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Abstract 

In this study, the porochemoelectroelastic formulation is explained in details and fully 

expanded to capture the well known anisotropic nature of shale. The formulation is then 

applied to derive the analytical solutions for rectangular strip sample, cylindrical 

sample, and inclined wellbore under various loading and in-situ conditions while being 

exposed to an external fluid. The newly-derived solutions can be considered as 

necessary extensions of some existing analytical solutions to capture the anisotropic and 

chemically active nature of shale formations. Numerical examples are also included to 

illustrate the applications of the derived solutions in shale formations. The results show 

that ignoring either the porochemoelectroelastic behavior or the anisotropic 

characteristic of the shale formation will mislead the predictions and assessment of 

potential problems in laboratory and field operations.  

In particular, the presence of negative fixed charges on the surface of clay minerals 

creates an osmotic pressure at the interface of the sample and the external fluid with 

magnitude proportional to the CEC of the sample. This Donnan-induced pore pressure 

when coupled with the load-generated pore pressure and the activity-generated pore 

pressure can result in significant tensile effective stresses and tensile damages in the 

shale. The results, thus, explain why some shales disintegrate when brought into contact 

with certain aqueous solutions while others do not.  

Practical implications for field operations have been drawn for both wellbore drilling 

and hydraulic fracturing. The analyses show clearly that the effective tangential stresses 

and, hence, the axial stresses around a wellbore are greatly affected by the formation 
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anisotropic mechanical parameters. In addition, during drilling, the chemically-induced 

tensile effective radial stress and tangential stress can lead to wellbore spalling which in 

extreme cases may result in stuck pipe. On the other hand, during hydraulic fracturing, 

these induced tensile damages can weaken the shale formation leading to a wider 

fracture width and a shorter fracture length during the fracturing process. In addition, 

the damaged and weakened formation can exacerbate the problem of proppant 

embedment resulting in larger fracture closure and reduction of fracture length and 

productivity. Thus, the results explain why higher clay content intervals are often 

reported to be more “ductile” compared to lower clay content intervals. Moreover, the 

use of drilling mud and fracturing fluid having activity similar to the shale formation 

native pore fluid can help to prevent wellbore spalling and work for the advantage of 

the fracturing process. 

In the laboratory testing context, these complex pore pressure, stresses responses and 

distributions can complicate the interpretation of experimental results for the effects of 

fluid chemistry on the rock matrix. Practically, it is recommended to gradually adjust 

the testing fluid salt concentration or applied load to the desired value so that excessive 

induced stress and pore pressure buildup inside the tested sample become minimal.  

Finally, analysis for shale electrokinetic effects on pore pressure buildup during 

diagenesis suggests that, in addition to the intrinsically low permeability of shale, the 

semi-permeable membrane behavior of the clay matrix can effectively hinder the 

overall pore fluid diffusion process. As a result, the pore pressure buildup inside a shale 

formation can be much higher than in a clean sand formation under the same 
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consolidation rate. Hence, taking into account shale electrokinetic effects in basin 

modeling may give better predictions of overpressure issues in shale.



1 

Chapter 1: Introduction 

1.1 Overview on Porochemoelectroelasticity 

Porochemoelectroelasticity, simply put, is a necessary extension of the classical 

poroelastic formulation (Biot, 1941) to capture the electrokinetic phenomena observed 

in chemically active porous media such as shale, clay soil, and biological tissues. The 

poroelastic formulation concerns the coupled hydro-mechanical behavior of linear-

elastic porous media subjected to external actions such as loading and hydraulic 

pressure changes. To date, poroelasticity has spanned its range of applications to 

various disciplines from geotechnical and civil engineering, to petroleum and geological 

engineering, and to biomechanics. A classical application of the theory for petroleum 

engineers, for example, is the study of subsidence due to petroleum extraction 

(Geerstma, 1973). 

On the other hand, it is well known that shale, clay soil, and biological tissues exhibit 

swelling and shrinking when exposed to aqueous solution. These observed behaviors 

are the result of the osmotic phenomena, which is non-hydraulically driven fluid flow, 

due to the imbalance of electro-chemical potentials between the pore fluid and the 

external environment (Katchalsky & Curran, 1967). There is substantial evidence that 

the negative charges on the surfaces of clay particles in soil and shale or the 

proteoglycans in cartilage allow these porous media to restrict the flow of certain pore 

fluid ionic species and behave like semi-permeable membranes, thus, give rise to the 

aforementioned osmotic phenomenon (Olsen, 1969; Neuzil, 2000; Lu et al., 2009). 

Macroscopic transport formulations for coupled and simultaneous flow of the pore 
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fluid, and ions transport under the applications of hydraulic pressure, electrical 

potential, and chemical potential gradients have been derived based on non-equilibrium 

thermodynamics for irreversible processes (Katchalsky & Curran, 1967; Shackelford & 

Daniel, 1991; Yeung & Mitchell, 1993; Malusis & Shackelford, 2002; Rosanne et al., 

2005).  

The complex physico-electro-chemical interactions within these chemically active 

porous media require proper quantification of their effects on the mechanical responses 

of the system. Following this overview are literature surveys on past studies leading to 

the development of the porochemoelectroelastic formulations. Then, the objectives and 

approach for the development of this research are reviewed. 

1.2 Review on Relevant Studies Leading to the Development of 

Porochemoelectroelasticity 

Early studies analyzed the coupled chemical-mechanical interactions in chemically 

active porous media were presented by lumping the hydraulic pressure and the activity-

generated osmotic pressure into a chemical potential term, ignoring not only the effects 

of solute transport but also the aforementioned electrokinetic phenomena observed in 

charged saturated porous media. This lumped chemical potential is then regarded as a 

modified pressure and used to evaluate the effective stresses. This approach has gained 

its popularity in the 1990’s with studies addressing wellbore stability when drilling in 

shale formations (Yew et al., 1990; Sherwood & Bailey, 1994; Tan et al., 1996). In other 

simpler approaches, the fluid pressure and solute diffusion effects have been taken into 
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account; however, the important transient nature of the coupled deformation-diffusion 

processes (i.e. the time-dependent poroelastic effect) is ignored (Van Oort, 1994).  

Extension of the Biot’s poroelastic theory to account for the effects of solute transport 

has been the subject of extensive research. These researches have been referred to as 

porochemoelastic studies as the electrokinetic phenomena and the electrical coupling 

from ions transport are ignored. The anisotropic porochemoelastic formulations and 

analytical solution of an inclined wellbore drilled in transversely isotropic shale 

formation were first given by Ekbote (2002) and later generalized to account for the 

effects of temperature difference between the drilling mud and the shale formation 

(Ekbote & Abousleiman, 2005; Ekbote & Abousleiman, 2006). Applications of the 

theory to derive analytical and numerical solutions for laboratory characterization of 

intact cylindrical shale samples have been presented by Sarout (2003), Bunger (2010), 

and Sarout & Detournay (2011). Recently, the theory was extended to dual-porosity and 

dual-permeability medium to analyze the effects of mud chemistry on the responses of 

naturally fractured shale during wellbore drilling and laboratory characterization 

(Nguyen & Abousleiman, 2009; Nguyen & Abousleiman, 2010).  

Generalizing the poroelastic theory to fully include the coupled chemical and 

electrokinetic effects has been introduced as early as 1987 using mixture theory and 

non-equilibrium thermodynamics (Sachs & Grodzinsky, 1987; Corapcioglu, 1991; 

Sherwood, 1993; Huyghe & Janssen, 1999). However, the complication of these 

approaches has restricted existing analytical solutions to 1-D problems which are 

limited for laboratory and field applications and fall short from serving as bench mark 

for validation of numerical schemes (Gu et al., 1999; Van Meerveld et al., 2003).  
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Recently, based on thermodynamic principles, Nguyen and Abousleiman (2010) have 

shown that the porochemoelectroelastic constitutive stress-strain relations share the 

same form with the original Biot’s poroelastic formulations. The electrochemical effects 

only enter through the transient nature of the fluid flow and ion transport due to 

differences in the electrochemical potentials across the porous medium. Therefore, any 

existing poroelastic solutions can be generalized to account for the chemically active 

behavior of charged saturated porous media. Indeed, the approach has been successfully 

applied to derive solutions for the 2-D anisotropic porochemoelectroelastic Mandel’s 

problem (Tran & Abousleiman, 2013) and the 3-D inclined wellbores drilling in shale 

(Nguyen & Abousleiman, 2010; Tran & Abousleiman, 2013). 

1.3 Research Objectives and Approach 

Of particular interest is the electrochemical effects on the stress and pore pressure 

distributions in shale formations or shale samples during drilling, hydraulic fracturing, 

or laboratory testing. During these activities, the shale pore pressure is redistributed due 

to the electrochemical interactions between the invading down-hole or testing fluid and 

the native pore fluid. Simultaneously, the effective stress and strain distributions in the 

shale are also modified which can affect the integrity of the shale sample or formation. 

Indeed, the detrimental effects from shrinking and swelling shales and clay soil have 

been a chronic and costly problem for the petroleum industry (Chenevert, 1998; Nguyen 

et al., 2009; Abousleiman et al., 2010; Hemphil et al., 2010). Moreover, shales have 

often been observed to exhibit some degree of anisotropy due to the alternated layering 

of thin lithofacies, oriented clay particles and organic matter during diagenesis 

(Thomsen, 1986; Jonhston & Christensen, 1995). For example, the Woodford shale 
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Young’s modulus measured in direction parallel to sample lamination has been reported 

to be higher than those measured in direction perpendicular to sample lamination by as 

much as 30% (Abousleiman et al., 2007; Sierra et al., 2010). In addition, it has been 

observed that gas/oil shale formations sometimes contain sets of parallel vertical 

fractures which make these shale formations behave as orthotropic medium when 

investigated at the reservoir scale. The anisotropic nature of shale has been found to 

have significant impacts on the responses of shale formations and shale samples during 

drilling and laboratory testing (Abousleiman et al., 1996; Abousleiman & Cui, 1998; 

Tran & Abousleiman, 2013). Therefore, analytical anisotropic porochemoelectroelastic 

solutions of various geometries and loading conditions relevant to laboratory 

experiments and field problems would be useful not only for simulating and analyzing 

these scenarios, but also for validating numerical algorithm of many petroleum industry 

related geomechanics problems. 

Pursuing the aforementioned objectives, the detailed theoretical formulations for 

anisotropic porochemoelectroelasticity is first presented in Chapter 2. Discussion on the 

electrokinetic equilibrium conditions in the shale prior to and after being exposed to an 

external fluid is also included. Then, the analytical solutions for rectangular strip 

sample, cylindrical sample, and inclined wellbore under various loading and in-situ 

conditions while being exposed to aqueous solutions are given in subsequent chapters. 

In each chapter, a brief literature review of existing analytical solutions relevant to the 

problem geometry is also given. The derived analytical solutions are presented in an 

order from the simplest to the most complex in terms of problem geometry and the 

rigorousness of mathematical formulations as follows:  
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In Chapter 3, the orthotropic porochemoelectroelastic solution for rectangular strip 

sample (i.e. the famous Mandel’s problem) is presented. The Mandel’s problem 

configuration not only mimics laboratory setup for characterizing anisotropic materials, 

but also resembles a portion of a formation formed by two hydraulic fractures and is 

away from the fractures tips. Discussions and examples to illustrate the applications of 

the derived solution to laboratory characterization, hydraulic fracturing analysis, and 

diagenesis of shale formation are also given.   

Then, the porochemoelectroelastic solution for transversely isotropic cylinder is derived 

and presented in Chapter 4. The cylindrical geometry is the most encountered 

laboratory testing configuration ranging from the unconfined compression test (uniaxial 

test), to the confined compression test (triaxial test), the consolidation test (Ko test), and 

to the pressure transmission tests. The detailed descriptions of these tests, their 

respective analytical porochemoelectroelastic solutions, and numerical examples 

illustrating the applications of the analytical solution are also discussed in Chapter 4. 

Finally, the analytical porochemoelectroelastic solution for the most mathematical 

complex problem, i.e. the inclined wellbore drilled in transversely isotropic shale 

formation, is given in Chapter 5. Application of the solution to analyze the combined 

effects of porochemoelectroelastic behavior and anisotropy on wellbore responses is 

also presented. Wellbore responses during a leak-off test conducted soon after drilling 

are then analyzed to demonstrate the versatility of the solution in simulating complex 

down-hole conditions. 
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Chapter 2: Porochemoelectroelasticity 

2.1 Introduction 

In this chapter, the porochemoelectroelastic governing equations are revisited. In 

particular, the constitutive relations for chemically active porous media as presented in 

Nguyen & Abousleiman (2010) are reviewed and extended to anisotropic medium. 

Then, detailed calculations for initial ion saturation in the shale prior to being exposed 

to an external fluid are summarized. Finally, the electrokinetic equilibrium between the 

shale and an external fluid, i.e. the Donnan equilibrium condition, and its observations 

in geological systems are given. 

