = mr×C (s)[v̇A(s) + ω×(s)vA(s)] + Iω̇(s)

+ω×(s)Iω(s) + IP

4∑
i=1


0

0

Ω̇P,i(s)

+ ω×IP

4∑
i=1


0

0

ΩP,i(s)

 ,
ω(s0) = ω0, s ≥ s0, (3.7)

where MT (s) = [u2(s), u3(s), u4(s)]T denotes the moment of forces generated by the
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propellers,

Mg(rC , φ, θ) , r×CFg(φ, θ), (rC , φ, θ) ∈ R3 × [0, 2π)×
(
−π

2

π

2

)
, (3.8)

denotes the moment of the quadrotor’s weight about A, M : [s0,∞) → R3 denotes

the moment of aerodynamic forces about A, I ∈ R3×3 is the matrix of inertia of the

quadrotor with respect to A, and IP ∈ R3×3 is the matrix of inertia of each propeller

with respect to A. The terms IP
∑4

i=1[0, 0, Ω̇P,i(s)] and ω×(s)IP
∑4

i=1[0, 0, ΩP,i(s)]

capture the inertial counter-torque and the gyroscopic effect, respectively.

From the equations of motion of the quadrotor, we can set a state vector that

uniquely captures the position and rotation of the vehicle and a control vector can

be identified. The state vector is given by

x =

[
rI,TA φ θ ψ vT

A ωT

]T

∈ R12. (3.9)

The relation between the thrust force generated by each propeller and the control

inputs is given by



u1(s)

u2(s)

u3(s)

u4(s)


=



1 1 1 1

0 −l 0 l

l 0 −l 0

−cT cT −cT cT





T1(s)

T2(s)

T3(s)

T4(s)


, s ≥ s0, (3.10)

where l > 0 denotes the distance of the propellers from the vehicle’s barycenter,
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cT > 0 denotes the propeller’s drag coefficient, and the thrust generated by a propeller

is related to its spin rate by

Ti(s) = kΩ2
P,i(s), i = 1, . . . , 4, s ≥ s0, (3.11)

where k > 0.

The equations of motion of the quadrotor described above can be simplified by

making several common assumptions. One such assumption that applies to this thesis

is that rC ≈ 0. Since the quadrotor is not carrying any payload, the reference point A

can be set at the quadcopter’s center of mass. While this placement is not guaranteed

to be perfect, the vehicle’s mass distribution is sufficiently well known to make this

error sufficiently negligible. With this assumption, (3.5) simplifies to

Fg(φ(s), θ(s))− FT (s) + F (s) = m[v̇A(s) + ω×(s)vA(s)],

vA(t0) = vA,0, s ≥ s0, (3.12)

and (3.7) reduces to

MT (s) +M(s) = Iω̇(s) + ω×(s)Iω(s) + IP

4∑
i=1


0

0

Ω̇P,i(s)

+ ω×IP

4∑
i=1


0

0

ΩP,i(s)

 ,

ω(s0) = ω0, s ≥ s0. (3.13)
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3.3 Linearization of Continuous-Time Equations of Motion

A further simplification must be made to employ the FMPC algorithm presented in

Chapter 2. The FMPC algorithm requires the plant dynamics to be linear. However,

the equations of motion of a quadrotor are highly nonlinear as can be seen in (3.1),

(3.3), (3.12), and (3.13). To overcome this difficulty, the equations of motion of a

quadcopter can be linearized around the equilibrium point

xe =

[
rI,TA,e φe θe ψe vT

A,e ωT
e

]T

∈ R12, (3.14)

ue =

[
u1,e u2,e u3,e u4,e

]T

∈ R12. (3.15)

By definition, (Xe, ue) are such that the kinematic and dynamic equations are equal

to zero. Since R(·) is invertible, if follows from (3.1) that ṙIA(s) = 0, s ≥ s0, if and

only if vA,e = 0. Similarly, since Γ(·) is invertible, it follows from (3.3) that

[
φ̇(s) θ̇(s) ψ̇(s)

]T

= 0, s ≥ s0, (3.16)

if and only if ωe = 0. Since vA(s) = 0, s ≥ s0, and ω(s) = 0, the aerodynamic

forces and moments acting on the vehicle are equal to zero. That is, F (s) = 0 and

M(s) = 0. In this case, it follows from (3.5) that φe = θe = 0, and u1,e = −mg.
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Moreover, it follows from (3.7) that


u2,e

u3,e

u4,e

 = IP

4∑
i=1


0

0

Ω̇P,i(s)

 , s ≥ s0. (3.17)

Modeling propellers as thin discs implies that the inertia matrix is an invertible di-

agonal matrix and hence,

u2,e = 0, (3.18)

u3,e = 0, (3.19)

u4,e = I−1
P,z

4∑
i=1

Ω̇P,i(s), s ≥ s0, (3.20)

where IP,z denotes the vehicle’s moment of inertia about its spin axis. It is common

practice to set u4,e = 0. From this reasoning, it is apparent that any constant value

of rA,e ∈ R3 and ψe ∈ R is admissible. It is common practice to set ψe = 0 and

rA,e = [0, 0,−ze]T, where ze ∈ R denotes the desired altitude. Hence, it is common

practice to set the equilibrium point to be

xe = [0, 0, −ze, 0, 0, 0, 0, 0, 0, 0, 0, 0]T, (3.21)

ue = [−mg, 0, 0, 0]T. (3.22)
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Therefore, the set of differential equations given by (3.1), (3.3), (3.12), and (3.13) can

be linearized and reduced to the form

ẋ(s) = A[x(s)− xe] +B[u(s)− ue], x(s0) = x0 − xe, s ≥ s0, (3.23)

where A ∈ R12×12, A1,7 = A2,8 = A3,9 = A4,10 = A5,11 = A6,12 = 1, A7,5 = −g,

A8,4 = g, Ai,j, i, j = 1, . . . , 12, denotes the element on the ith row and jth column

of A, every other element of A is equal to zero, B ∈ R12×4, B9,1 = m−1, B10,2 = I−1
x ,

B11,3 = I−1
y , B12,4 = I−1

z , and every other element of B is equal to zero.

3.4 Equations of Motion of a Quadrotor in Discrete Time

Computers, by their nature, perform mathematical calculations in discrete time.

