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Abstract 

 
 

In order to bring structure to many of the judgment and decision making 

problems people encounter, decision makers are often required to generate, from 

memory, hypotheses explaining their observations.  This dissertation focuses on 

this predecisional process of hypothesis generation which underlies and supports 

much judgment and decision making behavior.  Although we are beginning to 

understand a great deal about the mechanisms governing the generation and 

utilization of hypotheses (Thomas, R.P. et al. 2008) more work is needed to fully 

appreciate how these retrieval, judgment, and choice processes operate in real-

world task environments. 

 The present research addresses temporal dynamics underlying hypothesis 

generation processes.   As temporal dynamics are an inevitable precondition for 

information acquisition and utilization, a full understanding of hypothesis 

generation processes will remain speculative without systematic examination of 

the influences of such dynamics.  Four experiments examined various pertinent 

issues in an effort to provide fundamental insights upon which more complete 

theory can be developed.  The influence of information order, information 

activation in working memory, information agreement, information use (grouped 

vs. isolated), and working memory allocation were examined.  Furthermore, two 

novel methodologies are forwarded providing unique approaches for assessing the 

active contents of working memory through time.  By exploiting biases in which 

visual attention is drawn towards items matching the contents of working memory 
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these measures are able to index the current contents of working memory at any 

given point in time.  

 Several critical findings emerged from this set of experiments.  First, 

results indicate that people tend to weight later information more heavily than 

earlier information in some, but not all, circumstances.  Second, the role of 

information activation in working memory was implicated as governing its 

contribution to the hypothesis generation processes wherein more active items 

contribute more.  Third, it was found that the acquisition of information that is 

inconsistent with hypotheses under consideration causes people to discard these 

inconsistent hypotheses.  This work provides important insights into how internal 

working memory dynamics interact with external dynamics in shaping the 

hypothesis generation process that can be used to support the development of a 

comprehensive computational theory. 
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Chapter 1: Introduction 
 

Dynamic decision making (DDM) has been a subfield of 

investigation within the wider decision making literature since the 1960s 

(Edwards, 1962; Toda, 1962).  Toda’s initial investigation utilized a game 

dubbed “fungus eater” in which participants controlled a robot mining for 

uranium on a foreign planet. Their task was to decide how best to distribute 

their time between resources in order to maintain an adequate power supply 

while optimizing mining activity.  Since this novel investigation, the 

subfield of dynamic decision making has received a fair amount of attention 

as several dynamic tasks have become the topic of research such as health 

management (Kerstholt, 1994; Kleinmuntz & Thomas, 1987), fire-fighting 

(Brehmer & Allard, 1991; Gonzalez, Thomas, & Vanyukov, 2004), and 

navigation (Anzai, 1984; Jagacinski & Miller, 1978) amongst others. 

According to Busemeyer (1999) dynamic decision-making tasks are 

characterized by three properties.  First, a series of actions must be taken 

over time to achieve an overall goal.  Second, these actions are 

interdependent so that later decisions depend on earlier actions.  Third, the 

environment in which the decision task is situated changes both 

spontaneously and as a result of earlier actions.  By recognizing these task 

characteristics, investigations in dynamic decision making have made 

strides in honoring the dynamic complexities one is inevitably faced with in 

real-world environments.  As noted by Gonzalez, Thomas, & Vanyukov 
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(2004), real-world tasks (and those investigated within DDM) are 

dynamically complex due to the presence of nonlinear relationships 

amongst environmental variables, multiple loops, and delays in feedback to 

the decision maker.  Without addressing such complexity a full 

understanding of decision making behavior will remain elusive. 

In this dissertation I address temporal dynamics from a slightly 

different approach than has been taken in previous DDM research.  My 

interest in this work is the predecisional process of hypothesis generation by 

which decision makers develop beliefs that bring structure to judgment and 

decision making problems.  This process relies on the retrieval of 

hypotheses from long-term memory that are then brought into working 

memory for further consideration and use.  It is my contention that in order 

to understand the temporal dynamics of hypothesis generation, and the 

higher-level decision making tasks reliant upon this process, we must gain a 

greater appreciation of the fine-grained working memory dynamics 

unfolding over time in support of these tasks.  In this way the present work 

departs from, yet complements, much of the previous work of DDM which 

has focused largely on dynamics external to the decision maker.   

The research perspective adopted in the present work lies at the 

confluence of internal and external dynamics as it is assumed that an 

understanding of how internal cognitive dynamics bidirectionally interact 

with external dynamics will provide a fuller picture of decision making in 

dynamic task environments.  It is with this goal in mind that we look 
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towards a recent model of working memory dynamics within list memory 

tasks as a guidepost suggesting how working memory may operate in 

service of data acquisition, hypothesis generation, maintenance, testing, and 

judgment processes as they evolve over time.  These ideas are further 

elaborated below. 
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Chapter 2: Hypothesis Generation & Temporal Dynamics 

 

The Problem 

 

Hypothesis generation is a predecisional process by which we 

formulate explanations and beliefs regarding the occurrences we observe.  

As such, hypothesis generation represents one of our most fundamental 

cognitive faculties and its ubiquity in our lives cannot be understated.  

Given this ubiquity, it is no surprise that hypothesis generation forms a core 

component of several professions.  Auditors, for instance, must generate 

hypotheses regarding abnormal financial patterns, mechanics must generate 

hypotheses concerning car problems, and intelligence analysts must 

interpret the information they receive. Perhaps the clearest example, 

however, is that of medical diagnosis.  A physician observes a pattern of 

symptoms presented by a patient (i.e., data) and uses this information to 

generate likely diagnoses (i.e., hypotheses) that explain the patient’s disease 

state.  Given these examples, the importance of developing a full 

understanding of hypothesis generation processes is clear as impoverished 

hypothesis generation may result in severe consequences.  

When engaged in hypothesis generation tasks cognitive limitations 

place constraints on data acquisition.  Important to the present work is the 

fact that data acquisition is generally occurs serially over some span of time.  

This, in turn, dictates that individual pieces of data are acquired in some 
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temporal relation to one another.  These constraints, individual data 

acquisition over time and the relative ordering of data, are likely to have 

significant consequences for hypothesis generation processes.  Given these 

basic constraints it is intuitive that temporal dynamics must form an integral 

part of any comprehensive account of hypothesis generation processes. 

 At present there exists limited data on the temporal dynamics of 

hypothesis generation tasks.  Accordingly there exists no comprehensive 

theory regarding how temporal dynamics influence hypothesis generation 

processes.  Thus, the constraints operating over these processes are not yet 

well understood and until they become so a full understanding of hypothesis 

generation processes will remain speculative. 

 

The Goals of this Work 

 

The primary goal of this work is the identification of basic 

constraints to inform a computational model of hypothesis generation 

honoring temporal dynamics.  By empirically targeting key theoretical 

issues, the breadth and character of the assumptions required in developing 

such a formal account can be refined. 

The theoretical issues addressed in this work cover five main 

inquiries. 1)  It is likely that decision makers do not use all available data to 

an equal degree in hypothesis generation processes.  The first investigation 

aimed to delineate the effect of the serial position of data on hypothesis 
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generation and evaluation.  The overall goal of this query was to examine 

how the weightings applied to individual data are influenced by serial 

position.  2)  The second area of inquiry examined if the level of working 

memory (WM) activation associated with various pieces of data predicts 

their relative contributions to hypothesis generation.  3)  It is not yet clear 

how people make use of data that is inconsistent with a current set of 

hypotheses.  The specific question investigated here was whether or not 

inconsistent data prompt the purging of hypotheses from working memory 

in favor of a new round of generation or if beliefs in current hypotheses are 

simply revised in light of the new information.  4)  The effect of 

maintaining multiple pieces of data in working memory prior to generation 

was contrasted with generation following individual pieces of data.  This 

manipulation afforded comparisons between maintenance processes 

preceding generation with those of belief adjustment and the effect of re-

cueing based on data isolated in time.  5)  Lastly, there exists no data to date 

on the dynamic allocation working memory resources during hypothesis 

generation tasks.  Tradeoffs between data and hypotheses in working 

memory following hypothesis generation were explored. 

A secondary goal was the development and validation of novel 

empirical methodologies designed to assess the active contents of working 

memory.  The main advantages of these techniques are that they are less 

invasive and potentially more sensitive than existing techniques.  The 

standard technique used to measure hypothesis generation in previous 
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paradigms has been to simply ask the participant what they believe to be the 

likely explanation(s) of what they have observed (e.g., Fisher et al., 1983).  

As a consequence of this type of prompting, the contents of working 

memory are substantially perturbed (e.g., interference of information being 

maintained, new information called into working memory to develop an 

answer to the prompt)
 1

.  Thus, simply asking the participants about the 

active contents of their memory systems is likely an insufficient method to 

investigate fluctuations of working memory contents (and their activations) 

over time. 

By adapting paradigms from the visual attention literature and 

exploiting automatic processes of visual search it may be possible to assess 

the contents of working memory while obviating significant amounts of 

perturbation.  The methodologies forwarded may allow inference of 

working memory activation by examining attentional performance over 

very brief displays (≈ 200 – 500 milliseconds).  Given such short durations, 

these methods can be thought of as taking “snapshots” of the contents of 

working memory
2
.   

 

 

 

 

                                                           
1
 It is possible to infer likely hypotheses generated though judgments (e.g., probability 

judgment).  However, the elicitation of such judgments will perturb the active contents of 

working memory in the same manner as described. 
2
 The logic and conceptual details of these methodologies are treated in detail in chapter 6. 
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Guiding Theories & a Broad Hypothesis 

 

HyGene (Dougherty, Thomas, & Lange, 2010; Thomas, Dougherty, 

Harbison, & Sprenger, 2008), short for hypothesis generation, is a 

computational architecture addressing hypothesis generation, evaluation, 

and testing.  This framework has provided a useful and comprehensive 

account through which to understand the cognitive mechanisms underlying 

these processes.  This process model is presented in Figure 1.   

 

Figure 1: Flow diagram of the HyGene model of hypothesis generation, 
judgment and testing 
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HyGene rests upon three core principles.  First, it is assumed that 

hypothesis generation represents a generalized case of cued recall.  Data 

observed in the environment (Dobs), which one would like to explain, act as 

cues prompting the retrieval of hypotheses from long-term memory (LTM).  

For instance, when a physician examines a patient, he/she uses the 

symptoms expressed by the patient as cues to related experiences in LTM.  

These cues activate a subset of related memories in LTM from which 

hypotheses are retrieved.  These retrieval processes are indicated in steps 

one, two, & three of Figure 1. 

 As viable hypotheses are retrieved from LTM they are placed in the 

Set of Leading Contenders (SOC) as demonstrated in step four.  The SOC 

represents HyGene’s working-memory construct to which the second 

principle applies.  HyGene’s second principle holds that the quantity of 

hypotheses that can be maintained at one time is constrained by cognitive 

limitations as well as task characteristics.  That is, the more working 

memory resources that one has available to devote to the generation and 

maintenance of hypotheses, the more accommodating the SOC will be of 

additional hypotheses.  Working-memory capacity places an upper bound 

on the amount of hypotheses (and data) that one will be able to maintain at 

any point in time.  In many circumstances, however, attention will be 

necessarily divided by a secondary task.  Under such conditions this upper 

bound is reduced as the alternative task siphons resource that would 
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otherwise allow the population of the SOC to its unencumbered capacity 

(Dougherty & Hunter, 2003a; Dougherty & Hunter, 2003b; Sprenger & 

Dougherty, 2006; Sprenger et. al., 2011).   

The third principle states that the hypotheses maintained in the SOC 

form the basis from which probability judgments are derived and provide 

the frame from which hypothesis testing is implemented.  This principle 

underscores the function of hypothesis generation as a predecisional process 

underlying higher level decision making tasks.  The tradition of much of the 

prior research on probability judgment and hypothesis testing has been to 

provide the participant with the options to be judged or tested.  HyGene 

highlights this as limiting the scope of the conclusions drawn from such 

procedures as decision makers in real world tasks must generally generate 

the to-be-evaluated hypotheses themselves.  As these higher-level tasks are 

contingent upon the output of the hypothesis generation process, any 

conclusions drawn from such experimenter-provided tasks are necessarily 

limited to such conditions. 

These assumptions form the core of HyGene’s theoretical 

framework and as such have been essential to the model’s ability to explain 

the extant phenomena regarding hypothesis generation, probability 

judgment, and information search.  It is likely, however, that the HyGene 

framework is in need of additional assumptions to more fully capture 

hypothesis generation processes as deployed in real-world tasks and 
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environments.  Perhaps the most vital assumption yet to be incorporated is 

that temporal dynamics will influence hypothesis generation processes.   

HyGene in its current form is static with regards to data acquisition 

and use.  The model receives all available data from the world 

simultaneously and engages in only a single iteration of hypothesis 

generation.  Given the static nature of the model, each piece of data used to 

cue memory contributes equally to the recall process.  There is reason to 

suspect, however, that all available data do not contribute equally
3
.  What is 

needed is an understanding of working memory dynamics as data 

acquisition, hypothesis generation, and maintenance processes unfold and 

evolve over time in hypothesis generation tasks.  As we assume that 

hypothesis generation represents a generalized case of cued recall, we look 

towards a recent model in the memory literature as a guide for how working 

memory dynamics might operate in hypothesis generation tasks. 

The Context Activation Model (Davelaar et al., 2005) is one of the 

most comprehensive models of list memory recall dynamics to date.  This 

model was developed to inform an ongoing debate in the memory literature 

concerning the necessity of postulating the involvement of working memory 

to account for the extant data from a host of recall paradigms.  As various 

single store models have provided good explanations of much of the extant 

data (e.g., SIMPLE (Brown, Neath, & Chater, 2007), TCM (Howard & 

                                                           
3
 Additionally HyGene allows a large set of cues to be used in the recall process (e.g. 9).  

Given well known capacity limitations on working memory it is unlikely that such a large 

set could contribute to the recall process. 
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Kahana, 2001)) many researchers have suggested that there is no reason to 

posit that working memory plays a significant role in memory recall.  The 

Context Activation Model (CAM) provides an argument counter to this 

trend by demonstrating that the utilization of a working memory store not 

only allows for a better account of the extant data, but also accurately 

predicts novel (and surprising) phenomena.  As the novel effects predicted 

by this model are not readily addressable by single store models, CAM 

provided a strong argument for the involvement of working memory 

processes in list recall tasks. 

The model’s ability to predict nuanced phenomena results from the 

manner in which the activations of individual items (e.g., words from a list) 

dynamically fluctuate over time in concert with the assumption that 

working memory is capacity limited.  The activations of individual items in 

the model are multiply determined by several factors continuously 

interacting over time.  These factors are: 1) bottom up sensory input 

currently received, 2) recurrent self-excitation, 3) global inhibition from 

competing items, 4) excitation from semantic associates, 5) the item’s 

activation in the previous time step, and 6) stochastic noise. 

 A representative example of the activation trajectories produced by 

these forces working in tandem is presented in Figure 2 which displays the 

activation trajectories of twelve items over the course of a study period of a 

recall task.  The activation levels are plotted on the y-axis as F(X) with time 

on the x-axis.  The threshold for inclusion in working memory is 
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demarcated by the horizontal line at F(X) = 0.2.  As can be seen, the 

individual items enter and exit working memory in accordance with their 

activation levels achieved over time. 

 

Figure 2: Activation trajectories of 12 items during a study period of a free recall 
task produced by the Context Activation Model 

 

Although the activation trajectories displayed in Figure 2 are 

somewhat characteristic of the trajectories produced by the model under 

commonly employed task characteristics in free and cued recall tasks, these 

trajectories are highly sensitive to changes in task parameters.  For instance, 

if the display rate of each item is increased from 400 to 200 iterations (i.e., 

when the display rate is twice as fast), the activation trajectories behave 

remarkably different, as displayed in Figure 3.  In the top panel we see the 

trajectories exhibiting the gradual replacement of earlier list items with later 

list items as greater competition emerges throughout the study period.  

However, as demonstrated in the lower panel, when the presentation rate is 

high it is not the later items that are active in working memory at the end of 



14 

 

the study period, but the initial items.  The stunted activation levels of the 

later items results from the decreased period of strong bottom up activation 

for each item that would, in most other cases, allow these items to surmount 

the global inhibition of items currently in working memory and facilitate 

their activation beyond the WM threshold. 

 

Figure 3: Activation trajectories of 12 items under a relatively slow presentation 
rate (top) and a fast presentation rate (bottom) produced by the Context 

Activation Model 

 

 It is this dynamic sensitivity that allows the model to account for a 

host of findings in the memory literature.  The verification of novel 

predictions generated by the model, such as the presentation rate effect 

described above, bolsters the validity of the model’s account of working 
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memory dynamics in recall tasks.  Given that HyGene is based on the 

premise that hypothesis generation is a case of cued recall, it stands to 

reason that the incorporation of the WM dynamics of CAM with the 

existing HyGene architecture may afford appropriate mechanisms by which 

to build a temporally dynamic model of hypothesis generation.  In addition, 

the behavioral dynamics of the Context Activation Model provide heuristic 

value in considering how WM may handle data acquired over time in 

hypothesis generation tasks. 

