
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EFFECTS OF STATE AND ACTION ABSTRACTION ON DEVELOPMENT OF

CONTROLLERS FOR CONCURRENT, INTERFERING, NON-EPISODIC TASKS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

BRENT E. ESKRIDGE
Norman, Oklahoma

2009

EFFECTS OF STATE AND ACTION ABSTRACTION ON DEVELOPMENT OF
CONTROLLERS FOR CONCURRENT, INTERFERING, NON-EPISODIC TASKS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Dean F. Hougen, Chair

Dr. John K. Antonio

Dr. Sesh Commuri

Dr. Andrew H. Fagg

Dr. Amy McGovern

© Copyright by BRENT E. ESKRIDGE 2009
All Rights Reserved.

For Maya, Connor, and Noah

Acknowledgements

Words do not adequately describe how grateful I am to my family for their support and

understanding throughout this entire journey. My wife, Maya, has had to endure all those

nights when I came home from work only to retreat to the office to perform research.

Without her strength, I would have never survived. Although my sons Connor and Noah

are too young to understand what was happening, their simple smiles and laughs reminded

me why I was doing this and gave me the strength to continue. I can’t wait to spend this

summer actually playing with you and not working every minute of the day.

I am also thankful for all that parents have done to help. From the kind words of support

to the more tangible expressions of support, you have been there every step of the way and

never doubted me. Thanks for all your help to me and my family. Thanks also go to my

sister, Teri, and her family, Mark, Anderson, and Jackson. I appreciate all you have done

over the years from the small to the big.

I am immensely grateful to my advisor Dean Hougen. His support and confidence in

me has made me into a better computer scientist. Thank you for your willingness to give

me freedom to pursue my own interests and the guidance which helped me turn dead-ends

into opportunities. I also appreciate your flexibility in working with my hectic work sched-

ule and “distance” learning. Beyond research, I thank you for your friendship. Without

the times of laughing about reviewers or students, I’m sure I would have lost all of my

remaining sanity.

I also wish to thank Amy McGovern for her insights and assistance both inside the

classroom and beyond. I have valued all our discussions. I have no doubt that Nathaniel is

in good hands. I’m also grateful to Andy Fagg for his help and guidance. Your attention to

detail has instilled a healthy fear in me regarding the use of statistics in my results. Thanks

iv

also go to the remaining members of my committee, Sesh Commuri and John Antonio. I

appreciate your willingness to contribute to my research even though this area isn’t your

specialty.

I am also grateful to the members of the Robotics, Evolution, Adaptation and Learning

Laboratory for their support and insightful comments: Mark Woehrer, Pedro Diaz-Gomez,

Jason Black, and Gerardo Gonzalez. While I may not have been in the lab as much as I

would have liked, I appreciate all the opportunities I had to work with you. Since I will be

remaining close by, I sincerely hope we can continue to collaborate.

None of my work would have been possible were it not for the support and understand-

ing of my colleagues at Southern Nazarene University. The faculty and administration

supported my every effort, be it coursework or research. I am grateful for all you have

done. Special thanks go to Jim Tabers and Gwen Rodgers who helped pick up my slack

and Dwight Neuenschwander who always offered a motivational word. Thanks also go to

all my students for your understanding of my hectic schedule and forgetting to grade your

homework (although in some cases that wasn’t a bad thing).

Some of the computing for this project was performed at the OU Supercomputing Cen-

ter for Education & Research (OSCER) at the University of Oklahoma.

v

Table of Contents

Acknowledgements iv

List of Tables ix

List of Figures xi

Abstract xii

1 Introduction 1
1.1 Research Motivation and Summary . 4
1.2 Contributions . 6
1.3 Organization of Thesis . 8

2 Related Work 10
2.1 Behavior-Based Robotics . 10
2.2 Fuzzy Logic . 13
2.3 Reinforcement Learning . 15

2.3.1 Hierarchical Reinforcement Learning 17
2.3.2 Modular Reinforcement Learning 19
2.3.3 Transfer Learning . 21

2.4 Evolutionary Computation . 22

3 Adaptive Fuzzy Behavior Hierarchies 24
3.1 Fuzzy Control . 25
3.2 Adaptive Fuzzy Behavior Hierarchies . 35
3.3 Extending Adaptive Fuzzy Behavior Hierarchies 40
3.4 Creating Agents Using Adaptive Fuzzy Behavior Hierarchies 44

4 Navigation Problem Domains 46
4.1 Single Agent Problem Domains . 48
4.2 Multi-Agent Problem Domains . 50
4.3 Primitive Task State Information . 55

5 Development of Controllers 57
5.1 Composite Reinforcement Learning . 58
5.2 Grammatical Evolution . 62

vi

6 Implementation and Evaluation 71
6.1 Evaluation Environments . 72
6.2 State Space Abstraction . 75
6.3 Reward Functions . 77
6.4 Reinforcement Learning Configuration . 81
6.5 Grammatical Evolution Configuration . 83

7 Results and Discussion 85
7.1 Developing Primitive Task Controllers . 86
7.2 Developing Single-Agent, Composite Task Controllers 92

7.2.1 Reinforcement Learning . 92
7.2.2 Grammatical Evolution . 94

7.3 Developing Multi-Agent, Composite Task Controllers 97
7.3.1 Reinforcement Learning . 97
7.3.2 Grammatical Evolution . 104

7.4 Analysis and Discussion . 106
7.4.1 State and Action Abstraction . 107
7.4.2 Behavior Modulation Extension 109
7.4.3 Behavior Reuse . 109
7.4.4 Performance of Controllers Using the Small Abstraction Level . . . 110
7.4.5 Performance of Modular Reinforcement Learning 116
7.4.6 Command Fusion Issues . 116
7.4.7 Development of Desired Behavior 117
7.4.8 Use of Grammatical Evolution . 117

8 Conclusions and Future Work 119
8.1 Conclusions . 119
8.2 Future Work . 121

Bibliography 123

A State-Action Spaces 131

B Evaluation Environment Parameters 133

C Statistical Results 137
C.1 Student’s Paired T-Test Results . 137
C.2 Randomized Two-Way ANOVA Results 147

D Sample Policies 155

E Fuzzy Membership Functions 159

vii

List of Tables

4.1 Primitive task state information . 56

6.1 State abstraction levels for GOALSEEK . 75
6.2 Primitive task reward functions . 77
6.3 Task performance expectations . 81
6.4 Reinforcement learning parameters . 81
6.5 Grammatical evolution parameters . 84

A.1 Action space size comparisons for composite behaviors 131
A.2 State space sizes for primitive task problem domains 131
A.3 State space size comparison for problem domains 132

B.1 COLLISIONAVOIDANCE environment parameters 133
B.2 GOALSEEK environment parameters . 133
B.3 RUNAWAY environment parameters . 134
B.4 CA-GS environment parameters . 134
B.5 CA-GS-RA environment parameters . 135
B.6 FLOCKING environment parameters . 135
B.7 FLOCKING-CA environment parameters 135
B.8 FLOCKING-CA-GS environment parameters 136
B.9 FLOCKING-CA-GS-RA environment parameters 136

C.1 CA-GS 2D t-test results for reinforcement learning 138
C.2 CA-GS 3D t-test results for reinforcement learning 139
C.3 CA-GS-RA 2D t-test results for reinforcement learning 140
C.4 CA-GS-RA 3D t-test results for reinforcement learning 141
C.5 CA-GS-RA 2D and 3D t-test results for grammatical evolution 142
C.6 FLOCKING 2D t-test results for reinforcement learning 142
C.7 FLOCKING 2D t-test results for grammatical evolution 143
C.8 FLOCKING-CA 2D t-test results for reinforcement learning 143
C.9 FLOCKING-CA 2D t-test results for grammatical evolution 144
C.10 FLOCKING-CA-GS 2D t-test results for reinforcement learning 145
C.11 FLOCKING-CA-GS 2D t-test results for grammatical evolution 146
C.12 FLOCKING-CA-GS-RA 2D t-test results for reinforcement learning 146
C.13 CA-GS 2D ANOVA results for reinforcement learning 147
C.14 CA-GS 3D ANOVA results for reinforcement learning 148
C.15 CA-GS-RA 2D ANOVA results for reinforcement learning 149
C.16 CA-GS-RA 3D ANOVA results for reinforcement learning 150
C.17 CA-GS-RA 2D and 3D ANOVA results for grammatical evolution 151

viii

C.18 FLOCKING 2D ANOVA results for reinforcement learning 151
C.19 FLOCKING-CA 2D ANOVA results for reinforcement learning 152
C.20 FLOCKING-CA-GS 2D ANOVA results for reinforcement learning 153
C.21 FLOCKING-CA-GS-RA 2D ANOVA results for reinforcement learning . . 154

D.1 Sample policy for COLLISIONAVOIDANCE 156
D.2 Sample policy for CA-GS . 157
D.3 Sample policy for FLOCKING-CA . 158

ix

List of Figures

2.1 Classes of behavior coordination mechanisms 11

3.1 Sample crisp variables . 25
3.2 Crisp control surface . 25
3.3 Sample linguistic variables . 26
3.4 Fuzzy control surface . 26
3.5 Larsen implication operator . 29
3.6 Sample fuzzy rules . 32
3.7 Simple defuzzification . 33
3.8 Center-of-Sums defuzzification . 33
3.9 Hierarchical decomposition of behavior 35
3.10 Sample three-level hierarchy . 40
3.11 Comparison of modulation effects on primitive behaviors 40
3.12 Comparison of DOA calculation . 41
3.13 Generic agent architecture using a behavior hierarchy 45

4.1 CA-GS behavior hierarchy . 48
4.2 CA-GS-RA behavior hierarchy . 49
4.3 FLOCKING behavior hierarchy . 50
4.4 FLOCKING-CA behavior hierarchies . 51
4.5 FLOCKING-CA-GS behavior hierarchies 53
4.6 FLOCKING-CA-GS-RA behavior hierarchies 54

5.1 Comparison of the reinforcement learning algorithms used 59
5.2 Sample genetic programming solution . 62
5.3 Sample grammatical evolution grammar 65
5.4 Sample grammatical evolution replacement process 66
5.5 Sample CA-GS production rules . 69

6.1 Sample CA-GS-RA environment . 73
6.2 Differences between state abstraction grammars 78

7.1 COLLISIONAVOIDANCE reinforcement learning results 87
7.2 GOALSEEK reinforcement learning results 88
7.3 RUNAWAY reinforcement learning results 89
7.4 CA-GS reinforcement learning results . 91
7.5 CA-GS-RA reinforcement learning results 93
7.6 CA-GS grammatical evolution results . 95
7.7 CA-GS-RA grammatical evolution results 96

x

7.8 FLOCKING reinforcement learning results 98
7.9 FLOCKING-CA reinforcement learning results 99
7.10 FLOCKING-CA-GS reinforcement learning results 101
7.11 FLOCKING-CA-GS extension reinforcement learning results 102
7.12 FLOCKING-CA-GS-RA reinforcement learning results 103
7.13 FLOCKING grammatical evolution results 104
7.14 FLOCKING-CA grammatical evolution results 105
7.15 FLOCKING-CA-GS grammatical evolution results 106
7.16 CA-GS reinforcement learning results for all runs 111
7.17 Comparison of Small abstractions for CA-GS 112
7.18 Comparison of Small abstractions for CA-GS-RA 113
7.19 Comparison of Small abstractions for FLOCKING-CA-GS 114
7.20 Comparison of Small abstractions for FLOCKING-CA-GS-RA 114
7.21 CA-GS-RA reinforcement learning results for all runs using a modified

Small abstraction level . 115

E.1 Behavior DOA linguistic variable . 159
E.2 Direction delta linguistic variable . 159
E.3 Phi direction delta linguistic variable . 160
E.4 Phi direction error delta linguistic variable 160
E.5 Phi direction error linguistic variable . 160
E.6 Phi direction linguistic variable . 161
E.7 Theta direction delta linguistic variable . 161
E.8 Theta direction delta error linguistic variable 161
E.9 Theta direction error linguistic variable . 162
E.10 Theta direction linguistic variable . 162
E.11 Distance linguistic variable . 162
E.12 Priority linguistic variable . 163
E.13 Speed difference linguistic variable . 163
E.14 Strength linguistic variable . 163
E.15 Steering pitch linguistic variable . 164
E.16 Steering speed linguistic variable . 164
E.17 Steering yaw linguistic variable . 164

xi

Abstract

The development of controllers for autonomous intelligent agents given a simple task is

relatively straightforward and basic techniques can be used to develop such controllers.

However, as agents are given more than one task, using basic techniques for developing ef-

fective controllers quickly becomes impractical. State and action abstraction are frequently

used to counter this explosion of complexity and to make the development of effective

controllers for complex problems practical. Unfortunately, most of the work in the litera-

ture has focused on complex tasks comprised of sequences of simpler tasks and the more

complex tasks comprised of many concurrent, interfering, and non-episodic (CINE) tasks

have received little attention. As a result, this dissertation seeks to address this deficiency

by providing the first known empirical investigation into the effects of each of these types

of abstraction on CINE tasks. The results of this investigation demonstrate that for the

single-agent and multi-agent problem domains used, abstraction of the controller’s actions

provides more benefits in the development and performance of effective controllers than

abstraction of the agent’s state.

Since there is a lack of work focusing on complex CINE tasks, advances in the imple-

mentation and development of controllers capable of addressing such tasks were required.

First, we demonstrate that the adaptive fuzzy behavior hierarchy control architecture used

in this dissertation has issues when scaled to hierarchies of more than two levels. To ad-

dress these issues, we introduce a modification to the architecture’s implementation that

significantly improves the performance of controllers using the same behavior hierarchy.

Second, we demonstrate that one of the few known reinforcement learning approaches

specifically designed to handle complex CINE tasks is unable to converge to an effective

policy for the tasks used here. As a result, we introduce a new reinforcement learning ap-

xii

proach that leverages the hierarchical implementation of the controller which is capable of

providing statistically significantly better performance in significantly fewer learning ex-

periences. Next, we demonstrate that controllers using adaptive fuzzy behavior hierarchies

are able to reuse, without modification, controllers developed for simple tasks in hierar-

chical controllers developed for a more complex task. Lastly, we demonstrate that since

adaptive fuzzy behavior hierarchies effectively use action abstraction, the agent’s state can

be significantly abstracted in the higher levels of the controller using adaptive priorities

which reflect the applicability of lower level behaviors to the agent’s current state.

xiii

CHAPTER 1

Introduction

The development of controllers for intelligent agents given a simple task is relatively

straightforward and even basic techniques can be used to develop such controllers. How-

ever, as agents are given more than one task, using basic techniques for developing effec-

tive controllers quickly becomes impractical. Since each task may require distinct state

information local to that task only, the resulting state space for the agent overall is simply

too large to effectively cover. Furthermore, since each task places different demands on

the agent, an effective controller must find the correct balance to achieve the overall task.

While each of these difficulties present significant problems individually, their combination

can make the development of agent controllers for these complex tasks impractical.

The potential avenues of investigation for such a problem are vast and the literature

on the subject covers the spectrum of algorithms and perspectives. This dissertation’s fo-

cus is on complex, or composite, tasks that are the result of a combination of, in general,

Concurrent, Interfering, and Non-Episodic (CINE) simple, or primitive, tasks. An ex-

ample of a such a primitive task is that of collision avoidance. This area has received

comparatively little attention and is, for reasons discussed below, potentially one of the

more difficult areas of focus. In contrast, many approaches focus on complex tasks that are

composed of a series of sequential, simple tasks.

Each of the attributes of CINE primitive tasks presents unique challenges that make

many of the more common approaches inapplicable. If the primitive tasks were not active

concurrently, then a controller could simply focus on the currently active task. However,

since the tasks are active concurrently, a controller must take actions that balance the needs

1

of each of the active tasks. An example of concurrent primitive tasks would be giving a

robot the composite task of navigating to a goal location while avoiding moving obsta-

cles in its path where goal seek and collision avoidance are primitive tasks. In contrast,

an example of sequential primitive tasks would be to navigate to goal location 1 and then

navigate to goal location 2. If the actions taken for primitive tasks did not interfere with

one another, then the controller could simply take the action that produces the best result

for each primitive task. However, since the actions that are best for individual primitive

tasks do, in general, interfere with one another, the controller must take the action that best

accomplishes the composite task, even if it is at the expense of an individual primitive task.

Continuing with the previous example, the goal seek task might be best addressed by steer-

ing straight ahead, but since an obstacle is in the way, the collision avoidance task would

be best addressed by steering to the left. Lastly, if the primitive tasks were episodic and

had termination criteria, a controller could use temporal abstraction to combine a sequence

of actions into a single meta-action that accomplishes a task. However, since the primitive

tasks are, in general, non-episodic, temporal abstraction cannot be applied.1 In the pre-

vious example, the goal seek task is episodic since the task is completed once the robot

reaches the goal. However, the collision avoidance task is non-episodic since it is always

active and, regardless of the other tasks the robot may have, it is always desirable to avoid

collisions.

These challenges, in addition to the complexity of the state and action spaces, must be

addressed for the development of effective controllers for combinations of CINE tasks to

be practical. Due to the variety of challenges, it is possible that a number of techniques

must be combined to find an acceptable solution. While temporal abstraction is not useful

for CINE tasks, there are other abstraction approaches that can be used. State abstraction is

a common technique used to simplify the state space used by the agent controller. Abstrac-

tion of the action space can also be performed in a manner similar to that found in temporal

1However, Huber describes a system where it can be argued that temporal abstraction can be applied to a
non-episodic behavior [34].

2

abstraction. However, at some point, the controller must have access to unabstracted states

and actions in order to take the most appropriate action. For example, a controller cannot

simply use the magnitude of the direction to the goal location and be expected to effectively

navigate towards the goal.

One approach that promotes the use of state and action abstraction while still allowing

access to the unabstracted states and actions is the use of a hierarchical controller. A hier-

archical controller leverages the hierarchical nature of the composite task by using smaller

controllers responsible for each primitive task in the lowest level of the hierarchical con-

troller and meta-controllers in the higher levels of the hierarchical controller to coordinate

the lower-level controllers. Since low-level controllers are only responsible for a single

primitive task, they do not need access to the full state space of the composite task, thus

avoiding the combinatorial complexity of the composite task’s state space. Furthermore,

high-level meta-controllers are able to use state and action abstraction to simplify the state

space since they merely coordinate the lower-level controllers that produce control actions

instead of producing control actions themselves.

While various combinations of these approaches can be found in the literature, we have

been unable to find a systematic, empirical evaluation and comparison of the effects of

state and action abstraction on the practicality of the ability to develop controllers for these

tasks and on the resulting performance. The work presented in this dissertation attempts to

address this deficiency by asking the following experimental questions:

Given a composite task in which the subtasks are, in general, concurrent,
interfering, and non-episodic (CINE),

1. what are the effects of abstracting state information on the perfor-
mance and development rate of controllers, and

2. what are the effects of abstracting actions on the performance and
development rate of controllers?

The evidence gained by attempting to answer this question provides a number of significant

3

benefits. First, it can provide valuable insight for controller developers into how much

abstraction is appropriate for a particular situation. For example, in one situation, a minor

loss in performance may be acceptable if the effort in developing an effective controller

is significantly reduced, while, in another situation, such a loss in performance could be

unacceptable no matter what the additional benefits were. Another benefit is that these

results can inform controller developers as to which approach, state or action abstraction,

offers the most potential in a particular situation. Lastly, these results can provide deeper

understanding into whether the effects of state and action abstraction are a function of the

number of primitive tasks.

1.1 Research Motivation and Summary

The research presented in this dissertation was motivated by a need to make practical the

development of autonomous agent controllers used in complex, composite tasks. To narrow

the focus, we concentrated on composite tasks comprised of multiple CINE primitive tasks.

This research attempted to gain insight into the effects of state and action abstraction on

the performance and development of such controllers. To minimize the number of possible

sources that can affect performance, the focus was further narrowed to tasks that only

require reactive behaviors and do not need planning. If planning were required, it is quite

likely that the planner would affect performance and could potentially do so differently

based on the state and action abstractions used. Although other work may not choose to

be as restrictive in their definition of a purely reactive architecture, we use a definition

that specifically excludes planning and memory to prevent conflating the many variables

that they introduce [56]. Furthermore, we do not provide an a priori prioritization of the

primitive tasks as this would simplify the control process and we are interested in problem

domains that are as complex as possible.

While changes in performance can be easily measured, the relative rates and difficulties

in developing such controllers is not so easily quantifiable. As a result, we used two differ-

4

ent approaches for automatically developing controllers and use the computational effort

required to produce effective controllers as a basis of comparison. While the parameters,

environments, and reward structures used could have been tailored for each approach to

bias development of the desired behaviors, we chose not to implement any such bias in

order to isolate the effects of state and action abstraction.

Although there are a number of potential approaches to gaining insight into these ef-

fects, we chose to focus on a single approach and used it to perform an in-depth analysis.

In this work, we evaluated the effects of state and action abstraction on an adaptive fuzzy

behavior control architecture proposed by Tunstel [93]. It was designed to handle CINE

tasks such as the ones used in this dissertation. Furthermore, it allowed us to evaluate

the effects of state and action abstraction on controllers that reused previously developed

sub-controllers since such an ability is particularly desirable in developing controllers for

CINE tasks. Note that since we start from a set of primitive tasks which we combine into

a composite task, we do not need to find a functional decomposition of the composite task

as we would need to do if we instead started with the composite task itself [6].

A fundamental component of Tunstel’s architecture is the use of fuzzy logic for con-

trol [20]. Fuzzy control gives the controller the ability to view the state and action space

of the agent as discretized while retaining the continuous nature of the values. As a re-

sult, fuzzy control offers the improved and smooth control actions found in continuous

controllers with the comparatively less complicated implementation found in discrete con-

trollers. In light of these benefits and Tunstel’s extensive use of fuzzy control, all the

controllers used in this work to evaluate the effects of state and action abstraction use fuzzy

control in their implementation. However, controllers developed for comparison purposes,

which use approaches other than Tunstel’s, do not use fuzzy logic.

5

1.2 Contributions

The work presented in this dissertation contains a number of contributions to the fields

machine learning and agent control. As in any work, some of the contributions are minor

and provide a foundation and motivation for the more significant contributions. Without

these minor contributions, the need for and direction of the resulting major contributions

might never be realized. Therefore, we detail both types of contributions with the hope that

they may provide the launching point for further contributions.

Some of the major contributions of this work are:

• To address the two-level hierarchy limitation in adaptive fuzzy behavior hierarchies

(discussed below), we developed an extension that allows for the use of hierarchies

with an arbitrary number of levels. Furthermore, we demonstrate that the resulting hi-

erarchies have significantly higher performance and are developed significantly faster

than hierarchies without this extension.

• To push state abstraction to its limits, we developed an approach in which the en-

tire state local to a primitive task is abstracted into a single variable, referred to as

a adaptive, dynamic priority. The value reflects the current priority of the primi-

tive task given information local only to the primitive task. This adaptive, dynamic

priority is then used by the higher-level meta-controllers to control the lower-level

sub-controllers [23, 24].

• As is discussed in Section 2.3, there is a lack of reinforcement learning approaches

that are tailored to problem domains using CINE tasks. Furthermore, the few ap-

proaches that are applicable to CINE tasks are not able to produce effective polices

for the problem domains used here. In response, we developed a reinforcement learn-

ing approach, called composite reinforcement learning, which leverages the adaptive

behavior hierarchy architecture to learn polices for CINE tasks. As a result, poli-

6

cies learned by composite reinforcement learning have higher performance and are

learned faster than other approaches.

• Due to the hierarchical nature of composite tasks, the ability to reuse existing sub-

controllers in a new composite task can provide significant advantages in the devel-

opment of effective controllers. In the results presented in this dissertation, we show

that existing primitive task sub-controllers can be reused without modification by an

adaptive fuzzy behavior hierarchy for use in a new composite task.

• As previously discussed, we have been unable to find an empirical investigation into

the effects of state and action abstraction in the development of controllers for com-

plex CINE tasks. As a result, this dissertation presents the only results of just such

an investigation of which we are aware.

• The most significant aspect of this dissertation’s results is that the ability to abstract

the action space provides more benefits in practical development of effective agent

controllers than state abstraction in the problem domains and CINE tasks evaluated.

As previously stated, this is the only known investigation which directly compares

the two methods of abstraction.

Some of the minor contributions of this work are:

• One approach for learning policies for CINE tasks is modular reinforcement learn-

ing [36, 40]. We demonstrate that modular reinforcement learning is incapable of

learning and converging to effective policies in the navigation problem domains used

in this research. Previous work in the literature attempted to determine if convergence

was guaranteed and was unable to provide an answer [84].

• The literature details a number of examples where genetic algorithms and genetic

programming have been used to evolve fuzzy rulesets for agent control. However,

a new approach, grammatical evolution [58, 79], which uses the representation of

7

genetic algorithms and the expressive power of genetic programming has not been

previously shown capable of evolving such rulesets. We demonstrate that grammati-

cal evolution can indeed evolve effective fuzzy rulesets.

• While adaptive fuzzy behavior hierarchies have been shown to be an effective con-

trol architecture, we identified a deficiency in the fuzzy inferencing equations, which

limits its effectiveness to hierarchies of only two levels. In a set of experiments, we

demonstrate that this deficiency can be detrimental to the performance and develop-

ment of effective control hierarchies.

1.3 Organization of Thesis

This chapter has introduced the motivation for and a brief summary of the work presented

in this dissertation. The rest of the dissertation is organized as follows:

Chapter 2 presents work related to the motivations of this dissertation. An emphasis is

placed on foundational work relevant to this dissertation and how it differs from

existing approaches. Furthermore, numerous examples of methods which address the

complexity inherent to the automatic development of agent controllers are provided.

Chapter 3 introduces the agent controller architecture used in this dissertation. Since

adaptive fuzzy behavior hierarchies use fuzzy inferencing techniques to implement a

hierarchy of behaviors, a short introduction to fuzzy logic and its usefulness in con-

trol is presented. A limitation of the architecture in its application to complex hier-

archies is described along with our extension which removes this limitation. Finally,

details regarding our particular implementation of the architecture are provided.

Chapter 4 discusses the problem domains used in this dissertation to evaluate the effect

of state and action abstraction in the practicality of learning autonomous agent con-

trollers. In the first set of problem domains, a single-agent is tasked with navigating

8

through an environment to a goal location. In the second set of problem domains, a

group of agents is tasked with navigating through an environment as a team.

Chapter 5 introduces the two methods used in this dissertation to automatically develop

autonomous agent controllers. The first is a form of reinforcement learning that takes

advantage of the hierarchical nature of the agent’s task to improve the rate at which

effective controllers can be learned. The second method uses grammatical evolution

to evolve fuzzy rulesets used for control.

Chapter 6 details the experimental configuration used to evaluate the impacts of state and

action abstraction. In addition to a description of the experimental process, a listing

of the reward structure and parameters used for reinforcement learning and grammat-

ical evolution is provided.

Chapter 7 presents the results of experiments in each of the problem domains. These

results are analyzed and discussed with a particular focus on the effects of different

levels of state and action abstraction.

Chapter 8 concludes this dissertation with a summary of the results, their implications,

and a discussion of the potential avenues of future work.

