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ABSTRACT 

 

 

THE EFFECTS OF AGING ON MARKERS OF MYOSTATIN PATHWAY 

ACTIVITY AFTER THREE SEQUENTIAL BOUTS OF RESISTANCE EXERCISE 

 

Vincent James Dalbo III, Ph.D. 

 

The University of Oklahoma, 2010 

 

Supervising Professor: Chad Michael Kerksick 

Background. Myostatin signaling serves to regulate skeletal muscle mass by 

influencing genes responsible for regulating satellite cell activity and by participating in 

glucocorticoid induced skeletal muscle atrophy; however research investigating 

myostatin pathway signaling is still in its infancy.    

Purpose. The purpose of this investigation was two-fold: 1) To examine if 

baseline differences in myostatin signaling exist between younger (18-35 yr) and older 

(65-80 yr) men. 2) To examine if short-term, chronic resistance training can ameliorate 

potential differences in myostatin signaling that exist between younger and older adults.  

 Methods. Younger (n = 10; age: 21.0 ± 0.5 years, body mass: 82.3 ± 4.2 kg, 

height: 178.4 ± 2.2 cm, body fat percentage: 15.4 ± 2.9%) and older (n = 10; age: 66.4 ± 

1.6 years, body mass: 94.2 ± 3.7 kg, height: 180.9 ± 2.2 cm, body fat percentage: 27.4 ± 

1.8%) men chose to participate in the current investigation. Participants were one 

repetition maximum tested (1 RM) for leg press, hack squat and leg extension. Then 

participants underwent two familiarization sessions separated by 48 hours before 
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partaking in three training sessions separated by 48 hours which consisted of 3 sets of 10 

repetitions at 80% of 1RM for each of the previously mentioned exercises. Percutaneous 

muscle biopsies were collected from the vastus lateralis prior to the exercise intervention 

(T1), 48 hours following workout 1 (T2), 48 hours following workout 2 (T3), and 24 

hours following workout 3 (T4). The mRNA expression of MYOSTATIN, ACTIVIN IIB, 

HSGT, TITIN CAP, FLRG, FOLLISTATIN and SMURF1 were analyzed in duplicate and 

expressed using the 2
-∆CT

 method where ∆CT = (gene of interest – the average of B2M 

and 28S). The protein expression of phosphorylated Smad3 (pSmad3) was determined 

using western blotting procedures.         

Results. Younger men had a significantly greater 1 RM for hack squat (younger: 170.0 ± 

10.9 kg, older: 105.8 ± 10.4 kg; p = 0.001), leg press (younger: 271.1 ± 14.6 kg, older: 

182.7 ± 14.9 kg; p < 0.001) and leg extension (younger: 64.8 ± 4.0 kg, older: 46.7 ± 2.8 

kg; p = 0.002) compared to older men. As a result the cumulative training volume was 

significantly greater during the training bouts in younger compared to older men 

(younger: 36,392 ± 1,894 kg, older: 23,724 ± 1,639 kg; p < 0.001). Three day food 

diaries indicated that relative caloric (young = 33.4 ± 5.1 kcal/kg/d, old = 19.5 ± 1.9 

kcal/kg/d; p = 0.038), protein (young = 1.6 ± 0.2 g/kg/d, old = 0.8 ± 0.1 g/kg/d; p = 

0.030), carbohydrate (young = 4.1 ± 0.6 g/kg/d, old = 2.3 ± 0.3 g/kg/d; p = 0.017) and fat 

(young = 1.2 ± 0.2 g/kg/d, old = 0.6 ± 0.1 g/kg/d; p = 0.006) consumption were each 

significantly greater in younger compared to older men. Non-parametric statistics were 

used for the assessment of mRNA and protein data. The only between groups differences 

for the mRNA expression of the genes of interest occurred at baseline (p = 0.038) and T4 

(p = 0.005) for FLRG and baseline (p = 0.023) and T2 (p = 0.008) for FOLLISTATIN in 
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which older men had significantly greater mRNA expression values compared to younger 

men. The only significant within group changes occurred in the mRNA expression of 

MYOSTATIN as older men had a significant downregulation following T3 (p = 0.047) 

and T4 (p = 0.013), while younger men experienced a trend decrease following T4 (p = 

0.074). Significant between group differences were present in the protein expression of 

pSmad3 following T3 (p = 0.012) and T4 (p = 0.010).  

Conclusions. Baseline differences in myostatin signaling were present as older 

men had significantly greater mRNA levels of the myostatin binding proteins FLRG and 

FOLLISTATIN compared to younger men. The myostatin pathway signaling response 

following short-term, chronic resistance training was similar between younger and older 

men. However, alterations in myostatin pathway signaling following repeated resistance 

training bouts was more favorable in older men. Specifically, older men experienced a 

significant decrease in the mRNA expression of MYOSTATIN at T3 and T4. Older men 

also had significantly lower pSmad protein levels at T3 and T4 compared to younger 

men. Decrements in serum androgen concentrations appear to be primarily responsible 

for the loss of skeletal muscle mass with age. However, in attempt to maintain skeletal 

muscle mass with age positive physiological adaptations have been found to occur such 

as an increase in the mRNA expression of ANDROGEN RECEPTOR and myogenic 

regulatory factors. Results from the current investigation provide evidence that favorable 

adaptations occur in myostatin pathway signaling to promote skeletal muscle growth with 

age and following short-term, chronic resistance training. 
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CHAPTER I 

INTRODUCTION 

It is well known that myostatin is an important regulator of skeletal muscle mass 

but research investigating myostatin pathway signaling is still in its infancy. There are 

several binding proteins that serve to inhibit the effects of  myostatin either by preventing 

secretion: HSGT[1] and titin cap[2], activation: GASP1[3] and HSGT[1] or receptor 

binding: myostatin propeptide[4], FLRG[5] and follistatin[6]. Unbound, active myostatin 

binds to activin IIB receptors which activate the type I receptor (ALK4 or ALK5) which 

transphosphorylate Smads2/3 which then aggregate with Smad4 and translocate the 

nucleus and influence gene transcription[7]. The negative regulators of myostatin 

signaling are Smad7[7] and Smurf1[8]. Smad7 binds to the intracellular domain of type I 

receptors preventing the phosporalization of Smads2/3[9, 10] and further inhibits 

myostatin signaling by forming a complex with Smads2/3, thereby reducing the complex 

formation between Smads2/3 and Smad4[7, 10]. While Smurf1 is an E3 ubiquitin ligase 

which tags Smad2/3 for degradation[11].  

Myostatin has a vital role in the regulation of skeletal muscle mass from the 

prospective of skeletal muscle hypertrophy and atrophy. Myostatin has been proposed to 

be a negative regulator of skeletal muscle mass by maintaining satellite cells in a 

quiescent state[12-14] and is involved with skeletal muscle loss via glucocorticoid 

induced skeletal muscle atrophy[15, 16]. Animal models have demonstrated the 

importance of myostatin in the regulation of skeletal muscle mass as male mice over-

expressing myostatin have significantly less skeletal muscle mass compared to normal 

counterparts[17]. While myostatin knockout mice[18, 19] and mice receiving a myostatin 

blocking anti-body[20, 21] have been found to be significantly stronger and to have 
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significantly more skeletal muscle mass compared to normal counterparts. Myostatin has 

also been found to play a role in the regulation of skeletal muscle mass in humans as 

serum myostatin has been found to be upregulated in accord with muscle wasting in HIV 

infected men[22]. 

Due to the importance of myostatin in the regulation of skeletal muscle mass the 

possibility exists that myostatin pathway signaling may be involved with the age related 

loss of skeletal muscle mass, but few investigations have directly examined the effects of 

age on myostatin signaling in humans. In 2002, Roth et al.[23] examined the effects of a 

9 week unilateral heavy resistance training program on myostatin gene expression in 

younger (20-30 yr; 4 men and 4 women) and older (65-75 yr; 3 men and 4 women) 

adults. The authors found MYOSTATIN mRNA expression to be significantly 

downregulated following chronic resistance exercise (pre: 2.70 ± 0.36; post: 1.69 ± 0.18 

arbitrary units) with no significant age or gender differences. However, the results may 

have been influenced by biopsy time-points as the post-training biopsy was obtained 48-

72 hr following the final resistance training bout. MYOSTATIN  mRNA expression has 

since been found to be significantly downregulated 48 hours following an acute exercise 

bout in older adults[24] and no data is currently available on MYOSTATIN 

 mRNA expression 72 hours following an exercise bout. In 2006, Raue et al.[25] 

examined the effects of age and an acute bout of resistance exercise on gene expression 

in younger (n = 8; 18-30 yr) and older (n = 6; 80-89 yr) women. Muscle biopsies were 

obtained prior to and 4 hours following resistance exercise. Baseline mRNA expression 

of MYOSTATIN was significantly greater in older compared to younger women. 

Following training there was a significant downregulation of MYOSTATIN 
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mRNA expression in younger and older women with no significant difference in 

MYOSTATIN  mRNA expression between groups. Finally, Jensky et al.[26] examined the 

effects of an acute resistance exercise bout consisting of single leg eccentric knee 

extensions on select markers of the myostatin signaling pathway between younger (n = 

10; 28 ± 5 yr) and older (n = 10; 68 ± 6) men at baseline and 24 hours following exercise. 

At baseline there was a trend for MYOSTATIN mRNA to be greater in older compared to 

younger adults (p = 0.06) and older adults had significantly greater levels of 

FOLLISTATIN mRNA expression while no differences between groups were present for 

HSGT. There was no effect of exercise on MYOSTATIN, FOLLISTATIN or HSGT 24 hr 

post-exercise.  

Due to the importance of myostatin in the regulation of skeletal muscle mass 

through the inhibition of hypertrophy by maintaining satellite cells in a quiescent 

state[12-14] and by influencing skeletal muscle catabolism through a glucorticoid 

induced mechanism[15, 16] it is of importance to understand the effects of age on 

myostatin pathway signaling. Therefore, the purpose of this investigation is two-fold: 1) 

To examine if baseline differences in myostatin signaling exist between younger (18-35 

yr) and older (65-80 yr) men. 2) To examine if short-term chronic resistance training can 

ameliorate potential differences in myostatin signaling that exist between younger and 

older adults.  
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Hypotheses 

1. It is hypothesized that baseline MYOSTATIN mRNA expression will be 

significantly upregulated in older compared to younger men. However, following 

resistance training it is hypothesized there will be no significant difference in 

MYOSTATIN mRNA expression between younger and older men.  

2. It is hypothesized there will be no significant difference in the baseline mRNA 

expression ACTIVIN IIB receptor at baseline or following resistance training 

between younger and older men.  

3. It is hypothesized there will be no baseline differences between younger and older 

men for the myostatin binding proteins: FLRG, TITIN CAP and HSGT at baseline 

or following training. However, it is hypothesized that mRNA expression of 

FOLLISTATIN will be significantly upregulated in older adults compared to 

younger adults at baseline with no significant differences between groups 

following training. 

4. It is hypothesized that SMURF1 mRNA expression will be significantly 

upregulated in older compared to yonger adults at baseline and no significant 

differences will be present following training.  

5. It is hypothesized that pSmad3 protein expression will be significantly greater in 

older men compared to younger men at baseline and there will be no significant 

difference between younger and older adults following training.   
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Definitions of Terms and Procedures 

Myostatin – Is a negative regulator of skeletal muscle mass. Myostatin acts to keep 

satellite cells in a quiescent state and is involved with glucocorticoid induced skeletal 

muscle atrophy.  

Activin IIB – The receptor with the highest binding affinity for myostatin.  

R-Smads – Are a class of proteins (Smad1, Smad2, Smad3, Smad5 and Smad8) that 

when activated bind to the common mediator Smad (Smad4) which translocate the 

nucleus and regulate the transcription of specific genes. Smads2/3 are activated in 

response to TGF-β or activin signals and play an importation role in the myostatin 

signaling pathway for the regulation of skeletal muscle mass Smads1/5/8 are activated in 

response to bone morphogenetic protein. 

Co-Smad – Interact with R-Smads to influence gene transcription. The only known Co-

Smad is Smad4.  

I-Smads – The known I-Smads are Smad6/7. Smad7 regulates myostatin by preventing 

the recruitment and activation of Smad2 and 3.   

Smurf1 – Is an E3 ubiquitin ligase that tags Smads2/3 for degradation.  

HSGT – Is a myostatin binding protein expressed in skeletal muscle which inhibits 

myostatin secretion and activation. 

Titin Cap – Is a myostatin binding protein expressed in skeletal muscle which inhibits 

myostatin latent complex formation and secretion, maintaining myostatin in an “inactive” 

state.   

Follistatin – Is a myostatin binding protein expressed in skeletal muscle which inhibits 

myostatin receptor binding.  
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FLRG also known as FSTL3 - Is the primary binding/inhibition protein of myostatin. 

Once bound to myostatin FLRG inhibits myostatin receptor binding.  

Satellite cells – Skeletal muscle precursor cells that are located between the sarcolemma 

of mature muscle fibers and the basement membrane.  

Quiescence – A term used in reference of satellite cells to describe a state of inactivity; a 

state in which a cell is not dividing.  

Proliferation – A term used in reference of satellite cells to describe a state of activity; a 

state in which a cell is dividing.  

Differentiation – A term used in reference of satellite cells; is the process in which a less 

specialized cell becomes a more specialized cell.   

Cyclin-dependent kinases (CDK) – Are a group of proteins that when upregulated signal 

satellite cell proliferation.  

CDK inhibitors – A term used to refer to proteins (p21, p27, p57, ect.) that when 

upregulated end satellite cell proliferation allowing satellite cells to start the process of 

differentiation.  

Myogenic regulatory factors (MRF) – Are basic helix-loop-helix proteins (MyoD, 

myogenin, MRF4 and Myf5) that stop satellite cell proliferation and signal satellite cell 

differentiation. 

Myosin heavy chain – Myosin is one of the contractile components of skeletal muscle, 

the other being actin. Myosin heavy chain is a protein commonly used to examine the 

effects of a nutritional/exercise intervention on skeletal muscle hypertrophy.   

DNA – Deoxyribonucleic acid is a double-stranded molecule that contains the genetic 

instructions used in the development and function of living organisms. Genetic 
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information is transcribed from DNA, located in nuclei, into mRNA and then translated 

into functional proteins.  

Total RNA – Ribonucleic acids are single-stranded molecules. There are three types of 

RNA: 

1) ribosomal RNA (or rRNA including the 18S, 5.8S, 28S and 5S subtypes) make up 

~80% of the total RNA pool and are used to carry out protein synthesis; 2) transfer RNA 

(or tRNA) make up ~15% of the total RNA pool and are used to transfer amino acids to 

growing polypeptide chains during protein synthesis; 3) messenger RNA (or mRNA) 

makes up ~5% of the total RNA pool and function to carry genetic information from 

genes to ribosomes 

Muscle homogenation – Refers to the process of using various buffers to make solid 

muscle soluble in solution for subsequent substrate analyses 

Cell lysis buffer – A muscle homogenation buffer that yields total muscle protein 

solubilized in solution for subsequent western blotting analyses. 

Tri reagent – A solution which contains chemicals (i.e., phenol and guanidine 

thiocyanate) that inhibit RNase activity.   

Western blotting – A multi-step process whereby proteins from muscle homogenates are:  

1) separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2) transferred 

to a nitrocellulose membrane and 3) probed using a primary antibody specific to a protein 

of interest. In this process a secondary antibody conjugated to an enzyme which is 

specific to the primary antibody and a substrate which luminesces when exposed to the 

secondary antibody-enzyme conjugate emits light which is used to analyze muscle 

protein content of the specific protein of interest.    
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Ponceau S staining – Is a staining procedure used to mathematically correct for lane-to-

lane loading variations that occur during Western blotting.   

Real time reverse transcriptase polymerase chain reaction (RT-PCR) – Is a multi-step 

procedure which uses gene-specific primer sequences and a fluorescent tracer to detect 

the expression of specific mRNA transcripts. 

Housekeeping gene – Is a gene that is constitutively expressed (in this investigation prior 

to and following resistance exercise). The housekeeping genes B2M and 28S were used to 

normalize the gene expression of the genes of interest and to correct for well-to-well 

loading variations between samples. 

Melt Curve – Is a post hoc procedure used to confirm the presence of one cDNA 

amplification product (or gene) during PCR. 