Underlying the present work is the assumption that the activations of 

individual pieces of data in working memory fluctuate dynamically over 

time prior to and during their use as cues to retrieve hypotheses from long-

term memory.  It is further posited, as a broad hypothesis for the 

experiments that follow, that the contributions made by individual pieces of 

data to the generation process (i.e., their weightings) will be determined by 

their activations in working memory
4
.  Lastly, it is assumed that working 

memory limitations will place an upper bound on the amount of data that 

can actively contribute to hypothesis generation processes. 

 

                                                           
4
 There are additional factors that are likely to contribute to data weightings in working 

memory as well (e.g., diagnosticity, utility) that but these factors must be the focus of 

independent investigation and are set aside for the time being. 
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Chapter 3: Experiment 1- Data Serial Position & Hypothesis 

Generation 
 

 Order effects are pervasive in investigations of memory and decision 

making (Hogarth & Einhorn, 1992; Murdock, 1962; Page & Norris, 1998; 

Weiss & Anderson, 1969).  Such effects have even been obtained in 

hypothesis generation tasks specifically.  Sprenger (2007) found that people 

tended to weight cues more heavily that were presented later in a sequence 

rather than early cues. 

The generalized order effect paradigm was developed by Norman 

Anderson (1965; 1973) and couched within the algebra of information 

integration theory to derive weight estimates for individual pieces of 

information presented in impression formation tasks (e.g., adjectives 

describing a person).  This procedure involved embedding a fixed list of 

information with a critical piece of information at various serial positions.  

The differences in the critical information serial position thus defined the 

independent variable, and given that all other information was held constant 

between conditions, the differences in final judgment were attributable to 

the serial position of the critical data.  The present experiment represents an 

adaptation of this paradigm to assess the impact of data serial position on 

hypothesis generation and probability judgment. 
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Method 

 

Participants 

 

One hundred and twenty one participants from a large Midwestern 

university participated in this experiment for course credit. 

 

Design (1-Way Within-Subjects Design) 

 

 The design of Experiment 1 was a one-way within-subjects design 

with data order as the independent variable.  The ecology for this 

experiment as defined by the conditional probabilities between the various 

hypotheses and data is shown in Table 1.  Each of the values appearing in 

this table represents the probability that the data will be positive (e.g., fever) 

where the complementary probability represents the probability of the data 

being negative (e.g. normal temperature).   As you can see, the only 

diagnostic piece of data is D1 whereas the remaining cues, D2-D4, are non-

diagnostic. 
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Symptoms 

  D1 D2 D3 D4 

Diseases 

H1: Metalytis 0.8 0.6 0.6 0.6 

H2: Zymosis 0.2 0.6 0.6 0.6 

H3: Gwaronia 0.2 0.6 0.6 0.6 

 

Table 1: Disease x Symptom ecology of Experiment 1 

 

Table 2 displays the four data orders.  Each of these orders was 

identical (D2  D3  D4) except for the position of the D1 data within 

them.  An additional baseline condition, in which D1 was presented in 

isolation, was implemented as well.  All participants received and judged all 

data orders. However, given that carry over effects are expected, this will be 

considered a between subjects variable in terms of the planned analysis in 

which only the first order received by the participant (i.e., first trial) is to be 

considered uncontaminated from preceding trials. 

 

  → Presentation Position → 
  1 2 3 4 

Order 1 D1 D2 D3 D4 

Order 2 D2 D1 D3 D4 

Order 3 D2 D3 D1 D4 

Order 4 D2 D3 D4 D1 

Baseline      D1 only 
 

Table 2: Data presentation orders and baseline control used in Experiment 1 
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Procedure 

 

 The procedure began with an exemplar training phase in which a 

series of hypothetical pre-diagnosed patients was presented to the 

participant in order for them to learn, through experience, the contingencies 

between the hypotheses and data.  Each of these patients was represented by 

a diagnosis at the top of the screen and a series of test results (i.e., 

symptoms) pertaining to the columns of D1, D2, D3, & D4
5
.  The specific 

results of these tests respected the probabilities in Table 1 from patient to 

patient.  Thus, over the course of training the participants encoded this 

statistical ecology in long term memory.  Prior to beginning the exemplar 

training the participants were informed that they had an opportunity to earn 

a $5.00 gift card to Wal-Mart if they performed well enough in the task.  If 

the participant scored greater than 60% on a diagnosis test (described 

below) then they were awarded the gift card at the end of the experiment. 

A short diagnosis test phase directly followed exemplar training.  

This test was included to allow discrimination of participants that 

adequately learned the contingencies between the data and the hypotheses in 

the training phase
6
.  The participants were presented with the 

                                                           
5
 Examples of the displays used in this experiment appear in Appendix A.  These examples 

demonstrate the exemplar training screens used as well as those used at elicitation.  
These displays are very similar to those used in Experiments 2 & 3 as well. 
6
 Previous investigations in our lab utilizing exemplar training tasks have demonstrated 

variation in conclusions drawn from results conditionalized on such learning data against 
entire non-conditionalized data set.  Therefore including this learning test allows us a 
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symptomologies of a series of 12 patients (4 of each disease).  The data of 

each of the patients was presented simultaneously on a single screen.  The 

participants’ task in this phase was to correctly diagnose the patient(s) with 

the disease of greatest posterior probability given the presenting symptoms.  

No feedback on this test performance was provided.  This was followed by 

a distracter phase in order to clear working memory of information 

processed during the diagnosis test phase. The distracter task consisted of a 

series of fifteen arithmetic equations for which the correctness or 

incorrectness was to be reported (e.g. 15/3+2 = 7?  Correct or Incorrect?).  

This distracter task was self paced. 

 The elicitation phase then proceeded.  First, the diagnosis task was 

described to the participants as follows: “You will now be presented with 

additional patients that need to be diagnosed.  Each symptom of the patient 

will be presented one at a time.  Following the last symptom you will be 

asked to diagnose the patient based on their symptoms.  Keep in mind that 

sometimes the symptoms will help you narrow down the list of likely 

diagnoses to a single disease and other times the symptoms may not help 

you narrow down the list of likely diagnoses at all.  It is up to you to 

determine if the patient is likely to be suffering from 1 disease, 2 diseases, 

or all 3 diseases.  When you input your response make sure that you 

respond with the most likely disease 1
st
.  You will then be asked if you 

think there is another likely disease.  If you think so then you will enter the 

                                                                                                                                                   
check on the presence of such discrepancies in addition to obtaining data that may inform 
how greater or lesser learning influences the generation process. 
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next most likely disease 2
nd

.  If you do not think there is another likely 

disease then just hit the Spacebar.  You will then have the option to enter a 

3
rd

 disease or hit the Spacebar in the same manner.  To input the diseases 

you will use the first letter of the disease, just as you have been during the 

training and previous test.”   

The participant was then presented with the first patient and 

triggered the onset of the stream of data themselves when they were ready.  

Each datum of each patient was presented individually for 1.5 seconds.  The 

order in which the data were presented was determined by the order 

condition as shown in Table 2.  Following the presentation of the last datum 

the participant responded to three sets of prompts: the diagnosis prompts (as 

previously described in the instructions to the participants), a single 

probability judgment prompt of their highest ranked diagnosis, and a 

thought listing pertaining to the probability judgment. 

The probability judgment was elicited with the following prompt: 

“If you were presented 100 patients with the symptoms of the patient you 

just observed how many would have [INSERT HIGHEST RANKED 

DISEASE]?”  The thought listing pertaining to the probability judgment 

was then solicited with the following prompt: “Now try and remember all of 

the ideas you had while thinking about the response you just made.  Please 

list these thoughts.”  The participant was then presented with the remaining 

orders in the same manner with distracter tasks intervening between each 

trial. 
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Hypotheses & Predictions 

 

A recency effect was predicted on the grounds that more recent cues 

would be more active in working memory and contribute to the hypothesis 

generation process to a greater degree than less recent cues. Given that the 

activation of the diagnostic cue (D1) in working memory at the time of 

generation was predicted to increase in correspondence with its serial 

position, increases in the generation of Metalytis were predicted to be 

observed with increases in the serial position occupied by D1.  

Correspondingly, decreases in the generation of the alternatives to Metalytis 

were expected with increases in the serial position of D1.  Bolstering this 

prediction is the finding of recency in hypothesis generation by Sprenger 

(2007) discussed above.  Previous work has demonstrated the dilution effect 

whereby supplemental non-diagnostic information serves to reduce 

probability judgments (Smith, Stasson, & Hawkes, 1998 ; Troutman & 

Shanteau, 1977; Zukier, 1982).  It was predicted that the presence of 

supplemental non-diagnostic data would serve to dilute the contribution of 

the diagnostic cue to the generation process thereby decreasing the 

generation of Metalytis relative to the baseline condition.  Additionally, 

probability judgments assigned to Metalytis were expected to be lower for 

these conditions with multiple cues in comparison to the baseline condition. 
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Results 

 

Carry-over effects were evident in the data as evidenced by a 

significant interaction between order condition and trial, χ
2
(3) = 10.3, p < 

0.05.  In light of this, only the data from the first trial was subjected to 

analyses as it was assumed that this was the only uncontaminated trial for 

each subject.  Nominal logistic regression was carried out over the 

generation data to examine the effect of data serial position on the 

generation of Metalytis, the disease with the greatest posterior probability 

given the data
7
.  These tests were conducted with the baseline condition 

omitted and therefore incorporated orders 1 thru 4.  As can be seen in 

Figure 4 , the results demonstrated a significant trend for the output of 

Metalytis (in any output position) with increases in the serial position of the 

diagnostic data, χ
2
(1) = 5.15, p < 0.05.  Additionally, there was a significant 

trend for Metalytis being the first hypothesis output, χ
2
(1) = 6.72, p < 0.01 

as displayed in Figure 5.  Interestingly, however, there was no trend for the 

generation of either alternative hypothesis, χ
2
(1) = 0.18, p = 0.667.  As a 

side note, comparisons of the generation of Metalytis as first in the output 

sequence vs. the generation of Metalytis in any position in the output 

sequence revealed differences across orders 1 – 3, z = -2.01, p < 0.05, z = -

                                                           
7
 For experiments 1 & 2 analyses were conducted on both the entire dataset (including 

participants scoring poorly on the diagnosis test phase of the procedure) and the 
conditionalized data set in which such participants were excluded.  The primary analyses 
reported are of the entire data set.  Unless otherwise noted the reader can assume 
equivalent results from the concomitant analyses conditionalized on only those scoring 
above 50% on the learning test. 
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2.63, p < 0.05, z = -2.08, p < 0.05 respectively, and in the baseline condition 

as well, z = -2.51, p < 0.05. 

 

 

Figure 4: Generation of Metalytis in any output position by order condition in 
Experiment 1 

 

 

Figure 5: Generation of Metalytis as most likely disease by order condition in 
Experiment 1 
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 Binomial tests were carried out between each order (1-4) and the 

baseline condition to test the dilution effect of generation.  Only Order 1 

demonstrated departure from generation performance in the baseline 

condition.  This was the case for Metalytis generated in any output position, 

z = -3.49, p < 0.005, and for Metalytis generated first in the output 

sequence, z = -2.37, p < 0.005. 

The number of hypotheses generated between order conditions did not 

differ, F(1,93) = 0.16, p = 0.69, ranging from an average of 1.66 to 1.89 

hypotheses.  Additionally, as can be seen in Figure 6, the probability 

judgments (of Metalytis when it was the highest ranked hypothesis) did not 

differ either, F(1,41) = 2.43, p = 0.127.  Comparisons were carried out 

between the probability judgments in each order condition and the baseline 

condition in order to test for a dilution effect in the judgments.  There were 

no deviations from baseline for Order 1, F(1,25) = 2.27, p = 0.144, order 2, 

F(1,18) = 1.54, p = 0.23, order 3, F(1,22) = 0.01, p = 0.905, or order 4, 

F(1,24) = 0.21, p = 0.649. 
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Figure 6: Probability judgments of Metalytis when generated as most likely 
hypothesis in Experiment 1 

 

Discussion 

 

The primary prediction of the experiment, that generation of the 

most likely hypothesis would increase in correspondence with increased 

recency of the diagnostic data, successfully obtained as demonstrated 

through the trend of Metalytis generation. Additionally this prediction held 

over the generation of Metalytis both as the most likely disease (first output 

position) and for the generation of Metalytis generated anywhere in the 

output sequence.  This finding clearly demonstrates that not all available 

data contribute equally to the hypothesis generation process, that some data 

are weighted more heavily than others, and that the serial position of a 
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datum can be an important factor governing the weight allocated to it in the 

generation process.  Furthermore, these results are entirely consistent with 

the notion that the data weightings of the generation process are governed 

by the amount of working memory activation allocated each datum.  This 

finding is in agreement with a finding in a similar exemplar training 

paradigm (Sprenger, 2007) in which data order was manipulated and it was 

found that later cues had the greatest impact on the hypothesis sets 

generated. 

There are, however, two alternative explanations to consider that do 

not necessarily entail clear-cut activation differences.  First, it could be the 

case that all data in working memory at the time of generation were equally 

weighted, but that the likelihood of D1 dropping out of working memory 

increased with its distance in time from the generation prompt.  Such a 

process would likely result in a similar trend as that seen in the data when 

averaged over participants.  Future investigations measuring working 

memory capacity may be helpful in illuminating the veracity of this 

explanation.  Secondly, it could be the case that the participants engaged in 

spontaneous rounds of generation following each piece of data presented.  

Because the hypothesis generation performance was only assessed after the 

final piece of data in the present experiment, such “step by step” generation 

would result in stronger generation of Metalytis as the diagnostic data is 

presented closer to the end of the list.  For instance, if spontaneous 

generation is occurring as each piece of data is being presented, then when 
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the diagnostic datum is presented first there remains three more rounds of 

generation (from non-diagnostic data) that could obscure the generation of 

that particular round.  As the diagnostic data moves closer to the end of the 

data stream the likelihood that that particular round of generation will be 

obscured by forthcoming rounds diminishes.   

These two alternative accounts of the present data underscore the 

need for convergent evidence from additional methodologies to discover 

how working memory activation influences hypothesis generation.  The 

methodologies presented in Chapter 6 provide a platform on which such 

convergent evidence could be observed when paired with the procedure of 

the present experiment. 

 The secondary hypothesis of a dilution effect of hypothesis 

generation did not obtain as order 1 was the only condition in which 

Metalytis was generated less than in the baseline condition.  This result is 

somewhat unexpected given that HyGene predicts more precise (i.e., less 

errorful) generation behavior for the baseline condition in which the 

diagnostic data appeared in isolation.  A simulation of this behavior 

demonstrates this point.  HyGene’s episodic memory was endowed with the 

ecology used in Experiment 1 and the model was presented with 4 different 

cues for hypothesis generation.  The first cue was D1 in isolation and thus 

represents of the baseline condition of the present experiment.  The second 

cue was a compound cue comprised of D1 & D2, thereby adding a non-

diagnostic cue.  The third and fourth cues followed this pattern of adding 
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one non-diagnostic cue to the existing compound cue and were, D1,D2, & 

D3 and  D1,D2,D3, & D4 respectively
8
.   

As can be seen in Figure 7, the generation of H1 decreased with the 

addition of non-diagnostic data to the compound cue while concomitant 

increases of the alternative hypotheses were observed.  Furthermore, as 

demonstrated in Figure 8, this increased generation of alternatives to H1 

was greater than the decrease in H1 generation causing the overall number 

of hypotheses generated to increase with the addition of non-diagnostic 

cues.  Although these simulation results do exhibit the predicted dilution of 

H1 generation it is important to note that the differences of H1 generation 

rates across cue conditions is slight.  In order to provide a better test of this 

particular prediction it may be necessary to change some characteristic of 

the simulation (e.g, ecology) so that the prediction becomes more 

pronounced than is the case in the present simulation.  Such an investigation 

could be taken up in future research. 

 

                                                           
8
 For the interested reader, the HyGene parameters used for this simulation were 

L=0.85,Ac=.1,KMAX=5,Phi=4. 



30 

 

 

Figure 7: Simulation results for hypothesis generation of HyGene by hypothesis 
and cue condition 

 

 

Figure 8: Simulation results for total number of hypotheses generated by 
HyGene across cue conditions 
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taken on only the highest ranked hypothesis and analyzed only with respect 

to the runs on which Metalytis was ranked first, the conditions under which 

the probability judgments were analyzed were constrained.  It should be 

noted of course that the focus of the present experiment was to address 

generation behavior.  An independent experiment utilizing a similar 

paradigm to explicitly examine probability judgment behavior would be 

useful and informative.  Lastly, such a future investigation might utilize a 

different type of prompt for the elicitation of the judgments as the prompt 

used in the present investigation (“Out of 100 patients like this patient…”) 

might have engaged frequency judgment mechanisms rather than the 

comparative mechanisms assumed to underlie judgment in HyGene 

(Spenger & Dougherty, 2006).  Future investigation, therefore, may benefit 

from a different prompting than that used in the present experiment. 

