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Abstract

IP-over-WDM networks integrate Wavelength Division Multiplexing (WDM) tech-

nology with Internet Protocol (IP) and are widely regarded as the architecture for

the next generation high-speed Internet. The problem of designing an IP-over-WDM

network can be modeled as an embedding problem in which an IP network is em-

bedded in a WDM network by establishing all optical paths between IP routers in

the WDM network. Survivability is considered a vital requirement in such networks,

which can be achieved by embedding the IP network in the WDM network in such

a way that the IP network stays connected in the presence of failure or failures in

the WDM network. Otherwise, some of the IP routers may not be reachable.

The problem can be formulated as an Integer Linear Program (ILP), which can

be solved optimally but is NP-complete. In this thesis, we have studied and pro-

posed various efficient algorithms that can be used to make IP-over-WDM networks

survivable in the presence of a single WDM link (optical fiber cable or cables) failure.

First we evaluate an existing approach, named Survivable Mapping Algorithm

by Ring Trimming (SMART), which provides survivability for an entire network

by successively considering pieces of the network. The evaluation provides much

insight into the approach, which allowed us to propose several enhancements. The

modified approach with enhancements leads to better performance than the original

SMART.

We have also proposed a hybrid algorithm that guarantees survivability, if the

xiii



IP and the WDM networks are at least 2-edge connected. The algorithm uses

a combination of proactive (protection) and reactive (restoration) mechanisms to

obtain a survivable embedding for any given IP network in any given WDM network.

Circuits and cutsets are dual concepts. SMART approach is based on circuits.

The question then arises whether there exists a dual methodology based on cut-

sets. We investigate this question and provide much needed insight. We provide a

unified algorithmic framework based on circuits and cutsets. We also provide new

methodologies based on cutsets and give a new proof of correctness of SMART. We

also develop a method based on incidence sets that are a special case of cutsets.

Noting that for some IP networks a survivable embedding may not exist, the option

of adding new IP links is pursued. Comparative evaluations of all the algorithms

through extensive simulations are also given in this dissertation.
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Chapter 1

Introduction

1.1 Overview

Over the last decade, Internet has seen an exponential worldwide increase in the

number of users. At the same time, Internet usage has shifted away from simple

applications such as web surfing, email, etc., to bandwidth intensive online services

and applications such as streaming video, voice, gaming etc. This phenomenon

has compelled the internet service providers (ISPs), providing such services using

traditional networks, to invest in new architectures and technologies that can cope

with the current bandwidth demand as well as projected future requirements.

An approach that has attracted significant interest from network designers and

researchers is to replace (or upgrade) legacy networks with all optical networks

(AON) using wavelength division multiplexing (WDM) technology. AONs are high-

speed optical fiber networks that perform the common network operations (switch-

ing, routing, amplification etc.) without optical-electrical-optical conversion (O-E-

O). By integrating AONs with WDM technology, which allows simultaneous trans-

mission of several signals through a single fiber, bandwidth of several terabits per

seconds can be achieved.
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Advances in optics and photonics now allow more flexible network architectures

(e.g. mesh networks) that can transparently run a host of prevailing network pro-

tocols (SONET/SDH, ATM, and TCP/IP) on the top of the optical (WDM) layer.

Since most of the end user communications today rely on TCP/IP protocol, the

idea of implementing IP protocol directly over the WDM layer using optical cross-

connects (OXCs) and IP routers has emerged as the winning combination for the

new Internet. Such networks are generally called IP-over-WDM networks.

A commonly proposed approach to implement IP protocol over the WDM net-

work is to map or embed an IP topology, referred to as the logical topology, in a

physical WDM topology, commonly called the physical topology. The mapping in-

volves finding a lightpath for an IP (logical) link in the physical topology, which

connects the two end points (source and destination) of the logical link. A lightpath

is an all-optical path in the physical topology, which is established by allocating a

wavelength between the source and the destination of an IP link. A lightpath, once

established, does not require processing or buffering at intermediate logical nodes

and quite possibly no intermediate O-E-O conversions.

In an IP-over-WDM network, a single fiber generally carries several lightpaths

simultaneously and usually several fibers are bundled together to form a cable (a

physical link). Therefore, a cable cut in the network can disrupt all the lightpaths

passing through the cable and degrade the network performance significantly, if

the failure persists. Unfortunately, cable cuts and equipment failures have become a

common occurrence due to human or natural events, drawing considerable attention

to designing networks that can provide an acceptable level of service in the presence

of such failures. Such networks are generally called survivable networks.

Protection and restoration are the two widely discussed mechanisms for providing

survivability in IP-over-WDM networks. Protection in IP-over-WDM networks is

generally provided at the physical layer at the design stage. First primary or work-
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ing lightpaths are established for the logical links and then backup or protection

lightpaths are calculated that do not use physical links (or nodes) already assigned

to their respective primary lightpaths (i.e. their mappings are disjoint). In case of

a failure, the network traffic carried by a primary lightpath is always switched to

its corresponding backup lightpath. Since protection requires explicit reservation of

resources, it is generally very fast but inefficient in terms of resource utilization.

Restoration is generally provided at the logical layer by provisioning the network

with some additional capacity, which can be utilized by the IP routers to find backup

paths after a failure. It is possible to find backup paths only if the logical links are

mapped onto the physical topology in such a way that the logical topology remains

connected after the failure. This can be achieved by requiring the logical and physical

topologies to be at least 2-edge connected and finding link/node disjoint mappings

for some or all the logical links. A mapping of the logical links in the physical

network that remains connected after the failure of physical link/links is called a

link survivable mapping and a mapping that stays connected after the failure of

physical node/nodes is called a node survivable mapping.

The problem of finding link/node survivable mappings is known to be NP-

complete [1]. Therefore, efficient algorithms to solve the problem are unlikely in

full generality. Therefore, this thesis focuses on developing efficient heuristics to

find one link survivable mappings i.e. mappings that leave the logical topology

connected after the failure of a single physical link.

1.2 Thesis Organization and Contributions

The organization of the thesis is as follows. In Chapter 2, we will introduce some

of the commonly proposed physical (WDM) and logical (IP, SONET, ATM) layer

survivability schemes. In Chapter 3, we will formally introduce survivable IP-over-
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WDM networks and discuss various approaches proposed in the literature to design

such networks. In Chapter 4, we will analyze in detail the Survivable Mapping Al-

gorithm by Ring Trimming (SMART) framework proposed by M. Kurant and P.

Thiran [2], and suggest enhancements that can improve the success rate and per-

formance of the approach. We will also provide a comprehensive approach to find

one link survivable mappings in Chapter 4. Chapter 5 will discuss a framework that

guarantees survivability in IP-over-WDM networks using a combination of protec-

tion and restoration schemes. Taking advantage of the duality that exists between

circuits and cutsets in a graph, a unified algorithmic framework for the survivable

logical topological design problem will be presented in chapter 6. In Chapter 7, we

will provide the summary of the work presented and point to some future research

directions.
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Chapter 2

WDM Optical Networks and

Survivability Mechanisms

This chapter provides a brief introduction to Wavelength Division Multiplexing

(WDM) networks and discusses some commonly used WDM architectures. It also

introduces the concept of survivable networks, networks that provide an acceptable

level of service in the presence of failures, and discusses various mechanisms that

can be employed to make a given network survivable.

2.1 WDM Optical Networks

Optical fibers possess several properties which made them the ideal replacement of

copper cables in the traditional telephone networks. Optical fibers are not only low

cost, lightweight, and difficult to wiretap, but they also offer very high bit rates (up

to 160 Gbps), better signal quality (optical fibers have an approximate Bit Error

Rate (BER) of 10−12 to10−14 compared to 10−3 to 10−4 for copper wires), and are

immune to electro-magnetic and radio-frequency interference (EMI/RFI) [3].

Initially, optical fibers were mainly used as transmission links by phone compa-

nies to upgrade their trunk lines from copper wires. Trunk lines are always digital
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and employ time division multiplexing (TDM) to support several simultaneous voice

connections. These pure point-to-point systems or networks are the simplest form

of optical networks and are usually set up using an optical transmitter, a fiber and

an optical receiver. An optical transmitter is essentially a light source that con-

verts data into a sequence of on/off light pulses of a particular wavelength (λ),

which travel through the optical fiber and arrive at the receiver. The receiver then

converts the light pulses back into data. Fig. 2.1 shows one such network.

Transmitter Receiver

T R

FiberWavelength  ( )g ( )

Electrical

Input

Electrical

Output

Optical Signal

Figure 2.1: A basic optical network.

With the advent of Wavelength Division Multiplexing (WDM) technology, the

phone companies switched to coarse or dense wavelength division multiplexing

(CWDM and DWDM, respectively) to improve transmission speeds and capacity.

WDM technology allows a single fiber to simultaneously carry multiple optical sig-

nals (channels), each modulating at a unique wavelength. A wavelength can be

thought of as a different color of light in the infrared spectrum that can carry data.

Since the number of wavelengths that a fiber can carry is generally limited by the end

equipment (e.g. transmitters, receivers, multiplexer/de-multiplexer etc.) not by the

fiber itself, optical fiber networks employing WDM technology offer unprecedented

scalability. Such networks are usually called WDM optical networks or simply WDM
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networks.

Early commercial WDM networks were point-to-point networks that appeared

in 1995. They were based on 2.5 Gbps per channel (wavelength) with 8 or 16

available wavelengths and did not require regeneration of signal up to a distance of

750 miles (1200 km) [4]. These are considered the first generation WDM networks

and required manual connection set up. Fig. 2.2 shows a basic WDM optical

network and Fig 2.3 shows two point-to-point WDM networks connecting three

facilities. Such networks cannot perform network operations in optical domain.

Therefore, optical to electrical to optical (O-E-O) conversion must be performed if

signal switching is required. This phenomenon, generally called electrical bottleneck,

limits the throughput of the network to rates compatible with the electronic circuitry

of the switching equipment.

The popularity of packet switched World Wide Web (WWW) or Internet in

the 1980s and 1990s created a tremendous appetite for more capacity and speed.

Given the fact that it is extremely costly to install new fibers to increase trans-

mission capacity, the telecommunication research community focused on increasing

the number of wavelengths a fiber can carry and the bit rate. In 1998, the second

generation of WDM networks replaced the first generation that were characterized

by 10 Gbps channels, 40 channels per fiber and semi-automatic connection set up

[4]. Such networks used optical add-drop multiplexers (OADMs) to provide limited

networking functionality. However, OADMs can be used only in point-to-point or

ring networks to add or drop signals and have the ability to remove the electrical

bottleneck to some extent as shown in Fig 2.4.

Introduction of OADMs in WDM networks led to the introduction of lightpath

communications [5]. A lightpath is an all-optical path in the WDM network, which

is established by the allocation of a particular wavelength between a pair of facilities

that may or may not be adjacent to each other. Once established, a lightpath may
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traverse through multiple fibers without requiring buffering, processing, and quite

possibly no O-E-O conversion at the intermediate facilities [5]. However, in some

cases it may not be possible to avoid O-E-O conversion. This may occur when a

wavelength is not available to connect a pair of facilities.

Wavelengths Optical Amplifier
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T

R1

R

1

2

1

2

Fiber

T2 R2

Fiber

Transmitters Receivers

T
n R

nn
n

Multiplexor De-multiplexor

Figure 2.2: A basic WDM optical network.

Figure 2.3: Three facilities connected by two point-to-point WDM networks.

The ever increasing demand for more bandwidth has kept the focus of the re-

search community on developing new types of fibers and enabling networking equip-
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Figure 2.4: A point-to-point WDM network with OADM.

Figure 2.5: A ring WDM network.

ment. Prevailing experimental technologies allow 160 signals per fiber each mod-

ulating at 160 Gbps, providing a total bandwidth of 25.6 Tbps over three 80 km

long single fiber strands without signal regeneration or amplification [6]. Since

a fiber optic cable generally contains several hundred fiber strands, an aggregate

throughput of several thousand terabits per second can be achieved. Additionally,
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the development of optical cross-connects (OXC), optical amplifiers (OA), tunable

transmitters/receivers, wavelength converters (WC) etc., now allow more flexible

network configurations such as ring and mesh networks. Fig. 2.5 and 2.6 show a

ring and a mesh WDM network, respectively.

Figure 2.6: A mesh WDM network.

An optical cross-connect can be used to add and drop signals as well as to switch

traffic from one fiber to another without any O-E-O conversion and a wavelength

converter converts a signal at one wavelength to another without O-E-O conversion.

OXCs and WCs, when used together in a WDM network, remove the need for O-

E-O conversions. Such WDM networks are also called All Optical WDM Networks

(AONs).

2.1.1 Challenges in WDM Networks

Modern WDM networks utilizing all optical networking technologies to provide

tremendous bandwidth have posed several challenges to network designers and op-

erators. One such challenge is to determine the best way to effectively utilize the
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tremendous bandwidth available using existing networking protocols such as In-

ternet Protocol (IP), Asynchronous Transfer Mode (ATM), Synchronous Optical

Network/Synchronous Digital Hierarchy (SONET/SDH) etc. The widespread use

of these protocols makes it very difficult to modify them or add new functionali-

ties. Therefore, the most commonly proposed approach to effectively exploit the

high bandwidth WDM networks is a layered approach, in which the WDM layer is

transparent or invisible to protocols such as IP, ATM, SONET/SDH etc.

Figure 2.7: Protocol stacks for WDM networks.

In the layered approach optical fiber cables, OXCs, OADMs, OAs etc. form the

physical network or the WDM layer and IP routers, ATM switches, SONET/SDH

rings etc. represent the logical network or layer. In the physical network all the

network operations i.e. switching, routing, amplification etc. are performed in the

optical domain. However, a logical layer accomplishes the network operations using

equipment that employs electronic circuitry. Fig. 2.7 shows only a few possible com-

binations of logical and physical layers that can be used to exploit WDM networks

[7] and Fig. 2.8 shows an example of the protocol stack shown in Fig. 2.7(a).

Another challenge that the network operators and designers must address is the

massive amount of data loss that may occur after the failure of a network component

or components. Usually, several hundred optical fibers strands are bundled together

to form a cable. Such cable or cables are then buried along with other utility
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Figure 2.8: An IP-over-ATM-over-SONET-over-WDM network.

services like cable, telephone, water etc. to connect remote facilities. These utility

services require continuous maintenance and upgrades, thereby exposing the fiber

optic cables to damage and failure. Other networking components like OXCs, OAs

etc. may also fail or malfunction but this situation can be remedied by providing

redundant equipment. However, it is much more difficult to address fiber failures

and consequently has drawn more attention from researchers.

The most frequent cause of fiber failures in WDM networks is a fiber cut due to

human (construction/repair work, vandalism etc.) or natural (earthquakes, light-

ning, fire, etc.) events. Furthermore, the time required to precisely determine the

location of the cut and digging up of the cable to perform the repairs is usually sig-

nificant. Therefore, given the facts that a single fiber may carry enormous amount

of data which is lost in the event of its failure and the time required to repair the

failure, even a single fiber failure can affect the performance of the entire network.
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The resulting significant degradation in performance can be mitigated by employing

mechanisms that allow WDM networks to provide an acceptable level of service in

the presence of a failure or failures. WDM networks with built-in mechanisms that

allow them to continue to deliver an acceptable level of service in the presence of

a fiber failure or fiber failures are generally called link survivable WDM networks.

Similarly, node survivable WDM networks are able to provide an acceptable level of

service after the failure of networking equipment such as OXCs, OAs, etc.

The focus of this thesis is to study link survivable WDM networks, more specif-

ically one link survivable WDM networks. One link survivable WDM networks are

able deliver an acceptable level of service in the presence of a single link failure.

Henceforth, a fiber failure/cut implies that all the fibers between a pair of network-

ing facilities are severed and one link survivable WDM networks are simply referred

to as survivable WDM networks.

2.2 Link Survivable WDM Networks

Link survivability mechanisms are broadly classified into two categories, namely

protection and restoration [3]. Protection is a pre-planned proactive mechanism in

which network resources such as fibers, transmitters/receivers, wavelengths, routers

etc. are explicitly reserved for various failure scenarios. When a fiber fails, the

network traffic (wavelengths) carried by the affected fiber is simply switched to the

resources reserved for this failure scenario. Protection is very fast (on the order of

milliseconds) but inefficient in terms of capacity utilization as the reserved resources

are idle in the absence of a failure [3].

On the contrary, restoration is a reactive mechanism in which no network re-

sources are set aside for various failure scenarios but the network is provisioned

with some extra capacity which can be used to carry the failed fiber’s network traf-
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fic [3]. In restoration, the selection of network resources to use in the event of a

failure is made after the failure has taken place. Restoration is generally considered

slow (usually on the order of a few seconds) but more resource efficient [3].

It is important to note that restoration and protection mechanisms can be im-

plemented only if a network has some degree of redundancy built into it.

As mentioned earlier, WDM networks can be subdivided into physical and logical

layers, which allows the flexibility to implement survivability mechanisms at physical

layer or logical layer or both. Protection is generally associated with the WDM layer.

However, it is expected that advances in the development of WDM routers will

allow the flexibility to implement restoration at the WDM layer. Logical layer can

employ both protection and restoration, but restoration is the preferred mechanism

for logical layer.

2.3 WDM Layer Survivability Mechanisms

Protection mechanisms are more commonly employed at the WDM layer and greatly

depend on the configuration of network under consideration (e.g. point-to-point,

rings, mesh etc.). This section provides a brief overview of the WDM layer surviv-

ability mechanisms [3].

2.3.1 Point-to-Point Networks

In point-to-point networks, automatic protection switching (APS) is the most widely

accepted protection mechanism. APS requires spare fibers which must be buried

along a route not being used by the main fibers. The main fibers are generally

referred to as primary or working links and the spare fibers are called protection or

backup links.

There are three main types of APS systems, namely 1:1, 1+1 and 1:N APS [3].
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Figure 2.9: 1:1 APS point-to-point network.

1:1 Automatic Protection Switch (1:1 APS)

In 1:1 APS, the normal network traffic is carried by a primary link and after the

failure the traffic is switched to the protection link. In some cases, the protection

link may carry low priority traffic which is preempted when the working link fails.

Figure 2.9 shows a 1:1 APS point-to-point network.

Figure 2.10: 1+1 APS point-to-point network.

1+1 Automatic Protection Switch (1+1 APS)

In 1+1 APS, the normal network traffic is carried by a primary link and an exact

copy of this traffic is also carried on the protection link. The receiver chooses the

signal of better quality. Figure 2.10 shows a 1+1 APS point-to-point network.
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Figure 2.11: 1:N APS point-to-point networks.

1:N Automatic Protection Switch (1:N APS)

In 1:N APS, one protection link is shared by many working links that are not

expected to fail at the same time. When a working link fails, the traffic carried

by this link is switched to the protection link. The traffic is switched back to the

working link, when it recovers from the failure. Figure 2.11 shows a 1:N APS point-

to-point network.

2.3.2 Ring Networks

The concept of APS has also been used in ring networks to design Self Healing

Rings (SHRs), which protect the networks designed in the form of a ring. Fig. 2.12

shows a SHR with two fibers. The working traffic flows in one direction (clockwise

or anticlockwise) on a fiber and in case of a failure the working traffic carried by

the failed link flows in the opposite direction on the protection fiber (similar to 1:1
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APS). In some cases, the signal is transmitted on both working and protection fibers

and the nodes decide which signal to choose (similar to 1+1 APS).

These methods require that the spare capacity reserved must be equal to the

working capacity of the network, which makes the network very inefficient but the

time to recover from a failure is negligible, usually on the order of 50 ms [3].

Figure 2.12: Protection in a ring network using a self healing ring (SHR).

2.3.3 Mesh Networks

Mesh networks have higher link diversity that could lead to lower bandwidth re-

dundancy but the problem of designing fast protection mechanisms becomes more

difficult. Various preplanned protection techniques have been proposed for mesh

networks. One such technique is Pure Ring Covers (PRCs) that finds multiple log-

ical rings to cover all the links which then work as a collection of SHRs. Fig. 2.13

provides an example of PRC. However, PRCs require at least 100% redundancy but

in real networks it is sometimes more than 200% [3].

To reduce redundancy, Grover and Stamatelakis introduced the concept of Pre-
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Figure 2.13: A mesh network protected by two rings (Pure Ring Covers).

configured Protection Cycles (P-cycles) to protect mesh networks against a single

link failure [8]. P-cycles require significantly less spare capacity than the other

protection mechanisms for mesh networks. P-cycles typically require a redundancy

of 50-70% in well-connected physical networks. P-cycles are based on the ability of a

ring to protect not only the links that form the ring but also any possible straddling

links. A straddling link is a link which is not part of the ring but its end points lie

on the ring. Figure 2.14(a) shows a P-cycle that provides a single protection path

for 9 on cycle links and two paths for the six straddling links. Fig. 2.14(b) shows

the behavior of the P-cycle when a link on the cycle fails. In this case, the P-cycle

behaves like a SHR. Fig. 2.14(c) and 2.14(d) show the behavior of the P-cycle when

a straddling link fails. In these cases two paths are available to protect the failed

links.

