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Abstract 

Chaotic phenomenon widely exists in the nonlinear dynamic systems. Such phenomenon 

is described to be highly related the initial conditions and intrinsic system properties. 

Traditionally, large effort has been put on evaluation of the existence of chaos, such as 

Lyapunov exponent or power spectrum methods. In addition, iteration methods are usually 

employed to explore the states of system. In this work, we will study the chaotic system in 

a different point of view. The system properties of physics quantities will be considered 

firstly. Starting from these physics quantities, it is expected to potentially determine the 

final states of the system. Then a relationship between the initial conditions and final states 

will be established. The objective of this work is to preliminary study the feasibility of 

employing such method for predetermine the final state of reappear initial conditions. The 

main approach is building a strong relationship between each initial conditions and final 

states within limited computation. Once the relationship is established, we could know the 

system states distribution and achieve the exploitation on the system. In this work, we will 

focus on the deterministic chaotic systems that the final states are deterministic and non-

periodic. 

In order to perform the proof-of-concept, a typical chaotic system, the magnetic pendulum 

system, will be employed for demonstration. A program written in Java will display the 

pendulum movement in real-time and also the basin diagram that shows the relationship 

between initial conditions and final states. All of code for this program are constructed 

from scratch.  

After the implementation of our program, we will compare results from it and that of the 

separate numerical simulation of the same system. The numerical simulation will be 
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performed through the commercially available software Mathematica. Further 

investigation will also be discussed with the results from numerical simulation.  

Three conclusions could draw from this work. The first is a proof-of-concept has been 

established for the opportunity to develop a new approach to study the deterministic chaotic 

system based on the physical properties methods. The second is the relationship between 

the initial condition and final states are proved to be work in states predetermination. The 

third is that relationship between the intrinsic system parameter and the final system states 

distributions has been found, which could be a guiding line for the similar deterministic 

chaotic system study in the future. It is also worthy to mention that herein the magnetic 

pendulum is only an example to testify our approach. And this approach should also be 

valid for other general deterministic chaotic systems.  

In this work, we only perform the preliminary study on this approach. In the future, our 

study will be extended to more systems and even the system in real world. It is expected 

such approach would build a new viewpoint on understanding the chaotic system, and a 

potentially new method to understand data.  
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Chapter 1:  Introduction 

Chaotic phenomenon[1-9] refers to the seemingly random irregular motion that occurs in 

deterministic systems. The behavior of a system described by deterministic theory is 

characterized by uncertainty, non-repetition and unpredictability. Further research shows 

that chaos is an inherent characteristic of nonlinear dynamical systems and a common 

phenomenon in nonlinear systems. Newton's deterministic theory can fully deal with many 

linear systems, and linear systems are mostly simplified form of nonlinear systems. 

Therefore, in real life and practical engineering problems, chaos is ubiquitous. In this 

chapter, we will start from the basic concept of system and introduce chaos from its history, 

definition and applications.  

1.1 Basic Concept of System 

Generally, system of any kind of engineer, physics, biology and society, whose state 

changes with time could be considered as dynamical system. It consists of two factors that 

are evolution law and initial condition. The former one is the dependency between current 

and foregone states. The later one is the system state at the beginning. Dynamical system 

could be divided into two sub-systems, which are deterministic and stochastic system.  

Deterministic system could be described by time dependent functions, while stochastic 

system could not, and is only of statistic properties. The later one usually has random initial 

condition, coefficient changing and external stimulation. Dynamical system could be 

divided into finite/infinite dimensional system, or continuous/ discrete time system, or even 

linear/nonlinear system according to different factors.  
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Linear system is the one changes by the rule of linear combination of its foregone states. 

On the other hand, nonlinear system is the one which changes in a complex way that could 

not be decomposed into the linear combination of its foregone states. It is usually described 

by nonlinear differential equations. Comparing with linear system, nonlinear system 

appears to be of complicated properties. Firstly, superposition principle of linear system is 

not valid in nonlinear situation. Secondly, the motion period is not simply determined by 

the system properties. It is also related to the initial condition. Thirdly, nonlinear system 

has multiple equilibrium positions and steady motion. System behaviors are related to not 

only stability of these factors, but also initial condition. Fourthly, response frequency of 

system is the same in linear system. However, this response is complicated in nonlinear 

system. Finally, there are only periodical and quasi-periodical motion in linear system. 

However, there is a complicated motion in nonlinear system, which is the chaotic motion. 

 

Figure 1.1: An example of chaotic system: Lorenz attractor 
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Nonlinear dynamics mainly studies the qualitive and quantitive transformation law of 

motion state in nonlinear system, especially the complex evolution in long duration. 

Regarding finite dimensional system, the points of interests mainly focus on chaos, 

bifurcation and fractal. Chaos is a kind of reciprocating non-periodic motion produced by 

deterministic dynamic system which is very sensitive to initial value and has inherent 

randomness and long-term prediction impossibility. Bifurcation refers to the qualitative 

behavior of dynamic systems with the change of system parameters and the qualitative 

changes. Fractal is a geometric structure without characteristic scale and similarity, which 

is used to describe the complex geometrical form of fragmentation and irregularities. 

Before the chaotic phenomenon was widely known, the description of nature was divided 

into two distinct categories, randomness and certainty. The deterministic system had the 

deterministic nature. The rise of chaos research has prompted people to pay attention to the 

problem of finiteness, because random test can only be carried out in a limited time and 

frequency. Opportunity, cause and effect, determinism and other basic concepts and 

categories of human understanding of nature need to be re-recognized. The study of 

nonlinear dynamics has led to the emergence and wide application of a new experimental 

method, which is numerical experiments. 

1.2 Brief History on Discovery of Chaos 

Recognition of nonlinear dynamics problem could be traced back to 1673, when C. 

Huygens studied the behavior of pendulum [1, 8]. He observed two kinds of nonlinear 

phenomena, which were the isochrone deviation of the single pendulum with large swing 

and the synchronization of two clocks with approached frequencies. In 1687, Isaac Newton 

published his great publication “Philosophiae Naturalis Principia Mathematica” [10]. In 
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this work, Newton employed an essential method, the differential equations, for physics 

problem. While this mathematical tool was not new at that time, it was Newton who firstly 

formally started using it to describe physics phenomena.  

In Newton’s method, an object could be treated as a single point of mass, considering in 

two dimensions, its movement could be described by several equations: 

𝑥ሺ𝑡ሻ ൌ 𝑥ሺ0ሻ ൅
ௗ௫

ௗ௧
𝑡                                                (1) 

𝑦ሺ𝑡ሻ ൌ 𝑦ሺ0ሻ ൅
ௗ௬

ௗ௧
𝑡                                                (2) 

ௗ௫

ௗ௧
ൌ 𝑣௫ሺ𝑡ሻ ൌ 𝑣௫ሺ0ሻ ൅

ௗమ௫

ௗ௧మ 𝑡                                       (3) 

ௗ௬

ௗ௧
ൌ 𝑣௬ሺ𝑡ሻ ൌ 𝑣௬ሺ0ሻ ൅

ௗమ௬

ௗ௧మ 𝑡                                        (4) 

Therefore: 

𝑥ሺ𝑡ሻ ൌ 𝑥ሺ0ሻ ൅ ቀ𝑣௫ሺ0ሻ ൅
ௗమ௫

ௗ௧మ 𝑡ቁ 𝑡                                    (5) 

𝑦ሺ𝑡ሻ ൌ 𝑦ሺ0ሻ ൅ ቀ𝑣௬ሺ0ሻ ൅
ௗమ௬

ௗ௧మ 𝑡ቁ 𝑡                                    (6) 

where x(0), y(0), vx(0), vy(0) are called initial conditions. The solution of the two last 

equations is the trace of object movement.  

Now let’s consider a system consists of n objects, and there is interaction between any of 

two objects according to the law of gravitation. The interaction could be quantitively 

measured by the square reverse of their distance. This is the famous n-body problem. This 
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problem could be generally described as: given the position and current velocity of 

astronomical objects, trying to estimate their motion status at any moment in the future or 

past. When n = 2, it is called 2-body problem, or Kepler problem in memory of Kepler, 

who discovered the rule behind Tycho Brahe’s observation and stimulated Newton for the 

law of gravitation. In 2-body problem, in order to fully study two objects’ movement in 

three-dimensional space, 3 position variables and 3 velocity variables are needed. 

Therefore, the degrees of freedom are 6. This problem might be really difficult at the first 

glance; however, it could be solved by introducing the varieties of law of conservation in 

physics. On the other hand, unfortunately, the 2-body problem is the only solvable problem 

in n-body problem, which means the solution to the equations could be determined under 

the initial conditions. When n > 2, regardless of effort has been made, the problem is not 

analytically solvable, the exact formulas as the solution are still unachieved [1, 8]. 

In 1889, in order to commemorate the 60th birthday of King Oscar II of Sweden and 

Norway, a contest was held to produce the best research in celestial mechanics pertaining 

to the stability of the solar system, which was a particularly relevant n-body problem [6]. 

The winner was declared to be Henri Poincare. In order to make progress on the problem, 

Poincare made two simplified assumptions. Firstly, he assumed that the three bodies all 

moving in a plane. Secondly, he also assumed that two of the bodies were massive and that 

the third had negligible mass in comparison, so small that it did not affect the motion of 

the other two. In general, the two large stars would travel in ellipses, but Poincare made 

another assumption, that the initial conditions were chosen such that the two moved in 

circles, at constant speed, circling about their combined center of mass. He discovered the 

crucial ideas of “stable and unstable manifolds”, which are special curves in the plane. 
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These manifolds can cross each other, in so-called homoclinic points. The meaning of these 

points was unclear to him at that time. Later, he eventually realized that the existence of 

homoclinic points implied that there was incredibly complicated motion near those points, 

behavior we now call “chaotic” [1].  

In 1890, Poincare published an article “On the equations of dynamic and the three-body 

problem” [11]. In this work, he established that due to the possibility of homoclinic 

crossings, no general exact formula exists, beyond Newton’s differential equations, for 

making predictions of the positions of the three bodies in the future. In 1892, he 

demonstrated the rationality of the perturbation method, which promoted the research on 

approximated analytical method of nonlinear dynamics. In 1905, he clearly elucidated the 

unpredictability caused by sensitivity to initial values. These series of works that became 

the beginning of the study of nonlinear systems, especially chaotic theory.  