As such, we seek to transform the linearized continuous time model given by (3.23)

in a linear time-invariant discrete system represented by

x[(t+ 1)T ] = G(T )[x(tT )− xe] +H(T )[u(tT )− ue], (3.24)

where T > 0 denotes the sampling time interval and t ∈ N denotes the current time

step. Note that we assume that the input is subject to a zero-order hold [17], that is

u[(t+ δ)T ] = u(tT ), ∀(δ, t, T ) ∈ [0, 1)× N× R+. (3.25)
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The matrices G(T ) and H(T ) can be found by [18]

G(T ) = eAT (3.26)

H(T ) =

∫ T

0

eAγdγB, γ ∈ [0, tT ), (3.27)

where A and B are the system dynamics matrices in (3.23). For discussion on how

to compute the matrix exponentials in (3.26) and (3.27), the reader is referred to [19,

pp. 659-675].

A quadrotor is an underactuated mechanical system since its equations of mo-

tion are characterized by six independent generalized coordinates and four control

inputs [15]. To design control strategies that allow quadcopters to reach a given

position with a given yaw angle, control schemes for quadrotors are conventionally

divided into two parts as depicted in Figure 3.2 [15]: an inner loop and an outer

loop. Recall from (3.12) and (3.13) that the four control inputs regulate the al-

titude and orientation of the quadrotor. However, most practical applications for

quadrotors require the regulation of the position and yaw angle. Not all of these vari-

Figure 3.2: A quadrotor control scheme using inner loop - outer loop separation
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ables are directly controllable and so much be reached through other variables that

can be directly regulated. The control scheme described in Figure 3.2 assumes that

[rX,ref, rY,ref, rZ,ref]
T : [s0,∞) → R3 and a desired yaw angle ψref : [s0,∞) → [0, 2π)

are known. First, we compute the roll angle φref : [s0,∞) → [0, 2π) and the pitch

angle θref : [s0,∞)→ (−(π/2), π/2) necessary to utilize the horizontal component of

the thrust force to track rX,ref(s) and rY,ref(s). This process is referred to as outer-

loop design. Successively, the control vector u(·) is calculated to track the reference

altitude rZ,ref(s) and the reference orientation [φref(s), θref(s), ψref(s)]
T. This process

is known as inner-loop design. The FMPC algorithm generates a reference trajectory

for the outer loop system.
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4. Fast MPC Algorithm for Quadcopters

4.1 Introduction

The FMPC algorithm discussed in Chapter 2 is meant to be used on-board a

system with fast dynamics. This makes it a strong candidate for implementation on

quadrotors. Specifically, the FMPC algorithm presented in Chapter 2 has been tai-

lored to generate reference trajectories for quadcopters by embedding the dynamical

models discussed in Chapter 3. Moreover, in order to enable a tactical behavior, the

FMPC algorithm presented in Chapter 2 has been modified to follow multiple way-

points and approach obstacles, which can shelter the aircraft from potential threats.

The implementation of a quadcopter’s linearized discrete-time dynamics in the FMPC

algorithm presented in Chapter 2 is straightforward and hence, omitted for brevity.

In the following, the approach used to induce a tactical behavior on the quadcopter is

discussed in detail. Simulations are then presented that demonstrate the performance

of FMPC.

4.2 Cost functions for FMPC and Tactical Behaviors of Quadcopters

In order to create a FMPC-based guidance algorithm for quadcopters operating

in a contested environment, the underlying cost function has been modified as fol-

lows. Firstly, the underlying optimization problem captured by (2.23)–(2.24) has

been modified by introducing soft constraints; for details see Section 2.4. In par-

ticular, soft constraint penalties were added to position variables in order to aid in
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obstacle avoidance. This change, in effect, enabled the creation of safety margins

when defining obstacles.

In the FMPC formulation presented in Chapter 2, the cost function penalized the

deviation of the state vector z from the origin. While this method is effective for

studying the disturbance rejection properties of FMPC, it cannot be used to steer

the system to a nonzero state. To this goal, the state vector z in (2.40) and (2.41)

was replaced with zg = z − zgoal where zgoal ∈ RT (m+n) denotes the target state. This

change retains the quadratic shape of the cost function, does not require any change

to the H matrix, and is valid for any distance between z and zgoal. The resulting

quadratic optimization problem is cast as follows

minimize: zT
g Hzg + gTzg + κφ(z) + θ(z), (4.1)

subject to: Cz = b. (4.2)

This change allows for the implementation of waypoints that can be used to guide

the vehicle around the environment. Note that, since zgoal is constant within a single

FMPC loop, zg is not a separate variable from z. Instead, zg depends directly on z,

which in turn remains the sole variable that is found by FMPC.

In order to enable a tactical behavior, whereby the quadcopter approaches ob-

stacles in order to seek shelter while performing a mission, a cost was added to

penalize the distance from the quadrotor to the nearest obstacle point denoted by

zobs ∈ RT (m+n). This vector is held to be constant within each individual iteration of

FMPC. The distance of z from zobs is penalized and added to the QP described by
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(4.1) and (4.2) as follows

minimize: z̄TH̄z̄ + zT
g Hzg + gTzg + κφ(z) + θ(z) (4.3)

subject to: Cz = b, (4.4)

where z̄ = z − zobs and H̄ denotes the cost on z̄. Note that, much like in the case

of zg, z̄ varies solely with z and the FMPC algorithm continues to solve for z only.

This change propagates into the primal and dual residual given by (2.42) and (2.43),

yielding an updated primal and dual residuals

r̄d(z) = 2H̄z̄ + 2Hzg + g + κPTd(z) + P̃Td̃(z) + CTν (4.5)

r̄p(z) = Cz − b. (4.6)

The changes to the primal and dual residuals propagate into the Newton step calcu-

lation of ∆z and ∆ν given by (2.53). The resultant Newton step calculation is given

by Φ̄(z) CT

C 0


∆z

∆ν

 = −

r̄d(z)

rp(z)

 , (4.7)

where

Φ̄(z) = 2H̄ + 2H + κPTdiag(d(z))2P + ρP̃Tdiag(d̃(z))2P̃ . (4.8)

The cost to reach the next waypoint may dominate the cost associated to coast

obstacles, while performing a mission. For this reason, the vector zg has been defined
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as follows

zg =


z − zgoal, ||z − zgoal||2 < γ

γ
||z−zgoal||2

(z − zgoal), otherwise,

(4.9)

where γ > 0 is a parameter chosen by the user.

