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Abstract

With the use of information technology in industries, a nexed has arisen in analyzing
large scale data sets and automating data analysis thaineagperformed by human intu-
ition and simple analog processing machines. The new gemei@ computer programs
now has to outperform their predecessors in detecting cexrgohd non-trivial patterns
buried in data warehouses. Improved Machines Learning (fd&hniques such as Neu-
ral Networks (NNs) and Support Vector Machines (SVMs) havews) remarkable per-
formances on supervised learning problems for the pastlemiglecades (e.g. anomaly

detection, classification and identification, interpaatand extrapolation, etc.).

Nevertheless, many such techniques have ill-conditiotredtsires which lack adapt-
ability for processing exotic data or very large amountsatbd Some techniques cannot
even process data in an on-line fashion. Furthermore, ggdicessing power of computers
increases, there is a pressing need for ML algorithms tmparupervised learning tasks
in less time than previously required over even larger setlata, which means that time

and memory complexities of these algorithms must be immtove

The aims of this research is to construct an improved typevdfi-Bke algorithms for
tasks such as nonlinear classification and interpolatiahihmore scalable, error-tolerant
and accurate. Additionally, this family of algorithms mi& able to compute solutions
in a controlled timing, preferably small with respect to read computational technolo-
gies. These new algorithms should also be versatile enaugave useful applications in

engineering, meteorology or quality control.

This dissertation introduces a family of SVM-based aldons namedJnconstrained

Learning MachinegULMs) which attempt to solve the robustness, scalabilitg &ming

Xi



issues of traditional supervised learning algorithms. WLafe not based on geometrical
analogies (e.g. SVMSs) or on the replication of biologicaldals (e.g. NNs). Their con-
struction is strictly based on statistical consideratitai®en from the recently developed
statistical learning theory. Like SVMs, ULMS are using k&lrmethods extensively in
order to process exotic and/or non-numerical objects dtorelatabases and search for

hidden patterns in data with tailored measures of simidarit

ULMs are applied to a variety of problems in manufacturingieeering and in mete-
orology. The robust nonlinear nonparametric interpofatibilities of ULMs allow for the
representation of sub-millimetric deformations on théae of manufactured parts, the se-
lection of conforming objects and the diagnostic and madgedf manufacturing processes.
ULMs play a role in assimilating the system states of contjrtal weather models, re-
moving the intrinsic noise without any knowledge of the utygleg mathematical models

and helping the establishment of more accurate forecasts.

Xil
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Chapter 1

Introduction and Literature Review

1.1 Origins of Supervised Learning

Supervised learning is a machine learning approach that rastimate functions which
link input observations to pre-determined targets. As fi@@ach itself implies that com-
puters host supervised learning algorithms, the notioeekisig such estimating functions,
or patterns, is very old. The first modern cases of patterrckea in data date back from
the early days of modern astronomy where empirical laws dianavere deduced from
numerical observations. Kepler's laws of planetary moama Newton’s law of univer-
sal gravitation are early examples of pattern analysis aefational data [Kepler, 1619;
Newton, 1687]. While finding nonlinear patterns was still atter of good judgment to-
ward the end of the 18th century, several mathematiciaims/esyted a systematic approach
for finding linear relationships between observationssiveallednethod of least-squares
which was introduced to predict the position of celestigleots [Gauss, 1809; Legen-
dre, 1805]. In the 19th century, graphical methods werelyasted to establish many
nonlinear empirical laws of chemistry and electricity whiare still used nowadays (e.g.
Ohm's law [Ohm, 1827]). Log-log and semi-log graphs weredusgether with nomo-
grams [d'Ocagne, 1885] and specialized slide rules to aeggtterns in observations, and
remained used for the purpose of pattern analysis untildng £960s.

The early 20th century was marked by the emergence of modatisteal science
which was due, for a large part, to the English statisticism&r who also introduced the

very first machine learning tools. THeésher’s linear discriminantas first described in



1936 to perform what is now referred as linear binary classifon [Fisher, 1936]. This
method was closely related to the analysis of variance (AN@Wid the regression analysis
which was pioneered the century before, with the exceptiahtargets were now discrete
objects and not numerical values. It was also related tociah Component Analysis
(PCA) [Pearson, 1901] and Factor analysis. The method st keguares that spawned
regression analysis and eventually the Fisher’s linearridisnant was a simple form of
what is now calledegularization The regularization theory is concerned with the intro-
duction of supplementary information to solve problemahjigensitive to perturbations
or ill-posed problems The Tikhonov regularization [Tychonoff, 1963] marked ttrewn

achievement of regression methods at the dawn of computardaéogy and machine learn-

ing.

1.2 The First Generation of Supervised Learning Algorithms

Artificial Intelligence and Machine Learning were born thgh the work of Rosenblatt
on theperceptron[Rosenblatt, 1958]. The Perceptron was the first on-linedirbinary
classifier meant to be powered by computers. It was the saeli@mple of a feed-forward
neural network and its study [Novikoff, 1963] generatedagsd statistical learning theory.
Soon after Rosenblatt’'s breakthrough, several authorsosex supervised learning algo-
rithms to solve real-life problems such as tearning matrice§Steinbuch, 1965] and the
Madaline[Widrow, 1962].

In the years that followed, decision trees and hidden markodels were also intro-
duced to help computers building logical patterns betwdeservations, although, unlike
the perceptron, these methods were not based on neuronsndtiel search for nonlinear
relations hidden in data started to be described with elésnafralgorithmic information
theory, in which randomness is simply defined as the absence ofpsittethe observations

[Chaitin, 1966; Kolmogorov, 1965].



1.3 Second Generation (1970s-1980s)

The research on binary classification led Vapnik and Chemwkis [1971] to formulate
non-asymptotic probabilistic bounds for the rate of cogeece of linear binary classifiers,
regardless of the distribution of the observations. A dedater, Vapnik generalized the
results to nonlinear classifiers [Vapnik, 1982]. These lisuwhich are expressed by what
is now known as th&/C dimensionled to theempirical risk minimization principléhat
links empirical risks of learning algorithms to necessang gufficient conditions for the
uniform convergence of their means to their expected valuesa law of large numbers
in a functional space). In 1991, the empirical risk mininti@a principle was finalized
with necessary and sufficient condition for the convergengeobability toward the best
possible result [Vapnik and Chervonenkis, 1991]. Thesbaindistic results paved the way
to the modeling of supervised learning algorithms as mization problems that attempt
to minimize a risk functional over a set of functions.

During the 1980s, supervised learning algorithms undenaeamonlinear transforma-
tion with the sigmoid approximation and the resultlreck-propagation networteCun,
1986; Rumelhart et al., 1986]. The discovery of nonlinedrgpas hidden in classification
data was then reduced to the evaluation of gradients usauiemt-based optimization tech-
niques that were developed three decades prior (e.g. catejggadient method [Hestenes
and Stiefel, 1952]). Unfortunately, back-propagationweek techniques were plagued
by multiple sub-optimal minima and their inability to comge toward a global optimizer.

Nevertheless, they helped the launch of modern day datagharid bio-informatics.

1.4 Third Generation (1990s-2000s)

The third generation of supervised learning algorithmsaskad by the use dfernel meth-

ods The theory of kernels is actually a century old [Mercer, 9]%nd can be seen as the



generalization of definite matrices to functions, with arpeasis on positive definite prop-
erties. Aronszajn [1950] studied reproducing kernel Hillspaces which are centered
around positive definite kernels. The resulting notionsanerentually used in approxima-
tion and regularization theory. It led to the interpretatid kernels as measures of distances
and angles in an induced Hilbert space and their use in pattassification [Aizerman
et al., 1964]. The finitely positive definite property of kelswhich was a key aspect to
the construction of general kernels on exotic objects wasdunced a couple of decades
later by Saitoh [1988]. In the early 1990s, kernel method®weed in a machine learning
context by Girosi et al. [1995] to build new nonlinear neuratwork architectures.

Learning algorithms such as Support Vector Machines (S\is§ the direct results of
the combination of kernel methods, the empirical risk mization principle and the max-
imum margin paradigm [Vapnik, 1995, 1998]. This new famifyearning algorithms was
fitted for both nonlinear classification and regressiongaskevertheless, the VC frame-
work of SVMs provided loose and pessimistic bounds, ancfoee Rademacher complex-
ities were soon introduced as empirical estimate of the f@edision to remedy all these
problems [Koltchinskii and Panchenko, 2000]. Several flavad SVMs were introduced
after Vapnik’s landmarking work such as theast-Squares SVKLS-SVM) [Suykens and
Vandewalle, 1999] as well as computational improvement &1 the Sequential Mini-
mal Optimization (SMO) [Platt, 1999]. Then developmentsBayesian kernel methods
followed [Smola and Scholkopf, 2003].

1.5 Current Status and ULMs

Kernel methods and SVMs have been applied to a wide rangeobfgms such as com-
putational biology, bio-informatics and gene analysisijgpand Dubchak, 2001; Lee et al.,
2003; Santosa et al., 2002, 2007], fluid mechanics [OladanaiTrafalis, 2006; Oladunni
et al., 2006; Trafalis et al., 2005], manufacturing engimeg[Gilbert et al., 2010, 2009a,;



Malyscheff et al., 2002; Prakasvudhisarn et al., 2003; Ragetaal., 2005], meteorology

[Adrianto et al., 2005; Gilbert et al., 2009b; Mansouri ef 2007; Trafalis et al., 2007] and
even political science [Malyscheff and Trafalis, 2003hacial applications of SVMs in-

clude short term portfolio management [Ince and Trafal6a], exchange rate prediction
[Ince and Trafalis, 2006b] and stock price prediction [lace Trafalis, 2003, 2007]. Other
applications are in the area of production [Alenezi et a8l0%], inventory transactions

[Beardslee and Trafalis, 2005] and web mining [Chung e2&i02].

Unconstrained Learning Machines (ULMs) are the naturalugian of the works of
Gilbert and Trafalis on error-tolerant SVMs [Trafalis andu@rt, 2005, 2006, 2007]. The
resulting formulations were based either on large lineagiamming problems or medium-
sized second-order cone programming problems, which babsepted a computational
challenge on large sets of data. The present form of ULMs was fsom a deliberate
simplification of these underlying mathematical programgrproblems so that they could
retain the error-tolerant properties while allowing thetfeomputation of optimal solutions
[Gilbert and Trafalis, 2009]. This increase in computagiispeed allowed to embed ULMs
in more complex structures such as pattern searches indnatspaces, on-line processing

schemes or data thinning procedures.



Chapter 2

Kernel Methods for Supervised Learning

The term “kernel methods” is a generic term that encompaabégatments that a set of
data can receive from a particular category of functioned&lernelswhich are discussed
in Section 2.2. More exactly, the data is processed usin@pseswf kernels which include
the so-called positive definite kernels. Kernel methodscaremonly used by SVMs to
process non-trivial supervised learning tasks such asmeanl binary classification and
nonlinear nonparametric regression [Vapnik, 1982, 19998]. The analysis and pre-
treatment of the observations is often a crucial step forcaesssful application of kernel
methods to them. It leads to faster and more stable compntafihidden patterns in the
data. To this end, a brief review of common data pretreatremtniques is discussed in
Section 2.1. Once data treatments and kernel methods afilbachosen, it then be-
comes possible to quickly recover complex information flange sets of data. Estimating
the patterns that links data features together is the heétdrefunction estimation problem

that is reviewed in Sections 2.3 and 2.4.

2.1 Data

2.1.1 Source and Nature of the Processed Data
Source of Data and Mathematical Assumptions

The data to be processed by learning machines comes in satagpes and forms. Modern
pattern recognition algorithms have been used to analygqeesees of numbers, letters,

images, videos, network graphs and other objects. Dedptshieer amount of possible



data treatments, all these techniques have at least twtsppicommon:
* There exists a non-trivial hidden pattern within the dateasn;
* Itis possible to quantify similarities between objectarid in the data stream.

Many machine learning techniques add further statistestrictions such that all objects
generated by the source of data are distributed accordiagwell-behaved distribution.
Usually these techniques assume a perfect knowledge obtheesof data and, whenever
observations violate the mathematical restrictions, atliers are modified or deleted be-
fore treatment. Such approaches can be detrimental to thermpanalysis of a data set
and can produce partially unreliable results. Therefateecomes necessary to adopt ma-
chine learning approaches that require the least amouraittfematical assumptions on the
source of data while increasing the reliability of the résuKernel methods can be used to
develop learning algorithms that fit these requirementgyTdnly require the existence of
a source of data, with no further statistical assumptions,dhe existence of a similarity
measure between observations, and the existencpatternhidden within the data.
Hence, we will assume, in all the following, that the data abhis being processed

satisfies the following assumptions:

1. The source of data generates a collection of obgcss, ... that belongs to anea-

surable observation spa¢&, &) where® is ao-algebra over the sé.

2. There exists a measure spde 3, P) (Z is ac-algebra oveQ andP: < — R is a
measure ovek such thatP(Q) = 1) and a measurable functign Q — E, w— e

which outputs are the observatiomsey, .. ., etc.

3. There exists ameasurable pattern functiap : E — [0, a] with a > 0 such that

(W(g)) = /Q W(g)dP =0, (2.1)



The first assumption ensures that it is always possible tetoact a measure of similar-
ity between observations, which is a crucial requirement&érnel methods. The second
assumption assumes that all observations were effectyargrated according to an un-
known measurable functian In other wordsg is the source of data. The last requirement
claims that there existsgatternhidden within the observations. It assumes that, out of all
possibleeventsan Q, the images by a pattern functignof all corresponding observations
are null on average. The codomainfis a closed interval oR in order to avoid seek-
ing patterns which values can explode towards infinity. Viajpi©995] enumerated several
properties regarding the empirical expected valuag(gf) and its probabilistic bounds. He
established guidelines for powerful learning algorithhvet tletect patterns within data sets
which are satisfying the general conditions above. We vgidl the results on these bounds
to generate specialized learning machines that we will ndnenstrained Learning Ma-

chines

Data in Supervised Learning

Supervised learning has special requirements dependirtbeoform of the observation
spaceE. Each element oE must includgargetcomponents that will be matched against
the rest of the components by the pattern function. The ta@aponents are required to
be numerical quantities to allow treatments by numeriogbadhms. Nevertheless, non-
numerical targets can still be represented by real-valwedponents using an encoding
scheme and an appropriate supervised learning algoritargefcomponents are necessary
to supervised learning methods since they are meant toeepatterns by matchingnown
targets with the other components of the observation.

Hence, in all the following, the spa&eis assumed to be identical ¥ox RP whereX is
ameasurable space apd N*. Each observatioac E is decomposed inte= (x,y) where
xis an element oK and the vectoy € RP is the target ok. Using Equation 2.1 as a model,

supervised learning algorithms can be built to estimateepafunctionsf : X — [—a, a]P



(a> 0) such that

() -yl <e, (2.2)

forall (x,y) € X x RP, where||-|| is a norm orRP ande > 0 is an arbitrary value. However,
it is possible to simplify this problem by avoiding the useaafiorm onRP. For instance,
Unconstrained Learning Machines will be built to fipgattern functiondy, ..., f, (with

fi: X — [—&,&], a > 0foralli € [1, p]) such that

fi(¥) —wil <e, (2.3)

for all (x,yi) € X x R andi € [1, p], wheree > 0 is an arbitrary value.

Numerical Data: Discrete and Continuous Components

The most particular case for the spacis to be isomorphic t&i", R" or a Cartesian product
of both. In this case, all observations ame@merical dataand their processing depends if
observations have discrete componeitsi§ equivalent toN"), continuous components
(X =R"), or mixed components.

Measures of similarity between observations with contusucomponents can be de-
rived from the usual norms dR" such as the Euclidean norm. These components are often
measurements with physical dimensions which can be, fample records of pressure,
electrical intensities, frequencies, etc. This type ofeplagtions often receive pretreat-
mentthat aims to render their components independent of thenasigheir physical scale
and the choice of their physical units.

Discrete components can bedered or not. Ordered components correspond to nu-
merical values on acaleor finite amountsuch as a number of days, the cardinality of
a set or a magnitude. The measure of similarity between twgervhtions with this type
of components can be the same as the measure of similarigeéetobservations with

continuous components and they can receive the same typetcggament, if any.

10



On the other hand, non-ordered discrete components artdaleo categorical values
which are elements belonging to a finite countable set thanhbabinary relation between
its elements. For example, categorical values can repréisentype of an object, or an
indication of magnitude (e.g., red or blue). The measuresiroflarity between two ob-
servations with categorical components are difficult toespnt, and they strongly depend
how the categorical data has besmrcoded.e. represented with numbersin

However, ifx = (Xq, . ..,Xm) € @™, X = X is a categorical observation withcategor-
ical componentsy, ..., Xy, taking values irm finitecategorical spaces, ..., Xy, then itis
always possible to encodento aze {0,1}" ¢ N"withn= S, |X|. To do so, eacl; is
mapped into{0, 1}|X"‘ such that thg-th bit is equal to 1 and all the others are equal to O if
x; is equal to thg-th element of the sef;. For example, iX; = {’a’,...,’f’ }, thenx, ='c’
is represented by 001000. This representation with binairngs is the most intuitive way
to handle categorical data and we will assume, in all theWalg, that categorical data is

always given under a binary form.

Structured Data

The spaceX can correspond to more abstract objects which are define@dnyad struc-
tures such as time series, matrices, graphs and stringsough these objects can also be
represented via numerical data, the pretreatment and thsures of similarity used on
numerical data can be both meaningless and inappropriatiegfse objects. There is a vast
number of methods for representing and pre-processing titgscts which cannot be sum-
marized in this dissertation. The reader should be refeao&hawe-Taylor and Cristianini
[2004] for indications regarding structured data and thereypriate way to represent such

data before treatment with kernel methods.

11



2.1.2 Pre-Processing of Numerical Data
Missing Values

The records of some numerical observationXican be sometimes incomplete and some
of their components might be missing. Many learning machimere not built to process
observations with missing components in order to recoveatgem hidden within a data
set. Consequently, several strategies can be adoptedantordircumvent possible lack of
records in the observation set.

The first approach is to remove observations with missingpmmants. This method is
not detrimental when data sets contain a significant numiigservations that are similar
to the ones that are being deleted. Furthermore, it has trentafje to be a form of data
thinning which can reduce the time needed to process a langger of observations.

The other strategies depend on the nature of the missingvalhich can be of two

kinds:

1. The components are missing because they were not recardisdcase implies that
the missing values actually existed and were subject totarpabut they are absent

from the records because of a failure of the recording egeim

2. The components were never generated. In this case, tieerpbehind this observa-
tion is inconsistent with the rest of the observations aredétparticular observations

with missing values must be deleted.

There is a possibility tanfer the missing components in the scenario where the absence
of data is due to a failure to record it. The missing valueslsamterpolatedfrom other
observations with similar components. However, it requitcefind first the pattern hidden
within the data which leads to a causality dilemma similatht® paradox of the chicken
and the egg. Nevertheless, practical approaches are ussggvations with no missing

values to estimate a pattern between components, then isgeattern to interpolate the

12



missing values, then augment the set of observations wétintierpolated values and use
it to search again for a new pattern.

There are numerous techniques which are used to infer rgissinponents. They vary
in sophistication and processing time. When data sets age, ld is highly recommended
to select simple techniques with low time complexities sashhe calculation of simple
statistical measures. For example, a subset of the obsem&att can be selected such that
it contains observations with no missing components whielsamilar to the observation
with missing components. Then a measure of central tendeiitye empirical distribu-
tion of the components (the median values or the arithmetieans) can then be used to

substitute the missing components.