 The goal of Experiment 1 was to determine how relative data serial 

order contributes to hypothesis generation processes.  It was predicted that 

data presented later in the sequence would be more active in memory and 

would thereby contribute more so to the generation process.  Such an 

account predicts a recency profile for the generation of hypotheses from 

long-term memory.  This effect obtained in the data as the generation of the 

most likely hypothesis (Metalytis) increased with the serial position of the 

diagnostic data.  Despite this positive result it is not entirely clear if the 

grounds on which the prediction were made are entirely discernable in the 

present experiment as the aforementioned alternative explanations would 
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predict the same result.  Converging evidence for the hypothesis that data 

activation governs the contribution of individual data to the generation 

processes should be sought. 
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Chapter 4: Experiment 2- Data Activation & Hypothesis 

Generation 
 

As mentioned in the introduction, the Context Activation Model of 

memory (Davelaar et al., 2005) successfully predicts a unique effect of 

presentation rate in which a shift in recall performance, from a recency 

profile to a primacy profile, is observed under high presentation rates (See 

Figure 3 above).  As alluded to in Chapter 2, this particular finding provided 

strong evidence for the dual store account of list recall memory as single 

store models cannot readily produce this effect.  Of importance for the 

present experiment is the fact that this particular demonstration supports the 

notion that presentation rate alters the activation of items in working 

memory.  Insofar as activation of data in working memory governs 

hypothesis generation, it can be expected that generation should be sensitive 

to presentation rate differences as well.  The current experiment 

manipulated the presentation rate of a stream of data prior to a hypothesis 

generation prompt.  Obtaining differences in generation behavior between 

presentation rate conditions in the present experiment would support the 

hypothesis that activation in working memory drives the weightings 

allocated to individual pieces of data in cuing hypotheses from long-term 

memory. 
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Method 

 

Participants 

 

One hundred and fifty six participants from a large Midwestern university 

participated in this experiment for course credit. 

 

Design (1-Way Between-Subjects Design) 

 

The independent variable was the presentation rate of the data 

presented; there were two levels.  In one condition each piece of data was 

presented for 300 ms (Fast condition) and in the other condition each piece 

of data was be presented for 1500 (Slow condition) ms.  Two additional 

conditions were included as controls.  It is possible that the initial data in 

the Fast condition may act as a forward mask on the following data thereby 

confounding an interpretation of the activation account with a spurious 

masking effect.  The first control condition was set up to guard against this 

account.  This condition was identical to the Fast condition, but included a 

mask prior to the first piece of data.  If the initially presented datum does in 

fact act as mask on the forthcoming data in the fast condition, then masking 

the first piece of data should preclude its acquisition thereby disallowing its 

use in the generation process.  The second control condition was included to 

investigate a potential effect of the discrepancy between the total task 
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durations between the Fast and Slow conditions.  This condition was also 

identical to the Fast condition except that a retention interval was placed 

between the offset of the last datum and the hypothesis-generation prompt 

thereby equalizing the total trial time with the Slow condition.  Thus, there 

were four conditions in all: Fast, Slow, Fast with Mask (FastMask), and 

Fast with Retention Interval (FastRI).   

 

Procedure 

 

As in Experiment 1, the procedure began with exemplar training on 

the ecology displayed in Table 3.  This was followed by a test to verify 

learning and a distracter task (arithmetic verification task) prior to 

elicitation.  The experiment was again cast in terms of medical diagnosis.  

At elicitation the data were presented in the left to right order in which they 

appear in Table 3.  Therefore, the participants always received diagnostic 

data for Metalytis early in the sequence and diagnostic data for Zymosis late 

in the sequence.   

 

 

D1 D2 D3 D4 D5 

 H1: Metalytis 0.8 0.7 0.5 0.3 0.3 

H2: Zymosis    0.3 0.3 0.5 0.7 0.8 

 

Table 3: Disease x Symptom ecology of Experiment 2 
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The participants were warned that the data would appear briefly and 

were instructed to trigger the onset of the data by pressing the Spacebar.  

They were then presented with hypothetical trial data presentations (in 

which the data were replaced with numbers) in order for them to become 

acquainted with the presentation rates of the to-be-presented data.  This was 

done so that the participants were not confused or caught off guard by the 

high presentation rate in the fast condition.  When the participants pressed 

the Spacebar, a fixation point blinked in the center of the screen three times.  

Each piece of data (D1-D5) then appeared serially at this central fixation 

point in accordance with the present presentation rate condition.  Generation 

was then elicited with the following prompt, “Enter the disease that this 

patient is most likely suffering from.”  As the subjects were familiar with 

inputting a set response for each disease during exemplar training they were 

guided to use these responses (e.g., “Press the letter corresponding to the 

disease.”).  A probability judgment and thought listing were then elicited 

with the following prompts; “Out of 100 patients with the same results as 

this patient, how many would have the same disease that you selected?”, 

and “Now try and remember all of the ideas you had while thinking about 

the response you just made.  Please list these thoughts.” 
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Hypotheses & Predictions 

 

It was predicted that early data would be more active in working 

memory at the time of generation under each of the fast presentation rate 

conditions.  This would in turn allow the early data to contribute more so to 

the generation process and would be evidenced by greater generation of 

Metalytis.  Alternatively, the opposite was predicted in the slow 

presentation rate condition where greater generation of Zymosis was 

predicted on account of the greater relative activations of the data appearing 

later in the sequence. 

 

Results 

  

 Because the comparisons of interest in the present experiment are 

between the Slow condition and each of the conditions in which a fast 

presentation rate was used, comparisons were performed to assess these 

divergences for each fast condition individually through ChiSquare tests.  

As can be seen in Figure 9, results indicate that the rate of generation of 

Metalytis in the Slow condition only differed in the FastMask condition, 

χ
2
(1) = 5.66, p < 0.05, whereas comparisons of the Slow condition with the 
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Fast condition and the FastRI condition did not differ, χ
2
(1) = 0.85, p = 0.36  

and χ
2
(1) = 2.66, p = 0.1 respectively

9
. 

 

 

Figure 9: Hypothesis generation results of Experiment 2 

 

 Binomial tests were also carried out within condition to assess 

divergences from chance exhibited within each condition.  Results indicate 

that none of the Fast conditions deviated from chance performance; Fast, z 

= -0.49, p = 0.31, FastMask, z = 1.51, p = 0.07, FastRI, z = 0.48, p = 0.32 . 

Generation performance in the slow condition, on the other hand, did 

                                                           
9
 This pattern of results is maintained following the application of a learning criterion (50% 

correct in diagnosis test phase) and consequent purging of participants’ data not meeting 
this criterion.  However, the difference between the Slow and the FastMask conditions is 
attenuated to a marginal difference, χ

2
(1) = 3.17, p = 0.075. 
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deviate significantly from chance, z = -1.85, p < 0.05, as there was greater 

generation of Zymosis over Metalytis in this condition as predicted
10

. 

Because probability judgments were taken on only the most likely 

hypothesis generated by the participant per trial, results were analyzed 

conditional on both hypotheses.  That is, there were a set of comparisons for 

those that generated Metalytis and a set of comparisons for those that 

generated Zymosis.  Within these conditionalized groups, comparisons were 

made between each Fast condition and the Slow condition.  These results 

are displayed in Figure 10 below.  Within the Metalytis group there were no 

significant differences between any of the Fast conditions and the Slow 

condition.  The Fast condition diverged the greatest and achieved a 

marginal difference F(1,30) = 3.53, p = 0.07, whereas the FastMask and 

FastRI conditions were equivalent to the Slow condition, F(1,39) = 0.03, p 

= 0.87 and F(1,33) = 0.24, p = 0.63.  The judgments of the Zymosis group 

were uniform as well.  Comparisons in this group showed no differences 

between the Fast, FastMask, or FastRI conditions with the Slow condition, 

F(1,32) = 0.83, p = 0.37, F(1,41) = 0.17, p = 0.69, and F(1,39) = 2.01, p = 

0.16 respectively.   

                                                           
10

 This result becomes marginal following application of the 50% learning criteria as well, z 
= -1.3, p = 0.09. 
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Figure 10: Probability judgment results of Experiment 2 

 

Discussion 

 

Overall the results of the experiment suggest that the manipulation 

of presentation rate did successfully influenced data activation in working 

memory and furthermore that this activation difference influenced 

hypothesis generation in the predicted manner.  Although only one of the 

three Fast conditions demonstrated a difference, it is important to note that 

it was the FastMask condition in which this result obtained.  Had only the 

Fast condition obtained the result it would appear as if a masking effect may 

have been present.  However, the particular pattern of results that obtained 

inoculates the experiment from this argument while at the same time 

demonstrating the predicted effect of presentation rate. 
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The lack of consistency across the Fast conditions is still a concern 

however.  It is possible that the presentation rate used in the Fast conditions 

was straddling a tenuous border over which data activations at the time of 

the prompt did not consistently favor any serial position(s) across or within 

trials.  Such inconsistencies in the activation profile associated with each 

piece of data would result in chance performance.  Davelaar’s (2005) 

original finding of a shift from recency to primacy with increased 

presentation rate used a higher rate (100ms) than the rate used in the present 

experiment (300ms).  It is possible that greater uniformity between the Fast 

conditions would be observed by increasing the presentation rate to 

something closer to the 100 ms used in the original cued recall experiment. 

The results of Experiment 2 support the notion that data activation in 

working memory drives their contributions to the hypothesis generation 

process.  The results of the Slow condition are entirely in line with this 

position, however, stronger support for this position would have been 

obtained had the predictions for each of the Fast conditions obtained.  

Future research examining this point should be pursued. 
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Chapter 5: Experiment 3- Data Maintenance & Data Consistency 
 

 The belief adjustment model (Hogarth & Einhorn, 1992) predicts the 

manifestation of order effects along three specific task characteristics; 

information complexity, length of data series, and response mode.  

Although the framework of the belief adjustment model is not entirely 

germane to the present investigation
11

, the distinction of response mode is 

likely to have dramatic effects on hypothesis generation as data unfold over 

time.    The two response modes are step-by-step (SbS), in which a response 

is elicited following each piece of incoming data, and end-of-sequence 

(EoS), in which only one response is elicited after all data have been 

received. 

 An experiment manipulating this response mode variable in a 

hypothesis generation task was conducted by Sprenger (2007) in which 

people hypothesized which psychology courses were being described by 

various keywords.  In one task of this experiment the participants were 

provided with cue orders differing in the placement of diagnostic 

information.  More specifically, in one condition the initial data were 

                                                           
11

 The belief adjustment model, as currently formulated, does not adequately generalize 
to hypothesis generation tasks.  Whereas hypothesis generation tasks rely on the 
participant to generate alternatives from long-term memory they necessarily engender 
the possibility of entertaining over 2 hypotheses.  In contrast, the belief adjustment model 
assumes that only 1 or 2 hypotheses are being estimated or evaluated which have been 
provided by the experimenter or task at hand.  Furthermore, the present experiment 
doesn’t manipulate the order in which cues are received which is the paradigm structure 
on which the model is based.  Lastly, the distinction between mixed and consistent 
evidence espoused by the model doesn’t make sense in a hypothesis generation task as 
evidence can only be judged as consistent or inconsistent with a hypothesis once it has 
been generated. 
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diagnostic with non-diagnostic data being presented later.  In a 

complementary condition the opposite was the case as non-diagnostic data 

was followed by diagnostic data.  Following the last piece of data those in 

the SbS conditions exhibited a recency effect wherein participants in the 

“late diagnostic data” condition were more likely to generate correct 

hypotheses than those in the “early diagnostic data” condition.  The EoS 

condition, on the other hand, did not reveal any order effects. 

The present experiment compared these response modes to examine 

differences between data maintenance prior to generation (EoS mode) and 

generation that does not encourage the maintenance of multiple data (SbS 

mode).  Considered in another light, SbS responding can be thought of as an 

anchoring and adjustment process where the set of hypotheses generated in 

response to the first piece of data supply the set of beliefs in which 

forthcoming data are interpreted.  The EoS condition, on the other hand, 

does not engender such belief anchoring as generation is not prompted until 

all data have been observed.  As such, the SbS conditions will provide the 

opportunity to test for the propensity to re-generate a new set of hypotheses 

(and discard an existing set) in the face of inconsistent data. 
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Method 

 

Participants 

 

One hundred and fifty seven participants from a large Midwestern 

university participated in this experiment for course credit. 

 

Design (2 Response Mode x 2 Ecology Between-Subjects) 

 

 As previously mentioned, the first independent variable was the 

timing of the generation & judgment promptings provided to the participant 

as dictated by the response mode condition.  This factor was manipulated 

within-subject.  The second independent variable, manipulated between-

subjects, was the consistency of the 2
nd

 piece of data (D2) with the most 

likely hypotheses likely to be entertained by the participant given the 1
st
 

piece of data.  Table 4 displays the ecologies of the present experiment 

wherein the data are arranged in the temporal order in which they were 

presented in the experiment (i.e., D1  D2  D3  D4).  The only 

difference between the ecologies was the conditional probability of D2 

under H1 in which this probability was 0.9 in Ecology A and 0.1 in Ecology 

B.  Given that D1 should prompt the generation of H1 and H2, this 

manipulation of the ecology can be realized to govern the consistency of D2 

with the hypothesis(es) currently under consideration following D1. 
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A D1 D2 D3 D4 

  

    

  H1: Metalytis 0.9 0.9 0.5 0.5   

  H2: Zymosis 0.7 0.1 0.4 0.4   

  H3: Gwaronia 0.2 0.8 0.8 0.8   

              

  
B D1 D2 D3 D4 

  

    

  H1: Metalytis 0.9 0.1 0.5 0.5   

  H2: Zymosis 0.7 0.1 0.4 0.4   

  H3: Gwaronia 0.2 0.8 0.8 0.8   

    

 

        

Table 4: Disease x Symptom ecologies of Experiment 3 

 

Procedure 

 

 The procedure began like those of the previous experiments: 

exemplar training to learn the probability distributions, a test to verify 

learning (for which a $5.00 gift card could be earned for performance 

greater than 60%), and a distractor task prior to elicitation.  The experiment 

was cast in terms of medical diagnosis where H1, H2, & H3 represented 

disease states and D1-D4 represented various test results (i.e., symptoms).  

The data were presented in the left to right order in which they appear in 

Table 4.  The elicitation prompts for hypothesis generation and thought 

listing were the same as those used in Experiment 1 & 2.  However the 

probability judgment prompt was slightly different from that of 

Experiments 1 & 2.  The probability judgment prompt used in the present 
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experiment was as follows: “How likely is it that the patient has [INSERT 

HIGHEST RANKED DISEASE]?  (Keep in mind that an answer of 0 

means that there is NO CHANCE that the patient has [INSERT HIGHEST 

RANKED DISEASE] and that 100 means that you are ABSOLUTELY 

CERTAIN that the patient has [INSERT HIGHEST RANKED DISEASE].)  

Type in your answer from 1 to 100 and press Enter to continue.” Note that 

in the SbS mode the thought listing was only carried out following the final 

(4
th

) probability judgment. 

 

Hypotheses & Predictions 

 

Given that the step-by-step response mode affords the elicitation of 

generation following every piece of presented data, the predictions for this 

mode cover two time frames.  Following the presentation of D2 persons in 

Ecology A were predicted to generate H1 to a greater extent than those in 

Ecology B who were expected to purge H1 from their hypothesis set in 

response to its inconsistency with D2.  Furthermore, it was predicted that 

those in Ecology B would generate H3 to a greater extent than those in 

Ecology A as they would recue memory following the purging of working 

memory.   It was expected that those in Ecology A would not recue long 

term memory as the consistency of D2 with the most likely hypothesis, H1, 

would engender a belief updating process while maintaining H1.  Following 

D4, final generation performance in both ecologies was predicted to 
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resemble the results following D2 as none of the forthcoming data rule out 

the hypotheses being considered. 

 The general prediction for the end-of-sequence response mode was 

that recency would be demonstrated in both ecologies as the most recent 

data should contribute more strongly to the generation process.  Therefore, 

greater generation of H3 relative to the alternative hypotheses was expected 

in both ecologies.  This reveals a prediction between response mode 

conditions for final generation within Ecology A as the EoS condition was 

predicted to favor H3 while the SbS was expected to favor H1. 

 

Results 

 

 The main dependent variable analyzed for this experiment was the 

generation behavior as converted into rank scores.  As the participants were 

instructed to enter their hypotheses in accordance with their subjective 

ranks the following conversion was employed.  The first hypothesis 

reported received a rank score of 3.  If a second and third hypothesis were 

generated they received a rank of 2 and 1 respectively.  When a hypothesis 

was not generated it was given a rank score of 0.  These rank scores were 

then treated as interval data in the analyses that follow. 

 Multiple tests were run to assess the effect of ecology following the 

presentation of D2 (in the SbS response mode condition).  Firstly, the 

between subjects effect was tested on the overall ranks of H1 following D2.  
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As can be seen in Figure 11, H1 was ranked significantly higher in Ecology 

A relative to Ecology B, F(1,76) = 6.96, p < 0.05.  A further test of the 

effect of ecology was carried out within subject by means of a difference 

score between H1 ranking following D1 and H1 ranking following D2.  

This was taken as D1 ranking subtracted from D2 ranking so that a positive 

adjustment in the ranking following D2 would be reflected by positive sign.  