9

CHAPTER 2

Related Work

The research described in this dissertation builds upon contributions found in many areas

of study. As a result, familiarity with the work and perspectives found in each area is

necessary to appreciate the unique aspects of the problem domain under study. First, since

behavior-based architectures were designed to provide control for reactive tasks like the

ones under study here, an overview of the relevant contributions from the area is presented

(see Section 2.1). Next, an overview of the relevant contributions from the area of fuzzy

control as it relates to action selection is provided (see Section 2.2). Lastly, an overview of

some of the more relevant contributions from the two different methods of automatically

generating agent controllers used in this dissertation is provided: reinforcement learning

(see Section 2.3) and evolutionary computation (see Section 2.4).

2.1 Behavior-Based Robotics

A common approach to addressing the complexity of agent controllers for complex, com-

posite tasks, is to use an individual sub-controller for each primitive task and then combine

them into a complete agent controller [8]. Each of these sub-controllers, or behaviors, is

conceptually simple and its development is intended to be straightforward. Once the indi-

vidual behaviors have been developed, the overall control problem is reduced to a problem

of coordinating the individual behaviors.

Pirjanian classified the different types of behavior coordination mechanisms (also re-

ferred to as action selection mechanisms) into two distinct categories (see Figure 2.1). In

the first, denoted behavior arbitration, a single behavior is selected and given total control

10

Command Fusion

Classes of Behavior Coordination Mechanisms

Arbitration

Priority-based State-based Winner-take-all Voting Multiple objectiveFuzzySuperposition

Figure 2.1: The classes of behavior coordination mechanisms as described by Pirjanian [62]
are shown and redrawn here.

over the agent. Although there are a number of mechanisms to select a behavior, each one

tries to select the single most relevant behavior given the agent’s current state and goals.

While the selection of a single behavior simplifies the later step of taking the resulting ac-

tion, the use of only a single behavior limits the ability of the agent to accomplish only

a single task at any given time. The subsumption architecture proposed by Brooks is an

example of a behavior arbitration architecture that uses fixed priorities to select behaviors

to activate [8].1 In contrast, the second type of behavior coordination, denoted command

fusion, allows for the activation of multiple, concurrent behaviors. In this approach, each

behavior determines the action that best accomplishes its goals. Then, the individual ac-

tions are combined using a specified algorithm and an overall action is then selected. While

this process is more complicated and has more potential for inappropriate actions, it does

offer the agent the ability to accomplish multiple tasks, to various degrees, simultaneously.

It is for this reason, that command fusion is frequently the chosen method for behavior

coordination, including the work described here.

While a full discussion of all the relevant approaches found in the literature is beyond

the scope of this work, a sample of some of the more relevant approaches are discussed.

Saffioti and Wasik describe a hierarchical behavior-based architecture in which a com-

bination of behavior arbitration and command fusion, referred to as context-depending

blending, is used to control robots in a RoboCup soccer game [81]. The hierarchy is devel-

oped manually and an emphasis is placed on sequential combinations of behaviors. Poten-

1Some implementations may not cleanly fit within this categorization.

11

tial conflicts between behaviors are avoided by ensuring that conflicting behaviors are never

activated simultaneously. While this approach can be effective for their specific implemen-

tation, in general, the prospect of developing a controller for a command fusion architecture

that ensures no conflicting behaviors are activated simultaneously is impractical.

Nicolescu and Matarić propose a hierarchical abstract behavior architecture which uses

a behavior network to control a robot [57]. While it allows for concurrent behaviors, they

are restricted to behaviors which are non-interfering. This is accomplished through the use

of a “lock” on the robot’s actuators, which a single behavior holds and thus prevents other

behaviors from using.

Huber and Grupen also propose an approach that allows for concurrent, simple con-

trollers that are equivalent to the behaviors discussed here [35]. However, there is a restric-

tion that subordinate controllers may not prevent the primary controller from achieving

its immediate objective (i.e., interference is explicitly prevented), which necessitates the

identification of a primary controller. In complex, composite tasks, the development of an

effective static prioritization of behaviors can be difficult and an inappropriate choice can

lead to the inability of the agent to react to changes in the environment.

Pirjanian introduced a command fusion behavior coordination mechanism, referred to

as multi-objective behavior coordination (or MOBC), that uses multiple-objective decision

making to select actions from those recommended by behaviors [61]. While the method is

applicable to the CINE tasks discussed here, there are a number of factors which make it

less than ideal for our current work. First, the method for selecting the overall action is a

simple, fixed heuristic. As a result, it is incapable of adapting to changes in the environ-

ment. Second, since the heuristic uses only the utilities of the recommended actions, it does

not benefit from state or action abstraction. Lastly, it requires that the utilities of actions be

consistent, or have the same range of values, across all behaviors. Without this consistency,

one particular set of utilities could easily dominate. This approach is very similar to that of

modular reinforcement learning that is further discussed in Section 2.3.2.

12

In a similar approach, Rosenblatt proposes utility fusion to coordinate behaviors and se-

lect actions [75, 76]. However, unlike multi-objective behavior coordination, utility fusion

evaluates the utilities of potential next states, and not the actions themselves. The arbiter

tasked with choosing actions chooses the action with the highest probability of reaching the

next state with the highest utility. Since utility fusion is similar to multi-objective behavior

coordination, the same factors which make multi-objective behavior coordination less than

an ideal choice for our current work are also applicable to utility fusion.

Lastly, Behnke and Rojas describe an approach with separate sensor and reactive behav-

ior hierarchies, similar to those used here [2]. However, unlike other approaches, including

the one presented in this dissertation, each level in each of the hierarchies operate at differ-

ent time frames. Furthermore, while the approach was effective, the behavior coordination

mechanism was not well-defined.

2.2 Fuzzy Logic

Fuzzy logic is frequently used in behavior-based robot controllers since it allows the con-

troller to view the state and action space as discretized while retaining the continuous nature

of the values [103].2 As a result, robot controllers using fuzzy logic are able to smoothly

transition between the goals and actions of different behaviors.

One of the more common applications of fuzzy logic to robot control is in the area of

command fusion (see Figure 2.1). In fuzzy command fusion, each behavior is implemented

using a set of fuzzy rules whose output is the desired action in the form of a fuzzy set [62,

80]. The fuzzy set actions of each behavior are then combined into a single fuzzy set which

is defuzzified to produce the overall action of the agent.

Just as in reinforcement learning (see Section 2.3.1), a hierarchical approach to fuzzy

control is commonly used for complex problem domains. Raju et al. describe the construc-

2A more detailed description of fuzzy logic’s benefits to the current problem domain can be found in
Section 3.1.

13

tion of a fuzzy hierarchical controller in which is possible that the number of fuzzy rules

used for control can be a linear function of the number of state variables as opposed to non-

hierarchical controllers in which the number of fuzzy rules is exponential in the number of

state variables [67]. As a result, the use of a hierarchy can prove to be a significant benefit

in making the development of controllers for complex, composite tasks more practical.

Bonarini et al. discuss a multi-layer fuzzy architecture termed BRIAN in which each

layer represents a different level of abstraction [7]. However, the architecture is not ap-

propriate for our problem domains since it is not a purely reactive system. Furthermore,

although the architecture has multiple layers, all the active behaviors are contained in a

single layer and are not organized into a hierarchy.

Vadakkepat et al. compare a number of different fuzzy behavior-based approaches in a

multi-agent RoboCup environment [96]. A significant aspect of the described approaches

is that the behaviors are purely reactive and execute concurrently. However, only a high-

level description of each architecture is presented and there is insufficient information to

further evaluate the relevance of each to our current work.

Hoffman describes the training of a hierarchical architecture comprised of fuzzy, re-

active behaviors by means of demonstration [32]. However, the architecture uses a fixed

prioritization of behaviors, which, for reasons previously discussed, make it inappropriate

for our uses.

Yang et al. describe a fuzzy behavior-based controller for robots that can navigate over

rugged terrain [102]. A significant aspect of this work is that the controller offers theoretical

guarantees of performance for the robot. However, these guarantees are only achieved

through the use of Brooks’ subsumption architecture and behavior arbitration, thus making

it inappropriate for our needs.

Ramos et al. describe a behavior coordination mechanism using a hierarchical fuzzy

architecture and demonstrate it using a goalkeeper agent in the simulated RoboCup do-

main [68]. Of particular interest is the abstraction of relevant state variables. Unfortunately,

14

behavior arbitration is used and only a single behavior is active at any given time.

Lastly, Tunstel describes a hierarchical behavior-based fuzzy control architecture that

allows multiple behaviors to be active concurrently and adaptively prioritizes the behaviors

depending on the agent’s state [92, 93, 94, 95]. As a result, the approach is highly applicable

to the types of tasks and problem domains of interest to us and is the one used in the

experiments presented in this dissertation. A more in depth discussion of this architecture

can be found in Chapter 3.

2.3 Reinforcement Learning

The use of reinforcement learning to learn agent controllers is well documented and the

literature in the field contains many methods for simplifying the control task and improving

the rate at which effective polices are learned. Unfortunately, many of these approaches

make assumptions or restrictions on the tasks for which the approach can be applied. As

is discussed below, these assumptions or restrictions mean they are not applicable to the

CINE tasks under discussion here. While a complete review of all the approaches and the

ways in which they are not applicable is beyond the scope of this work, some of the more

related approaches to this dissertation are discussed below.

One of the more common restrictions in reinforcement learning approaches is that the

tasks be sequential and not concurrent [49, 86, 100]. Matarić describes using reinforcement

learning and behavior arbitration in a multi-agent environment [51]. Of particular interest,

is the use of dense reward functions to maximize each learning opportunity and speed

learning. In this dissertation, we used similar dense reward functions to not only speed

learning, but also produce the desired behavior in the learned policies [50]. Despite this

relevance, Matarić’s approach uses sequential (i.e., non-concurrent) behaviors. A behavior

is activated in response to a particular “event,” and is deactivated when a new behavior is

activated.

Mausam and Weld describe an approach that learns policies for multiple concurrent

15

tasks, but restricts the actions of these tasks to be non-interfering [53]. This means that

only tasks which require non-overlapping control actions can be concurrent. Luo et al. also

describe an architecture which allows for multiple, concurrent policies to be active [48].

The approach is superficially similar to the one used in this dissertation, but it does not use

a hierarchy and is limited to the use of reinforcement learning. Furthermore, it does not

provide any information on the exact mechanism of how actions are combined.

Provost et al. describe an approach in which reinforcement learning is used to identify

useful sub-tasks in a difficult, navigation task [66]. However, as in other approaches, the

focus is on episodic tasks and sub-tasks which require a sequence of actions to accomplish.

McCallum proposes a method for learning the appropriate level of abstraction of state

variables based on its utility to learning [54]. These “utile distinctions” can aid in learning,

much like the state and action abstraction discussed in this dissertation. However, the

approach relies on a short-term memory to create these utile distinctions, and is, therefore,

not a purely reactive system. As previously discussed, we are interested in only using

purely reactive systems to simplify the architecture and minimize the number of potential

sources which can affect learning rate and performance.

Another method of abstracting the state of an agent to simplify learning is the ignoring

or removal of state variables that are deemed to be irrelevant [19, 38, 64, 37]. State variables

are determined to be irrelevant if the reward for a given task, or subtask, is independent of

the variable’s value. For example, the state variable Y would be irrelevant if the reward

function3 depends only on X and the action taken:

R({x,y},a,{x′,y′}) = R({x},a,{x′}) (2.1)

where x and y are the initial values of state variables X and Y ; a is the action taken; and x′

and y′ are the resulting values of the state variables X and Y . While the removal of irrelevant

3A reward function defines the intrinsic value of a state in a reinforcement learning problem and is used
to identify the good and bad events [87].

16

variables is an effective method of state abstraction, automated methods of identifying

irrelevant variables were not used in the work presented here for two reasons. First, it is

entirely possible that in the tasks and problem domains used, none of the variables would

be determined to be irrelevant. As a result, no state abstraction would be performed. For

example, in the tasks used in this dissertation, all the state variables are relevant to their

associated primitive tasks. As such, no variables would be classified as irrelevant and the

state would not be able to be abstracted. Second, we wanted to minimize the number of

potential sources which could affect the learning rate and performance, so we used a manual

approach that could be made to be consistent across all tasks and problem domains used.

Since the approach that was used was manual, we had direct control over the abstraction

process. As a result, over-abstraction of the agent’s state, and the associated deleterious

effects, was possible (see Section 6.2 for a more complete discussion).

2.3.1 Hierarchical Reinforcement Learning

A number of reinforcement learning approaches exist which leverage the hierarchical na-

ture of many problem domains. These approaches focus on learning policies for the hier-

archical decomposition of a given task. Despite the variety of approaches, most of these

approaches, just like the other reinforcement learning approaches discussed above, are not

applicable to the CINE tasks under study in this work because of specific assumptions or

restrictions of the approach.4

The learning of macro actions consisting of a sequence of actions, commonly referred

to as options, is frequently used to provide abstraction and speed learning of a complex

task [65, 88]. However, options are not compatible with CINE tasks for a number of rea-

sons. First, the process of learning options is designed to be useful in episodic tasks since

the learning process depends on a task having termination criteria. Second, options are

primarily used in tasks where only a single task is active at any given time. While there

4For a more detailed comparison of many of the approaches discussed here, the reader is directed to Barto
and Mahadevan [1].

17

has been work on architectures in which multiple options can be active concurrently, they

too have restrictions. Early work restricts the actions taken by concurrent options to be

non-interfering [73, 74]. More recent work has lifted this restriction, but is only able to

achieve this by an a priori ranking of subgoals, which are still assumed to be episodic [72].

The MAXQ hierarchical reinforcement learning algorithm assumes that a hierarchical

decomposition of a task is given and attempts to learn the policies at each level simultane-

ously [18, 19]. Just as in the work presented in this dissertation, a significant aspect of the

MAXQ algorithm is its focus on the abstraction of state variables. However, the MAXQ

algorithm is only applicable to episodic tasks since it assumes the existence of termination

criteria. Unlike MAXQ, the HEXQ reinforcement learning algorithm does not require an a

priori decomposition of a task [30]. It is capable of learning both the hierarchical decompo-

sition and the policies of each subtask. However, it too assumes that subtasks are sequential

and finite horizon, or episodic. Layered learning is another example of a hierarchical learn-

ing algorithm [85]. It promotes the reuse of previously developed policies in new tasks,

but also concentrates on sequential, episodic primitive tasks. Lastly, Ghavamzadeh et al.

developed a hierarchical reinforcement learning algorithm primarily for use in multi-agent

environments, but it too assumes episodic and sequential subtasks [26].

In an approach similar to the one presented in this dissertation, Bonarini describes us-

ing reinforcement learning to learn individual primitive behaviors and how to best combine

them [6]. Like our work, functional behavior decomposition is used to decompose the over-

all behavior into separate behaviors which have distinct state variables and goals. While

similar in theme, however, the architecture used does not allow for concurrent behaviors.

Other hierarchical reinforcement learning approaches exist which do not explicitly re-

strict the number of active subtasks, but have other attributes which make them inapplica-

ble. For example, the approaches of Parr and Russell [59] and Singh and Cohn [82] do

not restrict the number of active tasks, but instead restrict the actions chosen. In the lat-

ter case, the selection of an action for one subtask, restricts the selection of an action for

18

another subtask. Lastly, Koller and Parr use reinforcement learning with tasks comprised

of multiple subtasks and do not explicitly restrict the number of active subtasks [41]. Un-

fortunately, their work focuses only on automatically decomposing the value function of a

policy for the overall task and not on learning an effective policy.

2.3.2 Modular Reinforcement Learning

Humphrys [36] and Karlsson [40] independently describe a reinforcement learning algo-

rithm that is appropriate for the CINE types of problems under study here. In this algorithm,

commonly referred to as modular reinforcement learning [4, 84], a policy for each active

primitive task is learned simultaneously using the state information and rewards local only

to the task. At each time step, the policy for each subtask provides the action selection

mechanism with a utility value for each possible action. This utility value is calculated

using the value of taking a particular action from a given state, referred to as a Q-value,

and is often simply the Q-value itself. These utilities are then used by the action selection

mechanism to choose the action that the agent will take. The approach used in this disser-

tation to choose the action, called the “greatest mass,” simply chooses the action with the

highest utility, or sum of Q-values, across all the primitive task policies [40]:

Qgm(s,a) =
N

∑
i=1

Qi(si,a) (2.2)

where Qgm denotes the greatest mass utility of a state-action pair, si is the current state of

the environment relevant to primitive task i, a is an action available to the agent, and Qi is

the Q-value in primitive task i of taking action a in state si. To update each policy, the total

reward must be decomposed into rewards specific to each primitive task. Constructing a

reward function for a composite task can be deceptively difficult, for even a good reward

function can produce undesirable behaviors [50]. A common method is to simply use the

sum of the reward functions of each primitive task as the reward function for the composite

19

task:

R(s,a,s′) =
N

∑
i

Ri(si,a,s′i). (2.3)

where si is the agent’s state in primitive task i, s is the agent’s state in the overall composite

task, a is the action taken, s′i is the resulting state in primitive task i, s′ is the resulting state

in the overall composite task, and Ri is the reward earned in primitive task i. However, this

method makes the implicit assumption that rewards are consistent across all the primitive

tasks which complicates the process of learning the policies for the primitive tasks [4].

While the construction of the composite task’s reward function is designed to promote

specific traits in the composite task’s policy (e.g., a risk-averse policy versus a risk-taking

policy), the unintended consequence is that the policies of the primitive tasks show the

effects of these traits. This is due to the fact that, in modular reinforcement learning, all

learning takes place in the policies of the primitive tasks. As a result, the policy for a

given primitive task could potentially only be useful in the composite task for which it was

originally learned.

Q-learning cannot be used in learning the primitive task policies since it is off-policy

and assumes the optimal policy will be followed [98]. One cannot assume that the optimal

policy will be followed for modular reinforcement learning since primitive task policies

must share control of the agent [78, 84]. As a result, an on-policy learning method, such as

the Sarsa algorithm, must be used [77]. In Sarsa, updates are made using only the policy

currently being followed using the sequence of events (st ,at ,rt+1,st+1,at+1), and is written

as follows:

Qi(si,a)← (1−α)Qi(si,a)+α(ri + γ Qi(s′i,a
′)). (2.4)

As can be observed, Sarsa uses the Q-value of the state-value pair that was actually ob-

served. As a result, the Q-values in a policy for a given primitive task reflect the rewards

received while operating in conjunction with the policies of other primitive tasks.

A further complication in the use of modular reinforcement learning, as it is currently

20

implemented, is that it requires that the policies for primitive tasks provide the learned Q-

value for a given action. Therefore, it is unable to reuse polices developed using methods

other than reinforcement learning. While it is possible, in general, to learn the Q-values for

an existing policy offline, this method can produce the same bias in the Q-values that the

use of Q-learning produces since the Q-values must reflect the shared control of the agent.

Even though alternative methods could be used to provide utility values without the use of

Q-values [63], modular reinforcement learning still depends on control decisions flowing

up from the low-level policies. As a result, there is no scaling advantage to extending

beyond a two-level hierarchy where learning occurs at the lowest level since the top level

merely uses a simple heuristic to combine the lower-level results.

2.3.3 Transfer Learning

As previously discussed, the ability to reuse controllers designed for one task in another can

provide significant benefits in the development of effective agent controllers. In reinforce-

ment learning, this is referred to as transfer learning and is an area of study that is gaining

increasing attention. Unfortunately, most of the approaches are not applicable to the tasks

and problem domains used in this work. In one of the more promising approaches, Taylor

et al. propose a method of mapping action-value functions between similar tasks [91]. Un-

fortunately, this approach is not applicable since it uses only a single policy and relies on

the use of reinforcement learning and the existence of an action-value function. Konidaris

and Barto propose a method of using transfer learning with options [42], but, as previously

discussed, our tasks and problem domains do not benefit from options. Fernández and

Veloso propose a method that uses existing policies to learn a policy for a similar task [25].

However, the environments used were simple and used only a single task. Furthermore, the

new tasks were very similar to old tasks and only differed in the initial conditions. Talvitie

and Singh propose a method for using existing candidate policies to learn a policy for a

single task [89]. In this method, all the candidate policies are for the same task and the

21

learned policy chooses which candidate policy to use in each state.

2.4 Evolutionary Computation

Another approach found in the literature to automatically developing agent controllers is

the use of evolutionary computation. Historically, genetic algorithms [33] or genetic pro-

gramming [43] are the primary approaches used to evolve controllers.

Of particular interest in the work presented in this dissertation is the combination of

evolutionary computing and fuzzy control.5 While there are a number of examples of this

combination [31], only a sample are described here.

Evolutionary computation is commonly used to evolve fuzzy controllers in two ways. In

the first way, evolution is used to evolve the membership functions of linguistic values so as

to effectively tune a fuzzy controller’s existing fuzzy rules. In the second way, evolution is

used to evolve fuzzy rules that make use of existing membership functions. The evolution

of fuzzy rules can either consist of a population of individual rules that are combined to

build a single set of rules (referred to as the “Michigan” approach) or a population of rule

sets that are individually used for control (referred to as the “Pitt” approach) [15].

Bonarini uses genetic algorithms and learning classifier systems to identify some of the

difficulties in evolving fuzzy rules for fuzzy controllers [5]. A significant aspect of this

work is a discussion that the “Michigan” approach can cause detrimental competition be-

tween fuzzy rules. Furthermore, the authors propose an alternative method, termed ELF,

that seeks to address problems found in both the “Michigan” and “Pitt” approaches. How-

ever, it is only applicable to environments with relatively few states.

Chen et al. use evolutionary programming to evolve hierarchical fuzzy systems [9].

The hierarchy and rulesets are evolved in a succession of iterations until satisfactory per-

formance is achieved. Unfortunately, this approach is not used for control and uses the

5The area of study focusing on the combination of evolutionary computing and fuzzy control is commonly
referred to as soft computing or computational intelligence.

22

Takagi-Sugeno type fuzzy system where a fuzzy rule’s consequence is a function mapping

input space directly to output space. This approach is not as intuitive as the approach used

in this dissertation and requires a derivation of nonlinear system equations from member-

ship functions.

Vadakkepat et al. describes a method that combines the two ways of evolving fuzzy con-

trollers which coordinate behaviors [97]. In this approach, evolution is used to evolve both

the fuzzy rules and the membership functions. While the organization of the architecture

appears to be similar to the approach used in this dissertation, there are many implemen-

tation details missing from the description and, therefore, prevent a complete comparison.

Other approaches also evolve both the fuzzy rules and membership functions, usually in a

process that iteratively refines each until a performance threshold is reached [52, 10].

23

CHAPTER 3

Adaptive Fuzzy Behavior Hierarchies

In ordinary, or crisp, set theory, an instance either belongs to a set or it does not. In contrast,

in fuzzy set theory a value can have partial membership in a set.1 For example, the temper-

ature in a room can be somewhere in between fully cold and fully cool. This distinction

can provide many benefits for the frequent case in control where a continuous variable must

be discretized into a finite set of values. For example, consider the case of designing a con-

troller for a heater. Creating an effective controller would be simplified greatly if the input

(i.e., the temperature) and the output (i.e., the heater’s power level) could be discretized

into a few specific values. A possible discretization using crisp set theory is shown in Fig-

ure 3.1. While such a discretization may seem reasonable, the crisp discretization means

that the resulting control surface of the controller is discontinuous and can result in control

actions which rapidly oscillate between two very different actions. Such oscillations are

only exacerbated by the relatively coarse granularity of the discretization shown here. For

example, if the following control rules were used with crisp values, the control surface in

Figure 3.2 would be the result:

IF temperature is cold THEN heater is high

IF temperature is cool THEN heater is low

IF temperature is warm THEN heater is off

On the other hand, if fuzzy set theory is used for discretization, such as the one shown in

Figure 3.3, the control surface would provide smooth transitions between each “discrete”

1A full explanation of fuzzy logic and control is beyond the scope of this work. The reader is directed to
Lee [44, 45] for a short overview or Driankov et. al [20] for a more in depth discussion.

24

temperature0° 100° heater0 1

cold cool warm off low high

Figure 3.1: The crisp variables temperature and heater are used by a controller for a heater.
The temperature crisp variable is an input value to the controller and has three values:
cold, cool, and warm. The heater crisp variable is an output value from the controller
and denotes the desired power level of the heater. It has three values: off, low, and high.

temperature0° 100°

cold cool warm

heater
0

1

o
ff

lo
w

hig
h

Figure 3.2: A control surface produced from control rules using crisp sets is shown. Note
that the interval used in the heater crisp set is reversed to improve readability of the control
surface.

value (see Figure 3.4). This distinction can provide significant benefits in agent control and

is why fuzzy control is used in the work presented here.

3.1 Fuzzy Control

As was previously mentioned, in crisp set theory a variable’s value either belongs to a

particular set, or it does not. For example, if the discretization described in Figure 3.1 were

to be used, a temperature t is either cold or it is not. Another way of describing this

is to say t has a membership in cold of either 1 or 0. If we only consider the range of

temperatures from 0° to 100°, referred as the temperature’s universe of discourse, we could

25

temperature

1.0

0.0
0° 100° heater

1.0

0.0
0 1

cold cool warm off low high

Figure 3.3: The linguistic variables temperature and heater are used by a fuzzy controller
for a heater. The temperature linguistic variable is an input value to the fuzzy controller
and has three linguistic values: cold, cool, and warm. The heater linguistic variable is
an output value from the fuzzy controller and denotes the desired power level of the heater.
It has three linguistic values: off, low, and high.

temperature

1.0

0.0
0° 100°

cold cool warm

heater

1.0

0.0
0

1

o
ff

lo
w

hig
h

Figure 3.4: A control surface produced from control rules using fuzzy sets is shown. Note
that the interval used in the heater fuzzy set is reversed to improve readability of the control
surface.

26

formalize the membership functions for calculating an arbitrary temperatures membership

in each set as follows:

coldC(t) =


1, for t ∈ [0,30)

0, otherwise
(3.1)

coolC(t) =


1, for t ∈ [30,70)

0, otherwise
(3.2)

warmC(t) =


1, for t ∈ [70,100]

0, otherwise
(3.3)

However, if fuzzy discretizations are used, a temperature could be both cold and cool

with varying degrees. Another way of describing this is to say that t has a membership

in cold in the interval [0,1]. If we consider the same universe of discourse as above, the

membership functions in the fuzzy case could be as follows:

coldF(t) =


1, for t ∈ [0,20]

(40− t)/20, for t ∈ (20,40)

0, otherwise

(3.4)

coolF(t) =



(t−20)/20, for t ∈ (20,40)

1, for t ∈ [40,60]

(80− t)/20, for t ∈ (60,80)

0, otherwise

(3.5)

27

warmF(t) =


(t−60)/20, for t ∈ (60,80)

1, for t ∈ [80,100]

0, otherwise

(3.6)

Using the fuzzy membership functions, a temperature of 25° has a membership of 0.75

in cold, 0.25 in cool, and 0 in warm. Using the crisp membership functions, the same

temperature would have a membership of 1 in cold and memberships of 0 in both cool

and warm.

In this example, both temperature and heater are examples of linguistic variables. Lin-

guistic variables represent variables used by the controller either as input or output. A

linguistic variable is associated with a finite set of linguistic values, each of which corre-

sponds to a different discretized value of the variable.2 In the current example, the linguistic

variable temperature has three different linguistic values: cold, cool, and warm.

