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Abstract

With the use of information technology in industries, a new need has arisen in analyzing

large scale data sets and automating data analysis that was once performed by human intu-

ition and simple analog processing machines. The new generation of computer programs

now has to outperform their predecessors in detecting complex and non-trivial patterns

buried in data warehouses. Improved Machines Learning (ML)techniques such as Neu-

ral Networks (NNs) and Support Vector Machines (SVMs) have shown remarkable per-

formances on supervised learning problems for the past couple of decades (e.g. anomaly

detection, classification and identification, interpolation and extrapolation, etc.).

Nevertheless, many such techniques have ill-conditioned structures which lack adapt-

ability for processing exotic data or very large amounts of data. Some techniques cannot

even process data in an on-line fashion. Furthermore, as theprocessing power of computers

increases, there is a pressing need for ML algorithms to perform supervised learning tasks

in less time than previously required over even larger sets of data, which means that time

and memory complexities of these algorithms must be improved.

The aims of this research is to construct an improved type of SVM-like algorithms for

tasks such as nonlinear classification and interpolation that is more scalable, error-tolerant

and accurate. Additionally, this family of algorithms mustbe able to compute solutions

in a controlled timing, preferably small with respect to modern computational technolo-

gies. These new algorithms should also be versatile enough to have useful applications in

engineering, meteorology or quality control.

This dissertation introduces a family of SVM-based algorithms namedUnconstrained

Learning Machines(ULMs) which attempt to solve the robustness, scalability and timing

xi



issues of traditional supervised learning algorithms. ULMs are not based on geometrical

analogies (e.g. SVMs) or on the replication of biological models (e.g. NNs). Their con-

struction is strictly based on statistical considerationstaken from the recently developed

statistical learning theory. Like SVMs, ULMS are using kernel methods extensively in

order to process exotic and/or non-numerical objects stored in databases and search for

hidden patterns in data with tailored measures of similarities.

ULMs are applied to a variety of problems in manufacturing engineering and in mete-

orology. The robust nonlinear nonparametric interpolation abilities of ULMs allow for the

representation of sub-millimetric deformations on the surface of manufactured parts, the se-

lection of conforming objects and the diagnostic and modeling of manufacturing processes.

ULMs play a role in assimilating the system states of computational weather models, re-

moving the intrinsic noise without any knowledge of the underlying mathematical models

and helping the establishment of more accurate forecasts.
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Part I

Unconstrained Learning Machines for Supervised Learning

1



Chapter 1

Introduction and Literature Review

1.1 Origins of Supervised Learning

Supervised learning is a machine learning approach that aims to estimate functions which

link input observations to pre-determined targets. As the approach itself implies that com-

puters host supervised learning algorithms, the notion of seeking such estimating functions,

or patterns, is very old. The first modern cases of pattern searches in data date back from

the early days of modern astronomy where empirical laws of motion were deduced from

numerical observations. Kepler’s laws of planetary motionand Newton’s law of univer-

sal gravitation are early examples of pattern analysis on observational data [Kepler, 1619;

Newton, 1687]. While finding nonlinear patterns was still a matter of good judgment to-

ward the end of the 18th century, several mathematicians re-invented a systematic approach

for finding linear relationships between observations: theso-calledmethod of least-squares

which was introduced to predict the position of celestial objects [Gauss, 1809; Legen-

dre, 1805]. In the 19th century, graphical methods were vastly used to establish many

nonlinear empirical laws of chemistry and electricity which are still used nowadays (e.g.

Ohm’s law [Ohm, 1827]). Log-log and semi-log graphs were used together with nomo-

grams [d’Ocagne, 1885] and specialized slide rules to analyze patterns in observations, and

remained used for the purpose of pattern analysis until the early 1960s.

The early 20th century was marked by the emergence of modern statistical science

which was due, for a large part, to the English statistician Fisher who also introduced the

very first machine learning tools. TheFisher’s linear discriminantwas first described in
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1936 to perform what is now referred as linear binary classification [Fisher, 1936]. This

method was closely related to the analysis of variance (ANOVA) and the regression analysis

which was pioneered the century before, with the exception that targets were now discrete

objects and not numerical values. It was also related to Principal Component Analysis

(PCA) [Pearson, 1901] and Factor analysis. The method of least squares that spawned

regression analysis and eventually the Fisher’s linear discriminant was a simple form of

what is now calledregularization. The regularization theory is concerned with the intro-

duction of supplementary information to solve problems highly sensitive to perturbations

or ill-posed problems. The Tikhonov regularization [Tychonoff, 1963] marked thecrown

achievement of regression methods at the dawn of computer technology and machine learn-

ing.

1.2 The First Generation of Supervised Learning Algorithms

Artificial Intelligence and Machine Learning were born through the work of Rosenblatt

on theperceptron[Rosenblatt, 1958]. The Perceptron was the first on-line linear binary

classifier meant to be powered by computers. It was the earliest example of a feed-forward

neural network and its study [Novikoff, 1963] generated today’s statistical learning theory.

Soon after Rosenblatt’s breakthrough, several authors proposed supervised learning algo-

rithms to solve real-life problems such as thelearning matrices[Steinbuch, 1965] and the

Madaline[Widrow, 1962].

In the years that followed, decision trees and hidden markovmodels were also intro-

duced to help computers building logical patterns between observations, although, unlike

the perceptron, these methods were not based on neuron models. The search for nonlinear

relations hidden in data started to be described with elements of algorithmic information

theory, in which randomness is simply defined as the absence of patterns in the observations

[Chaitin, 1966; Kolmogorov, 1965].
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1.3 Second Generation (1970s-1980s)

The research on binary classification led Vapnik and Chervonenkis [1971] to formulate

non-asymptotic probabilistic bounds for the rate of convergence of linear binary classifiers,

regardless of the distribution of the observations. A decade later, Vapnik generalized the

results to nonlinear classifiers [Vapnik, 1982]. These bounds, which are expressed by what

is now known as theVC dimension, led to theempirical risk minimization principlethat

links empirical risks of learning algorithms to necessary and sufficient conditions for the

uniform convergence of their means to their expected values(i.e. a law of large numbers

in a functional space). In 1991, the empirical risk minimization principle was finalized

with necessary and sufficient condition for the convergencein probability toward the best

possible result [Vapnik and Chervonenkis, 1991]. These probabilistic results paved the way

to the modeling of supervised learning algorithms as minimization problems that attempt

to minimize a risk functional over a set of functions.

During the 1980s, supervised learning algorithms underwent a nonlinear transforma-

tion with the sigmoid approximation and the resultingback-propagation networks[LeCun,

1986; Rumelhart et al., 1986]. The discovery of nonlinear patterns hidden in classification

data was then reduced to the evaluation of gradients using gradient-based optimization tech-

niques that were developed three decades prior (e.g. conjugate gradient method [Hestenes

and Stiefel, 1952]). Unfortunately, back-propagation network techniques were plagued

by multiple sub-optimal minima and their inability to converge toward a global optimizer.

Nevertheless, they helped the launch of modern day data mining and bio-informatics.

1.4 Third Generation (1990s-2000s)

The third generation of supervised learning algorithms is marked by the use ofkernel meth-

ods. The theory of kernels is actually a century old [Mercer, 1909] and can be seen as the

4



generalization of definite matrices to functions, with an emphasis on positive definite prop-

erties. Aronszajn [1950] studied reproducing kernel Hilbert spaces which are centered

around positive definite kernels. The resulting notions were eventually used in approxima-

tion and regularization theory. It led to the interpretation of kernels as measures of distances

and angles in an induced Hilbert space and their use in pattern classification [Aizerman

et al., 1964]. The finitely positive definite property of kernels which was a key aspect to

the construction of general kernels on exotic objects was introduced a couple of decades

later by Saitoh [1988]. In the early 1990s, kernel methods were used in a machine learning

context by Girosi et al. [1995] to build new nonlinear neuralnetwork architectures.

Learning algorithms such as Support Vector Machines (SVMs)were the direct results of

the combination of kernel methods, the empirical risk minimization principle and the max-

imum margin paradigm [Vapnik, 1995, 1998]. This new family of learning algorithms was

fitted for both nonlinear classification and regression tasks. Nevertheless, the VC frame-

work of SVMs provided loose and pessimistic bounds, and therefore Rademacher complex-

ities were soon introduced as empirical estimate of the VC dimension to remedy all these

problems [Koltchinskii and Panchenko, 2000]. Several flavors of SVMs were introduced

after Vapnik’s landmarking work such as theLeast-Squares SVM(LS-SVM) [Suykens and

Vandewalle, 1999] as well as computational improvements such as the Sequential Mini-

mal Optimization (SMO) [Platt, 1999]. Then developments onBayesian kernel methods

followed [Smola and Schölkopf, 2003].

1.5 Current Status and ULMs

Kernel methods and SVMs have been applied to a wide range of problems such as com-

putational biology, bio-informatics and gene analysis [Ding and Dubchak, 2001; Lee et al.,

2003; Santosa et al., 2002, 2007], fluid mechanics [Oladunniand Trafalis, 2006; Oladunni

et al., 2006; Trafalis et al., 2005], manufacturing engineering [Gilbert et al., 2010, 2009a;
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Malyscheff et al., 2002; Prakasvudhisarn et al., 2003; Raman et al., 2005], meteorology

[Adrianto et al., 2005; Gilbert et al., 2009b; Mansouri et al., 2007; Trafalis et al., 2007] and

even political science [Malyscheff and Trafalis, 2003]. Financial applications of SVMs in-

clude short term portfolio management [Ince and Trafalis, 2006a], exchange rate prediction

[Ince and Trafalis, 2006b] and stock price prediction [Inceand Trafalis, 2003, 2007]. Other

applications are in the area of production [Alenezi et al., 2005], inventory transactions

[Beardslee and Trafalis, 2005] and web mining [Chung et al.,2002].

Unconstrained Learning Machines (ULMs) are the natural evolution of the works of

Gilbert and Trafalis on error-tolerant SVMs [Trafalis and Gilbert, 2005, 2006, 2007]. The

resulting formulations were based either on large linear programming problems or medium-

sized second-order cone programming problems, which both presented a computational

challenge on large sets of data. The present form of ULMs was born from a deliberate

simplification of these underlying mathematical programming problems so that they could

retain the error-tolerant properties while allowing the fast computation of optimal solutions

[Gilbert and Trafalis, 2009]. This increase in computational speed allowed to embed ULMs

in more complex structures such as pattern searches in functional spaces, on-line processing

schemes or data thinning procedures.
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Chapter 2

Kernel Methods for Supervised Learning

The term “kernel methods” is a generic term that encompassesall treatments that a set of

data can receive from a particular category of functions called kernelswhich are discussed

in Section 2.2. More exactly, the data is processed using a subset of kernels which include

the so-called positive definite kernels. Kernel methods arecommonly used by SVMs to

process non-trivial supervised learning tasks such as nonlinear binary classification and

nonlinear nonparametric regression [Vapnik, 1982, 1995, 1998]. The analysis and pre-

treatment of the observations is often a crucial step for a successful application of kernel

methods to them. It leads to faster and more stable computation of hidden patterns in the

data. To this end, a brief review of common data pretreatmenttechniques is discussed in

Section 2.1. Once data treatments and kernel methods are carefully chosen, it then be-

comes possible to quickly recover complex information fromlarge sets of data. Estimating

the patterns that links data features together is the heart of the function estimation problem

that is reviewed in Sections 2.3 and 2.4.

2.1 Data

2.1.1 Source and Nature of the Processed Data

Source of Data and Mathematical Assumptions

The data to be processed by learning machines comes in various shapes and forms. Modern

pattern recognition algorithms have been used to analyze sequences of numbers, letters,

images, videos, network graphs and other objects. Despite the sheer amount of possible
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data treatments, all these techniques have at least two points in common:

• There exists a non-trivial hidden pattern within the data stream;

• It is possible to quantify similarities between objects found in the data stream.

Many machine learning techniques add further statistical restrictions such that all objects

generated by the source of data are distributed according toa well-behaved distribution.

Usually these techniques assume a perfect knowledge of the source of data and, whenever

observations violate the mathematical restrictions, all outliers are modified or deleted be-

fore treatment. Such approaches can be detrimental to the pattern analysis of a data set

and can produce partially unreliable results. Therefore, it becomes necessary to adopt ma-

chine learning approaches that require the least amount of mathematical assumptions on the

source of data while increasing the reliability of the results. Kernel methods can be used to

develop learning algorithms that fit these requirements. They only require the existence of

a source of data, with no further statistical assumptions onit, the existence of a similarity

measure between observations, and the existence of apatternhidden within the data.

Hence, we will assume, in all the following, that the data which is being processed

satisfies the following assumptions:

1. The source of data generates a collection of objectse1,e2, . . . that belongs to amea-

surable observation space(E,S) whereS is aσ -algebra over the setE.

2. There exists a measure space(Ω,Σ,P) (Σ is aσ -algebra overΩ andP : Σ→ R is a

measure overΣ such thatP(Ω) = 1) and a measurable functiong : Ω→ E, ω 7→ e

which outputs are the observationse1,e2, . . . , etc.

3. There exists ameasurable pattern functionψ : E→ [0,a] with a> 0 such that

〈ψ(g)〉=
∫

Ω
ψ(g)dP= 0. (2.1)

8



The first assumption ensures that it is always possible to construct a measure of similar-

ity between observations, which is a crucial requirements for kernel methods. The second

assumption assumes that all observations were effectivelygenerated according to an un-

known measurable functiong. In other words,g is the source of data. The last requirement

claims that there exists apatternhidden within the observations. It assumes that, out of all

possibleeventsin Ω, the images by a pattern functionψ of all corresponding observations

are null on average. The codomain ofψ is a closed interval ofR in order to avoid seek-

ing patterns which values can explode towards infinity. Vapnik [1995] enumerated several

properties regarding the empirical expected values ofψ(g) and its probabilistic bounds. He

established guidelines for powerful learning algorithms that detect patterns within data sets

which are satisfying the general conditions above. We will use the results on these bounds

to generate specialized learning machines that we will nameUnconstrained Learning Ma-

chines.

Data in Supervised Learning

Supervised learning has special requirements depending onthe form of the observation

spaceE. Each element ofE must includetargetcomponents that will be matched against

the rest of the components by the pattern function. The target components are required to

be numerical quantities to allow treatments by numerical algorithms. Nevertheless, non-

numerical targets can still be represented by real-valued components using an encoding

scheme and an appropriate supervised learning algorithm. Target components are necessary

to supervised learning methods since they are meant to recover patterns by matchingknown

targets with the other components of the observation.

Hence, in all the following, the spaceE is assumed to be identical toX×Rp whereX is

a measurable space andp∈N∗. Each observatione∈E is decomposed intoe=(x,y)where

x is an element ofX and the vectory∈Rp is the target ofx. Using Equation 2.1 as a model,

supervised learning algorithms can be built to estimate pattern functionsf : X→ [−a,a]p
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(a> 0) such that

‖ f (x)−y‖6 ε, (2.2)

for all (x,y)∈X×Rp, where‖·‖ is a norm onRp andε > 0 is an arbitrary value. However,

it is possible to simplify this problem by avoiding the use ofa norm onRp. For instance,

Unconstrained Learning Machines will be built to findp pattern functionsf1, . . . , fp (with

fi : X→ [−ai ,ai], ai > 0 for all i ∈ J1, pK) such that

| fi(x)−yi |6 ε, (2.3)

for all (x,yi) ∈ X×R andi ∈ J1, pK, whereε > 0 is an arbitrary value.

Numerical Data: Discrete and Continuous Components

The most particular case for the spaceX is to be isomorphic toNn,Rn or a Cartesian product

of both. In this case, all observations arenumerical data, and their processing depends if

observations have discrete components (X is equivalent toNn), continuous components

(X = Rn), or mixed components.

Measures of similarity between observations with continuous components can be de-

rived from the usual norms onRn such as the Euclidean norm. These components are often

measurements with physical dimensions which can be, for example, records of pressure,

electrical intensities, frequencies, etc. This type of observations often receive apretreat-

mentthat aims to render their components independent of the origin of their physical scale

and the choice of their physical units.

Discrete components can beordered, or not. Ordered components correspond to nu-

merical values on ascaleor finite amountssuch as a number of days, the cardinality of

a set or a magnitude. The measure of similarity between two observations with this type

of components can be the same as the measure of similarity between observations with

continuous components and they can receive the same type of pretreatment, if any.
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On the other hand, non-ordered discrete components are identical tocategorical values

which are elements belonging to a finite countable set that has no binary relation between

its elements. For example, categorical values can represent the type of an object, or an

indication of magnitude (e.g., red or blue). The measures ofsimilarity between two ob-

servations with categorical components are difficult to represent, and they strongly depend

how the categorical data has beenencodedi.e. represented with numbers inN.

However, ifx= (x1, . . . ,xm) ∈
⊗m

i=1Xi = X is a categorical observation withmcategor-

ical componentsx1, . . . ,xm taking values inm finitecategorical spacesX1, . . . ,Xm, then it is

always possible to encodex into az∈ {0,1}n⊂ Nn with n= ∑m
i=1 |Xi |. To do so, eachxi is

mapped into{0,1}|Xi | such that thej-th bit is equal to 1 and all the others are equal to 0 if

xi is equal to thej-th element of the setXi. For example, ifXi = {’a’ , . . . , ’f’ }, thenxi = ’c’

is represented by 001000. This representation with binary strings is the most intuitive way

to handle categorical data and we will assume, in all the following, that categorical data is

always given under a binary form.

Structured Data

The spaceX can correspond to more abstract objects which are defined by special struc-

tures such as time series, matrices, graphs and strings. Although these objects can also be

represented via numerical data, the pretreatment and the measures of similarity used on

numerical data can be both meaningless and inappropriate for these objects. There is a vast

number of methods for representing and pre-processing these objects which cannot be sum-

marized in this dissertation. The reader should be referredto Shawe-Taylor and Cristianini

[2004] for indications regarding structured data and the appropriate way to represent such

data before treatment with kernel methods.
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2.1.2 Pre-Processing of Numerical Data

Missing Values

The records of some numerical observations inX can be sometimes incomplete and some

of their components might be missing. Many learning machines were not built to process

observations with missing components in order to recover a pattern hidden within a data

set. Consequently, several strategies can be adopted in order to circumvent possible lack of

records in the observation set.

The first approach is to remove observations with missing components. This method is

not detrimental when data sets contain a significant number of observations that are similar

to the ones that are being deleted. Furthermore, it has the advantage to be a form of data

thinning which can reduce the time needed to process a large number of observations.

The other strategies depend on the nature of the missing values which can be of two

kinds:

1. The components are missing because they were not recorded. This case implies that

the missing values actually existed and were subject to a pattern, but they are absent

from the records because of a failure of the recording equipment.

2. The components were never generated. In this case, the pattern behind this observa-

tion is inconsistent with the rest of the observations and these particular observations

with missing values must be deleted.

There is a possibility toinfer the missing components in the scenario where the absence

of data is due to a failure to record it. The missing values canbe interpolatedfrom other

observations with similar components. However, it requires to find first the pattern hidden

within the data which leads to a causality dilemma similar tothe paradox of the chicken

and the egg. Nevertheless, practical approaches are using observations with no missing

values to estimate a pattern between components, then use this pattern to interpolate the
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missing values, then augment the set of observations with the interpolated values and use

it to search again for a new pattern.

There are numerous techniques which are used to infer missing components. They vary

in sophistication and processing time. When data sets are large, it is highly recommended

to select simple techniques with low time complexities suchas the calculation of simple

statistical measures. For example, a subset of the observation set can be selected such that

it contains observations with no missing components which are similar to the observation

with missing components. Then a measure of central tendencyof the empirical distribu-

tion of the components (the median values or the arithmetical means) can then be used to

substitute the missing components.

Data Visualization

Patterns in numerical data can be trivial to detect when the data inX belongs to spaces that

have at most four dimensions, since we are all gifted with a biological processor which

is extremely potent at analyzing patterns inR4 (i.e. the human brain). Hence, visual aids

can be powerful tools to infer good candidate patterns or appropriate pretreatments, even

for large and very complex sets of data. However, it becomes extremely difficult to guess

patterns when the data belongs to a space with a great number of dimensions.

Fortunately, there are approaches that can be used to visualize multidimensional data,

and they often come in two stages:

1. The first stage is about the construction of an optimal mapφ : X→ Rn so that the

new coordinates give a better sense of the geometrical structure of the cloud of ob-

servations in the higher dimensional spaceX.

2. The second stage concerns the plotting of the mapped data into 1-D, 2-D or 3-D

graphs or tables, in a way that is most convenient to detect similarities between ob-

servations.
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Principal Component Analysis (PCA) [Pearson, 1901], Kernel PCA (KPCA) [Diaman-

taras and Kung, 1996; Schölkopf et al., 1997; Mika et al., 1999] and Self-Organizing Maps

(SOMs) [Kohonen, 1982, 2001; Kohonen and Mäkisara, 1986] form the core of the first

stage. A PCA aims to map data linearly onto a subspace ofX which basis corresponds to

the axes of maximum inertia of the cloud of observations. Theinertial axes, called principal

axes, are ordered by decreasing explained variance. Hence,when the principal components

of the mapped observations are truncated to the first one, two, three or four variables, the

resulting projection in a lower dimensional space is the best linear projection possible,

in the sense that it maximizes the explained variance in the lower dimensional space (see

Figure 2.1).

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

setosa
versicolor
virginica

Figure 2.1: Bi-dimensional plot of the first two principal components after a PCA of the
observations on made on three distinct species of iris flowers by Fisher [1936]. Observa-
tions tend to cluster according to the species the flower belong to.

A KPCA is a PCA that is performed when the observations are initially mapped into

an higher dimensional Hilbert space where its metric is induced by the choice a particular
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type of function calledkernel. The inertial axes are warped according to the kernel in order

to best fit the mapped cloud of observations. This is, in essence, a nonlinear extension of a

PCA using kernel methods.
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Figure 2.2: 2-D SOM of Fisher’s iris data set [Fisher, 1936] and mapped observations.
Like for the PCA, observations tend to cluster according to the species the flower belong
to.

SOMs is a family of Artificial Neural Networks (ANNs) which maps observations onto

a regular two or three dimensional grid. Each node of the gridis associated with an ANN

model which is computed with the SOM algorithm (see Figure 2.2). An observation is

mapped onto the grid node which model has the smallest distance from the observation,

according to some chosen metric (which can be defined by a kernel). Similar to the KPCA,

SOMs are also nonlinear generalizations of a PCA [Yin, 2007].

The second stage of treatment for the visualization of multidimensional data consists
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in representing the mapped data in a convenient graph or table. If the mapped data has a

single dimension, then histogram-related plots are the most suitable to display the data. If

the mapped data has two or three dimensions, then 2-D or 3-D scatter plots (see Figures 2.1

and 2.2) are the best. It is possible to visualize up to six dimensions at once with the 3-D

plot of a vector field, but, for more dimensions, only parallel coordinates plots [d’Ocagne,

1885] (and related plots such as Andrews plots [Andrews, 1972] and generalized parallel

coordinates plots [Moustafa, 2009]) can visualize the mapped data (see Figure 2.3).
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Figure 2.3: Parallel coordinates plot of Fisher’s iris data set [Fisher, 1936] over the first two
principal coordinates after a PCA and normalization. Only the the first and third quartile
envelopes as well as the median values for each flower speciesare plotted.

Normalization of Continuous Numerical Data

Continuous numerical data is often the result of physical measurements which are linked

to the choice of arbitrary physical units and scales. When anobservation contains sev-

eral physical quantities measured with different units and/or different scales, the cloud of

observations in the spaceX becomes arbitrarily stretched along some axes and this can
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significantly impact the relevance of other crucial components and make patterns unde-

tectable.

To remedy the problems caused by the choice of arbitrary units and scales, anormal-

izationprocedure determines statistical measures of central tendency and dispersion (vari-

ability) for every component of all the observations. In other words, givenℓ observations

x1, . . . ,xℓ in Rn, we computen measures of central tendencym1, . . . ,mn andn measures of

dispersions1, . . . ,sn from the empirical distributions of every component. For example, the

mi ’s can be the means (or medians, if there are too many outliers) of the components and

thesi ’s can be the standard deviations (or inter-quartile ranges) of the components. Once

the statistical measures are determined, all the observationsx1, . . . ,xℓ are transformed into

vectorsz1, . . . ,zℓ in Rn, which components are dimensionless, by using the following for-

mula:

(zi) j =
(xi) j −mj

sj
, (2.4)

for all i in J1, ℓK and all j in J1,nK. If follows that the components of the vectorsz1, . . . ,zℓ

have a similar variability around zero, which makes them homogeneous for each observa-

tion.

2.1.3 Data Thinning

This section only covers data thinning methods that have been developed to be used with

ULMs. A large number of traditional sampling techniques canbe used to thin large data sets

[Cochran, 1977; He and Garcia, 2009], but the applications that led to investigate ULMs

required data thinning methods which keep the overall geometrical structure of the cloud of

observations in the spaceX. A couple of approaches were developed to reduce the burden

of processing large amounts of redundant (or quasi-redundant) observations. One approach

is independent of the search for a pattern function and is based on the idea of a Voronoi

tessellation using metrics defined by kernels. The other approach is a pipe-lining scheme
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based on the idea that the properties of the estimate of the pattern function graduallyemerge

as the ULM is sequentially fed with batches of observations.

Neighborhood Clearing

This data thinning approach is based on the use ofkernels(see Section 2.2) which can

define metrics. If we consider a finite setX = {x1, . . . ,xℓ} of observations inX, then,

given a scalarτ > 0 and a kernelkσ : X×X→ R, we can define a closed ball of radiusτ

centered atx∈X by

Bτ [x] =
{

z∈ X : kσ (x,x)+kσ (z,z)−2kσ(x,z)6 τ2}. (2.5)

We can notice that, for the metric induced by the kernelkσ , the observationsz∈X which

are inBτ [x] are “similar” tox∈X , up to a thresholdτ > 0. Hence, these other observa-

tions arequasi-redundant since they do not differ much from arepresentingobservation

x for a given similarity measure (the distance induced by the kernel). Consequently, the

observationsz∈X which are inBτ [x] can be removed from the setX without inducing

great modifications in the shape of the cloud of observationsin X. If we repeat this step

sequentially, then only a subset of the original setX remains for which no distance be-

tween observations is smaller thanτ for the metric induced by the kernelkσ . Algorithm

2.1 implements this Neighborhood Clearing method.