As can be seen on the left hand side of Figure 12, this within subject 

analysis did not approach significance, F(1,76) = 0.84, p = 0.362.  However, 

when conditionalized on those participants that generated H1 following D1 

we see an effect of ecology emerge following D2 where those in Ecology B 

that had generated H1 previously ranked H1 significantly lower following 

D2, F(1,50) = 6.61, p < 0.05, as demonstrated on the right hand side of 

Figure 12.  Similar analyses were carried out to assess differences in the 

rates of H3 generation following D2.  The between subjects analysis did not 

reveal any difference between the rankings of H3 between D1 and D2 

elicitations, F(1,76) = 0.141, p = 0.709. Additionally, the same within 

subjects difference analysis as above did not detect any difference either, 

F(1,76) = 0.13, p = 0.719, nor did a conditional analysis in which 

participants not generating H3 following D1 were assessed for their 

difference in rankings following D2, F(1,41) = 0.867, p = 0.357. 
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Figure 11: Hypothesis rankings in Experiment 3 by ecology conditions following 
each piece of presented data in the SbS conditions 

 

 

Figure 12: Ranking difference scores of Hypothesis 1 in Experiment 3.  All 
participants (left hand side) vs. only participants that generated H1 following D1 

(right hand side) 

  

To test the hypothesis that generation performance following D4 

would resemble generation performance following D2 differences between 
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the rankings of each hypothesis following D2 were compared with their 

rankings following D4.  No differences were detected in the rankings of H1, 

H2, or H3 within Ecology A, F(1,37) = 0.776, p = 0.384, F(1,37) = 1.437, p 

= 0.238, and F(1,37) = 1.778, p = 0.191, nor were any differences evident 

within Ecology B, F(1,39) = 0.443, p = 0.51, F(1,39) = 1.489, p = 0.23, and 

F(1,39) = 0.03, p = 0.864. 

 To test the prediction that H3 would be generally favored in the EoS 

conditions, comparisons of hypothesis rankings were carried out within 

each ecology condition.  As shown on the right side of Figure 13, a 

marginal difference in the hypothesis rankings was revealed in Ecology A, 

F(2,39) = 3.19, p = 0.052, whereas no difference was found in Ecology B, 

F(2,36) = 0.68, p = 0.513.  Furthermore, Ecology A comparisons between 

individual hypothesis rankings revealed that H3 that was not favored.  

Rather it was H1 that was the favored hypothesis as H1 differed 

significantly from both H2, F(1,40) = 5.09, p < 0.05, and H3, F(1,40) = 

5.84, p < 0.05, while H2 and H3 did not differ from one another, F(1,40) = 

0.00, p = 1.00. 
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 Figure 13: Final hypothesis rankings following the last piece of data (D4) in 
Experiment 3 by response mode & ecology conditions 

  

The last prediction to be tested was the interaction between response 

mode and ecology following D4.  It was predicted that within Ecology A 

H3 would dominate for the EoS condition whereas H1 would dominate in 

the SbS condition.   Although a response mode by ecology interaction was 

detected, F(1,153) = 11.512, p < 0.001, it did not manifest in the predicted 

manner.  Rather, this interaction was due to H1 being favored in the EoS 

condition (as reported above) while H1 and H3 vied for dominance in the 

SbS condition as they both differed from H2, F(1,37) = 7.43, p < 0.01 and 

F(1,37) = 6.51, p < 0.05, but did not differ from one another, F(1,37) = 

0.045, p = 0.834.   

Analysis of the number of hypotheses generated across response 

mode and ecology conditions resulted in neither main effects of response 

mode, F(1,153) = 0.5931, p = 0.4424, or ecology, F(1,153) = 0.2133, p = 
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0.645, but did reveal a significant interaction, F(1,153) = 9.987, p < 0.005, 

as displayed in Figure 14. 

 

 

Figure 14: Number of hypotheses generated by response mode and ecology 
conditions 

 

Probability judgments were not analyzed for this experiment as low 

N (due to differences in highest ranked hypotheses across conditions) made 

tests unfeasible.  

 

Discussion 

 

The present experiment has provided an interesting window into two 

distinct processing dynamics.  Additionally the generation behavior was 

quite rich as the participants not only reported their generated hypotheses, 
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but did so in rank order.  The first dynamic under investigation was how 

inconsistent data influenced the hypothesis set currently under 

consideration.  In the step-by-step conditions we found clear evidence that 

people do purge working memory in response to the inconsistency of a 

newly received cue as those that had generated the most likely hypothesis in 

the initial round of generation were less likely to rank it following the 

inconsistent cue.  This can be viewed as consistent with an extension of the 

consistency checking mechanism currently employed in HyGene.  The 

present data suggests the hypotheses currently under consideration are 

checked against the newly acquired data and are purged in accordance with 

its (in)consistency
12

.  This is slightly different from, although entirely 

compatible with, the operation of the current consistency checking 

operating within HyGene over a single round of hypothesis generation.  The 

consistency checking operation within the current version of HyGene 

checks each hypothesis retrieved into working memory for its consistency 

with the data used as a cue to its retrieval as the set of leading contenders is 

populated.  The consistency checking mechanism exposed in the present 

experiment, however, suggests that people check the consistency of newly 

acquired data against hypotheses generated from previous rounds of 

generation as well.  If the previously generated hypotheses fall below some 

                                                           
12

 Additionally, it is quite likely that the purging of hypotheses from working memory is 
contingent in large part on the diagnosticity of the newly acquired data in ruling out one 
or more of the hypotheses currently being considered. 
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criteria of agreement with the newly acquired data they are purged from 

working memory. 

There was no evidence, however, for the re-cueing of LTM 

following D2 in either ecology as the rankings of H3 did not differ from 

those following D1
13

.  This could have been due to the fact that the 

generation rankings (and rates) of H3 following D1 were somewhat high in 

comparison to what was expected.  Given that H3 was only 0.2 related to 

D1 it was expected that the generation and ranking of this hypothesis as 

likely would be extremely low in response to D1.  If this had been the case 

then we may have had a better opportunity to observe differences between 

these successive rounds of hypothesis generation.  Perhaps a follow up 

experiment in which the D1-H3 association is changed to 0.0 would offer a 

better test of the discrete recuing of LTM following inconsistent data. 

As predicted there were no changes in hypothesis rankings between 

the D2 and D4 elicitations suggesting that hypothesis sets remain relatively 

stable in the face of consistent data.  However this conclusion may be 

premature.  Examination of the PostD3 elicitations in Figure 11 suggests 

that there may have been more movement in the rankings between D2 and 

D4 elicitations than is captured by the present analyses.  This is particularly 

evident in Ecology B as the rankings of H1 & H3 diverge from H2 

following D3 only to re-converge following D4.  The factors governing this 

peculiar fluctuation in the hypothesis rankings are not entirely clear.  It is 

                                                           
13

 No difference was detected for analyses of the rates of generation of H3 following D1 
vs. D2 either. 
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possible that the generation behavior following D4 was qualitatively 

different from the initial 3 rounds of generation due to some subtle demand 

characteristic.  As there were four tests presented in the training phase, the 

participants may have assumed (correctly) that the round of generation 

following the 4
th

 bit of data was their last opportunity to diagnose the 

patient at hand.  This may have prompted an additional search of memory, 

either for their previous beliefs of the patient’s disease state or for the 

previous symptoms that the patient had previously presented with.  It does 

appear that perhaps the participants engaged in such a recall of previous 

belief states as the generation post D3 is highly in line with generation 

behavior implied by Bayesian diagnosticity whereas the generation 

behavior following D4, with the same exact diagnosticity and directionality 

as D3, reverted towards earlier belief states, namely towards H1. 

The prediction for the generation behavior in the end-of-sequence 

conditions was that recency would obtain, which would be evidenced by 

higher rankings for H3 as the last two cues in the presentation sequence 

clearly implicate this disease as most likely.  This result, however, did not 

obtain.  Rather it was a clear preference for H1 that obtained in Ecology A 

and indifference between hypotheses that obtained in Ecology B.  Far from 

a recency effect being evidenced in the data, these results suggest something 

of a primacy effect.  The results of Ecology A make it somewhat difficult to 

argue convincingly for a primacy effect in the data as the Bayesian 

preference in this condition is in favor of H1 and the preference for H1 may 
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thus not represent a primacy effect insofar as an effect is equated with 

bias
14

.  That is, if all data contributed equally to the generation process then 

a preference for H1 would still result.  However, the results from Ecology B 

clearly support the presence of a primacy effect as the lack of a clear 

preference for H3 demonstrates severe departure from the Bayesian 

prescription and the equal contribution of all available data to the generation 

process
15

.   

Given that the EoS conditions of the present experiment are 

procedurally very similar to the elicitations used in Experiment 1 it becomes 

important to reconcile the manifestation of the present primacy effect with 

the recency effect obtained in Experiment 1.  First, it is possible that there is 

something inherently different in the processing of inconsistent data that 

causes the primacy effect to emerge in the present study.  In Experiment 1, 

although most of the presented data were non-diagnostic, they were not 

inconsistent with the most likely hypothesis.  In the Ecology B condition of 

the present experiment however, some of the data presented in the data 

stream were in conflict with the most likely hypothesis at various points.  

Whereas D2 was inconsistent with the most likely hypothesis suggested by 

D1 it was also the case that D1, could be seen in retrospect to be 

inconsistent with D2-D4.  It is possible that the mere presence of evidence 

pointing in different directions altered the generation process.  Additionally, 

                                                           
14

 The posterior probabilities of H1, H2, & H3 in Ecology A are 0.64, 0.04, & 0.32 
respectively. 
15

 The posterior probabilities of H1, H2, & H3 in Ecology B are 0.17, 0.08, & 0.75 
respectively. 
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unlike Experiment 1, every piece of data presented in the present 

experiment was diagnostic of one of the hypotheses.  Of course this aspect 

of the ecology was explicitly controlled out of Experiment 1.  It is difficult 

to ascertain why exactly the two different usages of the presented data 

appear between Experiments 1 and 3. 

The EoS condition primacy effect is also important to compare to 

the Sprenger (2007) results discussed above in which the SbS conditions 

revealed recency and no order effects were revealed in the EoS conditions.  

In Sprenger’s experiment the participants were presented with a wide array 

of data from which to generate hypotheses, nine pieces in total.  Participants 

in the present experiment, on the other hand, were only provided with four 

cues.  It’s possible that people’s strategies for cue usage would differ 

between these conditions.  Whereas the present experiment provided 

enough data to fill working memory to capacity (or barely breach it), 

Sprenger’s experiment provided an abundance of data that necessarily 

breached the working memory capacities of the participants.  It is possible 

that the larger pool of data engendered a larger pool of strategies to be 

employed than in the present study.  The final generation behavior 

collapsed across participants would then represent mixtures of the deployed 

hypothesis generation strategies.  Understanding the strategies that people 

employ and the retrieval plans that developed under such conditions (Fisher, 

1987; Gillund & Shiffrin, 1984; Raajmakers & Shiffrin, 1981) as well as 

how these processes contrast with situations in which less cues are available 
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is a crucial aspect of dynamic memory retrieval in need of better 

understanding.  Further experimentation should address these issues and the 

additional methodologies presented in the next section may be of use in this 

endeavor. 

Of additional interest in the present experiment is the fact that the 

EoS results strongly resemble the SbS results following D2 within both 

ecology conditions.  This could be taken to suggest that those in the EoS 

condition were utilizing the initial cues while potentially excluding the later 

cues altogether.  Fisher & Gettys (1987) suggested that people generally 

tend to use only a subset of the pool of data provided.  They estimated that 

people generally only use two cues when three cues are available and three 

cues when four cues are available.  Such estimates are in line with this view 

of the picture evoked from this comparison between the EoS and SbS 

conditions.  Again, the methodologies presented in the next section may be 

beneficial in determining how data usage differed between these conditions. 

 The present experiment set out to test how inconsistent data altered 

the generation process when generation was elicited after every piece of 

data and to test how generation behavior differed between this step-by-step 

elicitation and elicitation occurring only after all the data had been 

presented.  It was hypothesized that when the participants received data that 

was inconsistent with the hypotheses being currently maintained that they 

would purge working memory of those hypotheses and recue long-term 

memory.  Clear evidence was found for the purging of inconsistent 
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hypotheses from working memory, however there was no evidence for the 

recuing of long-term memory.  It was additionally hypothesized that 

differences would emerge between the step-by-step and end-of-sequence 

conditions.  It was hypothesized that the EoS conditions would demonstrate 

recency effects.  On the contrary, it was primacy that was revealed in these 

conditions.  The exact reasons for the disjunction between the primacy 

findings in the present experiment with those of the recency effects in 

Experiment 1 are not immediately clear, but this apparent dissociation 

represents a potentially interesting problem and a unique challenge to 

account for computationally. 
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Chapter 6: Non-Invasive Methods for Assessing the Contents of 

Working Memory 
 

Past research on hypothesis generation behavior has relied almost 

exclusively on the overt reporting of beliefs and/or evaluations of those 

beliefs as the sole dependent measures observed.  Although this 

methodology has been very informative in guiding our understandings of 

hypothesis generation behavior it is likely too limited a method to inform 

fine grained details of hypothesis generation dynamics.  It is my goal to 

understand how subtle fluctuations in the activations of items in working 

memory influence the hypothesis generation process as it unfolds over time.  

Overt reports do not adequately support this endeavor.  This is due to the 

fact that the prompting of overt reports, as well as the reporting itself, is 

likely disruptive to the processes unfolding at the time the prompt is 

delivered.  Such prompts interfere greatly with the contents of working 

memory during their service to the hypothesis generation task at hand.  

Furthermore, one cannot be sure of the influence of the prompt on the report 

thereby elicited.  For instance, a prompt for overt report is likely to act as 

two distinct requests in various instances.  If the participant has already 

engaged in a round of hypothesis generation prior to the prompt, then it can 

be taken as a request for processing at that point in time to be severed in 

service of the readout of the current contents of working memory.  If, on the 

other hand, hypothesis generation has not been initiated at the time of the 

prompt then it is taken as a request to engage in hypothesis generation.  It is 
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likely that such prompting procedures largely result in mixtures of these two 

behaviors that are then indistinguishable in the data.  With these 

considerations in mind it can be seen that overt promptings necessarily 

distort a potentially important aspect of the time course of the generation 

process and may in some cases introduce an artificiality that would not 

otherwise be imposed in naturalistic settings. 

In order to untangle the fine grained information processing 

dynamics at the heart of naturalistic decision making tasks, a less intrusive 

method of assessing the contents of working memory is needed.  Such a 

method would benefit from four key characteristics.  Firstly, the technique 

would be non-invasive in that it would obviate significant amounts of 

perturbation to the processing at hand or the current contents of working 

memory.  Secondly, it would be possible to deploy the measure on-line, 

within and throughout the task.  Thirdly, the measure would be item 

specific in that it would allow measurement at the level of individual items 

(e.g., data or hypotheses) rather than simply the engagement of generalized 

processing as is measured in much of modern neuroscience (e.g., fMRI, 

EEG, MEG).  Lastly, the method would be of superior usefulness if it were 

sensitive not only to the current processing of individual items, but to their 

current levels of activation in memory.  At present there exists no 

methodology satisfying these criteria.  Modern neuroscience techniques 

afford some of these characteristics, but they are not item specific and as 
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such will be of limited usefulness in addressing how individual items are 

employed in the hypothesis generation process over time.   

By exploiting automaticities in visual search and modifying 

paradigms from the literature on visual attention it may be possible to 

develop two methodologies possessing these crucial characteristics.  The 

first methodology involves gauging early oculomotor behavior (via eye 

tracking) following the onset of visual search displays to assess the active 

contents of working memory.  The second methodology modifies the 

standard rapid serial visual presentation procedure of attentional blink 

paradigms and measures deficits in attentional performance as an index of 

working memory activation. 

 

Eye Movements 

 

It has been demonstrated that the contents of WM can effectively 

guide visual search/attention towards items presented in a search array in 

visual search tasks (Downing, 2000; Huang & Pashler, 2008).  Furthermore, 

the work of Soto et al. (2005) provides strong evidence that this bias of 

visual attention is automatic in nature.  Soto demonstrated that 

proportionally less initial fixations fell on the search target when the 

working memory item appeared in the array.  Critically, this pattern held 

even when the subjects were told beforehand that the prime they had been 

provided to hold in working memory would never match the target position 
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and thus would always hurt their visual search performance (i.e., search 

efficiency).  Additionally, Soto et. al. (2007) demonstrated that these effects 

manifest when verbal primes are used in lieu of visual primes and Moores et 

al. (2003) demonstrated that semantic relation between WM contents and 

items in a search array (rather than exact matches) drew first fixations and 

greater fixation durations. 

Together this suggests that what is most active in WM at any given 

instant should draw initial visual attention, thereby providing a “snapshot” 

of the most highly activated item in WM (amongst the items provided in the 

search array).  By presenting search arrays to participants at various points 

throughout a task it should be possible to assess which items are highly 

active in WM (e.g., observed data & generated hypotheses).  I refer to this 

procedure of using initial eye movements to assess the activation of items in 

working memory as the Memory Activation Sensitive Saccades (MASS) 

procedure. 

 

Attentional Blink 

 

The second methodology utilizes a modified attentional blink 

paradigm (see Dux & Marois, 2009 for a review) to assess the activation of 

particular items through time.  Pashler and Shiu (1999) demonstrated that 

when the contents of WM match an item presented in a rapid serial visual 

presentation (RSVP) sequence it causes attention to “blink” over an item 
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following shortly after as evidenced by an inability to report a target 

following the matching item.  By applying the same logic as above, 

attentional blink trials may be used to measure the active contents of 

working memory.  That is, by deploying specially tailored RSVPs, in which 

an item matches a piece of data or hypothesis within a generation task, it 

may be possible to infer the activation of those items in working memory 

through the attentional blinks observed.  I refer to the utilization of 

attentional blink sensitivity for inferring the activation of working memory 

contents as Memory Activation Sensitive Attentional Blink (MAS-AB). 