 

Abbreviations 

MSTN – myostatin  

FLRG - follistatin-related gene, is also known as follistatin-like-3 (FSTL3)  

GASP1 – growth and differentiation factor-associated serum protein-1 

HSGT - human small glutamine-rich tetratricopeptide repeat-containing protein 

Smad - mothers against decapentaplegic homolog  

B2M – Beta-2 microglobulin 

R-Smads - receptor-regulated Smads 

Co-Smad - common-mediator Smad 

I-Smads - antagonistic or inhibitory Smads 

SMURF1- is also known as SMAD specific E3 ubiquitin protein ligase 1 
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MURF-1 - muscle-specific RING (really interesting and novel gene) finger 

FOXO3A - forkhead transcription factor 

PAX3 - paired box 3 

PAX7 - paired box 7 

KI-67 – antigen identified by monoclonal antibody KI-67 also known as MKI67 

P57 - cyclin-dependent kinase inhibitor 1C 

CDK – cyclin-dependent kinase 

P21
Cip1

 – cyclin-dependent kinase inhibitor 1A  

P27
Kip1

 – cyclin-dependent kinase inhibitor 1B 

MYOD – myogenic differentiation 

MRF4 – myogenic regulatory factor 4 also known as myogenic factor 6 and herculin 

MYF5 – myogenic regulatory factor 5 

MEF2 – myocyte enhancer factor 2 

MHC – myosin heavy chain 

MGF – mechano growth factor 

RNA – ribonucleic acid 

DNA – deoxyribonucleic acid 

IGF – insulin-like growth factor 

MRF – myogenic regulatory factor 

RT-PCR – reverse transcriptase polymerase chain reaction  

cDNA – copy DNA 

 [ ] – signifies concentration 

ALS - amyotrophic lateral sclerosis 

PRO – protein 
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PLA – placebo 

Delimitations 

Ten older (60-75 yr) and ten younger (18-25 yr) males who were not currently 

participating in any form of resistance training were recruited for this investigation. Befor 

any data was collected each participant completed a written statement of informed 

consent and medical history questionnaire. Inclusion criteria included the following: 1) 

Participants had to be apparently healthy and could not have participated in a structured 

resistance exercise regimen (i.e., at least one time per week) for one year prior to the 

initiation of this investigation. 2) Participants had to abstain from smoking, alcohol, 

tobacco and caffeine for the duration of the investigation. 3) Participants could not have 

consumed ergogenic nutritional supplements for at least 3 months prior to the start of the 

investigation. 4) Participants could not be affected with metabolic disorders including 

heart disease, arrhythmias, diabetes, thyroid disease or hypogonadism. 5) Participants 

could not have a history of pulmonary disease, hypertension, hepatorenal disease, clotting 

disorders, musculoskeletal disorders, neuromuscular/neurological diseases, autoimmune 

disease, cancer, peptic ulcers or anemia. 6) Participants could not have been diagnosed 

with a neuromuscular disease that would have prevented them from participating in the 

resistance training protocol. 7) Participants could not have been taking prescription 

medications indicated for heart, pulmonary, anti-coagulant, anti-hypertensive, 

psychotropic, neuromuscular/neurological or androgenic dysfunctions. 8) Participants 

could not have had an allergy to Lidocaine or latex. 9) Older participants had to provide 

written medical clearance from their primary physician. 10) Participants could not have 

had any absolute or relative contraindication for exercise testing as outlined by the 

American College of Sports Medicine: 
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Absolute Contraindications to Exercise Testing 

– A recent significant change in the resting ECG suggesting significant ischemia, recent 

myocardial infarction or other acute cardiac event 

– Unstable angina 

– Uncontrolled cardiac dysrhythmias causing symptoms or hemodynamic compromise 

– Symptomatic severe aortic stenosis 

– Uncontrolled symptomatic heart failure 

– Acute pulmonary embolus or pulmonary infarction 

– Acute myocarditis or pericarditis 

– Suspected or known dissecting aneurysm 

– Acute systemic infection, accompanied by fever, body aches, or swollen lymph glands 

Relative Contraindications to Exercise Testing 

– Left main coronary stenosis 

– Moderate stenotic valvular heart disease 

– Electrolyte abnormalities (e.g. hypokalemia, hypomagnesemia) 

– Severe arterial hypertension (i.e. SBP > 200 and/or DBP > 110) at rest 

– Tachydysrhythmia or bradydysrhythmia 

– Hypertrophic cardiomyopathy and other forms of outflow tract obstruction 

– Neuromuscular, musculoskeletal, or rheumatoid disorders that are exacerbated by 

exercise 

– High-degree atrioventricular block 

– Ventricular aneurysm 

– Uncontrolled metabolic disease (e.g., diabetes, thyrotoxicosis, or myxedema) 
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– Chronic infectious disease (e.g., mononucleosis, hepatitis, or AIDS) 

– Mental or physical impairment leading to inability to exercise adequately 

 

Assumptions 

1. Participants correctly completed the medical history questionnaires. 

2. Participants followed the guidelines established by the investigators throughout the 

duration of the study (i.e., participants refrained from consuming supplements, 

tobacco, alcohol, anti-inflammatory, etc; participants did not exercise between testing 

sessions; participants reported to the laboratory prior to each session at least 12 hours 

fasted).  

3. The exercise stimulus employed during the three sequential exercise bouts was an 

adequate stimulus to elicit favorable physiological responses. 

4. The participants recruited in this investigation were representative of younger and 

older male populations. 

5. Participants gave maximal effort during maximal exercise testing and during each 

resistance training session.  

 

Limitations 

Theoretical limitations  

1. Younger and older men were recruited from the University of Oklahoma campus and 

surrounding areas. Furthermore, participants received $150.00 upon completion of the 

investigation for their time and effort to complete the study. In essence participants 

were recruited out of convenience rather than random selection. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Cellular and Hormonal Changes Associated with Sarcopenia 

Effect of Age on Skeletal Muscle Morphology  

Sarcopenia is an age-dependent loss of skeletal muscle mass resulting in reduced 

strength, limited mobility and increased injury risk[27]. At the cellular level sarcopenia is 

characterized by a decrease in skeletal muscle volume[28-31]. In 1983, Lexell et al. 

examined skeletal muscle fiber characteristics of younger (n = 6, 19-37 yr) and older (n = 

6, 70-73 yr) deceased men. Results from the investigation found older men had 

approximately 110,000 less muscle fibers in the midsection of the vastus lateralis than 

younger men, resulting in a 23% decline in skeletal muscle fiber content[30]. While 

Young et al.[28, 29] used ultrasound imaging to find the cross-sectional area of the 

quadrecepts muscle in older men and women (70-80 yr) to be 25-35% smaller than 

younger men and women (20-30 yr). In this regard a majority of investigations examining 

muscle morphology of the vastus lateralis have found type II skeletal muscle fiber 

diameter is reduced to a much larger extent than type I skeletal muscle fibers with 

age[31-37].     

The loss of skeletal muscle mass with age is well described[28-31], but results 

regarding skeletal muscle fiber distribution with age have been equivocal. In 1978, 

Larsson et al.[34] found type I fibers to compose 39% of the skeletal muscle fibers in the 

vastus lateralis of 20-29 yr old men while type I fibers composed 66% of skeletal muscle 

in 60-65 yr old men. However, a review of research suggests the vastus lateralis of young 

muscle to be composed of approximately 50% of type I fibers[32] suggesting the 
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percentage of type I fibers in the investigation by Larsson et al.[34] may have been 

underestimated in young adults. In support of this theory Lexell et al.[38] did not find a 

significant difference in the proportion of type I skeletal muscle fibers in the vastus 

lateralis between 24 (n = 10), 52 (n = 6) and 77 (n = 8) yr old men. Moreover, Frontera et 

al. found type I skeletal muscle fiber content to decrease from 60% to 42% in the same 

group of subjects from the age of 65 ± 4.2 yr to 77 ± 4.2 yr. The equivocal results 

regarding the effects of age on type II skeletal muscle fiber prevalence may be explained 

by sampling variability, as the proportion of fiber types has been found to vary depending 

on the depth of the muscle sample obtained from the vastus lateralis[31, 39]. As a result it 

has been suggested that the overall reduction in skeletal muscle fiber number with age 

seems to effect type I and type II fibers to the same extent[32, 40]. Neurological factors 

also play a role in sarcopenia as there is a loss of functional motor units with age[41, 42]. 

As a result skeletal muscle fibers experience states of denervation and reinnervation with 

age[43], which causes a grouping of type I and type II fibers in older adults rather than 

the random distribution of skeletal muscle fibers typically found in younger adults.   

Hormonal Adaptations with Age 

Hormones are responsible for regulating skeletal muscle adaptations by priming 

the body for muscle protein synthesis with the secretion of anabolic hormones or muscle 

protein catabolism with the secretion of catabolic hormones[44]. With age serum 

concentrations of anabolic hormones and growth factors have been found to decline[45-

50] and reductions in anabolic hormone concentrations have been found to correlate with 

the age related declines in skeletal muscle mass and strength[51, 52]. Research on the 

effects of age on catabolic hormones is limited but serum cortisol concentrations have 
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been found to be significantly linearly correlation with age in women[53], but not 

men[46, 53].  

 There are also differences present between younger and older adults in regard to 

the hormonal response following exercise[54-56]. Kraemer et al.[46] examined the 

effects of chronic (10 week) heavy resistance training in physically active younger (29.8 

± 5.3 yr) and older (62.0 ± 3.2 yr) men. Serum was obtained before, immediately after 

and 5, 15 and 30 minutes post-exercise prior to initiation of the exercise program and 

following 3, 6 and 10 weeks of training. At baseline there were no significant differences 

between younger and older men for total testosterone, free testosterone, growth hormone 

or cortisol. There were significant differences between younger and older men for IGF-1 

and IGFBP-3. During the resistance training session younger men experienced a more 

robust increase in total testosterone, free testosterone and growth hormone than the older 

men. Furthermore, following the 10 week training program younger adults experienced a 

significant increase in resting free testosterone and IGFBP-3, of which each was 

significantly greater than the resting level of older men. Finally, following chronic 

resistance training younger men had lower serum concentrations of adrenocorticotropic 

hormone (ACTH) and cortisol compared to older men. Taken together these results 

suggest younger adults create a superior anabolic environment compared to older men 

allowing for greater increases in skeletal muscle strength and hypertrophy immediately 

following an acute resistance training bout at rest and following chronic resistance 

training. Roberts et al.[45] also found serum free testosterone concentrations to decrease 

with age; however, androgen receptor concentrations were found to be significantly 

upregulated in the skeletal muscle of older (n = 13, 67.6 ± 1.3 yr) compared to younger (n 
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= 11, 21.3 ± 0.6 yr) men. Given these findings androgen receptor concentrations may 

increase to counterbalance the lower levels of free testosterone in an effort to preserve 

skeletal muscle mass with age.  

Decrements in Protein Synthesis with Age 

There is a significant decrease in the rate of muscle protein synthesis between 

younger and older adults[57-59]. In 1993, Yarasheski et al.[57] determined the rate of 

quadriceps muscle protein synthesis using intravenously infused [
13

C] leucine to assess 

the rate of mixed muscle protein synthesis in younger (n = 6, 24 yr) and older (n = 6, 63-

66 yr) men and women before and following 2 weeks of daily heavy resistance training. 

Prior to training the fractional rate of muscle protein synthesis (percent muscle mass of 

quadriceps/hr) was significantly higher in younger compared to older adults. Moreover, 

following training the rate of muscle protein synthesis significantly increased in both 

groups and a significant difference was no longer present between younger and older 

adults. However, the finding that mixed muscle protein synthesis was increased calls for 

further investigation as non-functional components of muscle could have been increased 

to a greater extent in older compared to younger adults (i.e. collagen synthesis rate). In 

1995, Welle et al.[59] determined myofibrillar protein synthesis rates using tracer L-[1-

13C]leucine
 
into myofibrillar proteins obtained from the vastus lateralis muscle by

 
needle 

biopsy in younger (n = 9, 22-31 yr) and older (n = 9, 62-72 yr) men and women at 

baseline and following 3 months of a progressive resistance training program. Prior to 

exercise the mean fractional myofibrillar synthesis rate was significantly slower in older 

compared to younger adults. Following training the fractional myofibrillar synthesis rate 

non-significantly increased in each group and the younger adults maintained a 
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significantly higher myofibrullar protein synthesis rate compared to older adults. 

Suggesting younger adults maintain significantly higher rates of functional muscle 

protein synthesis compared to older adults following chronic resistance training. 

 Gene transcription must occur prior to translation and thus protein synthesis. A 

primary protein of interest in regard to skeletal muscle adaptations following resistance 

training is myosin heavy chain (MHC). As a result Balagopal et al.[58] examined the 

effects of age on mRNA expression of the MHC isoforms (MHCI, MHCIIA and MHCIIX) 

in younger (n = 7, 20-27 yr), middle aged (n = 12, 47-60 yr) and older (n = 14, > 65 yr) 

men. Baseline testing revealed a trend decrease for MHCI mRNA expression with 

increasing age although no significant differences were present between the groups. 

However, there was a significant decrease in mRNA expression of MCHIIA and MHCIIX 

from younger to middle age and from middle age to older participants. The authors also 

examined the effects of age and chronic resistance training on the transcript levels of the 

MHC isoforms and the fractional synthesis rate of MHC in 39 participants ranging in age 

from 46-79 yr. Exercise was found to significantly increase the fractional synthesis rate 

of mixed muscle protein and MHC. Further analyses revealed exercise training to 

significantly increase mRNA expression of MHCI and significantly decrease MHCIIA 

and MHCIIX isoforms. However, numerous investigations have found the diameter of 

type II fibers to increase in older adults following chronic resistance training[60-64].  

Effect of Age on Satellite Cells 

 A primary adaptation of aging is a loss of skeletal muscle mass with type II fibers 

experiencing a greater loss of volume than type I fibers[31-37]. The fiber specific 

decrease in type II skeletal muscle volume may be related to a fiber specific decrease in 
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the number of satellite cells, which are the only source for the generation of new 

myonuclei in vivo in skeletal muscle tissue[65-67] and as a result are responsible for the 

maintenance of skeletal muscle mass[68]. To test this hypothesis Verdijk et al.[68] 

examined fiber specific adaptations in the prevalence of type I and type II skeletal muscle 

fibers with age in younger (n = 8, 20 ± 1yr) and older (n = 8, 76 ± 1 yr) men. Data 

analyses revealed that older men had significantly less satellite cells per type II skeletal 

muscle fiber compared to younger men. Additionally, older men had less satellite cells 

per type II muscle fiber than type I muscle fiber, suggesting the loss of satellite cells with 

age is fiber specific.  

 In a follow-up study Verdijk et al.[69] examined the effects of chronic resistance 

training on fiber specific hypertrophy and adaptations in satellite cell content in older 

men (n = 13, 72 ± 2 yr). Muscle biopsies were collected from the vastus lateralis 3 days 

prior to the onset of training and 4 days following the final resistance training session. 

The training regime was effective at significantly enhancing leg strength, leg lean mass 

and quadriceps cross-sectional area. At baseline mean fiber area and satellite cell content 

were smaller in the type II compared to type I fibers. The training regime resulted in 

significant increases in type II fiber area and satellite cell content while there were no 

significant changes in the size or satellite cell content in type I fibers suggesting physical 

activity may ameliorate the decrease in fiber specific satellite cell content with age. An 

earlier study conducted by Roth et al.[70] examined satellite cell adaptations following 9 

weeks of unilateral lower body resistance training in younger and older men (younger: n 

= 7, 25 ± 3 yr; older: n = 7, 69 ± 3 yr) and women (younger: n = 7, 26 ± 1 yr; older: n = 7, 

67 ± 3 yr). Satellite cell content and the number of active satellite cells were found to 
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significantly increase following chronic resistance training. Taken together chronic 

resistance training appears to increase the total number of satellite cells, which may 

reflect a fiber specific increase of satellite cells in type II skeletal muscle fibers in older 

adults. Chronic resistance training also increases the number of active satellite cells in 

younger and older adults.    

 

Effects of Age on Strength and Hypertrophy Adaptations in Response to Chronic 

Resistance Training 

Research has clearly established older adults who engage in a progressive 

resistance training regimen will obtain significant increases in skeletal muscle 

strength[60, 62-64, 71-74] and hypertrophy[60, 62-64, 71-75] (the mean age for 

participants in each referenced investigation was > 60 yr). For an extensive review of 

typical increases in strength and hypertrophy in older adults following chronic resistance 

training see Porter et al.[32]. Even though older adults experience increases in strength 

and hypertrophy following chronic resistance training there may be a differential 

response between younger and older adults following chronic training in regard to 

skeletal muscle hypertrophy. In 1999, Kraemer et al.[46] had younger (29.8 ± 5.3 yr) and 

older (62.0 ± 3.2 yr) men perform a 10 week progressive resistance training program 

characterized by 3 training sessions per week. At baseline and following chronic 

resistance training the experimenters assessed 1 RM squat and total thigh muscle cross-

sectional area using MRI analysis. Following chronic resistance training there was a 

significant increase in the delta change ((post value – pre value) / pre value) for 1 RM 

squat in younger and older men with no significant difference present between groups. 
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Younger and older men also experienced a significant increase in the delta change for 

total thigh muscle cross-sectional area, but younger men experienced a significantly 

greater increase in hypertrophy following training than older men. Results from the 

current investigation suggest resistance training to be beneficial in terms of muscle 

strength and hypertrophy adaptations in younger and older men; however, physiological 

adaptations that occur with aging appear to blunt the hypertrophic adaptations in older 

men.  

 

Effects of Myostatin on Bone Strength and Morphology 

The positive relationship between skeletal muscle mass and bone mineral density 

(BMD) in humans has clearly been established[76-79]. However, correlations between 

skeletal muscle mass and BMD may be due to extraneous variables. For example, activity 

levels have the ability to influence bone formation by altering the load placed on bones 

and/or by increasing circulating levels of growth hormone[80]. Until recently scientists 

have been unable to directly examine the effects of skeletal muscle mass on bone 

morphology and strength, as people and animals with greater skeletal muscle mass are 

likely to be more active than their counterparts with less skeletal muscle mass. Myostatin 

null mice have allowed scientists to examine the effects of skeletal muscle mass on bone 

strength and morphology while controlling for physical activity, as myostatin null mice 

tend to have 40-100% more muscle mass compared to normal mice[81].   

In 2000, Hamerick et al.[82] used adult wild-type hybrid mice and myostatin null 

mice (type: 129/SvJ/C57BL/6J) who were age and weight matched to examine the effects 

of muscle fiber hypertrophy and hyperplasia on bone shape and cross-sectional geometry. 
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Myostatin null mice were found to have significantly larger third trochanters than the 

wild-type mice, but there were no significant differences between the myostatin null and 

wild-type mice for cortical area, bending moment of inertia and polar moment of inertia. 

In 2002, Hamerick et al.[83] examined the effects of increased muscle mass on bone 

morphology by examining the bone mineral content (BMC) and BMD in the humeri of 

myostatin null mice (type: 129/SvJ/C57BL/6J) and wild-type hybrid mice. Myostatin null 

mice weighed significantly more than the wild-type mice and had significantly larger 

triceps and deltoids. Moreover, the myostatin null mice had a significantly greater 

trabecular area and trabecular BMC in the proximal humerous (15% length) and 

significantly greater BMC cortical area, and periosteal circumference in the deltoid crest 

(40% length). Results from these studies suggests[82, 83] the increased muscle mass of 

myostatin null mice primarily effects bone at the sites of skeletal muscle insertion, but 

does not appear to increase diaphyseal strength or axial rigidity. This finding should be 

expected as activin IIB receptors are not expressed at significant levels in bone[84]; 

therefore, any effect myostatin has on bone is indirect and primarily influenced through 

skeletal muscle mass.      

  

Effects of Myostatin on Body Fat and Hyperglycemia 

 Myostatin has gained popularity in the scientific community primarily due to the 

effects of myostatin inhibition on skeletal muscle function and morphology. However, 

myostatin is also gaining popularity as a mechanism to combat the obesity[85-87] and 

type II diabetes pandemics[85, 86]. In 2002, McPherron and Lee[85] examined the 

effects of body fat accumulation and hyperglycemia in myostatin-deficient mice (type: 
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C57BL/6J) compared with wild-type littermates. There were no differences in fat pad 

weight of myostatin null (MSTN
-/-

) and myostatin expressing (MSTN
+/+

) mice at 2 

months of age, but by 9-10 months of age MSTN
-/-

 had 70% less total body fat compared 

with MSTN
+/+

 mice. Further examination revealed that MSTN
-/-

 mice had 25% fewer 

gonadal fat pad cells than MSTN
+/+

 mice, reflecting a significant difference in fat cell 

number. Fat cell size was also significantly different between groups as the mean weight 

of cells in the genital fat pad was 40% lower MSTN
-/-

 compared to MSTN
+/+

 mice. Also 

of interest were the findings that MSTN
-/-

 mice consumed significantly more food, had a 

higher absolute resting VO2 and had less brown adipose tissue than MSTN
+/+

 mice. 