By using a set of carefully designed P-cycles, it is possible to protect all the links

in a mesh network. To minimize the spare to working resources ratio, most of the

methods proposed in the literature to design P-cycles are based on Integer Linear

Programs (ILPs). In fact the problem of finding a P-cycle or a set of P-cycles that
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minimize the spare to working resource ratio is NP-complete [9].

(a) A P-cycle (bold line) (b) A span on the cycle fails (1-6), the P-cycle
contributes one restoration path (BSHR
like behavior).

(c) A span off P-cycle fails (6-7), the P-cycle
contributes two restoration paths (mesh
like).

(d) A span off P-cycle fails (6-10), the P-cycle
contributes two restoration paths (mesh
like).

Figure 2.14: P-cycle behavior.

2.4 Logical Layer Survivability Mechanisms

As shown in Fig. 2.7, the logical layer may consist of several different protocols,

which have well developed survivability mechanisms. Some of these mechanisms are

discussed below.
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2.4.1 Transmission Control Protocol/Internet

Protocol (TCP/IP)

TCP/IP networks have a built-in mechanism to reroute traffic around a failed net-

work component through use of various routing protocols such as Routing Informa-

tion Protocol (RIP), Open Shortest Path First (OSPF), etc. In TCP/IP networks,

after detecting a failure, the IP routers compute the alternate routes for affected

traffic based on the network topology after the failure (restoration).

2.4.2 Asynchronous Transmission Mode (ATM)

ATM is a connection oriented protocol. Therefore, a connection must be established

before data transmission could begin. Such a connection is usually called the pri-

mary or working virtual path (VP). Restoration is provided in an ATM network by

calculating a backup VP for the failed working VP after a failure [10]. The backup

VP is selected in such a way that it avoids the failed network component. It is also

possible to provide protection in ATM networks by pre-computing the backup VPs

for the working VPs such that a failure does not affect both the working and the

backup VPs [11].

2.4.3 Synchronous Optical Network (SONET)

A SONET is an optical network that is set up using digital cross-connect switches

(DCS). The DCSs are responsible for switching, failure detection and restoration in

SONET. In case of a failure, the DCSs dynamically establish alternate paths for the

traffic on the failed link by utilizing the available spare capacity (restoration).
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2.5 WDM Layer Survivability or Logical Layer

Survivability?

In WDM networks, the logical layer and the WDM layer both are capable of pro-

viding survivability mechanisms. The decision to choose the appropriate layer to

provide survivability depends on several factors such as the cost involved in terms

of network resources, desired speed of recovery from a failure, overhead involved in

terms of signaling, etc [12] [13].

(a) A logical link (IP Link).

(b) A lightpath corresponding to the logical link (1, 4) in physical topology.

Figure 2.15: Concept of a lightpath.

WDM layer survivability mechanisms are extremely fast, usually on the order of

50 milliseconds. However, they require greater link diversity that may necessitate

installation of new fibers which is expensive and difficult to achieve due to right of

way limitations, geographical restrictions etc. It is expected that the availability of

all optical routers will allow better utilization of resources at the expense of recovery

speed.

As shown in Fig. 2.7, a logical layer may consist of several different proto-
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cols, each with its own survivability mechanism. Since it is unreasonable to expect

changes in logical layer protocols due to their widespread deployment, unnecessary

signaling between different layers may be unavoidable in the event of a failure. For

example, an ATM switch may detect a failure and initiate the protocol to find

backup paths. But before the process completes, the IP router on top of the ATM

switch may time out and start its own protocol to find backup paths. Also, adding

more layers can significantly increase the set up cost of the network e.g. the WDM

network shown in Fig. 2.8 requires IP routers, ATM switches and SONET rings.

Removing the ATM switches and implementing the network according to the proto-

col stack shown in Fig. 2.7(b), network operators can significantly reduce the setup

cost.

The protocol stack that has gained significant attention from the research com-

munity is shown in Fig. 2.7(c). TCP/IP is currently the most commonly deployed

end user communication protocol. By running TCP/IP directly over the physical

layer, setup costs and signaling overheads can be considerably reduced. Such net-

works are termed IP-over-WDM networks. IP-over-WDM networks and some of the

challenges they pose are discussed below.

2.6 IP-over-WDM Networks

In an IP-over-WDM network, Internet Protocol (IP) is implemented directly over

the WDM optical network using IP routers, optical cross-connects (OXCs) and

optical fibers [14]. A commonly proposed method to implement IP-over-WDM is to

map an IP network, referred to as logical topology, into a physical WDM topology,

commonly called the physical topology [2]. An IP router is also referred to as a

logical node (vertex) and an OXC is also called a WDM or physical node (vertex).

A pair of logical nodes is connected to each other via a logical connection called
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IP or logical link (or edge). A pair of physical nodes is connected through actual

optical fibers bundled together to form a cable; the cable is called a physical link.

It is also common to assume that a logical node is always a node in the physical

topology and all the physical nodes may not be present in the logical topology.

Figure 2.16: An IP-over-WDM network.

The mapping of a logical topology into the physical topology involves finding a

lightpath for each IP (logical) link in the physical topology [2]. A lightpath is an

all-optical path in the physical topology, which is established by the allocation of a

wavelength between the source and the destination of an IP link, as shown in Fig.

2.15 [5]. Fig. 2.16 shows a typical implementation of an IP-over-WDM network.

In IP-over-WDM networks, a single fiber usually carries multiple lightpaths and

all of them get disconnected if the fiber carrying them fails. Even a single fiber failure
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can result in enormous loss of data, usually in the order of terabits per second. If

the failure persists for a longer duration, the entire network may suffer severe service

degradation. Therefore, adding survivability mechanisms to IP-over-WDM is crucial

to ensure timely and uninterrupted delivery of information.

2.6.1 Survivable IP-over-WDM Networks

In IP-over-WDM networks, survivability can be provided at the physical layer or

at the IP layer. At the physical layer, protection mechanisms discussed in section

2.3 can be used to make the network survivable. Protection can also be provided

at the logical (IP) layer by allocating a backup lightpath for every primary (or

working) lightpath such that a failure does not affect both the primary and the

backup lightpaths [13]. The traffic on a primary lightpath is always routed on its

corresponding backup lightpath after a failure. This may require investment in

installation of additional fibers to provide diverse routes and additional capacity to

accommodate all the primary and backup lightpaths. However, providing diverse

routes is difficult and expensive due to geographical and right of way constraints.

Hence, to make the network more resource efficient, a single backup lightpath may be

shared by several primary lightpaths (which are not expected to fail simultaneously).

Providing restoration at the IP layer does not require dedicated backup light-

paths. Instead, the network can be provisioned with some additional capacity, and

backup paths can be found for the failed lightpaths within this additional capacity

at the time of failure. Restoration utilizes the available resources more efficiently

and reduces the need for additional fibers to provide survivability to some extent

[13].

An IP-over-WDM network can be made survivable by either using protection

or restoration mechanisms, however, it is not clear which would be a better choice

[12] [13]. This report focuses only on one link survivable mechanisms that can be
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implemented at the IP layer due to their efficient resource utilization and low setup

cost.

In IP-over-WDM networks, IP (logical) links are embedded in the physical WDM

topology as lightpaths. When a fiber fails, all the lightpaths passing through this

fiber are interrupted. The IP routers adjacent to the failed fiber can detect the

failure and initiate the protocol to find alternate routes for the failed lightpaths.

The routers can find alternate routes for all the affected lightpaths, only if the

logical links are mapped in the physical topology in a way that the logical topology

stays connected after a failure [1]. Otherwise, some of the IP routers may not be

reachable.

A necessary pre-condition for a network to be able to survive a link failure is that

both physical and logical networks are at least 2-edge connected. A connected graph

is 2-edge connected, if the removal of a link from the network does not disconnect

it. If this condition is fulfilled, then the logical topology can be made survivable by

requiring that some or all of the logical links are mapped in the physical topology in

a disjoint manner (i.e. paths followed by the mapped links do not have a physical

link in common) [1] [15]. This requirement ensures that a single physical link failure

will not disconnect the logical topology. And since the logical topology is 2-edge

connected, it is always possible for the IP routers to find an alternate path between

the affected nodes as illustrated in the following example.

In Fig. 2.17, the logical topology consists of a ring 1 − 2 − 4 − 6 as shown in

Fig. 2.17(a). Fig. 2.17(b) shows a possible mapping of the logical topology in the

physical topology. Here the logical links (1, 2), (2, 4), (4, 6) and (6, 1) are mapped to

physical paths 1−2, 2−5−4, 4−5−6 and 6−1 respectively. However, this mapping

is not survivable because if the physical link (4, 5) fails, then the logical links (2, 4)

and (4, 6) fail, isolating node 4. Fig. 2.17(c) shows another possible mapping for

the same logical and physical topologies. If the logical links (1, 2), (2, 4), (4, 6) and
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(6, 1) are mapped respectively to physical paths 1− 2, 2− 3− 4, 4− 5− 6 and 6− 1

then the routing is survivable, that is, any physical link failure does not disconnect

the logical topology because the paths are link disjoint. For example, if the physical

link (2, 3) fails then the logical link (2, 4) fails but the topology remains connected.

(a) Logical topology.

(b) An unsurvivable mapping.

(c) A survivable mapping.

Figure 2.17: A ring topology and survivable mapping.

In Fig. 2.18(a), a more general logical topology is considered and Fig. 2.18(b)

shows a possible mapping for the logical topology in the physical topology. Here
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the logical links (1, 2), (2, 4), (4, 6), (6, 1) and (2, 6) are mapped to physical paths

1− 2, 2− 5− 4, 4− 5− 6, 6− 1 and 2− 5− 6 respectively. However, this mapping

is not survivable because the physical link (4, 5) is being used by logical links (2, 4)

and (4, 6) and if the physical link (4, 5) fails, then the logical links (2, 4) and (4, 6)

fail, isolating node 4. Fig. 2.18(b) also shows that the physical link (5, 6) is common

to the mapping of logical links (4, 6) and (2, 6). But it can be observed that when

the physical link (5, 6) fails, logical links (4, 6) and (2, 6) fail but the logical topology

still remains connected.

Fig. 2.18(c) also shows a possible mapping of the logical topology. Here logical

links (1, 2), (2, 4), (4, 6), (6, 1) and (2, 6) are mapped respectively to physical paths

1 − 2, 2 − 3 − 4, 4 − 5 − 6, 6 − 1 and 2 − 5 − 6 and it can be observed that, even

though not all the paths are link disjoint, any single physical link failure does not

disconnect the logical topology. For example, if the physical link (5, 6) fails then the

logical links (4, 6) and (2, 6) fail but the topology remains connected.

The above examples illustrate some of the difficulties involved in finding sur-

vivable mappings of logical topologies. If the logical topology is a cycle, then the

problem is reduced to finding edge disjoint mappings (paths) for all the logical links

in the physical topology, which is a well known NP-complete problem [1]. For gen-

eral logical topologies, it may not be necessary to find edge disjoint mappings for

all the logical links in the physical topology. Finding mappings for a subset of

the logical links in a disjoint manner would be sufficient, but again the problem of

finding disjoint paths in arbitrary topologies is NP-complete [1] [15]. Due to the

NP-completeness of the problem, a large number of heuristics have been proposed

in the literature.
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(a) Logical topology.

(b) An unsurvivable mapping.

(c) A survivable mapping.

Figure 2.18: Mesh topology and survivable mapping.

2.7 Chapter Summary

In this chapter, we provided a brief overview of the different types of WDM networks

and the survivability mechanisms employed in these networks. We introduced the

concept of IP-over-WDM networks and survivable IP-over-WDM networks. We

also discussed some of the issues involved in realizing such networks. In the next

28



chapter, we will formally introduce the problem of designing survivable IP-over-

WDM networks and provide a review of some of the common approaches proposed

in the literature to design such networks.
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Chapter 3

Survivable IP-over-WDM

Networks Design: Problem

Description and Literature Review

This chapter provides a formal description of the survivable IP-over-WDM network

design problem and a review of various approaches proposed in literature.

3.1 Problem Description

Assume that we are given a 2-edge connected undirected physical topology G(V, E)

where V is the set of physical nodes (vertices), and E is the set of physical edges

(links). A physical edge e is a pair of terminals, (i, j) such that i, j ∈ V . Each

physical link e ∈ E has an associated non-negative cost ce, which represents the

cost of using the link e. Also associated with each link e ∈ E is a non-negative

capacity ue, which represents the maximum units of traffic e can carry.

The logical topology is defined by a set of source-destination (s, t) pairs where

s, t ∈ V , such that together they form a 2-edge connected undirected logical topology

GL(VL, EL). A source-destination pair (sk, tk) will also be referred to as a commodity
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k. Let K be the set of all such (s, t) pairs i.e. K = {(s1, t1), (s2, t2), ..., (sk, tk)}. Also

associated with each (sk, tk) ∈ K is a non-negative demand dk, which represents the

units of traffic that must be sent from sk to tk in G without violating the capacities

of all e ∈ E.

Both physical and logical topologies are assumed to be bi-directed i.e. if there

is a link between node i and node j in the given topology then there is a link from

node j to node i also.

A mapping Mk of a pair (sk, tk) ∈ K is a path Pk that connects sk to tk in G.

Let A be a set of source-destination pairs such that A ⊆ K, then MA is a set of

mappings for the source-destination pairs in A.

Given G and K, the survivable logical topology design problem then is to find

mappings for some or all (sk, tk) ∈ K (1 ≤ k ≤ |K|) in G such that the removal

of an edge e ∈ E does not disconnect the logical topology GL. Such a mapping is

called link-survivable. If GL is a ring, then the problem of finding link-survivable

mappings is equivalent to finding disjoint paths for all the (sk, tk) ∈ K. However,

in the case of a general topology, disjoint paths need to be found for only a subset

of (sk, tk) ∈ K.

3.2 Literature Review

The problem of designing survivable IP-over-WDM networks has been widely stud-

ied in the literature. This section discusses some of the approaches presented in the

literature.

3.2.1 Protection Interoperable Design

In [16], Crochat et. al. provide a general but comprehensive framework to the prob-

lem of finding survivable mappings, called Protection Interoperable Design (PID).
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This paper also defines a protected group with protection level k as a group of logical

links that can support up to k logical links failures. Such groups are assumed to

have the ability to reroute traffic on broken links as long as the number of broken

links is k or less. [16] suggests that a solution to PID should respect the following

three constraints:

• The capacity constraint : A mapping should respect the capacity constraints

of the physical links.

• The bottleneck constraint : One physical link/node failure should not cause

more than k logical link failures.

• The connectivity constraint : The logical topology must remain connected for

any single link/node failure in the physical topology.

The objective is to find a mapping for a logical topology in the physical topology,

which satisfies the above constraints. Noting that the problem is NP-complete, [16]

suggests relaxing some constraints to find a feasible solution e.g. capacity constraint

can be relaxed to get a solution. It also provides an algorithm to solve the protection

interoperability problem called the Protection Interoperability for WDM (PIW),

based on Taboo search metaheuristic. PIW starts by finding a random mapping M

for the logical topology and operates in iterations. In every iteration, the algorithm

slightly modifies M by modifying lightpaths for some of the logical links. The process

is repeated until a survivable mapping is found or a specified maximum number of

iterations has been reached without any improvement in M .

3.2.2 Cutset Based Methods

In [1] and [15], Modiano and Narula-Tam establish conditions that are necessary and

sufficient to design link survivable networks and formally show that the problem of

finding survivable mappings in an undirected graph is NP-complete.
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[1] and [15] provide an Integer Linear Program (ILP) to map arbitrary logical

topologies in arbitrary physical topologies. The ILP is developed based on the

observation that a single physical link failure can disconnect the logical topology

only if it carries the entire cutset of the logical topology.

Given a partition (S, VL−S) of the node set VL, the set of edges with one node in

S and the other in VL−S is called a cutset. This cutset is denoted by CS(S, VL−S).

In Fig. 3.1(a), the edges {a, e, g} form a cut. Simultaneous removal of these edges

partitions the graphs into two sets of nodes {1, 6} and {2, 3, 4, 5}. Let Ma,Me and

Mg be the mappings of the edges {a, e, g} in a physical topology. Now, if ∃x ∈ E

such that (x ∈ Ma) ∧ (x ∈ Me) ∧ (x ∈ Mg), then the removal of x would disconnect

the graph. If there is no such x ∈ E, then the failure of a single link in the physical

topology will not disconnect the graph. Fig. 3.1(b) provides another example of a

cutset, here the edges associated with the cutsset are {a, g, h, i, d}.
Let fk

ij = 1 if the mapping of the logical link k (a pair (sk, tk)) uses the physical

link (i, j), otherwise fk
ij = 0.

Following theorems are due to Modiano and Narula-Tam [1] [15].

Theorem 3.1. A routing is survivable if and only if for every cut-set CS(S, VL−S)

of the logical topology the following holds. Let E(s, t) be the set of physical links used

by the logical link (s, t), i.e., E(s, t) = {(i, j) ∈ E for which fk
ij = 1}. Then for every

cut-set CS(S, VL − S),

⋂

(s,t)∈CS(S,VL−S)

E(s, t) = φ

Necessity: If there is a physical link e ∈ E which is common to the routings of

all the logical links belonging to a cut, then removal of such e will disconnect logical

topology.

Sufficiency: To prove that the above condition is sufficient, it can be observed

that the removal of a physical link e will leave at least one logical link in each cut
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(a) S = {1, 6}, VL−S = {2, 3, 4, 5}, and CS(S, VL−S) = {a, g, e}.

(b) S = {1, 5, 6}, VL − S = {2, 3, 4}, and CS(S, VL − S) =
{a, g, h, i, d}.

Figure 3.1: The Concept of a Cutset.

connected. Since a graph is connected if and only if every cut has at least one edge,

it follows that the logical topology remains connected even if e fails. ¤

The following theorem has been proved in [1] and [15].

Theorem 3.2. The problem of finding survivable mapping is NP-complete. ¤

References [1] and [15] provide an Integer Linear Programming formulation based

on Theorem 3.1. The formulation is shown in Fig. 3.2. If the formulation has a

feasible solution, then a survivable mapping exists for the logical topology. And

infeasibility implies that no such mapping exists.

References [1] and [15] also consider the special case where the logical topology

is restricted to a ring. In this case, the capacity of each physical link is fixed at 1,

since no two logical links can share a physical link. Now an attempt is made to find
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Minimize
∑

k ∈ K
(i,j) ∈ E

fk
ij

Connectivity
Constraint

∑

j s.t. (i,j)∈E

fk
ij −

∑

j s.t. (i,j)∈E

fk
ji =





1 if i = sk

−1 if i = tk

0 otherwise

∀ i ∈ V,
k ∈ K

Survivability
Constraint

∑

k∈CS(S,VL\S)

(fk
ij + fk

ji) < |CS(S, VL \ S)|
∀(i, j) ∈ E
k ∈ K
∀S ⊂ VL

Capacity
Constraint

(∑

k

fk
ij +

∑

k

fk
ji

)
≤ (uij + uji)

∀(i, j) ∈ E
k ∈ K

Integer Flow
Constraint

fk
ij ∈ {0, 1}

∀(i, j) ∈ E
k ∈ K

Figure 3.2: ILP to find survivable mappings for arbitrary logical topologies.

Minimize
∑

k ∈ K
(i,j) ∈ E

fk
ij

Connectivity
Constraint

∑

j s.t. (i,j)∈E

fk
ij −

∑

j s.t. (i,j)∈E

fk
ji =





1 if i = sk

−1 if i = tk

0 otherwise

∀ i ∈ V,
k ∈ K

Capacity
Constraint

(∑

k

fk
ij +

∑

k

fk
ji

)
≤ 1

∀(i, j) ∈ E
k ∈ K

Survivability
Constraint

fk
ij ∈ {0, 1}

∀(i, j) ∈ E
k ∈ K

Figure 3.3: ILP to find survivable mappings for ring logical topologies.

paths for the logical links of the ring. If a feasible integer solution is obtained, then

a survivable mapping for the ring has been found. Otherwise, survivable mapping

of the ring in the physical topology is not possible. The ILP formulation is shown

in Fig. 3.3.

The ILP formulation in Fig. 3.2 and 3.3 can be solved exactly by using commer-

cially available software packages (such as CPLEX), but due to the large number of

constraints involved, the running time to solve the ILP may be excessive.

Also, the formulations in Fig. 3.2 and 3.3 require examination of all the cutsets

in the logical topology, which is a very large set. Therefore, [1] and [15] also explore
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some relaxations to the ILP formulation. One proposed relaxation is to consider

only those cuts that prevent a single node from being isolated, in case of a single

fiber failure. Another proposed relaxation is to consider cuts with size equal to or

less than the degree of the topology plus one. These relaxations significantly reduce

the time required to solve the problem but may lead to infeasible solutions.