 

A Hypothetical Example 

 

Figure 15 represents a hypothetical schematic of how these 

measures of working memory content, either MASS or MAS-AB, would be 

deployed over the course of a simple hypothesis generation task.  The y-axis 

of the figure represents activation in working memory and the x-axis 

represents time. 
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Figure 15: Hypothetical activation trajectories of observed data (Dobs) and a 
generated hypothesis through time. T1, T2, T3, & T4 represent MASS or MAS-AB 

measurement points. 

 

The trial is initiated with the onset of the observed data (Dobs).  

Following the onset of the data you see its activation start to rise.  At time 

T1 the first attentional probe is displayed on the screen (in the case of the 

MASS procedure this would be an array of ≈ 4 items lasting for about 500 

ms. In the case of the MAS-AB procedure this would be the presentation of 

an RSVP stream and the acquisition of a response lasting about 1 second 

total).  Given that nothing else should be active in working memory at this 

time we would expect that attentional biases should only manifest in 

reaction to the Dobs.  However, as we move across time to the next 

deployment of the measure(s) we see that a hypothesis has now been 

generated.  At this point we should begin to see attentional biases for both 

the Dobs as well as the hypothesis that has been generated in response to 

the data.  Furthermore, depending on how the attentional probes are 
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constructed (by probing both items at once) we may be able to directly 

detect the competition for attentional control exerted by each item and if 

these measures are activation sensitive we may be able to see this 

competition play out in proportion to each items’ relative activation.  

Moving to the third attentional probe at time T3 we see that the Dobs has 

now dropped out of working memory as the hypothesis gains activation 

strength.  Attentional performance would reflect this by demonstrating a 

strong preference for the hypothesis under consideration while no longer 

orienting towards the data.  At T4 the contents of working memory have not 

changed, but the activation of the hypothesis has diminished as would be 

evidenced by decreased rates of attentional deployment towards it in 

comparison to the rates observed at T3.  If eye movements are sensitive to 

WM activation then the oculomotor behavior we observe in hypothesis 

generation tasks utilizing this paradigm should facilitate the inference of 

rudimentary forms of the activation trajectories displayed in Figure 15.   

 

Tests of Attentional Sensitivities to Memory Activation 

 

The work mentioned above highlights an important connection 

between the active contents of working memory and attentional processes.  

However, this work does not tell us if early oculomotor behavior and 

attentional blink are differentially sensitive to the relative activations of 

items in working memory.  If these methods are not sensitive to the relative 
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activations of items in working memory this will limit (although not 

eliminate) their usefulness for assessing the working memory processing 

dynamics.  For instance, given the work of Moores et al. (2003), a lack of 

activation sensitivity would make it more difficult to determine if saccadic 

preference is truly indicative of a hypothesis having been generated or 

merely reflect its semantic relation to active data.  Therefore, before 

utilizing the above methodologies in our tasks of interest it will be useful to 

gain insight into the level of sensitivity they afford. 

Initial tests of eye movement and attentional blink sensitivity to 

memory activation are described in the forthcoming sections.  These tests 

were carried out by fusing standard paradigms from the memory and 

attention literatures.  One of the tasks in these experiments was a standard 

free recall task in which a list of items (e.g., words) was studied and 

subsequently recalled in no prescribed order.  In the present experiments, 

however, attentional tasks were placed in between the study and recall 

phase of each trial.  In the case of testing eye movements the attentional 

measure comprised a visual search task performed within a search array 

containing multiple items.  In the case of testing the attentional blink, the 

attentional measure was carried out within an RSVP stream of pictures.  In 

both cases a member of the list studied for free recall on that trial 

reappeared in pictorial form in the attentional measure.   

The serial position of the reappearing item was manipulated along a 

recency gradient.  That is, only the last 4 items of the study list reappeared 
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(individually across trials) in the attentional measures.  The Context 

Activation Model (Davelaar, 2005), predicts differential activation of these 

recency items which largely accounts for its ability to reproduce standard 

recency effects in immediate free recall.  Therefore, by manipulating the 

reappearing item’s serial position we effectively manipulated the amount of 

WM activation associated with different items appearing in the attentional 

tasks.  The goal of the present experiment was to translate these differences 

in memory activation into differences in obligatory visual search.  This 

would be evidenced by recency gradients in attentional bias (in the case of 

eye movements) and attentional deficits (in the case of attentional blink) 

along the recency portion of the serial position curve. 

 

Experiment 4a: Eye Movement Sensitivity to Working Memory Activation 

 

Method 

 

Participants 

 

Sixteen participants from a large Midwestern university participated in this 

experiment for course credit. 
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Design (2 Target Present/Absent x 4 WM Probe Recency Within-Subjects) 

  

 The design of the present experiment served to structure the contents 

appearing in the search arrays upon which the participants performed the 

visual search task on each trial.  The participant’s search task was to report 

the presence or absence of a search target in the search array.  Therefore, the 

first independent variable was the presence or absence of the target in the 

search array.  Fifty percent of the trials contained the target.  Furthermore, 

one of the items in the search array was always pulled from a list of words 

presented for memorization prior to the search task.  The second 

independent variable was the serial position occupied by this reappearing 

item in the memory list.  This reappearing item was manipulated to be from 

either the very last, 2
nd

 to last, 3
rd

 to last, or 4
th

 to last items from the 

memory list.  The implementation of these manipulations will be further 

elaborated below in the explication of the experiment’s procedure. 

 

Procedure 

 

Prior to beginning the experiment the participant was placed in an 

eye-tracking apparatus (Arrington ViewPoint) that recorded several 

parameters of the participants’ eye movements throughout the experiment.  

Each trial began with the presentation of a study list, consisting of sixteen 

words (at a rate of 1.25 sec./word), in the center of the display that were to 
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be memorized for later free recall.  Directly following the last list word, a 

visual search array appeared containing 4 icons.  The search task was to 

report either the presence or absence of a target item.  The target item was 

always the same picture of a jacket.  The presence/absence of the search 

target was randomized within the other independent variable condition 

(WM probe serial position) so that there were an equal proportion of target 

present and target absent trials within each WM probe condition.  Figure 16 

displays an example of the search arrays that appeared in the experiment.  

This figure represents a target present trial as the jacket target icon can be 

seen on the left hand side.  Following the search response, the participant 

was provided eight opportunities to recall words from the study list.  The 

recall task was encouraged as the primary task. The participants were also 

instructed to report their search response as quickly as possible while 

maintaining accuracy. 

 

 

Figure 16: Example of visual search array used in Experiment 4a 
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  One of the items appearing in the search array was an icon 

representing one of the study list items.  This reappearing list item was 

randomly drawn from 1 of the last four serial positions (13th, 14th, 15th, or 

16th).  There were 128 trials total for each participant which allowed 32 

trials per WM probe condition.  The shape of the array was randomly 

displayed in either a square or a diamond configuration and the target 

randomly appeared in one of four orientations (0°, 90°, 180°, or 270°) on 

each target-present trial in order to encourage overt search. Each item in the 

array appeared at 10.3° of visual angle from the center of the display and 

subtended approximately 4.8° x 4.8°. 

 The word lists were constructed using a subset of categorized nouns 

from Murdock (1976).  Eight categories were used for the study lists.  To 

achieve the list length of sixteen words two randomized lists were created 

by pulling one word from each category without replacement and then 

concatenating these two lists.  This ensured that the first and last 8 words in 

each list were locally semantically unassociated.  Distractor items were 

taken from an additional 4 categories.  Distractor items were drawn 

independently from these lists such that no array contained multiple 

distractors from the same category. 
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Hypotheses & Predictions 

  

 The focal prediction for this experiment was that greater attention 

would be allocated to WM probes appearing in the search array with 

increases in the serial position occupied by the WM probe in the free recall 

list.  Specifically it was predicted that a greater proportion of early eye 

movements would be directed towards the WM probe as its serial position 

increased (i.e., when it had appeared more recently). 

 

Results 

 

 Prior to analysis, calibration criteria for the eye tracker were applied.  

The participants were required to be within 1.15 degrees from 8 points 

around a circular arrangement on the screen for each of four calibrations 

throughout the experiment following every other trial block.  Only the data 

from 11 subjects meeting these criteria was subjected to analysis.  

Furthermore, two exclusion criteria were applied to each trial.  A trial was 

discarded if the participant’s gaze was not contained in a central 3.8° x 3.8° 

region of interest (ROI) upon the onset of the search array and/or if their 

search response was inaccurate.  As a result, 12% of data was excluded 

from the analyses
16

.   To assess which items were initially visited by the 

eyes the primary DV was whether or not the list item probe ROI was the 

                                                           
16

 These exclusions were primarily due to the gaze criterion as search was 96% accurate 
throughout the entirety of the experiment across participants. 
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first ROI entered amongst all of the array items’ ROIs.  Each ROI covered a 

7° x 7° area centered on each item in the array. 

 Figure 17 displays the free recall data alongside the list item probe 

first ROI engagement plotted by serial position.  As can be seen in the recall 

data there was a marginal trend of primacy over the first five serial 

positions, F(1,50) = 2.87, p = 0.09, and a substantial trend of recency over 

the last five serial positions F(1,50) = 19.00, p < 0.0001.  Crucially, the 

focal prediction of the experiment was borne out as there was a recency 

effect for eye movements.  Logistic regression revealed that eye movements 

were more likely to enter the list probe ROI first as the serial position of the 

list item increased as indicated by a significant trend of WM probe recency, 

χ
2
(1) = 8.843, p < 0.005.  Additionally, there was a significant within-

subject correlation between item recall and list item saccadic engagement 

over the last four serial positions r(9) = 0.55, p < 0.05
17

.  However, the 

omnibus test including target presence/absence as a factor indicated an 

unexpected main effect of target presence/absence, χ
2
(1) = 4.299, p < 0.05, 

in addition to the main effect of WM probe recency, χ
2
(3) = 9.179, p < 0.05, 

despite a non-significant interaction, χ
2
(3) = 5.937, p = 0.115, as depicted in 

Figure 18. 

 

                                                           
17

 Fisher’s R to Z transformation was applied to each participant’s Pearson correlation.  
The average of these transformed correlations was then transformed back to the Pearson 
metric and subjected to the inferential test reported above. 
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Figure 17: Free recall data plotted alongside the proportion of trials in which the 
WM probe was the first ROI entered within the search array in Experiment 4a 

 

 

Figure 18: Proportion of trials in which the WM probe ROI was the first ROI 
entered within the search array plotted by target presence/absence and serial 

position of the WM probe in Experiment 4a 
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Discussion 

  

 The results revealed that participants were more likely to engage the 

WM probe as the serial position of the WM probe increased in the study 

list.  In addition there was a significant within subject correlation between 

free recall of the last four items and engagement of the list probe.  Together 

these results strongly suggest a link between the activation of individual 

items in working memory and biases in the execution of early oculomotor 

behavior.  However, examination of the effect of the target 

presence/absence suggests that this relationship is not clear cut as there was 

a main effect of target presence/absence on the 1
st
 ROI engagement of the 

WM probe.  Specifically, the effect of WM probe recency was pronounced 

in the target present condition, but did not manifest in the target absent 

condition. As no effect of target condition was anticipated, this finding did 

not accord with the expectations of the present experiment.   

It should perhaps be noted, however, that it was hypothesized that 

the data in the target absent condition might suffer from less error as there 

would be less attentional competition in the search task and thereby 

facilitate the engagement of the WM probe.  In contrast to this hypothesis, it 

was exactly the condition in which competition was promoted between the 

target and WM probe that allowed the recency effect to manifest.  

Furthermore, analysis of the rates of WM probe 1
st
 ROI engagement within 

the target present condition arose due to the low rates of engagement within 
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the 13
th

 & 14
th

 serial positions as these rates were pushed down below 

chance level of 25%. 

 The fact that these items were engaged less than chance implicates a 

strategic usage of the list items during the search task.  Past research in this 

area has demonstrated that people can use the contents of working memory 

in a flexible manner to strategically avoid the engagement of items 

matching the contents of working memory (Woodman & Luck, 2007).  The 

results of the present experiment suggest that the participants learned that 

the list items would reappear in the search task and, given that the list probe 

would never be the target, the participants used this contingency to their 

advantage.  That is, the participants adopted a strategy of not looking at the 

reappearing WM probes since engaging those items would only serve to 

slow search for the target.  Interestingly and importantly, however, the data 

suggests that this strategy was only permitted to operate for items associated 

with low WM activation. 

 An important alternative explanation to the present data warrants 

discussion.  It could be posited that a positive association between the 

recency of the WM probe and eye movements could be purely due to the 

fact that later items are more likely to occupy working memory at the time 

of search whereas earlier items would be more likely to have dropped out of 

WM by this time.  This explanation suggests that the finding of an effect of 

WM probe recency would not implicate eye movement sensitivity to item-

specific memory activation levels.  That is, due to the working memory 
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dynamics during list study, the present experiment might simply boil down 

to a partial replication of previously demonstrated effects (cf. Soto et. al. 

2005).  The manner in which the present effect manifested itself, however, 

suggests that this account of the data is unlikely.  As mentioned above, it 

was due to the flexible and strategic use of the 13
th

 and 14
th

 items during 

search that allowed the differences along the recency gradient to emerge.  

Such strategic use of these earlier items would of course require that they 

reside in working memory during search to support the inhibition of 

attention towards the matching WM probes appearing in the arrays.  As this 

is a difficult alternative account to counter under most conditions, future 

research employing related paradigms must guard against this alternative 

explanation of the data. 

 The present experiment demonstrates a clear link between an item’s 

level of activation in working memory and the likelihood that it will be the 

first item engaged with the eyes in a visual search task.  The intriguing 

manner in which this relationship manifested suggests, however, that the 

association between working memory activation and early oculomotor 

deployment is more complicated than anticipated.  The strategic use of the 

list items was inadvertently incentivized in the present experiment.  As the 

target would never coincide with the list items, flexibly inhibiting attention 

away from the reappearing list items was always to the benefit of the 

participant in determining the presence or absence of the search target.  It 

will be important to discover the range of conditions and task characteristics 
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under which this link between working memory activation and eye 

movements persists.  Changing the search task to one of target 

discrimination (e.g., report the direction of slant of a vertical line), for 

instance, may greatly influence the way search is carried out.  This is 

especially likely when the incentivization of the present experiment is 

removed by allowing the target to coincide with the spatial location of the 

WM probe.  Much future investigation is needed to better understand this 

subtle and complex relationship. 

Furthermore, several questions present themselves in moving 

forward to utilize early oculomotor behavior as an index of working 

memory activation in higher level decision making tasks.  When deploying 

the MASS procedure during a hypothesis generation task, no explicit search 

task will be present.  Rather, the arrays of items will flash on the screen 

with no reason provided to the participant.  If the movement of the eyes 

towards WM matching items is automatic in such a context then such a 

procedure should succeed in measuring the active contents of working 

memory.  If, however, the participant elects to use the contents of the 

hypothesis generation task in some strategic manner during the MASS trials 

then such measurement will be severely compromised.  It is my opinion that 

the adoption of such strategies should not occur under such conditions as 

there should not be any incentive present to foster this.  The present 

experiment, however, highlights the importance of considering the presence 

of such strategies when the MASS is deployed within higher level tasks.  
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Overall, however, the present results suggest that eye movements are 

sensitive to working memory activation and that the MASS procedure may 

afford sensitivity to this item-specific memory activation. 

 

Experiment 4b: Attentional Blink Sensitivity to Working Memory 

Activation 

 

 An experiment nearly identical to Experiment 4a was carried out in 

order to assess the efficacy of attentional blink sensitivity for measuring 

item-specific memory activation.  The list study phase and recall phases 

were exactly the same, but rather than a visual search task amongst an array 

of items appearing on the screen together, the visual search task was carried 

out over a series of items that appeared one after the other in a rapid serial 

visual presentation.  This task is elaborated below. 

 

Method 

 

Participants 

 

Nineteen participants from a large Midwestern university participated in 

this experiment for course credit. 
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Design & Procedure (3 RSVP Probe Position x 5 WM Probe Recency 

Within-Subjects) 

  

In the rapid serial visual presentation search task eight pictures were 

presented to the participant in succession for 75 ms each with an inter 

stimulus interval of 45 ms between each item.  Figure 19 depicts an 

example of the RSVP procedure as deployed in the experiment.  Just as in 

the previous experiment, one of the items appearing in the RSVP stream 

was a reappearing item drawn from one of the last 4 positions in the study 

list.  Additionally, there was a condition which was devoid of a WM probe 

in which none of the items in the RSVP were taken from the study list.  This 

was included as a baseline condition that would allow the assessment of the 

upper bound of perceptual accuracy afforded in the search task in the 

absence of any attentional blink effects.   