There were no differences between MSTN
-/-

 and MSTN
+/+

 mice for respiratory exchange 

ratio. Furthermore, MSTN
-/-

 mice were found to have significantly lower serum levels of 

leptin, triglycerides and cholesterol than MSTN
+/+

 mice. 

 Since the absence of myostatin in healthy mice was able to prevent the 

accumulation of body fat with age and preserve health McPherron and Lee[85] analyzed 

the effect of the myostatin mutation in two genetic models of obesity, agouti lethal 

yellow (A
y
/a) and obese (Lep

ob/ob
) mice. A

y
 is a mutation that causes obesity by 

increasing food consumption and fuel efficiency[88, 89]; whereas, Lep
ob/ob

 causes obesity 

as the result of the loss of leptin signaling resulting in the improper regulation of food 

consumption and energy expenditure[90, 91]. Fat pad weights were significantly greater 

in the A
y
/a, MSTN

-/-
 mice compared to the MSTN

-/-
 mice, but weighed significantly less 

than A
y
/a, MSTN

+/+
 mice, suggesting myostatin partially suppressed fat accumulation in 

A
y
 mice. Moreover, A

y
 mice have been used as a model for type 2 diabetes as they have 

been found to develop insulin resistance[88, 89]. A
y
/a, MSTN

-/-
 mice had non-
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significantly lower fasting blood glucose concentrations compared to A
y
/a, MSTN

+/+
 

mice; however, A
y
/a, MSTN

-/-
 mice had significantly lower blood glucose levels 

following an exogenous glucose load compared to A
y
/a, MSTN

+/+
 mice. The myostatin 

mutation was also effective at reducing the fat weight of mice at 8 weeks of age as the 

Lep
ob/ob

, MSTN
-/-

 mice had significantly less retroperitoneal and parametrial fat pad 

weights than the Lep
ob/ob

, MSTN
+/+ 

mice. Results from this investigation suggest the 

myostatin mutation has positive effects on obesity and glucose tolerance in healthy and 

disease prone populations.         

 A later study by Zhao et al.[86] examined the effects of body fat accumulation in 

wild-type compared to myostatin null mice fed varying diets. All mice were weaned at 4 

weeks of age and were given free access to a normal fat diet (10% of kcals from fat) until 

9 weeks of age. Mice from each genotype were then randomly assigned to consume an ad 

libitum normal (low) fat diet (10% of kcals from fat) or an ad libitum high fat diet (40% 

of kcals from fat) until week 18 of life. The high fat diet resulted in the accumulation of 

170-214% more fat mass in subcutaneous, epididymal and retroperitoneal fat in wild-type 

compared to myostatin null mice. Wild-type mice consuming a high fat diet had 

significantly greater fasting blood glucose, insulin, leptin and resistin (resistin is an 

adipocyte hormone that potentially links obesity to diabetes as consumption of fat 

increases resistin, which may cause insulin resistance in skeletal muscles[92])             

concentrations compared to the other groups. While serum leptin and adiponectin 

(adiponectin can directly increase fatty-acid transport, oxidation and dissipation in 

skeletal muscle resulting in decreased levels of intramyocellular lipids and improved 

insulin sensitivity in muscle cells and hepatocytes[93]) concentrations were significantly 
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lower in myostatin null mice consuming a low fat diet compared to the other groups. 

Results from this investigation provide further evidence suggesting the myostatin 

mutation provides protection against obesity and may help prevent hyperglycemia, 

particularly in individuals consuming a high fat diet.  

 It has been established that myostatin gene knockout causes a significant increase 

in myogenesis and a significant decrease in adipogenesis[85, 86, 94], while transgenic 

mice that overexpress myostatin selectively in skeletal muscle have been found to have 

less muscle mass and more fat mass compared to wild-type mice[17]. As a result Milan et 

al. [87] examined the effects of weight loss induced by biliopancreatic diversion (BPD) 

on skeletal muscle myostatin expression. Subjects consisted of 6 morbidly obese (BMI ≥ 

40 kg/m
2
) subjects with normal glucose tolerance and were free from endocrine and non-

endocrine diseases. Muscle biopsies were obtained at baseline and following 18 ± 2 

months after the BPD operation. All post-biopsies were obtained when subjects reached a 

weight stable condition. There were significant differences in body weight, fat mass, fat 

free mass and MYOSTATIN mRNA expression quantified using real-time polymerase 

chain reaction (RT-PCR). Reductions in MYOSTATIN mRNA expression were 

significantly correlated with the reduction in fat free mass (r = 0.83; p < 0.05). 

MYOSTATIN mRNA expression may have been reduced in an effort to preserve skeletal 

muscle mass, as subjects in this study lost an average of 42.44 ± 8.35 pounds of fat mass 

(p = 0.009) and 4.31 ± 3.13 kg of fat free mass (p = 0.03). Results from the current 

investigation suggest myostatin may function as a regulator of skeletal muscle mass 

during periods of caloric restriction that result in rapid weight loss.    
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Effect of Myostatin on Skeletal Muscle Mass 

Myostatin is a protein that limits skeletal muscle growth[95] and as a result 

myostatin null mice have been found to have increased skeletal muscle mass[18, 19, 96] 

muscle growth in the form of hypertrophy[18, 19, 96] and hyperplasia[97], a shift in 

muscle fiber type in which a greater portion of type IIb fibers are present[20] quicker 

rates of muscle recovery following injury assessed by the size of skeletal muscle fiber 

diameter following injury[19, 20] and reduced body fat[85-87]. The effects on myostatin 

on skeletal muscle have been examined via myostatin gene knockout[18, 19, 21, 98], 

administration of a myostatin-blocking antibody[21] and the genetic over-expression of 

myostatin[17]. As a result this section will describe the effects of myostatin on skeletal 

muscle mass.  

In 2003, Whittemore et al.[21] examined the effects of an inhibitory antibody 

(JA16) of myostatin on skeletal muscle mass and health parameters in adult male and 

female mice ranging in age from 5 to 24 weeks. Myostatin inhibition had no effect on 

clinical serum safety markers, epididymal fat pad, inguinal fat pad, kidney, liver, or heart 

weight or histology. However, myostatin inhibition was found to increase grip strength 

and skeletal muscle mass from 13-30% after 2-4 weeks of treatment, resulting in a 

significant effect. In 2006, Welle et al.[98] compared the myofibrillar protein synthesis 

rates and muscle mass of myostatin deficient mice (MSTN
ΔE3/ΔE3

) and mice with normal 

myostatin expression (MSTN
+/+

) between the ages of 5-6 weeks and 6 months of age. At 

5-6 weeks of age MSTN
ΔE3/ ΔE3

 mice had significantly more muscle mass (40%) and a 

greater rate of muscle protein synthesis assessed by the fractional rate of myofibrillar 

synthesis (14%) and protein synthesis per whole muscle (60%) in comparison to 



26 
 

MSTN
+/+

 mice. At 6 months of age MSTN
ΔE3/ΔE3

 mice still had significantly more muscle 

mass (90%) and myofibrillar synthesis per muscle (85%) relative to MSTN
+/+

 mice, but 

there were no differences between groups in regard to the fractional synthesis rate 

between groups. The synthesis rate per whole muscle is a better indicator than the 

factional synthesis rate in terms of determining skeletal muscle size[98]. However, the 

increase in protein synthesis per whole muscle does not completely explain the increased 

skeletal muscle size in MSTN
ΔE3/ΔE3

 compared to MSTN
+/+

 mice. Previous investigations 

have found DNA content per muscle to increase approximately 50% in myostatin null 

mice[81, 98], but the increase in protein synthesis rate in the current investigation was 

found to be approximately 85%[98]. As a result the synthesis rate per myonuclei is 

increased in myostatin deficient mice suggesting skeletal muscle hypertrophy may be 

more complex than myoblast fusing to an existing muscle fiber to increase RNA 

production and protein synthesis, as RNA and mRNA concentrations are not significantly 

different in myostatin null and normal mice, while the amount of DNA per mg of muscle 

is significantly reduced in MSTN
ΔE3/ΔE3

 compared to MSTN
+/+

 mice mice[98].      

Myostatin may also influence skeletal muscle mass by regulating glucocorticoid 

induced skeletal muscle atrophy[15, 16]. Previous investigations have found 

dexamethasone (a glucortciod) to increase endogenous myostatin transcription in C2C12 

myocytes due to a glucorticiod receptor mediated mechanism and the response was found 

to occur in a dose-dependent manner[99, 100]. In a follow-up investigation Ma et al.[15] 

examined the effects of dexamethasone on MYOSTATIN mRNA and protein expression 

as well as muscle atrophy in 60, 10-12 week old male Sprague-Dawley rats. The rats 

were randomly assigned to one of six groups. Rats in the dexamethasone group received 
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daily administration of 60, 600, or 1,200 µg/kg body weight for a period of 5 days while 

rats in the placebo group received an equivalent amount of saline solution. There was a 

significant dose-dependent loss of body weight (-4.0, -13.4 and -17.2% respectively) and 

muscle atrophy (6.3, 15.0 and 16.6% respectively) with a resulting significant increase in 

MYOSTATIN mRNA (66.3, 450.0 and 527.6% respectively) and protein expression (0.0, 

260.5 and 318.4% respectively) in rats receiving dexamethasone compared to controls. 

As a result the authors concluded that muscle loss induced by dexamethasone is at least 

partially attributed to increased myostatin expression through a glucocorticoid receptor 

mediated pathway.  

Since myostatin has been found to be significantly upregulated by glucocorticoids 

(dexamethasone)[15, 99, 100] Gilson et al.[16] examined if myostatin knockout could 

prevent skeletal muscle atrophy resulting from the presence of glucocorticoids. A total of 

28 male wild-type myostatin null (MSTN
-/-

) and 28 normal male wild-type mice 

(MSTN
+/+

) were randomly assigned to receive dexamethasone at a dose of 1 mg/kg of 

body weight per day for 10 days (low dose) or 5 mg/kg of body weight for 4 days (high 

dose). Following low dose dexamethasone administration MSTN
+/+

 mice experienced a 

significant downregulation in muscle mass and muscle fiber cross-sectional area (CSA) 

while muscle mass and muscle fiber CSA were unaffected in MSTN
-/-

 mice following 

dexamethasone administration. Following high dose dexamethasone administration 

MSTN
+/+

 mice had a significant upregulation of ATROGIN1, MURF1, CATHEPSIN L 

and FOXO3A while there was no significant effect on the mRNA expression of these 

proteolytic genes in MSTN
-/-

 mice. As a result this investigation provides strong evidence 
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that myostatin plays a critical role in mediating skeletal muscle proteolysis driven by 

glucocorticoids.   

Animal models of myostatin knockout[18, 19, 96], myostatin inhibition with a 

myostatin-blocking antibody[21] and myostatin over-expression (in male mice only)[17] 

have found myostatin to be a key factor in regulating skeletal muscle mass. Furthermore, 

in diseased humans[22] an increase in the presence of myostatin occurs concurrently with 

the loss in skeletal muscle mass. However, in healthy humans there appears to be no 

correlation between MYOSTATIN mRNA expression and myofribullar protein 

synthesis[101], strength[23] or muscle mass[23, 101]. However, serum myostatin has 

been found to be corrected with muscle mass corrected for height (mass/height
2
)[102, 

103]. In 2007, Kim et al.[104] had 66 participants including younger (20-35 yr, n = 37) 

and older (60-75 yr, n = 29) men and women participate in a 16 week resistance training 

program. Muscle biopsies were obtained at baseline and 24 hours following the first and 

final resistance training bout. Based on mean muscle fiber hypertrophy participants were 

classified as extreme (n = 17, 2,475 µm
2
), modest (n = 32, 1,111 µm

2
) or non-responders 

(n = 17, -16  µm
2
) and compared for statistical analyses. Of interest were the findings that 

MYOSTATIN mRNA expression was significantly downregulated 24 hours following the 

first and final training bout in each group, with no statistical difference between groups. 

Protein expression of the complete myostatin complex was significantly upregulated 

following 16 weeks of training with no differences present between groups. While 

protein expression of the myostatin propeptide were not significantly affected by training 

and there were no significant differences present between groups. In this investigation 

and others serum myostatin has been found to be highly variable between 
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participants[103-106]; nevertheless, serum myostatin was not affected by training and no 

significant differences between groups were present at any time-point. Also of note was 

the finding that there was no significant effect of training or group on ACTIVIN IIB 

receptor mRNA expression at any time-point[104]. Overall, results from the current 

investigation highlight the differential response among healthy participants to a standard 

resistance training protocol. Furthermore, myostatin is apparently not entirely responsible 

for the differential response in skeletal muscle hypertrophy following chronic resistance 

training.       

         

Effect of Exercise on Myostatin 

Myostatin Pathway Response Following an Acute Bout of Exercise 

Many hormones are influenced by diet and or exercise which stimulate the muscle 

modulating response experienced with training. For instance, resistance training has been 

found to increase the secretion of cortisol which is responsible for skeletal muscle 

atrophy while also increasing the concentrations of anabolic hormones responsible for the 

stimulation of skeletal muscle hypertrophy such as testosterone and IGF-1. Myostatin has 

been found to be influenced by aerobic and anaerobic exercise in animal and human 

models. Louis et al.[107] examined the expression of MYOSTATIN mRNA following a 

30 minute run at 75% of VO2 max or resistance exercise consisting of 3 sets of 10 

repetitions at 70% of 1 RM knee extensions. MYOSTATIN mRNA concentrations were 

analyzed from muscle biopsies obtained from the vastus lateralus at baseline, immediate 

post exercise (0 hr), 1, 2, 4, 8, 12 and 24 hr post-exercise. Aerobic and resistance exercise 

resulted in the downregulation of MYOSTATIN mRNA concentrations at each time-point. 
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Specifically MYOSTATIN mRNA expression was significantly decreased at 8 and 12 hr 

following aerobic exercise and at 1, 2, 4, 8, 12 and 24 hr following resistance exercise. 

Additional genes of interest were assessed and will be discussed in terms of the response 

following resistance exercise. First, the mRNA expression of TNF-α was significantly 

upregulated immediately following, 2, 4, 8, 12 and 24 hr following resistance training. 

Ubiquitin proteasome pathway activity was assessed by examining the mRNA expression 

of MURF-1, ATROGIN-1 and FOXO3A. MURF-1 was found to be significantly 

upregulated 1, 2 and 4 hr post-exercise. ATROGIN-1 was significantly downregulated 8 

and 12 hr post-exercise, while there was a trend decrease in the expression of FOXO3A 8 

and 12 hrs post-exercise (p ≤ 0.07).  

In 2006, Raue et al.[25] examined the effects of age and an acute bout of 

resistance exercise on myogenic gene expression in younger (n = 8; 18-30 yr) and older 

(n = 6; 80-89 yr) women. Training consisted of three sets of ten repetitions at 70% of 1 

RM on a bilateral knee extension machine. Muscle biopsies were obtained prior to and 4 

hours following resistance exercise. Myogenic gene expression was determined by 

examining the mRNA expression of MYOSTATIN and the muscle regulatory factors 

(MRFs), specifically, MYOD, MRF4, MYF5, MYOCYTE ENHANCER FACTOR 2 

(MEF2) and MYOGENIN. At baseline MYOSTATIN, MYF5, MYOD, MYOGENIN and 

MRF4 mRNA expression were significantly greater in older compared to younger 

women. Following resistance exercise MYOSTATIN mRNA expression was significantly 

downregulated in younger and older women and there was a non-significant 

downregulation of MYF5 in younger and older women. There was a significant increase 

in MYOD and MRF4 following resistance training in younger and older women. While 
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MYOGENIN was non-significantly upregualted in older and younger women following 

resistance exercise. Muscle regulatory factors have been found to be upregulated with 

age[108-111] and the authors concluded the upregulation of MYF5, MYOD, MYOGENIN 

and MRF4 mRNA expression in older compared to younger women at rest may be a 

mechanism to preserve skeletal muscle mass with age. Since older adults have higher 

mRNA levels of MRFs one would expect more skeletal muscle growth at rest in older 

compared to younger adults. However, it has been established there is not a 1:1 ratio 

between mRNA and protein expression as older (30 months) Brown Norway rats have 

been found to express significantly higher mRNA levels of MRFs but have lower levels 

of MRF protein compared to younger (9 months) rats[112].   

In 2008 Hulmi et al.[24] examined the acute effects of protein ingestion and 

resistance exercise on myogenic gene expression in older adults. Participants were 

randomly assigned to a protein group (n = 9; 61.4 ± 4.3 yr) or placebo group (n = 9; 62.1 

± 4.2 yr). Participants in the protein group consumed 15 g of whey protein isolate while 

participants in the placebo group consumed an equivalent amount of a non-energenic 

placebo prior to and immediately following the resistance training session. Biopsies were 

obtained at baseline, 1 hr and 48 hr following an exercise bout consisting of 5 sets of 10 

repetitions on a leg press with 2 minute rest periods between sets. The placebo group 

experienced a non-significant decrease in MYOSTATIN mRNA expression 1 hr post-

exercise, but had a significant decrease in MYOSTATIN mRNA expression 48 hr post-

exercise. The protein group experienced a non-significant decrease in MYOSTATIN 

mRNA 1 hr post-exercise and a non-significant increase in MYOSTATIN mRNA 

expression 48 hr post-exercise. FLRG mRNA expression was non-significantly 
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upregulated in the placebo group at 1 and 48 hr post-exercise and the protein group at 1 

hr post-exercise; however, FLRG mRNA expression was significantly upregulated in the 

protein group 48 hr post-exercise. ACTIVIN IIB receptor mRNA expression was non-

significantly decreased 1 and 48 hr post-exercise in the placebo group and non-

significantly increased 1 and 48 hr post-exercise in the protein group. MYOGENIN 

mRNA expression was unaffected 1 hr post-exercise and non-significantly upregulated 

48 hr post-exercise in the placebo and protein groups. MYOD and P27 were non-

significantly upregulated at 1 and 48 hr post-exercise in the placebo and protein groups. 