Ever since 20s of 20th century, the fundamental difference between linear and nonlinear 

dynamics has been recognized. G. Duffing and B. van der Pol performed research on 

typical nonlinear vibration system in 1918 [12] and 1926 [13], respectively, revealed some 

nonlinear systematic properties, such as secondary harmonic vibration and self-excited 

vibration. In 1929, A. Andronov built the relation between limit cycle and self-excited 

vibration, followed by a systematic research on the qualitative features of planar system. 

During 30s and 40s, N. Krylove, N Bogoliubov and Y Mitropolskii developed the nonlinear 

dynamics approximated analytical method [14]. 

The widely research on the chaotic phenomena enhanced the development of nonlinear 

dynamics. Regarding the physical concept of unpredictability, M. Born and L. Brillouin in 

1955 and 1964 [15], respectively, expounded idea of Poincare and suggest uncertainty of 
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classical mechanics due to the instability. On mathematical description of non-periodic, H. 

Morse introduced symbolic dynamics method in 1921 [16]. S. Smale constructed 

horseshoe mapping [17]. The generation mechanism of non-cyclical motion of near-

integrable conservative system was revealed by A. Kolmogorov in 1954 [18]. Later, his 

conclusion was strictly proved by V. Arnold and J Moser and known as KAM theorem 

[19]. Development of computer provided new methods for research on chaos. A series 

important numerical results proved the existence of chaos, including E. Lorenz’s simplified 

���J�����J�����J��　��J���　�J���┌帀[20], 2 degrees of freedom conservative system model 

of M. Henon and C. Heiles in 1964 [21], forced nonlinear vibration model by Ueda and 

Qianbo Lin in 1973 and Henon’s two-dimension mapping model of strange attractor in 

1976 [22]. The concept of strange attractor was proposed by D. Ruelle and F. Takens in 

1971 [23]. In 1975, Tianyan Li and J. Yorke tried to give the mathematical definition of 

chaos on interval mapping [24]. In 1976, R. May’s research on complex dynamics of one-

dimension mapping made the chaos attract widely attention [25]. Late of 70s, chaos 

blended with bifurcation and fractal, which made the research of nonlinear dynamics more 

in-depth and extensive.  

1.3 Basic Concept of Chaos System 

The first definition of chaos in mathematics was introduced by Li and Yorke in 1975 [24], 

where the authors established a criterion on the existence of chaos for internal maps. The 

original expression of their definition was presented through mathematical formulas, which 

is difficult to read without any background of topology. Herein we will focus on the means 

of their definition. Considering a continuously self-mapping within a closed interval, there 

exists a number x satisfies the condition that 𝑓௡ሺ𝑥ሻ ൌ 𝑥, which means an initial value x 
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equals to the final value after n times self-mapping. Herein we called this n the period. Li 

and Yorke proved that the system should be considered as chaotic if it could satisfy such 

conditions: first, there is no upper limit for the period n; second, there are countable number 

of stable orbits, uncountable number of stable trajectories, and unstable trajectories. It is 

worthy to mention that one obit or trajectory is the subset of self-mapping. More interesting, 

it has been proved that the period of system could be any integer if there exists period of 3. 

Hence one could say that a system with period of 3 means chaos.  

The most widely accepted definition for the chaos was given by Robert L. Devaney [26]. 

He proposed a chaos system should possess such properties: initial value sensitivity, 

topology transitivity and density of cycle points. Sensitivity to the initial value means that 

no matter how close the two points in the space are, the distance between the two can be 

separated by a larger distance under the action of the remapping. Within nearby area of 

each point, there should exist a point satisfies such condition. For such a system, any small 

initial value error could lead to the failure of the computing results after many iterations if 

a computer is used to calculate its orbit. Topology transitivity means that the neighborhood 

of any point will "scatter" the entire metric space, which suggests that it is impossible to 

subdivide or break down into two subsystems that are not affected each other. The density 

of the periodic point shows that the system has a strong certainty and regularity, which is 

by no means chaotic, shaped in confusion and actually orderly. In a nutshell, chaotic 

mapping has three basic elements: unpredictability, non-decomposable, and a regular 

component. Because of the sensitivity to initial conditions, chaotic systems are 

unpredictable. Because of topological transitivity, it cannot be subdivided or cannot be 
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broken down into two subsystems that do not interact. However, in this chaotic state, after 

all, there is a regular component, that is, dense periodic orbital points. 

Chaotic system is a branch of nonlinear dynamic system, therefore, most of chaotic system 

could also be described in the same way [19, 27]. A typical one-dimensional discrete time 

nonlinear dynamics system is defined by the iteration formula as following: 

𝑥௞ାଵ ൌ 𝜏ሺ𝑥௞ሻ                                                      (7) 

where 𝑥௞ ∈ 𝑉, k = 0, 1, 2, 3…, is the state of system, 𝜏: 𝑉 → 𝑉 is a mapping. 

With the determined initial condition, we could obtain a series of states for the system by 

applying this formula. A very simple but widely accepted dynamics system is the Logistic 

mapping: 

𝑥௞ାଵ ൌ 𝜇𝑥௞ሺ1 െ 𝑥௞ሻ                                              (8) 

where 0 ൑ 𝜇 ൑ 4, and chaos domain is (0, 1).  

For two-dimensional systems, the general form could be described as: 

൜
𝑥௞ାଵ ൌ 𝑓ଵሺ𝑥௞, 𝑦௞ሻ
𝑦௞ାଵ ൌ 𝑓ଶሺ𝑥௞, 𝑦௞ሻ                                                 (9) 

where f1 and f2 are mapping functions. So far, a widely applied two-dimensional chaos 

mapping is the Henon mapping [28]: 

൜
𝑥௞ାଵ ൌ 1 ൅ 𝑦௞ െ 𝑎𝑥௞

ଶ

𝑦௞ାଵ ൌ 𝑏𝑥௞                 
                                          (10) 

It has been proved that when 𝑎 ∈ ሾ1.07, 1.4ሿ, b = 0.3, the Henon mapping is chaotic. 
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Figure 1.2: Henon mapping, a = 1.0, b = 0.3 

 

Figure 1.3: Henon mapping, a = 1.4, b = 0.3 
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1.4 Application of Nonlinear Dynamics 

Non-linear factors, which include nonlinear forces such as electric field force, magnetic 

field force and universal gravitation, kinematic nonlinearity such as normal acceleration 

and Coriolis acceleration, material nonlinearities such as nonlinear constitutive relation, 

and geometric nonlinearity such as large elastic deformations, are widely existed in 

engineering systems [14].  

Therefore, most of the problems in engineering practice should be modeled into nonlinear 

systems. Traditionally, linearization or equivalent linearization is used to process nonlinear 

systems into linear systems, but only to a certain extent. When the nonlinear factors are 

very strong, the results obtained by linear theory are not only too large in error, but also 

cannot explain some practical phenomena. As early as the 1944, the Pioneers of Modern 

mechanics, T von Kármán, published a review of the article "The engineer grapples with 

nonlinear problems" [29], which summarized the research results of nonlinear problems of 

various branches of mechanics at that time, and emphasized the importance of nonlinear 

problems in engineering. With the development of modern science and technology, the 

engineering structure is becoming more and more large, high-speed and complicated, so 

that nonlinear effects must be considered. The rapid development and widespread use of 

electronic computers, as well as advances in dynamic testing and online data processing 

technologies, have made it possible to study nonlinear problems in engineering. 

Nonlinear dynamics are also playing more and more important role in the study of 

engineering problems. The importance of nonlinear dynamics in engineering is mainly 

embodied in the following aspects: nonlinear dynamics show that simple mathematical 

models may produce complex dynamic behaviors, so they can be applied to nonlinear 
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modeling, prediction and control of time series. Nonlinear dynamics reveal that irregular 

noise signal may result from low-order deterministic nonlinear systems, thus providing a 

new way of thinking for noise suppression. The analysis results of nonlinear dynamics for 

the global and long-term state of the system can be used to study the reliability of numerical 

simulation results. Nonlinear dynamics also provide new concepts and methods for 

experimental research, and some characteristic values for identifying mixed motion can be 

measured in addition to traditional spectrum analysis. 

The nonlinear dynamics problems in engineering vary widely, but the solutions are often 

common. The common premise is to establish a mathematical model of the system. The 

methods of establishing mathematical models can be divided into two categories. One is 

theoretical model. From the known principles, conclusions and theorems, the intrinsic 

dynamics of engineering problems are found through mechanism analysis, and the 

analytical relationship of related parameters is derived. The other type is the experimental 

model, which directly identifies the relationship of the parameters involved from the 

engineering system operation and test data. Based on the mathematical model of the 

engineering system, the system can be analyzed, simulated, optimized and controlled. 

Nonlinear dynamics, as a branch of general mechanics, focuses on the analysis of system 

models, but the experimental modeling of the system is also slightly involved. 

1.5 Motivation and Organization of Thesis 

In the study related to dynamic system, such as power grid system and financial stock 

market, possible chaotic phenomenon would be inevitable. Inspired by the previous work, 

we propose a new approach to study the chaotic systems, which is from the intrinsic system 

physical properties. In Chapter 2, the fully explanation of our idea and methodology will 
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be introduced. A brief review on the traditional methods are also made. In Chapter 3, the 

experimental system will be described. The model and details of experimental magnetic 

pendulum system will be presented. In Chapter 4, a program writing in Java will be started 

from scratch. The program will be capable of showing basin diagram and the pendulum 

movement in real time, which will provide a straightforward impression. In Chapter 5, 

results from our program and numerical simulation will be shown and compared. With data 

from numerical simulation, a further investigation of the experimental system will be 

discussed. Chapter 6 summarizes this thesis and talks about some future work.  
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Chapter 2:  A View on Chaotic System 

The world around us is full of phenomena that seem irregular and random in both space 

and time. Exploring the each of these phenomena is almost impossible. Therefore, in 

addition to the traditional methods to explore the chaotic system, in this work, we introduce 

a preliminary new approach to view it. In this chapter, we will start with talking about the 

traditional method to study the chaotic system and then continue with our discussion on 

the new approach. 

2.1 General Methods for Studying Chaotic System 

As we have mentioned in Chapter 1, there could be a periodic point in the chaotic system, 

such point could be described as 𝑥௠ ൌ 𝜏ሺ𝑥௞ሻ ൌ 𝑥௞, where the period of xk is m-k. There 

are also some points that remains the same in each iteration, which is  𝑥௞ାଵ ൌ 𝜏ሺ𝑥௞ሻ ൌ 𝑥௞, 

and k could be any integer. Points of such property are mentioned as fixed point in the 

system. 