In Figure 19 the reappearing item is the first item on the sequence 

(i.e., the dolphin).  The WM probe was manipulated to appear in one of the 

first 3 positions in the RSVP stream.  This was done so that the participant 

wouldn’t develop a clear expectation of observing the WM probe in any 

single position of the RSVP stream while at the same time positioning the 

WM probe near the beginning of the stream to allow it to tap the contents of 

WM
18

.  The distance (i.e., time) between the WM probe and the search 

                                                           
18

 It is possible that the distractor items appearing in the RSVP stream may interfere with 
the contents of working memory as the RSVP unfolds.  This conclusion was suggested by 
pilot work. 
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target was held constant across the entire experiment.  The search target 

always appeared at a lag of 2 items following the reappearing WM probe as 

depicted in Figure 19.  The target was randomly selected as one of the five 

shapes depicted in the figure (diamond, circle, start, square, or triangle).  

The participant’s search task on every trial was to accurately report the 

identity of the target following the offset of the RSVP stream.  Stickers with 

these shapes had been placed on 5 of the keyboard keys and the participants 

pressed these keys to indicate their search response. 

WM Probe

Search Target

 

Figure 19: Example of RSVP stream used in Experiment 4b 
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Hypotheses & Predictions  

 

The hypothesis for this experiment was that greater attentional blink 

would be observed with increasing recency of the WM probe.  This would 

be evidenced by decreased accuracy in reporting the search target with 

increasing recency of the WM probe. 

 

Results 

 

 Analysis of the free recall data, as displayed in Figure 20, 

demonstrated a substantial trend of primacy over the first five serial 

positions, F(1,90) = 28.43, p < 0.0001, and a substantial trend of recency 

over the last five serial positions F(1,90) = 29.93, p < 0.0001.  Critically, 

the focal prediction of the experiment was confirmed.  A significant trend of 

serial position for search accuracy was revealed, χ
2
(1) = 5.44, p < 0.05

19
. 

 

                                                           
19

 Analyses of this trend, as well as those forthcoming, excluded the baseline condition.  
However, a MANOVA taking difference scores (subtracting each subject’s search accuracy 
average by serial position from their baseline average) revealed a significant effect of WM 
probe recency as well, F(3,16) = 3.28, p < 0.05.  Logistic regression excluding the baseline 
condition was used as the primary analysis as there were not enough observations per 
condition to calculate reliable difference scores once the data was broken out by RSVP 
position (2 observations per condition per subject). 



83 

 

 

Figure 20: Free recall data plotted alongside the accuracy in the search task by 
serial position in Experiment 4b 

 

Interestingly, however, when The RSVP position of the WM probe 

was included in the logistic model, this effect of serial position became 

marginal, χ
2
(1) = 3.32, p = 0.06.  Furthermore there was a significant trend 

for the RSVP position variable itself, χ
2
(1) = 5.36, p < 0.05, as search 

accuracy was less accurate with the earlier positioning of the WM probe in 

the RSVP stream.  This relationship is depicted in Figure 21.  Additionally, 

the interaction between WM probe recency and RSVP position trends was 

not significant, χ
2
(1) = 0.02, p = 0.898. 
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Figure 21: Visual search accuracy plotted by serial position of WM probe in 
study list and position of the WM probe in RSVP stream (Position1, 2, or3) in 

Experiment 4b 

 

Discussion 

 

As predicted, a trend of declining visual search accuracy in the 

RSVP search task obtained with increases in the list serial position from 

which the WM probe was drawn.  At first blush this seems to suggest that 

the present experiment has been successful in translating the predicted 

differences in the working memory activations of the list items into 

differences in visual search performance.  Closer inspection of the data, 

however, revealed that there is reason to approach this conclusion with 

some skepticism.   
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The unexpected effect of RSVP position demonstrated that as the 

WM probe appeared in later RSVP positions, its effectiveness at producing 

the attentional blink diminished.  That is, when the probe appeared as the 

first RSVP item, attentional blink was observed over the 15
th

 and 16
th

 study 

list serial positions, but when the probe was the second RSVP item it was 

only able to elicit the blink for the 16
th

 item, and when the probe was in the 

3
rd

 position it uniformly failed to elicit the attentional blink.  This discrete 

patterning of the attentional blink deficit makes it difficult to argue that the 

measure is sensitive to working memory activation.  It was my expectation 

that the differences in delay between the study list and the WM probe in the 

various RSVP conditions would be slight and thus not result in detectable 

differences in search performance.  Additionally, I assumed that any 

interference to the contents of WM from RSVP items preceding the probe 

would be negligible.  The particular pattern in the data, however, suggests 

that it is reasonable to assume that both factors may have played a role in 

the overall search performance results.  Furthermore it can be inferred from 

Figure 21 that the smooth trend for WM probe serial position results from 

averaging over the step functions of visual search performance in RSVP 

position 1 & 2 conditions. 

 Given these considerations it appears that the attentional blink is 

likely of limited use for deployment in higher level cognitive tasks as a 

measure of working memory content.  Some limitations were expected from 

the outset regarding the efficacy of informing fine grained working memory 
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dynamics over time.  For instance, given that the RSVP search task requires 

an overt response it could not be expected to be deployed multiple times 

within a single trial of a hypothesis generation task in the same manner 

potentially supported by the MASS procedure. 

Despite the limitations of the MAS-AB procedure, however, it could 

still assist in the investigation of working memory dynamics through time.  

The data of the present experiment as well as Pashler and Shiu (1999) 

clearly demonstrate that the attentional blink provides a measure of whether 

an item is in or out of working memory.  Although fine grained activation 

dynamics are the goal of my present and future investigations, being able to 

assess the maintenance vs. non-maintenance of items in working memory 

can substantially inform current theory.  Lastly, there is one major 

advantage of the MAS-AB procedure over that of the MASS procedure.  It 

doesn’t require an eye tracker.  Eye tracking is often cost and time 

prohibitive in comparison to experiments only requiring a standard PC.  

This advantage alone is reason enough to consider its use in future 

investigations of working memory dynamics over time in higher level 

decision making tasks. 
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Chapter 7: Deploying the MASS Procedure in a Hypothesis 

Generation Task 
  

Two experiments were carried out in which the MASS procedure 

was deployed during a hypothesis generation task.  In Experiment 5a the 

efficacy of the MASS procedure to detect the generation of hypotheses into 

working memory was assessed.  That is, the first experiment served as a 

further validation of the MASS procedure in a higher level decision making 

task.  The second experiment, Experiment 5b, deployed the MASS 

procedure in a synonymous hypothesis generation task, but was used to 

investigate a question of theoretical importance for understanding the 

temporal dynamics of hypothesis generation processes.  The question 

underlying this experiment concerned how working memory resources are 

allocated throughout time during a hypothesis generation task. 

 

Experiment 5a: Deploying the MASS Procedure - Hypothesis Generation 

 

Method 

 

Participants 

 

Ninety one participants from a large Midwestern university participated in 

this experiment for course credit. 
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Design & Procedure (2 Data x 2 MASS Array Onset Position Within-

Subjects) 

 

 The procedure of the experiment was conceptually very similar to 

Experiments 1, 2, & 3 in that it began with an exemplar training task, a test 

to verify learning, and ended with a hypothesis generation task.  However, 

despite this conceptual overlap, the experiment was substantially different 

in appearance.  It is assumed that the MASS procedure requires 

pictorial/object stimuli for its successful utilization.  It is assumed that if 

word stimuli were used (as in Exps. 1, 2, & 3) that participants would not be 

able to resolve the details of the words to a strong enough degree to drive 

early oculomotor behavior.  Therefore colored disks were used to represent 

the hypotheses and data in the present experiment so that during the MASS 

trials, the hypotheses and data would be clearly represented and quickly 

resolvable to peripheral vision.   

 Eleven colors were used in the present experiment whose RGB 

codes appear in Appendix B.  For each participant each of these colors was 

randomly assigned to represent a hypothesis, a data level, or was assigned 

as a distractor in the search array and therefore had no meaning in the 

context of the exemplar training or hypothesis generation tasks.  Table 5 

presents the hypothesis by data ecology used in the present experiment.  

Unlike the representations of the ecologies of the previous experiments, this 

table displays the data levels for the negative/absent levels of the data in 
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addition to the positive/present states.  This is meant to underscore the fact 

that every possible data (and hypothesis) state in the present experiment was 

associated with a unique color. 

 

  
Symptoms 

D1+ D1- D2+ D2- 

Diseases 

H1 0.8 0.2 0.8 0.2 

H2 0.5 0.5 0.8 0.2 

H3 0.2 0.8 0.8 0.2 
 

Table 5: Hypothesis x Data ecology of Experiments 5a & 5b 

 

 Changing the representations of the hypothesis and data states to 

colors of course required changes in how the exemplar training paradigm 

was used in the present experiment.  Rather than couching the task as one of 

medical diagnosis, the task was described as a cause-effect learning task in 

which some colors would represent causes (i.e., hypotheses) and some 

colors would represent the effects of those causes (i.e., data)
20

.   The 

instructions used in the present experiment are provided in Appendix C.  

The exemplars consisted of a hypothesis color and two data level colors.  

As displayed in figure 22, a cause was denoted by two arrows pointing 

away from it towards each of the effects appearing on that exemplar.  The 

cardinal direction in which these associations were indicated (up, down, 

                                                           
20

 Although causes & effects are not semantically interchangeable with hypotheses & data 
this description afforded the essential knowledge structures assumed to underlie the 
hypothesis generation processes under investigation. 
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left, or right) as well as the spatial locations in which the items appeared on 

the screen (amongst twelve options) were randomly selected for each 

exemplar.  This was done so that there would be no consistent spatial 

associations for any of the hypotheses or data in the experiment thereby 

obviating any spatial expectations for the hypotheses or the data during 

MASS elicitation. 

 

Figure 22: Example exemplar used in Experiment 5a 

 

 Following the instructions the exemplar training procedure 

commenced. The participants were presented with 150 exemplars (50 per 

hypothesis) at a rate of four seconds per exemplar. Following training a 

learning test was issued in which the participants were provided with each 

of the four data states and were asked to identify the most likely cause to 

generate each of the four effects.  The eye tracker (Arrington Viewpoint) 

was then moved into place and set up for the participant who was then 

calibrated in the eye tracker. 

 The elicitation phase then ensued.  Each trial in the elicitation phase 

was carried out as depicted in Figure 23.  The participants were presented 
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with a piece of data, a MASS array, a hypothesis generation prompt, an 

overt hypothesis generation task in which a key press was elicited, and a 

probability judgment task.  The independent variables were the piece of 

data presented at the beginning of each trial and the timing of the MASS 

array onset within the elicitation sequence.  The presented data was 

manipulated to be either D1+ or D1- and, as indicated in Figure 23, the 

MASS array was manipulated to appear in one of two possible positions in 

the elicitation sequence. Note that these locations on the timeline bracket 

the prompting of hypothesis generation.  For this reason the condition in 

which the MASS array appears in the first position is referred to as the 

PrePrompt condition and the condition in which the MASS array appears 

following the hypothesis generation prompt is referred to as the PostPrompt 

condition.  Each participant was presented with four elicitation trials in 

which these two conditions (data & array onset position) were factorially 

manipulated. 

 

 

Figure 23: Time course of elicitation in Experiments 5a & 5b 
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The MASS arrays appeared in star shaped pattern and contained the 

same five elements, randomly assigned to one of the five positions, on each 

trial
21

.  These five items were H1, H2, H3, and two distractor colors that 

had not appeared in the experiment prior to the MASS arrays.  Figure 24 

displays an example of the MASS arrays used in this experiment.  Directly 

prior to the onset of the MASS array a fixation cross (i.e., +) quickly flashed 

in the center of the screen to draw the participant’s eyes to the center of the 

screen before the MASS array appeared. 

 

 

Figure 24: Example MASS array used in Experiment 5a 

 

Each trial finished with an overt selection of the most likely 

hypothesis in which the participant responded with a key press and a 

probability judgment concerning the hypothesis they considered most 

                                                           
21

 The center of each array item was equally distant from the center of the screen and the 
distance between the center of each item and its neighboring items was equal as well.  
That is, each item was equally spaced around an imaginary circle centered on the middle 
of the display. 
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likely
22

.  As in the previous experiments a series of ten arithmetic 

verification trials was carried out as a distractor task between each trial. 

 

Hypotheses & Predictions 

 

 The present experiment was a test of the ability of the MASS 

procedure to detect hypothesis generation.  The hypothesis was that more 

initial eye movements would be directed towards the most likely hypothesis 

in the PostPrompt condition as compared to the PrePrompt condition. 

 

Results 

 

 Prior to analysis the same calibration criteria implemented in 

Experiment 4a were applied.  Fifty-eight the ninety-one participants met 

this criteria and only data from these participants was subjected to analysis.  

An additional exclusion criterion was applied for each trial. A trial was 

discarded if the participant’s gaze was not contained in a central 3.8° x 3.8° 

region of interest (ROI) upon the onset of the MASS array.  The application 

of this criterion excluded 43 trials, leaving 189 trials subject to analysis. 

 The data was collapsed over the data conditions (D1+, D1-) in order 

to assess the effect of the MASS array onset position.  As D1+ and D1- 

                                                           
22

 The probability judgment prompt was similar to that used in Experiments 1 and 2.  The 
prompt read as follows: “If you viewed 100 cases with this effect, how many would have 
the cause you selected on the previous screen?” 
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were associated with H1 and H3 to the same extent, these conditions were 

collapsed and analyzed with respect to the high probability and low 

probability hypotheses given the data that had been presented on that trial.  

For instance, if D1+ was presented then the high probability hypothesis was 

H1, but if D1- had been presented then the high probability hypothesis was 

H3.  H2 was always the medium probability hypothesis as it was related to 

both states of the data with a probability of 0.5. 

 Figure 25 demonstrates the rate at which each item’s ROI was 

entered first following the onset of the MASS arrays broken out by 

PrePrompt and PostPrompt conditions
23

.  As can be seen there was no effect 

of Prompt Condition for the engagement of any of the items in the array.  

The high probability hypothesis was no more likely to be engaged following 

the generation prompt than it was prior to the prompt, χ
2
(1) = 0.425, p = 

0.514. 

 

                                                           
23

 In this figure, and those that follow for this experiment, the rates of distractor 
engagement are the rates for looking at an individual distractor in the array.  These rates 
were obtained by dividing the rate of looking at either distractor by two as two distractors 
appeared in each array. 
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Figure 25: Item engagement by Array Onset condition and Array Item type in 
Experiment 5a 

  

Further inspection of the data, however, revealed a large bias in the 

eye movement data.  Figure 26 plots the proportion of trials on which each 

ROI was the first ROI entered within the MASS arrays.  ROI1 was the ROI 

appearing on the right hand side of the star array and the remaining ROIs 

were numbered consecutively in a clockwise manner.  As can be seen, ROI 

5 appearing in the upper middle of the star-shaped array was favored more 

than twice as much as any other ROI.  
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Figure 26:  1st ROI entrance rates over all trials by ROI in Experiment 5a 

 

Figure 27 plots the rate at which each item’s ROI was entered first 

following the onset of the MASS arrays by array onset condition when the 

trials in which ROI 5 was entered first are removed from the data set.  

Although the effect of array onset location remains non significant, χ
2
(1) = 

1.47, p = 0.225, this conditionalization does move the mean rates in the 

predicted direction as a 13% differences emerges between the PrePrompt 

and PostPrompt conditions for the high probability hypothesis.  Further 

conditionalizing on only the participants demonstrating good learning (in 

the learning test prior to the MASS trials) further magnifies this effect as 

demonstrated in Figure 28
24

.  When conditionalized on this subset of 

participants a significant result obtains, χ
2
(1) = 5.419, p < 0.05, as there 

were significantly more eye movements directed towards the high 

                                                           
24

 The criterion for good learning was whether or not the participant was able to 
accurately identify the hypothesis that was most likely given D1+ and D1- in the learning 
check. 
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probability hypothesis in the PostPrompt condition as compared to the 

PrePrompt condition
25

. 

 

 

Figure 27: Item engagement by Array Onset condition and Array Item type in 
the absence of trials in which ROI 5 was the first ROI engaged in Experiment 5a 

 

                                                           
25

 Analysis of the participants not meeting the learning criterion revealed no effect of 
Prompt onset position, χ

2
(1) = 2.76, p = 0.097.  Although this could be considered a 

marginal effect, it is important to note that the means are in the opposite direction as 
those for the learners as they were 0.5 in the PrePrompt condition and 0.125 in the 
PostPrompt condition. 
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Figure 28: Item engagement by Array Onset condition and Array Item type for 
only good learners in the absence of trials in which ROI 5 was the first ROI 

engaged in Experiment 5a 

 

Discussion 

 

 The present experiment sought to provide an initial low-bar test of 

the ability of the MASS procedure to detect the movement of information 

into working memory.  The results demonstrate that the MASS procedure 

successfully passed this test.  As predicted, more initial eye movements 

were directed towards the high probability hypothesis following the 

generation prompt. 

 It is important to realize that this procedure is very much in its 

infancy.  The two conditionalizations performed on the data in the present 

experiment suggest important ways to improve the deployment of the 

MASS in future experiments.  Firstly, the fact that the top-middle ROI was 
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substantially favored suggests a potential limitation with the arrays used in 

the present experiment.  Future deployments of the MASS procedure would 

likely benefit from the deployment of different array types.  A potential 

solution would be to use randomly selected square and diamond arrays as 

was done in Experiment 4a.  This solution does however come with a cost 

in that the number of items competing with one another in the array is then 

limited to four rather than five as in the present experiment. 