Iterative Construction of the Pattern Function Estimate

This data thinning approach was based on an experimental result: as the number of ob-

servations grows larger, the pattern function estimate given by ULMs quickly stalls and

new observations barely bring any change to it. This statement is very accurate if the first

batches of observations that are fed to ULMs were chosen so asto keep the geometrical

shape of the entire cloud of observations in the spaceX.
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Algorithm 2.1: Neighborhood Clearing

Function [S] = NeighborhoodClearing (X ,kσ ,τ)
Input : setX , kernelkσ with parameterσ , thresholdτ > 0.
Output : setS.

1 S←X , L← |S|, i← 1
2 while i < L do
3 for j ∈ J1, iK do v j ← sj

4 a← kσ (si ,si)− τ, l ← i
5 for j ∈ Ji +1,LK do
6 if a+kσ (sj ,sj)> 2kσ (si ,sj) then l ← l +1, vl ← sj

7 end
8 V←{v1, . . . ,vl}, S←V, L← |S|, i← i +1
9 end

10 return S

Consider a finite setX = {x1, . . . ,xℓ} of observations inX and the corresponding set

Y = {y1, . . . ,yℓ} of targets. Algorithm 2.1 can be used iteratively to build a partitionX =

{X1, . . . ,Xm} of X (16 m6 ℓ) and then deduce a partitionY = {y1, . . . ,ym} of Y . Any

setXi in X will be such that ax∈ Xi has “cleared its neighborhood” up to a certain distance

and all the sets inX have the same geometrical shape overall. Iff1 is pattern function

estimate given by an ULM fromX1 andy1, then, for alli ∈ J1, |Xm|K, we have that

f1
(
(Xm)i

)
= (ym)i + r i , (2.6)

where ther i ’s in R are residuals between the outputs off1 on a test setXm and the target

ym. If the residuals are too large, then we are forced to computea new functionf2 from

the setX2 that accounts for the residuals. However, we can use the results found during the

computation off1 to describe parts off2. For instance, the target vectory2 is replaced by

the residual betweeny2 and the outputs off1 overX2, i.e.

(y2)i ← (y2)i− f1
(
(X2)i

)
, (2.7)

for all i ∈ J1, |X2|K. Then a pattern function estimatef2 is computed by an ULM fromX2
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andy2 and residuals are calculated similarly to Equation 2.6. If the residuals are too large,

then the scheme is repeated or until all sets inX have been used, or until residuals are

deemed sufficiently small. The resulting pattern function estimate f afterk iterations will

be equal to

f =
k

∑
i=1

fi . (2.8)

This approach is both a data thinning method and a method to speed up the computation of

pattern functionf . Indeed, the computational time is a convex polynomial function π of

the sizel of the observation set. Hence, if the data setsX1, . . . ,Xm have reasonably small

sizesl1, . . . , lm, then we will have

π
( m

∑
i=1

l i

)

≫
k

∑
i=1

π(l i), (2.9)

wherek is the number of iterations needed to terminate the procedure.

Algorithm 2.2 implements the procedure that iteratively constructs a pattern function

estimate. The algorithm is fast only if the computational step on line 5 and the iterated

summations of the function estimates are fast to compute. Itcan be noted that, when using

ULMs, the different functionsf1, . . . , fk can be defined with different kernels each time

(see Sub-Section 2.3.2).

2.2 Kernels

Kernels play a major role in Machine Learning. Despite that the techniques using them

have been known for more than half a century [Aizerman et al.,1964; Courant and Hilbert,

1953], their utilization by the machine learning communityis less than thirty years old.

These functions are used to construct, in a implicit manner,simple machine learning frame-

works that efficiently handle highly nonlinear patterns in observational data. They provide

an implicit way to define new metrics which is a crucial characteristic when two objects
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Algorithm 2.2: Iterated Function Estimate

Function [ f ] = IteratedFunctionEstimate (X,Y,ε)
Data: iteration limitkmax> 0.
Input : partitionsX= {X1, . . . ,Xm} andY= {y1, . . . ,ym} of the setsX andY ,

toleranceε > 0.
Output : function f .

1 kmax←min(kmax,m−1), r ← ym, k← 0
2 while ‖r‖> ε and k6 kmax do
3 k← k+1
4 for i ∈ J1, |Xk|K do (yk)i ← (yk)i−∑k−1

j=1 f j
(
(Xk)i

)

5 Compute an estimatefk usingXk andYk.
6 for i ∈ J1, |Xm|K do r i ← r i− fk

(
(Xm)i

)

7 end
8 f ← ∑k

i=1 fi
9 return f

need to be compared. Kernels possess exceptional closure properties that gives them ex-

treme flexibility in many applications.

2.2.1 Definitions and Properties

A kernel is a simple function of two variables over a measurable space with very simple

properties. It must be real-valued, symmetric with respectto its argument and square-

integrable. The following definition was adapted from Mercer [1909]:

Definition 2.1 (Kernel). If X is a measurable space, then akernel is a real-valued

function over X×X that is symmetric and square-integrable.

Kernels need to be real-valued to allow comparisons of measures of similarity between

elements that belong to the measurable spaceX. The symmetry and square-integrability

properties of kernels are properties which are necessary, but not sufficient, to the construc-

tion of new metrics. The sufficiency aspect comes with thefinite positive definiteproperty

defined below, which was adapted from Saitoh [1988]:
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Definition 2.2 (Finitely Positive Semi-Definite Function). If X is a measurable space,

then a function f: X×X→ R is finitely positive semi-definiteif it is symmetric and if

Λ =
m

∑
i=1

m

∑
j=1

f (xi ,x j)λiλ j > 0,

for any m∈ N, λi ∈ R, xi ∈ X and i∈ J1,mK. If Λ = 0 only forλ1 = . . .= λm = 0, then

f is finitely positive definite.

The key aspect of kernel methods is that finitely positive semi-definite kernels can be

expressed as inner products in Hilbert spaces. This result was first showed by Mercer in

1909 in a theorem that now bears his name:

Theorem 2.1(Mercer’s Theorem). Let X be a measurable space and let kσ : X×X→R

be a kernel. Then there exists a unique Hilbert space F and a map φ : X→ F such that

kσ (x,y) = 〈φ(x),φ(y)〉F ,

for all (x,y) ∈ X2 if and only if the function kσ is a finitely positive semi-definite func-

tion.

Theorem 2.1 implies that, given a finitely positive semi-definite kernelkσ , the function

φ : X → F, x 7→ kσ (x, ·) is a linear map in an Hilbert spaceF uniquely defined bykσ .

Hence, the trick used by kernel methods consists into replacing complex nonlinear relations

between objects inX (or just dot products) by an expression made of finitely positive semi-

definite kernels. By this trick, nonlinear relations becomeequivalent to linear mappings in

Hilbert spaces for which it is unnecessary to properly describe their (complicated) metrics

since they are induced by the choice of the kernels. Since processing and interpreting

linear maps is trivial, complex nonlinear transformationsin X become simple operations

in Hilbert spaces and these transformations are easily computed with the help of simple
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kernels. The complicated mapφ from the observation spaceX (sometimes called theinput

space) into the induced Hilbert space (called thefeature space) needs not to be described

or known, which is saving computational time and resources.

Geometry in the feature space is directly described by the properties of any Hilbert

space which are reformulated with the help of kernels. For instance, the Cauchy-Schwarz

inequality or the Pythagorean theorem can be rewritten by replacing all inner product ex-

pressions with kernel equivalents. This gives an interpretation of angles and distances in

the Hilbert space induced by a given kernel, and makes it easier to design novel machine

learning processes which are based on the geometrical transformation of the mapped cloud

of observations.

Corollary 2.1 (Geometry in the Feature Space). Let X be a measurable space and let

kσ : X×X→R be a finitely positive semi-definite kernel. The kernel kσ uniquely defines

a Hilbert space F and a mapφ : X→ F where there exists aθ ∈ [0,π ] such that

kσ (x,y) = cos(θ)
√

k(x,x)k(y,y),

for all x and y in X. Furthermore, we have that

∥
∥
∥
∥
∥

m

∑
i=1

aiφ(xi)

∥
∥
∥
∥
∥

2

F

=
m

∑
i=1

m

∑
j=1

aia jkσ (xi ,x j) = atKa,

for all ai ∈ R and xi ∈ X, i∈ N. The Gramian matrixK is called thekernel matrixand

is, by the definition of kσ , a symmetric positive semi-definite matrix.

Proof. SinceF is an Hilbert space where the inner product is defined bykσ according to

Theorem 2.1, the first equality is the direct result of the Cauchy-Schwarz inequality and the

second equality is given by the Pythagorean theorem.

The space of finitely positive semi-definite kernels is closed under some algebraic op-

erations. Hence, it is possible to construct more elaborated kernels from simpler kernels by
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using additions, multiplications, limits, etc. The closure properties are listed below:

Theorem 2.2(Closure Properties of Kernels). Let X and Z be two measurable spaces

and letφ be a map from X to Z. Let k (respectivelyκ) be a finitely positive semi-definite

kernel over X2 (respectively Z2). Let p be a polynomial with real positive coefficients.

Finally, let x and y be two elements of X. The following functions are finitely positive

semi-definite kernels:

• ∏
i>0

ki and lim
i→∞

ki , where{ki}i∈N is a sequence of finitely positive semi-definite

kernels that converges pointwise.

• p(k), exp(k) and(x,y) 7→ κ(φ(x),φ(y)).

• (x,y) 7→
∫

X
f (x,z) f (y,z)dz where f is a symmetric function.

• (x,y) ∈ (Rn)2 7→ xtKy ∈ R for any positive semi-definite n×n matrixK .

These closure properties are extremely useful for quickly building simple kernels that

measure very complicated similarities between objects belonging to abstract measurable

spaces. This allows the processing of very complicated objects by learning algorithms and

the easy detection of non-trivial nonlinear patterns hidden within data.

2.2.2 Kernels on Categorical Data

Hamming Distance

Measuring the likeliness between two observations containing an equal number of cate-

gorical components is similar to the computation of the number of positions at which the

symbols of two strings are different. In other words, the measure of similarity between two

such observations is based on the Hamming distance between their string representations

[Hamming, 1950].
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Given two stringss1 ands2, the Hamming distance measures the minimum number of

substitutions that are necessary to changes1 into s2 and reciprocally i.e., it measures the

numbers of categorical components that are different betweens1 ands2. Hence, since the

Hamming distance is a metric on the set of strings of equal length, any polynomial with

positive coefficients or Gaussian functionof the Hamming distance between two strings is

a kernel on categorical data. When the data is in binary form,each possible string of length

n is a vertex of ann-dimensional unit hypercube and the Hamming distance between two

string is equivalent to the Manhattan distance between the vertices.

If two observationss1 ands2 with n categorical components are represented in binary

form (i.e. (s1,s2) ∈ {0,1}n×{0,1}n), then Algorithm 2.3 given by Wegner [1960] com-

putes the Hamming distancedH(s1,s2) between these two observations. This algorithm is

extremely efficient and has a time complexity proportional to the Hamming distance itself

rather than the binary length of the inputs.

Algorithm 2.3: Hamming Distance

Function [dH] = HammingDistance (s1,s2)
Input : Sequences of bitss1 ands2.
Output : Hamming distancedH.

1 dH← 0
2 s← s1⊕s2 // Symbol⊕ stands for exclusive or
3 while s 6= 0 do
4 dH← dH +1
5 s← s∧ (s−1) // Symbol∧ stands for logical and
6 end
7 return dH

Hamming Distance Kernel

Couto [2005] provides another kernel for categorical data which is based on the Hamming

distance. By defining a mapping of a string into a specially constructed feature space

of categorical objects, the author is able to define a new measure of similarity between
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categorical data.

Let v= (v1, . . . ,vn) ∈
⊗n

i=1Xi = X be a categorical observation withn categorical com-

ponentsv1, . . . ,vn taking values inn finite categorical spacesX1, . . . ,Xn. For a coordinate

u∈ X, Couto defines a mapping

φu : X→ R, v 7→ σdH(u,v) =
n

∏
i=1

σ δui ,vi , (2.10)

whereσ is in (0,1) and whereδ is the Kronecker delta. Therefore, given two stringss1

ands2 in X, we can define the output of the Hamming distance kernel as thesummation of

all possible productsφu(s1)φu(s2) with u∈ X. This leads to the following definition of a

Hamming distance kernel:

Definition 2.3 (Hamming Distance Kernel). Let X be the Cartesian product of n finite

sets of symbols X1, . . . ,Xn of cardinality m1, . . . ,mn, and let (s1,s2) ∈ X2. Then the

Hamming distance kernelkσ is defined as

kσ : X2→ R, (s1,s2) 7→ ∑
u∈X

n

∏
i=1

σ δui ,(s1)i σ δui ,(s2)i ,

whereσ is in (0,1) and whereδ is the Kronecker delta.

Couto showed that this kernel can be computed recursively with Algorithm 2.4. For

two stringss1 ands2 in X of lengthn, this algorithm requires 5(n+1) FLOPS to compute

the output of the Hamming distance kernel.

Diffusion Kernel for Categorical Data

Kondor and Lafferty [2002] proposed a different mapping than Couto. They considered

each categorical objects∈ X to be a vertex of a graph such that two vertices are connected

by an edge only if their categorical objectss1 ands2 differ by the value of one component
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Algorithm 2.4: Hamming Distance Kernel

Function [k] = HammingDistanceKernel (s1,s2,σ ,m)
Input : Stringss1 ands2, parameterσ and vectorm with mi = |Xi | for i = 1, . . . ,n.
Output : Kernel outputk.

1 a← σ2

2 b← 1−σ
3 c← b(1+σ)
4 k← 1
5 for i ∈ J1,nK do
6 k←

(
ami−bδ(s1)i ,(s2)i +c

)
k

7 end
8 return k

(i.e.,dH(s1,s2) = 1). Using a bandwidth parameterσ > 0, they adapted a diffusion kernel

on graph for categorical data as follows:

Definition 2.4 (Diffusion Kernel for Categorical Data). Let X be the Cartesian product

of n finite sets of symbols X1, . . . ,Xn of cardinality m1, . . . ,mn, let (s1,s2) ∈ X2 and let

σ > 0. Then thediffusion kernelfor categorical data kσ is defined as

kσ : X2→ R, (s1,s2) 7→
n

∏
i=1

(
1−e−miσ

1+(mi−1)e−miσ

)δ(s1)i ,(s2)i
,

whereδ is the Kronecker delta.

2.2.3 Kernels on Numerical Data

There is a wide variety of kernels on numerical data which is blossoming in various fam-

ilies of such functions, each one having desirable properties for certain kind of problems.

Kernels can be chosen from a family or built specifically for one particular problem. In the

later case, one should keep in mind that kernels represent a measure of distance and angle

into some (possibly higher dimensional) Hilbert space. Theconsiderations related to what

constitutes the “closeness” of two distinct observations is left to the person modeling the

classification problem and the nature of the numerical data.

27



Kernel on Real Numbers

By using the closure properties of kernels (see Sub-Section2.2.1), it is possible to build

kernels on real numbers in order to obtain kernels between vectors. By direct application

of the second point of Theorem 2.2, the simplest kernel on real numbers is

k : R2→ R, (x,y) 7→ xy. (2.11)

For example, the polynomial kernel (see Definition 2.5) is directly derived from Equa-

tion 2.11. But component products inside kernel between vectors (e.g., the polynomial

kernel) can be replaced by more elaborated relations in order to form special kernels. If

observations belong toR+ for example, then spline kernels can be directly obtained from

polynomial or ANOVA kernels and the function

k : R2
+→ R+, (x,y) 7→ µ

(
[0,x]∩ [0,y]

)
= min(x,y), (2.12)

whereµ is the Lebesgue measure onR. Other constructions are using

kσ : (R∗+)
2→ R∗+, (x,y) 7→ µ

(
[0,1/xσ ]∩ [0,1/yσ ]

)
=

1
max(x,y)σ , (2.13)

with σ > 0. Using Theorem 2.2, both Equations 2.12 and 2.13 can be combined to form

k : (R∗+)
2→R∗+, (x,y) 7→

min(x,y)
max(x,y)

. (2.14)

Lastly, if there exists aσ > 0 such that(x,y) ∈ [0,σ ]2 then the following function is a

positive definite kernel on[0,σ ]:

kσ : [0,σ ]2→ [0,σ ], (x,y) 7→ σ −max(x,y). (2.15)
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Kernels Based on Polynomials Kernels

The most basic kernels over(Rn)2 are derived from positive definite bilinear forms such as

the Euclidean dot product. They are the direct results of Theorem 2.2.

Definition 2.5 (Kernels from Bilinear Forms). If Σ = {σi j}ni, j=1 is a real symmetric

positive definite n×n-matrix, then the following function is a positive definitekernel:

kσ : (Rn)2→ R, (x,y) 7→ xtΣy =
n

∑
i=1

n

∑
j=1

σi j xiy j .

In particular, if Σ = In then kσ (x,y) = k(x,y) = xty (Euclidean dot-product).

Since any polynomial with positive coefficients of a kernel is also a kernel, we can

easily derive the definition of a polynomial kernel from Definition 2.5 and the binomial

theorem.

Definition 2.6 (Polynomial Kernel). Let Σ = {σi j}ni, j=1 be a real symmetric positive

definite n×n-matrix, letσn2+1 > 0 and letσn2+2 ∈ N∗. Then the following function is

called thepolynomial kernel:

kσ : (Rn)2→ R, (x,y) 7→
(

σn2+1+
n

∑
i=1

n

∑
j=1

σi j xiy j

)σn2+2

.

Shawe-Taylor and Cristianini [2004] showed that the RKHS with the polynomial kernel

as reproducing kernel is the space of all functionsx 7→ xν1
1 xν2

2 . . .xνn
n such that∑n

i=1νi 6 ν,

which is a space of dimension
(n+ν

ν
)
. If the RKHS is further refined so that it becomes the

space of all functionsx 7→ xν1
1 xν2

2 . . .xνn
n such that(ν1, . . . ,νn) ∈ {0,1}n, then we obtain the

all-subsets kernel.
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Definition 2.7 (All-Subsets Kernel). If {σi}ni=1 ∈ Rn, then the following function is

called theall-subsets kernel:

kσ : (Rn)2→ R, (x,y) 7→
n

∏
i=1

(1+σixiyi).

If the RKHS is the space of all functionsx 7→ xν1
1 xν2

2 . . .xνn
n such that(ν1, . . . ,νn) ∈

{0,1}n and∑n
i=1νi = ν (which is a space of dimension

(n
ν
)
), then we obtain the ANOVA

kernel of degreeν.

Definition 2.8 (ANOVA kernel of degreeσ ). Let{σi}ni=1∈Rn and letσn+1∈N∗. Then

the following function is called theANOVA kernel of degreeσn+1:

kσ : (Rn)2→ R, (x,y) 7→ ∑
16i1<···<iσn+16n

σn+1

∏
j=1

σi j xi j yi j .

Shawe-Taylor and Cristianini also showed that the ANOVA kernel can be computed

recursively using a dynamic programming evaluation with 2σn+1
(
2n+1−σn+1

)
FLOPS

(see Algorithm 2.5). A more general and flexible family of such kernels can be constructed

from the so-calledgraph kernel.

Kernel Based on Radial Basis Functions

A Radial Basis Function (RBF) is a real-valued function onRn of the form Φc : Rn→

R, x 7→ φ
(
‖x−c‖Σ

)
whereφ is a real-valued function onR, Σ is a real symmetric positive

definiten×n-matrix, andc ∈ Rn. Givenc = 0, if the functionk : (Rn)2→ R, (x,y) 7→

Φ0(x+ εy) with ε ∈ {−1,1} is positive definite, then this is a positive definite kernel.In

the same fashion, we have that:
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Algorithm 2.5: ANOVA Kernel

Function [k] = AnovaKernel (x,y,σ )
Input : Vectorsx, y in Rn, and vectorσ ∈ Rn+1.
Output : Kernel outputk.

1 M ← 0(σn+1+1)×(n+1)

2 for i ∈ J1,n+1K do
3 M1i ← 1
4 end
5 for i ∈ J2,σn+1+1K do
6 Mi,i−1← 0
7 for j ∈ Ji,n+1K do
8 Mi, j ←Mi, j−1+σ jx jy jAi−1, j−1

9 end
10 end
11 return Mσn+1+1,n+1

• If the functionk : (Rn)2→ R, (x,y) 7→ Φ0(x · y) (where· is the Hadamard product)

is positive definite, then this is a positive definite kernel.

• If the functionk : (Rn)2→ R, (x,y) 7→ φ
(
dk(x,y)

)
(wheredk : (Rn)2→ R+ is the

norm induced by a positive definite kernelk) is positive definite, then this is a positive

definite kernel.

Among all these combinations, only RBF of the formk : (Rn)2→ R, (x,y) 7→ Φ0(x−y)

are invariant by translation and rotation. This is the case of the widely used Gaussian RBF

kernel.

Definition 2.9 (Gaussian RBF kernel). Let Σ = {σi j}ni, j=1 be a real symmetric positive

definite n× n-matrix and letσn2+1 ∈ R∗+. Then the following function is called the

Gaussian RBF kernel:

kσ : (Rn)2→ (0,1], (x,y) 7→ exp

(

−σn2+1

n

∑
i=1

n

∑
j=1

σi j (xi−yi)(x j −y j)

)

.
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Despite being the most widely used kernel, Chen [2004] showed that the Gaussian

RBF kernel is not robust to outliers. The associated mapx 7→ kσ (x, ·) has images into

an infinite-dimensional Hilbert space [Burges, 1998]. The Gaussian RBF kernel can be

directly derived by applying Theorem 2.2 to polynomial kernels.

2.2.4 Kernels for Real-Valued Physical Data

For problems that estimate unidentified nonlinear patternsin Rn, it often becomes neces-

sary for kernels to give the same output for the very same pairof real-valued vectors inRn

that has been translated and/or rotated because of externalfactors. In other words, non-

linear patterns inRn must be estimated the same way even if their position or orientation

shifted during the measurement process. This calls for a special family of positive definite

kernels that do not have a privileged frame of reference. These kernels must be invariant

by translation and rotation.

Distances and Angles in the RKHS

Given a symmetric positive definite kernelk : (Rn)2→ R, we have thatk is invariant by

translation and rotation if, for a pair of vectorx andy in Rn, the following identity holds

for all vectorst ∈ Rn and for alln×n real orthonormal matricesQ:

k(Qx+ t,Qy+ t) = k(x,y). (2.16)

A translation-invariant kernel has additional properties. For instance, ifk(x+ t,y+ t) =

k(x,y), thenk(x,y) = k(x− y,0) and k(x,x) = k(0,0) > 0, sincek is positive definite.

This gives a new interpretation of distances and angles in the RKHSF for which k is the

reproducing kernel. The distance between the images ofx andy by the mappingx 7→ k(·,x)
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(see Corollary 2.1) is such that

‖k(·,x)−k(·,y)‖2 = k(x,x)+k(y,y)−2k(x,y). (2.17)

If k is translation-invariant then‖k(·,x)−k(·,y)‖2 = 2
(
k(0,0)−k(x,y)

)
. Since the above

quantity is always positive, we have thatk(x,y) 6 k(0,0) for all x andy in Rn. Actually,

the measure of angles inF leads to better conclusions regarding the bounds of the quantity

k(x,y). The Cauchy-Schwarz inequality is expressed by

|k(x,y)|6 ‖k(·,x)‖‖k(·,y)‖=
√

k(x,x)k(y,y) = k(0,0), (2.18)

for which we deduce thatk(0,0) 6= 0 except for the trivial casek≡ 0. It follows that all

measures of angles in the RKHSF have their values in the interval[−k(0,0),k(0,0)] and

therefore that

‖k(·,x)−k(·,y)‖6 2
√

k(0,0), (2.19)

for all x andy in Rn. In other words, whatever the distance between two vectors in Rn

is, the distance between their images in the RKHSF for which the reproducing kernel is

translation-invariant is always bounded by the quantity 2
√

k(0,0).

Radial Basis Functions

Consider a continuous RBFΦ : Rn→ R, x 7→ φ(‖x‖Σ) where‖·‖Σ is the norm induced by

the symmetric positive definiten×n matrixΣ onRn. The functionk : (Rn)2→R, (x,y) 7→

Φ(x−y) is real-valued, continuous and symmetric. Ifk is positive definite, i.e. if

φ(0)
m

∑
i=1

λ 2
i +2

m

∑
i< j

φ(xi j )λiλ j > 0, (2.20)
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for any m∈ N, λi ∈ R, xi j ∈ R+ and (i, j) ∈ J1,mK× J1,mK, then there exists a unique

RKHS withk as the reproducing kernel. We can deduce from Equation 2.20 acondition for

which k is not positive definite. For example, letm= 2, λ1 = −1 andλ2 = 1, the function

k is not positive definite if there exists ax ∈ R+ such thatφ(0) < φ(x). If λ1 = λ2 = 1,

thenk is not positive definite if there exists ax∈ R+ such thatφ(0) < −φ(x). Hence, we

conclude thatk is not positive definite if there exists ax ∈ R+ such thatφ(0) < |φ(x)|.

Another trivial deduction is thatk is not positive definite ifφ(0) < 0 (m= 1 andλ1 = 1).

Consequently,φ must be such thatφ(0)> 0 and|φ(x)|6 φ(0) for anyx∈ R+.

Summary of Properties

A positive definite kernelk : (Rn)2→ R that is suitable for real-valued vectors in physics

must be invariant by translation and rotation, and therefore must verify at least the following

properties:

• k(x,x) = k(0,0)> 0 for anyx ∈ Rn.

• k(x,y) ∈ [−k(0,0),k(0,0)] for anyx andy in Rn.