Data Visualization

Patterns in numerical data can be trivial to detect when #t& ithX belongs to spaces that
have at most four dimensions, since we are all gifted withadolgical processor which
is extremely potent at analyzing patternsif (i.e. the human brain). Hence, visual aids
can be powerful tools to infer good candidate patterns or@ppate pretreatments, even
for large and very complex sets of data. However, it becomtemely difficult to guess
patterns when the data belongs to a space with a great nurihdhenensions.

Fortunately, there are approaches that can be used toizsualltidimensional data,

and they often come in two stages:

1. The first stage is about the construction of an optimal paX — R" so that the
new coordinates give a better sense of the geometricaltsteuof the cloud of ob-

servations in the higher dimensional spXce

2. The second stage concerns the plotting of the mapped nlatd D, 2-D or 3-D
graphs or tables, in a way that is most convenient to detettssities between ob-

servations.
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Principal Component Analysis (PCA) [Pearson, 1901], KER@A (KPCA) [Diaman-
taras and Kung, 1996; Schdolkopf et al., 1997; Mika et al. 9129d Self-Organizing Maps
(SOMs) [Kohonen, 1982, 2001; Kohonen and Makisara, 1986hfthe core of the first
stage. A PCA aims to map data linearly onto a subspacééwhich basis corresponds to
the axes of maximum inertia of the cloud of observations. imbgial axes, called principal
axes, are ordered by decreasing explained variance. Hehea,the principal components
of the mapped observations are truncated to the first one three or four variables, the
resulting projection in a lower dimensional space is the basar projection possible,

in the sense that it maximizes the explained variance indweil dimensional space (see

Figure 2.1).
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Figure 2.1: Bi-dimensional plot of the first two principal componentteafa PCA of the

observations on made on three distinct species of iris flewgrFisher [1936]. Observa-
tions tend to cluster according to the species the flowemiggeto.

A KPCA is a PCA that is performed when the observations atéllyi mapped into

an higher dimensional Hilbert space where its metric is aediby the choice a particular
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type of function calledkernel The inertial axes are warped according to the kernel inrorde
to best fit the mapped cloud of observations. This is, in essennonlinear extension of a

PCA using kernel methods.
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Figure 2.2: 2-D SOM of Fisher’s iris data set [Fisher, 1936] and mappeskolations.
Like for the PCA, observations tend to cluster accordinghgpecies the flower belong
to.

SOMs is a family of Artificial Neural Networks (ANNSs) which ma observations onto
a regular two or three dimensional grid. Each node of theigrassociated with an ANN
model which is computed with the SOM algorithm (see Figu@®.2 An observation is
mapped onto the grid node which model has the smallest distiiom the observation,
according to some chosen metric (which can be defined by @BkeBimilar to the KPCA,
SOMs are also nonlinear generalizations of a PCA [Yin, 2007]

The second stage of treatment for the visualization of mhuatensional data consists
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in representing the mapped data in a convenient graph a.téthe mapped data has a
single dimension, then histogram-related plots are thd swtable to display the data. If
the mapped data has two or three dimensions, then 2-D or &iiesplots (see Figures 2.1
and 2.2) are the best. It is possible to visualize up to sixetdisions at once with the 3-D
plot of a vector field, but, for more dimensions, only paidat®ordinates plots [d’Ocagne,
1885] (and related plots such as Andrews plots [Andrews2]Laid generalized parallel

coordinates plots [Moustafa, 2009]) can visualize the redpgata (see Figure 2.3).
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Figure 2.3: Parallel coordinates plot of Fisher’s iris data set [Fisti®B6] over the first two
principal coordinates after a PCA and normalization. Ohly the first and third quartile
envelopes as well as the median values for each flower sp@qdotted.

Normalization of Continuous Numerical Data

Continuous numerical data is often the result of physicaasneements which are linked
to the choice of arbitrary physical units and scales. Whewlaservation contains sev-
eral physical quantities measured with different units/andifferent scales, the cloud of

observations in the spacé becomes arbitrarily stretched along some axes and this can
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significantly impact the relevance of other crucial compaseand make patterns unde-
tectable.

To remedy the problems caused by the choice of arbitrang @amitl scales, aormal-
izationprocedure determines statistical measures of centraébeydand dispersion (vari-
ability) for every component of all the observations. Inatkvords, giver?/ observations
X1,...,X¢ in R", we computen measures of central tendenay, . .., m, andn measures of
dispersiorsy, . .., s, from the empirical distributions of every component. Foample, the
m;’s can be the means (or medians, if there are too many oQtbéthe components and
thes’s can be the standard deviations (or inter-quartile rangethe components. Once
the statistical measures are determined, all the obsensdi, . .., X, are transformed into
vectorszy,...,z, in R", which components are dimensionless, by using the follgvian-
mula:

(Xi)j —m;

(z)j= Ty (2.4)

foralliin [1,¢] and allj in [1,n]. If follows that the components of the vectars. ..,z

have a similar variability around zero, which makes them bgemeous for each observa-

tion.

2.1.3 Data Thinning

This section only covers data thinning methods that have degeloped to be used with
ULMs. Alarge number of traditional sampling technigues bamsed to thin large data sets
[Cochran, 1977; He and Garcia, 2009], but the applicatibasled to investigate ULMs
required data thinning methods which keep the overall g&acaéstructure of the cloud of
observations in the spaée A couple of approaches were developed to reduce the burden
of processing large amounts of redundant (or quasi-reduhdbservations. One approach

is independent of the search for a pattern function and ieas the idea of a Voronoi

tessellation using metrics defined by kernels. The otheragmh is a pipe-lining scheme
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based on the idea that the properties of the estimate of tterpéunction graduallgmerge

as the ULM is sequentially fed with batches of observations.

Neighborhood Clearing

This data thinning approach is based on the uskeohels(see Section 2.2) which can
define metrics. If we consider a finite s@f = {xy,...,X/} of observations irX, then,
given a scalar > 0 and a kerneky : X x X — R, we can define a closed ball of radius

centered ax € 2" by
Br[X = {z€ X : Kg(X,X) +Kkg(2,2) — 2K (%,2) < T%}. (2.5)

We can notice that, for the metric induced by the kekgelthe observationse 2" which
are inB;[x] are “similar” tox € 2, up to a threshold > 0. Hence, these other observa-
tions arequastredundant since they do not differ much fromegpresentingobservation

x for a given similarity measure (the distance induced by wmdél). Consequently, the
observationg € 2" which are inB;[x] can be removed from the s&t” without inducing
great modifications in the shape of the cloud of observationé. If we repeat this step
sequentially, then only a subset of the original étremains for which no distance be-
tween observations is smaller tharfor the metric induced by the kernk). Algorithm

2.1 implements this Neighborhood Clearing method.

Iterative Construction of the Pattern Function Estimate

This data thinning approach was based on an experimentdt:res the number of ob-
servations grows larger, the pattern function estimaterglyy ULMs quickly stalls and
new observations barely bring any change to it. This statémsesery accurate if the first
batches of observations that are fed to ULMs were chosen to lkeep the geometrical

shape of the entire cloud of observations in the space
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Algorithm 2.1: Neighborhood Clearing

Function [S] = Nei ghbor hoodC eari ng (2 ,kg, 1)
Input: setZ", kernelks with parametewp, thresholdr > 0.
Output: setS.

1S+ Z,L«+|9,i«+1

2 whilei <L do

3 | for je[l,i] do vj s

4 a<ko(s,s)—1,1 i

5 | for jel[i+1,L]do

6 | if a+ko(s),S)) > 2Ks(si,sj) then | <141,V < s
7 end

8 | V< {vi,.... v}, SV, L+ |Fi+i+1

9 end

10 return S

Consider a finite se®” = {xy,...,X/} of observations irX and the corresponding set
% ={y1,...,y¢} of targets. Algorithm 2.1 can be used iteratively to buildsatipion X =
{X1,...,.Xm} of 2" (1 < m< /) and then deduce a partitidh = {y1,...,Ym} of Z. Any
setX; in X will be such that & € X; has “cleared its neighborhood” up to a certain distance
and all the sets irX have the same geometrical shape overallf;lfs pattern function

estimate given by an ULM fronX; andys, then, for alli € [1,[Xm|], we have that

f1(Xm)i) = (Ym)i +T1i, (2.6)

where theri’'s in R are residuals between the outputsfoon a test sekKy, and the target
ym. If the residuals are too large, then we are forced to comaurttew functionf, from

the sefX, that accounts for the residuals. However, we can use thésésund during the
computation off; to describe parts of,. For instance, the target vectpr is replaced by

the residual betweeyp and the outputs of; overXp, i.e.

(y2)i + (y2)i — f1((X2)i), (2.7)

for all i € [1,]Xz]]. Then a pattern function estimatgis computed by an ULM fronX;
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andy» and residuals are calculated similarly to Equation 2.6héfriesiduals are too large,
then the scheme is repeated or until all set&ihave been used, or until residuals are
deemed sufficiently small. The resulting pattern functietineatef afterk iterations will

be equal to

f— i fi. (2.8)

This approach is both a data thinning method and a methodetdsyp the computation of
pattern functionf. Indeed, the computational time is a convex polynomial fiamcrt of
the sizel of the observation set. Hence, if the data séts. ., Xy, have reasonably small

sizesly,...,lm, then we will have

n(éli) >>én(li), (2.9)

wherek is the number of iterations needed to terminate the proeedur

Algorithm 2.2 implements the procedure that iterativelystoucts a pattern function
estimate. The algorithm is fast only if the computationabson line 5 and the iterated
summations of the function estimates are fast to computanbe noted that, when using
ULMs, the different functiond,..., fx can be defined with different kernels each time

(see Sub-Section 2.3.2).

2.2 Kernels

Kernels play a major role in Machine Learning. Despite that techniques using them
have been known for more than half a century [Aizerman eL864; Courant and Hilbert,
1953], their utilization by the machine learning commungyess than thirty years old.
These functions are used to construct, in a implicit marga@ple machine learning frame-
works that efficiently handle highly nonlinear patterns bservational data. They provide

an implicit way to define new metrics which is a crucial ch&eastic when two objects
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Algorithm 2.2: Iterated Function Estimate

Function [f] =1t er at edFuncti onEsti mat e (X,9),¢)

Data: iteration limitkmax > O.

Input: partitionsX = {Xg,...,Xn} and®) = {y1,...,Ym} of the setsZ” and#/,
tolerances > 0.

Output: function f.

1 Kmax < Min(Kmax, M—1), 1 <= ym, k<0

2 while ||r|] > € and k< kmax do

3 k—k+1

a | forie[L,[X]do (v (yi)i — "1 fj ((%)i)
5 Compute an estimatk usingXy andYx.

6 | forie [L|Xml] do ri « ri— fi((Xm)i)

7 end

8 K

9 return f

need to be compared. Kernels possess exceptional closaperpes that gives them ex-

treme flexibility in many applications.

2.2.1 Definitions and Properties

A kernel is a simple function of two variables over a measlgrapace with very simple
properties. It must be real-valued, symmetric with respedts argument and square-

integrable. The following definition was adapted from Mei{d®09]:

Definition 2.1 (Kernel). If X is a measurable space, thenkarnelis a real-valued

function over Xx X that is symmetric and square-integrable.

Kernels need to be real-valued to allow comparisons of nreasf similarity between
elements that belong to the measurable spac@he symmetry and square-integrability
properties of kernels are properties which are necessatrpadb sufficient, to the construc-
tion of new metrics. The sufficiency aspect comes withfihiée positive definit@roperty

defined below, which was adapted from Saitoh [1988]:
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Definition 2.2 (Finitely Positive Semi-Definite Function)f X is a measurable space

then a function f X x X — R isfinitely positive semi-definité it is symmetric and if

m m

N= f(X,X;)AiA; >0,
i;j; (%, Xj)AiA;

foranyme N, A e R, x e X andie [1,m]. f A=0onlyforA; =...=An =0, then

f is finitely positive definite.

The key aspect of kernel methods is that finitely positiveisdefinite kernels can be
expressed as inner products in Hilbert spaces. This readtfinst showed by Mercer in

1909 in a theorem that now bears his name:

Theorem 2.1(Mercer’s Theorem)Let X be a measurable space and lgt K x X — R

be a kernel. Then there exists a unique Hilbert space F and@gna — F such that

ko (X,Y) = (@(X), @(¥))E ,

for all (x,y) € X2 if and only if the function  is a finitely positive semi-definite fung

tion.

Theorem 2.1 implies that, given a finitely positive semi-aigdi kernelk,, the function
@: X = F, x— Kkg(x,-) is a linear map in an Hilbert spade uniquely defined by.
Hence, the trick used by kernel methods consists into rega@aomplex nonlinear relations
between objects iX (or just dot products) by an expression made of finitely poesgemi-
definite kernels. By this trick, nonlinear relations becagneivalent to linear mappings in
Hilbert spaces for which it is unnecessary to properly dbesdheir (complicated) metrics
since they are induced by the choice of the kernels. Sinceepsing and interpreting
linear maps is trivial, complex nonlinear transformatioms become simple operations

in Hilbert spaces and these transformations are easily atedpwith the help of simple
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kernels. The complicated mapfrom the observation spa¢é(sometimes called theput
spacg into the induced Hilbert space (called tfeature spaceneeds not to be described
or known, which is saving computational time and resources.

Geometry in the feature space is directly described by tbeeaties of any Hilbert
space which are reformulated with the help of kernels. Fstaimce, the Cauchy-Schwarz
inequality or the Pythagorean theorem can be rewritten placeng all inner product ex-
pressions with kernel equivalents. This gives an integpi@t of angles and distances in
the Hilbert space induced by a given kernel, and makes iee&sidesign novel machine
learning processes which are based on the geometricaldraregion of the mapped cloud

of observations.

Corollary 2.1 (Geometry in the Feature Spacéet X be a measurable space and let
ks : X x X — R be afinitely positive semi-definite kernel. The kergalkiquely defines

a Hilbert space F and a map : X — F where there exists @ € [0, 77} such that

Ko (X, y) = cog6)/K(x,X)k(y,y),

forall x and y in X. Furthermore, we have that

2 m m
= Z aajks (%, %)) = alKa,
N Y]

iaa P(x)

forall aj € R and % € X, i € N. The Gramian matriX is called thekernel matrixand

is, by the definition of k, a symmetric positive semi-definite matrix.

Proof. SinceF is an Hilbert space where the inner product is define#jwccording to
Theorem 2.1, the first equality is the direct result of thec@guSchwarz inequality and the

second equality is given by the Pythagorean theorem. O

The space of finitely positive semi-definite kernels is atbeader some algebraic op-

erations. Hence, itis possible to construct more elabdieenels from simpler kernels by
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using additions, multiplications, limits, etc. The closyaroperties are listed below:

Theorem 2.2(Closure Properties of Kernels)et X and Z be two measurable spaces
and letg be a map from X to Z. Let k (respectivalybe a finitely positive semi-definite
kernel over X (respectively 2). Let p be a polynomial with real positive coefficients.
Finally, let x and y be two elements of X. The following fumtsiare finitely positive

semi-definite kernels:

I_Lki and lim ki, where{k;}icn is a sequence of finitely positive semi-definite
> j—00

kernels that converges pointwise.

p(k), exp(k) and (x,y) — K (@(X), @(y)).

(X,Y) n—>/ f(x,2) f(y,z)dz where f is a symmetric function.
X

(x,y) € (RM? — xKy € R for any positive semi-definitexan matrixK .

These closure properties are extremely useful for quickiiding simple kernels that
measure very complicated similarities between objectsrigghg to abstract measurable
spaces. This allows the processing of very complicatedctdbfgy learning algorithms and

the easy detection of non-trivial nonlinear patterns hidgéhin data.
2.2.2 Kernels on Categorical Data

Hamming Distance

Measuring the likeliness between two observations comigian equal number of cate-
gorical components is similar to the computation of the nemidd positions at which the
symbols of two strings are different. In other words, the suea of similarity between two
such observations is based on the Hamming distance betWegrstring representations

[Hamming, 1950].
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Given two stringss; andsp, the Hamming distance measures the minimum number of
substitutions that are necessary to chasigmto s, and reciprocally i.e., it measures the
numbers of categorical components that are different batseands,. Hence, since the
Hamming distance is a metric on the set of strings of equatkerany polynomial with
positive coefficients or Gaussian functiohthe Hamming distance between two strings is
a kernel on categorical data. When the data is in binary feanh possible string of length
nis a vertex of am-dimensional unit hypercube and the Hamming distance letweo
string is equivalent to the Manhattan distance betweenghees.

If two observations; ands, with n categorical components are represented in binary
form (i.e. (s1,s) € {0,1}" x {0,1}"), then Algorithm 2.3 given by Wegner [1960] com-
putes the Hamming distandg (s, ) between these two observations. This algorithm is
extremely efficient and has a time complexity proportionahie Hamming distance itself

rather than the binary length of the inputs.

Algorithm 2.3: Hamming Distance
Function [dy] = Hamm ngDi st ance (s1,S)
Input: Sequences of bitg ands,.
Output: Hamming distancely.
1 dH +~0
28 S1DS /| Symbol® stands for exclusive or
3 while s#0do
4 dy —dy+1
5
6
7

S« SA(s—1) /' SymbolA stands for logical and
end
return dy

Hamming Distance Kernel

Couto [2005] provides another kernel for categorical datactvis based on the Hamming
distance. By defining a mapping of a string into a speciallgstaucted feature space

of categorical objects, the author is able to define a new uneas similarity between
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categorical data.
Letv=(vy,...,Vn) € ®i_1 X = X be a categorical observation witlcategorical com-
ponentsvy,...,V, taking values im finite categorical spaces, ..., X,. For a coordinate

u € X, Couto defines a mapping
n
@i X =R, vies ghUY) = rlad‘wi, (2.10)
i=

whereo is in (0,1) and whered is the Kronecker delta. Therefore, given two strirsgs
andsp in X, we can define the output of the Hamming distance kernel asutimenation of
all possible products,(s1)@u(sz) with u € X. This leads to the following definition of a

Hamming distance kernel:

Definition 2.3 (Hamming Distance Kernel)Let X be the Cartesian product of n finiJe
sets of symbolsX..., X, of cardinality m,...,m,, and let(s,s) € X2. Then the

Hamming distance kerné&l; is defined as

n
ko 1 X2 > R, (s1,%) — Z( rlaéui-(sl)i O'6Ui~(32)i,
ueXi=

whereo is in (0,1) and whered is the Kronecker delta.

Couto showed that this kernel can be computed recursively Algorithm 2.4. For
two stringss; ands, in X of lengthn, this algorithm requires(®+ 1) FLOPS to compute

the output of the Hamming distance kernel.

Diffusion Kernel for Categorical Data

Kondor and Lafferty [2002] proposed a different mappingnti@outo. They considered
each categorical objestc X to be a vertex of a graph such that two vertices are connected

by an edge only if their categorical objesisands, differ by the value of one component
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Algorithm 2.4: Hamming Distance Kernel

Function [K] = Hanm ngDi st anceKer nel (s1,S,0,m)
Input: Stringss; ands,, parameteo and vectom with my = |X| fori=1,...,n.
Output: Kernel outpuik.