4.3 Simulation Results

By implementing the changes to the cost function detailed in the previous sec-

tion, a simulation can be developed to demonstrate the capabilities of FMPC. This

simulation sets the vehicle in one corner of a box that is eight feet long on each side.

Following the quadrotor equations of motion developed in Chapter 3, the vehicle is

asked to travel from one corner to another as is illustrated in Figure 4.1. While

Figure 4.1: Environment for FMPC testing
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this is a two dimensional representation, this is solely for ease of presentation. The

simulation can easily be added to a three dimensional case.

When using the original cost function given by [5], the vehicle will proceed straight

to the goal point. This result, however, is not a rigorous demonstration of the capabil-

ities of FMPC. Instead, a simulation was developed with the objective of reaching the

goal while remaining near the obstacles. This was accomplished using the alteration

to the cost function given by (4.3) and (4.4). The result of this simulation is shown

in Figure 4.2.

As can be seen in this simulation, the vehicle follows the wall to the goal point.

However, it does not do so until it gets sufficiently close to the goal position. This

Figure 4.2: FMPC Simulation with obstacle attraction
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issue was rectified by capping the penalty on distance to the goal point given by (4.9).

With this change, the vehicle immediately approaches the wall and follows it around

the box until it reaches the goal position. The result of this simulation is shown in

Figure 4.3.

Figure 4.3: FMPC Simulation with obstacle attraction and capped cost on distance
to the goal position

36



5. Affine Constraint Generation

5.1 Background and Motivation

The MPC algorithm employed in this thesis requires a linear plant model, affine

constraints, and a quadratic cost function. However, the mission profile described

in this thesis requires navigation through a non-convex operating region due to the

presence of obstacles. Therefore, the algorithm presented in Chapter 2 requires modi-

fication in order to be applicable. In particular, a locally affine operating region must

be identified for each computational step of FMPC.

A possible approach to the problem of creating affine constraints is to create the

largest affine hull, which contains the quadcopter, whose vertices are denoted by X ,

and excludes the obstacles detected by the navigation system, whose vertices are

denoted by Y . This is equivalent to finding a convex hole in the set Y that envelops

the set X . A convex hole of Y is defined as a convex polygon with vertices in Y that

does not contain any point of Y in its interior [20]. While literature on the subject

of convex holes exists, it is sparse [20] [21].

An alternative approach to this problem is plane detection in point clouds us-

ing Random Sample Consensus (RANSAC) [22]. RANSAC is a method of pattern

recognition in which a small, random set of points is chosen and neighboring points

that are consistent with the target pattern are found [23]. This method is employed

in computer vision to analyze point clouds and is freely available through libraries
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such as the Point Cloud Library (PCL) [24]. Having a readily made implementa-

tion available makes plane detection an attractive option. However, there are a few

considerations that led to it not being the method implemented. At the time where

a constraint generation method had to be decided upon, the navigation system was

still early in development. Since the form of the navigation system’s data had not yet

been determined, there was uncertainty about how that data would be imported in

the plane detection algorithm. Even if the algorithm works correctly, plane detection

tends to find several small planes. This issue translates to an increase in run time as

there are significantly more constraints to satisfy and therefore requires significantly

more memory. Additionally, the algorithm would detect planes along the entire map.

This opens the possibility of generating constraints that are immediately violated.

These constraints would have to be detected and excluded, further slowing down the

run time.

To limit the amount of constraints that are generated, a linear point separation

algorithm has been considered. Linear point separation finds a hyperplane that sep-

arates one set of points from another [11]. If the obstacle data is sorted into discrete

obstacles, then the linear point separation algorithm can be used to find a single

constraint for each obstacle. The resultant constraint is guaranteed to be satisfied by

the vehicles current state. There are issues with this method that are very similar to

the issues with plane detection. The navigation data can be organized into clusters

using PCL [24]. However, there are cases where the clustering algorithm can cause

problems. For instance, if the cluster is non-convex, there is no guarantee that a

linear separation hyperplane can be found.
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To solve this clustering issue, a quadratic discrimination algorithm is utilized. In

this method, an ellipsoid is found that separates the vehicle data points from every

obstacle data point. This avoids the pitfalls of linear discrimination by avoiding

the clustering step entirely. The vertices of the ellipsoid are then used to generate

hyperplanes that separate the set of the quadcopter’s vertices X from the set of the

obstacles’ vertices Y .

This chapter will develop a constraint generation algorithm to create a convex

operating region for the vehicle. The linear point separation algorithm and the issues

with it will be detailed. From there, the process of finding a quadratic discrimination

through SDP will be detailed and a method of generating constraints from the result

will be developed. Finally, pseudocode for implementing this constraint generation

algorithm will be presented.

5.2 Point Separation via Quadratic Discrimination

In order for a quadratic discrimination algorithm to be implemented, it is necessary

that conv(X ) ∩ conv(Y) = 0, where X denotes the set of N points representing the

quadrotor and Y denotes the set of M points representing the obstacles and conv(·)

denotes the convex hull of a region, that is, the smallest convex region that envelops

the set [11, pp. 24]. This necessary condition is always met as violating it would

indicate a collision.

Quadratic discrimination is a special case of nonlinear discrimination, which seeks
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to find a nonlinear function f such that

f(xi) < 0, i = 1, . . . , N, (5.1)

f(yj) > 0, j = 1, . . . ,M. (5.2)

where xi and yj denote the ith and jth point in X and Y , respectively. In the case

of quadratic discrimination, we consider

f(x) = xTPx+ qTx+ r, (5.3)

where x ∈ Rn, P ∈ Rn×n, q ∈ Rn, and r ∈ R. To find a function f(·) that satisfies

the quadratic discrimination, we can solve the feasibility problem

minimize: 0, (5.4)

subject to: xTPx+ qTx+ r ≤ 0, ∀x ∈ X , (5.5)

yTPy + qTy + r ≥ 0, ∀y ∈ Y , (5.6)

which is a special form of a quadratically constrained quadratic program (QCQP).

In general, solving a QCQP is NP-hard [25], but the complexity can be reduced

in special circumstances allowing us to find solutions in polynomial time. One such

special circumstance occurs when both the constraints and the cost are convex, which

can be achieved by enforcing that P = PT > 0. This additional constraint has two

advantages. First, a positive-definite matrix P implies that the quadratic function
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describes an ellipsoid [26]. An ellipsoidal function surrounding the quadrotor set

X would serve as a locally convex region that FMPC can operate within. The other

advantage is that a convex QCQP can be refactored into a Semidefinite Programming

problem and efficiently solved using a C++ library such as SDPA [27].