While P21 and CDK2 mRNA expression were upregulated at each time point in the 

placebo and protein groups with a significant upregulation in P21 occurring in the 

placebo group 48 hr post-exercise and a significant upregulation in CDK2 occurring in 

the protein group at 48 hr post-exercise[113].   

As expected MYOSTATIN mRNA expression is downregulated following an acute 

bout of resistance exercise[24, 25, 107, 114]. In theory the downregulation of myostatin 

allows for satellite cell activation resulting in an increase in skeletal muscle mass. For 

skeletal muscle growth to occur satellite cells must proliferate and then differentiate. As a 

result mRNA expression of MYOSTATIN should decrease following resistance exercise 

to activate satellite cells. Then P21 should upregulate leading to the downregulation of 

CDK expression allowing for the upregulation of MRFs which signal satellite cell 

differentiation and thus skeletal muscle hypertrophy. However, the mRNA expression of 

genes regulating satellite cell activity following resistance exercise have not been 

consistent in the literature. The typical time course response for MYOSTATIN and 
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prominent satellite cell regulatory factors following an acute resistance training exercise 

bout can be seen in Table 1.   

 

Myostatin Pathway Response Following Chronic Resistance Training 

One of the first studies to examine the effects of chronic resistance training on 

MYOSTATIN mRNA expression was conducted by Roth et al.[23]. A total of 8 younger 

(20-30 yr) and 7 older (65-75 yr) sedentary men and women participated in a 9 week 

unilateral, progressive, heavy resistance training program. All participants trained 3 days 

per week for 9 weeks. During each training session participants completed 50 near 

maximal leg extensions on a pneumatic resistance machine with 90-180 second rest 

periods between sets. Measures of 1 RM strength, percent body fat (using DEXA), thigh 

muscle volume (using MRI) and MYOSTATIN mRNA expression were assessed 2 weeks 

prior to strength training and 48-72 hrs following the final strength training session. 

MYOSTATIN mRNA expression significantly decreased following chronic resistance 

training and no gender or age differences were noted for MYOSTATIN mRNA 

expression. Also of interest was the finding that participants with lower baseline levels of 

MYOSTATIN mRNA were more likely to experience little to no change in MYOSTATIN 

mRNA expression following chronic resistance training. Furthermore, no significant 

correlations were found for baseline MYOSTATIN mRNA levels and body mass, muscle 

strength or muscle volume which is consistent with animal models[115, 116]. 

In 2004, Walker et al.[117] examined the effects of a whole body resistance 

training program (n = 11) verse training of the elbow flexors (n = 6) in men (18-45 yr). 

Training consisted of 2 resistance training session per week for 10 weeks. Pre and post 
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measures of strength (1 RM elbow flexion), muscle endurance (maximal number of 

repetitions performed at 80% of 1 RM elbow flexion strength), muscle cross sectional 

area (MRI), resting levels of plasma IGF-1 (RIA analysis) and plasma myostatin 

(Western blotting) were obtained. Each resistance training program resulted in significant 

improvements in elbow flexion 1 RM strength, muscle endurance and elbow flexor 

muscle CSA. Training was found have no significant effect on plasma IGF-1 

concentrations, but a significant decrease was found for plasma myostatin following 

training in both groups. Individual changes for plasma myostatin ranged from +5.9 to -

56.9% resulting in a mean decrease of 20 ± 16%. Results from the present investigation 

suggest that resting plasma myostatin concentrations may be a more important regulator 

of skeletal muscle mass than resting plasma IGF-1 concentrations. However, an earlier 

investigation examining the mRNA expression of IGF-1 and MYOSTATIN between 

younger (n =12; 21-31 yr) and older (n = 15; 62-77 yr) adults suggest a combination of 

factors is most likely responsible for sarcopenia. Specifically, the mean IGF-1 mRNA 

concentration (mRNA IGF-1 pre ng total RNA) in older adults was significantly lower 

(~25%) compared to younger adults, while no significant difference was present in mean 

MYOSTATIN mRNA concentrations between younger and older adults. Finally, no 

significant correlation was present for IGF-1 or MYOSTATIN for myofibrillar protein 

synthesis rates or muscle mass in older adults[101]. 

 In 2004, Willoughby[118] examined the effects of heavy resistance training on 

muscle strength, muscle mass, serum cortisol, MYOSTATIN and FLRG, myofibrillar 

protein as well as mRNA and protein expression of MYOSTATIN, ACTIVIN IIB receptor 

and GLUCOCORTICOID RECEPTOR in young untrained males (n = 22, 20.87 ± 2.76 
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yr). Participants were randomly assigned to a progressive resistance training or control 

group. The resistance trained group exercised 3 days per week for 12 weeks. Training 

consisted of three sets of six to eight repetitions at 85-90% of 1 RM on leg press, leg 

extension and leg curl exercises. Testing was conducted at three periods during the course 

of the study, at baseline and at 6 and 12 weeks post-exercise. Blood samples were 

obtained immediately prior to and following each testing session while muscle samples 

were obtained prior to and within 15 minutes following each testing session. Resistance 

training resulted in a significant increase in total body mass following 12 weeks of 

training. While there was a significant increase in thigh volume and thigh mass at 12 

weeks compared to baseline and following 6 weeks of training. There was a significant 

increase in lower body relative strength and myofibrillar protein content at 6 and 12 

weeks in the training group. Furthermore, at 6 and 12 weeks relative strength and 

myofibrillar protein content were significantly greater in the training compared to the 

control group. Serum myostatin, skeletal muscle MYOSTATIN mRNA expression and 

skeletal muscle myostatin protein were each significantly increased at 6 and 12 weeks 

post-exercise in the training group and were significantly greater in the training group 

compared to the control group at 6 and 12 weeks post-exercise. There was no apparent 

trend for the mRNA expression of the ACTIVIN IIB receptor or pre-exercise cortisol 

content over the course of the investigation. However, post-exercise serum cortisol 

content was significantly increased at 6 and 12 weeks post-exercise and were 

significantly higher in the training group compared to the control at 6 and 12 weeks. 

Finally, protein content for glucocorticoid receptor was significantly increased at 6 and 

12 weeks in the training group with the increase at 12 weeks being significantly greater 
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than baseline and 6 weeks. At 12 weeks there was significantly more glucorticoid 

receptor protein in the training compared to the control group.  

 In 2007, Hulmi et al.[113] examined the acute and chronic effects of resistance 

exercise on a select number of myostatin pathway and satellite cell cycle genes in 11 

older adults (60.9 ± 5.0 yr). A baseline muscle biopsy was obtained prior to exercise, then 

participants performed an exercise bout consisting of 5 sets of 10 repetitions on the leg 

press with 2 minute recovery periods between sets and muscle biopsies were obtained 1 

hr and 48 hr post-exercise. Participants then engaged in a whole body, progressive, 

resistance training program which consisted of two training sessions per week for 21 

weeks. To assess chronic adaptations in gene expression muscle biopsies were obtained 

30 minutes prior to, 1 hr and 48 hr following the final training session. The mRNA 

expression of MYOSTATIN, ACTIVIN IIB, FLRG, P27, MYOD and MYOGENIN were 

examined following an acute bout of resistance exercise prior to and following 21 weeks 

of resistance training. There was no significant effect on MYOSTATIN following an acute 

bout of exercise, but MYOSTATIN mRNA expression was significantly greater prior to 

exercise following 21 weeks of training compared to baseline. Following chronic 

resistance training MYOSTATIN mRNA expression was significantly downregulated at 

48 hr post-exercise compared to pre-exercise MYOSTATIN mRNA expression. Following 

an acute bout of resistance exercise ACTIVIN IIB receptor mRNA was significantly 

downregulated 1 hr post-exercise. There was no significant effect of chronic resistance 

training on ACTIVIN IIB receptor gene expression. No significant effect was found for 

FLRG or P27 following an acute bout of training or following chronic training. MYOD 

tended to increase 48 hr (p = 0.09) following acute resistance training and there was a 
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trend increase in MYOD following chronic testing at baseline, 1 hr and 48 hr post-

exercise. MYOGENIN was significantly upregulated 48 hours following acute exercise. 

There was also a significant upregulation in baseline MYOGENIN expression following 

21 weeks of training and a significant upregulation in MYOGENIN 48 hr post-exercise 

following chronic resistance training.  

Hulmi et al.[114] examined the acute and chronic effects of resistance exercise 

with or without protein consumption on skeletal muscle hypertrophy and gene expression 

in young men. Participants were randomly assigned to a protein (n = 11; 25.2 ± 5.2 yr), 

placebo (n = 10; 27.2 ± 3.0 yr) or control group (n = 10; 24.9 ± 2.7 yr). Participants in the 

protein group consumed 15 g of whey protein isolate while participants in the placebo 

group consumed an equivalent amount of a non-energetic placebo prior to and 

immediately following each resistance training session. The control group did not 

consume a supplement and did not exercise for the duration of the investigation. Skeletal 

muscle biopsies were obtained at baseline, 1 hr and 48 hr following an exercise bout 

consisting of 5 sets of 10 repetitions on a leg press. At 1 hr post-exercise MYOSTATIN  

mRNA expression was found to significantly decrease in the placebo group and non-

significantly increase in the protein group. Following a similar trend as MYOSTATIN, 1 

hr post-exercise ACTIVIN IIB receptor mRNA was found to non-significantly decrease in 

the placebo group and non-significantly increase in the protein group. However, at 48 hr 

post-exercise ACTIVIN IIB mRNA expression was significantly decreased in the placebo 

and protein groups. Furthermore, in the protein group CDK2 and P21 mRNA expression 

were found to be significantly upregulated 1 hr post-exercise, while P21 mRNA 

expression was found to be significantly upregulated in the placebo group at 1 and 48 hr 
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post-exercise. Finally, MYOGENIN was found to significantly decrease 1 hr post-exercise 

in the placebo group. 

To examine the chronic effects of resistance exercise with or without protein 

consumption on skeletal muscle hypertrophy and gene expression following chronic 

resistance training participants began a whole body progressive resistance training 

program in which training was required 2 day per week for 21 weeks. The resistance 

training program was effective at stimulating skeletal muscle growth and hypertrophy as 

the protein and placebo groups each experienced a significant increase in body mass, 

cross-sectional area of the quadriceps femoris and vastus lateralis (protein group 

experienced a significantly greater increase than the placebo group for the vastus 

lateralis) determined by MRI analysis and strength determined by 1 RM leg press and 

isometric knee extension, knee flexion and bench press performance. For the analysis of 

gene expression of proteins controlling skeletal muscle hypertrophy a final biopsy was 

obtained 4 to 5 days following the final resistance training session and the results were 

compared to the baseline muscle sample. Following chronic resistance training there was 

a non-significant decrease in MYOSTATIN mRNA expression in the protein and placebo 

groups. There was a non-significant increase in the protein group and a non-significant 

decrease in the placebo group for the mRNA expression of ACTIVIN IIB receptor, 

MAFBX and CDK2. While there was a non-significant increase in the mRNA expression 

of P21 in the protein and placebo groups following chronic resistance training[114].        

 The results regarding the effect of chronic exercise on myostatin expression have 

been equivocal. For instance, Walker et al.[117] found a significant decrease in plasma 

myostatin following 10 weeks of training while Willoughby[118] found a significant 
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increase in plasma myostatin at 6 and 12 weeks following of resistance training. In regard 

to intramuscular myostatin expression Roth et al.[23] found a significant decrease in 

MYOSTATIN mRNA expression following 9 weeks of training and Hulmi et al.[114] 

found a non-significant decrease in MYOSTATIN mRNA expression following 21 weeks 

of chronic resistance training. In contrast Hulmi et al.[113] found MYOSTATIN mRNA 

expression to be significantly upregulated following 21 weeks of chronic resistance 

training, using the same protocol as the previous investigation[114]. Additionally, 

Willoughby[118] found a significant increase in MYOSTATIN mRNA and protein 

expression following 6 and 12 weeks of resistance training. Differences in age and/or 

gender do not account for the equivocal findings regarding resting measures of myostatin 

following chronic resistance training. Furthermore, differing exercise protocols are likely 

not the explanation as Hulmi et al.[113] and Hulmi et al.[114] used an identical training 

protocol and obtained equivocal results regarding MYOSTATIN mRNA expression (Table 

2).   

 The equivocal results regarding the effects of chronic exercise on resting 

myostatin expression may be accounted for by differences in baseline levels of myostatin 

between participants in the various investigations. Roth et al. found participants with 

lower baseline MYOSTATIN mRNA expression were more likely to experience little to 

no change in MYOSTATIN mRNA following chronic resistance training[23]. Given the 

small sample sizes of the investigations examined, varying baseline MYOSTATIN mRNA 

expression may account for the equivocal findings. Timing is another issue that may 

explain the equivocal results between the investigations as muscle samples were obtained 

at varying time-points following chronic resistance training. For instance, Roth et al.[23] 
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collected the post-training biopsy 48-72 hr following the final bout of chronic resistance 

training which is problematic as MYOSTATIN mRNA expression has since been found to 

be significantly downregulated 48 hr following resistance exercise[24, 119] while no 

found research has examined MYOSTATIN mRNA expression 72 hr post-exercise. While 

other investigations obtained post-training biopsies 3-5 days following the final resistance 

training bout[113, 114]. Finally, there are six known binding proteins for myostatin: 

myostatin propeptide, GASP1, FLRG, HSGT, titin cap and follistatin[11] but the only 

binding protein examined in any of the investigations under review was FLRG[24, 118]. 

As a result the amount of “free” myostatin (myostatin – the myostatin binding proteins) 

may provide a more reliable measure of the myostatin response following exercise than 

MYOSTATIN mRNA expression alone.  

 

Potential Clinical Applications for Myostatin Inhibition in Diseased Populations 

 Myostatin inhibition in has been suggested to positively influence skeletal muscle 

mass[18, 19, 94, 96], maintain a healthy amount of body fat[85, 86, 94] and positively 

influence glucose sensitivity in animals genetically prone for hyperglycemia[85] or 

consuming a high fat diet[86]. As a result of the ability of myostatin inhibition to increase 

skeletal muscle mass scientists have examined the potential relationship between 

myostatin and HIV[22] along with the effects of myostatin inhibition on disease states 

characterized by skeletal muscle wasting including muscular dystrophy[18, 120] and 

amyotrophic lateral sclerosis (ALS)[121]. 

In 1998, Gonzalez-Cadavid et al.[22] examined myostatin expression in skeletal 

muscle and serum of healthy men, HIV infected men who lost less than 10% body weight 
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in the preceding 6 months and HIV infected men who lost at least 10% body weight in 

the preceding 6 months. Serum concentrations of myostatin immunoreactive protein 

concentrations (pure mystatin was not yet available so synthetic peptide B was used as a 

reference standard) were found to be inversely correlated with fat free mass (r = -0.30, p 

= 0.007) in healthy and HIV infected men. The HIV infected subjects in each group were 

found to have significantly higher plasma myostatin concentrations compared to the 

healthy controls. A trend was also present as serum myostatin concentrations were 

highest in subjects who lost at least 10% body weight in the preceding 6 months. As a 

result subjects with the highest plasma myostatin concentrations experienced the greatest 

muscle loss. While western blot analyses suggested that intramuscular myostatin levels 

were greater in HIV infected subjects compared to the healthy controls.  

In 2002, Wagner et al.[18] examined the effects of myostatin deficiency on 

muscular dystrophy in mdx mice, which is a genetic ortholog of Duchenne and Becker 

muscular dystrophies. Comparisons were made between MSTN
-/-

, mdx (n = 12) and 

MSTN
+/+

, mdx mice (n = 22) at 3, 6 and 9 months of age. MSTN
-/-

, mdx mice had 

significantly more body mass, muscle mass and were significantly stronger than 

MSTN
+/+

, mdx mice. More importantly MSTN
-/-

, mdx showed less fibrosis and fatty 

remodeling in diaphragm muscles compared to MSTN
+/+

, mdx mice suggesting improved 

muscle regeneration. However, work from Li et al.[120] suggest that even though 

myostatin inhibition functions to maintain skeletal muscle mass and increase satellite cell 

activity in mice with laminin-deficient congenital muscular dystrophy (dy
w
/dy

w
). The 

effects of myostatin inhibition also resulted in dy
w
/dy

w
, MSTN

 -/-
 mice having 

significantly lower amounts of brown and white adipose tissue compared to dy
w
/dy

w
 mice 
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which may hinder thermoregulation and increase postnatal mortality. Suggesting 

myostatin inhibition by use of myostatin antagonists following birth may be more 

effective than knocking out the myostatin gene for the potential treatment of muscular 

dystrophy.   

Myostatin inhibition has also been examined as a potential treatment for 

ALS[121]. Rats and mice expressing the human SOD1
G93A

 (an ALS disease model) 

treated with RK35 (an anti-myostatin antibody) were significantly stronger and had more 

muscle mass than SOD1
G93A

 rats and mice. However, myostatin inhibition did not delay 

disease onset or extend the survival of rats or mice expressing SOD1
G93A

. As a result 

myostatin inhibition was unable to protects against the onset and progression of ALS, but 

may be able to promote skeletal muscle function in humans with ALS.   

Although myostatin inhibition does not appear to be a remedy for muscular 

dystrophy [120] or ALS[121] the finding that mysotatin null mice have reduced numbers 

of type I fibers and an increase in the amount of type II fibers compared to normal mice 

suggests that myostatin inhibition may be useful in the treatment of myopathies resulting 

from non-genetic causes such as malnutrition, cachexia and corticosteroid excess which 

are characterized by type II fiber atrophy[120].  
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CHAPTER III 

METHODS 

Participants  

In 2006, Raue et al.[25] reported a significant difference between younger (23 ± 2 

yr) and older women (85 ± 1 yr) for the mRNA expression of MYOSTATIN at baseline 

(younger = 1.90 ± 0.612 AU; older = 2.70 ± 0.566 AU) and 4 hr following an acute bout 

of resistance exercise. From the data reported by Raue et al.[25] the sample size 

calculations for a between-subjects study design yielded a minimum sample size of n = 8 

for each group in order to attain a statistical power of 0.80. As a result a total of 10 older 

(60-75 yr) and 10 younger (18-25 yr) males who were not currently participating in any 

form of resistance training were recruited for this investigation. Futhermore, potential 

participants met the following inclusion criteria: 1) Participants were apparently healthy 

and could not have participated in a structured resistance exercise regimen consistently 

(i.e., at least one time per week) one year prior to participation in this study. 2) 

Participants abstained from smoking, alcohol, tobacco and caffeine for the duration of the 

study. 3) Participants did not consume ergogenic, nutritional supplements for at least 

three months prior to the start of the investigation. 4) Participants were not affected with 

metabolic disorders including heart disease, arrhythmias, diabetes, thyroid disease or 

hypogonadism. 5) Participants did not have a history of pulmonary disease, hypertension, 

hepatorenal disease, clotting disorders, musculoskeletal disorders, 

neuromuscular/neurological diseases, autoimmune disease, cancer, peptic ulcers or 

anemia. 6) Participants did not have a previously diagnosed neuromuscular disease that 

would have prevented them from participating in the resistance training sessions. 7) 

Participants were not taking prescription medications indicated for heart, pulmonary, 
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anti-coagulant, anti-hypertensive, psychotropic, neuromuscular/neurological, or 

androgenic dysfunctions. 8) Participants did not have any absolute or relative 

contraindication for exercise testing as outlined by the American College of Sports 

Medicine (listed in the delimitations section). This study was approved by the University 

of Oklahoma Health Sciences Center Institutional Review Boards for Human Subjects 

and all participants completed a written informed consent form (Appendix A) and a pre-

study health and exercise status questionnaire (Appendix B). All participants in the older 

group were required to provide written medical clearance from their primary care 

physician using the form provided (Appendix C). 