• ‖k(·,x)−k(·,y)‖=
√

2
(
k(0,0)−k(x,y)

)
6 2
√

k(0,0) for anyx andy in Rn.

If the kernelk is derived from a radial basis functionφ taking the Euclidean distance of

two vectors as argument, then the positive definite propertyof k implies that:

• φ(0)> 0.

• φ(x) ∈ [−φ(0),φ(0)] for anyx∈ R+.

• ∀(a,b) ∈ R2 and∀x∈ R+, (a2+b2)φ(0)+2abφ(x)> 0.

These properties rules out many radial basis functions suchas the multi-quadric function

φ :R→R+, x 7→
√

x2+c2 wherec 6=0, and the thin-plate spline functionφ :R∗+→R, x 7→

x2 logx.
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Examples of Suitable Kernels

The output of a kernelk can be considered as a measure of likeliness between the two

input observations. InRn, the greater the Euclidean distance between two vectorsx andy

is and the lesser their similarity is. Hence, ifk : (Rn)2→ R, (x,y) 7→ φ(‖x−y‖Σ), then

φ : R+ → R should be a continuous and decreasing function such thatφ(R+) ⊆ [0,σ1]

with σ1 > 0. Additionally, the rate at whichφ decreases can be controlled with a parameter

σ2 > 0 (see Figure 2.4).

σ1

φ(
x)

x

σ1e−σ2x2

σ1
1+σ2x2

σ1
ln(e+σ2x2)

0

Figure 2.4: Examples of suitable radial basis functions.

2.3 Estimating Functions with Kernels

As mentioned in Sub-Section 2.1.1, the aim of supervised learning is to find anbounded

pattern function that links an observationx in a measurable spaceX to a targety in Rp such

that

| f (x)−yi |6 ε, (2.21)
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wherei ∈ J1,mK andε > 0 is an arbitrary value. In this study, the functionf is modeled

by kernels with the help of the closure properties mentionedin Theorem 2.2. Equation

2.21 represents the need to arbitrarily constrain the deviations of the outputs off from

the targets associated with specific observations. This constraint can belocally satisfied

by attempting to minimize an empirical error measure over a set of collected observations

X = {x1, . . . ,xℓ} ⊂ X. However, we also need to guarantee that the pattern function f will

also behave as in Equation 2.21globally. To do so, it is necessary to introducegeneraliza-

tion errorsand the means to minimize them (see Sub-Section 2.3.4). The minimization of

the generalization error depends both on the representation of the pattern functionf (see

Sub-Section 2.3.2) and the notion of Rademacher complexityintroduced in Sub-Section

2.3.3.

2.3.1 Type of Supervised Learning Problems

There exist two main categories of problems in supervised learning: classification problems

and regression problems. The observation spaceX remains the same in both categories, but

the target space is different. Inbinary classification problems, targets arbitrarily belong

to the set{−1,+1} ⊂ R without loss of generality. If a set of data encoded targets with

other symbols, say ’a’ and ’b’ for example, then it is always possible to construct a triv-

ial map from this two-element set into{−1,+1}. Multi-class classification problems are

characterized by targets that belong to a finite set of integers between 1 andm with m be-

ing the number of classes. Like for the binary classificationcase, if targets are encoded

with different symbols than integers from 1 tom, it is possible to construct a map from

that set of symbols intoJ1,mK. Targets for regression problems belong either toR if it is a

single-output regression problem, or toRm if it is a multiple-output regression problem. In

all type of problems, the objective is to find a pattern function f linking observations and

targets, whatever the target set may look like.

The division in classification and regression problems may seem arbitrary since a clas-
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sification problemis a particular kind of regression problem for which the pattern functions

take discrete values. Hence the common use of logistic regression methods to solve prob-

lems of classification. However, different structural approaches may be considered in clas-

sification problems that cannot correspond to similar approaches employed in regression

problems. One of these approaches is used in the case of multi-class classification prob-

lems (see Sub-Section 2.4.2). Classification problems havealso been historically consid-

ered separated from regression problems [Vapnik, 1982], with regression problems being a

generalization of binary classification problems.

2.3.2 Representation of Pattern Functions with Kernels

Besides the nomenclature of the target set and the corresponding type of supervised learn-

ing problems, the choice of the family of pattern functions is the most crucial aspect of the

supervised learning algorithms. In the case of ULMs (and SVMs), the pattern functions are

built from kernels by using the closure properties of Theorem 2.2. The use of kernels to

represent pattern functions is motivated by their geometrical interpretations which can be

made in classification and regression problems (see Corollary 2.1) and the theoretical error

bounds (see Sub-Sections 2.3.3 and 2.3.4) that are involvedwith them.

The geometrical interpretations of kernel methods used in classification problems relate

to the separation of clusters of observations mapped in the induced Hilbert space by hyper-

planes. Linear separation in the feature space has therefore a direct correspondence with

the separation of cluster of observations inX by nonlinear manifolds. Similarly, observa-

tions mapped in the feature space are being fitted by an hyperplane in the case of nonlinear

regression problems.

For reasons which are explained in detail in Sub-Section 3.1.1, the pattern functions are

chosen to belong to a family of functionsG which is defined by

G =

{

x∈ X 7→
ℓ

∑
i=1

αikσ (x,xi)+b∈ R : α tKα 6 B2
}

, (2.22)
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wherekσ is a finitely positive semi-definite kernel, andB> 0 is an arbitrary scalar which

bounds the norm of the elements ofG . Naturally, we may build upon this choice of function

space and generalize the type of possible pattern functionsa bit further. For example,

we may define the function spacesG1, . . . ,Gm induced the choice ofm distinct kernels

k1, . . . ,km similar to Equation 2.22 and define a pattern function as an element of the space

G =

{ m

∑
i=1

ai fi +βi : fi ∈ Gi, i ∈ J1,mK

}

. (2.23)

The point behind the formulation of Equation 2.23 is to definea pattern function with

multiple kernels instead of a single one. This allows the useof different similarity measures

between observations to be taken into account and yield morefitting patterns. ULMs can

directly support the use of multiple kernels at once, provided that the vectorsa and β

in Rm are given beforehand. The tuning of theses vectors can however be made using a

non-convex pattern search (see Sub-Section 2.4.3) but it might result in a computationally

intensive approach. To circumvent this timing problem, onecan refer to the method of

iterative construction of the pattern function estimate that is detailed in Sub-Section 2.1.3.

2.3.3 Rademacher Complexity

The Rademacher complexity of a class of functionG , such as the classes formulated in

Sub-Section 2.3.2, measures the capacity, with respect to aprobability distribution, of the

functions ofG to fit random data [Bartlett and Mendelson, 2001, 2002]. Manyuseful risk

measures associated with kernel methods are relying on the expression of the empirical

value of the Rademacher complexity. These risk measures areprobabilistic measures that

represent the capability of a pattern function to return outputs which are arbitrarily close to

their targets (known or unknown), and this for any possible observation inX regardless that

if it was generated or not. This kind of risk measure, which isdifferent than the empirical

error, is known asgeneralization error.
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Vapnik and Chervonenkis [1971] were the firsts to investigate the link between the gen-

eralization error of{0,1}-indicator functionsf in G (such as the ones used in binary clas-

sification) and the empirical Rademacher complexity of thisclass. Namely, they showed

that, whatever the observationx∈ X might be, the error between the output of the pattern

function f (x) and the actual targety ∈ {0,1} is upper-bounded, with a certain probabil-

ity, by a function of theVapnik-Chervonenkis dimensionof G which is the cardinality of

the largest set of points that can beshattered1 by the functions inG . It was later shown

that the empirical Rademacher complexity ofG is instead bounded by this function of the

Vapnik-Chervonenkis dimension and that the upper bound of Vapnik and Chervonenkis is

indeed pessimistic. The Rademacher complexity of a class offunction then goes further by

extending the expression of upper bounds of the generalization errors for any type of pat-

tern functions, which also means for any type of supervised (or semi-supervised) learning

problems (and not just binary classification problems).

The Rademacher complexity of a class of functionsG over the measurable spaceX is

defined below:

Definition 2.10 (Empirical Rademacher complexity). Let G be a class of real-valued

functions over a measurable space X and letX = {x1, . . . ,xℓ} ⊂ X be a set of sample

observations in X. Theempirical Rademacher complexityof G is defined as

R̂(G ) =

〈

2
ℓ

sup
f∈G

∣
∣
∣
∣
∣

ℓ

∑
i=1

σi f (Xi)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Xi = xi , i ∈ J1, ℓK

〉

,

where theσi ’s, with i∈ J1, ℓK, are independent uniform{±1}-valued random variables.

TheRademacher complexityof G is the expected value of̂R(G ) taken over an identi-

cally and independently distributed sample{X1, . . . ,Xℓ} of random variables.

Empirical Rademacher complexities have closure properties than can be useful in the

1A parameterized binary classification model is said to shatter a set of observations if, for all assignments
of target labels to those observations, there exists a parameter such that the model makes no classification
errors.
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establishment of upper bounds on generalization errors. These properties are defined in the

following theorem which was derived Bartlett and Mendelson[2001, 2002]:

Theorem 2.3. Let F ,F1, . . . ,Fm be classes of real-valued functions over a measur-

able space X. LetX = {x1, . . . ,xℓ} ⊂ X be a set of sample observations in X. We

have:

• If F1⊆F2 thenR̂(F1)6 R̂(F2).

• R̂

(
m

∑
i=1

Fi

)

6

m

∑
i=1

R̂(Fi).

• For everyλ in R, R̂(λF ) = |λ | R̂(F ).

• If f :R→R is Lipschitz with constant C and if the condition f(0) = 0 is satisfied,

thenR̂
(

f (F )
)
6 2CR̂(F ).

• For any function f: X→R, we have

R̂(F + f )6 R̂(F )+
2
ℓ

√
√
√
√

ℓ

∑
i=1

f 2(xi).

• Let p∈ N∗, g∈F and LF ,g,p = {| f −g|p : f ∈F}. If ‖ f −g‖∞ 6 1 for all

f ∈F , then

R̂(LF ,g,p)6 2p



R̂(F )+
2
ℓ

√
√
√
√

ℓ

∑
i=1

g2(xi)



 .

The last point of Theorem 2.3 is a key inequality for the establishment of a probabilistic

upper bound on the generalization error of ULMs.

2.3.4 Risk Measures

A risk measure for a given pattern functionf in a function classG (as defined in Sub-

Section 2.3.2) and a finite set of observationsX = {x1, . . . ,xℓ} ⊂ X is a quantity that
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evaluates that discrepancy between the outputs off for anx in the measurable spaceX and

its associated target. A straightforward risk measure forf ∈ G given observationsx1, . . . ,xℓ

that belongs to the setX is theempirical errorwhich is defined by

Ê( f ) =
1
ℓ

ℓ

∑
i=1

d
(

f (xi),yi
)
, (2.24)

whered is a distance betweenf (x) andy in R. Typically, d is based on ap-norm and we

have

Êp( f ) =
1
ℓ

ℓ

∑
i=1
| f (xi)−yi |p . (2.25)

If p = 2, thenÊp( f ) is themean square deviation. Nevertheless, findingf ∈ G such that

Êp( f ) is minimized gives no guarantee that

| f (x)−y|6 ε, (2.26)

for any(x,y) ∈ X×R, whereε > 0 is an arbitrary scalar. However, there exists an expres-

sion of a probabilistic bound for quantities expressed in Equation 2.26. If we consider the

notions introduced in Sub-Section 2.1.1, there exist a measure space(Ω,Σ,P) and a mea-

surable functiong : Ω→ X×R, ω 7→ (x,y) that generates independently and identically

distributed observations. Ifz : Ω→ X is the measurable function that associatesω ∈ Ω to

x ∈ X, and if v : Ω→ R is the measurable function that associatesω ∈ Ω to y ∈ R, then

Bartlett and Mendelson [2001, 2002] and Koltchinskii and Panchenko [2000] showed that

there exists a scalarδ ∈ (0,1) such that

P

(〈∣
∣
∣
∣

f (z)−v
C

∣
∣
∣
∣

p〉

6
Êp( f )

Cp + R̂(LG /C,y/C,p)+3

√

ln(2/δ )
2ℓ

)

> 1−δ , (2.27)

where:

• The quantityC is equal to 2ρ(B+ |b|) whereρ > 0 is the radius of the smallest ball
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centered at the origin inX which contains the observations inX = {x1, . . . ,xℓ} i.e.

X ⊂ Bρ(0) = {x∈ X : dX(x,0)6 ρ};

• The functionf is in the function class

G =

{

x∈ X 7→
ℓ

∑
i=1

αikσ (x,xi)+b∈ R : α tKα 6 B2
}

, (2.28)

hence‖ f‖∞ 6 B+ |b|;

• The function classLG /C,y/C,p is equal to

{∣
∣
∣
∣

f −y
C

∣
∣
∣
∣

p

: f ∈ G

}

and‖( f −y)/C‖∞ 6 1

for all f ∈ G .

The quantity〈| f (z)−v|p〉 > 0 is thegeneralization errorand Equation 2.27 shows that it

is upper-bounded by the empirical error plus an expression of the Rademacher complexity

of G denoted byh(B,b). The termh(B,b) is such that

h(B,b) =
(
2ρ(B+ |b|)

)p

(

R̂(LG /C,y/C,p)+3

√

ln(2/δ )
2ℓ

)

. (2.29)

Theorem 2.3 can be used to establish the relation

R̂(LG /C,y/C,p)6
p

ρ(B+ |b|)

(

R̂(G −b)+
2|b|√

ℓ
+

2‖y‖2
ℓ

)

. (2.30)

The following result, showed notably by Shawe-Taylor and Cristianini [2004], allows the

numerical computation of an upper bound of the Rademacher complexity R̂(G −b). We

have

R̂(G −b)6
2B
ℓ

√

tr(K), (2.31)

and hence,

R̂(LG /C,y/C,p)6
2p

ℓρ(B+ |b|)
(

B
√

tr(K)+ |b|
√
ℓ+‖y‖2

)

. (2.32)
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If p= 1, then we have

h(B,b)6 B
4
√

tr(K)

ℓ
+6(B+ |b|)ρ

√

ln(2/δ )
2ℓ

+
4|b|√

ℓ
+

4‖y‖2
ℓ

. (2.33)

If the data and the kernel matrixK were normalized, then

h(B,b)6
4√
ℓ

(

1+

(

1+
3

2
√

2

√

ln

(
2
δ

))

(B+ |b|)
)

. (2.34)

Therefore, we have, with a probability of at least 95%, that

〈| f (z)−v|〉6 1
ℓ

ℓ

∑
i=1
| f (xi)−yi |+

4√
ℓ

(
1+3(B+ |b|)

)
. (2.35)

It follows that, given a functionf ∈ G , the minimization of the generalization error is

linked to the minimization of the empirical error off for a given observation setX and

an upper bound of the infinity norm off . This is an important point that will serve into

the construction of ULMs (see Sub-Section 3.1.1). It is alsouseful to notice that the larger

the radiusρ in Equation 2.33 is and the larger the upper bound on the generalization error

becomes. This shows that if an observationx∈X is outsideBρ(0) then the pattern function

is unlikely to properly fit the datum. Consequently, ULMs will guarantee the upper bound

of the generalization error only for observations contained in Bρ(0).

2.4 Specialized Models

2.4.1 Multiple Output Regression Models

Cases may arise where each observationx in X is associated with a target vectory ∈ Rp

rather than a single real valuey∈R. The pattern functionf that links observations to targets

is therefore a function overX with values inRp. Most supervised learning algorithms that

search for patterns (including ULMs) are designed to acceptonly single-value targets and
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cannot be inherently modified for multiple output regression models. Nevertheless, the

alternative to non-multiple output regression techniquesis to embed several single-value

regression models into a coherent structure that returns multiple output values.

The simplest way to construct such a multiple output regression model is to represent

the outputs of the pattern functionf as a vector of outputs ofp single-valued pattern func-

tions f1, . . . , fp overX. In other words the functionf is defined by

f : X→ Rp, x 7→












f1(x)

f2(x)
...

fp(x)












. (2.36)

Each individual pattern functionfi , with i ∈ J1, pK, is then computed separately with the

help of a supervised learning algorithm. As usual, this computation is made using a set

of ℓ observationsX = {x1, . . . ,xℓ} for which their associated single value targets are the

i-th components of the vectorsy1, . . . ,yℓ. The drawback of this approach is that the pat-

tern computation is repeatedp times without the possibility of reducing the size of each

individual sub-problem.

2.4.2 Multi-Class Classification Models

Vapnik [1995] initially proposed a simplead hocmulti-class classification scheme, the so-

called one-against-all scheme, in which several binary classifiers are combined to form a

unique multi-class classifier. Despite that this scheme wasdeveloped for Support Vector

Machines, the approach is general enough to allow the schemeto be used with any type of

binary classifier. Later, Platt et al. [2000] generalized the approach with a decision-tree-

based scheme which overcomes some shortcomings of Vapnik’sscheme. The same year,

Allwein et al. [2000] presented an error-correcting code scheme that forms a compromise

between performances of the one-against-all scheme and thedecision-tree-based scheme.
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In this section, a binary classifier is represented by a pattern function f : X→{−1,+1}

which is itself computed by learning algorithms such as ULMs. Each observationx in the

measurable spaceX has a targety that can takep distinct values that we arbitrarily choose

to be in the setJ1, pK without loss of generality. The following multi-class classification

schemes are valid for any type of binary classifier regardless of the learning algorithm

that generated it. They are all based on the establishment ofclassification structures that

organize different binary classifiers together. However “structure-less” multi-class classifi-

cation schemes based on logistic regression are also possible. These alternate schemes are

briefly mentioned in Equation 3.24.

One-Against-All Scheme

A simple multi-class classification scheme forp classes was proposed by Vapnik [1995]

when a set ofp binary classifiers is available. Thei-th binary classifier is associated to a

real-valued “confidence” functiongi derived from the pattern functionfi that is positive if

an observationx ∈ X belongs to thei-th class, and negative if it does not. The larger the

output value ofgi is, the more reliable the output value offi is. In this scheme, a total ofp

binary classifiers are computed using learning algorithms,with each one of these classifiers

determining if a given observation belongs to a certain class or all the other classes; hence

the nameone-against-all. Suppose thatp confidence functionsg1, . . . ,gp are obtained, then

the functionf that determines the one class amongp for which a given observationx∈ X

belongs to, is defined by

f : X→ J1, pK , x 7→ argmax{gi(x) : i ∈ J1, pK}. (2.37)

The output of the functionf is the number of the class of the observationx. The de-

termination of the class of an observation requiresp evaluations of confidence functions

which can be done quickly if each individual confidence function is not too complicated.
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Despite the fast determination of the class of an observation, the one-against-all scheme

has a couple of very inconvenient drawbacks. The first disadvantage is the relevance of

comparingp confidence functions that have extremely close output values in most cases.

The second disadvantage is that each one of thep confidence functions is computed fromℓ

observations, which can be a massive computational bottleneck if ℓ is very large since the

evaluation of a binary classifier is repeatedp times.

Decision-Tree-Based Scheme

Platt et al. [2000] introduced a decision-tree-based architecture for binary classifiers that

returns Boolean values. This architecture is aDecision-Directed Acyclic Graph(DDAG)

that is, as the name suggests, a structure based on a directedgraph with no cycles. Suppose

that, for ap-class classification problem, a total ofp(p−1)/2 pair-wise binary classifiers

are computed i.e. we obtained pattern functionsfi j discriminating between classi ∈ J1, pK

and classj ∈ J1, pK with i < j.

Figure 2.5: Decision-directed acyclic graph for a 4-class problem. Each edge is labeled
with the class number that has been removed from the list associated with the source node.
The root node (on the left), which contains the full list of all possible classes, is connected
to the leaf nodes (on the right), which are associated with lists of only two classes.

The DDAG classifier has a pyramidal structure in which every node but the root node
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has two direct successors, and every node but the leaf nodes has two direct predecessors.

A path from the root node to one of the leafs is computed by updating an ordered list

of classes to be tested, each node successively removing oneelement from that list. The

removing process works by picking up the pattern functionfi j discriminating the class at

the top of the list, denoted byi, from the one at the bottom, denoted byj, and testing if the

observationx∈ X belongs to classi or classj. If, for example,x belongs to classi, then

the next node on the path would be the node which list does not contain j and reciprocally;

hence the reason for two direct successors at each node. The path starts at the root node

with initial list {1, . . . , p} and goes to one leaf node with a list containing only two classes.

Once the leaf node has been reached, the last binary classification is performed and the last

class is removed from the list, the remaining one being the class the observationx belongs

to (see figure 2.5).

Determining the class of of an observationx requiresp− 1 decision evaluations and

each pattern functionfi j is trained onℓi + ℓ j observations,ℓi being the number of training

observations belonging to classi andℓ j being the number of training observations belong-

ing to class j. The number of pattern functions to compute is one order of magnitude

greater than for the one-against-all scheme, but the dimension of each binary classifica-

tion sub-problem is much smaller than the original data set size. The DDAG scheme also

overcomes problems related to confidence functions having output values too similar.

Error-Correcting Code Scheme

Supposem (16 m6 p) Boolean pattern functionsf1, . . . , fm are given for anp-class prob-

lem. A function fi , i ∈ J1,mK, will return either+1 or−1 depending on which class the

input belongs to. If the functionfi was not designed to discriminate one particular class

against another then, by convention the output will be zero for that specific class. An ex-

ample is given in table 2.1 where all outputs are arranged into a decision matrix.

Let D be anp×mdecision matrix built fromf1, . . . , fm. We can notice that each row of
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Table 2.1: Example of error-correcting codes for a 4-class problem andfive pattern func-
tions. The table lists the values the pattern functions return for elements belonging to the
classes listed in the rows.

Class f1 f2 f3 f4 f5

1 0 −1 −1 −1 +1
2 +1 −1 0 +1 +1
3 +1 −1 −1 −1 0
4 −1 +1 +1 0 −1

D represents a code that we seek to be unique for each class. If it is the case, then, for an

observationx∈X, the outputs for everyfi , i ∈ J1,mK, are put in order so it forms a code for

that specific observation. The code is then stored in anm×1 vectorc(x) and then compared

to each row of the decision matrixD by computing a distance betweenc(x) and the codes

on the rows ofD. The class of the observationx will be the one with the minimum distance

betweenc(x) and the code on the row corresponding to that class. The distance proposed

by Allwein et al. [2000] betweenx and thei-th class is

d
(
c(x),Di·

)
=

1
2

(

m−
m

∑
j=1

sign
(
(c(x)) jDi j

)
)

, (2.38)

and the final pattern function is given by

f : X→ J1, pK , x 7→ argmin
{

d
(
c(x),Di·

)
: i ∈ J1, pK

}

. (2.39)

The error-correcting code scheme is, in a way, a generalization of the one-against-all

scheme and the decision-tree-based scheme for which a potentially lesser number of de-

cision functions is needed in order to determine the class anobservation belongs to. Fur-

thermore, depending on the codes contained in the decision matrix D, the size of the pro-

gramming problems to be solved can be significantly reduced.The contents ofD also

suggest that there exist optimal codes that combine an high discriminating power and a

short number of pattern functions trained on smaller problems.
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2.4.3 Model Validation

Selecting a suitable kernel is one of the few tasks needed to be performed before an ULM

can search for patterns in the provided set of data. The very act of selecting kernels and

correct algorithm parameters is nothing else than the building of a mathematical model of

the given data. Naturally, a chosen model must be tested and validated to ensures that it

properly predicts non-trivial hidden patterns within, of course, a certain margin of error.

While selecting an appropriate model is often based on considerations that are problem-

specific, the validation of prediction models is a procedurethat is now standardized. These

validation procedures rely on repeated tests on the very same set of observationsX =

{x1, . . . ,xℓ} in X upon which the pattern functions were generated by the learning algo-

rithms. These procedures can be divided into two families:

• Cross-validation procedures which are partition-based.

• Bootstrapping procedures which are sampling-based.

Both families have their pros and cons which are often related to the size of the data sets.

Furthermore, repeated selection-validation procedures can be embedded into a generalized

pattern search approach which can search for the optimal choice of parameters for a mathe-

matical model. This pattern search can be time consuming if the chosen learning algorithms

are not efficient at handling large sets of data.

Cross-Validation Procedure

In a cross-validation, the observation setX is partitioned into q subsets{X1, . . . ,Xq}

which are alternatively used to build a classifier to be tested on the remaining subsets.

In other words, the setX is iteratively divided into an actualtraining set, for which a

classifier is built, and atestingset, for which the classifier is tested to confirm the validity

of the mathematical model. At each iteration of the cross-validation, an error statistic is
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constructed for the results of the testing set. The error statistics are then merged after all

training sets have been used which evaluate the validity of the chosen mathematical model.

The cross-validation procedure is outlined in Algorithm 2.6.

Algorithm 2.6: Cross-Validation Procedure

Function [µ] = CrossValidation (M,P(X ),P(y))
Input : modelM, partition of the observation setP(X ) = {X1, . . . ,Xq} and

partition of the target vector setP(y) = {y1, . . . ,yq}.
Output : error statisticµ.

1 µ ← 0
2 for i ∈ J1,qK do
3 Compute a pattern functionf using the modelM and the setX \Xi .
4 Updateµ by comparingf (Xi) andyi .
5 end
6 return µ

For classification problems, the error statistic is often based on aconfusion matrixC.

Given anp-class problem, the matrixC is an p× p matrix for which eachi-th row repre-

sents the number of observations that belong to classi and eachj-th column represents the

number of observations that were predicted to belong to class j. A common error statistic

based on the confusion matrix is

µ = min

{

Cii

1t
pCi·

: i ∈ J1, pK

}

, (2.40)

with Ci· being thei-th row of the matrixC. In other words this error statistic is the minimum

fraction of correctly classified samples.

For regression problems, errors are based on many differentstatistics such as:

• Mean square deviations between functional outputs and targets,

• Rank correlation coefficients between functional outputsand targets (e.g., Spear-

man’s rank correlation coefficient),
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• Statistics computed the empirical distribution of the residuals (e.g., from normality

tests, etc.).

