THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DUAL-POROSITY AND DUAL-PERMEABILITY POROMECHANICS SOLUTIONS

FOR PROBLEMS IN LABORATORY AND FIELD APPLICATIONS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

VINH XUAN NGUYEN
Norman, Oklahoma
2010



DUAL-POROSITY AND DUAL-PERMEABILITY POROMECHANICS SOLUTIONS
FOR PROBLEMS IN LABORATORY AND FIELD APPLICATIONS

A DISSERTATION APPROVED FOR THE
MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

BY

Dr. Younane N. Abousleiman, Chair

Dr. Dean S. Oliver

Dr. Yucel 1. Akkutlu

Dr. Subhash N. Shah

Dr. Roger M. Slatt



© Copyright by VINH XUAN NGUYEN 2010
All Rights Reserved.



Dedicated to my family and those who love and support me!



Acknowledgements

I would like to express my wholehearted appreciation to Dr. Younane N. Abousleiman, my
dissertation chair, who introduced me to the field of Poromechanics and spent a lot of times
and energy teaching me the theory. I thank Dr. Abousleiman for giving me the fruitful
opportunity to work at the PoroMechanics Institute and to learn from him. Without his
patient guidance, technical advice and sincere encouragement, the completion of this
dissertation would not be possible. Above all, I hope to maintain the scientific honesty and
integrity I learnt from him and to exceed his standards of excellence in my future career.

I also would like to thank Dr. Dean Oliver, Dr. Yucel Akkutlu, Dr. Subhash Shah, and
Dr. Roger Slatt for serving as my committee members.

My special thanks go to my colleagues, Mr. Son Hoang and Minh Tran for their
intellectual companionship. My appreciation also goes to Ms. Carla Cates, PMI
Administration and Operations Manager, for making every administrative matter go
smoothly and for making my times at PMI a pleasant experience.

I am thankful to Mr. and Ms. Flanagan whom I lovingly call “Uncle Larry” and “Ma
Ha” for caring and loving me since the first day I arrived at OU. I also thank all of my
Vietnamese friends, the “SVS community”, especially my roommate and fellow Ph.D.
student Mr. Ha Mai, for spending the last nine years, sharing all the joys and tears with me.

Finally, I am deeply indebted to my parents, Mr. Nguyén Xuan Vii and Ms. Dang Thi

Kim Nguyén, and my sister Ms. Nguyén Thi Kim Yén for their support and loving.

v



Table of Contents

Acknowledgements iv
Table of Contents v
List of Tables ix
List of Figures X
Abstract xvii
Introduction 1
LT OVETVIEW ..ttt ettt ettt b e bbbt bt besbeebe bt ebe b eaes 1

1.2 LAtErature REVIEW.......cevuiiiiirieieiiiei ettt 3

1.3 ODJECHIVES ..ceutieuieiieiieeteetesieete st ete et ete et este e e esteesaesseessesseessesseensesseensesssenseessansanseans 12

1.4 Dissertation OULHNE ........coeveiriirieiriinieerieeeeesee e 13
Dual-Porosity and Dual-Permeability Poroelasticity: Dual-Poroelasticity ..........cc.cc... 16
2.1 INErOAUCLION ...ttt ettt ens 16

2.2 Governing EQUAtIONS ......c.cccoeirieririnieinenictnieteienteeeeste ettt 17
22,1 EILASHCILY vttt ettt ettt st ebe b bbb 17

2.2.2  POTOCIASHICILY ..ttt 17

2.2.3  Dual-PoroClastiCity.........cceeverierierierierienieieriesiesiestesresrestesresae e svesre e sneenens 19

224  Special AniSOtropiC CaSES ......c.coeerverieuerieirierieinienieienetereseeeereseesesseeene 23

2.3 Inclined WEIIDOTE.........coirieuiriiieiiieieiee e 26
23,1 Back@round ..........ccoieiiiiiiiieee e 26

2.3.2  Problem DesCriptions.........cccceecuereeriereeienierieseeieeeesieeeesre e sseeaesseenees 28

2.3.3  Analytical SOIUHIONS .....c.coevieiiiriiiniciieccc e 33

2.3.3.1 Problem I —Plane Strain..........cccccevereenenieineneenieceereerenes 33

2.3.3.2 Problem II — Antiplane Shear..........ccccccoveviveneiinincineneenenns 39

2.3.3.3  Complete SOIUtION .....c.ceveieieieieieieteieietesee e 39

2.3.4  Results and DiSCUSSIONS.......ccueruerierierierieieniesiesiese ettt 40

2.3.4.1 Modeling Parameters...........ccccevverrerrerienenieniesesiesreereereeveeve e 40

2.3.4.2 Dual-Poroelastic RESPONSES ........cccevueriereenierienienienieniereeieeeenne 42

2.3.4.3 Comparison with Single-Poroelastic.............cccoeererererrennenene. 52

2.4 Rectangular and Cylindrical GEOMELIIES .........ccevveeruereeirienieinicireneeenereeeeeeenes 55
2.4.1  Rectangular Strip and Solid Cylinder...........c.ccceovevereneneneniniceeeeenene 55

2.4.1.1  Background..........cccoooiieiiniiiieeeeeee e 55

2.4.1.2 Rectangular Strip (The Mandel’s Problem).............cccccuennene.n. 58



2.5

2.4.1.2.1 Problem Descriptions...........ccceeververrerrenrerresrenrennenne. 58

2.4.1.2.2 Analytical SOIUtIONS ......cccvevieieeieieeiereeieeeeeeeeen 61

2.4.1.3 Solid Cylinder (The Axisymmetric Mandel-type Problem).....63
2.4.1.3.1 Problem Descriptions..........cccecvevvereesieeverueeeenneenen 63

2.4.1.3.2 Analytical SoOIUtions...........cceceevevvevienienienienierienenne. 66

2.4.1.4 Results and DiSCUSSIONS ........cceerueruerierienienienienieniesiereseeee e 69
2.4.1.4.1 Dual-Poroelastic Pressure and Stress Evolutions...69

2.4.1.42 Effects of Dual-Poroelastic Parameters.................. 75

2.4.1.43 Effects of Material AniSOtropy .......cccevvevververrennenne. 79

2.4.1.4.4 Special Case of One-Dimensional Consolidation..83

242  HOUOW CYINET.......coeieieiieieieieieieeeee e 86
2.4.2.1 Background...........ccoeceeiieiienieieneeieee e 86

2.4.2.2  Problem DeSCriptions ..........ccccevuerierierierienierienienienieseeseeeresneenenne 88

2.4.2.3 Generalized Analytical SOIUtIONS.........cccevvveverieierieieeieienee. 90

2.4.2.4 Results and DiSCUSSIONS ........cccerververierierienienienieniesieeieeeeereeeeeneene 96
SUMMEATY <.eeinieeieeee ettt e st e et e s ta e e b e e beesstesnseenseesnseensean 102

Dual-Porosity and Dual-Permeability Porochemoelasticity: Dual-Porochemoelasticity

105

3.1 INITOAUCHION ettt ettt sae e 105

3.2 Mathematical FOrmulation.............cccccuerieiiinieiiieieieceeceeeee e 108

3.2.1  Chemical Potential ..........ccoeoieirieirenieirieeereceee e 109

3.2.2  Constitutive EQUAtIONS ........ccceerueiriniiinieineeeeiereei et 110

3.2.3  Coupled Transport EQUAtiONS .........ccceevevverierierienienienienieseeeeresveeve e 113

3.2.4  Other Governing EQUAtiONS ........ccceceeveirieirienieinienieenceeenieeeceeeeseeaens 115

3.2.5 Field and Diffusion EQUAtiONS..........cccceevevreriirrerienieiceeeeeceeeeeeeeeee 119

3.3 Inclined WelIDOTe........ccoevuieeieiieieiieeceee ettt 122

3.3.1  Problem DeSCriptions..........cccuevueeierierierieeieieeieneeeese et 123

3.3.2  Analytical SOIULION .....ccoouivieiiiiieiriieicecee et 125

3.3.2  Results and DiSCUSSIONS......cceevueieirieirienieierieietesieeeie e 130

3.4  Oedometer Test of SOlid Cylinder.........cocoueuevieiriniriniineeeeecreeeeeaee 137

3.4.2  Problem DeSCrIption .........cccoceevuerierienienienienieeienieeeese et 138

3.43  Analytical SOIULION .....ccueivieririinieiriiecceceee e 140

3.4.4  Results and DiSCUSSIONS......cc.eerueiririeirienieienieieteseeeete e seeeeeeees 142

3.5 SUMIMATY ..ottt s a e s sre e 148
Dual-Porosity and Dual-Permeability Porothermoelasticity: Dual-

Porothermoelasticity 150

4.1 TNEOAUCTION ...ttt s sbe b 150

4.2 Mathematical FOrmulation...........coeceverieinenininieincieee e 153

4.2.1  Constitutive EQUAtIONS.........cccveeierieiienieieeeeseeeesieeeeeeee e 153

4.2.2  Balance EQUAtIONS........c.ccecieierierienienieieienieieieie ettt 156

4.2.3  Field and Diffusion EQUations............cceeeeveniieiienieiecieieeeeseeeesieeene 158

4.3 Inclined WelIDOTe.......c.coevueiriiniiirieicirieeesee et 163

vi



4.3.1  Problem DesCriptions...........cccevueruerierienienienienieniesiesiesie et
4.3.2  Analytical SOIUHION ......covvieeieriieieeieieeeee e
4.3.3  Numerical SOIUtION ........c.covvieeiiericetieeeeeeeee et
434  Results and DiSCUSSIONS .......c.eeevueiieeereeriieereeeeieeeereeenreeeeteeesresesareesnnes
4.4 Rectan@ular SHIIP.......ccccieieirieieieieieieteet ettt sttt st ebe b ene e
4.4.1  Problem DesCriptions.........ccccvuerueriesieeierieeieseeieseeteseesaeseessesseessessnens
4.4.2  Analytical SOIUHION ......c.ecveiiieieieieieieeeeee e
443  Results and DISCUSSIONS .......c.eeevveeieieriirieeereeeeieeeereeenreeesreeesresesseeesnnes
4.5 SUMIMATY ..eoiieiieiieieeteseetese ettt sttt sttt et et esbe et e beestesaeentesseentesseensesaeenee
Applications
5.1 INETOAUCHION ...ttt ettt eaeeeteeete e eneeense e reeenes
5.2 Wellbore Stability .....ccccceveiriirieirieiiircnec ettt
5.3 Reservoir ConSOLAAtioN .............cceeeuieiiieieieeieeeieeereeeeeeee et e eae e ens
54 Time-dependent Load Applications ...........ccceeevuerierienienienienienieeieeeie e
5.5 SUMMATY ..ottt ettt ettt e e sae e e e beentessaensesseenee
Conclusions and Recommendations
L B O s Te] LT3 [} 4 LR
6.2  RecOMMENAALIONS.........ccovieriiitieeiieereeete ettt et eaeeeeaeeereeeareeaeeeteeeaseereeens
References

Appendix A Material Coefficients for Dual-Porosity and Dual-Permeability

Poroelasticity

Al
A2

Transversely ISOtropic Case.........cceerueuerueririnieinienieierieteeseeeset e
ISOIOPIC CASE.. ettt ettt ettt ettt et te et e st e et e aaensesseesesseesessaens

Appendix B Dual-Poroelastic Rectangular Strip’s Solutions

Appendix C Dual-Poroelastic Solid Cylinder’s Solutions

Appendix D Dual-Poroelastic Inclined Wellbore Solutions

D.1 Pressure Boundary Condition (Permeable)...........ccccevvevievienienienenienienieiens
D.2 Flux Boundary Condition ............cocoeeruerirenieinenieineieencieeseeeereseeenaeeene
D.3 No-Flow Boundary Condition (Impermeable)...........ccccovevveverrenerenenienrenens
D.4 Impermeable Matrix and Permeable Fracture Boundary Condition..............

Appendix E Hollow Cylinder’s Dual-Poroelastic Solutions

Bl CASC 1 ettt et et et e
| O 1RSI
B3 CaSC 3 ettt er e et et e e ba e enaree e
| S O T SRR
E.5  CaSE 5 oo e et et enar e eane

vil

220

233
233
236

239



EuB  CASE O ettt ettt et e e e ettt e e e e e e ettt e e e s s a e e ——araaeeas 262

EL7 CASE 7 ettt 263
E.8  CaSE 8 .. 264
ELO  CASE O ettt 264
E 1O CaSE 10 ..ttt 266
ELTT CaSE 11 ettt 266
E.12 CaSE 12 . 267
E.13 Case 13 .o 268
E 14 CaSE 14 ...t 269
EL1S5 Cas@ 15 e 269
E.16 CaSE 16 ...t 270
Appendix F Dual-Porochemoelastic Inclined Wellbore Solutions 271
Appendix G Dual-Porothermoelastic Finite Difference Solutions 275

viil



List of Tables

TABLE 1—AXISYMMETRIC LOADING CONFIGURATIONS OF HOLLOW
CYLINDER GEOMETRY UNDER AN AXIALLY DISPLACEMENT-

CONTROLLED CONDITION.......cociitiiniiiinieininieteienieeeeteesveeeie e
TABLE 2—COUPLED TRANSPORT COEFFICIENTS .......cccccoiiiiiiiiiccnciccenen 115
TABLE 3—DUAL-POROCHEMOELASTIC MODELING PARAMETERS................ 131
TABLE 4—DUAL-POROTHERMOELASTIC MODELING PARAMETERS ............. 174
TABLE 5—IN-SITU CONDITIONS AND WELLBORE GEOMETRY .......ccccevennenee. 199

TABLE 6—MODELING PARAMETERS ..ot 200

X



Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

List of Figures

. 1.1I-—Modeling geo-material (naturally fractured rock) or bio-material (bone tissues) as
dual-porosity and dual-permeability poroelastic media (the multi-porous bone
structure illustration is adapted from Cowin et al. 2009). .......c..ccevevvenivinennene. 3

. 1.2—Two applications of poroelastic theory and solutions: (a) geo- and bio-material
characterization and (b) wellbore drilling stability (modified after Bradley
179 ettt ettt 5

. 1.3—The Mandel-Cryer’s poroelastic effect: (a) evolution of pore-pressure distribution
in a solid cylinder and (b) history of pore-pressure fluctuation at the center, the
dashed line is the uncoupled diffusion behavior...........cccceoevinininininneen 7
. 2.1—Inclined wellbore geometry in transversely isotropic fractured formation. ......... 29
. 2.2—Far-field in-situ stress components in local wellbore coordinate system (x, y, z).
............................................................................................................................. 30
. 2.3—Cylindrical stress components (r, 6, z) near and at the wellbore wall (grey
components denote Zero VAlUES). .......c.ecevuerierierienierieniesieeeeieee e 32
. 2.4—Total tangential (hoop) stress distribution around the wellbore after tp =1 (~ 3.5
minutes) into drilling for pressure (permeable) boundary condition. ............... 43
. 2.5—Total tangential (hoop) stress distribution at rp = 1 after tp = 1 (~ 3.5 minutes) for
four different fluid boundary conditions. ............ccceeuevievienienieneneneeceeeee, 44
. 2.6—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes)
and tp = 10 (~ 35 minutes) for fluid pressure (permeable) boundary conditions.
............................................................................................................................. 44
. 2.7—Dual pore-pressure distributions at the wellbore after tp = 1 (~ 3.5 minutes) and
tp = 10 (~ 35 minutes) for non-zero flux boundary conditions (Q = 0.07
I /AAY/IN). oo e e e s 46
. 2.8—History of pore pressure at the wellbore wall for non-zero flux (injection Q =
0.07 m*/day/m) versus pressure (permeable) boundary conditions. ................. 46

. 2.9—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes)

and tp = 10 (~ 35 minutes) for no-flow fluid boundary conditions



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.10—History of pore pressure at the wellbore wall for no-flow fluid boundary
CONAITION. ..ttt ettt ettt 48

2.11—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes)
and tp = 10 (~35 minutes) for impermeable matrix and permeable fracture’s
fluid boundary CONitions. ...........ccuevverierierienieieieieee e 49

2.12—History of pore pressure at the wellbore wall for impermeable-matrix and
permeable-fracture fluid boundary condition. ...........cccoeevievivieneneneneneeee, 49

2.13—History of effective tangential stress at the wellbore wall for flux boundary
condition (injection Q = 0.07 m*/day/m) and pressure boundary condition.....51

2.14—History of effective tangential stress at the wellbore wall for impermeable (no
flow) boundary CONAItION. .........c.ecververierierienieieieieeeee e 51

2.15—History of effective tangential stress at the wellbore wall for impermeable-
matrix and permeable-fracture boundary condition. ..........c.ccceeveirineinienene. 52

2.16—Time-dependent pore-pressure distribution along Sy direction. The fluid
boundary is constant pressure with permeable borehole wall............................ 53

2.17—Time-dependent pore-pressure distribution along Sy, direction. The fluid
boundary is constant pressure with permeable borehole wall........................... 54

2.18—Effective tangential stress distribution along Sy direction at tp = 10 (~ 35 mins).
The fluid boundary is constant pressure with permeable borehole wall........... 54

2.19—Effective tangential stress distribution along Sy, direction at tp = 10 (~35 mins).
The fluid boundary is constant pressure with permeable borehole wall........... 55

2.20—The Mandel’s problem geometry and loading setup for a rectangular strip of
transversely isotropic dual-poroelastic (fractured) material. .........c.cccooeeeueneee. 58

2.21—The axisymmetric Mandel-type problem geometry and loading setup for a solid
cylinder of transversely isotropic dual-poroelastic (fractured) material. .......... 64

2.22—Pore pressure histories in the center of an isotropic rectangular-strip geometry
under uniaxial step 10ading...........cccoveriririniniii e 71

2.23—Pore pressure histories in the center of an isotropic solid-cylinder geometry
under uniaxial step 10ading...........cccoeeririnininii e 72

2.24—Total vertical stress histories at xp = rp = 0 and xp = rp = 1 for both geometries
under uniaxial step 10ading...........ccceeeriririninir e 72

X1



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.25—Normalized pore pressure histories at the center (xp = rp = 0) of the sample
under unconfined uniaxial step strain (€, = €pxH(?)) for both rectangular strip
and solid cylinder geometries (Ap = 0).....cccouvveurueeeeniniririeieieeeeeeee e 74

2.26—Effect of storage ratio ® on pore-pressure histories at the center (rp = 0) of
isotropic solid cylinder sample under unconfined uniaxial step loading. ......... 76

2.27— Effect of storage ratio m on axial stress history in isotropic solid cylinder
sample under unconfined uniaxial step loading.............coceeeverenenenenenennenne. 76

2.28—Effect of interporosity coefficients Ap on pore pressure histories at the center (rp
= 0) of isotropic solid cylinder sample under unconfined uniaxial step loading.

2.29—Effect of interporosity coefficients Ap on axial stress history in isotropic solid
cylinder under unconfined uniaxial step loading. ...........ccooevererenenenenenenne. 77

2.30—Effect of macroscopic mobility ratios k¥, on pore pressure histories at the center
(rp = 0) of isotropic solid cylinder under unconfined uniaxial step loading.....78

2.31—Effect of macroscopic mobility ratios k¥, on axial stress history at the center of
isotropic solid cylinder under unconfined uniaxial step loading....................... 79

2.32—Effect of different isotropic-to-transverse Young modulus ratios (nz = E, / E3)

on pore pressure history at the center (rp = 0) of solid cylinder under
unconfined uniaxial step 10ading...........ccceeeriririnininiceee 80

2.33— Effect of different isotropic-to-transverse Poisson ratios (n; =v;,/v;; ) on pore

pressure history at the center (rp = 0) of solid cylinder under unconfined
uniaxial Step L0AdING. ......c.evverierieiiieieeeeeeee e 81

2.34—Normalized axial displacement history of solid cylinder under unconfined
uniaxial step loading for different ratios of n; = E,/E; and n; =V, /vj5. eeeeeee. 82

2.35—Normalized radial displacement history at 7p = 1 of solid cylinder under
unconfined uniaxial step loading for different ratios of n = E, /E; and

ns _\712/\713. .......................................................................................................... 82

v =

2.36—Schematic showing the equivalency between the Mandel’s problem and the
one-dimensional consolidation of a finite layer by simplifying the loading
condition and considering the symmetry of the problem (P, # 0, p, = &,, = 0).83

xii



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.37—Evolution of normalized dual pore-pressure profile in a laterally constrained
finite layer under suddenly imposed constant vertical load (P, # 0, po = €., = 0).

2.38—Normalized dual pore-pressure histories at two different depths in a laterally
constrained finite layer under suddenly imposed constant vertical load (P, # 0,
Do = €22 = 0). ettt 85

2.39—Evolution of normalized settlement during drainage phase following a step load
on finite layer (Pc # 0, Po = €22 = 0). cerrererieiieeeeeeeeee e 85

2.40—The generalized hollow cylinder problem’s geometry and boundary conditions.

2.41—Pore pressure and tangential stress responses for four different lateral
stress/displacement configurations under fluid-pressure boundary conditions
(case 17,21, 25, a0d 29). ..coioiiiieieieeeeeeeee ettt 99

2.42—Pore pressure and tangential stress responses for two different mixed fluid-
pressure/flux boundary conditions under laterally unconfined condition (case
I8 .ANA 19).iiiiieie et 100

2.43—Pore pressure and tangential stress responses for two different mixed fluid-
pressure/flux boundary conditions under laterally confined displacement (case
300 AN 31ttt 100

2.44—Pore pressure and tangential stress responses for four different mixed fluid-
pressure/flux and stress/displacement lateral boundary conditions (case 22, 23,
26, AN 27ttt 101

3.1— (a) Schematic of an inclined wellbore in chemically active fractured rock
formation; (b) far-field stresses, pore pressure and solute concentration in the
xyz local wellbore coordinate SYSteMmL. ........cc.eevevverierierienierienienesiesiesreee e 124

3.2—Pore pressure and solute salinity evolutions at radial distance » =1.10 Ry, and 0 =
0 (2long St dITECHION)....cuveuienieieieieiestesieete ettt ere e eaeenees 133

3.3—Time-dependent pore-pressure profile along the maximum horizontal stress

direction (6 = 0) for (a) without mud chemistry effect and (b) with low mud
SAINIEY (SOK). covivieiieiieieieietetet ettt ettt ettt bt beebeeneenees 135

3.4—Effective radial stress profile along the maximum horizontal stress direction (0 =
).ttt ettt es 136

Xiil



Fig. 3.5—Effective tangential stress profile along the maximum horizontal stress direction

Fig. 3.6—Schematic of oedometer test (Ko) of transversely isotropic cylindrical fractured
samples incorporating chemical solute salinity loading. .........cccccceceverieennncee 139

Fig. 3.7—Evolution of dual pore pressure distributions along the core without external

salinity differential. ..........cccocevieriiriirierieeeeeeee e 143
Fig. 3.8—Evolution of pore pressure distribution along the core for low upstream salinity.
........................................................................................................................... 144
Fig. 3.9—Evolution of pore pressure distribution along the core for high upstream salinity.
........................................................................................................................... 145
Fig. 3.10—History of fluid flux at the two ends of fractured sample without salinity
radient €ECT. ....oouiiieeeieeeee s 146

Fig. 3.11—History of fluid flux at the two ends of fractured shale sample subjected to low
UPSEIEAM SALINILY. .e.vivivitietieiieieetieteete ettt et eeeereese b ereeseeaeeseeseereeseenas 146

Fig. 3.12—History of total fluid flux at the two ends of fractured shale sample subjected to
high upstream SAlINILY. .......ccoeveriieririieiicieeieeeeeeeeeee ettt 147

Fig. 3.13—History of axial displacement at the top of fractured shale sample subjected to
different upstream salinity gradients. ..........ccocceevevererierieneneeeceeeee e 147

Fig. 4.1— (a) Schematic of an inclined wellbore in fractured rock formation under non-
isothermal condition, (b) far-field stresses, pore pressure and temperature in the
xyz local wellbore coordinate SyStem. ........cceeuevierierierienieniereresee e 165

Fig. 4.2—Evolution of pore-pressure distribution in the (a) matrix and (b) fracture network
under the effect of heating and cooling in conjunction with no-thermo effect
(dAShEd [INES). ...cvvevrenieiieieieieieiet ettt ebe e beereeaeeaeenees 175

Fig. 4.3—Evolution of effective radial stress distribution in the porous matrix region under
the effect of (a) heating and (b) cooling in conjunction with no-thermo effect
(AAShed TINES). ..veeeeieieeieciieie ettt be e eaeeneas 176

Fig. 4.4—Evolution of effective tangential stress distribution in the porous matrix region
under the effect of (a) heating and (b) cooling in conjunction with no-thermo
effect (dashed LINES). ......ceeovieieiiieieeceeeeeee e 177

Xiv



Fig. 4.5—Distribution of (a) pore pressure and (b) effective tangential stress in the porous
matrix region due to heating for different values of solid thermal expansion
COBTTICIENE, O, .ottt ettt ettt et et et e e e e e e e e eae e e eaeeaesaesaeeaesaeeaea 179

Fig. 4.6—Distribution of (a) pore pressure and (b) effective tangential stress in the porous
matrix region due to heating for different values of fluid thermal expansion
coefficient, Ol oo e 180

Fig. 4.7—Distribution of (a) pore pressure and (b) effective tangential stress in the porous
matrix region due to heating for different ratios of solid thermal expansion
coefficient in the transverse direction and isotropic plane, @, /@' . ............... 181

Fig. 4.8—Validation of finite difference scheme against analytical solutions for heat

CONAUCTION. ...ttt ettt ettt sttt esbesbesbeebeas 182
Fig. 4.9—Heat convective effects on temperature distribution.............ccceevevveverrerierrenenn. 183
Fig. 4.10—Heat convective effects on pore pressure distributions...........cccceeeverereenuenene. 183

Fig. 4.11—The Mandel’s problem geometry and setups incorporating temperature loading.

Fig. 4.12—Evolution of pore-pressure distribution in the cross section under the effect of
heating (left column) and cooling (right column) in conjunction with no-
thermo effect (dashed 1iNes). .......cccoevevvieiiiiieiieeeeeeeeee e 190

Fig. 4.13—Evolution of vertical stress distribution in the cross section under the effect of
heating (left column) and cooling (right column) in conjunction with no-
thermo effect (dashed 1iNes). .......cccoevevviecienieiiceee e 191

Fig. 4.14—History of normalized pore-pressure developed at the center (x/a = 0) under the
effect of (a) heating and (b) cooling, in conjunction with no-thermo effect
(AAShed LINES). ..veeveirieeiecieee ettt ettt et ae s 192

Fig. 4.15—History of normalized vertical stress developed at the center (x/a = 0) and at the
edge (x/a = 1) under the effect of (a) heating and (b) cooling, in conjunction
with no-thermo effect (dashed 1INes)........ccocveevevieiinieiieieeeeeeeee e, 193

Fig. 4.16—History of normalized vertical displacement at the top (z/b = 1) under the effect
of heating and cooling, in conjunction with no-thermo effect (dashed lines). 194

Fig. 4.17—History of normalized lateral displacement at the edges (x/a = +/-1) under the
effect of heating and cooling, in conjunction with no-thermo effect (dashed
JINES ). 1ttt ettt ettt ettt ettt et ettt e era et e e aa e b e an e teenbeeaeeneas 194

XV



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.1—The field problem of simulating and predicting wellbore stability. ................... 198

5.2—Mud-weight windows at the borehole wall (#/R = 1) for different modeling
approaches: (top) non-fractured rock, i.e., single-poroelastic and (bottom)
fractured rock, i.e., dual-poroelasticC..........c.ccceevuervieviiecienieecieeeeeee e, 201

5.3—Mud chemistry effect on mud-weight window at r/R = 1.05 after 0.1 day into
drilling with low mud salinity (50K).........cccoevieiieririieieneeeeeeeeee e 203

5.4—Mud temperature effect on mud-weight window at /R = 1.00 after 2 day into
drilling fOr COOINE. ...eevieeieiieieieeiee e nees 204

5.5—Reservoir consolidation and compaction: (a) real behavior and (b) idealized
model for fractured TESETVOITS. .....c.eveeruieierieeieceeteee et 208

5.6—Vertical consolidation due to constant production rate, Q,, = 10,000 stb/day, for
ISOLTOPIC TESEIVOIT. 1uvievrerieeierieeieeteseeesesseesesseesseessesseessesseessesseesesssessenssesseenses 210

5.7—Near-wellbore total porosity and equivalent permeability reductions due to
constant production rate (Q,, = 10,000 stb/day) after 2 years..........ccecveuen.... 211

5.8—Vertical consolidation of fractured reservoir. Fracture’s orientation is simulated
by varying the ratios of fracture’s compressibility between the vertical
direction and horizontal plane. .............cccoeevierererenineeeeeee e 212

5.9—Simulating near-wellbore porosity and permeability reductions for some
fracture’s OTIENTALIONS. .....c.veverieieieieieieieteste et te st e sttt etesbeebesbesseebeeaeeneas 212

5.10— Pore pressures histories at the cylinder’s center » = 0 under cyclic loading. ..214

5.11—Pore pressures histories at the cylinder’s center » = 0 varying linear ramp
10AAING TALES. .veveeniieeieieeiete ettt ettt et ere e te e e seesaesseenseeseeneas 214

5.12—Pore pressure fluctuations at the cylinder’s center (» = 0) through times under
combined cyclic and linear ramp loading (the cyclic loading period is T = 2
seconds and ramping characteristic time is #, = 10 seconds)...........ccccerveruenene 215

xvi



Abstract

In this work, a study of anisotropic dual-porosity and dual-permeability poromechanics
is presented through generalized analytical solutions for selected problems in laboratory
and field applications. For example, the solution to the inclined wellbore geometry with
standard applications in the oil and gas industry for drilling stability or consolidation in
naturally fractured rock formations are derived and illustrated. In addition, the dual-
porosity and dual-permeability poromechanics solutions to common laboratory testing
setups in geomechanics and biomechanics for purposes of rock and bio-tissue
characterization are developed for rectangular strip, solid and hollow cylinder geometries.

The behaviors of naturally fractured rock formations or the responses of the well
known dual-porosity bone structure are modeled as dual-porosity and dual-permeability
poroelastic media that fully couples the secondary porosity medium’s deformation, fluid
flow and interporosity exchange processes. For chemically active fractured media, e.g.,
clay, shale, or biomaterial, chemical interaction effects including osmotic and solute
transport in both the primary porosity (matrix) and secondary porosity (fracture) are
addressed based on non-equilibrium thermodynamics. Thermohydromechanical coupling
under non-isothermal condition is incorporated by adopting a “single-temperature”
approach in which a single representative thermodynamic continuum is argued to be
sufficient to describe the thermally induced responses of a naturally fractured rock

formation.
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The physical and mathematical models are used to find poromechanics analytical
solutions for pore pressure, fluid flux, stress, and displacement, in addition to solute flux
for chemically active material or temperature for non-isothermal condition to the above
problem geometries. These solutions are general and can be tailored to simulate specific
field problems or experimental testing. For instance, the inclined wellbore solutions include
boundary conditions for simulating openhole drilling and fluid injection or withdrawal. On
the other hand, the solutions for laboratory testing of rectangular and cylinder geometries
account for two primary axial loading modes, namely, stroke control or stress relaxation
and load control or creep test. The rectangular strip solution is also shown to simplify to the
classical one-dimensional consolidation in soil mechanics.

For non-reactive dual-porous material under isothermal condition, generic dual-
poromechanics results are plotted and compared with single-poromechanics counterpart
representing a homogenous isotropic medium when applicable. Parametric analyses are
also carried out through the responses of a solid cylinder under unconfined compression to
evaluate the effects of material anisotropy and dimensionless dual-poroelastic parameters
such as permeability ratio, storage ratio, and interporosity coefficient. For chemically active
fractured formation, the analyses is focused on the impacts of chemical salinity gradients
via osmotic and solute transport on pore pressure and effective stress distributions near the
wellbore or fluid/solute flux and displacement of solid cylinder under axial-flow-only
oedometer testing setup. Finally, the effects of temperature gradients manifested through

thermal expansion/contraction and conductive heat transport are assessed using the

xviii



analytical solutions for inclined wellbore and rectangular strip geometries. Furthermore, the
significance of heat convection is evaluated numerically and displayed.

Application-wise, the inclined wellbore solution is used to perform time-dependent
wellbore stability analysis for drilling through chemically active fractured rock formations
under non-isothermal conditions. The hollow cylinder is applied to study -elastic
consolidation of a producing naturally fractured reservoir and associated implications on
porosity and permeability reduction in the near-wellbore region. Finally, some realistic
quasi-static loading conditions commonly encountered in experimental testing and field
applications such as cyclic, linear ramping, and exponentially decayed are demonstrated via

the solutions of unconfined solid cylinder.
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Chapter 1

Introduction

1.1 Overview

Naturally fractured rocks can be found in many subsurface formations through out the
world (Aguilera 1995) and are problematic when it comes to field operations in the oil
and gas industry. Such formations involve various types of highly coupled hydraulic,
mechanical, thermal, and chemical processes taking place simultaneously at different rate.
Adding to this complexity, fractured formations usually possess a high degree of local
heterogeneity that makes the task of modeling even more challenging. Understanding the
coupled and transient behaviors of these fluid saturated fractured formations are critical
in many petroleum engineering field applications ranging from drilling stability,
hydraulic fracturing, production induced compaction to the design and analysis of
laboratory rock testing procedures.

Over the years, research efforts have matured from the original dual-porosity concept
of Barenblatt et al. (1960) and Warren and Root (1963) for treating fluid flow in naturally
fractured reservoirs to the dual-porosity and dual-permeability isotropic poroelastic

approach which can handle the fully coupled fluid flow and deformations processes



(Bowen 1976; Aifantis 1977; Berryman and Wang 1995). Although the literature is
prolific, analytical solutions have been limited to the one-dimensional consolidation
problem in geomechanics (Lewallen and Wang 1998) or the uncoupled fluid-flow problem
in well testing and production management (Chen 1989). Furthermore, all of the previous
solutions and analyses are restricted to the isotropic case in which both the rock matrix and
fracture system are considered to possess the same material properties such as permeability
and compressibility in all directions. In reality, geo-activities are carried out in formations
that can be broadly classified transversely isotropic due to the natural deposition and
compaction processes of sedimentary rocks over a geological time scale. The depositional
processes lead to development of formations with similar material properties across a cross
section but having different characteristics in the perpendicular direction.

On the other hand, biomaterials such as bone tissues are well known for their multi-
porosity makeup and anisotropic characteristics. For example, it was suggested that a two-
porosity poroelastic model is appropriate for the study of bone fluid movement and bone
fluid pressures (e.g., Cowin 1999). It was also shown that the greatest degree of elastic
symmetry appears to be orthotropy for bone (e.g., Dempster and Liddicoat 1952; Bird et al.
1968); however, bones are mostly modeled as transversely isotropic material (Cohen et al.
1998). Furthermore, biological tissues display osmotic swelling behavior when the
surrounding fluid salinity is in the excess due to ionized charged structure, e.g., the
negatively charged proteoglycans in intervertebral discs and articular cartilage (Urban et al.
1979). Similar to the modeling of naturally fractured rock in geomechanics, existing

models and solutions describe biomaterials as single-porosity and single-permeability



homogeneous medium (e.g., Norwinski and Davis 1970; Armstrong et al. 1984; Cowin and
Mehrabadi 2007) and thus fall short at simulating the proper responses of dual-porosity
bone structure.

In this dissertation, the behaviors of these dual-porous materials are modeled as dual-
porosity and dual-permeability poroelastic media that fully couples the secondary porosity
medium’s deformation, fluid flow and inter-porosity exchange processes, i.e., Fig. 1.1. In
addition, chemical interaction effects including osmotic and solute transport in clay, shale
or bio-tissue, and the impact of thermal loading due to temperature gradient are also

incorporated.

Dual-Porosity and Dual-Permeability
Poromechanics

.. Bio-material
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Fig. 1.1—Modeling geo-material (naturally fractured rock) or bio-material (bone tissues) as dual-
porosity and dual-permeability poroelastic media (the multi-porous bone structure illustration is
adapted from Cowin et al. 2009).

1.2 Literature Review

A brief review of the development of theoretical formulation and analytical solution is
presented in this section. More detailed review of the literature is discussed in relevant
chapters.

Biot (1941) is the first to present a consistent theory of isotropic poroelasticity to



account for the coupled diffusion-deformation processes in fully saturated porous media.
Later work of Geertsma (1957, 1985), Verrujt (1969), Chen and Teufel (1997)
reinterpreted Biot’s theory along the line of conventional fluid flow modeling in the
petroleum industry. Rice and Cleary (1976) recast Biot’s theory in terms of new and
straight forward physical constants and developed some general solution methods. Biot’s
(1941) theory was first developed for isotropic porous medium saturated with an
incompressible fluid. Subsequently, this theory was generalized to account for anisotropy
and compressible fluid by Biot (1955) and Biot and Willis (1957). Biot’s isotropic and
anisotropic poroelastic theory has been the basis for diverse application in many areas
such as geo- and bio-material characterization (Armstrong et al. 1984; Hart and Wang
1995; Zhang et al. 1998; Scott and Abousleiman 2002; Al-Tahini et al. 2005), wellbore
stability (Cui et al. 1998; Abousleiman et al. 2001), subsidence above compacting oil and
gas reserve (Geertsma 1973), ocean wave-induced seabed’s response (Rahman et al.
1994), groundwater level fluctuations (Verruijt 1969; Kim and Pariek 1997; Wang 2000),
sedimentation on an impermeable basement (Gibson 1958), induced seismicity (Roeloffs
1988), and bone poroelasticity (Cowin 1999) to name a few. Two such applications are
illustrated in Fig. 1.2. Analytical solutions of fundamental problems such as the one-
dimensional consolidation problem (Biot 1941), consolidation of a rectangular strip or the
Mandel’s problem (Mandel 1953; Abousleiman et al. 1996), consolidation of semi-
infinite stratum (Gibson and McNamee 1963), sphere (Cryer 1963), solid cylinder
(Abousleiman and Cui 1998), hollow cylinder and borehole (Rice and Clearly 1976;

Abousleiman and Cui 1998).
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Fig. 1.2—Two applications of poroelastic theory and solutions: (a) geo- and bio-material
characterization and (b) wellbore drilling stability (modified after Bradley 1979).

A unified poroelastic solution for cylindrical geometries, called the “generalized



Lamé’s problem”, was also reported (Kanj and Abousleiman 2004a). These analytical
solutions served as basis for understanding the physical phenomena as well as benchmark
for validating the integrity of numerical codes (Finol and Ali 1975; Chin et al. 2000;
Jourine et al. 2004; Alassi et al. 2006; Phillips and Wheeler 2007). The characteristic
behavior of the poroelastic response that is lacking in the uncoupled diffusion theory is
illustrated through the pressure history at the center of a solid cylinder under sudden
axial-load application in Fig. 1.3. The phenomenon is known as the Mandel-Cryer effect
in which the pore-pressure continues to rise after its initial value instead of monotonically
declines as in regular diffusion process.

In chemically active porous media such as clays, shales, and biological tissues,
additional osmotic effect is generated due to physico-chemical interactions among pore-
fluid’s components with the invading fluid and the solid matrix that result in membrane
behavior, i.e., only transport of certain pore fluid species is allowed. A chemical potential
gradient will induce simultaneous flows of fluid and solute into or out of the medium. The
coupled osmotic and solute transport processes can lead to material’s strength weakening in
addition to pore-pressure elevation or reduction. Early analyses addressing chemical
osmotic effect in active shale were presented by lumping the activity-generated osmotic
pressure and hydraulic pressure into a chemical potential term, ignoring the solute
movement into or out of the shale (Yew et al. 1990; Hale et al. 1992; Van Oort 1994). This
chemical potential is treated as an effective pressure which is used in subsequent evaluation
of effective stresses. Later, the concept of a chemical potential and membrane efficiency

are further woven into the poromechanics formulation (Sherwood 1993; Abousleiman et al.



2001) and have been applied in estimating the swelling effects on stress and pore pressure
distributions in the vicinity of deep wellbores (Sherwood and Bailey 1994; Abousleiman et

al. 2001; Chen et al. 2003).
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Fig. 1.3—The Mandel-Cryer’s poroelastic effect: (a) evolution of pore-pressure distribution in a solid
cylinder and (b) history of pore-pressure fluctuation at the center, the dashed line is the uncoupled
diffusion behavior.



In more rigorous approaches, the complete chemical interaction effects including
osmotic and solute transport in stressed shale or bio tissues have been formulated and
addressed extensively based on mixture theory and/or non-equilibrium thermodynamics
(Sachs and Grodzinsky 1987; Sherwood 1993; Heidug and Wong 1996; Huyghe and
Janssen 1999). In term of field applications, Ekbote and Abousleiman (2003, 2005, and
2006) presented a linearized anisotropic porochemoelastic model and provided the general
analytical solution to inclined wellbore drilling problem through shale formations.

The development of field projects that are often subjected to non-isothermal conditions
such as drilling in deep and high temperature subsurface, oil recovery by steam injection,
geothermal wells, and nuclear waste depository necessitates an understanding of the
coupled thermo-hydro-mechanical processes. Extension of Biot’s theory, incorporating
both thermal expansion/contraction and heat diffusion, has been successfully studied under
the isotropic porothermoelastic model (Bear and Corapcioglu 1981; McTigue 1986; Coussy
1989). Extensive analytical solutions have been developed for many problems including
consolidation around spherical heat source (Booker and Savidou 1984, 1985), heating of a
porothermoelastic half-space (Mc-Tigue 1986), axisymmetric borehole solutions (Mc-
Tigue 1990), vertical wellbore in non-hydrostatic in-situ stress (Wang and Papamichos
1994), and inclined wellbore subjected to three-dimensional state of stress (Ekbote 2002;
Chen et al. 2003; Abousleiman and Ekbote 2004; Chen and Ewy 2005). A complication in
the analytical approach is due to the presence of the convective heat flow — heat transported
by the pore fluid carrier — which renders the heat diffusion equation non-linear. As such,

numerical solutions were also presented, e.g., thermally induced stresses in poroelastic



cylinder and hollow sphere (Kurashige 1992; Kodashima and Kurashige 1996), one-
dimensional consolidation accounting for thermo-osmosis and thermal filtration (Zhou et
al. 1998).