2.2 Constitutive Relations 

Under isothermal conditions (dT = 0), the skeleton dissipation function of a porous 

media saturated with fluid containing N components and subjected to small 

deformations is (Coussy, 2004) 

dt

d

dt

dm

dt

d

r

r
r

ij

ijs


 


 ~  (2.1) 

where the subscripts “s” and “r” stand for the skeleton and the fluid component “r” 

respectively. ij and ij are the components of the second-order Cauchy stress tensor and 

linearized small strain tensor respectively.  denotes the Helmholtz energy of the porous 

medium per unit reference volume, and mr (r = 1, 2, …, N) is the mole of the “r” 

component in the solution per unit of reference volume. r
~ is the electrochemical 

potential and is expressed as (Katchalsky & Curran, 1963) 
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 FzaRTpV rrrr  )ln(~  (2.2) 

where Vr, ar, and zr denote the partial molar volume, the chemical activity, and the 

valence of the “r” component in the fluid mixture. R is the universal gas constant, T is 

the temperature, F is the Faraday constant, and   is the electrical potential. Due to the 

additive nature of energy, the Helmholtz energy of the porous medium can be expressed 

as a sum of the skeleton Helmholtz energy, s , and the fluid Helmholtz energy, f . 

pmpG

r

rrffs    ~  (2.3)                        

where  rrf mG ~ is the Gibbs free energy of the solution and  is the porosity of the 

rock. Differentiating Eq.2.3 and combine the result with Eq.2.1 yields 

dt

d

dt

d
p

dt

dp

dt

d
m

dt

d
s

r

r
r

ij
ijs


 







~
 (2.4)                

Applying the Gibbs-Duhem relation 0~  
r

rr dmdp   to the above expression allows 

the elimination of terms containing the electrochemical potentials in the skeleton 

dissipation function 

dt

d

dt

d
p

dt

d
sij

ijs





  (2.5)         

From relations between thermodynamic potentials, pGss  , the skeleton dissipation 

function can be alternatively expressed in terms of the skeleton Gibbs free energy as  

dt

dG

dt

dp

dt

d
sij

ijs  


  (2.6) 

If the skeleton is assumed to undergoing reversible process, that is no dissipation from 

the skeleton, Eq.2.6 reduces to 
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dpddG ijijs    (2.7)          

It is obvious from the above expression that sG admits ij and p as state variables. In 

other words, ),( pfG ijs   and 

ij

s
ij

G







  (2.8a) 

p

Gs




  (2.8b)          

Differentiating Eq.2.8 and taking into account the Maxwell’s symmetry relations of 

thermodynamic potentials yields 

  dpdCdpddpdd ijklijkl
ij

kl
ij

kl
klkl

ij
ij 












 














  (2.9a) 

  dp
K

ddp
p

d
p

dpd
p

d ijijij

ij

ijij









1















  (2.9b)        

In the above expression, Cijkl are the components of the fourth-order elastic stiffness 

tensor, ij are the components of the second-order Biot’s pore pressure tensor, and 

1/Kis the pore compressibility (Wang, 2000). The relationships between the 

components of the elastic stiffness tensor and the elastic moduli and poroelastic 

coefficients of transversely isotropic and orthotropic medium are given in Appendix A. 

Assuming that the porous medium is completely saturated with fluid and is in 

isothermal condition, the relation between total fluid content variation, d , and the 

variation of porosity, d, is given as 

dp
K

ddd
ddm

d
f

o

fo
f

o

o
f

f

o
f

f 












 

)(
 (2.10)       
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where mf is the total fluid content in moles, f is the fluid mass density in mole/m
3
, and 

1/Kf is the isothermal compressibility of the fluid. The superscript “
o
” denotes the initial 

state of each variable. Combining Eq.2.10 with Eq.2.9b yields the familiar constitutive 

relation for the total fluid content variation 

dp
M

ddp
KK

dd ijij
f

o
ijij

11















 





 (2.11)       

in which M is the Biot’s modulus (Wang, 2000). The constitutive relation for the 

variation of individual fluid components can be obtained as follows (Nguyen & 

Abousleiman, 2010) 

r
o

ijij
o
rr

oo
ro

f

fr

o
f

r
r dndp

M
dndndn

mnddm
d 


 










1)(
 (2.12)        

where frr mmn / is the mole fraction of the “r” component in the solution. Eqs.2.9-10 

and Eq.2.12 complete the set of stress-strain constitutive relations for chemically active 

and charged saturated anisotropic porous medium.  

The above constitutive relations shows that the pore pressure instead of the 

electrochemical potentials is important; and changing the fluid composition (chemical 

activity) of the pore fluid and/or electrical potential at constant pressure will not affect 

the stress, strain, and total fluid content in the medium. This is a direct consequence 

from the fact that Gs admits ij and p as state variables instead of r
~ . The 

electrochemical interactions between different ionic species in the formations, however, 

enters through the transient nature of the fluid and ion flows due to differences in the 

electrochemical potentials across the porous medium as will be shown in the next 

section. 
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2.3 Transport Equations 

Under isothermal condition, the set of phenomenological equations relating the flows 

and the driving forces for an aqueous pore fluid containing one type of cation and anion 

are (Yeung & Mitchell, 1993) 

i

c

o
ci

a

o
aii

i
x

n

n

RT
L

x

n

n

RT
L

x
L

x

P
Lq





















)()()()(
14131211


 (2.13) 

i

c

o
ci

a

o
aii

i
x

n

n

RT
L

x

n

n

RT
L

x
L

x

P
LI





















)()()()(
24232221


 (2.14) 

i

c

o
ci

a

o
aii

da
i

x

n

n

RT
L

x

n

n

RT
L

x
L

x

P
LJ





















)()()()(
34333231

, 
 (2.15) 

i

c

o
ci

a

o
aii

dc
i

x

n

n

RT
L

x

n

n

RT
L

x
L

x

P
LJ





















)()()()(
44434241

, 
 (2.16) 

with xi denotes the spatial coordinates. Ii and qi is the electrical current and the total 

fluid flux which includes the solvent and its dissolved ions.  

o
fia

a
i

da
i VqnJJ /,  and o

fic
c
i

dc
i VqnJJ /,  are the diffusion mass fluxes (mol.m

-2
.s

-1
) of 

the ion species relative to that of the water solvent in which a
iJ and c

iJ are the absolute 

mass fluxes of the anion and cation relative to the solid frame work. Lij are the 

phenomenological coefficients representing the various transport processes. For 

example, the coefficient L11 describes the hydraulic diffusivity (Darcy’s law). Whereas, 

the coefficient L22 relates to electrical conductivity (Ohm’s law) and the coefficients 

L33, L44 relate to solute/ion diffusion (Fick’s law). The symmetry of the 

phenomenological coefficients matrix is in accordance with Onsager’s principle 

(Onsager, 1931).  The Lij coefficients as presented Yeung & Mitchell (1993) and 

Nguyen & Abousleiman (2010) are summarized in Table 2.1. 
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Table 2.1-Electrokinetic transport coefficients as in Nguyen & Abousleiman (2010) 
Coefficients Formulas Transport Processes 

L11 

e

eo






2

  
Hydraulic conduction (Darcy’s law); 

  is the mobility 

L12 = L21 eo  
Electro osmosis/streaming potential;   

eo is the electro-osmosis coefficient 

L13 = L31 o
f

o
a

e

eoa
a
eff

V

n

RT

FzD





















  

Chemical osmosis/streaming potential; 

 is the membrane efficiency [0,1].  

L14 = L41 o
f

o
c

e

eoc
c
eff

V

n

RT

FzD





















  

L22 e  
Electrical conduction (Ohm’s law); 

e is the electrical conductivity 

L23 = L32 o
f

o
aa

a
eff

V

n

RT

FzD
 

Diffusion potential/electrophoresis 

L24 = L42 o
f

o
cc

c
eff

V

n

RT

FzD
 

L33 




22

1



































o
f

o
a

e
o
f

o
aa

a
eff

o
f

o
a

a
eff

V

n

V

n

RT

FzD

V

n

RT

D
 

Solute diffusion (Fick’s first law); 
ca

eff
D

,
is the effective anion/cation 

diffusion coefficients: 
caca

eff DD ,, )1(   

For perfect membrane ( = 1), there is 

no ionic flow.  

L44 




22

1



































o
f

o
c

e
o
f

o
cc

c
eff

o
f

o
c

a
eff

V

n

V

n

RT

FzD

V

n

RT

D
 

L34 = L43 




o
c

o
ao

fe

o
c

o
aca

c
eff

a
eff

o
f

nn
V

nnzzDD

RTV

F

22


































 Coupled solute diffusion 

 

2.4 Other Governing Equations 

Other governing equations necessary for the solutions are the equilibrium equations,  

0, jji   (2.17) 

the strain-displacement and rotation equations, 

























i

j

j

i
ij

x

u

x

u

2

1
  (2.18) 
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and the mass and electrical charge balance equations for the whole fluid and its 

individual components 

qt


./   (2.19) 

)/.(./ , f
oa

daf
o

af
oa VqnJVJVt


  (2.20) 

)/.(./ , f
oc

dcf
o

cf
oc VqnJVJVt


  (2.21) 

Ite


./   (2.22) 

in which 


is the gradient vector, and Einstein’s convention for repeated indices is used. 

2.5 The Initial Ion Saturation in Shales 

It is well known that the constituent clays surfaces in the shale matrix contain excess 

negative charges, so called the negative fixed charge. Prior to drilling, the shale 

formation contains o
fcm moles of negative fixed charge, and is saturated with pore fluid 

containing o
am mole of anion, o

cm mole of cation at an initial pore pressure po. The 

electrical neutrality condition requires that the amount of cation in the pore fluid to be 

greater than the amount of anion as shown in Fig.2.1 and is expressed as 

0 c
o
ca

o
afcfc znznzn  (2.23) 

where o
totalfcfc mmn / , o

total
o
a

o
a mmn / , o

total
o
c

o
c mmn / is the native mole fraction of the 

fixed charge, anion, cation in the shale formation respectively and o
totalm  is the total 

mole of all charged species. zfc, za, zc is, respectively, the valence of the fixed charge, 

anion, and cation in the shale formation. 
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Fig.2.1-The initial equilibrium condition of shale formation 

Imagine that a piece of the shale formation rock is submerged into a bath containing 

diluted solution of a CxAy salt with concentration expressed in term of mole fraction of 

the solutes, eq
sn , that is in equilibrium with the pore fluid. The electrochemical 

equilibrium condition between the outer solution and the shale formation initial state 

requires that 










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


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o
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 (2.24) 

Substitution of Eq.2.2 into Eq.2.24 and assuming diluted solution yields 

   
   
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o
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o
ao

o
f
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seq

o
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FznRTpVFzynRTpV

FznRTpVFzxnRTpV

nnRTpVnyxRTpV





lnln

lnln

)(1ln)(1ln

 (2.25) 

For formations saturated with diluted solution of a 1:1 salt (e.g. NaCl, KCl), i.e. x = y 

=1, applying the electro neutrality condition for the salt, i.e. 0 ac yzxz , gives the 



15 

native mole fraction of each ion species in a shale formation as follows (Nguyen & 

Abousleiman, 2010) 

    









22
4

2

1 o
scafcfcfcfc

a

o
a nzznznz

z
n  (2.26) 

    









22
4

2

1 o
scafcfcfcfc

c

o
c nzznznz

z
n  (2.27) 

with 

o

o
fshaleo

fc

V
CECn



 )1(
10 2


 

 (2.28) 

2

1 o
fo

s

a
n


   (2.29) 

in which CEC stands for Cation Exchange Capacity measured in milli-equivalent per 

100 grams of dry clay (meq./100 grams) and shale is the average density of the shale 

constituencies measured in g/cc. o
sn is the solute mole fraction in the formation fluid, 

and o
fa is the water activity of the pore fluid which can be estimated from retrieved core 

samples using an osmometer.  Derivation for o
an and o

cn of salt solution of different x:y 

can be carried out analogously. 

2.6 The Donnan Equilibrium Phenomena 

2.6.1 The Electrochemical Equilibrium of Shale and External Fluids 

During the laboratory testing, drilling, or hydraulic fracturing processes, the shale is 

often exposed to an external solution (so called mud) with solute concentration, mud
sn , 

different from its native pore fluid as illustrated in Fig.2.2.  
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Fig.2.2: The condition at wellbore drilling (or exposing to external fluid) 

Because of the difference in solute concentration between the mud and the native pore 

fluid, the following conditions are required to avoid infinite fluxes at the mud-shale 

interface 


















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~~

 (2.30) 

Assuming that the mud also contains 1:1 salt and that 1cz and 1 fca zz , the 

formation ion concentrations at the mud-shale interface can be derived as 

  












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a  (2.31) 

 
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c  (2.32) 

with 

2
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tn mudmud

s


   (2.33) 
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Eqs.2.31-2.32 show that the total ion mole fraction (i.e. the sum of anion and cation) in 

the shale formation at the mud-shale interface,  22

intint
)(4 tnnnn mud

sfc
erface

c
o

erface

a
o  , is 

larger than or equal to the mud total ion concentration of mud
sn2 . Consequently, there is 

an induced osmotic pressure at the mud-shale interface 

 


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

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

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ao

f

muderfaceshaleshalemud

 (2.34) 

Eq.2.34 shows that for the same mud solute concentration, the higher the CEC of the 

formation, the larger the osmotic pressure differential developed at the mud-shale 

interface. When the formation is free of fixed charge (CEC = 0), the pressure and ion 

concentrations are indeed continuous at the mud-shale interface. The discontinuities of 

ion concentrations and pore pressure at the interface of a charged saturated porous 

media and an external fluid are known in chemistry as the Donnan equilibrium effect 

(Overbeek, 1956).  