The partition ofX can be chosen randomly but some samples may never be used in a

training or testing set. Additionally, a poorly chosen partition can fail to yield correct pat-

terns, hence introducing a bias during the testing of the mathematical model. Furthermore,

it should be noticed that the computed pattern functionsf1, . . . , fq can be all significantly

different if the partition is ill-chosen. In such case, the cross-validation procedure becomes

totally irrelevant since each individual pattern functionshould be similar to the one that is

obtained by training on the whole observation set.

Improved cross-validation schemes have been designed overthe years to curb the parti-

tioning problems. The most commonly used schemes are theq-fold cross-validationand its

particular case, theLeave-One-Out(LOO) cross-validation. In aq-fold cross-validation, or

more exactly in astratified q-fold cross-validation, the setX is partitioned intoq subsets

of equal size that contain the same proportion of class labels as in the whole observation

setX . During each iteration of the method,q−1 subsets are used for training and the

remaining subset is used for testing. Every subset is used for testing only once, hence a

maximum ofq iterations.

The LOO cross-validation is an extreme case of theq-fold cross-validation in which

only a single sample is taken out at each iteration to be in thetesting set. This last approach

usually needs modifications in order to be efficiently implemented for large data sets, but it

is often the sole validation approach that can be used with very small sets of data.

Bootstrapping Procedures

Bootstrapping is a re-sampling technique for inferring sample statistics (such as error statis-

tics) by drawing randomly,with replacement, several observations fromX and testing

them, multiple times, with a pattern function initially computed fromX . The repeated

tests allow the computation an estimate of the distributionof the error statistic which is the
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main advantage of this validation procedure. The knowledgeof such a distribution is in

fact a key factor for comparing the different choice of kernels and model parameters.

Algorithm 2.7 outlines the bootstrapping procedure for a given mathematical model and

an observation setX = {x1, . . . ,xℓ} of ℓ observations. The sampling and testing cycles are

repeatedq times until there is a sufficient number of error statistics to allow the construction

of a well-shaped empirical distribution of errors.

Algorithm 2.7: Bootstrapping Procedure

Function [µ] = Bootstrapping (q,M,X ,y)
Input : number of roundsq> 1, modelM, observation setX = {x1, . . . ,xℓ} and

associated target vectory ∈ Rℓ.
Output : error statisticµ.

1 µ ← 0
2 Compute a pattern functionf using the modelM and the setX .
3 for i ∈ J1,qK do
4 Sampleℓi observations with replacement from the setX (observations are

stored inXi and their targets inyi).
5 Updateµ by comparingf (Xi) andyi .
6 end
7 return µ

Bootstrapping is often computationally intensive but it has none of the disadvantages

associated to cross-validation procedures. Furthermore,an empirical distribution of the

error statistic is immediately available. This allows the construction of a confidence in-

terval on the error statistic and the statistical comparison of the performances of several

mathematical model.

Pattern Search for Optimal Model Parameters

If a finite number of kernels and model parameters are available for a given problem, then

cross-validation or bootstrapping schemes can be looped inside a pattern search method

to find the most suitable kernel and the best parameters. The objective is to minimize

the measure of error that is returned returned by the validation procedures over the search
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domain.

The main disadvantage of such an approach is that the resulting optimization problem

is not necessarily a convex optimization problem. Hence deterministic pattern searches

for convex problems are no longer guaranteed to successfully reach an optimal solution.

Therefore, meta-heuristics such as genetic algorithms, simulated annealing, tabu search or

ant colony optimization might be more suitable to minimize error measures.
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Chapter 3

Unconstrained Learning Machines

3.1 Mathematical Programming Problem

Consider a source of data which provides a finite collection of ℓ∈N∗ observationsx1, . . . ,xℓ

that belong to a measurable spaceX of any kind and that are uniquely associated with

real-valued targetsy1, . . . ,yℓ. All observation-target pairs are distributed according to an

unknowndistribution. The functionf : X→ R that links any observationx to a targety is

assumed to be unknown, non-trivial and continuous. The objective of this chapter is to de-

termine an estimate of the functionf using kernels and the collection of observation-target

pairs. This problem is called in all the following thefunction estimation problemand it is

formulated as a mathematical programming problem. Within the context of the function

estimation problem, Unconstrained Learning Machines (ULMs) are a family of learning al-

gorithms which use kernel methods and optimization techniques to estimate functions from

a given set of observation-target pairs. The part related tothe training (or learning phase)

of ULMs is discussed in this chapter. The following explainshow the function estimation

problem is formulated as an unconstrained Quadratic Programming problem (hence the

choice for the name of ULMs) and efficiently solved using methods from linear algebra.

3.1.1 Objective Function

Let kσ be a continuous real-valued symmetric positive definite kernel parameterized byσ

i.e. kσ : X×X→ R is a continuous function such that, for any pair(x,y) ∈ X2, we have
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thatkσ (x,y) = kσ (y,x) and such that

m

∑
i=1

m

∑
j=1

kσ (xi ,x j)λiλ j > 0, (3.1)

for anym∈ N, λi ∈ R, xi ∈ X and i ∈ J1,mK. The Moore-Aronszajn theorem [Aronszajn,

1950] states that there exists a unique Hilbert spaceF of real-valued functions onX such

thatkσ (·,x) ∈F for anyx∈ X and such that

〈g,kσ (·,x)〉F = g(x), (3.2)

for all g∈F (this is called thereproducing property) with 〈·, ·〉F being the dot product in

F . The kernelkσ is said to be thereproducing kernelof F and the spaceF is called a

Reproducing Kernel Hilbert Space (RKHS).

Suppose that the unknown functionf that has to be estimated belongs to a RKHSF

with kσ as the reproducing kernel. From the reproducing property ofthe RKHSF , we

have for all given observationsx1, . . . ,xℓ in X

〈 f ,kσ (·,xi)〉F = f (x). (3.3)

Let S be the linear space embedded inF spanned by thekσ (·,xi)-images of the obser-

vationsxi , i ∈ J1, ℓK. Since f is assumed to belong toF , we can rewrite the functionf

as

f =
ℓ

∑
i=1

αikσ (·,xi)+ f⊥, (3.4)
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where the functionf⊥ ∈F is orthogonal toS andαi ∈ R for all i ∈ J1, ℓK. Then

f (xi) = 〈kσ (·,xi), f 〉F

=

〈

kσ (·,xi),
ℓ

∑
j=1

α jkσ (·,x j)+ f⊥
〉

F

=

〈

kσ (·,xi),
ℓ

∑
j=1

α jkσ (·,x j)

〉

F

=
ℓ

∑
j=1

α j
〈
kσ (·,xi),kσ (·,x j)

〉

F
(3.5)

implies that

f (xi) =
ℓ

∑
j=1

α jkσ (xi ,x j) =
ℓ

∑
j=1

α jK i j = K i·α, (3.6)

whereK i j is the(i, j)-th element of theℓ× ℓ Gram matrixK made of all the dot products
〈
kσ (·,xi),kσ(·,x j)

〉

F
= k(xi ,x j) for everyi and j in J1, ℓK. The Gram matrixK is, by the

properties ofkσ , a positive semi-definite matrix which is called thekernel matrix. The

equality

f (xi) = K i·α, (3.7)

for all i ∈ J1, ℓK is only valid if the functionf actually belongs to the RKHSF with kσ

as the reproducing kernel. Equation 3.7 does not hold in the general case, however, if the

kernelkσ is carefully chosen, then there exist a scalarb∈ R such that the approximation

f (xi)≈ K i·α +b, (3.8)

is acceptable for any continuous functionf . There are a couple of reasons for introducing

the scalarb in Equation 3.8. The first reason is to provide a correcting term since the choice

of kσ may not be completely suitable for estimating the functionf . The second reason is to

make the correction linear since the introduction of a nonlinear term, while possible, would

imply that the correcting term is not a kernel-based function (since the sum of kernels is a
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kernel) and hence void this analysis based on kernel methods. Consequently, we will search

in all the following an estimate of the functionf in a subspaceG of bounded functions of

the translated spaceF +b after a suitable reproducing kernelkσ is chosen. The reason for

choosing a set of bounded functions is motivated by a common requirement of all physical

problems: the outputs of all physical systems are never infinite and hence the norm of the

function that estimates the outputs of a physical system must be finite i.e. bounded. The set

of functionsG is therefore defined by

G =

{

x∈ X 7→
ℓ

∑
i=1

αikσ (x,xi)+b∈ R : α tKα 6 B2
}

, (3.9)

with B∈R∗. Bartlett and Mendelson [2001, 2002] and Koltchinskii and Panchenko [2000]

showed that, given a probabilityp ∈ (0,1), the generalization error of̂f ∈ G is bounded

with probability p by the sum of an expression of the empirical Rademacher complexity

R̂(G ) of the function classG and the empirical error of̂f . The smaller the quantitŷR(G )

is, the smaller the generalization error becomes. This complexity is bounded by elements

that defines the classG according to the following formula

R̂(G )6
4
ℓ

(
B
√

tr(K)+ |b|
√
ℓ+‖y‖2

)
. (3.10)

Consequently, minimizing both the upper bound ofR̂(G ) and the empirical error of̂f is a

way to obtain a function̂f in G that estimatesf and that satisfies Approximation 3.8 for

any given observationx ∈ X. The aim of the function estimation problem is therefore to

minimize the quantities|b| andB, as well as the empirical error of̂f .

The minimization of|b| can be replaced by the minimization of the quantity

δbb2+cbb, (3.11)

which provides the objective function of the mathematical minimization problem with a
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quadratic formulation rather than a nonlinear one or additional constraints. This formula-

tion is weighted with coefficientsδb > 0 andcb ∈ R in order to contrast this quantity with

the other terms of the objective function. The coefficientcb can be negative andb can still

be minimized since the coefficientδb is always greater than zero.

The empirical error off̂ is a function of the quantitieŝf (xi)−yi = ξi which are slack

variables. Like for the minimization of|b|, the minimization of the empirical error can

easily be replaced by the minimization of the quantity

ξ t∆ξ ξ +ct
ξ ξ , (3.12)

where∆ξ is a positive definite matrix and wherecξ ∈ Rℓ. Since the norm ofξ induced

by ∆ξ on Rℓ is equivalent to the Euclidean norm ofξ on Rℓ, the minimization of the

quantityξ tξ is similar to the minimization ofξ t∆ξ ξ with the exception that the later brings

a supplementary degree of control over theξi ’s. The contributions of eachξi to the objective

function can now be tuned individually.

From Equation 3.9, the minimization ofB can be achieved by minimizingα tKα for

anyα ∈ Rℓ. By using the Cauchy-Schwarz inequality, we obtain

α tKα = 〈α,Kα〉6 ‖α‖2‖Kα‖2 . (3.13)

However, since the Euclidean norm‖·‖2, like all vector norms induced on the space ofℓ×ℓ

matrices, is a consistent norm, we can immediately derive that

α tKα 6 ‖K‖2‖α‖22 , (3.14)

where‖K‖2 is the spectral norm ofK . Moreover, given a positive definite matrix∆α , the

Euclidean norm is equivalent to the norm induced by∆α onRℓ. In other words, there exists

58



a constantCα > 0 such that

‖α‖2 6Cα
√

〈α,∆αα〉. (3.15)

Consequently, the minimization ofB can be replaced by the minimization of

α t∆αα +ct
αα, (3.16)

wherecα ∈ Rℓ.

Equations 3.11, 3.12 and 3.16 provide the expression of the quadratic objective function

of the mathematical programming problem that solves the function estimation problem.

This objective function is

(α,ξ ,b) ∈ R2ℓ+1 7→ α t∆αα +ξ t∆ξ ξ +δbb2+ct
αα +ct

ξ ξ +cbb∈ R. (3.17)

3.1.2 Constraints

Given a function f̂ ∈ G (the function classG is defined in Sub-Section 3.1.1), the con-

straints of the mathematical programming problem consist into matching the outputs of̂f

for everyxi with their corresponding targetsyi . In other words, we must have

f̂ (xi) = K i·α +b≈ yi , (3.18)

for all i ∈ J1, ℓK. However, the quantitŷf (xi)−yi was defined in Sub-Section 3.1.1 as the

slack variableξi , for which the quantityξ t∆ξ ξ +ct
ξ ξ has to be minimized. Consequently,

Approximation 3.18 can be reformulated into an equality which is

K i·α +b−yi = ξi , (3.19)
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for all i ∈ J1, ℓK. This enforces that the quantitiesξi in the equation

f̂ (xi)−ξi = yi (3.20)

must be minimized for alli ∈ J1, ℓK, and hence that Approximation 3.18 is matched as

closely as possible. Equation 3.20 illustrates that slack variables act as an error-tolerant

term in the formulation of the constraints. Non-negligibleslack variables bridge the gap

between what can be fitted withf and the desired target outputs, and hence can account for

the influence observational outliers. This is a primitive form of adaptable robustness.

The set ofℓ equalities in Equation 3.19 is the entire set of constraintsfor the mathe-

matical programming problem solving the function estimation problem since there are no

other binding constraints on the variablesα, ξ andb due to the quadratic formulation of

the objective function in Equation 3.17.

3.1.3 Unconstrained Quadratic Programming Problem

The objective function in Equation 3.17 and the set of constraints in Equation 3.19 are all

that is needed to write the complete formulation of the mathematical programming problem

that solves the function estimation problem. This problem is

min α t∆αα +ξ t∆ξ ξ +δbb2+ct
αα +ct

ξ ξ +cbb,

with







Kα +b1−ξ = y,

α ∈ Rℓ, ξ ∈ Rℓ, b∈ R.

(3.21)

This problem is an unconstrained Quadratic Programming problem with equality con-

straints which is the source of the name for the Unconstrained Learning Machines [Gilbert

and Trafalis, 2009].

The optimal solution(α∗,b∗) is then used to formulatêf ∈ G which is the estimate of

the unknown continuous functionf that forms the pattern between the observationsxi ∈ X
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and their corresponding targetsyi ∈ R, for all i in J1, ℓK. This function f̂ is given by

f̂ : X→ R, x 7→
ℓ

∑
i=1

α∗i kσ (x,xi)+b∗. (3.22)

This estimate can be further improved depending of the specificity attached to a particular

function estimation problem. For example, if some coefficients α∗i are null or negligi-

ble, then a subsetI ⊆ J1, ℓK of integers can be stored so that theαi ’s for all i ∈ I are not

negligible. This also gives the possibility to reduce the number of kernel evaluations and

summations when computing the outputs of the functionf̂ and, additionally, it represents

a form ofdata thinning(see Sub-Section 2.1.3) since it sorts out all observationsthat are

unnecessary for estimating the patternf between observations and targets. The set{xi}i∈I

is called the set ofsupport vectorsdue to the analogy with SVMs.

Moreover, the function̂f can be combined with step functions to form complex logical

rules and patterns. For example, if we are givenl > 1 disjoint semi-open intervalsA1 =

[a1,b1), . . . ,Al = [al ,bl ) of R such that

l⋃

i=1

Ai = R, (3.23)

and a set ofl distinct coefficientsβi , i ∈ J1, ℓK, then the step function

ĝ : X→ R, x 7→
l

∑
i=1

βiχAi

(
f̂ (x)

)
, (3.24)

whereχA is the indicator function of the intervalA⊂R, and represents a discrete nonlinear

classification rule that maps the outputs off̂ into a discrete set{βi}li=1.
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3.1.4 Optimal Solution

The programming problem in Equation 3.21 is a Quadratic Programming problem with

equality constraints of the form

min
{1

2
xtHx +ctx : Ax = b, x ∈ Rn

}

. (3.25)

Then×n-matrixH is real, symmetric and positive definite, the vectorc is inRn, the vector

b is in Rm and the matrixA is a realm×n-matrix. Bazaraa et al. [2006] showed that the

Lagrangian dual problem of (3.25) is

max

{

inf
{1

2
xtHx +ctx+vt(Ax−b) : x ∈ Rn

}

: v ∈ Rm
}

. (3.26)

Given a vectorv ∈ Rm, the functionx 7→ 1
2xtHx+ctx+vt(Ax−b) is convex and therefore

a necessary and sufficient condition for a minimum is

Hx +Atv+c= 0, (3.27)

i.e its first derivative vanishes. From equation (3.27) we derive ctx+vtAx =−xtHx which,

once substituted in equation (3.26), leads to the followingproblem

min
{1

2
xtHx +btv : Hx +Atv =−c, x ∈ Rn, v ∈ Rm

}

. (3.28)

The matrixH is invertible, hence we can derive from equation (3.27) an identity that un-

ambiguously links the primal variablex to its dual variablev. This identity is

x =−H−1(c+Atv). (3.29)
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Replacingx in equation (3.28) by its expression in equation (3.29), we then obtain

min
{1

2
vtQv+dtv : v ∈ Rm

}

, (3.30)

whereQ = AH−1At andd = AH−1c+b. Problem (3.30) is an unconstrained quadratic

programming problem for whichQ is a real, symmetric and positive definitem×m-matrix.

Therefore problem (3.30) has a unique optimal solutionv∗ given byv∗ =−Q−1d which is

the value of the dual variable such that the first derivative of the objective function of (3.30)

vanishes. Using equation (3.29), we can derive an analytical expression of the solution of

the quadratic programming problem (3.25) which is

x = H−1(At(AH−1At)−1(AH−1c+b)−c
)
. (3.31)

3.2 Implementation

3.2.1 Formulation of the Linear System

Consider the notations of Sub-Section 3.1.3 and letxt = (α t,ξ t,b). For the function es-

timation problem, the Hessian matrix of the objective function is a (2ℓ+ 1)× (2ℓ+ 1)

block diagonal matrix with diagonal elements(2∆α ,2∆ξ ,2δb). The linear term of the ob-

jective function is defined byct = (ct
α ,c

t
ξ ,cb). Constraints are of the formAx = y with

A = (K ,−I ℓ,1ℓ).

Proposition 3.1. The optimal parametersα ∈ Rℓ and b∈ R of the estimated function

f : Rn→ R, x 7→ ∑ℓ
i=1 αik(xi ,x)+ b and the slack vectorξ ∈ Rℓ are given byα =

∆−1
α (Ka−cα/2), b= (1t

ℓa−cb/2)/δb, andξ = −∆−1
ξ (a+cξ/2) wherea∈ Rℓ is the

solution of the linear system(K∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb)a= u with u = y+

(
K∆−1

α cα −

∆−1
ξ cξ +(cb/δb)1ℓ

)
/2.
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Proof. Using the notations of Sub-Section 3.1.3, the inverse of theHessian matrixH is a

diagonal matrix with diagonal elements
(
∆−1

α /2,∆−1
ξ /2,1/(2δb)

)
. Equation (3.31) gives

the optimal solution of the problem which isx = H−1
(
At(AH−1At)−1(AH−1c+ y)− c

)
.

SinceH is symmetric we haveH−1At = (AH−1)t, andAH−1 = (K∆−1
α ,−∆−1

ξ ,1ℓ/δb)/2.

Hence the termAH−1c+ y is equal to
(
K∆−1

α cα −∆−1
ξ cξ +(cb/δb)1ℓ

)
/2+ y = u. Since

K is a real, symmetric positive semi-definite matrix andH is a real, symmetric and positive

definite matrix, the matrixAH−1At = (K∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb)/2 is a real, symmetric

and positive definite matrix and is therefore invertible. Consequently, ifa ∈ Rℓ is the

solution of the linear system(K∆−1
α K + ∆−1

ξ + 1ℓ1t
ℓ/δb)a = u, thenx = H−1

(
At(2a)−

c
)
= 2H−1(Ata− c/2). Sincext = (α t,ξ t,b), it follows thatα = ∆−1

α (Ka− cα/2), ξ =

−∆−1
ξ (a+cξ/2) andb= (1t

ℓa−cb/2)/δb at optimality.

3.2.2 Solving the Linear System

Condition Number of the System Matrix

Proposition 3.1 shows that the optimal parameters of the estimated function are the solu-

tions of a linear system. However there are some concerns regarding the stability of the

solution of this linear system due to the condition numberκ of the matrixK∆−1
α K +∆−1

ξ +

1ℓ1t
ℓ/δb. The quantity logd κ is an estimate of how many base-d digits are lost when solv-

ing the linear system(K∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb)a= u. Therefore if an upper bound onκ

is numerically large then the estimated functionf would be unreliable.

64



Theorem 3.1.Let λmax andλmin be the maximum and the minimum eigenvalues of the

kernel matrixK respectively. Letδ max
α and δ min

α be the minimum and the maximum

elements of the diagonal matrix∆α respectively, and letδ max
ξ andδ min

ξ be the minimum

and the maximum elements of the diagonal matrix∆ξ respectively. Letη be a scalar

defined byη = min
{

ℓ‖K‖max,
√
ℓ‖K‖1 ,

√
‖K‖1‖K‖∞,‖K‖F

}

. Then the condition

numberκ0 of the matrixK∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb is such that:

16 κ0 6
λ 2

max/δ min
α +1/δ min

ξ + ℓ/δb

λ 2
min/δ max

α +1/δ max
ξ

6 δ max
ξ (η2/δ min

α +1/δ min
ξ + ℓ/δb).

Proof. We have
∥
∥
∥K∆−1

α K +∆−1
ξ +1ℓ1t

ℓ/δb

∥
∥
∥

2
6 ‖K‖22

∥
∥∆−1

α
∥
∥

2+
∥
∥
∥∆−1

ξ

∥
∥
∥

2
+
∥
∥1ℓ1t

ℓ

∥
∥

2/δb =

λ 2
max/δ min

α +1/δ min
ξ +

∥
∥1ℓ1t

ℓ

∥
∥

2/δb. The matrix1ℓ1t
ℓ is of rank 1 therefore it has two eigen-

values, one of them being 0 which has multiplicityℓ− 1. We also have1ℓ1t
ℓ1ℓ = ℓ1ℓ,

thus ℓ is the other eigenvalue and
∥
∥1ℓ1t

ℓ

∥
∥

2 = ℓ. The matrixK is semi-positive definite

and the matrices∆α and ∆ξ are positive definite, hence a lower bound of the smallest

eigenvalue of the matrixK∆−1
α K + ∆−1

ξ + 1ℓ1t
ℓ/δb is λ 2

min/δ max
α + 1/δ max

ξ > 0. Conse-

quently
∥
∥(B+1ℓ1t

ℓ/δb)
−1
∥
∥

2 6 1/(λ 2
min/δ max

α + 1/δ max
ξ ) with B = K∆−1

α K + ∆−1
ξ . The

condition number ofB+1ℓ1t
ℓ/δb is defined byκ0 =

∥
∥B+1ℓ1t

ℓ/δb
∥
∥

2

∥
∥(B+1ℓ1t

ℓ/δb)
−1
∥
∥

2

hence the first upper bound is immediately obtained. The lower bound, 1, is derived when

the maximum eigenvalue ofB+1ℓ1t
ℓ/δb is equal to its minimum eigenvalue. The second

upper bound is given by noticing thatλmin > 0 so this term can vanish in the expression

of the first upper bound to give a looser upper bound. The valueof η is the minimum

of several classic upper bounds on the 2-norm ofK with ‖K‖max = max
(i, j)∈J1,ℓK2

∣
∣Ki j
∣
∣,

‖K‖1 = maxj∈J1,ℓK ∑ℓ
i=1

∣
∣Ki j
∣
∣, ‖K‖∞ = maxi∈J1,ℓK ∑ℓ

j=1

∣
∣Ki j
∣
∣ and‖K‖F =

√

∑ℓ
i, j=1K2

i j .
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The Normal Equations

Considering the potentially large value that the conditionnumberκ0 can take (cf. Theorem

3.1), it is necessary to develop a numerically stable way to compute the solution of the

linear system(K∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb)a= u despite how large the kernel matrixK might

be. The first step is to write an equivalent of the inverse of the system matrix.

Lemma 3.1. The solution of the linear system(K∆−1
α K +∆−1

ξ +1ℓ1t
ℓ/δb)a= u is given

by a = d−
(

∑ℓ
i=1di

)
e/
(
δb +∑ℓ

i=1ei
)

whered = ∆ξ (u−K∆−½
α v) and e = ∆ξ (1ℓ−

K∆−½
α w). The vectorv is the solution of the linear system(I ℓ+GGt)v = G∆½

ξ u where

G = ∆−½
α K∆½

ξ . The vectorw is the solution of the linear system(I ℓ+GGt)w=G∆½
ξ 1ℓ.

Proof. Using the binomial inverse theorem, the inverse of the matrix B+ 1ℓ1t
ℓ/δb (with

B = K∆−1
α K +∆−1

ξ ) is (B+1ℓ1t
ℓ/δb)

−1 = B−1−B−11ℓ1t
ℓB
−1/(δb+1t

ℓB
−11ℓ). Let d be

the solution of the linear systemBd = u and lete be the solution of the linear system

Be= 1ℓ. With these notations, the solutiona of the linear system(B+1ℓ1t
ℓ/δb)a = u is

thena= d−e(1t
ℓd)/(δb+1t

ℓe). Furthermore, we can develop the expression of the inverse

of the matrixB further using the Woodbury matrix identity [Woodbury, 1950]. For instance,

B−1 =
(
∆−1

ξ +K∆−1
α K

)−1
= ∆ξ −∆ξ K∆−½

α
(
I +∆−½

α K∆ξ K∆−½
α
)−1∆−½

α K∆ξ since that the

matrices∆α and∆ξ are symmetric and positive definite and that the matrixK is symmetric

and positive semi-definite. IfG = ∆−½
α K∆½

ξ , thend = B−1u = ∆ξ u−∆ξ K∆−½
α v ande=

B−11ℓ = ∆ξ 1ℓ−∆ξ K∆−½
α w, wherev is the solution of the linear system(I ℓ+GGt)v =

G∆½
ξ u andw is the solution of the linear system(I ℓ+GGt)w = G∆½

ξ 1ℓ.