Research Design 

An overview of the research design is presented in Figure 1. A 2 x 4 (group: 

younger and older males; time-point: T1, T2, T3, T4) repeated measures (RM) design 

was used to determine the effects of age and repeated bouts of conventional lower body 

resistance training on myostatin pathway signaling by examining the mRNA expression 

of MYOSTATIN, ACTIVIN IIB, HSGT, TITIN CAP, FOLLISTATIN, FLRG and SMURF1. 

Additional analyses included the protien expression of pSmad3. All participants visited 

the laboratory seven times (T1 = day 0 - baseline, FAM1 = day 2, FAM2 = day 4, 

workout 1 = day 7, T2 = day 9, T3 = day 11, T4 = day 12). Prior to the first visit, 

participants were be verbally screened to ensure that each person met the inclusion 

criteria. Furthermore, participants completed the informed consent and health and history 

questionnaire prior to the first visit. During the first visit (T1), participants reported to the 

laboratory between 0600 and 0900 following a 12-hour fast and a percutaneous muscle 

biopsy was obtained from the lateral aspect (i.e., vastus lateralis) of their thigh. 
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Following the biopsy, participants warmed-up for 5 minutes on a cycle ergometer (i.e., 60 

rpm at a self-selected intensity) and performed a 1 RM strength test for bilateral leg press, 

hack squat and leg extension using guidelines established by the National Strength and 

Conditioning Association[122]. For the leg press and hack squat exercises, a successful 

repetition required that each participant attained 90º knee flexion at the bottom 

(eccentric) portion of the repetiton which was visually gauged by a laboratory technician. 

Two days following T1, participants returned to the laboratory for the first familiarizatio 

session (FAM1) whereby participants warmed-up for 5 minutes on a cycle ergometer and 

performed 2 sets of 10 repetitions at a lifting intensity of 60% 1 RM for each of the three 

lower-body exercises with 2-3 minute rest period between sets. Two days following 

FAM1, participants returned to the laboratory for the second familiarization session 

(FAM2) whereby participants warmed-up for 5 minutes on a cycle ergometer and 

performed 2 sets of 10 repetitions at a lifting intensity of 70% 1 RM for each of the three 

lower-body exercises with 2-3 minute rest periods between sets. The familiarization 

sessions were performed for several reasons: 1) To ensure that participants were 

gradually introduced to the training protocol employed during the training sessions. 2) To 

minimize the delayed onset of muscle soreness, which may have increased particpant 

retention. 3) To help ensure each participant was entering the training protocol on a 

similar baseline exposure to resistance exercise. 4) To help establish proper lifting form 

with submaxiamal loads prior to intiation of the training protocol. 

Two days following FAM2, participants reported to the laboratory for the first 

training session between 0600 and 0900 following a 12-hour fast. Participants warmed-up 

for 5 minutes of a cycle ergometer and performed 3 sets of 10 repetitions at a lifting 
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intensity of 80% 1 RM for each of the three lower-body exercises with 2-3 minute rest 

periods between sets. Two days following the first training session, participants reported 

to the laboratory for the second training session (T2) between 0600 and 0900 following a 

12 hr fast, donated a second muscle biopsy from the opposite leg of T1, warmed-up for 5 

minutes on a cycle ergometer and performed 3 sets of 10 repetitions at a lifting intensity 

of 80% 1 RM for each of the three lower-body exercises with 2-3 minute rest periods 

alotted between sets. Two days following T2, participants reported the laboratory for the 

third training session (T3) between 0600 and 0900 following a 12 hr fast, donated a third 

muscle biopsy from the opposite leg of T2, warmed-up for 5 minutes on a cycle 

ergometer, and performed 3 sets of 10 repetitions at a lifting intensity of 80% 1 RM for 

each of the three lower-body exercises with 2-3 minutes alotted between sets. One day 

following T3, participants reported to the laboratory for T4 between 0600 and 0900 

following a 12 hr fast and donated a fourth muscle biopsy from the opposite leg of T3. 

During each visit participants were verbally encouraged during each set by a laboratory 

technician. Furthermore, if a set was not completed during any of the exercise sessions 

due to volitional fatigue, then 10-20 lbs was removed from the training apparatus and the 

participant resumed the set until 10 repetitions were completed.  

 

Variables 

The independent variable in this investigation was age group (younger vs older 

adults). The following genes and protein were examined at each muscle biopsy time point 

and served as the dependent variables.   

Muscle mRNA Transcripts 
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1. MYOSTATIN: T1-T4 for each participant. A negative regulator of skeletal muscle 

mass. Myostatin has been suggested to regulate skeletal muscle mass by inhibiting 

satellite cell activation. Myostatin also plays a role in the catabolism of skeletal 

muscle mass through a glucocorticoid mediated response. 

2.  ACTIVIN IIB: T1-T4 for each participant. This receptor has the highest binding 

affinity for myostatin in skeletal muscle. Myostatin binding results in receptor 

Smad2/3 phosphoralization and binding with the common Smad4 which translocate 

the nucleus and influence genes involved with satellite cell regulation.  

3. FOLLISTATIN: T1-T4 for each participant. Is a myostatin binding protein expressed 

in skeletal muscle which inhibits myostatin receptor binding. 

4. FLRG (FSTL3): T1-T4 for each participant. Is the primary binding/inhibiting protein 

of myostatin, which inhibits myostatin receptor binding.  

5. HSGT: T1-T4 for each participant. Is a myostatin binding protein expressed in 

skeletal muscle which inhibits myostatin secretion and activation. 

6. TITIN CAP: T1-T4 for each participant. Is a myostatin binding protein expressed in 

skeletal muscle which inhibits myostatin latent complex formation and secretion 

7. SMURF1: T1-T4 for each participant. Is an E3 ubiquitin ligase that tags Smads2/3 for 

degradation. 

Muscle Protein 

1. pSmad3: T1-T4 for each participant. The upregulation of myostatin and subsequent 

binding to the activin IIb receptor results in the phosphorylation of Smad2/3 and 

subsequently form aggregates with Smad4 to translocate the nucleus and inhibit 

satellite cell proliferation and differentiation.  
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Instrumentation 

1. Leg press/hack squat combo (Model #: HLS – 160, Yukon Fitness Equipment, 

Cleveland, OH). This machine was used to 1 RM test participants for the leg press 

and hack squat exercises. This machine was also used to train participants during 

subsequent workouts for leg press and hack squat exercises. 

2. Leg extension machine (Model #: Nautilus NT 1220 Rotary Leg Extension/Curl 

Station, Nautilus Inc., Vancouver, WA). This machine was used to 1 RM test 

participants for the leg extension exercise. This machine was also used to train 

participants during subsequent workouts for the leg extension exercise. 

3. Fluorometer (Model #: Versafluor Fluorometer, Bio-Rad Laboratories, Hercules, 

CA). This device was used to quantitate DNA from crude muscle homogenates with 

Hoechst 33258 dye (Sigma, St Louis, MO) used as the probe. 

4. Automated electrophoresis platform (Model #: Experion Electrophoresis Station, 

BioRad Laboratories, Hercules, CA). This device was used to quantitate total RNA 

from the aqueous fraction of the Tri reagent (Sigma, St. Louis, MO) homogenates. 

5. Thermal cycler (Model #: MyiQ Optics Model, Bio-Rad Laboratories, Hercules, CA). 

This device was used to quantitate baseline and fold-changes in the mRNA 

expression of the genes of interest from reverse transcribed mRNA present in the total 

RNA pool (a.k.a., cDNA) with SYBR green (Bio-Rad Laboratories, Hercules, CA) 

and gene-specific primers (Integrated DNA Technologies, Coralville, IA) used as 

probes. 

6. Electrophoresis cell (Model #: Criterion Cell, Bio-Rad Laboratories, Hercules, CA). 

This device was used to separate proteins from the cell lysis homogenates based upon 
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molecular mass. Following this step, the muscle-specific protein (pSmad3) was 

electrotransferred onto nitrocellulose membranes and probed for transfer efficiency 

using Ponceau S stain (Sigma, St. Louis, MO). The protein of interest was then 

immunoprobed using protein-specific antibodies and enhanced using a 

chemiluminescent reagent (Bio-Rad Laboratories, Hercules, CA). 

7. Electrotransfer cell (Model #: Criterion Blotter, Bio-Rad Laboratories, Hercules, 

CA). This device was used to transfer proteins from SDS-PAGE gels to nitrocellulose 

membranes as mentioned above. 

8. Gel documentation system (Model #: Chemi Doc XRS, Bio-Rad Laboratories, 

Hercules, CA). This device was used to detect and quantitate protein banding to 

determine muscle-specific protein expression patterns of the protein of interest 

(pSmad3).  

 

Percutaneous Muscle Biopsies   

Over the course of this investigation four biopsies (T1-T4) were obtained from 

each participant. A baseline (T1) muscle sample was obtained 15 minutes prior to the 

first familiarizatin exercise bout. The second bioposy was obtained 48 hr following the 

first training session and 15 minutes prior to the second training session. The third 

biopsie was obtained 48 hr following T2 and 15 minutes prior to T3. The final biopsie 

was obtained 24 hr following T3. All biopsies were collected halfway between the hip 

and patella at a depth between 4 to 5 cm. To minimize repeated biopsy-induced muscle 

damage[123], biopsies were collected from alternating legs during subsequent testing 

sessions in such a way that two muscle collections were obtained from each leg. To 
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minimize the effect of muscle fiber distrabution the second bioposie on each leg was 

collected immediately distal to the initial biopsy insertion. The multiple muscle collection 

procedures were standardized by using anatomical palpation, visual identification of the 

previous biopsy, and depth markings on the needle. Prior to each biopsy, the area was 

shaven to remove all hair, and a small area of the skin approximately 2 cm in diameter 

was anesthesized with a 1.5 ml subcutaneous injection of 1% Lidocaine HCl.  Following 

15 minutes, the biopsy area was sterilized in a circular fashion to a 3-inch radius with an 

antiseptic soap (i.e., betadine), an incision approximately one-quarter of an inch was 

made using a sterile razor and a sterilized 5-mm Bergstrom biopsy needle with suction 

applied to its end was inserted into the pilot hole. Suction was applied and muscle tissue 

was excised in a double-chop fasion. Immediately following the biopsy, the muscle tissue 

was removed from the Bergstrom needle using sterile instruments and the collected tissue 

was placed into a labeled cryogenic storage tube and dropped in storage container filled 

with liquid nitrogen (i.e., flash frozen). Samples were then transferred into a -80
 
C freezer 

for long-term storage until completion of the investigation at which time samples were 

thawed for biochemical analyses.  

Muscle [total RNA] determination 

A section of muscle from each participant at each time point was weighed (~30 

mg) and homogenized using 500 µl of Tri reagent (Sigma Chemical Co., St. Louis, MO) 

and a tight-fitting pestle. Following thorough homogenization, samples were centrifuged 

at 12,000 revolutions per minute at 4 C for 10 minutes and the resulting supernatant (free 

of insoluble protein and high molecular weight DNA) was poured into a new 

microcentrifuge tube. Approximately 100 µl of chloroform was added to these samples 



51 
 

and was vortexed for 15 seconds. Then samples were incubated at room temperature for 

10 minutes. Samples were then centrifuged at 12,000 revolutions per minute at 4 C for 15 

minutes. The upper aqueous phase (containing total RNA) was transferred into a new 

microcentrifuge tube and 250 µl of 100% isopropanol was used to precipitate the RNA 

from the aqueous phase. Samples were then centrifuged at 12,000 revolutions per minute 

at 4 C for 15 minutes to form a RNA pellet and the resulting supernatant was disposed. 

Then 750 µl of 75% ethanol wash was added to the RNA pellet and samples were be 

centrifuged at 12,000 revolutions per minute at 4 C for 5 minutes and the resulting 

supernatant was be disposed. Then the RNA pellet was dissolved in 50 µl of RNase-free 

water and vortexed. The diluted RNA samples was then stored at -80
 
C until later 

analyses. 

Total RNA concentrations for each sample were determined using a high 

sensitivity RNA analysis kit with the Experion Automated Electrophoresis platform (Bio-

Rad Laboratories, Hercules, CA). This method separates and quantitates mRNA ranging 

from 50-6,000 nucleotides in length using a laser-excitable RNA stain and RNA ladder 

provided by the manufacturer. Furthermore, this procedure has been previously shown in 

our laboratory to yield un-degraded RNA, free of DNA and proteins as indicated by 

prominent 28S and 18S ribosomal RNA bands (Figure 2). The preparation of reagents and 

the RNA ladder were performed according to the manufacturer’s instructions. 

Furthermore, all RNA samples and the RNA ladder were thawed on ice during the assay 

to preserve mRNA integrity and all assays were performed in duplicate. 
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Real-Time PCR to detect post-exercise expression of genes of interest 

Following total RNA concentration determination, 50-200 ng of total RNA was reverse 

transcribed to synthesize cDNA. For each sample, a reverse transcription reaction 

mixture (40 l total) was prepared containing: 1) 200 ng of total cellular RNA diluted to 

30 l with RNase-free water, 2) 8 l 5x reverse transcription buffer, a dNTP mixture 

containing dATP, dCTP, dGTP, and dTTP, MgCl2, RNase inhibitor, an oligo(dT)15 

primer, and 3) 2 l of MMLV reverse transcriptase enzyme (Bio-Rad Laboratories, 

Hercules, CA)] were incubated at 42 C for 40 minutes, heated to 85 C for 5 minutes, and 

then quick-chilled on ice yielding the cDNA product.  Finally, 80 l of RNase-free water 

was added to bring the cDNA solutions up to 120 l, and cDNA solutions were 

subsequently frozen at -80 C until semi-quantitative real-time PCR was performed. 

Forward and reverse oligonucleotide primer pairs were constructed using commercially 

available Beacon Designer software (Bio-Rad Laboratories, Hercules, CA) and 

synthesized (Integrated DNA Technologies, Coralville, IA) (Table 3). B2M and 28S were 

used as an internal reference for detecting the relative change in the quantity of target 

mRNA as B2M and 28S are constitutively expressed prior to and following resistance 

exercise[124]. Two l of cDNA were added to each of the separate PCR reactions for 

MYOSTATIN, ACTIVIN IIB, HSGT, TITIN CAP, FOLLISTATIN, SMURF1, B2M and 

28S. Each PCR reaction contained the following mixtures: 12.5 μl of SYBR Green 

Supermix (Bio-Rad, Hercules, CA) (100 mM KCl mixture, 40 mM Tris-HCl, 0.4 mM of 

each deoxynucleoside triphosphate, 50 U/μl of iTaq DNA polymerase, 6.0 mM MgCl2, 

SYBR Green I, 20 nM fluorescein), 1.5 μl of sense and antisense gene-specific primers, 

and 7.5 μl of nuclease-free dH2O. The PCR reactions were amplified with a thermal 
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cycler (Bio-Rad Laboratories) whereby the amplification sequence involved an initial 10-

minute cycle at 95 C to activate the Taq polymerase followed by a 40-cycle period with a 

denaturation step at 95 C for 15 seconds and primer annealing/extension step at 55 C for 

45 seconds. It should be noted that all assays were performed in duplicate, and gene 

expression data was expressed using 2
-∆CT

 method where ∆CT = (gene of interest – avg 

B2M and 28S). The coefficient of variation for values between duplicates were less than 

5% for all genes of interest and housekeeping genes.  

Immunoblotting procedures 

A portion of muscle from each time point for each participant was weighed (~25 

mg) and homogenized on ice with 300 μl of cell lysis homogenizing buffer [150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 20 mM Tris HCl, pH 7.5 spiked 

with protease/phosphatase inhibitor cocktails (Sigma, St. Louis, MO)]. Prior to SDS-

PAGE, protein concentrations of cell lysis homogenates were determined 

spectrophotometrically using Bradford reagent (Bio-Rad Laboratories, Hercules, CA) 

with BSA used as a standard curve. Following protein concentration determinations for 

each sample, a total of (30-50) μg of protein was diluted in Laemmli sample loading 

buffer spiked with 5% 2-mercaptoethanol, heated at 95 C for 5 minutes, and loaded on 

handmade 12% polyacrylamide gels (Bio-Rad, Hercules, CA) for SDS-PAGE.  Each run 

lasted ~1 hr at 150 V until the bromophenol blue tracer dye from the Laemmli buffer ran 

~1 cm to the end of the gel. Following SDS-PAGE runs, proteins were eluted from the 

gels to nitrocellulose membranes using a “wet transfer” in an electrotranfer blotting 

apparatus (Bio-Rad Laboratories, Hercules, CA) with Towbin electrotransfer buffer. 

Electrotranfers lasted 1 hr in duration at 100 V and 380-500 mA. Following 
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electrotransfers, loading efficiencies were determined by staining nitrocellulose 

membranes with Ponceau S stain (Sigma, St. Louis, MO). Membranes were destained in 

Tris-buffered saline spiked with 1% Tween-20 followed by immunoprobing experiments.   