2.6.2 Evidence of Donnan Equilibrium in Geological Systems 

Following the same procedure to obtain Eq.2.31, the anion concentration in a shale 

layer that is in equilibrium with an adjacent sand layer having solute concentration 

sand
solute

n  is: 

 













22 4
2

1 sand
solutefcfc

shale
a nnnn  (2.35) 
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Assuming that both the sand layer and the shale layer are saturated with a 1:1 salt, the 

anion concentration in the sand layer is sand
solute

sand
a nn   . Comparing the expression for 

shale anion concentration and sand anion concentration, it can be easily shown that 

  sand
a

sand
solutefcfc

shale
a nnnnn 














22 4
2

1
 (2.36) 

Therefore, in a sand-shale sequence, the anion concentration of a shale layer is likely 

smaller than that of the adjacent sands. Indeed, measurements of anion content in sand-

shale sequences have revealed that the anion (Cl
-
) concentration in the shale layer is 

significantly smaller than that of the adjacent sand layers that it is in equilibrium with 

(Schmidt, 1973; Chiligarian, 1983; Jones et al., 1989).  

2.7 Summary 

In this chapter, the anisotropic porochemoelectroelastic formulations are presented. The 

derived constitutive relations show that the pore pressure instead of the electrochemical 

potentials is important; i.e. changing the fluid composition (i.e. the chemical activity) of 

the pore fluid and/or electrical potential at constant pressure will not affect the stress, 

strain, and total fluid content in the medium. The electro-chemical interactions between 

different ionic species in the formations, however, enter through the transient nature of 

the fluid flow and ions transport due to differences in the electrochemical potentials 

across the porous medium. In addition, the electrokinetic contribution of clays negative 

fixed charges manifests itself as an osmotic pressure and a discontinuity in ion 

concentration (i.e. the Donnan equilibrium condition) at the shale and external fluid 

interface. Proper modeling for the electrokinetic phenomenon requires not only the ion 
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diffusion coefficients, rock membrane efficiency, but also the amount of clay fixed 

charges which can be estimated from sample Cation Exchange Capacity (CEC). 
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Chapter 3: The Mandel’s Problem
1
 

3.1 Introduction 

The Mandel’s problem (Mandel, 1953) involves an infinitely long rectangular specimen 

sandwiched between two rigid and impermeable plates as shown in Fig.3.1. The lateral 

sides of the specimen are free of any applied stresses and hydraulic pressure. On the 

other hand, a force 2F is applied to the rigid plates at t = 0
+
.  

 

Fig.3.1-The original Mandel’s problem (Mandel, 1953) 

The first analytical solutions to this problem geometry were presented by Mandel 

(1953) for isotropic specimen. The solutions demonstrate a non-monotonic pore water 

pressure response (known as the Mandel-Cryer effect) resulting from the coupled pore 

pressure buildup and displacement. This is a distinctive feature of the Biot’s poroelastic 

theory (1941) in contrast to the traditional uncoupled Terzaghi (1943). Abousleiman et 

al. (1996) have extended the original Mandel’s problem to transversely isotropic media. 

Later, Hoang & Abousleiman (2009) provided the orthotropic poroviscoelastic solutions 

accounting for the viscous and orthotropic natures of the porous matrix. Recently, the 

                                                 
1
 Parts of this chapter have been published in Tran & Abousleiman, Mech. Res. Comm. (2013) 
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Mandel’s problem solutions for a naturally fractured specimen have been derived by 

Nguyen & Abousleiman (2010) using dual-porosity and dual-permeability 

poroelasticity approach. 

The Mandel’s problem has recently been used by reservoir engineers as a 

benchmark for numerical algorithms to simulate the stresses and pore pressure 

responses in subsurface formation during water and steam flooding (Yin et al., 2006; 

Fakcharoenphol et al., 2012). This problem geometry also matches many testing 

configurations in biomechanics and geomechanics for anisotropic material (Hoang & 

Abousleiman, 2009).  

In this chapter, the transversely isotropic poroelastic Mandel’s problem solutions 

(Abousleiman et al., 1996) are generalized to orthotropic porochemoelectroelastic 

medium. The solution is then used to investigate the electrochemical effects on the 

stresses and pore pressure distribution in shale during laboratory testing, diagenesis, and 

hydraulic fracturing. During these activities, the shale pore pressure is redistributed due 

to the electrochemical interactions between the outer environment fluid and the native 

pore fluid which simultaneously alter the effective stresses and strains distribution. 

These phenomena are known to be attributable to overpressure and integrity problems 

of shale formations (Neuzil, 2000; Abousleiman et al., 2010). The presented solutions 

not only serve as benchmarks for geomechanics modelers to validate their numerical 

algorithms but also can be used for simulating experimental testing results and 

predicting shale formation responses during hydraulic fracturing and diagenesis 

processes as illustrated with the numerical examples.  
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3.2 Problem Descriptions 

3.2.1 The Porochemoelectroelastic Mandel’s Problem 

In this work, the Mandel’s problem boundary conditions are generalized as shown in 

Fig.3.2a so that the lateral sides of the specimen are subjected to hydraulic pressure, 

P(t), and normal stress, S(t), while being exposed to a fluid with solute molar 

concentration )(tnsol
s . Such generalization is necessary to capture the possible laboratory 

testing conditions and in-situ conditions during hydraulic fracturing and diagenesis. For 

example, shown in Fig.3.2b is the schematic of an unjacketed triaxial test with the 

sample being tested for the fluid chemistry effects on its mechanical properties. The 

prescribed load, 2F(t), and strain, 2e(t), on the impermeable rigid plates simulate the 

load and stroke-control testing conditions respectively. The geometry and boundary 

conditions shown in Fig.3.2a can also be used to analyze the responses of a rectangular 

portion of a shale formation formed by two parallel fractures and is away from the 

fracture tips as depicted in Fig.3.2c. Finally, a 90
o
 rotation of either the left or the right 

half of Fig.3.2a can be utilized to simulate the sediments consolidation in a channel 

depositional environment as illustrated in Fig.3.2d.  
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Fig.3.2-(a) Schematic of generalized boundary conditions for Mandel’s problem, 

(b) Unjacketed compression test, (c) Hydraulic fracturing, (d) Consolidation of 

formation in a channel depositional environment 

Because the specimen is long, the plane-strain condition, namely that the displacement 

and flux vanish in the y-direction, prevails. In addition, because of the two rigid plates 

all horizontal planes remain horizontal during the entire loading process (i.e. 0/  xzz  

and 0xz ) and fluid flux is only in the x-direction. The material is so oriented that the 

xy, xz, and yz planes coincide with the planes of material symmetry. Throughout the 

disseration, the sign convention for stresses and strains is compression positive. 

3.2.2 Boundary Conditions 

Following the descriptions in Fig.3.2a, the perturbed state boundary conditions at x = ± 

b are as follows 

SStS xxxx  )(  (3.1a)  

    )(/)(2)(4)(
22 tPpVRTtntnntPp o

o
f

sol
s

sol
sfc 








  (3.1b) 
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o
f

o
a

shalesol
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sa   (3.1c) 

   )(/)()( / tPVRTntntnp c
o
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o
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The boundary conditions at z = ± a are )(2 tFdx

b

b

zz 


 for load-control mode 

and )(tezz  for stroke-control mode. 

3.3 Analytical Solutions 

In the Cartesian coordinate system, the porochemoelectroelastic stress-strain 

constitutive relations taking into account the plane-strain conditions are 

pCC zzxxxx 11311    (3.2a) 

pCC zzxxyy 22312    (3.2b) 

pCC zzxxzz 33313    (3.2c) 

Mpzzxx /31    (3.2d) 

  a
o

zzxx
o
aa nMpn   /31  (3.2e) 

  c
o

zzxx
o
cc nMpn   /31  (3.2f) 

where the subscripts “1”, “2”, and “3” denote properties in the x-, y-, and z-directions 

respectively. In this work, the problem shall be solved using Laplace transform 

technique. In the Laplace transform domain, substitution of the constitutive relations 

into the equilibrium equations while taking into account the condition 0/  xzz  gives 

    0/~/~
111  dxpddxdC xx   (3.3) 

where the tilde sign denotes variables in the Laplace transform domain. Substituting the 

constitutive equations and the flow equations into the mass and electrical charge 
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balance equations while assuming electrostatic condition ( 0/  te ), and ignoring the 

ion transport by advection terms gives (Nguyen & Abousleiman, 2010) 
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with s is the Laplace variable and 
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Substituting of the integration of Eq.3.3 into Eq.3.4a gives 
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where Co is a constant of integration. Solving Eq.3.5 for p~ , ap~ , cp~  using matrix 

diagonalization technique gives 
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
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with ii s  /  in which i are the eigenvalues of the matrix      DYZ
1

 with 

 iii mmm 321 ,, as its corresponding eigenvectors,    To
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1
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
 , and 

   To
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o
ai nnYg 1

1
3


 . Once the pore pressure solutions are obtained, the solutions for 

stresses, strains, and displacements can be easily derived using the constitutive relations 

as follows 
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with 

1111 /1 CfAo   (3.11a) 

131
11

131
131 ff

C

C
CA 


  (3.11b) 

131
11

131
332 gg

C

C
CA 


  (3.11c) 

11

131
33

C

C
A


   (3.11d) 

The constants of integration Co, C1, C2, C3 are determined using the boundary 

conditions. For the load-control case, the constants of integration are 
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For the stroke-control case, the constants of integration are 
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  jjjijijijij amfAaCmghAamG  /)sinh()cosh( 131313    (3.17) 

For the load-control case, the expression for vertical strain is 
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while ezz
~~  for the stroke-control case. The vertical displacement is obtained by 

integrating zz~ with respect to z 
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

l

zzlzz dzu

0

~~   (3.19) 

The perturbed solutions in time domain can be obtained using numerical inverse 

Laplace transform algorithms such as the Stehfest’s algorithm (Stehfest, 1970). In this 

work, the inverse Laplace transform is done using Stehfest’s algorithm with 8 terms. 

The total solutions for stresses and pore pressure are simply the sum of the initial states 

and the perturbed states as follows 

ppp o
total   (3.20a) 

xxxx
total
xx S    (3.20b) 

zzzz
total
zz S    (3.20c) 

The superscript “total” in this work shall indicate the total solution and, when using for 

stresses, it also implies the total stresses (i.e. stresses including pore fluid pressure). The 

effective stress, i.e. total stress minus the pore pressure, shall be indicated with a 

superscript comma. For example, the effective stress in the x-direction will be  

totaltotal
xxxx p '    (3.21) 

3.4 Solutions Validations with Special Cases 

If the pore fluid and the testing fluid are both free of salt/solutes (i.e. asol = a
o

f = 1), the 

current solutions have to reduce to the case of a poroelastic Mandel’s problem 

regardless of the sample membrane efficiency (). On the other hand, if the rock is free 

of clay (i.e. CEC = 0,  = 0), the current solutions should also recover the poroelastic 

Mandel’s solutions despite any difference in activities between the outer fluid and the 

native pore fluid. This is because, in the latter case, the ions are free to transport 
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between the outer environment and pore fluid in the absence of the membrane. 

Consequently, the water (solvent) does not need to move from one place to another in 

order to balance the difference in ion concentration and, thus, no additional pore 

pressure is created.  

In this section, the solutions are validated against these special cases by comparing the 

generated pore pressure and displacements with those reported in Abousleiman et al. 

(1996). Table 3.1 summarizes the anisotropic elastic and poroelastic parameters of 

Trafalgar shale used by Aboulseiman et al. (1996). The specimen is assumed to have 

cross-section of 10 cm × 10 cm. The applied forces on the specimen top is assumed to 

be F = 10
6
 N per m of specimen width. The sample is assumed to be oriented so that the 

applied load is perpendicular to the specimen isotropic plane.    