There are three types of fixed points based on their properties, which are the sinks, sources 

and saddles [1]. A sink is a fixed point that attracts an epsilon neighborhood of initial values. 

A source is a fixed point that repels a neighborhood. And the epsilon neighborhood is the 

set of points within certain Euclidean distance epsilon. One could understand the sinks and 

sources as the valleys and peaks. From another point of view, a sink is a stable equilibrium 

point while a source is unstable equilibrium point. The third kind of fixed point is saddles. 

It is defined to attract neighborhood in one direction and repel neighborhood in another 

direction at least, respectively. A saddle exhibits sensitive dependence on initial conditions, 

as initial values could follow into two directions of totally different properties. Saddles are 
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also considered as unstable fixed points. Saddles are not considered as attractors in the 

system, however, they still play import roles in the dynamics [1].  

In order to study the dynamic systems, it is intensively important and useful to determine 

the fixed points at the beginning if possible, because the fixed points could indicate the 

final states of the system. In some system, the fixed points could be estimated by the 

physical properties or symmetry. Sometimes, numerical methods would be employed, too.  

 

 

Figure 2.1: Saddle surface 

As we have mentioned above, a time series of data by combining the system iteration 

function and initial conditions could be obtained. Such series of data is mentioned as orbit 

or trajectory of the system depends on the whether it is closed or not. Orbit could be 
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considered as a special closed trajectory and indicate the existence of periodic points within 

the system potentially.  

Because the trajectories are data of time series, some methods from time series analysis 

could be also used for chaotic system study or behavior estimate [30-32]. Time series 

analysis is based on the continuous regularity of objective development, to further 

speculate on the future development trend by using the historical data of the past through 

statistical analysis. The past will be continued in the future. This hypothetical premise 

contains two meanings: one is that there will be no sudden jump change, that the series is 

moving at a relatively small pace, and the other is that past and current phenomena may 

indicate the trend of development and change in current and future activities. This 

determines that the time series analysis method is more significant for short- and near-term 

prediction in general, but if it extends to the further future, there will be great limitations, 

resulting in the predicted value deviating from the actual situation and making the decision 

error. 

There are three types of changes in time series data, which are trend, seasonality, 

randomness. Trend indicates a variable with the progress of time shows a relatively slow 

and long-term continuous increase or decrease with that the magnitude of change may not 

be equal. Seasonality is the regularity of alternating appears of peaks and valleys due to the 

external influences from natural season alternation. Randomness means the random change 

from individual but statistical properties on the time series data.  

In time series analysis, three models are commonly employed if the data is stationary: 

autoregression AR(p), moving average MA(q) and autoregressive–moving-average 

ARMA(p, q). AR(p) reflects the influence and effect of the relevant factors on the predicted 
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target only through the historical observation value of time series variables. It is not subject 

to the hypothetical conditions of independent independence of the model variables. This 

model can eliminate the difficulties caused by the self-variable selection, multiple 

collinearity and so on in the common regression prediction method. In MA(q) model, 

current predicted values are expressed by a linear combination of random interference or 

predictive errors from various periods in the past. This form can be considered when the 

hypothetical conditions of AR (p) are not met. ARMA(p, q) is the model of combination 

AR(p) and MA(q). Usually, in order to perform the time series analysis and forecasting, 

the first step is to eliminate the trend and seasonality. Then the promising model will be 

chosen and parameters will be calculated. During this process, autocorrelation, partial 

autocorrelation calculation could be involved. For model selection, one of the methods 

Akaike information criterion (AIC) is commonly used.  

In order to evaluate the chaotic level of a system, the common method is to check whether 

two closed point will deviate to each other during the iteration. Such quantitive 

qualification is defined as Lyapunov numbers and Lyapunov exponents [1, 6, 19]. 

Lyapunov number presents the average per-step divergence rate of nearby points along the 

trajectory, and Lyapunov exponents is the natural logarithm of the Lyapunov number. 

Supposing a dynamics system, there are two trajectories L1 and L2 with the initial 

conditions as x0 and x0+Δx, as shown in the Figure 2.2:  



18 
 

 

Figure 2.2: Schema of divergence between two trajectories 

At time t, the position on L1 and L2 are x(x0, t) and x(x0+Δx, t), respectively. The distance 

or separation between the two trajectories at time t is defined as w(x0, t) = x(x0+Δx, t) - 

x(x0, t). The L1 is also called reference trajectory. The Lyapunov exponent λ is given as 

[6]: 

𝜆ሺ𝑥଴, 𝑤ሻ ൌ lim
௧→ஶ

௪బ→଴

ଵ

௧
𝑙𝑛

|௪|

|௪బ|
                                          (11) 

where w0 = w(x0, 0), is the separation between two trajectories at initial time.  

For discrete system, the Lyapunov exponent indicates the average divergence or 

convergence around the reference trajectory, and is defined as [6]: 

𝜆ሺ𝑥଴, 𝑤ሻ ൌ lim
௪బ→଴

ଵ

௧೘ೌೣ
𝑙𝑛

|௪|

|௪బ|
                                        (12) 

It is notable that there will be a series of λ in a system, and each of λ could be positive, 

negative or zero. In practical, it is only necessary to calculate the maximum of these series 
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of λ, the λmax. The property of the system could be reflected by this maximum Lyapunov 

exponent. One practical method to calculate the maximum Lyapunov exponent is given as 

[6]: 

𝜆௠௔௫ ൌ lim
௠→ஶ

ଵ

௠∆௧
∑ 𝑙𝑛௠

௜ୀଵ
|௪೔|

|௪బ|
                                      (13) 

When λmax < 0, the system is dissipative or non-conservative, and long duration system 

behavior does not depend on the initial condition and will converge to equilibrium state. 

Such system exhibits asymptotic stability; the more negative the exponent, the greater the 

stability. Super stable fixed points and super stable periodic points have a Lyapunov 

exponent of λ = −∞. This is similar to a critically damped oscillator in that the system 

heads towards its equilibrium point as quickly as possible [6, 33]. 

When λmax= 0, it indicates that the system is in a kind of steady state mode. The system is 

not sensitive to initial conditions and could show periodic motion. A physical system with 

this exponent is conservative. Such systems exhibit Lyapunov stability. Take the case of 

two identical simple harmonic oscillators with different amplitudes. Because the frequency 

is independent of the amplitude, a phase portrait of the two oscillators would be a pair of 

concentric circles. The orbits in this situation would maintain a constant separation, like 

two flecks of dust fixed in place on a rotating record [6, 33]. 

When λmax > 0, the system is unstable and chaotic, and it also sensitive to the initial 

conditions. Nearby points, no matter how close, will diverge to any arbitrary separation. 

These points are considered to be unstable. For a discrete system, the trajectories will look 

like snow on a television set. This does not preclude any organization as a pattern may 

emerge. For a continuous system, the phase space would be a tangled sea of wavy lines. A 
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physical example can be found in Brownian motion. Although the system is deterministic, 

there is no order to the trajectories that ensues [6, 33]. 

In addition to the Lyapunov exponents, power spectrum is also used for determining the 

existence of chaos in the dynamics system. Power spectrum represents the statistical 

characteristics of stochastic motion processes on various frequency components. In order 

to describe the randomness of chaos, the spectrum analysis method of stochastic vibration 

can be used to identify chaos. It is usually assumed that chaos is ergodic [6]. 

For sampling function x(t) of random signal, power spectrum could be obtained by two 

method. One is the time average of square of Fourier transformation [6]: 

Φ௫ሺ𝑤ሻ ൌ lim
்→ஶ

ଵ

்
ቚ׬ 𝑥ሺ𝑡ሻ𝑒௜ఠ௧𝑑𝑡

்
଴ ቚ

ଶ
                                 (14) 

The second method is using the Fourie transformation of autocorrelation [6]: 

Φ௫ሺ𝑤ሻ ൌ ׬ 𝑅ఛሺ𝜏ሻ
ஶ

ିஶ 𝑒ି௜ఠఛ𝑑𝜏                                      (15) 

where the autocorrelation function Rτ(τ) is defined as [6]: 

𝑅ఛሺ𝜏ሻ ൌ lim
்→ஶ

ଵ

்
׬ 𝑥ሺ𝑡ሻ𝑥ሺ𝑡 ൅ 𝜏ሻ𝑑𝑡

்/ଶ
்/ଶ                                 (16) 

For discrete dynamics system, one could calculate the autocorrelation, which is also the 

discrete convolution [6]: 

𝑐௜ ൌ
ଵ

ே
∑ 𝑥௝𝑥௝ା௜

ே
௝ୀଵ                                                  (17) 

And then perform discrete Fourier transformation [6]: 
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𝑝௝ ൌ ∑ 𝑐௜𝑒
మ೔ഏೖೕ

ಿே
௝ୀଵ                                                  (18) 

where pj represents the j-th frequency component, that is, the power spectrum of discrete 

time series. In numerical computation, there is also another method without calculating the 

autocorrelation function, which is computing the coefficients of discrete Fourier 

transformation directly.  

For periodic motion, there is only one related frequency in the Fourier expansion, and only 

one of the discrete power spectra is not zero. Therefore, there are discrete spectral lines in 

the power spectrum only in its motion frequency and its frequency division and frequency 

multiplication. The power spectrum of a quasi-periodic motion is some discrete lines at 

several incompatible fundamental frequencies and their superpositions. Chaotic motion is 

a bounded aperiodic motion, which is a superposition of periodic motions of infinite 

number of different frequencies, and its power spectrum has the characteristics of random 

motion. The power spectrum of chaotic motion is continuous spectrum, that is, noise 

background and wide peak appear. 

2.2 Proposition of a new approach from physics 

In Chapter 2.1, we have reviewed the general method to study the chaotic system. Usually, 

in order to evaluate the chaotic system, the analytical solution of the system is required. 

However, in the practice, it is hardly possible to obtain the analytical solution or even the 

formula of the system. For instance, the stock market, the only accessible observations are 

price data while the formula is not achievable. For such system, iterative exploration on 

data is a difficult task. In addition, exploration could be localized to certain space or degree 

while the whole picture of the system is not accessed. Especially, it is desired that the final 
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states of the system are known, so that regardless of the initial condition and process, the 

final states are determined.  