Immunoblotting was then performed using mouse monoclonal antibodies against 

muscle-specific pSmad3. Nonspecific binding sites on the nitrocellulose membranes were 

blocked using TBST spiked with 5% nonfat blocking agent (NFBA) for 50 minutes at 

room temperature. Membranes were then incubated with one of the previously mentioned 

primary antibody solution [fold-diluted antibody in 5%NFBA in Tris-buffered saline 

spiked with 1% Tween-20 (TBST)] for 50 minutes at room temperature. The primary 

antibody solution was then decanted, membranes were washed two times (10 minutes per 

wash) with TBST, and membranes were incubated with a horseradish peroxidase (HRP)-

conjugated goat anti-mouse antibody solution (10,000-fold dilution in TBST; Bio-Rad 

Laboratories, Hercules CA) for 45 minutes. Finally, the secondary antibody solution was 

decanted, membranes were washed two times (10 minutes per wash) with TBST, and 

membranes were incubated with an enhanced chemiluminescent reagent (Bio-Rad 

Laboratories, Hercules CA) for 5 minutes. Following this step, membranes were placed 

in the gel documentation system (Bio-Rad Laboratories, Hercules CA) and 

immunoprobed band densities were determined using band densitometry. 

Anthropometric Data 

 Participants changed into minimal clothing and were barefoot for the 

measurement of body mass and height on a calibrated scale and standiometer (Detecto, 

Webb City, MO). Body mass and height were measured to the nearest 0.05 kg and 0.5 

cm, respectively. For measurement of height participants were instructed to stand erect, 
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inhale deeply, point toes up and look straight ahead. Body composition was assessed 

utilizing a three site skinfold equation. All skinfold thickness measurements were 

obtained from the right side of the body with a calibrated Lange caliper. Measurements 

were obtained according to the recommendations of Jackson and Pollock[125] from the 

chest, abdomen and thigh. Body density values were then calculated and utilized to 

obtain a measure of percent body fat using the generalized skinfold equation of Jackson 

and Pollock[125].  

Statistical Analyses 

The Shapiro-Wilk statistic was performed for each dependent variable at each 

time point to assess the data for normality in the distribution of data points. Independent 

samples t-tests were used to examine possible between group differences for normally 

distributed data (age, height, weight and percent body fat). Separate two-way (Age: 

younger vs. older) x testing session (T1, T2, T3, T4 biopsy) RM ANOVAs were used to 

determine main and interactive effects for caloric and macronutrient consumption. The 

mRNA and protein data were assessed using non-parametric statistics. Nevertheless, 

mRNA and protein data were examined for normality of distribution using the Shapiro-

Wilk statistic (p < 0.05). The Mann-Whitney U statistic was used to determine which 

condition(s) were significantly different at each time point (synonymous to an 

independent samples t-test). The Friedman test was used to detect changes in non-

normally distributed data amongst all conditions over time (i.e., detect a main effect for 

time amongst all groups). If the Friedman statistic p-value was < 0.05, then Wilcoxin 

signed rank test was performed as a post hoc measure to determine which time points 

were significantly different within each age group (via the split file function). An alpha of 
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p <  0.05 was used to determine significance for all statistical tests, and all analyses were 

performed using SPSS 15.0 (SPSS Inc., Chicago, IL). All data are presented as means ± 

standard error.  
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CHAPTER IV 

RESULTS 

Participant Demographics, Lifting and Dietary Analyses 

Healthy younger (n = 10; age: 21.0 ± 0.5 years, body mass: 82.3 ± 4.2 kg, height: 

178.4 ± 2.2 cm, body fat percentage: 15.4 ± 2.9%) and older men (n = 10; age: 66.4 ± 1.6 

years, body mass: 94.2 ± 3.7 kg, height: 180.9 ± 2.2 cm, body fat percentage: 27.4 ± 

1.8%) chose to participate in this investigation. Independent samples t-tests were used to 

determine between age strength comparisons. Younger men had a significantly greater 1 

RM for hack squat (younger: 170.0 ± 10.9 kg, older: 105.8 ± 10.4 kg; p = 0.001), leg 

press (younger: 271.1 ± 14.6 kg, older: 182.7 ± 14.9 kg; p < 0.001) and leg extension 

(younger: 64.8 ± 4.0 kg, older: 46.7 ± 2.8 kg; p = 0.002) compared to older men. As a 

result the cumulative training volume was significantly greater during the training bouts 

in younger compared to older men (younger: 36,392 ± 1,894 kg, older: 23,724 ± 1,639 

kg; p < 0.001). Results from the 3 day food diaries indicated that relative caloric (young 

= 33.4 ± 5.1 kcal/kg/d, old = 19.5 ± 1.9 kcal/kg/d; p = 0.038), protein (young = 1.6 ± 0.2 

g/kg/d, old = 0.8 ± 0.1 g/kg/d; p = 0.030), carbohydrate (young = 4.1 ± 0.6 g/kg/d, old = 

2.3 ± 0.3 g/kg/d; p = 0.017) and fat (young = 1.2 ± 0.2 g/kg/d, old = 0.6 ± 0.1 g/kg/d; p = 

0.006) consumption were significantly greater in younger compared to older men. 

Normality Distribution of Dependent Variables 

 The Shapiro-Wilk statistic was performed on each dependent variable at each 

time-point to check for normality in distribution (Table 4). Results from the Shapiro-Wilk 

statistic revealed a non-normal distribution for FLRG, FOLLISTATIN, SMURF1 and 

pSmad3. 
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 Pre and Post-Exercise Expression of the Genes of Interest 

MYOSTATIN mRNA expression values (means ± SE) relative to the average of 

B2M and 28S are presented in Figure 3. MYOSTATIN mRNA expression values for 

younger men were: T1 = 0.00028 ± 0.00004, T2 = 0.00024 ± 0.00002, T3 = 0.00020 ± 

0.00004, T4 = 0.00022 ± 0.00003. MYOSTATIN mRNA expression values for older men 

were T1 = 0.00028 ± 0.00005, T2 = 0.00021 ± 0.00002, T3 = 0.00020  ± 0.00003, T4 = 

0.00016 ± 0.00003. Between group comparisons at each time-point were made using the 

Mann Whitney U test. Analyses revealed no between group differences existed for 

MYOSTATIN mRNA at each time-point (T1: p = 0.880, T2: p = 0.384, T3: p = 0.935, T4: 

p = 0.257). A Friedman test revealed there was a main effect for time regarding 

MYOSTATIN mRNA expression values (p = 0.001). As a result Wilcoxin signed rank 

tests were conducted to examine within-group changes over time in younger and older 

adults. No significant within group changes occurred in MYOSTATIN mRNA expression 

values in the younger men (p > 0.05) but there was a significant downregulation in 

MYOSTATIN mRNA expression at T3 for older men (p = 0.047) and T4 (p = 0.013) 

compared to baseline.        

ACTIVIN IIB mRNA expression values (means ± SE) relative to the average of 

B2M and 28S are presented in Figure 4. ACTIVIN IIB mRNA expression values for 

younger men were: T1 = 0.00013 ± 0.00002, T2 = 0.00014 ± 0.00001, T3 = 0.00016 ± 

0.00004, T4 = 0.00010 ± 0.00001. ACTIVIN IIB mRNA expression values for older men 

were T1 = 0.00026 ± 0.00008, T2 = 0.00017 ± 0.00003, T3 = 0.00011 ± 0.00001, T4 = 

0.00014 ± 0.00002. Between group comparisons at each time-point were made using the 

Mann Whitney U test. Analyses revealed no between group differences existed for 
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ACTIVIN IIB mRNA at each time-point (T1: p = 0.082, T2: p = 0.427, T3: p = 0.288, T4: 

p = 0.199). A Friedman test revealed no main effect for time was present (p = 0.320). 

FOLLISTATIN mRNA expression values (means ± SE) relative to the average of 

B2M and 28S are presented in Figure 5. FOLLISTATIN mRNA expression values for 

younger men were: T1 = 0.00007 ± 0.00003, T2 = 0.00003 ± 0.00001, T3 = 0.00023 ± 

0.00012, T4 = 0.00003 ± 0.00001. FOLLISTATIN mRNA expression values for older 

men were T1 = 0.00018 ± 0.00005, T2 = 0.00010 ± 0.00002, T3 = 0.00012 ± 0.00003, T4 

= 0.00010 ± 0.00004. The Mann Whitney U test was utilized to identify between group 

differences at each time-point and analyses revealed there was a significant difference 

between younger and older men at T1 (p = 0.023) and T2 (p = 0.008), but no significant 

difference between groups was present at T3 (p = 0.568) and T4 (0.174). A Friedman test 

revealed no main effect for time was present (p = 0.443). 

FLRG mRNA expression values (means ± SE) relative to the average of B2M and 

28S are presented in Figure 6. FLRG mRNA expression values for younger men were: T1 

= 0.00005 ± 0.00001, T2 = 0.00006 ± 0.00001, T3 = 0.00009 ± 0.00003, T4 = 0.00005 ± 

0.000004. FLRG mRNA expression values for older men were T1 = 0.00013 ± 0.00004, 

T2 = 0.00008 ± 0.00002, T3 = 0.00006 ± 0.00001, T4 = 0.00011 ± 0.00002. The Mann 

Whitney U test was utilized to identify between group differences at each time-point and 

analyses revealed there was a significant difference between younger and older men at T1 

(p = 0.038) and T4 (p = 0.005), but no significant difference was present at T2 (p = 

0.473) and T3 (p = 0.940). A Friedman test revealed no main effect for time was present 

(p = 0.423). 
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HSGT mRNA expression values (means ± SE) relative to the average of B2M and 

28S are presented in Figure 7. HSGT mRNA expression values for younger men were: T1 

= 0.00064 ± 0.00009, T2 = 0.00062 ± 0.00005, T3 = 0.00054 ± 0.00013, T4 = 0.00051 ± 

0.00008. HSGT mRNA expression values for older men were T1 = 0.00076 ± 0.00009, 

T2 = 0.00078 ± 0.00015, T3 = 0.00060 ± 0.00011, T4 = 0.00054 ± 0.00012. The Mann 

Whitney U test was utilized to identify between group differences at each time-point and 

analyses revealed no between group differences existed for HSGT mRNA at each time-

point (T1: p = 0.226, T2: p = 0.880, T3: p = 0.762, T4: p = 0.762). A Friedman test 

revealed there was a main effect for time regarding HSGT mRNA expression values (p = 

0.010). As a result Wilcoxin signed rank tests were conducted to examine within-group 

changes over time in younger and older adults; however, no significant within group 

changes occurred in HSGT mRNA expression values in the younger or older group (p > 

0.05) compared to the respective baseline values.  

SMURF1 mRNA expression values (means ± SE) relative to the average of B2M 

and 28S are presented in Figure 8. SMURF1 mRNA expression values for younger men 

were: T1 = 0.00012 ± 0.00002, T2 = 0.00015 ± 0.00002, T3 = 0.00016 ± 0.00003, T4 = 

0.00013 ± 0.00002. SMURF1 mRNA expression values for older men were T1 = 0.00020 

± 0.00003, T2 = 0.00015 ± 0.00003, T3 = 0.00014 ± 0.00003, T4 = 0.00014 ± 0.00002. 

The Mann Whitney U test was utilized to identify between group differences at each 

time-point. Analyses revealed no between group differences existed for SMURF1 mRNA 

at each time-point (T1: p = 0.076, T2: p = 0.821, T3: p = 0.496, T4: p = 0.677). A 

Friedman test revealed no main effect for time was present in regard to SMURF1 mRNA 

expression values (p = 0.378). 
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No data is available for TITIN CAP as the gene was too lowly expressed to obtain 

viable data.    

Pre and Post-Exercise Expression of the Protein of Interest 

Muscle pSmad3 values expressed in arbitrary density units (ADUs) using means 

± SE and are presented in Figure 9. Muscle pSmad values for younger men were: T1 = 

0.023 ± 0.006, T2 = 0.024 ± 0.005, T3 = 0.029 ± 0.005, T4 = 0.029 ± 0.006. Muscle 

pSmad values for older men were T1 = 0.020 ± 0.003, T2 = 0.017 ± 0.006, T3 = 0.015 ± 

0.004, T4 = 0.014 ± 0.004. The Mann Whitney U test was utilized to identify between 

group differences at each time-point and analyses revealed there was a significant 

difference between younger and older men at T3 (p = 0.012) and T4 (p = 0.010). A 

Friedman test revealed no main effect for time was present (p = 0.546).  
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CHAPTER V 

DISCUSSION 

 The purpose of the current investigation was two-fold: to examine if baseline 

differences in myostatin signaling are present between younger and older men and to 

examine the effects of short-term chronic resistance training on myostatin signaling in 

younger and older men. Myostatin is synthesized as a 376 amino acid precursor protein 

composed of a signal sequence, a N-terminal propeptide domain and a C-terminal domain 

which is considered the active molecule[81]. Myostatin is secreted in a latent (inactive) 

form as it is bound to a propeptide (latency-associated peptide). A mature (active) form 

of myostatin is produced after proteolytic processing between the propeptide domain and 

C-terminal domain, which produces a N-terminal propetide and the mature form of 

myostatin (the C-terminal dimer)[11]. 

Gene expression of proteins that were examined in the current investigation that 

influence myostatin secretion and binding include: HSGT which inhibits myostatin 

secretion and binding[1], titin cap which inhibits myostatin latent complex formation and 

secretion[2], FLRG[3] and follistatin[6] which inhibit myostatin binding to the activin 

IIB receptor[11]. Mature myostatin binds to the activin IIB receptor which associates 

with its corresponding type I receptor resulting in an activated heterotetrameric receptor 

complex, that transphosphorylates the type I receptor. Then the activated receptor 

complex phosphorylates receptor regulated Smad2/3 proteins that oligomerize with the 

common Smad (Smad4) which translocate into the nucleus and interact with Smad 

binding partners in the DNA to regulate gene transcription[126]. While Smurf1 is an E3 

ubiquitin ligase which tags Smad2/3 for degradation[11] and also associate with Smad6/7 
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in a signal dependent manner as Smad6/7 allow Smurfs to mark the activated type I 

receptor for protesomal degradation[8, 127, 128].     

 There were no significant between group differences in the mRNA expression of 

MYOSTATIN at baseline or following the three repeated bouts of resistance training (p < 

0.05). Investigations examining the basal expression of myostatin between younger and 

older adults have resulted in equivocal findings[23, 25, 26, 101, 119, 129]. Raue et 

al.[25] found MYOSTATIN mRNA to be significantly greater in older (83 ± 1 yr) 

compared to younger (23 ± 1 yr) women, while other investigations have no found no 

significant differences in MYOSTATIN mRNA expression at baseline between younger 

and older adults[23, 26, 101, 129]. Results have also been equivocal regarding the effects 

of resistance training on MYOSTATIN mRNA expression but are explained by variations 

in post-exercise muscle biopsy time-points. Investigations have found a significant 

downregulation in the mRNA expression of MYOSTATIN at 1 hr[24, 107, 114], 2 

hr[107], 4 hr[25, 107], 12 hr[107], 24 hr[107, 119, 129] and 48 hr[24, 25, 119] following 

a bout of resistance training. However, other investigations have found no significant 

effect of exercise on MYOSTATIN mRNA expression at 4 hr[113] and 48 hr[113, 114] 

following a bout of resistance exercise.   

In the current investigation younger men experienced a trend decrease for 

MYOSTATIN mRNA expression 24 hr following T4 (p = 0.074) while older men 

experienced a significant downregulation for MYOSTATIN mRNA expression at T3 (p = 

0.047; 48 hr post-exercise) and T4 (p = 0.013; 24 hr post-exercise). MYOSTATIN mRNA 

expression has been found to be significantly downregulated up to 48 hr following a bout 

of resistance training[24, 25, 119], however, these finding are equivocal[113, 114] and it 
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is likely that the downregulation of MYOSTATIN is more pronounced at 24 hr rather than 

48 hr following a bout of resistance training.  

 There were no significant within (p > 0.05) or between group (p > 0.05) 

differences for the mRNA expression of ACTIVIN IIB. Previous investigations have 

found resistance training to have no effect on ACTIVIN IIB mRNA expression 1 hr[24] 

and 48 hr[24, 113] post-exercise in older men, while another investigation found 

ACTIVIN IIB mRNA expression to be significantly downregulated 1 hr[113] following a 

single resistance training bout and tended to decrease (p = 0.07) 1 hr following a 

resistance training bout proceeded by a 21 week resistance training program[113] in older 

men. In younger men ACTIVIN IIB receptor mRNA values have been found to be 

unaffected 1 hr following resistance training but were significantly downregulated 48 hr 

post-exercise[114]. Nevertheless, Willoughby[118] found chronic resistance training for 

6 and 12 weeks to have no effect on ACTIVIN IIB mRNA values 15 minutes post-

exercise in young men. The current investigation appears to be the first to report age has 

no effect on ACTIVIN IIB mRNA expression and demonstrates the genetic response in 

regard to ACTIVIN IIB mRNA expression is similar between younger and older men.  

 Older men had significantly higher mRNA expression values compared to 

younger men at baseline for the myostatin binding proteins FLRG (p = 0.038) and 

FOLLISTATIN (p = 0.023). Older men also had higher mRNA expression values for 

FLRG at T4 (p = 0.003) and had higher mRNA expression values for FOLLISTATIN at 

T2 (p = 0.007). No within group differences were present for younger or older men in 

regard to FLRG or FOLLISTATIN (p > 0.05). No found literature has examined the 

effects of age on FLRG expression; therefore, the finding in the current investigation that 
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older adults have significantly greater mRNA expression values of FLRG appear to be 

novel. However, the effects of resistance training on FLRG mRNA expression have been 

examined[24, 113]. In 2007, Hulmi et al.[113] found the mRNA expression of FLRG to 

be unaffected by resistance training 1 hr and 48 hr post-exercise following an acute bout 

of resistance training and following 21 weeks of training in older men (63.2 ± 6.3 yr). In 

2008, Hulmi et al.[24] found resistance training to have no effect on the mRNA 

expression of FLRG 1 hr and 48 hr following a bout of resistance training. However, 

participants who consumed 15 g of whey protein isolate immediately before and 

following a bout of resistance training experienced a significant upregulation of FLRG 48 

hr post-exercise, suggesting macronutrients may be an effective mechanism to alter 

myostatin pathway signaling following a bout of resistance training in older men (62.1 ± 

4.2 yr)[24].  