Table 3.1-Summary of Trafalgar shale properties (Abousleiman et al., 1996) 
Parameters Values 

Young’s modulus in isotropic plane (GPa) 20.6 

Young’s modulus in transverse direction (GPa) 17.3 

Poisson’s ratio in isotropic plane 0.189 

Poisson’s ratio in transverse direction 0.246 

Biot’s coefficient in isotropic plane 0.733 

Biot’s coefficient in transverse direction 0.749 

Biot’s modulus (GPa) 15.8 

Permeability (D) 1×10
-7 

Shown in Fig.3.3-Fig.3.5 are, respectively, the comparisons for the pore pressure 

evolution at the center of the sample, the lateral displacement at the sample edge (x = b), 

and the vertical displacement at the sample top (z = a). The agreement between the 

results from this solution and those of Abousleiman et al. (1996) confirms the behavior 

and correctness of the current solutions in these special cases. 
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 Fig.3.3-Comparison of pore pressure at the center from the current solutions 

when asol = a
o

f =1 and CEC= = 0 to the results in Abousleiman et al. (1996) 

 
Fig.3.4-Comparison of lateral displacement (x = b) from the current solutions 

when asol = a
o

f =1 and CEC= = 0 to the results in Abousleiman et al. (1996) 
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Fig.3.5-Comparison of vertical displacement (z = a) from the current solutions 

when asol = a
o

f =1 and CEC= = 0 to the results in Abousleiman et al. (1996) 

3.5 Examples of Applications 

3.5.1  Laboratory Characterization for The Fluid Effects on Shale 

Consider a Woodford shale specimen with width of 2 cm (i.e. 2b = 2 cm), thickness of 2 

cm (i.e. 2a = 2 cm), porosity of 15%, permeability of 200 nD, and CEC of 10 meq./100 

gr. The sample is initially free of any stresses, pore pressure, and is saturated with pore 

fluid having activity f
oa  = 0.89. The sample membrane efficiency is assumed to be = 

0.2. The specimen is then submerged into a chamber containing a testing fluid having 

higher salinity than the pore fluid with asol = 0.87 and is at zero hydraulic pressure (i.e. 

P(t) = S(t) = 0 MPa). Simultaneously, an axial load 2F = 20 kN/m is applied to the rigid 

plates by the plunger. This setup mimics the laboratory characterization for shale 

properties variations under fluid exposure. The applied axial load is to assure a good 

contact between the plunger, the rigid plates and the sample so that acoustic monitoring 

for the effects of fluid chemistry on sample acoustic properties (or poroelastic 
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properties) can be achieved. The anisotropic poroelastic properties of the Woodford 

shale as reported in Abousleiman et al. (2007) are summarized in Table 3.2. The sample 

is oriented so that the material isotropic plane coincides with the x-y plane. The 

relationships between the elastic stiffness, Cij, and the elastic moduli and poroelastic 

coefficients of transversely isotropic and orthotropic medium are given in Appendix A. 

Table 3.2-Summary of Woodford shale properties 
Parameters Values Notes 

Young’s modulus in isotropic plane (GPa) 7.4 
Calculated with E1/E3 = 1.75 as from 

dynamic measurements 

Young’s modulus in transverse direction (GPa) 4.2 From quasi-static measurements 

Poisson’s ratio in isotropic plane 0.13 Calculated with 1/3 = 0.42  

Poisson’s ratio in transverse direction 0.30 From quasi-static measurements 

Biot’s coefficient in isotropic plane 0.85 Assume Ks = 40 GPa 

Biot’s coefficient in transverse direction 0.88 Assume Ks = 40 GPa 

Biot’s modulus (GPa) 12.0 Assume Ks = 40 GPa, Kf = 2.3 GPa 

Effective diffusion coefficient of Na
+
 (m

2
/s) 1.60×10

-10 
D

Na+
 = 1.33×10

-9
, =1 

Effective diffusion coefficient of Cl
-
 (m

2
/s) 2.44×10

-10
 D

Cl-
 = 2.03×10

-9
, =1 

Porosity 0.15 From Hg-injection 

Permeability (nD) 200 From pulse decay 

Membrane efficiency 0.2 Assume 

CEC (meq./100 gr of dry clay) 10 Measured; Woodford CEC = 5-15 

Native activity 0.89 Measured; Woodford ao
f
 = 0.87-0.89 

Matrix density (g/cc) 2.3 From XRD mineralogy and porosity 

Shown in Fig.3.6 is the pore pressure, totalp , distribution along the x-axis at different 

times with the normalized distance from sample center defined as bxx / . The pore 

pressure jump with magnitude of 0.29 MPa at the sample edge ( 1x ) corresponds to 

the osmotic pressure created by the Donnan equilibrium effect as previously discussed. 

Due to the application of the axial stress, an initial pore pressure surge with magnitude 

of 0.51 MPa is observed inside the sample. The Mandel-Cryer effect can be clearly 

observed at t = 5 s when pore pressure at the center of the sample reaches a higher value 

than the original pore pressure jump. The pore pressure drop near the sample edge at t = 

5 s  is a result of pore water drawing out of the sample due to the higher salt 

concentration in the testing fluid compared to the pore fluid. As time elapses, more 
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water is drawn out of the sample and the pressure drop front propagates toward the 

center. It is noteworthy that the pressure drop near the sample edge only appears when 

the rock matrix has the ability to partially restrain the ion transport ( ≠ 0) as previously 

discussed. Finally, after approximately 48 hrs, the pore pressure inside the sample 

approaches an equilibrium value equal to the Donnan equilibrium pressure. The 

evolution of the pore pressure at the center of the sample is summarized in Fig.3.7. The 

lateral displacements distributions along the sample width are shown in Fig.3.8. 

Because of the initial pore pressure jump as previously explained, the lateral 

displacement of the sample edge for t = 0.005 s is larger than those in the period t = 5 s -

10000 s when water is drawn out of the sample from hydraulic and ion diffusion. 

 
Fig.3.6-Distribution of pore pressure totalp  along the sample width (asol = 0.87) 
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Fig.3.7-Evolution of pore pressure at the center of the sample (asol = 0.87) 

 
Fig.3.8-Distribution of lateral displacement (ux) along the sample width (asol = 0.87) 

The distributions of the effective horizontal stress, '
xx , and the effective vertical stress, 

'
zz , are shown in Fig.3.9 and Fig.3.10 respectively. Since confining pressure is absence 

in this example, the total stress total
xx  is trivial and the effective stress '

xx  simply 

becomes total
xx p 0' . The results show that tensile stresses (negative values) can 
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develop inside the sample due to the induced pore pressure from the Donnan 

equilibrium effect, applied load, and Mandel-Cryer effect.  

 
Fig.3.9-Distribution of the effective '

xx  along the sample width (asol = 0.87) 

 
Fig.3.10-Distribution of the effective '

zz  along the sample width (asol = 0.87) 

Given that the Woodford shale tensile strength is 4-12 MPa (Abousleiman et al., 2007; 

Sierra et al., 2010), these induced tensile stress will not result in tensile damages for the 

Woodford sample under testing conditions used in this example. It can be observed 
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from Fig.3.10 that the suction of pore pressure out of the sample due to the higher 

salinity testing fluid helps to reduce induced tensile stress (see curves at t = 100 s, 10
4
 

s). Therefore, if a testing fluid with lower activity than the pore fluid is used, the 

induced osmotic pressure due to influx of water (solvent) to the sample from the testing 

fluid will increase the magnitude of tensile '
xx  which may lead to tensile damage of the 

sample. For example, shown in Figs.3.11-3.12 is the distribution of pore pressure and 

effective '
xx of the Woodford shale sample when exposed to testing fluid with activity 

asol = 1 (deionized water). In this case, the induced tensile '
xx  is as high as 5.5 MPa 

which can possibly cause some tensile damages to the sample. 

 
Fig.3.11-Distribution of pore pressure totalp  along the sample width (asol = 1) 
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Fig.3.12-Distribution of the effective '

xx  along the sample width (asol = 1) 

The results from these analyses explain why while some shale can disintegrate when 

brought in contact with aqueous solution, others remain intact. In addition, shale 

samples with the same total clay content may not behave similarly when exposed to 

testing fluid. Indeed, whether or not a shale sample becomes damaged when exposed to 

aqueous solution depends on the amount of reactive clay minerals (i.e. how high the 

sample CEC is), and the difference in activity between the native pore fluid and the 

testing fluid. The results also show that the magnitude of the Donnan-induced pore 

pressure is rather small when compare to the load-generated pore pressure or activity-

generate pore pressure. However, application of load to the sample while exposing it to 

aqueous solution can exacerbate the problem and lead to tensile damages in the sample. 

The tensile damages when occur can complicate the interpretation for the effects of 

fluid chemistry on the rock matrix. Practically, these damages can be avoided by 

gradually adjust the salt concentration of the testing fluid and the applied load to the 

desired value so that excessive stress and pore pressure buildup can be minimized. 
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3.5.2  Hydraulic Fracturing in Shale 

Consider a horizontal well drilled in the Woodford formation and intersects with 

existing vertical natural fractures which have been observed to have spacing of 

approximately 1.2 m. Hydraulic fracturing is then conducted using fracturing fluid with 

activity of 0.95 which corresponds to a 2.5% in molar concentration of KCl commonly 

added to the water-based fluid for clay stabilizers (Black & Hower, 1965). During this 

process, the existing natural vertical fractures reopens and, thus, mimics the geometry 

shown in Fig.3.2c with 2b = 1.2 m. In this example, the fractures are contained 

vertically in an interval with thickness of 10 m (i.e. 2a = 10 m). The formation is 

assumed to be at depth 1829 m and is subjected to the following in-situ conditions Szz = 

41 MPa, Sxx = Syy = 25 MPa, po = 18 MPa, T = 100 
o
C. The fracturing process is 

conducted at a constant hydraulic pressure of 35 MPa so that P(t) = S(t) = 35 MPa. In 

addition, it is assumed that the formation vertical expansion is restricted by the massive 

overlying layers (e(t) = 0). The formation properties used for simulation are assumed 

similar to the previous example.  

Fig.3.13 shows the distributions of pore pressure, totalp , along the width of the formation 

at 10, 20, and 30 minutes into the fracturing process. It can be seen that due to the 

compression of the hydraulic pressure on the formation, a pore pressure jump above the 

virgin pore pressure is observed inside the formation. Similar to the previous example, 

the Donnan equilibrium condition creates an osmotic pressure surge at the mud/shale 

interface ( 1x ). In addition, the lower salt concentration fracturing fluid has induced a 

pressure peak inside the formation near the fracture face due to influx of the water from 

the fracturing fluid into the formation. The distribution of lateral displacement along the 
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formation width is shown in Fig.3.14. The negative values denote displacement of the 

formation right half to the left due to hydraulic pressure. Due to the long diffusion time 

of the pore fluid pressure, the displacement during the entire fracturing process is 

mostly the elastic response under the action of the fracturing fluid pressure. 

 
Fig.3.13-Distribution of totalp  along the formation width 

 

Fig.3.14-Distribution of horizontal displacement, ux, along the formation width 
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Displayed in Fig.3.15 and Fig.3.16 are the distributions of the effective '
xx and 

'
zz along the formation width at various times during the hydraulic fracturing process. 

Similar to earlier discussion, the load-generated pore pressure and the osmotic-

generated pressure have created a tensile zone near the fracture face which can lead to 

tensile damages and reduce the stiffness of the shale formation. Consequently, for the 

same fracturing condition, the fracture aperture can become wider leading to a shorter 

fracture length. In addition, the damaged and weaker formation can exacerbate the 

problem of proppant embedment which may lead to fracture closure and reduction of 

fracture length and productivity as illustrated in Fig.3.17. 

 
Fig.3.15-Distribution of the effective '

xx  along the formation width 
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Fig.3.16-Distribution of the effective '

zz along the formation width 

 
Fig.3.17-Illustration of fracture closure due to proppant embedment on a 

chemically damaged and weakened formation 

According to Eq.2.30, the higher the formation CEC, the larger the induced pore 

pressure at the fracture surface and the more severe this tensile zone becomes. Thus, 

these phenomena can explain why high clay intervals are often observed as more 

“ductile” (or harder to create long fracture) from field operations. Practically, the 

chemically-induced tensile damages can be minimized by using a fracturing fluid with 

water activity equal to or slightly less than the native pore water activity so that the pore 

pressure peak due to fracturing fluid influx into the formation can be eliminated. 
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3.5.3 Diagenesis of Clay-rich Sediment 

The diagenesis of clay-rich sediments into a shale formation can be simplified with 3 

separate phases as illustrated in Fig.3.18. Initially, the sediments mixture contains the 

same fluid with the outer environment fluid as depicted in Fig.3.18a. However, the 

presence of fixed charges on the surfaces of the clay sediments requires expulsion of 

some of the pore fluid anion to the outer environment as discussed earlier. In addition, 

an osmotic pressure, po, develops at the interface of the sediments mixture and the outer 

environment according to the Donnan equilibrium condition. Since the permeability of 

the mixture is relatively high during deposition and early compaction, it is assumed that 

a uniform pore pressure with magnitude po exists throughout the mixture during these 

processes as illustrated in Fig.3.18b. It should be noticed that this osmotic pore 

pressure, po, shall remain constant as long as there is no change in the outer 

environment fluid activity or the formation CEC. The deposition of overlaying 

formations shall create additional pore pressure buildup inside the shale formation as 

shown in Fig.3.18c. The diffusion of this additional pore pressure buildup shall be 

governed by both the formation permeability and membrane efficiency.  