In [17], Todimala and Ramamurthy apply the work in [1] and [15] to Shared

Risk Link Groups (SRLGs). SRLG is a set of links that share the risk of failing

simultaneously. [17] proves that it is sufficient to consider only primary cuts in the

ILP to design survivable networks. A primary cut is defined as a cut that partitions

the graph into two or more components such that the subgraph on the nodes in each

component is connected. Otherwise, it is called a secondary cut. The substitution of

all the cutsets with primary cuts in the ILP is based on the fact that every secondary

cut is a superset of at least one primary cut. Fig. 3.1 provides examples of primary

cuts and Fig. 3.4 is an example of secondary cut.

Figure 3.4: A secondary cut S = {1, 6} and VL − S = {2, 3, 4, 5}.

An undirected connected graph G has 2n−1 possible cuts, which is exponential

in n, the number of nodes in GL. The number of primary cuts in GL is less than

the number of cuts, but still exponential in number. Therefore, [17] applies the

ILP to planar cycles and hierarchical planar cycles that have polynomial number of

primary cuts. A planar cycle is defined as a planar cyclic graph with chords that
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do not cross and a hierarchical planar cycle is a collection of planar cycles such that

a pair of planar cycles has at most one node in common. [17] also proves that the

number of primary cuts in a planar cycle is equal to the number of primary cuts in

a simple cycle of the same size.

References [18] and [19] propose two heuristics, named FastSurv and extended

FastSurv, based on Theorem 3.1. FastSurv does not consider capacity constraints

and extended FastSurv does. However, the heuristics do not directly use cutsets but

use a probability function as an estimate of the cutsets.

The algorithms start with an initial mapping, which is constructed by arbitrarily

finding lightpaths for the logical links in a random order using a shortest path

algorithm. The cost function used for the shortest path algorithm depends upon

the number of lightpaths currently being carried by a physical link. After obtaining

the initial solution, it is tested for survivability. If the mapping is not survivable,

then all the lightpaths which when routed together make the mapping unsurvivable

are rerouted. The rerouting is done based on an estimate of the probability that

two lightpaths when routed together make the mapping unsurvivable and using this

as the cost function.

In [20], Ruan and Liu propose a heuristic Map and Fix, which like [17], [18]

and [19] utilizes Theorem 3.1 and tries to find a mapping for a logical topology

that is survivable or close to survivable. If the mapping is not survivable then new

mappings are calculated for some of the logical links. However, the algorithm does

not take into account capacity constraints.

The algorithm has three-stages. In the first stage, called Simple-Mapping (SM),

an initial mapping is computed by finding a shortest path between the end nodes

of each logical link in the physical topology. If the initial mapping is not survivable

then a new mapping is computed in the next stage by using Load-Based-Mapping

(LBM). In LBM each physical link e is assigned a cost equal to one plus the number
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of mappings using e. New mapping for the logical topology is then computed by

applying Dijkstra’s algorithm [21] using this new cost. If the new mapping is not

survivable then FIX algorithm is applied.

FIX algorithm accepts an unsurvivable mapping M and remaps some of the

logical links to obtain a new mapping M ′. FIX first finds physical links, called

critical links (M ′), which carry an entire cut of the logical topology. Let e ∈ E be

a physical link that carries an entire cut CS (CS ⊆ EL) of the logical topology.

Failure of e would disconnect the logical topology and transform it into m (m ≥ 2)

components (C1, C2, ...., Cm). An edge b ∈ CS is called a bridge as its end nodes lie

in two different components. The FIX algorithm chooses at most one bridge from

the set of bridges that connect a pair of components and remaps it without using

e. Each time a bridge is remapped, the number of components is reduced by 1.

After remapping m − 1 bridges, the new mapping M ′ is tested for survivability. If

M ′ is not survivable, then a new set of bridge links are chosen and remapped. The

process is repeated until a survivable mapping or the maximum number of iterations

is achieved. The maximum number of iterations is set to K × |M ′|, where K is a

constant.

3.2.3 Circuit Based Methods

In [2] [22] and [23], Kurant and Thiran provide a unique framework to find node/edge

survivable mapping for a general logical topology by successively mapping only a

subset of the logical links. It is accomplished by introducing the concept of piecewise

survivability, which proceeds by successively finding survivable mappings for pieces

of the logical topology rather than for the entire logical topology.

The concepts of contraction of an edge in a graph GL and Origin(.) function

are key to understanding the framework. Let x be an edge such that x ∈ EL. The

process of contraction involves deleting the edge x and merging its end nodes. In
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Fig. 3.5(a), the edge to be contracted is f with end nodes 1 and 6. The contraction

is done by deleting the edge f and merging the end nodes 1 and 6 to form a single

node Cx. The edges which were incident on nodes 1 and 6 are now incident on the

contracted node Cx and self loops are deleted. Fig. 3.5(b) shows the graph after

contraction of edge f . The concept of contraction of an edge is then extended to

the contraction of a set of edges Y ⊆ EL. This is accomplished by successively

contracting the edges belonging to Y in the graph GL. In Fig. 3.5(a), Y = {b, c},
Fig. 3.5(c) shows GL after the contraction of the edge b and Fig. 3.5(d) shows GL

after contraction of edges b and c.

(a) A graph with two subgraphs {f}
and {b, c}.

(b) Graph after contraction of edge f .

(c) Graph after contraction of edge b. (d) Graph after contraction of edge c.

Figure 3.5: The concept of contraction of an edge and a subgraph.

A link e in contracted graph GC is always a link in GL. But a node in GC

may or may not be a node in GL. In Fig. 3.4(b) node labeled 5 is a node in

the GL. However, the node Cx ”originates” from a connected component of GL

consisting of nodes 1 and 6 and is not in GL. To formally define Origin(.), let A

39



be a set of edges belonging to a graph GL and let GC be the new graph obtained

after contracting the edges in A. Now, pick a subgraph GC
sub in GC . Origin(GC

sub) is

the maximal subgraph of G that transforms into GC
sub by the contraction of A in G.

The framework assumes that the given logical topology GL and physical topology G

have some degree of redundancy built into them. [2] proves the following Theorem.

Theorem 3.3. (Expansion of survivability): Let MA be a mapping of a set of logical

edges A ⊂ EL in the physical topology G, such that the pair [GL,MA] is piecewise

node/link-survivable. Let GC be the graph obtained after contracting A in GL. Take

any subgraph of GC, call it GC
sub = (EC

sub, B). Let MB be a mapping of the set B

of edges of GC
sub on G. If the pair [GC

sub, B] is node/edge-survivable then the pair

[Origin(GC
sub,MA ∪MB)] is also node/edge-survivable. ¤

Theorem 3.3 is based on the following property. If a subgraph G1 is routable in

a survivable manner in the physical topology and a subgraph G2 in the contracted

subgraph is also routable in a survivable manner, then the subgraph of the logical

topology containing the links of G1 and G2 is also routable in a survivable manner.

If true, this approach greatly simplifies the process of finding survivable mappings

for fairly large networks. The solution is applicable to arbitrary logical and physical

topologies and can be applied to find link survivable mapping as well as to find node

survivable mappings. However, we prove in [24] that the above claim is true only if

the selected subgraph meets some connectivity requirements.

Based on Theorem 3.3, [2] provides an algorithm which is called SMART (Surviv-

able Mapping Algorithm by Ring Trimming). The algorithm starts with the entire

logical topology, and then tries to find a subgraph for which a node/edge-survivable

mapping can be found in the physical topology. If such a subgraph exists, the al-

gorithm contracts this subgraph by collapsing the edges in the subgraph to create

a contracted logical topology. See Fig. 3.5 for an example of the process of con-

tracting a subgraph. After contracting the subgraph, the algorithm proceeds by
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finding another subgraph that can be mapped in a survivable manner. The algo-

rithm terminates, if at any step there is no such subgraph in the contracted logical

topology that can be mapped in survivable manner or the logical topology is reduced

to a single node. If the algorithm terminates unsuccessfully, it returns a piecewise

node/edge-survivable mapping, which consists of survivable pieces and the remaining

contracted logical topology. The algorithm is shown in Fig. 3.6.

INPUT: A physical topology G(V, E), a logical topology
GL(VL, EL).
OUTPUT: A survivable mapping or a piecewise survivable
mapping of GL.
Step 1: Start from the full logical topology, GC = GL, and an empty
mapping MA = ∅, A = ∅.
Step 2: Pick a subgraph GC

sub = (V C
sub, B) in GC , and find a mapping

MB for the links in the subgraph such that the pair [GC
sub,MB] is

node/edge-survivable.
If no such (subgraph, mapping) pair is found then

Return the mappings that have been obtained so far and the
remaining Contracted Topology.
END

End If
Step 3: Update the mapping by merging MA and MB i.e.
MA = MA ∪MB.
Step 4: Contract GC by collapsing the edges included in the subgraph
B and merging the nodes to create a single node.
Step 5:

If the contracted logical topology GC is reduced to a single node then
RETURN MA.
END

End If
Step 6: GOTO Step 2, REPEAT THE STEPS FOR THE
CONTRACTED TOPOLOGY (GC).

Figure 3.6: Survivable Mapping Algorithm by Ring Trimming (SMART) algorithm.

SMART framework, however, does not provide a method for finding survivable

mapping for a subgraph in the physical topology for the general case. But [2] does

provide a simple heuristic to find mappings for logical links when the subgraph

is always a cycle (ring). The heuristic uses a variant of shortest path algorithm,
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therefore does a local search. The algorithm begins by assigning a weight of 1 to

each physical link and finds a shortest path for each logical link in the selected

cycle. If the paths obtained are edge disjoint, the algorithm proceeds by contracting

the subgraph under consideration and picking a new subgraph. If some or all the

paths are not edge disjoint, the weights assigned to the shared physical edges are

incremented by 1 and the process is repeated for a predetermined number of times.

In a more recent work by authors of [2], the framework is named SMART and the

proposed heuristic is referred to as SMART-H [23]. [23] also considers a version of

SMART-H with capacities. Henceforth, we will refer to the SMART framework as

SMART and the heuristic as SMART-H.

Most approaches in literature consider the entire logical topology while designing

survivable networks. [2], [22] and [23] provide a different approach by considering

only pieces of the logical topology. Nonetheless, it has certain drawbacks. The next

chapter contains a detailed analysis of the SMART and SMART-H and some of

enhancements possible.

3.2.4 Multicommodity Flows Approach

The problem of finding edge disjoint paths bears a very close resemblance to the

multicommodity flow problem (MCF) in operations research [25]. Given a set of

source-destination pairs and corresponding demands, the MCF involves simulta-

neously routing the different commodities from their sources to their respective

destinations, such that the total flow on each edge is not greater than its capacity

while meeting certain objectives. There are several variants of the MCF, namely,

maximum multicommodity flow (MMCF), maximum concurrent flow and minimum

cost multicommodity flow problems.

The aim of MMCF is to maximize the total flow, summed over all the com-

modities, with each link flow equal to or less than its capacity without any fixed
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demands. In maximum concurrent flow problem each commodity has an associated

non-negative demand. The goal then is to satisfy the maximum possible propor-

tion of demand for each commodity. In case of minimum cost multicommodity flow

problem, each edge is assigned a non-negative cost and a demand is associated with

each commodity. The objective is to find a multicommodity minimum cost flow.

MMCF formulation can be used to find pair-wise disjoint paths by setting the

link capacities to 1 and requiring flows to be integers only. In case of a ring, a

survivable mapping of a ring logical topology in an arbitrary physical topology is

possible only if a feasible solution to its integer MMCF formulation exists. For

arbitrary graphs, a feasible solution to the Integer MMCF implies that a survivable

mapping exists but an infeasible solution does not imply that such a mapping does

not exist. This is due to the fact that, as we have shown in section 2.6.1, it is

enough to find disjoint paths for some rather than all the logical edges. MMCF

can be formulated as an ILP (similar to Fig. 3.3) and solved optimally. However,

integer version of MMCF is NP-complete.

3.2.5 Other Approaches

Reference [26] does not directly address the problem of finding survivable mappings

but provides a solution to the problem of finding disjoint paths. In the case of

ring networks, this algorithm can be directly employed to find survivable mappings.

But it can be easily extended to the case of general mesh networks by checking

for survivability rather than for disjoint paths. Given a set of source-destination

pairs K = {(s1, t1), (s2, t2), ..., (sk, tk)} the objective is to determine disjoints paths

among as many source-destination pairs as possible. The same problem is considered

in [27] and an iterative greedy algorithm called Bounded Greedy Algorithm (BGA)

is provided. BGA starts off with an empty solution S, picks a pair (si, ti) ∈ K

and routes it using a shortest path P of length L or less. After routing, the edges
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along P are removed from the graph and the algorithm proceeds by picking the

next pair (si+1, ti+1) from K. An extension of BGA is also proposed in [27] called

Multi-start Greedy Algorithm (MSGA). In an iteration of MSGA, Si is the solution

under consideration and Sbest is the best solution achieved so far. Also, in each

iteration of MSGA, a random permutation of K is used.

The main contribution of [27], however, is the development of an algorithm based

on Ant Colony Optimization (ACO). A solution S is constructed by assigning an

ant to each (si, ti) pair, which finds a path for the assigned (si, ti) pair. Initially the

paths in S may not be mutually disjoint. Edge disjoint paths are then obtained by

iteratively removing the path which has the most edges in common with other paths

in S. The algorithm continues until edge disjoint paths are found or the termination

condition is met.

3.3 Chapter Summary

In this chapter, we formally introduced the problem of designing survivable IP-

over-WDM networks and discussed some of the commonly proposed approaches to

solve the problem. This chapter discussed two approaches in detail, namely, the

approaches by Kurant-Thiran and Modiano-Narula-Tam, which will form the basis

for our work.

In the next chapter, we will provide a detailed analysis of SMART framework

and its heuristic version (SMART-H). We will also discuss some of the enhancements

that can improve the performance of original algorithms.
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Chapter 4

SMART: Evaluation and

Enhancements

SMART (Survivable Mapping Algorithm by Ring Trimming) framework, introduced

in Chapter 3, is a unique approach to find survivable mappings for logical topologies.

Most approaches in the literature usually consider the entire logical topology and

attempt to find a survivable mapping for it. In contrast, SMART proceeds by

picking pieces of the logical topology and finding survivable mappings for these

pieces. This chapter discusses some of the shortcomings of SMART framework and

proposes some enhancements to improve the performance of SMART.

4.1 SMART Evaluation

The step 2 of SMART approach (Fig. 3.6) requires selecting a subgraph which is

connected. However, as shown below with an example, that this requirement is not

sufficient to guarantee survivability.

Consider the logical and physical topology shown in Fig. 4.1(a) and Fig 4.1(b),

respectively. Assume that the step 2 of the algorithm first selects a connected com-

ponent consisting of logical links {a, f}, which are mapped to paths 1−2−3−4 and
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1−6−5 in the physical topology (shown in Fig 4.1(d)). It can be observed that the

mapping for this subgraph is survivable. Therefore, the subgraph is contracted into

a single node to obtain contracted topology shown in Fig. 4.1(e). The algorithm

then proceeds by selecting another subgraph consisting of edges {b, g, e}. This sub-

graph can be mapped to paths 4−3−2, 2−6 and 6−5 (Fig. 4.1(f)), which are edge

disjoint and form a survivable mapping. b, g and e are then contracted to obtain

contracted topology shown in Fig. 4.1(g) and a new subgraph with edges {c, d} is

chosen, which is mapped to paths 3 − 2 and 3 − 6 (Fig. 4.1(h)). Contraction of

subgraph c and d reduces the logical topology to a single node. Therefore, SMART

terminates and returns the mapping shown in Fig. 4.1(i) as the survivable mapping

for the logical topology.

The mapping shown in Fig. 4.1(i), however, is not survivable. It can be seen

that the failure of physical link (5, 6) brings down logical links {e, f} and logical

topology gets disconnected, isolating logical node 5. Similarly, if the physical link

(2, 3) fails, the logical links {a, b, c} fail and logical node 4 is isolated.

The above example stresses that it is important to pick the subgraph in step 2

carefully. We now prove the following which is the correction to Theorem 3.3.

Theorem 4.1. A 2-edge connected logical graph is survivable if and only if SMART

algorithm picks in step 2 a 2-edge connected subgraph and terminates successfully.

Proof :

Necessity: SMART terminates successfully −→ Graph is survivable. This fol-

lows from Theorem 3.3.

Sufficiency: SMART terminates unsuccessfully −→ Graph is not survivable.

Proof is by contradiction. Assume that the SMART algorithm terminates unsuc-

cessfully and the logical topology GL is survivable. Thus there exists a mapping of

the links of GL that guarantees survivability of GL for any single link failure. But

at some iteration, step 2 did not find a survivable 2-edge connected subgraph of the
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contracted graph GC . Since GL is survivable removing a physical link will result in

G′
L that is connected. If we now contract those edges in G′

L corresponding to the

edges defined by the contracted nodes in GC then the resulting graph G′
C will be

connected. This means that removal of a physical link does not disconnect GC . So

GC is survivable and SMART would terminate successfully at this step. Hence, a

contradiction. ¤

Note that the above theorem holds even if the subgraph chosen in step 2 of

SMART is not connected as long as every connected component of the selected

subgraph is 2-edge connected. The algorithm can be easily extended to k link failures

by requiring logical and physical topologies to be at least (k + 1) − connected and

picking subgraphs that are at least (k + 1)− connected in step 2 of SMART.

The step 2 of the algorithm also requires finding a mapping for the selected 2-edge

connected subgraph that is survivable. Since a survivable mapping requires that at

least some of the logical links are routed on disjoint paths in the physical topology,

a problem that is NP-complete in general [26], a heuristic must be employed.

The algorithm shown in Fig. 3.6 terminates, when in step 2, it is not possible to

find any subgraph in the contracted logical topology that could be mapped in sur-

vivable manner. This would force the algorithm to examine a very large number of

subgraphs before termination, especially if a survivable mapping of logical topology

in the physical topology does not exist. If the subgraph is restricted to a cycle in

each iteration, then an undirected complete graph has
1

2

|V |∑
i=3

(|V |
i

)
(i− 1)! cycles, a

number which grows faster with |V | than the exponential 2|V | [28]. This is a compu-

tationally expensive task. Therefore, any implementation of SMART will be limited

to considering a small number of subgraphs, and may terminate unsuccessfully, if

none of these selected subgraphs is found to be survivable.

Given the above drawbacks of SMART framework, a heuristic version of SMART

called SMART-H is given in [2] [23]. SMART-H considers only a small number of
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(a) A logical topology. (b) A physical topology.

(c) The selected subgraph consists of logical
edges {a, f}.

(d) A mapping of edges {a, f} in the physical
topology.

(e) The selected subgraph
consists of logical
edges {b, e, g}.

(f) A mapping of edges {b, e, g} in the physical
topology.

(g) The selected
subgraph con-
sists of logical
edges {c, d}.

(h) A mapping of edges {c, d} in the physical
topology.

Figure 4.1: The effect of subgraph selection on survivability.
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(i) Complete mapping of the logical topology in the physical topology.

Figure 4.1: The effect of subgraph selection on survivability. (contd.)

subgraphs before termination. However, this does not mean that survivable map-

ping of the entire logical topology does not exist if survivable mappings for all the

considered subgraphs are not possible. As an example consider Fig. 4.2. Assume

that all the links in the subgraph 2− 3− 5 cannot be mapped in a disjoint fashion.

Also assume that links (2, 5) and (3, 5) share a physical link. However, if we are

able to map all the remaining links in a disjoint manner then the logical topology

will still remain connected. This leads us to the following:

Fact 1 : If a survivable mapping cannot be found for a particular subgraph then

accepting an unsurvivable mapping for this subgraph and continuing with SMART-

H may still yield a survivable mapping for the entire logical topology.

The requirement that a 2-edge connected graph must be selected in step 2 can

easily be met by choosing a cycle (or ring), which can be easily picked using a

shortest path or breadth first search algorithm. The question then is whether we

should select a longer or shorter cycle. A short cycle can be picked using a shortest

path algorithm

Fact 2 : A shorter cycle has an advantage over a longer cycle in the sense that

the chances of successfully mapping a small number of links is higher than mapping
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(a) Logical topology. (b) Logical topology after failure.

Figure 4.2: Illustration of Fact 1.

a larger number of links. However, a longer cycle has the advantage of having one

or more number of straddling links that can be mapped in an arbitrary manner.

Picking shorter cycles provides an additional advantage. When the SMART-H

algorithm terminates successfully, it gives a mapping which remains connected for

any single physical link failure. This is true even if a single physical link failure

causes more than one logical link to fail as long as these logical links are in different

cycles constructed by the SMART-H algorithm. Therefore, picking smaller cycles

to map at each step of SMART-H can keep the logical topology connected even if a

physical link failure results in a large number of logical link failures. This leads us

to definition of the concept of robustness of a routing.