For deterministic chaotic system, in addition to the traditional method to explore the final 

states, alternatively, we could analysis the system from its physical properties. The final 

states should be the equilibrium states of the system. These equilibrium states could be 

physical positions, or other physical quantities, such as pressures, temperatures and etc. 

Similar to the concept of fixed point in chaotic system, there are also three kinds of the 

equilibrium states in physics, which are stable equilibrium, unstable equilibrium and 

neutral equilibrium. Therefore, we could start from these concepts and analysis the basic 

properties the system, thus, obtain the equilibrium points firstly. Once these points or states 

are determined, their properties in chaotic system could be investigated by the 

neighborhood area. Furthermore, instead of lost in the chaotic behavior of the system, we 

could mark each initial condition of the system by the final states. Hence the distribution 

of the final states could be achieved.  

From such approach, we have setup a relationship between the initial condition and final 

states, so that once the it has been established, states of any initial condition could be known 

from beginning without going through the iteration exploration. It is also worthy to mention 

that such relationship should be setup by the determined system parameters. And it could 

be reconstructed once system parameters are changed. In reality, such approach could be 

huge helpful in financial market. For example, for the financial crisis, people are always 

looking for the relationship between the start or the hint of it.  

So, in this work, we will use a typical experimental chaotic system as the preliminary 

demonstration for such approach. The system we chosen here is the magnetic pendulum 
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system, which involves the effect of magnetic force, gravity force and frictions. In the next 

chapter, we will start with introducing the basic description and model of the system. 
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Chapter 3:  Introduction of Magnetic Pendulum System 

In this chapter, the basic concepts of the magnetic pendulum system will be introduced. 

Model of the system will be explained, and the symbolic system will be defined. All 

contents in the following will follow the definition in this chapter. 

3.1 Basic Concept of the System 

The experimental magnetic pendulum system consists a pendulum suspending from a 

string. In the plane under the pendulum, there are three magnets distributed equally to the 

center of the plane. A three-dimensional schematic drawing of the system is shown as 

Figure 3.1, in which the black ball represents the pendulum and red, yellow and blue 

spheres are magnets.  
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Figure 3.1: Schema of magnetic pendulum system 

The distribution of three magnets is shown as Figure 3.2. In Figure 3.2, the O point is the 

equilibrium point for the pendulum to reach the minimal potential energy.  
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Figure 3.2: Magnets and pendulum distribution in two-dimensional plane 

There are some setups about the system: 

1. The length of pendulum is very large comparing to the spacing of the magnets. This 

assumption allows the motion of the pendulum to be considered as in a plane rather 

than a sphere surface. 

2. Although the magnets are presented with some diameters, it is treated as a point 

source of attraction when calculating the force. 

3. Magnetic force follows the inverse squared law; i.e. the force is inversely 

proportional to the square of the distance.  
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4. The three magnets have the same magnetic poles; i.e. the N magnetic pole, and the 

pendulum has the opposite magnetic pole; i.e. the S magnetic pole, so that the 

pendulum suffer the attraction from every single magnet. 

5. There is a small distance h between the plane of magnets and that of the pendulum 

movement. 

As shown in Figure 3.2, the distance in x-y plane from the each of magnet and the O point 

to the pendulum are marked in the figure by vector r. Here we define them as: 

1. ri: the distance between magnets and pendulum 

2. r0: the distance between O point and pendulum 

3. (xi, yi): the Cartesian coordinates for each magnet 

4. (x, y): the Cartesian coordinates for pendulum 

5. (xO, yO): the Cartesian coordinates of origin 

6. h: the distance between the plane of magnets and that of pendulum 

3.2 Model of the System 

Now let us analysis the force acting on the pendulum. Supposing the pendulum was moved 

away from its equilibrium point O, and the current Cartesian coordinated are (x, y), there 

are three kinds of forces acting on it: 

1. The force caused by magnets, as we mentioned above, is inversely proportional to 

the inversed squared distance, so that the force could be described as: 

𝐹௠ሬሬሬሬ⃗ ൌ 𝑘௠
௥ഢሬሬሬ⃗

௥೔
య                                                     (19) 

where Fm is the force, km is the strength coefficient for the magnetic force. 
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The ri in the x-y plane is ඥሺ𝑥௜ െ 𝑥ሻଶ ൅ ሺ𝑦௜ െ 𝑦ሻଶ. However, this could cause a 

singular point when x = xi and y = yi, hence as we have mentioned above, a distance 

h is introduced. Therefore, the equation of r is ඥሺ𝑥௜ െ 𝑥ሻଶ ൅ ሺ𝑦௜ െ 𝑦ሻଶ ൅ ℎଶ. And 

the magnetic force from single magnet is: 

𝐹௠ି௫ ൌ 𝑘௠
௫೔ି௫

ሺሺ௫೔ି௫ሻమାሺ௬೔ି௬ሻమା௛మሻయ/మ                             (20) 

𝐹௠ି௬ ൌ 𝑘௠
௬೔ି௬

ሺሺ௫೔ି௫ሻమାሺ௬೔ି௬ሻమା௛మሻయ/మ                             (21) 

2. The force caused by gravity, and it pulls back of pendulum to the original point O; 

thus, this force could be described as: 

𝐹௚ሬሬሬ⃗ ൌ 𝑘௚𝑟଴ሬሬሬ⃗                                                   (22) 

Converting this formula into the Cartesian coordinates, the x and y component of 

gravity force should be: 

𝐹௚ି௫ ൌ 𝑘௚ሺ𝑥ை െ 𝑥ሻ                                         (23) 

𝐹௚ି௬ ൌ 𝑘௚ሺ𝑦ை െ 𝑦ሻ                                   (24) 

3. Thirdly, we introduced another force here, which is the friction force between the 

pendulum and the media in which the whole system is. The force acts in the 

opposite direction of pendulum’s motion and is proportional to the velocity of the 

pendulum. So, the force is described as:  

𝐹௙ሬሬሬ⃗ ൌ െ𝑘௙𝑣⃗                                                     (25) 

According to Newton’s second law of motion, one could summarize the three kinds of 

force to the acceleration and mass, herein we assume the mass of the pendulum is 1. 
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Therefore, we could arrive the final formula for the pendulum as equations (26) and (27). 

The solutions to these two equations will be the trace of pendulum. 

𝑥" ൅ 𝑘௙𝑥′ െ 𝑘௠ ∑ ௫೔ି௫

ሺሺ௫೔ି௫ሻమାሺ௬೔ି௬ሻమା௛మሻయ/మ െ 𝑘௚ሺ𝑥ை െ 𝑥ሻ ൌ 0ଷ
௜ୀଵ          (26) 

𝑦" ൅ 𝑘௙𝑦′ െ 𝑘௠ ∑ ௬೔ି௬

ሺሺ௫೔ି௫ሻమାሺ௬೔ି௬ሻమା௛మሻయ/మ െ 𝑘௚ሺ𝑦ை െ 𝑦ሻ ൌ 0ଷ
௜ୀଵ          (27) 

As shown in Figure 3.2, considering a magnetic pendulum system in reality and supposing 

the lower left corner is the origin point with coordinates (0, 0), and the limit for x and y 

axis is set to be 8.00. Therefore, the coordinates for O point is (4.00, 4.00), and Cartesian 

coordinates for red, green and blue magnates are (4.00, 6.00), (2.27, 3.00) and (5.73, 3.00), 

respectively. The O point is not set to be the origin as (0, 0) although one could expect 

symmetry in the coordinates for straightforward understanding. We will benefit from this 

setting in the next chapter when talking about the visualization of chaotic motion. There 

are three coefficients in the formula, which are magnetic strength coefficient km, the gravity 

coefficient kg and friction coefficient kf. For the preliminary calculation, the km is set to be 

1, kg is taken as 0.5.  

In order to study the formula mentioned above, it is worthy to explore the properties of the 

calculation domain. According to the description of the system, there are four sources of 

force located in the domain, which are the gravity equilibrium point O and the positions of 

the three magnets. Hence the pendulum moves in the complicated potential field from the 

four sources. Regarding our assumptions, the force acting on the pendulum is reservedly 

proportional to the square distance. So, the potential filed established by one magnet could 

described as:  
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𝑉௠ ൌ െ𝑘௠
ଵ

௥೔
                                                     (28) 

where ri is the distance between the pendulum and magnet.  

And the potential filed formed by the gravity force under our assumption is: 

𝑉௚ ൌ
ଵ

ଶ
𝑘௚𝑟௢

ଶ                                                      (29) 

By taking coefficients we have set, the total strength of potential filed could be achieved 

and shown by the following plot. 

 

Figure 3.3: Contour plot of potential field of the pendulum system 
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Figure 3.4: Three-dimensional surface plot of potential field  

From these two plots, firstly, it is very clear that the whole system is in the potential well, 

in which any object in the system will move towards the center of the plane. It could also 

be observed that there are three local minimum potential energy points, which are also the 

positions of magnets. And these positions should be the stable equilibrium points that any 

small perturbation to the pendulum at these positions will not move it far away, and the 

pendulum will finally return to these equilibrium positions. In addition, one could expect 

that there is another local equilibrium point at the center of the whole plane. However, it is 

not clear that whether this point is a stable equilibrium point or not.  

These equilibrium points are the points of interest for the system, which will be investigated 

in the following. Furthermore, in the previous calculation for the potential field, the 

influence from the friction has not been considered. Regarding an object in the field with 
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zero initial speed, it will move to the closet equilibrium points. However, the motion of it 

could largely change due to the effect from friction, which is also the actual situation. 

Before we go further to investigate the system, it is worthy to finish another work first, 

which is the visualization of the chaotic behavior of the pendulum. It is more 

straightforward if we could watch the movement of pendulum in real time. Therefore, in 

the next chapter, we will put our effort on a program first, and then go back the numerical 

investigation on the properties of the system.  
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Chapter 4:  Program of Chaotic Magnetic Pendulum 

In Chapter 3, the magnetic pendulum system has been introduced. In this chapter, we will 

talk about the implementation of the pendulum movement presentation in real time. A 

program will be constructed by Java language from scratch. Detailed information about 

this program will be introduced. All of the source code will be available in an online 

repository. 

4.1 Requirements Analysis 

In order to visualize the pendulum motion from starting position to final equilibrium 

position, a graphic user interface (GUI) is needed. This GUI should consist a window for 

displaying the pendulum animation and also a control panel window for parameters 

adjustment. There are mainly two objects in this system, which are the pendulum and the 

magnets. There also should be a program for the trajectory calculation, and initial 

calculation should take the values of each parameter km, kg and kf. The value km is the 

property of magnet, kg and kf are set separately through the control panel. All of the three 

parameters should have default values.  