In this numerical example, consider the diagenesis of a smectite-rich clay mixture with 

CEC = 20 meq./100 g, membrane efficiency of 0.2, and porosity of 20% in a channel 

depositional environment where the environment fluid has activity of 0.98. Applying 

Eq.2.30 the initial pore pressure due to Donnan equilibrium effect in the mixture is 

calculated to be 3.22 MPa. At the end of deposition process, the shale formation is 

assumed to have thickness of 40 m (i.e. b = 40 m) and width of 100 m (i.e. 2a = 100 m). 

The formation permeability and poroelastic properties used for simulation are those of 
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the Woodford shale. The depositional rate of overlaying sand layers with bulk density 

of 2.2 g/cc is assumed to be 1 m/year. As a result the formation is compacted under 

applied load S(t) = 2.2 kPa/year × t. In this example, it is assumed that the outer 

environment fluid activity remains at a constant value of 0.98 and that the lateral 

expansion of the formation is assumed to be zero (i.e. e(t) = 0) which is valid in non-

tectonic regions.  

 

Fig.3.18-Schematic of simplified representation of diagenesis process 

Shown in Fig.3.19 is the pore pressure evolution at the bottom of the shale formation. 

The pressure shown in Fig.3.18 is the amount of overpressure in the formation at a 

given time. The total formation pressure that is measured by down-hole tools is the sum 

of the overpressure and the hydrostatic pressure of the column of water above the 

formation. For the purpose of comparison, the plot for pore pressure evolution of a 

clean sand formation (i.e. CEC = 0,  = 0) and those of shale formations with different 

membrane efficiency ( = 0, 0.2, 0.4) consolidated under the same conditions are also 

shown in Fig.3.18. It can be observed that the semi-permeable membrane behavior of 

the shale matrix hinders the exchange of the pore fluid ions with the outer environment 
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and, thus, effectively making the overall pore fluid diffusion process slower. As a result, 

the achieved steady-state pore pressure is larger for formation with higher membrane 

efficiency. Therefore, the usually observed high pressure in shale formations is 

attributable to the Donnan equilibrium effects and the semi-permeable behavior of the 

charged clay matrix in addition to the intrinsically low permeability of shale. However, 

it should be noticed that the actual process of diagenesis may involve clay mineral 

transformation and, thus, will be much more complicated than what can be captured by 

the analytical solution. In particular, while the transformation of the original smectite 

clay minerals with high CEC values (~20-25 meq./100 g) to illite and chlorite clay 

minerals with much lower CEC values (~5-10 meq./100 g) can reduce the magnitude of 

the Donnan equilibrium pressure. However, this transformation process releases 

additional pore water which can counter the reduction in the Donnan equilibrium 

pressure and create a very complicated pore pressure diffusion process. 

 

Fig.3.19-Pore pressure evolution at the bottom of the formation 
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3.6 Summary 

In this chapter, the anisotropic porochemoelectroelastic for the Mandel’s problem is 

given. Numerical examples illustrating the applications of the solutions for laboratory 

characterization, hydraulic fracturing, and diagenesis of shale are included.  

In the context of laboratory characterization, the analyses show that the presence of 

negative fixed charges on the constituent clay minerals create an osmotic pressure at the 

interface of the sample and the testing fluid with magnitude proportional to the CEC of 

the sample according to the Donnan equilibrium condition. The results also show that 

the magnitude of the Donnan-induced pore pressure is rather small when compare to the 

load-generated pore pressure or activity-generate pore pressure. However, this Donnan-

induced pore pressure when coupled with the pore pressure surge due to the applied 

load and the use of a high activity (i.e. low salinity) testing fluid can result in significant 

tensile effective stresses in the sample. For weak shale samples this induced tensile 

stress can lead to tensile damages of the samples. The results, thus, explain why some 

shales disintegrate when brought into contact with certain aqueous solutions while 

others do not. In addition, the complex pore pressure, stresses responses and 

distributions, and induced tensile damages can complicate the interpretation of 

experimental results for the effects of fluid chemistry on the rock matrix. Practically, it 

is recommended to gradually adjust the testing fluid salt concentration or applied load 

to the desired value so that excessive induced stress and pore pressure buildup become 

minimal.  

Similarly, for hydraulic fracturing application, the Donnan equilibrium effects and the 

use of a low salinity (or high activity) fracturing fluid can induce a tensile damage zone 
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near the fracture surface. Consequently, the formation becomes weaker and can deform 

more easily under application of hydraulic pressure, leading to a wider fracture width. 

For the same pumping rate, a wider fracture width will result in a shorter fracture 

length. In addition, the damaged and weaker formation can exacerbate the problem of 

proppant embedment which may lead to fracture closure and reduction of fracture 

length and productivity. Practically, the use of fracturing fluid having similar activity 

with the formation native pore fluid can help to prevent the tensile damages and work 

for the advantage of the fracturing process.  

Regarding the diagenesis of clay-rich sediments, the analyses show that the fixed 

charged of the clay minerals can induce a significant initial osmotic pressure in the 

formation. As the consolidation process continues, the semi-permeable membrane 

behavior of the shale matrix hinders the exchange of ions between the pore fluid and the 

outer environment, thus, effectively making overall the pore fluid diffusion process 

slower. As a result, the pore pressure buildup inside a shale formation can be much 

higher than in a clean sand formation under the same consolidation rate. Hence, taking 

into account the shale electrokinetic effects in basin modeling may give better 

predictions of overpressure issues in shale. 
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Chapter 4:  The Full Cylinder Problem 

4.1 Introduction 

Laboratory characterizations of geo-material, especially shale rocks, often involve fluid 

exposure to simulate the in-situ conditions or to study the fluid effects on sample 

properties (Chenevert, 1998; Hemphill et al., 2008; Abousleiman et al., 2010). During 

these procedures, the sample pore pressure can be redistributed due to load application 

coupled with the induced osmotic flow from the electrochemical interactions between 

the pore fluid and the tested fluid. Simultaneously, the effective stress, strain and 

displacement distributions are modified which mislead interpretations of testing results.  

The first analytical solution to address the coupled hydro-mechanical responses of an 

isotropic porous cylinder during uniaxial testing was presented by Amstrong et al. 

(1984). Since then, a number of analytical solutions accounting for different effects 

from testing conditions and material properties have been introduced. In particular, the 

analytical solution for transversely isotropic poroelastic cylinder under uniaxial testing 

and various mode of triaxial testing was derived by Abousleiman & Cui (1998). 

Extension of the solution to capture the viscoelastic behavior of shale was given by 

Abousleiman et al. (1996) and, later, generalized to anisotropic material by Hoang & 

Abousleiman (2010). Recently, Bunger (2009) presented the isotropic porochemoelastic 

solution of a cylinder under uniaxial loading condition. The dual-porosity and dual-

permeability porochemoelastic solution for testing of naturally fractured cylindrical 

shale samples was later given by Nguyen (2010).   
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In this chapter, the anisotropic porochemoelectroelastic solution for cylinders is given to 

simulate some of the most common encountered laboratory testing configurations for 

shale rock. The solution is useful for simulate and analyze the experimental testing 

results as will be illustrated with the unconfined compression test and pressure 

transmission test. 

4.2 Problem Descriptions 

Shown in Fig.4.1 are two common laboratory testing conditions often imposed on geo- 

and bio- samples. The sample is cored orthogonal to the apparent bedding plane so that 

the material isotropic plane lies horizontally. In Fig.4.1a, an axial load F(t) (load-control 

mode) or an axial strain e(t) (stroke-control mode) is applied to the sample top and 

bottom while a confining pressure Srr(t) is applied laterally. Meanwhile, the tested 

sample is exposed to a testing solution with solute mole fraction of sol
sn (t) at hydraulic 

pressure po(t). This configuration depicts a sample being tested for fluid exposure 

effects under a triaxial setup. When there is no applied confining pressure (i.e. Srr(t) = 

0), the set up becomes an unconfined compression test (or uniaxial test). On the other 

hand, when 0)()()(  tFtptS orr , the set up turns into a free swelling test. Shown in 

Fig.4.1b is the setup of the Ko test (also known as oedometer or uniaxial strain test in 

soil mechanics) in which the sample sandwiched between two rigid porous plates and 

confined laterally by a rigid and impermeable ring. The top and bottom of the sample 

can also be exposed to fluid with solute mole fraction of sol
sn and hydraulic pressure 

po(t) as in the previous setup to characterize the fluid effects on sample under 1-D 

consolidation.  
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Fig.4.1-Schematic of common laboratory testing conditions for cylindrical samples 

The experiment setup depicted in Fig.4.1b can also be used to simulate the pressure 

transmission test as shown in Fig.4.2 (Ewy & Stankovic, 2010; Chen et al., 2010). The 

test can be briefly described as imposing a testing fluid with different chemical 

composition than the native pore fluid on one end of a cylindrical sample and record the 

pore pressure change at the other end of the sample. The recorded pore pressure is then 

used to estimate the sample flow properties such as permeability, membrane efficiency, 

and effective ion transport coefficients by best-fitting an analytical solution. Although 

the pressure transmission test is often conducted under confining pressure instead of 

uniaxial strain condition as depicted in Fig.4.1b, the flow regime during a pressure 

transmission test is still a 1-D flow along the z-direction similar to that of the setup 

shown in Fig.4.1b. Hence, the solution for Fig.4.1b can be used as a first order 

approximation to analyze the poroelastic pressure transmission test. Solutions 
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accounting for the effects of sample lateral expansion can only be achieved using 

numerical simulation and is beyond the scope of this research. 

 

Fig.4.2-Schematic of the pressure transmission test as taken from Ewy & 

Stankovic (2010) 

For the testing conditions depicted in Fig.4.1a, the boundary conditions imposed at the 

sample surface (r = R) are as follows 
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Whereas for the testing conditions depicted in Fig.4.1b, the boundary conditions at z = 

H are as follows 

)(tPp   (4.5) 

)(tPp aa   (4.6) 



51 

)(tPp cc   (4.7) 

with 2/)( RtFzz   for load-control mode and )(tezz  for stroke-control mode. 

4.3 Analytical Solutions 

4.3.1 Solutions for Unconfined Compression and Triaxial Test 

As depicted in Fig.4.1, the problem is axisymmetric which leads to vanishing of all 

shear stresses ( 0 rzzr   ). Hence, the constitutive relations in the cylindrical 

coordinate system are expressed as follows 
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The equilibrium equations and strain-displacement equations for axisymmetric 

problems are 
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The mass and electrical charge balance equations for the whole fluid and its individual 

components 
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is the gradient vector in the cylindrical coordinate system taking into 

account the axisymmetric conditions. 

The problem solution is obtained using Laplace transform technique. Under the Laplace 

transform domain, substitution of the stress-strain relations into the equilibrium 

equation in radial direction yields 

0
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which gives oCpC  ~)/(~
111  where Co is a constant of integration. Follow Nguyen & 

Abousleiman (2010), substituting the stress-strain relations and the transport equations 

in the radial direction into the mass and electrical charge balance equations while 

assuming electrostatic condition ( 0/  te ), and ignoring the ion transport by 

advection terms gives 
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and drdrdrd /)/1(/ 222  . The tilde sign denotes Laplace transform solution and s is 

the Laplace variable. Substitution of the results of Eq.4.18 into Eq.4.19 gives a system 

of differential equations involving only the pressure terms ( zz~ is known variable from 

loading conditions) 
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Applying the matrix diagonalization technique (Farlow, 1993), the general solution of 

Eq.4.21 can be obtained as follows 
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with Ci are constants of integration to be determined from the boundary conditions, 

)( rI in  is the modified Bessel function of the first kind of order n, ii s  / , in which 

i are the eigenvalues of the matrix      DYZ
1

 with  iii mmm 321 ,, as its corresponding 

eigenvectors,      To
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o
a nnYf 1

1
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
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 . Once the pressure 

solutions are derived, the general solutions for stress, strain, and displacement are 

straightforward to obtain using the stress-strain relations and strain-displacement 

relations. For brevity of presentation, these derivations shall not be presented here. 