 The fact that the significant results obtained only when poor learners 

were excluded from the data set suggests that improvements to the learning 

in the exemplar training task could be beneficial to the use of the MASS 

procedure in this context.  The exemplars used in the present experiment 

featured one cause pointing towards two effects.  This could be simplified 

by showing the cause-effect relationships as dyads rather than triads.  Such 

an adjustment may enhance the learning taking place on each exemplar.  

Additional remedies improving the learning taking place during the 

exemplar training phase should also be considered. 

 The overall sensitivity of the measure may appear weak in light of 

the results of the present experiment.  However, it is important to note that 

the problems with the implementation of the present experiment may have 

been substantial and yet the measure was still able to capture the movement 

of information into working memory.  The eventual level of sensitivity that 

may be afforded by the MASS procedure is not at all clear from the present 

observations.  Future implementations of this procedure should utilize the 
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above remedies in pursuit of enhancing the sensitivity and efficacy of the 

measure as well as the general paradigm. 

  

Experiment 5b: Deploying the MASS Procedure - Informational Trade-offs 

in WM 

 

 The present experiment utilized the MASS procedure to assess 

differences in working memory contents prior to and following hypothesis 

generation.  As such this experiment serves as an initial investigation of 

informational tradeoffs occurring in working memory allocation over the 

course of a hypothesis generation task.  In addition to replicating the 

previous experiment, the present experiment sought to determine if the data 

probe utilized in the initial stages of retrieval is still maintained following 

the generation of hypotheses. 

 

Method 

 

Participants 

 

Twenty nine participants from a large Midwestern university participated in 

this experiment for course credit. 
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Design & Procedure (2 Data x 2 MASS Array Onset Position x 4 MASS 

Array Content Competitions Within-Subjects) 

 

The procedure of the experiment was nearly synonymous with that 

of Experiment 5a with a few notable exceptions
26

.  The exemplar training 

phase was simplified by displaying cause-effect dyads rather than cause-

effect triads.  The display of the dyads was slightly modified from the 

exemplar displays in the previous experiment.  Whereas the triads could 

appear in one of twelve spatial locations in Experiment 5a, the dyads were 

constrained to appear in the middle of the screen (pointing either vertically 

or horizontally).  The orientation of the dyads was randomized for each 

exemplar so as to preclude spatial expectations for the data or hypotheses.  

Figure 29 displays the orientations of the cause-effect dyads. 

 

 

Figure 29: Example exemplars from Experiment 5b 

                                                           
26

 Slightly different shades of color were used in this experiment in an effort to better 
control for luminance differences between the colors.  The RGB codes of these colors 
appear in Appendix D. 
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Since dyads were used, the exemplars were presented at a faster rate 

than in Experiment 5a (two seconds, as opposed to four seconds, per 

exemplar).  Three hundred exemplars (100 per hypothesis) were presented 

in the exemplar training phase.  The same Hypothesis x Data ecology used 

in the previous experiment was used in the present experiment (see Table 5) 

and the same learning test followed exemplar training.  Directly after the 

learning test the eye tracking equipment was set up and the participant was 

calibrated in the eye tracker (SR Research Eye Link 1000). 

 The elicitation phase then began.  The elicitation sequence on each 

trail was exactly the same as that used in the previous experiment (see 

Figure 23).  The data presented to the participant at the beginning of each 

trial, either D1+ or D1-, and the MASS array onset positions, either 

PrePrompt or PostPrompt, were the same as in the previous experiment.  

Whereas the contents populating the MASS arrays were always the same in 

the previous experiment, the MASS array contents were manipulated in the 

present experiment to examine how different competitions amongst the 

array items influenced eye movement behavior.  The MASS array content 

competition conditions are displayed in Table 6 below.  The present MASS 

arrays only contained 4 items (as opposed to the 5 item arrays in 

Experiment 5a) and appeared randomly in either square or diamond 

configurations.  These measures were taken in an effort to obviate the 

previously observed first ROI bias.  Examples of the MASS arrays utilized 

in the present experiment appear in Figure 30.  Each participant completed 
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one trial in each condition.  Accordingly, each participant completed 16 

elicitation trials with an arithmetic distracter task intervening between each 

trial.  

 

  

Array Contents 

1 2 3 4 

Condition 1 H1 D2+ Dist Dist 

Condition 2 H1 D1+ Dist Dist 

Condition 3 D1+ D2+ Dist Dist 

Condition 4 H1 H2 H3 D1+ 

 

Table 6: MASS array content competition conditions of Experiment 5b 

 

 

Figure 30: Example MASS arrays used in Experiment 5b 

 

As previously discussed, the work of Moores et al. (2003) 

demonstrated that first saccades can be drawn to items that are merely 

semantically related to the content of working memory.  This represents a 
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potential problem for the use of visual-search methodologies with respect to 

paradigms utilizing “micro-worlds” defined directly by semantic relations 

between data and hypotheses.  In order to use visual attention to assess 

working memory activation in this context we must be able to parse out the 

contribution of semantic relatedness to the overall attentional performance 

observed.   

The Competition conditions of the present experiment were 

designed with this consideration in mind.  Condition 1 provided a baseline 

competition in order to define the rate of attention drawn to semantically 

related data in the search array.  As D2+ was not been presented in the 

elicitation sequence prior to its appearance in the search array and it 

maintained an equal semantic relation to H1 as D1+ (which will have been 

presented at the beginning of the trial).  This can be seen in the Hypothesis 

x Data ecology of the present experiment where the conditional 

probabilities of D1+ & D2+ are both 0.8 under H1.   

Condition 2 establishes a direct competition between the presented 

data and the most likely hypothesis (within the D1+ data condition).  Item 

specific activation of D1+ will be assessed by the extent to which positive 

deviation from the baseline established in condition 1 is observed.  

Condition 3 then sets up a competition between semantic relation and 

presented data in the absence of competition from the likely generated 

hypothesis (within the D1+ data condition).  Lastly, condition 4 provides a 
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relatively global competition between all of the possible hypotheses and 

D1+.  This competition thus allows replication of Experiment 5a. 

 

Hypotheses & Predictions 

  

 The general prediction is that the observed data will be expunged 

from working memory following hypothesis generation as working memory 

resources will be reallocated to the maintenance of generated hypotheses at 

that time.  This prediction will be assessed by comparisons between array 

content conditions 1 and 2 within the PostPrompt and D1+ data conditions.  

Additionally it was hypothesized that the results from Experiment 5a would 

be replicated within array content condition 4 in which all 3 hypotheses 

appeared in the MASS array. 

 

Results 

 

 Of initial interest is that the effect of MASS array onset position 

observed in Experiment 5a was replicated within the Competition 4 

condition.  As demonstrated in Figure 31 significantly more initial eye 

movements
27

 were directed towards the High Probability Hypothesis 

                                                           
27

 Due to differences in the data structure of the Eye Link eye tracker data the present 
analyses examined the first ROI fixated on each trial.  Although this differs slightly from 
the dependent variable used in Experiments 4a & 5a (i.e., first ROI entered regardless of 
the registration of fixation), it is assumed that it is highly unlikely that the two measures 
would diverge considerably as most ROI entered are assumed have been fixated in the 
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following the hypothesis generation prompt, χ
2
(1) = 5.52, p < 0.05.  Note 

that this result obtains in the present experiment without recourse to 

conditionalization of the dataset.  Examination of the distribution of first 

ROI fixated (Figure 32) suggests that the modification to the MASS arrays 

deployed in the present experiment attenuated, but did not fully alleviate, 

the “up-left bias” observed in Experiment 5a. 

 

 

 

Figure 31: Replication of Experiment 5a.  Initial item engagement by array onset 
condition and array items within competition condition 4 in Experiment 5b. 

 

 

 

 

                                                                                                                                                   
previous experiments.  Due to the sparse arrays utilized in these experiments it would be 
a rare event for gaze to traverse an ROI in the absence of fixation. 
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Figure 32: Distribution of 1st fixations within each ROI in Experiment 5b.  
Dashed boxes = square array ROIs.  Double bound boxes = diamond arrays. 

 

 In order to investigate the question of whether or not the presented 

data was maintained following hypothesis generation comparisons between 

Competition conditions 1 and 2 within the PostPrompt condition were 

necessary.  The first fixation rate of D2+ in competition condition 1 was 

compared to the first fixation rate of D1+ in competition condition 2 within 

the D1+ Data condition as displayed in Figure 33.  This comparison 

revealed no difference between these rates, χ
2
(1) = 0.617, p = 0.432.  

However, in the absence of competition from H1 in Competition condition 

3, D1+ was clearly favored over D2+ as demonstrated in Figure 34.  

Binomial tests determined that the rate of D1+ engagement significantly 

differed from chance, z = 3.58, p < 0.001, in addition to the rate at which 

D2+ was engaged, z = 6.77, p < 0.001.  The rate at which D2+ was engaged 

did not differ from chance, z = -1.5, p = 0.096.   These results suggest that 

the D1+ data was maintained following generation.  This same comparison 

is important to examine in the D1- data condition as this pattern should 
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disappear.  As displayed in Figure 35, however, the same pattern manifests 

as D1+ is engaged above chance, z = 2.45, p < 0.05, and above the level of 

D2+, z = 5.288, p < 0.001, which is not engaged above chance, z = -1.36, p 

= 0.14.  

 

  

Figure 33: Comparison between rates of first fixation on D2+ in Competition 1 
vs. rate of first fixation on D1+ in Competition 2 (within D1+ Data condition) in 

Experiment 5b 
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Figure 34: Proportion of trials on which the first item fixated was the observed 
data (D1+) or data with equal semantic relation to the highest probability 

hypothesis following hypothesis generation in Experiment 5b  

 

 

 

Figure 35: Proportion of trials on which the first item fixated was the observed 
data (D1+) or data with equal semantic relation to the highest probability 

hypothesis following hypothesis generation in Experiment 5b 
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Further comparisons examining D1+ first fixation rate were carried 

out between PrePrompt and PostPrompt conditions within Competition 2 & 

3 and D1+ Data conditions.  As can be seen in Figure 34, neither of these 

comparisons revealed a significant result, χ
2
(1) = 0.272, p = 0.602 and χ

2
(1) 

= 1.973, p = 0.16 respectively. 

 

 

Figure 36: Comparisons between Prompt Onset conditions within two 
competition conditions for the first ROI fixation rates of D1+ in Experiment 5b 

 

Discussion 

 

 There were two goals for the present experiment.  The first was to 

replicate the effect observed in Experiment 5a.  This effect, in which early 

oculomotor behavior more often engaged the high probability hypothesis 

following the hypothesis generation prompt, was replicated in the present 

experiment.  Furthermore, this effect was replicated in the absence of the 
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conditionalizations utilized in the previous experiment.   This successful 

replication bolsters the validity and utility of the paradigm. 

 The second goal of this investigation was to ascertain how working 

memory resources are allocated over time within the hypothesis generation 

task.  Specifically the paradigm addressed whether or not observed data, 

used as a retrieval cue to generate hypotheses from LTM, would continue to 

reside in working memory following generation or if it would be purged 

from working memory in the process of working memory reallocation.  The 

constellation of evidence from the D1+ Data PostPrompt onset conditions 

suggests that the data was maintained following generation, but that it was 

not as active in working memory as the H1.  It was anticipated that the 

comparison between D2+ engagement in competition 1 and D1+ 

engagement in competition 2 would be the crucial comparison for 

determining if D1+ remained resident in WM following generation.  This 

comparison did not reveal a difference and as a result does not provide any 

evidence for continued maintenance.  The reason for this, however, is likely 

due to the fact that H1 simply overshadowed the data as it was 

overwhelmingly favored in these competition conditions 1 and 2 (first ROI 

fixation rates of 0.45 and 0.73 respectively).  Competition 3 allowed for a 

direct competition between D1+ and D2+ which was equally semantically 

related to H1.  In this condition, in the absence of competition from H1, a 

clear preference for D1+ over D2+ emerged.  This preference indicates that 

D1+ remained resident in WM following hypothesis generation.  However, 



112 

 

this conclusion must be approached with caution at the current time as the 

same pattern was exhibited in the D1- Data condition which should have 

demonstrated a slight reversal or at least the disappearance of the effect.  

This mirroring of results between data conditions suggests that the measure 

is likely too noisy at this time (or with the present amount of data) to make 

claims about data residing in working memory following hypothesis 

generation. 

The overshadowing effect of H1 in competitions 1 & 2 can perhaps 

be understood as an offshoot of an effect observed in Moores et al. (2003).  

In their Experiment 5 it was found that people’s initial eye movements 

would be guided towards array items semantically related to the content of 

WM, but that this was only the case when the actual item in working 

memory did not reappear in the array.  In such cases when the actual item 

(e.g., motorcycle) appeared in the array along with the semantic associate 

(e.g., motorcycle helmet) the engagement rate of the associate was no 

different than distracters.  Although this situation is not entirely 

synonymous with that of the present experiment, it does demonstrate a 

similar overshadowing effect.  Additional research examining the 

attentional mechanisms underlying this measurement technique may help 

untangle precisely how the overshadowing effect in the present experiment 

operates.  A paradigm like that of Experiment 4a in which multiple list 

items reappear in the search array would be useful in this regard. 
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Further array content conditions could be useful to future research 

on data maintenance and use throughout the hypothesis generation process.  

As a complement to the present conditions it would be useful to have arrays 

in which the data or hypotheses appear in isolation (as accompanied by only 

distracter items).  These comparisons would be useful as there would not be 

any competition exerted from other task relevant items in the array and 

therefore might be more sensitive and more informative in some cases. 

First and foremost, the results of Experiments 5a & 5b demonstrate 

the efficacy of the MASS procedure for the online assessment of the 

contents of working memory throughout a memory and decision making 

task.  Greater refinement is needed to distill the procedure to its most useful 

form with improvements to the exemplar training task perhaps being the 

most important.  The results of Experiment 5b suggest that data may have 

been maintained following generation.  Further data collection and 

experimentation is necessary to determine if this is the case.  It is important 

to note however that even if convincing evidence is found that data are 

maintained following generation, this will not suggest that data are always 

maintained following generation, but only that in some cases it can be.  The 

ecologies of these experiments were relatively simple and designed so that 

the data would suggest only one hypothesis.  It is likely that when data 

implicate a host of hypotheses (and working memory resources are more 

greatly stained by the population of likely hypotheses into working 

memory) that data maintenance will be forgone.  Additionally, given that 
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data are maintained following generation under some conditions it will be 

interesting to determine if the data are allowed to consume WM resource 

during the judgment and decisional tasks of hypothesis generation and 

information search.  Future research utilizing the MASS procedure can 

address such questions.
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Chapter 8: General Discussion 

 

Summary of Results 

 

 The primary goal of this work was to provide constraints on the 

theoretical assumptions to be made in the development of a computational 

model of hypothesis generation honoring temporal dynamics.  Each 

experiment targeted a specific theoretical question concerning the dynamics 

of data acquisition and hypothesis generation processes.  The constellation 

of results from these experiments has revealed predicted regularities as well 

as unexpected behaviors.  In this way the present work has been successful 

in that it will inform the construction of forthcoming computational models 

of dynamic hypothesis generation. 

Experiment 1 investigated a relationship between order effects in 

cue presentation and their contribution to the cueing of long-term memory 

in hypothesis generation.  Specifically, this experiment tested how 

differences in the serial order placement of a diagnostic cue affected the 

successful retrieval of the most likely hypothesis implicated by this, the 

only, diagnostic cue.  It was found that as the serial position of the 

diagnostic cue increased people were more likely to generate the most likely 

hypothesis.  This finding is in agreement with Sprenger (2007) in 

suggesting that people more heavily weight recent cues in the retrieval 

process.  It remains to be seen, however, how exactly this pattern of data is 
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being produced.  It could be that more recent cues are simply more likely to 

reside in working memory at the time of the generation prompt and that less 

recent cues are more likely to have fallen out of working memory by that 

time.  Alternatively, as hypothesized at the outset of Experiment 1, it could 

be the case that the activation of each cue governed its contribution to the 

retrieval process.  Under this explanation more recent cues are expected to 

be more active at the time of generation and thus should influence the 

generation process to a greater degree than earlier cues.  The present data of 

this particular experiment do not allow us to parse these two explanations, 

but future research can readily address this issue both empirically and 

computationally. 

 Experiment 2 tested the same broad hypothesis underlying 

Experiment 1, that the activation of particular data in working memory at 

the time of generation would govern their contributions to the hypothesis 

generation process.  The order of the data in this experiment, however, 

remained constant.  The manipulation within this experiment was the 

presentation rate of the individual data within the sequence.  In one set of 

conditions the rate of presentation was relatively fast (300 ms.) and in 

another condition the rate was comparatively slower (1200 ms.).  As 

predicted by the Context Activation Model of memory, it was hypothesized 

that the fast rate would cause the data acquired early in the sequence to 

reside at higher levels of activation than data acquired later in the sequence 

when prompted to generate hypotheses.  At the slow rate, however, the 
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inverse was expected.  Clear evidence was found for this proposition in the 

slow condition.  The results from the fast conditions, although not as 

unambiguous, supported this hypothesis as well, as the favoring of the later 

hypothesis inverted in one case as predicted and disappeared in the 

remaining conditions. 