Since input values to the controller are real-valued numbers, they must be converted

to fuzzy numbers using a process called fuzzification. In fuzzification, the crisp value of a

linguistic variable is converted to a fuzzy set of membership values for each of the linguistic

values associated with the variable. The range of potential values of a linguistic variables is

referred to as the variable’s universe of discourse and is denoted U . A membership function

µ is used to assign every u ∈U a membership value in the interval [0,1] for a given fuzzy

set:

µF : U → [0,1]. (3.7)

Note that membership in the fuzzy set is in the interval [0,1] and not from the set {0,1} as

in crisp sets. Formally, a fuzzy set F in a universe of discourse U is defined by [20]:

F = {(u,µF(u))|u ∈U} (3.8)

2The linguistic values and the associated membership functions for the linguistic variables used in this
work are discussed in detail in Appendix E.

28

1.0

0.0

1.0

0.0

Figure 3.5: Larsen implication operator

where µF is a membership function for the fuzzy set F . In the case where the membership

functions are continuous, the fuzzy set F can be calculated as follows [44]:

F =
∫

U

µF(u)
u

du (3.9)

where u denotes the linguistic variable’s value. In the case where the membership functions

are discrete, such as the ones described in the current example, and U = u1, · · · ,un, F can

be calculated using the following:

F =
n

∑
i=1

µF(ui)
ui

(3.10)

where ui denotes one of n discrete values within the universe of discourse.

As in crisp set theory, there are a number of operations that can be performed on fuzzy

sets. Some of the more notable operations are the intersection, union, and sum. While a

more in depth discussion of these operations is beyond the current scope,3 a fundamental

property of these operations is that they operate on fuzzy sets and produce another fuzzy

set.

Fuzzy controllers are usually implemented using fuzzy rules. A fuzzy rule uses one or

more input values to produce a fuzzy set for an output value, which will later be converted

to a crisp value, commonly referred to as defuzzification. A basic fuzzy rule could have the

form:
3The reader is directed to [20] for an in depth discussion of these operations.

29

IF x is Ã and y is B̃ THEN z is C̃

where x and y are input values to the controller; z is an output value of the controller; and Ã,

B̃, and C̃ are linguistic values (which equate to fuzzy sets) corresponding to the linguistic

variables of x, y, and z respectively. The fuzzy rule is comprised of two main parts: an

antecedent and a consequent. The antecedent consists of a proposition which evaluates and

returns an input value’s membership in a given linguistic value. A sample proposition using

the heater controller example would be “temperature t is cold.” The fuzzy rule shown

above uses a compound proposition that is built using a conjunction of basic propositions.

In such situations, the resulting membership is calculated using the intersection, or t-norm,

as follows:

a∧b = min(a,b) (3.11)

where a and b are membership values as computed by individual propositions. An example

where the intersection would be useful is if we added a second state variable representing

the time of day, denoted time-of-day, to the temperature controller. We could then create

fuzzy rules such as the following:

IF temperature is cold and time-of-day is night THEN heater is high

If the membership in cold were 0.75 and the membership in night were 0.8 then the

membership of the antecedent would be min(0.75,0.8) = 0.75. The consequent in a fuzzy

rule uses the membership value computed by the antecedent to create a fuzzy set. A sample

consequent using the heater controller example would be the “heater is high” found in

the previous rule. The operator used in this work to compute the resulting fuzzy set is the

Larsen implication operator and is defined as follows:

µFR = µI µO (3.12)

where µI is the membership of the input values as computed by the antecedent, µO is the

membership of the linguistic value in the consequent, and µFR is the membership produced

30

by the fuzzy rule. This particular implication operator has a scaling effect on the member-

ship of the output value (see Figure 3.5). Potential fuzzy rules for the heater example are

shown in Figure 3.6.

When fuzzy rules are combined to form a single controller, the result is called a ruleset

and could have the following form:

R1: IF x is A1 and y is B1 THEN z is C1,
R2: IF x is A2 and y is B2 THEN z is C2,

. . .

RM: IF x is AM and y is BM THEN z is CM

Since the result of a rule is a fuzzy set, each of the fuzzy sets produced by the rules in a

ruleset can be combined into a single fuzzy set using a fuzzy union operator as follows:

µFRS =
M⋃

i=1

µi (3.13)

where µFRS is the fuzzy set produced by the entire fuzzy rule set and µi is the fuzzy set

produced by rule i. Figure 3.6 depicts the process of combining the fuzzy sets of each rule

in the ruleset to produce a fuzzy set which can be defuzzified to find the crisp output value

used for control. This process of combining each fuzzy set is what gives fuzzy controllers

the ability to smoothly transition between different control actions.

One difficulty in using fuzzy rules for control is the number of rules required to com-

pletely cover the state space. If there are n state (or input) variables each with m linguistic

values (or fuzzy sets), then a complete set of fuzzy rules has mn rules. While it is impractical

to have a complete ruleset for every controller, it is still apparent that an effective controller

that uses fuzzy rules could require a fuzzy rule set that is exponential with respect to the

number of input values. Therefore, an approach is needed to combat this complexity. One

possible approach is the use of a hierarchy fuzzy rulesets. Previous work has shown that

the use of a hierarchy can reduce the number of rules for a hierarchy to be a linear function

of the input values [67].

After the input has been fuzzified and the fuzzy controller has performed the necessary

31

IF temperature is cold THEN heater = high

IF temperature is cool THEN heater = low

temperature

1.0

0.0

1.0

0.0
heater0° 100° 0 1

1.0

0.0
heater0 1

temperature

1.0

0.0

1.0

0.0
heater0° 100° 0 1

DefuzzificationFuzzification

Combined
results from
multiple rules

Figure 3.6: Two fuzzy rules are shown contributing to the overall power level of the heater.
Since the temperature variable is fuzzy, more than one rule applies to the current state,
albeit with different levels of activation. The output of each rule is weighted by the mem-
bership of the temperature to the linguistic value of the antecedent.

32

Defuzzification

1.0

0.0
0 1

Figure 3.7: Simple defuzzification can be viewed as computing the center of the fuzzy set’s
area

Counted twice

Defuzzification

1.0

0.0
0 1

Figure 3.8: Center-of-Sums defuzzification

33

calculations, a fuzzy set is produced. This fuzzy set is usually produced using a combina-

tion of the previously mentioned operators and is itself built using other fuzzy sets. To be

useful in control, the output fuzzy set must be converted to a real-valued number before it

can be acted upon. This conversion process is called defuzzification. In defuzzification,

the membership values of each linguistic value is used in conjunction with the linguistic

value’s membership function to produce a crisp number. In a graphical sense, a general

defuzzification process can be viewed as computing the center of the fuzzy set’s area (see

Figure 3.7). There are a wide array of different approaches to defuzzification [20] and their

full discussion is beyond the scope of this work. However, the approach used in this work,

Center-of-sums, merits discussion since it will be used later. A distinguishing aspect of

the Center-of-sums defuzzification process is that it takes the sum of each of the individual

fuzzy set’s membership values instead of the union (see Figure 3.8). As a result, areas of

overlap are counted more than once. This is an example of weight counting and is important

to the controller architecture discussed below. In the continuous case, the Center-of-sums

is computed as follows:

u∗ =

∫
u∈U

u
`

∑
k=1

µk(u)du

∫
u∈U

`

∑
k=1

µk(u)du

(3.14)

where u∗ is the real-valued, defuzzified number and µk is one of ` fuzzy sets contributing

to the overall fuzzy set. In the discrete case, it is computed by the following:

u∗ =

n

∑
i=1

ui

`

∑
k=1

µk(ui)

n

∑
i=1

`

∑
k=1

µk(ui)

(3.15)

34

β1 β2

B1 Bm

B0

βn

Figure 3.9: A set of primitive behaviors (denoted βi) are organized into a hierarchy and
adaptively weighted by composite behaviors (denoted Bm) as described by Tunstel [93]
and redrawn here. The half-filled circles denote the weights and threshold values used to
modulate behaviors.

3.2 Adaptive Fuzzy Behavior Hierarchies

An example of a hierarchical, fuzzy approach to agent control, and the one used for these

experiments, is an adaptive fuzzy behavior hierarchy [93]. The hierarchy is organized using

two types of behaviors. Behaviors responsible for accomplishing simple, primitive tasks

are called primitive behaviors (see Figure 3.9). Primitive behaviors reside at the lowest

level of the hierarchy and are responsible for producing low-level control actions for the

agent. Since each primitive behavior is responsible for a single primitive task, inputs to the

behavior consist only of state information relevant to the associated primitive task.

Following the formulation of Tunstel, let X and U be the sets of all possible input and

output values, or universes of discourse, for a primitive behavior with a ruleset of size M.

Individual rules within the ruleset have the following form:

IF x is Ãi THEN u is B̃i (3.16)

where x represents the linguistic variables describing primitive task state information, such

as direction or distance, and u represents linguistic variables describing motor command

actions, such as steering direction and speed, Ãi and B̃i represent the fuzzy linguistic val-

ues corresponding to the variables x and u. The antecedent proposition “x is Ãi” can be

35

replaced with a compound antecedent using a conjunction or disjunction of propositions.

The consequent “u is B̃i” could also be replaced with a compound consequent. For exam-

ple, a primitive behavior responsible for steering towards a goal could have the following

rule:

IF goalDir is LEFT THEN steerDir is LEFT

The output of the i-th fuzzy rule is formally defined as:

ũi ∈ X×U (3.17)

which is a fuzzy set. As noted above in Equation 3.13, the output of the entire ruleset of M

rules for a primitive behavior p is also a fuzzy set, denoted β̃p, and can be determined by

finding the union of the fuzzy sets from each of the M rules:

β̃p =
M⋃

i=1

ũi (3.18)

If a fuzzy controller consists of only a single, active primitive behavior, β̃p could be de-

fuzzified to produce low-level control commands.

The output fuzzy set of each primitive behavior can be combined in a similar manner to

produce a single output. However, since primitive behaviors often have conflicting goals,

their actions often conflict as well. A method of assigning different activation levels to dif-

ferent primitive behaviors could address these conflicts and allow an agent to accomplish

its overall composite task. In an adaptive fuzzy behavior hierarchy, this is accomplished

by means of behavior modulation in which the activation levels of primitive behaviors

are adjusted, or adapted, based on the current overall state of the agent. These activation

levels are referred to as degrees of applicability (DOA) and are assigned to primitive be-

haviors by a high-level, composite behavior. Composite behaviors are only responsible for

modulating other behaviors, either primitive or composite, and do not produce low-level

36

control commands. For example, a composite behavior that is responsible for modulating

a COLLISIONAVOIDANCE primitive behavior and a GOALSEEK primitive behavior could

determine that since a collision is not imminent, the GOALSEEK behavior is more applica-

ble and should have a HIGH activation, while the COLLISIONAVOIDANCE behavior should

have a LOW activation. Composite behaviors are also implemented using fuzzy rulesets,

but, since they produce outputs specifying activation levels and use different output fuzzy

linguistic variables and values, their consequents differ from those found in primitive be-

haviors. Fuzzy rules within a composite behavior have the basic form:

IF x is Ãi THEN α is D̃i (3.19)

where Ãi is the same as that defined in Equation 3.16, α is the scalar activation level of a

given behavior, and D̃i represents the fuzzy linguistic values (e.g. LOW, MEDIUM, HIGH)

corresponding to the activation levels which are used to modulate a behavior. If a behavior

is not explicitly given an activation level, it is automatically given a default activation of 0

and does not contribute to the overall output of the controller. Furthermore, threshold values

can be used to provide cutoff points for a modulated behavior’s activation [92]. Just as with

primitive behaviors, the output of a composite behavior is a fuzzy set. However, when

defuzzified, the crisp values provide the current activation levels of lower-level behaviors,

and not motor control commands. Using fuzzy rulesets to produce activation levels results

in smooth transitions between different sets of activation levels in response to the changing

state of the agent.

The activation level αp of a modulated behavior p is used to calculate the weighted

contribution of the behavior to the overall controller’s output using the following:

αp · β̃p (3.20)

where β̃p is the output of the behavior, as defined in Equation 3.18. The output of each

37

primitive behavior can now be combined using their respective activation levels to weight

their overall contribution to the action generated by the controller. The output of the entire

behavior hierarchy is calculated as follows:

β̃H =
⊎
p∈P

αp · β̃p (3.21)

where β̃H is the output of the entire behavior hierarchy, P is the set of all primitive be-

haviors, and
⊎

is the arithmetic sum of the fuzzy sets over all the primitive behaviors.

The fuzzy output values are then defuzzified using the discrete form of Center-of-Sums

defuzzification as follows [20]4:

u∗ =

n

∑
i=1

ui ∑
p∈P

µ
β̃H

(ui)

n

∑
i=1

∑
p∈P

µ
β̃H

(ui)
(3.22)

where u is the motor command output fuzzy variable and µ is the membership function

defined over the set of all possible actions.

Since composite behaviors only modulate lower-level behaviors using state informa-

tion, composite behaviors do not require lower-level behaviors to provide any information

to aid in the modulation process. This is in contrast to other behavior coordination mech-

anisms which, for example, may require low-level behaviors to indicate the utility of a

specific action [63]. The only restriction that an adaptive fuzzy behavior hierarchy places

on modulated behaviors is that primitive behaviors produce a fuzzy set as output since fuzzy

inferencing is used to combine their outputs into a single action. As a result, although the

hierarchy is designed to use behaviors built using fuzzy rulesets, alternative methods can be

used to implement behaviors as long as they produce a fuzzy set. We will later use this to

our advantage when we apply machine learning techniques to the process of automatically

4Much of the literature in the field, including the Tunstel’s work [93], cite the continuous form of the
Center-of-Sums defuzzifier.

38

developing behaviors.

It is important to note that since a composite behavior does not produce low-level con-

trol actions, it may not need the full joint state space of the composite task to provide

effective behavior modulation. For example, it is possible that the direction of the clos-

est collision is irrelevant when determining the modulation for a COLLISIONAVOIDANCE

primitive behavior. It may be that only the estimated time until the collision is important.

As a result, it may be possible to reduce the state information used by the modulation pro-

cess in a composite behavior that provides comparable performance. A reduced state set

such as this would provide significant benefits not only in reducing the complexity of the

composite behavior’s ruleset, but also in the effort required to develop the ruleset itself.

This has significant implications for improving the practicality of developing controllers

for the complex composite tasks under study.

There are two ways in which the state space can be reduced. First, state information

that is determined to be irrelevant can simply be removed from the state space in a process

commonly referred to as subset feature selection. As previously discussed, there are many

methods for finding irrelevant features [28, 17, 69, 101], but they assume that irrelevant

features exist within the state space. Such an assumption may not be valid in the tasks

used in this thesis. Furthermore, to better evaluate the effects of state abstraction, we

wished to use a method that offered more fine control of the abstraction process. In the

second option, state information is converted into a more abstract form. The process of

finding these abstractions, known as feature extraction [29], can result in either fewer state

variables or no change in the number of state variables. However, the extracted variable

set is simpler than the original variable set. For example, a composite behavior may not

need to know the exact relative direction to an object and only requires the magnitude of

the direction for effective control. In this example, the original direction state variable is

extracted to a more simple representation where both SMALL_LEFT and SMALL_RIGHT

are abstracted to the same SMALL value. Since primitive tasks are, by definition, simple

39

β1 β2

B1

β3

B0

α = HIGH

α = LOW α = HIGH

α = MEDIUM

Figure 3.10: A sample three-level hierarchy.

Defuzzified value

M
em

be
rs

hi
p

Action (e.g., speed change)

β3β2β1

(a) Defuzzification in original

Defuzzified value

M
em

be
rs

hi
p

Action (e.g., speed change)

β3β2β1

(b) Defuzzification in extension

Figure 3.11: A comparison of modulation effects on primitive behaviors using the origi-
nal implementation and our extension are shown. The effects of behavior modulation, or
weighting, in the original implementation of adaptive fuzzy behavior hierarchies are shown
on the left. The effects of behavior modulation using our extension are shown on the right
and are more like one would expect to see.

and straightforward, one can easily determine abstractions that may be beneficial. As a

result, this is the method that will be used in this work (see Section 6.2).

3.3 Extending Adaptive Fuzzy Behavior Hierarchies

Although adaptive fuzzy behavior hierarchies have been shown to provide effective con-

trol, their implementation, as described by Tunstel, limits their application to two-level

hierarchies. To illustrate this limitation, consider the three-level behavior hierarchy in Fig-

ure 3.10. The primitive behaviors β1 and β2 are coordinated by the composite behavior

B1. The composite behavior B1 and another primitive behavior β3 are then coordinated by

40

1

Defuzzified value

M
em

be
rs

hi
p

DOA0
(a) DOA calculation in original

1

Defuzzified value

M
em

be
rs

hi
p

DOA0
(b) DOA calculation in extension

Figure 3.12: A comparison of activation level, or DOA, calculation using the original im-
plementation and our extension are shown.

the top-level composite behavior B0. If B0 chooses to weight B1 with a LOW weight and

weight β3 with a HIGH weight, one would expect that the primitive behaviors β1 and β2,

regardless of the weights assigned by B1, would have much less influence over the resulting

action than the primitive behavior β3, because their parent behavior, B1, was given a LOW

weight (e.g., see Figure 3.11b). However, this is not the case. The overall contribution of

the primitive behaviors β1 and β2 depends only on the weights assigned by B1, which are

not affected by B1’s LOW weighting (see Figure 3.11a).

One reason adaptive fuzzy behavior hierarchies are able to produce effective control

actions is that the activation level, or DOA, of a primitive behavior affects the behavior’s

contribution to the overall control action by reducing the membership of the action it pro-

duces (see Equation 3.21). However, the fact that a DOA only affects the membership of a

fuzzy value, and not the fuzzy value itself, leads to problems if one uses the same process

to calculate a DOA of a primitive behavior. To illustrate this point, consider the previously

discussed situation where B1 has been given a LOW weight and has assigned a HIGH weight

to the primitive behavior β2. The LOWDOA of the composite behavior reduces the member-

ship, visually represented as the height, of β2’s HIGH DOA (see Figure 3.12a). However,

once the DOA is defuzzified to a crisp value, the fact that it’s membership was reduced is

not evident since it still received a DOA of HIGH. What is needed is a mechanism which

uses the LOW DOA of the composite behavior B1 to reduce the actual defuzzified value of

41

β2’s DOA (see Figure 3.12b).

Any modifications made to the current process to produce the desired result must ensure

the following conditions hold:

1. The current process produces correct results for the simple case of a two-level hierar-

chy consisting of a single composite behavior coordinating only primitive behaviors.

Any modifications made must change only the output values of a DOA calculation

and not the output values of a primitive behavior. Since the output values of primitive

behaviors are actual motor control actions, these output values should not be altered.

2. In general, more than one composite behavior could potentially coordinate a single

primitive behavior. Any modifications made must account for the contribution of

DOA values from composite behaviors with different DOA’s themselves.

The first condition can be met by simply only modifying output values not used for motor

control. In practice, a modification could be applied only when an output value is used

as a DOA since the defuzzification process is generic and used for both DOA’s and motor

control. The second condition precludes any solution that only considers the simple case

where a primitive is coordinated by a single composite behavior. In this simple case, the

composite behavior’s DOA could simply be used to scale a primitive behavior’s DOA, as

in the following equation:

α
′
p = αp ·αc (3.23)

where αp is the primitive behavior’s calculated DOA, αc is the composite behavior’s DOA,

and α ′p is the final DOA of the primitive behavior. However, since, in general, more than

one composite behavior could be coordinating a given primitive behavior, the DOA of each

parent composite behavior must be considered in conjunction with the weight it assigns to

the primitive behavior.

To achieve the desired result, while ensuring that the previous conditions hold, adaptive

fuzzy behavior hierarchies can be extended in the following manner. First, the same process

42

for calculating the output of a primitive behavior can be used to calculate a behavior’s

DOA. For example, the DOA given to a primitive behavior by a composite behavior can be

calculated using the following:

αp =

∫
u∈U

u ∑
c∈C

αc ·µB̃c
(u)∫

u∈U
∑
c∈C

αc ·µB̃c
(u)

(3.24)

where µB̃c
(u) denotes the membership of a given DOA value assigned by composite be-

havior Bc. Although the above equation considers the calculation of a primitive behavior’s

DOA, it can also be used to calculate a composite behavior’s DOA. This DOA must now

be scaled by the DOA’s of the parent composite behaviors. To calculate the scaling factor,

we can use the following:

Sp =
∑
c∈C

αc

∫
u∈U

u ·µB̃c
(u)

∑
c∈C

∫
u∈U

u ·µB̃c
(u)

(3.25)

where Sp is the scaling factor for the primitive behavior p. The final DOA of primitive

behavior p is computed using the results from Equation 3.23 and 3.25:

α
′
p = αp ·Sp (3.26)

Note that Sp equals αc in the simple case of only one composite behavior coordinating a

given primitive behavior. In this simple case, we recover the intuitive calculation of Equa-

tion 3.23. The addition of the scaling factor Sp allows the DOA of the parent composite

behavior to cascade down the hierarchy and affect the DOA of the primitive behavior, re-

sulting the desired outcome illustrated in Figure 3.11b.

43

3.4 Creating Agents Using Adaptive Fuzzy Behavior Hierarchies

In order to provide primitive and composite behaviors with varying levels of state infor-

mation gathered from the sensors, a sensor hierarchy mirroring the behavior hierarchy was

created. This not only ensured that behaviors received the state information relevant only

to their current primitive or composite task, but it also allowed for the abstraction of the

state information (see Section 6.2). The architecture of an agent using a generic, adaptive

fuzzy behavior hierarchy is depicted in Figure 3.13. The order of execution of an agent is

as follows:

1. The fuzzy input and output values are reset from the previous execution to prevent

past states and actions from interfering with the current timestep.

2. State information is gathered from the sensors and processed for use in the primitive

and composite behaviors. Sensors are organized such that those providing state in-

formation to primitive behaviors receive low-level data, while those that provide state

information to composite behaviors receive data that has already been processed by

previous sensors.

3. The behavior hierarchy is evaluated in a top-down fashion. The composite behavior

at the highest level of the hierarchy is executed first and then execution continues

with behaviors in each lower level until the primitive behaviors are executed. There

is no guaranteed order of execution of behaviors within the same hierarchy level. A

behavior is not executed if its DOA is below a specified threshold or it is not explicitly

given a weighting.

4. The fuzzy output of the primitive behaviors is defuzzified to determine the motor

commands of the agent’s action.

44

Defuzzified Action (e.g., motor commands)

β1 β2 β3

B1

β4

B0

β1 Sensor β2 Sensor β3 Sensor β4 Sensor

B1 Sensor

Raw Sensor Data

Fuzzy steering speed and heading output

B0 Sensor

Figure 3.13: The above diagram depicts the architecture of an agent using a generic, adap-
tive fuzzy behavior hierarchy. Lines from low-level sensors to high-level sensors denote
the progressive abstraction of sensor data. Dashed lines from sensors to behaviors denote
the use of sensor (or state) information by a behavior. Lines from high-level behaviors
to low-level behaviors denote behavior modulation. Note that a sensor hierarchy mirrors
the behavior hierarchy and is responsible for providing processed state information to the
appropriate primitive and composite behaviors. The sensor hierarchy is important when
various abstractions of the state information are used (see Section 6.2).

45

CHAPTER 4

Navigation Problem Domains

For this work, a number of autonomous agent navigation problem domains were used. In

each domain, an agent was given a complex task that was composed of N primitive tasks,

where each primitive task was an Markov decision process, or MDP, and, in general, CINE

in nature. An MDP M is defined as a discrete-time process with a set of states S, a set

of actions A, a transition function T (s,a,s′), and a set of rewards R. The set of states and

the set of actions are referred to as the state and action spaces, respectively. The transition

function describes the probability that a given action a, taken in state s, will lead to state s′

at the next timestep. The reward R(s,a,s′) is the reward received after transitioning from

state s to state s′ by taking action a. While not indicative of autonomous agent navigation

problems in general, each MDP used a fully observable state. This was done to ensure

that any performance difference between controllers for the same set of primitive tasks was

only due to the state and action abstractions used.

We considered the case where the N primitive tasks can be, and frequently are, active

concurrently, interfere with one another, and have no termination criteria and are considered

non-episodic (or CINE). The only exception was the GOALSEEK task which terminated

when an agent reached the goal location. The state space S for each primitive task used was

distinct and local to that specific task, that is, Sx∩ Sy = /0 for any primitive tasks x,y ∈ N.

This property is not necessary in the general case, but is indicative of the state spaces used in

the work presented here. While the action space for each primitive task may vary between

primitive actions, we considered the more difficult problem domains where the same action

space was shared among all primitive tasks, that is, Ax = Ay for any primitive tasks x,y ∈

46

N. For example, if both a COLLISIONAVOIDANCE and GOALSEEK primitive task were

active, only the state space for the COLLISIONAVOIDANCE task contained information

regarding potential collisions while only GOALSEEK’s state space contained information

regarding the goal location. Both primitive tasks would share the same action space, which

is composed of steering motor control actions.

The composition of these N primitive tasks forms a composite task which attempts

to take an action at each timestep that maximizes the summed expected reward of each

primitive task:

R(s,a,s′) =
N

∑
i

Ri(si,a,s′i). (4.1)

An important aspect of this combination of primitive tasks is that an action that maximizes

the reward for one primitive task could result in a penalty for another primitive task and,

therefore, cause interference between the primitive tasks. While each primitive task had a

(relatively) small state space, the state space for the composite task was the cross product

of the state space for each primitive task: S = S1×S2× . . .×SN . When this combined state

space, referred to as the joint state space, was combined with the low-level action space,

the resulting complexity can make the traditional development of an effective controller

impractical. In order to manipulate the complexity of each task without fundamentally

altering the task itself, both two and three-dimensional environments were used. The addi-

tion of the third dimension increased not only the state and action spaces, but also allowed

for more complex interactions between the agent(s) and the environment, especially when

using machine learning techniques to develop controllers.

Two sets of problem domains were used in this work. In the first, a single agent was

given composite tasks in environments without any other agents present with which to in-

teract. These tasks represented the least complex problem domains and provided examples

in which traditional development methods are potentially practical. In the second set, a

team of agents was given composite tasks that required successful coordination between

the agents. These tasks represented more complex problem domains and provided exam-

47

CollisionAvoidance GoalSeek

CA-GS

Figure 4.1: In the CA-GS behavior hierarchy, the CA-GS composite behavior weights the
COLLISIONAVOIDANCE and GOALSEEK primitive behaviors. Half-filled circles denote
the weights used by behavior modulation.

ples in which traditional development methods are impractical. This complexity extended

beyond simply the size of the state-action space since a successful controller must deal with

agent-to-agent interactions. Note, however, that the state space for the multi-agent tasks is

not the joint state space of all the agents. The state variables used by the controllers are in-

dependent of the number of other agents in the environment as they represent the aggregate

information of the team.

4.1 Single Agent Problem Domains

In the first single-agent composite task, an agent navigated towards a goal location while

avoiding any obstacles in its path. This composite task, denoted CA-GS, was the combina-

tion of the COLLISIONAVOIDANCE and GOALSEEK primitive tasks. The state information

local to the COLLISIONAVOIDANCE task consisted of the relative direction to the closest

potential collision and the estimated time until collision. The state information local to the

GOALSEEK task consisted of the relative direction to the goal location and the estimated

time of arrival at the goal location given only the current speed of the agent. All state infor-

mation was normalized and measured relative to the agent’s position and orientation. This

was done to decouple the learned behavior from the specifics of the environment. A more

detailed description of the state space for these primitive tasks, and the others discussed

below, can be found in Section 4.3.