The trained eye can immediately recognize that a linear system of the form(I ℓ +

GGt)v = G∆½
ξ u is nothing else than a Tikhonov regularization [Tychonoff,1963] of the

normal equations. In our case, the transformation was beneficial for two reasons. The

first reason is the (slight) improvement of the condition number of the matrix of the lin-

ear system, as show in Corollary 3.1. The second reason is theexistence of efficient and
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numerically stable large scale conjugate gradient methodsthat solve such linear systems

with a computational complexity of the order ofO(ℓ2) [Bai and Zhang, 2002; Chen and

Shen, 2007; Hestenes and Stiefel, 1952]. The condition number can be further improved,

but at the price of a costly Cholesky decomposition (which computational complexity is of

the order ofO(ℓ3)). If such a decomposition is affordable, then the linear system can be

quickly solved by back-substitution (that has a computational complexity of the order of

O(ℓ2)) and needs not to be solved using a conjugate gradient methodanymore.

Corollary 3.1. The condition numberκ1 of the matrixI ℓ+GGt is such that:

16 κ1 6
1+δ max

ξ λ 2
max/δ min

α

1+δ min
ξ λ 2

min/δ max
α

6 1+δ max
ξ η2/δ min

α .

If I ℓ + GGt = LL t is the Cholesky decomposition ofI ℓ + GGt where L is a lower

triangular matrix, then the condition number̃κ1 of the matrixL is such thatκ̃1 6

√

1+δ max
ξ η2/δ min

α .

Proof. We have that‖I ℓ+GGt‖2 6 1+
∥
∥∆−½

α
∥
∥2

2

∥
∥
∥∆½

ξ

∥
∥
∥

2

2
‖K‖22 = 1+δ max

ξ λ 2
max/δ min

α . The

matrix K is semi-positive definite and the matrices∆α and∆ξ are positive definite, hence

a lower bound of the smallest eigenvalue of the matrixI ℓ+GGt is 1+δ min
ξ λ 2

min/δ max
α > 0.

Consequently,
∥
∥(I ℓ+GGt)−1

∥
∥

2 6 1/(1+ δ min
ξ λ 2

min/δ max
α ). The rest of the proof for the

lower and upper bounds ofκ1 can be found in the proof of Theorem 3.1. The upper bound

on the condition number of the lower triangular matrixL is derived by noticing that, since

I ℓ+GGt is positive definite, ifσmax> 0 is the maximum eigenvalue of the matrixI ℓ+GGt

(and hence its 2-norm), then the maximum eigenvalue ofL is
√

σmax. The minimum

eigenvalue ofI ℓ+GGt is σmin > 0 and hence the condition numberκ̃1 is such thatκ̃1 6

√

σmax/σmin. The upper bound
√

1+δ max
ξ η2/δ min

α is derived from the upper bound ofκ̃1,

which is
√(

1+δ max
ξ λ 2

max/δ min
α
)
/
(
1+δ min

ξ λ 2
min/δ max

α
)

sinceσmax6 1+ δ max
ξ λ 2

max/δ min
α

andσmin > 1+δ min
ξ λ 2

min/δ max
α .
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Corollary 3.1 provides a easy way to control the condition number of the system matrix

by tuning the matrices∆α and∆ξ appropriately. For example, choosing these matrices such

that δ min
α /δ max

ξ ≈ η2 will yield an upper bound forκ1 approximately equal to 2, which

correspond to a single binary digit lost during the computation of the solution of the linear

system. Low condition numbers also provide a rapid convergence of conjugate gradient

methods.

Special Case for Symmetric Matrices

In case the matrixG is symmetric (e.g.∆½
ξ = τ∆−½

α with τ > 0), then it becomes possible to

solve the regularized normal equations above with a series of linear systems which matrices

are much more well-conditioned than in the general case. This method can provide an even

better conditioning if the computational cost of the Cholesky decomposition of the matrix

I ℓ+G is not too high. If such a decomposition is affordable, then solving the linear system

of Corollary 3.1 is equivalent of solving triangular systems by back-substitution which is

extremely fast. Otherwise a conjugate gradient algorithm can be used iteratively if the

matrix I ℓ+G is too large for a fast decomposition.

Theorem 3.2. If the matrixG is symmetric, then the sum∑i∈Nvi with principal term

defined by(I ℓ+G)2v0 =G∆½
ξ u, (I ℓ+G)ṽi = vi, and(I ℓ+G)vi+1= 2(vi− ṽi) for i ∈N

is finite and is the solution of the linear system(I ℓ+GGt)v = G∆½
ξ u.

Proof. We haveI ℓ +GGt = I ℓ +G2 = (I ℓ +G)2− 2G sinceG is symmetric. Further-

more, sinceG is positive semi-definite, the matrixC = I ℓ+G is invertible and we have

that I ℓ + GGt = C2
(
I ℓ + C−2(−2G)

)
. It follows that we have(I ℓ + GGt)−1 =

(
I ℓ +

C−2(−2G)
)−1C−2. Now, given anℓ× ℓ matrixU such thatUi→ 0 for i→ ∞, we have the

Taylor expansion(I ℓ+U)−1 = ∑i>0(−1)iUi . Or, sinceG is symmetric, ifG = QΛQt is

the eigen-decomposition of the matrixG whereQ is orthonormal andΛ is diagonal, then

we have
∥
∥C−2(−2G)

∥
∥

2 = 2
∥
∥(I ℓ+Λ)−2Λ

∥
∥

2 = 2maxi∈J1,ℓK
{

λi/(1+λi)
2
}

. The function
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x 7→ x
(x+1)2 is continuously differentiable onR+ and it reaches its unique maximum onR+

atx∗ = 1 for which its point value is14. Hence
∥
∥C−2(−2G)

∥
∥

2 6 1/2,
∥
∥
∥

(
C−2(−2G)

)i
∥
∥
∥

2
6

1/2i → 0 when i → ∞ and (I ℓ + GGt)−1 = C−2 + ∑i>1
(
2C−2G

)iC−2. Noticing that

C−2G= (G+ I ℓ)−2(G+ I ℓ− I ℓ) =C−1−C−2, then solving(I ℓ+GGt)v=G∆½
ξ u is equiv-

alent to solveC2v0 = G∆½
ξ u and to computev0+∑i>1

(
2(C−1−C−2)

)iv0. The sequence

with principal termvi =
(
2(C−1−C−2)

)iv0 for i ∈ N∗ can be derived in a recursive form.

We havevi+1 = 2(C−1−C−2)vi = 2(C−1vi−C−2vi) i.e.Cvi+1 = 2(vi− ṽi) with ṽi being

the solution of the linear systemCṽi = vi .

We can now write another corollary of Theorem 3.1 concerningthe condition number

of the new system matrixI ℓ+G. The upper bound of the condition number can be further

improved if a Cholesky decomposition of the system matrix isused.

Corollary 3.2. The condition numberκ2 of the matrixI ℓ+G is such that:

16 κ2 6
1+δ max

ξ λmax/δ min
α

1+δ min
ξ λmin/δ max

α
6 1+δ max

ξ η/δ min
α .

Given thatG is symmetric, ifI ℓ+G = LL t is the Cholesky decomposition ofI ℓ+G

whereL is a lower triangular matrix, then the condition numberκ̃2 of the matrixL is

such thatκ̃2 6
√

1+δ max
ξ η/δ min

α .

Proof. The proof is similar to the proof of Corollary 3.1.

3.3 Algorithms and Complexities

3.3.1 Function Estimation for the General Case

The procedure that determines the optimal parametersα andb of an estimating function

f (see Section 2.3) for any choice of trade-off coefficients isderived from the results of
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Lemma 3.1. Given a finite observation setX ⊂ X and a target vectory which elements

are the targets of each observation inX , one must initially choose an appropriate ker-

nel kσ operating onX×X with a parameter vectorσ as well as the trade-off coefficients

(δα ,δξ ,δb,cα ,cξ ,cb) of the Quadratic Programming problem in Equation 3.21. The choice

of an appropriate kernel is discussed in Section 2.2 while the choice of the coefficients is

presented in Sub-Section 2.4.3 and 3.3.3. Once all these elements are collected, an estimat-

ing function can finally be computed using Algorithm 3.1.

If ℓ is the total number of observations contained inX and if ck is the number of

floating point operations required to compute the kernel output between two observations,

then Algorithm 3.1 requires 4ℓ3/3+(36+ck)ℓ
2/2+(100+3ck)ℓ/6+4 FLOPS to compute

the solutionsα, ξ andb. In other words, this algorithm has a time complexity inO(ℓ3)

which is due to the operations on lines 11 (matrix-matrix multiplication) and 13 (Cholesky

decomposition).

Matrix-matrix multiplication algorithms such as the Strassen algorithm [Strassen, 1969]

or the Coppersmith-Winograd algorithm [Coppersmith and Winograd, 1990] have a smaller

time complexity, but their numerical stability is weaker and the time gain is only noticeable

for large non-sparse matrices. In the case of the Coppersmith-Winograd algorithm, the

matrices in question are larger than what modern computer hardware can process.

If the kernel matrix is large and sparse, then the Cholesky decomposition on line 13 can

be removed and the computation of the solutions of the linearsystems can be performed

using a Conjugate Gradient method (Algorithm B.3). Such a method has a time complexity

in O(ℓ2) but the time gain is noticeable for large systems and outputsare approximations.

Additionally, the system matrix may be ill-conditioned (see Corollary 3.1) which will con-

tribute to even poorer approximations if a Conjugate Gradient method is used.

If the numberℓ of observations is an issue, then one might use data thinningapproaches

(see Sub-Section 2.1.3) to decrease the size of the kernel matrix while keeping a good

sample to learn from. This way, a Cholesky decomposition becomes a better choice than a
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Conjugate Gradient method, and the number of FLOPS of Algorithm 3.1 and the condition

number of the system matrices can be efficiently controlled.

Algorithm 3.1: Function Estimation for the General Case

Function [α,ξ ,b] = GEFEST (X ,y,kσ ,δ ,c)
Input : setX , observation vectory ∈ Rℓ, kernelkσ with parameter vectorσ ,

coefficient vectorsδ = (δα ;δξ ;δb) andc= (cα ;cξ ;cb) in R2ℓ+1.
Output : parametersα ∈ Rℓ andb∈ R, slack vectorξ ∈ Rℓ.

1 K ← KERMAT (X ,kσ ) // Kernel matrix computation
2 µα ← 1/δα , µξ ← 1/δξ , µb← 1/δb // Symbol/ is entry-wise division
3 να ←

√µα // Symbol
√

is entry-wise square root
4 c̄α ← 0.5(µα ·cα), c̄ξ ←−0.5(µξ ·cξ ) // Symbol· is Hadamard product
5 c̄b← 0.5µbcb

6 u← y+ GEMV (K , c̄α)+ c̄ξ + c̄b // Last term implies a scalar expansion
7 G← K , G← DIMM (να ,G) // G = ∆−½

α K
8 H←G, H← MDIM (H,δξ ) // H = ∆−½

α K∆ξ
9 p← GEMV (H,u) // p← Hu

10 q← ROWSUM (H) // q← ∑ℓ
i=1H·i

11 G← SYR2K (H,G) // G← HGt

12 G← TIKREG (G,1) // Tikhonov regularization
13 L ← CHOLDC (G) // Cholesky decomposition
14 v∗← CHOLSL (L ,p), w∗← CHOLSL (L ,q) // Solve by back-substitution
15 H← Ht, d← δξ ·u − GEMV (H,v∗), e← δξ − GEMV (H,w∗)
16 a← d −

(
SUM (d)/

(
δb+ SUM (e)

))
e

17 α ← µα · GEMV (K ,a)− c̄α , ξ ← c̄ξ −µξ ·a, b← µb SUM (a)− c̄b

18 return (α,ξ ,b)

3.3.2 Function Estimation for the Symmetric Case

When trade-off coefficients are chosen such that the matrixG of Theorem 3.2 is symmetric,

it then becomes possible to obtain an optimal solution to thefunction estimation problem

by a numerically stable iterative procedure. The approach slightly differs from Algorithm

3.1 in the sense that the matrix-matrix multiplication at line 11 is no longer needed and that

the operations on line 14 are replaced by iterative procedures (see Algorithm 3.2).
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Algorithm 3.2: Function Estimation for the Symmetric Case

Function [α,ξ ,b] = SYFEST (X ,y,kσ ,δ ,c)
Input : setX , observation vectory ∈ Rℓ, kernelkσ with parameter vectorσ ,

coefficient vectorsδ = (δα ;δξ ;δb) andc= (cα ;cξ ;cb) in R2ℓ+1.
Output : parametersα ∈ Rℓ andb∈ R, slack vectorξ ∈ Rℓ.

1 K ← KERMAT (X ,kσ )

2 µα ← 1/δα , µξ ← 1/δξ , µb← 1/δb, να ←
√µα , νξ ←

√

δξ

3 c̄α ← 0.5(µα ·cα), c̄ξ ←−0.5(µξ ·cξ ), c̄b← 0.5µbcb

4 u← y+ GEMV (K , c̄α)+ c̄ξ + c̄b

5 G← K , G← DIMM (να ,G), H←G, H← MDIM (H,δξ )

6 p← GEMV (H,u), q← ROWSUM (H)
7 G← MDIM (G,νξ ), G← TIKREG (G,1)
8 L ← CHOLDC (G), v∗← SFECD (L ,p), w∗← SFECD (L ,q)
9 H← Ht, d← δξ ·u − GEMV (H,v∗), e← δξ − GEMV (H,w∗)

10 a← d −
(
SUM (d)/

(
δb+ SUM (e)

))
e

11 α ← µα · GEMV (K ,a)− c̄α , ξ ← c̄ξ −µξ ·a, b← µb SUM (a)− c̄b

12 return (α,ξ ,b)

The implementation of theSFECD procedure which is called on line 8 of Algorithm

3.2 is described in Algorithm 3.3. This procedure requires 4(1+kmax)ℓ
2+(2+5kmax)ℓ−

1 FLOPS in the worst-case scenario (i.e. early termination)wherekmax is the maximum

number of iterations allowed.

Algorithm 3.3: Symmetric Case Solution using a Cholesky Decomposition

Function [x] = SFECD (L ,b)
Data: toleranceε > 0, iteration limitkmax> 0.
Input : n×n lower triangular matrixL , right-hand vectorb ∈ Rn.
Output : vectorz∈ Rn.

1 y← CHOLSL (L ,b), x← CHOLSL (L ,y), z← x, ρ ← DOT (x,x), k← 0
2 while ρ > ε and k6 kmax do
3 y← CHOLSL (L ,x), x← CHOLSL

(
L ,2(x−y)

)
, z← z+x, ρ ← DOT (x,x)

4 k← k+1
5 end
6 return z

The analysis of Algorithm 3.3 gives the computational cost of Algorithm 3.2 for the

worst-case scenario. The computation of a solution to the function estimation problem
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takes at mostℓ3/3+(ck+16kmax+45)ℓ2/2+(3ck+60kmax+133)ℓ/6+2 FLOPS where

ck is the number of floating point operations required to compute the kernel output be-

tween two observations. Asymptotically, Algorithm 3.2 requires four times less floating

point operations than Algorithm 3.1 with the same memory requirements and improves the

conditioning by one order of magnitude, providing a greaternumerical stability.

If the kernel matrix is large and sparse, then the operationson line 8 of Algorithm

3.2 can be replaced by iterative procedures based on a Conjugate Gradient method (see

Algorithm B.3). This will render the asymptotic time complexity of the algorithmO(ℓ2)

but at the cost of a slightly lower numerical stability (see Corollary 3.2).

3.3.3 Function Estimation with Optimal Coefficients

The automated choice of the coefficients of the objective function of the quadratic pro-

gramming problem in Equation 3.21 has three objectives:

• Improve the numerical stability of the resolution methods;

• Speed-up the computation of the solutions;

• Simplify the modeling of the estimating function.

These choices are motivated by different reasons that depend of the nature of the coeffi-

cients (coefficients for the quadratic terms or coefficientsfor the linear terms).

Coefficients of the Quadratic Terms

It was shown in Sub-Section 3.2.2 that, if the matrixG is symmetric then we can derive an

algorithm which solves the function estimation problem with four times less floating point

operations and a greater numerical stability. The symmetryof G is directly dependent

on the appropriate choice of the matrices∆α and∆ξ sinceG = ∆−½
α K∆½

ξ and the kernel

matrix K is, by definition, symmetric. Hence a first requirement for the coefficients of the
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quadratic terms is that

∆½
ξ = τ∆−½

α , (3.32)

with τ > 0. Since both matrices∆α and∆ξ are diagonal and positive definite, Equation

3.32 can be rewritten as

(δα)i(δξ )i = τ2 > 0 for all i ∈ J1, ℓK, (3.33)

with (δα)i and(δξ )i being thei-th components of the diagonals of∆α and∆ξ . If Equation

3.33 is satisfied, then the matrixG is symmetric.

If we assume that Equation 3.33 holds, then we can further improve the numerical

stability of Algorithm 3.2 using the results of Corollary 3.2. This corollary provides an

upper bound for the number of base-d digits that are lost during the computation of the

solutions of the linear systems in Algorithm 3.2. Ifp∈N∗ is the maximum number of base-

d digits which can be lost during computation, then we must findδ min
α = mini∈J1,ℓK(δα)i

andδ max
ξ = maxi∈J1,ℓK(δξ )i such that

logd

(
√

1+δ max
ξ η/δ min

α

)

6 p, (3.34)

whereη =min
{

ℓ‖K‖max,
√
ℓ‖K‖1 ,

√
‖K‖1‖K‖∞,‖K‖F

}

. In other words, we must have

δ max
ξ 6

d2p−1
η

δ min
α . (3.35)

The construction of the objective function in Sub-Section 3.1.1 provides the final require-

ments for the coefficients of the quadratic terms. The minimization of the upper bound of

the generalization error provides a reason for minimizing both the∆α-norm ofα and the

quantityδbb2 in an equal fashion since none of these two terms can minimizethe bound
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separately. Hence we should have an equality of the form‖∆α‖2 = δb which gives

δ max
α = δb > 0, (3.36)

with δ max
α = maxi∈J1,ℓK(δα)i. Furthermore we should balance the minimization of the gen-

eralization error with the minimization of the empirical error (which is a function of the

variableξ ). By the same argument that led to Equation 3.36, we should have a positive

trade-off coefficientC∈ R∗+ such that‖∆α‖2 =C
∥
∥∆ξ

∥
∥

2
, i.e.

δ max
α =Cδ max

ξ . (3.37)

From Equations 3.33, 3.35, 3.36 and 3.37, we can see that the choice ofδα and a trade-

off coefficientC > 0 controls the choice ofδξ andδb. This shows thatδα can be fixed

arbitrarily and that the solution to the function estimation problem can be controlled with

only a single parameterC > 0 for the coefficients of the quadratic terms. Additionally,if

all the components ofδα are equal to one, then Algorithm 3.2 requires much less floating

point operations to compute a solution. Therefore a strategic choice for the matrix∆α is to

have∆α = I ℓ. Consequently, Equations 3.33 and 3.37 implies that∆ξ =CI ℓ while Equation

3.36 implies thatδb = 1. Equation 3.35 gives a lower and an upper bound for the trade-off

coefficientC, leading to

0<C6
d2p−1

η
. (3.38)

Coefficients of the Linear Terms

The linear coefficients of the objective function have a significant impact on the constraints

of the optimization problem. They correspond to a translation in the solution space as it is
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proved in the equation below:

1
2
(x+ t)tH(x+ t) =

1
2

xtHx +ctx+C, (3.39)

wherec = Ht andC = ttHt/2 are constant terms. While such a translation provides no

advantage to the objective function, it greatly impact the expression of the constraints of the

mathematical programming problem. In our case, the coefficientscα , cξ andcb impact the

values of the vectoru as defined in Proposition 3.1. In other words, given such coefficients,

we have

ui = yi +
1
2

(

K i·∆−1
α cα −

(cξ )i

(δξ )i
+

cb

δb

)

, (3.40)

for all i ∈ J1, ℓK. This equation shows that the linear coefficients contribute to thescaling

of the vectoru which, in return, greatly impacts the quality of the numerical solution given

by Algorithms 3.1 and 3.2.

Both coefficientscα andcξ modify the vectory on aper elementbasis while the co-

efficientcb influence all the components ofy at once. Since there are no other factor that

discriminatecα andcξ , then one of these vectors can be set equal to0 and the other can

be left to control the variations of theyi ’s. The choicecα = 0 saves on floating point op-

erations (a matrix-vector product can be removed) and, hence, is a computationally better

choice thancξ = 0. A null coefficientcα also brings an additional form of robustness to

ULMs since that observational outliers slightly change thevalue of the kernel matrixK .

Naturally, if the entries ofK are perturbed, then the solution described in Theorem 3.2

will be perturbed as well. However, the choicecα = 0 avoids the additional perturbation

of the right-hand term of the linear systems. Hence, the removal of one of the terms most

vulnerable to observational errors leads to more stable andreliable optimal solutions.

By choosingδξ =C1ℓ with C> 0, δb = 1 (i.e. an optimal choice for the coefficients of
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the quadratic terms) andcα = 0, we obtain the following identity

ui = yi−
(cξ )i

2C
+

cb

2
, (3.41)

for all i ∈ J1, ℓK. The values of the components ofu can be chosen such that

−16 ui 6 1, (3.42)

for all i ∈ J1, ℓK, in order to improve the numerical stability of Algorithm 3.2. These in-

equalities are satisfied if we have

cb = 2

(
2ymin

ymin−ymax
−1

)

, (3.43)

and

(cξ )i = 2C

(
2

ymax−ymin
−1

)

yi , (3.44)

with ymin = mini∈J1,ℓK yi andymax= maxi∈J1,ℓK yi . This leads to a simplified expression for

theui ’s which is

ui = 2
yi−ymin

ymax−ymin
−1. (3.45)

Algorithm with the Optimal Coefficients

Algorithm 3.4 is an adaptation of Algorithm 3.2 with the optimal choice for the coefficients

of the objective function of the quadratic optimization problem of Equation 3.21. Given a

trade-off coefficientC> 0 that satisfies Inequality 3.38, Algorithm 3.4, so far, is the fastest

and most stable method investigated that computes a solution to the function estimation

problem. As discussed in Sub-Section 3.3.2, the Cholesky decomposition of line 6 can

be replaced by an asymptotically faster Conjugate Gradientmethod if the kernel matrix is

large and sparse. However, it comes at the price of a less accurate solution.
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Algorithm 3.4: Function Estimation with Optimal Coefficients

Function [α,ξ ,b] = OPTFEST (X ,y,kσ ,C)
Input : setX , observation vectory ∈ Rℓ, kernelkσ with parameter vectorσ ,

trade-off coefficientC> 0.
Output : parametersα ∈ Rℓ andb∈ R, slack vectorξ ∈ Rℓ.

1 K ← KERMAT (X ,kσ )

2 A←C2, B←
√

C, D← 1/C
3 ymax← MAX (y), ymin← MIN (y), E← 2/(ymax−ymin), F ← Eymin+1
4 z← Ey, u← z−F, G← TIKREG (BK ,1)
5 p← GEMV (K ,u), q← ROWSUM (K)
6 L ← CHOLDC (G), v∗← SFECD (L ,p), w∗← SFECD (L ,q)
7 for i ∈ J1, ℓK do ei ← D
8 e← e− GEMV (K ,w∗), d← Du − GEMV (K ,v∗)
9 a← d −

(
SUM (d)/

(
D2+ SUM (e)

))
e

10 α ← A GEMV (K ,a), ξ ← y−z−Ca, b← A SUM (a)+F
11 return (α,ξ ,b)

If ck is the number of floating point operations required to compute the kernel output

between two observations and ifkmax is the iteration limit of the procedureSFECD, then

Algorithm 3.4 requires at mostℓ3/3+(ck+16kmax+37)ℓ2/2+(3ck+60kmax+85)ℓ/6+7

FLOPS to compute a solution. This is an improvement of 4ℓ2+8ℓ−5 FLOPS with respect

to Algorithm 3.2 which, for an average size ofℓ = 5000 observations, represents a gain of

100039995 floating point operations.
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Part II

Applications of Unconstrained Learning Machines
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Chapter 4

Form Inspection in Manufacturing Engineering

4.1 Introduction, Context and Aims

Manufacturing processes leave very specific patterns on part surfaces, which provide a

good basis for inspecting them. In some cases, it is possibleto quantify the manufacturing

errors and their effect on the product, based on the model of the processing [Badar et al.,

2003, 2005a,b]. However, when multiple processes are applied on the same feature, the net

effect of these processing errors is far too difficult to model and compute. In this chapter,

we apply ULMs to quantify process errors on parts and therebyprovide a basis for adaptive

sampling and form inspection.

Although previous works regarding the use of machine learning techniques for deter-

mining the size of the manufacturing errors exist [Malyscheff et al., 2002; Prakasvudhisarn

et al., 2002, 2003; Balakrishna et al., 2008], the results were plagued by misalignment

problems and sampling issues, and only concerned with simple geometric shapes such as

plates [Hopp, 1993; Hulting, 1992]. It was also suggested that the manufacturing errors in

such cases should be captured using experimental analysis,even though that sampling the

part throughout, uniformly or randomly, may miss some process characteristics [Kim and

Raman, 2000].

This chapter develops a general approach that attempts to circumvent all these prob-

lems. The objectives are: to re-align the measurements intotheir canonical frame of refer-

ence (following the work of Besl and McKay [1992] onregistration); to assess if each sur-

face that is probed has its form contained within a certain range from a nominal plane (i.e.
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to determine the size of theminimum zone[ASME, 1995a,b; Carr and Ferreira, 1995a,b;

Hurt and Colwell, 1980; Kurfess and Banks, 1995; Murthy and Abdin, 1980; Requicha,

1993; Roy and Zhang, 1992; Samuel and Shunmugam, 1999; Shunmugam, 1987]); and to

optimize the probing procedure (sampling size, mesh geometry [Hocken et al., 1993; Woo

and Liang, 1993], measurement path, accuracy, etc.) to accelerate the measurement process

and to reduce time-induced errors.