A survivable routing is considered robust if the logical topology remains con-

nected for a large number of pairs of logical link failures. So, the larger the num-

ber of cycles considered by SMART-H the higher will be the robustness of the

routing. For example, consider the logical topology in Fig. 4.3(a). Consider

cycles in the following order: c1, c2, c3, c4, and cycle with edges e1, e2, e3, e4 then

the resulting survivable mapping will remain connected for 160 pairs of logical

link failures. Also it can survive 45 5-link failures. If SMART-H picks the cycle

{1, 2, 3, e1, 5, 6, 7, 8, e2, 10, 11, 12, 9, e3, 15, 16, 13, 14, e4, 4, 1} then the resulting map-

ping will survive only 16 1-logical link failures (Fig. 4.3(b)).
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(a) Shorter cycles. (b) Longer cycle (bold lines).

Figure 4.3: Robustness of a routing.

Fact 3 : Always selecting a short cycle at step 2 of Fig. 3.6 makes the network

more robust.

SMART-H uses a variant of shortest path algorithm to find a survivable mapping

for subgraph and therefore performs a local search. Each time the algorithm fails to

find a disjoint mapping, it increments the weights of physical links used more than

once by 1. Increments of 1 may require a large number of applications of shortest

path algorithm before disjoint mappings are found. As an example, consider the

topology shown in Fig. 4.3 (a) as the physical topology. Assume that SMART-H is

trying to find a mapping between logical nodes 5 and 7, and the discovery of path

5− 3− 4− 14− 15− 9− 10− 8− 7 (length 8) is required so that the mapping for a

given subgraph is survivable. The algorithm will alternate between paths 5− 6− 7

and 5 − 8 − 7 several times before choosing the correct path. However, penalizing

the repeated links heavily, may force the algorithm to converge faster.

Fact 4 : To find survivable mapping for a subgraph using a cost function that

increments the cost of links, which appear in the mapping more than once, at a

higher rate can increase the probability of finding a survivable mapping.
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4.2 SMART Enhancements

In light of the above mentioned facts, we propose following enhancements to SMART-

H heuristic.

4.2.1 Enhancement 1:

To improve robustness, when selecting a subgraph effort should be made to not

include contracted nodes as long as possible.

As pointed out in fact 1, even if a survivable mapping cannot be found for a

particular subgraph then accepting this mapping and continuing with SMART-H

may still yield a survivable mapping for the entire logical topology.

4.2.2 Enhancement 2:

If a survivable mapping cannot be found for any of the subgraphs considered then

accept the unsurvivable mapping for the current subgraph under consideration and

continue with SMART-H.

At the end of the SMART-H algorithm some of the logical links may be left

unmapped. In fact, these logical links can be mapped in an arbitrary manner

but by a judicious mapping of these links one can achieve a high success rate for

obtaining survivable mappings. This is similar to taking advantage of DON’T CARE

conditions in logical function minimization. Furthermore, if a subgraph contains a

contracted node, then disjoint mappings are calculated for only two of the multiple

links incident on it. The remaining links are not mapped. However, even if these

links are mapped in an arbitrary manner (or disjoint manner, if possible) it may

allow some of the logical topologies that were previously declared unsurvivable to

become survivable. So we propose the following enhancement to SMART-H.
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4.2.3 Enhancement 3:

At the end of SMART-H, map unmapped links in an appropriate manner to reduce

the degree of unsurvivability of the final mapping.

The mapping algorithm used by SMART-H can also be modified to use a new

cost function. As an alternative to incrementing by 1, each physical link can be

assigned a cost of 2α where α is the number of times a link appears in unsuccessful

attempts. Initially, α = 0, however in the next iteration α is incremented by 1 and

the links used more than once have cost 2. Similarly, in the next iteration if any of

the links repeated in previous iteration appear again their cost is incremented to 4.

4.2.4 Enhancement 4:

Before finding shortest paths, assign each physical link a cost of 2α, where α is the

number of times the link appears in unsuccessful attempts.

4.3 Simulation Study of SMART-H and Enhance-

ments to SMART-H

To study the behavior of SMART-H and the proposed modifications, they were

implemented using LEDA [29] and VC++ 7.0. For simulation two kinds of physi-

cal topologies with a varying number of nodes and edges were generated. Regular

topologies of n nodes were generated with an average degree of 6. The regular

topologies were constructed using a procedure originally given by Harary [30] and

described in [31], and random topologies were generated with LEDA using a proce-

dure given in [32] with n nodes and m = 3×n edges. The values of n were {20, 50}.
Logical topologies were generated randomly with number of nodes being f × n,

where f = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and the number of edges were 1.5× (f × n).
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The logical nodes were always a random subset of the physical nodes. For each f ,

100 random logical topologies were generated. After generating the topologies, they

were admitted for further processing only if they were at least 2-edge connected.

Each logical-physical topology pair was subjected to following two methods:

Method 1(KT): The first method was an implementation of SMART-H. A

subgraph was chosen randomly and then attempts were made to map it in disjoint

manner. If a disjoint mapping could not be obtained after applying the mapping

method 50 times, a new subgraph was selected and SMART-H terminated after

unsuccessfully examining 25 subgraphs.

Method 2(M-KT): This method implemented SMART-H approach with en-

hancements 1, 2, 3, and 4; a) an attempt was made to find a subgraph without a

contracted node; b) an unsurvivable mapping for a subgraph was accepted; c) all

the links not previously mapped, were mapped; d) the cost function described in

enhancement 4 was used. e) At the end of the execution, a test was conducted to see

if the logical topology remained connected in case of a single physical link failure.

The statistics of interest were the percentage of successfully (survivable) mapped

logical topologies and robustness. Methods 1 and 2 were applied on the same logical-

physical pairs, and tests were conducted with n = {20, 50}. Fig. 4.4 (a) and (b)

show the ratio of survivable topologies found to the number of logical topologies

considered. Fig. 4.4(a) and Fig. 4.4(b) compare both the methods for n = 20

and 50, respectively. It can be seen that both methods are comparable for different

values of f . Both methods are able to map majority of the logical topologies in

survivable manner for n = 20. However, in case of n = 50 success rate is much lower

especially for the regular graphs. This may be due to the fact that there are more

subgraphs to map, hence, more number of physical links are likely to be common to

mappings of logical links.

Figure 4.5 (a) and (b) show comparison of robustness for n = {20, 50}. It can
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(a) n = 20.

(b) n = 50.

Figure 4.4: KT vs. M-KT: Percentage of mapped logical topologies.

be seen that both methods provide a high degree of robustness. However, M-KT

performs better due to the implementation of enhancement 1 and 3. This work was

presented in [24].

4.4 Modify and Map: A Robust Survivable

Topology Mapping Algorithm

Building upon the work in section 4.2, this section presents a more robust survivable

topology design algorithm called Modify and Map (MM). The new approach gives
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(a) n = 20.

(b) n = 50.

Figure 4.5: KT vs. M-KT: Comparison of robustness.

a more systematic approach to finding subgraphs (cycles) to map in the logical

topology and a mapping algorithm based on the concept of randomized rounding

[33] utilizing a fractional multicommodity flow approximation algorithm [34].

4.4.1 Subgraph Selection:

Assume that a physical topology G(V,E) and a logical topology GL(VL, EL) are

given, where V is the set of physical nodes, E is the set of physical edges, VL is

the set of logical nodes such that VL ⊆ V , and EL is the set of logical links. Also

assume that both physical and logical topologies are at least 2-edge connected. The
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algorithm proceeds by picking a subgraph C in the form of a cycle in the logical

topology and attempts to map it in the physical topology. If C can be mapped in

a disjoint manner, then the logical topology is contracted by collapsing the edges

and merging the nodes in C. However, if C cannot be mapped in a disjoint manner,

then there is a set of links ψ ⊆ C, such that they share some physical link/links.

In this case C will be split into |ψ| components {C1, C2, ..., C |ψ|}. Figure 4.6 shows

the case when the cycle C is split into 2 components C1 and C2 i.e. |ψ| = 2. When

C is split into two or more components and a component gets isolated i.e. the

component is no longer connected to any other component or the graph GL − C,

then it is not possible for the entire logical topology to be survivable without finding

a cycle, which contains the links that connect the isolated component to the other

components. This scenario is shown in Fig. 4.6(b). In this case, it is necessary to do

an exhaustive search to verify that no such cycle exists. Fig. 4.6(c) shows another

possibility. In this case none of the components get isolated i.e. there exists a path

or paths in GL − C that connect one component to the other component. In that

case we proceed as follows:

Step 1 : Pick a link li ∈ ψ (1 ≤ i ≤ |ψ|), and find the two components C1 and

C2 it connects. Let n1 be the set of degree 3 nodes in component C1 and n2 be

the set of such nodes in the component C2. Now pick a node n′ ∈ n1 and a node

n′′ ∈ n2. Let P ′ be the path between n′ and n′′ on the cycle C. After finding such

nodes, remove all the edges belonging to the cycle C in the logical topology and

find a shortest path P between n′ and n′′. The edges are then restored and a cycle

is formed by concatenating P ′ and P and an attempt is made to map this cycle. If

this cycle can be mapped in disjoint manner, ψ is updated by removing li and C

is updated by collapsing the edges and merging the nodes in P ′. Otherwise, this

procedure is repeated by pairing other nodes from n1 and n2. If for a link li ∈ ψ,

no such cycle can be found we then proceed with li+1 ∈ ψ.
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(a) A logical topology GL and cycle C. (b) An unsurvivable cycle C is split into two
components (C1 and C2) and one of the
components is isolated.

(c) An unsurvivable cycle C is split into two
components (C1 and C2) and the compo-
nents are not isolated.

(d) New cycles formed using the nodes in C1

and C2.

Figure 4.6: Illustration of Modify and Map.

Suppose that survivable mappings can be found for |ψ| − 1 links, then it can be

easily shown that the edges in the |ψ|− 1 cycles along with those in C form a graph

which will be connected for any single physical link failure. So we contract these

edges and proceed with the remaining edges in the logical topology.

Step 2 : If we are unable to find survivable cycles for |ψ| − 1 links i.e. there

are some li ∈ ψ for which survivable cycles could not be found. Let C ′ be the cycle

after step 1. Now we pick a pair of nodes {x, y} with degree ≥ 3 in C ′ and find a

cycle, which includes the path on C ′ between x and y and a path between x and y

that does not include any edge from C ′. If this cycle can be mapped in survivable

manner, the edges in this cycle are collapsed. This procedure is repeated until all

the edges have been collapsed to create a single node or until all the nodes with

degree ≥ 3 have been processed.
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Step 3 : Let C ′′ be the cycle after steps 1 and 2. If C ′′ is not a single node,

we apply the mapping algorithm to C ′′. If the mapping is survivable, the edges are

contracted and nodes are merged. However, if C ′′ cannot be mapped in a survivable

manner, then the unsurvivable mapping is accepted and the logical topology is

contracted but a flag is set to indicate that an unsurvivable mapping was accepted.

This requirement guarantees the termination of the algorithm. The algorithm then

proceeds by selecting a new cycle C.

Step 4 : If the flag was set in step 3, then after the termination of the algorithm,

logical edges that were not mapped earlier are mapped in an arbitrary manner and

a test is conducted to see, if the mapping of the entire logical topology is survivable.

Since the problem of finding disjoint mappings is NP-complete, therefore, any

algorithm other than the ILP formulation cannot guarantee that if a solution is not

found then a solution does not exist. The reasoning for accepting unsurvivable map-

ping for the cycle and continuing is that the cycles selected in subsequent iterations

may aid in making an unsurvivable subgraphs survivable (section 4.1, fact 1). The

entire algorithm is shown in Figure 4.8, 4.9, 4.10 and 4.11.

4.4.2 A Rigorous Mapping Algorithm:

One key assumption in the above procedure is that there exists a method to find

disjoint mappings for a given set of links. As mentioned earlier, the problem of

finding mutually disjoint paths for a given set of links is NP-complete in general

[26]. The problem can be formulated as an Integer Linear Program (ILP) and

solved exactly [1]. Since ILP exhibits excessive runtimes, it may not be suitable

for large networks. Due to the fundamental role played by disjoint paths in design-

ing telecommunication networks, a significant amount of literature is dedicated to

solving this problem without solving the ILP formulation. Most of the proposed

approaches assign weights to the physical links which are then used to find paths,
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usually using a shortest path algorithm. After finding a path the weights are usually

updated for the links in the path. The process is repeated until disjoints paths are

found or a termination condition is met. Such approaches work well in practice but

an unsuccessful termination does not necessarily imply that disjoint mappings are

not possible.

In this section we propose a variation of the randomized rounding technique

proposed by Raghavan and Thompson to find disjoint paths in an undirected net-

work [33]. The algorithm transforms the optimal solution of a relaxed 0− 1 integer

formulation into a ”provably good” solution to the original 0 − 1 formulation. The

algorithm relaxes the integer constraint of the multicommodity flow problem (MCF)

to obtain fractional solutions, which are then used to obtain integer solutions. [33],

however, does not provide a method to solve the relaxed problem and assumes that

fractional flows are available to the algorithm. [34] and [35] provide fast algorithms

to solve the fractional MCF problem in polynomial times, which can then be used

to get integer solutions by applying the approach in [33].

To get fractional solutions we use a modified version of the multicommodity flow

approximation algorithm in [34]. To use the algorithm, the links belonging to the

subgraph (a cycle C) are viewed as commodities K = {(s1, t1), (s2, t2), ....., (sk, tk)}.
All the physical links are assigned a capacity of 1 (uij = 1) and the objective is to

find flows fi from si to ti without violating the capacity constraints of the physical

edges.

Algorithms in [34] and [35] are based on the path-flow multicommodity flow

formulation to provide ε-approximate solutions. The formulation is given in Fig.

4.7.

Let x(P ) is the amount of flow sent along a path P (initially 0), then dual of

the formulation in Fig. 4.7 can be formed by assigning lengths to the edges of the

graph. The length lij of an edge (i, j) is related to the amount of flow it carries and
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Maximize
∑

p ∈ P

x(P )

Capacity Constraint

( ∑
P : p∈P

x(P )

)
≤ uij ∀p ∈ E

Flow Constraint x(P ) ≥ 0 ∀P
Figure 4.7: Multicommodity flow formulation.

represents the marginal cost of using an additional unit of capacity of (i, j). The

maximum flow computations are done only on this length function. The objective

is to minimize
∑

(i,j)∈E

uijlij, such that the length of the any shortest path between

any (si, ti) pair is at least 1, for all (si, ti) ∈ K (1 ≤ i ≤ |K|). The length of each

edge is initially set to δ =
1 + ε

((1 + ε)L)
1
ε

, where L is the length of the longest path

between any (si, ti) ∈ K and ε is the desired accuracy.

The algorithm proceeds by finding shortest paths for all (si, ti) ∈ K, using the

length function. Let Pj be the set of all such paths in an iteration j. The algorithm

then picks the shortest path P ∈ Pj, and updates the flows (primal variables) and

lengths (dual variables) of the edges along P . The flow is updated by finding the

capacity u of the minimum capacity edge (bottleneck edge) along P and adding

it to x(P ) i.e. x(P ) = x(P ) + u. The lengths of the edges along P are then

updated as l(e) = l(e)

(
1 +

εu

u(e)

)
. This update ensures that the length of the

bottleneck link is increased by a factor of (1+ ε). It can be noted that the update of

the primal variables may violate the capacity constraints while satisfying the non-

negativity constraints, making the solution infeasible. However, a feasible solution

can be determined at any stage by finding the most violated capacity constraint and

scaling all the primal variables by dividing them by an appropriate scalar. Similarly,

a dual feasible solution can be obtained by finding the most violated dual constraint

and multiplying the dual variables by the proportion of violation.

In an iteration j, the above algorithm finds shortest paths for all (si, ti) ∈ K,

which requires |K| applications of the shortest path algorithm. The algorithm then
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always chooses the commodity with the shortest path P ∈ Pj to push flow, which

may starve some commodities i.e. they may not get any flow. This is undesirable

when finding disjoint paths using randomized rounding.

To circumvent this problem we modify of the above algorithm as follows. Instead

of picking the commodity with the shortest path, we go through the commodities in a

round robin manner to provide each commodity a chance to send flow. To introduce

further fairness, the commodities are permuted in each iteration. In addition to the

existing variables, we also introduce two new variables MBest and |MBest| for the

subgraph under consideration. Initially MBest = ∅ and |MBest| is set to infinity. In

each iteration, the algorithm tries to finds a shortest path for each commodity and

updates x(P ) and l(e) as described above. If shortest paths could be found for all the

commodities, the algorithm checks that if all the paths are disjoint. If all the paths

are edge disjoint, MBest is updated and returned as the survivable mapping for the

subgraph. If all the paths are not disjoint, then the number of commodities whose

mappings are not disjoint is computed. If this number is less than the |MBest| in

the previous iteration, then |MBest| is set to this number and the mapping obtained

in this iteration are stored in MBest. If shortest paths could not be found for all the

commodities then flows and lengths are updated but no changes are made to MBest

and |MBest|. The procedure is repeated until the length of all the shortest paths for

every commodity becomes at least 1. The modified algorithm is given in Fig. 4.10.

Once fractional flows have been obtained for all (si, ti) ∈ K, the randomized

rounding technique proposed in [33] can be applied to get integer solutions. Let

fk(e) be the fractional flow on link e ∈ E for commodity k. Now a directed graph

Gk(V,Ek) is constructed for each commodity, here Ek ⊆ E. An edge e ∈ Ek is

assigned a direction, which is the direction of flow of commodity k in e. An edge

with fk(e) = 0 is removed from Gk. After constructing Gk(1 ≤ k ≤ |K|), the next

step in [33] is to find directed paths from sk to tk in Gk using depth first search (DFS)
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approach. Using DFS to get paths results in very long paths, which makes it harder

to get integer solutions. Therefore, we propose that instead of using DFS approach,

a shortest path algorithm should be used. Using a shortest path algorithm will yield

paths with fewer links, which increases the probability of finding integer solutions

in fewer iterations.

After finding a path P , the link with minimum flow fm is found along P . Now

fm is subtracted from the flows of the links along P . If the flow on any link becomes

zero, it is removed from Gk. The path P and flow fm associated with it are added

to a set πk. Using the updated flows, the shortest path algorithm is applied again

to find another path in Gk and the link with the minimum flow. Both are added to

πk after updating the flows. The process is repeated until there is a path from sk

to tk in Gk. This process is called path stripping. The algorithm then proceeds by

applying path stripping to the remaining commodities.

After obtaining paths for all the commodities, a die is cast for each πk (1 ≤ k ≤
|K|) with number of faces equal to |πk| and the face probabilities equal to the flows

for the paths in πk. Now the dice is rolled for a particular commodity and path

whose face comes up is chosen as the mapping for that commodity. The process is

repeated for all commodities. After obtaining mapping for all the commodities, it is

checked that whether the mappings are disjoint. If the mappings are disjoint, they

are accepted as the integer solution to the fractional flow problem. Otherwise, the

process is repeated until disjoint mappings are found or the maximum number of

iterations allowed is reached. The algorithm also keeps track of the best mapping

encountered so far, in a manner similar to the multicommodity flow approximation

algorithm. The complete algorithm is given in Fig. 4.11.
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INPUT: An at least 2-edge connected physical topology G(V, E)
and a logical topology GL (VL, EL).
OUTPUT: One link survivable mapping M of GL in G.
While the termination condition is NOT met do

C ← a short cycle in GL

Call the mapping procedure.
If mapping procedure returns a survivable mapping for C then

Contract GL by collapsing the edges and merging nodes in C.
Else
call modify and map.

End if
End While
If Survivable = false then

Map the unmapped edges.
For all physical edges do

Remove the physical edge from the physical topology and remove
the logical links that use this edge from the logical topology.
If the logical topology remains connected then

continue.
Else

Logical topology cannot be mapped in survivable manner.
END

End If
End For

End If

Figure 4.8: Main routine.

4.4.3 Simulation Study and Results

To study and compare the behavior of the proposed algorithm, and SMART-H, they

were implemented using LEDA [29] and VC++ 8.0. For simulation, physical and

logical topologies with varying number of nodes and edges were generated. Physical

topologies were regular topologies with 500 and 1000 nodes (|V |) and degree 6 and 8.

The regular topologies were constructed using a procedure originally given by Harary

[30] and described in [31]. Logical topologies were random topologies generated using

the procedure described in [32]. The logical nodes (|VL|) were a random subset of

physical nodes (0.8× |V |). The number of logical links (EL) were 1.5 and 2.0 times
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INPUT: An at least 2-edge connected physical topology G(V, E)
and a logical topology GL (VL, EL), a cycle C.
OUTPUT: Return success if the mapping is survivable.
Procedure modify and map:
ψ ← logical links belonging to C for which disjoint mappings could not
be found.
For all logical link li ∈ ψ do

C1
i ← a component that li connects.