48

CollisionAvoidance GoalSeek RunAway

CA-GS-RA

Figure 4.2: The CA-GS-RA behavior hierarchy adds the RUNAWAY primitive behavior
to the existing CA-GS behavior hierarchy. Half-filled circles denote the weights used by
behavior modulation.

In the fuzzy behavior hierarchy for the CA-GS composite task, primitive behaviors

were created at the lowest level for the COLLISIONAVOIDANCE and GOALSEEK prim-

itive tasks (see Figure 4.1). A composite behavior for the CA-GS composite task was

then created at the level above the primitive behaviors and was responsible for weighting

the primitive behaviors properly, given the current state of the agent with respect to the

composite task as a whole.

In the second single-agent composite task, a third primitive task was added to the previ-

ous two. In this new primitive task, denoted RUNAWAY, the agent must avoid approaching

too close to “hazardous” objects in the environment. The hazardous objects were not phys-

ical objects like obstacles with which the agent could collide, but instead represented areas

that could be dangerous to the agent like areas of high-traffic or with difficult terrain. The

state information local to the RUNAWAY task consisted of the relative direction and mag-

nitude of a repulsive “force” which effectively acted to steer the agent away from all the

sensed hazardous objects. The new composite task was denoted CA-GS-RA. The fuzzy

behavior hierarchy for the CA-GS-RA composite task was similar to that of the CA-GS

hierarchy with the addition of the RUNAWAY primitive behavior (see Figure 4.2).

49

Alignment Cohesion

Flocking

Separation

Figure 4.3: The FLOCKING composite behavior composes the ALIGNMENT, COHESION,
and SEPARATION primitive behaviors by using weights, denoted as half-filled circles.

4.2 Multi-Agent Problem Domains

In the first multi-agent composite task, a team of homogeneous agents must move together

as a single unit, or flock, without explicit communication. This composite task, denoted

FLOCKING, approximated the movement of flocks of birds or schools of fish [70, 71] and

was a combination of the ALIGNMENT, COHESION, and SEPARATION primitive tasks. In

the ALIGNMENT primitive task, the agents were given the task of steering in the same

direction and at the same speed as the rest of the team. The state information local to

this task consisted of the normalized relative differences in speed and heading. In the

COHESION primitive task, the agents were given the task of steering towards the other

agents in the team in an effort to remain close to the team. The state information local

to the COHESION task consisted of the normalized distance and relative heading to the

mean position of the other sensed teammates. Lastly, in the SEPARATION primitive task,

the agents were given the task of steering away from other agents on the team which were

“too close” in an effort to maintain a safe, minimum separation and prevent crowding.

The state information local to the SEPARATION task consisted of the strength and relative

direction of a repulsive “force” from the other sensed teammates. Agents relied only on

the state information provided by sensors and did not communicate. Note that the goals of

the ALIGNMENT and SEPARATION primitive tasks are diametrically opposed. Therefore,

for FLOCKING to be successful, a policy that was able to effectively balance the two was

necessary.

50

Alignment Cohesion Separation Collision
Avoidance

Flocking-CA

(a) 2-level hierarchy

Alignment Cohesion

Flocking

Separation Collision
Avoidance

Flocking-CA

(b) 3-level hierarchy

Figure 4.4: The two alternatives for implementing the FLOCKING-CA composite behavior
are shown. In the first, the FLOCKING-CA composite behavior composes the ALIGN-
MENT, COHESION, SEPARATION, and COLLISIONAVOIDANCE primitive behaviors. In
the second, FLOCKING-CA composes the FLOCKING composite behavior with the COL-
LISIONAVOIDANCE primitive behavior.

In the fuzzy behavior hierarchy for the FLOCKING composite task, primitive behav-

iors were created at the lowest level for the ALIGNMENT, COHESION, and SEPARATION

primitive tasks (see Figure 4.3). A composite behavior for the FLOCKING composite task

was then created at the level above the primitive behaviors and was responsible for weight-

ing ALIGNMENT, COHESION, and SEPARATION properly, given the current state of the

composite task.

In the next multi-agent composite task, we added the primitive task of COLLISION-

AVOIDANCE to the FLOCKING composite task. In this task, each agent was tasked with

51

avoiding collisions with other agents and with obstacles in the environment in addition to

performing FLOCKING. The COLLISIONAVOIDANCE primitive task used the local state in-

formation consisting of the direction and estimated time until the nearest collision. In fact,

the task did not differentiate between collisions with other agents or obstacles. This new

composite task, denoted FLOCKING-CA, presented the option of adding a new composite

behavior, and, therefore, another level to the hierarchy (see Figure 4.4). Since the task

was ignorant of the concept of a team and teammates, an argument can be made that the

COLLISIONAVOIDANCE primitive task should be considered separately from the FLOCK-

ING primitive tasks. The use of an additional composite behavior at a higher level in the

hierarchy did not only simplify the action space of the FLOCKING-CA composite task, but

it also had the potential simplify the state space if the full joint state space of the composite

task was not necessary for effective control. Furthermore, this hierarchical decomposition

enabled existing policies for the FLOCKING task to be reused for the FLOCKING-CA task.

To further increase the complexity, the GOALSEEK primitive task was added to the

previous composite task to create the FLOCKING-CA-GS composite task. While the COL-

LISIONAVOIDANCE primitive task could have actually assisted the task of FLOCKING by

providing another means of avoiding collisions between members of the team in addition

to the SEPARATION task, the addition of the GOALSEEK complicated the FLOCKING task.

Since the state space for the GOALSEEK primitive task only included the relative direction

to the goal location and the estimated time of arrival at the goal location, it was ignorant

of any other agents in the environment. While the same potential for interference existed

in the CA-GS or CA-GS-RA composite tasks, the presence of multiple agents navigat-

ing towards the same goal location only served to increase the potential for collision. As

with the FLOCKING-CA task, the clear separation between the FLOCKING composite task

and the COLLISIONAVOIDANCE and GOALSEEK primitive tasks offered the potential for

creating a separate composite behavior for coordinating the respective behaviors.

In the last multi-agent composite task, the RUNAWAY primitive task was added to the

52

ALIGNMENT COHESION SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

CA-GS

(c) 3-level hierarchy reusing two composite behaviors

Figure 4.5: Three alternatives for implementing the FLOCKING-CA-GS composite be-
havior are shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA
composite task with the addition of the GOALSEEK primitive behavior

53

ALIGNMENT COHESION SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION COLLISION
AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK

CA-GS-RA

RUNAWAY

(c) 3-level hierarchy reusing two composite behaviors

Figure 4.6: Three alternatives for implementing the FLOCKING-CA-GS-RA composite
behavior are shown. Each is similar to the corresponding hierarchy for the FLOCKING-
CA-GS composite task with the addition of the RUNAWAY primitive behavior

54

FLOCKING-CA-GS composite task to create the FLOCKING-CA-GS-RA composite task.

As with the previous two composite tasks, a separate composite behavior which coordi-

nated the FLOCKING composite task and the COLLISIONAVOIDANCE, GOALSEEK, and

RUNAWAY primitive behaviors was possible. While the same potential benefits exist, the

large number of primitive tasks which must be coordinated had the potential exaggerate

the results. As is described in Chapter 7, it was at this point that the complexity of the

composite task’s joint state space became too large for traditional methods of developing

effective controllers to be practical and alternative methods were required (see Appendix A

for more detailed information). The use of this composite task represented the upper limit

of complexity used in this work.

4.3 Primitive Task State Information

The state information for each primitive task was described in egocentric terms to facili-

tate generalization and to simplify the state space. Furthermore, time estimates for events

such as a potential collision or arrival at the goal location were also used to facilitate gen-

eralization and to simplify the state space. Otherwise, both a distance and the agent’s

current speed would be required. Before each piece of state information was used by a

controller, the value was ensured to be within an interval with a maximum value and then

normalized. This ensured that environment and agent specific information (e.g., maximum

sensor range and minimum safe distance) were not directly used by the controller. This

promotes generalization in the controller and reuse in other composite tasks and with dif-

ferent agents. However, the fact that state information was ensured to be within an interval

with a maximum level contributed situations where different states which require different

actions appeared to be the same state. This problem of perceptual aliasing could negatively

impact the learning of an effective controller [99]. The motor control actions available to

each primitive task were also relative to the agent’s current state and specified the change

in speed and heading.

55

Table 4.1: The different state information relevant to each primitive task are shown. In
addition, the number of discrete values for each variable is also shown. When fuzzy logic
is used, the values are not crisp. See Appendix E for more details on the fuzzy member-
ship functions used. Note that Φ related variables are only present in three-dimensional
environments.

Primitive Task State Variable Discrete Values

COLLISIONAVOIDANCE

Time until collision 5
Collision direction Θ 7
Collision direction Φ 5

GOALSEEK

Arrival time at goal 5
Goal direction Θ 7
Goal direction Φ 5

RUNAWAY

Runaway strength 5
Runaway direction Θ 7
Runaway direction Φ 5

ALIGNMENT

Speed difference 5
Heading difference Θ 7
Heading difference Φ 5

COHESION

Arrival time at mean team position 5
Mean team position direction Θ 7
Mean team position direction Φ 5

SEPARATION

Separation strength 5
Separation direction Θ 7
Separation direction Φ 5

The state information relevant to each primitive task is shown in Table 4.1. Note that Θ

has seven linguistic values while Φ only has five. This is due to the fact that Θ was defined

on larger interval [−π,π] and needs more resolution than Φ which was only defined on the

interval [−π

2 , π

2]. The state information relevant to each primitive task was the only state

information used by the associated primitive behavior. The state information for a compos-

ite task was a combination of all the state information for the primitive tasks comprising

the composite task. A composite behavior may use all the state information or a subset of

the information in an abstracted form (see Chapter 6). Note that state information using Φ

directions were only present in three-dimensional environments.

56

CHAPTER 5

Development of Controllers

While the use of an adaptive fuzzy behavior hierarchy does simplify the design of a con-

troller, there still exists the challenge of developing an effective controller. The first step

in the process is to identify the input and output values, or linguistic variables, of the sys-

tem. Appropriate linguistic values and membership functions for these linguistic variables

must also be defined. This requires a familiarity with not only the current task, but also

an understanding of how the membership functions will affect the resulting controller. The

next step is to design a set of fuzzy rules to produce the desired behavior1. This also re-

quires expert knowledge of the current task, but at a far deeper level than that required in

the creation of the membership functions. Development of the fuzzy rules for a behavior,

especially manual development, requires an understanding of all the competing aspects of

a task. Rarely, if ever, are either the membership functions or the fuzzy rules correct in their

initial form. An iterative “test-debug-tune” cycle is usually required before a controller is

effective [93]. The amount of time and effort required by this development cycle is de-

pendent on the complexity of the task and the amount of expert knowledge in the problem

domain that is available.

The development of primitive behaviors is straightforward since the primitive tasks

they accomplish are, by definition, simple. The simplicity of the task itself means that

manually creating fuzzy rules using a heuristic is entirely practical. This is especially true

if one believes that alternative approaches, such as reinforcement learning, should only

be used if a solution is not already known. Similarly, the simplicity of the task means

1While the organization of the behavior hierarchy itself must precede this step, we assume that such a
process has already been done in the process of creating a composite task by composing already defined
primitive tasks.

57

that the linguistic values and membership functions are relatively easy to create. While fine

tuning of the rules and membership functions may be required, the effort required is usually

minimal. In his original work on adaptive fuzzy behavior hierarchies, Tunstel manually

developed primitive behavior rulesets for use on an actual robot with great success.

The development of composite behaviors, however, is far more complex than the de-

velopment of primitive behaviors. While the overall composite task may be simple con-

ceptually, its implementation can be quite complex. As primitive tasks are added to the

composite task, the availability of expert knowledge decreases significantly. For example,

although manually developing an effective composite behavior for the CA-GS composite

task is more difficult than developing controllers for the individual primitive tasks, it is pos-

sible since only two primitive behaviors require coordination. On the other hand, manually

developing an effective composite behavior for the FLOCKING-CA-GS composite task is

impractical at best. As a result, for the development of composite behaviors to be practical,

alternatives to their manual development must be used.

There are two aspects of developing a behavior, whether it be composite or primitive,

that one must consider. The first is the fuzzy ruleset for the behavior and the second is

the linguistic values and membership functions used by the fuzzy rules. Although there

is work in the field that seeks to develop both either in parallel [21] or sequentially in an

iterative process (see Section 2.4), this work used manually developed linguistic values

and membership functions and focused on automatically creating fuzzy rulesets. This was

done to minimize the number of sources which could potentially affect the performance

of various approaches in different ways. Two different methods of automatically creating

composite behaviors were used: reinforcement learning and grammatical evolution.

5.1 Composite Reinforcement Learning

While reinforcement learning is capable, in general, of learning effective control policies,

many of the more popular reinforcement learning approaches are either not applicable to

58

Composite
Task

Collision Avoidance
Primitive Task

Goal Seek
Primitive Task

Action

(a) Monolithic Reinforcement Learning

Collision
Avoidance

Primitive Task

Goal Seek
Primitive Task

Composite
Task

ActionAction
Utilities

(b) Modular Reinforcement Learning

Collision
Avoidance

Primitive Task

Goal Seek
Primitive Task

Composite
Task ∑ Action

Weights
Weighted
Actions

(c) Composite Reinforcement Learning

Figure 5.1: A comparison of the different reinforcement learning algorithms discussed
in this work is shown using a simple COLLISIONAVOIDANCE-GOALSEEK composite task.
The shaded tasks are where policy learning occurs in each algorithm. The half-filled circles
denote the weights used to compose actions from primitive task policies for composite
reinforcement learning.

59

CINE tasks or are incapable of dealing with the resulting complexity (see Section 2.3).

One of the few reinforcement learning approaches that is applicable to the CINE tasks

under study here, modular reinforcement learning, has many properties that can prove to be

liabilities (see Section 2.3.2). An alternative method is, therefore, needed if reinforcement

learning can be used to learn effective control policies for composite tasks built using CINE

primitive tasks.

In light of this need, we propose a new reinforcement learning approach that we term

composite reinforcement learning (see Figure 5.1). Composite reinforcement learning

leverages the architecture of the adaptive fuzzy behavior hierarchy to significantly improve

the rate at which effective control policies are learned (see Section 3.2). Unlike modular re-

inforcement learning, composite reinforcement learning does not attempt to learn policies

for the primitive tasks simultaneously. Instead, composite reinforcement learning learns

an effective control policy for a given composite behavior only and reuses existing im-

plementations of lower-level behaviors. These reused lower-level behaviors are viewed as

black boxes and are modulated by the policy being learned. Therefore, instead of learning

low-level motor control actions, composite reinforcement learning learns high-level mod-

ulation (i.e., weighting) actions on the lower-level behaviors. The reinforcement learning

algorithm itself is largely unmodified except that the concept of an action has changed. The

policy’s actions are now weighting actions and after the policy’s action has been taken, the

lower-level behaviors are executed and the overall action of the agent is computed. The

composite task policy being learned then determines the total reward and updates the rel-

evant Q-value. As a result of this change in definition, the Sarsa update rule can now be

described by the following:

Qct(sct ,act)← (1−α)Qct(sct ,act)+α(r + γ Qct(s′ct ,a
′
ct)) (5.1)

where sct is the state of the agent with respect to the composite task, act is the action

60

taken for the current composite task which is consists of the modulation of the lower-

level behaviors, and Qct(sct ,act) is the Q-value of the state and action with respect to the

composite task.

Note that the Q-values used by the learned policy are associated only with the modula-

tion actions and not with the actions taken by the lower-level behaviors. While this means

that the maximum performance of the learned policy is dependent on the performance of

the lower-level behaviors in their associated tasks, in practice this appears to not present

problems (see Chapter 7) and offers many benefits over other approaches, such as modular

reinforcement learning, especially in the work presented in this dissertation.

One of the most significant benefits is the abstraction of the action space into high-level,

“meta-actions.” As a result, the reinforcement learner is not required to learn the entire

composite task from scratch. Rather, it only needs to learn how to best coordinate lower-

level behaviors to accomplish the composite task. In a related benefit, existing behaviors

can potentially be reused without modification by the learned policy and without specific

requirements on their implementation method. Composite reinforcement learning does not

require reused behaviors provide any information to aid in the learning or control process

(e.g., Q or utility values). As a result, individual behaviors can be developed in isolation,

simplifying the development process, using the method most appropriate for the task.

Furthermore, since the action space has been abstracted away from low-level motor

control actions, it may be possible to aggressively abstract the agent’s state for use in the

composite behavior without the corresponding performance penalties commonly associated

with perceptual aliasing [99]. This is especially significant in light of our interest in directly

comparing the effects of state and action abstraction on a controller’s performance and

learning rate. Note that this abstraction of the state only occurs in the composite behaviors;

primitive behaviors still access the unabstracted state associated with the relevant primitive

task to produce control actions.

While the idea of abstracting the action space into meta-actions is not novel and many

61

A1x

is

and

IF ... THEN

B1y

is

C1z

is

IF x is A1 and y is B1 THEN z is C1

Figure 5.2: A sample genetic programming solution representing a fuzzy rule using a tree-
like structure of symbols is shown.

hierarchical reinforcement learning approaches use it extensively [18, 42, 72], our formu-

lation of an action is novel. Since most approaches focus on episodic and non-interfering

tasks, meta-actions in these approaches represent temporally extended sequences of ac-

tions. When a meta-action is executed, the meta-action assumes control of the agent ei-

ther for the entire sequence of actions or until an event causes the high-level policy to re-

examine the agent’s state. In contrast, the meta-actions used by composite reinforcement

learning are taken every timestep and represent the coordination of lower-level behaviors

for that timestep only. In general, no one behavior is given complete control of the agent’s

actions.

5.2 Grammatical Evolution

Originally, composite behaviors for adaptive fuzzy behavior hierarchies were automatically

developed using genetic programming. Genetic programming was used offline to evolve

the fuzzy coordination rules for a composite behavior. Evolved rulesets were then evaluated

in simulated environments to determine their fitness. Genetic programming uses a tree-like

structure of symbols to represent individuals, instead of the bit-string representation com-

monly used by genetic algorithms [43]. This tree-like structure of symbols is conceptually

62

similar to the tree-like structure of a fuzzy ruleset. The combination of this tree-like struc-

ture and genetic programming’s use of symbols instead of numeric values lends itself to

the production of fuzzy rulesets (see Figure 5.2). Each branch from the root node in the

tree represents a separate rule in the ruleset. The linguistic variables and values used in

antecedents and consequents form a terminal set. The rules, antecedents, consequents, and

other fuzzy rule components form a function, or non-terminal, set.

While genetic programming was capable of generating effective rulesets in Tunstel’s

work [93], its use can present difficulties. First, invalid rules can be created if measures

aren’t taken to ensure that the crossover and mutation operators always produce valid rules.

Strongly-typed genetic programming [55] can be used to prevent the creation of invalid

rules, but its use necessitates additional computational effort to search for valid crossover

points between two individuals. Second, large portions of individuals created by genetic

programming are not ever used during evaluation and are referred to as introns. These

introns serve to protect useful parts of the individual from destructive crossover or muta-

tion. However, introns don’t affect the fitness of the individual and can result in wasted

computational resources. Furthermore, for an entire population of individuals with a large

tree structure, the memory and computational resources necessary can become prohibitive.

Since the problem domains under investigation in this work are complex and already re-

quire significant computational resources, an alternative approach was desirable.

Since the introduction of adaptive fuzzy behavior hierarchies, a new evolutionary ap-

proach has been introduced which has the expressive power of genetic programming with

the implementation simplicity of genetic algorithms. Grammatical evolution uses a context-

free grammar to map a variable-length bit-string genotype, like those used in genetic algo-

rithms, to a more complex, tree-like structure of symbols, like those produced by genetic

programming [58, 79]. Grammatical evolution offers all the benefits of using genetic pro-

gramming to evolve fuzzy rulesets, without the potential problems. By carefully designing

an appropriate grammar, we can ensure that all the rulesets created by grammatical evo-

63

lution are valid. Furthermore, since an individual is maintained as a simple bit-string, the

memory requirements are minimal. Also, as will be shown, introns are only present in the

genotype and are easily pruned. In previous work, we demonstrated that grammatical evo-

lution is capable of providing effective fuzzy rulesets in a single-agent navigation problem

domain [24].

In grammatical evolution, a context-free grammar is used to map the bit-string genotype

to a symbolic phenotype. The Backus Naur Form notation is used to describe the grammars

used in this work. Formally, a grammar G is defined by G = {N,T,P,S}, where N is the

set of non-terminals, T is the set of terminals, P is a set of production rules, and S is the

start symbol where S ∈ N. For example, consider a simple grammar used to produce fuzzy

rules for the GOALSEEK primitive task (see Figure 5.3). The set of non-terminals includes

symbols necessary to organize the fuzzy rules such as: rule, antecedent, and consequent.

The terminal set includes the linguistic variables and values used in fuzzy rules such as:

goal-direction, LEFT, steer-speed, and FASTER. In this grammar, the start symbol is a

rule which is capable of producing other rules. The potential production rules for this

grammar are shown in Figure 5.3.

To produce an individual’s symbolic phenotype, the grammar’s start symbol is replaced

using one of the specified production rules. Replacement continues until either there are no

more non-terminals to replace or a maximum number of rules is reached. In this process,

the genotype is used to select the replacement of a production rule to perform. This is

accomplished by organizing the bit-string into codons of 8-bits each. The integer value of

the codon is then used to determine which replacement is made. This process continues

with the next codon until replacement stops. If the end of the bit-string is reached while

non-terminals remain, replacement continues at the beginning of the bit-string. A portion

of this process is depicted in Figure 5.4.

Since the genotype is a simple, variable-length bit-string, standard genetic algorithm

operators can be used in grammatical evolution. No modifications are necessary to en-

64

T = {LEFT, CENTER, RIGHT, NOW, SOON, DISTANT, SLOWER, SAME,
FASTER}

N = {〈rule〉, 〈antecedent〉, 〈consequent〉, 〈goal-dir〉, 〈goal-arrival-time〉,
〈steer-speed〉, 〈steer-dir〉}

S = 〈rule〉

P is represented as:

〈rule〉 ::= 〈antecedent〉 〈consequent〉
| 〈antecedent〉 〈consequent〉; 〈rule〉

〈antecedent〉 ::= 〈antecedent〉 〈antecedent〉
| 〈goal-dir〉
| 〈goal-arrival-time〉

〈consequent〉 ::= 〈consequent〉 〈consequent〉
| 〈steer-speed〉
| 〈steer-dir〉

〈goal-dir〉 ::= goal-dir(LEFT)
| goal-dir(CENTER)
| goal-dir(RIGHT)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(SOON)
| goal-arrival-time(DISTANT)

〈steer-speed〉 ::=steer-speed(SLOWER)
| steer-speed(SAME)
| steer-speed(FASTER)

〈steer-dir〉 ::= steer-dir(LEFT)
| steer-dir(CENTER)
| steer-dir(RIGHT)

Figure 5.3: A sample grammatical evolution grammar which could be used in generating
fuzzy rules for the GOALSEEK primitive task is shown.

65

1. Replacement is initialized by converting the bit-string to a codon-string

. . .55 13 42 188 72

and the grammar’s start symbol:

〈rule〉

2. Replacement starts by using the first codon to select a replacement from the start
symbol’s production rule:

. . .55 13 42 188 7255

The index of the replacement is chosen by calculating the codon’s value modulus the
number of replacement options:

55 mod 2 = 1

which then replaces the current non-terminal:

IF 〈antecedent〉 THEN 〈consequent〉; 〈rule〉

3. Replacement continues by using the second codon to select a replacement for the
〈antecedent〉 non-terminal:

. . .55 13 42 188 7213

13 mod 3 = 1

which then replaces the non-terminal:

IF 〈goal-dir〉 THEN 〈consequent〉; 〈rule〉

Figure 5.4: A sample grammatical evolution replacement process using the grammar de-
fined in Figure 5.3 is shown.

66

4. The third codon is then used to select a replacement for the 〈goal-dir〉 non-terminal:

. . .55 13 42 188 7242

42 mod 3 = 0

which then replaces the non-terminal:

IF goal-dir(LEFT) THEN 〈consequent〉; 〈rule〉

5. Since the last replacement produced a terminal, replacement moves on to the
〈consequent〉 non-terminal and the fourth codon is then used to select a replacement:

. . .55 13 42 188 72188

188 mod 3 = 2

which then replaces the non-terminal:

IF goal-dir(LEFT) THEN 〈steer-dir〉; 〈rule〉

6. The fifth codon is then used to select a replacement for the 〈steer-dir〉 non-terminal:

. . .55 13 42 188 7272

72 mod 3 = 0

which then replaces the non-terminal:

IF goal-dir(LEFT) THEN steer-dir(LEFT); 〈rule〉

7. Replacement continues . . .

Figure 5.4: A sample grammatical evolution replacement process using the grammar de-
fined in Figure 5.3 is shown (continued).

67

sure that valid rules are produced because the genotype does not represent a ruleset. By

carefully designing the grammar used, one can ensure that the ruleset generated by the

grammar is valid. As a result, the standard one-point crossover operator is frequently used

in grammatical evolution. Mutation in grammatical evolution is the same as that found in

genetic algorithms and randomly flips bits in the bit-string. After a bit-string has been used

to produce a phenotype, the unused codons in the genotype can be pruned as they represent

introns. This is much simpler than a similar process for genetic programming would be.

Figure 5.5 shows the production rules used to generate fuzzy rulesets for the two-

dimensional CA-GS composite behavior. Note that there is a duplicate choice in the pro-

duction rule for the grammar’s start symbol 〈rule〉. The addition of a duplicate choice was

made to bias replacement towards the generation of multiple rules. Exploratory experi-

ments demonstrated that without this bias, the generated rulesets had very few rules and

sub-optimal fitness. While such a bias is not generally needed in a grammar, the fact that

we are randomly generating rules using the grammar necessitates the bias. An example

would be to give higher weight to the letter ’e’ when randomly generating words for the

English language since it is the most common letter. Since grammatical evolution does

not provide a means of giving weight to specific choices for replacement, this bias was

manually implemented by adding the additional replacement choice. This addition did not

fundamentally alter the grammar, it simply increased the probability of choosing a replace-

ment which resulted in additional rules. There has been recent work on adding attributes

to grammars which may address this need [12, 13], but such an investigation is beyond the

scope of this work.