Section 4.2 covers mesh issues while Section 4.3 details registration problems when

knowledge about the canonical frame of reference has been partially lost. Section 4.4

introduces a nonlinear nonparametric regression approachbased on ULMs that finds the

size of the minimum zone (which is defined as the part of space where the actual surface

form is different from its ideal nominal form). In Section 4.5, measurements were collected

on several types of surfaces with aCoordinate Measuring Machine(CMM). ULMs were

then used to fit test models of these surfaces and estimates ofthe size of the minimum

zones.

4.2 Mesh Generation

The form inspection of manufactured parts naturally implies to collect surface measure-

ments which are to be compared against a nominal profile. These measurements can be

collected in an organized fashion with highly accurate probe-type CMMs, which is a cer-

tain advantage over optical CMMs. On the other hand, opticalCMMs collect large amount

of coordinate measurements quickly, if the part to be inspected can reflect the beam. Given

that probe-type CMMs were not rendered obsolete by optical ones, it is then still crucial

to design suitable meshes of contact points to retrieve observations samples with the right

properties for the registration (see Section 4.3) and ULM-based regression (see Section 4.4)

procedures.

The generalization error, which is one of the core concept ofULMs (see Sub-Section
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2.3.4), indicates that deformation patterns on the surfaceof the parts will be successfully

estimated if:

• Contact points (observations) are spread evenly on the entire portion of the surface

to be inspected;

• There is a fair number of contact measurements collected.

• The surface model (i.e. the choice of the kernel and the other parameters needed by

ULMs) is suitable.

While the last point is a matter left to the modeler and the validation procedures (see Sub-

Section 2.4.3), the first two points are narrowing the type ofmeshes that are suitable for

form inspection. Furthermore, a physical requirement of probe-type CMMs is to favor

smooth and regular trajectories of the probe so a path that minimizes the time required

to collect measurements can easily be found (and hence reduce the likelihood of time-

induced errors). Smooth trajectories aim to minimize the sudden lateral displacements

of the probe which are both time consuming and error-producing operations. This rules

out fractal trajectories for the probe (e.g. space-filling curves such as Z-curves or Hilbert

curves) despite that the induced meshes satisfy the first tworequirements of the list above.

The construction of suitable meshes and the comparison of their respective properties

necessitate the establishment of measures of the quality ofthe different meshes. Sub-

Section 4.2.1 covers this issue while Sub-Section 4.2.2 proposes a candidate mesh for col-

lecting measurements: a uniform grid. Sub-Section 4.2.3 discusses issues related to the

trade-off between the quality of a mesh and the time needed tocollect measurements.

4.2.1 Mesh Quality

The quality of a mesh has to give a proper measure of what constitutes a large enough

number of nodes (hence a large enough number of contact points), and an even spread of
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the nodes over a compact domain of the observation space (which is, in this case,R2).

Additionally, the measure can be augmented with considerations based on the minimum

time it takes for the probe to visit all the nodes.

Assume that we haven distinct nodes contained in a compact domainD ⊂ R2 of total

surfaceSand letρ be the diameter of the smallest ball that containsD . Nodes are repre-

sented byn pointsa1, . . . ,an in R2. These points are inducing a Voronoi tessellation of the

compact domainD [Voronoi, 1907], and we will assume that the Dirichlet domain of each

point ai has a surfaceSi , for all i ∈ J1,nK. In all applications, the surfaces which need to

be inspected can be described by a set of two parameters varying in close intervals ofR.

In other words, the nodes of a mesh need to cover a rectangle in[a,b]× [c,d] = D ⊂ R2.

Hence, meshes can be built to cover a rectangle and then the contact points can be projected

onto the surface of interest.

Spreading the pointsa1, . . . ,an evenly overD is akin to maximize the following quan-

tity:

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2

ρ2 , (4.1)

for all i ∈ J1,nK and whereNi is the index set of nodes adjacent to thei-th node. This

represents the need to maximize the distances between adjacent points in order to avoid

them to agglomerate somewhere on the domainD . The termρ2 is a scaling factor for the

inter-node distances.

Having a large enough number of points distributed over the surfaceD is similar to

maximizing the amount of contact information per unit of surface. This can be represented

by the maximization of the quantity

S
n

∑
i=1

1
Si
, (4.2)

whereSis a scaling factor. If each term of the sum in Equation 4.2 is weighted by the terms
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of Equation 4.1, we then obtain the quantity

n

∑
i=1

(

S
Si

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2

ρ2

)

, (4.3)

which is growing with the number of nodesn. However, if the number of nodes grows,

then the time spent to collect measurements grows as well. Hence, the quantity in Equation

4.3 is averaged by the number of nodes. Namely, we obtain a quantity Q which is defined

by

Q=
1
n

n

∑
i=1

∑
j∈Ni

S
∥
∥ai−a j

∥
∥2

2

Siρ2 . (4.4)

The quantityQ is chosen as the measure of the quality of a given mesh. The goal is to

build a mesh that maximizes this quantity while satisfying time constraints related to the

CMM probe visiting each node. The minimum length path (i.e. the path through all nodes

requiring the less time, assuming that the probe has a constant displacement speed) is an

issue that is separated from the concept of mesh quality. Usually a minimum-length path

is computed from a given mesh but does not serve in the establishment of the mesh itself.

Furthermore, the length of the path is dependent on which type of surface the mesh is

being projected onto. This surface dependency is additionally complicated by the fact that

the normal to the surface at the contact point is not co-linear with the axis of the probe. The

reaction force when the probe is making contact with the surface pushes the tip aside and

inserts a tiny, but not necessarily negligible, bias in the contact point measurements. All

these factors are the main reasons why paths through nodes are not taken into account in

the evaluation of the mesh quality. Measurement paths and probe angles are considerations

made by the operator of the CMM which have marginal impact on the registration and

regression procedures.
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4.2.2 Uniform Grids

Grid Uniform grids were the chosen meshes for the experiments on face-milled plates (see

Sub-Section 4.5.5). The choice is not claimed to be optimal with respect to the quality

measure of Equation 4.4, but it was retained because of a few key properties:

• The simplicity of the structure that allows for the formulation of a close form of

Equation 4.4 and the derivation of several useful measures;

• The conformance with the requirements of a suitable mesh (contact points spread

evenly with each Dirichlet domain bringing an equal amount of information about

the surface).

Meshes with contact points generated by low-discrepancy sequences (e.g. van der Corput

sequence, Hammersley sequence) are an alternative to rigidstructures such as uniform

grids. They allow the use of a more flexible number of contact points, but Equation 4.4 has

no close form and formulas predicting the measuring time with respect to the quality to be

achieved cannot be properly established.

y

2y

x 2x

Figure 4.1: Schematics of a uniform grid.

An uniform grid on a rectangle domainD = [a,b]× [c,d] is a grid with n columns

andm rows such that the nodes are spaced equally row-wise and column-wise. The nodes
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adjacent to the border of the rectangle domain are located half an inter-node distance from

the border (see Figure 4.1). The surface of the domain isS= (b−a)(d− c), the surface

of the Dirichlet domains are all equal toSi = S/
(
(n+1)(m+1)

)
for i ∈ J1,nmK, and the

diameterρ is such thatρ2 = (b−a)2/(n+1)2+(d−c)2/(m+1)2. The grid has four types

of nodes

• 4 corner nodes with

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2 = 2

(
(b−a)2

(n+1)2 +
(d−c)2

(m+1)2

)

. (4.5)

• 2(m−2) nodes adjacent to the vertical borders with

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2 = 3
(b−a)2

(n+1)2 +4
(d−c)2

(m+1)2 . (4.6)

• 2(n−2) nodes adjacent to the horizontal borders with

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2 = 4
(b−a)2

(n+1)2 +3
(d−c)2

(m+1)2 . (4.7)

• m(n−2)−2n+4 other nodes with

∑
j∈Ni

∥
∥ai−a j

∥
∥2

2 = 6

(
(b−a)2

(n+1)2 +
(d−c)2

(m+1)2

)

. (4.8)

Using Equation 4.4, the quality of anm×n uniform grid is therefore

Q=
2(n+1)(m+1)

nm
(
λ 2+µ2

)

(
λ 2(n−1)(3m−2)

(n+1)2 +
µ2(m−1)(3n−2)

(m+1)2

)

, (4.9)
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whereλ = b−a andµ = d−c. If we assume thatr = λ/µ = n/m> 1 is theaspect ratio

of the domainD , then Equation 4.9 is rewritten as

Q(n, r) =
2r(n+ r)(n+1)

n2(1+ r2)

(
(n−1)(3n−2r)

(n+1)2 +
(n− r)(3n−2)

(n+ r)2

)

. (4.10)

For a given aspect ratior > 1, we haveL(r) = lim
n→∞

Q(n, r) = 12r/(1+ r2) ∈ (0,6], with

argmax{L(r) : r ∈ [1,+∞)} = r∗ = 1 andL(r∗) = 6. We can useL(r) to normalize the

valueQ(n, r) and then obtain the normalized quality of anm×n uniform grid:

Q̃(n, r) =
(n+ r)(n+1)

6n2

(
(n−1)(3n−2r)

(n+1)2 +
(n− r)(3n−2)

(n+ r)2

)

∈ [0,1]. (4.11)
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Figure 4.2: Quality of a uniform grid against its number of nodes.

Figure 4.2 shows the contour plot ofQ̃(n, r) for n ∈ J1,40K andr ∈ [1,4]. It may be

used to determine the size that a uniform grid should have if there is a minimum quality to

be matched. For example, a rectangle domain with aspect ration r = 2 should be covered

by a 12×24 uniform grid to reach a normalized quality of 90%.
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4.2.3 Measurement Time against Quality of a Uniform Grid

Assume that the CMM was set to collect contact point measurements at a constant rate of

ν > 0 contact points per unit of time. At such a rate, thenmpoints of the uniform grid will

be measured inνt time units,i.e.

νt = nm=
n2

r
. (4.12)

It is then possible to compute the quality of a uniform grid with respect to the measurement

time instead of the number of nodes on the grid. Namely, we replace the expressioñQ(n, r)

by q̃(t,ν, r) = Q̃(
√

rνt, r).
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Figure 4.3: Quality of a uniform grid against against measurement time.

Figure 4.3 displays the contour plots of ˜q(t,ν, r) for r ∈ {1,4}. It may be used to choose

the rateν for given time and quality constraints. For example, one would need to choose

a rateν = 18 points/min to collect measurements on a 90% quality square grid under 15

minutes. Figure 4.2 also indicates that this is a 16×16 uniform grid.
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4.3 Registration and Parameter Estimation

This section covers a method ofregistration, or re-alignment, between a cloud of points

and the theoretical shape it must assume. Methods of registrations have been investigated

thoroughly for the past two decades in which a landmark paperby Besl and McKay [1992]

was published. In this section, we are applying a few modifications to the registration ap-

proach described by Besl and McKay to serve the specificity ofour problem in which we

must match contact points given by a probe-type CMM to known 3-D shapes described by

implicit or parametric functions. The method was modified towork with non-derivative

optimization techniques and without involving approximations such as pairwise point reg-

istration. The approach was also slightly simplified to fasten computations and to allow the

search of the optimal features defining the 3-D shapes (e.g. the actual radius of a sphere).

4.3.1 Input Data and Notations

Suppose we are given a set ofℓ ∈ N∗ vectorsx1, . . . ,xℓ in R3 which represent Cartesian

coordinate measurements. We know that a surface inR3 can be described by an implicit

function φ : R3→ R or by a parametric functionψ : R2→ R3, and that the alignment

problem consists into properly rotate and translate the coordinate measurementsx1, . . . ,xℓ

such that they coincide at best with the form of the theoretical surface described byφ or

ψ. This alignment procedure is a necessary pretreatment stepfor surface inspection since

the measurement process is introducing a bias into the experimental coordinates of every

points.

In our notations, the translation to be found is denoted by a vector t ∈ R3 and the

rotation is denoted by a 3× 3 matrix R ∈ S O3(R) whereS O3(R) is the real special

orthogonal group in three dimensions. In our case, we are searching the groupS O3(R)

using a coordinate chart formed by theEuler anglesα ∈ [0,2π ], β ∈ [0,π ] andγ ∈ [0,2π ]

that describe a product of rotations around thez, x andzaxes. Letθ = (α,β ,γ) and letRθ
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be an element ofS O3(R) described byθ , then the general representation ofRθ is given

by

Rθ =









cαcγ −sαcβ sγ −cαcβ sγ −sαcγ sβ cγ

cαsγ +sαcβ cγ cαcβ cγ −sαsγ −sβ cγ

sαcβ cαsβ cβ









, (4.13)

wheresα = sin(α), cα = cos(α), etc.

4.3.2 Pre-Registration Data Treatment

The first step of the alignment procedure is to center the cloud of pointsx1, . . . ,xℓ by sub-

tracting to every point the centroid of the cloud defined by

xc =
1
ℓ

ℓ

∑
i=1

xi . (4.14)

It is also possible to modify the orientation of the cloud such that the variance of the projec-

tions on each coordinate axis is maximized. The first coordinate corresponds to the greatest

variance, the second coordinate corresponds to the second greatest variance, etc. In other

words, it is possible to perform a complete Principal Component Analysis (PCA) [Pearson,

1901] on the cloud of points instead of a simple centering procedure. Adjusting the orien-

tation along the axes corresponding to the maximum inertia of the cloud using a PCA may

reduce the computational effort in the next steps of the alignment procedure.

Let X be aℓ×3 matrix such that thei-th row contains the vectorxi −xc, then a PCA

is performed by computing the 3×3 matrix V such thatUΣVt is the Singular Value De-

composition (SVD) ofX. Once the SVD performed, the new data matrix is obtained by

computingX̂ = XV . Alternatively, a PCA can be realized by performing a partial SVD in

which only the first three columns ofU (stored in theℓ×3 matrixU3) are computed. The

new data matrix is then given by computingX̂ = U3Σ.

Nevertheless, the aim of the pretreatment phase of the alignment procedure is to make
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the cloud of experimental points roughly coincide with the theoretical surface. A centering

and a PCA might actually fail to do so, therefore it is often inevitable that manual transla-

tions and rotations have to be introduced in order to achievethe goal of the pretreatment

phase.

4.3.3 Registration with Implicit Functions

Consider the case where the theoretical surface is described by a implicit functionφ :R3→

R. A point x̂ ∈R3 lies on the theoretical surface if it belongs to the zero set of φ , otherwise

there exists ar ∈ R∗ such thatx̂ belongs to the zero set ofφ − r. The idea behind the

alignment of the pointŝx1, . . . , x̂ℓ is to find an orthonormal matrixRθ and a vectort that

minimize simultaneously the quantities|φ(zi)|, i ∈ J1, ℓK, wherezi = Rθ x̂i + t. It will then

force every transformed pointz1, . . . ,zℓ to be at a minimum distance to the zero set ofφ ,

matching the cloud of points at best with the theoretical surface. The problem is simplified

by minimizing the quantity

Λ =
ℓ

∑
i=1
|φ(zi)| , (4.15)

with respect toθ ∈ [0,2π ]× [0,π ]× [0,2π ]andt ∈R3. The domain ofθ is complicating the

minimization procedure since it brings inequality constraints to the optimization problem.

However, this problem can actually be circumvented by extending the search of an optimal

θ on the entire spaceR3. This approach is valid since we are not interested by uniquechart

coordinates forRθ but simply bysomechart coordinates yielding minimum value for the

objective function. This leads to the following unconstrained optimization problem

min

{ ℓ

∑
i=1
|φ(zi)| : (θ , t) ∈ R6

}

. (4.16)

The objective function of this problem is in most cases not convex onR6 and therefore

the uniqueness of the optimal solution is not guaranteed. Furthermore, algorithms for con-

vex minimization might fail to converge toward a global minimum if the pretreatment step
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failed to align the cloud of points at a close proximity to thetheoretical surface. Nev-

ertheless, if we assume the convexity of the objective function on the search domain, the

minimization can be performed with the help of a variety of optimization algorithms. Since

φ might be fairly complicated, or even not differentiable, itis safer to rely on derivative-

free optimization methods. Among such methods there are themethod of Rosenbrock

[1960], the method of Hooke and Jeeves [1961], the simplex search method [Nelder and

Mead, 1964, 1965; Spendley et al., 1962] and the method of Zangwill [1967]. The pre-

ferred method is the one that requires the least amount of functional evaluations, which is

the simplex search method.

In some cases the number of experimental points is very large(outputs of an optical

Coordinate Measuring Machine often range in tens of thousand points). Consequently, the

computational time required to perform the optimization ofthe quantityΛ in Equation 4.15

would be too long for practical applications of the registration method. One solution is

to truncate the sum and to compute a mean value of the absolutevalues of the deviations

from the theoretical surface. This approach is valid since that, after a certain rank, the

sequence of means will converge toward a finite value. The summight be truncated by

choosing (wisely) a representative sampleSof data points which is changing the previous

unconstrained optimization problem into

min

{
1
|S| ∑zi∈S

|φ(zi)| : (θ , t) ∈ R6
}

. (4.17)

The goodness of the solution given by the above mathematicalproblem depends entirely

on the “goodness” of the sampleS. Thankfully, several sampling techniques can be used to

help accelerating the minimization procedure by providingsmaller, but relevant, samples

(see Sub-Section 2.1.3 and [Cochran, 1977]).
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4.3.4 Registration with Parametric Functions

Consider the case where the theoretical surface is described by a parametric functionψ :

R2→ R3 and let the compact domainΩ ⊂ R2 be such that the imageψ(Ω) corresponds

to the theoretical surface. Furthermore letP be a set ofp ∈ N∗ nodes of a (possibly

unstructured) grid ofΩ and letN be the set of points inR3 that are the images of the

elements ofP by ψ. Since it is not possible to derive an implicit functionφ from the

parametric functionψ in the general case, it is necessary to derive a method for estimating

the quantityΛ in Equation 4.15. The idea is to make an orthogonal projection of every

point zi onto the theoretical surface and to compute the distance that separates the points

from their projections.

Given a pointz∈ R3, we determine at first its nearest neighborn0 ∈N . Fromn0 we

obtain a vector of parametersp0 ∈P. It is recommend to perform the Nearest Neighbor

Search (NNS) using a state partitioning method such as one involving a three dimensional

kd-tree data structure [Bentley, 1975]. Using this approach, the building time complexity

of thekd-tree (only one occurrence) is inO(plogp) and the query time complexity during

the NNS is inO(logp). If the grid is coarse, thenn0 is a poor estimate of the orthogonal

projection ofx onto the theoretical surface. Therefore, it is necessary tobuild a sequence

of k points n1, . . . ,nk onto the theoretical surface that converges toward the orthogonal

projection.

Let ni = ψ(pi), i ∈ J1,kK, be an element of that sequence. First, we determine the

tangent vectorsr1 = ∂1ψ(pi) andr2 = ∂2ψ(pi) as well as the quantitiesν1 = 〈r1,(z−ni)〉

andν2 = 〈r2,(z−ni)〉 which are the coordinates ofz−ni in the tangent plane atni . Here,

the parametric functionψ is assumed to be differentiable onΩ even though it might not be

always the case. Thus it is safer to compute approximated vectorsr1 andr2 in the general

93



case using onlyψ and not its partial derivatives. The metric tensor

(gi j ) =






〈r1, r1〉 〈r1, r2〉

〈r2, r1〉 〈r2, r2〉




 (4.18)

defines the dot product on the tangent plane and provides a wayto convert the quantitiesν1

andν2 into quantitiesπ1 andπ2 into the parametric spaceΩ. By computing∆ = g11g22−

g2
12, we obtain

π1 =
g22ν1−g12ν2

∆
, (4.19)

and

π2 =
g11ν2−g12ν1

∆
, (4.20)

even though∆ is in practice replaced by∆+ ε whereε > 0 is a small numerical quantity

avoiding possible divisions by zero. Then the next iterationpi+1=pi+(π1,π2) is computed

and the procedure is iterated until the number of iterationsk is reached or until‖(π1,π2)‖

is below a certain threshold. Oncenk = ψ(pk) is computed, we derive its tangent vectors

r1 andr2 as well as its unit normal vector

u =
r1× r2

‖r1× r2‖2
. (4.21)

Then the quantity|λ | = |〈u,(z−nk)〉|, which is the absolute value of the projection of

z−nk on the normal vectoru, replaces the quantity|φ(z)| which was to be approximated.

Algorithm 4.1 implements the projection procedure.

4.3.5 Getting the Surface Parameters and Normal Deviations

If the theoretical surface is defined by a parametric function then both a set of parameters

and algebraic distances from the theoretical surface are given by the registration proce-

dure. These distances, when paired with parametric coordinates, may reveal a coherent
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Algorithm 4.1: Projection onto a parametric surface

Function [p,λ ] = SurfaceProjection (ψr ,p0,z)
Data: toleranceε > 0.
Input : parametric functionψr : R2→ R3, initial parameterp0 ∈ R2, vectorz∈ R3.
Output : parameterp, altitude from surfaceλ .

1 p← p0
2 repeat
3 d← z−ψr (p), r1← ∂1ψr (p), r2← ∂2ψr (p)
4 ν ←

(
〈r1,d〉 , 〈r2,d〉

)
, g←

(
‖r1‖22 , ‖r2‖22 , 〈r1, r2〉

)

5 δ ← 1/(g1g2−g2
3+ ε), π1← δ (g2ν1−g3ν2), π2← δ (g1ν2−g3ν1)

6 p← p+(π1,π2)

7 until ‖π‖∞ 6 ε
8 r1← ∂1ψr (p), r2← ∂2ψr (p), n← r1× r2

9 λ ←
〈
n,
(
z−ψr (p)

)〉
/(‖n‖2+ ε)

10 return (p,λ )

pattern deformation due to the manufacturing process. Thus, predictive methods such as a

nonparametric nonlinear regression analysis with ULMs candetermine the underlying de-

formation rule (or function) and may generalize the shape ofthe deformations for similar

surfaces and manufacturing processes.

In the case an implicit function is given, the gradients ofφ at every transformed point

zi are computed (or approximated) and a line search is performed in order to compute

the smallestλi ∈ R in absolute value such that the quantity
∣
∣φ
(
zi +λi∇φ(zi)

)∣
∣ is min-

imized. Appropriate derivative-free line searches for this task are the Golden Section

Method [Kiefer, 1953] and the closely related Fibonacci Search [Avriel and Wilde, 1966].

Again, the function to be minimized might not be unimodal onR but it can be so on

the search interval, and the starting solution might be close enough to the optimal solu-

tion so that one of the line searches will converge toward it.Once the optimal̄λi ’s are

obtained, we compute the quantitiesλ̄i ‖∇φ(zi)‖2 which are the algebraic distances from

the theoretical surface. The pointsz̄i = zi + λ̄i∇φ(zi) are all located on the level surface

{z∈ R3 : φ(z) = 0} which is, by definition, the nominal surface of the part.

The coordinate system for the pointsz̄i can also be changed in order to get rid of a
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coordinate irrelevant for the description of the actual position of one point on the theoreti-

cal surface. If the surface has three axes of symmetry then spherical coordinates might be

more appropriate. If the surface has only one axis of symmetry then cylindrical coordinates

could be more suitable, etc. Many orthogonal coordinate systems in three dimensions can

be tried in the attempt to reduce the dimensionality of the experimental points. If these basic

transformation methods fail, then other more elaborate nonlinear dimensionality reduction

methods can be successively tried to cancel one extra dimension. Among these nonlinear

methods we find: the Kernel Principal Component Analysis (KPCA) [Diamantaras and

Kung, 1996; Schölkopf et al., 1997; Mika et al., 1999]; Principal curves and manifolds

[Hastie and Stuetzle, 1989]; Gaussian Process Latent Variable Models (GPLVM) [Tipping

and Bishop, 1999]; Locally Linear Embedding (LLE) [Roweis and Saul, 2000]; Autoen-

coders [Hinton and Salakhutdinov, 2006]; and Self-Organizing Maps (SOM) [Kohonen,

1982, 2001; Kohonen and Mäkisara, 1986].

Alternatively, there exists a computationally intensive method that can associate a pair

of parameters(p1, p2) in R2 to any point̄z of the level surface{z∈R3 : φ(z) = 0}. Assume

that an arbitrary point̄z0 is chosen as the origin. The unit vector

w =
∇φ(z̄0)

‖∇φ(z̄0)‖2
(4.22)

is normal to the level surface and we may choose an arbitrary unit vectoru ∈ R3 such that

〈u,w〉 = 0 and then define the unique unit vectorv ∈ R3 by v = w×u so we have a unit

basis(u,v,w) in R3. The parameterp0 ∈ R2 associated tōz0 is arbitrarily set equal to0.

For any point ¯z∈ R3 such thatφ(z̄) = 0, 〈z̄,u〉 6= 0 and〈z̄,v〉 6= 0, we define a sequence of

m> 1 pointsa1, . . . ,am such that

ai = z̄0+
i

m+1
(z̄− z̄0), (4.23)
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for all i in J1,mK. The pointsa1, . . . ,am belong to the unique line inR3 that goes through

z̄0 andz̄. For eachai , we use a line search to find the smallestλi ∈R in absolute value such

that the quantity|φ(ai +λi∇φ(ai))| is minimized. Once the optimal̄λi ’s are determined,

we compute the points̄a1, . . . , ām such that

āi = ai + λ̄i∇φ(ai). (4.24)

If we use the convention that̄a0 = z̄0 andām+1 = z̄, then we define the parameterp1 ∈ R

associated tōz as the linear approximation of the shortest path on the levelsurface between

z̄0 andz̄, i.e.

p1 =
1

‖∇φ(z̄0)‖2

m+1

∑
i=1
‖āi− āi−1‖2 . (4.25)

The second parameterp2 ∈ R is defined as the angleθ ∈ (−π ,π ] such that

θ = atan2
(
〈v,(ā1− ā0)〉 ,〈u,(ā1− ā0)〉

)
, (4.26)

where

atan2 :R2→ R, (y,x) 7→







arctan(y/x) if x> 0

π +arctan(y/x) if x< 0, y> 0

−π +arctan(y/x) if x< 0, y< 0

π/2 if x= 0, y> 0

−π/2 if x= 0, y< 0

undefined ifx= 0, y= 0.