1 a+ 02

2 b« 1-0

3 c+b(l+0)

4k« 1

s for i € [1,n] do

6 | ke (am —bdg), (s +O)K

7 end

8 return k

(i.e.,dn(s1,52) = 1). Using a bandwidth parameter> 0, they adapted a diffusion kernel

on graph for categorical data as follows:

—

Definition 2.4 (Diffusion Kernel for Categorical Data).et X be the Cartesian produg
of n finite sets of symbols X. ., X, of cardinality m,...,my, let (s1,s) € X2 and let

o > 0. Then thaiffusion kernelfor categorical data k is defined as

1_gmo ) Aspi(s2)i
)

kO:Xz_)R7 (51782) H|E!<l+(m _1)e—m0

whered is the Kronecker delta.

2.2.3 Kernels on Numerical Data

There is a wide variety of kernels on numerical data whichas¢opming in various fam-
ilies of such functions, each one having desirable propefor certain kind of problems.
Kernels can be chosen from a family or built specifically foegarticular problem. In the
later case, one should keep in mind that kernels represeetaure of distance and angle
into some (possibly higher dimensional) Hilbert space. dtesiderations related to what
constitutes the “closeness” of two distinct observatiankeit to the person modeling the

classification problem and the nature of the numerical data.
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Kernel on Real Numbers

By using the closure properties of kernels (see Sub-Seéti®d1), it is possible to build
kernels on real numbers in order to obtain kernels betweetorge By direct application

of the second point of Theorem 2.2, the simplest kernel omeabers is
k:R%2 =R, (X,Y) — Xy. (2.11)

For example, the polynomial kernel (see Definition 2.5) iediy derived from Equa-
tion 2.11. But component products inside kernel betweenovede.g., the polynomial
kernel) can be replaced by more elaborated relations inr aod®rm special kernels. If
observations belong t& . for example, then spline kernels can be directly obtainechfr

polynomial or ANOVA kernels and the function
k:RE — Ry, (xy) — p([0,N[0,y]) = min(x,y), (2.12)

wherey is the Lebesgue measure Bn Other constructions are using

1

maxxy)®’ (2.13)

ko : (R})2 = RY, (xy) — 1([0,1/x°]N[0,1/y%]) =

with g > 0. Using Theorem 2.2, both Equations 2.12 and 2.13 can beioeohlp form

K: (R%)2 =R, (xy) %. (2.14)

Lastly, if there exists ar > 0 such that(x,y) € [0, d]? then the following function is a

positive definite kernel of0, o7:

ko : [0,0]2 = [0,0], (X,y) — 0 —max(x,y). (2.15)
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Kernels Based on Polynomials Kernels

The most basic kernels ovéR")? are derived from positive definite bilinear forms such as

the Euclidean dot product. They are the direct results obiidma 2.2.

Definition 2.5 (Kernels from Bilinear Forms)If ~ = {aij}i”j:l is a real symmetric

positive definite x n-matrix, then the following function is a positive defirkggnel:
n n
kot (R")Z = R, (x,y) > X'Zy = 3 3 o
i=1j=1

In particular, if = = I, then ks (x,y) = k(x,y) = x'y (Euclidean dot-product).

Since any polynomial with positive coefficients of a kernelaiso a kernel, we can
easily derive the definition of a polynomial kernel from Défon 2.5 and the binomial

theorem.

v

Definition 2.6 (Polynomial Kernel) Let ~ = {gj }inj:1 be a real symmetric positive
definite nx n-matrix, letg,. , > 0 and leto,.. , € N*. Then the following function is

called thepolynomial kernel

m 2 n n Un2+2
kot (B B, () (0,043 5 o)
=N

Shawe-Taylor and Cristianini [2004] showed that the RKH&wthe polynomial kernel
as reproducing kernel is the space of all functigns x;*x,2...xy such thaty ! ; vi < v,
which is a space of dimensidfi}"). If the RKHS is further refined so that it becomes the
space of all functiong — x;x2...x/n such tha{vy, ..., vy) € {0,1}", then we obtain the

all-subsets kernel.
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Definition 2.7 (All-Subsets Kernel) If {gi}! ; € R", then the following function is

called theall-subsets kernel

n

kot (RMZ =R, (X,y) — |1(1+ TXYi)-

If the RKHS is the space of all functions— X;'Xy2...xun such that(vy,...,vn) €
{0,1}" and ¥, vi = v (which is a space of dimensiq(y)), then we obtain the ANOVA

kernel of degree.

Definition 2.8 (ANOVA kernel of degreer). Let{g;}]' ; € R" and leton,1 € N*. Then

the following function is called thANOVA kernel of degreegy, . 1:

kO:(Rn)Z_)]Rv (X7y>'_> z I_l O-ijxijyij-

1<i1<~~~<|gn+1<n =1

Shawe-Taylor and Cristianini also showed that the ANOVAnkércan be computed
recursively using a dynamic programming evaluation widia@(Zn-i— 1- Un+1) FLOPS
(see Algorithm 2.5). A more general and flexible family of slernels can be constructed

from the so-calledjraph kernel

Kernel Based on Radial Basis Functions

A Radial Basis Function (RBF) is a real-valued function®hof the formd. : R" —
R, x— @(|Ix —c||z ) whereg s a real-valued function oR, X is a real symmetric positive
definite n x n-matrix, andc € R". Givenc = 0, if the functionk : (R")? — R, (X,y)
Po(x+ gy) with € € {—1,1} is positive definite, then this is a positive definite kerral.

the same fashion, we have that:
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Algorithm 2.5: ANOVA Kernel

Function [K] = AnovaKer nel (x,y,0)
Input: Vectorsx, y in R", and vectoio € R™1,
Output: Kernel outpuik.
M < O(g,,1+1)x (n+1)
forie [1,n+1] do
‘ Mg+ 1
end
for i € [2,0n41+ 1] do
Mjji—1<0
for j € [i,n+1] do
[ Mij e Mij1+0XYiA-Lj 1
end
end
return Mg, ;11011

© 00 N o 0o b~ W N P

[
= O

« If the functionk : (R")2 — R, (X,y) — ®g(x-y) (Where- is the Hadamard product)

is positive definite, then this is a positive definite kernel.

« If the functionk: (R")? — R, (X,y) — @(dk(x,y)) (whered : (R")? — R, is the
norm induced by a positive definite kerrils positive definite, then this is a positive

definite kernel.

Among all these combinations, only RBF of the fokm(R")? — R, (X,y) — ®(X — )
are invariant by translation and rotation. This is the cdsbewidely used Gaussian RBF

kernel.

Definition 2.9 (Gaussian RBF kernellL.etX = {aj }1!;_; be a real symmetric positive

A%

definite nx n-matrix and leto,.,, € R%. Then the following function is called the

Gaussian RBF kernel

Ko : (Rn)Z —(0,1], (x,y) — eXp( On2+1 Zi Z gij (X —Yi)( W)) .
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Despite being the most widely used kernel, Chen [2004] sHothat the Gaussian
RBF kernel is not robust to outliers. The associated map ks (X,-) has images into
an infinite-dimensional Hilbert space [Burges, 1998]. Theu§sian RBF kernel can be

directly derived by applying Theorem 2.2 to polynomial kedm

2.2.4 Kernels for Real-Valued Physical Data

For problems that estimate unidentified nonlinear patteri&’, it often becomes neces-
sary for kernels to give the same output for the very samegba@al-valued vectors iiR"
that has been translated and/or rotated because of exteatads. In other words, non-
linear patterns iR" must be estimated the same way even if their position or taiiem
shifted during the measurement process. This calls for @adamily of positive definite
kernels that do not have a privileged frame of reference.s@lkernels must be invariant

by translation and rotation.

Distances and Angles in the RKHS

Given a symmetric positive definite kerriel (R")?2 — R, we have thak is invariant by
translation and rotation if, for a pair of vecterandy in R", the following identity holds

for all vectorst € R" and for alln x n real orthonormal matrice®:

k(Qx+1t,Qy+1t) =Kk(x,y). (2.16)

A translation-invariant kernel has additional properti€®r instance, ik(x +t,y +t) =
k(x,y), thenk(x,y) = k(x —y,0) andk(x,x) = k(0,0) > 0, sincek is positive definite.
This gives a new interpretation of distances and anglesaiRiKHS.# for whichk is the

reproducing kernel. The distance between the imagesntly by the mapping — k(-, x)
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(see Corollary 2.1) is such that
k(%) =K, y) 12 = K(x,X) +k(y,y) — 2K(X,y). (2.17)

If kis translation-invariant thefik(-,x) — k(-, y)||* = 2(k(0,0) —k(x,y)). Since the above
quantity is always positive, we have thdk,y) < k(0,0) for all x andy in R". Actually,
the measure of angles iA leads to better conclusions regarding the bounds of thetifpan

k(x,y). The Cauchy-Schwarz inequality is expressed by

KOG Y) < IKE IR W) = k(X x)k(y, y) = k(0,0), (2.18)

for which we deduce that(0,0) # 0 except for the trivial cask = 0. It follows that all
measures of angles in the RKHS have their values in the intervatk(0,0), k(0,0)] and

therefore that

for all x andy in R". In other words, whatever the distance between two vectoRs'i
is, the distance between their images in the RK#Sor which the reproducing kernel is
translation-invariant is always bounded by the quantw 0,0).

Radial Basis Functions

Consider a continuous RBP : R" — R, x — ¢(||x||5) where]|-||5 is the norm induced by
the symmetric positive definitex n matrix = onR". The functiork: (R")? = R, (X,y) —

®(x —y) is real-valued, continuous and symmetrick I§ positive definite, i.e. if

m m
0) Zl)\iz-i—ZZ(p(xij))\i)\j >0, (2.20)
i= i<]
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foranyme N, A e R, xj € Ry and (i, j) € [1,m] x [1,m], then there exists a unique
RKHS withk as the reproducing kernel. We can deduce from Equation Z2a@dition for
which k is not positive definite. For example, let= 2, A; = —1 andA, = 1, the function

k is not positive definite if there existsxac R such thatp(0) < @(x). If A1 =A2 =1,
thenk is not positive definite if there existsxae R such thatp(0) < —¢(x). Hence, we
conclude thak is not positive definite if there existsxac R such thatgp(0) < |¢@(x)|.
Another trivial deduction is that is not positive definite ifp(0) < 0 (m= 1 andA; = 1).

Consequentlyp must be such thap(0) > 0 and|¢(x)| < @(0) for anyx € R.

Summary of Properties

A positive definite kernek : (R")2 — R that is suitable for real-valued vectors in physics
must be invariant by translation and rotation, and theeefioust verify at least the following

properties:
* k(x,x) =k(0,0) > 0 for anyx € R".

* k(x,y) € [-k(0,0),k(0,0)] for anyx andy in R".

o |Ik(-,x) —k(-,y)|| = \/Z(k(0,0) —k(x,y)) < 2,/k(0,0) for anyx andy in R".

If the kernelk is derived from a radial basis functigntaking the Euclidean distance of

two vectors as argument, then the positive definite properkyimplies that:
* ¢(0) > 0.
* @(x) € [-9(0), p(0)] for anyx € R
* V(a,b) € R? andvx € R, (a2 + b?) @(0) + 2abe(x) > 0.

These properties rules out many radial basis functions aac¢he multi-quadric function
¢®:R— R, x— v/x?+c? wherec # 0, and the thin-plate spline functign R*. — R, x+—

x?logx.
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Examples of Suitable Kernels

The output of a kernek can be considered as a measure of likeliness between the two
input observations. IR", the greater the Euclidean distance between two vegtaraly

is and the lesser their similarity is. Hencekif (R"? — R, (x,y) — @(||x—Y|ls), then

@ : R, — R should be a continuous and decreasing function suchgfiat ) C [0, 1]

with g1 > 0. Additionally, the rate at whiclp decreases can be controlled with a parameter

0> > 0 (see Figure 2.4).

01

0 X

Figure 2.4: Examples of suitable radial basis functions.

2.3 Estimating Functions with Kernels

As mentioned in Sub-Section 2.1.1, the aim of supervisechieg is to find anbounded
pattern function that links an observatioim a measurable spadeto a targely in RP such
that

F(x) il <&, (2.21)
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wherei € [1,m] ande > 0 is an arbitrary value. In this study, the functiéris modeled
by kernels with the help of the closure properties mentioimedheorem 2.2. Equation
2.21 represents the need to arbitrarily constrain the tens of the outputs off from
the targets associated with specific observations. Thistaint can bdocally satisfied
by attempting to minimize an empirical error measure ovestatcollected observations
2 ={xq,...,%} C X. However, we also need to guarantee that the pattern funttiall
also behave as in Equation 2.gtbbally. To do so, it is necessary to introdugeneraliza-
tion errorsand the means to minimize them (see Sub-Section 2.3.4). Thienipation of
the generalization error depends both on the represemtatithe pattern functiorf (see
Sub-Section 2.3.2) and the notion of Rademacher complexitgduced in Sub-Section
2.3.3.

2.3.1 Type of Supervised Learning Problems

There exist two main categories of problems in supervisathleg: classification problems
and regression problems. The observation spa@mains the same in both categories, but
the target space is different. binary classification problems, targets arbitrarily belong
to the set{—1,+1} C R without loss of generality. If a set of data encoded targeth w
other symbols, say 'a’ and 'b’ for example, then it is alwaysgible to construct a triv-
ial map from this two-element set info-1,+1}. Multi-class classification problems are
characterized by targets that belong to a finite set of imgelgetween 1 anch with m be-
ing the number of classes. Like for the binary classificatiase, if targets are encoded
with different symbols than integers from 1 mq it is possible to construct a map from
that set of symbols intfl, m]. Targets for regression problems belong eitheR it is a
single-output regression problem, orR@' if it is a multiple-output regression problem. In
all type of problems, the objective is to find a pattern fumetf linking observations and
targets, whatever the target set may look like.

The division in classification and regression problems neggyrsarbitrary since a clas-
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sification problems a particular kind of regression problem for which the patfenctions
take discrete values. Hence the common use of logistic segne methods to solve prob-
lems of classification. However, different structural aggmhes may be considered in clas-
sification problems that cannot correspond to similar apgimes employed in regression
problems. One of these approaches is used in the case ofalags classification prob-
lems (see Sub-Section 2.4.2). Classification problems abeebeen historically consid-
ered separated from regression problems [Vapnik, 198#, regression problems being a

generalization of binary classification problems.

2.3.2 Representation of Pattern Functions with Kernels

Besides the nomenclature of the target set and the corrésyptype of supervised learn-
ing problems, the choice of the family of pattern functiomthie most crucial aspect of the
supervised learning algorithms. In the case of ULMs (and S)/khe pattern functions are
built from kernels by using the closure properties of Theo&2. The use of kernels to
represent pattern functions is motivated by their geometinterpretations which can be
made in classification and regression problems (see Cor@la) and the theoretical error
bounds (see Sub-Sections 2.3.3 and 2.3.4) that are invaligedhem.

The geometrical interpretations of kernel methods usethssdication problems relate
to the separation of clusters of observations mapped imtheced Hilbert space by hyper-
planes. Linear separation in the feature space has therafdirect correspondence with
the separation of cluster of observations<my nonlinear manifolds. Similarly, observa-
tions mapped in the feature space are being fitted by an higmerm the case of nonlinear
regression problems.

For reasons which are explained in detail in Sub-Sectiori 3tlie pattern functions are

chosen to belong to a family of functiogwhich is defined by
‘
g:{xexH Ziaikg(x,xi)+beR:atKa<Bz}, (2.22)
i=
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whereky is a finitely positive semi-definite kernel, aBt> O is an arbitrary scalar which
bounds the norm of the elementséf Naturally, we may build upon this choice of function
space and generalize the type of possible pattern functonis further. For example,
we may define the function spac@s,...,%y induced the choice ofn distinct kernels

ki,...,km similar to Equation 2.22 and define a pattern function as ameht of the space

%:{_iaifﬁrﬁi:fie%ie[[l,m]]}. (2.23)

The point behind the formulation of Equation 2.23 is to definpattern function with
multiple kernels instead of a single one. This allows theaiskfferent similarity measures
between observations to be taken into account and yield fitong patterns. ULMs can
directly support the use of multiple kernels at once, presdidhat the vectora and 3

in R™ are given beforehand. The tuning of theses vectors can lvieymade using a
non-convex pattern search (see Sub-Section 2.4.3) bughtmesult in a computationally
intensive approach. To circumvent this timing problem, oaa refer to the method of

iterative construction of the pattern function estimat ik detailed in Sub-Section 2.1.3.

2.3.3 Rademacher Complexity

The Rademacher complexity of a class of functi8nsuch as the classes formulated in
Sub-Section 2.3.2, measures the capacity, with respecgptolability distribution, of the
functions of¥ to fit random data [Bartlett and Mendelson, 2001, 2002]. Massful risk
measures associated with kernel methods are relying onxfiression of the empirical
value of the Rademacher complexity. These risk measurgsrababilistic measures that
represent the capability of a pattern function to returrmpatg which are arbitrarily close to
their targets (known or unknown), and this for any possilblesovation inX regardless that
if it was generated or not. This kind of risk measure, whictiferent than the empirical

error, is known ageneralization error
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Vapnik and Chervonenkis [1971] were the firsts to inveséadlae link between the gen-
eralization error of 0, 1}-indicator functionsf in ¢ (such as the ones used in binary clas-
sification) and the empirical Rademacher complexity of tiss. Namely, they showed
that, whatever the observatiare X might be, the error between the output of the pattern
function f(x) and the actual targst< {0,1} is upper-bounded, with a certain probabil-
ity, by a function of thevVapnik-Chervonenkis dimensioh ¢ which is the cardinality of
the largest set of points that can $leattered by the functions ir. It was later shown
that the empirical Rademacher complexity4fs instead bounded by this function of the
Vapnik-Chervonenkis dimension and that the upper boundaphik and Chervonenkis is
indeed pessimistic. The Rademacher complexity of a clagsofion then goes further by
extending the expression of upper bounds of the generializatrors for any type of pat-
tern functions, which also means for any type of supervisedg€¢mi-supervised) learning
problems (and not just binary classification problems).

The Rademacher complexity of a class of functi@hever the measurable spakes

defined below:

Definition 2.10 (Empirical Rademacher complexitylet 4 be a class of real-valuea
functions over a measurable space X and%ét= {x,...,X/} C X be a set of sample

observations in X. Thempirical Rademacher complexity¥ is defined as

R¥) < fsggpzial HX. Xi, |e[[112]]>

where theoi’s, with i € [1,¢], are independent uniforgt-1}-valued random variables

TheRademacher complexif ¢ is the expected value 6?(%) taken over an identi-

cally and independently distributed samghy, ..., X, } of random variables.

Empirical Rademacher complexities have closure propettian can be useful in the

LA parameterized binary classification model is said to shatet of observations if, for all assignments
of target labels to those observations, there exists a paegirauch that the model makes no classification
errors.
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establishment of upper bounds on generalization erroresd properties are defined in the

following theorem which was derived Bartlett and Mendelf001, 2002]:

Theorem 2.3.Let .#,.71,...,.%m be classes of real-valued functions over a measur-
able space X. Le?" = {xy,...,X/} C X be a set of sample observations in X. \We

have:

« Forevery) inR, R(A.Z) = |A|R(.Z).

If f : R — R is Lipschitz with constant C and if the conditio(0j = O is satisfied,
thenR(f(.F)) < 2CR(.Z).

* For any function f: X — R, we have

R +f) <R(P) + ,Zfz

e Let peN*, g€ .Z and Ly gp={|f—gP: f € Z}. If |f —g|,, <1 for all

f € .Z, then
R(Zz7 g )<2p< Zgz )

The last point of Theorem 2.3 is a key inequality for the d&thment of a probabilistic

upper bound on the generalization error of ULMSs.