At the finish, this program should be an independent app and could run on different 

platform, such as Window or Linux operating system (OS). There are two options for such 

requirement. One is the web app and the other is the desktop app. An alternative choice is 

the mobile app, which could run on mobile devices, such as smart phones or tablets. 

However, this program is not designed for public use but lab use initially. Hence mobile 

app will not be considered here. Regarding the two options above, the web app runs in a 

web browser. Such implementation usually requires communications between client side 
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and server side. It could be implemented as a fat client-side program that all of the 

calculation is completed by the program running in the browser. However, we still need a 

web server to store the program so that anyone who access it could have the program 

downloaded and loaded into web browser. This process will involve a design for the 

communication through internet, efficient data transfer and sever setup and so on, which 

will be a complicated task. In addition, as this is the first time for us to perform such full 

life cycle software development, quality analysis and debug in the late stages of 

development over the internet will be a difficult task. Therefore, an app running on the 

desktop locally will be our choice for the development. 

Regarding the desktop app, there are mainly three programming languages for such 

development, which are C++ [34], Java [35] and Python [36]. They are all Object-oriented 

programming (OOP) languages and appropriate for such development. Among the three 

languages, C++ is the most efficient one for running, as the program is compiled into the 

machine code and runs by the CPU directly. On the other hand, C++ does not specialize in 

GUI programming but high-density computation. There is not any sufficient build-in 

library in C++ for GUI programming. One option is the visual C++ Microsoft Foundation 

Class (MFC), but this library is complex and learning of it will be a long and tough process. 

The other choice is QT [37], which is a cross-platform framework that is usually used as a 

graphical toolkit. The most advantage is that this toolkit could run on any platform, desktop 

computers, laptop, smart phones, tablets with Windows OS, Linux, iOS, Android, and even 

embedded devices. But according to the feature of C++ language, employment of QT is 

also a difficult task. The development process will be very slow.  
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Java language is also popular in industry [35], and employed in many large-scale projects, 

especially for the service programs running on the servers. Java has many build-in standard 

libraries for different application. And most of standard libraries have been verified and 

widely used in industrial projects. One of them is suitable for GUI development, which is 

the Java Swing library [38]. Java Swing comes with a compatibility for cross-platform, the 

main disadvantage is its pale and lack of aesthetic appearance. Another disadvantage of 

Java is its low efficiency. Comparing with C++, Java programs runs in the Java virtual 

machine (JVM), which brings the high compatibility and low efficiency simultaneously. 

Many optimizations have been made to JVM to improve its performance. Nowadays, many 

server applications, middle-wares are written in Java. Its efficiency could not beat C++, 

however, is still acceptable.  

Python is a popular language especially for university education or amateur projects. As a 

dynamic language, Python is simple and has huge external libraries for development 

acceleration and simplification. On the other hand, the disadvantage of it is also various. 

The running efficiency is not high, even slower than Java. This is because the Python does 

not have type concept, and compiler needs to check all of the variables within the code. 

This will cost a large amount of time. So, Python is suitable for small project, application 

of this language in industry for large scale project is very rare. Another reason is the issue 

of external libraries, as the completeness and security are not strictly validated.  

Above all we have briefly summarized and compared three candidate language for the 

project. Considering the simplification and learning cost, in this work, Java language will 

be employed for source code implementation. And GUI will be implemented mostly based 

on the Java Swing standard library. 
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4.2 Class Design 

As Object-oriented programming, the basic unit of coding is class, which is the definitions 

for the data format and available procedures [39]. From another point of view, a class is a 

collection of variables and methods, which could be accessed from outside of class (public), 

or limited to the class internally (private). For the program in this work, the final app is the 

combination of several classes and all of the functionality is provided by the cooperation 

among these class.  

According to our requirement analysis, there are 14 classes: MainFrame, MainPanel, 

TracePanel, BasinPanel, ControlPanel, Ball, Magnet, MagnetsCollection, EngineCore, 

BallEngine, BasinCalEngine, TraceCalEngine, Vect and Toolbox, and 1 initiation class 

App. Figure 4.1 shows the Unified Modeling Language (UML) diagram of some main 

classes. 
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Figure 4.1 UML of Magnetic Pendulum program 

MainFrame is the foundation of GUI, according to the Java Swing library. In its framework, 

MainFrame is the sub-class of JFrame. In the constructor, the size of window should be 

defined. Any other necessary components are added by calling the method of JFrame, the 

add(). Another important factor is the layout manager, which determines the layout for the 
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frame and manage the relative position for each section. Herein it is also worthy to mention 

that the width of frame boarder is different in Windows OS and Mac OS. In order to achieve 

the same appearance in different operating system, this boarder width shall be detected and 

adjusted. Default values could not work in various systems.  

Panels are two sub-sections in the MainFrame. Usually, definition of panel is not necessary 

if there is only one window in the MainFrame, as all of the components, such as buttons 

and menus could be added to the MainFrame directly. However, in this work, as we are 

going to display animation, a separate window inside the MainFrame is needed. In Java 

Swing, each separate window shall be defined as a panel. There are 4 panels inside the 

MainFrame. MainPanel, BasinPanel and TracePanel are used for display and ControlPanel 

is used for parameters setting and program control. In addition, MainPanel, BasinPanel and 

TracePanel are set to be in the same position, which means these three panels has to be put 

into layers. Java Swing provides a JLayeredPane class for such usage. In the 

implementation, each panel is assigned with an integer number to define its relative 

position in the layers. The panels in the front need to be set as transparent, so the panels 

underneath could be visualized. All of these methods have to be declared in the MainFrame. 

MainPanel is the sub-class of JPanel. It also has to implement 2 interfaces in Java, the 

MouseListener and Runnable, and reason for this will be talked about later. In the 

MainPanel, as an animation will be displayed, the coordinates should be determined first. 

In Java Swing framework, the origin of the window is the left upper corner of the window 

with x and y increased when moving in rightward or downward directions, respectively. In 

the MainPanel, the basic display unit is pixel. One pixel stands for one point in the panel. 

An object could only move from one pixel to another, therefore the coordinate of position 
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for an object in the panel is always a pair of integers. It is also worthy to mention that the 

panel board is also involved when calculating the panel width. So, the real position of an 

object has to be adjusted for boarder width to prevent any distorted or unsatisfied display.  

In the final app, we want the initial position of pendulum be determined by the mouse click 

in the panel, and this is the reason for the MouseListener interface. With the method from 

it, we could easily add a listener to monitor if a mouse click is made to the panel, and 

capture to position of the click. This is the power of build-in library, because we could 

concentrate on the function that we would like to have instead of thinking the low-level 

program techniques and skill for such tasks. As we have mentioned, an animation will be 

displayed inside the MainPanel, hence a thread running is needed and it has to implement 

the Runnable interface. This way is one of two methods in Java for thread, and we will use 

this way in this work. Thread a common concept for programmers. Herein we will briefly 

introduce it.  

A thread could be considered as a sub-task running inside a program. A program usually 

has a main thread initiated by default. In this work, anther thread is needed for creating the 

animation by running the paint method of MainPanel constantly. An animation is 

fundamentally display of a series of pictures. Hence if we could paint a diagram inside the 

MainPanel with a bit of changes each time, such as the position of an object, the animation 

could be achieved finally. And this is the mechanism we are going to apply. With Runnable 

interface, we could create a thread. In this thread, we will call the method repaint(), and 

this method will call the method paint() in the MainPanel automatically. With the real-time 

pendulum position injected into the paint() method, we could eventually see the pendulum 

moving. 
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Underneath the Mainpanel, there are TracePanel and BasinPanel. TracePanel displays the 

pendulum trajectory starting from the position of mouse click. The content showing here 

is the complementary to the MainPanel as one may lose the whole picture of pendulum’s 

movement when watching animation. BasinPanel display the basin diagram across the 

whole plane. Basin diagram is defined as the color distribution of each point in the space. 

And the color is set to be the final destination of each trajectory. For example, a point with 

a trajectory starting from it and ending at red magnets will be marked as red.  

Regarding the ControlPanel, it is also the sub-class of JPanel. From the name, one could 

obviously realize that this panel is used for the controlling, such as parameters adjustment. 

In this panel, some text input areas will be employed for value display and input. Some 

buttons will provide the function for value to be sent to the calculation or reset the app to 

initial status. 

Ball is the class to describe the pendulum. In this work, all of the animation will be 

displayed in two dimensions. So, it is named as a ball for simplification. There is only one 

Ball object at running. So most of large-scale applications will employ the singleton rule 

for such class implementation. Here this rule is not applied as program scale is not very 

large. However, such rule should be kept in mind in some other projects.  

Magnet class stands for the magnets in the system. They could simply be implemented as 

an array of position values for the calculation. MagnestsCollection class is the wrapper 

class for Magnet class. Currently we only support 3 magnets in the system so that we could 

implement it in a simple way by creating 3 magnet instances directly. Such method is easy 

to implementation but not convenient for future code extension. For example, if we need 

to add a new feature of increasing the number of magnets, this method would be a bottle 
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neck. Therefore, this class works as preparation for the future feature extension. It takes an 

argument of integer for the number of magnet and creates certain amount of instance. 

Engine could know the number of magnets by simply call this class. 

EngineCore is the base class for calculation related classes. In this class, the basic and 

frequently used method and variables will be defined, for instance, the functions for 

computing the magnetic force, gravity force and frictions. From the programing point of 

view, such inheritance relations follow the spirit of object-oriented programing, which 

could save a lot time as there is no need to rewrite the same amount of code in classes with 

slightly difference. The EngineCore class has 3 sub-classes, which are BallEngine, 

BaisinCalEngine and TraceCalEngine. 

BallEngine class provide the calculation function for the simulation needed in the 

MainPanel. It collects the initial conditions and parameter value to compute the real-time 

position of pendulum at each time step. There are two possible approach to perform the 

calculation. One is limited times simulation. In this approach, the position of pendulum is 

calculated through limited times iteration. A maximum times value is set at the beginning. 

The iteration will be terminated when the maximum times is achieved. The other approach 

is to use the condition. In this approach, there is no limit on the iteration times. It will keep 

running until some condition is satisfied. So, in this class, the second approach is employed. 