(4.27)

4.3.6 Determination of the Features of Solids

Some particular surfaces can be defined with respect to predetermined parameters. For

example, a torus with tube radiusr ∈ R∗+ and distance from the center of the tube to the
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origin R∈ (0, r) can be defined with a parametric function

ψ : (u,v) ∈Ω 7→









(R+ r cosv)cosu

(R+ r cosv)sinu

r sinv









∈ R3, (4.28)

whereΩ = [0,2π ]× [0,2π ]⊂ R2, or it can be defined with an implicit function

φ : (x,y,z) ∈ R3 7→
(
R−

√

x2+y2
)2

+z2− r2 ∈ R. (4.29)

Here, the predetermined parameters of the torus arer andR and, even though they are

presumed to be initially known, the manufactured solid may have slightly different values

for r andR, on top of having unavoidable mechanical deformations on its surface. Thus,

it is necessary to determined approximated values of these parameters before deriving the

algebraic distances mentioned in the previous subsection.To do so the whole alignment

methodology described in Sub-Sections 4.3.3 and 4.3.4 willnow be considered as sub-step

of an optimization procedure.

Consider an implicit functionφ(r , ·) parameterized byr ∈Rp and letF be a functional

such that

F(φ)(r) = min

{ ℓ

∑
i=1
|φ(r ,zi)| : (θ , t) ∈ R6

}

. (4.30)

Then the optimal vector of parametersr̄ ∈ Rp is obtained by solving the following mini-

mization problem

min{F(φ)(r) : r ∈ Rp}. (4.31)

If we assume that the objective functionF(φ) is convex on the search domain, then tra-

ditional multidimensional convex minimization methods can be used. For example, the

Simplex Search mentioned in Sub-Section 4.3.3 fits perfectly this task. If the theoretical

surface is parameterized by a single parameter, then a simple line search like the Golden
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Section Method or the Fibonacci Search can be performed instead. If the theoretical sur-

face is defined by a parametric functionψ(r , ·) parameterized byr ∈ Rp then the objective

function is modified according to the methodology introduced in Sub-Section 4.3.4.

4.4 Nonlinear Regression and Minimum Zone Estimation with ULMs

At the end of Section 4.3, all coordinate measurementsx1, . . . ,xℓ inR3 are assumed to be re-

duced into pairs(p1,λ1), . . . ,(pℓ,λℓ) in Ω×R whereΩ is a compact subset ofR2. The vec-

tors p1, . . . ,pℓ are parametric coordinates (observations) associated to altitudesλ1, . . . ,λℓ

(targets).

The aim is to find a deformation patternf : R2→ R that links observations to targets

and this problem perfectly fits the task ULMs have been created for. By selecting an appro-

priate kernel for numerical data (see Sub-Section 2.2.4), we can repeatedly test and validate

models for the deformation pattern (see Sub-Section 2.4.3). Once the best model has been

validated, we have a pattern estimatef̂ : Ω 7→R that fits the data with a toleranceεα > 0 at

a confidence levelα ∈ (0,1). In other words, we have

∣
∣ f̂ (p)−λ

∣
∣6 εα , (4.32)

for a toleranceεα > 0 defined by an arbitraryα ∈ (0,1), and for allp ∈ Ω and their asso-

ciated deformation altitudesλ ∈ R (which are unknownalmost everywheresince we only

have pointwise measurements). Consequently, the sizeMα of the minimum zone, with

confidence levelα ∈ (0,1), is defined as:

Mα = max{ f̂ (p) : p ∈Ω}−min{ f̂ (p) : p ∈Ω}+2εα . (4.33)

The optimization of f̂ has to be done, or exhaustively around the extrema, or by us-

ing an optimization meta-heuristic due to the fact thatf̂ is never convex in the general
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case. Meta-heuristics can involve: genetic algorithms [Holland, 1975], simulated anneal-

ing [Kirkpatrick et al., 1983;Černý, 1985], tabu search [Glover, 1989, 1990], ant colony

optimization [Dorigo, 1992], particle swarm optimization[Kennedy and Eberhart, 1995],

etc.

4.5 Applications

The processing of contact point measurements was made with aDELL Precision Work-

station 530 equipped with two 2.4 GHz Intel Xeon processors and 2 GiB of RAM. ULMs

and registration codes were developed under MATLAB 7.4. Surfaces were inspected with

a Brown & Sharpe MicroVal PFX™ 454 CMM equipped with a touch trigger probe head.

This CMM has a linear displacement accuracy of 5.1 µm along each axis and a measure-

ment repeatability of 3.8 µm. The touch trigger probe head isa Renishaw PH9/PH10

manual probe head capable of holding M2 and M3 styli. The Renishaw M2 stylus ref. A-

5003-0577 was used throughout all the experiments. It has a� 0.7 mm ruby ball, a� 0.5

mm × 20 mm tungsten carbide stem and a mass of 0.32 g.

Different parts were manufactured: face-milled plates, anhalf cylinder, an half sphere,

an half torus and a cone. The parts were probed by the CMM and the contact points were

registered according to the method described in Section 4.3. During the registration pro-

cedure, the actual parameters of the nominal surfaces (sphere diameter, cylinder diameter,

etc.) were successfully obtained. Once contact points werecorrectly registered, ULMs

were used to recover deformation patterns on the surface of each part and the minimum

zones were computed according to the approach discussed in Section 4.4.

4.5.1 Half Cylinder Deformations

One half cylinder was produced using an end milling operation that used the following

cutting parameters:
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• Workpiece: Aluminum 7075-T6,� 76.2 mm, 34.29 mm length.

• Tool: � 12.7 mm ball nose end mill with a High Speed Steel (HSS) cutter.

• Machining conditions: step over = 0.635 mm.

This half cylinder was inspected with a M2 stylus ref. A-5003-0577 using an uniform

grid mesh of 630 contact points. Figure 4.4 shows the longitudinal deformations after re-

alignment and determination of the actual diameter of the part.
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Figure 4.4: Longitudinal deformations of the half cylinder.

The final kernel used for the regression the deformation shape is a Gaussian RBF kernel

with parameterσ set equal to 5.17. No significant vertical deformations were found, and

the deformation form in Figure 4.4 is represented with respect to the coordinate angleθ ∈

[0,π ]. The actual diameter of the part was found to be slightly greater than desired one of 6
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µm. The minimum zone is estimated to be 35 µm. The longitudinal wave can be interpreted

by the movement of the cutter during the machining process where the cutter moves linearly

between reference points that belong to the ideal shape. Thereal trajectory of the cutter is

therefore a chain of small linear trajectories that closelymatches the ideal cylindrical form

(piecewise approximation) resulting in a wave pattern whenbeing projected on Figure 4.4.

4.5.2 Half Sphere Deformations

One half� 63.5 mm sphere was manufactured and inspected with a sample of 256 contact

points following a Hammersley distribution. A M2 stylus ref. A-5003-0577 was used for

recording the measurements. After re-alignment the actualdiameter of the half sphere was

found to be 378 µm larger than the one desired and the minimum zone was estimated to

be 70 µm. The interpolated deformation form is shown in Figure 4.5 and it displays the

deformation according to the coordinate system represented on the left side on the figure.
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Figure 4.5: Deformations of the half sphere.

The final kernel used for the interpolation of the deformation shape is a Gaussian RBF

kernel with parameterσ set equal to 6.30. Deformations were significant with respect to

a single parameter, namely the latitudeφ ∈ [0,π/2] of the contact point. Deviations from

the nominal surface appear to occur at places where the anglebetween the cutter and the
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contact surface is important like the top and the base of the half sphere.

4.5.3 Half Torus Deformations

One� 63.5 mm half torus of tube diameter 38.1 mm and was manufactured and inspected

with a sample of 256 contact points following a Hammersley distribution. A M2 stylus

ref. A-5003-0577 was used for recording the measurements. After registration, the actual

diameter of the half torus was found to be 92 µm larger than theone desired and the tube

diameter 68 µm smaller than expected. The minimum zone was estimated to be 150 µm

with the largest deviations being inside the torus hole. Theinterpolated deformation form

is shown in Figure 4.6 and it shows the deformations according to the coordinate system

represented on the left side of the figure.
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Figure 4.6: Deformations of the half torus.

The final kernel used for the interpolation of the deformation shape is a Gaussian RBF

kernel with parameterσ set equal to 5.73. Deformations were significant with respect to a

single parameter, namely the latitudeφ ∈ [0,π ] of the contact point. Deviations from the

nominal surface, just like for the half sphere, appear to occur at places where the angle

between the cutter and the contact surface is important likethe inside hole of the torus.
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4.5.4 Cone Deformations

One 63.5 mm high aluminum cone with a� 76.2 mm base was manufactured using a

taper turning process and it was inspected with samples of 8,64, and 256 data points. The

surface contact point were sampled using a Hammersley distribution and recorded with a

M2 stylus ref. A-5003-0577. After registration, the actualaperture of the cone was found

to be 0.899°smaller than the one desired. The minimum zone was estimated to be 230 µm

with the largest deviations being a the tip of the cone. The interpolated deformation form

is shown in Figure 4.7 and it shows the deformations according to the coordinate system

represented on the left side of the figure.
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Figure 4.7: Deformations of the cone.

The final kernel used for the regression the deformation shape is a Gaussian RBF kernel

with parameterσ set equal to 25.15. Deformations were significant with respect to the two

parameters describing the cone surface, namely the latitude φ ∈ [0,2π ] and the distance

from the tip. Extreme deviations from the nominal surface appear where the amount of

matter pressing against the cutting tool is minimal. It makes the tip of the cone appear like
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a chunk of matter is missing on one side or has been pushed on the other side.

4.5.5 Face-Milled Plates Deformations

Two batches of four and five face-milled plates were producedfor this experimentation.

The cutting parameters for the plates are as follows:

• Workpiece: Aluminum 6061-T6, 101.6 mm × 101.6 mm × 12.7 mm.

• Tool: � 76.2 mm cutter, 7 inserts with carbide coating.

• Machining conditions: coolant, cutter speed = 750 rpm, step depth = 0.254 mm,

cutting feed = 25.4 mm/s (first batch) and 29.6 mm/s (second batch).

The plates were labeled from 1-1 to 1-4 for the first batch, andfrom 2-1 to 2-5 for the

second batch. The plates were visually inspected before being measured and plates 1-1

and 1-2 were discarded due to faulty machining. The probe-type CMM did not produce

significant quantities of measurements in a short period of time, thus the data sets rarely

exceed 300 points and the computational times are extremelysmall. The contact points

were chosen such as they form a uniform mesh on the surface of the plates to maximize the

surface information on the whole plate. Hence, the CMM traced a zig-zag pattern at a fast

pace when taking measurements. This relatively speedy measurements allowed for differ-

ent mesh densities to be tested for the same plates. The results on different meshes were

compared to verify the integrity of the registration of surface model validation procedures.

A test run was made on plate 2-2 with a total of 293 measurements. The parameterσ

of the Gaussian RBF kernel, as well as the parameters of surface model were tuned until

the residuals were small enough and deemed to be random and uncorrelated. Results of the

ULM-based nonlinear regressions can be seen in Figure 4.8 where the deviation surface

has the shape of a saddle.

All the plates that were inspected have similar deformationsurfaces. These surfaces are

saddle-shaped with the “valley” part oriented along the direction of the cutter pass. Addi-
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Figure 4.8: Deformations of plate 2-2.

tional tests on plates manufactured with different processes will confirm if it is a general

behavior or if it is an artifact produced by the particular machining conditions. If the shape

is found to be general, then it will be a precious hint for inspecting the plates with optimized

meshes since, on a saddle, the extrema are located on the sides.

On seven plates, four were inspected with different meshes.Using the minimum zone

formulation of Section 4.4, the estimatesMα , with α = 0.99, of the minimum zones of the

tested plates are shown in Table 4.1.

Table 4.1: Minimum zones of four face-milled plates.

Plate reference Number of points Minimum zone

1-3 348 57.9 µm
1-4 81 18.3 µm
2-2 293 166.9 µm
2-3 64 19.3 µm
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The minimum zones for plates 1-4 and 2-3 were consistent withtheir visual aspect.

Their surfaces appeared to be smooth and better finished, andtheir minimum zones were

estimated to be 2.4 times bigger than the accuracy of the CMM probe. At this scale, the

impact of artifacts are not negligible with regard to the deformations of the surface as it is

illustrated in Figure 4.9.
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Figure 4.9: Deformations of plate 2-3.

The artifacts of plate 2-3 were generated by random perturbations (vibrations, etc..) and

they do not represent actual deformations of the surface. The choice of a Gaussian RBF

kernel was an important factor to the robustness of the surface model and it gave consistent

results during the validation procedure. This show that carefully selected models can handle

noisy observations at scales which are few times larger thanthe probe accuracy.

Different meshes were also tested on the same plates to assess the consistency of the

chosen models. Tests performed on plate 1-3 are reproduced in Table 4.2. They indicate

the estimated minimum zones (second column) with respect tothe number of nodes of the
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mesh (first column).

Table 4.2: Minimum zones against the number of nodes of a mesh.

Number of points Minimum zone

36 58.7 µm
64 61.2 µm
81 56.4 µm
138 61.0 µm
174 60.2 µm
202 61.7 µm
219 58.4 µm
283 58.4 µm
348 57.9 µm

No significant effects were found between the density of the mesh and the estimated

minimum zones for the four tested plates. All the meshes had similar estimated minimum

zones regardless of the number of nodes of the mesh (all experiments were made with

meshes of at least 36 nodes). Thus, if this behavior is found to be general, then relatively

small uniform meshes could be used for the flatness inspection of face-milled plates since

such meshes reduce time-induced errors during measurements.

Finally, in order to test the robustness to perturbations ofthe Gaussian RBF kernel,

measurements were made on a 76.2 mm × 76.2 mm portion of an optical flat (� 127 mm

Lapmaster optical flat) for which the accuracy is certified to1
10-th light band. This accuracy

is much higher than the probe accuracy of the CMM (which is ± 9 µm on the position of

a particular point along each axis), hence deviations from the nominal plane obtained by

ULMs are only artifacts and not actual deviations. If the approach is robust to artifacts, then

the interpolated deformation surface should be a plane passing by the coordinate origin and

parallel to the canonicalxOyplane.

The deformation surface shown in Figure 4.10 appears to be completely flat and con-

tained within a cloud of artifacts. Additional numerical tests showed it to be true. This test

seems to confirm the immunity of the surface model against random variations.
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Chapter 5

State Forecasts of a Weather System

5.1 Introduction, Context and Aims

Kalman Filters (KF) have been traditional approaches to data assimilation in the geo-

sciences for the past few decades [Kalman and Bucy, 1961]. KFs have been constantly

improved to better fit their application requirements and circumvent their implementation

issues. Nevertheless, these approaches were never able to overcome their unrealistic as-

sumptions (e.g. linearity, multivariate normality, priorknowledge of the model, error co-

variances properties, etc.), and their scalability issueswhen handling large sets of data.

The inability to efficiently process large amounts of data isa significant drawback of KFs

since, at any instant, huge sets of data are always availablein geosciences. Furthermore,

the size of the data to be processed is growing at an ever-increasing rate. Therefore, the

data processing technology should be rendered capable of analyzing the huge amounts of

information to come. Fortunately, the rapid discovery of patterns within data can be done

with a clever use of state-of-the-science supervised machine learning techniques such as

ULMs.

The analysis of weather systems require a framework capableto assimilate temporal

patterns in vector fields outputs and make accurate predictions regarding the future states

of these fields. The assimilation part of the analysis of vector fields also requires the ability

to remove noise within observations and to properly guess state trajectories, even with a

partial lack of knowledge on the way data were generated. This lead to consider several

objectives for ULM-based techniques for weather system analysis:
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• develop robust near real-time procedures based on ULMs to assimilate state trajecto-

ries of the weather systems;

• provide fast “zero-knowledge” prediction schemes as helping tools for traditional,

but computationally intensive, techniques such as KFs.

• exploit geometric characteristics of observation sets tothin data and make assimila-

tion procedures scalable (see Sub-Section 2.1.3);

• automate model validation procedures in a weather system context.

While some objectives will be the subject of future work, thefirst two points of the list

have been investigated in this dissertation. The ULM-basedrobust assimilation procedure

is described in Sub-Section 5.2.1 and the “zero-knowledge”predictive analysis in Sub-

Section 5.2.2. Additionally, simulations were run on simplified weather models: the Lorenz

96 model (Section 5.3), and the Quasi-Geostrophic model (Section 5.4).

5.2 Assimilation and State Predictions

5.2.1 Assimilation using ULMs

Consider an FCD system represented by the 5-tuple(T,U,x, f ,g) (see Chapter C). The

domainT of the system is(t0, t∞) and the input spaceU is the set of all constant functions

overT with values inΩ, whereΩ is a compact domain ofRm, with 16 m6 3. In other

words, for allt ∈ (t0, t∞), we haveu(t) = u ∈ Ω ⊂ Rm. The state functionx : T → Rn is

such that

dx(t) = f
(
x(t),u, t

)
, (5.1)

where f is continuously differentiable. The output functiong is defined overRn×Ω×T

with values inRp.
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Given a locationu ∈ Ω, we assume that there existsℓ increasingobservationinstants

t1 < t2 < .. . < tℓ in T such that we haveℓ targetsoutputsy1, . . . ,yℓ in Rp defined by

yi = g
(
x(ti),u, ti

)
, (5.2)

for all i ∈ J1, ℓK. Without loss of generality, the output functiong is deemed to beknown

such that it is possible to identify its outputs with the system states. Namely, we havep= n

and

yi = x(ti−1)+

∫ ti

ti−1

f
(
x(t),u, t

)
dt+ εi = x(ti)+ εi, (5.3)

where εi ∈ Rn is an unknownperturbation. The state-transition functionf is deemed

unknown(unlike in the KF framework) and it is not to be recovered by ULM-based ap-

proaches. However, ULM-based robust regression approaches are used in this context to

estimaten functionsF̂1, . . . , F̂n such that

∣
∣(yi) j − F̂j(ti)

∣
∣6 (εi) j , (5.4)

for all (i, j) ∈ J1, ℓK× J1,nK. In fact, ULM-based approaches are used to recover the func-

tionsF̂1, . . . , F̂n at a given locationu ∈Ω such that

∣
∣(y) j − F̂j(t)

∣
∣6 (ε) j , (5.5)

for all t ∈ [t1, tℓ] and j ∈ J1,nK whereε is an arbitrary perturbation dependent of a certain

confidence level. Naturally, this approach is valid if we consider weather system to be

non-Markovian since ULMs are searching for dependencies between states taken at the

same location but at different times. This assimilation step is then repeated for all discrete

locationsu1, . . . ,uq in Ω. The results of this analysis by ULM-based regression techniques

are smooth interpolated state trajectories at each discrete location of a compact domain in

112



Rm, with 16 m6 3.

5.2.2 Predictive Analysis

The predictive analysis attempts to give correct estimatesof the system statesx(t) for

t ∈ (tℓ, t∞) and for all possible locations inΩ. Unfortunately, this step cannot be done

with great accuracy if the state-transition functionf is unknown. Furthermore, attempts to

estimatef would require to recover state trajectories at a fairly large number of different

locations in the domainΩ, and assume that perturbations were all successfully removed

during the assimilation step. Additionally, the upper bounds on the generalization errors of

the estimates of the state trajectoriesF̂1, . . . , F̂n increase drastically as the timet moves away

from tℓ (see Sub-Section 2.3.4). Hence,F̂1(t), . . ., F̂n(t), with t ∈ (tℓ, t∞), are not necessarily

good estimates of the future system states, excepted whent is “close” totℓ.

Hence, there are two possible ways to extrapolate the state trajectories of a weather

system at a locationu ∈Ω when the timet is in the neighborhood oftℓ:

• Compute the estimateŝF1(t), . . . , F̂n(t) for t > tℓ.

• Compute a polynomial extrapolation.

The polynomial extrapolation is an extrapolation method that attempts to alleviate the gen-

eralization error of the state trajectories estimates outside the time domain[t1, tℓ]. To per-

form such an extrapolation, we choose a time window[tℓ−δ t, tℓ] of sizeδ t > 0 in which

q > 2 Chebyshev nodes1 t̃1, . . . , t̃q are computed. Then, for all(i, j) ∈ J1,qK× J1,nK, we

compute the outputs

(ỹi) j = F̂j(t̃i). (5.6)

1Theq> 2 Chebyshev nodes on the interval[tℓ− δ t, tℓ] are defined by

t̃i = tℓ+ δ t
(
cos
(
(2i−1)π/(2q)

)
−1
)
/2,

for all i ∈ J1,qK. Interpolation polynomials built upon those nodes are minimizing Runge’s phenomenon.
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Then, for all j ∈ J1,nK, the pairs
(
t̃1,(ỹ1) j

)
, . . . ,

(
t̃q,(ỹq) j

)
are used to compute thej-th

Lagrange polynomialL j defined by

L j(t) =
q

∑
i=1

(

(ỹi) j

q

∏
k=1
k6=i

t− tk
ti− tk

)

. (5.7)

The state estimates fort > tℓ are then given byL1(t), . . . ,Ln(t).

5.2.3 Summary

The assimilation and prediction of the states of a weather system is accomplished as follows

(see Figure 5.1):

1. One locationu in the domainΩ is selected. This location is usually the position of a

node on a grid inR2 orR3.

2. There aren feature for the state of the system at the locationu. Hence, thej-th

feature, withj ∈ J1,nK, is selected.

3. For the specific feature that was selected, we collectq observations
(
t̃1,(ỹ1) j

)
, . . . ,

(
t̃q,(ỹq) j

)
which will be used during the assimilation step.

4. An ULM-based robust regression approach (see Sub-Section 3.3.3) assimilate the

pastq observations of thej-th feature of the system state at locationu.

5. A polynomial extrapolation estimate the future valuesL1(t) to Ln(t), with t > tℓ, of

the j-th feature of the system state at locationu (see Sub-Section 5.2.2).

6. The next state feature is selected and the procedure loopsback to point 2. If no

feature is left then the procedure continues to point 6.

7. The next location on the grid is selected and the procedureloops back to point 1. If

no nodes are left on the grid then the procedure stops.
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Figure 5.1: Simplified outline of the ULM-based assimilation scheme combined with a
polynomial predictive analysis.

5.3 Lorenz 96 Model

The Lorenz 96 model is representing the values of atmospheric quantities at discrete loca-

tions spaced equally on a latitude circle (i.e. it is a 1-D problem). The system state at the

i-th location on the latitude circle is noted byxi ∈ R, with i ∈ J1, lK. The state transition

model at a locationi on the latitude circle is

dxi = (xi+1−xi−2)xi−1
︸ ︷︷ ︸

advection

−xi
︸︷︷︸

dissipation

+ F
︸︷︷︸

external forcing

, (5.8)

for all i ∈ J1, lK with the convention thatx0 = xl andxl+1 = x1. The states represent an

unspecified scalar meteorological quantity, e.g. “vorticity or temperature” [Lorenz and

Emanuel, 1998]. This model was introduced in order to selectwhich locations on a latitude

circle are the most effective in improving weather assimilation and forecasts.

The observations for this example where generated with a Gaussian perturbation with a

variance of one (of the order of 10% noise) and the external forcing was set to the strongly

supercritical value of eight. The results were obtained on amodel with 40 locations on
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the latitude circle and the time step for integrating Equation 5.8 was set to dt = 0.01. The

assimilation results obtained with a Gaussian RBF kernel are shown in Figure 5.2.
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Figure 5.2: Assimilation results for the Lorenz 96 model. The left plot shows the obser-
vations before assimilation (the noise component has a variance equal to 1). The right plot
shows the assimilated states. The analysis of the residualsbetween assimilated states and
the true field have an average RMSD equal to 1/2.

The average RMSD between assimilated states and the true field illustrates the problem

of using an ULM-based approach with a model that isMarkovian by design. The RMSD

that was obtained is just half the value of the variance of theGaussian perturbation, which is

still a good result when it is considered that the model ischaotic by natureand that the state

transition function of Equation 5.8 was first ignored and then guessed from scratch by the

ULM-based approach. Nevertheless, actual weather systemsare typically non-Markovian

which is a factor mitigating such an high RMSD on the assimilated states.

In our framework, the ULM-based approach used for assimilation is only the step that

pre-process observations for making predictions on the future system states. While this

approach alone is not particularly remarkable on Markovianprocesses, it actually shows

more potential when combined with the polynomial extrapolation discussed in Sub-Section

5.2.2. The results of the chosen approach for state forecasting is shown in Figure 5.3 where
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the RMSD of the forecasts of the polynomial extrapolation are compared to the RMSDs of

the forecasts obtained by the Ensemble Kalman Filter (EnKF).
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Figure 5.3: Evolution of the Root Mean Square Deviations (RMSDs) between the forecasts
and the truth for the Lorenz 96 model. Comparisons are made between the EnKF with a
different number of ensembles and the forecasts obtained after assimilation with the kernel
approach.

The average RMSD of the forecasts for the machine learning approach is 0.8 while this

number is 0.4 for the EnKF with 100 ensembles [Evensen, 1994]. The polynomial extrap-

olation is twice less accurate than the EnKF with 100 ensembles but it requires far less

computational resources (100 ensembles are never used to model real-life weather systems

since it would require more computational power than what iscurrently available. The

“usual” number of ensemble isat most20). The RMSDs of the ENKF with 20 ensembles

keep growing from 2.5 to 6 after 500 steps which shows that the forecasts obtainedwith

such a number of ensembles are completely irrelevant (an average error of 6 units on the

forecasts represents a deviation of 50% from the true field).

Forecasts results show that, despite the chaotic behavior of the Lorenz 96 model and

the relatively high observational error, the ULM-based assimilation scheme was able to

correctly approximate the true states and, hence, provide good assimilation for viable fore-

casts. It also demonstrates that the EnKF needs a high numberof ensembles, much higher

117



than commonly used in meteorological applications, to provide reliable forecasts. Such a

large number of ensembles increases computational time that could be detrimental for an

online system.