The original Biot’s theory treated the saturated porous medium as a homogenous
material, i.e., single-porosity and single-permeability model. However, in naturally
fractured rock formations containing distributions of various distinct types of pores, from
fractures or fissures to porous rock matrix, the use of an approximate average porosity
over both domains, in many field cases, is inappropriate. A dual-porosity continuum
approach, utilizing two distinct forms of intrinsic porosity, one corresponding to the
porous matrix (primary porosity) and the other corresponding to the fracture framework
pore distribution (secondary porosity), is more appropriate. To this end, Barenblatt et al.
(1960), and subsequently Warren and Root (1963) presented the original ideas of
representing the fluid domain in a naturally fractured reservoir by two overlapping
continua. Each continuum possesses its own fluid pressure fields. A summary of the
extensive literature on treating the fluid flow problems in naturally fractured reservoirs
incorporating the dual-porosity and dual-permeability concept was presented by Chen
(1989). All of these models have been developed for the study of fluid flow (single-phase
and/or multiphase) in hydrocarbon reservoirs or ground water aquifers (Cheng et al.
1992), but the rock formation is treated as a rigid body, thus ignoring the coupling effect
between fluid flow and deformation.

The extension of Biot’s theory of poromechanics to fractured rock formations within

the framework of the dual-porosity and dual-permeability approach was presented by



Aifantis (1977 and 1980) based on the theory of mixtures (Bowen 1976 and 1982). The
quasi-static linear constitutive relation relates linearly the overall macroscopic stress to the
strain and pore pressures in both the primary porosity as well as in the secondary porosity
media. Berryman and Wang (1995) reformulated Aifantis’s dual-porosity governing
equations by exchanging the roles of the dependent and independent variables. The
coefficients of the governing equations could mostly be interpreted as different storage
coefficients. Using a rigorous mathematical approach, Valliappan and Khalili-Naghadeh
(1990) presented a coupled dual-porosity flow-deformation formulation. One deviation
from the Aifantis and Berryman and Wang formulations is that the coefficients of the
governing equations were considered as variables instead of constants. Recently, Berryman
and Pride (2002) presented models that allow all dual-poroelastic coefficients to be
determined from the underlying constituents’ properties, thus expanding the applicability of
the dual-poroelastic formulation. Nevertheless, existing analytical solutions in this area are
scarce, ranging from the one-dimensional consolidation (Lewallen and Wang 1998),
axisymmetric borehole (Wilson and Aifantis 1982), to plane-strain wellbore (Li 2003).
Lately, the a series of analytical solution for the geometries of rectangular strip, solid
cylinder, hollow cylinder and inclined wellbore in naturally fractured rock formations
modeled as dual-porosity and dual-permeability isotropic poroelastic continuum was
published (Abousleiman and Nguyen 2005; Nguyen and Abousleiman 2009a; Nguyen and
Abousleiman 2010). These solutions serve as the basis for understanding the salient
features of the coupled dual-time scale response in fractured porous media.

For chemically active fractured porous media, e.g., fractured shale, additional coupled

10



osmotic and solute transport processes in both the porous matrix and fracture network have
to be accounted. To the author’s knowledge, no analytical solution exists for dual-
poroelastic with chemical osmotic interaction. Available solutions are either numerical or
mostly focused on the fluid and solute transport aspect of the problem, e.g., Dershowitz and
Miller 1995. As a first order approach, Nguyen et al. (2009) extended the dual-poroelastic
inclined wellbore solution (Abousleiman and Nguyen 2005) to include chemical osmotic
potential while neglecting the solute transport effect in fractured shale formations. It was
shown in this work that fractured shale modeled as dual-poroelastic formation subjected to
chemical potential gradient show significantly different behavior than its compact-shale
counterpart. This solution laid the foundation for the complete inclined wellbore stability
solution for fractured shale accounting for chemical osmosis as well as solute transport
(Nguyen and Abousleiman 2009b) which will be presented in Chapter 3 of this dissertation.

Incorporating thermal effect into the dual-poroelastic theoretical formulation is more
involved due to difference in the mechanism of heat flow from that of fluid flow in
constituent porosity media. Heat flow in the porous matrix is primarily driven by
conductive mechanism through the compact matrix skeleton while heat convection carried
by the fast diffusing fluid in the fracture network is intuitively more dominant. However,
because thermal conductivity is significantly higher through the compact matrix framework
than through the fracture network, comprised mostly of pore space, the dual-porosity
temperature evolutions and interporosity heat exchange are most likely masked.
Consequently, a single-temperature approach for naturally fractured geomaterials appears

to be more practical (Master et al. 2000) than the double-temperature approach (Aifantis
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and Bekos 1980). Again, for fractured porous media, despite the abundance in numerical
modeling of porothermoelastic effects (e.g., Aifantis and Bekos 1980; Millard et al. 1995;
Nguyen and Selvadurai 1995; Abdallah et al. 1995; Master et al. 2000; Nair et al. 2004), no
analytical solution has been provided for the coupled heat and fluid flow and the resultant

stress and deformation field in fractured porous media.

1.3 Objectives

Based on the preceding literature review regarding dual-poromechanics formulations and
solutions, it is evident that, to date, a large number of analytically-solvable problems for
dual-porous materials such as naturally fractured rock formations or bone tissues have not
been addressed. Therefore, the objective of this dissertation is to present consistent
theoretical formulations and analytical solution methods for problems in laboratory and
field applications in a transversely isotropic dual-porosity and dual-permeability poroelastic
medium incorporating the effects of chemical and thermal gradients. Given the generality
and widespread applications of the following problem’s geometries: rectangular strip, solid
and hollow cylinder and inclined wellbore, in geo- and bio-mechanics fields, it is necessary
to develop mathematical framework and obtain the corresponding analytical solutions.
Finally, it is desired to carry some laboratory and field analyses to demonstrate the
applications of the derived analytical solutions. For example, the inclined wellbore solution
can be applied to study such problems as drilling stability, production induced
consolidation, and hydraulic fracturing (Schmitt and Zoback 1992; Cui et al. 1998;

Abousleiman et al. 2007). The cylinder geometry are commonly used in the design and
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setups for uniaxial and triaxial laboratory testing of porous rock specimens (Schmitt et al.
1993; Cui and Abousleiman 2001; Kanj and Abousleiman 2004b; Jourine et al. 2004),
sanding experiment (Papamichos et al. 2001), and in simulating sudden stress relief of a
long core removed from subsurface wellbore (Detournay and Cheng 1993). The rectangular
strip geometry can be used to investigate reservoir consolidation features as well as to

benchmark and validate the integrity of numerical codes.

1.4 Dissertation Outline

Chapter 2 is devoted to studying the behaviors and characteristics of dual-poroelastic
saturated porous media. An anisotropic dual-poroelastic formulation is presented by
extending the classical elastic and single-poroelastic ones. Governing equations are
specialized for a transversely isotropic as well as isotropic material under generalized
plane-strain loading condition. The resulting system of equations is used to derive
analytical solutions for wellbore and consolidation problems in naturally fractured rock
formations. The wellbore problem is illustrated via the solution of inclined borehole
geometry for various fluid-flow boundary conditions. The consolidation problem includes
solutions to geometries such as rectangular strip and cylinders (solid and hollow). The
results for pore pressure, stress, and displacement for each problem’s geometry are plotted
to highlight the dual-time-scale behaviors and the effect of fracture network as well as
transverse isotropy on the overall responses.

In Chapter 3, the analytical dual-porosity and dual-permeability porochemoelastic

formulation and solutions to simulate the poromechanical responses of chemically active
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fractured formation are presented. First, the single-porochemoelastic governing equations,
extended based on thermodynamic framework of dual-poroelasticity to incorporate the
effects of fluid and solute flow in the secondary porosity, e.g., rock’s fractures, are briefly
presented. The constituent porous matrix and fracture media are generally modeled as
imperfect semi-permeable membranes which can allows partial transport and exchange of
the solutes. Separate transport equations and inter-porosity exchange are written for the
porous matrix and fracture network accounting for the fully coupled flow processes
including hydraulic conduction (Darcy’s law), chemical osmotic flow, and solute diffusion
(Fick’s law). The resulting system of equations is applied to obtain the analytical solutions
for the drilling of inclined wellbore and consolidation of solid cylinder under oedometer
testing condition (K, test). Results for dual pore pressures, solute concentrations, stresses,
and displacements are plotted and compared with the corresponding single-
porochemoelastic counterparts or dual-poroelastic (neglecting chemical effect) to highlight
the contributions of fracture, chemical osmosis and solute transport on the overall
responses.

In Chapter 4, a dual-porosity and dual-permeability porothermoelastic analytical
formulation and solution applicable to transversely isotropic fractured porous media is
presented. First, the dual-poroelastic governing equations as presented in Chapter 2 are
extended to incorporate thermal effects within the thermodynamic framework of a global
temperature approach. The complete formulation includes contribution from both heat
conduction and convection in the porous matrix and fracture system. Neglecting the non-

linear heat convection, the resulting system of equations is applied to obtain the analytical
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solutions for inclined wellbore and consolidation of rectangular strip (the Mandel’s
problem) subjected to thermal perturbation. The effect of heat convection is assessed
numerically by finite difference solution method for a special case of vertical borehole
drilled in hydrostatic in-situ stress condition. In addition, the extended non-isothermal
Mandel’s problem can be treated as a canonical illustration of the intricate dual-
porothermoelastic interplay. The results for stress, pore pressure, displacement, and
temperature are plotted and compared with the corresponding isothermal counterpart to
demonstrate the effect of temperature gradient in a fractured porous saturated medium.

Chapter 5 demonstrates some practical applications of the presented wellbore and
consolidation solutions, both in field cases and in laboratory testing designs. First, the
various inclined wellbore solutions accounting for drilling fluid’s pressure, salinity, and
temperature are applied to simulate and predict time-dependent borehole stability. Next, the
hollow cylinder solution is employed to study reservoir geomechanics responses of a
vertical well in a naturally fractured reservoir. The analysis includes vertical consolidation
and associated implication on porosity and permeability reductions due to fluid withdrawal
process. Concluding the chapter, the unconfined solid cylinder solutions are used to
simulate some realistic loading conditions in poromechanics testing of rocks and bio-
tissues.

Finally, Chapter 6 includes a summary of this dissertation findings and

recommendations for future work.
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Chapter 2

Dual-Porosity and Dual-Permeability
Poroelasticity: Dual-Poroelasticity

2.1 Introduction

In this chapter, the modeling of naturally fractured formations will be addressed
analytically applying the dual-porosity and dual-permeability poromechanics approach
accounting for the transversely isotropic nature of the rocks. For clarity of subsequent
presentations, the classical elastic and single-porosity poroelastic formulations are briefly
reviewed and summarized. Next, the naturally fractured rock formation is modeled within
the framework of the anisotropic dual-porosity and dual-permeability poroelastic
approach. Governing field equations are then developed and specialized for a transversely
isotropic as well as isotropic poroelastic material under generalized plane-strain loading
condition. The resulting system of equations is used to obtain analytical solutions to typical
geometries such as inclined wellbore, rectangular strip, solid and hollow cylinder. Note that
although the formulation and solutions are derived for naturally fractured rock formation,

they are generally applicable to other dual-porous material such as bio-tissues (bone,
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cartilage, etc.).

2.2 Governing Equations

2.2.1 Elasticity

In the simplest form, the deformation of a linear elastic isotropic material follows the

classical Hooke’s law (e.g., Timoshenko and Goodier 1951)

E v
O-’ff:1+v£€"f+1_2vg"’f§’7j’ ................................................................................ (2.1)

where oy is the total stress tensor, &; is the total strain tensor, & = AV/V is the bulk
volumetric strain, £ is Young’s modulus, v is Poisson’s ratio, and d; is the Kronecker’s

delta (¢; = 1 for i = j,0; = 0 for i # j). The elastic coefficients £ and v are related to the

familiar bulk compressibility as C, = 3(1-2W/E. Correspondingly, Eq. 2.1 is generalized in
the anisotropic form as (e.g., Saada 1974; Boresi and Chong 2000)

O T M € s (2.2)

g
The above equations are written in Einstein’s tensor notation where repeated index denotes
summation. M 1s the symmetric elastic modulus tensor, the reciprocal of which is the

compliance or compressibility tensor Cjy; of the rock formation.

2.2.2 Poroelasticity

For fluid saturated porous media, e.g., subsurface rock formations, it is well-known that
changes in pore pressure alter the “effective stresses” acting on the porous solid frame

through a weighted effective stress coefficient (Biot 1941; Geertsma 1957). Thus, in a
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poroelastic approach, the constitutive Eq. 2.2 can simply be expressed in terms of effective
stress as (Biot 1955; Thompson and Willis 1991; Cheng 1997)

O = 0D = M €y s i (2.3a)
or equivalently

O =M €1y F 0D st (2.3b)
where ¢ is the Biot’s effective stress coefficient tensor and compression is positive. On

the other hand, the variation of the fluid content corresponding to the fluid exchange with
the surroundings is governed by not only the pore-fluid pressure field but also by the rock

deformation as

Am,
e e e 2.4)
Pro o

in which m;= ¢p, is the fluid mass content per unit total reference bulk volume, pyis the
fluid density, and ¢ is the porosity. M is the Biot’s modulus, the inverse of which is
equivalent to the familiar storage coefficient in groundwater literatures. For the most
general anisotropic case, the above constitutive behaviors (Egs. 2.3 and 2.4) are described

using twenty eight material constants (twenty one M, , six ¢, and one M coefficients).

The time-dependent poroelastic effect comes in under the transient nature of the fluid
flow across the porous formation. The fluid flux due to the pressure gradient follows

Darcy’s law

g, =k, O (2.5)

9
v X,
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where ¢, is the total volumetric fluid flux and &j is the usual Darcy’s mobility coefficient

tensor defined as the ratio of the intrinsic permeability k; tensor over the dynamic fluid
viscosity . Other governing equations are the strain-displacement relations and
conservation equations which include the quasi-static stress equilibrium equation and mass

balance equations written in index notation as

1 au auj
| o | et —————a e raaea—— 2.6
! 2[8xj ox, ]’ 26)
99, 0 (2.7)
axj - PR R R R .
o dgq,
e e | 2.8
ot +8xi 8)

in which u; is the displacement vector. Equations 2.3 to 2.8 complete the time-dependent
poroelastic description of the response of anisotropic saturated porous rock formations.
These equations are extended to model naturally fractured porous media using the dual-

porosity and dual-permeability concept in the following.

2.2.3 Dual-Poroelasticity

Naturally fractured porous rock involves a high degree of local heterogeneity due to the
presence of abnormally high permeability but low porosity flow paths (fractures). One way
to model would be to account for each fracture in the computational mesh. Unfortunately, it
is mathematically and physically impossible to model all the fractures in a field scale rock
mass explicitly, e.g., an astounding number of 5 million fractures were estimated in a 68

cubic meter volume from mapping statistics in consideration of seepage in three-
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dimensional fracture networks (Billaux et al. 1989; Pariseau 1993). A more tractable and
“least damaging” approach is to realizing the fractured porous media within the frame work
of the dual-porosity and dual-permeability continuum concept (Cho et al. 1991; Tom et al.
2006; Bagheri and Settari 2006).

The current approach ignores the characteristics of individual fracture such as aperture,
length and toughness. In other words, the fractures are not discretely modeled but explicitly
represented as a secondary porous continuum characterized by secondary porosity,
compressibility and permeability. At the macroscopic level, the overall system is

considered to consist of two co-located but distinct fluid-saturated porous continua: the

primary one represents the porous matrix with intrinsic properties { M ijl.k, L0

iy

I I I
M ¢,k }
occupying volume fraction v' of the total bulk volume and the secondary one represents the

porous fracture network with intrinsic properties { M ;{, ,OJUI.I,M et KUI.I yoccupying the

remaining bulk volume fraction v"' = 1- v'. In other word, the overall domain is envisioned
as containing two distinct porous continua, each possessing a solid skeletal framework and
a saturated pore network. As a result, fractured formation will exhibit dual pore-pressure
evolutions when subjected to stress and pressure perturbations. The porous matrix and
fracture continua can communicate and may exchange fluid mass.

In the dual-poroelastic constitutive approach, since there are two distinct effective fluid-
pressure fields, the linear anisotropic constitutive equations accounting for the effect of
fracture network follow naturally from the single-poroelastic formulation Egs. 2.3 and 2.4

as

s —1 1 — 11 __1I
O =M€y F 0D T O D i (2.9)
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where the superscript (N) = I or II represents the porous intact rock matrix and the porous

fracture network, respectively; p™ is the fluid pressure; ™ = (V(N)¢(N) p;N))/ Py is the

variation of fluid content per unit total reference bulk volume; ¢™ = Vp(N)/ V™ is the local
porosity based on individual bulk volume of the porous matrix and fracture continua. The
over bar symbol denotes the overall dual-poroelastic material coefficients.

Unlike the pore-pressure fields which are distinct, the stress and strain tensors in Egs.
2.9 to 2.11 represent the overall mechanical response of the combined matrix-fracture

system. The formulation is characterized by effective material constants such as the overall

drained elastic modulus tensor, M, the effective pore-pressure-coefficient tensors, &

and 07;I , and the effective coupled Biot’s moduli, M', M",and M"". As a result, the

most general anisotropic dual-poroelastic constitutive behaviors is described using thirty

six constants (twenty one M skt S» SIX 07; ’s, six @, s and three Biot moduli). These overall

coefficients represent the combined responses of the system and can be related to the
intrinsic material constants and volume fractions of the constituting porous continua
(matrix and fracture network) as described in Appendix A. The applicability of the dual-
porosity and dual-compressibility continuum approach depends on the determination of the
bulk properties of the fracture network and the extent of its contribution to the whole

system.
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The dual-permeability nature of fractured formations demands dual Darcy’s laws for
the fluid flow in the fracture network and in the intact rock matrix regions. Assuming that
the flow in each constituting porous medium is independent of the flow in the other,

separate Darcy’s equation for each medium can be written as

1 11
g =—x, g—i’; q; =—k; aa%, ..................................................................... (2.12)

J J
The system is subjected to momentum and mass balance laws. The momentum
conservation is enforced by the quasi-static equilibrium equations and is the same as
given by Eq. 2.6. The fluid mass balance, accounting for the fluid flow in the porous
fracture network and the porous rock’s matrix as well as the interporosity fluid transfer can

be expressed separately as

1 1
aaitw‘%:r, ................................................................................................ (2.13a)
xi

ag" Lyl aqiu - T
ot ox, ’

l

.......................................................................................... (2.13b)

In the above, I' represents the interporosity fluid flux transfer. Modeling interporosity fluid
flow can be classified into two main categories: pseudo steady state and transient
interporosity flow. In the simplest form, the pseudo steady-state model assumes the fluid
exchange to be directly proportional to the pressure differential between the porous fracture

network and porous rock matrix as (Warren and Root 1963)

where A is a characteristics of fractured formation such as matrix’s permeability, fractures’

geometry, distribution, and size. Warren and Root (1963) provided some idealization for
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the determination of A assuming regular matrix block shape and fracture’s pattern. It
should be noticed that such assumed idealizations are no other than some averaging
techniques to arrive at the macroscopic parameters as required by the continuum approach
(Chen 1989).

On the other hand, the transient model is a more appropriate representation of the
interporosity flow process in which the fluid exchange is proportional to the gradient of
pressure difference at the fracture and matrix interface (de Swaan 1976). This fact further
complicates the governing equations and solutions have to be resorted to numerical
approach. Analytical solutions are restricted to cases of special fracture pattern such as slab,
layer, or cubes (Chen et al. 1990). No analytical solution exists for the dual-porosity and
dual-permeability case assuming a transient interporosity flow regime. In this dissertation,
the pseudo steady-state model, i.e., that of Warren and Root (1963), will be used to
characterize the interporosity flow process.

The above set of equations, Egs. 2.9 to 2.14, represents the dual-porosity and dual-
permeability poroelastic system in general anisotropic form. It is specialized to transversely
isotropic and isotropic materials in the following section. Additionally, the corresponding
field equations necessary for solutions under generalized plane-strain condition are also

derived.

2.2.4 Special Anisotropic Cases

Transversely Isotropic Materials. Transversely isotropic materials are characterized by
an axis of rotational symmetry. That is, they have the same properties in one plane (e.g., the

x1-X3 plane) and different properties in the perpendicular direction to this plane (e.g., the x3
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axis). Practically, it is reasonable to assume that the axes of rotational symmetry are the

same for both the intact rock matrix and the fracture network. As a result, the drained

elastic modulus tensor of the combined matrix-fracture system M, yu 18 also transversely

isotropic and characterized by five material constants. Because shear stresses do not give
rise to fluid pressure generation, only two directional pore-pressure coefficients exist: one

in the isotropic plane and the other in the perpendicular direction to define the effective

pore-pressure-coefficient tensor (two each for @, and @,'). Additionally, there are three

Biot’s moduli M"', M", and M"" which signify the coupled storage capacities of the
dual-porosity system under constant strain. Totally, there are twelve independent
constitutive parameters to sufficiently describe the response of a transversely isotropic

dual-poroelastic system. The constitutive equation expressed in matrix notation is

—1 [ —1]

O-ll _11 _12 _13 O 0 0 811 al 0(1

0-22 _12 _1 1 _13 O 0 0 822 a11 07111

033 M, 13 M, 13 M 33 0 0 0 €33 073I I 07311 I

= _ +H o p+ r

o, o 0 0 M, 0 0 ||2, 0 0

0, 0 0 0 0 My, 0 |28, 0 0

oy |0 0 0 0 Mg |(28,) |0 ] | 0
................................................................................................................................ (2.15)

pl pH
O =—|a(e, +€22)+c_¥31833]+ﬁ+ﬁ7m, ........................................................ (2.16)
pl pII

gH:—[ﬁln(ffu+822)+§3H€33:|+W+W, ..................................................... (217)

In the above, the components of overall elastic moduli and poroelastic coefficients are
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related to individual set of material properties of the primary and secondary porosity as
given in Appendix Al. Under generalized plane-strain condition where all response
functions (except axial displacement) are invariant along the axis of material rotational

symmetry and the out-of-plane strain components are zero or spatially uniform, i.e.,

E; =&y =0 and &,; = £;,(¢), the stress equilibrium (Eq. 2.7) reduce to

do, +80'12 —0: do,, +8022 _
ox,  ox, Ty, ox,

Combining the stress-strain-pressure constitutive relations (Eq. 2.15) with the equilibrium

Eq. 2.18 and strain-displacement Eq. 2.6 leads to the compatibility equation

—1 — 11
vz[gn +e, +%—1pl + A p"J:o, ................................................................. (2.19)

11 11

or in terms of stress by inverting Egs. 2.15 and substituting into Eq. 2.18
M, M,
V| o, +0, —[1—712]0711;71 {1-%]@%“}:0, ....................................... (2.20)
[ M, M,
where V? =9°/x] +97/x; is the Laplacian spatial differential operator.

Isotropic Materials. Under isotropic case where the material properties are the same in all

directions, the constitutive equations (Egs. 2.9 to 2.11) simplify to

E v _ _
o, = 1+‘_}|:gl.j + =) 5/(/((5;,-}'(051191 F O P )0 e (2.21)
Iy L P (2.22)
Ry Ry .
;H —_g's 4 PI i pH 223
== &, W ]\711 Y e eeteeeeeeeneeeneeenteenteeeeaeeeeeeaeeeeaeeaaeaaeaaeanaeanaeanaeanenn ( . )
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And the corresponding field equations under generalized plane-strain condition become

=1 —1I
V{Skk+%pl+%pHJ=0, ............................................................................. (2.24)

V20, + 00 42 D 42T " ) 2 0o (2.25)
where & = & + &> + &3 noting that V2€3 3 = 0 for generalized plane strain; 77 N s lumped
poroelastic coefficient defined as 7™ =™ (1-2v)/2(1-v) and G is the overall shear

modulus given as G = E /2(1+7) . Again, the overall material coefficients are related to

the constituent properties as given in Appendix A2.

2.3 Inclined Wellbore'

2.3.1 Background

The inclined wellbore problem and solution have become an important tool in the
simulation and prediction of wellbore stability for drilling through subsurface rock
formations. The first analytical solution for a vertical borehole with unequal far-field stress
was Kirsch equations (1898) based on plane-strain idealization and linear elastic modeling
of rock. This solution was later generalized to inclined wellbore geometry in a three-
dimensional state of stress (Hiramatsu and Oka 1968; Bradley 1979). The elastic approach
in these early solutions failed to account for the transient fluid-flow effect due to drilling
that will significantly alter the near-wellbore pore pressure and stress concentration.
Incorporating the time-dependent fluid diffusion process, Carter and Booker (1982)

presented analytical solution for circular tunnel excavated in a fluid saturated medium

! Part of this section was published in J. Eng. Mech., 131 (11): 1170-1183 (Abousleiman and Nguyen 2005)
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under the framework of Terzaghi’s consolidation theory (1943) which is a special case of
Biot’s poroelasticity theory, i.e., when the effective pore pressure coefficient oo = 1. Based
on this work, a solution for vertical wellbore in a linear poroelastic medium was provided
(Detournay and Cheng 1988). The complete analytical solution for an inclined borehole,
drilled in an isotropic poroelastic compact rock formation and subjected to a three-
dimensional state of stress, was first published by Cui et al. (1997), employing similar
boundary-condition decomposition scheme of Carter and Booker (1982). Subsequently,
the solution was extended to account for formation transverse anisotropy (Abousleiman
and Cui 1998) and different wellbore-fluid boundary conditions (Cui et al. 1998; Ekbote
et al. 2004). It was demonstrated that the poroelastic inclined wellbore solution and its
effects in this problem present quantitative and qualitative results that are very different
from their elastic counterparts (Cui et al. 1999). In addition, wellbore stability analyses
reveal results capturing field observations that are not explained by the conventional
elastic solution, e.g., time-delayed failure (Abousleiman et al. 2001).

For fractured rock formations modeled as dual-porosity and dual-permeability porous
media, Waren and Root (1963) provided the first analytical solution to the fluid flow
problem for a vertical wellbore. Following this work, extensive literature was developed for
the solution of fluid flow in hydrocarbon reservoirs (Mattax and Kyte 1962; Kazemi 1969;
Duguid and Lee 1977; Kazemi et al. 1976; Thomas et al. 1983; Wu and Pruess 1988 and
Choi et al. 1997) or ground water aquifers (Cheng et al. 1992). However, the fractured rock
formation is treated as a rigid body, thus neglecting the coupling between fluid flow and

deformation. Incorporating the coupled deformation process within the framework of the
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dual-poroelasticity formulation, Wilson and Aifantis (1982) and Bekos and Aifantis (1986)
published analytical solution for vertical wellbore under hydrostatic state of stress, without
any plots or numerical results for verification and analysis. Li (2003) presented analytical
solution for vertical wellbore in non-hydrostatic stress field. Based on this work and
previous solutions for compact rock formations, the complete analytical solution for
inclined wellbore drilled in fractured rock formations and subjected to three-dimensional
state of stress was derived by Abousleiman and Nguyen (2005). This solution is for
isotropic fractured formation and permeable fluid-boundary condition, e.g., openhole
drilling. Analyses showed significantly different evolution of effective stress and pore
pressure distributions in both the rock matrix and the fracture network, leading to more
conservative failure predictions, which agree with field observations (Nguyen et al. 2009).
In this section, the isotropic inclined wellbore solution for fractured formations
(Abousleiman and Nguyen 2005) is extended to account for transverse isotropy and

different fluid boundary conditions across the wellbore wall.

2.3.2 Problem Descriptions

The wellbore is defined as an infinitely long cylinder created by removal of rock material
from a formation with infinite lateral extent. Prior to drilling, the saturated rock formation
is subjected to a three-dimensional in-situ state of stresses {Sy, Sy, S»} and formation fluid
pressure po. The in-situ stresses Sy, Sy, and S, form an orthogonal set of principal stresses
where Sy is the vertical overburden stress while Sy and S;, which generally are not equal,
represent the maximum and minimum principal stresses in the horizontal plane,

respectively. An inclined wellbore is one in which the borehole axis is drilled inclined to
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the far-field principal in-situ three-dimensional state of stress. In addition, the borehole
generator is also assumed to be perpendicular to the isotropic plane of a transversely
isotropic poroelastic rock formation. A schematic of the inclined wellbore geometry and

the associated in-situ stress orientation is illustrated in Fig. 2.1.

Horizontal plane S S

"
Ps =Po = Do
p () #p (1) #p,

Fig. 2.1—Inclined wellbore geometry in transversely isotropic fractured formation.

Two separate right-handed coordinate systems (X, y, z) and (x’, y’, z’) are attached to
the wellbore and the in-situ principal stresses, respectively. The in-situ stress orientation is
defined by the azimuth of the maximum horizontal stress direction, asy, while the borehole
local coordinate are described by two angles—the wellbore inclination iy and azimuth a,.

For practical purpose, all azimuthal angles are defined clockwise from the geographic
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North direction. In Fig. 2.2, the far-field in-situ stress components from the vantage point
of the wellbore coordinates (X, y, z) is illustrated. It is seen that the wellbore is subjected to
far-field normal as well as shear stress components denoted by Sy, S, S, Sy, S,z and S...

The stress transformation operation is listed in Appendix D.

A s

~ b

Sy Stress

b i s

e - %4
i o Transform \ XS
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KRR i) ‘ \\.j

I o \\
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Fig. 2.2—Far-field in-situ stress components in local wellbore coordinate system (x, y, z).

As the wellbore is drilled, the hydraulic pressure of the drilling fluid replaces the
support lost by the excavated column of rock. However, the mud pressure, being
hydrostatic, can not exactly balance the in-situ earth stresses. As a result, the rock around
the wellbore is strained due to the redistribution of stresses. In addition, the imbalance
between the mud pressure and the formation fluid pressure leads to potential gradient
which acts as driving force for fluid flow process that also affects near-wellbore

distribution of stress and pore pressure. The boundary conditions for the problem are
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imposed at far field and at the borehole wall. Because the far-field boundary is at infinite
distance from the wellbore, it is assumed that there are no changes of stress and pore

pressure at this boundary such that

o.=95; o,=S8; O, =8 i (2.26a)
o, =58, o,=8.; O =8 e (2.26b)
P =D D S D st (2.26¢)

where the stress components are expressed under Cartesian coordinate system (X, y, z).

pY is the far-field/initial formation pore pressure in the matrix and fractures, respectively.

It is reasonable to assume that p, = p, = p, -

Due to its cylindrical geometry, the boundary conditions at the wellbore wall are
naturally expressed within a cylindrical coordinate system (r, €, z) as shown in Fig. 2.3. At
the borehole wall, » = R,, all surface tractions and fluid pressure or fluxes are changed

from thelir initial state at the instant of excavation as

G =[G, +0, cOS2O =0 N H=1)+ (E)s oo (2.27a)
N YOI D)) - (G DR (2.27b)
0, =[S,.c08(0)+ S, SI(O)H(—1) , <oevrieiiiiiiriiiie (2.27¢)
p' =p" = p,H(=t)+ p,,(¢) pressure boundary, ..........cccoeevverrerereererrrerereerenans (2.27d)
or

qgr+q'=q,@); p'=p"=pHE=t+p,(q,() flux boundary, ... (2.27¢)

where ¢ is time and H(?) is the Heaviside unit step function (H(z <0) = 0 and H(¢ >0) = 1);
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pw(t) 1s a time-dependent wellbore mud pressure due to mud density and/or fluid flow rate
and ¢,(?) is a transient fluid discharge across the borehole wall. As such, the hydraulic
boundary condition can be specified as either pressure-boundary condition or flux-
boundary condition to simulate particular field problem such as instantaneous drilling,
bottom-hole pressure-controlled production, and flow-rate-controlled injection or

withdrawal.

Wellbore Stresses . Wellbore Wall Stresses r=R,,

Fig. 2.3—Cylindrical stress components (r, 6, z) near and at the wellbore wall (grey components
denote zero values).

In Egs. 2.27a to 2.27e, terms associated with H(-f) represent the initial state before wellbore

drilling whereas terms involved with H(#) correspond to conditions imposed after the

instant of excavation. o,, o©,, and 6, are parts of the stress boundary condition and

rotation angle in polar coordinate for a circular borehole as defined in Cui et al. (1997)
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......................................... (2.282)

xy ?

0, =(S,+5,)/2  0,=05(S, -85, +4S’

6, = 0.5tan " [28, /(S, =S, ), cerrrrrrressssierereesssssssieesssses s (2.28b)

2.3.3 Analytical Solutions

Because the wellbore is infinitely long and there is no change of boundary condition along
the wellbore axis, a generalized plane-strain condition can be assumed to prevail (Saada
1974). Furthermore, since all far-field quantities do not change with time, only the
perturbed state needs to be solved for. As a result, the far-field boundary conditions for all
perturbed variables vanish identically and drilling is simulated by applying a change in

boundary condition at the borehole wall as follows

O,=p,()=[0, +0,08(2(0 =0.))] 5 ceoereriririeieeeeereeeeeeee e (2.29a)
0,5 =0, SIN(2(60 = 0))) 5 oottt (2.290b)
0. =—S,.c08(0)+S, SIN(O)] , oorvoiiiiriiiiiii (2.29¢)
p'=p" =p,(t)— p, Pressure boundary, ..........ccccoeveverreierrrererniereseneeeeans (2.29d)
or

qi + qil =q,(t); pI = pII =p.(q,() = p, flux boundary, ............ccccc..... (2.29¢)

Owing to the linearity of the governing equations, the problem can be decomposed into two
sub-problems and solved separately. The boundary conditions and corresponding solutions

to the two sub-problems are presented in the followings.

2.3.3.1 Problem I — Plane Strain

The boundary conditions for perturbed quantities in Problem I at the wall (» = R,,) are
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O, =D, )=[0, +0,C08(2(0 =6 )] , oo (2.30a)

D e TGN ) W (2.30b)
p' =p" =p, ()= p, pressure boundary, ........ccoeveveererrereienierenniesseneeeees (2.30d)
or

qi + qil =q,(); p'=p"= p.,(q,()— p, flux boundary,..............ccc..... (2.30¢)

For plane strain condition, ie., £_ =&,, =0, the fluid contents (Eqgs. 2.16 and 2.17) in

polar coordinate (-6) in terms of stress and pressures reduce to

Cl==a" (0, 405 =B D  —BDuD" ) st (2.31)
C==a" (0, + 0 =Dy D' =Dy D) s (2.32)

where the material coefficient ¢™ and dimensionless parameters @™ and b;; are

™ O_JI(N)
A o o o e (2.33)
Mll +M12
™ asN (Mll +A712) _2a1(N)M13 734
— s (2.34)
al M33
p o My M, +2a)) M p oM+ M, + 20 M 5 35
= — ; n = =7 e (2.35a)
o, M oM

M, + M, +2ea"M"

M+ M, +2a" Y M"
— I3 7 LI > b22 -
oM
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b21

Similarly, the compatibility Eq. 2.20 is rewritten in polar coordinate (7-6) as

° 19 1 9° M, \_ M, \_
+——t— c. +0.,—-|1-—la'p -|1-=2|a"p" |=0,...(2.36
(arz ror r’ 8492}[ " o [ M”J 1P ( Mnj L P } ( )
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Based on boundary loading conditions and symmetry considerations for fluid pressures and

stress, the various response functions can be decomposed as (Carter and Booker 1982)

[p™,q™,0..,0,1=[P™, 0,8, ,S,,1Xcos(n(6 —6.)) ,.cceeeeeeeeererrrrrrran. (2.37a)
Orp =S,y SO = 6.)) oo (2.37b)

where P™,S,,,S ,S,,,and S, are functions of radial distance (r) and time (¢) only and n

is an integer number depending on loading conditions. Incorporating Eq. 2.37a into Eq.

2.36 to eliminate € dependency and seeking for bounded solutions gives

S, 4 S =T P A T P A ClE) T e (2.38)
in which the dimensionless coefficient, 7™ =™ (1-M,,/M,,) and C\(?) is an arbitrary

time-dependent coefficients to be determined from boundary conditions. Eliminating the
stress components in the fluid contents (Eqs. 2.31 and 2.32) and substituting the resulting
expressions into the fluid mass balance lead to the simplified diffusion equations in terms

of the decomposed fluid pressures. In compact matrix form, they are expressed as

1 1
Al ropy: |7 1219196 (2.39)
- T el T .

where V2 =097 /9r” +(1/7r)(d/9r) and the coefficient matrices A, D and T are

l N (511)2 1 allalﬂ
A {A” Alel V& M“ M Mu
1 allalﬂ 1 N (0—{111)2 s
MI,II M” MH M“
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Introducing the following normalized parameters

-1 + -1
Py =ty = e (2.42)
Rw (All + A22 )Rw
_ K" AR?
Ky :ﬁ, ﬂyD S I 2 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee (243)
K, +K K, + K
o= L; o™ = L, ........................................................................ (2.44)
All + A22 All + A22

where rp and #p are the dimensionless radial distance and time; X, is the macroscopic

mobility ratio; Ap is the dimensionless interporosity flow parameter; @ and " are the

macroscopic coupled storage ratios; . The diffusion equation becomes

P! c,
(mi +Ip - %,V J _17196 Fp et (2.45)
atD P" Cj} atD
in which
l-w o™ I -1 l-x, O
o= ; Tp=4, ; Kp = ) e (2.46)
" w -1 1 0 K,
CP =A™ A+ Ayy) s oo (2.47)
> 19 n
Vi, = o T T T, e (2.48)

E rp or, rl’
The above system of partial differential equations is solved directly to obtain the general

expressions for the decomposed pore-pressure fields. Applying Laplace transform to the

diffusion Eq. 2.45 yields
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P! c!
— 2 ! ~ _-n
(so+T, -%,V2, ){]NDH}_ Lo —— (2.49)

c;
where the tilde sign ~ denotes the corresponding quantity in Laplace transform domain, s
is the Laplace transform parameter, and 51 = 51 (s). The general solutions are
straightforward, noting that the pressures have to be finite as » approaches infinity

P =g'Cory" + CIK (E'7) 4+ CIK  (EM7)) s oo (2.50)

P =g"Cory" + Clm'K , (E'7) + Clm K, (EM7 ) oo (2.51)

where C) =C/(s) and C) =C,'(s) are arbitrary coefficients to be determined from

boundary conditions; K,, is the modified Bessel functions of the second kind or order #;
E® = 1™ where (™ is the eigenvalue of the coefficient matrix Y =%, (s@+T});

(™ g™ and m™ are defined as

A :(Y11 1Y, £4/(Y, —Yyy)? +4Y,7,, )/2, ...................................................... (2.52)
m' = v Y“, I ettt e et e et r e (2.53)
Y, Y,

The decomposed radial fluid fluxes are derived using Darcy’s laws (Eq. 2.12)

O =—(1-%)[-ng'Cry + CIK', (E'7,) + CYK', (E"F )/ R,y oo, (2.55)

~

O =—k,[-ng"Cyry" + Cam'K", (E'r)) + Clm "K', (EMr)]/ R,y s oo (2.56)

r

in which O™ =™ /(&' + &R, 1(dP™ /dr,) and K' (x)=dK,(x)/dx. Once the
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pressure expressions are obtained, the general solutions for stresses are easy to obtain by
using the stress-strain-pressure constitutive equation (Eq. 2.15) and strain-displacement
relations (Eq. 2.6) in polar coordinate. For brevity, only the final general solutions for the

stress components are presented here

S, =Cyry 2+ (n+2) A Cry" +
™ ™) e ——————————— (2.57)
— Z AéN)CéN)|:KnlfN§) rD) +n(n+1)KngN§) rlz)):|
(N)=LII ég Tp (f rp)
§99 = _Co’"z;n_z - (n-2) 4 51’"5’1
y eeeeeeeerer i ———— (2.58)
K, (EMr) n(n+1)
+ A(N)c(N) n—1 D +1+ KH(CE(N)I, )
(N)Z=1:,H 2 é:(N)rD (é:(N)”D)Z P

~

e n ~  _
S.,=Cor)" +§A1 Cr)' +

™N) ™N)
_ Z AéN)Cz(N)|:nKn—1(§ rD)+n(n+1)Kn(§ )

e (2.59)
&M, (&%) }

(N)=LII
in which C, =C,(s) 1s an additional coefficients to be determined from boundary
conditions; the lumped coefficients 4; and A4\ are expressed as
24, =7 g 7 L s (2.60a)
ATV = T F TN e (2.60b)

To determine the unknown constants, C,, C,, C., and C!, the boundary conditions for

this problem are further decomposed into two contributing loading cases namely:
axisymmetric and deviatoric loading cases. Case 1, the axisymmetric case, accounts for the

unloading of hydrostatic part of the in-situ stress, g, as well as hydraulic perturbation due
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to drilling fluid pressure, p,(¢). Case 2, the deviatoric case, accounts for the release of the
deviatoric part of the in-plane in-situ stress, 0;. The corresponding boundary conditions
and solutions for four different wellbore-wall’s fluid boundary conditions including
pressure (permeable), flux, no-flow (impermeable), and impermeable-matrix and

permeable-fracture boundary conditions are derived and listed in Appendix D.

2.3.3.2 Problem II — Antiplane Shear

The boundary conditions for perturbed quantities in Problem II at the wall (» = R,,) are

0. =-S5, co8(0)+ S, SIN(O)] ;oo (2.61a)
O, = 0,5 =0 e (2.61b)
pl=p"=0 or ¢ =q'=0 e (2.61c)

This problem accounts for the sudden release of the out-of-plane in-situ shear stress
components S, and S,. at the wellbore wall. It was shown that no excess pore pressure is
generated by this disturbance of shear stress. The stress state is elastic and identical to the

isotropic case given as (Amadei 1983)

G, =[S, coS(0)+ S, SIN(O)(1=1/72) s crrrrroreererssserensssseesesssseesessssieenesn (2.62a)

R KT (C) IR (2) ) [ B 0 U DSOS (2.62b)

It should be noted that the above solutions for Problem II are no longer valid if the

formation material rotation symmetry axis is arbitrary.