The BasinCalEngine is the engine class for calculating the basin diagram for the whole 

space. This class works with BasinPanel. The main algorithm for calculation each 

trajectory is the same as BallEngine. In addition, a while loop is performed to iterate all of 

the points in the plane. There are 801 * 801 pixels in the plane, and so far, our program 
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could not handle such large amount of computation. Therefore, we treat every 5 pixels as 

1 point to simplify the computation complexity. And the final basin diagram is acceptable. 

TraceCalEngine is the engine class to calculate single trajectory for one starting point, and 

it works with TracePanel class. Different from the BallEngine that the calculation is 

terminated by simultaneously check, this class uses fixed iteration times to compute the 

single trajectory, which is the first approach we have mentioned above. This iteration times 

is obtained from our experience in the simulation. The benefit of such implementation is 

data transfer between classes. The whole data of trajectory is packed into an array and sent 

to tracepanel, so that tracepanel could plot the trajectory easily and efficiently once it is 

available. The other implementation is using the same method as we have done in the 

BallEngine, which requires a thread to handle the data transfer in real time and would 

consume a lot of system resource. 

Toolbox class uses various of static variables to store the constants, such as the width and 

height for MainFrame, panels, and default value for parameters. This is a common practice 

in the industry for large-scale projects when some key values need to be shared across 

different teams. Vect class is the utility class, which provides the function of vectors in 

mathematics. Finally, the App class the initiation class for the whole program, in which the 

main function is defined. Java will start running from this main function.  

4.3 Calculation Algorithm 

The real-time position or the trajectory of pendulum could be obtained by solving the 

equation (26) and (27) in Chapter 3. There are various methods to solve such non-

homogenous second order differential equations. In addition, the equations for this system 
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are time dependent. Generally, such equations could be solved numerically by Finite-

Difference Time-Domain (FDTD) method. In this work, we could use this approach 

through two steps. First, we could use the FDTD method and initial condition to solve the 

trajectory, which is a series of position coordinates, and save this trajectory data. Second, 

the motion of pendulum is displayed by repainting its position based on the trajectory data. 

To achieve this goal, a highly efficient algorithm for the FDTD method is required. This 

will introduce a complicated task and is beyond the scope of this work. Therefore, we will 

use iteration method, the Beeman’s algorithm, which calculates the pendulum position 

according to the current states.  

Beeman’s algorithm [40] is designed for numerically integrating second order ordinary 

differential equations, especially the Newton’s equations. Originally, this algorithm was 

introduced to simulate the molecular dynamics of the system with large number of particles. 

In this work, as we consider all of pendulum and magnets as point mass and source, they 

could be treated as particles and Beeman’s algorithm could be applied here.  

The Beeman’s algorithm is given as the following two equations: 

𝑥ሺ𝑡 ൅ ∆𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൅ 𝑣ሺ𝑡ሻ∆𝑡 ൅
ଵ

଺
൫4𝑎ሺ𝑡ሻ െ 𝑎ሺ𝑡 െ ∆𝑡ሻ൯∆𝑡ଶ ൅ 𝑂ሺ∆𝑡ସሻ   (30) 

𝑣ሺ𝑡 ൅ ∆𝑡ሻ ൌ 𝑣ሺ𝑡ሻ ൅
ଵ

଺
൫2𝑎ሺ𝑡 ൅ ∆𝑡ሻ ൅ 5𝑎ሺ𝑡ሻ െ 𝑎ሺ𝑡 െ ∆𝑡ሻ൯∆𝑡 ൅ 𝑂ሺ∆𝑡ଷሻ (31) 

where t is the present time, Δt is the time step, x(t) is the position at t, v(t) is the velocity at 

t, a(t) is the acceleration at t. 
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4.4 Program User Interface 

  

Figure 4.2 Default user interface 

Figure 4.2 shows the basic user interface of our program. The section on the left is the 

MainPanel and BasinPanel. Three black circles mark the position of three magnets. Each 

magnet is given a color as red, green and blue, which also stands for the final state. The 

color pattern outside three magnets represents the trajectory final state starting from each 

initial position. The white color represents the final state is the center of the panel. 

The section on the right is the ControlPanel, in which the strength coefficient km, the gravity 

coefficient kg and friction coefficient kf are shown. kg and kf could modified, and km is 

fixed to be 1.0 in this work. The “OK” button is used for the new parameters setting. A 

new basin diagram will be calculated when this button is pressed. The “reset” button is 
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used for system status reset during the animation of pendulum, so that one could start a 

new pendulum movement animation from a new initial position. The “Default Setting” 

button is used for reset the system to the initial starting status, while kg is set to be 0.5 and 

kf is 0.05.  

4.5 Some Discussion about Implementation 

The basic framework of this program is implemented through Java Swing packages, by 

which the data is presented in the form of plotting or animations. And the data is obtained 

through some classes that perform computation. There are some main obstacles during the 

implementation of this program are worthy to be mentioned.  

First of all, in the equation to calculate the magnetic force, we introduce a parameter h to 

represent the distance between pendulum and magnets plane. One could benefit this design 

in two aspects. One is that it matches the physical situation in the practice as the pendulum 

could not move in the magnets plane. The other one, which is also more important to 

numerical simulation, is that it overcomes the singular points in the equation. When the 

positions of pendulum are taken as those points closed to the magnets, the magnetic force 

could be really large, which would cause a numerical explosion for the computation. 

Therefore, this value has to be precisely selected. There are two parameters related to the 

magnetic force for positions closed to magnets, the km and h. In this work, we fix km to be 

1.0, so that h is taken as 40 according to our trial tests. Other method could be fixing h and 

adjusting parameter km. Either way could work for the program in order to prevent the 

numerical explosion of magnetic forces.  
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Secondly, the movement of pendulum is implemented through a thread painting a picture 

of pendulum with an updated position. It has been proven that in order to achieve the 

animation for human’s eye, at least 40 frames (pictures) has to be painted within 1 second. 

In the program of thread, a while loop is employed to paint the picture constantly. In 

addition, a time gap is introduced between two iterations to prevent high CPU consumption. 

According the theory we have mentioned, this time gap should be less than 25 milliseconds. 

It is also worthy to mention that the position of pendulum is updated every 50ms in this 

work. Therefore, herein 15ms is taken for a smooth animation of pendulum. 

Thirdly, the MainPanel, BasinPanel and TracePanel are in the same position according to 

the design requirement of this work, and this is implemented through JLayeredPane from 

Java Swing package. There is a drawback from this implementation that each time the 

repaint() method is called, the program will automatically perform the paint() method of 

every panel class. The computation for the MainPanel and TracePanel are less comparing 

with that of BasinPanel, which could be finished within 1 second, so that they could use 

real-time calculation method. However, for BasinPanel, it will take at least 5 second to 

finish a new calculation, which would delay the display of basin diagram and pendulum 

animation. One potential method to solve this problem is using the buffered image. Herein 

we employed a simple method that storing the calculated result into an array. This array 

will be constructed every time the parameters are changed. If there is no parameter 

changing and only new pendulum animation presenting, the basin diagram will use the data 

from this array, and this could be finished within 1 seconds, which will not introduce any 

delay to other parts of program.  
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So far, we have introduced the design process and detailed information about this program, 

the source code of this program is available in an online repository: 

https://github.com/EntiumZ/Pendulum 
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Chapter 5:  Numerical Calculation and Results 

In Chapter 4, we have finished the design and implementation of our program. Some 

preliminary results could be obtained from this program to show our approach. In addition, 

we will use another numerical simulation method to perform some further investigation on 

the magnetic pendulum system. Finally, we will compare the basin result from our program 

and numerical simulation. 

5.1 Result from the Program 

Figure 5.1 shows an example of the trace of pendulum starting from an initial position 

marked as green. According to our definition, the end point of the trajectory should be the 

green magnet.  

 

Figure 5.1 Example of pendulum movement trajectory 
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Figure 5.2 Updated user interface when parameter is changed, kf = 0.02 

In Figure 5.2 the friction coefficient kf is set to be 0.02. One could observe that comparing 

with Figure 5.1, the basin diagram is more complex and states distribution is in a chaotic 

pattern. However, due the symmetry of final states, the basin diagram is still symmetric. In 

Figure 5.3, a trace of pendulum stating from a green initial position is shown. It could be 

seen that the pendulum behavior is more complicated comparing with Figure 5.1. The 

pendulum is not going to the green magnet directly, but approaching the blue magnet in 

the middle. However, according to our expectation, the pendulum still ends at the green 
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magnet. So, the regardless of the process in the middle, which could be very complicated, 

the final state could be known at the beginning.  

 

Figure 5.3 Pendulum trajectory after parameter change 

5.2 Magnetic Pendulum Study by Numerical Simulation 

It has been shown that the formula for the magnetic pendulum system is second order non-

homogeneous differential equations. Finding the analytical solution for these equations is 

a complicated task. In this work, we will employ the commercial simulation software 

Mathematica to find the solution numerically [41]. Mathematica has different built-in 

commands for such equations with initial conditions. The mainly employed functions are 

NDSolve for the numerical solution and ParametricPlot for the results plotting. While most 

of the input format and standard have been pre-determined by Mathematica, there would 
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not be too much innovation or creation for this process, the code used in this work is mostly 

inspired by the work mentioned in the Reference [42], however, with different parameters 

setting. So, the code in this work will be omitted, and detailed example code for reference 

could be found online [42].  