In regard to FOLLISTATIN our results are consistent with the work of Jensky et 

al.[26] who reported baseline differences in the mRNA expression of FOLLISTATIN 

between younger (28 ± 5 yr) and older (68 ± 6 yr) men. Also consistent with the results 

from Jensky et al.[26] the current investigation found resistance exercise to have no 

within or between group effect in the mRNA expression of FOLLISTATIN 24 hr 

following a bout of resistance training. Animal models have been used to demonstrate the 

importance of follistatin in the myostatin signaling pathway as mice over-expressing 

follistatin have been found to experience nearly a two-fold increase in skeletal muscle 

mass compared to wild-type littermates[130]. Moreover, follistatin appears to influence 

skeletal muscle mass independent of myostatin signaling as myostatin null mice over-

expressing follistatin experienced a nearly four-fold increase in skeletal muscle mass 
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compared to wild-type littermates while myostatin null mice typically experience a near 

two-fold increase in skeletal muscle mass compared to wild-type controls, suggesting 

follistatin to influence skeletal muscle mass independent of myostatin pathway 

signaling[131, 132]. 

 There were no significant within (p > 0.05) or between group (p > 0.05) 

differences for the mRNA expression of HSGT which is consistent with the results of a 

previous investigation[26]. We were unable to obtain mRNA expression values for TITIN 

CAP. Previous investigations which have examined the effects of titin cap on myostatin 

have utilized cell culture techniques [2, 133]. Future investigations should seek to 

determine the effects of age, exercise and nutrition on titin cap as myostatin and titin cap 

have been found to have a high protein-protein interaction using surface Plasmon 

resonance kinetics[2]. Furthermore, when titin cap was overexpressed in C2C12 myoblasts 

the rate of satellite cell proliferation was significantly increased and contained lower 

levels of myostatin[2]. In the future researchers looking to examine TITIN CAP in human 

skeletal muscle should use a different primer sequence from the one used in the current 

investigation as we were unable to obtain a measurable value of the mRNA expression of 

TITIN CAP.   

There were no significant within (p > 0.05) or between group (p > 0.05) 

differences for the mRNA expression of SMURF1 which appear to be novel findings as 

no found literature exists on in vivo SMURF1 mRNA or protein expression involving 

myostatin pathway activity. Research has been conducted on the effects of SMURF1/2 in 

TGF-β pathway signaling[128, 134, 135], but these investigations have been conducted 

utilizing cell culture techniques[134, 135]. The over-expression of SMURF1/2 has been 
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found to decrease TGFβ1-induced GLα promoter activity and to strengthen the inhibitory 

effect of Smad7 on promoter activity while decreasing Smad3/4 mediated GLα promoter 

activity suggest that SMURF1/2 can downregulate the TGF-β1 signaling pathway[135]. 

Since the TGF-β1 signaling pathway function in a similar manner as the myostatin 

signaling pathway the effects of SMURF1 are likely to function in a similar manner in 

each pathway. Regardless, the current investigation appears to be the first to demonstrate 

the lack of effect of age and exercise on the mRNA expression of SMURF1.   

There were significant between group differences in the protein expression of 

pSmad3 as older men had significantly less protein for pSmad following T3 (p = 0.012) 

and T4 (p = 0.010) compared to younger men. This finding appears novel as no research 

to our knowledge has demonstrated that resistance training influences pSmad3 in human 

skeletal muscle. However, the finding that pSmad protein expression was significantly 

decreased at T3 and T4 in older compared to younger men is likely the result of the 

finding that older men experienced a significant decrease in MYOSTATIN mRNA 

expression at T3 and T4. While the physiological relevance of a decrease in pSmad3 

protein expression is difficult to explain in the current investigation this adaptation may 

occur to facilitate hypertrophic mechanisms in older skeletal muscle as it is known that 

pSmad3 (activated Smad3) is known to increase the expression of genes that potentially 

inhibit satellite cell activity (i.e., proliferation and differentiation)[11]. This finding is 

consistent with previous work which has found genes to promote satellite cell 

differentiation (MYF5, MYOD, MYOGENIN and MRF4) to be more highly expressed in 

older compared to younger men[25]. Although counterintuitive because skeletal muscle 

growth occurs more readily in younger compared to older men the results have been 
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explained by suggesting the pro-hypertrophic genes are expressed to a greater degree in 

older compared to younger men in an attempt to maintain skeletal muscle mass with 

age[25].  

To date results from the current investigation provide the most complete picture 

of the effects of age and short-term, chronic resistance training on myostatin pathway 

signaling. Of particular interest was the finding that at baseline the mRNA expression of 

the primary components of the myostatin pathway are similar between younger and older 

men except for the myostatin binding proteins, FLRG and FOLLISTATIN which were 

expressed to a greater degree in older compared to younger men. Also of interest was the 

finding that in terms of myostatin signaling older and younger men responded in a similar 

fashion in response to the repeated bouts of resistance training. The only difference 

present between groups was the differential response in MYOSTATIN mRNA as the older 

men experienced a significant decrease 48 hr following T3 (p = 0.047) and 24 hr 

following T4 (0.013) while younger men experience a trend decrease 24 hr following T4 

(0.074).    

Given the findings in the current and previous investigations which suggest there 

are no baseline differences in the mRNA expression of MYOSTATIN [23, 26, 101, 129] 

and ACTIVIN IIB between younger and older adults combined with the findings that 

FLRG and FOLLISTATIN [26] are expressed to a significantly greater degree in older 

compared to younger adults at baseline suggest that at rest older men may have less 

biologically active myostatin present in skeletal muscle compared to younger men. 

However, this hypothesis is limited by several factors: 1) Protein expression of myostatin, 

FLRG and follistatin were not quantified and previous investigations have demonstrated 



69 
 

there is not a 1:1 ratio from gene transcription to translation[98, 136] and this ratio may 

be influenced by age. As a result even though gene expression was expressed to a greater 

degree in older men compared to younger men the possibility exists that no differences in 

the protein expression of the genes of interest may exist between groups. 2) Protein-

protein interactions between FLRG and myostatin and follistatin and myostatin were not 

conducted. Even if FLRG and follistatin protein were quantified without conducting 

protein-protein interactions it would not be possible to determine if the myostatin binding 

proteins (FLRG and follistatin) were binding to myostatin. Finally, future work should 

examine if differences exist in the binding affinity for myostatin to the activin IIB 

receptor with age. Collectively, results from the current investigation suggest myostatin 

pathway signaling to have little influence on the loss of skeletal muscle mass with age as 

the minor differences found in the mRNA expression of the primary myostatin signaling 

pathway proteins appear to become more favorable with age as found by the significant 

upregulation of the myostatin binding proteins, FLRG and FOLLISTATIN, combined with 

a more pronounced decrease in the mRNA expression of MYOSTATIN following 

repeated bouts of resistance training in older men.      

Even though results from the current investigation suggest myostatin pathway 

signaling to have little effect on the loss of skeletal muscle mass with age numerous 

investigations have found that genetically knocking out myostatin[18, 94, 96, 98, 137] 

and inhibiting myostatin with a myostatin blocking antibody[21, 138] have shown the 

potential to be a safe[21] and effective mechanism for increasing and maintaining skeletal 

muscle mass with age[20, 139], in diseased populations[18, 120, 121] and could be useful 

for the treatment of myopathies resulting from non-gentic causes such as 
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malnutrition[120], cachexia[120] and corticosteroid excess[15, 16, 99, 100, 120] which 

are characterized by type II fiber skeletal muscle atrophy[120]. Further investigations 

have also demonstrated the overexpression of titin cap[2] and follistatin[130] to 

significantly increase skeletal muscle mass. As a result even though age does not appear 

to influence myostatin pathway signaling much research exists demonstrating the 

potential positive effects of altering myostatin pathway activity in the favorable direction 

can have on the maintenance of skeletal muscle mass with age and those suffering from 

disease states characterized by skeletal muscle wasting. Therefore, pharmacological 

interventions designed at shifting the myostatin pathway to promote skeletal muscle 

growth are currently being and should continue to be examined for the benefit of 

maintaining quality and enhancing the duration of life of those experiencing skeletal 

muscle wasting.       

From a global perspective understanding the mechanisms involved in myostatin 

signaling are of importance particularly when considering the practical applications with 

slowing/reversing the loss of skeletal muscle mass with age. In the United States nearly 

50% of older adults (≥ 60 yr) have been estimated to be sarcopenic with approximately 

20% being classified as functionally disabled and estimates of the direct health care costs 

of sarcopenia were estimated to be $18.5 billion in 2000[140]. Currently the most 

effective mechanisms to slow the rate of skeletal muscle loss with age are resistance 

exercise[141, 142] and androgen replacement therapy[141]. However, physical activity 

has been found to decrease with age[143] and testosterone is often widely unavailable 

and may be associated with adverse effects in older adults[144]. Conversely, research 

conducted on myostatin null animals[18, 94, 96, 98, 137], mice overexpressing titin 
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cap[2] and follistatin[130], and mice introduced to a myostatin blocking antibody[21, 

138] have clearly demonstrated the profound effect of myostatin signaling on the 

regulation of skeletal muscle growth and degradation. Furthermore an investigation by 

Whittermore et al. provides evidence suggesting that short term of administration of a 

myostatin blocking antibody at a dose of 60 mg/kg/week to be a safe and effective 

mechanism to enhance skeletal muscle mass without the introduction of adverse effects in 

vitro[21]. Additional work conducted by Siriett et al. found younger and older mice to 

have an increased rate of skeletal muscle recovery following injury and an increase in the 

number activated satellite cells compared to wild-type controls[20]. Further evidence of 

the apparent safety of altering the myostatin pathway is evidenced in the work of 

Schuelke et al. who conducted a case study of a German boy who was born myostatin 

null. At 4.5 yr of age the boy had no apparent health problems but was hypoglycemic and 

had increased serum concentrations of testosterone and IGF-1[145].  

 Given the findings that alterations in myostatin pathway activity have been found 

to positively influence fat mass[85-87] and insulin resistance[85, 86] in healthy and 

diseased populations along with the findings that myostatin inhibition positively 

influences skeletal muscle mass in diseased[18, 120, 121] and  healthy aged 

populations[20, 21] it is imperative that pharmacological interventions continue to be 

developed and research continues to explore the safety and efficacy of novel 

pharmacological agents designed to alter myostatin pathway activity. Of particular 

interest have been the findings that the introduction of myostatin blocking antibodies[20, 

21] in aged mice has been found to enhance muscle regeneration and increase the number 

activated satellite cells[20] and to be apparently safe[21]. Given the efficacy[20, 21] of 
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myostatin blocking antibodies along with the apparent safety for short-term use[21] 

combined with the knowledge that the best clinical treatment to prevent skeletal muscle 

loss is testosterone administration, which has been found to be associated with adverse 

effects, it seems logical from a practical and economic standpoint to continue to explore 

mechanisms to alter myostatin pathway signaling to promote skeletal muscle growth.  
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Appendix B 

 

Table 1. Time course response of genes influencing satellite cell activity following an 

acute bout of resistance exercise  

Study  Age Gender Gene(s) Time-point response  

Louis et 

al.[107] 

25 ± 4 yr Men and 

women 

Myostatin Significant ↓ immediate post, 1, 

2, 4, 8, 12, 24 hr post exercise 

Raue et 

al.[25] 

Younger: 

23 ± 2 yr 

Older: 85 

± 1 yr  

Women Myostatin Significant ↓ 4 hr post exercise in 

young and old 

Hulmi et 

al.[24]  

62.1 ± 4.2 

yr 

Men Myostatin Only results from the placebo 

group are presented 

Significant ↓ 1 hr and 48 hr post-

exercise 

Hulmi et 

al [113] 

60.9 ± 5.0 

yr 

Men Myostatin  Only results from the placebo 

group are presented 

↔ 4 hr and 48 hr post-exercise 

Hulmi et 

al.[114] 

27.2 ± 3.0 

yr 

Men Myostatin Only results from the placebo 

group are presented 

Significant ↓ 1 hr post exercise  

Non-significant ↑ 48 hr post-

exercise 

Raue et 

al. [25] 

Younger: 

23 ± 2 yr 

Older: 85 

± 1 yr 

Women Muscle 

Regulatory 

Factors 

The response for each variable 

was the same in younger and 

older adults 

Significant ↑ MyoD and MRF4 4 

hr post exercise 

↔ Myf5 4 hr post exercise 

↔ myogenin 4 hr post-exercise 

Hulmi et 

al. [24] 

62.1 ± 4.2 

yr 

Men Muscle 

Regulatory 

Factors 

Only results from the placebo 

group are presented 

↔ myogenin 1 hr and 48 hr post-

exercise  

↔ myoD 1 hr and 48 hr post-

exercise 

Hulmi et 

al [113] 

60.9 ± 5.0 

yr 

Men Muscle 

Regulatory 

Factors 

Only results from the placebo 

group are presented 

↔ myoD 4 hr and 48 hr post-

exercise   

Hulmi et 

al.[114] 

27.2 ± 3.0 

yr 

Men Muscle 

Regulatory 

Factors 

Only results from the placebo 

group are presented 

Significant ↓ myogenin 1 hr post-

exercise 

↔ myogenin 48 hr post exercise  

Hulmi et 62.1 ± 4.2 Men Cell Cycle Only results from the placebo 
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al. [24] yr Regulators group are presented 

↔ p27 1 hr and 48 hr post 

exercise 

↔ p21 1 hr post exercise 

Significant ↑ p21 48 hr post-

exercise 

↔ cdk2 1 hr and 48 hr post-

exercise 

Hulmi et 

al [113] 

60.9 ± 5.0 

yr 

Men Cell Cycle 

Regulators 

Only results from the placebo 

group are presented 

↔ p27 4 hr and 48 hr post-

exercise 

Hulmi et 

al.[114] 

27.2 ± 3.0 

yr 

Men Cell Cycle 

Regulators 

Only results from the placebo 

group are presented 

Significant ↑ p21 1 hr and 48 hr 

post exercise 

↔ cdk2 1 hr and 48 hr post 

exercise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Table 2. Effects of chronic resistance exercise on myostatin expression 

Study  Age Duration of 

Training 

Post Biopsy 

Time-Point 

Effect on Myostatin 

Roth et al.[23] Younger 

(20-30 yr) 

Older (65-

75 yr) 

9 weeks  2-3 days 

following final 

training bout 

Significant ↓ mRNA in 

younger and older adults 

Walker et 

al.[117] 

Younger 

(18-45 yr) 

10 weeks After final 

training session, 

no specific time-

point given 

Significant ↓ plasma 

myostatin  

Willoughby[118] Younger 

(22.9 ± 2.8 

yr) 

6 and 12 

weeks 

Serum and 

muscle: 

Immediately 

before final 

training bout; 

should be 24 hr 

after previous 

training bout 

Significant ↑ plasma 

myostatin and skeletal 

muscle myostatin mRNA 

and protein at 6 and 12 

weeks 

Hulmi et al.[113]  Older (60.9 

± 5.0 yr) 

21 weeks 3-4 days 

following a 

strength testing 

protocol 

Significant ↑ mRNA 

Hulmi et al.[114]  Young 

protein 

(25.2 ± 5.2 

yr) 

Young 

placebo 

(27.2 ± 3.0 

yr) 

21 weeks  4-5 days 

following final 

training bout 

Non-significant ↓ mRNA 

in protein and placebo 

group 
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Table 3. Primer sequences used to probe genes of interest expressed in skeletal muscle 

samples 

Gene Primer sequence (forward and reverse) 
GenBank 

accession # 

 

MYOSTATIN 

 

 

 

 

ACTIVIN IIB 

 

 

HSGT 

 

 

TITIN CAP 

 

 

FOLLISTATIN  

 

 

FLRG 

 

 

SMURF1 

 

 

5’- GAC CAG GAG AAG ATG GGC TGA ATC 

CGT T-3’ 

5’- CTC ATC ACA GTC AAG ACC AAA ATC 

CCT T-3’ 

 

5’- GCC TTG CCA TCA GAT TGT G-3’ 

5’- GCC ATC AGA ACC AGA TAT ACC -3’ 

 

5’- TTG GGG TGA CGG TAG AAG AC -3’ 

5’- GTT GAG CTC GAT GGC TTT TC -3’ 

 

5’- GAG ACT CCA TCG GTA CTA -3’ 

5’- CCT TCC TAG ACT GTG ACA -3’ 

 

5’-TGC CAC CTG AGA AAG GCT AC -3’ 

5’- ACA GAC AGG CTC ATC CGA CT -3’ 

 

5’- TGC TCA GAA TCG CCT ACC-3’ 

5’- CTC CGT GTT GTC CTC TCC -3’ 

 

5’- TGA AGG AAC GGT GTA TGA AG- 3’ 

5’- CGG TGC TAT CTG TGT AAG G -3’ 

 

NM_005259 

 

 

 

 

NM_001106 

 

 

NP_AJ223828 

 

 

NM_003673 

 

 

NM_013409 

 

 

NM_005860 

 

 

NM_020429 

HSGT = human small glutamine-rich tetratricopeptide repeat-containing protein 

FLRG = follistatin-related gene 
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Table 4. Normality distribution tests for all dependent variables  

Variable T1 p-value T2 p-value T3 p-value T4 p-value 

mRNA     

MYOSTATIN 0.912 0.393 0.968 0.280 

ACTIVIN IIB 0.089 0.436 0.315 0.218 

HSGT 0.247 0.912 0.796 0.796 

FOLLISTATIN* 0.023 0.007 0.604 0.190 

FLRG* 0.035 0.481 0.971 0.003 

SMURF1* 0.099 0.095 0.008 0.061 

Protein     

pSmad3* 0.070 0.004 0.013 0.004 

Data represent the Shapiro-Wilk statistic p-values for each dependent variable.  

* indicates that data at one or multiple time points from T1-T4 was not normally 

distributed.  
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Appendix C 

 

Figure 1. Study Design Overview: All workouts (dark gray and black bars) will consist of 

a 5-minute warm-up on a cycle ergometer followed by 3 sets of 10 repetitions for the 

bilateral leg press, hack squat and leg extension exercises (intensities denoted) with 2-3 

minutes of rest between sets and exercises.  

 

Figure 2. RNA automated electrophoresis electropherogram. Past data from our 

laboratory demonstrating that our isolation techniques yields high quality RNA as 

evidenced by the presence of 18S and 28S rRNA peaks and an RNA Quality Indicator 

(RQI) score of 7.0 as well as the lack of high molecular weight peaks past the 28S peak 

(indicative of DNA contamination). 

 

Figure 3. MYOSTATIN mRNA expression values expressed as means ± SE. † = 

Significant within group difference from baseline, p < 0.05.   

 

Figure 4. ACTIVIN IIB mRNA expression values expressed as means ± SE. There were 

no between or within group differences, p > 0.05.   

 

Figure 5. FLRG mRNA expression values expressed as means ± SE. * = Significant 

between group difference, p < 0.05. 