2.3.3.3 Complete Solution

The complete solutions for stresses and pore pressures are obtained by superimposing the
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non-zero solutions of the two sub-problems together with the background in-situ stress

state as
D = D0 P A D e, (2.63a)
P = Do F P A D e (2.63b)
0,=0,+0,0082(0=0))+0L + 0 e, (2.63c¢)
Oy =0, —0,C08(2(0—0,))+ 0% + 05 s, (2.634d)

— > (eY] ) (1 @)
O-zz - Sz + Vi3 (O-rr + O-rr + 0-619 + 0-00

@ 25, @Y + p )+ @ 25 FY P + i) et (2.63e)
0.y =—0,SIN(2(0 = 6.))F 0 oot (2.63f)
o, =[S.cos(f)+S, sin(d)](1-1/ T2 ) s eeereeeieieee e (2.63g)
0, =—S,.sin(@)- S cos(A)](1+1/ FL) s oreteeeeeieee e (2.63h)

in which the superscript (1) and (2) denote the solutions to two loading cases of Problem I.

2.3.4 Results and Discussions
2.3.4.1 Modeling Parameters

To demonstrate the various inclined wellbore solutions presented above, the set of data for
a Gulf-of-Mexico shale (Cui and Abousleiman 2001) are adopted in this analysis as

E =1854 MPa; v=022; a=096; M =9100 MPa
¢=0.14; k=5%10"darcy; K, =27.6 GPa; K, =1744 MPa

The above data are assumed to be the isotropic properties of the non-fractured porous rock
matrix (I) in the dual-porosity and dual-permeability model. The fracture network in the

rock modeled as the secondary porous region (II) is assumed to be more compliant than the
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matrix one. Various methods for the estimation of the bulk fracture network
compressibility based on individual fracture/joint characteristics, spacing, and orientation
have been proposed and discussed in the rock mechanics field as summarized by Cook
(1992). In this example, to highlight the contrast in stiffness, the same Poisson’s ratio is
assumed for both porous matrix and fracture systems while the fracture’ Young modulus is
specified to be 50 times smaller without loss of generality: v' =v" =0.22 and
E" =E'/50=37 MPa. The local fracture porosity ¢" is the fracture pore volume
divided by the fracture total bulk volume. Since the majority of the fracture are porous flow
channels, the fracture porosity are usually close to 1. On the other hand, the fracture
volume fraction, v", is the fracture bulk volume divided by the total bulk volume of the
combined formation. As such the fracture volume fractions depends on the fracture’s
spacing and geometry and usually is a small number less than 5% bulk volume as reported

in the literatures (Aguilera 1995). Here, fracture porosity and volume fraction are, in here,
chosen as ¢" =0.95 and v" = 1%. Subsequently, the fracture poroelastic parameters o"
and M" can be determined using Eqs. A2.3 and A2.4, assuming that the same fluid is
permeating the pore spaces K; =K, =K,, pu'=u"=0.01Pa-s (viscosity), and the
porous matrix and porous fracture skeletons are comprised of the same mineral materials
K!=K! =K_ . The intrinsic fracture permeability is the macroscopic permeability that is

assigned to the fracture network in a given volume of rock, and thus dependent upon the
fracture’s width, orientation and spacing. Here, an intrinsic fracture permeability of

approximately 5 milidarcy (5x10"° m?) is assumed. For isotropic modeling, the
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interporosity flow geometric factor is given in term of fracture spacing d (Warren and Root
1963) and fracture’s volume fraction, e.g., A = 60(v'/d?) ~ 2.4x10° MPa-s". Other
relevant data for in-situ condition and wellbore geometry are summarized below:

Depth = 1000 m, Ry, = 0.1 m, well inclination = 60, well azimuth = 0

Sy =25 MPa, Sy =20 MPa (azimuth = 0), S, = 18 MPa, pp = 10 MPa
Time is set at /p = 0 when the wellbore is drilled. Four cases are considered: a constant
wellbore pressure (permeable), a constant injection rate, a no-flow wellbore (impermeable),
and fully permeable fracture coupled with impermeable matrix wellbore wall fluid
boundary conditions. Except for the constant flux boundary condition (injection rate Q =
0.07 m’/day/m) where the wellbore pressure varies, the wellbore pressure due to drilling

mudweight for all other cases are maintained overbalanced at 1.12 g/cc or 11 MPa.

2.3.4.2 Dual-Poroelastic Responses

Due the anisotropy of in-situ stress, excavation of the wellbore will induce non uniform
stress distribution near the wellbore as shown in Fig. 2.4 for pressure boundary condition.
Specifically, it is observed that there is excessive compressive tangential stress
concentration along the direction of minimum horizontal stress S, whereas the formation is
more relaxed along the maximum horizontal stress direction Sy. The variation of total
tangential stress concentration at and around the wellbore wall for four cases of different
fluid boundary conditions is shown in Fig. 2.5. Obviously, the total normal stress changes
significantly with locations and fluid boundary conditions. Note that even if the in-situ
horizontal stresses are equal, the inclination of the wellbore will render the in-plane stress

components non-hydrostatic leading to unequal stress concentration around the wellbore.
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Fig. 2.4—Total tangential (hoop) stress distribution around the wellbore after tp = 1 (~ 3.5 minutes)
into drilling for pressure (permeable) boundary condition.
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Fig. 2.6—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes) and tp = 10
(~ 35 minutes) for fluid pressure (permeable) boundary conditions.
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Because pore pressure is directly coupled with the stress field, the near-wellbore pore-
pressure fields are also non-uniform which is a distinct behavior of the fully coupled
poroelastic theory and cannot be captured using uncoupled analysis. The evolutions of dual
pore-pressure distributions are illustrated in Figs. 2.6 to 2.12. For all cases of fluid
boundary conditions, the near-wellbore matrix pore pressure is elevated along the S,
direction (due to high stress concentration) but is depressed along the Sy direction (due to
low stress concentration). As time progresses, this poroelastic effect due to unloading of the
non-hydrostatic in-situ state of stress diminishes and the pore pressure distributions become
more uniform around the wellbore.

In Fig. 2.6, the dual fluid-pressure penetrations through the matrix and the fracture
network are shown for a permeable borehole wall subjected to a constant wellbore mud
pressure. The figure clearly shows two distinct pore pressure responses in which drilling
mud quickly penetrates the fracture’s region and equilibrates with the applied wellbore
pressure while the matrix pore pressure is still transient. This behavior signifies the
domination of the flow process in the fractures to the overall matrix-fractures response.

The pressure distribution for a permeable wellbore subjected to a constant injection rate
of Q = 0.07 m*/day/m (flux boundary condition) is shown in Fig. 2.7. Unlike the constant
pressure boundary condition, the fluid pressure at the borehole wall is increasing to
maintain the constant fluid influx. The pore pressure distribution in the fracture network is

almost uniform around the wellbore due to its high permeability.
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Fig. 2.7—Dual pore-pressure distributions at the wellbore after tp = 1 (~ 3.5 minutes) and tp = 10 (~ 35
minutes) for non-zero flux boundary conditions (Q = 0.07 msldaylm).
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Fig. 2.8—History of pore pressure at the wellbore wall for non-zero flux (injection Q = 0.07 m3/daylm)
versus pressure (permeable) boundary conditions.
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The corresponding evolution of fluid pressure at the wellbore wall is plotted in Fig. 2.8.
Full hydraulic communication requires that the fluid pressure be the same in both the
matrix and the fracture network as well as around the wellbore wall. The pressure
responses for flux boundary condition exhibits typical transient behavior as shown in the
early work of Warren and Root (1963) and others.

For impermeable boundary condition, there is no flow across the wellbore wall.
However, there is still pressure buildup or reduction in the matrix in the near wellbore
region due to the poroelastic effect of unloading non-hydrostatic in-situ stress as shown in
Fig. 2.9. Again, the perturbed pore pressure in the fracture network quickly dissipates and
converges to the original formation pore pressure as displayed in Fig. 2.10. Similar
behaviors are observed in Figs. 2.11 and 2.12 for the evolution of pore-pressure distribution
for the case of impermeable-matrix and permeable-fracture boundary condition. Instead of
converging to the original formation pore pressure, the dual responses approach the applied
wellbore pressure due to full hydraulic communication between the wellbore and the

fracture network as well as interporosity flow exchange.
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Fig. 2.9—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes) and tp = 10
(~ 35 minutes) for no-flow fluid boundary conditions.
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Fig. 2.10—History of pore pressure at the wellbore wall for no-flow fluid boundary condition.
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Fig. 2.11—Dual pore-pressure distributions around the wellbore after tp = 1 (~ 3.5 minutes) and tp =
10 (~35 minutes) for impermeable matrix and permeable fracture’s fluid boundary conditions.
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Fig. 2.12—History of pore pressure at the wellbore wall for impermeable-matrix and permeable-
fracture fluid boundary condition.
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Next, the evolution of effective tangential stress — total normal stress less pore pressure
— at the borehole wall is demonstrated in Figs. 2.13 to 2.15. For pressure and flux boundary
condition, both the matrix and fracture’s pore pressures equal to the imposed wellbore
pressure leading to the same effective stress in the matrix and fracture regions as shown in
Fig. 2.13. Although the pore pressure stays constant for a pressure boundary condition, the
effective tangential stress at the wall changes with time and locations. As time progresses,
the effective stress increases considerably along the minimum horizontal stress direction (6
= 90) which promotes compressive failure in this location but decreases along the
maximum horizontal stress direction (0 = 0) which makes the region more susceptible to
tensile failure. On the other hand, the results for constant injection rate show reduction in
effective stress all around the wellbore because the magnitude of the transient increase in
total stress along 6 = 90 can not overcome the increase in wellbore pressure to maintain the
injection rate. Along 0 = 0, the time-dependent reduction in effective tangential stress is
more pronounced and the stress becomes tensile after #p = 100 (~ 5 hours 50 mins). The
result is practically helpful since it predicts the time to fracture initiation due to constant
fluid injection.

For no-flow (Fig. 2.14) or impermeable-matrix and permeable-fracture boundary
condition (Fig. 2.15), the pore pressure at the wall evolves differently in the porous matrix
region and fracture network. Therefore, dual effective stresses, Ggo — pI and Ogg — pH, are
shown as bounds for the actual effective developed in fractured formation. It observed that
the transient effective stress level is more critical in the fracture network than in the rock

matrix region, i.e., higher in compression along 6 = 90 and closer to tension along 6 = 0.
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Fig. 2.13—History of effective tangential stress at the wellbore wall for flux boundary condition
(injection Q = 0.07 m3/day/m) and pressure boundary condition.
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Fig. 2.14—History of effective tangential stress at the wellbore wall for impermeable (no flow)
boundary condition.
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Fig. 2.15—History of effective tangential stress at the wellbore wall for impermeable-matrix and
permeable-fracture boundary condition.

2.3.4.3 Comparison with Single-Poroelastic

Finally, it is also of interest to compare the dual-poroelastic response in conjunction with
the single-poroelastic counterpart that model the formation as compact rock, neglecting the
compressibility and fluid flow in the fracture network. As shown in Figs. 2.16 to 2.19, the
intact rock is modeled as single-poroelastic material while the fractured rock formation is
modeled as dual-poroelastic material. The transient pore pressure distribution around
wellbore are shown in Figs. 2.16 and 2.17. The result for single-poroelastic has been
converted to the same time scale as the dual-poroelastic using the characteristic times of the
two models. It is observed that the perturbed pore pressure in a fractured rock system at a
specific time is less than that in a compact one due to the faster speed of fluid dissipation.

On the other hand, due to the contribution of fracture compressibility, the fractured rock
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exhibits higher effective stress concentration along the S, direction and lower effective
stress level along the Sy direction as displayed in Figs. 2.18 and 2.19 for effective
tangential stress. The difference in effective stress between single- and dual-poroelastic
modeling approaches will translate into significant implications on wellbore stability
evaluation of the mud-weight window for field planning and operations as illustrated later

in Chapter 5.
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Fig. 2.16—Time-dependent pore-pressure distribution along Sy direction. The fluid boundary is
constant pressure with permeable borehole wall.
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Fig. 2.17—Time-dependent pore-pressure distribution along Sy direction. The fluid boundary is
constant pressure with permeable borehole wall.
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Fig. 2.18—Effective tangential stress distribution along Sy direction at tp = 10 (~ 35 mins). The fluid
boundary is constant pressure with permeable borehole wall.
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2.4 Rectangular and Cylindrical Geometries

2.4.1 Rectangular Strip and Solid Cylinder’
2.4.1.1 Background

The poromechanics solutions for laboratory setups with initial and boundary conditions on
prepared samples easily traverse the boundaries of various fields such as geomechanics and
biomechanics. The two-dimensional Mandel-type problem geometry assumes a rectangular
strip shape in Cartesian coordinate or cylindrical disk samples in polar coordinate. In

geomechanics, such configurations are used in common uniaxial and triaxial testing of

2 Part of this section was published in the J. Appl. Mech., 77(1): 011002-1-011002-18 (Nguyen and
Abousleiman 2010)

55



porous rock specimens (Dickey et al. 1968; Abousleiman and Cui 1998) or in simulating
sudden stress relief of a long core removed from subsurface wellbore (Wang 2000).
Meanwhile, this problem geometry is equivalent to the popular unconfined compression
test in the biomechanics society, in particular, for testing cartilages and bones (Buschmann
et al. 1998). Hence, distributions and evolutions of stress, displacement, and pore pressure
in the samples under these setups and conditions are of important values and have been
investigated by many researchers.

Mandel (1953) presented the first solutions for the isotropic consolidation of an
unconfined soil layer using Biot’s theory of poroelasticity (1941), demonstrating the non-
monotonic pore-water pressure response, known as the “Mandel-Cryer effect,” which is a
distinctive feature of the coupled consolidation theory. Kenyon (1979) provided solutions
for transversely isotropic material using Terzaghi’s uncoupled consolidation theory (1943),
which is a limiting case of Biot’s poroelasticity. Later, Abousleiman et al. (1996) extended
Mandel’s original solution to the full transversely isotropic case and provided the explicit
expressions for stress, pore pressure, displacements, and fluid flux. Recently, Hoang and
Abousleiman (2009) provided the poroviscoelastic solution accounting for the intrinsic
nature of the orthotropic viscoelastic matrix structures of many porous materials such as
articular cartilage. Also in biomechanics, Kameo et al. (2008) published isotropic solutions
for transient response of fluid pressure under uniaxial cyclic loading. These
poromechanical solutions to the original Mandel’s problem have been used as a benchmark
for testing the validity of numerical codes of poroelasticity (Christian and Boehmer 1970;

Cui et al. 1996; Yin et al. 2006; Phillips and Wheeler 2007). In addition, the rectangular
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strip geometry also matches one of the testing configurations of stiff clay samples in
geomechanics (Dickey et al. 1968) or articular cartilages in biomechanics (Odgaard and
Linde 1991; Wang et al. 2003).

On the other hand, testing of solid cylindrical samples subjected to load perturbation
can be considered an axisymmetric Mandel type problem due to its radial symmetry and
plane-strain/generalized plane-strain nature (Saada 1974). Armstrong et al. (1984),
following Mandel’s approach, derived the isotropic poroelastic solution simulating the
unconfined compression of articular cartilage disk and showed results for step and ramp
loadings. Independently in the field of geomechanics, Abousleiman and Cui (1998)
published a more general cylinder solution accounting for the transversely isotropic nature
of rock samples and arbitrary time-dependent loading condition. The solution was later
extended to incorporate the effect of lateral confining stress and results for uniaxial and
triaxial testing under ramp loading condition were demonstrated (Cui and Abousleiman
2001). Subsequently, Cowin and Mehrabadi (2007) also gave the same unconfined
anisotropic poroelastic solution with results for bone testing.

This section shows the derivations of the analytical solutions for Mandel-type problems
in dual-poroelastic media. By noting the parallelism between plane strain and radial
symmetry, the solutions for strip and cylindrical geometries are analogously derived and
expressed in closed form in the Laplace-transform domain as well as in the time-domain.
The developed solutions describe the consolidation of a rectangular strip or circular disk

sample under confined or unconfined compression testing setups.
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2.4.1.2 Rectangular Strip (The Mandel’s Problem)
2.4.1.2.1 Problem Descriptions

The original Mandel’s problem involves an infinitely long rectangular specimen
sandwiched between the top and bottom by two frictionless plates as illustrated in Fig.
2.20. It is assumed that the y-axis is infinitely long and the response along that direction is
invariant. This geometry is represented by a perpendicular cross section (x-z) in a state of
plane strain, i.e., the displacement and fluxes vanish in the y direction perpendicular to the
paper &, = 0. At time #= 0", a constant compressive force 2F (per unit length) is applied to
the rigid plates at the top and bottom, respectively. The left and right edges of the plates are
stress-free and drained. The geometry and boundary conditions imply that every horizontal
plane is a plane of folding symmetry. That is, horizontal planes remain horizontal (&, =
&.(?)), fluid flow is parallel to the impermeable plates (¢. = 0), and there are no shear
stresses on the plane (o, = 0). In addition, the responses of all quantities are symmetric

about the centerline z-axis (f{x) = f{—x)) (Mandel 1953; Abousleiman et al. 1996).

2F(t) or u,’(f)

2b L)x

2a

2F(t) or u,'(f)

Fig. 2.20—The Mandel’s problem geometry and loading setup for a rectangular strip of transversely
isotropic dual-poroelastic (fractured) material.
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This work extends the original Mandel’s problem solution to transversely isotropic
fractured rock as illustrated in Fig. 2.20. The new solution account for external boundary
conditions that are generalized to time-dependent loading applications, i.e., F' = F(t), P, =
P(), and p, = p,(f) where P. and p, are the confining stress and fluid pressure on the outer
boundary (x = a). Additionally, the axial loading can represent either applied vertical

strain/displacement, €_(¢) or u_ (), or an applied vertical load, 2F(f). Mathematically, the

generalized boundary conditions are expressed as

x=ta: o.=P@); p'=p"=p,1); 0. =0, oo (2.64)
z=0,2b: 0.=q=q" =0; U, ZU_ (1), oo, (2.65)
z=2b: j O_dx = 2F(£) 108d CONIOL, ....corvvveeeeeeeseeeeeeeeseeeeeeeeeeeeee e (2.66a)
z=2b: e.=€_(t)=u.(t)/2b stroke cONtrol,........cccceceererererirrrreeererirnnas (2.66b)

With the above boundary conditions, the governing equations is reduced to one-
dimensional and all variables are at most functions of x and ¢ only. The plane-strain
condition in the y direction and the stress equilibrium (Eq. 2.18) in the x direction require
that g, = 0 and 6, = P.(?). Using these conditions into the constitutive Eqs. 2.15 and 2.16,

the fluid contents are rewritten in terms of stress and fluid pressure as

C'==a" (O +P'P. =5, =B P") s (2.67)
L L (2.68)

where the material coefficient ¢™ and dimensionless parameters ™ and b; are given as
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b = +T'?" | b. =" +a"a' 1 271
=0 T O @ +W, b =0, O, @ +W, ................................ (2.71a)
b,=0, +a'¢" + _;; b,=a'+a'p" + _L, ............................ (2.71b)
M M"

Similarly, the compatibility Eq. 2.19 simplifies to

82 (—1 —1 Ml3 J 1 [—I —1 M 13 j Ili|
— 0. =0 -0 = |p =0 =0 == [P |=0, i (2.72)
ax2|: ’ 1 Mll } : Mll

Integrating and accounting for the symmetry about the centerline (x = 0) yields

O S Q2.73)
in which the dimensionless coefficient 7™ =a™ —a@™M,, /M, and Ci(f) is an

integration constant depending only on time. Eliminating the stress components in the fluid
contents, Egs. 2.67 and 2.68, and substituting the resulting expressions into the fluid mass
balance, Eqgs. 2.13a and 2.13b, lead to the simplified diffusion equations in terms of the

dual fluid pressure fields and applied stress as.

[ALF_Di]{p } “9 m{ }m ............................... o7

ot o’ )| pt|  |a"g"| ot 4" ot

where the coefficient matrices A, D and I" are defined in Egs. 2.40 and 2.41. In compact

matrix form, Eq. 2.74 is expressed as
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5 I Cl_al cI.
(miw,, ~K, a—zJ PV NOR JC (2.75)
at, dxp )| p" clp" ot c} oty

(N)

in which the dimensionless coefficient matrixes @, A, K, and the parameter ¢, are

given in Egs. 2.46 and 2.47; xp and #p are the dimensionless distance and time. The system

of Egs. 2.73 and 2.75 together with relevant boundary conditions are sufficient for the

general solution of the three variables {o_, p', p"}.

2.4.1.2.2 Analytical Solutions

Analogous to the inclined wellbore problem, the general solution to this coupled ordinary
differential equation system is straightforward and admits the following form in Laplace

transform domain

P =P f +Cg" +Chcosh(E xp) + Cl cosh(E" X)) s v, (2.76)
PU=P T+ Cg" +m'Clcosh(E" x,) +m"Cl cosh(E™ X)) seoveeomrroreeeereree. (2.77)
where C) =C)(s) and C) =C)'(s) are arbitrary coefficients to be determined from
boundary conditions; £, g™, and m™ are coefficients as given in Eqs. 2.52 to 2.54;

™ is defined as

{f }=(m+r,,)‘ A (2.78)

1 011
f crQ

Next, the non-zero stress and displacement components are obtained by substituting the

pressure expressions into Eqs. 2.73 and 2.15 to get

G_=A,P + AC, + AC! cosh(E'x,)) + AMCY coSh(E X)) oo, (2.79)
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u, _ _(ff) +g5 )x _n'c! Sinh(ﬁflxD) _picn Sinh(fnxD)
c 1 D 2

, 51 ) é"“ y eeeerrrrr———————aaerera——— (2.80)
LN‘Z — _11C1 _MBPC z (2 81)
—— S )y ettt ettt et et st s b e s aae e s bt e s naeesane .
b M11M33 _M123
where the lumped coefficients 4,, 4, , A, '™, f, and g are given as
A,= }_/'fI + }7"f" ettt ttaeeeeeeeeeetttt—aeeeeeeteett——————aeeeeetett——————aeeeeeeetrt————eeeeeerrrar———_ (2.82a)
A= }_/lgl + }7”g” e ol ST (2.82b)
AN = T 4TI | s (2.82c)
_ ﬁllfl +alllfll _ M33 (2 83)
M11 M11M33_M123’
algl +§IIgII M
= Ml +]\7]\713—A72’ ...................................................................... (2.84)
11 11 33 13
h(N)—(aI+aHm(N))/M“, ..................................................................................... (2.85)

The remaining three unknowns 51 (s), Cy(s) and C)'(s) are determined from the fluid

pressure boundary conditions for p' and p" at the edges xp = +/-1 and the vertical loading
condition at the top zp = 1. Detail derivations of this solution for load-control and
displacement-control vertical loading are presented in Appendix B.

It is obvious that the solutions developed in here have the same functional forms as
their single-poroelastic counterparts. The differences arise in the additional set of similar
terms accounting for the secondary porosity coupled contributions. Requiring the
secondary porosity porous medium to shrink to zero, all material parameters associated

with the secondary porosity porous medium vanish and the current solution naturally
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simplifies to single-porosity solution as demonstrated by Nguyen and Abousleiman (2010a)
for isotropic case.

The newly developed dual-poroelastic solution in Laplace transform domain is too
complicated to be inverted analytically back into the time domain. However, the time
domain solution can be efficiently computed using numerical inversion methods such as
the Stehfest’s algorithm (1970). Though robust, the numerical inversion schemes may
diverge and fall short in modeling certain loading conditions such as cyclic or piecewise
loading function (Chen et al. 1994). As a result, it is of benefit to obtain a true time-domain
analytical solution for using where the numerical inversion of Laplace transform fails.
Derivation of the general time-domain solution in terms of infinite series was published by
Nguyen and Abousleiman (2010a) in which explicit expressions for three unconfined
uniaxial loading cases such as step loading, cyclic loading and linear-ramp loading were
summarized. So far, the analysis applies only to strip problem in Cartesian coordinate. It
will be shown in the next section that the extension to cylindrically axisymmetric problem

is analogously straightforward.

2.4.1.3 Solid Cylinder (The Axisymmetric Mandel-type Problem)
2.4.1.3.1 Problem Descriptions

In this section, the compaction of a saturated solid cylinder sandwiched between a top and
bottom impermeable, rigid, and frictionless plates as illustrated in Fig. 2.21 is investigated.

The cross section of the cylinder is circular. The axial loading is represented either by an
applied axial displacement/strain, £ (z) or u.(f), or an applied vertical load, F(?).

Additionally, a confining stress P.(¢) as well as a fluid pressure p,(f) can be applied on the
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lateral surface. In common laboratory setting, the confining stress and fluid pressure at the
outer boundary (» = R) are often the same, i.e., P.(¢) = p,(?).

Mathematically, the boundary conditions are expressed in cylindrical coordinate as

r=R: o,=P@); p'=p"=p,t); 0.,5=0.=0, coieireerrerrrn. (2.86)
z=0,2h: 0.=0,,=q.=q) =0; 1, =U_(2), e, (2.87)
f F(1)
z=2h: Irazzdr =——= load control, ........cccccevenininininieice (2.88a)
0 2r
z=2h: e.=€_(t)=u_(t)/2h stroke cONtrol, .........ccoceeuerrririrreeerrsirines (2.88Db)
F(t) or u, (f)
z

; .
o B

Fas '.'- .“ ‘:

e & Hh A B BE
I F-; s oAt

: -r.-u!‘.d a7 Loy ‘:A. 5

i

ity

2h

/- r,0)

F(t) or u,’(t)

Fig. 2.21—The axisymmetric Mandel-type problem geometry and loading setup for a solid cylinder of
transversely isotropic dual-poroelastic (fractured) material.

With the aforementioned setup, the problem is obviously axisymmetric providing that

at any time the shear stresses and strains o0,, =0, =0,€,, =&, =0 and all other

r
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variables are independent of 6. The geometry and boundary conditions imply that every
horizontal cross section is a plane of folding symmetry. That is, horizontal planes remain
horizontal (&.. = £.(¢)), fluid flow is in the radial direction only (¢.' = ¢." = 0) and there are
no shear stress on the plane (o, = 0). Under such conditions, a generalized plane strain
condition naturally manifests in any cross-sectional plane (Saada 1974). Consequently, the
governing equations are reduced to one-dimensional and all variables are at most functions
of r and ¢ only. Specifically, the fluid contents are expressed in terms of stress and fluid

pressure as

{'==a" (0, 40, +0'S_ —b D DD s e (2.89)
CN==a"(0, + 00 + @S =Dy D' —bpyP") s, (2.90)
where S_(t)=M,e_(t); a™, @™ and b; are the same as defined in the inclined

wellbore solution, Eqgs. 2.33 to 2.35b. Similarly, the compatibility Eq. 2.20 simplifies to

> 1 9 . M, _ M
+—— o +o,-a'|1-=|p' - 1-=2p" =0, .eeeee..... 2.91
(aFZ r ar j|: rr 60 1 [ M” Jp 1 ( M” ]p :| ( )

Integrating twice and seeking for bounded expression yields

O, + 0 =7 D A7 DT H ClE) s (2.92)
in which the dimensionless coefficient 7™ =™ (1-M,/M,) and Ci(f) is an

integration constant depending only on time. Eq. 2.91 is used to eliminate the in-plane
stress components in the fluid contents, Eqs. 2.89 and 2.90. The resulting expressions are

substituted into the fluid continuity Eqs. 2.13a and 2.13b to get the diffusion equations as
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Ai+r—DV2 P = a9 %+ “ 9¢, (2.93)
Y N[ “agn | o Fan T —— .

where V2 =97 /9r> +(1/r)(@/9r); A, D and T are coefficient matrices as defined in Egs.

2.40 and 2.41. In terms of dimensionless coefficients, Eq. 2.93 is expressed as

I I —=I 1
p c.Q c
(mi+FD—EDVfDJ A L e (2.94)
dt, P leje"| 9t || 9t

where the coefficient matrices o, I', K, and cf,N) were defined in Egs. 2.46 and 2.47.

The dimensionless time 7 and the differential operator Vi’ p are

SRR 9 1a
P (A, + AR’ ’ P9k r, Ory,

The system of Egs. 2.92 and 2.94 together with appropriate boundary conditions are

sufficient for the general solution of the three variables {0, +0,,,p',p"}

2.4.1.3.2 Analytical Solutions

Analogous to the strip problem, the Laplace-transform general solutions for the dual pore-

pressure fields are first derived as
P =S [+ Cg O (E 7))+ CM(E™M 1Y) s, (2.95)
P =S T Cg " +m'CU (E 1)+ m " CI (E" 1) s oo, (2.96)

in which Iy is the modified Bessel function of the first kind of order zero and all other
parameters are the same as previously defined in the strip loading solution. Egs. 2.95 and

2.96 also imply that both pressure field must be finite at »p = 0. Making use of the pressure
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expressions, other solutions for stresses, displacements, and strains follow naturally from

the constitutive equation as
(&)

1
& =A4,S_+A4C +4C 11(51—"0)”12“(:2II 5
"p

"p

I
Opo = AS.. +4C, + Azlczl {10(517’0)_ Il?f rD)j|
rD
Lty y] | —— (2.98)
+ANC| 1,(EMy) -2 )
Sy
G.. =B,S.. + B, C, + BICAL,(£'7,) + BYCIL,(E"7) ) s (2.99)
I 11
L(& 1) _h“c;‘%, ................................. (2.100)

_(f§22+g61) rD_hICZI é:I

R
Err :_(fg;zz +g51)
[ 11 e 2.101
_hlczl[lo(églr[))_ll(gl rD)}_hHC;{Io(éﬂer)_Il(él:l ”D)} ( )
&y Sy
1 11
599_—(fSZZ+gcl)—h‘cgw—h”c;‘ll(i—“), ..................................... (2.102)
Sy &y
where the lumped coefficients 4, 4, , AEN), B,, B, B§N>, f.g,and A" are
L L (2.103a)
A, = 7' G 78" 1o eeseseeeeee e ssseeseeeeenen (2.103b)
ANV = F E TN e (2.103c¢)
w MMy + M) =2My; 0 o4
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1

Mll Mll 1+A712
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=0, -0, =+| 0; -0, 77 T e (2.104c¢)
11 11
1,1 —1II ,II
(04 +
2f = Sret 2M s ettt (2.105)
Mll M33(M11+M12)
1 1 I _1
o + 1
2g = e (2.106)
Mll M11+M12
BN = (@0 4 @ ™Y M, oo (2.107)
1 1 11

In addition to 51 (s), Ci(s) and C,'(s), the fourth undetermined quantity in the solution is

the axial strain £_(s) = §ZZ / M. All of these coefficients and variables are determined

using boundary conditions of vertical stress/displacement, radial stress, and dual pressure

fields. Again, details derivations are presented in Appendix C. Again, the corresponding

time-domain isotropic solution in terms of infinite series is also derived and presented in

Nguyen and Abousleiman (2010a).

It is easy to verify that the above solution reduce to the single-poroelastic solid cylinder

solution as presented by Cui and Abousleiman (2001) by allowing either the primary or the

secondary porosity porous medium to vanish. It should be noted that Cui and Abousleiman

expressed the solution using a different set of material coefficients such as undrained and

drained Poisson ratios {V;,, v} and storativity coefficient S. The reduction to single-

poroelastic solution in the Laplace transform domain for isotropic case is shown in Nguyen

and Abousleiman (2010a).
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2.4.1.4 Results and Discussions

The results for rectangular strip and solid cylinder are presented and studied in a parallel
manner to highlight the different responses of the two geometries. The fractured rock’s
material properties are the same as listed in section 2.3.4.1. Let P.(¢) = p,(f) = 0, resulting in
unconfined uniaxial loading condition which is the common laboratory testing setup for
geo- and bio-material. The analysis is carried out for step loading, i.e., F(f) = FxH(z) or

£_(t)=¢€. xH(r). Results for other loading applications are discussed later in Chapter 5.

For laboratory testing, the strip’s cross section is set as 2(axb) = 6x10 cm while the
cylinder’s diameter and height are also 2(RxH) = 6x10 cm. The transverse anisotropy is
modeled by different ratios of material coefficients between the isotropic plane and the

transverse direction, i.e., n; = E//E, and n, =V, /v, . Different ratios define different

degrees of anisotropy and n; = n; =1 denote isotropic material.

2.4.1.4.1 Dual-Poroelastic Pressure and Stress Evolutions

The analytical solution shows that there are two eigenvalues, & and &', which physically
correspond to the effective pressure diffusion coefficients in the porous rock matrix and the
fracture network, respectively. The relative time scale among between the flow processes
in fractured porous media can be assessed by calculating the diffusion coefficients from
these eigenvalues neglecting the interporosity flow contribution, i.e., ¢™ =s/&™ and

tY =a’/c™ (or t§) =R?/c™). This data set gives

ch

matrix c'=73x10" em?/s;  t) =12245s5=3.4hours
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fracture " =1.4cm’/s; th =6.4s

Hence, fluid diffusion process that takes only seconds in the fracture network requires
hours in the porous rock matrix. The histories of dual pore-pressure changes in the center of
the specimens are illustrated in conjunction with the single-poroelastic’s responses in Figs.
2.22 and 2.23. The single-poroelastic’s results are obtained by requiring the bulk volume
fraction of either the fracture network or the porous matrix to vanish (v'—» 0 = 0 =kp =0
or V= 0 = o = kp = 1). In Figs. 2.22 and 2.23, the dimensionless time for single-
poroelastic results are scaled with respect to the effective characteristic time of the overall
dual-poroelastic system z;, = 19 s. The results display typical non-monotonic poroelastic
behaviors in term of the Mandel-Cryer effect. After initial loading, the pore pressure near
the lateral surface must dissipate due to access to drainage, effectively making the
specimen more compliant near the sides and stiffer in the middle region. Therefore, there is
a load transfer to the middle region, as reflected in the history of vertical stress in Figs.
2.24, such that the pore pressures continue to rise after the initial jumps due to Skempton’s
effect. At long time, the pore-pressure buildup decrease due to subsequent fluid diffusion.
Clearly, there are two distinct responses, especially in the matrix’ pressure, signifying the
dual time scales that is not captured in the single-poroelastic solution. The first pressure
peaks in both the matrix and fracture network correspond to the characteristic time scale of
the fracture network. Being more fluid permeable, the pressure in the fracture dissipates
faster and quickly falls below the matrix’s pressure. As time progresses, the matrix’s
pressure seeks to build up non-monotonically again according to the matrix’ time scale

while simultaneously feeding fluid into the fracture network via interporosity fluid
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exchange. In fact, fluid exchange with the fracture system negates the second pressure peak
in the matrix. The contribution of interporosity exchange can be visualized by looking at
the separation between the matrix’s pressure with and without interporosity flow in both

Figs. 2.22 and 2.23.
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Fig. 2.22—Pore pressure histories in the center of an isotropic rectangular-strip geometry under
uniaxial step loading.
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Fig. 2.23—Pore pressure histories in the center of an isotropic solid-cylinder geometry under

uniaxial step loading.

o

©

o
1

©
©
1

0.85+

Normalized Vertical Stress 6,,/G,

0.65 T T T
0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Normalized Time t,
Fig. 2.24—Total vertical stress histories at xp = rp = 0 and xp = rp = 1 for both geometries under
uniaxial step loading.

Next, the pore pressure responses due to a step loading of constant vertical strain for both

geometries are shown in Fig. 2.25. The results are for the case of no interporosity flow, Ap
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= 0, and normalized by E_&,. It is interesting to observe that the well-known Mandel-Cryer

effect, in which the pore pressures continue to rise after the initial values, does not manifest
in the rectangular strip geometry. Physically, for a constant step load (Gy), the material is
effectively softened on the outside leading to redistribution of the constant applied load to
the middle region and simultaneously increasing the pore pressures. Under a constant
vertical strain (g), the vertical stress relaxes as the material softens so that there is no extra
pore pressure generation. However, this is not the case for solid cylinder geometry where
the non-monotonic pore pressure behavior still exists. Mathematically, this can be
explained by looking at the coupled diffusion equations for both geometries. Under
unconfined vertical strain application, the stress and corresponding diffusion equations in
terms of strain components of each geometry become:

Rectangular strip (Egs. 2.73 and 2.74)

M, M, — M/
I I (2.108a)
Mll
2 pI }_/I
Al p% iy I K (2.108b)
Jdt ox " 7! ot

Solid cylinder (Egs. 2.92 and 2.93 )

O, +04 =M, +M,)E, +E4)+2M e +2(0' p' + " p") s, (2.109a)
1 —1
P (94
(Miw-nvfj e (2.109b)
ot I 7| ot
p Q,
/M U/M™
with M=| o
UM™ 1/m"
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As a result, pressure diffusion in strip geometry is coupled with the rate of vertical
strain application. When this strain rate is constant (€,(t) = €), the diffusion process is
uncoupled from the deformation and a regular diffusion phenomenon is observed. On the
other hand, diffusion in solid cylinder is governed by the radial and tangential strain rate in
addition to the wvertical strain rate. The non-zero volumetric strain rate,

d(e, +€, +E.)/0t, acts as a source/sink term for pore pressure generation in the

diffusion equation, leading to the non-monotonic pressure behavior. It is obvious that the
response of strip and solid cylinder geometries are analogous and characterized by two time
scales. In the following, the effects of governing parameters and material anisotropy are

shown based on solid-cylinder results.
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Fig. 2.25—Normalized pore pressure histories at the center (xp = rp = 0) of the sample under
unconfined uniaxial step strain (e;; = goxH(t)) for both rectangular strip and solid cylinder geometries
(XD = 0)
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2.4.1.4.2 Effects of Dual-Poroelastic Parameters

The analytical solutions, expressed in normalized position and time, show that pressure

and stress depend on the following set of dimensionless parameters { w, @"", 7', 7", &',

c", @', 9", A,, k,}. The physical range for these coefficients are: 0< @, ,,, 7., 7.,

o', p", 51 , EH <1; A, 20;and -1 < @"" < 1. The ratios, wand @"", represent relative

storage of the fracture network and cross storage between the porous matrix and fracture.
Although it is common to assume that @"" = 0, it has been shown that @"" is non-zero

and significant (Berryman and Wang 1995). The parameters 7', 7", &', and ¢"

I

correspond to the poroelastic coupling of the system, i.e., when 7', 7", &', &" — 1, the

solid-to-fluid and fluid-to-solid coupling are the most pronounced and vice versa.

Similarly, @' and @" denote the coupling effect of axial loading on the pore pressure
response. For isotropic material, @' = @" = (1-2v)/(1-v). The dimensionless
interporosity parameter, Ap, is a measure of the flow exchange between the matrix and the

fracture. The macroscopic mobility ratio, x,, indicates the relative macroscopic flow

ability of the fracture system and the matrix. The storage ratios and dual-poroelastic
dimensionless coefficients affect the responses in two ways: they modify the magnitude
and partially control the speed of evolution. The histories of pore pressure at the center of

the cylinder and axial stress for different values of ware shown in Figs. 2.26 and 2.27.
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Fig. 2.26—Effect of storage ratio @ on pore-pressure histories at the center (rp = 0) of isotropic solid
cylinder sample under unconfined uniaxial step loading.
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Fig. 2.27— Effect of storage ratio w on axial stress history in isotropic solid cylinder sample under
unconfined uniaxial step loading.
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Fig. 2.28—Effect of interporosity coefficients Ap on pore pressure histories at the center (rp = 0) of
isotropic solid cylinder sample under unconfined uniaxial step loading.
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Fig. 2.29—Effect of interporosity coefficients Ap on axial stress history in isotropic solid cylinder
under unconfined uniaxial step loading.
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The effect of interporosity exchange parameter, Ap, is illustrated through the pore pressure
and axial stress evolutions in Figs. 2.28 and 2.29. For no interflow, the dual-non-
monotonic pressure buildups in the center of the cylinder are clearly observed. The higher
the interflow coefficient, the closer the matrix and fracture pressure converge to each other
and the less distinct the dual behavior becomes. As Ap — oo, the pore pressure in the matrix
is instantaneously equilibrated with the fracture’s pressure which renders the system single-
response. The corresponding axial stress history in Fig. 2.29 also reveals two stages of load
transfer into the middle region of the cylinder for intermediate values of Ap. In other words,
interporosity exchange equilibrates the dual pore pressures and reduces the non-monotonic

matrix’s pressure buildup in the center of the cylinder.
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Fig. 2.30—Effect of macroscopic mobility ratios K, on pore pressure histories at the center (rp = 0)
of isotropic solid cylinder under unconfined uniaxial step loading.
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Fig. 2.31—Effect of macroscopic mobility ratios K, on axial stress history at the center of isotropic
solid cylinder under unconfined uniaxial step loading.

On the other hand, the macroscopic mobility ratio directly alters the dual time scales
which are shown in Figs. 2.30 and 2.31. It is seen that the higher the mobility ratio, the
more pronounced the characteristic dual response exhibits due to the separation of the
characteristic time scales. As the mobility ratio approaches 0.5, the response converges to

single-permeability’s one. The different matrix and fracture pore-pressure responses for &,

= 0.5 in Figs. 2.30 and 2.31 is due to the effect of contrasting compressibility.

2.4.1.4.3 Effects of Material Anisotropy

The history of pore pressure at the center of the cylinder for the case of n; = E /E, =0.5,
1, 2 with n, =v,,/v,; =1 is presented in Fig. 2.32. The magnitude of the initial and non-

monotonic pore-pressure response varies significantly with different ratios of nz. The
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greater the ratio nz is, the higher the dual pore pressures are because more of external axial
loading is transferred to the fluid when the solid frame is less stiff in the loading direction.
In Fig. 2.33, the pore pressures are plotted for the case of n; = 0.5, 1, 2 with nz; = 1.

Similar trends to the previous ones are observed. The material anisotropy and time effects

on displacements are shown in Figs. 2.34 and 2.35.
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Fig. 2.32—Effect of different isotropic-to-transverse Young modulus ratios (7nz = El /E3) on pore
pressure history at the center (rp = 0) of solid cylinder under unconfined uniaxial step loading.
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Fig. 2.33— Effect of different isotropic-to-transverse Poisson ratios (7; =v|, /v;) on pore pressure
history at the center (rp = 0) of solid cylinder under unconfined uniaxial step loading.

In Fig. 2.34, the axial displacement is plotted for both variations in »n; and »;. It is
obvious that »z has more significant effect on vertical consolidation than »; because n;
directly controls the compliance of the sample in the loading direction. On the other hand,
n; 1is related to the Poisson effect which has more impact on the lateral responses.