For numerical calculation, the km is set to be 1, kg is taken as 0.5 and kf is taken as 0.1. The 

initial condition x0 and y0 are starting position for the pendulum and initial velocity of 

pendulum is taken as 0. Time range t in the NDSolve is set to be 100 at maximum. With 

these parameters setting, Mathematica could solve the position of pendulum (x(t), y(t)) 

from start to the maximum time step. The solutions are 2 vectors, that one is for x and the 

other is for y. Herein we will mention each solution as a trajectory as it is in the other 

literatures. Figure 5.4 shows 4 trajectories with the starting position setting as the points of 

interest as mentioned above. It could be seen that trajectories appear to be four steady points, 

which shows that the pendulum starting from these points with 0 initial velocity will stay 

at the original points firmly. This matches our analysis from the potential field, that these 

points are local minimum potential points. Therefore, these 4 points of interest are the fixed 

points for the system. Pendulum’s status with these points as the starting point will not be 

changed. As the fixed points have been determined, it is also worthy to check if these points 

are source, sink or saddle, which will be our next discussion. Herein we define a color 

representation for the trajectories based on the final equilibrium position in all of the phase 

plot within this work. The red color presents all the trajectories ending at point (4, 6). The 

green color is for the point (2.27, 3), the blue color is for the point (5,73, 3) and the black 

color presents the point (4, 4).  
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Figure 5.4: Trajectories plot of fixed points 

In order to evaluate the property of a fixed point, the neighboring regions around these 

points should be checked. Herein we used the same method as above by setting the starting 

points as the ones around the fixed point (4,4) and checking the final position. The Figure 

5.5 shows the boundary of area for the pendulum to move back to the fixed point (4, 4), 

which means the pendulum with any points within the area as the starting position will 

move back to the fixed point marked as the solid black square. Therefore, this fixed point 

is a sink or attracting fixed point. The epsilon neighborhood could be calculated by the 

shortest distance from the fixed point to the boundary, which is 0.52 (a.u.). 
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Figure 5.5: Boundary of epsilon neighborhood for fixed point (4.0, 4.0) 

The same method could be employed for the other three fixed points. The boundary for 

them are shown in Figure 5.6. Therefore, all of these fixed points are sinks or attracting 

fixed points. The red, green and blue solid cycles marked the position of fixed points (4, 

6), (2.27, 3) and (5.73, 3), respectively. And the epsilon neighborhood for them are 0.4(a.u.), 

0.405(a.u.) and 0.405(a.u.), respectively.  
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Figure 5.6: Boundary of epsilon neighborhood for fixed points (4.0, 6.0), (2.27, 3) and 
(5.73, 3) 

Now let’s investigate some other points that are far away from the sinks. The figures below 

show the pendulum trajectories from 4 different starting points (marked as stars). And the 

starting positions are (0.5, 4.03) for the black line, (0.5, 4) for the red line, (0.5, 3.99) for 

the green line, and (0.5, 4.05) for the blue line. The color of lines also indicates the final 

equilibrium position of the pendulum as we have mentioned above. From each single 

trajectory, one could observe that the pendulum could approach or even pass the multiple 

equilibrium positions, however, it will settle down to only one position. This does not 

comply with the analysis we have made based on the potential field, and could be attributed 

to the introduction of friction. In addition, from each single trajectory, it is not easy to 

define any type of curve or determine any behavior of the chaotic system. On the other 
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hand, by putting all of them together in Figure 5.8, it is very clear that the final resting 

position is highly sensitive to the initial conditions.  

  

(a): Trajectory for staring position (0.5, 
4.03), marked by black star 

(b): Trajectory for staring position (0.5, 
4.031), marked by red star 

 

(c): Trajectory for staring position (0.5, 
4.034), marked by green star 

(d): Trajectory for staring position (0.5, 
4.033), marked by blue star 

Figure 5.7: Individual plot of trajectories for different starting positions 
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Figure 5.8: Combination plot of trajectories for different positions 

So far, it has been shown that the pendulum behavior is sensitive to the initial position. In 

addition, the final status of pendulum is not a single one but a set, or a collection of 

positions. These features are all indicate that the system is a chaotic system. However, more 

investigations should be made to determine the properties of the system, especially on each 

trajectory. 

5.3 Analysis on Single Trajectory 

Regarding the trajectory starting from the position (0.5, 4.03), an oscillation on the phase 

x and y could be observed from Figure 5.9, if they are plotted as time series. This could be 

attributed to the forces acting on the pendulum, as these forces are always pointing to the 

center and each magnet, which are also the sinks. Hence, the pendulum could not escape 
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far away from these sinks and will always move towards them potentially. Figure 5.10 

shows the autocorrelation and partial autocorrelation calculation on the phase x and y. 

These plots suggest there are a moving average and auto regression properties within the 

data, according to the basic time series concepts.  

 

Figure 5.9: Evolution of phase x and y versus time steps 
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(a): Autocorrelation plot for phase X (b): Partial autocorrelation plot for phase 
X 

 

(c): Autocorrelation plot for phase Y (d): Partial autocorrelation plot for phase 
Y 

Figure 5.10: Autocorrelation and partial autocorrelation of phase X and Y 

It is worthy to mention that these calculations are performed on the raw data of x and y 

without reducing any seasonality or trend. In order to reduce the trend of original phase 

data, we could create a new time series from x(t) - x(t-1). On the other hand, according to 

the physics meaning of x, the position of pendulum, the difference computation on that just 

equals the pendulum velocity. Furtherly, computation of difference on velocity could give 
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us the acceleration. Both of velocity (v) and acceleration (a) could easily obtained from 

numerical simulation. Figure 5.11 and 5.13 show the velocity and acceleration of pendulum 

for phase x and y, respectively. The autocorrelation and partial autocorrelation are also 

shown.  

 

Figure 5.11: Evolution of phase Vx and Vy versus time 
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(a): Autocorrelation plot for phase Vx (b): Partial autocorrelation plot for phase 
Vx 

 

(c): Autocorrelation plot for phase Vy (d): Partial autocorrelation plot for phase 
Vy 

Figure 5.12: Autocorrelation and partial autocorrelation of phase Vx and Vy 
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Figure 5.13: Evolution of phase ax and ay versus time 

 

(a): Autocorrelation plot for phase ay (b): Partial autocorrelation plot for phase 
ay 
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(c): Autocorrelation plot for phase ay (d): Partial autocorrelation plot for phase 
ay 

Figure 5.14: Autocorrelation and partial autocorrelation of phase ax and ay 

From these plots, we could find that there are strong autocorrelations in each phases of 

pendulum. And the reason of this could be implemented in several points. Firstly, the 

acceleration of pendulum depends on its position of each time step. This could be 

understood from the differential equation mentioned in Chapter 3. Secondly, this 

acceleration determines the variation quantity of velocity. The initial velocity of pendulum 

is set to be 0. So, velocities thereafter fully depend on its value of previous time step and 

the acceleration. Thirdly, the velocity, which is also the variation amount of position, 

determines the next pendulum position. When the pendulum moves to a new position, this 

cycle of relationship will start again. It is also worthy to mention that, as one of force caused 

by the friction, which relates to the velocity, there should also be some cross correlation 

between the velocity and acceleration. This could be confirmed by the correlation 

calculation between them. For instance, the correlations are between vx and ax, and for vy 

and ay are -0.2628 and 0.1795, respectively. 
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Another power tool of evaluating such behavior is the power spectrum. As is has been 

mentioned, a chaotic motion usually comes with a broad band power spectrum. This is also 

the case for the pendulum in our system. The Figure 5.15 and 5.16 shows the power 

spectrum plot for phase x and y. It could be seen that motion of pendulum mainly consists 

of direct and low frequency components. In addition, the spectrum appears to be really 

broad, which matches our expectation. Both of the spectrum of x and y confirms that there 

is a chaos motion of pendulum in the two directions.     

 

Figure 5.15: Power spectrum density of phase X 
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Figure 5.16: Power spectrum density of phase Y 

So far, we have studied the properties of one trajectory, which is the one starting from (0.5, 

4.03) and ending to the center of simulation plane (4.0, 4.0). In order to fully check the 

properties of the system, at least a second trajectory needs to be investigated. Herein we 

take the trajectory starting from (0.5, 4.033). This trajectory finally converges to the blue 

magnet (5.73, 3.0), which is also shown in the Figure 5.8 as the blue lines. The plots of 

phase x and y versus the time are shown in the Figure 5.17.  
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Figure 5.17: Evolution of phase x and y for blue trajectory, starting from (0.5, 4.033) 

Different from the trajectory of (0.5, 4.03), this one does not show strong oscillation with 

periodicity within the evolution of phases. There is only some weak periodicity in the first 

half part of the time series. With the motion evolving, especially after the 30th time step, 

the pendulum becomes in the small vibration around the equilibrium position. This 

behavior could be attributed to the difference in final equilibrium positions. After the 30th 

time step, the pendulum is in low speed and comes into the near field of blue magnets. 

While the equilibrium position for this trajectory is one of the magnets, so the forces from 

the other two magnets are most likely to be counterbalanced. The pendulum will suffer a 

large magnetic force from the blue magnet, and a relatively small gravity force that behaves 

as a perturbation. Hence the vibration is formed. In the case of trajectory (0.5, 4.03), the 

final equilibrium position is the center of the plane. The pendulum suffers a really small 
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gravity force and a relatively large magnetic forces from all of the three magnets. Hence 

the pendulum is in a noticeable periodic reciprocate motion around the equilibrium position. 

In Figure 5.18, the autocorrelation and partial autocorrelation of phase x and y are also 

studied. Similar to the trajectory of (0.5, 4.03), time series of the trajectory of (0.5, 4.033) 

also shows strong moving average and auto regression properties, which meets our 

expectation again.  

 

(a): Autocorrelation plot for phase X (b): Partial autocorrelation plot for phase 
X 

 

(c): Autocorrelation plot for phase Y (d): Partial autocorrelation plot for phase 
Y 
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Figure 5.18: Autocorrelation and partial autocorrelation for phase X and Y 

The Figure 5.19 and 5.20 show the power spectrum of trajectory (0.5, 4.033). Its property 

is also quite similar to the previous one. There are also strong direct and low frequency 

component. And the spectrum widely distributed across the whole frequency range.  

 

Figure 5.19: Power spectrum density of phase X 
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Figure 5.20: Power spectrum density of phase Y 

So far, we have investigated the relation between position, velocity and acceleration. All 

these studies are performed in two separate dimensions, i.e. in the x and y directions only. 

From the motion equation of pendulum, we could notice that the force, even for one 

dimension, is determined by both position x and y. The table below summarizes 4 

trajectories and the correlation coefficients between x and y.  

Table 1: Summary of 4 different trajectories 

Index Trajectory Start Position Equilibrium Position Color 

1 (0.5, 4.03) (4.0, 4.0) Black 

2 (0.5, 4.031) (4.0, 6.0) Red 

3 (0.5, 4.033) (5.73, 3.0) Blue 
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4 (0.5, 4.034) (2.27, 3.0) Green 

 

We have studied several pendulum trajectories individually to show the existence of chaos. 

In order to numerically describe this chaos, the Lyapunov exponent is usually employed. 

Herein we will also use this method for the pendulum system. It is worthy to mention that 

we will use the norm of separation between different trajectories alternatively to 

extrapolate the Lyapunov exponent in this work. This is because the Lyapunov exponent, 

according to its definition, is the separation when time tends to infinity, which is very 

difficult in this work as we are using the numerical simulation method, and time is finite. 