5.2.1 Semidefinite Programming

A semidefinite program (SDP) is an optimization problem of the form

minimize: cTx, (5.7)

subject to: F (x) ≥ 0, (5.8)

where c ∈ Rm, x ∈ Rm,

F (x) , F0 +
m∑
i=1

xiFi, (5.9)

the matrices F0, . . . , Fm ∈ Rn×n are symmetric, and xi ∈ R, i = 1, . . . ,m, denotes

the ith component of x. SDP problems can be solved in polynomial time using,

for instance, the primal-dual interior point method [28]. One such method is the

primal-dual interior point method employed by SDPA.

Comparing (5.9) to (5.5), it is apparent that the quadratic discrimination problem

is not in the same form as an SDP. To resolve this issue, the constraints need to be

rearranged to a linear combination of matrices scaled by some variable. Specifically,
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we expand P and q such that

P =


P11 P12 P13

P12 P22 P23

P13 P23 P33

 , q =


q1

q2

q3

 , (5.10)

and define

z ,

[
P11 P22 P33 P12 P13 P23 q1 q2 q3 r

]T

. (5.11)

Next, consider the constraint (5.6) and let

y =


y1

y2

y3

 ∈ Y , (5.12)

In this case, (5.6) is equivalent to

y2
1P11+y2

2P22+y2
3P33+2y1y2P12+2y1y3P13+2y2y3P23+y1q1+y2q2+y3q3+r ≥ 0. (5.13)

The same approach can be used to capture (5.5) in the same form as (5.13) and,

collecting terms, the matrices F0, . . . , Fm are readily generated. For instance, F1 is
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given by

F1(z) =



−x2
1,1

. . .

−x2
M,1

y2
1,1

. . .

y2
N,1



. (5.14)

In order to enforce positive-definiteness of P , we impose that P − I ≥ 0. Thus,

the constraints for the SDP problem are captured by

F (z) =

P − I
F (z)

 ≥ 0, z ∈ Rm, (5.15)

and the quadratic optimization problem (5.4)–(5.6) is equivalent to

minimize 0 (5.16)

subject to F (z) ≥ 0. (5.17)

We can further extend this SDP to minimize the distance from the ellipsoid to

the obstacle points. Accomplishing this task requires two modifications to the SDP

defined in (5.16)–(5.17). First, we augment z with the term

γ = min{yTPy + qTy + r : y ∈ Y}. (5.18)
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so that

z , [zT, γ]T. (5.19)

Similarly, we introduce the matrix

F11(z) =

0M

−IN

 , (5.20)

where 0M denotes the M ×M zero matrix and In denotes the N ×N identity matrix

and is added to the sum in (5.9). This addition can be interpreted as capturing

the distance γ from the boundary of the separating ellipsoid to each obstacle point.

Minimizing this value generates an ellipsoid as close to the obstacle as possible. In

this case, the quadratic separation problem is given by

minimize: γ, (5.21)

subject to: F (z) ≥ 0, (5.22)

where F (z) is constructed by proceeding as in (5.9).

This formulation allows us to find an ellipsoid separating the two sets and that is

tangent to the obstacle data. While this formulation is a step in the correct direction,

there is still room for development since γ only tracks the minimum distance from

the ellipsoid to the obstacle. Once a minimum value is found, makes no attempt to

minimize the distance to other obstacle points. This is an area of future research.
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5.2.2 Constraint Generation

Quadratic discrimination was chosen due to its versatility. However, it is not

without its own drawbacks. Namely, the FMPC algorithm is only capable of operating

with affine constraints. Since ellipsoids are not affine, a possible approach is to use the

generated ellipsoid in FMPC is to approximate the shape of the ellipsoid with affine

constraints. There is no single way to make this approximation as more hyperplanes

can always be generated to more closely approximate the ellipsoid. In the end, the

resolution of the approximation is a parameter to be determined by the user.

The process of extracting affine constraints from a quadratic equation involves

finding a representative sample of points on the ellipsoid and generating a hyperplane

tangent to the ellipsoid at each sampled point. This process is repeated periodically

to update the constraints based on the vehicles’s new position. In order to find this

sampling, the center of the ellipsoid must be found first. Towards this goal, we first

define the external boundary of the ellipsoid

E , {x ∈ R3 : xTPx+ qTx+ r = 0}, (5.23)

where P = PT > 0 ∈ R3×3, q ∈ R3, and r ∈ R. This representation is not the only

one possible, however. For instance, the same ellipsoid boundary can be represented

by

E = {x ∈ R3 : (x− xc)TP (x− xc) = k}, (5.24)

where xc ∈ R3 denotes the location of the center of the ellipsoid and k > 0 since
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P > 0. The center point xc is defined as the location where the ellipsoid’s three planes

of symmetry intersect. Since the representations in (5.23) and (5.24) are equivalent,

we can derive an equation to find xc in terms of P , q, and r. We start by expanding

the ellipsoid equation given in (5.24) which yields

xTPx− xTPxc − xT
c Px+ xT

c Pxc = k. (5.25)

Note that P = PT and thus

(xTPxc)
T = xT

c P
Tx = xT

c Px. (5.26)

Since xTPxc is scalar, we can establish the relation

(xTPxc)
T = xTPxc = xT

c Px. (5.27)

Substituting this relation back into (5.25) yields

xTPx− 2xT
c Px+ xT

c Pxc − k = 0. (5.28)

Now, let q = −2Pxc and r = xT
c Pxc − k. This substitution both brings us to the

original formulation in (5.23) and reveals a direct formulation of the center of the

ellipsoid given by

xc = −1

2
P−1q. (5.29)
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From the center of the ellipsoid, a series of sample points can be found along the

boundary of the ellipsoid. In particular, we want to identify a set of points x ∈ E .