 Together the results from Experiments 1 & 2 provide converging 

support for the proposition that the levels of working memory activation 

associated with individual pieces of data govern their contributions to the 

retrieval process underlying hypothesis generation.  This provides valuable 

insight into how the initial retrieval operation of the forthcoming 

computational model should make use of the various data comprising the 

compound cue to long-term memory.  Once the model is developed it 

should be easy to test the equal weight model against the proportional 

activation weighted model.  The expectation is that the activation weighted 

model should provide the best account of the data. 

 Experiment 3 sought to test two consequences of the hypothesis 

generation process being carried out over time.  In some cases a decision 

maker may acquire multiple data in quick succession and use this pool of 

data to initiate hypothesis generation while in other cases data may be 

acquired in isolation with successive rounds of hypothesis generation 

occurring between the acquisitions of each datum.  Furthermore, as data are 

acquired over time, they may support or rebut the hypotheses currently 

under consideration.  The results of Experiment 3 indicate that when people 
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have generated a set of hypotheses from a single datum and acquire data 

inconsistent with a portion of the current set, this portion of the maintained 

hypotheses is purged from working memory.  However, it was expected that 

inconsistent data would be further used to recue memory in order to 

repopulate working memory with likely hypotheses.  The results of this 

experiment do not provide evidence for this type of LTM recuing.  

Interestingly, when the participants generated hypotheses from the pool of 

data (rather than one at a time) a primacy effect was observed wherein the 

later data were underweighted relative to the earlier data.  This observation 

runs contrary to the expectation based on the results of Experiments 1 & 2 

and Sprenger (2007).  This finding in particular poses an intriguing 

challenge to the forthcoming models of dynamic hypothesis generation as 

they will need to account for the crucial difference(s) between these 

experiments.  This surprising result is likely to be important to our eventual 

understanding of the dynamic mechanisms of the model. 

 A secondary goal of this dissertation was to develop novel non-

invasive methodologies capable of assessing the activations of the contents 

of working memory through time.  Two such methodologies were explored 

in pursuit of this goal, both of which are based on the premise that relatively 

automatic biases in visual search might foster inference of the active 

contents of working memory.  The first methodology, dubbed the Memory 

Activation Sensitive Saccade procedure, utilizes early oculomotor behavior 

in an implicit visual search task as an index of working memory activation.  
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The second method, dubbed the Memory Activation Sensitive Attentional 

Blink procedure, utilizes search deficits in an explicit search through a rapid 

serial visual presentation to infer the contents of working memory.  

Experiments were carried out in an effort to investigate the level of 

sensitivity afforded by each technique.  As the MASS procedure currently 

appears to be the more sensitive, flexible, and informative methodology it 

was selected for initial deployment within a hypothesis generation task.   

Experiment 5a demonstrated the successful deployment of the 

MASS procedure as it successfully detected the generation of a hypothesis 

into working memory.  Experiment 5b went on to use the MASS procedure 

to examine a question of theoretical interest to the temporal dynamics of 

hypothesis generation.  As little is known about the allocation of working 

memory throughout a hypothesis generation task, this experiment 

investigated how working memory resources are allocated following 

hypothesis generation.  The specific question addressed was whether or not 

the data used as the retrieval cue remains resident in working memory 

following generation or if working memory resources are reallocated 

causing the data to be purged from working memory.  Conclusions 

regarding this question remain unclear at this time.  The planned analyses 

revealed a difference indicative of the maintenance of the data following 

generation, but an additional comparison that should have demonstrated the 

reverse pattern resulted in the same pattern as that of the planned 

comparison.  This is unfortunate as it appears that either the measure itself 
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or the data collected are simply too noisy at this time to provide a definitive 

conclusion on this matter. 

 

Practical Guidance  

 

The present results clearly illustrate that people are not invariant to 

differences in the temporal characteristics of the information they receive.  

Although it is difficult at this time to pinpoint the contexts under which 

early or late data may be over weighted, a general awareness of this fact 

may be of use to decision makers in applied settings.  For instance, a 

physician may reflect on the hypotheses they generated and consider if 

demonstrate stronger agreement with earlier or later data.  This would 

potentially allow the physician to engage in successive rounds of hypothesis 

generation in which cues having been identified as underweighted could be 

more strongly weighted in an effort to generate additional hypotheses.  

Alternatively the physician could simply try out different orders of cues or 

engage in generation in response to each cue without the need for reflection 

following the first round.  HyGene asserts that generating more hypotheses 

will generally be of benefit to probability judgment and information search 

behavior.  Therefore utilizing varying orders of the available data to 

generate a greater set of potential hypotheses will likely be of benefit to 

higher level decision making. 
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Building a Model & Accounting for the Present Data 

 

 The present results provide a suitable set of effects for a dynamic 

model to be built upon and account for.  A hybrid model combining the 

subtle memory activation dynamics of the Context Activation Model 

(CAM) with the semantic structure and working memory operations (e.g., 

probability judgment and information search functions) inherent in HyGene 

should provide a rich architecture capable of accounting for the present 

findings as well as making a host of testable predictions to guide future 

research.  The development of this hybrid model will be challenging as 

several issues will need to be addressed during this endeavor. 

Two potential hybrid models suggest themselves from their 

predecessors, each with their own unique challenges for implementation.  

One possibility would be to import the semantic structure and working 

memory mechanisms of HyGene into the framework of CAM.  

Alternatively, it would be possible to import the working memory activation 

dynamics of CAM into the existing HyGene framework.  As CAM and 

HyGene utilize distinct representations, the focal distinguishing feature that 

arises between the proposed models is the representation upon which each 

model would operate.  This fundamental difference between the models is 

important due to the fact that the different representations are endowed with 

different affordances lending themselves more readily towards some 
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capabilities over others.  Likely challenges to the implementation of each of 

these models are discussed below. 

The representation implemented in CAM consists of individual 

localistic units which together form a matrix of connections between a 

lexical-semantic system, in which each item is represented individually, and 

an episodic contextual signal (implemented as an asymmetric random walk) 

defining the temporal context at any given point in time.  Although this 

representation is well suited for capturing the list recall dynamics that the 

model was designed to account for, further elaboration will be needed in 

order to address the cued recall and episodic partitioning assumed by 

HyGene to underlie hypothesis generation and higher level decision making 

processes.   

Although CAM has been applied to a cued recall task (Davelaar, 

2005), this implementation only accounted for cued recall of items resident 

in working memory during the acquisition of the cue.  That is, the cue could 

only serve to boost the activation of semantically related items already in 

working memory.  This implementation, therefore, doesn’t capture the cued 

retrieval processes inherent in hypothesis generation tasks in which people 

must generate hypotheses from long-term memory.  Addressing the cued 

recall of hypotheses from LTM will require further elaboration of CAM’s 

representation.  Although CAM’s representation does honor semantic 

relatedness, it is likely that the semantic structure is too coarse to capture 

semantic recall as operative in HyGene.  HyGene assumes that a subset of 
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episodic memory is activated in response to a cue and that this subset 

determines semantic retrieval.  This subsetting operation allows sensitivity 

to graded semantic relations between the contents of memory and the 

present retrieval cue. Semantic relatedness in CAM, on the other hand, is 

represented by direct links between units that pass activation when they 

become active.  Furthermore, it is the utilization of the global match and 

multiple trace assumptions that foster the subsetting function within 

HyGene.  It is presently unclear how such processes should be implemented 

in an alternate framework that does not share both of these properties. 

The alternative model would utilize HyGene as the base and 

incorporate the activation dynamics of CAM into its working memory 

construct.  HyGene is essentially an extension of the MINERVA II 

(Hintzman, 1986, 1988) and MINERVA-DM (Dougherty, 1999) 

frameworks.  Therefore HyGene’s representation consists of a storehouse of 

exemplars defined by vectors of individual features.  In this representation 

each new experience with an item gets encoded as a new trace in memory. 

 At present HyGene receives all available data simultaneously and 

weights their individual contributions to the hypothesis generation process.  

These assumptions are of course in need of amendment in order to account 

for the present effects.  The incorporation of CAM’s dynamic working 

memory processes into HyGene’s working memory construct should 

provide the necessary components to achieve this goal.  This model would 

assume that data undergo dynamic fluctuation in working memory as 
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governed by several of CAM’s processes such as self recurrent activation, 

lateral inhibition from other data as a result of competition, and activation 

decay.  The current activation levels of each piece of data can then be used 

as weights applied to each piece of data in the hypothesis generation 

process at any point in time.  This will require two sets of information to 

reside within this model’s working memory construct as the set of relevant 

data (RED set) currently active in working memory will co-occupy the 

space with the set of leading contender hypotheses (SOC). 

 The challenging aspect of this implementation will be how best to 

incorporate CAM’s activation dynamics into the representation of HyGene.  

One potential way would assume a separate vector of data weights that 

updates in accordance with the dynamic processes.  The sum of this vector 

would be assumed to be less than or equal to one in the absence of 

hypotheses and substantially less when sharing WM resources with 

generated hypotheses.  When only one piece of data is active in working 

memory it will be weighted strongly (≈ 1) in the generation process, but 

when other pieces of data enter WM, the activation weight of the first data 

will necessarily decrease as the total pool of activation will be shared 

amongst the all data in WM. 

 It would be interesting to develop both of these hybrid models in 

order to test their accounts of the present data against one another as well as 

assess their abilities to account for the extant phenomena for which 

MINERVA-DM and HyGene were developed to capture.  An interesting 
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tradeoff between the modeling accounts may develop here.  Many of the 

predictions of the current work were developed with respect to the operation 

of CAM in its current form.  Therefore it is likely that the first model 

discussed above should be able to account for the present effects quite well, 

but may encounter difficulty in capturing the extant phenomena in 

hypothesis generation, probability judgment, and hypothesis testing.  This 

will provide the true test of the utility of this representation for the purposes 

of developing a cumulative model honoring temporal dynamics.  

Conversely, the second model discussed above is not likely to encounter 

problems accounting for the extant data, but will be challenged by the 

present effects.  Therefore it will be its ability to account for the present 

effects that will provide a test of its utility for the present purposes.  In the 

end, this competition is likely to boil down to which modeling architecture 

and representation lends itself more naturally to the assimilation of the 

companion model’s processes and computations. 

 

Snapshots of Working Memory 

 

 The secondary goal of the present research was to develop non-

invasive methodologies for measuring the active content of working 

memory.  The idea behind these measures is that by exploiting 

automaticities in visual search, exerted when stimuli in the environment 

matches the content of working memory, we may be able to infer the 
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contents of the mind by observing attentional performance.  Two measures 

were explored; the MASS procedure in which early oculomotor behavior 

was the DV of interest and the MAS-AB procedure in which a deficit in 

attentional performance was the DV. 

It was hoped that these measures would benefit from four 

characteristics that would enhance their usefulness over existing techniques 

for exploring the movement of information through working memory over 

time.  First, the techniques were hoped to be non-invasive in that they 

would obviate significant amounts of perturbation to the task processing at 

hand and the current contents of working memory.  Second, the measures 

were designed to be relatively deployable on-line, within and throughout a 

task.  Such a property would thus allow the observation of changes in 

information usage throughout an individual trial.  Third, the measures are 

item specific in that they allow measurement at the level of individual items 

(e.g., data or hypotheses) rather than simply the engagement of generalized 

processing as is measured in much of modern neuroscience (e.g., fMRI, 

EEG, MEG).  Lastly, the measures would be of superior usefulness if they 

were sensitive not only to the current processing of individual items, but to 

their current levels of activation in memory. 

 Overall the measures encompass these characteristics relatively well.  

Both the MASS and MAS-AB procedure were designed to be item specific 

and relatively deployable on-line within a trial.  However, the MASS 

procedure seems to supersede the MAS-AB procedure in the remaining two 
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characteristics.  The results of Experiments 4a & 4b suggest that early 

oculomotor behavior, but not attentional blink performance, is sensitive to 

the item-specific activation levels in working memory.  Furthermore, 

whereas the MAS-AB procedure requires an overt response (i.e., button 

press), the MASS procedure does not.  This allows the MASS procedure to 

be deployed relatively quickly and interfere minimally with the primary 

task at hand.  For these reasons it is likely that the MASS procedure will be 

more useful in addressing fine grained working memory dynamics.  As 

highlighted by the somewhat ambiguous results of Experiment 5b, however, 

this procedure still stands to benefit from further refinement in order to live 

up to this promise.  Lastly, although the MAS-AB procedure is not as well 

suited for the present investigations in some respects, it should still be 

viewed as a valuable tool.  The MAS-AB procedure is sensitive to the 

inclusion or exclusion of items in working memory and does not require 

state-of-the-art (i.e., prohibitively expensive) equipment for its 

implementation.  As a result, the MAS-AB procedure may be able to inform 

several pertinent theoretical questions more quickly than the MASS. 

 As highlighted by the discussion of the characteristics of these 

measures above, it is clear that these measures provide cognitive researchers 

with a new type of measure than has previously existed.  Although these 

measures were designed with exploration of dynamic hypothesis generation 

in mind, there is nothing inherent in the methodologies limiting them to this 

task domain.  Rather, these measures are domain general and as a result can 
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support inquiry within a wide array of tasks within psychology and 

cognitive science more generally. 
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Appendix A: Examples of the displays used in Experiment 1 

 

 

Figure A 1: Examples of exemplar training displays in Experiment 1 

 

 

Figure A 2: Example of Learning test display in Experiment 1 

 

 

Figure A 3: Examples of Elicitation displays.  From left to right: hypothesis 
generation elicitation screen for most likely disease, hypothesis generation 

screen for 2nd and 3rd most likely diseases, and probability judgment screen in 
Experiment 1 
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Appendix B: Colors Used in Experiment 5a 

Color R G B 

Red 255 0 0 

Sky Blue 0 246 255 

Forest Green 24 86 60 

Green 0 255 18 

Brown 111 63 0 

Orange 255 168 0 

Purple 154 69 234 

Blue 12 0 255 

Yellow 255 252 0 

White 255 255 255 

Black 0 0 0 
 

Table B 1: RGB codes of colors used in Experiment 5a 

 

Appendix C: Instructions for Experiments 5a & 5b 

In the first part of this session your task is to learn the strength with 

which various causes are related to various effects.  Think about the 

following as an example of what you will be learning: When medical 

students learn about various diseases through their experiences with 

patients, they observe many patients and learn how their symptoms are 

related to the disease they are suffering from.  In this example you can think 

of a disease as a CAUSE of certain symptoms which you can think of as 

EFFECTS.  When a medical student is learning what symptoms 

(EFFECTS) are result from which diseases (CAUSES) they must learn the 

strength of the relationship between each CAUSE and each EFFECT 

because they do not always appear together.  For instance, when someone 

has the Flu, they will usually have a fever, but not always.  Also, there are 

other illnesses that produce a fever, so a fever doesn’t necessarily indicate 

that the patient has the Flu.  Therefore it is important to learn the 

STRENGTH OF ASSOCIATION between various CAUSES (diseases) and 

their EFFECTS (symptoms) in order to diagnose patients accurately.  This 

is what you will be learning in the first phase of this session.  Your task is to 

learn the STRENGTH OF ASSOCIATION between CAUSES and 

EFFECTS so that you will be able to indicate which CAUSE was 

responsible for EFFECTS that you will observe. 



135 

 

 There is, however, one difference between the task of the medical 

student in the example and the one that you will complete for your learning 

in this session.  Whereas the medical student has the task of learning 

CAUSE and EFFECT relationships with verbal labels (for example: Flu-

Fever), you will be learning CAUSE and EFFECT relationships visually.  

Specifically, you will learn the relationships between various colors 

representing EFFECTS and other colors representing CAUSES of those 

effects. 

 

This figure is an example of the displays that you will be learning 

these relationships from.  The top bar will always represent the CAUSE and 

the bottom 2 bars will always represent EFFECTS of that cause (Each cause 

and each effect will have independent colors and each color will always 

represent the same cause and effect throughout the experiment).  You will 

be presented with many displays like this one in order to learn the 

STRENGTH OF ASSOCIATION between the various CAUSES and 

EFFECTS. 

Now think back to the example of the medical student learning by 

observing several patients.  This is the same thing you will be doing here.  If 

we were to conceptualize this display in terms of the earlier medical 

example, the top bar (the CAUSE) would represent the Flu and the bottom 2 

bars (the EFFECTS) would represent fever and another symptom like 

nausea.  Over the course of being presented with many displays like this 

one you will LEARN HOW STRONGLY EACH CAUSE IS 

ASSOCIATED WITH EACH EFFECT. 

You will now begin the training phase in which you will be 

presented with many of these displays so you can learn the STRENGTH OF 

ASSOCIATION between each CAUSE (top bar) and each EFFECT 

(bottom bars).  If you have any questions about the learning task please ask 

the experimenter before beginning. 
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Appendix D: Colors Used in Experiment 5b 

Color R G B 

Red 231 30 0 

Sky Blue 2 197 204 

Forest Green 27 98 27 

Green 0 210 13 

Brown 180 90 0 

Orange 255 122 0 

Purple 154 69 234 

Blue 0 100 200 

Yellow 180 180 0 

White 232 232 232 

 

Table D 1: RGB codes of colors used in Experiment 5b 

 

 