C2
i ← other component that li connects.

n1 ← list of nodes with degree > 2 in C1
i .

n2 ← list of nodes with degree > 2 in C2
i .

If n1 = ∅ OR n2 = ∅ then
continue.

End If
For all n′ ∈ n1 do
For all n′′ ∈ n2 do

P ′ ← path between n′ and n′′ on the cycle C.
P ← path between n′ and n′′ in GL - C.
Ci ← P ∪ P ′.
If mapping procedure returns a survivable mapping for Ci then

Contract GL by collapsing edges and merging nodes in Ci.
Contract C by collapsing edges and merging nodes in P ′.
Remove li from ψ.
Continue with the next li in ψ.

End If
End For

End For
If |ψ| < 2 then

Contract GL by collapsing remaining edges and merging nodes in Ci.
Return success.

End If
End For
D = list of nodes with degree > 2 on cycle C ′.
While |D| > 1 do

γ1 ← remove a node from D.
For all nodes γ2 ∈ D do

P ′ ← path between γ1 and γ2 on the cycle C ′.
P ← a short path between γ1 and γ2 in GL - C ′.
C ′

i ← P ∪ P ′.
Call the mapping procedure.

Figure 4.9: Modify and Map.
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If mapping procedure returns a survivable mapping
for C ′

i then
Contract GL by collapsing edges and merging nodes in C ′

i.
Contract C ′ by collapsing edges and merging nodes in P ′.

End if
End For

End While
If subgraph is reduced to a single node then
Return success.

Else
If mapping procedure returns a survivable mapping for C ′′ then

Contract GL by collapsing the edges and merging nodes in C ′′.
Return success.

Else
Contract GL by collapsing the edges and merging nodes in C ′′.
Survivable = false.
Return success.

End if
End If

Figure 4.9: Modify and Map. (Contd.)

the logical nodes. After generating the logical topologies, they were admitted for

further processing only if they were at least 2-edge connected. SMART-H and the

proposed algorithm were then applied to each logical-physical topology pair. The

total number of such logical-physical topology pairs was 1200 for each case (40

physical and 30 logical topologies). To make the SMART-H practical, if a disjoint

mapping could not be obtained after applying the mapping method 100 times for

|V | = 500 and 200 for |V | = 1000, a new subgraph was selected and SMART-H

terminated after unsuccessfully examining 100 subgraphs for |V | = 500 and 200 for

|V | = 1000. For the proposed algorithm, ε was 0.15 and the number of randomized

rounds were set to 50. To find a subgraph, two nodes were randomly picked and

two link disjoint paths were found between these nodes using a maximum flow

implementation [25]. The two paths were then concatenated to get the subgraph.

The results are summarized in Table 4.1 and 4.2. It can be seen that the proposed

66



INPUT: A network G, capacities u(e), commodity pairs
K = {(sk, tk)}, 1 ≤ k ≤ |K|, and accuracy ε.
OUTPUT: Best mapping possible for pairs in K, solve frac-
tional multicommodity flow problem.
Procedure mapping algorithm:
Initialize l(e) = δ.
∀e, x ≡ 0.
K ′ ← K.
Best Mapping MBest ← ∅.
|MBest| ← α. /*number of non-disjoint links*/
Commodities ← |K ′|.
While there is a path P between a (sk, tk) ∈ K ′ such that l(P ) < 1 do

Mapping M ← φ.
For all (sk, tk) ∈ K ′ do

Find the shortest paths P using l.
M ← M ∪ P .
If l(P ) < 1 then

u ← mine∈P u(e).
x(P ) ← x(P ) + u.

∀e ∈ P, l(e) ← l(e)
(
1 + εu

u(e)

)
.

else
K ′ ← {K ′ − (sk, tk)}.

End If
End For
If Commodities = |K ′| and M is edge disjoint then
Return success.

Else If commodities = |K ′| then
If number of non-disjoint links in M < |MBest| then

MBest ← M .
End If

End If
permute K ′.

End While
Call Randomized Rounding.

Figure 4.10: Mapping algorithm using fractional multicommodity flow approxima-
tion algorithm.

algorithm can map more logical topologies in survivable manner then SMART-H

(Table 4.1). As one would expect, the proposed algorithm does more exploration

and so performs more number of shortest path computations, leading to increased
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INPUT: A network G, capacities u(e), flow matrix f , com-
modity pairs K = (sk, tk), 1 ≤ k ≤ |K|, the Best Mapping from
mapping algorithm MBest.
OUTPUT: Disjoint paths.
Procedure randomized rounding:
πk ← set of paths for commodity k.
For all commodities k in K do

Gk(V, Ek) ← A directed graph with Ek ⊆ E such that e ∈ Ek iff e
has a non-zero fractional flow in solution to MMCF for commodity k.
While there is non-zero flow leaving si do

P ← a directed path in Gk for commodity k, using Dijikstra [21]
shortest path algorithm.
πk ← πk ∪ P .
fm ← flow along the bottleneck link (minimum flow) in path P .
Add the path P and the flow fm to πk.
Reduce flows for all e ∈ P for commodity k by fm.
Remove the edges from Gk for commodity k for which fe = 0.

End While
End For
While no of rounds is less than threshold do

Mapping M ← ∅.
For all commodities k in K do

Cast a die with number of faces = |πk| with the face probabilities
equal to flows for the paths in πk.

Roll the dice and assign the path P to commodity k whose
face comes up.
M ← M ∪ P .

End For
If M is edge disjoint then
Return success.

Else If number of non-disjoint links in M < |MBest| then
MBest ← M .

End if
End While

Figure 4.11: Randomized Rounding.

execution times (Table 4.2). But the increased execution time is compensated by the

increased number of survivable mappings generated. To understand why SMART-H

finds fewer survivable mappings, first recall that when a mapping of a subgraph is not

survivable, only the weights of the shared physical edges are updated in SMART-H.
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|V | = 500, |VL| = 400
Degree |EL| No. of Ave. Ave Time

Survivable subgraph per
Mappings size Topology

(edges) (min)
MM 6 600 884 4 5.074
SMART-H 6 600 800 4 4.286
MM 8 600 1056 3 5.735
SMART-H 8 600 932 3 5.081
MM 6 800 1061 3 3.895
SMART-H 6 800 1004 3 3.027
MM 8 800 1101 3 3.344
SMART-H 8 800 1020 3 2.875

Table 4.1: Simulation Results for |V | = 500 and |VL| = 400.

|V | = 1000, |VL| = 800, Degree=8, |EL| = 1600
No. of Ave. Ave Time per Ave. No of

Survivable Subgraph Topology Shortest
Mappings Size (min) path

edges applications
MM 1104 3 12.88 3598
SMART-H 991 3 9.286 3085

Table 4.2: Simulation Results for |V | = 1000, |VL| = 800, Degree = 8, and |EL| =
1600.

This may modify the paths obtained in the next iteration only slightly. This means

that the mapping generated in the next iteration may still not be survivable. Since

the number of unsuccessful attempts is set to a predetermined value, SMART-H may

not be examining as many mappings as one would have expected. Since the subgraph

is selection is random, therefore, it may take several unsuccessful attempts before

a survivable subgraph can be found. Also SMART-H does not have a mechanism

to keep track of the subgraphs that have already been considered so it may pick an

unsurvivable subgraph several times, thereby again not exploring as many subgraphs

as one would have expected.

To explain why the proposed algorithm takes more execution time, note that if a

subgraph is not survivable, then subgraph modification procedure in section 4.4.1 is
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applied, which may map the chosen subgraph and/or some subgraphs surrounding

it. However, finding such subgraphs requires extra overhead. Also, keeping track

of the best mapping is another overhead involved. The increased time required

by the overheads is alleviated to some extent by the efficient randomized rounding

approach. Also, in the randomized rounding approach the weights (length) of all

the links that are part of the current mapping are updated, thereby reducing the

possibility of an unsuccessful mapping being considered more than once. It can

also be seen in Table 4.1 and 4.2 that when the topologies (logical or physical)

are sparse, fewer logical topologies can be mapped in survivable manner. However,

making the topologies dense increases the number of survivable mapping. This is

because dense logical topology implies that more subgraphs are available. Also if

the physical topology is dense a larger number of paths will be available. This work

was presented in [36].

4.5 Chapter Summary and Conclusions

In this chapter, we analyzed SMART and SMART-H in detail. The analysis pointed

out certain shortcomings of the SMART and SMART-H, which allowed us to propose

several enhancements that improved their performance.

In this chapter, we also introduced a new embedding algorithm based on ran-

domized rounding and fractional multicommodity flow approximation. The new

embedding algorithm combined with a new subgraph finding algorithm was able to

find survivable mappings for a larger number of IP-over-WDM network pairs. How-

ever, the simulation results showed that for some logical-physical topology pairs even

the new algorithm might not be able to find survivable mappings. This could be

due to the fact that the mapping algorithm terminated prematurely or a survivable

mapping for this particular was not possible. Therefore, in the next chapter we will
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present a new approach that uses a combination of protection and restoration to

find survivable mappings for all the logical-physical topology pairs.
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Chapter 5

A Hybrid Approach to

Survivability

In this chapter a new approach is presented that uses a combination of restoration

and protection strategies to find survivable mappings for logical topologies. Protec-

tion is provided by establishing additional lightpaths in such a way that the entire

logical topology becomes survivable. The approach, called hybrid approach, is able

to find survivable mappings for all the logical-physical topology pairs as long as

physical topologies are at least 2-edge connected.

5.1 Motivation and Background

A simple way to provide survivability in an IP-over-WDM network is to establish two

edge disjoint lightpaths between the end nodes of all the IP links, which is similar to

1:1 APS protection. One of the lightpaths is called a primary lightpath (or working

lightpath) and carries normal network traffic under normal circumstances. The other

lightpath is called a backup lightpath. The traffic carried by the primary lightpath

is switched to the backup lightpath only if a physical link failure disconnects the

primary lightpath. Two disjoint paths can be found using maximum flow techniques
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[25] or some of the other algorithms available in literature (e.g. Suurballe algorithm

[37]).

(a) A logical topology. (b) Two lightpaths established for each logical link in the
physical topology (similar to 1:1 APS protection).

Figure 5.1: Illustration of 1:1 protection.

Fig. 5.1 shows an example of this approach. The main drawback of this approach

is that the total number of lightpaths to be established is 2 × |EL|, where |EL| is

the number of logical links. However, this approach guarantees survivability, if the

number of physical link failures allowed is restricted to exactly one.

In the above approach, the number of backup lightpaths to be established can

be reduced by picking a spanning tree in the logical topology and setting up two

disjoint lightpaths for tree edges only. For non-tree edges, only a single lightpath is

established arbitrarily. The network is then provisioned with some spare capacity.

Now, a single physical link failure may cause multiple logical link failures. If a tree

edge or edges fail, the traffic carried by the failed link is switched to its corresponding

backup lightpath. However, if a non-tree edge or edges fail the spare capacity

available in the network is used to find backup path/paths for the failed lightpaths.

It can be observed that the total number of lightpaths to be reserved in this case is

2(|VL| − 1) + (|EL| − |VL| + 1), where |VL| is the number of logical nodes and |EL|
is the number of logical edges.
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(a) A logical topology. (b) Tree (bold) and non-tree
(dashed) edges.

(c) Two lightpaths established for each tree edge in the physical
topology (similar to 1:1 protection), one lightpath for the non-
tree edge (not shown here).

Figure 5.2: Illustration of hybrid protection.

An example of this approach is given in Fig. 5.2. Fig. 5.2(a) shows the logical

topology. Fig. 5.2(b) shows a spanning tree of the logical topology with bold lines

and non-tree edges with dashed lines. Fig. 5.2 (c) shows the physical topology

with two lightpaths established for each tree edge. It can be observed that the

failure of a single physical link will not disconnect the logical topology i.e. it is

still possible to reach all the logical nodes using the spare capacity available. Fig.

5.2(c) does not show the lightpaths that must be established for the non-tree edges.

These lightpaths will be established arbitrarily. For example, a lightpath for the

logical link (2, 4) can be set up along the physical path 2− 3− 4, 2− 3− 5− 4, or

2−1−6−5−4 etc. Similarly, a lightpath for the logical link (2, 3) can be set along
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path 2− 3, 2− 1− 6− 5− 3 or 2− 1− 6− 3 etc.

(a) A logical topology. (b) A mapping of the logical topology in the physical topology.

Figure 5.3: An unsurvivable logical-physical topology pair.

In the next section, we provide a hybrid survivability approach to design surviv-

able IP-over-WDM network that utilizes the SMART framework to find links that

must be protected i.e. links for which two disjoint paths must be provided in the

physical topology. Our goal is to minimize the number of protection edges to be

added.

5.2 A Hybrid Survivable Mapping Algorithm

Assume that we are given a ring logical topology GL, as shown in Fig. 5.3(a).

Now, according to [1], all the logical links in GL must be mapped to lightpaths that

follow mutually disjoint paths in the physical topology. But for GL, shown in Fig.

5.3(a), such a mapping does not exist in the physical topology shown in Fig. 5.3(b).

Therefore, such a logical topology must be rejected by the network operators which

may result in loss of revenue.

An obvious alternative to rejecting a logical topology, if a survivable mapping

for it cannot be found in a physical topology, is to add additional logical or physical
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links. Adding new physical links by laying new fibers is usually prohibitively expen-

sive and in some cases impossible due to right of way and geographical limitations.

However, new logical links can be added to the logical topology simply by establish-

ing additional lightpaths that can make an unsurvivable logical-physical topology

pair survivable. However, given the number of choices available the pair of nodes

between which additional lightpaths can be established could be very large. Also,

the number of links to be added may not be known in advance.

[2] suggests a simple procedure to add an additional link. The procedure requires

an application of SMART-H (the heuristic version of the algorithm given in Fig. 3.6).

If the procedure terminates unsuccessfully, it returns a contracted logical topology

and a set of mappings for the contracted components (subgraphs).

(a) A logical topology.

(b) A mapping of the logical topology in the physical topology.

Figure 5.4: An unsurvivable logical-physical topology pair.

At this stage an additional logical link is added to the logical topology by ran-
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domly picking two nodes in the contracted logical topology and finding the cor-

responding logical nodes in the logical topology. A new logical link is established

between the two nodes, if one does not already exist. Otherwise, a different pair of

nodes is chosen. After adding the new logical link, SMART-H is applied again. If

the algorithm terminates successfully, then a survivable mapping exists for the new

logical mapping. Otherwise the new logical topology is deemed unsurvivable and

rejected.

It is possible to keep on adding more links to the logical topology until a sur-

vivable mapping is found or no more edges can added i.e. the contracted logical

topologies becomes a complete graph. However, even this does not guarantee that a

survivable mapping for the logical topology is possible in general. For example, con-

sider the physical topology G shown in Fig. 5.4(b) and contracted logical topology

GC shown in Fig. 5.4(a). It is easy to verify that two edge disjoint paths, P1 from

s1 to t1 and P2 from s2 to t2, do not exist in G. Therefore, a survivable mapping

for the subgraph does not exist and it is also not possible to add additional links to

the subgraph. However, it is possible to protect GC against a failure in the physical

topology by finding two disjoint paths for each edge in GC or by finding a spanning

tree and finding two disjoint paths for the tree edges.

In the following, as an alternative to adding a logical link, we develop a hybrid

survivability approach that uses a combination of restoration and protection to find

survivable mapping for a given logical topology in a physical topology.

5.2.1 Hybrid Algorithm 1 (HA-1)

Assume that we are given a ring logical topology GL (shown in Fig. 5.3(a)) and

a physical topology G (shown in Fig. 5.3(b)). An application of SMART-H will

terminate unsuccessfully since a survivable mapping for GL in G does not exist.

After adding a logical edge, as suggested in [2], between nodes 1 and 2 or between 3
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Figure 5.5: Illustration of hybrid approach, two lightpaths are established for the
logical link (1, 3) i.e. 1− 2− 3 and 1− 6− 3.

and 4, a survivable mapping can be found for GL. However, we suggest an alternate

approach.. If SMART-H terminates unsuccessfully then there is a set of links in GL

for which disjoint mappings could not be found. We call such a set of links critical

links (π). For example, in Fig. 5.3 logical links (1, 3) and (2, 4) are critical links

because their mappings are not disjoint i.e. π = {(1, 3), (2, 4)}. Failure of physical

link (2, 3) can disconnect both (1, 3) and (2, 4) and the logical topology is no longer

connected. Therefore we propose that for such links protection should be provided

by finding two link disjoint paths for all or some of the critical links. Two disjoints

paths are easier to find using a maximum flow algorithm [25], Suurballe algorithm

or any other appropriate algorithm [37]. In contrast to finding mutually disjoint

mappings (NP complete) finding two disjoint paths in a two connected topology is

fairly simple.

Fig. 5.5 illustrates the new approach. Since π = {(1, 3), (2, 4)}, Fig. 5.5 shows

the mappings when protection is provided for (1, 3) by setting up two lightpaths

rather than just one. Now it can be seen that the failure of any single physical link

78



will not disconnect the logical topology. For example, if physical link (2, 3) fails

lightpaths (1, 3) and (2, 4) get disconnected but logical link (1, 3) remains connected

through the alternate lightpath for (1, 3) via path 1 − 6 − 3. Hence the entire

logical topology remains connected. Fig. 5.5 also illustrates that there is no need to

provide protection for (2, 4), since routing (1, 3) and (2, 4) together no longer makes

the topology unsurvivable. In fact, if there are |π| critical links then we have to

provide protection for only |π| − 1 critical links in the worst case.

In case of a general logical topology, finding an optimal set of critical links in

a topology may not be possible. Therefore, we propose utilizing SMART-H as an

efficient heuristic to find such links. The set of critical links obtained using SMART-

H may not be optimal i.e. some of these links may not be critical. Some of these

links may have been declared critical because the heuristic used by SMART-H to

find disjoint mappings terminated unsuccessfully, although disjoint mappings were

possible using an ILP or some other algorithm. Therefore, we call the set of links

deemed critical by SMART-H, pseudo-critical links (η).

To find pseudo-critical links using SMART-H, a simple modification to SMART-

H is made by introducing a new variable, best mapping (MBest). MBest for a given

subgraph (a cycle), is a set of mappings that has the fewest number of non-disjoint

mappings. The logical links that have non-disjoint mappings are the pseudo-critical

links. Also, let |MBest| be the number of links in the chosen cycle that have non-

disjoint mappings in MBest. The modified mapping algorithm is shown in Fig. 5.6.

Here, SMART-H proceeds by recursively picking cycles. When survivable map-

pings for a particular cycle C are not returned by the mapping algorithm, it proceeds

by picking a new cycle. However, when the modified mapping algorithm (shown in

Fig. 5.6) fails to find survivable mappings for a cycle C, it returns a set of pseudo-

critical links (η). By providing protection for |η| − 1 links in η and accepting the

mappings returned by the mapping algorithm for the remaining links in C for which
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protection was not provided, the entire cycle becomes survivable. The modified

algorithm called Hybrid Algorithm-1 (HA-1) is shown in Fig. 5.7.

The algorithm in Fig. 5.7 (HA-1) determines pseudo-critical links on a per cycle

basis that would result in a large number of logical links that are protected. To

reduce the number of such links, we propose three variants of the HA-1 in Fig. 5.8,

5.9, and 5.10.

5.2.2 Hybrid Algorithm 2 (HA-2)

The algorithm shown in Fig. 5.8 (HA-2) also proceeds by picking cycles. If a cycle

cannot be mapped in disjoint manner, the mapping algorithm returns η, a set of

links for which disjoint mapping could not be found. Now pick a link l ∈ η and

provide protection for such an l. After providing protection, l is contracted and

the algorithm proceeds normally by picking another subgraph from the contracted

topology.

5.2.3 Hybrid Algorithm 3 (HA-3)

Fig. 5.9 shows a variant (HA-3) that waits for the SMART-H to terminate unsuc-

cessfully. An unsuccessful termination returns η and MBest for the last subgraph

considered by SMART-H. The algorithm then provides protection for |MBest| − 1

links in η.

5.2.4 Hybrid Algorithm 4 (HA-4)

Figure 5.10 shows another variant (HA-4) that also waits for the SMART-H to

terminate unsuccessfully. An unsuccessful termination returns η in the last subgraph

considered. The algorithm picks a link l ∈ η, provides protection for l and contracts

it. The algorithm then proceeds by choosing another subgraph from the contracted
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logical topology.