For the stroke-control testing conditions, the constant of integrations take the following 

form 
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with the matrix [G] components expressed as 
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where 

11111211 /2 CGfCC     (4.26a) 

111113 / CGgC    (4.26b) 

For the load-control testing conditions, zz~  takes the following form 
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and the constant of integrations become 
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where the [G] matrix components are expressed as 
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and  

1111313 / CgCgb    (4.31a) 

1111131313 / CfCfCh    (4.31b)  

4.3.2 Solutions for Confined Compression Test 

The experimental setup of this problem leads to 



56 

0;0;0    qquu rrrr  (4.32) 

and all non-trivial variables are dependent on z and t only. Under the Laplace transform 

domain, substitution of the stress-strain relations into the equilibrium equation in the z-

direction yields 
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Applying the same steps to obtain Eq.4.19 results in the following diffusion type 

equations 
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Following the same procedure described in the previous section, the solution 

for p~ , ap~ , cp~ are 
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with Co, Ci, Ci+3 (i = 1, 2, 3) are constant of integrations. ii s  / where i are the 

eigenvalues of the matrix      DYZ
1

 with  iii mmm 321 ,, as its corresponding 

eigenvectors, and      To
c

o
a nnYf 1

1
1


 . Since the problem is symmetric through the 

x-y plane at z = 0, 0/~/~/~  dzpddzpddzpd ca which leads to Ci = Ci+3. Hence, Eq.4.35 

reduces to 
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Using the boundary conditions described in Fig.4.1b, it can be shown that for load-

control testing conditions 
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with  
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On the other hand, for the stroke-control testing conditions, the coefficients of 

integrations become 
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with 

 HmCfH jijiij  cosh)/2( 333   (4.41) 
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4.4 Solutions Validations for Special Cases 

As previously discussed, when the pore fluid and the testing fluid are both free of salt 

(i.e. asol = a
o
f = 1), the current solutions shall reduce to the poroelastic solutions 

regardless of the sample membrane efficiency () or cation exchange capacity (CEC). 

Similarly, if the specimen is free of clay (i.e. CEC = 0,  = 0), the current solutions will 

also recover the poroelastic solutions for any difference in activities between the outer 

fluid and the native pore fluid as ions are free to transport between the outer fluid and 

pore fluid in the absence of the membrane and, thus, the water does not need to flow 

from one place to another in order to balance the difference in ion concentration. In this 

section, the analytical solution for tri-axial testing is validated by comparing the results 

from the current solution when CEC = 0 and  = 0 with those from the transversely 

isotropic poroelastic solutions of Abousleiman & Cui (1998) with elastic and 

poroelastic parameters used for simulation are those from the Trafalgar shale as 

summarized in Table 3.1. It should be noticed that the specimen radius (R) is 0.032 m 

instead of 0.1 m as reported in Abousleiman & Cui (1998) which is a typo. In addition, 

the convention of stress and strain in Abousleiman & Cui (1998) is tension positive 

while in this paper compressive stresses and strains are positive. 

Shown in Fig.4.3-Fig.4.5 are, respectively, the comparison for the pore pressure, axial 

stress evolution at the center of the sample (r = 0), and the tangential stress at the 

sample edge (r = R) for different values of Young’s modulus anisotropic ratio (nE = 

E1/E3) while the Poisson’s ratio is assumed to be isotropic at  = 0.189. The agreement 

between the results has, thus, confirmed the behavior and the correctness of the current 

solutions in these special cases. 
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Fig.4.3- Comparison of pore pressure at the center of the sample (r = 0) from the 

current solutions when CEC= = 0 to the results in Abousleiman & Cui (1998) 

 
Fig.4.4- Comparison of tangential stress at the edge of the sample (r = R) from the 

current solutions when CEC= = 0 to the results in Abousleiman & Cui (1998) 
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Fig.4.5- Comparison of axial stress at the center of the sample (r = 0) from the 

current solutions when CEC= = 0 to the results in Abousleiman & Cui (1998) 

4.5 Examples of Applications 

4.5.1 Laboratory Testing for the Fluid Chemistry Effects 

Consider a Woodford shale specimen with radius of 2 cm (i.e. R = 2 cm), thickness of 8 

cm (i.e. h = 8 cm) with geological and elastic properties identical to those used in the 

previous example of Chapter 3 (see Table 3.2). The sample is initially free of any 

stresses, pore pressure, and is saturated with pore fluid having activity f
oa  = 0.89. The 

specimen is then submerged into a chamber containing testing fluid with asol = 0.87 and 

without being subjected to hydraulic or confinement pressure (i.e. P(t) = S(t) = 0 MPa). 

Simultaneously, an axial load F = 0.4 kN is applied to the rigid plates to assure a good 

contact between the rigid platens and the specimen such that acoustic monitoring can be 

achieved. Shown in Fig.4.6 is the pore pressure, totalp , distribution along the radial 

direction for the case of low testing fluid activity (asol = 0.87 > f
oa  = 0.89) at different 

times with the normalized distance from sample center defined as Rrr / . The pore 
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pressure jump with magnitude of 0.29 MPa at the sample edge ( 1r ) corresponds to the 

osmotic pressure created by the Donnan equilibrium effect as previously discussed. Due 

to the application of the axial stress, an initial pore pressure surge with magnitude of 

0.50 MPa is observed inside the sample. The Mandel-Cryer effect can be clearly 

observed from the plot at t = 5 s when the pore pressure at the sample center reaches a 

value higher than the original pore pressure jump. The pore pressure drop near the 

sample edge at t = 5 s  is a result of pore water being drawn out of the sample due to the 

higher salt concentration in the testing fluid. As time elapses, more and more water is 

drawn out of the sample and the pressure drop front propagates toward the center. 

Finally, after approximately 48 hrs, the pore pressure inside the sample approaches an 

equilibrium value equal to the Donnan equilibrium pressure.  

 
Fig.4.6-Distribution of pore pressure totalp along the radial direction (asol = 0.87) 

The evolution of the pore pressure at the center of the sample is summarized in Fig.4.7. 

Also, shown in Fig.4.7 is the comparison of the pore pressure evolution at the center of 

the sample between the cylindrical geometry and rectangular geometry. It can be 
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observed that the Mandel-Cryer effect is more significant in the cylindrical geometry 

and the diffusion process in the cylindrical geometry appear to be faster than in the 

rectangular geometry. Similar observations have been reported in Nguyen (2010) when 

studying the Mandel-type problem for dual porosity and dual permeability medium.   

 
Fig.4.7-Evolution of pore pressure at the center of the sample (asol = 0.87) 

Shown in Figs.4.8-4.10 are respectively the distributions of effective stresses '
rr , '

 , 

and '
zz along the radial direction for the case of low activity mud. The results show that 

significant tensile stresses can develop at and near the sample edge due the Donnan 

equilibrium effect. Similar to earlier discussions in Chapter 3, these induced tensile 

stresses are unlikely to cause tensile damages on the tested Woodford sample given that 

the Woodford shale tensile strength has been measured to be 4 -12 MPa. It should also 

be noticed that the total radial stress 0total
rr despite there is not applied confining 

pressure on the sample. In other words, the effective radial stress becomes 

totaltotal
rrrr p ' instead of total

xx p 0' as in the case of the rectangular strip problem 

of Chapter 3. 
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Fig.4.8-Distribution of the effective '

rr  along the radial direction (asol = 0.87) 

 
Fig.4.9-Distribution of the effective '

  along the radial direction (asol = 0.87) 
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Fig.4.10-Distribution of the effective '

zz  along the radial direction (asol = 0.87) 

4.5.2 Determination of the Coupled Hydro-Electro-Chemical Flow 

Parameters Using the Pressure Transmission Test Data 

In this section, the solution for confined compression test (presented in section 4.3.2) 

will be used to simulate the pressure transmission test data and result reported by Chen 

et al. (2010). The shale sample native pore fluid activity is determined to be 0.96 and 

the sample is exposed to a testing fluid with activity asol = 0.8 at 1000 psi hydraulic 

pressure. Others geological and mechanical properties of the samples are assumed and 

collected from the literature as summarized in Table 4.1. This simulation aims at 

determining the permeability and membrane efficiency () of the sample by varying 

these variables to obtain a best fit to the reported results. It is noteworthy that the 

poroelastic effects have been ignored in the solution of Chen et al. (2010) (hence, the 

solution shall be referred simply as the diffusion solution in this study). Thus, 

simulation using a rock permeability k = 0.068 nD and membrane efficiency  = 0.043 
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as estimated by Chen et al. (2010) while varying the rock poroelastic properties to 

obtain a best fit is also included to illustrate the poroelastic effects on determination of 

specimen flow properties. 

Table 4. 1-Summary of shale sample properties use for simulation 
Properties Values Notes 

Porosity (%) 14 Assumed 

CEC (meq/100 gr) 20 
Ewy & Stankovic (2010)  

Use same shale with this example 

k (nD) 4-8 Ewy & Stankovic (2010) 

Grain density (g/cc) 2.68-2.72 // 

Effective diffusion coefficient of Na
+
 (m

2
/s) 1.60×10

-10 
Assumed: D

Na+
 = 1.33×10

-9
, =1 

Effective diffusion coefficient of Cl
-
 (m

2
/s) 2.44×10

-10
 Assumed: D

Cl-
 = 2.03×10

-9
, =1 

K (MPa) 1217 Assumed 

 0.25 // 

E (MPa) 1850 // 

Ks (MPa) 40000 // 

M (MPa) 20000 // 

Shown in Fig.4.11 is the comparison between the recorded down stream pore pressure 

and the simulated pore pressure at different combination of k and . The results show 

that when k = 3 nD and  = 0.11. Shown in Fig.4.12 is the comparison between this 

research best fit and the simulated results using the diffusion solution. The results show 

that the estimated k and  from this solution is significantly larger than those estimated 

using the diffusion solution. Such discrepancies can be the results of ignoring the 

poroelastic effects. Shown in Fig.4.13 are the plots of simulated results using the 

permeability and membrane efficiency determined in Chen et al. (2010) for different 

sample Young’s modulus and Biot’s modulus (with k = 0.3 nD and  = 0.11). The 

results show that in order to closely recover the result from the diffusion solution, the 

sample has to be very stiff (E = 95 GPa, M = 85 GPa) so that the poroelastic effect can 

be ignored. Therefore, it is important to include the poroelastic effect in simulating the 

pore pressure responses in pressure transmission test, especially for tests performed on 

soft rocks.    
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Fig.4.11-Comparison between lab measured down stream pore pressure and 

simulated results using different values of k and  

 
Fig.4.12- Comparison of lab measured down stream pore pressure, Chen et al. 

(2010) simulated results, and simulated results from this solution using different 

values of k = 0.3 nD and 0.11 
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Fig.4.13- Comparison of lab measured down stream pore pressure, Chen et al. 

(2010) simulated results, and simulated results from this solution using different 

values for poroelastic properties (all with k = 0.3 nD and 0.11) 

4.6 Summary 

In this chapter, the anisotropic porochemoelectroelastic for cylinder is given. Numerical 

examples illustrating the applications of the solutions for uniaxial testing with samples 

being exposed to testing fluid of different chemistry, and determination of shale 

diffusion parameters with pressure transmission test are included.  

Regarding unixial testing of a cylindrical shale sample, the analyses show that shales 

with higher fixed charges content (more reactive clay, e.g. smectite) create a significant 

osmotic pressure at the interface of the sample and the testing fluid due to the Donnan 

effect. This fixed-charge-induced pressure when coupled with the pore pressure surge 

due to applied load and the activity-generated pore pressure can result in significant 

tensile effective stresses in the sample which may lead to tensile damages of the sample. 

These damages can complicate the interpretation for the effects of fluid chemistry on 

the rock matrix and it is recommended to gradually bring the salt concentration of the 



68 

testing fluid and the applied load to the desired value so that excessive stress and pore 

pressure buildup can be minimized.  

In the context of laboratory characterization for shale diffusion parameters using 

pressure transmission test, the results show that ignoring the coupled electrochemical 

and poroelastic effects can lead to significant underestimation of the rock permeability 

and membrane efficiency. The problem can exacerbate in soft sedimentary rocks in 

which it is well known that the coupled hydro-mechanical effects of poroelasticity is 

more pronounced.   
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Chapter 5:  The Wellbore Problem
2
 

5.1 Introduction 

With increasing shale drilling and fracturing activities for oil and gas production, the 

effects of coupled chemical-mechanical processes on the stability of wellbore drilling in 

shale formations have become a topic of extensive research. For example, the isotropic 

solution of a plane strain wellbore was derived by lumping the activity-generated 

osmotic pressure and pore pressure into a chemical potential term and ignoring the 

solute transport effect (Sherwood & Bailey, 1994). Later, the fully coupled anisotropic 

formulation for chemically active formations were presented and used to obtain the 

analytical solution for inclined boreholes subjected to in-situ state of stress in isotropic 

and transversely isotropic formations (Ekbote & Abousleiman, 2006). However, the 

electrical coupling effects were also neglected in this model. Recently, the 

porochemoelectroelastic analytical solution of inclined wellbore in isotropic formations 

was derived and presented by (Nguyen & Abousleiman, 2010).  

In this chapter, the anisotropic porochemoelectroelastic solution for an inclined 

borehole drilled in transversely isotropic chemically active shale formation is presented. 

The solution finds a wide range of applications in the petroleum industry as illustrated 

through the examples of wellbore drilling and leak-off test in the Woodford Shale 

formation.  