2.3.4 Risk Measures

A risk measure for a given pattern functidnin a function class? (as defined in Sub-

Section 2.3.2) and a finite set of observatio#s= {xy,...,%x/} C X is a quantity that
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evaluates that discrepancy between the outputsfof anx in the measurable spaXeand
its associated target. A straightforward risk measurd for4 given observationsy, . .., X,

that belongs to the set” is theempirical errorwhich is defined by

J4
£(1) :%;dﬁw,yi), (2.24)

whered is a distance betweef(x) andy in R. Typically, d is based on g@-norm and we

have

4
Ep(f)z%_;\f(xi)—yﬂp. (2.25)

If p=2, thenép(f) is themean square deviatiorNevertheless, finding € ¢ such that

E,p(f) is minimized gives no guarantee that
f(X) -yl <e, (2.26)

for any (x,y) € X x R, whereg > 0 is an arbitrary scalar. However, there exists an expres-
sion of a probabilistic bound for quantities expressed indigpn 2.26. If we consider the
notions introduced in Sub-Section 2.1.1, there exist a nreaspacéQ,>, P) and a mea-
surable functiorg: Q — X xR, w+— (X,y) that generates independently and identically
distributed observations. #: Q — X is the measurable function that associabes Q to

x € X, and ifv: Q — R is the measurable function that associates Q toy € R, then
Bartlett and Mendelson [2001, 2002] and Koltchinskii andideenko [2000] showed that

there exists a scaldr < (0,1) such that

P<<‘ f(zé—v

where:

A

P Eo(f) - In(2/0
>< p( )+R($%/C,y/c7p)+3 (2/9)

20

& > >1-9, (2.27)

* The quantityC is equal to (B + |b|) wherep > 0 is the radius of the smallest ball
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centered at the origin iX which contains the observations # = {xi,...,X/} i.e.

2 CBp(0)={xe X:dx(x,0) < p};

* The functionf is in the function class

l
%:{XEXHZaikg(x,xi)+beR:atKa<Bz}, (2.28)
i=1

hencel| f||,, < B+ |b|;

: . f—ylP
« The function class?y c yc p is equal to{ 'Ty fe %} and||(f —y)/Cll, <1

forall f € 9.

The quantity(| f (z) —v|P) > 0 is thegeneralization errorand Equation 2.27 shows that it
is upper-bounded by the empirical error plus an expresditimeaRademacher complexity

of ¢ denoted byh(B, b). The termh(B,b) is such that

h(B,b) = (20(B+ |b))” ('Q(«i”g/c,y/c,p) 13/ ‘”) . @

Theorem 2.3 can be used to establish the relation

5 p 5 21b| 2||Y||2)
R, <«—P _ (Reg-pn+2, . 2.30
( //C,y/C,p) p(B ‘b|) ( ( ) \/z / ( )

The following result, showed notably by Shawe-Taylor angst@mini [2004], allows the

numerical computation of an upper bound of the Rademachaplexity IQ(% —b). We

have
R(¥ —b) < %‘ tr(K), (2.31)
and hence,
- 2p
Ry icy/ep) < g4 oy (BYIEO +BIVEE ) (2.32)
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If p=1, then we have

4,/tr(K) In(2/8) _ 4lbl _ 4ll¥llo

h(B,b) <B 7 +6(B+|b|)p 57 7 / (2.33)
If the data and the kernel matrik were normalized, then
h(B,b) < % <1+ <1+2—\% In (%)) (B+\b|)> . (2.34)
Therefore, we have, with a probability of at least 95%, that
18 4
(If(2)—v) < zi;\ F(x) — il +W<1+3<B+ [b])). (2.35)

It follows that, given a functionf € ¢, the minimization of the generalization error is
linked to the minimization of the empirical error dffor a given observation se¢” and
an upper bound of the infinity norm df. This is an important point that will serve into
the construction of ULMs (see Sub-Section 3.1.1). It is alseful to notice that the larger
the radiusp in Equation 2.33 is and the larger the upper bound on the gkration error
becomes. This shows that if an observati@nX is outsideB, (0) then the pattern function
is unlikely to properly fit the datum. Consequently, ULMs Mglarantee the upper bound

of the generalization error only for observations contdimeB, (0).

2.4 Specialized Models

2.4.1 Multiple Output Regression Models

Cases may arise where each observatiomX is associated with a target vectpe RP
rather than a single real valye R. The pattern functiorfi that links observations to targets
is therefore a function ovet with values inRP. Most supervised learning algorithms that

search for patterns (including ULMs) are designed to aceogelyt single-value targets and
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cannot be inherently modified for multiple output regressmodels. Nevertheless, the
alternative to non-multiple output regression technigse® embed several single-value
regression models into a coherent structure that returrigpbewoutput values.

The simplest way to construct such a multiple output regoessiodel is to represent
the outputs of the pattern functidnas a vector of outputs qf single-valued pattern func-

tions fy,..., fp overX. In other words the functiof is defined by

f1(x)

f2(x)
f: X —=RP x— . (2.36)

fp(X)

Each individual pattern functiofi, with i € [1, p], is then computed separately with the
help of a supervised learning algorithm. As usual, this cataon is made using a set
of ¢ observations?” = {xi,...,X;} for which their associated single value targets are the
i-th components of the vectoys,...,y,. The drawback of this approach is that the pat-
tern computation is repeatqutimes without the possibility of reducing the size of each

individual sub-problem.

2.4.2 Multi-Class Classification Models

Vapnik [1995] initially proposed a simpked hocmulti-class classification scheme, the so-
called one-against-all scheme, in which several binarygsifi@rs are combined to form a
unique multi-class classifier. Despite that this scheme deagloped for Support Vector
Machines, the approach is general enough to allow the sctebeeused with any type of
binary classifier. Later, Platt et al. [2000] generalizee #pproach with a decision-tree-
based scheme which overcomes some shortcomings of Vaciké&ne. The same year,
Allwein et al. [2000] presented an error-correcting codeesge that forms a compromise

between performances of the one-against-all scheme amdtson-tree-based scheme.
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In this section, a binary classifier is represented by a peftectionf : X — {—1,+1}
which is itself computed by learning algorithms such as ULKEach observatiorin the
measurable spacé has a targey that can takep distinct values that we arbitrarily choose
to be in the sefl, p] without loss of generality. The following multi-class céification
schemes are valid for any type of binary classifier regasdtésthe learning algorithm
that generated it. They are all based on the establishmastassification structures that
organize different binary classifiers together. Howevétgure-less” multi-class classifi-
cation schemes based on logistic regression are also jsEiiese alternate schemes are

briefly mentioned in Equation 3.24.

One-Against-All Scheme

A simple multi-class classification scheme foclasses was proposed by Vapnik [1995]
when a set op binary classifiers is available. Theh binary classifier is associated to a
real-valued “confidence” functiog derived from the pattern functiofi that is positive if

an observatiox € X belongs to the-th class, and negative if it does not. The larger the
output value ofy; is, the more reliable the output value Bfis. In this scheme, a total qf
binary classifiers are computed using learning algoritiwith, each one of these classifiers
determining if a given observation belongs to a certainsctasall the other classes; hence
the namene-against-all Suppose thagb confidence functiong, . .., gp are obtained, then
the functionf that determines the one class amagnigr which a given observatione X

belongs to, is defined by

f:X—[1,p], x—argmaxgi(x) :i € [1,p]}. (2.37)

The output of the functiorf is the number of the class of the observattonThe de-
termination of the class of an observation requipesvaluations of confidence functions

which can be done quickly if each individual confidence fimtis not too complicated.
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Despite the fast determination of the class of an obsemvatiee one-against-all scheme
has a couple of very inconvenient drawbacks. The first desaidge is the relevance of
comparingp confidence functions that have extremely close output galuenost cases.
The second disadvantage is that each one opttenfidence functions is computed fram
observations, which can be a massive computational betileifi / is very large since the

evaluation of a binary classifier is repeatgtimes.

Decision-Tree-Based Scheme

Platt et al. [2000] introduced a decision-tree-based #chire for binary classifiers that
returns Boolean values. This architecture Becision-Directed Acyclic GrapfDDAG)
that is, as the name suggests, a structure based on a digeapddwith no cycles. Suppose
that, for ap-class classification problem, a total pfp — 1) /2 pair-wise binary classifiers
are computed i.e. we obtained pattern functiénsliscriminating between class [1, p|

and clasg € [1, p] withi < j.

Class 4

L
A |

¥

Class 3
v

Class 2

- Class 1

Figure 2.5: Decision-directed acyclic graph for a 4-class problem. heedge is labeled
with the class number that has been removed from the listeded with the source node.
The root node (on the left), which contains the full list dffadssible classes, is connected
to the leaf nodes (on the right), which are associated wstk bf only two classes.

The DDAG classifier has a pyramidal structure in which evergienbut the root node
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has two direct successors, and every node but the leaf nedesvb direct predecessors.
A path from the root node to one of the leafs is computed by tipglaan ordered list
of classes to be tested, each node successively removingl@ement from that list. The
removing process works by picking up the pattern functigrdiscriminating the class at
the top of the list, denoted byfrom the one at the bottom, denoted hyand testing if the
observatiorx € X belongs to classor classj. If, for example x belongs to clasg then
the next node on the path would be the node which list doesamain j and reciprocally;
hence the reason for two direct successors at each node. aiftnastarts at the root node
with initial list {1, ..., p} and goes to one leaf node with a list containing only two @ass
Once the leaf node has been reached, the last binary clatisifi¢s performed and the last
class is removed from the list, the remaining one being thssdhe observationbelongs
to (see figure 2.5).

Determining the class of of an observatiwmequiresp — 1 decision evaluations and
each pattern functioffy; is trained ory; 4- /; observations(; being the number of training
observations belonging to clasand/j being the number of training observations belong-
ing to classj. The number of pattern functions to compute is one order ajmtade
greater than for the one-against-all scheme, but the diilmerms each binary classifica-
tion sub-problem is much smaller than the original data izet SThe DDAG scheme also

overcomes problems related to confidence functions hawtgubvalues too similar.

Error-Correcting Code Scheme

Supposen (1 < m< p) Boolean pattern functionf, . .., f, are given for amp-class prob-
lem. A functionfi, i € [1,m], will return either+1 or —1 depending on which class the
input belongs to. If the functior; was not designed to discriminate one particular class
against another then, by convention the output will be zerdHat specific class. An ex-
ample is given in table 2.1 where all outputs are arrangedargecision matrix.

Let D be anp x mdecision matrix built fromf4, ..., f,,. We can notice that each row of
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Table 2.1: Example of error-correcting codes for a 4-class problemfaedoattern func-
tions. The table lists the values the pattern functionsnefior elements belonging to the
classes listed in the rows.

Class fi fo f3 f4 fs

1 O -1 -1 -1 +1
2 +1 -1 0 +1 +1
3 +1 -1 -1 -1 O
4 -1 +1 +1 0 -1

D represents a code that we seek to be unique for each classs e case, then, for an
observatiorx € X, the outputs for every;, i € [1,m], are put in order so it forms a code for
that specific observation. The code is then stored imarl vectorc(x) and then compared
to each row of the decision matrix by computing a distance betweefx) and the codes
on the rows oD. The class of the observatiawill be the one with the minimum distance
betweenc(x) and the code on the row corresponding to that class. Thendistaroposed

by Allwein et al. [2000] betweer and the-th class is

d(c(x),Di.) = %(m— glsign((c(x))jDij)), (2.38)
=

and the final pattern function is given by
f:X > [1,p], x— arg min{d(c(x), D) :i € [1,p] } (2.39)

The error-correcting code scheme is, in a way, a generalizaif the one-against-all
scheme and the decision-tree-based scheme for which atipdi{elesser number of de-
cision functions is needed in order to determine the classbarrvation belongs to. Fur-
thermore, depending on the codes contained in the decisanxD, the size of the pro-
gramming problems to be solved can be significantly reducBuoe contents oD also

suggest that there exist optimal codes that combine an hgghimiinating power and a

short number of pattern functions trained on smaller proisle
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2.4.3 Model Validation

Selecting a suitable kernel is one of the few tasks needed pelformed before an ULM
can search for patterns in the provided set of data. The \&@rgfaselecting kernels and
correct algorithm parameters is nothing else than the imgjldf a mathematical model of
the given data. Naturally, a chosen model must be tested aidhted to ensures that it
properly predicts non-trivial hidden patterns within, olucse, a certain margin of error.
While selecting an appropriate model is often based on deraiions that are problem-
specific, the validation of prediction models is a procedbe is now standardized. These
validation procedures rely on repeated tests on the vere s@hof observationg™ =
{X1,...,%} in X upon which the pattern functions were generated by the ilegmigo-

rithms. These procedures can be divided into two families:
» Cross-validation procedures which are partition-based.
» Bootstrapping procedures which are sampling-based.

Both families have their pros and cons which are often rdl&dehe size of the data sets.
Furthermore, repeated selection-validation proceduar$e embedded into a generalized
pattern search approach which can search for the optimalebbparameters for a mathe-
matical model. This pattern search can be time consumihg ifhosen learning algorithms

are not efficient at handling large sets of data.

Cross-Validation Procedure

In a cross-validation, the observation s#t is partitionedinto q subsets{ .23, ..., Z4}
which are alternatively used to build a classifier to be teste the remaining subsets.
In other words, the se®” is iteratively divided into an actudtaining set, for which a
classifier is built, and gestingset, for which the classifier is tested to confirm the validity

of the mathematical model. At each iteration of the crodglaton, an error statistic is
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constructed for the results of the testing set. The errdissts are then merged after all
training sets have been used which evaluate the validityeo€hosen mathematical model.

The cross-validation procedure is outlined in Algorithré.2.

Algorithm 2.6: Cross-Validation Procedure

Function [u] = CrossVal i dation (M, Z(Z), 2(y))
Input: modelM, partition of the observation se?(.2") = { 21,..., Zq} and
partition of the target vector se?(y) = {y1,...,Yq}-
Output: error statistiqu.
1 u<+0
for i € [1,q] do
Compute a pattern functiohusing the modeM and the set?” \ %;.
Updateu by comparingf (.Z;) andy;.
end
return

D g b~ WN

For classification problems, the error statistic is ofteadaaon aconfusion matrixC.
Given anp-class problem, the matrig is anp x p matrix for which each-th row repre-
sents the number of observations that belong to ¢lasd each-th column represents the
number of observations that were predicted to belong tsg¢lad common error statistic

based on the confusion matrix is

U= min{ 1;:&' el p]]}, (2.40)

with C;. being tha-th row of the matrixC. In other words this error statistic is the minimum
fraction of correctly classified samples.

For regression problems, errors are based on many diffetatigtics such as:
* Mean square deviations between functional outputs agetsyr

» Rank correlation coefficients between functional outpand targets (e.g., Spear-

man’s rank correlation coefficient),
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« Statistics computed the empirical distribution of theidaals (e.g., from normality

tests, etc.).

The partition of.Z" can be chosen randomly but some samples may never be used in a
training or testing set. Additionally, a poorly chosen fiemh can fail to yield correct pat-
terns, hence introducing a bias during the testing of thénemaatical model. Furthermore,
it should be noticed that the computed pattern functifins. ., f; can be all significantly
different if the partition is ill-chosen. In such case, thess-validation procedure becomes
totally irrelevant since each individual pattern functghould be similar to the one that is
obtained by training on the whole observation set.

Improved cross-validation schemes have been designedre/gears to curb the parti-
tioning problems. The most commonly used schemes amg-tblel cross-validatiomnd its
particular case, theeave-One-OufLOO) cross-validation. In g-fold cross-validation, or
more exactly in atratified gfold cross-validation, the se” is partitioned intoq subsets
of equal size that contain the same proportion of class $adin the whole observation
set.Z". During each iteration of the method,— 1 subsets are used for training and the
remaining subset is used for testing. Every subset is uged$ting only once, hence a
maximum ofq iterations.

The LOO cross-validation is an extreme case ofdffeld cross-validation in which
only a single sample is taken out at each iteration to be itetbteng set. This last approach
usually needs modifications in order to be efficiently impéented for large data sets, but it

is often the sole validation approach that can be used withsraall sets of data.

Bootstrapping Procedures

Bootstrapping is a re-sampling technique for inferring plstatistics (such as error statis-
tics) by drawing randomlywith replacementseveral observations from®™ and testing
them, multiple times, with a pattern function initially cpoted from.2". The repeated

tests allow the computation an estimate of the distributicihe error statistic which is the
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main advantage of this validation procedure. The knowlaafgguch a distribution is in
fact a key factor for comparing the different choice of kdésreend model parameters.
Algorithm 2.7 outlines the bootstrapping procedure fonegimathematical model and
an observation se?” = {x,...,X/} of £ observations. The sampling and testing cycles are
repeated) times until there is a sufficient number of error statisticaltow the construction

of a well-shaped empirical distribution of errors.

Algorithm 2.7: Bootstrapping Procedure

Function [u] = Boot st rappi ng (q,M, 2",y)
Input: number of rounds > 1, modelM, observation se®?” = {x,...,X/} and
associated target vectpre R.
Output: error statistiqu.
1 u<+0
Compute a pattern functiohusing the modeM and the set?".
for i € [1,q] do
Samplel; observations with replacement from the s&t(observations are
stored inZ; and their targets iw;).
Updateu by comparingf (Z;) andyj;.
6 end
return u

(&)] A W N

~

Bootstrapping is often computationally intensive but is mone of the disadvantages
associated to cross-validation procedures. Furthernareempirical distribution of the
error statistic is immediately available. This allows tlenstruction of a confidence in-
terval on the error statistic and the statistical comparisbthe performances of several

mathematical model.

Pattern Search for Optimal Model Parameters

If a finite number of kernels and model parameters are avaifaba given problem, then
cross-validation or bootstrapping schemes can be loopadera pattern search method
to find the most suitable kernel and the best parameters. bjeetive is to minimize

the measure of error that is returned returned by the vatidg@rocedures over the search
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domain.

The main disadvantage of such an approach is that the regolptimization problem
IS not necessarily a convex optimization problem. Hencerdahistic pattern searches
for convex problems are no longer guaranteed to succegsadkch an optimal solution.
Therefore, meta-heuristics such as genetic algorithmmsylated annealing, tabu search or

ant colony optimization might be more suitable to minimiz@emeasures.
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Chapter 3

Unconstrained Learning Machines

3.1 Mathematical Programming Problem

Consider a source of data which provides a finite collectioiheoN* observationsy, ..., X,
that belong to a measurable spacef any kind and that are uniquely associated with
real-valued targety,,...,y,. All observation-target pairs are distributed accordiogih
unknowndistribution. The functiorf : X — R that links any observatioxto a targety is
assumed to be unknown, non-trivial and continuous. Thectibgeof this chapter is to de-
termine an estimate of the functidrusing kernels and the collection of observation-target
pairs. This problem is called in all the following tlfenction estimation problemand it is
formulated as a mathematical programming problem. Withendontext of the function
estimation problem, Unconstrained Learning Machines (d).&te a family of learning al-
gorithms which use kernel methods and optimization teakesdo estimate functions from
a given set of observation-target pairs. The part relatedddraining (or learning phase)
of ULMs is discussed in this chapter. The following explausv the function estimation
problem is formulated as an unconstrained Quadratic Pnagiag problem (hence the

choice for the name of ULMSs) and efficiently solved using noethfrom linear algebra.