INPUT: An at least 2-edge connected physical topology
G(V, E), a cycle C.
OUTPUT: Best mapping MBest, |MBest| and η.
Procedure find mappings:
Best mapping MBest ← ∅.
Number of non-disjoint mappings in MBest, |MBest| ←∝.
Pseudo-critical links η ← ∅.
∀e ∈ E, u(e) = 1.
While the termination condition is not met do

Mapping M ← ∅.
For all links li ∈ C do

s ← source of link li.
t ← destination of link li.
M [i] ← a shortest path between s and t in G using u.

End For
If (M [0] ∩M [1] ∩ .... ∩M [i]) = ∅ then

Disjoint mappings have been found.
MBest ← M .
η ← ∅.
Break.

Else
β ← Physical links belonging to more than one mapping in M .
∀e ∈ β, u(e) = u(e) + 1.

δ ← number of non-disjoint mappings in M .
If δ < |MBest| then

MBest ← M .
|MBest| ← δ.
η ← li ∈ C for which disjoint mappings could not be found.

End If
End If

End While
Return MBest, |MBest| and η.

Figure 5.6: Mapping algorithm.
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INPUT: An at least 2-edge connected physical topology
G(V, E) and a logical topology GL(VL, EL).
OUTPUT: One link survivable mapping M of GL in G.
Procedure hybrid algorithm 1:
While the logical topology is not reduced to a single node do

C ← a short cycle in GL.
Call the mapping procedure with cycle C.
If η returned by the mapping algorithm is empty then

Contract GL by collapsing the edges and merging the nodes in C.
Else
For (|MBest| − 1) links in η do

li ← a link in η.
s ← source of link li.
t ← destination of link li.
Find two disjoint paths P1 and P2 between s and t in G.
Add P1 and P2 to M as the mappings for li.

End For
Copy mappings of link (li ∈ C ∧ li /∈ η) from MBest to M .
Contract GL by collapsing the edges and merging the nodes in C.

End if
End While

Figure 5.7: Hybrid algorithm 1 (HA-1).

5.3 Simulations and Results

To evaluate the proposed algorithms and SMART-H, simulation studies were con-

ducted using VC++ 8.0. For simulation studies, random logical and physical topolo-

gies with varying number of nodes and degree were generated. The topologies were

selected for processing, if the topologies were at least 2-edge connected.

Physical topologies were random topologies with 100, 200 and 300 nodes (|V |)
with average degree 3. The logical topologies were also random topologies containing

a random subset of physical nodes with degree 2.5 and 3.0. The physical and the

logical topologies were generated using the procedure given in [32]. The number of

logical nodes in the logical topology was set to 0.75×|V |. The total number of such

logical-physical topology pairs was 1000 for each case (40 physical and 25 logical
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INPUT: An at least 2-edge connected physical topology
G(V, E) and a logical topology GL(VL, EL).
OUTPUT: One link survivable mapping M of GL in G.
Procedure hybrid algorithm 2:
While the logical topology is not reduced to a single node do

C ← a short cycle in GL.
Call the mapping procedure with cycle C.
If η returned by the mapping algorithm is empty then

Contract GL by collapsing the edges and merging the nodes in C.
Else

Pick an edge li ∈ η.
s ← source of link li.
t ← destination of link li.
Find two disjoint paths P1 and P2 between s and t in G.
Add P1 and P2 to M as the mappings for li.
Contract li by collapsing the edge and merging the nodes s and t.

End if
End While

Figure 5.8: Hybrid algorithm 2 (HA-2).

topologies).

To make the disjoint mapping algorithm practical (Fig. 5.6), the number of iter-

ations was limited to 100. To find a cycle, two nodes (s and t) were randomly picked

and two link disjoint paths (M1 and M2) were found using a maximum flow algorithm

[25] and provisioning the network with some spare capacity. The cycle was then con-

structed by P1 ∪ P2. The number of subgraphs to be examined before unsuccessful

termination was also 100 (MAX ITER). SMART-H and the proposed algorithms

do not keep track of subgraphs for which survivable mappings could not be found.

Therefore, MAX ITER was reduced to MAX ITER− (MAX ITER− 10) when

the subgraph size was equal to the contracted topology size for 10 consecutive iter-

ations.

The statistics of interest were the number of logical topologies for which surviv-

able mappings could be found in a physical topology, number of links added to a
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INPUT: An at least 2-edge connected physical topology G(V, E)
and a logical topology GL(VL, EL).
OUTPUT: One link survivable mapping M of GL in G.
Procedure hybrid algorithm 3:
While the logical topology is not reduced to a single node do
While the termination condition is not met do

C ← a short cycle in GL.
Call the mapping procedure with cycle C.
If η returned by the mapping algorithm is empty then

Contract GL by collapsing the edges and merging the nodes in C.
End if

End While
For (|MBest| − 1) links in η

li ← a link in η.
s ← source of link li.
t ← destination of link li.
Find two disjoint paths P1 and P2 between s and t in G.
Add P1 and P2 to M as the mappings for li.

End For
Copy mappings of link (li ∈ C ∧ li /∈ η) from MBest to M .
Contract GL by collapsing the edges and merging the nodes in C.

End While

Figure 5.9: Hybrid algorithm 3 (HA-3).

logical topology in each algorithm and the execution time of the algorithms. Table

5.1, 5.2 and 5.3 summarize the results.

In Table 5.1, it can be seen that the proposed algorithms can map all the logi-

cal topologies in survivable manner by providing protection for some logical links.

SMART-H can also map more topologies after the addition of a logical link (SMART-

H+1) but some topologies still remain unsurvivable. It can also be observed that the

number of mapped topologies, for a particular physical-logical degree, is relatively

constant. Increasing the logical degree significantly increases this number, which

is expected because the subgraphs becomes smaller in size and the probability of

finding a survivable mapping increases.

Table 5.2 shows the average number of protected links in the proposed ap-
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INPUT: An at least 2-edge connected physical topology G(V, E)
and a logical topology GL(VL, EL).
OUTPUT: One link survivable mapping M of GL in G.
Procedure hybrid algorithm 4:
While the logical topology is not reduced to a single node do
While the termination condition is not met do

C ← a short cycle in GL.
Call the mapping procedure with cycle C.
If η returned by the mapping algorithm is empty then

Contract GL by collapsing the edges and merging the nodes in C.
End if

End While
Pick an edge li ∈ η.
s ← source of link li.
t ← destination of link li.
Find two disjoint paths P1 and P2 between s and t in G.
Add P1 and P2 to M as the mappings for li.
Contract li by collapsing the edge and merging the nodes s and t.

End While

Figure 5.10: Hybrid algorithm 4 (HA-4).

proaches. In case of SMART-H+1, only one additional logical link was added that

significantly increased the number of mapped topologies. HA-1 and HA-2 provide

protection for a large number of logical links but execution time is comparatively

very small (Table 5.3). HA-3 and HA-4 require protection for fewer links but the

execution time is significantly higher since they must consider a larger number of

subgraphs. It can also be noted that when the logical degree is increased, protec-

tion is required for fewer links and the execution time is also less. This work was

presented in [38].

5.4 Chapter Summary and Conclusions

In this chapter, we noted that for some logical topologies a survivable embedding

might not exist in a given physical topology. By adding new logical links or phys-
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Number of Survivable Logical-Physical Topology Pairs
Physical degree = 3 Physical degree = 3
Logical degree = 2.5 Logical degree = 3

No. of Physical Nodes |V |
METHOD 100 200 300 100 200 300
SMART-H 392 390 430 835 855 785
SMART-H + 1 666 695 725 925 965 950
HA-1 1000 1000 1000 1000 1000 1000
HA-2 1000 1000 1000 1000 1000 1000
HA-3 1000 1000 1000 1000 1000 1000
HA-4 1000 1000 1000 1000 1000 1000

Table 5.1: Number of Survivable Logical-Physical Topology Pairs.

Average Number of Protected Logical links
Physical degree = 3 Physical degree = 3
Logical degree = 2.5 Logical degree = 3

No. of Physical Nodes |V |
METHOD 100 200 300 100 200 300
SMART-H – – – – – –
SMART-H + 1 1 1 1 1 1 1
HA-1 7 7.1 6.2 6.3 6.5 5.5
HA-2 6.3 6.1 4 3 3.2 2.1
HA-3 1.9 1.8 1.7 1.54 1.3 1.3
HA-4 2.3 2 1.9 1.54 1.4 1.3

Table 5.2: Average Number of Protected Logical links.

Average Execution Time (Seconds)
Physical degree = 3 Physical degree = 3
Logical degree = 2.5 Logical degree = 3

No. of Physical Nodes |V |
METHOD 100 200 300 100 200 300
SMART-H 18 41 54 3.16 5.6 12.38
SMART-H + 1 25 53 71 4.20 6.5 14.30
HA-1 2.3 5.8 8 1.65 2.7 5.30
HA-2 1.4 4.1 6.8 1.58 3.5 5
HA-3 50 107 137 7.60 12.2 27.70
HA-4 41 95 117 6.90 11 25.6

Table 5.3: Average Execution Time (Seconds).
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ical links, an unsurvivable logical-physical topology pair could be converted to a

survivable one. Adding physical links by laying new optical fibers is difficult and

expensive to do. However, logical links can be easily added by establishing addi-

tional IP connections. Therefore, we suggested using a combination of protection

and restoration approaches to guarantee survivability for any given logical-physical

topology pair, which is at least 2-edge connected. Protection was provided by set-

ting up two lightpaths between certain pairs of IP routers such that the lightpaths

did not share a physical link. We also provided several heuristics to minimize the

number of lightpaths that must be added to make a logical-physical topology pair

survivable.

In the next chapter, we will explore the role that duality between circuit based

approach (SMART) and cutset based approach (Modiano and Narula-Tam) can

play in realizing survivable IP-over-WDM networks. Using the duality results, we

will develop several new algorithms and insightful results. We will also present a

logical topology structure that can always be embedded in a physical topology in a

survivable manner.
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Chapter 6

Circuits/Cutsets Duality and a

Unified Algorithmic Framework

for Survivable Logical Topology

Design in IP-over-WDM Optical

Networks

Duality between circuits (cycles) and cuts in a graph is one of the well studied topics

in graph theory. This concept has played a significant role in the development of

methodologies for solving problems in various applications. Most of the early results

in electrical circuit theory were founded on the duality relationship between circuits

and cuts [31]. There is a wealth of literature on the role of duality in network

optimization (that is, discrete optimization on graphs and networks) [25]. Most

often, for a primal algorithm based on circuits there is a dual algorithm based

on cuts for the same problem. The primal and dual algorithms possess certain

characteristics that make one superior to the other depending on the application.
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SMART algorithm for the survivable logical topology design problem is based on

circuits [2]. The question then arises whether there exists a dual methodology based

on cuts. In this chapter we establish such an algorithm and variants of this algorithm

that are computationally very efficient. Our work also provides much insight into

the structure of solutions for the survivable topology design problem and survivable

networks.

6.1 Circuits and Cutsets Duality

Duality between circuits and cuts in a graph has been extensively studied and plays

a fundamental role in several applications [25] [31]. Deleting an edge and contracting

an edge are also dual operations. In this section, we present several concepts and

results relating to this duality. These results provide the basis for the algorithmic

frameworks presented in the following sections.

Consider a connected undirected graph G(V, E) with vertex set V and edge set

E. Without loss of generality, we assume that there are no parallel edges or self

loops in G. Let G have |V | = n vertices (or nodes) and |E| = m edges (or links).

A connected acyclic subgraph of G containing all the n nodes is called a spanning

tree T of G. The edges of a spanning tree T are called branches of T . The remaining

edges of G are called chords with respect to T . We may also refer to chords as non-

tree edges.

Consider a partition (S, S̄) of vertex set V . Here S̄ denotes the complement of

S (S ⊆ V ) in V , i.e. S̄ = V − S. Then the set of edges with one node in S and the

other in S̄ is called a cut of G. For example, consider the graph G in Fig. 6.1(a).

Here the vertices are numbered 1, 2, ...., 6. The bold edges in this figure denote the

branches of a spanning tree T of G and the dotted edges are the chords of this tree.

The partition (S, S̄) with S = {1, 4, 6} and S̄ = {2, 3, 5} defines the cut shown in
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(a) A graph with a spanning tree (bold lines).

(b) A cut.

Figure 6.1: Concept of a tree and a cut.

Fig. 6.1(b).

Adding a chord c to a spanning tree T produces exactly one circuit. This is

called the fundamental circuit (in short, f-circuit) of T with respect to the chord c.

We denote this circuit as B(c). For example, if we add chord c1 to the tree in Fig.

6.1(a) we get the fundamental circuit B(c1) consisting of the edges {c1, b1, b2, b3}.
Similarly, if we add chord c4 to the tree in Fig. 6.1(a) we get the fundamental circuit

B(c4) that contains edges {c4, b3, b4, b5}.
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Suppose we remove a branch b from a spanning tree T , then the tree T gets

disconnected resulting in two trees (not spanning) T1 and T2. The sets of nodes in

T1 and T2 define a partition of V . The corresponding cut is called the fundamental

cutset (in short, f-cutset) of T with respect to branch b. For example, if we remove

the branch b3 from the tree T of Fig. 6.1(a) then we get two trees T1 and T2 given by

branches {b1, b2, b5} and {b4}, respectively. The corresponding fundamental cutset

Q(b3) consists of the edges {b3, c3, c4, c5, c6}. Note that the subgraphs induced by

the vertex sets of T1 and T2 are both connected. Cuts with this property are also

called primary cuts [17].

Given a spanning tree T with branches {b1, b2, ...., bn−1} and chords {c1, c2, ....,

cm−n+1}, then the fundamental circuit matrix Bf = [bij](m−n+1)×(m) has one row for

each chord and one column for each edge. The entry bij is defined as follows

bij = 1, if B(ci) contains edge j

= 0, otherwise.

Arranging the rows of Bf such that the jth row (j ≤ m−n+1) corresponds to the

fundamental circuit B(cj) and arranging the columns in the order {c1, c2, ..., cm−n+1,

b1, b2, ..., bn−1}, we can write the Bf matrix as Bf = [U |Bft], where U is the unit

matrix of size (m−n+1). For example, the Bf matrix with respect to the spanning

tree T of Fig. 6.1(a) is given in (1).

In a similar manner the fundamental cutset matrix with respect to the tree T

can be defined as Qf = [qij](n−1)×(m). Qf has (n−1) rows, one for each fundamental

cutset and one column for each edge. The entry qij is defined as

qij = 1, if Q(bi) contains edge j

= 0, otherwise.
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Arranging the rows of Qf such that the jth row corresponds to f -cutset Q(bj)

and the columns correspond to edges in the order {b1, b2, ...., bn−1, c1, c2, ...., cm−n+1},
the Qf matrix can be written as Qf = [U |Qfc]. For example, the Qf matrix with

respect to the tree T of Fig. 6.1(a) is given in (2).

A subgraph (for example, a circuit or a cut) can be represented by a binary

vector with m entries, one entry for each edge, and with an entry equal to 1 if the

corresponding edge is present in the subgraph. Thus, rows of Bf and Qf are the

binary vectors representing the fundamental circuit and fundamental cutsets. For

convenience, in the following we will use the same symbol B(cj)(Q(bj)) to denote

the set of edges in a fundamental circuit (cutset) as well as the corresponding binary

vectors.

Proofs of the following dual results can be found in [31].
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Theorem 6.1. (a) If a cut contains the branches {b1, b2, ....., bj} then the correspond-

ing cut vector can be represented as modulo 2 addition of the vectors Q(b1), Q(b2), ...,

Q(bj). That is, the cut vector is equal to Q(b1)⊕Q(b2)⊕ ...⊕Q(bj).

(b) If a circuit contains the chords {c1, c2, ...., cj} then the corresponding cir-

cuit vector can be represented as modulo 2 addition of the vectors B(c1), B(c2), ...,

B(cj). That is, the circuit vector is equal to B(c1)⊕B(c2)⊕ ...⊕B(cj). ¤

Theorem 6.2. (Orthogonality): A circuit and a cut have an even number of com-

mon edges. ¤

Theorem 6.3. Bft = Qt
fc, where Qt

fc is the transpose of Qfc. ¤

The above properties can be verified using the Bf and Qf matrices given in

equation (1) and (2).

An ordered sequence B(c1), B(c2), ...., B(ck) is a circuit cover sequence or simply

a B-sequence of length k if

a)[B(cj)− cj −
j−1⋃
p=1

B(cp)] 6= ∅, 2 ≤ j ≤ k

b)
k⋃

p=1

B(cp) = E − {chords not in the B-sequence}

Note that for a given spanning tree and its f -circuits, there may be more than

one B-sequence. For example for the fundamental circuits given in (1), following

are the three B-sequences:

(1) B(c1), B(c3), B(c5)

(2) B(c4), B(c1)

(3) B(c6), B(c1), B(c4)
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Note that the order in which the B(cj)’s appear matters in the definition of

B-sequences. Without the loss of generality assume that B(c1), B(c2), ...., B(ck) is

a B-sequence of length k. Let us define S(cj) as follows:

a) S(c1) = B(c1)− c1

b) S(cj) = B(cj)− cj −
j−1⋃
p=1

B(cp), 2 ≤ j ≤ k

Then the submatrix of the f -circuit comprised of the rows corresponding to

B(c1), B(c2), ...., B(ck) will have the structure shown in (3).

An ordered sequence Q(b1), Q(b2), ...., Q(bk) is a cutset cover sequence or simply

a Q-sequence of length k if

a)[Q(bj)− bj −
j−1⋃
p=1

Q(bp)] 6= ∅, 2 ≤ j ≤ k

b)
k⋃

p=1

Q(bp) = E − {branches not in the Q-sequence}

Note that for a given spanning tree and its f -cutsets, there may be more than

one Q-sequence. For example for the fundamental cutsets given in (2), following are

the three Q-sequences.

(1) Q(b4), Q(b5), Q(b3)

(2) Q(b4), Q(b5), Q(b1), Q(b2)

(3) Q(b1), Q(b2), Q(b4)

Without the loss of generality assume that Q(b1), Q(b2), ..., Q(bk) is a Q-sequence

of length k. Let us define Ŝ(bj) as follows:
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a) Ŝ(b1) = Q(b1)− b1

b) Ŝ(bj) = Q(bj)− bj −
j−1⋃
p=1

Q(bp), 2 ≤ j ≤ k

Then the submatrix of the f -cutset comprised of the rows corresponding to

Q(b1), Q(b2), ..., Q(bk) has a structure similar to (3) as shown in (4).

The following dual results are a consequence of the structures in (3) and (4).

In the above × means 0 or 1.

In the above × means 0 or 1.

Theorem 6.4. (a) Given a B-sequence B(c1), B(c2), ..., B(ck), let B(ci1),

B(ci2), ...., B(cil) be a subsequence of this sequence then S(cil) ⊆ B(ci1) ⊕ B(ci2)

⊕ ....⊕B(cil).
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(b) Given a Q-sequence Q(b1), Q(b2), ...., Q(bk), let Q(bi1), Q(bi2), ..., Q(bil) be a

subsequence of this sequence then Ŝ(bil) ⊆ Q(bi1)⊕Q(bi2)⊕ ....⊕Q(bil). ¤

Deletion of an edge and contraction of an edge are dual operations. Here by

contraction of an edge we refer to the operation of identifying the end vertices of

the edge (short-circuiting the end vertices) and removing self loops that result from

this short-circuiting.

Given a B-sequence, the submatrix of the Bf matrix that results after remov-

ing the rows that do not correspond to the chords in the B-sequence is called a

B-sequence matrix. For example the B-sequence matrix corresponding to the B-

sequence B(c1), B(c3), B(c5) is shown in (5).

It can be shown that deletion of a row from Bf matrix corresponds to the deletion

of the corresponding chord from the graph.

Given a Q-sequence, the submatrix of the Qf matrix that results after removing

the rows that do not correspond to the branches in the Q-sequence is called a

Q-sequence matrix. For example the Q-sequence matrix corresponding to the Q-

sequence Q(b4), Q(b5), Q(b2), Q(b1) is shown in (6).

It can be shown that deletion of a row from the Qf matrix corresponds to con-

traction of the corresponding branch from the graph.

The following dual results are easy to verify.

Theorem 6.5. a) The B-sequence matrix corresponding to a B-sequence is the
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fundamental circuit matrix of the graph that results after deleting the chords that do

not appear in the B-sequence.

b) The Q-sequence matrix corresponding to a Q-sequence is the fundamental

cutset matrix of the graph that results after contracting the branches that do not

appear in the Q-sequence. ¤

The incidence set of a vertex v in a graph is the set of vertices incident on that

vertex. The incidence set of vertex v will be denoted by INC(v). Each incident set

is a cut of the graph. It is known that any set of n− 1 incidence sets can be used to

generate any cut in a graph. The incident vector INC(v) of a vertex v is the binary

vector of m entries with jth entry being 1, if the jth edge is in the corresponding

incident set. The following result is a special case of Theorem 6.1(a). Note that

we use INC(v) to denote the incidence set and the corresponding binary vector.