68

〈rule〉 ::= 〈antecedent〉 〈consequent〉 〈rule〉
| 〈antecedent〉 〈consequent〉 〈rule〉
| 〈antecedent〉 〈consequent〉

〈antecedent〉 ::= 〈antecedent〉 〈antecedent〉
| VERY (〈antecedent〉)
| NOT (〈antecedent〉)
| 〈collision-dir〉
| 〈time-till-collision〉
| 〈goal-dir〉
| 〈goal-arrival-time〉

〈consequent〉 ::= 〈consequent〉 〈consequent〉
| VERY (〈consequent〉)
| 〈relative-steer-speed〉
| 〈steer-dir〉

〈collision-dir〉 ::= collision-dir(BACK_LEFT)
| collision-dir(LEFT)
| collision-dir(SMALL_LEFT)
| collision-dir(CENTER)
| collision-dir(SMALL_RIGHT)
| collision-dir(RIGHT)
| collision-dir(BACK_RIGHT)

〈time-till-collision〉 ::= time-till-collision(NOW)
| time-till-collision(REAL_SOON)
| time-till-collision(SOON)
| time-till-collision(LONG_TIME)
| time-till-collision(DISTANT)

〈goal-dir〉 ::= goal-dir(BACK_LEFT)
| goal-dir(LEFT)
| goal-dir(SMALL_LEFT)
| goal-dir(CENTER)
| goal-dir(SMALL_RIGHT)
| goal-dir(RIGHT)
| goal-dir(BACK_RIGHT)

Figure 5.5: The production rules used for evolving a monolithic fuzzy ruleset for the two-
dimensional CA-GS composite behavior is shown. The grammar’s start symbol is 〈rule〉.

69

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL_SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG_TIME)
| goal-arrival-time(DISTANT)

〈relative-steer-speed〉 ::= steer-speed(MUCH_SLOWER)
| steer-speed(SLOWER)
| steer-speed(SAME)
| steer-speed(FASTER)
| steer-speed(MUCH_FASTER)

〈steer-dir〉 ::= steer-dir(LEFT)
| steer-dir(SMALL_LEFT)
| steer-dir(CENTER)
| steer-dir(SMALL_RIGHT)
| steer-dir(RIGHT)

Figure 5.5: The production rules used for evolving a monolithic fuzzy ruleset for the two-
dimensional CA-GS composite behavior is shown. The grammar’s start symbol is 〈rule〉.
(continued)

70

CHAPTER 6

Implementation and Evaluation

To evaluate the effects of state and action abstraction on the process of developing con-

trollers for composite tasks, a series of experiments were performed in which controllers

where automatically developed for each primitive and composite task using reinforcement

learning and grammatical evolution (see Chapter 4). First, controllers for each of the prim-

itive tasks were developed. The results of these experiments provided a baseline measure

for the effort required to create an effective controller for a primitive task in isolation. Next,

controllers for each of the composite tasks were developed.

Experimental runs were evaluated using two different metrics. The first metric used was

the best generalized performance of the agent controllers. This generalized performance

was determined by executing agent controllers in environments which were different than

the ones used in their development. For controllers developed using reinforcement learn-

ing, the controller’s performance was the mean undiscounted, total reward of the agent

in all the environments. For controllers developed using grammatical evolution, the con-

troller’s performance was the mean fitness of the agent in all the environments. The second

metric used was the computational effort used to develop the controllers. For controllers

developed using reinforcement learning, the number of updates to the Q-values was used to

measure the rate of development, while the number of generations was used for controllers

developed using grammatical evolution.

While the number of training episodes could have been used as a basis for comparing

the rate of development for controllers developed using reinforcement learning, it would

not have been a fair comparison since training episodes did not contain equal numbers

71

of learning experiences. For example, the number of learning experiences for an episode

with an early collision was far less than for an episode with a late collision. Since the

fitness of individual solutions in grammatical evolution (in this case, a set of fuzzy rules)

was determined by the overall performance in an episode, the performance per timesteps

evaluated was not applicable (which would be the closest measure to reinforcement learn-

ing’s updates). Note that as a consequence, reinforcement learning results and grammatical

evolution results cannot be directly compared.

6.1 Evaluation Environments

A lightweight, custom simulator was designed and implemented for the development and

evaluation of agent controllers. It was designed with a focus on speed and configurabil-

ity in an effort to maximize the variety of experiments with which it could be used. As

a result, it provided a low-fidelity simulation environment in which kinematics were sim-

ulated, but dynamics were not. The simulator supported both two and three-dimensional

continuous environments which were defined by simple XML files. All sensors in the en-

vironment were idealized and, therefore, had no noise in the sensor readings. Agents were

implemented using configurable modules which could specify sensors, behaviors, or other

routines necessary for operating in the simulator. Since each module was configurable,

replacing heuristic behaviors with reinforcement learning policies or evolved rulesets was

simple and did not require the creation of special “learning” agents.

For each composite task, forty environments were randomly generated. Agents were

given random positions and orientations within a specified region of the environment. If a

goal location was required, it was randomly placed within a specified distance interval from

the agent(s). If obstacles were required, a random number of obstacles were generated and

given random positions in an area surrounding the agent(s) and goal location. The same

procedure was followed for hazardous objects, if required. An example of a randomly

generated environment for the CA-GS-RA composite task is shown in Figure 6.1. A listing

72

Figure 6.1: An example of one of the randomly generated CA-GS-RA environments used
in experiments is shown. The agent is denoted by a blue triangle, obstacles are denoted by
red spheres, “hazardous” objects are denoted by yellow spheres, and the goal is denoted by
a green sphere. The orientation of the agent is random. The position and number of each
obstacle and “hazardous” object is random within a specified area of the environment. The
goal is placed ad a random distance within a specified interval from the agent.

73

of the parameters used to generate the evaluation environments is provided in Appendix B.

These forty environments were organized into ten folds of four environments each for

use in cross-validation [14]. Eight folds were used as a training set, one fold was used

as a validation set, and a final fold was used as a testing set. Both validation and testing

sets were used to evaluate the generalizability of the learned controller. The exact uses

of the validation and testing sets were learning algorithm-dependent and are discussed in

Sections 6.4 and 6.5.

Each experiment consisted for forty individual runs initialized with a different random

seed. Four experimental runs for each of the ten folds were performed. The same set of

environments was shared between all experiments for a given primitive or composite task,

while folds had different sets of training, validation, and testing environments. For exam-

ple, all experiments using the two-dimensional CA-GS composite task shared the same set

of environments, regardless of how the controller was developed or the architecture it used.

Agents were given a maximum of 1,500 time steps in each environment which consti-

tuted a single training episode. This was ample time for even the most risk-averse agent(s)

to reach the goal location, if applicable, or to gain sufficient experience in the environ-

ment. While most of the primitive tasks used are non-episodic (the exception being the

GOALSEEK primitive task), training was broken into episodes as a consequence of the

nature of the evaluation environments and the primitive tasks themselves. Since the envi-

ronments were unbounded, it was possible that in exploring the state space, agents could

wander away from the finite number of obstacles or the other agents on the team and never

have a realistic opportunity to return to the more “interesting” states of the environment.

Furthermore, since much of this work is intended to operate on real robots, agent colli-

sions warranted early termination of a training episode. Training episodes also ended early

when an agent or the team of agents reached the goal location since the GOALSEEK task is

inherently episodic.

Some tasks required modifications to the environments for effective controllers to be

74

Table 6.1: The different state abstractions used in the development of a composite behavior
using the GOALSEEK primitive task are shown.

Abstraction Level State Information States Total States

Full
Goal arrival time 5

175Goal direction Θ 7
Goal direction Φ 5

Large
Goal arrival time 5

125Goal direction |Θ| 5
Goal direction |Φ| 5

Medium
Goal arrival time 5

25
Goal direction max(|Θ| , |Φ|) 5

Small Goal seek priority 5 5

learned. For example, in environments used to learn the COLLISIONAVOIDANCE primitive

task, obstacles randomly wandered through the environment, otherwise the agent could

simply avoid collisions by not moving. A number of modifications to the environments

using the FLOCKING composite task were necessary to promote learning of the desired

behavior in architectures which did not use fuzzy behavior hierarchies. These included

giving agents a random, initial velocity and preventing agents from coming to a full stop.

Furthermore, an obstacle that moved towards the initial position of the agent was added to

the environment. These modifications were made in response to the learning of sub-optimal

behavior in the monolithic controllers such as immediately stopping and not moving for the

duration of the episode. For reasons discussed later (see Section 7.4), these modifications

were not required for architectures using adaptive fuzzy behavior hierarchies.

6.2 State Space Abstraction

Since it is possible that composite behaviors in fuzzy behavior hierarchies do not require

the full state space for effective coordination of lower-level behaviors, five different levels

of abstraction of the agent’s state space were used when learning composite behaviors.

75

These were used to evaluate how abstractions affected both the rate at which effective

composite behaviors were learned and their quality. Table 6.1 details the effects of each

abstraction level on the state information for a composite behavior using the GOALSEEK

primitive task. Figure 6.2 provides an example of each abstraction level when used with

grammatical evolution.

Full This state space represents the original, joint state space of all the primitive tasks used

in the composite task without any abstraction and acts as a baseline for comparison

(see Figure 6.2a).

Large In this state space, state information describing directions, such as SMALL_LEFT

or SMALL_RIGHT, are abstracted away into variables which denote the absolute

value of the angle, such as SMALL (see Figure 6.2b). State information not describing

a direction remains unchanged.

Medium In this state space, state information describing three-dimensional directions are

abstracted away into a single variable which denotes the absolute value of the largest

angle (see Figure 6.2c). State information not describing a direction remains un-

changed. Note that in two-dimensional environments, this state space is the same as

the Large state space.

Small In this state space, state information is abstracted into a single dynamic priority

which is calculated using all the relevant state information local to each primitive

task (see Figure 6.2d). This dynamic priority represented the task’s determination of

its applicability to the agent’s current state. For example, using this state space, the

CA-GS-RA composite behavior would only use dynamic priorities for the primitive

behaviors COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY to determine how

to weight its sub-behaviors. While this level of abstraction may appear to be too

extreme, we have previously shown that rulesets using dynamic priorities can be

developed which have similar performance to those using the Full state space [23].

76

Table 6.2: The reward functions used in developing controllers for composite tasks for
each primitive task are shown. Note that while most rewards were given at each timestep,
rewards for the terminal events of a collision and reaching the goal location are one-time
rewards.

Primitive Task Description Value

COLLISIONAVOIDANCE Collision event -150

GOALSEEK
Goal reached event 150
Goal distance penalty −0.03×Dist

RUNAWAY RunAway strength penalty −0.06×Str
ALIGNMENT Velocity heading difference penalty −0.02×∆Dir
COHESION Position error penalty −0.04×Dist
SEPARATION Separation strength penalty −0.02×Str

Minimal In this state space, the dynamic priorities from the Small state space were again

used. However, instead of using the dynamic priorities for every primitive behavior,

only the priorities of behaviors directly weighted by a composite behavior were used.

For example, the FLOCKING-CA composite behavior would only use the dynamic

priorities of the FLOCKING and COLLISIONAVOIDANCE sub-behaviors.

Note that these abstractions were only used by composite behaviors. Since primitive be-

haviors were responsible for producing low-level control actions, they still required the

unabstracted state space relevant to their primitive task. Furthermore, since monolithic

controllers were also responsible for producing low-level control actions, they required the

unabstracted joint state space of the overall composite task. For more detailed information

regarding the size of each composite task’s state space, see Table A.3.

6.3 Reward Functions

The reward functions for each primitive task as used in the development of composite tasks

are shown in Table 6.2. Except for the terminal events of a collision or reaching the goal

location, each reward was given per timestep. The reward values were developed with the

77

〈goal-dir-theta〉 ::= goal-dir-theta(BACK_LEFT)
| goal-dir-theta(LEFT)
| goal-dir-theta(SMALL_LEFT)
| goal-dir-theta(CENTER)
| goal-dir-theta(SMALL_RIGHT)
| goal-dir-theta(RIGHT)
| goal-dir-theta(BACK_RIGHT)

〈goal-dir-phi〉 ::= goal-dir-phi(DOWN)
| goal-dir-phi(SMALL_DOWN)
| goal-dir-phi(CENTER)
| goal-dir-phi(SMALL_UP)
| goal-dir-phi(UP)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL_SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG_TIME)
| goal-arrival-time(DISTANT)

(a) Full abstraction

〈goal-dir-theta-abs〉 ::= goal-dir-theta-abs(ZERO)
| goal-dir-theta-abs(SMALL)
| goal-dir-theta-abs(MEDIUM)
| goal-dir-theta-abs(LARGE)

〈goal-dir-phi-abs〉 ::= goal-dir-phi-abs(ZERO)
| goal-dir-phi-abs(SMALL)
| goal-dir-phi-abs(MEDIUM)
| goal-dir-phi-abs(LARGE)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL_SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG_TIME)
| goal-arrival-time(DISTANT)

(b) Large abstraction

Figure 6.2: Portions of grammars for the three-dimensional GOALSEEK primitive task are
shown. Each used a different level of abstraction of the state space.

78

〈goal-dir-max-abs〉 ::= goal-dir-max-abs(ZERO)
| goal-dir-max-abs(SMALL)
| goal-dir-max-abs(MEDIUM)
| goal-dir-max-abs(LARGE)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL_SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG_TIME)
| goal-arrival-time(DISTANT)

(c) Medium abstraction

〈goal-seek-priority〉 ::= goal-seek-priority(ZERO)
| goal-seek-priority(LOW)
| goal-seek-priority(MEDIUM)
| goal-seek-priority(HIGH)

(d) Small abstraction

Figure 6.2: Portions of grammars for the three-dimensional GOALSEEK primitive task are
shown. Each used a different level of abstraction of the state space. (continued)

79

maximum number of timesteps in mind and ensured that the total undiscounted reward,

which was used as a performance measure in grammatical evolution, did not create a bias

towards controllers which “minimized the pain” by causing a collision as quickly as possi-

ble. While some portions of the reward function were not required (e.g., the goal distance

penalty), they make the reward function more “dense” and act as progress estimators by al-

lowing learning to make the most of each experience [51, 83]. While the addition of these

unrequired components may have biased policies away from the best solution, the benefit

of allowing learning to make the most of each learning experience outweighed the potential

problems in complex tasks such as the ones discussed in this thesis.

When learning a policy for the COLLISIONAVOIDANCE primitive task, an additional

reward of 0.1 was given for each timestep in which the agent did not have a collision.

While learning would occur without this reward, its addition aided in the comparison of

the policy’s effectiveness as learning progressed. For some composite behaviors, modifica-

tions to the reward function were necessary. For the FLOCKING composite task, a survival

reward of 0.09 was given for each timestep in which the agents were active, in addition to

the rewards given by the primitive tasks themselves. This served to explicitly reward the

agents for avoiding collisions with other agents and continuing to flock. In single agent

environments, the agent merely needed to reach the goal for the reward to be given. In

multi-agent environments, the reward for reaching the goal location was only awarded if

the mean position of the team was within a specified distance to the goal. This served to

explicitly reward agents that reached the goal with the other agents in the team and not

agents that left their team to reach the goal faster.

Due to the complexity of the tasks and the randomness of the environments, an opti-

mal performance value for each task would be prohibitive to calculate. As a result, the

performance of learned controllers cannot be compared to the performance of an optimal

controller. However, based on an understanding of the experimental configuration and ex-

perience with the tasks themselves, we can identify the approximate mean performance

80

Table 6.3: The approximate mean performance values one would expect of an effective
controller in each of the tasks are shown.

Task Mean Performance
2D 3D

COLLISIONAVOIDANCE 80 140
GOALSEEK 140 140
RUNAWAY −10 −10
CA-GS 130 140
CA-GS-RA 135 125
FLOCKING 40 40
FLOCKING-CA 0 N/A
FLOCKING-CA-GS 100 N/A
FLOCKING-CA-GS-RA 100 N/A

Table 6.4: Reinforcement learning parameters

Parameter Value

Learning rate (α) 0.01
Discount factor (γ) 0.99
TD decay (λ) 0.25
Exploration (ε) 0.01
NN weight range [−0.25 : 0.25]
NN momentum 0.01
NN hidden nodes 1.5×Ninput

values one would expect from an effective controller. Table 6.3 details the approximate

mean total reward for an effective learned controller in each of the primitive and composite

tasks used.

6.4 Reinforcement Learning Configuration

As previously discussed (see Section 5.1), the Sarsa algorithm was used to learn policies

for primitive and composite tasks. To speed learning, the replacing eligibility traces ver-

sion of Sarsa, referred to as Sarsa(λ), was used [87]. The parameters used are shown in

81

Table 6.4. Since the state-action space for many of the experiments performed precluded

tabular storage of the state-action values, or Q-values, neural networks were used to ap-

proximate Q-values. The neural networks consisted of a single hidden layer in which the

number of nodes was a function of the number of input nodes. Unlike previous work, we

found that a relatively large number of hidden nodes (1.5 times the number of input nodes)

were required for policies operating in our environments [77]. Previous work in the field

has concluded that using a single network to approximate all the Q-values can result in

unintentional modifications of the Q-values for actions other than the one chosen by the

learning algorithm [46, 77]. As a result, a separate network for each action was used in an

effort to isolate the Q-values of each action.

The effects of a multi-agent environment further complicates learning as it makes the

environment non-stationary [11]. To simplify the process as much as possible, we chose to

use the naïve approach in which all agents used and update the same set of Q-values, or,

more specifically, the same set of neural networks approximating Q-values. Experiments

have shown that this form of cooperation does not impede learning and can even improve

the learning rate [16, 90].

Although the use of fuzzy logic is important to providing smooth transitions between

different actions in an adaptive fuzzy behavior hierarchy, fuzzy logic was not used for the

behaviors developed using reinforcement learning. Therefore, primitive and composite be-

haviors created by reinforcement learning were not able to smoothly transition between

different motor control or weighting actions, respectively, and could have potentially ex-

hibited lower performance that controllers which do use fuzzy logic. Note that the absence

of fuzzy logic in the learned policies does not prevent the use of an adaptive behavior hi-

erarchy or fuzzy logic in the other behaviors in the hierarchy; it only has the potential to

limit its effectiveness. Tunstel even comments that behaviors can be implemented using

techniques other than fuzzy control if their crisp outputs are converted to fuzzy sets, which

our architecture does [93].

82

While there are techniques for using fuzzy logic with reinforcement learning [3, 22, 27,

39], experience has shown that such modifications can increase the time needed to learn

effective policies. While, in general, the increase is not prohibitive, the large number of

experimental runs used for this work precluded the combination of fuzzy logic and rein-

forcement learning. While there are plans to use fuzzy logic with reinforcement learning

(see Chapter 8), we were still able to gather conclusive results without its use (see Chap-

ter 7).

Policies were learned using environments in the training sets. At regular intervals, the

current Q-values were saved for later processing. Once learning had finished, the saved

Q-values for each interval were evaluated in environments from the validation and testing

sets. Results detailing progress in learning the associated task use rewards from the vali-

dation set of environments. For each experimental run, the policy with the highest reward

on the validation set of environments for the entire run was chosen as the “best-of-run”

policy. This policy was then evaluated on the environments in the testing set. The results

of evaluating this “best-of-run” policy on the testing set are used in Chapter 7 to emphasize

the learning of generalized control policies.

6.5 Grammatical Evolution Configuration

As previously discussed (see Section 5.2), grammatical evolution was used to learn policies

for composite tasks. The parameters that were used are shown in Table 6.5 and are fairly

normal for grammatical evolution experiments. Although initial work in evolving rulesets

for adaptive fuzzy behavior hierarchies used relatively small populations of 10–20 indi-

viduals [95], a population size of 50 was used for these experiments due to the increased

complexity of the tasks given to the agents. The ECJ [47] library was used to perform

evolutionary runs and was modified to allow for the use of grammatical evolution.

For each composite task, grammars corresponding to each abstraction of the state space

where created (see Figure 6.2). Each individual in the population was converted to a fuzzy

83

Table 6.5: Grammatical evolution parameters

Parameter Value

Population 50
Generations 50
Codon size (bits) 8
Minimum codons 50
Maximum codons 200
Tournament size 7
Crossover type One-point
Crossover probability 100%
Elite cloning probability 0%
Mutation probability per bit 1%

ruleset before evaluation. As a result, the controllers produced by grammatical evolution

used fuzzy control, unlike composite reinforcement learning controllers which received

crisp inputs and produced crisp outputs. As a result, the controllers produced by grammat-

ical evolution have the potential for higher theoretical performance since they are able to

leverage fuzzy control’s ability to smoothly transition between different behavior weight-

ings.

Evolved rulesets were evaluated in the training set of environments to determine the

ruleset’s fitness. Solutions that had the highest fitness on the training set, referred to as

the “Best of Generation,” were also evaluated in the validation set of environments. The

solution with the highest fitness on the validation set over the entire run, referred to as the

“Best of Run,” was evaluated in the testing set of environments. This cross-validation was

performed to determine the ability of the evolved rulesets to generalize to environments

not encountered during training. Note that only the training fitness is used during evolution

in selection for crossover. The validation and testing fitness values are only used after the

evolutionary run for analysis purposes.

84

CHAPTER 7

Results and Discussion

As discussed in Chapter 1, this dissertation provides a number of contributions. The results,

analysis, and discussion provided in this chapter provide the empirical evidence that lies at

the foundations of these contributions.

• As far as we know, these experiments provide the only results of an empirical inves-

tigation into the effects of state and action abstraction for composite tasks comprised

of concurrent, interfering, and non-episodic (CINE) tasks.

• The results of these experiments demonstrate that action abstraction provides more

benefits than state abstraction for the development of effective agent controllers for

complex tasks comprised of CINE tasks (see Section 7.4.1).

• These results also demonstrate that modular reinforcement learning, one of the few

reinforcement learning approaches capable of handling CINE tasks, was not capable

of learning and converging to effective policies in the problem domains used in these

experiments (see Section 7.4.5).

• These results also demonstrate that composite reinforcement learning can learn ef-

fective policies for agent control in the problem domains used (see Sections 7.2.1

and 7.3.1).

• The success of composite reinforcement learning also demonstrates that behaviors

designed for one task can be reused, without modification, in a new composite task

(see Section 7.4.3).

85

• As previously discussed, the original behavior modulation algorithm does not prop-

erly handle behavior hierarchies using more than one level of composite behaviors.

The results of these experiments demonstrate that this deficiency can have significant

negative effects on the performance of the behavior hierarchy and that our extension

successfully addresses this deficiency (see Section 7.4.2).

• These experiments also show that grammatical evolution is capable of evolving fuzzy

rulesets for use in adaptive fuzzy behavior hierarchies (see Sections 7.2.2 and 7.3.2).

• Lastly, these results show that adaptive priorities, which provide significant state

abstraction, can be used in composite behaviors to provide effective modulation of

lower-level behaviors (see Sections 7.2.1 and 7.3.1).

Figures showing the results of experimental runs reflect the mean performance of con-

trollers on the validation set of environments. As stated in Section 6.1, environments were

organized into ten folds for use with cross-validation. Each experiment consisted of four

runs for each of the ten fold combinations for a total of 40 runs. The results of all the

statistical tests performed on the experimental results are detailed in Appendix C.

7.1 Developing Primitive Task Controllers

Figure 7.1 depicts the results of using reinforcement learning to learn a policy for the COL-

LISIONAVOIDANCE primitive task in two and three dimensions. As can be seen, mono-

lithic reinforcement learning was easily capable of learning an effective policy for both

two and three dimensions. Although not immediately obvious, policies learned in the three-

dimensional task should be able to achieve higher performance than those learned in the

two-dimensional task. While the three-dimensional task has a more complex state-action

space, it offers the agent greater freedom in avoiding collisions. In the two-dimensional

task, a purely reactive agent can frequently be trapped by obstacles and not have the ability

86

-150

-100

-50

 0

 50

 100

 150

 0 0.5 1 1.5

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(a) 2D

-150

-100

-50

 0

 50

 100

 150

 0 0.5 1 1.5

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(b) 3D

Figure 7.1: Reinforcement learning results for the COLLISIONAVOIDANCE primitive task
in both two and three dimensions are shown.

87

-50

 0

 50

 100

 150

 0 2.5 5 7.5

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(a) 2D

-50

 0

 50

 100

 150

 0 25 50 75 100

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(b) 3D

Figure 7.2: Reinforcement learning results for the GOALSEEK primitive task in both two
and three dimensions are shown.

88

-50

-40

-30

-20

-10

 0

 0 10 20 30

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(a) 2D

-50

-40

-30

-20

-10

 0

 0 20 40 60

R
ew

ar
d

Updates (x 106)

Training Testing Validation

(b) 3D

Figure 7.3: Reinforcement learning results for the RUNAWAY primitive task in both two
and three dimensions are shown.

89

to reasonably avoid a collision. An example of an effective policy for the COLLISION-

AVOIDANCE two-dimensional task can be found in Table D.1.

Figure 7.2 depicts the results of using reinforcement learning to learn a policy for the

GOALSEEK primitive task in two and three dimensions. While the GOALSEEK primitive

task can be a simpler task than the COLLISIONAVOIDANCE task, monolithic reinforcement

learning was only able to gain significant traction on learning an effective policy after it

has reached the goal location even with the dense reward function. Since the environments

used were unbounded, it took significantly more updates to find an effective policy than

for the COLLISIONAVOIDANCE primitive task. Learning effective policies for the three-

dimensional task took almost two orders of magnitude longer than for the two-dimensional

task and still did not achieve the same level of performance. Again, this is most likely due

to the unbounded nature of the environments and the primitive task’s reward function.

Figure 7.3 depicts the results of using reinforcement learning to learn a policy for the

RUNAWAY primitive task in two and three dimensions. As in the previous primitive tasks,

monolithic reinforcement learning was able to learn an effective policy relatively easily.

An interesting result is that policies learned for the three-dimensional task had lower per-

formance than those learned for the two-dimensional task, just as in the GOALSEEK task.

It is important to note that the policies learned for each of the primitive tasks were

general and not over-specialized to the training environments. This can be seen by the

approximately equal performance in the training, testing, and validation environment sets.

This ability to generalize is an important prerequisite for the type of behavior reuse used

by adaptive fuzzy behavior hierarchies.

90

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

(a) 2D

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)

CompositeRL (Medium)
CompositeRL (Small)

(b) 3D

Figure 7.4: Reinforcement learning results on the validation set environments for the CA-
GS composite task in both two and three dimensions are shown.

91

7.2 Developing Single-Agent, Composite Task Controllers

7.2.1 Reinforcement Learning

Figure 7.4 shows the results of using reinforcement learning to learn a policy for the CA-

GS composite task in two and three dimensions. In general, composite reinforcement

learning was able to achieve high performance within just a few updates. However, in the

two-dimensional task, the Small abstraction level was unable to converge to an effective

policy. Note that this erratic behavior was not present in the three-dimensional task nor with

any of the other abstraction levels used by composite reinforcement learning. An example

of an effective policy for the CA-GS composite task using the Small abstraction level is

shown in Table D.2.

While monolithic reinforcement learning was able to learn an effective policy for the

two-dimensional task, results of a randomized two-way ANOVA test demonstrates that

there was a statistically significantly difference between the rate at which effective con-

trollers were learned between monolithic and composite reinforcement learning at the 95%

confidence level (see Tables C.1 and C.13 for more information). Furthermore, monolithic

reinforcement learning was incapable of making any significant traction in learning an ef-

fective policy in a practical number of updates for the three-dimensional task. In both the

two and three-dimensional tasks, modular reinforcement learning was unable to converge

to an effective policy. In the two-dimensional task, modular reinforcement learning was

able to achieve moderate success early and learned a number of effective policies, but was

unable to converge to one. In the three-dimensional task, modular reinforcement learning

was unable to make any significant traction, just as with monolithic reinforcement learn-

ing. While not shown here, further experiments allowed modular reinforcement learning to

learn for a total of 2×108 updates and it was still unable to make any progress.