Therefore, for the same nz, the final vertical consolidation is the same although the

transient response are different. The corresponding radial displacement at the cylinder
lateral surface is presented in Fig. 2.35 in which positive values indicate tension

(expansion). As expected, varying »; changes the radial displacement significantly. For all
cases of nz and n;, the sample is initially expanded then contracted because the short-time

(undrained) Poisson’s effect — when the sample appears to be stiffer — is higher than the

long-time (drained) one.
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Fig. 2.34—Normalized axial displacement history of solid cylinder under unconfined uniaxial step
loading for different ratios of n; = E,/E; and n; =v, /v;3.
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Fig. 2.35—Normalized radial displacement history at ro = 1 of solid cylinder under unconfined
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2.4.1.4.4 Special Case of One-Dimensional Consolidation

It is also of interest to demonstrate that the generalized Mandel’s strip problem can be
rearranged to arrive at the classical one-dimensional consolidation of a laterally constrained
finite layer (Terzaghi 1943 and Biot 1941). Because xp = 0 is a symmetry plane and
satisfies a no-flow and no-displacement condition, half of the strip geometry can be turned
on its end with external loading conditions &, = p, = 0 and P. # 0 as depicted in Fig. 2.36.
Here, P. plays the role of vertical load, p, = 0 implies a drained top surface, and &, = 0

signifies laterally constrained condition.
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Fig. 2.36—Schematic showing the equivalency between the Mandel’s problem and the one-
dimensional consolidation of a finite layer by simplifying the loading condition and considering the
symmetry of the problem (P: # 0, po = &. = 0).

The normalized dual pore-pressure distributions from top to bottom of the one-
dimensional column at various times are plotted in Fig. 2.37. The instantaneous matrix
fluid-pressure response is 86% of the applied load, lower than its fracture’s counterpart at
92%. Since the column is constrained laterally, the dual pore-pressure fields are uncoupled

from the stress or deformation field as derived in Eq. 2.186. Consequently, there is no non-
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monotonic pressure behavior after initial loading in the column as previously shown in the
work of Lewallen and Wang (1998). The histories of the matrix and fracture pore pressure
at depths of xp = 0.1 (near the bottom) and 0.9 (near the top) are illustrated in Fig. 2.38.

The corresponding settlement at the top of the column is shown in Fig. 2.39 in
conjunction with the single-poroelastic’s response considering the matrix properties only.
The results clearly demonstrate two phases of consolidation for a fractured medium. The
difference in the final settlement denotes the contribution of fracture deformation to the

overall response.
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Fig. 2.37—Evolution of normalized dual pore-pressure profile in a laterally constrained finite layer
under suddenly imposed constant vertical load (Pc # 0, po = €2: = 0).
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2.4.2 Hollow Cylinder’
2.4.2.1 Background

Hollow cylinder geometry is the most widely used geometry in laboratory for material
characterization and, particularly in petroleum engineer, for the study of field phenomena
such as formation consolidation, hydraulic fracturing, breakout, and sanding, to name a few
(Ewy and Cook 1990; Schmitt et al. 1993; Sherwood and Bailey 1994; Papamichos et al.
2001). The elastic solution to the Lamé problem (1852) — thick-walled cylinder under
uniform, axisymmetric, external and/or internal confining pressure — have been treated
extensively in classical elasticity (e.g., Kirsch 1898; Love 1944; Timoshenko and Goodier
1970; Saada 1974).

Coupling the elastic response with the transient effect of fluid flow, Rice and Cleary
(1967) provided the fundamental plane-strain poroelastic solution for isotropic hollow
cylinder. This solution is widely used to analyze rock formation response under rapid and
intensive pressure drawdown. The solution for internal pressurization of hollow cylinder,
used in laboratory testing to determine rock’ tensile strength and to simulate hydraulic
fracturing was presented by Detournay and Carvalho (1989) and Schmitt et al. (1993).
Later, Jourine et al. (2004) gave general solution that was used to simulate laboratory
experiments with realistic boundary conditions. The extension from isotropy to transverse
isotropy was first carried out by Kanj et al. (2003) to evaluate uncertainties in

measurements of poromechanical parameters. Recently, Abousleiman and Kanj (2004)

3 Part of this section was presented at the Biot Conference (N guyen and Abousleiman, June 2009, New Y ork)
and SPE ATCE (Nguyen and Abousleiman, SPE 123900, October 2009, New Orleans).
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unified all analytical solutions for transversely isotropic hollow cylinder under the
“umbrella” of the generalized Lamé problem. Their solutions applied to all experimental
testing configurations that may be subject to stroke/load control axially and
hydrostatic/non-hydrostatic laterally. Applications of these solutions encompassed a
multitude of problems with cylindrical geometries ranging from solid cylinder to borehole
(Kanj and Abousleiman 2004). Other notable hollow cylinder solutions in geomechanics
included extension to incorporate thermal effect (Kanj and Abousleiman 2005) and
chemical effect (Sherwood and Bailey; Kanj and Abousleiman 2007). In biomechanics,
transversely isotropic models and solutions (Zhang et al. 1998; Rémond and Naili 2004;
Gailani and Cowin 2008) were also used to simulate unconfined compression test of
cortical bones or to model pore-pressure response in osteon.

All of the above solutions model the porous medium as single-poroelastic continuum
and thus fall short in describing the proper response of the well-known dual-porosity
porous medium and such as bone structures (Cowin 1999) or the response of naturally
fractured saturated rocks modeled and simulated as dual-porosity and dual-permeability
porous medium. The analytical solutions for isotropic dual-poroelastic hollow cylinder
subject to vertical and/or lateral confining stress and fluid pressure was presented by
Nguyen and Abousleiman (2009). This section extends that solution to transverse isotropy
and generalized the lateral boundary conditions to account for radial displacement. As such,
the cylinder is subject to stress and fluid pressure variations, representing all experimental
configurations, yet the pore pressure responses in the medium exhibit dual and transient

evolutions. Results for all testing setup are plotted to demonstrate the different behaviors.
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2.4.2.2 Problem Descriptions

The schematic of a transversely isotropic fractured hollow cylinder in which the axis of
material symmetry coincides with the cylinder axis is shown in Fig. 2.40. The sample is

sandwiched between two smooth, rigid, and impervious plates. Axially, the geometry is

subjected to either an applied axial load F(f) or an applied axial displacement wu_ ().
Laterally, the cylinder can be subjected to inner/outer fluid pressure ( p, (#) and p_(¢)) or

fluid flux (g, (t) and g, (¢)) as well as inner/outer confining stress (£, (¢) and P, (¢)). The

generalized setups and solutions are intended for studying of various rock testing
conditions and field problems by combining relevant boundary conditions. It is also
important to recognize that the hollow cylinder problem reduces to the solid cylinder case
when the inner radius approaches zero or converges to the vertical borehole problem in an
infinite medium when the outer radius becomes very large compared to inner radius. The
overall boundary conditions are generally expressed in cylindrical coordinates as follow:

At the cylinder’s inner wall, » = R;

T O R T TR L V0 T (2.110a)
T | VO (2.110b)
- q,+4q, =4, ()
P =p"=p. () or e (2.110c)
p'=p
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Fig. 2.40—The generalized hollow cylinder problem’s geometry and boundary conditions.

At the cylinder’s outer boundary, r = R,

O, =P (1) OF U, U _ (1), oo (2.111a)

0,5 =0, =0t (2.111b)
- q,+4q, =q,(t)

p =p =p,(t) or et eneeene ettt et be et ettt ettt et enaeenee (2.111¢)

pl — pll
Axially at the top or bottom, z=0orz=H

- L | (2.112a)

rz

o A *
e.=e.(t) or [ ro.dr= B — (2.112b)
T

In the above, the subscripts i and o denotes inner and outer boundary condition
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respectively; A4, = z(R? — R})is the cross sectional area of the hollow cylinder. ; €. (¢) is

an average axial strain due to the applied stroke/displacement u_ (¢); o (t) = F(t)/ A4, is

the average axial stress applied on the cylinder.
The geometry and boundary conditions imply that every horizontal cross section is a

plane of folding symmetry. That is, horizontal planes remain horizontal (¢_ =¢€_(¢)). No

axial fluid displacement occurs (¢! = ¢! = 0) and fluid flow is in the radial direction only.

The end effects of shear and torsion are negligible and there is no axial shear stress on the
plane. Under such conditions, a generalized plane-strain condition naturally manifests in
any cross-sectional plane. Consequently, all response functions (except axial displacement
u,(f)) are axially invariant and at most functions of radial distance r and time ¢ only.
Following Abousleiman and Kanj (2004), the next section discusses the generalized

axisymmetric problem and presents the corresponding analytical solution.

2.4.2.3 Generalized Analytical Solutions

This is a designated generalized plane strain (z-independent) and axisymmetric problem (&
independent). First, the general dual-poroelastic solutions of pore pressures, fluid fluxes,
and stresses are derived. Then solutions applicable to specific boundary conditions such as
pressure or flux boundary conditions are presented. The generalized boundary conditions
for this axisymmetric problem as depicted in Fig. 2.40 are expressed as follow:

At the cylinder’s inner wall, » = R;

L 1O S T L V(s JO (2.113a)

O Z 00 =0, (2.113b)
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q," +4," =q, (®) 113
=p,(t) or T yreeeentee e —eee—eeaaeeatteeaaaeenraenn (2.113c¢)

(1)

pV=p

At the cylinder’s outer surface, » = R,

CL =P (1) OF UD S U (£) oo (2.114a)
O = 0 205 (2.114b)
I(1) (1) _
g, +q, =4,()
pV=p"V=p (t) or y R (2.114c)
p m _ p M

Axially at the top or bottom, z=0orz=H

o =00 =0, gV =gV =0, s (2.115a)
el Ro ) 4, .
=£2() or [ rO0dr="E0L() e (2.115b)
R; 2

Due to the uniformity of the lateral boundary condition, the problem is obviously
axisymmetric such that at any time the shear stress and strain components are identically

zero (0,, =0, =0 and ¢,=¢, =0) and all other response functions are independent

of the circumferential angle 6. Consequently, the governing equations are reduced to one-
dimensional and all variables are at most functions of » and ¢ only. Specifically, the
equilibrium equation, Eq. 2.18, in polar coordinate becomes

00, O, —0y,

rr r

00 oo (2.116)

ar r

Combining the above equilibrium equation with the stress-strain-pressure constitutive Eq.

2.15 and the strain-displacement relations, Eq. 2.6, yields the Navier-type field equation
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0 M, M
—o +0,—|1-=2|a'p | 1-=2 1" p" | =0, oo 2.117
al" |: rr 06 ( MHJ lp M“ lp ( )

Integration with respect to 7 yields

O, +0,— (1 - Aj‘;ﬂ }71‘ - (1 - AA;” jo_(l” T X () DU (2.118)

11 11
where C; = C,(?) is an integration constant. Analogous to the solid cylinder problem, the

fluid content constitutive equations simplify to

('==a" (0, 400+ @S =b D' =D D") s (2.119))
(N ==a"(0, +0, +0"S_. by p =Dy D" s e (2.120))
where S_(t1)=M,e.(t); a®, o™, and b; are given in Egs. 2.69 to 2.71b. Then, the

diffusion equation in terms of normalized time 7, and radial distance rp is identical to the
solid cylinder’s counterpart, Eq. 2.94. The Laplace transform solutions for the fluid

pressures and fluid fluxes are straightforwardly expressed as

PU=S. 1 +Cg + SICOL(EM ) + CNVK ((EM ], oo 2.121)
(N)=LII
PO =5 "+ Cg" + Y mNV IO (EN ) + CVK G (EM )] 2.122)
N)=L1II
7" =—-(1-%,) D EVCIL(EMr,) = CVK(EN )] (2.123)
N)=LII
g ==k, Y mVEVICPOL(ENr,) = CK(EMR)], oo (2.124)
(N)=L1I

where I, and K are the modified Bessel functions of the first and second kind of order

Z€r10; CEN) and C;N) are coefficients to be determined from boundary conditions; other
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parameters were same as previously defined in Egs. 2.52 to 2.54. Making use of the
pressure expressions, other solutions for stresses, displacements, and strains follow

naturally from the constitutive equation as

~ ~ I ™) K ™)
G, =45 +4C+ Y A(N{Cém if;) ) _ o éi) ”D)}q 757 s e (2.125)
(N)=LII Tp

™)

CéN){Io(é:(N)rD) - Il‘(;(:N) rD)i|
~ ~ 4

0-;19) AOSzz + Al Cl + Z AéN) ?

- ~C,rp7 e (2.126)
= t3
N)=L1I +C§N){KO(4§(N)FD)+KI(§ rp)}

é(N)rD
0 =B,S_+B,C + > BVLCVI(EMr) + CN Ky(EMr)] e (2.127)
(N)=L1I

7 ~ ~ L(Er) K, (%)

= —(fS.+gC)ry— Y, MV P e hr O 2

Ra =Ll & & S (2.128)

R C4_ rD_l
Mll _M12

C;N{Io(f(N)VD)— Il(f(N)rD)j|

Cf(N)I"
N(l) - _(szz +gC ) z h(N) g(N)
(N)=LII K, ( ry)
+C® {Ko(f(mr TD} .............. (2.129)
+ = C4_ )’
M11 _M12

Ew=—(fS.+gC)H- > hﬂ“[

N)=LII

C(N) I (fN rp) C(N) K, (Cf(N)”D)}

(N) N)
¢y & R (2.130)

in which the lumped coefficients 4,, 4,, A", B,, B,, B, f. g, and ™ are given
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previously in the solid cylinder solution, e.g., Eqs. 2.103a to 2.107.

TABLE 1—AXISYMMETRIC LOADING CONFIGURATIONS OF HOLLOW CYLINDER
GEOMETRY UNDER AN AXIALLY DISPLACEMENT-CONTROLLED CONDITION

Config. No. 1 2 3 4 S5 6 7 8
(0,,); P, P, P, P P, Py Py Py
(O-rr)o Po Po Po Po - - - -
,), - - - : - : - :
(ur )0 - - - - Uo Uo Uo Uo
(p[) p p[ — p]l p p] — pl[ p p] — pl[ p p] — pl[
(") pi p'=p pi p=p P p'=p P p=p
(", Po Po pl=p"  p'=p" Do Do p=p"  p=p"
(»"), Po Po pl=p" p'=p Po Po t=p'  pl=p
(q,); - i - gi - gi - gi
q.), - - 9o 9o - - 9o 9o

€. €. £ £ £ £ £’ £ £’

Config. No. 9 _10_ 11 12 13 _14 15 _16_
(O-V‘/)i - - - - - - - -
(O-rr)o Po Po Po Po - - - -
(u,), U; U; U; U U; Ui Ui Ui
(ur )0 - - - Uo Uo Uo Uo
(r"), 12 p'=p" pi p=p" pi p =p" pi p'=p"
(r"), pi p'=p pi p'=p pi t=p! pi p'=p
(", Po Po pl=p"  p=p Po Po pl=p"  p=p
(pll) p p pll — pl pII — pl p p pll — pl pII — pl

0 (4] o 0 (4]
(q,); - i - gi - gi - gi
q.), - - 9o 9o - - 9o 9o
€. e’ 2 - e’ - e’ - e’

zz 2z zz zz 2z zz zz zz zz

Note: For axially load-controlled condition, simply replacing the condition £ = g; ® with o.= 0'; @)

; ~ I I I 11 ~% I~
There are seven unknown coefficients C, , C,, C, , C;, C;, C,,and £_ (or S_) to

be determined from boundary conditions. These equations may include four equations for
fluid pressure or fluid fluxes and two equations for radial stress or radial displacement at
the inner and outer boundaries, respectively, in addition to one equation for axial loading.

Table 1 summarizes the 16 different possible axially displacement-controlled
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configurations for this generalized axisymmetric loading. An equal number of

configurations (17 to 32) can be listed for the axially load-controlled scenarios by simply
replaced the condition £ =¢_ (t) with & =0 _ (¢) in the same table.

The displacement-controlled loading condition involves a prescribed axial strain or
displacement, i.e., £_ = &_.(¢) is known. Hence, there are only six unknown coefficients to

be determined from the following system of six linear equations

¢y € €G3 Cy €5 Ci||C b —c;,S..
Cy Cyp Cyy Cy Cp Cy | |C, b, —c,,S..
X -
T Y O G| by —cy,S., 2131
0 = T e (2.131)
Ca Ciz Cy Cys Cy5 | |C, b,—c,;S_.
! -
cs; 0 5y 5y O Oy C, by —cs,S..
il N
Ca 0 ¢ ca s Ch | |G bs —cg;S..

where b, and b, correspond to the boundary conditions of the radial stress or displacement
(Egs. 2.110a and 2.111a); b3 to be represent the fluid pressure or flux boundary conditions
(Egs. 2.110c and 2.111c). The components of the coefficient matrix c; and vector b; for
specific loading configurations are listed in Appendix E with the corresponding solutions.
Under the load-control condition, the sample is subjected to a prescribed time-

dependent axial force that can be expressed in term of an average axial stress 0. =0, (¢) .

The solution under this condition is best handled by converting the applied axial stress into
an equivalent axial strain by using the general expression for vertical stress (Eq. 2.15) in

conjunction with the load equilibrium equation (Eq. 2.112b). The approach yields
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§zz :(5-:2 _Bl 51 )/BO
2 z BEN) CZ(N)[roDll(f(N) Top) = riDll(g(N) ) )]
By (7 = 7ip) MN)=LII e cyY [roDKl (™ rp) —rpK (£ riD)] ,

_ ~ I il I I ~
=¢,C) +¢5;3C, +¢,,C) +¢,5C; +¢5Cy +¢5,0,

The above Eq. 2.132 is then substituted into Eq. 2.131 to allow expressing boundary
conditions in term of the axially applied stress, G... As a result, the same set solution

expressions for displacement-controlled condition can be used for load-controlled
counterpart in which the ¢; coefficients are updated to

C; = ¢y +CnCy; F=1,2,000065 = 1,3,00000 e (2.133)

2.4.2.4 Results and Discussions

This section illustrates the poroelastic responses for various loading configurations of a
fully saturated, hollow cylindrical fractured sample. The same material properties adopted
earlier for a Gulf-of-Mexico shale are used in these examples.

Geometrically, the cylinder has an inner radius, R; = 0.0127 m, and an outer radius, R,
= 0.0635 m so that R, is five times R;. At t = 0", the sample is subjected to a compressive
Heaviside-type axial load differential, F = 1.2x10> MN, leading an average axial stress
differential of 1 MPa. Laterally, the specimen can be unconfined (P; = 0 or P, = 0) and/or
restrained (U; = 0 or U, = 0). The fluid can be drained on both (p; = p, = 0) boundaries or a
mixed of drained and jacketed boundaries (p; = 0, g, = 0 or g¢i = 0, p, = 0). These can be
also numbered as configuration 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, and 31 in the
extended form of Table 1. Cases of fully jacketed configurations (20, 24, 28, and 32) are

not considered since the solutions and responses reduce to the undrained elastic ones.
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Two basic poromechanical responses, namely, pore pressure and total tangential stress,
are illustrated for each of the considered loading configurations. In Fig. 2.41, the dual pore-
pressure responses at various locations in the hollow cylinder versus time are shown on the
left column while the evolution of total tangential stress profile is annexed on the right side
for configurations that involve only pressure boundary condition (17, 21, 25, and 29). For
unconfined configuration 17, the sample is allowed to expand laterally thus induces tensile
tangential stress near the two boundaries. In addition, the drained surfaces effectively
soften the material on the boundaries and give rise to the Mandel-Cryer effect causing the
pore-pressure response to vary non-monotonically over the course of time. Restricting the
lateral movement at either or both boundaries increases the levels of stress and pore
pressure responses in the cylinder. Naturally, fixing the radial displacement on the outer
surface (configuration 21) leads to higher stress concentration than on the inner surface
(configuration 25).

For inner jacketed or outer jacketed case under laterally unconfined condition
(configuration 18 and 19), the evolutions of pore pressure and tangential stress distributions
in the cylinder are illustrated in Figs. 2.42. The results show that compressive total stress
arises at the jacketed surface while tensile total stress develops at the drained surface.
However, in term of effective stress, the reverse is observed, i.e., the sample is more
susceptible to tensile failure near the jacketed surface and compressive failure near the
drained surface due to the corresponding effective stress concentration.

Similarly, the cases of jacketed and restrained lateral displacement on one surface

(configuration 30 and 31) are displayed in Fig. 2.43. Again, higher total stress evolves at
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the jacketed and restrained lateral surface. Finally, the responses for the rest of the loading
configurations (22, 23, 26, and 27) are presented in Fig. 2.44. These results show the
capability of the solutions to be applied to various problem settings to predict the

poromechanical responses of fractured or multi-porous material.
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Fig. 2.41—Pore pressure and tangential stress responses for four different Ilateral
stress/displacement configurations under fluid-pressure boundary conditions (case 17, 21, 25, and
29).
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2.5 Summary

In this chapter, a consistent anisotropic dual-poroelastic formulation is used to describe the
proper responses of porous material exhibits multiporosity and/or multipermeability
characteristics, such as secondary porosity or fracture. Specifically, the behavior of
fractured rock formations is modeled as a dual-porosity and dual-permeability porous
media. The model has been used to analyze the coupled responses of wellbore and
consolidation through selected problem geometries including: (1) the inclined wellbore
problem, which is of important applications in the field such as instantaneous drilling,
pressurization of a borehole, production/injection from a reservoir; (2) the generalized
Mandel-type problems, which is the canonical demonstration of poroelastic coupling,
covering both rectangular and solid cylinder geometries; and (3) the hollow cylinder
problem, which in the limiting case can be treated as a solid cylinder or wellbore problem.

The corresponding generalized analytical solutions to these problems are derived and
presented in explicit analytical forms for both transverse and isotropic dual-porosity and
dual-permeability poroelastic materials. These solutions account for arbitrary time-
dependent external loading conditions, e.g., cyclic and ramping and can be tailored to
simulate specific problems in laboratory testing (uniaxial, triaxial testing) or in the field
(wellbore drilling, hydraulic fracturing). For ease of interpretation, the solutions are
expressed in terms of dimensionless parameters such as storativity ratio, mobility ratio,
dimensionless interporosity flow, etc. The model and solutions have been verified to reduce
to the corresponding single-poroelastic ones.

Results for pore pressure, stress, and deformation are plotted to demonstrate the

102



differentiating characteristic of the dual-poroelastic behavior as well as the impact of the
presence of the secondary porosity medium — or fracture network — on the overall response.

Specifically, the inclined wellbore solution shows that the different speeds of pressure
dissipation in the matrix and fracture network lead to time-dependent modifications of pore
pressure and stress distributions. Effective stress calculations show that the dual-poroelastic
solution predictions differ substantially from single-poroelastic approach. For example, it
was shown that the effective stress is higher in the compressive region and closer to tension
in the tensile region around the wellbore in a fractured rock formation. Therefore,
neglecting the contribution of the fracture network will likely mislead the predictions and
optimization for field operations.

The dual-porous system exhibits typical dual-time-scale responses. Parametric analysis
has been carried out for solid cylinder problem to study the effects of the dual characteristic
time scales, poroelastic coefficients, and material anisotropy on the transient behaviors.

The rectangular Mandel’s problem is shown to simplify to the classical one-
dimensional consolidation problem and the results correctly reveal no non-monotonic
pressure behavior after initial loading in contrast to previously published literature
(Lewallen and Wang 1998).

Finally, the solutions and results for hollow cylinder’s geometry provides general
framework for simulating various problems spanning various fields including
geomechanics and biomechanics. Particularly in the petroleum industry, this solution
allows geomechanicians the ability to study the effect of fractures on the overall behaviors

of naturally fractured rocks and reservoirs. In biomechanics, the same solutions can also be
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applied to study the response of biological tissues well-known for their multiporosity
makeup. Examples with realistic loading conditions for laboratory testing or field
simulations will be provided in Chapter 5 to demonstrate the engineering applications of

the presented dual-poroelastic formulation and solutions.
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Chapter 3

Dual-Porosity and Dual-Permeability
Porochemoelasticity: Dual-Porochemoelasticity”

3.1 Introduction

It has long been recognized that chemically active porous media exhibit swelling and/or
shrinking when brought in contact with aqueous solutions. This phenomenon observed in
clays, shales, and biological tissues is generally termed osmosis which is the non-
hydraulically driven fluid flow. The chemical osmotic effect is generated from
physicochemical interactions among pore fluid components with the invading fluid and the
solid matrix, resulting in the membrane behavior, i.e., only transport of certain pore fluid
species is allowed. A chemical potential gradient will induce simultaneous flows of fluid
and solute in the porous medium. The coupled osmotic and solute transport processes can
lead to strength weakening in addition to pore pressure elevation or reduction which could
be very detrimental to the material integrity, in many engineering applications. Biot’s

poromechanical analyses addressing the coupled chemical effect, i.e., porochemoelastic,

* Part of this chapter was published in J. Eng. Mech. 135(11): 1281-1293 (Nguyen and Abousleiman 2009)

105



have been formulated extensively in various fields based on mixture theory and/or non-
equilibrium thermodynamic (Sachs and Grodzinsky 1987; Sherwood 1993; Heidug and
Wong 1996; Huyghe and Janssen 1999).

The conventional porochemoelasticity models fluid saturated porous medium as single-
porosity and single-permeability medium and thus fall short in describing the proper
response of fractured rocks modeled as dual-porosity and dual-permeability porous
medium (Barenblatt 1960; Warren and Root 1963; Bowen 1976; Aifantis 1977) or the
behaviors of the well-known dual-porosity bone structures (Cowin 1999). Extension of
Biot’s theory of poroelasticity (Biot 1941) to account for the dual-porosity and dual-
permeability nature of fractured porous media has been formulated by many researchers.
Such formulations in the geomechanics domain (Wilson and Aifantis 1982; Valliappan and
Khalili-Naghadeh 1990; Berryman and Wang 1995) only model the coupled solid
deformation and fluid flow while not accounting for any chemical interaction. Recently in
biomechanics, dual-porosity poroelastic models have been developed to include the effect
of chemoelectrical interactions between pore fluid’s species and the solid skeleton (Huyghe
1999; Simoes and Loret 2003) applicable to cartilaginous tissues. Their formulations,
however, are the “dual-porosity and single-permeability”” models in which the much slower
transport processes in region with insignificant permeability are neglected to simplify the
problem.

The time-dependent single-porochemoelastic solution, incorporating chemical osmosis
and solute transport effect simulating inclined wellbore drilling stability through compact

shale formation, have been presented and investigated extensively (Abousleiman et al.
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2001; Ekbote and Abousleiman 2003, 2005, and 2006). Later, the analytical solution for
inclined wellbores drilled in naturally fractured rock formations modeled as dual-porosity
and dual-permeability continuum was published (Abousleiman and Nguyen 2005). This
solution was recently extended to include chemical osmotic potential while neglecting the
solute transport effect in fractured shale formations (Nguyen et al. 2009). It was found that
dual-porosity and dual-permeability analyses show significantly different behaviors when
compared to the single-porosity and single-permeability porochemoelastic counterparts.
These solutions laid the foundation for the complete inclined wellbore stability solution for
fractured shale accounting for both chemical osmosis and solute transport (Nguyen and
Abousleiman 2009).

In this chapter, the analytical dual-porosity and dual-permeability porochemoelastic
formulation and solution to two problem geometries, inclined wellbore and axially flow-
only solid cylinder, are presented. First, the single-porosity porochemoelastic governing
equations, extended based on thermodynamic framework of dual-poroelasticity to
incorporate the effects of secondary porosity, e.g., rock’s fractures, are briefly presented.
The constituent porous matrix and fracture regions are generally modeled as imperfect
semi-permeable membranes which can allows partial transport and exchange of the solutes.
Individual porous matrix and fracture transport equations and inter-porosity exchange are
written accounting for the fully coupled flow processes including hydraulic conduction
(Darcy’s law), chemical osmotic flow, and solute diffusion (Fick’s law). The dissolution,
deposition or chemical reaction as well as explicit modeling of electrostatic interaction

between the solid skeleton and the saturating and/or invading fluid’s species (Nguyen and
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Abousleiman 2010b) are not considered in this work. The resulting system of equations is
applied to obtain the analytical solutions of inclined wellbore drilling and uniaxial testing
of solid cylinder geometries expressed in the Laplace transform domain. Results for dual
pore pressures and stresses are plotted and compared with the corresponding single-
porosity porochemoelastic counterparts to highlight the effects of fracture, chemical

osmosis and solute transport on the overall responses.

3.2 Mathematical Formulation

This section briefly presented the governing equations describing the responses of dual-
porous and chemically active media within the frame work of dual-porosity and dual-
permeability porochemomechanics, hereafter termed “dual-porochemoelastic” for brevity.
At the macroscopic level, the system is considered to consist of two co-located but distinct

fluid-saturated porous continua: the primary one represents the porous matrix with intrinsic

properties M), (stiffness), ¢' (porosity), and & (mobility) occupying volume fraction v'

of the total bulk volume and the secondary one represents the porous fractures with

.. . . .. . I
intrinsic properties M, ¢", and k; occupying the remaining bulk volume fraction v =

1- v. In other word, the overall domain is envisioned as containing two distinct porous
continua, each possessing a skeletal framework and a saturated pore network. As a result,
fractured formation will exhibit dual pore-pressure evolutions when subjected to stress and
pressure perturbations. When the dual-porous medium is chemically active, additional
coupled transport processes such as chemical osmotic and solute diffusion develop in both

porous continua if there is imbalance in chemical activity or solute salinity. Additionally,
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the primary and secondary porosity continua can communicate and may exchange fluid

and/or solute mass.

3.2.1 Chemical Potential

The flow of fluid and its dissolving species are controlled by the total potential contribution
from individual driving forces. In chemically active porous medium, the total driving force
is the chemical potential which comprises of the fluid pressure and the chemical-activity-

driven pressure given as (Katchalsky and Curran 1967)

M =V p+RTIn[a" =V "p+iRTIN[C M ] cceeoeiiiiieeee (3.1
where 4" = chemical potential of the " fluid species (7 = solvent and solutes), V" = partial
molar volume, p = thermodynamic pressure, R = universal gas constant, T = the
temperature, a” = ¢’ m" = chemical activity, ¢" = chemical activity coefficient, m" = mole
fraction with Zrmr =1, and i = number of solute’s dissociating ions. Eq. 3.1 is written for
electroneutral fluid components and ignores the contribution of electrostatic potential
acting on the dissociating ions in solution. In an ideal or dilute solution, the activity
coefficient has the property that ¢" — 1 as m" — 0 so a” = m". For simplicity, both the

primary (I) and secondary (II) porosity continua are assumed to comprise of a solid
skeleton with interconnected pore space saturated with the same binary solution containing
a solvent (f) and a solute (s) with mole fraction m*™ and m™ =1 — m*™, respectively

where (N) =1, II.
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3.2.2 Constitutive Equations

Because the total driving pressure is not the fluid pressure alone, the original Biot
poroelasticity constitutive approach must be extended to account for the chemical
potentials of all pore fluid species. The change in free energy density for a dual-porous
medium completely saturated with a binary fluid solution can be expressed as (Coussy

2004)°

dW =o,de, — D (MU + M™MdU™) oo (3.2)
r=f,s

where 0y = total stress tensor, &; = linearized total strain tensor, and M "™ = mass content
of the pore fluid species in mole per unit reference total bulk volume. The above expression
1s written assuming infinitesimal deformation, isothermal condition, no fluid-solid chemical
reactions and dissolution or deposition processes taking place. The chemical potentials of
all pore fluid components in each porosity system are not independent but related by the

well known Gibbs-Duhem equation as (Katchalsky and Curran 1967)

— v dp™ £ S M OGE™N =0 (3.3)
r=f,s

In writing the above equation, it has been assumed that both primary and secondary pore-
space systems are completely saturated such that v®V¢™ = /™ pr/® 4 M0 where
PN = Vp(N)/V ™) is the intrinsic porosity of the individual porous continua and v is the

bulk volume fraction. Application of the Gibbs-Duhem equation into the free energy

density leads to

> The free energy W in Eq. 3.2 is equivalent to the skeleton free energy G, as defined in Eq. 3.66 by Coussy
(2004)
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_ I 41 1 I 11 11
AW =0,de; =V @ dp =V @ dp oo 3.4)

It is obvious that the free energy W admits g, p' and p" as state variables instead of the

r(N)

chemical potentials g™ of all pore fluid components. As such the linearized constitutive

equations follow naturally as (compression is positive)

doy = M de, +Qpdp" + T dp" ... (3.5)
B d 1 d 11
d(v'¢") = -, de, +% e OSSO (3.6)
¢ ¢
PR —1 dpl de
d(V ¢ )=—a[jd8[j+@+[?—; ........................................................................... (37)

where M, = overall stiffness modulus tensor, the inverse of which is the compliance

tensor (,_”l].k,; O_tl](.N) = effective pore pressure coefficient; 1/K, ;N) and 1/K, ;’H represent the

apparent pore compressibility.
The intrinsic porosity, ¢, in Eqs. 3.6 and 3.7 can be replaced in favor of the variation

in total fluid content ¢{™ using the complete saturation condition and isothermal fluid state

equation:
dMsol(N) d(V(N)¢(N) psol(N)) dpsol(N)
d{™ === = d(VVPN) + VORN L (3.8)
0 Po 0
d sol(N)
rF__ 1 AD™ et (3.9)

sol(N) N)
Po K;
in which M '™ =M™ + M*™ is the total fluid mass content (moles) and p**™ is the

fluid mass density (mole/m’); I/KJ(‘N) is the isothermal fluid compressibility; and the
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subscript 0 denotes initial value. Using Egs. 3.6, 3.7 and 3.9 into Eq. 3.8 yields

. de de

dgl :—a;d8y+ﬁ+ﬁ7[’n ................................................................................. (3.10)
. de de

ngI:— ;Idgkk +W+W .............................................................................. (311)

where 1/M®™ =1/K™ +v™¢™ /K™ and 1/M" =1/K;" are the apparent

storage coefficients of the dual-porous system. Additionally, it is necessary to obtain the
variation of solute content by linearizing the relation

dMs(N) d(ms(N) Msol(N))

sol(N)

Po

dé/S(N) — mg(N)dé/(N) + V(N)¢(§N)d mS(N) ....................... (312)

sol(N)

Po

in which m*™ = M*®™ / M*"'™ = solute mole fraction and the initial porosity is related to

the initial fluid mass content and density as v™V@™ = M "™ / ps'™  Substituting Eqs.
3.10 and 3.11 into Eq. 3.12 gives the solute content variations as
sl sl =1 dpl dp ! 141 sl
di" =my| -« dgkk+ﬁ+]\7[,ll FV Py dm” i (3.13)
a_ o at| = dp"  dp" ‘
d¢m = mo“(— a'de, +W+ e F VD AM™ e, (3.14)

In summary, the constitutive equations for a dual-porous and chemically active medium

are:
—M —1_ 1, =11_1I 315
O =M€y T 0D F O D i (3.15)
pI pII
I —1
; =—0E; +ﬁ+ QI s (3.16)
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I
— p p
gll = —0{1;18” + =TI +W ................................................................................... (317)
I i
o= m(;l(— ale, + L+ ELHJJF VIBII e (3.18)
CM=m —at e + p' " p' £yl et (3.19)
=m, i &t ) L e .

where the differential operator d has been dropped for convenience.
Egs. 3.18 and 3.19 show that the variation in solute contents are not only related to

pore-fluid composition (solute mole fraction) but are also affected by the dual pore

pressures and total volumetric strain. For dilute concentration (m; ,m;" << 1), the effect of

fluid pressures and deformation on solute contents is small and can be neglected. On the
other hand, Eqgs. 3.15 to 3.17 have the same form as the dual-poroelastic formulation
without chemical effect presented Chapter 2. It can be observed that the dual fluid
pressures, not the chemical potentials, are important; and changing the fluid composition
(or chemical activity) of the pore fluid at constant pressure will not affect the total stress,
total strain and/or variation of fluid contents in the primary or secondary porosity. The
chemical effect will, however, enter via the transient nature of the fluid and solute flows

due to differences in the chemical potential across the dual-porous medium.

3.2.3 Coupled Transport Equations
Eq. 3.1 shows that chemical potential difference can be caused by imbalances in the fluid
pressure or in the chemical activity/solute concentration. The presence of the chemical

gradient results in simultaneous fluxes of the pore fluid species. Assuming that the flow in
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each constituting continuum is independent of the flow in the other, separate sets of linear

transport equations can be written for the primary and secondary porosity as:

a(—p(N)) IRT a(—ms(N))
N) _ 7(N) (N)
q; _Lll a—xi+L12 mg(N) axi ............................................................ (320)
_ (N - _as(N)
00 = 0 9CPT) L pow ,;R(I) A a”; e (3.21)
i 0 i

where x; = the spatial coordinates; ¢ = volumetric fluid flow vector through the porous

;(N) _ mS(N)

medium per unit time (ms™); V/J5 ™ =4 g™ = solute diffusion flux (m-=s")

relative to that of the solvent in which ¢'™ = absolute solute volumetric flux relative to the

solid framework.
™ = phenomenological coefficients representing coupled transport processes such as

hydraulic conduction (Darcy’s law), chemico-osmosis, and solute/ion diffusion (Fick’s first

law). According to the Onsager principle, L9 =L{)’, which results in only three

independent transport coefficients for each constituting porous medium. These transport
coefficients have been well identified in the literature and can be expressed in terms of

familiar field and/or laboratory measurable parameters such as permeability, k;,(N), or

™)

mobility, &', reflection coefficient, ™', solute effective diffusion coefficients, D™,

as summarized in Table 2. The transport coefficients as presented in Table 1 are slightly
modified from parameters as derived by Yeung and Mitchell (1993) to account for the

limiting behavior of the effective solute diffusion when the material’s membrane behavior

SON) _

is ideal (Bader and Kooi 2005), i.e., the absolute solute fluxes vanish, g, 0, for perfect
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membrane efficiency, 3™ =1. It has been shown theoretically and experimentally that the

ability of membrane to hinder solute movement depend on factors such as solute
concentration, particle size compared to pore scale (degree of compaction) and electrostatic
interaction between the solute’s dissociating ions and the charged solid skeleton [cation
exchange capacity (CEC)] (Katchalsky and Curan 1967; Fritz and Marine 1983). In fact,
the effect of all chemicoelectrical interactions between the fluid and the solid skeleton are
lumped into the reflection coefficient. Theoretical determination the reflection coefficient
in terms of concentration, compaction and CEC were provided by Hanshaw (1964) and

Fritz and Marine (1983). Generally, these transport coefficients 7Y are functions of solute

concentration. When the system is not too far from equilibrium, i.e., when the macroscopic

gradients are sufficiently small, these coefficients can be assumed to be constants.

TABLE 2—COUPLED TRANSPORT COEFFICIENTS

Coefficients Formulas Transport Processes

Hydraulic conduction — Darcy’s law; &j = kij /i mobility;

K.
Ly v ki = permeability and x = fluid viscosity.

_ e N IV Chemical osmosis; y, = reflection coefficient or
Lip =Ly, (2K (mo V') membrane efficiency [0,1].
, Solute diffusion - Fick's first law D" = (1- y)¢* D)
s,eff s s '
L Dy omy fam |
2 RT v \vf )"’ where p; = solute diffusion coefficient in free solution; ¢

= porosity; 7= tortuosity.

3.2.4 Other Governing Equations

Other governing equations are the strain-displacement relations (Eq. 2.6) and conservation

equations which include the quasi-static stress equilibrium equation (Eq. 2.7), and mass
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balance equations (Egs. 3.22 to 3.25) accounting for interporosity fluid and solute exchange

as follows
1 1
0 e e (3.22)
at ox,
sl sl
L (3.23)
dt 0x

T —— (3.24)
sIT sII

agt — aaqf L e (3.25)
X

in which u; = displacement vector and I" and I"" = interporosity fluid and solute volumetric
fluxes. The solute mass conservations are written in terms of the absolute solute fluxes

defined as ¢'™ = V] J>™ —m*™g™ . As such, Egs. 3.23 and 3.25 become

sl s,dl 1 sl
aaL:—v{Vof J é’ ! %q,. g aa’"f }rrs ................................................. (3.26)
t X; X; X;
sIT s,dIl 11 sIT
07 _ Vofa‘]—f+ms“ 99, +q" L I (3.27)
ot ox, ox, ox,

The last terms in the bracket on the right-hand side of Egs. 3.26 and 3.27 correspond to

solute transport by advection and render the equations nonlinear. When the hydraulic

diffusion (") is smaller than the effective solute diffusion (D, ™V} /iRT ), the solute

diffusion mechanism dominates and advection contribution can be neglected (Yeung and

Datla 1995). In addition, if the change in solute concentration is small, the solute transport
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dq, 1 9q; om;'

process can be linearized by taking m*" —~ = m;' —~ and ¢, —— = 0 leading to
ax, ox, ax,
a sl s .
ai = V' DLV (") DLV (= p™ ) T e (3.28)
a sIT . R
%=—VH[D;IIVZ(—pH)+DZHZVZ(—p LY o (3.29)

where V? = Laplacian differential operator, p*™ = (RT/V; )m'™ = pressure equivalent

term for solute concentration, and D!’ and DY’ are parts of a lumped transport

coefficient matrix defined in terms of the original transport coefficients L) as:

N) ) (N
DY DY Ky XK

. R (3.30)

V
s(N) M)y (N) s,eff N) Vo s(N) M)y ,,(N) . .(N)
p» po | | m™(1- " D, =T Mo A=-x")x 'k

In the above D’ and D)’ correspond to the transport coefficients associated with the

N

total fluid fluxes, ¢™. In the field, large concentration changes are usually encountered

and the high hydraulic conductivity in the secondary porosity can lead to non-negligible
advection effect. If these nonlinear effects are to be accounted for then numerical
approaches such as finite difference or finite element are needed in subsequent solutions
and analyses.

Analogous to the local coupled flow mechanism, the driving forces for the interporosity
volumetric fluid and solute transfer are the chemical potential gradient at the interface
between the porous primary and secondary porosity continua. Extending Warren and Root

(1963) approach, the interporosity fluid and solute exchanges are hypothesized to be
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dependent upon the fluid pressure and solute concentration differences between the porous
regions, the transport properties of the less-conducting region, e.g., primary porosity (I),

and the geometrical characteristic

C=A[D/,(p" =P )+ DL (0™ = DP™)] oo (3.31)
T = A[D5,(p" = P+ DD = D] oot (3.32)

in which A is the geometric factor accounting for the geometry, distribution and
connectivity of the dual-porous structure.