5.4 Quasi-Geostrophic Model

The Quasi-Geostrophic (QG) model is a 2-D atmospheric dynamical model involving an

approximation of actual windsv∈R2 which is used in the analysis of large scale extratrop-

ical weather systems. System states are scalar quantities representing the air flow, namely

the geopotential fieldφ . Horizontal windsv = vg+ va are replaced by theirgeostrophic2

valuesvg in the horizontal acceleration terms of the momentum equations (the termva

represents theageostrophicwinds), and the horizontal advection in the thermodynamic

equation is approximated by geostrophic advection. However, for practical forecasting

purposes, the horizontal momentum equation is typically replaced by the vorticity equa-

tion in the quasi-geostrophic model where the geostrophic vorticity ζg is equal to∆φ/ f0

(the quantity f0 is theCoriolis force). Furthermore, vertical advection of momentum is

neglected. The quasi-geostrophic equations are:

vg =
k×∇φ

f0
(5.9)

∂tζg =−vg ·∇(ζg+ f0+βy)+ f0∂pω (5.10)

div va+∂pω = 0 (5.11)

(∂t +vg ·∇)(−∂pφ)−σω =
κJ
p

(5.12)

The system variables are the geopotential fieldφ , the geostrophic windvg, the ageostrophic

wind va and thepressure change following the motionω. These variables are all dependent

and the system states can be expressed solely on the geopotential field φ . All the other

2Geostrophic winds are theoretical winds which result from the balance between the Coriolis force and
the pressure gradient force. They are directed parallel to all isobars.
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terms in Equations 5.9 to 5.12 are constants in which we have:

• The vector normal to the surfacek;

• The timet;

• The pressurep;

• The rate of heating per unit of massJ = 0.01 J·kg−1 ·s−1;

• The advection termσ = 4 ·10−5 m2 ·Pa−2 ·s−2;

• The coefficientβ = 2 ·10−7 m−1;

• The ratioκ = R/cp whereR is the specific gas constant of the air (287.058 J·kg−1 ·

K−1) andcp is the specific heat capacity of the air (1003.5 J·kg−1 ·K−1). It follows

thatκ is a dimensionless number equal to 0.286;

Equation 5.9 is the definition of the geostrophic windvg; Equation 5.10 is thevorticity

equation; Equation 5.11 is thecontinuity equation; and Equation 5.12 is thethermodynamic

energy equation. This system of equations is the quasi-geostrophic model that is used in

the numerical experiments of this section where geopotential fields are assimilated then

predicted with machine learning based approaches.

For the experiments, the atmosphere has a single level in thevertical and was repre-

sented by a 33×33 square grid where each system state is located on a node of that grid.

Observations were generated with a Gaussian noise of variance equal to 1 and the time step

for integration was set to 5.

Experiments with the ULM-based assimilation technique shows that the average RMSD

between assimilated states and the true field was 2.25 which is an excellent value overall.

The left plot on Figure 5.4 illustrates the performances of the assimilation step at one spe-

cific location on the 2-D grid. The assimilated state curve closely matched the true state
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Figure 5.4: Illustration of the robustness of the ULM-based assimilation approach (left
plot) and accuracy of the polynomial extrapolation (right plot). The stream of observed
states for the QG model was located on the point (10,3) of a 33 by 33 grid was captured.

curve despite the high noise and the absence of knowledge about the state transition func-

tion of this system. The computational time required to interpolate the state trajectory of

Figure 5.4 was only a fraction of the time needed by the EnKF method during the assimi-

lation step.

The right plot on Figure 5.4 shows how the polynomial extrapolation technique be-

haves with respect to a classic EnKF approach. The smoothingcapabilities of the assim-

ilation step paved the way to the extrapolation approach by giving the guarantee that the

assimilated state curve was following the trend of the true field and was not significantly

influenced by the noise. On the other hand, the EnKF has no memory of the previously

assimilated states and was not able to properly follow the trend of the true field. This lack

of memory in a non-Markovian process was detrimental to the forecast, and the EnKF

prediction was completely off the real value of the geopotential field.

Figure 5.5 illustrate the evolution of the forecast RMSDs between the polynomial ex-

trapolation technique and the EnKF with various number of ensembles. While the RMSD

for the polynomial extrapolation technique stays around 2.8 over the first 500 steps, the

forecast RMSDs for all EnKF approaches increase. The results of the 100 ensembles
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Figure 5.5: Evolution of the forecast root mean square deviations on theQG model. Com-
parisons are made between the EnKF with a different number ofensembles and the fore-
casts obtained after assimilation with the ULM-based approach.

EnKF become unreliable after 250 steps, and the performances with a lower number of

ensembles are much worse than that. These poor results are due to some structural inad-

equacies of Kalman filters for this specific example, namely the lack of memory and the

non-robustness of the approach. If the noise amplitude and the time step are decreased then

the EnKF results get a bit better for the variant with 100 ensembles.

Results demonstrated that the ULM-based assimilation scheme can mitigate the ef-

fect of noise on observations, without specific knowledge ofthe underlying mathematical

model. The uncovered state trajectories and their trends inthe state space were success-

fully used for short-term weather forecast which is an aspect of the method that may prove

useful in retrieving knowledge from unknown parts of the mathematical weather model.
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Conclusions and Recommendations

This dissertation introduced a family of supervised learning algorithms calledUncon-

strained Learning Machines(ULMs). Elementary notions of supervised learning, data

processing, kernel methods and statistical learning theory were discussed in order to prop-

erly construct ULMs. Very little statistical assumptions on the data are required. Only the

existence of apattern functionbetweenobservationsandtargetsis needed. The statistical

distribution of the features of the data or the structure of the pattern function can remain

unknown. ULMs rely heavily on kernel methods which allow theprocessing of exotic

forms of data through the use of particular measures of similarity between observations.

Furthermore, the capabilities of ULMs to recover complex nonlinear patterns from data is

demonstrated by the combination of the fundamentals of statistical learning theory and the

elementary properties of kernels.

The design and implementation of ULMs aim to provide scalable, robust and accurate

methods for solving supervised learning tasks such as classification and regression. ULMs

require the storage of a Gramian matrix which grows quadratically with the number of

observations. A couple of general data thinning schemes were discussed to counter this

memory requirement, including a pipe-lining technique that can be used to emulate on-

line schemes. The mathematical programming formulations that form the core of ULMs

are intrinsically error-tolerant which allows observations to have outliers and/or inaccu-

rate measurements. The numerical stability of the implementation of ULMs is guaranteed

under certain conditions that were properly established. However, it is the impact of the

implementation of ULMs on the actual values of the optimal solutions that still need to be

analyzed further.

The research work left a few theoretical and practical questions opened. Regarding the
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background of ULMs, the connection between the ULM performances and the condition

number of the linear systems to be solved is a novel kind of theoretical consideration that

needs further investigation. This question of numerical stability is rather important since

that solutions are always guaranteed in theory, but the casemay arise where no implementa-

tion can compute viable solutions for a specific problem. Interestingly, that point was never

investigated for closely related learning algorithms. Forinstance, the implementations of

SVMs rely heavily on third party software (e.g. quadratic programming solvers) with very

little focus, if any, on numerical stability. This aspect becomes critical as the use of ML

techniques for many supervised learning tasks increases invery sensitive applications (e.g.

aerospace engineering).

The investigations in manufacturing engineering opened the door to new applications.

For example, the registration technique that was tailored for ULMs can be used to solve

offshoot problems such as the parallelism or the concentricity of many surfaces with an un-

precedented confidence level. The technique also overcomesthe systemic bias introduced

by many minimum zone computation techniques due to an inherent faulty registration. The

ULM-based nonlinear nonparametric regression approach for the determination of mini-

mum zones is a general approach that can be applied to any smooth bi-dimensional surface

embedded inR3. Hence, it is no longer needed to change the numerical methodfor the

computation of the minimum zone when switching from plates to cylinders for example.

Furthermore, the ULM approach allows the definition of the minimum zone on surfaces for

which it was not defined before (e.g. catenoid, pseudosphere, unduloid).

The applications of ULMs for the analysis of numerical weather models need additional

investigations. The assimilation and prediction of systemstates was successfully tested on

a limited number of simple weather models, but these techniques still need to be adapted to

more realistic models with much larger sets of observational inputs. Future improvements

have to include computationally efficient ways to recover estimates of the state-transition

function of the dynamical systems. Specialized data thinning methods for weather data and
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reliable ULM-based pipe-lining assimilation methods mustbe implemented to guarantee

the viability of the approach in actual meteorological applications. Additionally, future

research will investigate the automation of this assimilation/forecast approach in the context

of meteorology.
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Appendix A

Glossary

A.1 Sets

The empty set is /0. The set of natural integers is writtenN and the group of relative integers

is writtenZ. The set of consecutive integers betweena andb is writtenJa,bK. The field of

rational numbers is represented byQ. The real algebras of dimensions 1 and 2 are denoted

respectively byR andC. The interval ofR betweena andb is [a,b] when closed,(a,b)

when opened, and(a,b] or [a,b)when semi-closed or semi-opened. If a set does not include

the element 0, then a super-scripted star is added. For example, the set of strictly positive

natural integers is writtenN∗. For the spaceR, the set of non-negative real numbers isR+

and the set of non-positive real numbers isR−.

Any other set is represented by an uppercase Latin letter in standard or calligraphic

shape (e.g., setsE andH ). The use of uppercase Gothic letters for sets is not excluded.

For example, the set of the subsets ofE will be written P(E). The Cartesian product of

two spacesE andF is written E×F , and the exponential notation is used in the case of

multiple Cartesian products (e.g.,Rn). The dual of a vector spaceE is represented byE∗

and the cardinal of a finite discrete setF is written|F|.

A.2 Scalars, Vectors and Matrices

The notation allows the distinction between scalars, vectors and matrices by using different

typefaces. Scalars and functions are all written with lowercase characters (e.g., scalara,

function f ). The Latin lettersf , g, h and the Greek letterφ , ϕ andθ commonly refer to
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functions. In the same fashion, Latin lettersk, l , i, j, n, m often represent integers while

Latin letterst, u, v, w, x, y often represent real numbers. The imaginary unit is writtenı.

Vectors are written with boldface lowercase characters (e.g., vectorv) and are assumed

to be column vectors unless specified otherwise. Non-boldface Greek letters can also be

used to write vectors. The transpose of a vectorv is represented byvt and the vector of

dimensionn for which all components are equal to one is written1n. The canonical unit

vectors which form the basis ofRn are writtene1, . . . ,en. Thei-th element of a vectorv is

a scalar writtenvi , and the sub-vector generated from a set of indicesI is vI .

Boldface uppercase Latin letters (e.g.,M ) or uppercase Greek letters represent matrices.

The(i, j)-th element of a matrixM is a scalar and is represented byMi j . Thei-th row of a

matrix M is writtenM i· and its j-th column is writtenM · j . If two setsI andJ of row and

columns indices of a matrixM is given, then the sub-matrix generated by the rows inI and

the columns inJ is writtenM IJ. The identity matrix of dimensionn is written In and the

transpose of a matrixM is represented byM t.

A.3 Dot Products, Norms and Other Operators

The Euclidean norm of a vectorv ∈Rn is written‖v‖ and the Euclidean dot product of two

vectorsu andv is written〈u,v〉. Thep-norm of a vectorv is represented by‖v‖p (note that

‖v‖ = ‖v‖2). When using a dot product in a Hilbert spaceH or its associated norm, the

dot product of two vectorsu andv is written〈u,v〉H and the associated norm of a vector

v is written‖v‖H . The operator· between two matrices or vectors of equal dimensions is

the Hadamard product (i.e. the entry-wise multiplication).
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Appendix B

Additional Algorithms

B.1 Computation of Solutions of Linear Systems

B.1.1 Cholesky Decomposition

The Cholesky decomposition algorithm B.1 is a method that decomposes a symmetric and

positive definite matrixA into the product of a lower triangular matrixL and its transpose,

i.e. A = LL t [Press, 2007]. Ifn is the size of the matrix, then the method requiresn3/3+

n2/2+n/6 FLOPS to decompose the matrix.

Algorithm B.1: Cholesky Decomposition

Function [L ] = CHOLDC (A)
Input : n×n symmetric positive definite matrixA.
Output : n×n lower triangular matrixL .

1 L ← 0∈ Rn×n

2 for i ∈ J1,nK do
3 for j ∈ Ji,nK do
4 s← Ai j− DOT (L i,J1,i−1K,L j ,J1,i−1K) // L i, /0 = /0
5 if i = j then
6 Lii ←

√
s

7 else
8 L ji ← s/Lii

9 end
10 end
11 end
12 return L
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B.1.2 Computation of the Solution of a Triangular System

Algorithm B.2 uses the lower triangular matrixL obtained from the Cholesky decompo-

sition of a symmetric and positive definite matrixA to compute the solution of the linear

systemAx = b [Press, 2007]. Ifn is the size of the matrix, then the method requires 2n2

FLOPS to compute a solution.

Algorithm B.2: Triangular System Solution

Function [x] = CHOLSL (L ,b)
Input : n×n lower triangular matrixL , vectorb ∈ Rn.
Output : vectorx ∈ Rn.

1 x← 0∈ Rn

2 for i ∈ J1,nK do
3 xi ←

(
bi− DOT (L i,J1,i−1K,xJ1,i−1K)

)
/Lii // L i, /0 = /0, x /0 = /0

4 end
5 for i ∈ Jn,1K do
6 xi ←

(
xi− DOT (L Ji+1,nK,i,xJi+1,nK)

)
/Lii

7 end
8 return x

B.1.3 Conjugate Gradient Method

The conjugate gradient algorithm B.3 is an iterative methodfor solving linear systems of

equations whose matrix is symmetric and positive definite. This method is derived from

the method of Arnoldi which is based on orthogonal projection processes onto Krylov

subspaces [Saad, 2003]. Ifn is the size of the system and ifk is the number of iterations

of the algorithm, then this method requires 2kn2+(9k+2)n+k−1 FLOPS to compute a

solution. This method provides a computational advantage over a Cholesky decomposition

of the system matrix only if the linear system is large and sparse. This situation may

arise for function evaluation problems with a large sample of observations and a Gaussian

RBF kernel tuned appropriately. In this case, the computation of the solution of the linear

systems in Algorithms 3.1, 3.2 and 3.3 can be done by a Conjugate Gradient method rather
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than an approach based on a Cholesky decomposition.

Algorithm B.3: Conjugate Gradient Method

Function [x] = CG (A,b)
Data: toleranceε > 0, iteration limitkmax> 0.
Input : n×n symmetric and positive definite matrixA, non-null vectorb ∈ Rn.
Output : vectorx ∈ Rn.

1 k← 0
2 x← 0∈ Rn

3 r ← b
4 p← r
5 ρ ← DOT (r , r)
6 while ρ > ε and k6 kmax do
7 q← GEMV (A,p)
8 α ← ρ/ DOT (q,p)
9 x← x+αp

10 r ← r −αq
11 α ← DOT (r , r)
12 p← r +(α/ρ)p
13 ρ ← α
14 k← k+1
15 end
16 return x

B.2 Algorithms for Elementary Linear Algebra

B.2.1 Symmetric Matrix Rank-2k Update

Algorithm B.4 performs a rank-2k updateC = ABt whereA and B are n×m matrices

andC is a n× n symmetric matrix. Despite that this algorithm is twice faster than the

general naive matrix-matrix multiplication, the Strassenalgorithm is asymptotically faster

although less stable numerically [Strassen, 1969]. An asymptotically faster algorithm also

exists, however it only brings an advantage for matrices that are too large to be multiplied

on modern hardware [Coppersmith and Winograd, 1990]. Ifn is the size of the matrices,

then the following algorithm requiresn(n+1)(m−½) FLOPS to multiply the matrices.
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Algorithm B.4: Symmetric Matrix Rank-2k Update

Function [C] = SYR2K (A,B)
Input : n×m matricesA andB.
Output : n×n matrixC.

1 C← 0∈ Rn×n

2 for i ∈ J1,nK do
3 for j ∈ Ji,nK do
4 Ci j ← DOT (A i·,B j ·)
5 if i 6= j then
6 Cji ←Ci j

7 end
8 end
9 end

10 return C

B.2.2 General Matrix-Vector Multiplication

Algorithm B.5 is the implementation of the general matrix-vector multiplicationAx be-

tween an×m matrix A and a vectorx ∈ Rm. This method requiresn(2m−1) FLOPS to

perform the multiplication.

Algorithm B.5: General Matrix-Vector Multiplication

Function [z] = GEMV (A,x)
Input : n×m square matrixA, vectorx ∈ Rm.
Output : vectorz∈ Rn.

1 z← 0∈ Rn

2 for i ∈ J1,nK do
3 zi ← DOT (A i·,x)
4 end
5 return z

B.2.3 Dot Product

Algorithm B.6 is the implementation of the dot product〈x,y〉 between two vectorsx and

y in Rn. This method implies the use of a numerically stable summation algorithm named

SUM and requires 2n−1 FLOPS to compute the result.
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Algorithm B.6: Dot Product

Function [z] = DOT (x,y)
Input : vectorsx andy in Rn.
Output : scalarz∈ R.

1 if n= 0 then // Case for empty sets
2

3 z← 0
4 else
5 if x ∈ R1×n then
6 if y ∈ R1×n then
7 z← SUM (xt ·yt) // Symbol· stands for Hadamard product
8 else
9 z← SUM (xt ·y)

10 end
11 else
12 if y ∈ R1×n then
13 z← SUM (x ·yt)
14 else
15 z← SUM (x ·y)
16 end
17 end
18 end
19 return z

B.2.4 Matrix Row Summation

Algorithm B.7 computes the sum of the rows of an×mmatrixA. The aim of this algorithm

is to use a numerically stable way to compute the resulting vector. This method requires

n(m−1) FLOPS to compute the result.

Algorithm B.7: Matrix Row Summation

Function [x] = ROWSUM (A)
Input : n×m matrixA.
Output : vectorx ∈ Rn.

1 x← 0∈ Rn

2 for i ∈ J1,nK do
3 xi ← SUM (At

i·)
4 end
5 return x
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B.2.5 Diagonal-Matrix Multiplication

Algorithm B.8 computes the product∆A where∆ is an×n diagonal matrix with diagonal

δ ∈ Rn andA is an×mmatrix. This method requiresnmFLOPS to compute the result.

Algorithm B.8: Diagonal-Matrix Multiplication

Function [B] = DIMM (δ ,A)
Input : vectorδ ∈ Rn, n×mmatrix A.
Output : n×m matrixB.

1 B← 0∈ Rn×m

2 for i ∈ J1,nK do
3 Bi·← δiA i·
4 end
5 return B

B.2.6 Matrix-Diagonal Multiplication

Algorithm B.9 computes the productA∆ whereA is a n×m matrix and∆ is a m×m

diagonal matrix with diagonalδ ∈ Rm. This method requiresnmFLOPS to compute the

result.

Algorithm B.9: Matrix-Diagonal Multiplication

Function [B] = MDIM (A,δ )
Input : n×m matrixA, vectorδ ∈ Rm.
Output : n×m matrixB.

1 B← 0∈ Rn×m

2 for i ∈ J1,mK do
3 B·i ← δiA·i
4 end
5 return B

B.2.7 Basic Tikhonov Regularization

Algorithm B.10 computes the sumA+µIn whereA is an×n matrix andµ > 0 is a scalar.

This method requiresn FLOPS to compute the result. This algorithm is referred as “basic”
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since the general Tikhonov regularization is a procedure ofthe formA+Γ where the matrix

Γ is positive definite. The general procedure then requiresn2 operations which is an order

greater than the basic approach.

Algorithm B.10: Basic Tikhonov Regularization

Function [B] = TIKREG (A,µ)
Input : n×n matrixA, scalarµ ∈ R∗+.
Output : n×n matrixB.

1 B← 0∈ Rn×n

2 for i ∈ J1,nK do
3 Bii ← µ +Aii

4 end
5 return B
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Appendix C

Elementary Notions of Optimal Control

C.1 Dynamical Systems

Hereby we define the notion of dynamical systems based on a series of axioms taken from

Athans and Falb [1966]. These axioms aim to abstract the behavior of physical systems

in order to characterize them with adequate mathematical tools. Before introducing the

axioms, it is necessary to define several variables we shouldwork with. These variables

are:

• The setT ⊂ R is a subset of the real numbers called thedomainof the system.

• The ordered pair(Ω,ω) is a metric space whereΩ is a set andω is a distance onΩ.

• The setU is a set of bounded piecewise continuous functions overT with values in

Ω. The setU is called theinput spaceof the system. The restriction of a function

u∈U over the semi-open interval(t0, t]⊂ T, denoted byu(t0,t], is called aninput over

the observation interval(t0, t] to the system.

• The ordered pair(Σ,σ) is a metric space whereΣ is a set andσ is a distance onΣ.

The setΣ is calledstate spaceof the system.

• The values of the functionx : T→ Σ for anyt ∈ T are calledstatesof the system.

• The functiong : Σ×Ω×T→Rp is calledoutput functionof the system. The identity

y(t0,t] = g
(
x(t0),u(t0,t]

)
is calledoutput equationof the system with the functiony(t0,t]

being anoutput over the observation interval(t0, t] of the system.
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The following axioms that will define the notion of dynamicalsystem.

Axiom C.1 (Uniquely defined output). For all (t0, t] ⊂ T, all x(t0) ∈ Σ and all u∈U

the function y(t0,t] is uniquely defined by x(t0) and u(t0,t].

Axiom C.2 (Existence of states for input-output pairs). For all τ ∈ (t0, t) ⊂ T and all

u∈U, if Σ(τ,u) =
{

x(τ) ∈ Σ : y(τ,t] = g
(
x(τ),u(τ,t]

)}

then for any v∈U,

⋂

u(τ ,t]=v(τ ,t]

Σ(τ,u) 6= /0.

Zadeh and Desoer [1963] showed that axioms C.1 and C.2 imply the existence of a

so-calledtransition functionφ such that thestate equationof the system,

x(t) = φ
(
x(t0),u(t0,t], t

)
, (C.1)

holds for any given semi-open interval(t0, t] ⊂ T and any inputu ∈ U . For an interval

I ⊂ T, the setX(I) =
{

x(τ) : τ ∈ I
}

is called thetrajectory over the observation interval I

of the system.

Axiom C.3 (Smoothness condition). The functions g andφ are continuous.

Axiom C.4 (Initial state is the starting point of trajectory). For all (t0, t]⊂ T, all x(t0)∈

Σ and all u∈U we havelimsup
t→t0

φ
(
x(t0),u(t0,t], t

)
= x(t0).

Axiom C.5 (Transition condition). For all τ ∈ (t0, t) ⊂ T, all x(t0) ∈ Σ and all u∈U

we have

φ
(
x(t0),u(t0,t], t

)
= φ

(

φ
(
x(t0),u(t0,τ],τ

)
,u(τ,t], t

)

.
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Axiom C.6 (Nonanticipatory condition). For all τ ∈ (t0, t] ⊂ T, all x(t0) ∈ Σ and all

u∈U we have

φ
(
x(t0),u(t0,t],τ

)
= φ

(
x(t0),u(t0,τ],τ

)
.

These axioms can now used to define a dynamical system.

Definition C.1 (Dynamical system). The 6-tuple denoted by(T,Ω,Σ,U,x,g)which sat-

isfies axioms C.1 to C.6 is called adynamical system.

Definition C.2 (Finite dimensional dynamical system). A dynamical system is afinite-

dimensionalsystem of order n ifΣ = Rn andΩ = Rm with m6 n.

Definition C.3 (Continuous-time dynamical system). A dynamical system is acontin-

uous timesystem if the domain T of the system is an open interval.

Definition C.4 (Differential dynamical system). A dynamical system is adifferential

system if the transition functionφ is the solution of the differential equationdx(t) =

f
(
x(t),u(t), t

)
where x(t0) is the initial point and where f is continuously differentiable.

In this dissertation, a finite-dimensional continuous-time differential dynamical system

will be referred as aFCD systemand denoted by a 5-tuple(T,U,x, f ,g) whereT = (t0, t∞).

C.2 Optimal-Control Problems

Let (T,U,x, f ,g) be a FCD system with domainT = (t0, t∞) and letS ⊂ Rn×T be a set

calledtarget set. Supposet ∈ T then the functionalJ : U → R∪{∞}, calledperformance

functional, is defined by

J(u) = K
(
x(t)
)
+
∫ t

t0
L
(
x(t),u(t), t

)
dt, (C.2)
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whereK is a real-valued function onRn and L is a continuous real-valued function on

Rn+m+1. If there is no element inT such that the setX (T) =
{(

x(τ),τ
)

: τ ∈T
}

intersects

S then, conventionally,J(u) = ∞ for all t ∈ T. If this element exists then the smallest

elementt f ∈ T such thatX (T) intersectsS is calledterminal time. The statex(t f ) is

calledterminal stateandK
(
x(t f )

)
is calledterminal cost.

Definition C.5 (Optimal-control problem). Let (T,U,x, f ,g) be an FCD system with

domain T= (t0, t∞) and a target setS . Theoptimal-control problemis defined by

min
u∈U

{
J(u) : X (T)∩S 6= /0

}
.

Definition C.6 (Bounded-state optimal-control problem). Let (T,U,x, f ,g) be an FCD

system with domain T= (t0, t∞) and a target setS . If S⊂ Rn is a closed set such that

S ⊆ S×T, then the bounded-state optimal-control problem is defined by

min
u∈U

{

J(u) : X (T)∩S 6= /0 andX
(
(t0, t f ]

)
⊆ S
}

.

The optimal-control problem is called afree-timeproblem if the target setS is of the

form
⋃

t∈T

(
S(t)×{t}

)
with /0 6= S(t) ⊆ Rn. Furthermore ifS(t) = z(t) wherez : T → Rn

then the optimal-control problem is called apursuit problem. On the other hand if we

suppose that the target set is of the formS×{t} whereS⊆Rn andt ∈ T are fixed elements

then the optimal-control problem is called afixed-timeproblem. If the target set is of the

form {x}×T wherex ∈ Rn then the optimal-control problem is called afixed-end-point,

free-timeproblem. Furthermore if for allt ∈ T we have f (x,0, t) = 0 then the optimal-

control problem is called aregulatorproblem.
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