Incidence matrix of G is the matrix of incidence vectors of G.

Theorem 6.6. The cut vector corresponding to the cut (S, S̄) can be obtained as the

modulo 2 addition of the incident vectors of the vertices in S as well as the modulo

2 addition of the incidence vectors of the vertices in S̄. ¤

A sequence of INC(v1), INC(v2), ...., INC(vk) is an incident cover sequence or

simply an INC-sequence of length k if
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a) [INC(vj)−
j−1⋃
p=1

INC(vp)] 6= ∅, 2 ≤ j ≤ k

b)
k⋃

p=1

INC(vp) = E

Given an INC-sequence, the submatrix of the incidence matrix consisting of the

rows corresponding to the vertices in the INC-sequence has structure similar to the

structure in (4).

The following result will be used in the proof of correctness of all algorithms de-

veloped in the following sections. This is also the basis of the algorithmic framework

given in [1].

Theorem 6.7. [31]: A graph is connected if and only if every cut of the graph

contains at least one edge. ¤

6.2 CIRCUIT-SMART: The Primal Algorithm for

Survivable Logical Topology Design

Given a logical topology GL and physical topology G of an optical network, the

SMART algorithmic framework given in [2] provides a methodology for finding sur-

vivable mappings of the edges of GL into lightpaths in G. To begin with, let us call

GL the current graph. In general SMART consists of the following steps.

1. Search for a survivable subgraph of GL. If no such subgraph is found, then

terminate SMART-H unsuccessfully.

2. If a survivable subgraph is found then contract the edges of the subgraph.

3. If the current graph is a single vertex, then terminate SMART-H successfully.

Otherwise,return to step 1 and use the contracted graph as the current graph.
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The mappings of the edges considered by SMART provide a survivable subgraph

of GL. All the edges that were not mapped by SMART can be mapped arbitrarily

without affecting the survivability of GL. It can be shown that the subgraph chosen

in step 1 above must be 2-edge connected for the correctness of the algorithm. Since

a circuit is the smallest 2-edge connected graph, usually in step 1 a circuit is selected

for survivable mapping.

Figure 6.2: Illustration of SMART.

Now consider the graph GL in Fig. 6.2. If the circuits are selected in the sequence

C1, C2, C3, C4 and {e6, e10, e12, e17, e16, e19, e20, e23, e3} then these are fundamental

circuits of the tree for which {e1, e8, e21, e19, e15, e6} are chords. This observation is

true for any choice of circuits selected and mapped by SMART. So our algorithm

CIRCUIT-SMART starts with a set of fundamental circuits and a B-sequence con-

structed from these circuits. Since our interest is to guarantee survivability we add

to GL new edges in parallel to some of the edges in GL whenever necessary. The

new edge added in parallel to edge e of GL will be denoted as e′. Both e and e′ will

be mapped as disjoint lightpaths in G. These edges will be called protection edges.
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Theorem 6.8. The graph G′
L of edges mapped by CIRCUIT-SMART forms a sur-

vivable logical graph.

Proof :

We prove that G′
L is survivable by showing that after failure of any edge in the

physical topology each cut in G′
L satisfies the condition in Theorem 6.7. Consider

a cut in G′
L. If any edge in this cut is a protection edge e′, then this edge and the

corresponding edge e in G′
L are mapped by the algorithm into disjoint lightpaths.

Hence, one of them will remain in the cut after a single physical edge failure, thereby

satisfying the condition in Theorem 6.7. If there is no protection edge in the cut,

then consider the branches in the cut. The cut must contain at least one branch of

T because chords alone cannot form a cut. Note that each branch is in a unique

S(ci). Let chord ci be the chord with the smallest index in the B-sequence such

that S(ci) contains one of the branches in the selected cut. If S(ci) contains two or

more branches in the cut, then these branches are mapped by the algorithm into

disjoint paths and so the cut will satisfy the condition of Theorem 6.7 after a single

link failure. If S(ci) contains only one branch of the cut, say b, the cut must contain

chord ci because the cut and B(ci) must contain an even number of edges in common

(Theorem 6.2). Since b and ci are mapped by the algorithm into disjoint paths in

the physical topology, one of these two edges will remain in the cut after a single

edge failure, satisfying the condition of Theorem 6.7. Thus in all cases, the cut will

satisfy the condition of Theorem 6.7 and so the graph G′
L is survivable. ¤

The essential difference between SMART and CIRCUIT-SMART is that instead

of searching for a survivable circuit in each step (as in SMART), CIRCUIT-SMART

uses a set of fundamental circuits. Since not all edges in a S(ci) set can be mapped

in a disjoint manner, we add protection edges appropriately. The longer the B-

sequence, the more are the number of edges in the survivable logical subgraph. On

the other hand a smaller B-sequence may increase the sizes of S(ci)-sets and hence
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INPUT: A 2-edge connected physical topology G, logical topol-
ogy GL, a spanning tree T of GL, a set of fundamental circuits
and a B-sequence B(c1), B(c2), ...., B(ck).
OUTPUT: A survivable logical graph G′

L containing GL.
Algorithm CIRCUIT-SMART:
1) For i = 1, 2, ...., k do

Map a maximum subset of edges in S(ck)∪ck into disjoint lightpaths
in G.
To all other edges in S(ck) ∪ ck add protection edges and map each
edge and its protection edges into disjoint lightpaths in G.

End For
2) Map all the chords not in the B-sequence into lightpaths in G

arbitrarily.
END

Figure 6.3: Algorithm CIRCUIT-SMART.

may result in more number of protection edges. These are considerations that must

be taken into account while selecting the spanning tree. The algorithm CIRCUIT-

SMART is given in Fig. 6.3 and an illustration of CIRCUIT-SMART is given in

section 6.7.1.

INPUT: A 2-edge connected physical topology G, logical topol-
ogy GL a spanning tree T of GL, a set of fundamental cutsets
and a Q-sequence Q(b1), Q(b2), ...., Q(bk).
OUTPUT: A survivable logical graph G′′

L containing GL.
Algorithm CUTSET-SMART:
1) For i = 1, 2, ...., k do

Map a maximum subset of edges in Ŝ(bk)∪bk into disjoint lightpaths
in G.
To all other edges in Ŝ(bk) ∪ bk add protection edges and map
each edge and its protection edge into disjoint lightpaths in G.

End For
2) To each unmatched branch b add a protection edge b′ and map them

into disjoint lightpaths in G.
END

Figure 6.4: Algorithm CUTSET-SMART.
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6.3 CUTSET-SMART: The Dual Algorithm

We now present algorithm CUTSET-SMART that is the dual of algorithm CIRCUIT-

SMART. In the following a branch is unmatched if it is not in the given Q-sequence.

Let G′′
L be the graph of logical edges (including protection edges) mapped by

CUTSET-SMART.

Theorem 6.9. a) The graph G′′
L and the mappings generated by CUTSET-SMART

are survivable.

b) The graph obtained from G′′
L by contracting the branches not in the Q-sequence

is survivable.

Proof :

a) Consider a cut in G′′
L. If any edge in this cut is a protection edge then this

edge and the corresponding edge in GL are mapped by the algorithm into disjoint

lightpaths. Hence one of them will remain in the cut after a single physical edge

failure, thereby satisfying the condition in Theorem 6.7. If there is no protection

edge in the cut, then consider the branch bj in the cut that has the highest index

in the Q-sequence. Then by Theorem 6.4(b), the set Ŝ(bj) will be in the cut. Since

the branch bj and the edges in the set Ŝ(bj) are mapped in disjoint manner by the

algorithm, the cut will contain at least one edge after a physical edge failure, thereby

satisfying the condition of Theorem 6.7. Thus G′′
L is survivable.

b) The graph obtained from G′′
L by contracting the branches not in the Q-

sequence has no cut that contains the contracted tree branches and the correspond-

ing protection edges. The result follows from the earlier part of the proof of (a).

¤

Note that Theorem 6.9(b) is the dual of the result that graph G′
L generated by

CIRCUIT-SMART is survivable. The algorithm CUTSET-SMART is shown in Fig.

6.4.
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A closer look at the above proof will show that in step 1 of CUTSET-SMART,

it is sufficient to map in disjoint manner each branch bi with some chord in the set

Ŝ(bi). This results in algorithm CUTSET SMART SIMPLIFIED shown in Fig. 6.5.

The above algorithm requires finding disjoint mappings for only certain pairs

of vertices in the physical topology. Using a result in [39] we have the following

Theorem.

INPUT: A 2-edge connected physical topology G, logical
topology GL, a spanning tree T of GL, a set of fundamental
cutsets and a Q-sequence Q(b1), Q(b2), ...., Q(bk).
OUTPUT: A survivable logical graph G′′

L containing GL.
Algorithm CUTSET SMART SIMPLIFIED:
1) For i = 1, 2, ...., k do

Map bi in disjoint manner with some chord in set Ŝ(bi).
If this is not possible for any chord in Ŝ(bi) then

Add a protection edge for one of the chord and map the chord and
its protection edge in disjoint manner.

End If
End For

2) To each unmatched branch b add a protection edge b′ and map them
as disjoint lightpaths in G.

3) Map all the unmapped logical edges arbitrarily.
END

Figure 6.5: Algorithm CUTSET SMART SIMPLIFIED.

Theorem 6.10. Given any Q-sequence of length k, algorithm

CUTSET SMART SIMPLIFIED finds a survivable mapping of a logical topology

with at most n− k− 1 protection edges, if the physical topology is 3-edge connected.

¤

The main reason for the above result is that any pair of edges {(s1, t1), (s2, t2)}
in GL can be mapped into disjoint lightpaths, if the physical topology is 3-edge

connected.

The proof of the Theorem 6.9 shows that every cut obtained from G′′
L by con-

tracting the branches not in the Q-sequence will contain at least Min{|Ŝ(bi)|+1, i =
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1, 2, ...., k} edges after a single edge failure in the physical topology. This property

of CUTSET-SMART will be of great help in protecting the logical topology when

multiple edge failures occur in the physical topology. This property is not true in

the case of algorithm CUTSET SMART SIMPLIFIED though it is computation-

ally superior to CUTSET-SMART and is likely to require less number of protection

edges. An interesting consequence of algorithm CUTSET SMART SIMPLIFIED is

the following.

Theorem 6.11. The structure shown in Fig. 6.6 is survivable, if the physical topol-

ogy is 3-edge connected. ¤

Figure 6.6: A survivable network structure.

An interesting application of this result is as follows. Note that protection edges

are used in the algorithms of sections 6.2, 6.3 and 6.4 to guarantee survivability.

Consider a set of edges that form a path and require protection edges, then it can

be shown that we can add new logical edges c1, c2, ..., ..., ... as in Fig. 6.6, instead of

protection edges (that is, new parallel logical edges) and guarantee survivability.

Note that we have not been able to prove a property similar to the one in Theorem

6.10 in the case of CIRCUIT-SMART. Nor has it been possible for us to find a

simplified version of CIRCUIT-SMART akin to CUTSET SMART SIMPLIFIED

(shown in Fig. 6.5). An illustration of CUTSET SMART SIMPLIFIED is provided

in section 6.7.2.
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In this method we replace step (2) of CUTSET-SMART and
CUTSET SMART SIMPLIFIED by the following:
“Apply CIRCUIT-SMART on the graph obtained from GL by contract-
ing the matched branches (branches in the Q-sequence).”

Figure 6.7: A 2-Phase method.

6.4 Efficient Heuristics to Minimize Number

of Protection Edges

In cutset based algorithms, to guarantee survivability we add protection edges in

parallel to branches (unmatched branches) that are not in the Q-sequence. See step

(2) in these algorithms. To minimize the number of such protection edges we suggest

two heuristics shown in Fig. 6.7 and Fig. 6.8.

1) For i = 1, 2, ...., k do
Map bi in disjoint manner with some chord in set Ŝ(bi)

End For
2) Construct a bipartite graph (X,Y ) where each vertex in X represents
an unmatched branch and each vertex in Y represents an unmatched
chord. The bipartite graph has an edge (x, y) if the fundamental cutest
with respect to branch x contains the chord y.
3) Find a maximum matching in this bipartite graph using any
standard maximum matching algorithm [25].
4) For each edge in the maximum matching, find disjoint mappings
for the corresponding pair of branch and chord.
5) For all unmatched branches (those not matched in step 1 or 2) add
protection edges as in step (2) of CUTSET-SMART.
END

Figure 6.8: Maximum matching based heuristic.

We have not been able to show that these heuristics guarantee survivability in

certain scenarios. However, we expect them to guarantee survivability except in this

case of certain combinations of logical edge failures.
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6.5 INCIDENCE-SMART

Incident sets are special cases of cuts. So an algorithm similar to CUTSET-SMART

can be designed. Instead of explicitly starting with a spanning start tree with some

new logical edges, we present an algorithm which reflects the unified framework in

terms of INC-sets defined in section 6.1. Note that for any INC-sequence there is

at least one vertex that is not in the sequence. Let us call one such vertex as datum.

In the following algorithm (Fig. 6.8) the given GL will be the initial current

graph.

Theorem 6.12. Algorithm INCIDENCE-SMART provides a survivable mapping of

the edges of a graph G′′
L that contains the given logical graph GL.

Proof :

Consider any cut (S, S̄) in GL. Let S be the partition of the cut that does not

contain the datum vertex. Consider the vertex v in S that has the highest index

in the INC-sequence. Then in the current graph at the step when v is considered

by the algorithm it will not be adjacent to any vertex in S. So, according to the

algorithm v will be connected to at least two vertices in S̄, and the corresponding

edges connecting S and S̄ are mapped into disjoint lightpaths, guaranteeing that at

least one of these edges will remain in the cut after a single edge failure in G and

satisfying the condition of Theorem 6.7. Since this is true for all cuts, the mappings

generated by the algorithm are survivable. ¤

An example of INCIDENCE-SMART is given in section 6.7.3.
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INPUT: A 2-edge connected physical topology G, a logical
topology GL, INC-sequence INC(v1), INC(v2), ...., INC(vk).
OUTPUT: A survivable logical graph G′′

L containing GL.
Algorithm INCIDENCE-SMART:
For i = 1, 2, ...., k do
1) If vertex vi has degree greater than or equal to 2 in the current

graph then
Map all the edges incident on vi into disjoint lightpaths in G.

2) If the degree of vi in the current graph is one then
Add a new logical edge connecting vi to the datum vertex.
Map this new edge and the only edge incident on vi into disjoint
lightpaths.

3) If the degree of vi in the current graph is zero then
Add two new parallel logical edges connecting vi to the datum vertex.
Map these two edges into disjoint lightpaths in G.

End For
END

Figure 6.9: Algorithm INCIDENCE-SMART.

6.6 Illustration of CIRCUIT-SMART,

CUTSET SMART SIMPLIFIED and

INCIDENCE-SMART

In this section we provide examples that illustrate algorithms CIRCUIT-SMART,

CUTSET SMART SIMPLIFIED and INCIDENCE-SMART. The topology shown

in Fig. 6.10 is used as the logical topology (GL) for the CIRCUIT-SMART and CUT-

SET SMART SIMPLIFIED. A spanning tree T of GL consists of edges (branches)

b1, b2, b3 and b4 and the chords for T are given by edges c1, c2, c3, c4, c5 and c6. Fur-

thermore, for CIRCUIT-SMART, it is assumed that an arbitrary at least 2-edge

connected physical topology is given and for CUTSET SMART SIMPLIFIED a 3-

edge connected topology is given.
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Figure 6.10: Logical topology for the illustration of CIRCUIT-SMART and CUT-
SET SMART SIMPLIFIED.

6.6.1 Illustration of CIRCUIT-SMART

The fundamental circuits with respect to the spanning tree T are as follows.

1) B(c1) = {c1, b1, b2, b3, b4}
2) B(c2) = {c2, b1, b2, b3}
3) B(c3) = {c3, b1, b2}
4) B(c4) = {c4, b2, b3, b4}
5) B(c5) = {c5, b2, b3}
6) B(c6) = {c6, b3, b4}
The fundamental circuit matrix (Bf ) corresponding to T is shown in (7). Now,

assume that the given circuit cover sequence (B-sequence) is B(c5), B(c3), B(c6) of

length k = 3, then
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S(c5) = B(c5)− c5

= {c5, b2, b3} − {c5}
= {b2, b3}

Now for

j = 2:

S(c3) = B(c3)− c3 −
1⋃

p=1

B(cp)

= {c3, b1, b2} − {c3} − {c5, b2, b3}
= {b1}

j = 3:

S(c6) = B(c6)− c6 −
2⋃

p=1

B(cp)

= {c6, b3, b4} − {c6} − [{c5, b2, b3} ∪ {c3, b1, b2}]
= {b4}

Now S(c) corresponding to the B-sequence B(c5), B(c3), B(c6) is given in (8).

5 3 6 5 3 6( ) ( ) ( )

1 0 0 1 1 0 0

0 1 0 1 0 1 0 (8)

0 0 1 0 1 0 1

c c c S c S c S c

 
 

− − 
  

After obtaining the Bf matrix and S(c) corresponding to the B-sequence B(c5),

B(c3), B(c6) CIRCUIT-SMART algorithm given in Fig. 6.3 is applied. In the first

iteration, S(c5) ∪ c5 = {c5, b2, b3}. Therefore, the maximum subset of edges in

S(c5)∪c5 are mapped into disjoint lightpaths. Assume that all the edge in S(c5)∪c5

could not be mapped into disjoint lightpaths and a protection edge e is provided for

the logical edge b3 (Fig. 6.11(a)). In the next iteration, S(c3) ∪ c3 = {c3, b1} and

assume that all the edges can be mapped into disjoint lightpaths (Fig. 6.11(b)).

In the last iteration, S(c6) ∪ c6 = {c6, b4} and again assume that all the edges can
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mapped into disjoint lightpaths (Fig. 6.11(c)). Chords c1, c2 and c4 are not in the

B-sequence and are mapped arbitrarily (not shown in Fig. 6.11).

Fig. 6.11(c) shows the mapped chords and their corresponding branches. Now

if a physical failure disconnects some the logical connections, the logical topology

would still stay connected. Fig. 6.11(d) shows the case where a physical link failure

disconnects logical edges b2, b3, c3 and c6 but it can be seen that the logical topology

is still connected.

(a) S(c) = {c5, b2, b3} (b) S(c) = {c3, b1}

(c) S(c) = {c6, b4} (d) Logical topology after re-
moval of b2, b3, c3 and c6

Figure 6.11: Illustration of CIRCUIT-SMART.

6.6.2 Illustration of CUTSET SMART SIMPLIFIED

Consider the logical topology shown in Fig. 6.10 again. The fundamental cutsets

with respect to the spanning tree T are as follows
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1) Q(b1) = {b1, c1, c2, c3}
2) Q(b2) = {b2, c1, c2, c3, c4, c5}
3) Q(b3) = {b3, c1, c2, c4, c5, c6}
4) Q(b4) = {b4, c1, c4, c6}
The fundamental cutset matrix (Qf ) for spanning T is shown in (9). Now assume

that we are given a cutset cover sequence (Q-sequence) Q(b1), Q(b4), Q(b2) of length

k = 3, then

Ŝ(b1) = Q(b1)− b1

= {b1, c1, c2, c3} − {b1}
= {c1, c2, c3}

Now for

j = 2:

Ŝ(b4) = Q(b4)− b4 −
1⋃

p=1

Q(bp)

= {b4, c1, c4, c6} − {b4} − {b1, c1, c2, c3}
= {c4, c6}

j = 3:

Ŝ(b2) = Q(b2)− b2 −
2⋃

p=1

Q(bp)

= {b2, c1, c2, c3, c4, c5} − {b2} − [{b1, c1, c2, c3} ∪ {b4, c1, c4, c6}]
= {c5}

The Ŝ(b) corresponding to the Q-sequence Q(b1), Q(b4), Q(b2) is given in (10)
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Now the CUTSET SMART SIMPLIFIED algorithm given in Fig. 6.5 is applied

by matching branch b1 with chord c2 (Fig. 6.12(a)), branch b4 with chord c6(Fig.

6.12(b)) and branch b2 is matched to chord c5 (Fig. 6.12(c)). After matching a

branch with a chord, the branch and the corresponding chord are mapped in disjoint

manner. Since branch b3 could not be matched to any chord, a protection edge e

is added for b3, and then e and b3 are mapped in disjoint fashion (Fig. 6.12(d)).

Fig. 6.12(d) shows all the mapped branches and their corresponding chords. Now

if a physical failure disconnects some the logical connections, the logical topology

would still stay connected. Fig. 6.12(e) shows the case where a physical link failure

disconnects all the branches but it can be seen that the logical topology is still

connected.

6.6.3 Illustration of INCIDENCE-SMART

As an example of the INCIDENCE-SMART, consider the logical topology shown in

Fig. 6.13(a). Assume that the vertex v4 is chosen as the datum vertex. The incidence

sets for Fig. 6.13(a) are shown in (11) and the incidence sequence INC(v1), INC(v2),

INC(v3), INC(v5) is shown in (12). Now the INCIDENCE-SMART is applied to

the topology shown in Fig. 6.13(a).