3.1.1 Objective Function

Let ky be a continuous real-valued symmetric positive definiteédegparameterized by

i.e. ks : X x X — R is a continuous function such that, for any pairy) € X2, we have
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thatks (X, y) = Kg (Y, X) and such that

m m

> ka(%,Xj)AiAj >0, 3.1)
i=1j=1
foranyme N, Aj € R, x € X andi € [1,m]. The Moore-Aronszajn theorem [Aronszajn,

1950] states that there exists a unique Hilbert spécef real-valued functions oX such

thatks (-,x) € . for anyx € X and such that

<g7k0(‘7x)>3¢‘ = g(X), (3-2)

for all g € .# (this is called theeproducing propertywith (-,-) » being the dot product in
#. The kerneky is said to be theeproducing kernebf .# and the space” is called a
Reproducing Kernel Hilbert Space (RKHS).

Suppose that the unknown functidrthat has to be estimated belongs to a RKHS
with ks as the reproducing kernel. From the reproducing properth@®RKHS.#, we

have for all given observations, ..., X, in X

(fko(-%)) 7 = T(X). (3.3)

Let . be the linear space embeddeddnspanned by th&; (-, x)-images of the obser-
vationsx;, i € [1,¢]. Sincef is assumed to belong t&, we can rewrite the functioff

as
1

f= Zaikac,xi) + £, (3.4)
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where the functiorf € .7 is orthogonal to¥ anda; € R for all i € [1,¢]. Then

l
= <ko(~,><i),z ajko(~,><j)+fL>
=1 Ca
l
= <ko(‘7xi)7 ajkg(~,x,)>
=1 F
l
= aj <k0'<'7xi)7k0'( X])>J (35)
=1
implies that
l l
f(x)= Zajka(xi,xj): ZGjKij:Ki.a, (3.6)
= =

whereKj;j is the(i, j)-th element of the x ¢ Gram matrixk made of all the dot products
(ko (-,%),ka(+,Xj)) > = k(xi,x;) for everyi andj in [1,£]. The Gram matrixX is, by the
properties ofks, a positive semi-definite matrix which is called tkernel matrix The
equality

f(x)=Ki.a, (3.7)

for all i € [1,/] is only valid if the functionf actually belongs to the RKH% with ks
as the reproducing kernel. Equation 3.7 does not hold in émel case, however, if the

kernelks is carefully chosen, then there exist a scalarR such that the approximation
f(x)~Kia+b, (3.8)

is acceptable for any continuous functibnThere are a couple of reasons for introducing
the scalab in Equation 3.8. The first reason is to provide a correctingt@nce the choice
of ks may not be completely suitable for estimating the functiohe second reason is to
make the correction linear since the introduction of a madr term, while possible, would

imply that the correcting term is not a kernel-based fumc{gince the sum of kernels is a
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kernel) and hence void this analysis based on kernel meti@msequently, we will search
in all the following an estimate of the functionin a subspacé of bounded functions of
the translated spacg + b after a suitable reproducing kerrgl is chosen. The reason for
choosing a set of bounded functions is motivated by a commguirement of all physical
problems: the outputs of all physical systems are neveriiafand hence the norm of the
function that estimates the outputs of a physical systent beiinite i.e. bounded. The set

of functions¥ is therefore defined by
‘
%:{XGXH Zlaikg(x,xi)qtbeR:atKang}, (3.9)
i=

with B € R*. Bartlett and Mendelson [2001, 2002] and Koltchinskii ameh&henko [2000]
showed that, given a probability € (0,1), the generalization error df € ¢ is bounded
with probability p by the sum of an expression of the empirical Rademacher edtypl
R(¢) of the function clas®/ and the empirical error of. The smaller the quantitik(%)
is, the smaller the generalization error becomes. This ¢exitp is bounded by elements

that defines the clasg according to the following formula

RE) < T (BVATK) + ]V + ). (3.10)

Consequently, minimizing both the upper boundﬁ()g) and the empirical error of is a
way to obtain a functiorf in ¢ that estimate$ and that satisfies Approximation 3.8 for
any given observatior € X. The aim of the function estimation problem is therefore to
minimize the quantitietb| andB, as well as the empirical error ¢t

The minimization ofb| can be replaced by the minimization of the quantity
db? + cpb, (3.11)
which provides the objective function of the mathematicaimization problem with a
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guadratic formulation rather than a nonlinear one or aold#i constraints. This formula-
tion is weighted with coefficientd, > 0 andc, € R in order to contrast this quantity with
the other terms of the objective function. The coefficigntan be negative arfalcan still
be minimized since the coefficiety is always greater than zero.

The empirical error off is a function of the quantitieﬁ(xi) —Yy; = & which are slack

variables. Like for the minimization ob

, the minimization of the empirical error can

easily be replaced by the minimization of the quantity
E'NE +CiE, (3.12)

wherel; is a positive definite matrix and wheeg € R’. Since the norm of induced
by Ag on R’ is equivalent to the Euclidean norm &fon R, the minimization of the
quantity&t& is similar to the minimization oftAEE with the exception that the later brings
a supplementary degree of control overgtie. The contributions of each to the objective
function can now be tuned individually.

From Equation 3.9, the minimization & can be achieved by minimizing'K a for

anya € R’. By using the Cauchy-Schwarz inequality, we obtain
a'Ka = (a,Ka) < |al,|[Kal,. (3.13)

However, since the Euclidean noffr|,, like all vector norms induced on the space of/

matrices, is a consistent norm, we can immediately deriae th
2
a'Ka < K], |alf3. (3.14)

where||K ||, is the spectral norm df. Moreover, given a positive definite matdy, the

Euclidean norm is equivalent to the norm inducedMgyonR’. In other words, there exists
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a constan€, > 0 such that

lall, < Cav/{a,Baa). (3.15)

Consequently, the minimization & can be replaced by the minimization of
a'Aqa +ca, (3.16)

wherec, € R,
Equations 3.11, 3.12 and 3.16 provide the expression oftthdratic objective function
of the mathematical programming problem that solves thetfan estimation problem.

This objective function is
(a,&,b) e R*" s a'Dgar + "D & + Qb* +cha +Cr & +Gpb € R. (3.17)

3.1.2 Constraints

Given a functionf € ¢ (the function clas¥/ is defined in Sub-Section 3.1.1), the con-
straints of the mathematical programming problem conststfinatching the outputs df

for everyx; with their corresponding targeys In other words, we must have
f(x)=K,.a+bry;, (3.18)

for all i € [1,4]. However, the quantity () —y; was defined in Sub-Section 3.1.1 as the
slack variablegj, for which the quantityf 'Ag & + ctff has to be minimized. Consequently,

Approximation 3.18 can be reformulated into an equalitycktis

Ki.a+b—y = §, (3.19)
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for alli € [1,¢]. This enforces that the quantiti&sin the equation
f(x)—& =y (3.20)

must be minimized for all € [1,/], and hence that Approximation 3.18 is matched as
closely as possible. Equation 3.20 illustrates that slariables act as an error-tolerant
term in the formulation of the constraints. Non-negligiblack variables bridge the gap
between what can be fitted withand the desired target outputs, and hence can account for
the influence observational outliers. This is a primitivericof adaptable robustness.

The set of¢ equalities in Equation 3.19 is the entire set of constrdimtshe mathe-
matical programming problem solving the function estimagproblem since there are no
other binding constraints on the variablesé andb due to the quadratic formulation of

the objective function in Equation 3.17.

3.1.3 Unconstrained Quadratic Programming Problem

The objective function in Equation 3.17 and the set of camsts in Equation 3.19 are all
that is needed to write the complete formulation of the mattecal programming problem

that solves the function estimation problem. This problem i

min  a'Aqa + E'NE + &b+ cha +C5& +Cob,
_ Ka+bl-¢=y, (3.21)
with
acRl EcRY, beR.
This problem is an unconstrained Quadratic Programmindpleno with equality con-
straints which is the source of the name for the Unconstddisarning Machines [Gilbert
and Trafalis, 2009].
The optimal solutior{a*, b*) is then used to formulaté € ¢ which is the estimate of

the unknown continuous functiointhat forms the pattern between the observatigrsX
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and their corresponding targsgsc R, for alli in [[1,¢]. This functionf is given by

¢
f:X>R, x— Z\ai*ko(x,xi)-i—b*. (3.22)
i=

This estimate can be further improved depending of the Bpiegiattached to a particular
function estimation problem. For example, if some coeffigex;* are null or negligi-
ble, then a subsétC [1,¢] of integers can be stored so that #és for all i € | are not
negligible. This also gives the possibility to reduce thenber of kernel evaluations and
summations when computing the outputs of the funcfiand, additionally, it represents
a form ofdata thinning(see Sub-Section 2.1.3) since it sorts out all observatiwaisare
unnecessary for estimating the pattérbhetween observations and targets. The{ggtc
is called the set odupport vectorslue to the analogy with SVMs.

Moreover, the functiorf can be combined with step functions to form complex logical
rules and patterns. For example, if we are giVen1 disjoint semi-open intervals; =

[ag,b1),...,A = [a,by) of R such that

_U A =R, (3.23)

and a set of distinct coefficients3;, i € [1,/], then the step function

I ~
§: X =R, XH_;BiXAi(f(x)), (3.24)

wherexa is the indicator function of the intervAl C R, and represents a discrete nonlinear

classification rule that maps the outputsfdfito a discrete setBi}l_ ;.
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3.1.4 Optimal Solution

The programming problem in Equation 3.21 is a Quadratic Rrmgiing problem with

equality constraints of the form
.1
mln{éxtHx +cx:Ax=b, x € R”}. (3.25)

Then x n-matrixH is real, symmetric and positive definite, the vea® in R", the vector
b is in R™ and the matrixA is a realm x n-matrix. Bazaraa et al. [2006] showed that the

Lagrangian dual problem of (3.25) is
H 1 t t t . n|. m
max |nf{§xHx+cx+v(Ax—b).xeR}.VGR . (3.26)

Given a vector € R™, the functionx - 3x'Hx + c'x +Vt(Ax — b) is convex and therefore

a necessary and sufficient condition for a minimum is
Hx +Alv+c=0, (3.27)

i.e its first derivative vanishes. From equation (3.27) wévee'x + vIAx = —x'Hx which,

once substituted in equation (3.26), leads to the follovgraplem
. (1
mln{éxtHx+btv: Hx +Alv = —c, x e R", veRm}. (3.28)

The matrixH is invertible, hence we can derive from equation (3.27) amiidy that un-

ambiguously links the primal variableto its dual variabler. This identity is

x=—H1(c+Al). (3.29)
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Replacingx in equation (3.28) by its expression in equation (3.29), extobtain
; 1 t ty, . m
mln{éva-l—dv.veR , (3.30)

whereQ = AH 1At andd = AH 1c+b. Problem (3.30) is an unconstrained quadratic
programming problem for whic® is a real, symmetric and positive definitex m-matrix.
Therefore problem (3.30) has a unique optimal solutibgiven byv* = —Q~d which is
the value of the dual variable such that the first derivatii® objective function of (3.30)
vanishes. Using equation (3.29), we can derive an analgiqaession of the solution of

the quadratic programming problem (3.25) which is

x =H 1 (AYAHTAY "L (AH e+ b) —c). (3.31)

3.2 Implementation

3.2.1 Formulation of the Linear System

Consider the notations of Sub-Section 3.1.3 andlet (a', &' b). For the function es-
timation problem, the Hessian matrix of the objective fimetis a (20 + 1) x (204 1)
block diagonal matrix with diagonal elemern@\q,2A¢,2d,). The linear term of the ob-
jective function is defined bg! = (cta,c%,cb). Constraints are of the foriAx =y with

A= (K,=l,1y).

Proposition 3.1. The optimal parameters € R’ and be R of the estimated function
f:R" = R, x+— S'_; aik(xi,x) + b and the slack vectof € R’ are given bya =
Agt(Ka—cq/2), b= (1la—cy/2)/d, andé = —Agl(a+ Ce/2) wherea € R is the
solution of the linear systefiK A 1K +Agl+ 1,1} /&)a=uwithu=y+ (KAzlcy —

A g +(Co/ %) 1) /2
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Proof. Using the notations of Sub-Section 3.1.3, the inverse oHégsian matribH is a
diagonal matrix with diagonal eIemen@Agl/z,Agl/Z, 1/(28,)). Equation (3.31) gives
the optimal solution of the problem whichxs= H~(A{(AH 1AY)~1(AH 1c+y) —c).
SinceH is symmetric we havel 1At = (AH-1)!, andAH ! = (KA, L, —Agl, 1¢/8)/2.
Hence the ternH ~Ic+y is equal to(KA; ey — Aglc(g + (Cv/%)1¢)/2+y = u. Since
K is a real, symmetric positive semi-definite matrix ahds a real, symmetric and positive
definite matrix, the matriAH ~1A! = (KA 'K +Agl+ 1,1%/%)/2 is a real, symmetric
and positive definite matrix and is therefore invertible. n€equently, ifa € R¢ is the
solution of the linear systertK Az K +Ag1 +1,1}/8,)a = u, thenx = H"1(A'(2a) —
c) = 2H }(Ata—c/2). Sincex' = (a',&',b), it follows thata = Az (Ka —c4/2), & =
—A;(a+c¢;/2) andb = (Lja—cp/2)/ 3 at optimality. O

3.2.2 Solving the Linear System
Condition Number of the System Matrix

Proposition 3.1 shows that the optimal parameters of thmattd function are the solu-
tions of a linear system. However there are some concerrsdieg the stability of the
solution of this linear system due to the condition numbef the matrixk A; 1K +Agl+
1,1}/, The quantity logk is an estimate of how many badedigits are lost when solv-
ing the linear systeniK A K +Ag1 +1,1}/d)a = u. Therefore if an upper bound an

is numerically large then the estimated functiowould be unreliable.
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Theorem 3.1.Let Amax and Amin be the maximum and the minimum eigenvalues of{the
kernel matrixK respectively. LedM® and 0"" be the minimum and the maximum
elements of the diagonal matuy, respectively, and Iecig"ax and 6;“” be the minimum
and the maximum elements of the diagonal makgixespectively. Let) be a scalar

defined byn = min{£||K||maX,\/Z||K||1,\/||K7||l||K||m, ||K||F}. Then the condition

numberkg of the matrixk Ay 1K —I—Agl-l— 1,1}/ &, is such that:

Moax/ O +1/ 8" 40/ &,
AZin/ OB+ 1/ e

1< Ko < < O (n%/og™ +1/8M +4/&).

Proof. We haveHKA;lK +A;1+ 141;/60“2 < KI5 ]|ag ], + HAngZJr |12,/ =
Mgax/ 08" + 1/ 81"+ || 1,1}[| , / . The matrix1,1} is of rank 1 therefore it has two eigen-
values, one of them being 0 which has multiplicity- 1. We also hangltglg = /1,
thus ¢ is the other eigenvalue anjfil,1}||, = ¢. The matrixK is semi-positive definite
and the matriced, andA; are positive definite, hence a lower bound of the smallest
eigenvalue of the matrikKA;'K + A, + 1,1}/8, is A%;,/05@ + 1/ > 0. Conse-
quently || (B+1,1}/d) ||, < 1/(A5in/08® + 1/80"®) with B = KA, 'K + 4, The
condition number oB + 1,1}/, is defined byko = ||B+ 1,1}/, || (B+1,1}/%) 4|,
hence the first upper bound is immediately obtained. Theddweand, 1, is derived when
the maximum eigenvalue & + 1512/60 is equal to its minimum eigenvalue. The second
upper bound is given by noticing that,, > 0 so this term can vanish in the expression
of the first upper bound to give a looser upper bound. The vafug is the minimum

of several classic upper bounds on the 2-nornKafith |[K ||y, = max; ;,

e[1,4? ‘Kij

Kllo = MaXepyq ¥5-1|Kij| and|[K e = \/3f -1 KZ. O

1K Iy = maxicpsq Si—q |Kij],
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The Normal Equations

Considering the potentially large value that the condiiamberkg can take (cf. Theorem
3.1), it is necessary to develop a numerically stable wayotopute the solution of the
linear systen{K Ag*K +Agl+ 1,1} /&,)a= u despite how large the kernel matHxmight
be. The first step is to write an equivalent of the inverse efsystem matrix.

Lemma 3.1. The solution of the linear systef A, 1K —|—Agl+ 1,1} /d,)a=u is given

bya=d— (3/_,d)e/(&+3{_1&) whered = Ag (u— KA ") and e = Ag (1, —
KA ”w). The vectow is the solution of the linear systefty + GG')v = GA?U where

G = A, "KAY. The vectow is the solution of the linear systefty + GG")w = GA/L,.

Proof. Using the binomial inverse theorem, the inverse of the mdri- 1512/60 (with

B = KA +4;Y) is (B+1,1)/&) ' =B 1 —B1L1{B /(& +1)B'L). Letd be

the solution of the linear syste®d = u and lete be the solution of the linear system
Be = 1,. With these notations, the soluti@nof the linear systenB + 1,1}/&,)a = u is
thena=d—e(1d) /(3 + 1'e). Furthermore, we can develop the expression of the inverse
of the matrixB further using the Woodbury matrix identity [Woodbury, 195Bor instance,
BL= (A7 +KAGHK) = Ay —AcKAG#(1+ A K AKALY) A K Ag since that the
matricesAy andAg are symmetric and positive definite and that the matris symmetric

and positive semi-definite. & = A,*KAy, thend = B~'u = Asu—AgKA; v ande =
B~11, = A¢ 1, — A:KA;"w, wherev is the solution of the linear systefh, + GG')v =

GA?U andw is the solution of the linear systefty + GGH)w = GA}/Zlg. O

The trained eye can immediately recognize that a linearesysif the form(l, +
GGYv = GA}/ZU is nothing else than a Tikhonov regularization [Tychon&863] of the
normal equations. In our case, the transformation was lmaefor two reasons. The
first reason is the (slight) improvement of the condition bemof the matrix of the lin-

ear system, as show in Corollary 3.1. The second reason extbtence of efficient and
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numerically stable large scale conjugate gradient methimaissolve such linear systems
with a computational complexity of the order 6§¢?) [Bai and Zhang, 2002; Chen and
Shen, 2007; Hestenes and Stiefel, 1952]. The condition epuicdn be further improved,
but at the price of a costly Cholesky decomposition (whicmpatational complexity is of
the order ofO(¢3)). If such a decomposition is affordable, then the lineatesyscan be
quickly solved by back-substitution (that has a computaticomplexity of the order of

O(¢?)) and needs not to be solved using a conjugate gradient mattyodore.