                                                 
2
 This chapter have been published in Tran & Abousleiman, J. App. Mech. (2013) 



70 

5.2 The Inclined Wellbore Problem 

5.2.1 Problem Descriptions 

Consider an infinitely long wellbore drilled perpendicular to the isotropic plane of a 

transversely isotropic shale formation as shown in Fig.5.1.  Also shown in Fig.5.1 is a 

Cartesian coordinate system X-Y-Z chosen with X and Y axes coinciding with SH and Sh, 

respectively. The wellbore coordinate systems x-y-z and r--z are also adopted to 

describe the stress state at far-field and around the wellbore.  The coordinate system x-

y-z is obtained from X-Y-Z by such rotation that Z becomes z while y remains in the 

horizontal plane (Cui et al., 1997). Finally, the wellbore polar coordinate system r--z is 

simply the complementary polar coordinate system of x-y-z. 

 

Fig.5.1-Geological and wellbore coordinates 
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Fig.5.2-The far-field stress components expressed in wellbore coordinate 

The in-situ stresses in the rock formation prior to borehole excavation can be expressed 

in terms of wellbore coordinate system, x-y-z, as shown in Fig.5.2. The transformed 

stress components obey the following relation 
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 (5.1) 

In wellbore cylindrical coordinate r--z, the far-field stress components are as follows: 

)(2cos ooorr SMS    (5.2a) 

)(2cos ooo SMS    (5.2b) 

)(2sin oor SS    (5.2c) 

)sin()cos(  yzxzrz SSS   (5.2d) 

)cos()sin(  yzxzz SSS   (5.2e) 
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with 
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5.2.2 Boundary Conditions 

The boundary conditions imposed at the wellbore wall (r = Rw) are as follows 

   )()()()(2cos tHtptHSM mudooorr    (5.3a) 

  )()(2cos tHS oor     (5.3b) 

  )(sincos tHSS yxxzrz    (5.3c) 

  )()()()( / tHtptptHpp shalemudmudo   (5.3d) 

  )()()()( / tHtntntHn
V

RT
p shalemud

a
mud
s

o
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f

a   (5.3e) 

  )()()()( / tHtntntHn
V

RT
p shalemud

c
mud
s

o
co

f

c   (5.3f) 

where H(t) is the Heaviside step function and  

)()()(/ tntntn mud
s

Rwr

shale
a

a
shalemud 


 (5.3g) 

)()()(/ tntntn mud
s

Rwr

shale
c

c
shalemud 


 (5.3h) 

The boundary conditions as r → ∞ are 

xxxx S  (5.4a) 

yyyy S  (5.4b) 

zS zzz   (5.4c) 



73 

xyxy S  (5.4d) 

yzyz S  (5.4e) 

xzxz S  (5.4f) 

opp   (5.4g) 

o
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o
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a
V

RTn
p   (5.4h) 

o
f

o
c

c
V

RTn
p   (5.4i) 

This problem, in spite of the formation anisotropy, can still be decomposed into three 

sub-problems, namely, a poroelastic plane strain problem (Problem I), an elastic 

uniaxial problem (Problem II), and an elastic anti-plane shear problem (Problem III) 

(Abousleiman & Cui, 1998). Each of the problems can be solved separately and 

superimposed at the end to arrive at the total solutions.  

5.3 Analytical Solutions 

5.3.1 Solution for Poroelastic Plane Strain Problem 

The solution for this problem can only be solved analytically in the Laplace transform 

domain (Carter & Booker, 1982). To facilitate Laplace transform technique, the 

solution is solved for the perturbed states so that all variables vanish identically at r → 

∞ and at t = 0. The perturbed boundary conditions at the wellbore wall for Problem I are 

  )()(2cos tpSM mudooorr    (5.5a) 

 )(2cos oor S     (5.5b) 

)()()( / tptptppp shalemudmudo   (5.5c) 
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These boundary conditions can further be decomposed into an axis-symmetric loading 

part (Part 1) as follows 

)(tpM mudorr   (5.6a) 

0 r  (5.6b) 

)(tpp   (5.6c) 

)(tpp aa   (5.6d) 

)(tpp cc   (5.6e) 

and a deviatoric loading part (Part 2) 

 )(2cos oorr S    (5.7a) 

 )(2cos oor S     (5.7b) 

0 ca ppp  (5.7c) 

For the borehole problems it is natural to employ the cylindrical coordinate system. The 

constitutive relations under plane strain condition (zz = 0) is simplified to 

pCC rrrr 11211     (5.8a) 

pCC rr 11112     (5.8b) 

  rrr GC 144 22   (5.8c) 

  p
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p
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kkrr
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where Cij are the anisotropic elastic stiffness coefficients, i are the anisotropic Biot’s 

pore pressure coefficients. The subscripts “1” and “2” denote properties in the isotropic 

plane (r- plane) and “3” when used denotes properties along the material axis of 

symmetry (z-direction).  

In the polar coordinate system, the equilibrium equations as presented in Chapter 2 

become 
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whereas the strain-displacement equations become 
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, and the conservation equations become 
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is the gradient vector in the cylindrical coordinate system.  

Substituting the stress-strain relations and the transport equations into the mass and 

electrical charge balance equations while assuming electrostatic condition ( 0/  te ), 

and ignoring the ion transport by advection terms gives (Nguyen & Abousleiman, 2010; 

Tran & Abousleiman, 2013) 
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Substituting the stress-strain relations into the equilibrium equations and taking into 

account the strain-displacement equations gives 
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The boundary conditions as shown in Eq.5.6-7 suggest the following form for the 

general solutions (Carter & Booker, 1982) 

      orrrrrcarkkrrrrca nUEEESSZPPPuppp    cos,,,,,,,,,,,,,,,,,, (5.14) 

      orzr nUWSu    sin,,,,  (5.15) 

with n = 0 for axis-symmetric loading and n = 2 for deviatoric loading. P, Pa, Pc, Z, Srr, 

S, Sr, Err, E, Er, Wz, Ekk, Ur, U are functions of time and radial distance only.  

Incorporating Eq.5.14-15 into Eq.5.13 and seeking for bounded solutions gives 
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n
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C
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11

1  (5.17) 

where Co is a constant of integration to be determined from boundary conditions, the 

tilde sign denotes Laplace transform solution, and s is the Laplace variable.  

Substituting Eq.5.17 into the Laplace transform of Eq.5.12 and taking into account 

Eq.5.14 yields 
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Solving Eq.5.18 for P
~

, aP
~

, cP
~

using matrix diagonalization technique (Farlow, 1993) 

gives 
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with Ci are constants of integration to be determined from the boundary conditions, 

)( rK in  is the modified Bessel function of the second kind of order n, ii s  / , in 

which i are the eigenvalues of the matrix      DYZ
1

 with  iii mmm 321 ,, as its 

corresponding eigenvectors, and    To
c

o
ai nnYf 1

1
1


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Substituting Eq.5.19 into the constitutive equations and the strain-displacement 

equations, the expressions for stresses in the Laplace transform domain are obtained as 

follows 
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where C4 is the constant of integration to be determined from the boundary conditions. 

For brevity, the complete solutions for each loading part with the corresponding 

constant of integrations are presented in the Appendix B. From there, the solution in 

time domain can be obtained using numerical inverse Laplace transform algorithms 

such as the Stehfest’s algorithm (Stehfest, 1970).  

5.3.2 Solution for Uniaxial Stress Problem 

The solution for this problem is purely elastic (Cui et al., 1997; Abousleiman & Cui, 

1998) 

oozzzz pvMvS )2(2 1333    (5.25) 

5.3.3 Solution for Anti-plane Shear Problem 

The solution for this problem is also purely elastic (Cui et al., 1997; Abousleiman & 

Cui, 1998) 
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5.3.4 Complete Solution for Inclined Wellbore Problem 

The final (total) solution are achieved by superimpose the solutions of individual 

problems 
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where the superscripts “
(1)

” and “
(2)

” denote the solution of Part 1 and Part 2 

respectively. 
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5.4 Solution Validations for Special Cases 

First, the solution is validated against the special case of a transversely isotropic 

poroelastic formation using the numerical example presented in (Abousleiman & Cui, 

1998). Shown in Fig.5.3 and Fig.5.4 are the effective tangential stress and effective 

axial stress with varying ratio of r/Rw along  = 90
o
 when assuming that the formation 

CEC is zero and that the drilling mud activity is equal to the native formation activity.  

Other formation and fluid properties, in-situ stresses, and wellbore geometry are the 

same as in (Abousleiman & Cui, 1998). It can be observed that the solution does reduce 

to that of Abousleiman & Cui (1998) for this special case.  

 
Fig.5.3-Effective tangential stress along  = 90

o
, identical to the results in 

Abousleiman & Cui (1998) 
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Fig.5.4-Effective axial stress along  = 90

o
, identical to the results in Abousleiman 

& Cui (1998) 

On the other hand, Fig.5.5 and Fig.5.6 are the effective radial and tangential stress 

around a vertical borehole in isotropic formation using the formation properties and in-

situ conditions as in the numerical examples of (Nguyen & Abousleiman, 2010). The 

following formula caca
eff DD ,, )1(   is used to calculate the effective ion diffusion 

coefficients. The rock tortuosity, , is assumed to be 2 which result in a
effD and c

effD of 

9.6×10
-12

 (m
2
/s) and 1.47×10

-11
 (m

2
/s) as reported in Nguyen & Abousleiman (2010). It 

can be observed that these results do not reduce to those in (Nguyen & Abousleiman, 

2010). It is possible that the previous study has applied the formula caca
eff DD ,,   in 

Shackleford & Daniel (1991) for estimating the effective ion diffusion coefficients 

which result in a
effD and c

effD of 2.53×10
-10

 (m
2
/s) and 3.86×10

-10
 (m

2
/s). In this case, the 

present solution does reduce to the results of Nguyen & Abousleiman (2010) for the 

special case of isotropic formation as shown in Fig.5.7 and Fig.5.8. 
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Fig.5.5-Effective radial stress when using a

effD = 9.6×10
-12

 (m
2
/s) and c

effD = 1.47×10
-11

 

(m
2
/s), the results does not reduce to that of Nguyen & Abousleiman (2010) 

 
Fig.5.6-Effective tangential stress when using a

effD = 9.6×10
-12

 (m
2
/s) and c

effD = 

1.47×10
-11

 (m
2
/s), the results does not reduce to that of Nguyen & Abousleiman 

(2010) 



84 

 
Fig.5.7-Effective radial stress, identical to the results in Nguyen & Abousleiman 

(2010) when using a
effD = 2.53×10

-10
 (m

2
/s) and c

effD = 3.86×10
-10

 (m
2
/s) 

 
Fig.5.8-Effective tangential stress, identical to the results in Nguyen & 

Abousleiman (2010) when using a
effD = 2.53×10

-10
 (m

2
/s) and c

effD = 3.86×10
-10

 (m
2
/s) 
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5.5 Examples of Applications 

5.5.1 Drilling in Shale 

In this section, a vertical wellbore with radius of 0.1 m is assumed to be drilled in a 

shale formation at a depth of 2000 m and subject to the following in-situ conditions: SV 

= 50 MPa, SH = 44 MPa, Sh = 40 MPa, po = 19.6 MPa, T = 90
o
 C. The drilling fluid is 

NaCl solution with activity of 0.9 and density of 1.07 g/cc. The shale formation rock 

properties are assumed to be that of the organic rich Woodford shale having native pore 

fluid activity ao = 0.87 and geomechanical properties similar to those given in Table 

3.2. Shown in Fig.5.9 is the pore pressure profile along the direction of the maximum 

horizontal stress ( = 0
o
) at 15 minutes after drilling. The plot for the transversely 

isotropic poroelastic case (CEC = 0, amud = ao) and the isotropic prochemoelectroelastic 

case with E1 = E3 = 4.2 GPa and 1 = 3 = 0.3 (this data set simulates an oil field 

scenario where sonic run in a vertical wellbore can only obtain mechanical properties 

along the wellbore-axis) are also included for comparison. The pore pressure jump at 

the wellbore wall when comparing the porochemoelectroelastic models with the 

anisotropic poroelastic model is the result of the Donnan equilibrium effect as discussed 

in previous sections. The pore pressure peak near the wellbore wall (r/Rw ≈ 1.03) is a 

consequence of the chemical osmotic effects generated by the high mud salinity. On the 

other hand, the dip of pore pressure to a value below the virgin pore pressure (19.6 

MPa) at r/Rw ≈ 1.35 as shown in all three models is a result of the volumetric expansion 

of the formation on the side of the maximum horizontal stress. As time elapses, the pore 

pressure peak inside the formation decreases as shown in Fig.5.10. However, the pore 

pressure jump at the wellbore wall due to the Donnan equilibrium effect remains.  
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Fig.5.9-Pore pressure along the direction of SH at t = 15 minutes 

 
Fig.5.10-Pore pressure along the direction of SH at various times 

Shown in Fig.5.11 and Fig.5.12 are, respectively, the effective radial stress and the 

effective tangential stress in the direction of the maximum horizontal stress at 15 

minutes after excavation. As seen in Fig.5.11, the pore pressure peak inside the 

formation as previously discussed results in a region of tensile effective radial stress 

near the wellbore wall which causes spalling failure of the formation in this region. 
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Similarly, a less compressive region close to the borehole wall is observed for the 

effective tangential stress as shown in Fig.5.12. For this particular analysis, it seems that 

the effects of formation anisotropy on pore pressure and effective radial stress 

distributions become more significant at places away from the wellbore wall. 