The constitutive Eqgs. 3.15 to 3.19, the transport Egs. 3.20, 3.21, 3.31, and 3.32, the
strain-displacement Eq. 2.6, and the conservation Egs. 2.7 and 3.22 to 3.25 complete the
governing equations for the behavior of dual-porosity and dual-permeability chemically
active porous medium saturated with a binary pore fluid solution. Unlike previous work of
others (Wilson and Aifantis 1982; Huyghe 1999) with appropriate simplifying assumptions
regarding different time scales among various processes in the matrix or fracture, the
current set of diffusion equations fully accounts for the dual-porosity, dual-permeability
and dual-stiffness nature of the overall system. Therefore, the formulation can be generally
applied to dual-porous system, especially where the apparent time scales are not
significantly different from each other. On the other hand, because the linearized
formulation do not account for any chemical reaction that would alter the mechanical
behaviors of the dual-porous system, it results are limited to small range of perturbation of

field variables.
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3.2.5 Field and Diffusion Equations

The above governing equations are further combined to yield the field and diffusion
equations that are used to solve for the coupled stress and pore-pressure responses in
general anisotropic materials. In this section, they are specialized to transversely isotropic

and isotropic materials for cylindrical geometry.

Transversely Isotropic Case. In the case of transverse isotropy where the z axis is
assumed to coincide with the overall axis of material rotation symmetry, the constitutive
relations for dual-porochemoelasticity involve twelve independent material coefficients and

are given as

O, =M, & +M,Ep+ME_ +TU P +T" P oo (3.33)
O =M€ + M, Egy+ M+ P +0" P oo (3.34)
O. =M &, +M_ Ep+ My +TP +T D" oo (3.35)
O, =2M £,  O,=2MyE.;  0p=2MyEp,oorereeeeeeeeersranns (3.36)
O =—a'(e +e,)-Tle NN (3.37)
- 1 rr 66 3 zz MI MI,II P XX .
ézn — _g" — 1 pl pu 338
=—q, (Srr+890)—0(3 SZZ+W+W, ........................................................ ( . )
I il 1417/ f
sl st =1 —1 )4 )4 Volry g
=m, |- (. +E,)—O.E +—+—— |+ e 3.39
é/ 0 ( 1 ( s 90) 3%z M[ Ml’uj ZRT p ( )
I i 0y f
s P - _ P p Vo ry
ol = mo“{— a'(e, +&,)-0,'c + = J + iROTO P e (3.40)
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In the above, the subscripts 1 and 2 denote properties in the isotropic plane and 3 represents
the axis of rotational symmetric. The coefficients, M,,, M,,, M,,, M,,, M,,, and M,

are components of the drained overall elastic tensor for a transversely isotropic dual-porous

™

material. &’ and @ are Biot’s effective stress coefficients in the isotropic plane and

transverse direction, respectively.
The transversely isotropic equations are further reduced to the plane-strain (-6) case
where all response functions are invariant along the axis of material rotational symmetry

and the out-of-plane strain components are zero, i.e., €. =&, =0 and £_=0. The

rz

constitutive equations for in-plane stress components reduce to

O, =M, &, +M €4+ T D' + TP oo (3.41)

Opg =M€, + M Epy+ T P A+ 0 P oo .
o0 = M€, + M, & 1I I 1II ! (3.42)

09 = 2M 1€, g st (3.43)

with the strain components defined as

u u, 19u, 1(10u, Odu, uej
€ P LA N N 3.44
T or “ r roe ¢ 2(1/ 00 or r (349)

The quasi-static stress equilibrium equation becomes

r rr

Jr r 06 r

J0, +180'9, 290 =0 _

ao—r& +lao-t90 +2o-r8 —
o r 00 r

Combining Eqgs. 3.41 to 3.46 yields the compatibility equation as
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where € = €, + €gp is the total volumetric strain and V? = —+—— .
" o’ ror r*o6?

the diffusion equations are obtained by substituting the fluid and solute content constitutive

Egs. 3.37 to 3.40 into the fluid continuity Egs. 3.22 to 3.25 as

1 11
—a 0y n _11 dp + —1111 ap _
o0 M Jdt M ot e (3.48)
vi(D, Vi p' + DLV p )+ ALD) (p" - p') + DL (p™ - p™)]

I Il Ll [ 9 sl
mgl _0711 aSkk—i_—ll ap +—1111 ap +V.¢0V0 2 =
o0 M Jdt M~ ot IRT ot peerrereerenens (3.49)
vi(Dy V2 p'+ D,V p™ )+ A[Dy (p" = p') + Dy, (p™ = p™)]

—Jllag""+_l P ! P" _
Yot MM oot M" ot eereerereeenan (3.50)
ViDLV p" + DRV p ™) = ALD) (p" = p)) + Dy (p™ — p™)]

. agkk 1 apl 1 apn VII¢(;IV0f apsn
my | — & P T = = +— =
t MY ot M" ot IRT ot e (3.51)

VH(DZHIVZPH +DZHZVZPSH) _ﬂ[D;l (pII _pl) +D;2 (psII _psl)]

with D reduced to the transport coefficients in the isotropic plane, e.g.,

[DFP Dfﬂ_ K ) A .

w~ Y :
s(N) N 2-N) s,eff (N) 7 0 s(N) N)y ,,(N) L .(N)
DY D | |mo (=K DIt = my (= x

Isotropic Case. For isotropic dual-porous material, the constitutive equations for dual-

porochemoelasticity reduce to
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v, = 1fv{€” 5 _Vzv) g,{kay.}(alpl T A T N (3.53)
1_ =1 pl pH

é/ =—o &y +W+W, .................................................................................. (354)

o' ot
é’H — _allgkk +W+ MH g evevesenansssnanssenansssnansssnansssnansssnansesnansesnansesnsnsesnaresnansons (355)
I it 10y, f

sl sl I p p Volrs g

Y =m, {— S Vil J + iIzTO e (3.56)

1 I 1y, f

S S -~ p p V ¢ V s

o= mol{— a'e, + TR J + ilzTO P . (3.57)

And the compatibility relation (Eq. 3.47) becomes

2 771 I " 1I
\% Eu +€p +Fp :0, ............................................................................. (358)

7 M)

where 7™ is a lumped poroelastic coefficient defined as 7™ =3a™ (1-2v)/2(1-v)

and G is the overall shear modulus of the system given as G = E /2(1—V). Again, the

overall material coefficients are related to the constituting porosity region properties as

given in Appendix A. Subsequently, the diffusion equations maintain the same forms as
those of transversely isotropic case (Egs. 3.48 to 3.51) with ™ —=a™, ™ — x™, and

Dls’eff ™) N Db‘,ffﬁ’ N) .

3.3 Inclined Wellbore

This section presents the development of an analytical solution to analyze the wellbore
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stability in chemically active fractured shale under the framework of the above dual-

porochemoelastic formulation.

3.3.1 Problem Descriptions

The inclined wellbore problem geometry is shown in Fig. 3.1. The undisturbed formation
pore pressure and chemical activity or solute concentration are in equilibrium between the
matrix and fracture and are denoted as py and a] or m;, respectively. The single-
porochemoelastic analytical solution for an inclined wellbore accounting for solute
transport was published by Ekbote and Abousleiman (2006). The same approach is
applicable to the current dual- porochemoelastic with solute transport model by
incorporating relevant boundary conditions for stresses, dual pore pressures, and solute
concentrations.

After wellbore drilling, the borehole is filled with a drilling fluid having pressure p,,

and solute mole fraction m’ corresponding to a mud activity a’ . Hence, the boundary

conditions to be imposed at the wellbore wall, » = R,,, are

0, =[0, + 0, coS(2(0 = O NTH(—1)+ Do (£) s coorrreeerrreeeeseessevesssoeessssissnssnnns (3.59a)
G,y =0, SIN(2(0 = 0.)) H(—L) 5 coorrverereeerroeeeseesseseseseesssses s (3.59b)
0, =[S, c08(8) + S, SIN(O)TH(—L) ,cceveseerrererrrrrrrreeveeeeemmmmmsssmassssesseeeeeesessssseseeee (3.59¢)
D' = D" = POH(mE) H Py (E) et (3.59d)
P = p™ = RT/VI ) mIHE) + 1 ()]s e (3.5%)
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Fig. 3.1— (a) Schematic of an inclined wellbore in chemically active fractured rock formation; (b) far-
field stresses, pore pressure and solute concentration in the xyz local wellbore coordinate system.
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And at the far field, » — o

o, =S, c,=S,, O . =8 e (3.60a)

o,=S,, c,.=S, O =8 e (3.60b)
S | S ST | FNo s

P =p =po; P =P =ART/V )My oo, (3.60c)

where ¢ is time and H(?) is the Heaviside unit step function (H(z <0) = 0 and H(z >0) = 1).
Sy, Sy, 82, Sy, Sk, and S, are far-field in-situ stresses transformed into the local wellbore
coordinate (x,y,z) as depicted in Fig. 3.1(b). In the above o;, o4 and 6. are parts of the

stress boundary condition and rotation angle in polar coordinate (r,6) for a circular

borehole as defined in Cui et al. (1997).

3.3.2 Analytical Solution

As discussed in Chapter 2, the solution approach is to solve for perturbations/changes with
respect to the initial reference state so that the initial conditions and far-field boundary
conditions for all variables vanish identically. The remained boundary conditions at the
borehole wall are then further decomposed into two sub-problems namely: (I) the plane
strain problem and (II) the antiplane shear problem. The boundary conditions and solutions

in the decomposition scheme are given as follows

Problem I — Plane Strain
The boundary conditions for perturbed quantities in Problem I at the wall (» = R,,) are

G, = () =[O, + 0, COS(2O = 0.))] s coroereeeeereeeeeeeeecceesssseesseeeseeeeeeeeeeeeeseeeeee (3.61a)

T OG0 ) W (3.61b)
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P = D = D) = Py (3.61¢)
PV = pM = (RT V)M (£) = M5 ], e (3.61d)

Based on the above boundary loading conditions, the various response functions can be

decomposed as (Carter and Booker 1982)

™)

N, e,,0,,0,1=[PV, PV E, .S, ,S5]xcos(n(@=6,)) .coerrurnnn. (3.62a)

rr?o

[p

TR LI ) N (3.62b)

where PV, P*M E S .S,,,and S,, are functions of radial distance () and time (#) only

rro

and n is an integer number depending on loading conditions. Incorporating Eq. 3.62a into

Eq. 3.47 to eliminate #dependency and seeking bounded solutions gives

—1 — 11

o S O (3.63)
11 Mll

where Cy = Cy(tp) is an arbitrary time-dependent coefficients to be determined from

boundary conditions and rp = /Ry, is the dimensionless radial distance. Eliminating the

volumetric strain in Eqgs. 3.48 to 3.51, the diffusion equations become

P! ¢
9 _ P mgey | 9C,(t,)
(maT-l-rD_KDVi’DJ pi = OHf %FD s eenreeenrieerer et eeaetearanes (3.64)
D Cr Ip
Psu m(s)c?

in which the dimensionless parameters are defined as follows

l-w 0 ™" 0
s 1_ ) wsl s a)l,ll 0

o=|m0-®) "o e (3.65a)
" 0 1) 0

LII 11
my@” 0 mow o
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v'D!, v'D 0 0

‘D, v'DL 0 0
o T el A (3.63b)
K +K 0 0 v'D, v D,
0 0 D! v'D!

-D 111 -D 112 D 111 D 112
AR;, _DZII _Dgz Dzll Dzlz
K +i! D111 Dllz _Dlll _D112
Dzll Dzlz _Dzll _Dzlz

—1 , —=II 2 2
RS S S S (3.65d)
(4, + 4,)R, ’ arD I'p a7’0 "p
where
4w . T R M e (3.662)
A, + A4y A, + A4y lRT(All + Azz)
—1 —1I
e e e (3.66b)
All + A22 All + A22
1.2 —11\2 =11
a,) 1 (a) 1 o a
A, ZWJF A_/}” , A, = i + A_/l[” , A, =4, = ik + ]1‘7”1 ,.(3.66¢)
K' =D/, K = VID | e (3.66d)
Applying Laplace transform to Eq. 3.64 yields
P! ¢y
2 2 ﬁsl mscl N
so+T, —K, “]—2+id——”—2 =1 T ESCOT e (3.67)
dry, r,dr, 1) P c;
ﬁsII mgc;l

where the tilde sign ~ denotes the corresponding quantity in Laplace transform domain

and s is the Laplace transform parameter. The solution to this system of coupled ordinary
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differential equations (Eq. 3.67) can be found by uncoupling the individual equations using
matrix diagonalization techniques (Farlow 1993). Here, the general solutions are
straightforward and given by superimposing the homogenous solution and the particular

solution as

P'= £1Cr" + X m CIK L (E1r) +m UK (EM )] (3.68)
12
P = f1C, "+ 3 [l CIK (1) 4+ ml CTK (EM )] e (3.69)
j=12
P = f1Cory" + 3 [l CIK (Elr) + ML CUR (€M) e (3.70)
j=1,2
P =[G, + X mh CIK (€17 + ml CUR (€M) (3.71)
j=1,2

where CV =C"™(s) (j = 1,2) are arbitrary coefficients to be determined from boundary
conditions; K,, is the modified Bessel functions of the second kind of order #; fl(.N) =/l SN)

where E(}.\I) are the eigenvalues of the coefficient matrix Y=k, (s @+I,) with

™) N) (N)

corresponding eigenvector { m™Y m®N  m®  m™: the coefficients ™ are given as
1j 2j 3j 4j 5> J

{ flI le flIl 2”}T :s(s (D—FD)_I{ c}» mgc} c}l» mSc?}T ..................... (3.72)
in which the superscript T denotes the transpose operation. Subsequently, the general
solutions for stresses are easy to obtain by using the stress-strain-pressure constitutive
equations (Egs. 3.41 to 3.43), strain-displacement relations (Eq. 3.44) in polar coordinate,
and equilibrium equation (Egs. 3.45 and 3.46). For brevity, only the final general solutions

for the stress components are presented here
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~ K Ny K (EMy
S, =- Z Z Al(f)Cj(.N) —e) b2 fo)] ) +n(n+1)——L—= EN{’ g)
JL20=LI T G (3.73)
+ (n+2) Aoéor[;” + C, r[;”’z

(N)
-3 T ey e 2 i |

e & Er) ) (3.74)
_ (n - 2) AOGOFD—n _ C3 rD—n—Z
> K, (EMr K (EMr
Se=—2, ANCN | n—2 2 fﬁf ») +n(n+1)—22L 22 Ef)f Ij)
a0 I ©50)" (3.75)

S

~ _-n -n-2
+—=A4,Cory" +Csrp

2
in which C; =C;(s) is an additional coefficients to be determined from boundary

conditions; the lumped coefficients 4, and AJ(.N) are given as follows (j = 1,2 and N = [, II)

Ay=(M =M )h/2+ M,  ADV=(M; = M)h®, e, (3.76)

i
h}N): (071'm1(_§.” - 071"m§§))/]\711, h=@' f'+a@" ")/ My, =1, (3.77)
To determine the unknown constants, 50 , CﬁN) and C, the boundary conditions for

Problem I are further decomposed into two contributing loading cases namely: axisymetric
loading and deviatoric loading cases. The corresponding boundary conditions and solutions

for two loading cases are listed in Appendix F.

Problem II — Antiplane Shear
The boundary conditions for perturbed quantities in Problem II at the wall (» = R,,) are

0. =—15,.c08(0)+ S SIN(O)] ;oo (3.78a)
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No disturbance of fluid or solute flow is generated by this antiplane shear stress
perturbation. The solution is elastic and the same as given previously for dual-poroelastic
inclined wellbore, i.e., Egs. 2.62a and 2.62b.

The complete inclined wellbore solutions for stresses and pore pressures are obtained
by superimposing the background state with non-zero solutions of the two perturbed sub-

problems as given in Chapter 2, Egs. 2.63a to 2.63h.

3.3.2 Results and Discussions

A wellbore of radius 0.1 m is assumed to be drilled in a fractured shale formation
characterized by in-situ stress, pore pressure, and temperature given as: Sy =21 MPa, Sy =

18 MPa, S, = 16 MPa, py = 10 MPa, T = 55°C at depth of 1000 meters. The formation is
assumed to be saturated with a pore fluid having water activity a] = 0.88 (equivalent of
150Kppm CaCl, solution or m, = 0.034). The wellbore is assumed to be drilled inclined,

@. = 60, along the maximum horizontal in-situ stress direction, ¢, = 0, and is filled with a
drilling fluid (mud) maintained at constant and overbalance pressure p,, = 11 MPa with
solute salinity m’ . The same set of material properties for a Gulf-of-Mexico shale as listed
in section 2.6.1 is used to model the formation as compact and fractured rock. Other
relevant data include membrane efficiency and effective solute diffusion coefficient. The

effective solute diffusion coefficients, D*"™ | can be simply estimated based on the
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Fickian’s solute diffusion coefficient in free solution, D;, tortuosity, ™, and membrane

efficiency, 7™, of the porous shale structure as (Bader and Kooi 2005): D>

1- ;((N))(¢(N))’(N) D;. For the porous matrix region, a membrane efficiency of y' = 0.4

and a mean tortuosity of 7' = 2 (Gillham and Cherry 1982) are used to demonstrate the

chemical osmotic and solute transport effects. On the other hand, it is reasonable to assume

non tortuous flow paths 7" = 1 and zero membrane efficiency y" = 0 for the porous

fracture network. All modeling parameters are summarized in Table 3.

TABLE 3—DUAL-POROCHEMOELASTIC MODELING PARAMETERS

Parameters Values
Matrix Young modulus (E ') 1854 MPa
Fracture Young modulus (E ™ 37 Mpa
Poisson’s ratio (v! =v") 0.22
Grain bulk modulus (Ks) 27.6 GPa
Fluid bulk modulus (Ks) 1744 MPa
Matrix local porosity (¢") 0.14
Fracture local porosity (¢") 0.95

5.0x10™° mD (~ 5.0x10™%° m?)
5.0 mD (~ 5.0x107"° m?)

Matrix local permeability (k')
Fracture local permeability (k")

Drilling-mud activity ( a’, )

Fluid viscosity (x) 1 cp (0.01 Pas)
Matrix membrane efficiency (') 0.2

Fracture membrane efficiency (¢ ™) 0.0

Solute diffusion coeff. in free solution (D; ) 1.75%x10™ m2/day
Interporosity geometric factor () 60 m™

Fracture’s bulk volume fraction (v!' =1 - v') 0.01

0.986 (~ 50Kppm CaCl, = 0.008 mole fraction)

Numerical results are presented in Figs. 3.2 to 3.7, in which positive values of stresses
indicate compression. For illustration purpose, comparisons with the corresponding single-

porosity and single-permeability porochemoelastic cases plotted in dashed lines are made
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to highlight the coupled dual-porosity and dual-permeability and chemical effects on the
results obtained. The single-porochemoelastic solution is obtained by letting the fracture
space to vanish (v!' = 0).

The dual-porochemoelastic formulation reduces to four diffusion equations, Egs. 3.48

to 3.51, each of which is associated with an effective diffusion coefficient. The analytical
solution shows that there are four eigenvalues, &', &, &', and &' which physically

correspond to the pressure and solute diffusion coefficients in the porous matrix and
fracture continua, respectively. These eigenvalues indicate the characteristic time scales of
individual diffusion processes. Due to the contribution of interporosity flow, these effective
diffusion coefficients are not constant but time-dependent. The relative time scales of these

coupled transport processes are estimated by calculating these eigenvalues neglecting

interporosity term. From this data set, the effective diffusion coefficients, cﬁ.N) , and their
associated characteristic times tﬁN) =R’/ cﬁN) (G=1,2)are

¢, =6.3e-03m* /day; c)=19e-05m"/day
t| =1.6day; t,=526days

c!' =12m* /day; c) =1.7e-04m* /day

t' =8.3e—04day; t) =59 days

Hence, there is about one order of magnitude in relative difference among the diffusion
processes. This is so because the diffusion coefficients are proportional to not only the
transport parameters such as permeability but also the stiffness of the system. Therefore,
although the intrinsic fracture permeability is 10° times higher than the matrix permeability,

the smaller fracture stiffness (50 times) reduces the relative difference among diffusion
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coefficients. Since these time scales are not substantially separated, different flow processes

are expected to interact and compete with each other during drilling operations.

13 I T T T T T
12+ .
N 3
[aW L
S | .
> 11F ——SSoas
g 1 O: ------ non —fractured shale ]
o [ fractured shale , matrix
Q? 9 _ fractured shale , fracture ]
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T T (no mud chemistry )
8 1 1 1 1 1
1074 0.01 1 100 10*
Time, days
(a)
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2 ]
g 0.020f ]
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1074 0.01 1 100 104
Time, days

(b)

Fig. 3.2—Pore pressure and solute salinity evolutions at radial distance r = 1.10 R, and 6 = 0 (along

Sk direction).

Figs. 3.2 show the history of dual pore pressure and solute concentration at radial

distance 7/R,, = 1.10, parallel to Sy direction (6= 0) and for low drilling mud salinity of

= 0.008 (50Kppm CaCl,). Clearly, there are four distinct responses in the pressure and
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solute concentration evolutions, corresponding to the four time scales of the system as
estimated above. Initially, both the matrix and fracture pressure are reduced below the
formation pore pressure due to the Skempton’s effect under the sudden release of non-

hydrostatic in-situ stresses. With smaller effective characteristic times (7' and ¢), fluid

flow due to hydraulic pressure gradient dominates the small time pressure responses in
fractured formation. The porous fracture, being more fluid-permeable, reacts first to the
driving wellbore mud pressure resulting in a higher pressure in the fracture than in the
matrix. As time progresses, the matrix pressure - enhanced by the inter-porosity flow from
the fracture and the osmotic pressure contribution - gradually catches up with and
eventually grows larger than the fracture pressure. In fact, since the mud salinity is lower
than the formation salinity, an osmotic flow of fluid from the wellbore into the formation is
expected. This osmotic flux will induce additional fluid pressure increase in the near-
wellbore region. Hence, the matrix pressure peak at about 12.80 MPa (at 0.5 day) higher
than the applied wellbore mud pressure of 11 MPa is due to the mud/shale osmotic effect.
To visualize the osmotic contribution, the corresponding dual-permeability matrix pressure
without chemical effect is also plotted in dash-dot in Fig. 3.2. The matrix pressure buildup
above the no-chemical-effect curve quantifies the osmotic contribution. There is no
osmotic contribution in the fracture pressure since it has been assumed that the porous

fracture network exhibits no membrane behavior that hinders solute diffusion ( " = 0). At

long time, e.g., t — oo, when all pore pressures and solute concentrations equilibrate due to
subsequent fluid and solute transport, the dual fluid-pressure responses converge to the

single-porosity and single-permeability one.
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Figs. 3.3a and 3.3b show snapshots of dual-pressure distribution along radial direction

6= 0° (parallel to Sy) at time intervals t = 15 minutes and 0.5 day after drilling. Again, the

peak in pressure responses in Fig. 3.3b is due to chemical osmotic effect. Att= 15 minutes,

the dual fluid pressures mostly react to the invading wellbore mud pressure, leading to

higher pressure magnitude than the single-permeability counterpart.

Pore Pressure, MPa

Pore Pressure, MPa

13

12

13
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11
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11:
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No Mud Chemistry
non —fractured rock
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fractured rock, matrix
fractured rock, fracture

1.0 1.5 2.0 2.5 3.0 3.5 4.0
7, D :I‘/ RW
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I fractured shale , matrix A
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1.0 1.5 2.0 2.5 3.0 3.5 4.0
7, D :I‘/ RW
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Fig. 3.3—Time-dependent pore-pressure profile along the maximum horizontal stress direction (6 =
0) for (a) without mud chemistry effect and (b) with low mud salinity (50K).
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As time elapses, the slowly-diffusing osmotic pressure starts to contribute while the

fast-diffusing hydraulic pressure heads, due to the presence of fracture network, are

competing and partially negating the osmotic pressure rise in the porous matrix.

Consequently, after t = 0.5 day the dual pressure responses are lower than single-

porochemoelastic one where the induced osmotic pressure is sustained longer.
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Fig. 3.4—Effective radial stress profile along the maximum horizontal stress direction (6 = 0).
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Fig. 3.5—Effective tangential stress profile along the maximum horizontal stress direction (6 = 0).
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The induced dual pore-pressure leads to modifications in effective stress, i.e., normal
stress less pore pressure. Figs. 3.4 and 3.5 plot the corresponding effective radial and
tangential stresses distributions in which negative values denote tension. As seen in Fig.
3.4, the effective radial stress mirrors the pressure responses shown in Fig. 3.3. There is a
tensile region, R, < r < 1.2R,, developed due to mud/shale chemical osmotic effect.
Similarly, low mud salinity also reduces effective tangential stress which controls borehole
fracturing initiation pressure as shown in Fig. 3.5.

As a result, the transient responses of chemically active porous medium incorporating the
effects of fracture network, chemical osmotic and solute transport are substantially different
from those approaches that neglect the dual-porosity and dual-permeability nature of the

material.

3.4 Oedometer Test of Solid Cylinder

The problem and solutions of solid cylinder subjected to radial-only or axial-only fluid-
diffusion are used to simulate uniaxial reservoir depletion and subsequent consolidation. In
addition, the axial-only fluid diffusion mode, the K, laboratory testing setups, is often
considered more realistic and practical scenario for conventional triaxial testing of
conventional solid core plugs. Kanj and Abousleiman (2007) presented an isotropic
solution for K, testing to assess the osmotic effect on the response of chemically active
intact rock material. This section focuses on deriving and demonstrating the solid
cylinder’s solution for chemically fractured samples subjected to axial-only fluid and solute

flow condition. The radial-only fluid-flow solution can be obtained following similar
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methodology for solid cylinder presented previously in Chapter 2, section 2.4.1.3.

3.4.2 Problem Description

The Kj testing setup is illustrated in Fig. 3.6 in which the fluid-saturated fractured-rock
sample is sandwiched between two rigid and frictionless platens. The applied axial stress
on the core plug is a result of either a time-dependent stroke control or a time-dependent
load control. Moreover, the applied pore-pressure and/or solute-concentration differentials
at either the upstream and downstream ends of the sample can be zero, constant, or function
of time. Laterally, the outer surface of the cylinder is maintained at zero radial
displacement by applying a time-dependent confining stress or using a rigid outer boundary
control. Mathematically, the problem boundary conditions are written as

At the outer surface, » = R:

U, =0,y =0, = =L =0, et (3.79)

rz

At the upstream end, z = 0:

R 2
'[rO'ZZdr _FO _ ﬂa; ,10ad CONLIOL ...vv e (3.80)
0 2r 27
or
4 ,
£, = u.(0) =&_, SIOKE CONLIOl ....cc.ciiiiiiiiiiiicccec e (3.81)
H
and
0,=0._=0, p'=p"=p @), pl=p"=GRT/V/Ym (), ... (3.82)

At the downstream end, z = H:

u,=o, =0, =0; p =p"=p, ), p = p" =(RT/V{Ym(@),....... (3.83)
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Fig. 3.6—Schematic of oedometer test (Ko) of transversely isotropic cylindrical fractured samples
incorporating chemical solute salinity loading.

in which { p, (¢),m(¢t)} and { p,(¢t),m,(¢)} are the imposed upstream and downstream
fluid pressure and solute concentration, respectively. The axial-only fluid-flow constraint

imposes a z-dependent variation and all variables are at most functions of z and ¢ only. In

this case, &, =&, =¢q" =q}’ =0 and o_=0.(t) due to stress equilibrium
requirement in the z direction. As a result, the diffusion equations, Eqs. 3.48 to 3.51, can be

rewritten compactly in terms of the applied average axial stress, pore pressure and solute

concentration as

% €y
d _ 9’ )" _ macy | 9oL (ty)
[myq.r]) KDa ZJ . OH 5 D e (3.84)
D Zp Cr Ip
sll s I
4 mycy
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in which the dimensionless coefficient matrices, o, k,,, and I';,, are the same as defined
previously in Egs. 3.65a to 3.65c. The dimensionless parameters, tp, zp, c‘lf, and c‘IfI, are

redefined as

K+ " z
t,=————¥—1, Z 1 T o s e 3.85
Do yrdp)Ht T H -
I = % - T (3.86)
T (4 + Ay)M T4y + Ay)M
1 (51)2 1 (511)2 1 ala[l
Ay ==+——, Ap==+-—"—, Ad,=4y==z+—"..0387)
M 33 M M33 M33

3.4.3 Analytical Solution

Applying Laplace transform to the diffusion equation, Eq. 3.84, the general solution for

fluid pressure and solute concentration perturbation are

P fE Y my [B; cosh(£z,,) + C}sinh(£)z,)] (5.58)
1 zz = i mlj [BH cosh(§HZD) 4 CH Slnh(fnzD) ................................ .
P oY m, [B; cosh(£z,,) + C}sinh(£z,)] (3.59)
2Yzz = " mz] [BH Cosh(§HZD) 4 CH Slnh(fnzD) ............................... .
e Z my;[B] cosh(&z))) + C) sinh(& 2 )] (3.90)
24 ! (B cosh(&Mz, )+ OV sinh(@z, )| :
=Y mylB; cosh(Cyzp) ¥ Cysinh(Gyzp)) | (3.91)
2|+ m[B] cosh(&]'z,) + C) sinh(£'z))]

where BM™ =B™(s) and C{¥ =C{(s) (j = 12) are arbitrary coefficients to be
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determined from fluid boundary conditions at the two ends, e.g., Egs. 3.82 and 3.83, and

are given as

I I I il ] ~ I _x
B, my my my mp Ds— 10
I I I 1l 1l ~s 1«
B, My My My My, Ps— 1,0
= e et ———————————eeeeeia————————aaas (3.92)
i I I i 1 ~ m_x
B, My My, My My, Pys—J 0.
1 I I 1 1 ~s m_x
B, [ My My, My My, | Py — ]2 0.
- -1
I I I 1 1 I
C d, d, d, d, &
I I I 1 1 I
C, _ d, d, d, dy & (3.93)
CII - dl dl dl] dII II PR RN .
1 31 32 31 32 &
1 I I 1 1 1
G, _d41 d, d, d, &>
withi,j=1,2and (N) =1, 1I
N _ (N) o3 N)y. N) — N : N)
d;” =my’ sinh($V); diny; = Mgy SIN(E™ ) s (3.94)
I _ ~ I = N) p(N) (N)
gl =D, =165 =D D mI BN cosh(EM) oo (3.95a)
J=L2N=LII
I _ s o~ N) p(N) N)
g =Dy — 1265 = 2, > mEY BN cosh(EM) .o (3.95b)
J=L2N=LII
I _ ~ I ™N) p(N) ™)
gl =P, = 1100 =D > mY B cosh(EM), oo (3.95¢)
J=12N=LII
I _ ~s I N) p(N) N)
gy =Py —fr00n =D, > mY BN cosh(EM), oo (3.95d)
J=LaN=LII

Egs. 3.88 to 3.91 and the governing equations (transport equations and constitutive
equations) are used to determined the rest of the unknown components of fluid and solute

fluxes, stresses, strains, and displacements

~ d >N d = s(N)
M) = e % + 7N Z—Z .................................................................... (3.96)
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~ ~5(N)
§™ =—pM d;’ DY df; e (3.97)
- - M, . M - My )~
=0, =—>0" +(0{1I - Jpl +[a1“ - =5 0@“] s (3.98)
M, 33 M,
F = 1 (O~_ _a's! —II~II) 399
. == \0,, s P 0{3 2 T PPN ( )
M,
u, ..
=~ =0_hz
H zz D

h; [B,I (sinh(&!z,)) - sinh(£"))+ C!(cosh(£'z,,) - cosh(&! ) ,--(3.100)
S|+ n! [B (sinh(&!'z,,) — sinh(E1))+ C" (cosh(&'z ) — cosh(EM))]

where 1. = 0 at the middle due to top and bottom symmetry; 4 and / are given as

—1_(N) —II__(N) —1 oI — 1 ,1I
h(N)_a3m1_/ o5 my;n h_l_a3f1 —0; /
N = — 5 - —

’ M33 M33

eeeee e e e (3.101)

For load-control mode, the average axial stress, ¢, is known and the above solution is

zz?

applicable. For stroke-control mode, the average axial strain, £_, is prescribed. From Eq.

zz 2

3.99, the expression for average axial stress in term of the average axial strain is

G = —%[EZ’; - {h/‘ Ci[1—cosh(&)]+ A} CJ'[1- cosh(f}l)]}] e, (3.102)
=y

Therefore, the stroke-control solution can be obtained simply by substituting Eq. 3.102 into

the load-control mode solutions, i.e., Egs. 3.88 to 3.91 and Egs. 3.96 to 3.98.

3.4.4 Results and Discussions
A comparative study between dual-poroelastic and dual-porochemoelastic of an isotropic,

fractured shale sample subjected to Ky testing and an assumed axial-only fluid flow
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constraint is shown in the following. In addition, comparison with single-porochemoelastic
approach for intact shale is also displayed. The fractured shale material properties are the
same as listed in Table 3. The solid core is assumed to have radius of 0.025 m and a height
of 0.1 m. The sample is subjected to a step application of an average axial stress of 1 MPa
and both ends are drained. Moreover, the upstream end of the sample is subjected to a
salinity or activity differential. This is achieved through setting the salinity of the upstream
fluid of 0.008 mole fraction (50K CaCl,) or 0.06 mole fraction (250K CaCl,) while the
original salinity in the shale is 0.034 mole fraction (150K CaCl,). The fractured shale’s
matrix membrane efficient is 0.1, interporosity geometric coefficient is 240, and the testing

temperature is 25 °C.

1.OF
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0.0 : . : :
0.0 0.2 0.4 0.6 0.8 1.0

Pore Pressure, MPa

Fig. 3.7—Evolution of dual pore pressure distributions along the core without external salinity
differential.

Numerical comparison between dual-poroelastic and dual-porochemoelastic is shown for
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pore pressure, fluid flux and axial displacement in Figs. 3.7 to 3.13. The purpose is to
illustrate the importance of considering proper porochemical coupling in the analysis.

The pore pressure responses along the core are plotted in Figs. 3.7 to 3.9. For dual-
poroelasticity (Fig. 3.7), the dual pressure diffuse normally following instantaneous jump
due to step loading of axial stress. The perturbed pore pressure in the fracture network —
dashed lines — quickly dissipates and equilibrates after 30 minutes while the matrix pore
pressure — solid lines — is still diffusing. Accounting for upstream salinity gradient, the
osmotic effect generates additional pore pressure increment (e.g., low salinity in Fig. 3.8)
or reduction (e.g., high salinity in Fig. 3.9) in the shale matrix. As time progresses, the
osmotic pressure front moves down the sample and diminishes in magnitude due to

subsequent solute diffusion, highlighting the leaky membrane behavior.

1.0_ I 1 L) ] ] ] o
0.8+ .
1 min
0.6F L 30 min
= L
N
I — fracture
0'4_' 1min ]
| 3hr
0.2F .
0.0' N | P T PN B T

0.0 0.2 0.4 0.6 0.8 1.0

Pore Pressure, MPa
Fig. 3.8—Evolution of pore pressure distribution along the core for low upstream salinity.
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Fig. 3.9—Evolution of pore pressure distribution along the core for high upstream salinity.

The corresponding fluid fluxes at two ends of the sample are plotted in Figs. 3.10 to
3.13. Without chemical effect, dual-poroelasticity (Fig. 3.10) shows draining behavior, i.e.,
fluid flux out of the sample as a result of axial load application. It is seen that the same
amount of fluid flows across both ends and the majority of the flow is through the fracture
network. For low upstream salinity (Fig. 3.11), the bulk of the fluid are squeezed out
through the fracture network at both ends. However, there is an induced osmotic flow into
the matrix region at the upstream end reducing the total out-flow fluid flux at this end. On
the other hand, high upstream salinity leads to additional osmotic out-flow as shown in Fig.

3.12.
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Fig. 3.10—History of fluid flux at the two ends of fractured sample without salinity gradient effect.
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Fig. 3.11—History of fluid flux at the two ends of fractured shale sample subjected to low upstream
salinity.
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Fig. 3.12—History of total fluid flux at the two ends of fractured shale sample subjected to high
upstream salinity.
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Fig. 3.13—History of axial displacement at the top of fractured shale sample subjected to different
upstream salinity gradients.
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Finally, the axial displacement is plotted in Fig. 3.13. The osmotic drainage due to high
applied salinity promotes shrinkage, leading to higher consolidation. For low salinity
differential, the osmotic inflow reduces the compaction. Compared with intact shale
modeling using single-poromechanics approach, the difference in axial displacement can be

attributed to deformation in the fracture network.

3.5 Summary

The dual-porosity and dual-permeability poromechanics formulation has been extended to
incorporate the dual chemical osmotic and solute transport effects in the overall response of
dual porous medium. The corresponding analytical solution for the drilling of inclined
wellbore or the oedometer test of solid cylinder (K, testing configuration) of chemically
active naturally fractured rock have been derived and presented in this chapter.

Via the inclined wellbore solution, effective stress and pore pressure analyses were
carried out to study the dual-porosity and chemical effects on the overall poromechanics
response. It is seen that the dual-porosity and dual-permeability effect is to develop dual
pore-pressure responses in the shale formations. Meanwhile, the chemical osmotic effect is
to modify the stress and pore pressure magnitudes in the vicinity of wellbore wall, e.g.,
drilling mud with lower mud salinity will induce an osmotic diffusive flow from the
wellbore into the formation. In contrast to previous studies ignoring solute transport
phenomenon, the developed osmotic pressure eventually dissipates due to subsequent fluid
and solute diffusion processes since the shale membrane behavior is not perfect. The

resultant pore pressure response leads to corresponding modifications in the effective stress
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field. Effective stress calculations show that the dual-porochemoelastic solution predictions
differ substantially from single-porochemoelastic approach.

Numerical applications of the solution of solid cylinder subjected to a K test indicates
that neglecting osmotic and solute transport effects can mislead the test results for fluid
flux. In addition, neglecting the contribution of fracture network will lead to erroneous

results for fluid flux as well as axial displacement.
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Chapter 4

Dual-Porosity and Dual-Permeability
Porothermoelasticity: Dual-Porothermoelasticity

4.1 Introduction

Geomechanical analyses of field problems are often subjected to non-isothermal conditions
occurring in such cases as deep subsurface drilling, geothermal wells, and nuclear waste
depository. In saturated porous media, the coupled interaction between the transient fluid
flow and the deformation processes under pressure or stress perturbations are well known
and investigated through the theory of poroelasticity first introduced by Biot (1941). On the
other hand, a temperature gradient will lead to not only induced thermal stresses but also
transient thermo-induced pore pressure responses. The thermohydromechanical effects on
the mechanical response of porous media have been successfully studied under the
porothermoelastic model (Bear and Corapcioglu 1981; McTigue 1986; Coussy 1989).
When viewed at the microscale, thermal gradients result in differential expansion or
contraction of the solid and fluid constituents within a porous saturated medium. The

volume changes associated with the expansion/contraction lead to significant modification
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of both the total stress and pore pressure distributions. Therefore, in addition to the
transient pressure changes due to Darcy flow, thermal deformation and diffusion also
induced additional pressure and effective stress alteration. In solid materials, heat transport
is analogous to fluid transport where the heat is conducted through the interconnected grain
structure. In a saturated porous medium, the diffusing fluid also acts as a heat carrier,
introducing another heat flow mechanism via convection. Practically, temperature
equilibrium between the solid and fluid constituents is assumed to be instantaneous in
comparison to heat conduction and convection processes leading to a single-temperature
thermodynamic continuum (Bear and Corapcioglu 1981).

In fractured rock formations, the mechanism of heat flow in the constituent porosity
regions may be different from fluid mass transport. In particular, fractured rock formation
is modeled as a dual-porosity and dual-permeability continuum which is comprised of a
primary porosity (matrix) with low fluid conductivity and a secondary porosity (fracture
network) with highly permeable flow paths. As a result, dual-porosity and dual-
permeability continuum will exhibit dual pore pressure evolutions when subjected to stress
and pressure perturbations. The two constituting porous regions can exchange fluid mass
due to pressure differential at the interface between them. On the other hand, heat flow in
the porous matrix is primarily driven by conductive mechanism through the compact
matrix skeleton while heat convection carried by the fast diffusing fluid in the fracture
network is intuitively more dominant. Because thermal conductivity is significantly higher
through the compact matrix framework than through the fracture network comprised

mostly of pore space, the dual-porosity temperature evolutions and interporosity heat
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exchange are most likely masked. Consequently, a single-temperature approach for
fractured porous continuum (Master et al. 2000) appears to be more practical than the
double-temperature approach (Aifantis and Bekos 1980).

Analytical solutions and analyses of the porothermoelastics coupling in single-porosity
medium have been well established (McTigue 1990; Wang and Papamichos 1994; Ekbote
2002; Abousleiman and Ekbote 2004; Chen and Ewy 2005). In fractured porous media,
despite the abundance in numerical modeling of porothermoelastic effects (Aifantis and
Bekos 1980; Millard et al. 1995; Nguyen and Selvadurai 1995; Abdallah et al. 1995;
Master et al. 2000; Nair et al. 2004), no analytical solution has been provided for the
coupling of heat and fluid flow and the resultant stress and deformation field in fractured
porous media.