Corollary 3.1. The condition numbex, of the matrixl , + GG! is such that:

L+ GPA2 3/ S

1<K < _ \l+5max26min‘
PSS Tyammz, e e N/ %

If 1,4+ GG! = LL! is the Cholesky decomposition of+ GG! whereL is a lower

triangular matrix, then the condition number of the matrixL is such thatk; <

\/1 + 5gnax,72/5cr¥nin_

2 .
Proof. We have thaf|l, + GG, < 1+ HA;VZH;‘ K5 = 1+ 872,/ 5. The

Ys
Ag

matrix K is semi-positive definite and the matriakg andAg are positive definite, hence

a lower bound of the smallest eigenvalue of the matrix GG' is 1+ 53“”/\3“,1/5;“&* > 0.
Consequently||(1,+GG") ||, < 1/(1+ 5g‘in)\r§m/5gnaX). The rest of the proof for the
lower and upper bounds af can be found in the proof of Theorem 3.1. The upper bound
on the condition number of the lower triangular matrixs derived by noticing that, since

|, +GGlis positive definite, iit™@ > 0 is the maximum eigenvalue of the matrjx- GG!
(and hence its 2-norm), then the maximum eigenvalué @ /oM The minimum
eigenvalue of ; + GG' is d™" > 0 and hence the condition numbéris such thak; <

v/ omax/gmin, The upper bounq/l—i- o2/ in is derived from the upper bound &f,
which is \/(1+ O A2 5/ OF) / (1+ OMAZ,, / OF'™) since ™ < 14 O AL,/ O

ando™" > 1+ 5""AL, /O O

min
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Corollary 3.1 provides a easy way to control the conditiombar of the system matrix
by tuning the matriceA, andA;s appropriately. For example, choosing these matrices such
that 5g,"in/5gnax ~ n? will yield an upper bound fok; approximately equal to 2, which
correspond to a single binary digit lost during the compatatf the solution of the linear
system. Low condition numbers also provide a rapid convergef conjugate gradient

methods.

Special Case for Symmetric Matrices

In case the matri is symmetric (e.gAi{2 — TA;”* with T > 0), then it becomes possible to
solve the regularized normal equations above with a sefiesear systems which matrices
are much more well-conditioned than in the general cases fMibthod can provide an even
better conditioning if the computational cost of the Chkjedecomposition of the matrix
| ,+ G is not too high. If such a decomposition is affordable, thariag the linear system
of Corollary 3.1 is equivalent of solving triangular systehy back-substitution which is
extremely fast. Otherwise a conjugate gradient algoritlam loe used iteratively if the

matrix |, + G is too large for a fast decomposition.

Theorem 3.2. If the matrixG is symmetric, then the sufy Vi with principal term
defined byl +G)*vo = GALu, (1,+G)¥i = vi, and(l+G)vip1 = 2(vi — %) fori e N

is finite and is the solution of the linear systém+ GG')v = GA}/Zu.

Proof. We havel, + GG! = 1,4+ G? = (I +G)2 — 2G sinceG is symmetric. Further-
more, sinceG is positive semi-definite, the matr@ = 1,4+ G is invertible and we have
that I, + GG' = C?(l, + C%(—2G)). It follows that we have(l, + GG = (I, +
C*Z(—ZG)){C*Z. Now, given ary x ¢ matrix U such that)! — 0 for i — o, we have the
Taylor expansior{l; +U) ™! = Ti-o(—1)'U'". Or, sinceG is symmetric, ifG = QAQ' is
the eigen-decomposition of the matfxwhereQ is orthonormal and\ is diagonal, then

we have||C~%(—2G)||, = 2|(1;+A)"2A||, = 2madxcy g {Ai/(1+ Ai)?}. The function
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x— —* is continuously differentiable oR ;. and it reaches its unique maximum Bn

(x+1)? .
(€ #-20)) <

atx* = 1 for which its point value ig. Hence||C~2(—2G)||, < 1/2,

1/2" — 0 wheni — « and (I, + GGY) 1 = C 2+ 5;> (ZC*ZG)iC*Z. Noticing that
C2G=(G+1¢) 4G+l;—I7)=C*—C? then solvingl,+GG")v = GAZu is equiv-
alent to solveC?vy = GA?U and to computeg + ¥i-1 (2(C1— C*Z))ivo. The sequence
with principal termv; = (2(C~1 - C*Z))ivo for i € N* can be derived in a recursive form.
We havev; 1 =2(C~1—C2?)v; = 2(C~lv; — C2vj) i.e.Cvj 1 = 2(vi — ¥;) with ¥; being

the solution of the linear syste@v; = v;. O

We can now write another corollary of Theorem 3.1 concertiggcondition number
of the new system matrily + G. The upper bound of the condition number can be further

improved if a Cholesky decomposition of the system matrixsied.

Corollary 3.2. The condition numbex, of the matrixl , + G is such that:

1+ 5g1aX)\maX/5gﬂin
1<K2<1+5min)\ _/5max<
< min/ Oa

1+ 0/"n /o™,

Given thatG is symmetric, i, + G = LL ! is the Cholesky decomposition lof+ G

whereL is a lower triangular matrix, then the condition number of the matrixL is

such thatk, < \/1 + 87" / o

Proof. The proof is similar to the proof of Corollary 3.1. 0J

3.3 Algorithms and Complexities

3.3.1 Function Estimation for the General Case

The procedure that determines the optimal parameteasdb of an estimating function

f (see Section 2.3) for any choice of trade-off coefficientdesved from the results of
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Lemma 3.1. Given a finite observation s&t C X and a target vectoy which elements
are the targets of each observation4f, one must initially choose an appropriate ker-
nel ks operating onX x X with a parameter vectar as well as the trade-off coefficients
(O, O , &, Ca, Cs , Cp) Of the Quadratic Programming problem in Equation 3.21. Twae
of an appropriate kernel is discussed in Section 2.2 whéeectivice of the coefficients is
presented in Sub-Section 2.4.3 and 3.3.3. Once all theseats are collected, an estimat-
ing function can finally be computed using Algorithm 3.1.

If ¢ is the total number of observations contained4n and if ¢, is the number of
floating point operations required to compute the kerngbatibetween two observations,
then Algorithm 3.1 requiresf/3+ (36-+c)¢?/2+ (1004 3cx )¢ /6+4 FLOPS to compute
the solutionsa, & andb. In other words, this algorithm has a time complexityQ(¢3)
which is due to the operations on lines 11 (matrix-matrixtiplication) and 13 (Cholesky
decomposition).

Matrix-matrix multiplication algorithms such as the Ssas algorithm [Strassen, 1969]
or the Coppersmith-Winograd algorithm [Coppersmith andadlfrad, 1990] have a smaller
time complexity, but their numerical stability is weakedahe time gain is only noticeable
for large non-sparse matrices. In the case of the Coppéraniitograd algorithm, the
matrices in question are larger than what modern computdmlaae can process.

If the kernel matrix is large and sparse, then the Choleskgmigosition on line 13 can
be removed and the computation of the solutions of the lisgatems can be performed
using a Conjugate Gradient method (Algorithm B.3). Such thotthas a time complexity
in O(¢?) but the time gain is noticeable for large systems and oumetspproximations.
Additionally, the system matrix may be ill-conditionedés€orollary 3.1) which will con-
tribute to even poorer approximations if a Conjugate Gratdieethod is used.

If the number of observations is an issue, then one might use data thimppgaches
(see Sub-Section 2.1.3) to decrease the size of the kerntekmadile keeping a good

sample to learn from. This way, a Cholesky decompositiombes a better choice than a
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Conjugate Gradient method, and the number of FLOPS of AlgorB.1 and the condition

number of the system matrices can be efficiently controlled.

Algorithm 3.1: Function Estimation for the General Case
Function [a, &, b] = GEFEST (£,Y, kg, 0,0)
Input: set.2”, observation vectoy € R, kernelk, with parameter vectow,
coefficient vectors = (Jq4; Os; &) andc = (Cq;Cg; Cp) i RZHL,
Output: parametersr € R’ andb € R, slack vectog ¢ R’.

1 K+ KERVAT (2, ko) /'l Kernel matrix computation
2 Ug < 1/0q, Hg < 1/0¢, Up < 1/ /' Symbol/ is entry-wise division
3 Vg < /Ha /1 Symbol,/ is entry-wise square root
4 Cq < 0.5(lUq - Cg), Cg <~ —0.5(1; - C¢) /'l Symbol- is Hadamard product
5 Cp < 0.5UpCh

6 U<« y+ GEW (K,Cq)+Cz +Cp /1 Lastterm implies a scalar expansion
7 G+ K, G+ Dl MM(vq,G) Il G=A"K

8 H<« G,H « MDI M(H, &) Il H=0"KA;

9 p <+ GEWMV (H,u) Il p<+Hu
10 q < ROABUM(H) Il g SF H,;
11 G + SYRK (H,G) Il G+« HG!
12 G+ TI KREG(G,1) /1 Tikhonov regularization
13 L + CHOLDC (G) /'l Cholesky decomposition
14 V¥ <~ CHOLSL (L,p), w" + CHOLSL (L,q) /'l Solve by back-substitution

15 H < H', d < & -u— GEW (H,v*), e+ J — GEMV (H,w*)

16 a<d — (SUM(d)/(d+ SUM(e)))e

17 O 4 Ug- GEWV (K, @) — Cq, & — Cg — lg - @, b+ iy SUM(a) — Cp
18 return (a,&,b)

3.3.2 Function Estimation for the Symmetric Case

When trade-off coefficients are chosen such that the m@takTheorem 3.2 is symmetric,
it then becomes possible to obtain an optimal solution tduhetion estimation problem
by a numerically stable iterative procedure. The approéghtly differs from Algorithm
3.1in the sense that the matrix-matrix multiplication aeliL1 is no longer needed and that

the operations on line 14 are replaced by iterative proe{gsee Algorithm 3.2).
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Algorithm 3.2: Function Estimation for the Symmetric Case
Function [a, &,b] = SYFEST (47,Y,Kg, 9,C)
Input: set.2”, observation vectoy € R, kernelk, with parameter vectow,
coefficient vectors = (Jq4; &; &) andc = (Cq;Cg; Cp) i RZHL,
Output: parametersr € R’ andb € R, slack vecto€ ¢ R’.
1 K+ KERVAT (2, ko)

2 Ug < 1/0q, Hg < 1/0¢, Uy < 1/, Va < \/Ha, Vs < \/6:
3 Cq < 0.5(lUq - Cq), Cg <= —0.5(lg - C¢ ), Cp < 0.5,Cy

4 U< y+ GEW (K,Cq)+Cz +Cp

5 G+ K, G ¢ Dl MM(Vg,G), H < G, H + MDI M(H, &)

6 p <+ GEMV (H,u), g < ROABUM(H)

7 G < MDI M(G, vg), G + Tl KREG (G, 1)

8 L « CHOLDC (G), v* + SFECD(L,p), w* < SFECD(L,q)
o H+ H' d+ & -u— GEMWV (H,v*), e+ & — GEM (H,w")
10 a<d — ( SUM(d)/(8+ SUM(e)) e

11 O Hg- GEWV (K,a) —Cqy, & < C; — Uz - @, b+ L SUM(a) — Gy
12 return (a,é&,b)

The implementation of th&FECD procedure which is called on line 8 of Algorithm
3.2 is described in Algorithm 3.3. This procedure requir€s4kmax) 2 + (2 + Skmax){ —
1 FLOPS in the worst-case scenario (i.e. early terminatrdmgre kynax is the maximum

number of iterations allowed.

Algorithm 3.3: Symmetric Case Solution using a Cholesky Decomposition
Function [x] = SFECD (L, b)
Data: tolerancee > 0, iteration limitkmax > O.
Input: nx nlower triangular matrixt_, right-hand vectob € R".
Output: vectorz € R".

1Y+ CHOLSL (L,b),x <+ CHOLSL (L,y), z<+ X, p + DOT (x,X), k<0

2 while p > € and k< kmax do

3 | y+« CHOLSL (L,X), X« CHOLSL (L,2(x—Y)),z 4 z+X, p + DOT (X,X)
4 k< k+1

5 end

6 return z

The analysis of Algorithm 3.3 gives the computational cds@lgorithm 3.2 for the

worst-case scenario. The computation of a solution to tinetfon estimation problem
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takes at most® /3 + (¢ + 16Kmax+ 45)¢%/2 + (3¢, + 60kmax+ 133)¢/6+ 2 FLOPS where
ck is the number of floating point operations required to coraghe kernel output be-
tween two observations. Asymptotically, Algorithm 3.2 wegs four times less floating
point operations than Algorithm 3.1 with the same memorym@ments and improves the
conditioning by one order of magnitude, providing a greatenerical stability.

If the kernel matrix is large and sparse, then the operatoongne 8 of Algorithm
3.2 can be replaced by iterative procedures based on a Guiej@yadient method (see
Algorithm B.3). This will render the asymptotic time compiy of the algorithmO(¢?)

but at the cost of a slightly lower numerical stability (sem@lary 3.2).

3.3.3 Function Estimation with Optimal Coefficients

The automated choice of the coefficients of the objectivetion of the quadratic pro-

gramming problem in Equation 3.21 has three objectives:

* Improve the numerical stability of the resolution methods

» Speed-up the computation of the solutions;

» Simplify the modeling of the estimating function.
These choices are motivated by different reasons that depietihe nature of the coeffi-
cients (coefficients for the quadratic terms or coefficiéotshe linear terms).
Coefficients of the Quadratic Terms

It was shown in Sub-Section 3.2.2 that, if the mat&xs symmetric then we can derive an
algorithm which solves the function estimation problemhiidur times less floating point
operations and a greater numerical stability. The symmeftr§ is directly dependent
on the appropriate choice of the matrigks andA; sinceG = A, KA and the kernel

¢
matrix K is, by definition, symmetric. Hence a first requirement fa toefficients of the
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guadratic terms is that

NF =T0G", (3.32)

with T > 0. Since both matriced, andA; are diagonal and positive definite, Equation

3.32 can be rewritten as
(8a)i(s)i = 1> 0 foralli € [1,], (3.33)

with (¢ )i and(d )i being thei-th components of the diagonals&§ andA;. If Equation
3.33 is satisfied, then the matiixis symmetric.

If we assume that Equation 3.33 holds, then we can furtherdwgpthe numerical
stability of Algorithm 3.2 using the results of Corollary23. This corollary provides an
upper bound for the number of badeadigits that are lost during the computation of the
solutions of the linear systems in Algorithm 3.2 pl€ N* is the maximum number of base-
d digits which can be lost during computation, then we must 8t = Minicpy, (e )i

andég"a’(: maxc(1,¢ ()i such that

logy <\/ 1+67%n/ 5&“‘“) <P (3.34)

wheren = min{ﬁ 1K mase VK 15 v/ TK T TK o5 [[K ||F}. In other words, we must have

d?P—1

O < Jmin, (3.35)
The construction of the objective function in Sub-Sectich B provides the final require-
ments for the coefficients of the quadratic terms. The mimatidn of the upper bound of
the generalization error provides a reason for minimiziathkiheAy-norm of a and the

quantity &,b? in an equal fashion since none of these two terms can minitheéound
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separately. Hence we should have an equality of the fgkgi|, = &, which gives
o= ¢, >0, (3.36)

with " = max (1 ¢ (8x)i- Furthermore we should balance the minimization of the gen-
eralization error with the minimization of the empiricatar (which is a function of the
variableé). By the same argument that led to Equation 3.36, we shouwld agositive

trade-off coefficienC € R’ such that|Aq ||, = C||A¢ ||, i.e.
B = Ca (3.37)

From Equations 3.33, 3.35, 3.36 and 3.37, we can see thahthieecofd, and a trade-
off coefficientC > O controls the choice od; and &, This shows thad, can be fixed
arbitrarily and that the solution to the function estimatfoblem can be controlled with
only a single paramet&® > O for the coefficients of the quadratic terms. Additionaity,
all the components ad, are equal to one, then Algorithm 3.2 requires much less figati
point operations to compute a solution. Therefore a stiatgwice for the matrix\q is to
haveAq = 1,. Consequently, Equations 3.33 and 3.37 impliesthat Cl, while Equation
3.36 implies thaty, = 1. Equation 3.35 gives a lower and an upper bound for the{oéde

coefficientC, leading to
d?r—1

0<C< (3.38)

Coefficients of the Linear Terms

The linear coefficients of the objective function have a gigant impact on the constraints

of the optimization problem. They correspond to a transtaiin the solution space as it is
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proved in the equation below:
1 t 1 t
é(x+t)H(x+t):§x Hx +cx+C, (3.39)

wherec = Ht andC = t'Ht /2 are constant terms. While such a translation provides no
advantage to the objective function, it greatly impact tkgression of the constraints of the
mathematical programming problem. In our case, the coeffist,, c; andc, impact the
values of the vectan as defined in Proposition 3.1. In other words, given suchficoerfits,

we have

(Ce)i | o

AL~ N D
<K..Aa Ca (5E>i+50), (3.40)

for all i € [1,¢]. This equation shows that the linear coefficients conteliatthescaling

i =VYi 5

of the vector which, in return, greatly impacts the quality of the numar&olution given
by Algorithms 3.1 and 3.2.

Both coefficientsc, andc; modify the vectoly on aper elemenbasis while the co-
efficientc, influence all the components gfat once. Since there are no other factor that
discriminatecy andcg, then one of these vectors can be set equéllaod the other can
be left to control the variations of thg's. The choicec, = 0 saves on floating point op-
erations (a matrix-vector product can be removed) and,dheéa@ computationally better
choice tharcs = 0. A null coefficientc, also brings an additional form of robustness to
ULMs since that observational outliers slightly change thkie of the kernel matrix.
Naturally, if the entries oK are perturbed, then the solution described in Theorem 3.2
will be perturbed as well. However, the choicg = 0 avoids the additional perturbation
of the right-hand term of the linear systems. Hence, the vaimaf one of the terms most
vulnerable to observational errors leads to more stablearable optimal solutions.

By choosingds = C1, with C > 0, &, = 1 (i.e. an optimal choice for the coefficients of
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the quadratic terms) argy = 0, we obtain the following identity

(cg)i  c
U =Yi— 55+ (3.41)

foralli € [1,¢]. The values of the componentswtan be chosen such that
—1<uy <1, (3.42)

for all i € [1,/], in order to improve the numerical stability of Algorithm23.These in-

equalities are satisfied if we have

cb:2<——9@ﬂ———1), (3.43)

Ymin — Ymax

and
2
_ 1) Vi, (3.44)
Ymin

(Celi= 20<ymax_

With Ymin = MiNicpy ¢ ¥i @ndYmax = MaXc[1,¢qYi- This leads to a simplified expression for

theu;’s which is
Yi — Ymin

Ymax— Ymin

U =2 ~1 (3.45)

Algorithm with the Optimal Coefficients

Algorithm 3.4 is an adaptation of Algorithm 3.2 with the opél choice for the coefficients
of the objective function of the quadratic optimization lpiem of Equation 3.21. Given a
trade-off coefficienC > 0 that satisfies Inequality 3.38, Algorithm 3.4, so far, is thstest
and most stable method investigated that computes a sohldithe function estimation
problem. As discussed in Sub-Section 3.3.2, the Choleskgrdposition of line 6 can
be replaced by an asymptotically faster Conjugate Gradnathod if the kernel matrix is

large and sparse. However, it comes at the price of a lessaeaolution.
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Algorithm 3.4: Function Estimation with Optimal Coefficients

Function [a, & ,b] = OPTFEST (27,y,kg,C)
Input: set.2”, observation vectoy € R, kernelk, with parameter vectow,
trade-off coefficienC > O.
Output: parametersr € R andb € R, slack vectog € R,
1 K KERMAT (2", ks)
2 A<~ C? B+ +C,D«1/C
3 Ymax < MAX(Y), Ymin <= M N(Y), E <= 2/(Ymax— Ymin), F <= EYmin+1
42+ Ey,u+z—F, G« Tl KREG(BK,1)
5 p < CEMWV (K,u), q + ROANBUM(K)
6 L < CHOLDC(G), v* - SFECD(L,p), w* <— SFECD(L,q)
7 forie[l,/]doeg <« D
8 e+ e— GEW (K,w*),d + Du — GEMV (K, v*)
9 a+d — (SUM(d)/(D?+ SUM(e)) e
10 a0+ AGEW (K,a),& < y—z—Ca, b+ ASUM(a)+F
11 return (a,&,b)

If ¢k is the number of floating point operations required to coraphé kernel output
between two observations andkifax is the iteration limit of the procedur8FECD, then
Algorithm 3.4 requires at mogt /34 (4 16kmax+37)£2/2+ (3ck + 60Kmax+85)¢/6+ 7
FLOPS to compute a solution. This is an improvement/8f48¢ — 5 FLOPS with respect
to Algorithm 3.2 which, for an average size £ 5000 observations, represents a gain of

100039995 floating point operations.
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Chapter 4

Form Inspection in Manufacturing Engineering

4.1 Introduction, Context and Aims

Manufacturing processes leave very specific patterns onspaiaces, which provide a
good basis for inspecting them. In some cases, it is podsiljeantify the manufacturing
errors and their effect on the product, based on the modéleoptocessing [Badar et al.,
2003, 2005a,b]. However, when multiple processes areepph the same feature, the net
effect of these processing errors is far too difficult to mMade compute. In this chapter,
we apply ULMs to quantify process errors on parts and thepebyide a basis for adaptive
sampling and form inspection.