 

Figure 6. FOLLISTATIN mRNA expression values expressed as means ± SE. * = 

Significant between group difference, p < 0.05. 

 

Figure 7. HSGT mRNA expression values expressed as means ± SE. There were no 

between or within group differences, p > 0.05. 

 

Figure 8. SMURF1 mRNA expression values expressed as means ± SE. There were no 

between or within group differences, p > 0.05. 

 

Figure 9. pSMAD3 protein expression values expressed as means ± SE. * = Significant 

between group difference, p < 0.05.  
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Appendix D 

 

v. 1, 2/19/07        IRB No: 13318 
  

 Consent Form 

University of Oklahoma Health Sciences Center (OUHSC) 

University of Oklahoma-Norman 

 

Impact of Age on Insulin and Androgen Receptor Expression and Binding Affinity 

After Sequential Sessions of Lower Body Resistance Exercise 

 

Sponsor: Department of Health and Exercise Science, University of Oklahoma 

 

Principal Investigator: Chad M. Kerksick, PhD 

University of Oklahoma 

405-325-9021 

 

This is a research study.  Research studies include only patients who choose to take part 

in them. Please take your time to make your decision. Discuss this with your family and 

friends. 

 

Why Have I Been Asked To Participate In This Study? 

You are being asked to take part in this study because you are a healthy 

man who is able to exercise. 

 

Why Is This Study Being Done? 

Aging in men is associated with decreases in androgens (male hormones).  

Testosterone is a type of androgen hormone. Decreased testosterone as a result of aging 

can lead to changes in muscle, including a loss of muscle and muscle strength. In this 

study, blood and muscle samples will be collected in order to compare amounts of 

testosterone and how receptive the muscles are to effects of androgens in younger and 

older men. The purpose of this study is to assess whether three sessions of lower 
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extremity strength training changes the receptiveness to androgens in the muscle in 

elderly men compared to younger men. 

 

What is the Status of the Drugs (Devices or Procedures) involved in this study? 

No experimental drugs or foods will be used in this protocol.  Lidocaine is 

approved by the FDA as a local anesthetic. 

 

How Many People Will Take Part In The Study? 

About twenty men between the ages of 18-25 and 60-75 years of age will be 

divided into two groups by their age to take part in this study.  All of the participants will 

complete their testing in the research laboratories in the Huston Huffman Center on the 

University of Oklahoma-Norman campus.  

 

What Is Involved In The Study? 

During this time you will complete one familiarization visit prior to completing 

five visits to the lab.  Each visit is outlined below: 

 

 Familiarization: Initial familiarization to the study protocol will occur by phone 

with one of the study investigators.  During this visit, the study investigator will 

ask you about your family and personal health history in addition to various 

lifestyle habits, which will include your current alcohol and illegal drug use. 

 Visit #1 –During this visit, your highest level of strength will be determined.  

Your strength will be determined using three separate weight lifting exercises that 

will focus on the muscles in your legs.  To complete this, low amounts of weight 

will first be used and the amount of weight will be slowly increased until the 

highest amount of weight you can lift is determined.  You will be allowed to rest 

for 3 minutes between each attempt at lifting the weight.  Trained investigators 

will be present to instruct you on how to safely and effectively complete the 

exercises. 

 Visit #2 - Two weeks after visit #1, all participants will return to the laboratory 

for approximately 60 minutes to complete visit #2. All participants will first 

complete a warm-up which will consist of walking for 10 minutes at a speed with 

which you are comfortable walking and lifting weights with amounts that will be 

half of what you completed at the first testing session.  For example, if your 

maximum amount was 100 pounds, you will warm-up with 50 pounds.  After 

warming up, you will then complete three sets of 8 to 10 repetitions (a repetition 

is lifting and lowering the weight once in a controlled manner) with all three 

exercises.  The amount of weight you will use will be equal to 80% of your 
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maximum amount (Example: If your maximum amount was 100 pounds, you will 

use 80 pounds). You will rest for 3 minutes between each set of exercise. If the 

weight becomes too great, the amount of weight will be decreased so you can 

complete all of the repetitions.  Prior to beginning this exercise bout, you will 

have a small sample of muscle tissue removed from the outside portion of your 

thigh, halfway between your hip bone and your kneecap. The amount of muscle 

tissue will be equivalent to the size of a lead tip from a No. 2 pencil. During this 

procedure, your skin will be made numb using the same numbing agent that is 

used at the dentist. The needle used for this procedure is larger than a needle 

which is used for drawing blood.  A small incision, approximately one-quarter of 

an inch will be made to more easily insert the muscle collection needle.  As 

mentioned earlier, your skin will be made numb and as a result you will feel very 

little pain and likely significant pressure while the procedure is being completed.  

This entire process should take approximately one to two minutes.  The muscle 

collection will be completed by Chad Kerksick, PhD, who is a professor of 

exercise physiology at the University of Oklahoma. Dr. Kerksick will be assisted 

by trained graduate students to assist him with this procedure.  Prior to beginning 

the exercise session, immediately after the exercise session and 30 minutes after 

completing the exercise session, you will have approximately 15 milliliters (one 

tablespoon) of blood drawn from a vein located in the area in front of your elbow. 

The needle and supplies used are similar to what is used by your physician’s 

office to draw blood. The blood will be drawn by Chad Kerksick, PhD, or 

graduate students trained in phlebotomy.  It is important for you to follow all 

instructions provided to you by Dr. Kerksick and his staff to minimize any 

bruising and/or discomfort you may feel from the muscle collection and blood 

draw. To ensure your safety and provide medical care, Steven Blevins, MD and 

Ryan Brown, MD will be available to provide medical consult to Dr. Kerksick 

and his staff if you experience any unexpected problem. This is important for you 

to understand since Dr. Brown and Dr. Blevins will not be available on-site for 

emergencies but will be available for medical consultation for cases of infection, 

hematomas, etc. 

 Visit #3 – Approximately 48 hours after visit #2, participants will return to the 

laboratory for approximately 60 minutes to complete their second exercise 

session, which will be identical to visit #2. Immediately before this exercise 

session a blood and muscle sample will be collected.  Two additional blood 

samples will then be collected immediately after and 30 minutes after completing 

this exercise session. All blood and muscle samples collected during this visit will 

follow the procedures outlined previously in the Visit #2 section. 

 Visit #4 – Approximately 48 hours after visit #3, participants will return to the 

laboratory for approximately 60 minutes to complete their third and final exercise 

session, which will be identical to the two previous exercise sessions.  

Immediately before this exercise session a blood and muscle sample will be 

collected.  Two additional blood samples will then be collected immediately after 

and 30 minutes after completing this exercise session.  All blood and muscle 

samples collected during this visit will follow the procedures outlined previously 

in the Visit #2 section. 
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 Visit #5 – Approximately 24 hours after visit #4, participants will return for their 

final muscle collection following the previously outlined procedures. 

 

How Long Will I Be In The Study? 

This study should last for 21 days.  There may be anticipated circumstances under 

which your participation may be terminated by the investigator without regard to your 

consent, which include: 

 He feels that it is in your medical best interest. 

 Your condition worsens. 

 New information becomes available. 

 The study is stopped by the sponsor. 

You can stop participating in this study at any time. 

 

What Are The Risks of The Study?  

While on the study, you are at risk for these side effects. You should discuss these 

with the researcher and/or your regular doctor prior to providing your consent to 

participate. 

 

Very Likely To Occur 

 

- Feeling faint, lightheaded, or nauseated before, during and immediately after 

the blood and muscle collection.  This is a common response and subsides in 

most individuals upon completion. 

- Pain, bruising, feeling faint and arm soreness from having your blood drawn 

during the 48 to 72 hours after completion. 

- Pain, bruising, feeling faint and muscle soreness from having the muscle 

collection performed during the 48 to 72 hours after completion. 

- Muscle soreness or stiffness from completing maximal strength tests and the 

exercise sessions during the 48 to 72 hours after completion. 

- Shortness of breath during the exercise testing and exercise sessions. 

 

 

Less Likely To Occur but Serious 

- An allergic reaction to Lidocaine. 

- Chest pain, heart attack and abnormal heart rhythm during the exercise testing 

and exercise sessions. 
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Less Likely To Occur 

- Slight risk of infection from having your blood drawn and the muscle 

collection during the 48 to 72 hours after completion 

 

Are There Benefits to Taking Part in The Study?  

There is no direct benefit to you to participate in this study, but the information 

from this study may increase knowledge about the effects of aging on male hormones, 

muscle strength, and exercise. 

 

What Other Options Are There?  

Your alternative is to not participate. 

 

What About Confidentiality? 

Efforts will be made to keep your personal information confidential. You will not 

be identifiable by name or description in any reports or publications about this study. We 

cannot guarantee absolute confidentiality. Your personal information may be disclosed if 

required by law.  You will be asked to sign a separate authorization form for use or 

sharing of your protected health information. 

There are organizations that may inspect and/or copy your research records for 

quality assurance and data analysis. These organizations include faculty members and 

graduate students appointed to this protocol from the Health and Exercise Science 

department at the University of Oklahoma and the OUHSC Institutional Review Board.  

 

What Are the Costs? 

There is no cost to you for participating in this study. 

 

 

Will I Be Paid For Participating in This Study? 

All individuals will be compensated for their time commitment associated with 

the study.  Participants will be paid $50 for each visit, and a total of $200.  
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What if I am Injured or Become Ill While Participating in this Study? 

In the case of injury or illness resulting from this study, emergency medical 

treatment will be available.  If injury occurs as a result of participation, you should 

consult with your personal physician to obtain treatment.  No funds, however, have been 

set aside by The University of Oklahoma Health Sciences Center or University of 

Oklahoma to compensate you or pay for the costs associated with treatment in the event 

of injury.  

 

What Are My Rights As a Participant? 

Taking part in this study is voluntary. You may choose not to take part or may 

leave the study at any time. If you agree to take part and then decide against it, you can 

withdraw for any reason, so please be sure to discuss leaving the study with the principal 

investigator or your regular physician. Refusal to participate will not result in any penalty 

or loss of benefits that you are otherwise entitled. 

We will tell you about any significant new findings developed during the course 

of the research that may affect your health, welfare or willingness to stay in this study. 

You have the right to request the medical information that has been collected 

about you as a part of this research study.  At this point, you will not have access to the 

biomedical related information that will be collected from you during this study and you 

consent to this restriction. 

For questions about your rights as a research participant, contact the OUHSC 

Director, Office of Human Research Participant Protection at 405-271-2045. 

 

Whom Do I Call If I have Questions or Problems? 

If you have questions, concerns, or complaints about the study or have a research-

related injury, contact Chad Kerksick, PhD at 405-325-9021 (office) or 405-248-8730 

(cell). 

If you cannot reach the Investigator or wish to speak to someone other than the 

investigator, contact the OUHSC Director, Office of Human Research Participant 

Protection at 405-271-2045. 
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For questions about your rights as a research participant, contact the OUHSC 

Director, Office of Human Research Participant Protection at 405-271-2045. 

 

 

Signature: 

By signing this form, you are agreeing to participate in this research study under the 

conditions described. You have not given up any of your legal rights or released any 

individual or entity from liability for negligence. You have been given an opportunity to 

ask questions. You will be given a copy of this consent document. 

 

I agree to participate in this study: 

 

Research Subject: ______________________________________       

Date:______________________ 

 

Subject's Printed Name: __________________________________ 

 

Person Obtaining Informed Consent:__________________________   

Date:______________________ 

IRB Office Version Date: 11/01/06 
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Appendix E 

 

University of Oklahoma 

 

Impact of Age on Androgen Receptor Expression and Binding Affinity after Sequential 

Bouts of Lower Body Resistance Exercise  

 

General Health and History Form 

Side A 

Demographics: 

Name: ______________________________________    Subject number: _________ 

Date: ________________ Age: ___________ Birth Date: ______________ 

Daytime phone: _______________ Evening contact number: ___________________  

 

Family History: 

Has anyone in your immediate family had any of the following: Please circle yes or no 

 

Heart disease   Yes No  Diabetes  Yes No 

High blood pressure  Yes No  Cancer   Yes No 

Stroke    Yes No  Tuberculosis  Yes No 

Sudden Death (before 50) Yes No  Asthma  Yes No 

Epilepsy   Yes No  Gout   Yes No 

Migraine Headaches  Yes No  Marfan’s Syndrome Yes No 

Eating Disorder  Yes No  Sickle Cell  Yes No 

 

Personal History: 

1. Have you ever been hospitalized?      Yes No 

Have you ever had surgery?       Yes No 

Are you presently under a doctor’s care?     Yes No 

Please explain and give dates for all “Yes” answers: ____________________________ 

 

2. Please list any medications you are currently taking and for what conditions: ______ 

 

3. Please list any known allergies: __________________________________________ 

 

4. Have you ever had a head injury / concussion?    Yes No 

Have you ever been knocked out or unconscious?    Yes No 

Have you ever had a seizure, “fit”, or epilepsy?    Yes No 

Have you ever had a stinger, burner, or pinched nerve?   Yes No 

Do you have recurring headaches or migraines?    Yes No 

Please explain and give dates of “yes” answers: ________________________ 

5. Have you ever had the chicken pox?     Yes No 

 If Yes, at what age? _________ 

 

6. Have you ever had the mumps pr measles?    Yes No 
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7. Do you have a history of asthma?      Yes No 

 

8. Are you missing an eye, kidney, lung, or testicle?    Yes No 

 

9. Do you have any problems with your eyes or vision?   Yes No 

 

10. Have you ever had any other medical problems     Yes No 

(mononucleosis, diabetes, anemia)? 

 

11. Have you ever taken any supplements for improved performance? Yes No 

 

12. Are you presently taking any supplements for diet or performance Yes No 

(creatine, protein, etc.)? 

 

University of Oklahoma 

 

Impact of Age on Androgen Receptor Expression and Binding Affinity after Sequential 

Bouts of Lower Body Resistance Exercise 

 

General Health and History Form 

Side B 

13. What is the lowest weight you have been at in the last year _______, 

Highest _______, What is your ideal weight _________? 

 

14. Do you have any trouble breathing or do you cough during or after practice? 

 Yes No 

 

15. Have you ever had heat cramps, heat illness, or muscle cramps? Yes No 

 

16. Do you have any skin problems (itching, rashes, acne)?   Yes No 

 

Explain all “Yes” answers for question 5 -16: __________________________________ 

 

17. Have you ever passed out during or after exercise?   Yes No 

Have you ever been dizzy during or after exercise?    Yes No 

Have you ever had chest pain during or after exercise?   Yes No 

Have you ever had high blood pressure?     Yes No 

Have you ever been told you have a heart murmur?    Yes No 

Have you ever had racing of your heart or a skipped heartbeat?  Yes No 

Have you ever had an EKG or echocardiogram?    Yes No 

 

Explain all “Yes” answers for question 17: ____________________________________ 

 

18. Have you ever sprained / strained, dislocated, fractured, or had repeated 

swelling or other  

injury of any bones or joints? Explain any “Yes” answers 
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Head / Neck   Yes No  ___________________________ 

Shoulder   Yes No  ___________________________ 

Elbow & Arm   Yes No  ___________________________ 

Wrist, hand & Fingers  Yes No  ___________________________ 

Back    Yes No  ___________________________ 

Hip / Thigh   Yes No  ___________________________ 

Knee    Yes No  ___________________________ 

Shin / Calf   Yes No  ___________________________ 

Ankle, foot, toes  Yes No  ___________________________ 

 

Please Sign: 

I hereby state that, to the best of my knowledge, my answers to the above 

questions are correct. 

 

 

Subject’s Signature: ________________________ Date: _______________  
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Appendix F 

 

Department of Health and Exercise Science - University of Oklahoma-Norman 

Campus 

 

Effects of repeated bouts of weight-training on androgen receptor expression in skeletal 

muscle of young versus old participants 

 

To the Attending Physician of: _____________________________________                               

 

This individual has indicated that he wishes to participate in a research study 

investigating the effects of resistance training of intramuscular markers of muscle growth 

in younger and older men.  The outcomes of this study will help researchers further 

delineate how exercise can combat muscle aging.  This project has been approved by the 

Institutional Review Board at the University of Oklahoma. 

 

Description of the Study 

This study will consist of 7 visits to the laboratory.  During this first visit, all participants 

will have their maximal strength determined in their lower extremity muscles (see 

exercises below in the “Resistance training” sub-section).  Before this strength 

determination blood pressure will be obtained a small sample of muscle tissue from the 

thigh region will be collected.  In short, this muscle collection involves the use of local 

anesthesia (2% Lidocaine) and a 5-mm Bergstrom biopsy needle.  Our lab has previously 

performed these specimen collection procedures in hundreds of participants and no one to 

date has reported any deleterious side-effects. 

  

Resistance training 

The strength assessment and workouts consist of lower body resistance exercises using a 

modified squat (minimally stressing the lower back), leg press, and a leg extension 

machine.   

 

Visits 2 and 3 

Participants will perform 2 sets of 10 repetitions of each of the 3 exercises including a 

modified squat (minimally stressing the lower back), leg press, and leg extension 

exercise.  These visits are considered to be practice exercise bouts to familiarize the 

participant with resistance training. 

 

Visits 4, 5, 6 and 7 

Participants will report to the lab on Mon (visit 4), Wed (visit 5), Fri (visit 6), and Sat 

(visit 7).  During visits 4, 5, and 6 the participant will perform 3 sets of 10 repetitions of 

each of the 3 exercises including a modified squat (minimally stressing the lower back), 

leg press, and leg extension exercise.  Muscle will be collected prior to exercise (on visits 

5, 6) and blood only will be collected after exercise (on visits 4, 5, 6).  Blood and muscle 

will be collected on the last visit (visit 7) which involves no exercise. 
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Please advise the investigators regarding any physical limitations and/or 

contraindications that this patient might have from engaging in this exercise study.           

 

Pertaining to the above mentioned patient, I advise the following: 

 

 To my knowledge, there is no reason why this patient should not be allowed to 

participate in this study. 

 I recommend that this patient be allowed to participate in the study with the 

following restrictions:_______________________________________________ 

 I recommend that this patient should not be allowed to participate in the study for 

the following reasons:_______________________________________________ 

Physician’s Signature___________  

 Physician’s Name _________________________________Date____________   

 

If you have any questions about this form, please contact: Chad Kerksick, Ph.D., 

Assistant Professor, Director, Applied Biochemistry and Molecular Physiology 

Laboratory at 405-325-9021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