Figure 7.5 depicts the results of using reinforcement learning to learn a policy for

the CA-GS-RA composite task in two and three dimensions. The results for the two-

92

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

(a) 2D

-200

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)

CompositeRL (Medium)
CompositeRL (Small)

(b) 3D

Figure 7.5: Reinforcement learning results on the validation set environments for the CA-
GS-RA composite task in both two and three dimensions are shown.

93

dimensional environments were very similar to those of the CA-GS composite task. In

general, composite reinforcement learning was able to make significant progress early in

training. Again, experimental runs using the Small abstraction level were unable to con-

verge to an effective policy for the two-dimensional task. However, unlike the CA-GS

composite task, composite reinforcement learning had significant difficulty in learning ef-

fective controllers for abstraction levels other than Medium. While we believe that this

loss in performance is directly attributable to a combination of the increase in the number

of the state space variables and to an increase in the complexity of the environment itself,

controllers learned for multi-agent composite tasks with similar properties did not exhibit

the same behavior and a deeper investigation is warranted, but is tangential to the focus of

this dissertation.

As in the CA-GS task, monolithic reinforcement learning was eventually able to learn

an effective policy for the two-dimensional CA-GS-RA task after statistically significantly

more updates than composite reinforcement learning at the 95% confidence level (see Ta-

ble C.15), but was not able to learn an effective policy in the three-dimensional version.

Modular reinforcement learning was again able to achieve moderate success in the two-

dimensional task, but was unable to gain any traction in the three-dimensional task. It

should be noted that in the two-dimensional task, modular reinforcement learning was ca-

pable of learning an effective policy, but was unable to converge to one.

7.2.2 Grammatical Evolution

Figure 7.6 depicts the results of using grammatical evolution to evolve a fuzzy ruleset for

the CA-GS composite task in two and three dimensions. Just as in the reinforcement

learning experimental runs, effective controllers using adaptive fuzzy behavior hierarchies

were developed faster than monolithic controllers. Unlike the reinforcement learning runs,

however, grammatical evolution was unable to evolve an effective monolithic ruleset for

even the two-dimensional task. Although the fitness of the monolithic controllers indicate

94

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
va

lid
at

io
n

F
itn

es
s

Generation

Monolithic
Full

Large
Small

(a) 2D

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
va

lid
at

io
n

F
itn

es
s

Generation

Monolithic
Full

Large
Medium

Small

(b) 3D

Figure 7.6: Grammatical evolution results on the validation set environments for the CA-
GS composite task in both two and three dimensions are shown.

95

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
va

lid
at

io
n

F
itn

es
s

Generation

Monolithic
Full

Large
Small

(a) 2D

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
va

lid
at

io
n

F
itn

es
s

Generation

Monolithic
Full

Large
Medium

Small

(b) 3D

Figure 7.7: Grammatical evolution results on the validation set environments for the CA-
GS-RA composite task in both two and three dimensions are shown.

96

that they were able to avoid collisions, a cursory inspection of the evolved rulesets show

that the agents simply do not move. Since obstacles are stationary in all environments other

than those created for learning the COLLISIONAVOIDANCE primitive task itself, a simple,

yet sub-optimal policy is to not move for the duration of the training episode.

Figure 7.7 depicts the results of using grammatical evolution to evolve a fuzzy ruleset

for the CA-GS-RA composite task in two and three dimensions. These results are mainly

similar to those of the CA-GS composite task with only a few differences. In a number

of cases, the mean best of generation fitness values in the two-dimensional version of the

CA-GS-RA task were statistically significantly lower than those in the three-dimensional

version at the 95% confidence level (see Table C.5 and Table C.17). These difference were

not observed in the reinforcement learning experimental runs. Further inspection reveals

that a number of the “Best of Run” rulesets were effective and had high fitness, but had

difficulty generalizing to the validation set of environments. The reason for this loss in

generalizability as compared to “Best of Run” rulesets from the other tasks is not known

and merits further investigation, but is tangential to the focus of this dissertation.

Two interesting results from the evolutionary runs for both composite tasks are worthy

of note. First, the erratic controller performance observed in the reinforcement learning

runs using the Small abstraction level are not present in controllers evolved for either the

CA-GS or CA-GS-RA tasks. Second, the mean best of generation fitness of rulesets for

composite behaviors in the initial, random population for both the CA-GS and CA-GS-

RA three-dimensional tasks were higher than those of the two-dimensional version.

7.3 Developing Multi-Agent, Composite Task Controllers

7.3.1 Reinforcement Learning

Figure 7.8 depicts the results of using reinforcement learning to learn a policy for the

FLOCKING composite task in two and three dimensions. In both types of environments,

97

-50

 0

 50

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

(a) 2D

-50

 0

 50

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)

CompositeRL (Medium)
CompositeRL (Small)

(b) 3D

Figure 7.8: Reinforcement learning results on the validation set environments for the
FLOCKING composite task in both two and three dimensions are shown.

98

-150

-100

-50

 0

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Figure 7.9: Reinforcement learning results on the validation set environments for the
FLOCKING-CA composite task in two dimensions are shown. Due to storage constraints,
results for monolithic reinforcement learning experimental runs used fewer checkpoints
than other experimental runs.

controllers developed using the adaptive fuzzy behavior hierarchy and composite reinforce-

ment learning had statistically significantly higher performance than those developed using

either monolithic or modular reinforcement learning at the 95% confidence level (see Ta-

bles C.6 and C.18). Furthermore, controllers using the Small abstraction level did not

exhibit the poor performance previously seen in the single agent tasks. In fact, controllers

using the Small abstraction level had statistically significantly better performance than all

other controllers in the testing set environments at the 99% confidence level as determined

by the paired Student’s t-test using the Bonferroni adjustment (see Table C.6).

Figure 7.9 depicts the results of using reinforcement learning to learn a policy for the

FLOCKING-CA composite task in two dimensions. Again, controllers that used the adap-

tive fuzzy behavior hierarchy were learned faster than those that didn’t use the hierarchy

and had higher performance. Table D.3 details a sample policy learned using the Minimal

abstraction level. Controllers developed using modular reinforcement learning performed

99

statistically significantly better than those developed using monolithic reinforcement learn-

ing at the 99% confidence level (see Table C.8), but were unable to generalize to the full

range of environments present in the validation or testing sets.

Not shown in the figure are the results for controllers using a two-level adaptive fuzzy

behavior hierarchy. Even with the use of the adaptive fuzzy behavior hierarchy, the signif-

icantly larger action space of the 2-level hierarchy negated any benefits that the hierarchy

offered. While the hierarchy and the reuse of existing primitive behaviors meant that it did

not need to learn the low-level actions needed to accomplish FLOCKING-CA, the size of

the state-action space was simply too large to quickly find an effective policy. Furthermore,

the increased complexity resulted in almost a four-fold increase in the wall-clock time re-

quired to learn and update Q-values for the two-level hierarchies over that of the three-level

hierarchies.

Experiments using the three-dimensional environments were not performed for the

FLOCKING-CA composite task or the remaining tasks due to computational resource re-

strictions. First, each of the forty experimental runs for a single abstraction level in the

two-dimensional FLOCKING-CA task required approximately three days of computational

time on the Sooner computing cluster. Experience with the three-dimensional environ-

ments in the single-agent composite tasks demonstrated that experiments using the three-

dimensional environments required approximately two times the computational time as

those using two-dimensional environments. As a result, almost 1,440 days of computation

would be required for the three-dimensional FLOCKING-CA composite task alone. Second,

the set of experiments for a single abstraction level in the two-dimensional FLOCKING-

CA composite task could require over 800MB of storage. For experiments using three-

dimensional environments, the storage requirements could easily exceed 4GB per set of

experiments. In light of these details, and the fact that the two-dimensional results for these

composite tasks already demonstrate the effects of state and action abstraction, the decision

was made to not perform the three-dimensional experiments.

100

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Figure 7.10: Reinforcement learning results on the validation set environments for the
FLOCKING-CA-GS composite task in two dimensions are shown. The “3” denotes con-
trollers using a three-level behavior hierarchy. The results of controllers using two-level
hierarchies are not shown to improve clarity.

Figure 7.10 depicts the results of using reinforcement learning to learn a policy for

the FLOCKING-CA-GS composite task in two dimensions. Just as in the previous experi-

ments, controllers learned using composite reinforcement learning and using the adaptive

fuzzy behavior hierarchy had a statistically significantly higher “best-of-run” performance

than monolithic reinforcement learning at the 99% confidence level (see Table C.10) as

monolithic reinforcement learning was even unable to learn how to simply avoid a collision.

Controllers developed using modular reinforcement learning were able to gain some trac-

tion in learning an effective controller and were able to find effective policies. However, it

was unable to converge to an effective policy and performed statistically significantly worse

than composite reinforcement learning at the 95% confidence level (see Table C.20). Note

that just as in the single-agent composite tasks, controllers developed using the Small ab-

straction level performed statistically significantly worse than other controllers developed

using the adaptive fuzzy behavior hierarchy, including those using the Minimal abstraction

101

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

MonolithicRL
CompositeRL (Original Behavior Modulation)

CompositeRL (Behavior Modulation Extension)

Figure 7.11: Reinforcement learning results on the validation set environments for the
FLOCKING-CA-GS composite task using the Full abstraction level which compare the
original algorithm for behavior modulation and the algorithm used in the extension are
shown.

level which also uses adaptive priorities (see Table C.20).

This is the first set of results in which a difference between controllers using the differ-

ent abstraction levels can be observed. Results of two-way randomized ANOVA tests show

that controllers using the Minimal abstraction level were able to more statistically signifi-

cantly achieve consistently higher performance than controllers using the other abstraction

levels at the 95% confidence level (see Table C.20). However, controllers using the Full

abstraction level were able to learn a policy at some point during learning that had statisti-

cally significantly better performance than controllers using the Minimal abstraction level

at the 99% confidence level (see Table C.10).

Figure 7.11 depicts the results of using reinforcement learning to learn policies for the

FLOCKING-CA-GS composite task using the original implementation of behavior modula-

tion and our extension (Section 3.3) at the Full abstraction level. Monolithic reinforcement

learning results are also provided for comparison. As can be observed, controllers using

102

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Figure 7.12: Reinforcement learning results on the validation set environments for the
FLOCKING-CA-GS-RA composite task in two dimensions are shown.

the original implementation of behavior modulation only perform marginally better than

controllers using a monolithic policy. However, controllers using the exact same behavior

hierarchy and abstraction level, but our extension to behavior modulation, are able to have

statistically significantly higher performance at the 95% confidence level (see Tables C.10

and C.20).

Figure 7.12 depicts the results of using reinforcement learning to learn a policy for the

FLOCKING-CA-GS-RA composite task in two dimensions. These results detail, for the

first time, a clear separation in the performance of controllers using the various abstraction

levels. Randomized two-way ANOVA tests show that, like the FLOCKING-CA-GS com-

posite task, controllers using the Minimal abstraction level were able to more statistically

significantly achieve consistently higher performance than controllers using the other ab-

straction levels at the 95% confidence level (see Table C.21), but there was no statistically

significant difference in the “best-of-run” testing fitness between controllers using the dif-

ferent abstraction levels (see Table C.12). Controllers using the Full abstraction level had

103

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Small

Figure 7.13: Grammatical evolution results on the validation set environments for the
FLOCKING composite task in two dimensions are shown.

a higher mean reward per episode than controllers using the Small abstraction level at the

95% confidence level (see Table C.12). Monolithic and modular reinforcement learning

were not used to learn controllers due to their consistent poor performance in the simpler,

multi-agent composite tasks.

7.3.2 Grammatical Evolution

Figure 7.13 depicts the results of using grammatical evolution to evolve a fuzzy ruleset

for the FLOCKING composite task in two dimensions. Although the fitness values indi-

cate that the evolved rulesets were quite effective in coordinating the primitive behaviors,

an inspection of the actual rulesets reveals otherwise. In nearly every ruleset inspected,

the only primitive behavior given a non-zero weight was the ALIGNMENT primitive be-

havior. In a few rulesets, the SEPARATION was also given a non-zero weight. While the

focus on the ALIGNMENT primitive behavior meant that the ruleset was able to maintain

a FLOCKING formation that resulted in high fitness, it also meant that the ruleset was not

104

-150

-100

-50

 0

 50

 0 10 20 30

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Small

Minimal

Figure 7.14: Grammatical evolution results on the validation set environments for the
FLOCKING-CA composite task in two dimensions are shown.

an effective general solution. Its use would be inappropriate in more complex tasks in

which COHESION and SEPARATION would be necessary to re-form a stable formation that

could be maintained with ALIGNMENT. There was no statistically significant difference

between “best-of-run” controllers for the Full, Large, or Small abstraction levels using the

Student’s paired t-test (see Table C.7).

Figure 7.14 depicts the results of using grammatical evolution to evolve a fuzzy ruleset

for the FLOCKING-CA composite task in two dimensions. Evolved controllers using an

adaptive fuzzy behavior hierarchy significantly outperformed those evolved using a mono-

lithic fuzzy ruleset. There was no statistically significant difference between “best-of-run”

controllers developed using either the Full, Large, Small, or Minimal abstraction levels

using the Student’s paired t-test (see Table C.9).

Figure 7.15 depicts the results of using grammatical evolution to evolve a fuzzy ruleset

for the FLOCKING-CA-GS composite task in two dimensions. As with the FLOCKING

rulesets produced by grammatical evolution, the fitness values of the evolved FLOCKING-

105

-150

-100

-50

 0

 50

 100

 150

 0 10 20 30 40

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Small

Minimal

Figure 7.15: Grammatical evolution results on the validation set environments for the
FLOCKING-CA-GS composite task in two dimensions are shown.

CA-GS rulesets indicate that the controllers were effective, while an inspection of the

rulesets reveals otherwise. The “best-of-run” rulesets consistently gave only the CA-GS

composite behavior a non-zero weight and ignored the FLOCKING composite behavior

(see Figure 4.5c). As a result, each of the agents independently navigated towards the

goal location. Although the reward for reaching the goal location was only awarded when

the entire team reach the goal, the agents still received the reward since all the agents

eventually were within range of the goal location. There was no statistically significant

difference between the “best-of-run” controllers using the Full, Large, Small, or Minimal

abstraction levels using the Student’s paired t-test (see Table C.11).

7.4 Analysis and Discussion

These results demonstrate that controllers using adaptive fuzzy behavior hierarchies signif-

icantly outperformed controllers with other architectures in terms of performance, rate of

106

development, or both. This performance difference can most clearly be seen in the three-

dimensional versions of the composite tasks where monolithic controllers and controllers

using modular reinforcement learning were unable to provide any measure of effective

control.

7.4.1 State and Action Abstraction

While there are many reasons for this improvement, we believe that the central reason

for this improvement is the action abstraction that adaptive fuzzy behavior hierarchies

provide. Note that in the two-dimensional CA-GS-RA task, the action space for mono-

lithic controllers consisted of only two variables: the change in speed and the change of

direction. However, for controllers using composite behaviors, the action space of the

composite behavior consisted of three variables: the weights for the COLLISIONAVOID-

ANCE, GOALSEEK, and RUNAWAY primitive behaviors. Despite this increased action

space, controllers using composite behaviors were developed significantly faster and with

significantly better performance in the three-dimensional tasks. This is due to the fact

that although the action space of the composite behavior was larger, it consisted of high-

level, abstracted “meta-actions” instead of the more complex, low-level control actions. As

has been previously discussed, although other approaches also use the concept of “meta-

actions,” the action abstraction used in this dissertation is fundamentally different since the

primitive tasks used were, in general, concurrent, interfering, and non-episodic.

We can conclude that action abstraction is more useful than state abstraction by com-

paring the performance of controllers used for the complex, multi-agent composite tasks.

In these tasks, the controller could be designed with a hierarchy that used a single com-

posite behavior or a hierarchy that mad use of multiple composite behaviors in different

hierarchical levels. An example is the three alternatives for implementing the FLOCKING-

CA-GS composite behavior shown in Figure 4.5. Results show that even with significant

state abstraction, controllers using the two-level hierarchy shown in Figure 4.5a were only

107

able to achieve mediocre performance due to the sheer size of the action space. However,

effective controllers using the three-level hierarchy shown in Figure 4.5c were able to be

developed without any abstraction of the agent’s state. It is important to also note that using

reinforcement learning to learn controllers using the two-level hierarchy in the FLOCKING-

CA-GS task took significantly more computational time than those using the three-level

hierarchy. This is due to the fact that in the Sarsa algorithm, the Q-Value for each of the

3,125 possible actions must be calculated at each time step. Over the course of the entire

experimental run, this resulted in almost a four fold increase in the wall clock time required

to develop controllers using a two-level hierarchy over those using a three-level hierarchy.

A surprising result is that for many of the composite tasks evaluated, there was no

statistically significant difference between controllers using the various state abstraction

levels with the exception of the Small abstraction level (see Section 7.4.4). While the use

of abstraction can significantly reduce the size of the state space, the possibility of over-

abstracting the state space and negatively impacting the controller’s performance exists.

However, in general, this was not observed.

What is not reflected in these results is the computational effort required to develop the

primitive behaviors used by the controllers using adaptive fuzzy behavior hierarchies. The

primitive behaviors used in these experiments were manually developed and were designed

to be effective, but not optimal. Since the primitive tasks associated with these behaviors

are relatively simple, the process of manually creating these rulesets was straightforward.

However, if manually creating the behaviors is impractical, results show that effective poli-

cies for the single-agent behaviors can be easily learned. Even when the the computa-

tional effort of creating the primitive behaviors is included, developing controllers that use

adaptive fuzzy behavior hierarchies is still far more beneficial and practical than the other

approaches evaluated.

108

7.4.2 Behavior Modulation Extension

Fundamental to the advantages of using adaptive fuzzy behavior hierarchies and the asso-

ciated action abstraction is the concept of behavior modulation. However, as the results

show, the original implementation of behavior modulation is incapable of producing ef-

fective control for composite tasks that require complex hierarchies. However, when the

same hierarchy is used with our extension to behavior modulation, a significant increase

in performance is observed. We believe that the loss of performance associated with the

original implementation is a direct result of the lack of a composite behavior’s activation

level having an impact on the contributions of the primitive behaviors to the overall control

action. In the FLOCKING-CA-GS composite task, where there are many conflicting prim-

itive tasks, effective modulation of the primitive behaviors is essential. Without it, there is

no coordination between the FLOCKING and CA-GS composite behaviors. As a result, the

controller is unable to accomplish either task.

7.4.3 Behavior Reuse

In each of the experiments shown, controllers using an adaptive fuzzy behavior hierar-

chy reused behaviors, both primitive and composite, that had been developed for simpler

tasks. Furthermore, these controllers were used without modification. The ability to reuse

existing behaviors not only simplified the development effort required to produce effective

controllers, but it also simplified the development process itself, further improving the prac-

ticality of developing effective controllers for complex, composite CINE tasks. While the

reused behaviors in these experiments were developed manually, in the future, we wish to

reuse behaviors developed using composite reinforcement learning and grammatical evo-

lution.

109

7.4.4 Performance of Controllers Using the Small Abstraction Level

The performance of controllers developed with reinforcement learning and using the Small

abstraction level are of particular interest as it may indicate that we have over-abstracted the

state space. Figure 7.16 shows the validation set reinforcement learning curves for all forty

runs using both the Small and Large abstraction levels. Note that while an effective policy

could be learned using the Small abstraction level, reinforcement learning was unable to

converge to an effective policy, although it could when using the Large abstraction level.

While there are a number of potential reasons for this lack of convergence, we do not

believe this is an inherent problem with the dynamic priorities used by the Small abstraction

level. There were a number of composite tasks for which controllers using the Small

abstraction level provided effective control. In fact, effective controllers using the Small

abstraction level for the CA-GS and CA-GS-RA composite tasks were evolved using

grammatical evolution (see Figure 7.6a). We believe the root cause of the problem lies in

the combination of the dynamic priority generated for the GOALSEEK primitive task and

reinforcement learning. In each composite task, where the combination was required, the

development of controllers using the Small abstraction level was unable to converge.

To evaluate our hypothesis, we altered the Small abstraction level by replacing the

GOALSEEK adaptive priority with the GOALSEEK state information from the Full ab-

straction level (i.e., the arrival time at and direction to the goal location) and performed

a number of the experiments again. The results of these experiments using the altered

Small abstraction level were compared to the results using the original Small abstraction

level in Figures 7.17–7.20. As can be seen, controllers that did not use the GOALSEEK

adaptive priority were learned faster, had higher performance, or both when compared

to controllers which did use the priority. Although not shown, the performance of con-

trollers using the modified Small abstraction level were comparable to the performance of

the controllers learned using the other abstraction levels. Randomized two-way ANOVA

tests were performed using these new results and show that controllers using this altered

110

-50

 0

 50

 100

 150

 0 10 20 30 40 50

R
ew

ar
d

Updates (x 106)

(a) Small abstraction level

-50

 0

 50

 100

 150

 0 10 20 30 40 50

R
ew

ar
d

Updates (x 106)

(b) Large abstraction level

Figure 7.16: Reinforcement learning results on the validation set environments for all runs
learning the CA-GS composite task using the Small and Large abstraction levels. Note
that controllers using the Small abstraction level can have high performance, but fail to
converge like those using the Large abstraction level.

111

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(a) 2D

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(b) 3D

Figure 7.17: Reinforcement learning results on the validation set environments for the CA-
GS composite task comparing different approaches for the Small abstraction level in both
two and three dimensions are shown.

112

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(a) 2D

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(b) 3D

Figure 7.18: Reinforcement learning results on the validation set environments for the CA-
GS-RA composite task comparing different approaches for the Small abstraction level in
both two and three dimensions are shown.

113

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

Figure 7.19: Reinforcement learning results on the validation set environments for the
FLOCKING-CA-GS composite task comparing different approaches for the Small abstrac-
tion level in two dimensions are shown.

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200

M
ea

n
R

ew
ar

d
pe

r
E

pi
so

de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

Figure 7.20: Reinforcement learning results on the validation set environments for the
FLOCKING-CA-GS-RA composite task comparing different approaches for the Small ab-
straction level in two dimensions are shown.

114

-50

 0

 50

 100

 150

 0 25 50 75 100

R
ew

ar
d

Updates (x 106)

Figure 7.21: Reinforcement learning results on the validation set environments for all runs
learning the CA-GS-RA composite task using the modified Small abstraction level in
which the GOALSEEK adaptive priority was replaced with the full state information. Com-
pare these learning curves with those found in Figure 7.16a.

Small abstraction level are consistent with the results for the other abstraction levels in

the FLOCKING-CA-GS composite task and are comparable to controllers using the Full

abstraction level in the FLOCKING-CA-GS-RA composite task. This indicates that the

GOALSEEK adaptive priority was somehow the contributing factor to the low performance

in the previous experiments. Exactly why the GOALSEEK adaptive priority causes such

problems is unknown and worthy of future investigation, but is tangential to the focus of

this dissertation.

The loss in performance for the three-dimensional CA-GS-RA controllers is perplex-

ing as such a significant loss in performance was not observed in any other run, despite

the generally poor performance of controllers using the other abstraction levels (see Fig-

ure 7.18b). Figure 7.21 indicates that only a few runs exhibited this loss in performance

and that the loss started occurring around 50×106 updates. This coincides with the point

at which exploration of the state spaces becomes increasingly rare. While this explains

115

the inability of reinforcement learning to re-learn the more rewarding actions, it does not

explain why such re-learning would be necessary.

7.4.5 Performance of Modular Reinforcement Learning

While the results of previous work show that modular reinforcement learning can be an

effective learning algorithm (see Spraque and Ballard [84] for an example), the results pre-

sented here do not confirm this. In each of the composite tasks, modular reinforcement

learning was unable to provide performance that was competitive with composite rein-

forcement learning. In fact, in the CA-GS, CA-GS-RA, and FLOCKING composite tasks,

modular reinforcement learning was only able to achieve mediocre performance at best. In

analyzing the individual results for the single-agent tasks, it is apparent that the problem

was not that modular reinforcement learning converged to a sub-optimal policy, but rather

that it was unable to converge to a policy at all. At first, learning progressed rapidly as is

described in previous work. However, after moderate success, the policy began to oscillate

between consistent success and consistent failure (see Figure 7.5a). In the more complex

multi-agent composite tasks, modular reinforcement learning was unable to achieve even

moderate success. Although modular reinforcement learning as an algorithm is capable of

producing controllers for composite CINE tasks, these experiments demonstrate that it was

not a viable alternative for the tasks and state spaces used here.

7.4.6 Command Fusion Issues

While beneficial, there can be problems with using command fusion for agent control [63].

The most significant problem with command fusion is that the process of fusing two op-

posite actions can result in an action that is inappropriate for any primitive task. However,

we were unable to find evidence of any such situations in the experiments described here.

While it is possible that the implementation of the evaluation environment prevented such

problems, we believe that the process of evolving a ruleset that weights the primitive be-

116

haviors was successful at avoiding such situations due to the low fitness of the weighting

actions which can result in inappropriate actions.

7.4.7 Development of Desired Behavior

By using a hierarchy built with effective primitive behaviors, developing controllers that

exhibited the desired behavior was significantly easier than the alternative methods which

did not reuse existing behaviors. As previously discussed, significant modifications to the

FLOCKING and FLOCKING-CA environments were necessary in order for monolithic and

modular reinforcement learning to learn controllers that even came close to the desired

behavior and not learn to simply stop. Since simply stopping is not a valid action for any

of the primitive behaviors in those environments, controllers developed using the adaptive

fuzzy behavior hierarchy and composite reinforcement learning did not require any such

modifications to produce the desired behavior. As a result, the process of developing an

effective reward function can be simplified without compromising the learned policy.

7.4.8 Use of Grammatical Evolution

Although grammatical evolution was able to quickly evolve effective rulesets for the single-

agent tasks using the adaptive fuzzy behavior hierarchy, experiments using the multi-agent

tasks had mixed results. While the rulesets evolved for the FLOCKING composite task, they

were clearly inappropriate for use in environments other than those used for evolution as

they relied solely on the ALIGNMENT primitive behavior. Such was not the case for the be-

haviors produced by composite reinforcement learning. A similar situation was observed

in the FLOCKING-CA-GS composite task where the evolved rulesets relied only on the

CA-GS-RA composite behavior and completely ignored FLOCKING. While significant

alterations to both the training environments and the fitness functions could be made to

produce the desired behavior, such alterations were not necessary for controllers learned

using composite reinforcement learning. While there were benefits in using grammatical

117

evolution over composite reinforcement learning (e.g., the lack of a loss in performance

when using the Small abstraction level and less computation time), grammatical evolu-

tion’s heightened sensitivity to both the training environments and the fitness function mean

that considerably more manual effort must be used to produce controllers of comparable

performance to those of composite reinforcement learning.

118

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The experiments and results described in this dissertation reflect the only empirical in-

vestigation of which we are aware that directly compares the effects of state and action

abstraction on the development of controllers for composite tasks comprised of concurrent,

interfering, and non-episodic primitive tasks. Development of controllers for these types

of composite tasks have received comparatively little attention, especially in the machine

learning community, and yet are tasks that are frequently encountered in the development

of autonomous agents.

The most significant result of these experiments is that, in the problem domains used in

this dissertation, the abstraction of an agent’s action space provided more tangible benefits

in the development of agent controllers than abstraction of an agent’s state space. In a direct

comparison, controllers that used significant action abstraction and no state abstraction had

higher performance and were developed faster than controllers that made extensive use

of state abstraction and moderate action abstraction. This is due to the fact that action

abstraction changed the focus of the controller from one of low-level control to one of

high-level coordination. This change in focus not only made the development of controllers

for complex composite tasks more practical, but in many of the tasks, it also allowed the

controller to have higher performance.