Although previous works regarding the use of machine legrmechniques for deter-
mining the size of the manufacturing errors exist [Malyd$taeal., 2002; Prakasvudhisarn
et al., 2002, 2003; Balakrishna et al., 2008], the resulteevyagued by misalignment
problems and sampling issues, and only concerned with siggmetric shapes such as
plates [Hopp, 1993; Hulting, 1992]. It was also suggested ttie manufacturing errors in
such cases should be captured using experimental anayseisthough that sampling the
part throughout, uniformly or randomly, may miss some pssaeharacteristics [Kim and
Raman, 2000].

This chapter develops a general approach that attemptscimnorent all these prob-
lems. The objectives are: to re-align the measurementgheiocanonical frame of refer-
ence (following the work of Besl and McKay [1992] oegistratior); to assess if each sur-

face that is probed has its form contained within a certangeagrom a nominal plane (i.e.
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to determine the size of theinimum zon¢ASME, 1995a,b; Carr and Ferreira, 1995a,b;
Hurt and Colwell, 1980; Kurfess and Banks, 1995; Murthy artlify, 1980; Requicha,
1993; Roy and Zhang, 1992; Samuel and Shunmugam, 1999; Siganm 1987]); and to
optimize the probing procedure (sampling size, mesh gagrftéocken et al., 1993; Woo
and Liang, 1993], measurement path, accuracy, etc.) tdematethe measurement process
and to reduce time-induced errors.

Section 4.2 covers mesh issues while Section 4.3 detaiistraigpn problems when
knowledge about the canonical frame of reference has besiallyalost. Section 4.4
introduces a nonlinear nonparametric regression approastd on ULMs that finds the
size of the minimum zone (which is defined as the part of spdwrevthe actual surface
form is different from its ideal nominal form). In Sectiorb4measurements were collected
on several types of surfaces withCaordinate Measuring MachinfCMM). ULMs were
then used to fit test models of these surfaces and estimatég size of the minimum

Zones.

4.2 Mesh Generation

The form inspection of manufactured parts naturally ingplie collect surface measure-
ments which are to be compared against a nominal profile. eTthresasurements can be
collected in an organized fashion with highly accurate projpe CMMs, which is a cer-
tain advantage over optical CMMs. On the other hand, op@d4Ms collect large amount
of coordinate measurements quickly, if the part to be insgukecan reflect the beam. Given
that probe-type CMMs were not rendered obsolete by opticabpit is then still crucial
to design suitable meshes of contact points to retrievereaens samples with the right
properties for the registration (see Section 4.3) and Uladdal regression (see Section 4.4)
procedures.

The generalization error, which is one of the core concepild¥ls (see Sub-Section
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2.3.4), indicates that deformation patterns on the surd¢ke parts will be successfully

estimated if;

» Contact points (observations) are spread evenly on theegrurtion of the surface

to be inspected;
* There is a fair number of contact measurements collected.

» The surface model (i.e. the choice of the kernel and ther gthemmeters needed by

ULMS) is suitable.

While the last point is a matter left to the modeler and théladlon procedures (see Sub-
Section 2.4.3), the first two points are narrowing the typenethes that are suitable for
form inspection. Furthermore, a physical requirement @bprtype CMMs is to favor
smooth and regular trajectories of the probe so a path thaitmzes the time required
to collect measurements can easily be found (and henceedtiadikelihood of time-
induced errors). Smooth trajectories aim to minimize thédsn lateral displacements
of the probe which are both time consuming and error-pradpuoperations. This rules
out fractal trajectories for the probe (e.g. space-fillingves such as Z-curves or Hilbert
curves) despite that the induced meshes satisfy the firstagudrements of the list above.
The construction of suitable meshes and the comparisoreofrgspective properties
necessitate the establishment of measures of the qualitiyeoflifferent meshes. Sub-
Section 4.2.1 covers this issue while Sub-Section 4.2.gques a candidate mesh for col-
lecting measurements: a uniform grid. Sub-Section 4.%8udises issues related to the

trade-off between the quality of a mesh and the time neededllect measurements.

4.2.1 Mesh Quality

The quality of a mesh has to give a proper measure of what itatest a large enough

number of nodes (hence a large enough number of contactspoamd an even spread of
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the nodes over a compact domain of the observation spaceHvidiin this caseR?).
Additionally, the measure can be augmented with consigersbased on the minimum
time it takes for the probe to visit all the nodes.

Assume that we havedistinct nodes contained in a compact domairc R? of total
surfaceS and letp be the diameter of the smallest ball that containsNodes are repre-
sented byn pointsay, . .., a, in R2. These points are inducing a Voronoi tessellation of the
compact domai [Voronoi, 1907], and we will assume that the Dirichlet domaf each
pointa has a surfac&, for all i € [1,n]. In all applications, the surfaces which need to
be inspected can be described by a set of two parametersnganyclose intervals oR.

In other words, the nodes of a mesh need to cover a rectangdehinx [c,d] = 2 C R?.
Hence, meshes can be built to cover a rectangle and thenrtectpoints can be projected
onto the surface of interest.

Spreading the points, ..., a, evenly overZ is akin to maximize the following quan-

tity:
o —ayl3
; (4.1)
2
& P
for all i € [1,n] and where4{ is the index set of nodes adjacent to th& node. This
represents the need to maximize the distances betweereataints in order to avoid
them to agglomerate somewhere on the donfairThe termp? is a scaling factor for the
inter-node distances.
Having a large enough number of points distributed over thiéase Z is similar to

maximizing the amount of contact information per unit offage. This can be represented

by the maximization of the quantity

si:i é (4.2)

whereSis a scaling factor. If each term of the sum in Equation 4.2agted by the terms
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of Equation 4.1, we then obtain the quantity

0 (s o fla-al}
iZ\(S‘jeZ/% 2 : (4.3)

which is growing with the number of nodes However, if the number of nodes grows,
then the time spent to collect measurements grows as wetcéi¢he quantity in Equation

4.3 is averaged by the number of nodes. Namely, we obtainititpu® which is defined

by ,
_ie 5 Slla-a,
ni;jem sz

The quantityQ is chosen as the measure of the quality of a given mesh. THeggtma

Q (4.4)

build a mesh that maximizes this quantity while satisfyimget constraints related to the
CMM probe visiting each node. The minimum length path (he. path through all nodes
requiring the less time, assuming that the probe has a adrgitplacement speed) is an
issue that is separated from the concept of mesh qualityallysa minimum-length path
is computed from a given mesh but does not serve in the estiaféint of the mesh itself.
Furthermore, the length of the path is dependent on which tfpsurface the mesh is
being projected onto. This surface dependency is additiooamplicated by the fact that
the normal to the surface at the contact point is not co-tingi the axis of the probe. The
reaction force when the probe is making contact with theasarpushes the tip aside and
inserts a tiny, but not necessarily negligible, bias in tbhetact point measurements. All
these factors are the main reasons why paths through noele®traken into account in
the evaluation of the mesh quality. Measurement paths astze@ngles are considerations
made by the operator of the CMM which have marginal impacttenregistration and

regression procedures.
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4.2.2 Uniform Grids

Grid Uniform grids were the chosen meshes for the experimentaamrilled plates (see
Sub-Section 4.5.5). The choice is not claimed to be optimtl vespect to the quality

measure of Equation 4.4, but it was retained because of adgwioperties:

» The simplicity of the structure that allows for the formtida of a close form of

Equation 4.4 and the derivation of several useful measures;

» The conformance with the requirements of a suitable meghtéct points spread
evenly with each Dirichlet domain bringing an equal amourninérmation about

the surface).

Meshes with contact points generated by low-discrepangyesees (e.g. van der Corput
sequence, Hammersley sequence) are an alternative tostigictures such as uniform
grids. They allow the use of a more flexible number of contaatts, but Equation 4.4 has
no close form and formulas predicting the measuring timé waspect to the quality to be
achieved cannot be properly established.

v|

2y

oo
a4

;x' 2X

Figure 4.1: Schematics of a uniform grid.

An uniform grid on a rectangle domai#n = [a,b] x [c,d] is a grid withn columns

andmrows such that the nodes are spaced equally row-wise anthnelise. The nodes
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adjacent to the border of the rectangle domain are locatéamanter-node distance from
the border (see Figure 4.1). The surface of the doma8+s(b —a)(d — c¢), the surface
of the Dirichlet domains are all equal = S/((n+1)(m+ 1)) fori € [1,nm], and the
diameterp is such thap? = (b—a)?/(n+1)2+ (d —c)?/(m+1)2. The grid has four types

of nodes

* 4 corner nodes with

b_2 d_2
3 a—aili=2( g+ g (45

* 2(m—2) nodes adjacent to the vertical borders with

(b—a)* (d—c)?

jeZA{Hai —g; H; - 3(n+ 1)2 +"(m+ 12

(4.6)

* 2(n—2) nodes adjacent to the horizontal borders with

S la-ali=4 3

e (n+ 1)2 (4.7)

* m(n—2) — 2n+ 4 other nodes with

b_2 d_2
3 la—aili =6 ( g+ o) 49

Using Equation 4.4, the quality of anx n uniform grid is therefore

2(n+1)(m+1) ()\z(n ~1)(3m-2) p?(m—1)(3n— 2))

Q= nm(A2 + p?) (N+1)2 (m+1)2

(4.9)
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whereA =b—aanduy =d—c. If we assume that=A /u =n/m> 1 is theaspect ratio

of the domainZ, then Equation 4.9 is rewritten as

Q(n,r) =

or(n+r)(n+1) ((n—l>(3n—2f> (n—r)(3”—2>) . (4.10)

n2(1+r?) (n+1)2 (N+r1)2

For a given aspect ratin> 1, we havel(r) = rI][>n Q(n,r) = 12r/(1+7r?) € (0,6], with
argmaxL(r):r € [1,+e0)} =r* =1 andL(r*) = 6. We can usé(r) to normalize the

valueQ(n,r) and then obtain the normalized quality of @k n uniform grid:

Q(n,r) =

~ (n+r)(n+1) /(n—1)(3n—2r) (n—r)(3n—2)
< (N+1)2 (N+r1)2

&2 ) € [0,1]. (4.11)

aspect ratio

Figure 4.2: Quality of a uniform grid against its number of nodes.

Figure 4.2 shows the contour plot @(n,r) for n € [1,40] andr € [1,4]. It may be
used to determine the size that a uniform grid should haveeiktis a minimum quality to
be matched. For example, a rectangle domain with aspeotat: 2 should be covered

by a 12x 24 uniform grid to reach a normalized quality of 90%.
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4.2.3 Measurement Time against Quality of a Uniform Grid

Assume that the CMM was set to collect contact point measeinésrat a constant rate of
v > 0 contact points per unit of time. At such a rate, timepoints of the uniform grid will

be measured imt time units,i.e.

n2
vt =nm= R (4.12)

It is then possible to compute the quality of a uniform gridhwespect to the measurement

time instead of the number of nodes on the grid. Namely, wiaceghe expressidﬁ)(n, r)

by q(t.v.r) = Q(VivL.n).

oints/min
P / solid: ratio = 1, dashed: ratio = 4
30~|“

25F |y

201

15p

10

L0 min
0 5 10 15 20 25 30

Figure 4.3: Quality of a uniform grid against against measurement time.

Figure 4.3 displays the contour plotsagt, Vv, r) forr € {1,4}. It may be used to choose
the ratev for given time and quality constraints. For example, one ldoeed to choose
a ratev = 18 points/min to collect measurements on a 90% quality sqgad under 15

minutes. Figure 4.2 also indicates that this is a<6 uniform grid.
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4.3 Registration and Parameter Estimation

This section covers a method wdgistration or re-alignment, between a cloud of points
and the theoretical shape it must assume. Methods of ratysts have been investigated
thoroughly for the past two decades in which a landmark pap&es| and McKay [1992]
was published. In this section, we are applying a few moditioa to the registration ap-
proach described by Besl and McKay to serve the specificiguofproblem in which we
must match contact points given by a probe-type CMM to knovimshapes described by
implicit or parametric functions. The method was modifiedMark with non-derivative
optimization techniques and without involving approxiroas such as pairwise point reg-
istration. The approach was also slightly simplified todastomputations and to allow the

search of the optimal features defining the 3-D shapes (ee@dtual radius of a sphere).

4.3.1 Input Data and Notations

Suppose we are given a setof N* vectorsxy, ..., X, in R® which represent Cartesian
coordinate measurements. We know that a surfad®®inan be described by an implicit
function @ : R® — R or by a parametric functio : R? — R3, and that the alignment
problem consists into properly rotate and translate thedioate measurements, ..., X,
such that they coincide at best with the form of the theoaésarface described by or
Y. This alignment procedure is a necessary pretreatmenfateprface inspection since
the measurement process is introducing a bias into the iexpetal coordinates of every
points.

In our notations, the translation to be found is denoted byeort € R3 and the
rotation is denoted by a 83 matrixR € . 03(R) where. 0'3(R) is the real special
orthogonal group in three dimensions. In our case, we anelsieg the group? 0'3(R)
using a coordinate chart formed by tBaler anglesx € (0,2, B € [0, 1] andy € [0, 277

that describe a product of rotations aroundzheandz axes. Letd = (a, 3,y) and letRy
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be an element af” 0'3(R) described byd, then the general representationRy is given

by
CaCy —SaCpSy —CalpSy—SaCy  Sply
Ro = | caSy+5aCsCy CaCaCy—SaSy —SgCy |- (4.13)
SaCp CaSp Cp

wheres, = sin(a), cqg = coga), etc.

4.3.2 Pre-Registration Data Treatment

The first step of the alignment procedure is to center thedctdypointsxy, ..., x, by sub-

tracting to every point the centroid of the cloud defined by

1 14
Xe=-= ) X (4.14)
‘2

It is also possible to modify the orientation of the cloudrstitat the variance of the projec-
tions on each coordinate axis is maximized. The first coattdinorresponds to the greatest
variance, the second coordinate corresponds to the seceatksgt variance, etc. In other
words, it is possible to perform a complete Principal Congmirnalysis (PCA) [Pearson,
1901] on the cloud of points instead of a simple centeringg@dare. Adjusting the orien-
tation along the axes corresponding to the maximum ineftieocloud using a PCA may
reduce the computational effort in the next steps of thenatignt procedure.

Let X be al x 3 matrix such that theth row contains the vectog — X, then a PCA
is performed by computing the>33 matrixV such thatU>V! is the Singular Value De-
composition (SVD) ofX. Once the SVD performed, the new data matrix is obtained by
computingX = XV. Alternatively, a PCA can be realized by performing a pa&D in
which only the first three columns &f (stored in the/ x 3 matrixUs3) are computed. The
new data matrix is then given by computikg= U3

Nevertheless, the aim of the pretreatment phase of thenaéighprocedure is to make
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the cloud of experimental points roughly coincide with thedretical surface. A centering
and a PCA might actually fail to do so, therefore it is ofteavitable that manual transla-
tions and rotations have to be introduced in order to achieseyoal of the pretreatment

phase.

4.3.3 Registration with Implicit Functions

Consider the case where the theoretical surface is deddsiba implicit functiong : R® —
R. A pointX € R3 lies on the theoretical surface if it belongs to the zero et otherwise
there exists a € R* such thatk belongs to the zero set @f—r. The idea behind the
alignment of the point&y,...,X, is to find an orthonormal matriRg and a vectot that
minimize simultaneously the quantitigs(z)|, i € [1,/], wherez; = RgX; +t. It will then
force every transformed poidai, . ..,z, to be at a minimum distance to the zero setppf
matching the cloud of points at best with the theoreticalesg. The problem is simplified
by minimizing the quantity

4
A= 1902, (4.15)

with respect td € [0, 271 x [0, 11} x [0, 21 andt € R3. The domain ob is complicating the
minimization procedure since it brings inequality consitsto the optimization problem.
However, this problem can actually be circumvented by ektenthe search of an optimal
6 on the entire spadR3. This approach is valid since we are not interested by unihaet
coordinates foRg but simply bysomechart coordinates yielding minimum value for the

objective function. This leads to the following unconstiead optimization problem

min{ _ikp(zi)\ 1 (0,t) € Re}. (4.16)

The objective function of this problem is in most cases natves onR® and therefore
the uniqueness of the optimal solution is not guaranteedh&umore, algorithms for con-

vex minimization might fail to converge toward a global nmmim if the pretreatment step
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failed to align the cloud of points at a close proximity to tineoretical surface. Nev-
ertheless, if we assume the convexity of the objective fonabn the search domain, the
minimization can be performed with the help of a variety diimization algorithms. Since
@ might be fairly complicated, or even not differentiableisitsafer to rely on derivative-
free optimization methods. Among such methods there aremithod of Rosenbrock
[1960], the method of Hooke and Jeeves [1961], the simplaxckemethod [Nelder and
Mead, 1964, 1965; Spendley et al., 1962] and the method of&i#f{1967]. The pre-
ferred method is the one that requires the least amount afitural evaluations, which is
the simplex search method.

In some cases the number of experimental points is very l@ngguts of an optical
Coordinate Measuring Machine often range in tens of thadipamts). Consequently, the
computational time required to perform the optimizatiothe quantity\ in Equation 4.15
would be too long for practical applications of the registna method. One solution is
to truncate the sum and to compute a mean value of the absalutes of the deviations
from the theoretical surface. This approach is valid sifa,tafter a certain rank, the
sequence of means will converge toward a finite value. The mmight be truncated by
choosing (wisely) a representative samplaf data points which is changing the previous

unconstrained optimization problem into

min{% > lo(z)]:(8,1) € RG}. (4.17)

Z €S

The goodness of the solution given by the above mathematiohlem depends entirely
on the “goodness” of the sampe Thankfully, several sampling techniques can be used to
help accelerating the minimization procedure by providsntaller, but relevant, samples

(see Sub-Section 2.1.3 and [Cochran, 1977]).
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4.3.4 Registration with Parametric Functions

Consider the case where the theoretical surface is deddojpa parametric functiory :
R? — R3 and let the compact domaid C R? be such that the imagg(Q) corresponds
to the theoretical surface. Furthermore &t be a set ofp € N* nodes of a (possibly
unstructured) grid of and let.#" be the set of points ifR® that are the images of the
elements ofZ by . Since it is not possible to derive an implicit functignfrom the
parametric functiony in the general case, it is necessary to derive a method fionastg
the quantity/\ in Equation 4.15. The idea is to make an orthogonal projeatioevery
point z; onto the theoretical surface and to compute the distant¢esdparates the points
from their projections.