To this goal, note that it follows from (5.23) that

xTPx+ qTx+
1

4
qTP−1q = −r +

1

4
qTP−1q = k. (5.30)

To show that the relation with k above is true, we define

c , −r +
1

4
qTP−1q. (5.31)

Substituting q = −2Pxc and r = xT
c Pxc − k into (5.31) yields

c = k − xT
c Pxc +

1

4
(−2Pxc)

TP−1(−2Pxc) = k, (5.32)

which proves the relation in (5.30). Returning to (5.30), consolidating the left hand

side into a quadratic form and dividing by k yields the standard form of the ellipsoid

equation (
x+

1

2
P−1q

)T
P

k

(
x+

1

2
P−1q

)
= 1, x ∈ R3. (5.33)

Note that −1
2
P−1q captures the center of the ellipsoid as detailed in (5.24) and thus

−xc can be substituted into (5.33). Next, since P = PT and

√
P

k
=

√
PT

k
=

(√
P

k

)T

, P ∈ R3×3, (5.34)
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(5.33) is equivalent to

(x− xc)T

(√
P

k

)T(√
P

k

)
(x− xc) = 1, (5.35)

where
√
P is such that

√
P
√
P = P . Lastly, recall that xTx = ||x||2, consider the

unit vector 
cosθ cosφ

cosθ sinφ

sinθ

 , (5.36)

where θ ∈
[
−π

2
, π

2

]
, and φ ∈ [0, 2π) and note that (5.35) is equivalent to

(x− xc)T

(√
P

k

)T(√
P

k

)
(x− xc) =


cosθ cosφ

cosθ sinφ

sinθ



T 
cosθ cosφ

cosθ sinφ

sinθ

 , x ∈ R3, (5.37)

which yields

x =

(√
P

k

)−1


cosθ cosφ

cosθ sinφ

sinθ

+ xc. (5.38)

Now that a method for finding a generic point x ∈ E has been established, we

may discuss a method to systematically sample the ellipsoid and create a finite subset

S ⊂ E . The number of points in S is dependent on the number of sample angles

θ ∈ [−π
2
, 0] and φ ∈ [0, 2π) that the user wishes to search along. Setting the domain

of θ as [−π
2
, 0] instead of [−π

2
, π

2
] allows us to calculate the result of (5.38) for half
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of the ellipsoid which still provides enough information to find constraint equations

approximating the entire ellipsoid as will be detailed later. Once values for θ and φ

have been defined, the angle θ is fixed and a sample is taken for each φ before moving

on to the next value of θ. This process is repeated until S is fully populated.

With a representative sample of points on the ellipsoid boundary found, it is now

possible to generate a set of position constraints that approximate the shape of the

ellipsoid. This is done by finding the gradient of (5.3) which is given by

∇f(x) = 2Px+ q, x ∈ R3. (5.39)

Each sampled point can be input into this equation to determine the gradient for that

instance. This gradient is, in turn, used to generate a plane equation of the form

∇fT(x)x = 2xTPx+ qTx = xTPx− r, (5.40)

where

− r = xTPx+ qTx, (5.41)

as follows from (5.23). At this point, the equation for the constraint has been found.

However, a quick sign check must be done to make sure that the constraint, for all x

in the operating region, is in the form

Fxx ≤≤ fx, (5.42)
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as is expected by FMPC; Fx and fx are to be determined in the following. The point

xc serves as an excellent test case as it must lie within the operating region and has

already been calculated. Therefore, we record the spatial constraints according to

Fx =


∇fT(x), ∇fT(x)xc ≤ ∇fT(x)x

−∇fT(x), ∇fT(x)xc > ∇fT(x)x

(5.43)

fx =


∇fT(x)x, ∇fT(x)xc ≤ ∇fT(x)x

−∇fT(x)x, ∇fT(x)xc > ∇fT(x)x

. (5.44)

Soft constraints can be added on the inside of each constraint to create a safety margin.

Let δ ∈ R denote the size of this safety margin. Then, for each hard constraint, there

is a related soft constraint of the form

F̃xx ≤≤ f̃x, (5.45)

where F̃x ∈ R3 and f̃x ∈ R. The coefficients of these soft constraints are given b

F̃x = Fx (5.46)

f̃x = fx − δ. (5.47)

Once constraints have been generated for each sample point, half of the ellipsoid

has been approximated. We can take advantage of the symmetry of ellipsoids to

generate the other half of constraints. Due to this symmetry, each constraint has a
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specular constraint across all three planes of symmetry. Alternatively, we can say that

the two parallel hyperplanes comprising the constraint and its specular partner are

equidistant from the center. To find the relation between the original constraint and

the mirrored constraint, we let d = ∇fT(x)xc and ε = ∇fT(x)x− d. The equation of

the mirrored constraint is found by translating the original plane by a factor of −2ε

towards xc. The resultant equations are given by

Fx,m = −Fx (5.48)

fx,m = −(fx − 2ε), (5.49)

where the m in the subscript denotes a mirrored constraint.

5.3 Implementation

In this section, we gather the constraint generation method detailed in this chapter

into a single routine. This routine is split into three separate functions. The first

function is a direct application of the quadratic discrimination separating the vehicle

from the obstacle as described in Section 5.2. The routine for converting the resultant

ellipsoid into constraints as described in Section 5.2.2 is split into the second and third

algorithms. The second algorithm finds a sampling of external points on the ellipsoid

while the third generates constraints based on these sampled points.

A pseudocode representation of the quadratic discrimination algorithm is given

by Algorithm 1. The heavy lifting within this algorithm is done by the SDPA library

which handles the semidefinite programming optimization. As such, the algorithm

51



centers entirely around organizing the problem information into a format that is

suitable for SDPA. Once the obstacle point cloud data and external vehicle points are

read in from the navigation system, the number of data points used in solving the SDP

can be determined. Similarly, the number of variables involved in solving the problem

is calculated. From this information, the structure of the problem can be initialized.

In the case of quadratic discrimination, the constraints are composed of a block

diagonal matrix which is, in turn, composed of two blocks. The first block represents

P − I ∈ R3×3. The second block is a diagonal matrix of size (M + N) × (M + N)

that contains the coefficients in (5.13) based on each vehicle and obstacle point. The

second block can be populated with the coefficients in (5.13) for each point in X

and Y . Once the problem is fully loaded, SDPA solves the problem and outputs an

ellipsoid equation.