While adaptive fuzzy behavior hierarchies do provide significant benefits, experimental

results showed that the original implementation of behavior modulation used in adaptive

fuzzy behavior hierarchies is limited to hierarchies of two levels. When applied to more

119

complex hierarchies, a significant loss in performance occurred. However, the extension

to behavior modulation used here removed this limitation, making adaptive fuzzy behavior

hierarchies usable for far more complex composite tasks.

One aspect that is fundamental to the improved performance and rate of development

of controllers using adaptive fuzzy behavior hierarchies was the ability to reuse existing

primitive and composite behaviors. The ability to reuse, without modification, behaviors

developed for one task in another task allowed for the development of controllers in in-

dividual pieces. The benefits of this approach are apparent when compared to the other

approaches evaluated in these experiments which attempted to develop a controller all at

once. As a result of this reuse, controllers for complex composite tasks that were once

impractical to develop can now be developed with reasonable effort.

The results of the experiments shown in this dissertation demonstrate that while the

use of modular reinforcement learning has been successful in more constrained problem

domains, it was unable to consistently produce effective control policies in the problem

domains used here. For the problem domains used, the prospect of simultaneously learning

effective policies for each primitive task proved to be too complicated. In contrast, com-

posite reinforcement learning was the only approach that was consistently able to produce

effective control policies. As discussed above, we believe that this was due to the use of

action abstraction and the ability to reuse existing primitive behaviors, regardless of their

implementation.

These results also demonstrate that grammatical evolution can be used to produce ef-

fective rulesets for autonomous agent control. While evolved rulesets did not produce

the desired behavior for some of the more complex multi-agent tasks, grammatical evo-

lution did have many benefits over reinforcement learning, the most important being that

it was capable of producing more effective controllers in the single-agent composite tasks

in less computation time. Although grammatical evolution appears to be more sensitive to

the construction of a fitness function than composite reinforcement learning, these results

120

show that it is fully capable of producing controllers which are just as effective as those

developed using composite reinforcement learning.

8.2 Future Work

As in most research, the results of this dissertation offer more questions than they answer

and introduce many opportunities for future work. The most immediate opportunity for

future work is a more in-depth investigation of the erratic behavior of using the Small

abstraction level with the GOALSEEK primitive task. The results of this could provide more

insight into the state versus action abstraction comparison performed in this dissertation.

Furthermore, a deeper understanding of the erratic behavior could lead to improvements

in the creation and calculation of adaptive priorities with a particular emphasis on using

machine learning techniques. Also, an investigation of the learned policies described in

Appendix D should provide more insight into why there is relatively little variance in the

control policies for the composite behaviors.

The next opportunity for future work is to use fuzzy reinforcement learning to learn

composite behavior policies instead of the discrete Sarsa approach [39]. The use of fuzzy

reinforcement learning offers the potential for faster learning since the agent’s state is no

longer confined to a single discrete value. As a result, the agent is able to gain experience,

at varying degrees, in multiple states simultaneously. Furthermore, fuzzy control policies

offer the same smoothness of control that traditional fuzzy rulesets offer.

Lastly, the results of the current work can be used to develop more complex controllers

in a variety of ways. One way is to directly use adaptive fuzzy behavior hierarchies to create

far more complicated behavior hierarchies. Since our ultimate focus is in the development

of agent controllers for use in complex, multi-agent tasks, the results of this work provide

significant contributions in making the development of such controllers practical. Another

way is to combine adaptive fuzzy behavior hierarchies with other approaches to produce

more complex controllers. This can be done by introducing planning or using other reactive

121

approaches. One of the more promising approaches is to combine adaptive fuzzy behavior

hierarchies with multi-objective behavior coordination [61]. The use of multi-objective

behavior coordination avoids many of the potential pitfalls of using fuzzy command fusion

while the use of adaptive fuzzy behavior hierarchies retains the ability to dynamically adapt

the prioritization of the primitive tasks to changes in the environment.

122

Bibliography

[1] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.

[2] Sven Behnke and Raúl Rojas. A hierarchy of reactive behaviors handles complexity.
In Balancing Reactivity and Social Deliberation in Multi-Agent Systems, volume
2103 of Lecture Notes in Computer Science, pages 125–136. Springer-Verlag, 2001.

[3] Hamid R. Berenji. A reinforcement learning–based architecture for fuzzy logic con-
trol. International Journal of Approximate Reasoning, 6(2):267–292, 1992.

[4] Sooraj Bhat, Charles Lee Isbell Jr., and Michael Mateas. On the difficulty of modular
reinforcement learning for real-world partial programming. In National Conference
on Artificial Intelligence (AAAI), volume 21, pages 318–325. AAAI Press, 2006.

[5] Andrea Bonarini. Evolutionary learning of fuzzy rules: Competition and coopera-
tion. Fuzzy Modelling: Paradigms and Practice, pages 265–283, 1996.

[6] Andrea Bonarini. Reinforcement learning of hierarchical fuzzy behaviors for au-
tonomous agents. In International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, pages 1223–1228, 1996.

[7] Andrea Bonarini, Giovanni Invernizzi, Thomas Halva Labella, and Matteo Mat-
teucci. An architecture to coordinate fuzzy behaviors to control an autonomous
robot. Fuzzy Sets and Systems, 134(1):101–115, 2003.

[8] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, March 1986.

[9] Yuehui Chen, Bo Yang, Ajith Abraham, and Lizhi Peng. Automatic design of hi-
erarchical takagi-sugeno type fuzzy systems using evolutionary algorithms. IEEE
Transactions on Fuzzy Systems, 15(3):385–397, 2007.

[10] Yu-Chiun Chiou and Lawrence W. Lan. Genetic fuzzy logic controller: an iter-
ative evolution algorithm with new encoding method. Fuzzy Sets and Systems,
152(3):617–635, 2005.

[11] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in coop-
erative multiagent systems. In National Conference on Artificial Intelligence (AAAI),
pages 746–752, 1998.

[12] Robert Cleary. Extending grammatical evolution with attribute grammars: An ap-
plication to knapsack problems. Master’s thesis, University of Limerick, University
of Limerick, Ireland, 2005.

123

[13] Robert Cleary and Michael O’Neill. An attribute grammar decoder for the 01 mul-
ticonstrained knapsack problem. Evolutionary Computation in Combinatorial Opti-
mization, pages 34–45, 2005.

[14] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cam-
bridge, MA, USA, 1995.

[15] Oscar Cordón, Fernando A. C. Gomide, Francisco Herrera, Frank Hoffmann, and
Luis Magdalena. Ten years of genetic fuzzy systems: Current framework and new
trends. Fuzzy Sets and Systems, 141(1):5–31, 2004.

[16] Robert H. Crites and Andrew G. Barto. Elevator group control using multiple rein-
forcement learning agents. Machine Learning, 33(2):235–262, 1998.

[17] Luiz Soares de Oliveira, Robert Sabourin, Flavio Bortolozzi, and Ching Y. Suen. A
methodology for feature selection using multiobjective genetic algorithms for hand-
written digit string recognition. International Journal of Pattern Recognition and
Artificial Intelligence, 17(6):903–929, 2003.

[18] Thomas G. Dietterich. An overview of MAXQ hierarchical reinforcement learn-
ing. In International Symposium on Abstraction, Reformulation, and Approximation,
pages 26–44. Springer-Verlag London, UK, 2000.

[19] Thomas G. Dietterich. State abstraction in MAXQ hierarchical reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages 994–1000, 2000.

[20] Dimiter Driankov, Hans Hellendoorn, and Michael Reinfrank. An Introduction to
Fuzzy Control. Springer-Verlag, second edition, 1996.

[21] Meng Joo Er and Chang Deng. Online tuning of fuzzy inference systems using
dynamic fuzzy q-learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 34(3):1478–1489, 2004.

[22] Meng Joo Er and Yi Zhou. A novel reinforcement learning approach for automatic
generation of fuzzy inference systems. In IEEE International Conference on Fuzzy
Systems, pages 100–105, Vancouver, BC, 16-21 July 2006.

[23] Brent E. Eskridge and Dean F. Hougen. Prioritizing fuzzy behaviors in multi-robot
pursuit teams. In IEEE International Conference on Fuzzy Systems, pages 1119–
1125, 16-21 July 2006.

[24] Brent E. Eskridge and Dean F. Hougen. Using priorities to simplify behavior coor-
dination. In International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 1334–1336, 2007.

[25] Fernando Fernández and Manuela M. Veloso. Probabilistic policy reuse in a rein-
forcement learning agent. In International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 720–727, 2006.

124

[26] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical
multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems,
13(2):197–229, 2006.

[27] Pierre Yves Glorennec and Lionel Jouffe. Fuzzy Q-learning. In IEEE International
Conference on Fuzzy Systems, volume 2, pages 659–662, 1997.

[28] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157–1182, March 2003.

[29] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lotfi A. Zadeh. Feature Ex-
traction: Foundations and Applications. Studies in Fuzziness and Soft Computing.
Springer-Verlag, Secaucus, NJ, USA, 2006.

[30] Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In
International Conference on Machine Learning, pages 243–250. Morgan Kaufmann,
2002.

[31] Frank Hoffmann. An overview on soft computing in behavior based robotics. In
International Fuzzy Systems Association World Congress, pages 544–551, 2003.

[32] Frank Hoffmann. Fuzzy behavior coordination for robot learning from demonstra-
tion. In International Conference of the North American Fuzzy Information Process-
ing Society, pages 157–162, 2004.

[33] John H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, MI, USA, 1975.

[34] Manfred Huber. Learning hierarchical control policies using closed-loop actions.
In IASTED International Conference on Artificial Intelligence & Soft Computing,
pages 356–361. IASTED.

[35] Manfred Huber and Roderic A. Grupen. A feedback control structure for on-line
learning tasks. Robotics and Autonomous Systems, 22(3):303–315, 1997.

[36] Mark Humphrys. Action selection methods using reinforcement learning. In From
Animals to Animats 4: Proceedings of the Fourth International Conference on Sim-
ulation of Adaptive Behavior, pages 135–144. MIT Press, Bradford Books, 1996.

[37] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state
variables. In International Joint Conference on Artificial Intelligence, pages 752–
757, August 2005.

[38] Anders Jonsson and Andrew G. Barto. Automated state abstraction for options using
the U-tree algorithm. In Advances in Neural Information Processing Systems, pages
1054–1060. MIT Press, 2001.

[39] Lionel Jouffe. Fuzzy inference system learning by reinforcement methods. IEEE
Transactions on Systems, Man and Cybernetics, Part C, 28(3):338–355, 1998.

125

[40] Jonas Karlsson. Learning to Solve Multiple Goals. PhD thesis, University of
Rochester, Rochester, NY, USA, 1997.

[41] Daphne Koller and Ronald Parr. Computing factored value functions for policies in
structured MDPs. In International Joint Conference on Artificial Intelligence, pages
1332–1339. Morgan Kaufmann, 1999.

[42] George Konidaris and Andrew G. Barto. Building portable options: Skill transfer in
reinforcement learning. In International Joint Conference on Artificial Intelligence,
pages 895–900, 2007.

[43] John R. Koza. Genetic programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[44] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic controller. I. IEEE Transac-
tions on Systems, Man and Cybernetics, 20(2):404–418, March 1990.

[45] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic controller. II. IEEE Trans-
actions on Systems, Man and Cybernetics, 20(2):419–435, March 1990.

[46] Long-Ji Lin. Scaling up reinforcement learning for robot control. In International
Conference on Machine Learning, pages 182–189. Morgan Kaufmann, 1993.

[47] Sean Luke. ECJ 15: A Java evolutionary computation library.
http://cs.gmu.edu/∼eclab/projects/ecj/, 2006.

[48] Zhihui Luo, David Bell, and Barry McCollum. Skill combination for reinforcement
learning. In Intelligent Data Engineering and Automated Learning, volume 4881 of
Lecture Notes in Computer Science, pages 87–96. Springer, 2007.

[49] Eric Martinson, Alexander Stoytchev, and Ronald C. Arkin. Robot behavioral selec-
tion using q-learning. In IEEE/RSJ International Conference on Intelligent Robots
and System, volume 1, pages 970–977, 2002.

[50] Maja J. Matarić. Reward functions for accelerated learning. In International Con-
ference on Machine Learning, pages 181–189, 1994.

[51] Maja J. Matarić. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1):73–83, 1997.

[52] Vicente Matellán, Camino Fernández, and José M. Molina López. Genetic learning
of fuzzy reactive controllers. Robotics and Autonomous Systems, 25(1-2):33–41,
1998.

[53] Mausam and Daniel S. Weld. Solving concurrent markov decision processes. In
National Conference on Artificial Intelligence, pages 716–722. AAAI Press, 2004.

[54] Andrew K. McCallum. Reinforcement Learning with Selective Perception and Hid-
den State. PhD thesis, University of Rochester, 1996.

126

[55] David J. Montana. Strongly typed genetic programming. Technical Report #7866,
10 Moulton Street, Cambridge, MA 02138, USA, 7 1993.

[56] Robin R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge, MA, USA,
2000.

[57] Monica Nicolescu and Maja J. Matarić. A hierarchical architecture for behavior-
based robots. In International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 227–233, Bologna, Italy, July 2002. ACM Press.

[58] Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell,
MA, USA, 2003.

[59] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of ma-
chines. In Advances in Neural Information Processing Systems, pages 1043–1049.
Morgan Kaufmann, 1997.

[60] Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi. A ran-
domized ANOVA procedure for comparing performance curves. International Con-
ference on Machine Learning, pages 430–438, 1998.

[61] Paolo Pirjanian. Multiple Objective Action Selection & Behavior Fusion using Vot-
ing. PhD dissertation, Aalborg University, Denmark, 1998.

[62] Paolo Pirjanian. Behavior coordination mechanisms – state-of-the-art. Technical
Report IRIS-99-375, Institute for Robotics and Intelligent Systems, University of
Southern California, October 1999.

[63] Paolo Pirjanian and Maja J. Matarić. Multiple objective vs. fuzzy behavior coordi-
nation. In Fuzzy Logic Techniques for Autonomous Vehicle Navigation, volume 61
of Studies in Fuzziness and Soft Computing, chapter 10, pages 235–253. Springer-
Phisica Verlag, 2001.

[64] Pascal Poupart and Craig Boutilier. VDCBPI: an approximate scalable algorithm
for large POMDPs. In Advances in Neural Information Processing Systems, pages
1081–1088, Vancouver, BC, 2004.

[65] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Theoretical results on re-
inforcement learning with temporally abstract options. In European Converence on
Machine Learning, pages 382–393, 1998.

[66] Jefferson Provost, Benjamin Kuipers, and Risto Miikkulainen. Developing nav-
igation behavior through self-organizing distinctive-state abstraction. Connection
Science, 18(2):159–172, 2006.

[67] G.V.S. Raju, Jun Zhou, and Roger A. Kisner. Hierarchical fuzzy control. Interna-
tional Journal of Control, 54(5):1201–1216, November 1991.

127

[68] Nelson Ramos, Pedur U. Lima, and J. M. Sousa. Robot behavior coordination based
on fuzzy decision-making. In ROBOTICA 2006 - 6th Portuguese Robotics Festival,
Guimarares, Portugal, 2006.

[69] Michael L. Raymer, William F. Punch, Erik D. Goodman, Leslie A. Kuhn, and
Anil K. Jain. Dimensionality reduction using genetic algorithms. IEEE Transac-
tions on Evolutionary Computation, 4(2):164–171, 2000.

[70] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, July 1987.

[71] Craig W. Reynolds. Steering behaviors for autonomous characters. In Proceedings
of the Game Developers Conference, pages 763–782, 1999.

[72] Khashayar Rohanimanesh, Robert Platt Jr., Sridhar Mahadevan, and Roderic A. Gru-
pen. Coarticulation in Markov decision processes. In Conference on Neural Infor-
mation Processing Systems, pages 1137–1144, 2004.

[73] Khashayar Rohanimanesh and Sridhar Mahadevan. Decision-theoretic planning
with concurrent temporally extended actions. In Conference in Uncertainty in Arti-
ficial Intelligence, pages 472–479. Morgan Kaufmann, 2001.

[74] Khashayar Rohanimanesh and Sridhar Mahadevan. Learning to take concurrent ac-
tions. In Conference on Neural Information Processing Systems, pages 1619–1626.
MIT Press, 2002.

[75] Julio K. Rosenblatt. Utility fusion: Map-based planning in a behavior-based system.
Field and Service Robotics, pages 411–418, 1998.

[76] Julio K. Rosenblatt. Optimal selection of uncertain actions by maximizing expected
utility. Autonomous Robots, 9(1):17–25, 2000.

[77] Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR166, Cambridge University, 1994.

[78] Stuart J. Russell and Andrew Zimdars. Q-decomposition for reinforcement learning
agents. In International Conference on Machine Learning, pages 656–663. AAAI
Press, 2003.

[79] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli, Marc
Schoenauer, and Terence C. Fogarty, editors, First European Workshop on Genetic
Programming, volume 1391, pages 83–95, Paris, 1998. Springer-Verlag.

[80] Alessandro Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft
Computing, 1(4):180–197, 1997.

[81] Alessandro Saffiotti and Zbigniew Wasik. Using hierarchical fuzzy behaviors in the
robocup domain. In D. Maravall C. Zhou and D. Ruan, editors, Autonomous Robotic
Systems, pages 235–262. Springer-Verlag, Berlin, DE, 2003.

128

[82] Satinder P. Singh and David Cohn. How to dynamically merge markov decision
processes. In Advances in Neural Information Processing Systems, pages 1057–
1063. The MIT Press, 1997.

[83] William D. Smart and Leslie Pack Kaelbling. Effective reinforcement learning for
mobile robots. In International Conference on Robotics and Automation, volume 4,
pages 3404–3410. IEEE, 2002.

[84] Nathan Sprague and Dana H. Ballard. Multiple-goal reinforcement learning with
modular Sarsa(0). In International Joint Conference on Artificial Intelligence, pages
1445–1447, 2003.

[85] Peter Stone and Manuela M. Veloso. Layered learning. In European Conference
on Machine Learning, volume 1810 of Lecture Notes in Computer Science, pages
369–381. Springer, 2000.

[86] Il Hong Suh, Min Jo Kim, Sanghoon Lee, and Byung-Ju Yi. A novel dynamic
priority-based action-selection-mechanism integrating a reinforcement learning. In
International Conference on Robotics and Automation, pages 2639–2646, 2004.

[87] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[88] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

[89] Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning. In
International Joint Conference on Artificial Intelligence, pages 1065–1070, 2007.

[90] Ming Tan. Multi-agent reinforcement learning: Independent versus cooperative
agents. In International Conference on Machine Learning, pages 330–337, 1993.

[91] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task
mappings for temporal difference learning. Journal of Machine Learning Research,
8(1):2125–2167, 2007.

[92] Edward Tunstel. Fuzzy-behavior modulation with threshold activation for au-
tonomous vehicle navigation. In 18th International Conference of the North Ameri-
can Fuzzy Information Procesing Society (NAFIPS), pages 776–780, New York, NY,
1999.

[93] Edward Tunstel. Fuzzy-behavior synthesis, coordination, and evolution in an adap-
tive behavior hierarchy. In Fuzzy Logic Techniques for Autonomous Vehicle Nav-
igation, volume 61 of Studies in Fuzziness and Soft Computing, chapter 9, pages
205–234. Springer-Phisica Verlag, 2001.

129

[94] Edward Tunstel, Marco A. A. de Oliveira, and Sigal Berman. Fuzzy behavior
hierarchies for multi-robot control. International Journal on Intelligent Systems,
17(5):449–470, 2002.

[95] Edward Tunstel, Tanya Lippincott, and Mo Jamshidi. Behavior hierarchy for au-
tonomous mobile robots: Fuzzy-behavior modulation and evolution. International
Journal of Intelligent Automation and Soft Computing, Special Issue: Autonomous
Control Engineering at NASA ACE Center, 3(1):37–49, 1997.

[96] Prahlad Vadakkepat, Ooi Chia Miin, Xiao Peng, and Tong Heng Lee. Fuzzy
behavior-based control of mobile robots. IEEE Transactions on Fuzzy Systems,
12(4):559–565, 2004.

[97] Prahlad Vadakkepat, Xiao Peng, Boon Kiat Quek, and Tong Heng Lee. Evolution
of fuzzy behaviors for multi-robotic system. Robotics and Autonomous Systems,
55(2):146–161, 2007.

[98] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-
4):279–292, 1992.

[99] Steven D. Whitehead. Reinforcement Learning for the Adaptive Control of Percep-
tion and Action. PhD thesis, University of Rochester, 1992.

[100] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Empirical studies in action
selection with reinforcement learning. Adaptive Behavior, 15(1):33, 2007.

[101] Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems and Their Applications, 13(2):44–49, 1998.

[102] Simon X. Yang, Hao Li, Max Q.H. Meng, and Peter Xiaoping Liu. An embedded
fuzzy controller for a behavior-based mobile robot with guaranteed performance.
IEEE Transactions Fuzzy Systems, 12(4):436–446, 2004.

[103] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

130

Appendix A

State-Action Spaces

Table A.1: A comparison of the size of the action space is shown for each composite
behavior. Also shown is the effect of using different types of behavior hierarchies and the
pruning of unacceptable actions. A single hierarchy level represents a monolithic controller
comprised of a single behavior which is responsible for accomplishing every primitive task.

Problem Domain Hierarchy All Actions Pruned Actions
Levels 2D 3d 2D 3d

CA-GS
1 35 175 35 175
2 25 25 9 9

CA-GS-RA
1 35 175 35 175
2 125 125 61 61

FLOCKING
1 35 175 35 175
2 125 125 61 61

FLOCKING-CA
1 35 175 35 175
2 625 625 369 369
3 25 25 9 9

FLOCKING-CA-GS
1 35 175 35 175
2 3,125 3,125 2,101 2,101
3 25 25 9 9

FLOCKING-CA-GS-RA
1 35 175 35 175
2 15,625 15,625 11,529 11,529
3 25 25 9 9

Table A.2: A comparison of the size of the primitive task state spaces is shown for each
abstraction level.

Abstraction 2D States 3D States
Full 35 175
Large 25 125
Medium 25 25
Small 5 5

131

Table A.3: A comparison of the size of the state space is shown for each combination of
problem domain and abstracted level.

Problem Domain Abstraction 2D States 3D States

CA-GS

Full 1,225 30,625
Large 625 15,625
Medium 625 625
Small 25 25
Minimal 25 25

CA-GS-RA

Full 42,875 5,359,375
Large 15,625 1,953,125
Medium 15,625 15,625
Small 125 125
Minimal 125 125

FLOCKING

Full 42,875 5,359,375
Large 15,625 1,953,125
Medium 15,625 15,625
Small 125 125
Minimal 125 125

FLOCKING-CA

Full 1,500,625 937,890,625
Large 390,625 244,140,625
Medium 390,625 390,625
Small 625 625
Minimal 25 25

FLOCKING-CA-GS

Full 52,521,875 164,130,859,375
Large 9,765,625 30,517,578,125
Medium 9,765,625 9,765,625
Small 3,125 3,125
Minimal 25 25

FLOCKING-CA-GS-RA

Full 1,838,265,625 28,722,900,390,625
Large 244,140,625 3,814,697,265,625
Medium 244,140,625 244,140,625
Small 15,625 15,625
Minimal 25 25

132

Appendix B

Evaluation Environment Parameters

Table B.1: COLLISIONAVOIDANCE environment parameters

Parameter
Value

2D 3D

Agent initial position r = 5 r = 5
Max agent initial velocity v = 0.2 v = 0.2
Obstacle count [100,125] [200,250]
Obstacle size [5,10] [5,15]
Obstacle position r = 150 r = 125
Min obstacle-agent distance 8 8
Min obstacle separation 3 2
Max obstacle initial velocity v = 0.1 v = 0.1

Table B.2: GOALSEEK environment parameters

Parameter
Value

2D 3D

Agent initial position r = 5 r = 5
Goal distance [40,80] [40,80]

133

Table B.3: RUNAWAY environment parameters

Parameter
Value

2D 3D

Agent initial position r = 5 r = 5
Hazardous object count [1,2] [1,3]
Hazardous object strength [10,15] [5,15]
Hazardous object position r = 25 r = 25
Min hazardous object-agent distance 4 4
Min hazardous object separation 10 10

Table B.4: CA-GS environment parameters

Parameter
Value

2D 3D

Agent initial position r = 5 r = 5
Goal distance [30,60] [30,60]
Obstacle count [6,12] [20,40]
Obstacle size [5,10] [5,10]
Obstacle position r = 40 r = 40
Min obstacle-agent distance 8 8
Min obstacle separation 4.5 4.5

134

Table B.5: CA-GS-RA environment parameters

Parameter
Value

2D 3D

Agent initial position r = 5 r = 5
Goal distance [30,60] [30,60]
Obstacle count [6,12] [20,40]
Obstacle size [5,10] [5,10]
Obstacle position r = 40 r = 40
Min obstacle-agent distance 8 8
Min obstacle separation 4.5 4.5
Hazardous object count [2,4] [4,8]
Hazardous object strength [1,5] [1,5]
Hazardous object position r = 40 r = 40
Min hazardous object-agent distance 4 4
Min hazardous object separation 4 4

Table B.6: FLOCKING environment parameters

Parameter
Value

2D 3D

Agent count [4,8] [4,8]
Agent initial position r = 10 r = 10
Min agent separation 5 5

Table B.7: FLOCKING-CA environment parameters

Parameter 2D Value

Agent count [5,8]
Agent initial position r = 15
Min agent separation 5
Obstacle count [100,125]
Obstacle size [3,8]
Obstacle position r = 200
Min obstacle-agent distance 8
Min obstacle separation 12

135

Table B.8: FLOCKING-CA-GS environment parameters

Parameter
Value

2D 3D

Agent count [4,6] [4,8]
Agent initial position r = 15 r = 15
Min agent separation 5 5
Goal distance [125,150] [125,150]
Obstacle count [50,70] [150,200]
Obstacle size [3,8] [3,8]
Obstacle position r = 150 r = 150
Min obstacle-agent distance 8 8
Min obstacle separation 12 12

Table B.9: FLOCKING-CA-GS-RA environment parameters

Parameter
Value

2D 3D

Agent count [4,6] [4,8]
Agent initial position r = 15 r = 15
Min agent separation 5 5
Goal distance [125,150] [125,150]
Obstacle count [60,80] [150,200]
Obstacle size [3,8] [3,8]
Obstacle position r = 150 r = 150
Min obstacle-agent distance 8 8
Min obstacle separation 12 12
Hazardous object count [10,14] [20,30]
Hazardous object strength [1,5] [1,5]
Hazardous object position r = 150 r = 150
Min hazardous object-agent distance 4 4
Min hazardous object separation 4 4

136

Appendix C

Statistical Results

C.1 Student’s Paired T-Test Results

To compare the performance of “best-of-run” controllers on the test set, the paired Student’s

t-test was used. For experiments using reinforcement learning, the policy with the best val-

idation set performance learned at any time throughout the experiment was classified as

the “best-of-run.” In experiments using grammatical evolution, the “best-of-generation”

individual with highest validation set fitness was classified as the “best-of-run.” These

“best-of-run” controllers where then evaluated on the test set environments. Results pre-

sented in bold denote results that are statistically significant at at least the 95% confidence

level (i.e., p≤ 0.05).