In this chapter, a dual-porosity and dual-permeability porothermoelastic analytical
formulation and solution applicable to transversely isotropic fractured porous media is
presented. First, the dual-porosity and dual permeability poroelastic governing equations as
presented in Chapter 2 are extended to incorporate thermal effects within the framework of
a single-temperature approach. The complete formulation includes contribution from both
heat conduction and convection in the porous matrix and fracture system. Neglecting the
non-linear heat convection, the resulting system of equations is applied to obtain the
analytical solution for inclined wellbore subjected to non hydrostatic in-situ state of stress.
The effect of heat convection is accessed numerically by finite difference method for a

special case of vertical borehole drilled in hydrostatic in-situ stress condition.
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4.2 Mathematical Formulation

4.2.1 Constitutive Equations

Thermal effect in fractured porous formation can be modeled by extending the dual-
poroelastic formulation in Chapter 2 to account for non-isothermal condition. Assuming
instantaneous local thermal equilibrium among all system constituents, i.e., common
temperature for all constituents of the dual porous system, and infinitesimal deformation,

the change in free energy density of skeleton is expressed as follows (Coussy 2004)°

AW = Gyde; —N''dp' V"G dp" = S AT ,.cooovoveesceeseeeeeseees e 4.1)

where 0j is the total stress tensor; &; is the linearized strain tensor; dN) 1s the intrinsic
porosity of the individual porous continua and v is the bulk volume fraction; S* = §* + S™
is the total solid skeleton’s entropy per unit bulk volume; and 7 is the temperature.

From the above equation, it is obvious that # admits &, pI, pH, and T as state variables

and the linearized constitutive equations follow naturally as (compression is positive)

doy = My, dey +Fydp" + 0 dp" + AT oo (4.2)
AV = —a'd dpl dpu B'd
(V¢)——a’[j €y+?+ﬁ—ﬂ¢ T e (4.3)
4 4
04N . =TI dpl dpn 2l
d(V'"9") = 8 de; + =+ = = By AT oo (4.4)
¢ 4
dS* ==p;de; + B dp" + B,'dp" + (C° / T))AT wcooooooceesssssevsss (4.5)

where the overbar notation indicates overall material properties; C* is the lumped

® The free energy density ¥ in Eq. 4.1 is analogous to the energy function G as defined in Eq. 4.3 by Coussy
(2004)
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volumetric heat capacity of the solid constituents in the primary and secondary porous
: : ~s _ 1 I sI sI I Kl sII . s(N) :
region, i.e., C* =v'(1-g))plc” +v'(1-aHp; in which ¢ is the specific heat and

s(N)

Yo,

is the solid grain density; and E and f3, B™ are thermal coefficient tensor and scalar

related to the overall solid skeleton and individual pore systems, respectively. Considering

unconfined condition and assuming self-similar thermal expansion/contraction for solid and

pore systems, the thermal coefficients ,B; and ﬁf” can be identified in terms of thermal

expansion coefficients as

n - AL A Ir . sl
B =My = My (V' +V"00") 5 e (4.6a)
BY = ZNU VOGN e (4.6b)

in which @;,, oV are the solid’s linear thermal expansion coefficient tensor of the overall

and constituting porous regions, respectively.
Following Coussy (2004), the intrinsic porosity ¢™ and the solid’s skeleton’s entropy
S* are replaced in favor of the fluid mass content m’™ =v™g™ p/™ and the total

entropy S = 8 + s'+ g by linearizing the saturation condition and the following state

equations
dm’
ac™ = o = VNP )+ VIG LP 4.7)
Po
dsS’™ =d(m’™ sy =mNds’ ™ + s/ Ndm ™ oo (4.8)
o )
dp — dp _ af(N)dT de(N) — _a./'(N)d N) + c./'(N) d_T (4 9)
= , Ip s .
Po r 0
where p/™ is the fluid density; o/™ is the volumetric thermal expansion coefficient of
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the pore fluid (a scalar); 1/ K}N) is the isothermal fluid compressibility; s™ is the specific

SN)

entropy; and ¢’" is the fluid specific heat capacity. Equations 4.3 to 4.5 become

I deI

_ d, -
dl' =-ade, +% LT 7 S — (4.10)
I I
dL" =" de, + % +% R L (4.11)
dS— > si®dm'™ =B de, + Bidp' + Bidp" +(C /T)dT , ......ccoocuuecc, (4.12)

N)=L1I

where the apparent fluid storage 1/M ™, 1/ M, lumped thermal coefficient S, and

total heat capacity C are given as

UM® =1/K +v®P¢™M KD, 1/ M™ =1/ K" e (4.13)

B =B +vgNa’® =aMa; + vV (@™ — o™, (4.14)

C=C"+ D VOGN PIMCTM s (4.15)
(N)=LII

The first three terms on the right of Eq. 4.12 represent entropy or heat changes due to
adiabatic deformation of the solid and the fluid. It is often negligible (Coussy 2004) and
will be neglected in this work. In summary, the porothermoelastic constitutive equations

for a dual-porosity medium are

Oy =M€y + 0P + T D" 4+ BT e (4.16)
;‘:-&FEkk+£—I+£—H—B!T, ........................................................................ 4.17)
i MY MM s
I 1I
(M =@y Lt B C BT e (4.18)

MI,II M Il Js
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~ e C
S— > s{®m’® =FT, ..................................................................................... (4.19)

N)=LII 0

where the incremental form d has been dropped for convenient.

4.2.2 Balance Equations

Momentum Balance. The momentum balance of the whole system assuming quasi-static
evolution and neglecting inertia and body force yields the equilibrium equations which is
given as

90 .
0 e (4.20)
ox,

J

Fluid Mass Balance. The fluid mass balance, accounting for the interporosity fluid
exchange, T, and the fluid flow, ¢;", within the porous primary and secondary porosity

medium, are written separately as

1 1
aaitw‘aai:r, ................................................................................................ (4.21a)
X

1

ag“ Lyl aqin - T
ot ox, ’

1

.......................................................................................... (4.21b)

Under isothermal condition, separate Darcy’s equations are written for each porosity region
in which the fluid flux is proportional to the individual pressure gradient (Eq. 2.12). For
non-isothermal condition, fluid transport within the system can be caused by gradients in
both the pore-fluid pressure as well as temperature. A generalized expression for fluid

specific discharge, g™, is given as
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™ = 9P oy 0T (4.22)
i y y
ox; dx;

where l(;.N) is the mobility coefficient tensor and Dl.f ™ is the thermo-osmosis coefficient

tensor. The first term on the right hand side of Eq. 4.22 corresponds to fluid transport
caused by the Darcy effect and the second term is associated with thermo-osmosis effect
which is fluid flux generated by a temperature gradient. The thermo-osmosis effect is
ignored in this analysis and Eq. 4.22 results in the well-known Darcy’s law.

Generally, the interporosity fluid exchange, I', in Egs. 4.21a and 4.21b includes
contribution from both hydro and thermo driving force. However, the assumption of a
single-temperature for the overall dual-porous system effectively eliminates the thermally
induced interporosity fluid transfer. As a result, interporosity exchange is the same as
isothermal case which in the simplest case is proportional to the pressure differential as

given in Eq. 2.14.

Energy Balance. The energy balance expressing the change of heat can be written in term
of the change in entropy of the system. Neglecting viscous dissipation effect, the thermal

equation is expressed as (Coussy 2004)

SN
|25 3 g om | _94r S ety 9T (4.23)
A= ot ox, o ©oox,

where ¢! is the heat flux. In the above equations, the first term on the right hand side

corresponds to heat transport by conduction, whereas the second term represents the heat

transport by convection. Analogous to the fluid mass transport, the heat flux in the most
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general case can be caused by gradients of both pressure and temperature. A generalized

equation for the heat flux is given by

™)
Y (4.24)

i
axj (N)=LII axj

in which /LJT. is the effective thermal conductivity coefficient tensor for the whole dual-

porous system and D/ ™ s the coefficient tensor associated with the heat flux generated

by the pressure gradients. The first term on the right hand side in Eq. 4.24 is the heat flux
caused by the Fourier effect, whereas the second term gives the heat flux resulting from the
Dufour effect. The Dufour effect is ignored in this analysis, thus giving the governing
equation for the heat flux also known as Fourier’s law. The effective thermal conductivity

is given as a volumetric weighted average of the constituents’ conductivity as

A= Y VLA =@M)AT® + GV AT DT, e (4.25)

N)=LII
where "™ and A7™ are the thermal conductivity of the solid and fluid constituents,
uy )

respectively.

4.2.3 Field and Diffusion Equations

The above governing equations are further combined to yield the field and diffusion
equations that are used to solve for the coupled stress and pore-pressure responses in
general anisotropic dual-porous materials. In this section, they are specialized to

transversely isotropic and isotropic materials under the generalized plane strain condition.

Transversely Isotropic Case. In the case of transverse isotropy where the z axis is
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assumed to coincide with the overall axis of material rotation symmetry, the constitutive
relations for dual-porochemoelasticity involve twelve independent material coefficients and

are given as

O, =M, &, +M &, + M £ + ' p' +T"p" + BT s, (4.26)
Op =M€, + M €y + My + 0P + 8" p" + BT s, (4.27)
Oy =M+ M€y + Muey + 0P +0 P " + BT oo, (4.28)
O, =2M €5  Op=2MyE;; Oy =2MyEps e, (4.29)
pl pll
I —1 —1 nl
§ =—0, (&, + &) -0, &, +ﬁ+ i = BAT s, (4.30)
(=g, + £,y —TE N - BT (4.31)
=0 (& + £2) = O €3y + 2 A BT s :

In the above, the subscripts 1 and 2 denote properties in the isotropic plane (x-y or -6

plane) and 3 represents the axis of rotational symmetric (z axis). The coefficients M,

M, My, M,,,and M, are components of the drained overall elastic tensor for a

12> 13> 33

transversely isotropic dual-porous material. @™ and @, are Biot’s effective stress

coefficients in the isotropic plane and transverse direction, respectively. These overall

coefficients are related to individual set of material properties of the primary and secondary

porosity as given in Appendix A. The expressions for £°, B, and S are obtained as
follows
B =M+ M)T +M,a; B =2M 0 + Myl e, (4.32)
B =2aa; +a@™a + vV (@™ =205 = 0™) (4.33)
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The transversely isotropic equations are further reduced to the generalized plane strain
case where all response functions (except axial displacement) are invariant along the axis

of material rotational symmetry and the out-of-plane strain components are either zero or
spatially uniform, i.e., £; =&,; =0 and &,; = &;;(¢). The constitutive equations for in-

plane stress components reduce to

O =M &, +M,& + M ey + 8 p' + 8" D" + BT e (4.34)
Op =M, + M€y + M & + 8 p' + 8" D" + BT s, (4.35)
) S (4.36)

with the corresponding equilibrium equations given in Eq. 2.18. Combining these equations

yields the compatibility equation as

or in terms of stress

M, M, M, -
V| o, +0, —(1— —12 j&‘p‘ —[1— —12 Ja“p“ —(1— —12 JﬂST} =0, . (4.38)
{ ! M, l M, 1 M, 1

where V? =9°/x] +0°/x; is the Laplacian spatial differential operator. Next, the fluid

diffusion equations are obtained by substituting the fluid content constitutive equations
(Egs. 4.18 and 4.19) and Darcy’s law (Eq. 4.22) into the fluid mass balance (Egs. 4.21a to

4.21b) as follows
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—Q; ﬁ/v
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M" ot M™ ot

=K Vp' +A(p" - p")

_ all] a((S.l] + 822) _ ﬁ}l] 8833
ot ot
1
s Lo 1ot
M ot M" ot

IBU oT _ ’?luvzpu —ﬂ(p“ _pl)

with £™=v®™ ™ Combining the energy balance relation (Eq. 4.23), Fourier’s law (Eq.

4.24), and Darcy’s law (Eq. 4.22) with the constitutive change in entropy (Eq. 4.19) yields

the heat diffusion equation

aa—T =i VT + D VDIV e (4.41)
t (N)=LII

where V is the gradient operator, chf is the heat conduction diffusivity and cT(N) is the

heat convection coefficients given as

=H1C; eV =pfMTVENIC (4.42)

The summation terms on the right-hand side of Eq. 4.41 correspond to heat transport by
convection and render the equations nonlinear. In low-permeability porous media such as
shale, heat conduction mechanism via the intact rock matrix is dominant and convective
heat transport due to fluid flow can be neglected. Hence, the heat equation is completely
linearized and analytical solution can be obtained. However, in dual-porous formations
such as fractured rock, the high fracture’s hydraulic conductivity may lead to non-
negligible heat convection contribution. If the non-linear convective effect is included, then

numerical approaches such as finite difference or finite element are needed in subsequent
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solutions and analyses.

Isotropic Case. For isotropic dual-porous material, the constitutive equations for dual-

porothermoelasticity reduce to

E v B B _
o, = 1+v{8”' 5 _vzm Ekkdj:|+(051p[ + @ P BIT)S, s oo (4.43)
{'=-a'e S P gy (4.44)
b F T F o BT s .
(=gl + p 4 P _Bur 4.45
=—0 &y W MH ﬂfY g e et et et et ee et ee ettt teaeeaeta b et e e ere e eeaeaeeaees ( . )

where B* and 3 f(YN) are given in terms of the volumetric thermal expansion coefficients

o’ and o™ as

_ a‘'E _ :
B’ = W) N =g + v (@™ @™, e (4.46)

And the compatibility relation in plane strain, Eq. 4.37 or Eq. 4.38, becomes

77[ 11 77T
Vz E,, +— I+T H+TT :0, .................................................................. 4.47
( wTE p G p G ] ( )
V20, + 0 420 D 427" p" 4 277 T) =0, oo (4.48)

where £, =&, +&,, + &, 1s the volumetric strain, G is the overall shear modulus of the

system, 7™ and 77" are lumped poroelastic coefficients defined as
G=—"L . gomogm 72 n =B Y (4.49)
2(1+v) 2(1-v) 2(1-v)

Subsequently, the fluid and heat diffusion equations maintain the same forms as those of
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transversely isotropic case (Eqs. 4.39 to 4.41) with & —a™, k™ —x™,and A/ - 1".

4.3 Inclined Wellbore

This section presents the development of solutions to determine the stress and pressure
redistribution due to drilling activities through high pressure and high temperature (HPHT)
fractured rock formations under the framework of the above dual-porothermoelastic

formulation.

4.3.1 Problem Descriptions

The inclined wellbore problem geometry is shown in Fig. 4.1. The undisturbed formation’s
pore pressure and temperature are in equilibrium between the matrix and fracture and are
denoted as py and Ty, respectively.

After excavation, the borehole is filled with a drilling fluid having pressure, p,,, and

temperature, 7,,. Therefore, the boundary conditions to be imposed at the wellbore wall, » =

R, are
0, =[0, +0, c0S(2(0 = O,)H(=1)+ P, (1) s eooorereeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee (4.50a)
P BRI G (20 ) ) & (G WO (4.50b)
G, =[S, COS(B) + S, SIOYTH(—E) s-crrevererrsoeereesssesessssiessessseeses e (4.50c)
N < () R ) T (4.50d)
FA O = (G T (4.50¢)

And at the far field, » — o
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It should be noted that the heat diffusion including convection effect, Eq. 4.41, is non-linear
and demands numerical approaches. While realistically modeling field conditions, these
numerical methods are computationally intensive and require extensive analytical
validation. The complete linearization by neglecting heat convection allows analytical
approach to an otherwise complex problem and provides the engineers with a tool for quick
assessment of thermal effect. The porothermoelastic analytical solution for an inclined
wellbore drilled in intact rock formation was published by Ekbote and Abousleiman
(2005). By the same token, the approach is applicable to the current dual-porosity and dual-
permeability porothermoelastic by incorporating relevant boundary conditions for stresses,

dual pore pressures, and temperature as shown in the following section.

4.3.2 Analytical Solution

By neglecting the non-linear heat convection term in Eq. 4.41, the thermal diffusion
equation is fully linearized. As discussed in Chapter 2, the linearity of the governing
equations allows the problem to be solved by the superposition of the initial state and two
sub-problems of the perturbed state: (I) the strain problem and (II) the antiplane shear
stress problem. The boundary conditions and solutions in the decomposition scheme are

given as follows
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Fig. 4.1— (a) Schematic of an inclined wellbore in fractured rock formation under non-isothermal
condition, (b) far-field stresses, pore pressure and temperature in the xyz local wellbore coordinate
system.
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Problem I — Plane Strain

The boundary conditions for perturbed quantities in Problem I at the wall (» = R,,) are

0, =p,()=[0, + 0, OS2 = 6,))] s eorveereeeeerereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeee (4.52a)
Gy =0 SIN2(O=6.)) roovovooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee (4.52b)
D= D" = D(E) = Do (4.52c)
S (s (O (4.52d)

It is obvious to recognize that the loading condition can be separated into an axisymmetric

case (&independent) and deviatoric case (&-dependent) as follow

Case 1: Axisymmetric Loading. The perturbed boundary conditions at the wellbore (r =

R,) are
o,=p,()—0,; 0,0 =0, i, (4.53a)
D' = D S D (E) = Py (4.53b)
T =T, (1) =T oottt sttt (4.53¢)

Under axisymmetric condition, the compatibility relation, Eq. 4.37, becomes

2 —1 —1I s
(aa—z+la—j(8kk s, B TJ S (4.54)
re ror M, M, M,

In the above, ¢,, = €, +¢&,, since £_ = 0 for plane strain. Integration of the above noting

that all quantities must vanish at far field (r — o) yields

a . @' . B
E === — =P — = e (4.55)
“ Mll Mll Mll

Eliminating the volumetric strain in Eqs. 4.39 and 4.40 gives the fluid diffusion equation as
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) I El'v _ ﬁlﬁs IM
{[A]i+[r]—[D][a—2+la—H p_piemm At elor (4.56)
ot or” ror " ;SI —a&"B 1M, ot

where the coefficient matrix [A], [I'], and [D] are given in Eqgs. 2.37 and 2.38. In term of

dimensionless coefficients, Eq. 4.56 becomes

d (o> 1 a P ew|or
— 4+, ]— _— = o eetteeeereeeeraeeennarennaaeen 4.57
|:[('0] atD +[ D] [KD](al’; + I"D arDz J:|{pn} {C’II;} atD B ( )

with the dimensionless coefficient matrix [@], [I',] and [K,] given in Eq. 2.43 and the

coefficient c,?)f) defined as

e = (B =B T M) (A + Apy) e (4.58)

It can be seen that in axisymmetric loading of the wellbore geometry with infinite extent,
the fluid diffusion equation is uncoupled and can be solved separately from the
stress/displacement field. The fluid flow, however, is still coupled with the temperature
variation. On the other hand, the thermal equation simplifies to a classical heat conduction

equation which is uncoupled from both the stress and pore-pressure field as

T _,(0°T 19T
a—=xg a_z 17 e (4.59)
ot,, ary  rp or,
in which the dimensionless thermal coefficient &, is given as
T
e TRy (4.60)

k' + "
Using the boundary condition, Eq. 4.53c, the solution for temperature field is obtained

independently and expressed in Laplace transform domain as
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T® =A]~"q>(§hrD)=(Tw—7})/s)%g§), ......................................................... (4.61)

where &, =./s/k} ; the tilde sign ~ denotes the corresponding quantity in Laplace

transform domain; s is the Laplace transform parameter; K, is the modified Bessel
functions of the second kind of order zero; the superscript " denotes loading case number.
Next, the expressions for the dual pressure fields are derived by solving Eq. 4.57. Equation
4.57 is a non-homogeneous partial differential equation system and its general solution is

obtained as a summation of the homogeneous and particular solutions and given as

PV =giT O+ DTCMVK(EMF) woveveiiviiviiiieisiiesseiesssessiessessssssssssssssssssssseseneee (4.62)
(N)=LII
PO =gl TO+ D mMOCYK (EMr)) oo (4.63)

(N)=LII

where CM = C™(s) is arbitrary coefficient to be determined from boundary conditions;

EM =/™  with the coefficients (™ and m™ given in Eqs. 2.48 and 2.49; the

parameters g\ is defined as

g :(s([m]—@j+[l“n]} O (4.64)
K

il
D Chr

Applying the pressure boundary condition (Eq. 4.53b) yields

PV =G AT @& r)+ D AN D(EMr)) i (4.65)
(N)=L1II
PO =gl AT @ (E )+ D mPAND(EMNr)) , eeeeiiiiiiiviieiieiinneesenieseneneen (4.66)

(N)=L1I

where the lumped parameters A(If} is defined in terms of Ap=p, —p,/s and
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AT =T,-T,/s as
A =[1=m™)AP — (gl — gbm™)AT1/(m" =m™) oo, (4.67a)
(4.67b)

A =—(1-m")Ap - (g; —grm" AT 1 /(m"' —m"),

After obtaining the solution of 7™ and T , the radial displacement is readily obtained by

integration of the volumetric strain, Eq. 4.55, noting that &} =[(1/r,)d(r,u'")/dr,]1/ R,

—1I

M —q
u, C, 1 jr [ a, pl(l) + Q,
- e —_

G 1 P10 +£T<l>]dr0, .................................
M, M, M

W 'n Ip 11

where C, is another coefficient to be determined from stress or displacement boundary

condition. From Eq. 4.68, the polar stress components are straightforward

—1 ns
% B opo ]er] ........ (4.69)

— |G, 1 a)
O-;Erl'):_(Mll_MIZ) _22__2 FD[_—I l(l)+_—1
' Tp M, M, M,
o 1 (@ o, @ e B0, |
) I — | p D M, M, M,
Op =M, —M,,) . . _ yeenrerenns (4.70)
p 2o B o, B o
M11 M11 M11 ]
O ) =0 e 4.71)
Using the stress boundary condition, Eq 4.53a, the solution for stress is
Y ==Y ANANTI(ENr,) = ATAT 1 (7)) + A/ 1 s (4.72)
N)=LII
(4.73)

G5 = D AVAGI(ENr,) + @ (EMry)]

N)=LII

+ ATAT [TL(E, 1)) + D (&,1,))] - AG /1,

where the coefficient 4™ is defined in Eq. 2.71b; the lumped parameter A" and the
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functions I'1 and AG are given as
A" = (=M I M, )@ @) + T Y + B s oo (4.74)

K, (xrp) _ K, (x)

Aoc=p -0, /s; (xr,)= ,
P " (72 xr, Ko (x) xr;Ko(x)

Case 2: Deviatoric Loading. The perturbed boundary condition at the borehole wall (rp =

1) are
0P =-0,c052(0-0.)), 02 =0,82(0=0.)), oo, (4.76a)
P D = PO = TP =0 e (4.76b)

Under this mode of loading, the heat equation yields trivial temperature solution 7 ® = 0.
As a result, the stress and pore pressure responses are the same as those for the case without

thermal effect given by Eqgs. D1.12 to D1.16 in Appendix DI1.

Problem II: Antiplane Shear Stress

The boundary conditions for perturbed quantities in Problem II at the wall (» = R,,) are

0. =—S.c08(0)+ S SIN(B)] ;oo (4.77a)
O, = 0,5 =0, i (4.77b)
D = P ST =0 e (4.77¢)

No disturbance of fluid or temperature is generated by this antiplane shear stress
perturbation. The solution is elastic and the same as given previously for dual-poroelastic

inclined wellbore, i.e., Egs. 2.107a and 2.107b.

Complete Solution

The complete solutions are obtained by superimposing the background state with non-zero
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solutions of the two perturbed sub-problems given as

D = D0 P A D e (4.78)
P = Do P A D e (4.79)
T = T A T ettt (4.80)
0,=0,+0,c0520 =0+ 0V + 0% .o (4.81)
Oy =0, —0,C08(2(0 = 6.))+ T4 + 05 s (4.82)

=S, + Va0, + 0.7+ 00 + 03) + (B =2 BT e (4.83)

+ (0 = 2v,2 )(p"" + p' ) + (" = 2v,0 ) (p" + p'?)

Oy =—0,SIN(2(0 = 6.))F 0 oo (4.84)
0, =[S.cos(f)+S, sin(d)](1- L/ 7)o (4.85)
G =S, SIN(B) =S, COSON(1+1/72) s mevrrrrrrrrsssssimeesrrenesssssssmsssssssessssssee (4.86)

4.3.3 Numerical Solution

Thus far, the inclined wellbore solution has been obtained analytically by neglecting the
non-linear thermal convection. This section presents a quantitative analysis for the effect of
thermal convection via numerical solution method. It was shown in the previous section
that the pressure and temperature diffusion equations are uncoupled from the
stress/deformation field under the special case of axisymmetric loading, i.e., vertical
wellbore subjected to hydrostatic in-situ stress condition. Therefore, the pore-pressure and
temperature distributions accounting for non-linear thermal convection effect can be

obtained independently using finite difference scheme. The finite-difference solutions for
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pore pressure and temperature are then substituted into Eqgs. 4.69 and 4.70 to get the
resultant stress field. The axisymmetric fluid and heat diffusion equations accounting for

heat convection effect are

) (a1 a|[P ew|ar
[[co]atD Cp]- [D](arD - EJHPH} {chf}al .................................. (4.87)

2 1 11
a—T:ET(a—T+La—TJ+(/?”ai+ET“ op Ja—T ...................................... (4.88)

ot, \orl r,or, " or, " or, Jor,’

in which the thermal convective coefficient %™ is defined as

T(N)
TN (4, + 4y )c

hf K‘ +K‘ g e eea e eeh ettt a et et a e et a et e a e et a e e et e e a e eea et teaeaeaereeaae

The above diffusion equations are solved using the fully implicit Crank-Nicholson finite
difference scheme. Eqs. 4.87 and 4.88 are discretized using small spatial and temporal
stepsize. The Crank-Nicholson method transforms each component of the partial

differential equations into the followings

JH oy
3;’( =X v e (4.90a)
D D
arz Z(A ; o =2 X+ X (X, = 2X7 + X)) (4.90b)
D D
dX _ [(X/fll X | (xd Xf/l)} ............................................................. (4.90¢)
arD 2 2Ar, 2Ar,
Lox L X -XE) X=X (4.90d)
1, o, 2(1+i*Ar,) 2Ar,, 2Ar, |
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where i, j denote position and time, respectively; X represents either pore pressure or
temperature. Application of Egs. 4.95a to 4.95d into Egs. 4.92 and 4.93 leads to a nonlinear
system of algebraic equations. The boundary conditions at the wellbore wall (rp = 1) and at
the far field (taken at a sufficiently large distance, rp >> 1, so as to minimize boundary

effect) are used for the first and last equations

pM = p™N = p —por TN =T =T, =Ty e, (4.91)
PN = pOT = 0; TN =T =0, e (4.92)

where nr is the total number of spatially discretized points. As such, the task of solving for

the unknowns, p™’* and 7", in terms of the knowns, p™/ and 7/, reduces to finding

the solution to the system of 3x(nr-2) nonlinear algebraic equations given in matrix form as
[ XM T= R IIXI THIBEC] oot (4.93)

where [X] is the solution vector; [BC] is the vector containing boundary conditions; [L/™']
and [R’] are banded matrices made of six tridiagonal submatrices. These matrices and their
components are listed in Appendix G. The solution is obtained by iterating Eq. 4.93 with an

error tolerance of € = 107,

4.3.4 Results and Discussions
In this section, the combined time-dependent effects of fracture and mud temperature will
be analyzed through simulated downhole drilling condition using the presented analytical

solution. To focus on the thermally induced responses, the effects of perturbation due to
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hydraulic pressure gradient and release of non-hydrostatic in-situ stress are isolated. This is
achieved by assuming a vertical wellbore, drilled in a fractured rock formation with balance
mudweight, i.e., p,, = py, and subjected to hydrostatic in-situ state of stress. The formation’s
material data are summarized in Table 4. Other relevant data include

Sy =24 MPa, Sy = 18 MPa (azimuth = 0), S, = 18 MPa , py = 10 MPa, T, = 40 °C

Ry, =0.1 m, Drilling mud pressure = 10 MPa (balanced drilling)

TABLE 4—DUAL-POROTHERMOELASTIC MODELING PARAMETERS

Parameters Values
Matrix Young modulus (E ') 9600 MPa
Fracture Young modulus (E ™) 192 Mpa
Poisson’s ratio (v' =" 0.20
Grain bulk modulus (Ks) 42.0 GPa
Fluid bulk modulus (Kr) 2300 MPa
Matrix local porosity (¢") 0.20
Fracture local porosity (¢") 0.95

Matrix local permeability (')
Fracture local permeability (k")
Fluid viscosity ()

Solid volumetric thermal expansion coeff. (¢ *)
Fluid volumetric thermal expansion coeff. (/)

Bulk heat capacity (C )

Thermal conductivity (1)
Fracture’s bulk volume fraction (v'' = 1 -V/)

1.0x10™* mD (~ 1.0x107"® m?)
1.0 mD (~ 1.0x107"° m?)
1 cp (0.01 Pa-s)

3.0x107°°C™
3.0x10°C™

2732 kJim®-°C

353 kJ/m-day-°C
0.01

In this case, downhole drilling is simulated for heating or cooling with a constant
wellbore/formation temperature difference of AT = T, — Tj = +/-30 °C. Due to the isotropy
of horizontal in-situ stress, there is no stress-induced pore pressure. In addition, in balance
drilling, there is no hydraulically-induced fluid diffusion between the wellbore drilling mud
and the formation pore fluid. The temperature gradient results in differential expansion or

contraction of the solid and fluid constituents within the porous saturated fractured rock
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formation. The volume changes associated with thermal expansion/contraction lead to
significant modification of both pore pressure and total stress distributions in the near-
wellbore region as shown in Figs. 4.2 to 4.4. Moreover, heat diffusion process dictates the

responses time-dependent.

13} Matrix -
< 12f .
[ ! ]
= 11 ]
o i ]
2 10} ]
s [ ]
< o :
£ gf ——— heating
: —— cooling ]
7%\ p=01  eeaea no thermo
2.5 3.0
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10.2f
< 3
= [
S 10.1}f
g ;
2 10.0f
8 L
A [
o 99t
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9.8} b ]
- heating cooling =====n0 thermo ;
9.7L : : - .
1.0 1.5 2.0 2.5 3.0

rp=r/Ry,
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Fig. 4.2—Evolution of pore-pressure distribution in the (a) matrix and (b) fracture network under the
effect of heating and cooling in conjunction with no-thermo effect (dashed lines).

From Fig. 4.2, it is seen that heating expands the pore fluid and induce increment in
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pore pressure in both the matrix and fracture network. As time progresses, the peaks of

thermally induced pore pressure advances into the formation and decreases due to

subsequent heat diffusion. The thermal effect on pore pressure is not significant in the

fracture network due to its high permeability such that all build-ups will quickly dissipate.

For cooling, the near-wellbore pore pressure is reduced in a reverse analogy to heating.

Effective Radial Stress, MPa

Effective Radial Stress, MPa

|
)

heating
-\ L/ meaaas no thermo A
Wm o
o 15 20 25 3.0
rp=r/Ry
(a)
tp =1
- tp = 0.1 .
cooling
- N/ » 0000 meeaa no thermo -
1.0 1.5 2.0 2.5 3.0
rp=1/Ry

(b)

Fig. 4.3—Evolution of effective radial stress distribution in the porous matrix region under the effect
of (a) heating and (b) cooling in conjunction with no-thermo effect (dashed lines).
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The evolutions of the corresponding effective radial and tangential stress distributions
are shown in Figs. 4.3 and 4.4. For isothermal case, the effective stresses are not functions
of time due to the axisymmetric loading. The effective radial stress inversely mirrors the
response of pore-pressure. As such, heating will reduce effective radial stress and develop a

tensile region near the wellbore wall that will diminish with time (Figure 4.3a).

18} -
‘ heating
no thermo

Effective TangentialStress, MPa

no thermo

Effective TangentialStress, MPa

8 [ —— . —— ]
1.0 1.5 2.0 2.5 3.0

rp=rt/Ry,
(b)
Fig. 4.4—Evolution of effective tangential stress distribution in the porous matrix region under the
effect of (a) heating and (b) cooling in conjunction with no-thermo effect (dashed lines).
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On the other hand, high mud temperature increases the effective normal stress at and in
a short distance from the wellbore wall but decreases the effective normal stresses away
from the wellbore compared to isothermal response (Fig. 4.4a). Qualitatively, the variation
can be explained as followed: due to heating, there are both thermally-induced compressive
tangential stress and pore pressure. In this case, the thermal expansion coefficient of the
fluid is larger than the rock matrix leading to higher induced pore pressure which
simultaneously lowers the effective normal stress away from the wellbore wall. On the
other hand, at the borehole wall, the pore pressure is fixed due to fluid communication
while the compressive total tangential stress is increased by a constant amount, leading to
higher effective stress at the borehole wall. Analogously, the effects of cooling due to low
mud temperature shows reduction in effective stress concentration at or near borehole wall
but increase away from the wall.

From the above analysis, it is observed that the thermal expansion coefficients for solid
and fluid play an important and significant role in the near-wellbore stress and pore
pressure. Figs. 4.5 and 4.6 show the effect of solid and fluid thermal expansion coefficients
on pore pressure and effective tangential stress. Obviously, the solid thermal expansion
coefficient dominates the stress responses while the fluid thermal expansion coefficient has
more influence on pore pressure. Finally, anisotropic implications of the solid thermal

expansion coefficient are displayed for heating case in Fig. 4.7. It is shown that for higher

the ratio of &, /&, the induced pore pressure is smaller and the effective stress is larger.
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Fig. 4.5—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix
region due to heating for different values of solid thermal expansion coefficient, 0.
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Fig. 4.6—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix
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region due to heating for different values of fluid thermal expansion coefficient, of’.
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Fig. 4.7—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix
region due to heating for different ratios of solid thermal expansion coefficient in the transverse

direction and isotropic plane, &’ /" .

Next, the effect of heat convection is investigated numerically for the special case of

vertical wellbore subjected to hydrostatic in-situ state of stress. Instead of balance drilling,

an overbalance mudweight of p,, = 11 MPa > p, = 10 MPa is assumed in this simulation.

The case of drilling mud cooling the formation is considered since this is often the case in

drilling deep rock formations. First, the finite difference scheme is validated against
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analytical solutions for heat conduction in non-fractured rock (single-porothermoelastic)
and fractured rock (dual-porothermoelastic) as illustrated in Fig. 4.8. The results show
excellent agreements between the numerical and analytical solutions. At a given time, the
fast fluid diffusion in the fracture network dissipates the thermally induced matrix pore

pressure.

Cooling 30 °C, t = 5 mins

------ non—fractured rock, no thermo -
non—fractured rock, w. thermo

Pore Pressure, MPa

fractured rock, matrix w. thermo -
fractured rock, fracture w. thermo ]
6F ° finite difference solutions ]

1 2 3 4 5

rp :r/Rw
Fig. 4.8—Validation of finite difference scheme against analytical solutions for heat conduction.

The effects of heat convection are illustrated via the profile of temperature and pore
pressure in the matrix in Figs. 4. 9 and 4.10. Heat convection carries the temperature front
faster into the formation and as a result modifies the magnitude and distribution of pore
pressure response in the near-wellbore region. For this data set, the solution predicts

noticeable contribution from heat convection.
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Fig. 4.9—Heat convective effects on temperature distribution.

Cooling 30 °C, t =5 mins

Pore Pressure, MPa
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Fig. 4.10—Heat convective effects on pore pressure distributions.

4.4 Rectangular Strip

As displayed in the inclined wellbore problem, the impact of the extra coupling of a
temperature gradient in fractured porous medium can be substantial and complex. The

Mandel’s problem and solution for dual-poroelastic media (Chapter 2), extended to include
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the effect of temperature gradient, can be treated as a canonical illustration of the intricate
dual-porothermoelastic coupling. This section shows the derivations of the analytical
solutions for the consolidation of a rectangular strip under non-isothermal and unconfined
compression condition. The analytical solution are derived and given in closed form in the
Laplace transform domain. The results for stress, pore pressure, and displacements are
plotted and compared with the corresponding isothermal counterpart to highlight the effect

of temperature gradient in a dual-porosity and dual-permeability porous saturated medium.

4.4.1 Problem Descriptions

As illustrated in Fig 4.11, the original Mandel’s problem involves an infinitely long
rectangular specimen sandwiched between the top and bottom by two rigid, adiabatic, and
frictionless plates. At time /=0, a generalized axial loading representing either an applied
vertical strain/displacement, £ (¢) or u_(¢), or an applied vertical load, 2F(f) (per unit

length) is applied to the rigid plates at the top and bottom, respectively. Simultaneously, the
left and right edges of the plates are imposed with time-dependent fluid pressure p,(f), and

temperature 7,(#). Mathematically, the generalized boundary conditions are expressed as

x=ta: o,=P(@{); o0.=0, p'=p'=p@); T=T(0).....(4.94)

Xz

z=%b:  0.=q¢ =¢"=q"=0; U = U (1), oo, (4.94b)
z=4b: [0 dr=2F(t) 10ad CONIOL, .ocooooorrorsorsoerorsossoesoesosoes (4.94c)
z=xb: e_=¢€_(t)=u_(t)/2b stroke cONtrol,........ccococrrrrrrrrrrrrene. (4.944)
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Fig. 4.11—The Mandel’s problem geometry and setups incorporating temperature loading.

With the above boundary conditions, the governing equations is reduced to one-
dimensional and all variables are at most functions of x and ¢ only. The plane-strain
condition in the y direction and the stress equilibrium in the x direction require that &, = 0
and o, = P.(f). Using these conditions into the constitutive Eqs. 4.30 and 4.31, the fluid

contents are rewritten in terms of stress, fluid pressure, and temperature as

C'==a" (0. +@'P.=bp" by D" = B'T) s (4.95)
(M =—a" (0 +@"P. by p' —bpyp" =B T) s (4.95)
where a™, @™, and b are given in Eqs. 2.34 to 2.35b. B is expressed as

B 5

B =Bi+B'p" - k. IEH:E;+BI551—QH ererae et (4.95)

Similarly, the compatibility Eq. 4.38 changes to

2 M H B . M
0 |:O-zz _(531 _0—(11 Mm Jpl _[531 _0—(11 MB Jpn _[IB; _ﬂls 13 j]} =0,..... (4.96)

2
ox 1 1 M,

Integrating and accounting for the symmetry about the centerline (x = 0) yields
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O =7 D A7 D T T HClt) s (4.97)
in which the dimensionless coefficient 7™ =a™-a™M,,/M,,, 7" =B:-B’M /M,

and C(¢) is an integration constant depending only on time. As a result, the fluid diffusion

equation with normalized parameters becomes

9 a2 \[P| |e? lap |erlac, ew|ar
(my+ FD K, a—zj . = e at + - at + I aT, ............. (498)
D Xp )| p c,Q D c; D ¢ | %o

Neglecting the nonlinear convective term in the heat diffusion equation, the classical heat

conduction equation is recovered as

in the above, [o], [T',], [K,], and ¢} are given in Egs. 2.46 and 2.47; c|;’ and K}, are

defined in Egs. 4.58 and 4.60.

4.4.2 Analytical Solution

The heat diffusion equation, Eq. 4.99, is uncoupled from the stress and pressure field and
can be solved separately. Using the temperature boundary condition, the solution for

temperature field is obtained and expressed in Laplace transform domain as

cosh(&,x,,) — AT cosh(&,x,,)

I=0,~1/s) cosh(&,) cosh(&,)

.................................................. (4.100)

where &, =./s/ K} . Next, the expressions for the dual pressure fields are derived by

solving Eq. 4.98. This is a non-homogeneous partial differential equation system and its
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general solution is obtained as a summation of the homogeneous and particular solutions

and given as
P =P ' +Tgl +C,g" +Clcosh(& x,) +Cl cosh(EM x,) oo, (4.101)
PU =P "+ gl T +C,g" +Cim' cosh(&' x,) + Colm" cosh(E™ x,) s cvverereane. (4.102)
where C{V = C™ (s) is additional arbitrary coefficient to be determined from boundary
conditions; £ = V™ with the coefficients /™, m™, ™ and ¢®™ as given in Egs.

251 to 2.54; g are defined in Eqs. 4.64. Subsequently, using the equilibrium,

constitutive and strain-displacement equations, it is easy to solve for the stresses and

displacements in terms of the fluid pressures and temperature as

G. = AP +A4,C, + AC) cosh(E'x,)) + AMCY cosh(E"x )+ AT oo (4.103)
i - sinh(&,x,,)
P +gC T ——=21"p”
=P+ HaT £
..................................................... (4.104)

_h CI Smh(flxD) hIICII Smh@:HxD)
é:l égn

== ) ettt et et e a e st b e s e bbb e sanesaeen (4.105)

where the lumped coefficients 4,, 4, , A, K™, f, and g are given in Egs. 2.82a to 2.85.

A" and h" are defined as

= g A T Gy T e (4.106a)
B = (@ @) + 0 Gy 4 B M s (4.106b)

The remaining three unknowns El (s), Ci(s) and C)'(s) are determined from the fluid
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pressure boundary conditions for p' and p'" at the edges x = +/-a and the vertical loading

condition on top and bottom at z = +/-b.

4.4.3 Results and Discussions

This section illustrates the response of a rectangular strip under temperature gradient

—1

loading. The following set of data are used: E =1244MPa, v =022, &' =0.64, @ =

033, B*=1.33x107 MPa/°C, B} =5.05x10° °C", B =8.71x10° °C", k' = 5x10” md,

k"=5md, p=1 cp, and ¢, = 7.18x10” m*/day.

Figs. 4.12 and 4.13 show the evolutions of pore pressures and vertical stress
distribution with the application of a +/-5 °C temperature gradient across the sample lateral
boundaries. The behavior of pore pressure in the fracture network essentially stays the same
under the additional thermal effect due to fast fluid diffusion. However, the pore pressure in
the matrix seems to display a counter-intuitive behavior, i.e., decreasing for heating and
increasing for cooling. This can be explained through the transient redistribution of vertical
stress in Fig. 4.13. For isothermal case, compatibility condition requires a stress transfer to
the middle region due to the apparently softer drained edges (the Mandel-Cryer’s effect).
Heating will induce additional compressive stress at the edges, effectively making the sides
stiffer than the center. Consequently, the stress is redistributed from the center to the sides,
leading to lower pore pressure at the center. The dual evolutions of pore pressure at the
center of the sample are displayed prominently in Fig. 4.14. Because thermal expansion
counteracts vertical loading near the edges (Fig. 4.15), the strip starts out consolidating but

quickly turns to rebounding for heating as shown in Fig. 4.16. Laterally, the reduction in
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vertical displacement allows the strip to contract more than the isothermal counterpart as

depicted in Fig. 4.17. The responses for cooling can be explained in opposite analogy.
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Fig. 4.12—Evolution of pore-pressure distribution in the cross section under the effect of heating
(left column) and cooling (right column) in conjunction with no-thermo effect (dashed lines).
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Fig. 4.13—Evolution of vertical stress distribution in the cross section under the effect of heating
(left column) and cooling (right column) in conjunction with no-thermo effect (dashed lines).
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Fig. 4.14—History of normalized pore-pressure developed at the center (x/a = 0) under the effect of
(a) heating and (b) cooling, in conjunction with no-thermo effect (dashed lines).
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Fig. 4.15—History of normalized vertical stress developed at the center (x/a = 0) and at the edge (x/a
= 1) under the effect of (a) heating and (b) cooling, in conjunction with no-thermo effect (dashed
lines).