Algorithm 1 Quadratic Discrimination Algorithm

1: Input: obstacle point cloud data from navigation system
2: procedure quadraticDiscrimination
3: n = 3← number of states
4: ev← number of extra variables in SDP
5: Read obstacle data points y ∈ Rn into Y
6: Read extreme vehicle points x ∈ Rn into X
7: M← number of points y ∈ Y
8: N← number of points x ∈ X
9: Initialize problem structure for use with SDPA
10: nConstraints = (n ∗n + n)/2 + n + 1 + ev← number of constraints in SDP
11: Populate first block in SDPA constraints with P − I
12: for (i = 0; i < M ; i++) do
13: Populate F j(·) for j = 1, . . . ,nConstraints based on yi

14: for (i = 0; i < N ; i++) do
15: Populate F j(·) for j = 1, . . . ,nConstraints based on xi

16: Solve SDPA
17: Output result of SDPA as array of floats
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The output of Algorithm 1 is the ellipsoid equation given by P, q, and r and is

then passed to Algorithm 2. This algorithm finds a sampling of points describing the

ellipsoid based off of the ellipsoid equation. Overall, this algorithm is a straightfor-

ward implementation of the sampling process described in the previous subsection.

However, there are some features that should be noted. First, the number of points

to be sampled is determined by the user selecting how many angles θ and φ should be

searched. Careful examination of the for loops in Algorithm 2 reveals irregularities.

The counter i starts at one because the first angle θ = −π
2

is calculated separately

in order to avoid duplicate sample points. For similar reasons, the counter j omits

the last angle of nopts as it is identical to the first angle of nopts. It is possible that

the navigation system will create a map that contains false positives. If one of these

false obstacle points intersects with the vehicle point set, the SDPA algorithm will

output numbers that do not represent an ellipsoid. We detect this case when k ≤ 0

and abort the constraint generation.

Algorithm 2 Algorithm to find representative points on ellipsoid surface
Input: P, q, r

1: procedure sampleEllipsoid
2: nangles← number of equidistant angles θ ∈ [−π

2
, 0]

3: nopts← number of equidistant angles φ ∈ [0, 2π]
4: xc = −1

2
P−1q ← center of the ellipsoid

5: k = 1
4
qTP−1q − r

6: if c ≤ 0 then Return 1

7: rootP =
(√

P
k

)−1

8: sample← ellipsoid point sampled at θ = −π
2

according to (5.38)
9: for i = 1; i < nangles do
10: for j = 0; j < nopts− 1 do
11: sample← point on ellipsoid at θ(i) and φ(j) using (5.38)

12: Output sample and return 0
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If the sampling algorithm completes successfully, then new constraints are gen-

erated for each point in Algorithm 3. Much like in Algorithm 2, this algorithm is a

straightforward implementation of the constraint generation method described in the

previous section with a few idiosyncrasies. The first such item involves the number

of points whose related constraints should be mirrored. Every point except the last

ring of samples should be mirrored. Therefore, the number of mirrored points is the

number of points minus nopts−1. This same logic is applied to determine the number

of constraints that will be generated. Doubling the number of points would mirror

all sampled constraints. However, we don’t want to mirror the last sampling angle,

so we subtract the number of points in that sampling angle.

This procedure is executed periodically during each flight in order to find locally

convex regions around the constantly changing position of the vehicle. This constant

recalculation allows the exception handling procedure in Algorithm 2 to be survivable.

If a sampling must be discarded, then the constraints that were last successfully found

can be used again.
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Algorithm 3 Algorithm to generate constraints based on ellipsoid

Input: The ellipsoid sample sample, the number of points in this sample
numPoints, the ellipsoid equation P,q, r, the number of states n, the number of
angles of θ nopts, the number of angles of ψ nangles

1: procedure generateConstraint
2: Fsize← number of constraints to be generated
3: Fsize = 2 ∗ numPoints− nopts + 1
4: mirroredPoints← number of constraints to be mirrored
5: mirroredPoints = numPoints− nopts + 1
6: for (i = 0; i < mirroredPoints; i+ +) do
7: gradient = 2P ∗ sample(i) + q
8: D = gradientTsample(i)
9: centerD = gradientTxc
10: ε = D− centerD← distance from center
11: if ε > 0 then
12: D = −D
13: gradient = −gradient

14: F, f← hard constraints
15: F̃, f̃ ← soft constraints
16: F(2i) = gradient
17: f(2i) = D
18: F̃(2i) = gradient
19: f̃(2i) = D− offset
20: D = D + 2ε← translate the constraint to other side
21: F(2i+ 1) = −gradient
22: f(2i+ 1) = −D
23: F̃(2i+ 1) = −gradient
24: f̃(2i+ 1) = −D− offset

25: for i = 0; i < nopts− 1; i+ +) do
26: gradient = 2P ∗ sample(i) + q
27: D = gradientTsample(i)
28: centerD = gradientTxc
29: ε = D− centerD
30: if ε > 0 then
31: D = −D
32: gradient = −gradient

33: F(nangles + i) = gradient
34: f(nangles + i) = D
35: F̃(nangles + i) = gradient
36: f̃(nangles + i) = D− offset
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6. Guidance Systems for UAVs

6.1 Introduction

Thus far, this thesis has focused on developing the FMPC algorithm and develop-

ing a method to allow it to operate in a non-convex environment. However, FMPC

on its own is not sufficient to act as a guidance system. This is due to the greedy

nature of the gradient descent method. The FMPC algorithm will always move in a

direction that minimizes the cost function. Once it reaches a minimum point, every

direction results in a higher cost and the drone therefore does not move. In a convex

operating region, this is not an issue as any locally optimal point is also globally

optimal [11]. However, this property does not hold in non-convex regions. This opens

the possibility of the quadrotor becoming stuck at a locally optimal point and failing

to reach its goal position.

To overcome this issue, a global path planner can be utilized. Pathfinding is an old

problem in computer science and thus several algorithms exist. A desirable algorithm

will be able to guarantee that a path from any starting point to the goal point will

be found if such a path exists. Typically, pathfinding algorithms are concerned with

finding the shortest route. However, this does not match our use case as we wish

to divert from the shortest path to seek cover along the way. Therefore, the ideal

algorithm will include a heuristic that allows for solutions to be found for multiple

mission profiles.
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One potential option is Dijkstra’s algorithm. At its core, Djikstra’s algorithm is a

solution to the shortest path problem developed in 1959 [29]. This algorithm begins

with a weighted graph, that is, a list of nodes, the connections between them, and the

costs to move along these connections. An example of this kind of weighted graph is

illustrated in Figure 6.1 [1]. In this example, the cost to travel between two nodes is

denoted by the number above the line connecting them while the remaining distance

to the goal is marked above each node in parentheses. The shortest path is marked by

the blue line. Djikstra’s algorithm explores the network by travelling to the node with

the lowest cost. From this new node, the cost to travel to each neighboring node is

calculated. If the calculated cost for a neighbor is less than the previously calculated

cost to travel to it along other paths, then the cost is updated to the lower cost and

the path to the neighbor is recorded as going through the current node. The active

node is then switched to the node with the lowest cost and the process is repeated

until the goal node is visited.