137

Table C.1: Results of the paired Student’s t-test for the CA-GS 2D composite task using
reinforcement learning with the Bonferroni adjustment are shown. Results presented in
bold denote results that are statistically significant at at least the 95% confidence level (i.e.,
p≤ 0.05). These results are discussed in Section 7.2.1.

Mean “best-of-run” testing reward P-value

Full 140.7±33.0

Monolithic 148.1±1.1 0.66
Modular 146.1±11.9 0.91

Large 140.7±33.0 1.00
Small 135.0±27.0 0.95

Modified Small 144.5±16.5 0.99

Large 140.7±33.0

Monolithic 148.1±1.1 0.66
Modular 146.1±11.9 0.91

Small 135.0±27.0 0.95
Modified Small 144.5±16.5 0.99

Small 135.0±27.0
Monolithic 148.1±1.1 0.02

Modular 146.1±11.9 0.12
Modified Small 144.5±16.5 0.32

Modified Small 144.5±16.5
Monolithic 148.1±1.1 1.00

Modular 146.1±11.9 0.70
Monolithic 148.1±1.1 Modular 146.1±11.9 0.89

138

Table C.2: Results of the paired Student’s t-test for the CA-GS 3D composite task us-
ing reinforcement learning with the Bonferroni adjustment are shown. These results are
discussed in Section 7.2.1.

Mean “best-of-run” testing reward P-value

Full 146.2±11.9

Monolithic −23.1±21.4 ∼0.00
Modular −31.0±10.1 ∼0.00

Large 148.1±1.2 0.94
Medium 148.2±0.9 0.92

Small 148.2±0.8 0.93
Modified Small 146.0±10.3 1.00

Large 148.1±01.2

Monolithic −23.1±21.4 ∼0.00
Modular −31.0±10.1 ∼0.00
Medium 148.2±0.9 1.00

Small 148.2±0.8 1.00
Modified Small 146.0±10.3 0.80

Medium 148.2±0.9

Monolithic −23.1±21.4 ∼0.00
Modular −31.0±10.1 ∼0.00

Small 148.2±0.8 1.00
Modified Small 146.0±10.3 0.76

Small 148.2±0.8
Monolithic −23.1±21.4 ∼0.00

Modular −31.0±10.1 ∼0.00
Modified Small 146.0±10.3 0.76

Modified Small 146.0±10.3
Monolithic −23.1±21.4 ∼0.00

Modular −31.0±10.1 ∼0.00
Monolithic −23.1±21.4 Modular −31.0±10.1 0.24

139

Table C.3: Results of the paired Student’s t-test for the CA-GS-RA 2D composite task
using reinforcement learning with the Bonferroni adjustment are shown. These results are
discussed in Section 7.2.1.

Mean “best-of-run” testing reward P-value

Full 145.5±7.6

Monolithic 144.5±16.5 1.00
Modular 144.3±12.0 1.00

Large 143.5±13.9 0.97
Small 144.7±8.3 0.84

Modified Small 146.8±0.7 1.00

Large 144.5±16.5

Monolithic 144.5±16.5 1.00
Modular 144.3±12.0 1.00

Small 144.7±8.3 0.61
Modified Small 146.8±0.7 1.00

Small 144.7±8.3
Monolithic 144.5±16.5 1.00

Modular 144.3±12.0 1.00
Modified Small 146.8±0.7 0.52

Modified Small 146.8±0.7
Monolithic 144.5±16.5 0.94

Modular 144.3±12.0 0.73
Monolithic 144.5±16.5 Modular 144.3±12.0 1.00

140

Table C.4: Results of the paired Student’s t-test for the CA-GS-RA 3D composite task
using reinforcement learning with the Bonferroni adjustment are shown. These results are
discussed in Section 7.2.1.

Mean “best-of-run” testing reward P-value

Full 141.0±25.6

Monolithic −54.0±4.1 ∼0.00
Modular −57.1±6.3 ∼0.00

Large 145.2±8.2 0.93
Medium 146.8±1.2 0.69

Small 141.4±20.1 1.00
Modified Small 145.9±7.9 0.87

Large 145.2±8.2

Monolithic −54.0±4.1 ∼0.00
Modular −57.1±6.3 ∼0.00
Medium 146.8±1.2 0.83

Small 141.4±20.1 0.88
Modified Small 145.9±7.9 1.00

Medium 146.8±1.2

Monolithic −54.0±4.1 ∼0.00
Modular −57.1±6.3 ∼0.00

Small 141.4±20.1 0.49
Modified Small 145.9±7.9 0.98

Small 141.4±20.1
Monolithic −54.0±4.1 ∼0.00

Modular −57.1±6.3 ∼0.00
Modified Small 145.9±7.9 0.78

Modified Small 145.9±7.9
Monolithic −54.0±4.1 ∼0.00

Modular −57.1±6.3 ∼0.00
Monolithic −54.0±4.1 Modular −57.1±6.3 0.08

141

Table C.5: Results of the paired Student’s t-test for the CA-GS-RA 2D and 3D composite
task using grammatical evolution with the Bonferroni adjustment are shown. These results
are discussed in Section 7.2.2.

Mean “best-of-run” testing reward P-value

Full 2D 116.8±53.7

Full 3D 137.8±24.2 0.42
Large 3D 139.4±22.9 0.31

Medium 3D 139.5±23.0 0.31
Small 3D 141.7±19.1 0.18

Large 2D 108.8±53.6

Full 3D 137.8±24.2 0.09
Large 3D 139.4±22.9 0.06

Medium 3D 139.5±23.0 0.06
Small 3D 141.7±19.1 0.03

Small 2D 92.9±59.5

Full 3D 137.8±24.2 ∼0.00
Large 3D 139.4±22.9 ∼0.00

Medium 3D 139.5±23.0 ∼0.00
Small 3D 141.7±19.1 ∼0.00

Table C.6: Results of the paired Student’s t-test for the FLOCKING 2D composite task
using reinforcement learning with the Bonferroni adjustment are shown. These results are
discussed in Section 7.3.1.

Mean “best-of-run” testing reward P-value

Full 55.3±4.2

Monolithic 32.5±4.1 ∼0.00
Modular 43.0±0.8 ∼0.00

Large 55.3±4.8 1.00
Small 68.6±2.2 ∼0.00

Large 55.3±4.8
Monolithic 32.5±4.1 ∼0.00

Modular 43.0±0.8 ∼0.00
Small 68.6±2.2 ∼0.00

Small 68.6±2.2
Monolithic 32.5±4.1 ∼0.00

Modular 43.0±0.8 ∼0.00
Monolithic 32.5±4.1 Modular 43.0±0.8 ∼0.00

142

Table C.7: Results of the paired Student’s t-test for the FLOCKING 2D composite task
using grammatical evolution with the Bonferroni adjustment are shown. These results are
discussed in Section 7.3.2.

Mean “best-of-run” testing reward P-value

Full 49.7±4.5
Monolithic 25.4±27.7 ∼0.00

Large 49.4±9.3
Small 43.2±17.9 0.12

Large 49.4±9.3
Monolithic 43.6±5.2 ∼0.00

Small 43.2±17.9 0.21
Small 43.2±17.9 Monolithic 43.6±5.2 ∼0.00

Table C.8: Results of the paired Student’s t-test for the FLOCKING-CA 2D composite task
using reinforcement learning with the Bonferroni adjustment are shown. These results are
discussed in Section 7.3.1.

Mean “best-of-run” testing reward P-value

Full 21.1±3.8

Monolithic −9.9±7.0 ∼0.00
Modular 9.9±1.5 ∼0.00

Large 21.7±4.0 0.98
Small 22.8±4.2 0.31

Minimal 23.4±4.1 0.07

Large 21.7±4.0

Monolithic −9.9±7.0 ∼0.00
Modular 9.9±1.5 ∼0.00

Small 22.8±4.2 0.82
Minimal 23.4±4.1 0.37

Small 22.8±4.2
Monolithic −9.9±7.0 ∼0.00

Modular 9.9±1.5 ∼0.00
Minimal 23.4±4.1 0.99

Minimal 23.4±4.1
Monolithic −9.9±7.0 ∼0.00

Modular 9.9±1.5 ∼0.00
Monolithic −9.9±7.0 Modular 9.9±1.5 ∼0.00

143

Table C.9: Results of the paired Student’s t-test for the FLOCKING-CA 2D composite task
using grammatical evolution with the Bonferroni adjustment are shown. These results are
discussed in Section 7.3.2.

Mean “best-of-run” testing reward P-value

Full −1.2±24.9

Monolithic −89.0±34.6 ∼0.00
Large −0.9±24.1 1.00
Small 0.5±23.7 1.00

Minimal 0.7±26.5 1.00

Large −0.9±24.1
Monolithic −89.0±34.6 ∼0.00

Small 0.5±23.7 1.00
Minimal 0.7±26.5 1.00

Small 0.5±23.7
Monolithic −89.0±34.6 ∼0.00

Minimal 0.7±26.5 1.00
Minimal 0.7±26.5 Monolithic −89.0±34.6 ∼0.00

144

Table C.10: Results of the paired Student’s t-test for the FLOCKING-CA-GS 2D composite
task using reinforcement learning with the Bonferroni adjustment are shown. These results
are discussed in Section 7.3.1.

Mean “best-of-run” testing reward P-value

Full 123.0±1.1

Monolithic −100.7±56.2 ∼0.00
Modular 121.4±4.2 0.17

Full Original Alg. 120.3±2.6 0.00
Large 122.8±1.6 1.00
Small 122.1±1.9 0.10

Minimal 121.9±1.5 ∼0.00
Modified Small 121.3±1.3 ∼0.00

Large 122.8±1.6

Monolithic −100.7±56.2 ∼0.00
Modular 121.4±4.2 0.35

Small 122.1±1.9 0.53
Minimal 121.9±1.5 0.08

Modified Small 121.3±1.3 ∼0.00

Small 122.1±1.9

Monolithic −100.7±56.2 ∼0.00
Modular 121.4±4.2 0.95
Minimal 121.9±1.5 1.00

Modified Small 121.3±1.3 0.29

Minimal 121.9±1.5
Monolithic −100.7±56.2 ∼0.00

Modular 121.4±4.2 1.00
Modified Small 121.3±1.3 0.63

Modified Small Monolithic −100.7±56.2 ∼0.00
Modular 121.4±4.2 1.00

Monolithic −100.7±56.2 Modular 121.4±4.2 ∼0.00

145

Table C.11: Results of the paired Student’s t-test for the FLOCKING-CA-GS 2D composite
task using grammatical evolution with the Bonferroni adjustment are shown. These results
are discussed in Section 7.3.2.

Mean “best-of-run” testing reward P-value

Full 121.4±2.8

Monolithic −114.0±57.9 ∼0.00
Large 121.7±2.6 1.00
Small 121.7±3.0 1.00

Minimal 117.3±17.3 0.78

Large 121.7±2.6
Monolithic −114.0±57.9 ∼0.00

Small 121.7±3.0 1.00
Minimal 117.3±17.3 0.71

Small 121.7±3.0
Monolithic −114.0±57.9 ∼0.00

Minimal 117.3±17.3 0.73
Minimal 117.3±17.3 Monolithic −114.0±57.9 ∼0.00

Table C.12: Results of the paired Student’s t-test for the FLOCKING-CA-GS-RA 2D com-
posite task using reinforcement learning with the Bonferroni adjustment are shown. These
results are discussed in Section 7.3.1.

Mean “best-of-run” testing reward P-value

Full 118.0±2.3

Large 117.0±2.9 0.33
Small 115.5±3.6 ∼0.00

Minimal 117.2±2.7 0.58
Modified Small 116.9±2.8 0.28

Large 117.0±2.9
Small 115.5±3.6 0.26

Minimal 117.2±2.7 1.00
Modified Small 116.9±2.8 1.00

Small 115.5±3.6
Minimal 117.2±2.7 0.99

Modified Small 116.9±2.8 0.25
Minimal 117.2±2.7 Modified Small 116.9±2.8 0.99

146

C.2 Randomized Two-Way ANOVA Results

To compare both the rates at which controllers were developed and their resulting perfor-

mance, the randomized two-way ANOVA test was used [60]. The tables below describe

the results of these tests for the following effects:

A Effect Performance of the agent

B Effect The number of updates to the Q-values

Results denoted by X denote results that are statistically significant at the 95% confidence

level (i.e., p≤ 0.05).

Table C.13: Results of the randomized two-way ANOVA for the CA-GS 2D composite
task using reinforcement learning are shown. X denotes results that are statistically signif-
icant at the 95% confidence level. These results are discussed in Section 7.2.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large X X
Small X X X
Modified Small X X X

Large

Monolithic X X X
Modular X X X
Small X X X
Modified Small

Small
Monolithic X X
Modular X X X
Modified Small X X X

Modified Small Monolithic X X X
Modular X X X

Monolithic Modular X X X

147

Table C.14: Results of the randomized two-way ANOVA for the CA-GS 3D composite
task using reinforcement learning are shown. These results are discussed in Section 7.2.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large X X
Medium X X
Small X X X
Modified Small X X

Large

Monolithic X X X
Modular X X X
Medium X
Small X X X
Modified Small

Medium

Monolithic X X X
Modular X X X
Small X X X
Modified Small

Small
Monolithic X X X
Modular X X X
Modified Small X X X

Modified Small Monolithic X X X
Modular X X X

Monolithic Modular

148

Table C.15: Results of the randomized two-way ANOVA for the CA-GS-RA 2D com-
posite task using reinforcement learning are shown. These results are discussed in Sec-
tion 7.2.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large
Small X X X
Modified Small X X

Large

Monolithic X X X
Modular X X X
Small X X X
Modified Small X X X

Small
Monolithic X X X
Modular X X X
Modified Small X X X

Modified Small Monolithic X X X
Modular X X X

Monolithic Modular X X X

149

Table C.16: Results of the randomized two-way ANOVA for the CA-GS-RA 3D com-
posite task using reinforcement learning are shown. These results are discussed in Sec-
tion 7.2.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large X X
Medium X X X
Small X X X
Modified Small X X X

Large

Monolithic X X X
Modular X X X
Medium X X X
Small X X
Modified Small X X X

Medium

Monolithic X X X
Modular X X X
Small X X X
Modified Small X X

Small
Monolithic
Modular X X
Modified Small X X X

Modified Small Monolithic X X X
Modular X X X

Monolithic Modular X

150

Table C.17: Results of the randomized two-way ANOVA for the CA-GS-RA 2D and 3D
composite task using grammatical evolution are shown. These results are discussed in
Section 7.2.2.

A Effect B Effect Interaction Effect

Full 2D

Full 3D X X
Large 3D X X
Medium 3D X X
Small 3D X X

Large 2D

Full 3D X X
Large 3D X X
Medium 3D X X
Small 3D X X

Small 2D

Full 3D X X
Large 3D X X
Medium 3D X X
Small 3D X X

Table C.18: Results of the randomized two-way ANOVA for the FLOCKING 2D composite
task using reinforcement learning are shown. These results are discussed in Section 7.3.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large
Small X

Large
Monolithic X X X
Modular X X X
Small

Small Monolithic X X X
Modular X X X

Monolithic Modular X

151

Table C.19: Results of the randomized two-way ANOVA for the FLOCKING-CA 2D com-
posite task using reinforcement learning are shown. These results are discussed in Sec-
tion 7.3.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Large
Small
Minimal

Large

Monolithic X X
Modular X X X
Small
Minimal

Small
Monolithic X X
Modular X X X
Minimal

Minimal Monolithic X X X
Modular X X X

Monolithic Modular X X

152

Table C.20: Results of the randomized two-way ANOVA for the FLOCKING-CA-GS 2D
composite task using reinforcement learning are shown. These results are discussed in
Section 7.3.1.

A Effect B Effect Interaction Effect

Full

Monolithic X X X
Modular X X X
Full Original Alg. X X X
Large X
Small X X X
Minimal X X
Modified Small X X

Large

Monolithic X X X
Modular X X X
Small X X X
Minimal X X
Modified Small X X X

Small

Monolithic X X X
Modular X X X
Minimal X X X
Modified Small X X X

Minimal
Monolithic X X X
Modular X X X
Modified Small X X X

Modified Small Monolithic X X X
Modular X X X

Monolithic Modular X X X

153

Table C.21: Results of the randomized two-way ANOVA for the FLOCKING-CA-GS-RA
2D composite task using reinforcement learning are shown. These results are discussed in
Section 7.3.1.

A Effect B Effect Interaction Effect

Full

Large X X X
Small X X
Minimal X X
Modified Small

Large
Small X X X
Minimal X X X
Modified Small X X

Small Minimal X X X
Modified Small X X X

Minimal Modified Small X X X

154

Appendix D

Sample Policies

Table D.1 details an example of an effective policy learned for the COLLISIONAVOIDANCE

primitive task.

Table D.2 details an example of an effective policy learned for the CA-GS composite

task using the Small abstraction level. Note that in the vast majority of stats, the COLLI-

SIONAVOIDANCE primitive task is given a MEDIUMDOA, or weight, while the GOALSEEK

primitive task is given a FULL DOA.

Table D.3 details an example of an effective policy learned for the FLOCKING-CA

composite task using the Minimal abstraction level. Note that in all but two states, the

FLOCKING composite task is given a LOW DOA, or weight, while the COLLISIONAVOID-

ANCE primitive task is given a FULL DOA. This indicates that the learned policy is risk-

averse and tends to avoid collisions at all costs. Note that the COLLISIONAVOIDANCE task

is able to avoid collisions with both obstacles and other agents. As a result, even though

the SEPARATION primitive task modulated by the FLOCKING composite task may receive

a LOW DOA, the COLLISIONAVOIDANCE task is still able to avoid agent-agent collisions.

155

Table D.1: An effective policy for the COLLISIONAVOIDANCE primitive task learned by
composite reinforcement learning

State Action
Collision Dir Time till collision Steer Yaw Steer Speed
BACK_LEFT NOW RIGHT FASTER

BACK_LEFT REAL_SOON RIGHT MUCH_FASTER

BACK_LEFT SOON RIGHT SAME

BACK_LEFT LONG_TIME RIGHT SAME

BACK_LEFT DISTANT CENTER SAME

LEFT NOW RIGHT FASTER

LEFT REAL_SOON SMALL_RIGHT SLOWER

LEFT SOON RIGHT SAME

LEFT LONG_TIME RIGHT SAME

LEFT DISTANT CENTER SAME

SMALL_LEFT NOW RIGHT FASTER

SMALL_LEFT REAL_SOON SMALL_LEFT MUCH_SLOWER

SMALL_LEFT SOON RIGHT SAME

SMALL_LEFT LONG_TIME RIGHT SAME

SMALL_LEFT DISTANT RIGHT SAME

CENTER NOW RIGHT FASTER

CENTER REAL_SOON SMALL_LEFT SAME

CENTER SOON RIGHT SAME

CENTER LONG_TIME RIGHT SAME

CENTER DISTANT RIGHT SAME

SMALL_RIGHT NOW SMALL_LEFT MUCH_FASTER

SMALL_RIGHT REAL_SOON SMALL_LEFT SAME

SMALL_RIGHT SOON SMALL_LEFT SAME

SMALL_RIGHT LONG_TIME SMALL_LEFT SAME

SMALL_RIGHT DISTANT CENTER SAME

RIGHT NOW SMALL_LEFT MUCH_FASTER

RIGHT REAL_SOON SMALL_LEFT SAME

RIGHT SOON SMALL_LEFT SAME

RIGHT LONG_TIME CENTER SAME

RIGHT DISTANT CENTER SAME

BACK_RIGHT NOW SMALL_LEFT MUCH_FASTER

BACK_RIGHT REAL_SOON SMALL_LEFT SAME

BACK_RIGHT SOON CENTER SAME

BACK_RIGHT LONG_TIME CENTER SAME

BACK_RIGHT DISTANT CENTER SAME

156

Table D.2: An effective policy for the CA-GS composite task using the Small abstraction
level learned by composite reinforcement learning

State Action
CA priority GS priority CA DOA GS DOA

ZERO ZERO MEDIUM FULL

ZERO LOW MEDIUM FULL

ZERO MEDIUM MEDIUM FULL

ZERO HIGH MEDIUM FULL

ZERO FULL MEDIUM FULL

LOW ZERO MEDIUM FULL

LOW LOW MEDIUM FULL

LOW MEDIUM MEDIUM FULL

LOW HIGH MEDIUM FULL

LOW FULL MEDIUM FULL

MEDIUM ZERO MEDIUM FULL

MEDIUM LOW MEDIUM FULL

MEDIUM MEDIUM MEDIUM FULL

MEDIUM HIGH MEDIUM FULL

MEDIUM FULL FULL MEDIUM

HIGH ZERO MEDIUM FULL

HIGH LOW MEDIUM FULL

HIGH MEDIUM MEDIUM FULL

HIGH HIGH MEDIUM FULL

HIGH FULL FULL MEDIUM

FULL ZERO MEDIUM FULL

FULL LOW MEDIUM FULL

FULL MEDIUM FULL HIGH

FULL HIGH MEDIUM FULL

FULL FULL FULL MEDIUM

157

Table D.3: An effective policy for the FLOCKING-CA composite task using the Minimal
abstraction level learned by composite reinforcement learning

State Action
FLOCKING priority CA priority FLOCKING DOA CA DOA

ZERO ZERO LOW FULL

ZERO LOW LOW FULL

ZERO MEDIUM LOW FULL

ZERO HIGH LOW FULL

ZERO FULL LOW FULL

LOW ZERO LOW FULL

LOW LOW LOW FULL

LOW MEDIUM LOW FULL

LOW HIGH LOW FULL

LOW FULL LOW FULL

MEDIUM ZERO LOW FULL

MEDIUM LOW LOW FULL

MEDIUM MEDIUM LOW FULL

MEDIUM HIGH LOW FULL

MEDIUM FULL LOW FULL

HIGH ZERO LOW FULL

HIGH LOW LOW FULL

HIGH MEDIUM LOW FULL

HIGH HIGH LOW FULL

HIGH FULL LOW FULL

FULL ZERO LOW FULL

FULL LOW FULL MEDIUM

FULL MEDIUM FULL MEDIUM

FULL HIGH LOW FULL

FULL FULL LOW FULL

158

Appendix E

Fuzzy Membership Functions

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

LO
W

LO
W

MEDIUM

MEDIUM
HIG

H
HIG

H
FULL
FULL

Figure E.1: Behavior DOA linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

Figure E.2: Direction delta linguistic variable

159

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

Figure E.3: Phi direction delta linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

Figure E.4: Phi direction error delta linguistic variable

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

NEGATIVE_LARGE

NEGATIVE_LARGE

NEGATIVE

NEGATIVE

NEGATIVE_SMALL

NEGATIVE_SMALL

ZERO
ZERO

POSITIVE_SMALL

POSITIVE_SMALL

POSITIVE

POSITIVE

POSITIVE_LA
RGE

POSITIVE_LA
RGE

Figure E.5: Phi direction error linguistic variable

160

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

DOWN
DOWN

SMALL_DOWN

SMALL_DOWN

CENTER

CENTER

SMALL_UP

SMALL_UP
UPUP

Figure E.6: Phi direction linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

Figure E.7: Theta direction delta linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

Figure E.8: Theta direction delta error linguistic variable

161

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

NEGATIVE_LARGE

NEGATIVE_LARGE

NEGATIVE

NEGATIVE

NEGATIVE_SMALL

NEGATIVE_SMALL

ZERO
ZERO

POSITIVE_SMALL

POSITIVE_SMALL

POSITIVE

POSITIVE

POSITIVE_LA
RGE

POSITIVE_LA
RGE

Figure E.9: Theta direction error linguistic variable

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

BACK_LEFT

BACK_LEFT

LE
FT

LE
FT

SMALL_LEFT

SMALL_LEFT

CENTER

CENTER

SMALL_RIGHT

SMALL_RIGHT

RIGHT
RIGHT

BACK_RIGHT

BACK_RIGHT

Figure E.10: Theta direction linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

CLO
SE

CLO
SE

MEDIUM

MEDIUM
FAR
FAR

VERY_F
AR

VERY_F
AR

Figure E.11: Distance linguistic variable

162

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

LO
W

LO
W

MEDIUM

MEDIUM
HIG

H
HIG

H
FULL
FULL

Figure E.12: Priority linguistic variable

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

MUCH_S
LO

WER

MUCH_S
LO

WER

SLO
WER

SLO
WER

SAME
SAME

FASTER

FASTER

MUCH_FASTER

MUCH_FASTER

Figure E.13: Speed difference linguistic variable

0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

ZERO
ZERO

SMALL

SMALL

MEDIUM

MEDIUM

LA
RGE

LA
RGE

FULL
FULL

Figure E.14: Strength linguistic variable

163

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

DOWN
DOWN

SMALL_DOWN

SMALL_DOWN

CENTER

CENTER

SMALL_UP

SMALL_UP
UPUP

Figure E.15: Steering pitch linguistic variable

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

MUCH_S
LO

WER

MUCH_S
LO

WER

SLO
WER

SLO
WER

SAME
SAME

FASTER

FASTER

MUCH_FASTER

MUCH_FASTER

Figure E.16: Steering speed linguistic variable

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

Crisp value

0

0.25

0.5

0.75

1

M
e

m
b

e
rs

h
ip

LE
FT

LE
FT

SMALL_LEFT

SMALL_LEFT

CENTER

CENTER

SMALL_RIGHT

SMALL_RIGHT

RIGHT
RIGHT

Figure E.17: Steering yaw linguistic variable

164

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Introduction
	Research Motivation and Summary
	Contributions
	Organization of Thesis

	Related Work
	Behavior-Based Robotics
	Fuzzy Logic
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Modular Reinforcement Learning
	Transfer Learning

	Evolutionary Computation

	Adaptive Fuzzy Behavior Hierarchies
	Fuzzy Control
	Adaptive Fuzzy Behavior Hierarchies
	Extending Adaptive Fuzzy Behavior Hierarchies
	Creating Agents Using Adaptive Fuzzy Behavior Hierarchies

	Navigation Problem Domains
	Single Agent Problem Domains
	Multi-Agent Problem Domains
	Primitive Task State Information

	Development of Controllers
	Composite Reinforcement Learning
	Grammatical Evolution

	Implementation and Evaluation
	Evaluation Environments
	State Space Abstraction
	Reward Functions
	Reinforcement Learning Configuration
	Grammatical Evolution Configuration

	Results and Discussion
	Developing Primitive Task Controllers
	Developing Single-Agent, Composite Task Controllers
	Reinforcement Learning
	Grammatical Evolution

	Developing Multi-Agent, Composite Task Controllers
	Reinforcement Learning
	Grammatical Evolution

	Analysis and Discussion
	State and Action Abstraction
	Behavior Modulation Extension
	Behavior Reuse
	Performance of Controllers Using the Small Abstraction Level
	Performance of Modular Reinforcement Learning
	Command Fusion Issues
	Development of Desired Behavior
	Use of Grammatical Evolution

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	State-Action Spaces
	Evaluation Environment Parameters
	Statistical Results
	Student's Paired T-Test Results
	Randomized Two-Way ANOVA Results

	Sample Policies
	Fuzzy Membership Functions