193



0.0040F
0.0035
0.0030F
u; 0.0025
b 0.0020}
0.0015
0.0010

0.0005 . , ,
1074 0.01 1 100 104

T
(@)
o
5

aQ

no thermo

)]

Fig. 4.16—History of normalized vertical displacement at the top (z/b = 1) under the effect of heating
and cooling, in conjunction with no-thermo effect (dashed lines).
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4.5 Summary

In this chapter, the dual-porothermoelastic analytical model and solutions for the responses
of two problem geometries, inclined wellbore and rectangular strip, have been derived and
illustrated. Coupling of temperature effects for non-isothermal condition is incorporated by
adopting a “single-temperature” approach in which a single representative thermodynamic
continuum is adopted for naturally fractured rock formations.

The inclined wellbore results demonstrate that thermal loading induces significant
concentration of stress and pore pressure that controls near-wellbore stability. The effect of
thermal expansion coefficients of solid and fluid on stress and pore pressure was shown, in
addition to the anisotropic impact of varying the ratio, &, /&, . Numerical examples
employing finite difference method are also shown accounting for heat convection.

The results for rectangular strip displayed the canonical responses of the coupled dual-
porothermoelastic process which lend insight into the impact of thermal loading and the
triple time scales among dual fluid flow and single heat diffusion in naturally fractured

porous rock formations under non-isothermal condition.
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Chapter 5

Applications

5.1 Introduction

This chapter is dedicated to the applications to the solutions presented in previous chapters.
The inclined wellbore solution is used to perform wellbore stability analysis for drilling
through chemically active fractured rock formations under non-isothermal conditions. The
hollow cylinder solution is applied to study elastic consolidation of a producing reservoir
and its implications on porosity and permeability reduction in the near wellbore region.
Finally, the cylinder solutions are used to demonstrate the dual-poromechanics responses
under some realistic experimental loading conditions such as cyclic, linear ramping, and

exponentially decayed.

5.2 Wellbore Stability’

In oil-and-gas operations, the majority of drilling footage is carried out through low-

permeability rock formations such as shale, chalk, granite, etc. Many of these subsurface

7 Part of this work was published in SPEJ 14(2): 282-301 (Nguyen et al. 2009) and presented at SPE ATCE
(Nguyen and Abousleiman, SPE 123901, October 2009, New Orleans).
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intervals are in-situ fractured and may be treated as such when it comes to drilling
operations and wellbore-stability planning. The ultralow-permeability rock matrix is highly
fractured not only at the macroscale as observed in many wellbore formation microscanner
images (FMI) but also at the microscale as seen on thin sections and scanning electron
microscopy (SEM) images (Han et al. 2009).

When the shale is fractured, it is mechanically weakened and exhibits high-
permeability fluid-flow paths within the low-permeability intact shale matrix. Because of
different fluid-diffusion rates between the fractures and shale matrix, there are two distinct
pore-pressure fields in saturated fractured shale when subjected to stress and/or fluid-
pressure perturbation. For example, in overbalanced drilling through a fractured-shale
formation, the drilling mud penetrates the fractures immediately and there is no significant
leakoff of fluid from the wellbore or from the fractures into the intact shale matrix. In other
words, the fracture network with high permeability provides preferential flow paths for
mud invasion into the formation. Consequently, we risk losing mud circulation and
damaging the formation. In addition, the fluid invasion into the fractures weakens the
mechanical strength of the shale such as cohesion and friction angle, as observed in
laboratory shale testing. Furthermore, the communication between the fluid pressure in the
fractures and wellbore mud pressure makes the formation more sensitive to every activity
in the drilling operation such as stopping circulation, tripping, or drillstring impact. These
events could create significant pressure variation in the fractures, leading to collapse failure
consequences such as cavings and hole erosion.

As a result, the natural fractures of the shale, necessitate an unconventional approach to
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assess wellbore instabilities. The basic approach consists of applying the dual-
poromechanics equations to calculate the time-dependent pore-pressure and effective stress
redistributions in and around the wellbore to compute subsequently the time-dependent

mud-weight windows to prevent wellbore collapse or to avoid wellbore fracturing.

l Eff. Stress Concentration

Fracturing

uuuuuuu

Collapse

Fig. 5.1—The field problem of simulating and predicting wellbore stability.

Rocks generally fail when the effective stress state (total stress less the pore pressure:
o; - p) exceed the formation strength’s either in tension or compression. The tensile
strength of subsurface formations is generally very weak due to preexisting fractures or
bedding planes in the rock. Thus, it is conservatively taken to be zero in stability
calculation. The compressive strength is described using any two of the three strength

parameters: friction angle, ®; cohesion, C; and/or uniaxial compressive strength, UCS.
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These compressive strength parameters are related by UCS = 2Cxtan(®/2+m/4). All tensile
and compressive strength parameters can be measured from rock testing or correlated from
well-log data.

In this section, the individual and combined time-dependent effects of shale’s fractures,
mud chemistry, and temperature will be analyzed through simulated downhole drilling
condition. A wellbore is assumed to be drilled in a fractured shale formation at a true
vertical depth (TVD) of 3281 ft (1000 m). The values for in-situ conditions and wellbore
geometry are listed Table 5. Other modeling material parameters for fracture and chemical

effects are given in Table 6.

TABLE 5—IN-SITU CONDITIONS AND WELLBORE GEOMETRY
In-situ Conditions
Overburden stress (Sv) 1.050 psi/ft (23.75 kPa/m or 2.42 SG)
Maximum Horizontal stress (Sy) 0.880 psi/ft (19.90 kPa/m or 2.03 SG)
Minimum Horizontal stress (Sp) 0.800 psi/ft (18.10 kPa/m or 1.85 SG)
Formation pore pressure (po) 0.433 psi/ft (9.80 kPa/m or 1.00 SG)
Formation temperature (7o) 40°C (104°F)
Formation water activity (ao) 0.88 (~ 150K CaCl, = 0.034 mole fraction)
Wellbore Parameters
Well depth (true vertical depth) 3281 ft (1000 m)
Wellbore diameter (2Rw) 4.0in (0.1 m)
Well azimuth 0° clockwise from North
Well inclination varying from vertical (0°) to horizontal(90°)
Rock Strength Parameters
Formation cohesion (C,) 1200 psi (8.27 MPa)
Formation friction angle (®,) 20 degrees
Formation tensile strength 0 psi (0 MPa)
Bedding Plane Strength Parameters
Bedding plane cohesion (Cp) 600 psi (4.14 MPa)
Bedding plane friction angle (®y) 10° .
Bedding plane dip (fy) 80° from horizontal plane
Bedding plane strike (%) 150° clockwise from North
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TABLE 6—MODELING PARAMETERS
Single-Poroelastic Analysis (Intact Rock)

Compressibility (c) 6.2x10° psi™! (9.1x10™ Mpa™)
Poisson’s ratio (v') 0.22
Effective stress coeff. (a) 0.96
Storage coeff. (/M) 7.6x107 psi' (1.1x10™ Mpa™)
Porosity (¢) 0.14
Permeability (k') 1.0x10° md (~ 1.0x107%° m?)
Fluid viscosity () 1 ¢cp (0.01 Pa-s)
Drilling-mud weight (pw) 10.00 Ib/gal (1120 kg/m® or 1.258 SG)

Dual-Poroelastic Analysis (Fractured Rock)
Fracture’s compressibility (c") 6.2x107° psi' (9.1x10™ Mpa™)
Fracture’s bulk volume fraction (v ) 0.05
Fracture’s effective stress coeff. (a ) 1.00
Fracture’s storage coeff. (1/M") 7.6x107 psi”! (1.1x107 Mpa™)
Fracture’s local porosity ?”) 0.95
Fracture’s permeability (k 1.0md (~ 1 0x107"° m 2
Interporosity geometric factor (A) ~3.87 |n‘2 (6.0x10° m
Overall fractured rock compressibility (¢ ) 9.1x10” psr1 (1.31 x1o *MPa™)T
Overall fractures rock Poisson’s ratio (v ) 0.22
Overall matrix’s effective stress coeff. (or’ ) 0.21"
Overall fracture’s effective stress coeff. (ar”' ) 0.76"

Dual-Porochemoelastic Analysis (Fractured Shale)
Matrix’s membrane efficiency (;H) 0.2
Fracture’s membrane efficiency (,1)') 0.0 (no membrane behavior)
Solute diffusion coeff. in free solution (D) 0.27 inzlday (1 75%x107 m2/day)
Matrix’s effective solute diffusion coeff. (D). = D; (¢")*) 5.33x10° in*day (3.43x10°° m?%/day) '
Fracture’s effective solute diffusion coeff. ( Dg‘;/’ =D¢") 0.25 in*day (1.58x10™ m?day) '
Drilling-mud activity (a/ ) 0.986 (~ 50K CaCl, = 0.008 mole fraction)
Dual-Porothermoelastic Analysis (Fractured Rock under Non-isothermal Condition)

Solid volumetric thermal expansion coeff. (¢ *) 3.0x107° °C”
Fluid volumetric thermal expansion coeff. (&f) 3.0x10™°C”’
Bulk heat capacity (C ) 2732 kJim®-°C
Thermal conductivity (1) 353 kJ/m-day-°C
T Computed

Time-Dependent Analyses for Fractured Rock: Dual-Poroelastic Analyses. The
impacts of natural fracture network on mud-weight window are illustrated in here. The
mud-weight window at the borehole wall (#/R = 1) for compact shale formation as
determined by the single-poroelastic solution, which neglects the effects of flow and

deformation in the fracture is shown in Fig. 5.2(top).
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Fig. 5.2—Mud-weight windows at the borehole wall (r/R = 1) for different modeling approaches: (top)
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non-fractured rock, i.e., single-poroelastic and (bottom) fractured rock, i.e., dual-poroelastic.

201



The corresponding mud-weight window as predicted by the dual-porosity and dual-
permeability solution is shown in Fig. 5.2(bottom). In these figures, the green color
indicates safe drilling mud-weights whereas the red color implies that the mud-weight to
prevent collapse is higher than the allowable mud-weight to avoid fracturing the formation.
At high wellbore mud pressure, flow in fracture network will quickly increase the pore
pressure and decrease the effective stress, allowing more mud support to prevent collapse
but also promoting tensile/fracturing failure (lower fracturing mud weight). On the other
hand, at low mud weight, flow in fracture system will reduce mud support considerably
and, thus, increase collapse potential (higher collapse mud weight). It is obvious that the
non-fractured-shale approach and solution without coupling the fracture’s contribution falls
short in simulating wellbore stability in fractured shale because it predicts a wider mud-
weight window for drilling operations. For example, drilling from a non-fractured shale
section to fractured one will not tolerate high-angle wells, e.g., with borehole inclination

greater than 55 degrees.

Time-Dependent Analyses for Fractured Shale with Mud Chemistry Effects: Dual-
Porochemoelastic Analyses. Because the effective stress states are the same at the
wellbore (Fig. 2), chemical effects on mud-weight windows only manifest inside the
wellbore wall. In fact, the mud-weight window at /R = 1.05 in Fig. 5.3 reveals that low
mud salinity (50K) and being fractured will shrink the mud-weight window. It is also
important to note the time dependency of failure through the progression of the mud-weight
window. In this case, it is observed that the mud-weight window shrinks from both ends

(collapse and fracturing), approximately 1.50 Ibm/gal after drilling for 1 day, resulting in a
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total mud-weight-window contraction of 3.0 lbm/gal for high-angle wells. This trend

suggests that borehole-instability potential increases with time.

Critical Mudweight Varying Hole Inclination Angle--(Mohr-Coulomb)

Wodel: Isotropic; Parochemathermoelastic; Permeahle; Formation Permeahility = 1.00E-05 md

Mud Termperature = 40.0 deg Distance into formation (r/R) = 1.05

Formation Temperature = 400 deg C r=1 05 R Hole Azimuth = 0.00 deg; Depth = 3281.00 feet
Wertical Stress = 34451 PSI(1.050 PSifeet) Tensile Strength = 0.00 PSI

Max Hor Stress = 2887.3 PS| (0.880 PSifeet) Cohesion = 1200.00 PSI; Friction Angle = 20.00
Min Hor Stress = 2624 .8 PSI (0.800 PSlfeet) Mo BreakOut Angle

Pare Pressure = 1420.7 PSI (0.433 PSiifeet) Time = 0.10 day(s)
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Fig. 5.3—Mud chemistry effect on mud-weight window at r/R = 1.05 after 0.1 day into drilling with low
mud salinity (50K).

Time-Dependent Analyses for Fractured Shale with Mud Temperature Effects: Dual-
Porothermoelastic Analyses. A mud/shale temperature gradient will increase or decrease
the normal effectieve stress at the wellbore. As a result, the mud temperature can shift the
allowable mudweight window either up or down. In Fig. 5.4, cooling will shift the mud
window down, i.e., reducing the maximum mud density below which to avoid fracturing
the wellbore while also decreasing the mud density required to prevent borehole collapse

shear failures.
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Critical Mudweight Varying Hole Inclination Angle--(Mohr-Coulomb)

Maodel: Isotropic; DualPoroelastic; Permeable; Matrix Permeahility = 1.00E-D5 md

Vertical Stress = 3445.1 PSI(1.050 PSlifeet) Fracture Permeability = 1.00E+00 md

Max Hor Stress = 2887.3 PSI(0.880 PSlifeet) _ Distance inta formation (rR) = 1.00

Min Hor Stress = 2624.8 P31 (0.800 PSlifeet) r= R Hole Azimuth = 0.00 deg; Depth = 3281.00 feet

Pore Pressure = 1420.7 P51 (0433 PSiifeet)
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Tirme = 2.00 day(s)

2 20E+01

2 O0E+01

1.80E+01

1.60E+01

=

= 140E+01 . .

el | Mud Window Cooling Stall

3 . otable

% .z Dual-porothermoelastic

= Mud Window Isothermal . Collapse

Dual-poroelastic

1.00E+01 Fracturing
e
& 00E+Q0

300 40.0 50.0 60.0 0.0
Hole Inclination Angle (deg)
Minimum Horizontal Stress

Pore Pressure Gradient

Fig. 5.4—Mud temperature effect on mud-weight window at r/R = 1.00 after 2 day into drilling for
cooling.

5.3 Reservoir Consolidation®

Hydrocarbon production from naturally fractured reservoirs is susceptible to unwanted
compaction and adverse pressure depletion. Compaction and depletion can be significant in
“soft” and “highly permeable” reservoirs such as naturally fractured formations. In
geomechanics reservoir modeling, the production induced reduction in reservoir pressure is
fully coupled with the changes in total stress state in and around the reservoir. In other
word, the reservoir porosity and permeability depends on the effective stress (total stress

less fluid pressure) or deformation of the porous rock formation. Hence, knowledge of the

8 Part of this work was presented at the SPE ATCE (Nguyen and Abousleiman, SPE 123900, October 2009,
New Orleans).
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effective stress histories and distributions during production and depletion can help
estimate porosity and permeability change, predict and manage solid production, stress on
casing, as well as near-wellbore formation mechanical stability.

In field development, it is desirable to establish the order of magnitude of the reservoir
consolidation effect. Unfortunately, there are no simple tools available when it comes to
analyzing the complex behaviors of fractured reservoirs. Geertsma’s (1957) early analytical
model used a nucleus-of-strain approach to simulate the elastic deformation of an infinitely
thin disk-shaped reservoir with uniform pressure depletion. This approach provides
estimate of deformation outside of the reservoir, e.g., subsidence, while giving no
information about the fluid flow and/or deformation within the reservoir. Analytical
approaches that consider deformation within the reservoir approximate the reservoir
compaction as uniaxial elastic deformation with uniform pressure depletion (Settari 2002;
Settari et al. 2005). In other word, the fluid flow and deformation field are uncoupled and
solved separately. Recently, the fully coupled geomechanics approach to reservoir
simulation has been incorporated in various numerical codes (Lewis et al. 2003, Phillips
and Wheeler 2007). These numerical modeling identifies significant contribution of
compaction drive mechanism during the life of a producing reservoir which required proper
coupling between fluid flow and deformation in reservoir simulation. For homogeneous
rock formation, Kanj and Abousleiman (2005, 2007) provided the analytical solutions for
assessing compaction effect under the effects of stress, pressure, thermal and chemical
perturbation. Recently, the analytical solution for inclined wellbore drilled in naturally

fractured rock formation modeled as dual-porosity and dual-permeability continuum was
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provided (Abousleiman and Nguyen 2005) and later extended to include chemical effect
for analyses in fractured shale formation (Nguyen et al. 2009), thus systematically
modeling the stresses and pore pressures in the fractures as well as in the matrix structure.
These fully coupled solutions provide the groundwork for studying the compaction
problem in naturally fractured reservoir since they can approximate the response of a finite
boundary reservoir when the reservoir lateral extent is much larger than the wellbore radius
or formation vertical thickness.

In this work, the reservoir is ideally modeled as a cylindrical disk-shape of large lateral
extent of radius R, compared to its vertical thickness, 4 (R, >> h), buried at large depth
(TVD >>h). A vertical well with wellbore radius of R, (R,, << R,) is completed in the
center of the reservoir throughout the whole thickness which renders the problem geometry
a hollow cylinder as depicted in Fig. 5.5. The reservoir behavior is linear poroelastic so that
all material parameters such as compressibility are constant. The changes in reservoir
effective stresses, displacements, and pore volume due to wellbore production/injection can
be computed explicitly and analytically if the following assumptions and restrictions
regarding boundary conditions are made (Fig. 5.5b):

e The reservoir is surrounded on all sides by non-depleting and much stiffer rock
formations.
e At the outer boundary of the reservoir ( = R,), there is no normal displacement (u, = 0)

and no flow (g, = ¢," = 0).

e At the wellbore (» = R,), the casing support is assumed to enforce zero normal

displacement (u, =0). For a prescribed production/injection rate, the total flow rate
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across the wellbore wall is the sum of individual flow through the matrix and fracture
network (¢. = ¢, + ¢,"). In addition, hydraulic continuity requires that matrix and
fracture fluid pressures are the same at the well (p' = p").

e The bottom (z = 0) of the reservoir has a zero vertical displacement (. = 0) and no flow
(¢-' = ¢." = 0) constraint.

e At the top (z = h) of the reservoir, the vertical stress applied on the reservoir by the
overburden remains constant (ASy = 0) during production/injection. There is also no
flow across this boundary (¢.' = ¢." = 0).

The boundary conditions imply that no axial fluid discharge occurs (¢.' = ¢." = 0) in the

reservoir and fluid flow is in the radial direction only. The assumption of soft reservoir

encased in stiffer rock formation render the reservoir’s edge effects of shear stress and
torsion negligible. This estimate will always yield a uniform vertical consolidation at the
top of the reservoir. In reality, the vertical displacement is smaller at the edges of the
reservoir as shown in Fig. 5.5a. Fortunately, for reservoir with large lateral extent, this

assumption provides good approximation for vertical compaction (Setarri 2005). As a

result, the problem geometry and boundary conditions allow the use of a generalized plane

strain condition in which all quantities, except for vertical displacement (i), are z-

independent. Due to the uniformity of lateral boundary conditions, the problem is

obviously axisymetric (#-independent). Here, we are interested in the changes of vertical
displacement and effective stresses distribution in the reservoir due to production/injection

(post-drilling and -completion processes) only. Therefore, the analytical solutions for these

quantities are sought in reference to the pre-production stress state. The corresponding
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analytical solution has been presented and details of the solution derivation can be obtained

from Nguyen and Abousleiman (2009b).
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Fig. 5.5—Reservoir consolidation and compaction: (a) real behavior and (b) idealized model for

fractured reservoirs.

In this section, the analytical solution is used to simulate the production and depletion of a

fractured reservoir in the Ghawar field, Saudi Arabia and the subsequent impact on

compaction, solid production and casing stress. The reservoir formation is predominantly

carbonate rock with widespread dolomization and anhydrite pore-filling material. In some

places, dolostones are responsible for producing permeability barriers, whereas in other

places they are associated with zones of very high production (Meyer et al. 2000). These

zones of very high flow have been termed ‘‘super-k’’ zones which can sustain up to 500

barrels per day per foot thickness. The average permeability varies from 1 md (matrix) to
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400 md (fracture network). Therefore, the reservoir is a good candidate for dual-porosity
and dual-permeability poroelastic modeling. Other formation material data include porosity
= 20%, Young’s modulus = 2x10° psi, and Poisson’s ratio = 0.30.

A vertical well of radius R,, = 4 inches is assumed to be completed in a fractured
reservoir with thickness h = 200 ft and lateral extent R, = 3280 ft (1000 m) at 12,000 ft
depth. The pre-production reservoir pressure is 6700 psi (1.30 SG). The in-situ stresses
acting on the reservoir outer boundaries are the overburden Sy = 12,600 psi (2.42 SG) and
horizontal in-situ stress Sy = S = 9000 psi (1.73 SG). These are not the pre-production
stress distribution in the reservoir because the original uniform in-situ stress state in the
reservoir was altered due to wellbore drilling. The well is set to produce at constant flow

rate of 10,000 STB/day for two years.

Consolidation and Implications on Porosity/Permeability Reduction. The current
model and solution can be applied to simulate the effects of elastic-dominated deformation
on porosity/permeability reduction due to reservoir depletion. The developed vertical
consolidation is indicative of the pore volume reduced. However, it includes contribution
from the bulk compressibility of the rock, the fluid as well as the pore volume. For small
variation of the porosity, the change in apparent porosities, v'¢' and v"¢", are correctly
captured by back calculating from the variation of fluid contents, Egs. 2.10 and 2.11. Based
on the porosity changes, the corresponding variations in permeability are computed.
Assuming that the bulk volume fraction of the matrix (v') and fracture network (v"") does
not change during elastic deformation, the induced reduction in the intrinsic or local

porosity of the matrix and fractured can be estimated. Since the fracture’s intrinsic porosity
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is usually a large number close to 1.0 but its bulk volume fraction is small, a small
reduction in the total porosity can lead to a significant change in the fracture’s
intrinsic/local porosity (q)(N)) and subsequently the fracture’s local permeability (k™).
Isotropic Reservoir. The histories of vertical displacement between fractured and non-
fractured isotropic reservoir as a result of production for up to 2 years are compared in Fig.
5.6. For constant production rate, the volumes of fluid withdrawn are the same for both
non-fractured and fractured reservoir modeling. Therefore, the difference in the vertical

displacement of 0.20 ft (2.4 in) clearly isolates the impact of fracture compressibility on

reservoir deformation.
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Fig. 5.6—Vertical consolidation due to constant production rate, Q, = 10,000 stb/day, for isotropic
reservoir.

Fig. 5.7 illustrates percent reduction in total porosity and equivalent permeability for
constant production rate Q. The local permeability reductions (Ak' and Ak") are estimated
separately for the reservoir matrix block and fracture network and then combined to arrive

at the equivalent permeability change. The results show up to 1.5% reduction in total
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porosity and 6% decrease in the overall permeability. Ignoring the contribution of
fracture’s deformation and fluid flow could substantially underestimate the damage in

reservoir flow quality.

Isotropic Reservoir -- Q,, = 10,000 stb/day
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|
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Fig. 5.7—Near-wellbore total porosity and equivalent permeability reductions due to constant
production rate (Qw = 10,000 stb/day) after 2 years.

Transversely Isotropic Reservoir. One potential application of the transversely isotropic
model and solution is that the orientation of the fracture system in the reservoir can be
partially simulated by modifying the ratios of material properties in the transverse direction
(vertical) compared to those in the isotropic plane (horizontal). For example, a reservoir
with horizontally oriented fracture system can be represented as being more compliant in
the vertical direction ((C,/Cx)™"™™ > 1). Analogously, a randomly oriented fracture system

flacre — 1 whereas a vertically oriented

can be modeled with isotropic properties, (C,/Cy)
fracture network can be represented as having (C,/Cx)™" < 1. Figs. 5.8 and 5.9 show the

simulated vertical displacement and reduction in porosity and permeability for the three
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fracture’s representation discussed in here. The results are significantly different and
demonstrate the impact of fractures' orientations, density, porosity and permeability on the

overall reservoir flow and deformation responses.
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Fig. 5.8—Vertical consolidation of fractured reservoir. Fracture’s orientation is simulated by varying
the ratios of fracture’s compressibility between the vertical direction and horizontal plane.
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Fig. 5.9—Simulating near-wellbore porosity and permeability reductions for some fracture’s
orientations.
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5.4 Time-dependent Load Applications

So far, the results are shown only for step loading condition. In this section, the responses
due to time-dependent loading situations such as cyclic loading, linear ramp loading and/or
combination are briefly demonstrated for cylinder geometry to illustrate the capability of
the analytical solutions presented in this dissertation.

The material data and sample dimension are the same as listed for solid cylinder in
Chapter 2, section 2.4.1.4. Fig. 5.10 shows the pressure evolution at the center of the
specimens under a low-frequency cyclic axial stress with magnitude of 1 MPa and a period
of 2 seconds (0.5 Hz) for the first 5 cycles. As expected, the pore pressures also show
cyclic behaviors in which the pressure in the fracture is the highest because the loading
period is smaller than the characteristic time scale for fluid diffusion in the fracture network
(~ 4 sec). On the other hand, Fig. 5.11 demonstrates the pore pressure response due to a
linear ramp loading for three different buildup rates with characteristic times to of 10, 100,
and 1000 seconds. The pressurization process is such that the average axial stress reaches
10 MPa at to time and remains constant at this level afterward. Evidently, the fast diffusion
speed in fractured medium together with inter-porosity flow allow significantly less pore
pressure build up in the sample. Finally, superposition of the basic loading solutions allows
modeling of more complex loading processes. For example, combination of the above
cyclic and linear ramp results yields the pore pressure fluctuation during the first 28

seconds for the loading functions depicted in the inset of Fig. 5.12.
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Fig. 5.11—Pore pressures histories at the cylinder’s center r = 0 varying linear ramp loading rates.
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Fig. 5.12—Pore pressure fluctuations at the cylinder’s center (r = 0) through times under combined
cyclic and linear ramp loading (the cyclic loading period is T = 2 seconds and ramping characteristic
time is t, = 10 seconds).

5.5 Summary

The inclined wellbore solution has been applied to assess wellbore stability for a simulated
downhole drilling condition. Analyses that neglect the naturally fractured nature of the
shale fall short in simulating wellbore instability since they predicted a wider mud-weight
window for the drilling operation, while mud salinity and temperature can be utilized as a
stabilizing factor if calibrated previously. These analytical analyses can be applied directly
to real-case drilling analyses in fractured-shale formations.

General anisotropic dual-porosity and dual-permeability analytical formulation and

solution to simulate naturally fractured reservoir geomechanics due to production/injection
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have been presented. The analytical model is easy to implement and can be used for
sensitivity analyses among extreme cases of reservoir representation and management. The
anisotropic representation of the fracture framework allows quick calculation of the effect
of fractures on the overall geomechanical responses. Applications of the fractured model
and solutions include estimation of consolidation and porosity and permeability reduction,
all of which are important to the overall field development plan including recovery forecast
and management, platform and well design, future stimulation programs (hydraulic
fracturing). Furthermore, the analytical solution can be used to validate reservoir simulation
numerical codes.

Finally, some realistic quasi-static loading conditions commonly encountered in
experimental testing and field applications such as cyclic, linear ramping, and combination

have been demonstrated via the solutions of solid cylinder geometry.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A complete study of anisotropic dual-porosity and dual-permeability poromechanics is
presented through generalized analytical solutions of problem geometries for laboratory
and field applications. The behaviors of naturally fractured rock formations or the
responses of the well known dual-porosity bone structure are modeled as dual-porosity and
dual-permeability poroelastic media that fully couples fracture’s deformation, fluid flow
and interporosity exchange processes. For chemically active fractured media, e.g., clay,
shale, or biomaterial, chemical interaction effects including osmotic and solute transport in
both the porous matrix and fracture network is addressed based on non-equilibrium
thermodynamics. Thermohydromechanical coupling under non-isothermal condition is
incorporated by adopting a “single-temperature” approach in which a global representative
thermodynamic continuum is argued to be sufficient to describe the thermally induced

responses of a naturally fractured rock formation. The mathematical models are used to
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find the poromechanical analytical solutions to selected problem geometries, including
inclined wellbore, rectangular strip, and solid and hollow cylinder. The solutions are
derived to include general time-dependent boundary conditions that can be tailored to
specific field problems or laboratory testing setups. These solutions are expressed in closed
forms in Laplace transform domain and can be easily inversed to obtain results in time
domain.

Generic dual-poromechanics results are plotted and compared with single-
poromechanics counterpart for a homogenous medium where applicable. Parametric
analyses are also carried out to evaluate the effect of fracture network on the overall
response. The inclined wellbore solution is used to perform comprehensive time-dependent
wellbore stability analysis for drilling through chemically active fractured rock formations
under non-isothermal conditions. The hollow cylinder is applied to study -elastic
consolidation of a producing naturally fractured reservoir and associated implications on
porosity and permeability reduction in the near-wellbore region. Finally, the solid cylinder
solution is used to demonstrate the dual-poromechanics responses under some realistic
experimental loading conditions such as cyclic, linear ramping.

The following conclusions can be drawn based on the results of this study:

1. The inclined wellbore analytical solutions with various fluid boundary conditions can be
applied directly to real-case drilling analyses in fractured-shale formations under non-
isothermal condition.

2. Dual-poromechanics modeling of fractured rock formation predicts a narrower

mudweight window for operations.
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3. The mud chemistry and temperature can be used as stabilizing factor for wellbore
stability if calibrated previously.

4. The analytical solutions for solid and hollow cylinder geometries can be used in both
geomechanics and biomechanics for purposes of rock and bio-tissue characterization.

5. In addition, the anisotropic hollow cylinder solution can be easily implemented to
simulate naturally fractured reservoir geomechanics due to production/injection through
sensitivity analyses among extreme cases of reservoir representation and management.

6. Results show that analyses neglecting the effects of fracture, chemical salinity, and/or
temperature in modeling approach can lead to erroneous laboratory test’s results or
interpretation as well as misleading the optimization of field operations.

7. Finally, the analytical solutions presented in this work can be used as benchmark for

validating the integrity of numerical codes for reservoir simulation.

6.2 Recommendations

The developed model involves many assumptions and simplifications, including linear
elastic medium, constant material coefficients, single-phase fluid flow, etc. During
operations such as wellbore drilling, these simplifications may not apply, and their effects
should be assessed properly. Therefore, experiments and more field case studies are needed
to validate the analytical models.

Numerical analyses of realistic problem geometry and boundary conditions can be

carried out using the analytical solutions presented in this dissertation as validation results.
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Appendix A Material Coefficients for Dual-
Porosity and Dual-Permeability Poroelasticity

A.1 Transversely Isotropic Case

The individual drained elastic modulus tensor is expressed in matrix notation as

YL N) N)
Mll M12 M13 O

N) N) N)
M12 Mll M13 O

™) ™) ™)
M 13 M 13 M 33 0

S o o O

o o0 0 MY

S o o o o

0 0 0 0 MY

0 0 0 0 0 M3 |

For engineering applications, it is more practical to use the familiar drained Young’s

(N (N)

moduli E™ and E{, Poisson’s ratios v}’ and v, and the shear modulus G to

express the components of the transversely isotropic drained elastic modulus matrix M®

by the following relations (Abousleiman and Cui 1998)

E(N)[E(N) _ E(N)(V(N))Z]
1({\1) = S o) S 13 I e LIRS (Al.2a)
A+v, ESY —E3 Vv, —2E7 (v ) ]
N — E(N)[E(N)vg]) + E(N)(VI(N))Z] ................................................. (A1.2b)
12 (1+V(N)) (N) (N)vl(lz\l) 2E(N) (V(N)) ] ’
N) 7 (N),(N)
N _ I (Al.2¢)

137 5N N),,(N) N) /. (N2 ?
E;7 —E;v;, —2E 7 (vy)

233



oo BTy (A12d)
0 e .
BT BT 250G

MY =GV =M -MEY/2; M =M =G\, (Al.2¢)

And the compliance matrix C™ which is the inverse of the drained elastic moduli M™ is

given as follows

e ¢ o0 0 0
¢y ¢ ¢ o0 0 0
™) (N) ™)
co | G (Al.3a)
0o o0 o0 Ccf o0 o0
0o o0 o0 o0 Cc% o
0 0 0 o0 0 CY]
CO=1/EY;  CP==®/E™;  CV =y ®/E® e (A1.3b)
CO=1/EM;, NV =1/G™;  CNV=1/G™, oo (A1.3¢)

Based on microhomogeneity and microisotropy arguments, the constituents’ pore-pressure-

coefficient matrix and Biot moduli are given by

o™ =™ a™ @™ 0 0 00 e (Al.4a)
o™ =1—Mﬁ) +3MKI?N)>+M1(§ ), .......................................................................... (A1.4b)
o —1-2M g;(’f i (Al.4c)
M® = &) S e (A1.5)
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where the superscript * denotes matrix’s transpose operation. K™ is the solid grain bulk

modulus and K}N) is the fluid bulk modulus of the porous matrix and fracture network,

respectively. o™ =y ™ /™ 4 o= ‘
pectively. ¢ V. V> is the local porosity. M  is a lumped modulus given as

pore

M =M +ME +2ME +AME )/ s oo (A1.6)

Following Berryman and Pride (2002), the effective constitutive coefficients for dual-
poroelastic composite material can be identified in terms of the individual constituent’s

properties as

B = M (D) e (A1.7)
L/ M =1 =B MDD ) T o, (Al.8a)
L/ M = 7 D V(D™ )T e, (A1.8b)
L/ M =1 D MDY oo (A1.8c)

where M is the overall drained elastic modulus matrix. Other matrixes and scalars are

expressed as

AV =[a™ @ T 0 0 0] s (A1.9)
I _  INTl (!l ol Y (o

b' =—(a") C' (C = C" ] (C=C" ) oo (A1.10a)
b" =—(@") C" (C'=C" J' (€' =C s oo (A1.10b)
™ =y g™ (T e™ (et J'e™ (1-Q™ ) @, o (Al.11a)

_ 0 INT (! ol Y el (7 of I
P ==vtare(c C)IC(IQ)(‘, ........................................... (Al.11b)
= ' (@")T " (CI el )* C! (I_QI ) o
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in which the superscripts ' denotes matrix’s inverse operation and

L0 ST € oL oLl I G oL R (Al.12a)
o T oL oLl oL o IO (A1.12b)
SN MNT N () ™

C = (@™) CVA™ 1/ M™ oo (A1.13)

The above approach requires the estimation of the overall drained elastic modulus M or

compliance C matrixes. Generally, the overall moduli M are functions of fractures
volume/spacing and geometries which can be estimated by some averaging schemes or

homogenization techniques. Values of elastic moduli, however, should be bounded

between the fracture network’s moduli M" and the matrix’s ones M'. One reasonable

estimate could be the geometric mean of the constituents’ moduli (M®™ = (M")" (M™")")

assuming that the fracture network is sufficiently developed and randomly distributed to

form a homogeneous and transversely isotropic continuum on its own.

A.2 Isotropic Case
For isotropic case in which E™ = EM = E® [y =y0 =v® ‘and G =GV =G, the

individual moduli and compliance simplify to

E(N) (1 _ V(N))

() N _—
MY =M% = (L ([ gy) 7 (A2.1a)
E(N)V(N)
M = M = s (A2.1b)

B a+v™ya-2vy’
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M =M =GN = (A2.1b)

Gy =Cy=UEV;  CY=Cy=—v"/EV; () =C3=1/G",..(A22)

The corresponding constituents’ pore-presure coefficients and Biot’s moduli become

™) E™
N _ N _
A =0 = 1o = =y s (A2.3)
® = (KTY (A2.4)
RO g (KT ] KT R0 e .
ryaal N _ N )
M = K™ = B 300 = 20 oo (A2.5a)

=) (OK(N) )2 1
- K™ MN

The dual-poroelastic coefficients reduce to

—1 1 I?_KH
a =o m, .............................................................................................. (A26a)

S (A2.6b)
%ZVIEI —(KOI’I_KIZHHIV;I +[V<—IIII—%J— (JI_;)z, ...................................... (A2.7a)
Mlm - Z{f‘i’; f) ! [;—F;—ﬂﬂ—%} - algn e (A2.7b)
Hl“ —viC —(%}T%+2—1—%}— (a;_;)z e (A2.7¢)

K™ and K are the individual and overall bulk moduli, repectively. It can be seen that
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when the secondary porosity medium vanishes, i.e., v!' — 0, the material coefficients

reduce naturally to the single-porosity counterparts.
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Appendix B Dual-Poroelastic Rectangular Strip’s
Solutions

The boundary conditions for fluid pressures at the two edges xp = 1 and vertical loading at

the top zp =2 are

Load Controlled.
P =BS'+ C,g" + Clcosh(E) + Cl cosh(EM) = B, covveeereeeeeeeeeeeeeeeeeeeen. (B.1)
p" LT P+ Cg"+m'Clcosh(E)+m"Cl cosh(EM) =B, ovveeeveeereerrenrnnn. (B.2)
: 1 : I T~
[ &.dv, - z{AOPC 4 AT+ AC) S“ﬂ;ﬁf Ve alc %@)} o — (83)
Equations B1 to B3 are solved simultaneously for C,, C and C!' as
&l A,(1-m")&" sinh(&M cosh(EM)| B,
A a=m)E cosh(E)sinh(E") | A
N A (f" = f'm")E" sinh(EN cosh(§Y) | P (B.4)
AN P& cosh(Esinb(E™ | o e :
+(m' —m")&'E" cosh(&") cosh(E")(F /a— 4,P)/d,,,
Cl = 4, (1=-mME'E  cosh(E™) | B,
LAl @ - g sinng™) 4,
AT LM ELE cosh(EN I~
+{ = S cosh(E )}L e ©5)
+ A2 (f g - f g )é: Sll’lh(é: ) dstrip

—(g" - g'm")E'E" cosh(EMY(F /a— A4,P) ] d

strip
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o {— 4, (1-mhHE'g" cosh(é‘)} B,
T+ 4l(g' - g")Esinn(&) | d,,,
+{A1(f CSmes cohls ) }i ®.6)
_Az(f g-fg )é: Smh(é:) dstrip
+(g" —g'm"E'E" cosh(E'Y(F /a—A,P)/d,,,

d,., =—4,(g" —g'm")&" sinh(£") cosh(&™)
+ A (g" — g'm")E cosh(EN)SINN(E™) 5 wveviieieeee e, (B.7)
+ A (m' —m")E'E" cosh(&EM) cosh(EM)

Displacement Control

Instead of Eq. B3, the vertical strain at the top of the strip (zp = 2) is imposed as

l

- M,C -M, s
et L Bt OO (B.8)
M, M, - M. 2b

Solving Egs. B1, B2, and BS for 51 , C;, and C;I as

C = MMy, ~ M g + M P e (B.9)
M, 11
CI — (l_mll)ﬁ‘o _(fﬂ _flmu)él (B 10)
) (m' —m")cosh(&)) 5 ettt e et — et e e e s e a et e e e e e s r e e e e eeeeas .
T SN~ | BS B NS
o Gl | /e e L (B.11)

(m' —m")cosh(&™)

Appendix C Dual-Poroelastic Solid Cylinder’s
Solutions

First, it is convenient to show the derivations for stress and strain/displacement
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components. The stress equilibrium in polar coordinate is

ao—rr + O-rr B 0-99 — 0
or, r
Combining the above with Eq. 2.92 yields
Imr_1II Cl
:-j F'p +7"p PUVE =l (C.1)
........................................... (C.2)

_ 71p1 +7lel J‘")(71p1 +}7Hpn)rdr+7
Summation of the in-plane strain components is expressed in terms of stresses as
(C.3)

0, +0,-2a'p +a"p")-2M ¢
M11+M12

E, tEy=
Substituting Egs. C1 to C3 into the constitutive equation gives the axial stress as
M, M,
—1 —1 13 I — 11 — 11 13 1. 11
0.,=|0 —O& — jp +(0{3 -0 — pr
( Mll Mll
_ _ yeereene et ete e teateeteententeenteeneenns (C.4)
2M123 ] + M13Cl
- Mll + M12

+ (1 -
M33(M11 +M12)
The radial displacement is obtained by integration noting that £, +¢&,, =(1/r)d(ru,)/or
(C.5)

2M,; J
zz 2

- + —II __1I
LI J. @p +a'p) rdr+ =————| C, ——
R Mll Mll + M12 M33
And the strain components are
g” J'rl) (al p + alll H) r (al p + alll H)
M]l Mll
— sy eeree ettt sttt aees (C.6)
+;(c My j/z
v v 1 v zz
Mll + M12 M33
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o (T p' + " " i
S o (Y AL P (cl— 1 SZZ]/Z, ..................... (.7
rp 0 M, M, +M, 3

Substitution of the pressure expressions (Egs. 2.95 and 2.96) leads to the explicit general
solutions of stress and displacements (Eqs. 2.97 to 2.102). The applicable boundary
conditions for this geometry are the fluid pressure and confining stress boundary conditions

at the cylinder’s outer surface rp = 1, and the axial loading condition at the top zp = 2.