Figure 6.1: Example of a node map
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Djikstra’s algorithm succeeds as it is guaranteed to find a path to the goal and

this path is guaranteed to be the shortest possible path, so long as any such path

exists. This property is due to the search pattern applied by the algorithm. Since the

lowest cost nodes are explored first, the search for the goal node is conducted along

the shortest available path. However, it is not the best algorithm for our purposes.

The first issue is that the shortest path is not necessarily the desired path that drives

the vehicle to a goal position while staying near obstacles. Secondly, while Djikstra’s

algorithm finds the shortest path, it does so through brute force. Performance can

be improved by implementing a heuristic function to guide the search to the goal.

6.2 Navigation Using A*

One algorithm that uses this approach is the A* search algorithm, simply called A*

henceforth. A* is a direct descendent of Dijkstra’s algorithm and operates in a nearly

identical way. The sole difference comes from the addition of a heuristic value to the

cost to reach a given neighbor. Including a heuristic function not only can improve

performance, but can also potentially be designed to impose certain characteristics

on the solution.

The heuristic function provides an estimate of the cost to reach the goal from

some node. The form this function takes is dependent on the form of the graph being

transversed. In our case using spatial maps, the Euclidean morm is a convenient

choice as it will encourage the system to search the nodes nearest to the goal first.

In an ideal scenario where the shortest path is unobstructed, the heuristic will cause

the A* algorithm to search only the nodes along the shortest path. By contrast,
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Djikstra’s algorithm would search in all directions and thus be less efficient in most

cases.

We can begin building towards such an algorithm by identifying one that is suited

for the dynamic and initially unknown environment into which the quadrotor will

eventually be deployed. Here, we consider the Lifelong Planning A* algorithm (LPA*)

[30]. This algorithm repeatedly calculates the shortest path from start to goal despite

the addition or deletion of candidate nodes and changing costs. The initial step of

LPA* works identically to base A*. However, instead of terminating the program

once a shortest path is found, LPA* saves the cost for each node to reach the goal.

This cost, referred to as the g-value, satisfies

g(n′) =


0 if n′ = nstart

min
n
g(n) + k(n′, n) otherwise,

(6.1)

where nstart is the starting node, g(·) denotes a previously calculated result of (6.1),

and k(·, ·) denotes the smallest cost between the two input nodes. When (6.1) is

satisfied, the node is considered to be locally consistent. Instead of recording the

previous path and calculating the subsequent path based upon it, the algorithm in-

stead records g-values from the previous iteration. When the map is updated, the

algorithm detects g-values which are no longer locally consistent and adds them to a

queue. By following the heuristic function, only the g-values relevant to the path are

recalculated. With this updated information, the optimal path is recalculated and

the process is repeated until the quadrotor reaches the goal.
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6.3 Navigation Using MPL

Building from LPA*, we discuss the Motion Primitive Library (MPL) which is

a C++ implementation of [31] and [32]. This method involves the generation of

motion primitives that convert an optimal control problem to a graph search problem

solvable with LPA*. Motion primitives describe the states that the system can reach

in time interval τ > 0 given an initial state x0. These motion primitives induce a

discretization on the state space X and thus, for each node in X , discrete successor

nodes and the cost to reach them can be found. This creates a graph that can be

solved using the A* variants described in the previous section.

The path through the map found by LPA* is used as a nominal trajectory to

the goal Φ0. Centered around this initial trajectory, we define a tunnel of radius r

denoted as T (Φ0, r) ∈ X free where

X free = X − X obs, (6.2)

and X obs denotes occupied nodes in the map. Following Φ0, a new trajectory Φ is

found according to [33]

argmin
Φ

Jq(Φ) + ρTT (Φ) + ρcJc(Φ) (6.3)

subject to: ẋ(t) = Ax(t) +Bu(t) (6.4)

x(0) = x0, x(T (Φ)) ∈ X goal ⊂ X free (6.5)

x(t) ∈ T (Φ0, r) ∩ X free, u(t) ∈ U , t = [0, T (Φ)] (6.6)
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where ρT , ρc ≥ 0 denote weighting parameters, Jc(·) denotes the cost due to the

possibility of collisions, Jq(·) denotes the smoothness of Φ, U denotes the control

space, and

A =



03 I3 03 . . . 03

03 03 I3 . . . 03

...
. . . . . . . . .

...

03 . . . . . . 03 I3

03 . . . . . . 03 03


, B =



03

03

...

03

I3


, (6.7)

denote the state space form of the system dynamics in (6.4). The trajectory Φ is

assumed to be piecewise polynomial and consists of N segments. The smoothness

cost Jq(·) is computed according to

Jq(Φ) =

∫ T

0

||Φ(q)||2dt =
N−1∑
n=0

∫ ∆tn

0

||un(t)||2dt, (6.8)

where un(·) denotes the control input for the nth segment of Φ and q denotes the

number of derivatives of the position included in the state x(·). The collision cost

Jc(·) is computed by solving the line integral [33]

Jc(Φ) =

∫
Φ

U(s)ds, (6.9)

where

U(s) =


0, d(s) ≥ dthr

F (d(s)), dthr > d(s) ≥ 0,

(6.10)
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d(s) denotes the distance at time s from the closest obstacle, dthr denotes the distance

at which the collision risk is negligible, and

F (d(s)) = Fmax

(
1− d(s)

dthr

)k
, k > 0, Fmax > 0. (6.11)

To avoid calculating the line integral in (6.9), we sample I points along the trajectory

Φ separated by uniform time step dt. Thus, we have the approximation

∫
Φ

U(s)ds ≈
I−1∑
i=0

U(pi)||vi||dt, (6.12)

where dt = T
I−1

and pi, vi are the position and velocity at time i · dt, respectively. An

example of this implementation is shown in Figure 6.2 [33]. The blue line denotes the

path found by the A* algorithm. A tunnel of fixed radius around this path is denoted

by the translucent blue band. Within this band, a new path is found that travels

along the obstacle gradients denoted by the rainbow bands bordering the obstacles.