 
Fig.5.11-Effective radial stress along the direction of SH at t = 15 minutes 

 
Fig.5.12-Effective tangential stress along the direction of SH at t = 15 minutes 
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The effects of formation CEC on the effective radial stress distribution is shown in 

Fig.5.13. It can be observed that the higher the CEC values, the larger the extent of the 

near-wellbore tensile region. Hence, clay rich intervals are more susceptible to spalling 

failure than quartz rich intervals.   

 
Fig.5.13-Effective radial stress along the direction of SH at t = 15 minutes and CEC 

= 5, 10, 15 meq./100 grams 

As shown in Fig.5.14 and Fig.5.15, the effective radial stress distribution near the 

wellbore wall (r/Rw < 1.05) is not sensitive to the variation of the Poisson’s ratio and 

Young’s modulus in the isotropic plane for this data set. This is in accordance with the 

observation in Abousleiman & Cui (1998) that the effects of anisotropy on radial stress 

only become more significant at places far away from the borehole wall as time 

progresses. On the other hand, the near wellbore distribution of the effective tangential 

stress is greatly affected by the formation anisotropy as shown in Fig.5.16 and Fig.5.17. 

Therefore, it is expected that the material anisotropy influences the wellbore fracturing 

mudweight significantly, while the corresponding elastic solution predicts no anisotropy 

effects on the fracturing at all. The results in this section clearly show that ignoring 
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either the porochemoelectroelastic effects or the formation transversely isotropic 

characteristic leads to inaccurate predictions of near wellbore effective stresses and pore 

pressure distribution. 

 
Fig.5.14-Effective radial stress along the direction of SH at t = 15 minutes with 1 = 

0.13, 0.2, 0.25 and 3 = 0.3 

 
Fig.5.15-Effective radial stress along the direction of SH at t = 15 minutes with E1 = 

7.4, 6.6, 5.8 (GPa) and E3 = 4.2 (GPa) 
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Fig.5.16-Effective tangential stress along the direction of SH at t = 15 minutes with 

1 = 0.13, 0.2, 0.25 and 3 = 0.3 

 
Fig.5. 17-Effective tangential stress along the direction of SH at t = 15 minutes with 

E1 = 7.4, 6.6, 5.8 (GPa) and E3 = 4.2 (GPa) 

5.5.2 Leak-off Test 

In this section, the effects of borehole fluid pressure history on the pore pressure and 

stresses distribution around the wellbore is shown to demonstrate the versatility of the 

solutions. Of particular interest is the stress and pore pressure distribution during a leak-
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off test. The leak-off test is usually performed to determine the strength or fracture 

pressure of the open formation and is usually conducted soon after drilling on the open 

formation section just below the new casing shoe. Shown in Fig.5.18 is a typical mud 

pressure and salinity history which mimics the down-hole conditions from the time of 

drilling to leak-off test. Practically, during leak-off tests, it is the pumping rate of the 

fracturing fluid instead of the down-hole pressure is controlled (known) variable. 

However, assuming that the fluid leak-off rate into the formation is negligible due to the 

intrinsically low permeability of the shale formations, a constant pumping rate will 

translate itself into a linear increase in down-hole pressure as shown in Fig.5.18. 

 

Fig.5.18-Typical mud pressure and mud salinity history during drilling and leak-

off test 

Because numerical Laplace inversion algorithms cannot be used to invert piecewise 

functions, analysis for mud pressure history as shown in Fig.5.18 require convoluting 

the solution of a wellbore creation problem (constant mud pressure) with the solution 

from a perturbed linear increase of wellbore pressure. The “perturbed” means changes 
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with respect to the down-hole condition during drilling. The solution for the wellbore 

creation problem has been addressed previously. The perturbed linear increase wellbore 

pressure problem has non-trivial perturbed boundary conditions at the wellbore wall (r 

= Rw) as shown in Eq.5.37, and the general solution is that of the axis-symmetric 

loading case (Part 1).  

)(1 owrr tHpt
dt

dp








  (5.37a) 

)(1 ow tHpt
dt

dp
p 








  (5.37a) 

0ap  (5.37c) 

0cp  (5.37d) 

In this numerical example, the leak-off test is assumed to start at 30 minutes after 

drilling (to = 30 minutes).  The down-hole pressure is assumed to increase linearly at a 

rate of 0.03 S.G./min. The formation properties and other down-hole conditions during 

drilling are assumed to be the same with the previous example. Fig.5.19-21 show the 

evolution of the pore pressure, the effective radial stress, and the effective tangential 

stress at 15, 30 minutes after drilling, and 10, 20 minutes after the start of leak-off test 

(or 40 and 50 minutes after drilling).  As expected, the near-wellbore tensile zone of 

radial stress becomes smaller during leak-off test due to increasing compression from 

the ramping wellbore pressure as shown in Fig.5.20.  On the other hand, the tangential 

stress at the wellbore wall becomes less and less compressive as time elapses as 

depicted in Fig.5.21.  
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Fig.5.19-Pore pressure distribution ( = 0

o
) at various times 

 
Fig.5.20-Effective radial stress distribution ( = 0

o
) at various times 
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Fig.5.21-Effective tangential stress distribution ( = 0

o
) at various time 

5.6 Summary 

In this chapter, the analytical solution for an inclined wellbore drilled in transversely 

isotropic chemically active and charged saturated shale formation is derived and 

presented. The solution finds a wide range of applications in the petroleum industry as 

illustrated through the examples of wellbore drilling and leak-off test in the heavily gas 

produced Woodford Shale formation. 

From the present solutions, it is observed that the pore pressure diffusion is affected not 

only by the hydraulic Darcy’s permeability, Fick’s solute diffusion coefficient, and the 

membrane efficiency, but also by the electrokinetic contribution that manifests itself as 

a boundary effect at the borehole wall. The analyses show clearly that the effective 

tangential stress and the axial stress are greatly affected by the formation anisotropic 

mechanical parameters. The numerical examples also show that the presence of the 

negative fixed charges on clays surfaces creates a pore pressure jump at the wellbore 

wall due to the Donnan equilibrium effect. The problem exacerbates when drilling mud 
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with activity higher than the pore fluid native activity is used. These combined effects 

can result in a region of tensile effective radial stress and less compressive tangential 

stress near the wellbore wall which may lead to tensile failure of the formation.  Since 

wellbore stability analyses are usually performed based on effective stresses, ignoring 

either the porochemoelectroelastic behavior or the anisotropic characteristic of the shale 

formation will mislead the predictions and assessment of potential problems in applied 

field engineering operations. 
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Chapter 6:  Conclusions 

In this work, the formulation for anisotropic porochemoelectroelasticity is presented. 

Discussions on the electrokinetic equilibrium conditions in the shale prior to and after 

being exposed to an external fluid are also included. Then, the analytical solutions for 

rectangular strip sample, cylindrical sample, and inclined wellbore under various 

loading and in-situ conditions while being exposed to aqueous solutions are derived. 

For each solution, numerical examples are given to illustrate the applications of the 

newly-derived solution for laboratory characterization and field analyses.  

The results show that ignoring either the porochemoelectroelastic behavior or the well 

known anisotropic characteristic of the shale formation will mislead the predictions and 

assessment of potential problems in laboratory testing and field operations. In 

particular: 

For laboratory characterization of shale, the analyses show that presence of negative 

fixed charges on the clay minerals create an osmotic pressure at the interface of the 

shale sample and the testing fluid with magnitude proportional to the CEC of the sample 

according to the Donnan equilibrium condition. The magnitude of the Donnan-induced 

pore pressure is rather small when compared to the load-generated pore pressure or 

activity-generated pore pressure. However, the Donnan-induced pore pressure when 

coupled with the pore pressure surge due to the applied load in addition to the use of a 

high activity (i.e. low salinity) testing fluid can result in significant tensile effective 

stresses in the sample which may lead to tensile damages in weak shale samples. The 

results, thus, explain why some shales disintegrate when brought into contact with 
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certain aqueous solutions while others do not. In addition, the complex pore pressure, 

stresses responses and distributions, and induced tensile damages can complicate the 

interpretation of experimental results for the effects of fluid chemistry on the rock 

matrix. It is, therefore, recommended to gradually adjust the testing fluid salt 

concentration or applied load to the desired value so that excessive induced stresses and 

pore pressure buildup become minimal.  

Similarly, for application in shale hydraulic fracturing, the Donnan equilibrium effects 

and the use of a high activity (i.e. low salt concentration) water-based fracturing fluid 

can induce a tensile damage zone near the fracture surface. As the result, the formation 

becomes weaker and can deform more easily producing a wider fracture width and a 

shorter fracture length. In addition, the damaged and weakened formation can 

exacerbate the problem of proppant embedment leading to fracture closure and, thus, 

further reducing the fracture length and productivity. Thus, the results explain why 

higher clay content intervals are often observed to be more “ductile” compared to lower 

clay content intervals. Practically, the use of fracturing fluid having similar activity with 

the shale formation native pore fluid can help to prevent the tensile damages and work 

for the advantage of the fracturing process.  

Analysis for shale electrokinetic effects on pore pressure buildup during diagenesis 

suggests that, in addition to the intrinsically low permeability of shale, the semi-

permeable membrane behavior of the clay matrix can effectively hinder the overall pore 

fluid diffusion process. As a result, the pore pressure buildup inside a shale formation 

can be much higher than in a clean sand formation under the same consolidation rate. 
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Hence, taking into account shale electrokinetic effects in basin modeling may give 

better predictions of overpressure issues in shale. 

In the context of laboratory characterization for shale diffusion parameters using the 

pressure transmission test, the results show that ignoring the coupled electrochemical 

and poroelastic effects can lead to significant underestimation of the rock permeability 

and membrane efficiency. The problem exacerbates in soft sedimentary rocks in which 

the coupled hydro-mechanical effects of poroelasticity is more pronounced.   

Finally, analyses for wellbore drilling in shale clearly show that the effective tangential 

stresses and, hence, the axial stresses around a wellbore are greatly affected by the 

formation anisotropic mechanical parameters. In addition, the presence of clay fixed 

charges and the use of a drilling mud with activity higher than the pore fluid native 

activity result in a region of tensile effective radial stress and less compressive 

tangential stress near the borehole wall which may lead to wellbore spalling and in 

extreme case will result in stuck pipe and non-productive time.  Since wellbore stability 

analyses are usually performed based on effective stresses, ignoring either the 

porochemoelectroelastic behavior or the anisotropic characteristic of the shale 

formation will mislead the predictions of potential wellbore instability problems. 

The newly-derived solutions are useful not only to analyze and simulate experimental 

testing results but also to predict possible problems arising from the electrochemical 

interactions between the shale and the outer environment fluid. In addition, 

geomechanics modelers can utilize the solutions as benchmarks to validate their 

numerical algorithms for hydraulic fracturing and reservoir simulations. 
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Appendix A: Relationships between Elastic Stiffness Coefficients and 

Elastic Moduli for Anisotropic Medium 

Transversely Isotropic Material 

The elastic stiffness coefficients, Cij, can be expressed in terms of the familiar 

engineering moduli as (Boresi & Chong, 1987) 
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where E1  and E3 are the Young’s modulus in the direction parallel to and perpendicular 

to the isotropic plane (i.e. the apparent laminations of the rock) respectively. 1 is the 

Poisson’s ratio which characterizes the transverse expansion in the isotropic plane due 

to a load in the same plane, and 3 is the Poisson’s ratio which gives the transverse 

expansion in the isotropic plane due to a load normal to the plane. 

Following Abousleiman et al. (1996), the transversely isotropic Biot’s pore pressure 

coefficients 1 and 3 can be expressed in terms of Cij and the bulk modulus of the solid 

grains, Ks, as 
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The Biot’s modulus, M, is given as (Cui et al., 1996) 
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Orthotropic Material 

The elastic stiffness coefficients, Cij, can be expressed in terms of the familiar 

engineering moduli as (Lekhnitskii, 1981) 
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where E1, E2, E3 are the Young’s modulus in the 1, 2, and 3 direction respectively. G12, 

G13, and G23 are the shear moduli for planes that are parallel to the coordinate planes 1-

2, 2-3, and 1-3. Finally, ij (i, j = 1, 2, 3) are the Poisson’s ratio characterized by the 

expansion in the j-direction due to applied stress in the i-direction.  

The anisotropic Biot’s pore pressure coefficients, 1 and 3, and Biot’s modulus, M, can 

be expressed in terms of Cij and the bulk modulus of the solid grains, Ks, as (Cui et al., 

1996; Cheng, 1997) 
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Appendix B: Wellbore Plane Strain Solutions 

Solution for Part 1: Axis-Symmetric Loading 

The Laplace transformed boundary conditions at r = Rw are as follows 
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Solution for Part 2: Deviatoric Loading 

The Laplace transformed boundary conditions at r = Rw are as follows 
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The solution in Laplace transform domain is as follows 
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