Load Controlled.
P = S_fT4Cg +CU(EY + CMY(EM) = B, s oo (C.8)
P! L= S_ M+ Cg" +m'CH(ENY+m"CM U (EM) = B, oo, (C.9)
~ ~ I (&' (&Y =~
L =4S, +4,C +4C, Lf) +A'CH Léf) S (C.10)
’ ¢ ¢
L B,S.+BC L& ¢ _ F
[ &.rpdry :%+B§C§ IT+B§IC;‘ ! B = R (C.11)

Equations C8 to C11 are solved simultaneously for C,, C!, C!', and S__ as

G |2 = S YA F (AR = ByR) | £, (6 1L
+(24,By - 4,B)(1-m") B,
NES — ' m" WA FIQaR*) - B, P) | E'1,(EY) 1,(EM)
+ (2A0B;I - AZHBO)(I - m‘)
_2(A;B2H _AZHBZI)(fI _fH) 11(51) Il(gll)ﬁo /dcylinder
+(m" =m")EEN T (EN 1, (EM)[24,F /2aR*) - B,P.]/ d

cylinder

dcylinder

cylinder
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("= FleR) =B B |
Cl=| = (g" ~ g'm")2A, F iR - B, B ) | 2= 1)

N ~ dcylinder
+(4,B, =4, B))(1-m")p, C13
S s e, (C.13)
2f g -/ g )24, FI/2mR")-B, F,) 1M
—|=(f" =124, B, - 4,B))p, dl—
~ cylinder
+(g' —¢")(24,B) - 4,'B,)p, ’
("= f'mH@A FIQaR)~B F) | i s
Cl = (g ~g'm' 24, F i) - B, ) |2
+(4,B, - 4 B))(1-m") B, i
e N e, (C.14)
2Af g - g )2AF/2nR")—-B,F,) —
= (f' = F™24, Bl - 41B,)P, s hE)
+(g' —g")(24,B; - 4,B,)P,
(el p1 I 24 B —A'B
cylinder = (f I f nl/l ?I( L I ? Il ) jlgu Io(fu)ll(éjl)
—(g" —gm )24,B,-4,B,)
[ el I 1 24 BY — 4B
- (f( ) f";‘)l()(z‘A ;H ;HlB) ng TIRC=0) W20 VO (C.15)
|—g& —&g&m 0Dy — Ay Dy
+(AOB1 _AlBo)(mI _mn)fl gn Io(éﬂ)lo(fn)
~2(f"g' - f1g")24,' B, - 4B (ENT(ET)
- - - I 1 I 1
45 =P -4 —AC! %{)—A;‘Cf%, ................................................ (C.16)

Displacement Controlled
Instead of Eq. C11, the vertical displacement or strain at the top of the cylinder (zp = 2) is

imposed as S_ = M, &_ =u’/2h . Solving Egs. C8 to C10 for C,, C!,and C" as
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gL, (ENHLED

dcylinder

C =[a¢" - 'm"3. - A a-m")7, |

wle AT - S+ AN -, ]

SLEHLEH

cylinder

_(ml _mll)(A0§ZZ _ﬁc)glgn Iaol(gl)lo(gn)

cylinder

ol {— 4"~ f'm"E. + 4, <1—m“)50} £ T, (EM)
© |+ (g" - g'm")(A4,5, - B)

dcylmder

..................

&LEn

cylinder

A e - 113 — (g - g™)p,]

on | AU =D =4 (=mp, | &1
2 ~ ~
_(gH _glml)(AOSZZ _IDC) dcylinder

fll Il(fl) ’

dcylinder

A e - reME (g - g™, ]

dcylinder = —A§ (gH - glmn)gn IO(§H)II (gl)

+ A" (" = @' m ) E T EDNLE™) oo

+ A, (m' =m™) &N (DY)
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Appendix D Dual-Poroelastic Inclined Wellbore
Solutions

The complete dual-poroelastic inclined wellbore solution for naturally fractured formations
is given by Egs. 2.63a to 2.63h. The boundary conditions and associated expressions for

M

1(1) (1)
5 0-199

p O-(l)
2

contributing axisymmetric loading case ( p g ) and deviatoric loading

1(2) 1(2) (2) (2) (2)
b

case (p p 7,0, 0, , 0, )are given in the following section.

D.1 Pressure Boundary Condition (Permeable)

Assuming full hydraulic communication across the borehole wall, the corresponding

boundary conditions and solutions are

Case 1 — Axisymmetric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

OV =0, + P, (tp); O =0, e, (D1.1)

D'V = P = D)) = Piserereererereeeeeeees e (D1.2)

This is an axisymmetric (n = 0) radial stress and hydraulic loading problem. The stress has
contribution from the mud pressure, p,, and the hydrostatic part of the released in-situ

stress, 0,,. Meanwhile, the fluid flow is due to pressure gradient between the wellbore mud

and the formation fluid. Bounded solution at far field requires that 51 vanishes. The

solution is transient and given in Laplace transform domain which could be inverted to the
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time domain using the Stehfest’s algorithm (Stehfest 1970)

DO = AD(E 7)) A D (E"F) s e (D1.3)
P = AD(E 7))+ A D (EFL) s oo (D1.4)
GV =—AATI(Ery) — AYATI(E 1)) F AG /1 e, (D1.5)
G5 = ANT(E )+ @ (E'r)]+ A ATT(E" 1) + D (E"r )= AG /1) . (D1.6)
in which
A‘:l_’”HAﬁ; Anz—l_mIAfa; M= = 1" e (D1.7)
m m
AP =(D, =Py /5)s AG = (P, =0,/ 8) s ceeooeroeeorerreeeresessresesesessssesessss s (D1.8)

®(xr ):Ko(er)_ (xr,)= Ki(xrp,)  Ki(%)
K T Ky(x) xrpKe(x)

where the superscript " denotes the loading case and only non-zero solutions are listed.

Case 2 — Deviatoric Loading
The perturbed boundary condition at the borehole wall (rp = 1) are
0P =-0,c082(0-06,)); 03 =0,5M2(0=6.)), ccocerrrrrrreerererris (D1.10)

12) _

p D Z 0 s (D1.11)

This is an asymmetric (n = 2) stress loading problem accounting for the release of the
deviatoric part of the in-plane in-situ stresses, ;. The solutions in Laplace transform

domain are

817[(2) _ O'd[Clez(fer) + Cz“Kz(f“rD)Jr g'ar;]cos(z(e—er)), ................... (D1.12)
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s PO =0, [Cm'K,(E'r,) + Clm"K, (E"r, ) + g"Crr2]cos(2(8 = 0)) o.........(D1.13)

56, ==0,[4,C,0('r,)+ 4,C0( ")

_ s eeeeeeeeee e ss s eeeen (D1.14)
—2A4,Cyrpy° —Cyr;*lcos(2(6 - 6.))
56 =0, [ACQE )+ ACIQ(E"r,) = Cyr; 1c08(2(0 = 6,)) v (D1.15)
$6 =0, [AICIE (E'r,) + AICIE (E'r,) -
= 4,Cyry” = Cyry*1sin(2(0-6,))
where the coefficients C,, C,, C.,and C) are given as
C = =2MDIDY I Dy oo (D1.17)
Cy=2(g" = @'m")E' D) I Dy oo (DI1.18)
O L Yy oL o N (D1.19)
1
C, = Di{zallngDgI + A (g" - glmH)Df[DlI + (211))22)
’ e (D1.20)
11
— AZH(gH _ gImI)DZI(DIH + (2?;2 ]}
in which m = m' - m" and
D/ =K,(£"; D'"=K,(&"); Dy =EK,(E); DY =E"K,(E") s (D1.21)
D, = AmD!D" — 4\ (¢" — g'm")D'D" + A" (g" — g'm")D'D" ..ooveeeeerre. (D1.22)
And 0O, Q, and = are functions defined as
@(er)zKl(x’"D)+6K2(x’;D), ......................................................................... (D1.23)
xry, (x7p)
Q(x1,) =O(X7) F K, (X7)) 5 e (D1.24)
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K, (x7,) n 3K, (xr)

XTp (xr)’

E(xry)= ettt ettt a e et b e e b e b saeens (D1.25)

D.2 Flux Boundary Condition

Assuming a flux boundary condition at the borehole wall which simulates fluid injection or
withdrawal, the boundary conditions and solutions for the two contributing loading cases

are given as

Case 1 — Axisymmetric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

0L =D (G, )= 0,5 08 =0, e (D2.1)
. I(1) 11(1)

jz (¢! +4"")d6 =—(1-&,) orT _ K, o _ (TS T (D2.2)

0 or, or,

D'V = P = DG (E0)) s (D2.3)

Again, this axisymmetric flux loading case requires n» = 0 and 51 = 0 for bounded
solutions at far field. The fluid discharge at the wellbore wall (rp = 1) 1s ¢, (¢,) =
0, (t,))/[27(k, +&")] where Qu(tp) is the flow rate (positive for injection) per unit
formation thickness. As a result, the wellbore pressure is a function of the flow rate
imposed across the borehole wall, i.e., p, (t,)=p,(q,(t,)) as shown in Eq. 2.128a and
2.128c. Due to hydraulic communication at the borehole wall, continuity condition requires

that the fluid pressure in the matrix and fractures are the same and equal to the wellbore

fluid pressure (Eq. 2.128c). The corresponding solutions in Laplace transform domain are
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given as

P = (1= mK (K (€)= (= m K (K (€]

P = %[ml(l —m"K(EMK(&'ry) —m" (1= mHK(EHK (17,1,

" qw{Aﬁ(l—m“)KO@“)cb(&er)} AG
o, =——* +—

T m | = AN mDK () B(E )

m

s _ @ {Afa -m K EDPE ) +KER)T | aF
Y = A=K (ENPE )+ K ()]

where A6 =p,—0, /s and

m=(1- mn)(l -k, + fDmI)‘flKl(gI)Ko(fn)
—(1=m")(1-%, + K,m") E"K, (EMK, (£

Po=p L =p, = %(ml — YK G (EVK G (E™) 3 oo

K, (xrp) K ()

S ket
xry xr;

D (xrpy) =

Case 2 — Deviatoric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

0 =—0,c082(0-6.)); 05 =0,s5n2(0-6.)), ccoverererererenn.
T 2 Q) (¥ A= apI(Z) = apn(z) _

["@ +q@)ae=[ { (1-%,) o AO=0, oo,

DD = D 0 e
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It should be noted that the zero total flux boundary condition Eq. D2.12 is automatically
satisfied regardless of the expressions for p' and p'. Because there is full hydraulic
communication and fluid pressure at the wall is dictated by the total flowrate as calculated
in the above axisymmetric loading, it is logical to set pore-pressure perturbation at the
wellbore wall for the current deviatoric loading to be zero. The solutions and associated
coefficients in Laplace transform domain are the same as Case 2 for pressure-boundary

condition, i.e., Eqs. D1.12 to D1.25.

D.3 No-Flow Boundary Condition (Impermeable)

In the special case of impermeable borehole wall, there is no hydraulic communication
between the wellbore and the formation. Hence, the dual pore pressures at the borehole

wall are generally different from each other as well as are independent from the applied

11

rp=

wellbore pressure: plp;l (t,) # p, . (t,) # p,(t,) . The applied wellbore pressure in this

case is simply the hydraulic head exerted by the fluid column in the borehole.

Case 1 — Axisymmetric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are
O =P () =0, 08 =0 (D3.1)
GRD = 1D =0 e (D3.2)
Because no fluid flow is allowed, the solution for the perturbed dual pore pressure fields

) _

are trivial and identically zero: p'" =p 0. The solution for stresses due to radial

hydrostatic loading is purely elastic as given by the classical Lamé solution
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oV =[p.(t,) =0, 1112 ON =P (ty) = O, 1/ 1 seeccemomemeeeeereeeceereseseeeen (D3.3)

Case 2 — Deviatoric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

o =—0,c082(0-0.)); 05 =0,5n(20=6.)), oo, (D3.4)

g =q¢" =0 VO E[0,277] 5ottt (D3.5)

r

Note that in this case, the fluid pressures in the matrix and fracture network are not the
same at the wellbore wall as in the cases of permeable or flux boundary conditions (Eq. D1.

or D2.) because no hydraulic communication is allowed. The corresponding coefficients,

C,, C,, Cy,and C)' are

C,=-2D,/Dy;  Cy=2£'D}/Dg;  CY ==2E"DY /Dy (D3.6)
I II

C, =3 AD, +A21D31(D11 + 4? gj—Ang;{Dlﬂ + 411?22) SRS (D3.7)
D &) )

in which D/, D", D), and D) are given in Eqs. D1.21 and

Dy =2(g" =g m")[(EMY D" + 2D ] 5 oo, (D3.8)
DY =2(g" =@ m(EN) D} 42D 1o (D3.9)
D, =(m' —m"[(EY) D} + 2D 1(EM)> D" + 2D oo, (D3.10)
Dy = AD, — Ay DIDy + A} D'Dy' ..o (D3.11)
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D.4 Impermeable Matrix and Permeable Fracture Boundary
Condition

In extremely low permeability formation, the intact rock matrix can be considered as
impermeable to fluid flow, i.e., requiring the wellbore pressure to exceed certain capillary
entry pressure, whereas there is full hydraulic communication between the wellbore fluid
the fracture network in the formation. Mathematically, the boundary conditions and

solutions simulating this case are

Case 1 — Axisymmetric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

O = p () =0, 0% =0 e (D4.1)
T 0 T (D4.2)

The solutions in Laplace transform domain are

AR A—nf;’[f"K1 0 YOS Tt 2 CL O30 ) O | IR (D4.3)
"V = %[mlfllKl(fll)Ko(fer) —m"EK (EVK G (E" )] e (D4.4)
&0 __ 4| A KD ) +A—§ ...................................................... (D4.5)
m _AznflKl(égI)H(QZHrD) "p
5 AP Azlg:KI‘(gH)l [ (glri)JrKO(‘fIrﬁl)] LB e (D4.6)
m _Azé:Kl(é: ) [H(f rD)+K0(C.,I: )] "p

where Ap and AG are given in Eq. D1.8; the function IT is defined in Eq. D1.9 and

m=m"E"K (EVK,(E™) = m" EK G (E"YK(EY srveemermeeeeeeecesreeeeeeeeessseeeeeeo, (D4.7)
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Case 2 — Deviatoric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

0 =-0,c082(0-6.)); 05 =0,5M(2(0=6.)), e, (D4.8)

R L) B V0 228 (1523 oo (D4.9)

The coefficients C,, C,, Ci, CI' are

C,=-2D,/D;; Ci=28'D)/Dg;  Co==2E"DM/Dy,e (D4.10)
1 I

C, = 3 AD, + A;D;(D; + %} - A;'D;I[Dl“ + %j e (D4.11)
Dy &) ()

in which D/, D", D;,and D) were given in Eq. D1.12 and

DY =g"(E"Y D" +2(g" = @' m" )DL, oo (D4.12)
D' =g"(E")Y’' D! +2(g" = M )D} oo (D4.13)
D, =m' (")’ D/'D) —m" ("’ DIDY) +2(m" —=m"YDyD)' ..o, (D4.14)
Dy = AD, — Ay DIDy + A) D'D) ..o (D4.15)
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Appendix E Hollow Cylinder’s Dual-Poroelastic
Solutions

E.1 Case 1

The following lateral boundary conditions are enforced

~ _D. ~1 _ ~1I o~
. =P; =P = B (El.1a)
Dp=7ip D=’ip b="ip
~ _ D ~I _ =1 _
| =B = s e (E1.1b)
D =Top "D=Top D =Top

And the resulting coefficients are

Displacement-controlled.

-1 —~
I I 1 I I ~ 1 [ e
C d, d, d, d, pi—fS.—-g 0,
11 I Il I 1l ~ ng 10
C _ dy, d, d, dy pi—fS.-g 0,

= % e El.2
(TN ab ay ab| |5 -s3. -2 12
C)) |dy diy dy dy]| |\p,-f"S.-g"5,
C =6 — T AM[C® & E™)=CO OEM)], oo (E1.3)
N)=LII
C, =6+ T APICD QEMY = CO E(EM) oo (E1.4)
MN)=L1I
where @, O, Q, and = are functions defined as
1 T(E™ I(E™ 5
DEM) = p %w—%w} .................................................. (E1.5a)
| 'ip é: Top Top é: )
1K (E%r) 1K (EVR)
OEMY=p| =2 Tob) - S D s El.5b
(é: ) p L }/'1]2) f(N) roD rozD 6(N) riD ( )

254



QEM) = p[ll@m) fw) L€ ”D)} ............................................................. (E1.5¢)

f(N)roD g(N)rlD
_ K, (EMr,) K, (EMr,)
=( EN)\ _ 1 oD/ i
E(EM) = p{ F, lf(N)riD D et (E1.5d)

The coefficients d ;].N> in Eq. E1.2 are expressed as

A =T1,(EMrp) =@ AN D(E™ ) e (E1.6a)
A =K (EMVrp)+ @ AN O(E™ ) s (E1.6b)
A =m™T (ENr) =@ ANV D(E™) o (E1.6¢)
A =m™K(EMVr)+ 8 ANVOE™) e, (E1.6d)
A =T,(EMNr )= ANV D (EM) oo (E1.6¢)
A =K, (EVr )+ AT O(E™) oo (E1.6)
dl) =m™T(EMr ) =g ANVD(E™) e (E1.6g)
dY) =mOK(EMVrp)+ 8" ATVOE™ ) e (E1.6h)

The lumped coefficients &, , .., p,and A" are defined as

io ?

A e e U Ry =3 YT (E1.7)
4, Ip Top
7"«2]"2
p= Z‘D °D2 ; AN = AN T A; oo (E1.8)
Top ~Tip
Load-controlled.
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-1

Cll dlll dlli dllz dll; 2 _[flgz*z + (_BlfI + gI)ON-:)]/Bo
Clu _ dzll dzul dzlz délz P _[fHON-:z + (_B1fH + gH)ON-i*o]/Bo
Czl d311 d3Hl dslz dsli Po _[fION-:z "'(_31][I + gI)ON-iZ]/Bo
G} |du di dy dy] (P, -[f"6L+(=B.f" +g")5,1/B,

The constants 51 and C, are the same as defined in Eqs. E1.3 and E1.4. The coefficients

d ij(.N) are rewritten as

dY =1,(EVr )+ (ANB, —=2BM)/ B, — g' AN TID(EM) . (E1.10a)
dY =K, (EVr ) ~[f (AVB, =2BN)/ B, — g"' AV1O(E™) oo, (E1.10b)
A =m™1,(ENr )+ (AVB, —2BM)/ By — g" AN 1P (EM) o (E1.10c)
Ay =mMK (EVr) [ (AVB, -2B)/ B, —g" AV 0(EM),............ (E1.10d)
d® =1,EVr )+ (AVB, —2BM) /B, — g" AN T®(EM) . (E1.10e)
A =K, (EMr) [ (ANB, =2BM)/ B, —g"' AN T O(E™) s, (E1.10)
d® =m™1(ENr )+ (ANB, - 2BN)/ B, — g" AN 1D (EN), .. (E1.10g)
dlY) =mMK (EVr )= [f"(AYB, -2B)/ B, —g" ANV 10 (M), ............ (E1.10h)

in which the functions @, ©, Q, and = are the same as defined in Eqs. E1.5a to E1.5d. The

lumped coefficients &;, and A" are redefined as

. B,P —A4,6° B,P—A,6
%=AB/_)AB(°°2°”—0120”} .......................................... (EL.11)
1Bg 0P "p Top
)
I 0 (E1.12)

} (AIBO _AOBI)
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E.2 Case 2

The following lateral boundary conditions are enforced

~ - D ~1 , ~II o~ ~I1 _ o~
o, =Pk qg.+4,| =4q; = T (E2.1a)
=Ip >="p »="p "p="p
~ - D ~I _ ~I o~
G, =P; =P = B s (E2.1b)
=D =D =D

where §, = O, /[27r, (K +&")] in which Q, is the flow rate per unit thickness. And the

resulting coefficients are

CII dlll dll{ d 112 d 12 ) 271

CIH _ dzll d; dzlz dznz (fu_ 1)553
CH| |dy dif di, dy| | B,-S'6,
G ldy diy diy dy] | Po-SG

where the coefficients d}, d, d\), and dY) are rewritten as

dS =(1=5, + Kpm™)EMT (EMPL) s (E2.3a)
dY =—(1=%, + Kom™ ) EVK J(EMNFL) st (E2.3b)
A8 =A=m™) T (EVr) = (f = P E™) s (E2.3¢)
dY =(1=m™ K, (EVr)+ (" = F"YOE™) s oo (E2.3d)

The rest of the coefficients and functions are the same as previously defined for Case 1.
For the special case of no-flow or jacketed on the inner surface, the fluid boundary

condition at this surface becomes

~II

g OO (E2.4)

p=Tip

"p=lip

The resulting coefficients are
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I 71 il I i
Cl dll du dlz d12 0

il I il I il
C1 d21 d21 dzz dzz 0

I I i I Il ~ I o
Cz d31 d31 dsz d32 Po _f O

1l I 1 I 1l ~ ol
G, dy dy dy dyp| D SOy,

where the coefficients d(’, %, d{\’, and d\)’ are rewritten as

AN = (1=, ) EMT (EM L) s oo (E2.6a)
AY = —(1=K,)) EMVK  (EMTD) oo (E2.6b)
A5 =Ky m™ EMT (ML) s oo (E2.6¢)
A ==K, MmN ENK J(EMFD) e (E2.6d)

The rest of the coefficients and functions are the same as previously defined for Case 1.

E.3 Case 3

The following lateral boundary conditions are enforced

~ = ~1 ~I1I ~

o, =P; = T Dy ettt (E3.1a)
"p="p "p="p »="p

~ 5. ~1 ~1I o~ ~I o~

G, =P; @ +3"  =q; P =" (E3.1b)
=D =D D= =D

where §, = O, /[27r,, (K' +&")] in which O, is the flow rate per unit thickness. And the

resulting coefficients are
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(jll _dlll dlli dllz dllé ﬁl - fI N:)
Clu dzll déll déz dzuz 1~7i_f115:;
el lay ab al an 7,

crf lal ah dy db| lt-rhe

where the coefficients ', d3), d{\, and d{)’ are rewritten as

A0 = (1= 8y +Bpm™)ENVLENEL) s coovreeeeeeeeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeseeseeeneeeeeee (E3.3a)
A = (1=K + Kym™ ) EVK (EM ) s oovveeeeoeeereeeeeeeeseseeseessesesssesseseeseseseeeee (E3.3b)
A0 = A=m™) T ENr) = (F = S"M)YPE™Y oo (E3.3¢)
AN = 1=m™)YK (EVr)+ (= FYOE™ ) oooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeenenene (E3.3d)

The rest of the coefficients and functions are the same as previously defined for Case 1.

For the special case of no-flow or jacketed on the outer surface, the fluid boundary

condition at this surface becomes

The resulting coefficients are

C1I dlll dlli dllz dlg l~7i _f 15;;
Gl _|du dy dy dy| |Pi=f"5,
CH| |dy diy di, dj 0
G ) ldy di diy dy 0

where the coefficients d\)’, d3’, d{’,and d)’ are rewritten as

A = (1=, EVT(ENT ) oo

dy) ==(1=K,) EVK (EMrp) v
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AR = Ky m™ ENT U (EMNE ) oo eeeesesesenenenne (E3.6¢)

A0 = =B MM EK J(EMNFL) s oooeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeseeeeeseeeesseeeeeesees oo (E3.6d)

The rest of the coefficients and functions are the same as previously defined for Case 1.

E.4 Case 4

The following lateral boundary conditions are enforced

G, =P; §'+q" T B = p" T ——— (E4.1a)
G| . =Ri  @+q|  =q; P =P e (E4.1b)
The resulting coefficients are
¢ [al at a, 42 G
“ = b o dp dn) TS5 s ettt (E4.2)
Co| |dy dyy dy dy q,
C) lda dy dy dy] (/1 -NG,
where the coefficients d(’, d, d\’, and d.)’ are rewritten as
dS ==&, + Kpm™)EMTEMTL) e (E4.3a)
A =—(1=%, + Kom™ ) ENVK J(EMFL) st (E4.3b)
dY) =A=m™) I (EMrp) = (f = FYDPE™ ), e, (E4.3¢c)
A =1=m™)YK (EVr)+ (= FMOEM™) s (E4.3d)
dY) =(1=%, + Kym™ ) EDTEMT0) 5 e, (E4.3¢)
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dY) =—(1=%, + Ko,m™ ) EVK (EMNT L) s e (E4.31)

A = 1=m™)L(EVr ) = (F = YD E™), oo (E4.3g)

dY = 1=m™)YK (EVr )+ (L = FYOE™) oo (E4.3h)

The rest of the coefficients and functions are the same as previously defined for Case 1.
For the special case of no flow or jacketed on both the inner and outer surfaces, the
condition is undrained and the solution simplifies to an elastic one with undrained

parameters.

E.5 Case 5

The following lateral boundary conditions are enforced

~ _ N_ ~1 _~I o~
| =P =P = B (E5.1a)
p=rip "»=lip "p=lip
~ _ a4 . ~1 o~ o~
u. | =Ug; p| = S Dy (E5.1b)
D="D >="op DD

The resulting coefficients C™, CV, 50 and C; are the same as given in Egs. E1.2, E1.3

and E1.4. The lumped coefficients &, , &, , o™, o™, y™, y™ and p are rewritten as
Displacement-controlled.
5 = % RBr2 + A0 5 )+ (A2 = 242) E | (E5.2a)
in’eD
G = p[2AU, [ Fy + hP + (Ay = AH) EX T oo (E5.2b)
PN Z2AM: N Z2ARN e (E5.3a)
YN = AVR YN =240 e (E5.3b)
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2.2
Vw7

=— iD_oD e E5.3¢
p Ash rozD - 2A0’”1123 ( )

Load-controlled.

_p e 1D [2B (P +A3U ;/'OD)-+—(A3 b —2A4 }”D)O'ZZ], ........................... (E54a)

ip7oD
G = p(rd - r2)[2(4,B, — 4,B)U, I rpy + (A4, — A,h) & — (B, — B,h) P1..... (E5.4b)

o™ = 2(ANB, — A BN s — (AN B, =24, BNV ], (E5.5a)
o™ = 20(A4,B,h™ — A,BM i — (A, B,h™ = 2A,B™YVEL ] o, (E5.5b)

y™ = AN (B,h - B)r —[(AVB, —2A4,B™MYh— (A" B, —2A4,B™) 7 s (E5.6a)

y™ =2[(4,B, — A,B)h™ + (4,h — A)B™1rs, —2(A4,B, — A,B)h™r} ... (E5.6b)

o= "o fop D D) e (E5.7)
A, (B, — B,h)ry +2(4,B, — A,B,) 1},

E.6 Case 6

The following lateral boundary conditions are enforced

~ 5. ~1I _ . ~I _ =l
=P g +q =4 = e, (E6.1a)
"p="p "p="p »="p p="p
~ T . ~I1 _ ~1I _ =
u, =U,; P = T Dy et (E6.1b)
=D =D =T

The coefficients C™, C™ are the same as given in Eq. E1.12 for Case 2. C, and C; are

N)

given in Egs. E1.3 and E1.4. The lumped coefficients G;,, &, , ¢

™)

> P,

(N)

7, 7, and

p are the same as written for Case 5.
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For the special case of no-flow or jacketed on the inner surface, the fluid boundary

condition at this surface becomes

~II

~1 _
q,

"p=lip

The coefficients C™, C™ are the same as given in Eq. E1.21 for Case 5. C, and C; are

given in Eqs. E1.3 and E1.4. The lumped coefficients &, , &, o™, o™, y™, ™ and
p are the same as written for Case 5.
E.7 Case 7
The following lateral boundary conditions are enforced
G| =P B =D =B (E7.1a)
0| =U0; @ +3"  =q; Pl =P" (E7.1b)

The coefficients C™', C® are the same as given in Eq. E1.15 for Case 3. C, and C; are

N N

given in Egs. E1.3 and E1.4. The lumped coefficients &,,, &, , @, @, ™

, Ve, 7/£N),and

p are the same as written for Case 5.

For the special case of no-flow or jacketed on the outer surface, the fluid boundary

condition at this surface becomes

_~I

~1
q,

"D="oD
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The coefficients C™', C™ are the same as given in Eq. E1.24 for Case 6. C, and C; are

given in Eqs. E1.3 and E1.4. The lumped coefficients &, , 6., o™, o™, y™, ™ and
p are the same as written for Case 5.
E.8 Case 8
The following lateral boundary conditions are enforced
G,| =P; ' +q" =g, Pl =D e, (ES.1a)
il =U_; 7, +q" =7, D' =D s (E8.1b)

The coefficients CV', C{V' are the same as given in Eq. E1.18 for Case 4. 50 and C; are

N,

given in Egs. E1.3 and E1.4. The lumped coefficients &, , &, ¢, o™, y™, y™ and

b 7/1 2 70 b an
p are the same as written for Case 5.

For the special case of no flow or jacketed on both the inner and outer surfaces, the
condition is undrained and the solution simplifies to an elastic one with undrained

parameters.

E.9 Case 9

The following lateral boundary conditions are enforced
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The resulting coefficients C™, C™V, C, and C; are the same as given in Eqs. E1.2, E1.3

and E1.4. The lumped coefficients &,,, &, , ¢1(N) , qo(()N) , %(N’ , 7§N) ,and p are rewritten as
Displacement-controlled.
~ _ P S 2 2 2 2\
O =5 RPryp+ AU L) —(2A = AFp) EL | (E9.2a)
in¥op
G = p[RAU, |1y +hP 4 (Ay = Ah)EL T, oo (E9.2b)
PN =240 @M Z2AM e (E9.3a)
y™ =24, YN = AR oo (E9.3b)
2.2
P D e (E9.3¢)
24, 1, — Ahry
Load-controlled.
.
5. =pl2 I 28 (Br2 + A40rp) — QA — Ag2) & | oo (E9.4a)
iD" oD

G = plry, = 1) [2(4B, = 4,B) U, / ryy + (4, — A,h) &~ = (B, = B,h) B,], ... (E9.4b)

o™ = 2(A,B,h™ = 2A4,B™ )2 — Ay (Byh™ = BMY2 1, e, (E9.5a)
o™ =20(ANB, —=2A4,B™M Yl — (AN B, — ABIYE ], (E9.5b)
y™ =2(4,B, — 4,B,))h™r: —2[(4,B, — 4,B,)h™ + (4,h— 4))BM 17}, ........ (E9.6a)
Y™ =2[(A™B, — A,B™MYh+ A, BY — AV B, rs — A™ (Byh — B)rg s (E9.6b)
0= lihp / (’"D D) e (E9.7)

2(4,B, - AzBo) oo — A;(Byh— By) ril%) ’
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E.10 Case 10

The following lateral boundary conditions are enforced

~II

~ 7. ~1 —_ . =1 —

u. | =U; qg.t4.| =4 p| =  eeerreeen—eeen—ae e (E10.1a)
"p="p "»="p "p="p "p="p

~ - D ~I _ ~1 _ =

o, =P; p| = T Py e (E10.1b)
D=1 =D =T

The coefficients C™, C™ are the same as given in Eq. E1.12 for Case 2. C, and C; are

N 0N

given in Eqgs. E1.3 and E1.4. The lumped coefficients &, 6., ™, o™, y™, y™ and

s }/1 > 7/0 s an
p are the same as written for Case 9.

For the special case of no-flow or jacketed on the inner surface, the fluid boundary

condition at this surface becomes

= 0y oo eeee e s e eee s eee e (E10.2)

The coefficients C", C{" are the same as given in Eq. E1.21 for Case 5. 50 and C; are

given in Eqs. E1.3 and E1.4. The lumped coefficients &, , 6., o™, o™, y™, y™,
and p are the same as written for Case 9.
E.11 Case 11
The following lateral boundary conditions are enforced
U] =U; P =D =P (E11.1a)
&, =P, @+3"  =q; Pl =P (E11.1b)
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The coefficients C™', C™ are the same as given in Eq. E1.15 for Case 3. C, and C; are

(N)

™
» Vi

> Yo

N 0N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , &, , ¢, @, , and

p are the same as written for Case 9.

For the special case of no-flow or jacketed on the outer surface, the fluid boundary

condition at this surface becomes

~II

) DSOS (E11.2)

~1
q,

"D =D > =Tlip

The coefficients CY', C{V' are the same as given in Eq. E1.24 for Case 6. 50 and C; are

N N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , ., ¢, o™, y™, y™ and

p are the same as written for Case 9.

E.12 Case 12

The following lateral boundary conditions are enforced

=U; G +q" T (E12.1a)

"»="p

=P; §'+q" e eeereerseeens (E12.1b)

"D =rop

The coefficients C™', CY' are the same as given in Eq. E1.18 for Case 4. C, and C; are

N 0N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , 7., ¢, @,

(N)

» Vi

(N)

, ¥, ,and

p are the same as written for Case 9.

For the special case of no flow or jacketed on both the inner and outer surfaces, the

condition is undrained and the solution simplifies to an elastic one with undrained
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parameters.

E.13 Case 13

The following lateral boundary conditions are enforced

~ 'y ~I _ o~ o~

u, =U; p = I D ettt (E13.1a)
"p="p ">="p »="ip

~ r 7 ~I ~II ~

u =U,; = T Dy reeeereenneene e (E13.1b)
=D "D=Ip =D

The resulting coefficients C™, C', C, and C; are the same as given in Egs. E1.2, E1.3

and E1.4. The lumped coefficients &, , &, , o™, ™, y™, y™ and p are rewritten as
Displacement-controlled.
5o = 2P Yo =Uip £ e U Uol . (E151)
Fin’op h h b Yo
2 h(N) riz r2
P =M == N =y =™ p= DD s (E1.52)
h Fop —7p
Load-controlled.
g =P | 2BaUin =Uiip) 4 Uip =1ip)Os | (E1.53)
Fin’op B, — B,h
o g B B e (E1.54)

B, —B,h

o N) (N)

where G, 7, ., 7, ,and p are the same as given in Eqs. E1.51 and E1.52.
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E.14 Case 14

The following lateral boundary conditions are enforced

~ _rr. ~I , ~II o~ ~I1 _ o~

u. | =U; qg.t4.| =4 p| = [ (El4.1a)
"p="p "»="p "p="p "p="p

~ r 7 ~I ~II ~

u =U,; = T Dy reeeereenreene et (E14.1b)
=D "D=Ip =D

The coefficients C™, C™ are the same as given in Eq. E1.12 for Case 2. C, and C; are

N 0N

given in Eqgs. E1.3 and E1.4. The lumped coefficients &, 6., ™, o™, y™, y™ and

’}/i 97/0 ’an

p are the same as written for Case 13.

For the special case of no-flow or jacketed on the inner surface, the fluid boundary

condition at this surface becomes

= 0y oo eeee e s e eee s eee e (E14.2)

The coefficients CN', C{V' are the same as given in Eq. E1.21 for Case 5. 50 and C; are

given in Egs. E1.3 and E1.4. The lumped coefficients &, , &, , o™, o™, y™, y™ and
p are the same as written for Case 13.
E.15 Case 15
The following lateral boundary conditions are enforced
B, =U; Pl =P" = P, (E15.1a)
i =U,; @' +3"|  =q;  P'| =P (E15.1b)
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The coefficients C™', C™ are the same as given in Eq. E1.15 for Case 3. C, and C; are

N 0N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , &, , ¢, @, ™

™
» Vi

, ¥, ,and

p are the same as written for Case 13.

For the special case of no-flow or jacketed on the outter surface, the fluid boundary

condition at this surface becomes

~II

) DSOS (E15.2)

~1
q,

"D =D > =Tlip

The coefficients CY', C{V' are the same as given in Eq. E1.24 for Case 6. 50 and C; are

N N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , ., ¢, o™, y™, y™ and

p are the same as written for Case 13.

E.16 Case 16

The following lateral boundary conditions are enforced

~

~II
u

U; §'+3q

e (E16.1a)

r — —
"p="p "»="p

~

~II
u

=U,; G +q

"=Top

eeeeeeeeeeeeeeeeenenn (E16.1b)

The coefficients C™', CY' are the same as given in Eq. E1.18 for Case 4. C, and C; are

N 0N

given in Egs. E1.3 and E1.4. The lumped coefficients &, , 7., ¢, @,

(N)

» Vi

(N)

, ¥, ,and

p are the same as written for Case 13. For the special case of no flow or jacketed on both

the inner and outer surfaces, the condition is undrained and the solution simplifies to an

elastic one with undrained parameters.
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Appendix F Dual-Porochemoelastic Inclined
Wellbore Solutions

The boundary conditions and associated expressions for contributing axisymmetric loading,

Case 1, and deviatoric loading Case 2 are given in the following section.

Case 1 — Axisymmetric Loading

The perturbed boundary condition at the borehole wall (rp = 1) are

O =—0, + D, (t), 0L =0, e, (F.1)
PO = P = P () = Dyseeverereereeeeeeeeieee e (F.2)
P =P = (RT VI (£) = 5 1y (F.3)

This is an axisymmetric (n = 0) loading problem. The stress has contribution from the mud
pressure, p,,, and the hydrostatic part of the released in-situ stress, o;,. The fluid and solute

diffuse due to pressure and solute concentration gradient across the mud/rock interface.
Bounded solution at far-field requires that 50 = 0. The solution is transient and given in

Laplace transform domain as follows

P = Sl AL (E15,) + mIEAD (7)o (F.4)
j=1,2

PO = 3 A D (Elry )+ mEAND (EM) ] (F.5)
=2

P = 3 |l AL (Elry) + mEATD (EM7)) | (F.6)
j=1,2
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PO = Sk AL (Elry) I AND (EM) | (F.7)

j=1,2
GV =AG 1y =Y DAPAITIEMr,), oo (F.8)
j=1,2(N)=LII '
Gop =—AG 1y + D D AVAYITEMr) + D (EMr)], oo (E.9)
J=L2(N)=LII
with
A [mly mby ml omb] (AP
A, My My, My my, Ap®
A =l 1 . . i [ (F.10)
1 my My My My \P
N A
M=p, -2, =B AG=F, - (F.11)
Vs s s
O(xry)=Ro) o Kiln) Ifl(x) .............................. (F.12)
K, (x) xrp, Ko(x)  xry Ko (x)
Case 2 — Deviatoric Loading
The perturbed boundary condition at the borehole wall (rp = 1) are
0 =—0,c082(0-6.)), 02 =0,502(0=6.)) cceeervereeereeeeeeeeereria, (F.13)
PP =p " =p P = PO =0 e, (F.14)

This is an asymmetric (n = 2) stress loading problem accounting for the release of the
deviatoric part of the in-plane in-situ stresses, oz The solutions in Laplace transform

domain are

sp@ =0, { £Cr2+ 3 S mPe™K, (§;N>rD)]} COS(2(0 = 6.)) wooererrereeee (F.15)

j=1,2N=L1II
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sp'? =0, { f;éor,;z + [mzj)C(N)K (f(N)rD)]} N CICEZ) R, (F.16)

sp"® =0, f'Cory? + [m§§>c§N>K2(§;N>rD)]} S CICEZ) P (F.17)
Jj=1,2N=L]I

spi? =0, {fzugorDz + [m4j)C(N)K (f(N)rD)]} N CICETZ) IR (F.18)
j=1,2N=L]I

s = ad{ [40C™Q (£Mr,)] - c;;‘} RGN0 N (F.20)

Z [A(N)C(N) = (f(N)FD)]
Xt SO G ) N (F.21)
-4, C0r1;2 - C3r1;4

C'11 dlll dllz dlli dlg | ﬁl
Cy| 2|dy dy dy dy| |f3
» = PR I FE T ———— (F.22)
1 0] ds 3 31 3 h
C;) dy dy dy dy] LS
(N) (N) 1(§(N))
|1+ Z;NZIZUA C! .»;<N> ettt (F.23)
J
= 3[1 +. > 40P ‘I’(é}N))}, ..................................................................... (F.24)
Jj=1,2N=LII

with
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)
a7 e
J

N N N
4" = mK, () -

A oK)
4, 7 Em
J

N . (N) N)
d(i+2)j = m(i+2)jK2(5j )—

i,j=12; (N)=LII,

Oxr,) = K,(x7,) +6 K,(xr,)

xry (x rD)2

Q(x7,)=0(x7,) F K (X 7)) oot

K (xr) | Karry)

E(xr,)=2
(¥75) xry, (er)2

\P(xr ): Kl(er) +2K2(er)
? XTp (xrp)*
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Appendix G Dual-Porothermoelastic Finite
Difference Solutions

The coefficient

p;:jﬂ - 2LL§),1 (p,—po)
: 0
A 0
" ~2LLy (p, ~ py)
. : 0
X*1=| [BC] = ettt eeen (G.1)
Pl 0
Tz{H - 2LLTD,1 (Tw - To)
: 0
| 75 ] i 0 |
L LI LpY RR' RR" RRY
[L/"]=|LL" LL" LL" | [R’]=|RR"™ RR" RR™ |, ... (G.2)
0 0 LV 0 0 RR"

in which the submatrices of [L/"'] are given as

LL™ LLY) 0 0
LLY, LL® - 0
[LL™]= o . R PR — (G.3)
0 2 . LLY
0 0 LLY) , LLY
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LL"  LLy" 0 0
. LLL LI 0
LL" = ’ ettt G4
[ ] 0 . . e (G.4)
N : U,nr-3
0 o LLy, L'

[LLM] = o et (G.5)

0 0 0 L.

™ 0 0 0

0 ¢y . 0
[LL™T]=[RR™] = ettt (G.6)
0o . .0

0 0 0 ¢

The submatrices of R/ (RR(N), RR'"' and RRI’H) are defined similar to those of L/*!

with LL replaced by RR. The components of these submatrices are expressed as

LI =(1-%,) = L (G.7)
g AAr[1+(i+ 1A 247
Ll :l—w+(1—fD)%+ﬂD%, ..................................................................... (G.8)
D
L, =—(1-%,) = T (G.9)
' 4Ar,[1+ (G +DAr,]  2Ar)

i =, Aty N (G.10)
’ A1+ (i + DA ] 247
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A A
e (G.11)
I 2
L' =%, Al T (G.12)
’ 401, [1+ (i +1)Ar, ] 247,
At
L™ =@, - A, TD ........................................................................................... (G.13)
LLL = &7 Aty _ A | ApH! Bl e (G.14)
P PLAAR[1+ G+ DAr,] 247, “8ARE’
T e (G.15)
Ar}
[y Al N (G.16)
’ 4Ar[1+ (i +1)Ar,] 247, 8AF,
’?T,I —=T,11
Ml == (P = Pl + pl - P+ - (i = p" + Pl = Pl ), - (G1T)
RR,, =-LLy; RR'=2(1-@w)—LL';  RR,=—LLy,, currceruerrrrcrruuure. (G.18)
RRYM =20, — L™ | oo (G.19)
RRy, =—LL},;;  RR"=2w—-LL";  RRy, =—LLy,, ccouoveroereerrerrecunne. (G.20)
RRyM =-LLy";  RR™™ =2-LL';  RR;/" =—LLy"™, e, (G.21)
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