In our use case, the distance away from the obstacle should be penalized, not

rewarded as occurs in this example. This change can be implemented simply by

negating the cost on distance from the obstacle. While this change increases the risk

of colliding with the obstacle, it is a danger inherent to the mission and is mitigated

by the constraint generation described in the previous chapter.
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Figure 6.2: Example of MPL using gradient functions

6.4 Simulation of FMPC with MPL

Following our change to the heuristic described by (6.3)–(6.6), a simulation com-

bining FMPC, constraint generation, and MPL can be performed. This simulation

is shown in Figure 6.3. The quadrotor starts at the blue dot and travels to the red

dot. Although the quadrotor could simply travel straight from the starting point

to the goal node, our MPL heuristic has been designed to steer the UAV along the

wall. FMPC uses its wall attraction to refine the global trajectory generated by MPL.

Furthermore, FMPC is still responsible for collision avoidance.
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This successful simulation demonstrates that each of the subsystems described

throughout this thesis have been implemented and are interacting as expected. The

simulation is also successful in that it demonstrates the tactical behavior desired in

the guidance system. With this check completed, live flight tests can be performed.

Figure 6.3: Simulation of full guidance system [1]
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7. Flight Test Results

Flight tests were performed inside a 40x20 ft net cage. Inside of this cage, foam

boxes were stacked to form the L-shaped obstacle featured in the simulation in Figure

6.3. Within this environment, a VICON motion capture system was used to track

the position of the vehicle. This position information is used to update the state

vector x(t) in (2.1). Additionally, the state data is recorded so that the path can be

graphed.

The first flight test is a physical test of the simulation featured in Figure 6.3.

The results are shown in Figure 7.1. The path followed by the vehicle in flight

tests generally follows the trajectory generated by the simulation. Just like in the

simulation, the vehicle elects to fly along the L-shaped wall instead of flying straight

to the unobstructed goal position. The physical trajectory is oscillatory in a way

Figure 7.1: Flight test of guidance system demonstrating tactical behavior
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that is absent in simulation. As can be seen in the figure, the oscillation in actual

flight tests occur around the reference trajectory. This is a tuning issue in the control

system and a subject of future work.

While the flight test illustrated in Figure 7.1 successfully reaches the goal in a

tactical manner, it does so in a non-challenging environment. The real test occurs

when the goal position is obscured and thus the operating region is non-convex. In this

way, FMPC on its own is not enough to successfully complete the mission. Instead, the

constraint generation developed in Chapter 5 and the global path planning developed

in Chapter 6 must be utilized. A flight test where an obstructed goal point is reached

by the vehicle is presented in Figure 7.2. Up to this point, the results have been

effectively two-dimensional. This is a consequence of the path MPL has generated

to reach the goal position. Moving the goal position further behind the obstacle

will incentivize the guidance system to steer the vehicle over the wall. This scenario

is shown in Figure 7.3 and demonstrates the guidance system’s three dimensional

capabilities.
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Figure 7.2: Flight test of guidance system within a non-convex environment

Figure 7.3: Flight test climbing above the wall
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8. Conclusion

This thesis proposes a novel guidance system for use on board unmanned quadro-

tors. While guidance systems for quadrotors are not rare, they are typically designed

to support more classical applications of quadrotors. Despite the growth in the num-

ber of applications for micro UAVs, there is an aversion towards obstacles in each of

them. Instead of focusing on avoiding obstacles, this thesis seeks to use obstacles to

protect the vehicle from detection or harm by hostile agents. Existing methods do

not cover this use case, so a new one was developed.

The guidance system in this thesis consists of two subsystems working together

in tandem. The first system, Fast Model Predictive Control (FMPC), is an extension

of classical model predictive control (MPC). MPC uses an estimate of the system

dynamics to plan an optimal trajectory several steps into the future at a high enough

frequency to reject disturbances. The process is sped up by exploiting the structure

of the problem and then referred to as FMPC. FMPC can be altered to fit many

different mission profiles. However, FMPC is liable to find local minima from which

it cannot escape if it is operating in a non-convex environment. This issue is partially

rectified by modeling constraints using affine subsets. Finding these local regions is

not a trivial problem, but an approximate solution can be found by finding an ellipsoid

that separates the vehicle from surrounding obstacles from which affine hulls can be

approximated. This change allows FMPC to operate in a non-convex environment,

but does not solve issues caused by local minima. To address this issue, a global path
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planner was developed using the motion primitive library. The heuristic guiding this

path planner was altered to encourage the planner to find solutions that fly nearby

to obstacles. MPL finds a rough trajectory that is refined by FMPC according to

quadrotor dynamics while FMPC simultaneously uses affine constraint generation to

avoid collisions with the obstacles.

A simulation of a quadrotor flying past an obstacle were ran using the aggregate

guidance system. The result of this simulation showed that the guidance system

steered the vehicle away from a straight line path so that it remained in cover around

the obstacle for as long as possible. This result was confirmed by a live flight test

of the same scenario. Further flight tests were performed to demonstrate the guid-

ance system’s ability to guide the vehicle around obstacles when the goal position is

obscured. This ability was demonstrated in multiple dimensions.

These successful results demonstrate the feasibility of this guidance system. How-

ever, there are several facets of it that must be further developed to fully accomplish

the desired tactical flight profiles. First, there are several parameters in both the

FMPC and MPL subsystems that must be set. While preliminary values for these

parameters have been found, a more systematic study of how these parameters affect

the system is necessary to select optimal values. Currently, a Taguchi analysis is

being performed to execute this study. The creation of the guidance system is only

one step along the path to a full autopilot for tactical behavior.

In the long run, this guidance system is intended to be one part of an overall au-

topilot that enables tactical flight. The navigation system is in external development

and, once finished, must be integrated with the guidance system. This integration
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will allow the autopilot to explore and navigate unknown environments without any

external tracking system such as VICON. Once the full autopilot system has been

fit together, heuristics and cost functions can be studied further to maximize tactical

behavior. An example of a possible change is to penalize the vehicle for staying in

well lit areas. In this way, the vehicle avoids detection by seeking relatively dark areas

near obstacles. While these updates will not happen in the immediate future, this

thesis provides a foundation for their development.
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