Figure 5.21 shows the plots of Norm of separation between the black trajectory and the 

other red, green and blue trajectories, and the black trajectory is the reference.  

 

Figure 5.21: Trajectory separation, reference trajectory: Black Trajectory 
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The starting positions we chosen here are very closed to each other, so, it could be seen 

that the distances between trajectories at the beginning are quite small. With the time 

evolving, the differences between the black trajectory and other three increase 

exponentially. It means that trajectory from two nearby positions, will diverge to different 

separated positions, which indicates that the system is chaotic. The final separations of 

three lines appear to be the same value. This is reasonable, as the distances from final 

positions of red, green and blue trajectory are the same. In this case, we have confirmed 

that the final positions of the three trajectories are different. However, in general, one might 

deduce a wrong conclusion that the final positions are the same. Therefore, the such method 

is powerful to determine whether chaos is the system behavior, but it is still quite limited 

to show the final system status, especially when there are multiple equilibrium states. From 

the equation (13), the maximum Lyapunov exponent could be calculated. The values of 

λmax for red, green and blue trajectories are 6.8931, 5.6970 and 5.8951, respectively. As we 

have mentioned in the beginning of the chapter, these positive values confirm the system 

is chaotic. 

Figure 5.22 studied the trajectory separations between the red trajectory and black, green 

and blue ones, and the red one is the reference. It is notable that there are 2 values when 

time reaches maximum. This is quite straightforward as the distances from red magnet to 

the black one or green and blue one is different. And values of max for black, green and 

blue trajectories are 6.8931, 6.4220 and 6.7547, respectively.  
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Figure 5.22: Trajectory separation, reference trajectory: Red Trajectory 

5.4 Basin Analysis 

We have studied the properties of several trajectories and confirm that the system is chaotic. 

However, states distribution in this chaotic system is still not very clear. In addition, in the 

discussion above, we fixed the values of km, kg or kf. Their influences on the system is also 

difficult to be reflected by single or several trajectories analysis. Therefore, it is worthy to 

simulate the final states for the whole plane. This calculation is very time consuming, 

however, it could provide us a better and clearer picture for the behavior of the system.  

In order to reducing the simulation complexity, the maximum time step is still set to be 

100. The starting position of pendulum will be set starting from (0, 0) with a space step 

0.01 in both directions and finally reaches to (8.0, 8.0). So, there will be 641601 trajectories 
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in total. The state of each trajectory will be referred to its final equilibrium position, and 

marked on the starting position of the trajectory. For instance, the mentioned black 

trajectory, which is the one from (0.5, 4.03), its final equilibrium position is (4.0, 4.0). So, 

the position (0.5, 4.03) will be marked as white in the basin plot. The red, green or blue 

colors refer to trajectory equilibrium to red, green or blue magnet, respectively. Regarding 

the influence from different parameters, herein we will fix the km to 1, and change the value 

of kg and kf, in order to simplify the discussion. The basin diagrams from different values 

of kf are shown in the Figure 5.23. The value of kf is decreased from 1.0 to 0.1. kg is taken 

as 0.5.  

 

(a): Basin diagram, kf = 1.0 (b): Basin diagram, kf = 0.9 
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(c): Basin diagram, kf = 0.8 (d): Basin diagram, kf = 0.7 

 

(e): Basin diagram, kf = 0.6 (f): Basin diagram, kf = 0.5 



74 
 

 

(g): Basin diagram, kf = 0.4 (h): Basin diagram, kf = 0.3 

 

(i): Basin diagram, kf = 0.2 (j): Basin diagram, kf = 0.1 

Figure 5.23: Basin diagram for pendulum system for km = 1, kg = 0.5 and different kf 
parameters 

It could be seen that when kf is 1.0, the whole plane consists 4 clear areas for each 

equilibrium position. With the decreasing of kf, those equilibrium area (white area) for the 



75 
 

center position and closed to the plane boarder become divisive. Some equilibrium zone 

for the magnet positions appears. Ultimately, when kf is larger than 0.5, the pattern is very 

orderly. The boundary for each equilibrium area is well determined. The only difference is 

for different kf, the area for each equilibrium position changes, due to the value change 

impact on different force. When kf decreases to 0.4, an interesting phenomenon appears 

that equilibrium zones for other two magnets emerge at the edge of equilibrium area. With 

the further decreasing of kf, these zones become larger, and the equilibrium areas closed to 

plane boarder become divisive. With the further decreasing of kf, the whole plane begins 

to show the chaotic pattern, and finally, when kf is 0.1, the chaos is formed eventually. 

From this investigation, we could observe that the formation of chaos in the system is 

highly related to the parameter kf, which the friction parameter between pendulum and the 

air.  However, a question is easily to be raised that whether the chaos is related to the kf 

only. Hence, we keep the kf as constant 0.2, and changes kg. The result is shown in Figure 

5.24.  
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(a): Basin diagram, kg = 0.5 (b): Basin diagram, kg = 0.2 

Figure 5.24: Basin diagram for pendulum system for km = 1, kf = 0.2 and different kg 
parameters 

From Figure 5.24, one could observe that for the same kf, the system behavior is also related 

to kg parameter. For kg is 0.5, the system begins to show the chaotic behavior. But when kg 

is 0.2, the system only starts to become divisive. And the chaotic behavior is still far away 

according to our experience from previous investigation. It is also interesting to find that 

the equilibrium area for the center position becomes smaller when kg decreases. This is 

reasonable, because when kg decreases, the force from gravity should decrease, and its 

impact on the pendulum is also reduced.  

However, on the other hand, kf is still playing an important role here. When we further 

decrease kf to 0.1 and keep kg as 0.2. A huge difference to the Figure 5.24(b) appears that 

the system becomes quite chaotic, as shown in Figure 5.25(a). In addition, it could be found 

that kf is responsible for splitting the equilibrium zones or areas, as shown in Figure 5.25(b).  
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(a): Basin diagram, kf = 0.1 (b): Basin diagram, kf = 0.06 

Figure 5.25: Basin diagram for pendulum system for km = 1, kg = 0.2 and different kf 
parameters 

From Figure 5.25(a) to Figure 5.25(b), the kf decreases from 0.1 to 0.06, and the chaos 

becomes more series. Taking the area marked by the black arrow in the figures as an 

example, the area is determined as green at the first, but becomes larger and divisive with 

the decreasing of kf. An equilibrium area for another state emerges. Those areas closed to 

the plane board also reflects the same phenomenon. With this rule, in extreme condition, 

when the kf is taken as 0, the system is extremely chaotic, which is shown as Figure 5.26. 

 

Figure 5.26: Basin diagram for pendulum system for km = 1, kg = 0.2, kf = 0 
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From Figure 5.26, we could see that the system is in a total chaotic status, except for the 

areas closed to the magnets positions. It is very difficult to observe any rule or pattern in 

most area of the plane. The information from the system is reduced. It is also worthy to 

mention that the status for each point in the plane is from numerical simulation of limited 

time step. In the practical situation, this result could be different, however, the system will 

still be chaotic. In this simulation, we keep each parameter as constant. In reality, especially 

for kf, it could the function with time or positions, and the situation could be more chaotic.  

From the above discussion, we could see that the chaos of system originally comes from 

the numerical relation between various parameters. The absolute value for individual 

parameter could influent the system, however, the relative difference is the key to trigger 

the chaotic phenomenon. km and kg mainly determine the basic boundary for each 

equilibrium area and kf introduce the level of chaos. Herein a practical and relatively 

accurate method is expected to describe the level of chaos, which will be our work in the 

future. 

5.5 Compare Between Two Method 
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(a): Basin diagram from program, kf = 
0.05, kg = 0.5 

(b): Basin diagram from numerical 
simulation, kf = 0.05, kg = 0.5 

Figure 5.27 Basin diagram from program and numerical simulation 

In Figure 5.27, one could see that the basin diagram from our program and numerical 

simulation, we attribute this to the difference between the algorithm we used and that of 

Mathematica. In addition, in our program, in order to reduce the simulation complexity, 

we reduced the computation precision. This could be another reason for the difference. 

However, our program also shows the same rule of changing as the numerical simulation 

when parameters are changed, which has shown that our program, regardless of precision, 

is self-consistent. In the future work, we will improve our program with other algorithms, 

and refactor some program framework to achieve higher precision. 
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Chapter 6:  Summary and Future Work 

In this work, we started with a brief review of system concepts and chaotic system history, 

which is the main content of Chapter 1. Chaos is the complicated temporal behavior of 

simple systems. According to this definition, chaos is a type of motion, or more generally 

a type of temporal evolution and dynamics. The world around us is full of such phenomena 

that seem irregular and random in both space and time. Exploring the origin of these 

phenomena is usually a hopeless task due to the large number of elements involved; 

therefore, instead of the traditional method, the system, especially the deterministic chaotic 

system, could be studied from its physical properties. Thus, from these properties, one 

could potentially determine the intrinsic states of the system. A relationship between the 

initial condition and final states could be achieved by the tradition iteration method. Once 

this relationship is established, we could perform the predetermination on the system 

through the relationship, which is the key sprit of this work and proposed in Chapter 2, 

after a brief review of traditional method of studying chaotic system. In Chapter 3, we 

introduced the concepts and model our experimental system, the magnetic pendulum 

system. The symbolic system is also established in this chapter. In Chapter 4, we designed 

and implemented a computer program for visualization of pendulum movement in the 

magnetic and gravity field. The friction is also considered. In Chapter 5, in addition to the 

results from our program, we used another numerical simulation method to investigate the 

magnetic pendulum system. From the basin diagram of our program and that of numerical 

simulation, we have proved that the state distribution could be used as the relationship of 

initial conditions and final states. One could predetermine the final state of any initial 

positions in the system without considering the possible complicated middle process. In 
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addition, from our study, we build the links between the basin diagram and system 

parameters. Those parameters related to the final states, such as km and kg, would change 

the effect area of each fixed points, while the parameter related to the middle process would 

have a large impact on the state distribution.  

For future work, we would keep improving our algorithm and program framework, so that 

a more precise basin diagram could be achieved. So far, in our work, we only support 3 

magnets. In later work, we will improve our program to support multiple magnets. In 

addition, which is also more important, we will employ other chaotic systems to validate 

our preliminary approach. It is also expected that our approach could be used on data 

coming from real world, such as stock markets. Due the huge quantity of data, some new 

technology, such as methods from data science, is also necessary in the future.  
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