First vertices with degree ≥ 2 are mapped. Edges {e1, e5, } incident on v1 are

mapped in disjoint manner (Fig. 6.13(b)), then {e2, e8} (Fig. 6.13(c)) and {e3, e10}
(Fig. 6.13(d)) incident on v2 and v3, respectively, are mapped in disjoint fashion.

112



(a) Logical topology after b1 and
c2 are mapped

(b) Logical topology after b4 and
c6 are mapped.

(c) Logical topology after b2 and
c5 are mapped.

(d) Logical topology after b3,
and e are mapped.

(e) Logical topology after the re-
moval of b1, b2, b3, and b4.

Figure 6.12: Illustration of CUTSET SMART SIMPLIFIED.

After removing all the edges incident on v1, v2 and v3, vertex v5 has degree 1. There-

fore, a new edge e is added between v5 and the datum node (v4) (Fig. 6.13(d)). The

new edge e and the edge incident on v5 (e4) are then mapped in disjoint fashion,
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providing a survivable mapping for the logical topology given in Fig. 6.13(e).

Fig. 6.13(e) shows all the pairs of edges that were mapped in disjoint fashion

and Fig. 6.13(f) shows the logical topology after a physical link failure, which

disconnects at least one edge from all pairs of edges that were mapped in disjoint

manner.

6.7 Simulation Study and Results

To compare the performance of the proposed algorithms, simulation studies were

conducted using VC++ 8.0. For simulation studies, random logical topologies with

varying number of nodes and degree were generated using the procedure given in

[32]. The physical topologies were regular topologies with degree 4, constructed

using a procedure originally given by Harary [30] and described in [31]. The number

of nodes in the physical topologies was set to 100, and 200 nodes (|V |). The logical

topologies were generated randomly with average degrees 2.5, 3.0, 3.5 and 4.0. The
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(a) A logical topology for the
illustration of INCIDENCE-
SMART.

(b) Logical topology after edges
incident on v1 are mapped.

(c) Logical topology after edges
incident on v2 are mapped.

(d) Logical topology after edges
incident on v3 are mapped
and a protection edge e is
added for v4.

(e) All the mapped logical edges. (f) Logical topology after the
removal of logical edges
e5, e2, e10 and e4.

Figure 6.13: Illustration of INCIDENCE-SMART.
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nodes in the logical topologies are a subset of the physical nodes and number of

logical nodes in the logical topology was set to 0.75×|V |. For each case, 40 physical

and 25 logical topologies were generated, providing a total of 1000 logical-physical

topology pairs for comparison. The topologies were subjected to further processing,

only if the topologies were at least 2-edge connected.

To find the maximum number of logical links that can be mapped in a mutually

disjoint manner, a procedure described in [26] was used. To find mutually disjoint

mappings of a pair of logical links, the algorithm given in [39] was used. Fundamental

circuits and cutsets were found using procedures given in [31] and were part of the

preprocessing phase. The survivability of a logical topology was tested by picking

a physical link, removing all the logical links which used this physical link in their

mapping, and checking if the resulting logical topology is connected. This test was

repeated for every physical link.

The statistics of interest were survivability success rate (that is, the number of

logical topologies for which survivable mappings could be found), protection capacity

(measured as average number of protection links added to a logical topology to make

it survivable) and the execution time of the algorithms.

We now make some general observations on the performance of these algorithms

based on the trends that we noticed during the simulations.

Tables 6.2- 6.7 summarize the results. Tables 6.2 and 6.5 provide the number

of successful survivable logical-physical topology pairs. It can be seen that we were

able to find survivable mappings for 100% of the topologies (see Table 6.1 for legend)

as expected in the case of M1,M2,M3 and M7. Also, we would like to point out

that in the case of M4 and M6 we were able to achieve 100% survivability in all the

tests but we have not been able to prove that this result holds in general.

Tables 6.3 and 6.6 show a general trend that the number of protection edges

required in the case of circuit based methods is considerably less than the number
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required by cutset based methods. The number of protection edges required by M4,

which is obtained by integrating M1 and M3, is less than the number for M1. Note

that in the case of cutset based methods, for a given value of n the number of edges

in a spanning tree does not change. Since M3 maps only n − 1 pairs of edges, the

computation time for this method does not change very significantly with a change

in average degree.

M3 is the best in terms of execution time. M7 is the next best. M7 also does

very well in terms of number of protection edges required.

Summarizing, if protection capacity is an issue of concern, then the two phase

algorithm M4 is a good choice but it does not guarantee survivability. If compu-

tational time is an issue of primary interest, then M3 and M7 are good choices.

Finally, if guarantee of survivability is also an issue of interest then M7 is the best

choice.

The above work was presented in [40].

6.8 Chapter Summary and Conclusions

Duality plays a significant role in optimization theory, particularly in discrete op-

timization on graphs and networks. Circuits and cuts in graphs are dual concepts.

Similarly, deletion and contraction of an edge are dual graph operations. Most often,

for a primal algorithm based on circuits there is a dual algorithm based on cuts for

the same problem. The primal and dual algorithms possess certain characteristics

that make one superior to the other depending on the application. The SMART al-

gorithm for the survivable logical topology design problem is based on circuits. This

is a novel and very significant contribution to the problem. The question then arises

whether there exists a dual methodology based on cuts. In this chapter we have

investigated this question and developed certain new dual algorithms and insightful
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results.

First, we reviewed several results that highlight the dual relationship between

circuits and cuts and the dual graph operations of deletion and contraction of an

edge. We also introduced certain new concepts and results that form the foundation

of the methodologies developed in the rest of the chapter. We then presented the

primal algorithm CIRCUIT-SMART (similar to SMART) and algorithm CUTSET-

SMART that is dual of CIRCUIT-SMART and unified proofs of correctness of these

algorithms. Our investigation has provided much insight into the structural prop-

erties of solutions to this problem and the structure of survivable logical graphs

(Theorems 6.10 and 6.11). Specifically, we presented a highly simplified version of

CUTSET-SMART that always provides a survivable mapping as long as the phys-

ical topology is 3-edge connected. We presented a logical topology structure that

can always be embedded in a survivable manner (Theorem 6.11). We also presented

algorithm INCIDENCE-SMART that uses incidence sets. Two efficient heuristics,

one based on maximum matching and a 2-phase method that combines both the

primal and dual algorithms, were also presented. To guarantee survivability, our

algorithms add new logical edges called protection edges, whenever needed. Simula-

tions comparing the different algorithms in terms of computational time, protection

capacity and survivability success rate are also provided.

We wish to add that though all our algorithms are formulated in terms of funda-

mental circuits or fundamental cutsets, they can be presented in a general form as

in the original SMART algorithm. Such a general form would require a search of a

spanning tree whose fundamental circuits or cutsets can be mapped in a survivable

manner. In our simulations, we have not compared our algorithms with the original

SMART algorithm for two reasons. First, SMART will require significantly higher

execution times because it searches for survivable circuits and so the comparison

will not be fair. Secondly, SMART does not add protection edges to guarantee
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survivability.

As we stated in section 6.8 , if protection capacity is an issue of concern, then the

two phase algorithm, CUTSET SMART SIMPLIFIED combined with CIRCUIT-

SMART, is a good choice but it does not guarantee survivability. If computa-

tional time is an issue of primary interest, then CUTSET SMART SIMPLIFIED

and INCIDENCE-SMART are good choices. Finally, if guarantee of survivability is

also an issue of interest then INCIDENCE-SMART is the best choice.

The performance of our algorithms depends on the choice of the spanning tree

and the resulting B- and Q- sequences. Research is in progress on approaches

for selecting appropriate spanning trees. We believe that our work studying the

problem from different perspectives has advanced the state of the art and thrown

much insight into the problem.

CIRCUIT-SMART M1
CUTSET-SMART M2
CUTSET SMART SIMPLIFIED M3
2 Phase Method (with CUTSET SMART SIMPLIFIED) M4
Maximum-Matching + Parallel protection edges M5
Maximum-Matching + CIRCUIT-SMART M6
INCIDENCE-SMART M7
Logical Degree LD
Physical Degree PD
Method Number M

Table 6.1: Legend
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Survivable Logical-Physical Topology Pairs
(|V | = 100, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 1000 1000 1000 1000
M2 1000 1000 1000 1000
M3 1000 1000 1000 1000
M4 1000 1000 1000 1000
M5 460 544 654 748
M6 1000 1000 1000 1000
M7 1000 1000 1000 1000

Table 6.2: Survivable Logical-Physical Topology Pairs (|V | = 100, PD = 4)

Average Number of Protected Links
(|V | = 100, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 335.48 18.35 15.53 11.89
M2 55.94 41.48 32.05 25.51
M3 56.18 41.92 32.37 25.54
M4 18.79 6.01 3.85 2.31
M5 55.22 36.72 18.42 3.85
M6 38.97 3.15 1.23 1.32
M7 56.30 40.81 30.94 22.99

Table 6.3: Average Number of Protected Links (|V | = 100, PD = 4)

Time per Logical-Physical Topology-Pair (sec)
(|V | = 100, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 10.013 5.736 5.0071 4.14986
M2 1.5213 1.557 1.5531 1.54455
M3 1.5147 1.549 1.5315 1.53
M4 5.6325 2.404 1.9429 1.64718
M5 1.3824 1.207 1.0690 0.92201
M6 4.1158 0.863 0.7701 0.87369
M7 0.4831 0.400 0.3575 0.3425

Table 6.4: Time per Logical-Physical Topology-Pair (sec) (|V | = 100, PD = 4)
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Survivable Logical-Physical Topology Pairs
(|V | = 200, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 1000 1000 1000 1000
M2 1000 1000 1000 1000
M3 1000 1000 1000 1000
M4 1000 1000 1000 1000
M5 480 608 701 750
M6 1000 1000 1000 1000
M7 1000 1000 1000 1000

Table 6.5: Survivable Logical-Physical Topology Pairs (|V | = 200, PD = 4)

Average Number of Protected Links
(|V | = 200, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 74.39 45.77 35.36 30.95
M2 113.61 86.16 65.79 53.63
M3 113.91 86.37 65.97 53.83
M4 40.53 15.12 9.31 6.66
M5 111.7 75.02 40.28 8.71
M6 77.34 8.91 4.94 3.48
M7 112.80 84.55 61.99 47.99

Table 6.6: Average Number of Protected Links (|V | = 200, PD = 4)

Time per Logical-Physical Topology-Pair (sec)
(|V | = 200, PD = 4)

LD/M 2.5 3.0 3.5 4.0
M1 72.1626 46.2953 38.2611 33.2624
M2 11.5136 11.351 11.3872 11.1478
M3 11.366 11.029 11.1649 11.0306
M4 39.9924 18.7964 14.8348 13.3879
M5 10.4621 8.96543 7.81091 6.59595
M6 27.5417 6.74687 4.96552 6.13079
M7 3.05346 2.59381 2.23091 2.12124

Table 6.7: Time per Logical-Physical Topology-Pair (sec) (|V | = 200, PD = 4)
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Chapter 7

Summary and Future Work

7.1 Summary

In this dissertation, we have focused on developing efficient algorithms to design

survivable IP-over-WDM networks. IP-over-WDM networks are realized by embed-

ding an IP network in a WDM network. The embedding is done by setting up

all-optical connections, called lightpaths, between the IP routers in the WDM net-

work. An embedding is considered survivable, if the IP network remains connected

in the presence of a single or multiple failures in the WDM network.

Survivable IP-over-WDM networks are widely touted as the next generation

architecture for high speed backbone networks. The problem of finding such em-

bedding can be formulated as an Integer Linear Program (ILP) and solved optimally

using commercial or freely available software. However, given the fact that the num-

ber of constraints in the ILP grows exponentially with the size of the network, we

focus mainly on developing efficient heuristics that find embeddings that leave the

IP network connected in the event of a single WDM link failure.

In Chapter 2, we provided a brief overview of the different types of WDM net-

works and the corresponding survivability mechanisms. Chapter 2 also defined IP-
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over-WDM networks, survivable IP-over-WDM networks and discussed some of the

issues involved in realizing such networks. Chapter 3 formally introduced the prob-

lem of designing survivable IP-over-WDM networks and presented a review of some

of the common approaches proposed in the literature. Chapter 3 also provided a

detailed description of the SMART framework, which formed the basis for some of

our work.

In Chapter 4, we provided a detailed analysis of SMART framework and its

heuristic version (SMART-H). The analysis pointed out certain shortcomings of

SMART and SMART-H, which allowed us to propose several enhancements that

improved their performance. Also in chapter 4, we presented a new embedding

algorithm based on randomized rounding and fractional multicommodity flow ap-

proximation. The embedding algorithm combined with a new subgraph finding

algorithm was able to find survivable mappings for a larger number of IP-WDM

network pairs.

In Chapter 5, we noted that for some IP networks a survivable embedding may

not exist in a given WDM network. By adding new IP links or WDM links, an unsur-

vivable IP-WDM network pair can be converted to a survivable one. Adding WDM

links by laying new optical fibers is difficult and more expensive to do. However,

IP links can be easily added by establishing additional IP connections. In Chap-

ter 5, we suggested using a combination of protection and restoration approaches

to guarantee survivability for any given IP-WDM network pair, which is at least

2-edge connected. Protection was provided by setting up two lightpaths between

certain pairs of IP routers such that these lightpaths did not share a WDM link.

To determine the pairs of IP routers between which additional lightpaths must be

established, we provided several heuristics that used SMART-H.

In Chapter 6, we explored the role that duality between circuits and cuts can

play in realizing IP-over-WDM networks. Most often, for a primal algorithm based
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on circuits there is a dual algorithm based on cuts for the same problem. SMART

algorithm is based on circuits, which begs the question whether there exists a dual

methodology based on cuts. In Chapter 6, we investigated this question and devel-

oped certain new dual algorithms and insightful results. We also presented a logical

topology structure that can always be in a survivable manner.

7.2 Future Work

There are many interesting directions to follow for future work.

1. The NP-complete nature of the problem leaves the door open for the devel-

opment of more sophisticated algorithms that can find survivable embeddings

for IP networks in WDM networks.

2. Another direction is to consider capacity utilization, when finding survivable

mappings for the logical topologies. By considering the traffic load carried on

each fiber, while finding the mappings, it is possible to reduce the number of

lightpaths that must be rerouted in case of a failure. If a physical link that

is heavily loaded fails, a large number of lightpaths must be rerouted. This

may require significantly more time to recover from the failure. However, if

the traffic load is distributed evenly, then the time to recover from the failure

would be almost identical.

3. One key assumption, in the literature related to survivable IP-over-WDM

networks, is that the logical topology is at least 2-edge connected. As future

work, we would like to extend our work to topologies that are not initially 2-

edge connected. Since logical and physical topologies that are at least 2-edge

connected can survive single link failure, we can make given logical topologies

2-edge connected by adding additional links. By carefully adding links, it

124



is expected that a large number of logical topologies could be mapped in

survivable manner.

4. One more direction to consider is to map logical topologies in such a way

that they are able to survive multiple physical link failures. Noting that the

problem of protecting networks against a single link failure is NP-complete,

protecting against multiple simultaneous failures is also NP-complete. There-

fore, designing heuristics that can protect networks against multiple failures

will be an interesting and a challenging task.
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Appendix A

Regular Graphs

Regular graphs were generated using a procedure introduced by Harary in [30]. The

procedure constructs a k-connected graph Hk,n, which has exactly
⌈

kn
2

⌉
edges, here

n is the number of vertices in the graph and k is the required connectivity. [30]

considers three cases

(i) k is even

(ii) k is odd and n is even

(iii) k is odd and n is odd.

For our simulations we generated graphs with even k (case (i)), using the proce-

dure given in [31].

Let k = 2r. Then H2r,n has vertices v0, v1, v2, ...., vn−1 and two vertices vi and

vj are adjacent if i − r ≤ j ≤ i + r, where addition is modulo n. The code for

generating code using V C + +8.0 and LEDA [29] is given below.

A regular graph with n = 10 and k = 4 using the above procedure is shown in

Fig. A.2. To introduce randomness in regular graphs, each node was assigned a

random unique node number (node number). For physical topologies following code

was used.
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/* This method generates regular graph with a specified number of nodes
and connectivity.
@param G The generated regular graph.
@param numNodes The required number if nodes in the regular graph G.
@param connectivity The desired connectivity of the generated regular
graph */
void generate regular topology(GRAPH<int, int> & G, int numNodes,
int connectivity) {

int r;
list <node> allNodes;
list item item1;
list item item2;
if ((connectivity % 2) != 0) {

std::cout << ”ERROR: connectivity of the regular topology to be
generated must be even.” <<std::endl;

exit(1);
}

// Create new nodes
for (int i = 0; i < numNodes; i++)

G.new node();
// Get a list of the newly created nodes

allNodes = G.all nodes();
// Now, assign edges in such a way that the graph will be regular and
of the desired connectivity

r = connectivity / 2;
for (int j = 0; j < numNodes; j++){

for (int k = 0; k < numNodes; k++) {
if (((abs(j - k) <= r) || (abs(j - k + numNodes) <= r)) &&
(j < k)) {

item1 = allNodes.get item(j);
item2 = allNodes.get item(k);
G.new edge(allNodes.contents(item1),
allNodes.contents(item2));

}
}

}
G.make bidirected ();

}

Figure A.1: Procedure to generate Regular Graphs.
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1. int node array[ number of nodes ];

2. for( int i = 0; i < number of nodes; i++ ) {
node array[i] = i;

}
3. for( int i = 0; i < number of nodes /2; i++ ) {

permute(node array);

}
4. for( int i = 0; i < number of nodes; i++ ) {

node number[i]= node array[i];

}
Since the logical nodes were a subset of logical nodes, the above statements 1, 2,

and 3 were adapted for logical node number and number 4 above was changed to:

for( int i = 0; i < number log of nodes; i++ ) {
log node number[i]= node array[i];

}
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Figure A.2: A regular graph with number of nodes (n) = 10 and connectivity (k) = 4
generated using procedure given in [31].
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Appendix B

Waxman’s Random Graphs

Waxman’s random graphs exhibit some of the characteristics of actual networks.

[32] and were used when random graphs were required in the simulation. [32] pro-

poses two type of the random graph. We adopted the graph generation procedure

described below.

1. Given a node set, for every node pair a distance is chosen in the range (0,

L > 0) from a uniform random distribution.

2. An edge was introduced between a node pair (u, v) with a probability given

as

prob{u, v} = βexp
{
−d(u,v)

Lα

}

Here α and β are parameters in the range (0, 1).

Since all the presented algorithms require 2-edge connected graphs, first all the

nodes were connected to form a ring and then additional edges were added using

the above procedure.

To further introduce randomness, each node was assigned a random unique node

number. To assign node numbers to physical and logical nodes, the procedure

describe in Appendix A was used.
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Appendix C

List of Abbreviations

ACO Ant Colony Optimization
ADM Add-drop Multiplexor
AON All Optical Network
APS Automatic Protection Switching
ATM Asynchronous Transfer Mode
BER Bit Error Rate
BGA Bounded Greedy Algorithm
CWDM Coarse Wavelength Division Multiplexing
DCS Digital Cross-connect Switch
DWDM Dense Wavelength Division Multiplexing
EMI Electro-magnetic Interference
Gbps Gigabits per second
HA-1 Hybrid Algorithm 1
HA-2 Hybrid Algorithm 2
HA-3 Hybrid Algorithm 3
HA-4 Hybrid Algorithm 4
ILP Integer Linear Program
IP Internet Protocol
ISP Internet Service Provider
LBM Load Based Mapping
LEDA Library of Efficient Data Types and Algorithms
MCF Multicommodity Flow
MM Modify and Map
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MMCF Maximum Multicommodity Flow
MPLS Mutiprotocol Label Switching
ms Milliseconds
MSGA Multi-start Greedy Algorithm
OA Optical Amplifier
OADM Optical Add-drop Multiplexor
O-E-O Optical-Electrical-Optical
OSPF Open Shortest Path First
OXC Optical Cross-connect
P-cycle Protection Cycle
PID Protection Interoperable Design
PIW Protection Interoperability for WDM Networks
PRC Pure Ring Cover
RFI Radio Frequency Interference
RIP Routing Information Protocol
SDH Synchronous Digital Hierarchy
SHR Self Healing Rings
SM Simple Mapping
SMART Survivable Mapping Algorithm by Ring Trimming
SMART-H SMART Heuristic
SONET Synchronous Optical Networks
Tbps Terabits per Seconds
TCP Transmission Control Protocol
TDM Time Division Multiplexing
VP Virtual Path
WC Wavelength Converter
WDM Wavelength Division Multiplexing
WWW World Wide Web
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