Given a pointz € R3, we determine at first its nearest neighbgre .#". Fromng we
obtain a vector of parametepg € <. It is recommend to perform the Nearest Neighbor
Search (NNS) using a state partitioning method such as eoéving a three dimensional
kd-tree data structure [Bentley, 1975]. Using this appro#uh building time complexity
of thekd-tree (only one occurrence) is@(plogp) and the query time complexity during
the NNS is inO(logp). If the grid is coarse, theng is a poor estimate of the orthogonal
projection ofx onto the theoretical surface. Therefore, it is necessabyild a sequence
of k pointsns,...,ng onto the theoretical surface that converges toward theogahal
projection.

Let nj = Y(pi), i € [1,k], be an element of that sequence. First, we determine the
tangent vectors; = d1(pi) andr, = d(p;) as well as the quantitiag = (rq, (z—n;))
andvy = (rp, (z—n;)) which are the coordinates af- n; in the tangent plane a&. Here,
the parametric functiogy is assumed to be differentiable @even though it might not be

always the case. Thus it is safer to compute approximateidnggg andr, in the general
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case using only and not its partial derivatives. The metric tensor

(re,ry) (ra,rz)
(Gij) = (4.18)
(ra,ry) (ra,rz)
defines the dot product on the tangent plane and provides toaynvert the quantitieg;

andv, into quantitiesry, and 7w into the parametric spac€e. By computingA = 911022 —

92,, we obtain

_ O22V1—012V2

m A )

(4.19)

and

5 — 011V2 — 912V17 (4.20)

A
even though is in practice replaced &+ € wheree > 0 is a small numerical quantity
avoiding possible divisions by zero. Then the next itergpiq 1 = p;i + (7, 7®) is computed
and the procedure is iterated until the number of iteratloissreached or until| (1, 72) ||
is below a certain threshold. Onog = (/(pk) is computed, we derive its tangent vectors

r1 andr, as well as its unit normal vector

1 Xro
U= ——= ., 4.21
TP #-21)

Then the quantityA| = |(u,(z—ny))|, which is the absolute value of the projection of
z—ny on the normal vectou, replaces the quantity(z)| which was to be approximated.

Algorithm 4.1 implements the projection procedure.

4.3.5 Getting the Surface Parameters and Normal Deviations

If the theoretical surface is defined by a parametric fumctigen both a set of parameters
and algebraic distances from the theoretical surface aendiy the registration proce-

dure. These distances, when paired with parametric comtebn may reveal a coherent
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Algorithm 4.1: Projection onto a parametric surface

Function [p,A] = Sur f acePr oj ecti on ({r,po,2)

Data: tolerances > 0.

Input : parametric functiony, : R — R3, initial parametepg € R?, vectorz € R3.
Output: parametep, altitude from surfacd .

1 P<Po

2 repeat

3 | d<z—uyr(p),r1 01s(p), r2 < o24x(p)

s | v ((rnd), (rad)), g« ([Irall3, Ir2ll3, (ro.r2))

5 | 0+ 1/(102—05+¢€), Th < 6(UaV1 — GaVa), Th  O(G1V2 — G3Vi)
6 | P<p+(m,m)

7 until |||, < €

8 I O (p), r2« 0o (p),N<—ryxry

9 A« (n,(z—yr(p)))/(lInll,+¢)

=
o

return (p,A)

pattern deformation due to the manufacturing process. ,iredictive methods such as a
nonparametric nonlinear regression analysis with ULMsditermine the underlying de-
formation rule (or function) and may generalize the shapiefdeformations for similar
surfaces and manufacturing processes.

In the case an implicit function is given, the gradientspadt every transformed point
z; are computed (or approximated) and a line search is pertbimerder to compute
the smallestA; € R in absolute value such that the quantﬁty(zi +AiDgo(zi))\ iS min-
imized. Appropriate derivative-free line searches fosttask are the Golden Section
Method [Kiefer, 1953] and the closely related FibonaccirSlegAvriel and Wilde, 1966].
Again, the function to be minimized might not be unimodal Rrbut it can be so on
the search interval, and the starting solution might beeckrsough to the optimal solu-
tion so that one of the line searches will converge towarddhce the optimaPTi’s are
obtained, we compute the quantiti;ﬁs*fm(p(zi)ﬂz which are the algebraic distances from
the theoretical surface. The poirgs= z +)TiD(p(zi) are all located on the level surface
{z € R3: @(z) = 0} which is, by definition, the nominal surface of the part.

The coordinate system for the poirgscan also be changed in order to get rid of a
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coordinate irrelevant for the description of the actualifias of one point on the theoreti-
cal surface. If the surface has three axes of symmetry theerigal coordinates might be
more appropriate. If the surface has only one axis of symntleén cylindrical coordinates
could be more suitable, etc. Many orthogonal coordinatéesys in three dimensions can
be tried in the attempt to reduce the dimensionality of theeeixnental points. If these basic
transformation methods fail, then other more elaboratdéimesr dimensionality reduction
methods can be successively tried to cancel one extra diomrenSmong these nonlinear
methods we find: the Kernel Principal Component Analysis @RI [Diamantaras and
Kung, 1996; Scholkopf et al., 1997; Mika et al., 1999]; Piat curves and manifolds
[Hastie and Stuetzle, 1989]; Gaussian Process Latentblafdodels (GPLVM) [Tipping
and Bishop, 1999]; Locally Linear Embedding (LLE) [RoweisdaSaul, 2000]; Autoen-
coders [Hinton and Salakhutdinov, 2006]; and Self-OrgagiaVaps (SOM) [Kohonen,
1982, 2001; Kohonen and Makisara, 1986].

Alternatively, there exists a computationally intensivethod that can associate a pair
of parametergpy, p2) in R? to any pointz of the level surfacéz € R3: ¢(z) = 0}. Assume

that an arbitrary pointg is chosen as the origin. The unit vector

De(zo)

= 7 4.22
V= Bz #.22)

is normal to the level surface and we may choose an arbitrsityectoru € R3 such that
(u,w) = 0 and then define the unique unit vectoe R3 by v =w x u so we have a unit
basis(u,v,w) in R3. The parametep, € R? associated tay is arbitrarily set equal to.
For any pointz € R3 such thatp(z) = 0, (z,u) # 0 and(z,v) # 0, we define a sequence of

m > 1 pointsay, ..., am such that

a = ZO—I— (z_— ZO), (4.23)

m+1
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for alli in [1,m]. The pointsay,...,am belong to the unique line ik that goes through
Zo andz. For eaclg;, we use a line search to find the smallgst R in absolute value such
that the quantity@(a +AiD¢(a;))| is minimized. Once the optimal’s are determined,

we compute the point, ..., am such that
& =a+A0o(a). (4.24)

If we use the convention thah = zy andam. 1 = z, then we define the parameter € R
associated ta as the linear approximation of the shortest path on the lRwdhce between

Zo andz, i.e.

1 mlo_
PL= = a— a1, (4.25)
o@D, & "
The second parametpp € R is defined as the ang < (—r, 11 such that

6 = atanq (v, (a1 —ao)), (u, (a1 — ag)) ), (4.26)

where .

arctarty/x) if x>0
T+ arctarty/x) ifx<0,y>0

—n+arctarfy/x) if x<0,y<O0

atan2 R? - R, (y,X) — (4.27)
/2 ifx=0,y>0
—T/2 ifx=0,y<O0
undefined ix=0,y=0.

\

4.3.6 Determination of the Features of Solids

Some particular surfaces can be defined with respect to feredi@ed parameters. For

example, a torus with tube radiusc R*, and distance from the center of the tube to the

97



origin R (0,r) can be defined with a parametric function

(R+rcosv)cosu
@:(uv)eQ— | (R+rcosv)sinu | €R® (4.28)

rsinv

whereQ = [0, 2] x [0,2m1] C R?, or it can be defined with an implicit function

0:(xY,2) eR3 s (R—\/2+y2)°+2 12 €R. (4.29)

Here, the predetermined parameters of the torus aed R and, even though they are
presumed to be initially known, the manufactured solid mayehslightly different values
for r andR, on top of having unavoidable mechanical deformations esutface. Thus,
it is necessary to determined approximated values of thexsaeters before deriving the
algebraic distances mentioned in the previous subseciiordo so the whole alignment
methodology described in Sub-Sections 4.3.3 and 4.3.4wll be considered as sub-step
of an optimization procedure.

Consider an implicit functiom(r, -) parameterized by € RP and letF be a functional

such that
V4
F(o)(r) = min{zvp(r,zm (o ere}. (4.30)

Then the optimal vector of parameters RP is obtained by solving the following mini-
mization problem

min{F(@)(r):r € RP}. (4.31)

If we assume that the objective functiéi{p) is convex on the search domain, then tra-
ditional multidimensional convex minimization methodshdae used. For example, the
Simplex Search mentioned in Sub-Section 4.3.3 fits peyfehis task. If the theoretical

surface is parameterized by a single parameter, then aesimpl search like the Golden
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Section Method or the Fibonacci Search can be performedadstlf the theoretical sur-
face is defined by a parametric functiguir, -) parameterized by € RP then the objective

function is modified according to the methodology introdliceSub-Section 4.3.4.

4.4 Nonlinear Regression and Minimum Zone Estimation with ULMs

At the end of Section 4.3, all coordinate measurements. ,x, in R3 are assumed to be re-
duced into pairgp1,A1), ..., (Pr, Ar) in Q x R whereQ is a compact subset &f. The vec-
torsps,...,p, are parametric coordinates (observations) associateltittaasA, ..., A,
(targets).

The aim is to find a deformation pattefrt R — R that links observations to targets
and this problem perfectly fits the task ULMs have been cd:iate By selecting an appro-
priate kernel for numerical data (see Sub-Section 2.2 d;am repeatedly test and validate
models for the deformation pattern (see Sub-Section 2.@8¢e the best model has been
validated, we have a pattern estimateQ — R that fits the data with a toleraneg > 0 at

a confidence levet € (0,1). In other words, we have
f(p)-A| <&, (4.32)

for a tolerancee, > 0 defined by an arbitrarg € (0,1), and for allp € Q and their asso-
ciated deformation altitude® € R (which are unknowrmalmost everywhersince we only
have pointwise measurements). Consequently, theMizef the minimum zone, with

confidence levelr € (0,1), is defined as:
Mg = max{f(p):p € Q} —min{f(p):p € Q} + 2¢,. (4.33)

The optimization off has to be done, or exhaustively around the extrema, or by us-

ing an optimization meta-heuristic due to the fact tiids never convex in the general
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case. Meta-heuristics can involve: genetic algorithmdlfhal, 1975], simulated anneal-
ing [Kirkpatrick et al., 1983Cerny, 1985], tabu search [Glover, 1989, 1990], ant colony
optimization [Dorigo, 1992], particle swarm optimizatifiennedy and Eberhart, 1995],

etc.

4.5 Applications

The processing of contact point measurements was made dtL& Precision Work-
station 530 equipped with two 2.4 GHz Intel Xeon processnts2GiB of RAM. ULMs
and registration codes were developed under MATLAB 7.4fd8es were inspected with
a Brown & Sharpe MicroVal PF™ 454 CMM equipped with a touch trigger probe head.
This CMM has a linear displacement accuracy of 5.1 um aloy eais and a measure-
ment repeatability of 3.8 um. The touch trigger probe head Renishaw PH9/PH10
manual probe head capable of holding M2 and M3 styli. The &&aw M2 stylus ref. A-
5003-0577 was used throughout all the experiments. It m©®a mm ruby ball, az 0.5
mm x 20 mm tungsten carbide stem and a mass of 0.32 g.

Different parts were manufactured: face-milled plateshailf cylinder, an half sphere,
an half torus and a cone. The parts were probed by the CMM andaihtact points were
registered according to the method described in SectionZu8ing the registration pro-
cedure, the actual parameters of the nominal surfacesrésgieneter, cylinder diameter,
etc.) were successfully obtained. Once contact points wenectly registered, ULMs
were used to recover deformation patterns on the surfacaadbf part and the minimum

zones were computed according to the approach discussedtioi®4.4.

4.5.1 Half Cylinder Deformations

One half cylinder was produced using an end milling openatieat used the following

cutting parameters:
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» Workpiece: Aluminum 7075-T6g 76.2 mm, 34.29 mm length.
* Tool:  12.7 mm ball nose end mill with a High Speed Steel (HSS) cutter

» Machining conditions: step over = 0.635 mm.

This half cylinder was inspected with a M2 stylus ref. A-56WE77 using an uniform
grid mesh of 630 contact points. Figure 4.4 shows the lodgital deformations after re-

alignment and determination of the actual diameter of thie pa

Half Cylinder of radius r = 38.103 mm
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Figure 4.4: Longitudinal deformations of the half cylinder.

The final kernel used for the regression the deformationesisg Gaussian RBF kernel
with parameteo set equal to 37. No significant vertical deformations were found, and
the deformation form in Figure 4.4 is represented with resfiethe coordinate angke €

[0, 1. The actual diameter of the part was found to be slightlytgrehan desired one of 6
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pm. The minimum zone is estimated to be 35 um. The longitlidiage can be interpreted
by the movement of the cutter during the machining processatine cutter moves linearly
between reference points that belong to the ideal shapereBhérajectory of the cutter is
therefore a chain of small linear trajectories that closefiches the ideal cylindrical form

(piecewise approximation) resulting in a wave pattern wiheing projected on Figure 4.4.

4.5.2 Half Sphere Deformations

One halfz 63.5 mm sphere was manufactured and inspected with a safi@#é contact

points following a Hammersley distribution. A M2 stylus ré&-5003-0577 was used for
recording the measurements. After re-alignment the adiaaieter of the half sphere was
found to be 378 um larger than the one desired and the mininwma was estimated to
be 70 um. The interpolated deformation form is shown in Fegu5 and it displays the

deformation according to the coordinate system repredemtehe left side on the figure.

Half sphere of radius r = 31.939 mm
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Figure 4.5: Deformations of the half sphere.

The final kernel used for the interpolation of the deformagbape is a Gaussian RBF
kernel with parameter set equal to 80. Deformations were significant with respect to
a single parameter, namely the latitugle [0, 77/2] of the contact point. Deviations from

the nominal surface appear to occur at places where the bagheen the cutter and the
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contact surface is important like the top and the base of élfesphere.

4. 5.3 Half Torus Deformations

Oneg 63.5 mm half torus of tube diameter 38.1 mm and was manutedtamd inspected
with a sample of 256 contact points following a Hammerslestrdbution. A M2 stylus

ref. A-5003-0577 was used for recording the measuremeritsr Aegistration, the actual
diameter of the half torus was found to be 92 um larger thamtieedesired and the tube
diameter 68 um smaller than expected. The minimum zone wasatsd to be 150 um

with the largest deviations being inside the torus hole. ifterpolated deformation form
is shown in Figure 4.6 and it shows the deformations accgrtbrthe coordinate system

represented on the left side of the figure.

Half torus, R = 31.796 mm, r = 19.016 mm
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Figure 4.6: Deformations of the half torus.

The final kernel used for the interpolation of the deformagbape is a Gaussian RBF
kernel with parameter set equal to 3. Deformations were significant with respect to a
single parameter, namely the latituge= [0, 71 of the contact point. Deviations from the
nominal surface, just like for the half sphere, appear taioet places where the angle

between the cutter and the contact surface is importantiéénside hole of the torus.
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45.4 Cone Deformations

One 63.5 mm high aluminum cone with@ 76.2 mm base was manufactured using a
taper turning process and it was inspected with samples@®f,8nd 256 data points. The
surface contact point were sampled using a Hammersleyldison and recorded with a
M2 stylus ref. A-5003-0577. After registration, the actapkerture of the cone was found
to be 0.899°smaller than the one desired. The minimum zosesstmated to be 230 um
with the largest deviations being a the tip of the cone. Therpolated deformation form

is shown in Figure 4.7 and it shows the deformations accgrtbrthe coordinate system

represented on the left side of the figure.

Cone of aperture o = 30.51 degree

=0.23mm

z-axis

3 (mm), range

v (mm, in green) 0

0 u (degree, in red)

Figure 4.7: Deformations of the cone.

The final kernel used for the regression the deformationestsg Gaussian RBF kernel
with parameteur set equal to 23.5. Deformations were significant with respect to the two
parameters describing the cone surface, namely the lat@ud [0, 271] and the distance
from the tip. Extreme deviations from the nominal surfacpesy where the amount of

matter pressing against the cutting tool is minimal. It nsatkes tip of the cone appear like
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a chunk of matter is missing on one side or has been pushec atttér side.

455 Face-Milled Plates Deformations

Two batches of four and five face-milled plates were produoedhis experimentation.

The cutting parameters for the plates are as follows:

» Workpiece: Aluminum 6061-T6, 101.6 mm x 101.6 mm x 12.7 mm.
» Tool: @ 76.2 mm cutter, 7 inserts with carbide coating.

» Machining conditions: coolant, cutter speed = 750 rpmp stepth = 0.254 mm,

cutting feed = 25.4 mm/s (first batch) and 29.6 mm/s (secoitthha

The plates were labeled from 1-1 to 1-4 for the first batch, faooh 2-1 to 2-5 for the
second batch. The plates were visually inspected beforeghaeasured and plates 1-1
and 1-2 were discarded due to faulty machining. The prope-tyMM did not produce
significant quantities of measurements in a short periodhaoéd,tthus the data sets rarely
exceed 300 points and the computational times are extresmefl. The contact points
were chosen such as they form a uniform mesh on the surfabe pfdtes to maximize the
surface information on the whole plate. Hence, the CMM tilezeig-zag pattern at a fast
pace when taking measurements. This relatively speedyurezasnts allowed for differ-
ent mesh densities to be tested for the same plates. Thésresutlifferent meshes were
compared to verify the integrity of the registration of sioé model validation procedures.

A test run was made on plate 2-2 with a total of 293 measuresndilte parameter
of the Gaussian RBF kernel, as well as the parameters ofceunfimdel were tuned until
the residuals were small enough and deemed to be random eodelated. Results of the
ULM-based nonlinear regressions can be seen in Figure 4e8enthe deviation surface
has the shape of a saddle.

All the plates that were inspected have similar deformatiofiaces. These surfaces are

saddle-shaped with the “valley” part oriented along thedtion of the cutter pass. Addi-

105



Plate 2-2: deviation surface and measurements

e
TATRIRTRINNR,
%‘-“}:‘t\\- "l. il
ARTTNNS0C f 1L

deviation (x 10 3 inch)

4 4 x (inch)

y (inch)

Figure 4.8: Deformations of plate 2-2.

tional tests on plates manufactured with different proggssill confirm if it is a general
behavior or if it is an artifact produced by the particularamiaing conditions. If the shape
is found to be general, then it will be a precious hint for ixsing the plates with optimized
meshes since, on a saddle, the extrema are located on tke side

On seven plates, four were inspected with different mestesig the minimum zone

formulation of Section 4.4, the estimatdsg, with a = 0.99, of the minimum zones of the

tested plates are shown in Table 4.1.

Table 4.1: Minimum zones of four face-milled plates.

Plate reference Number of points Minimum zone

1-3 348 57.9 um
1-4 81 18.3 um
2-2 293 166.9 um
2-3 64 19.3 um
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The minimum zones for plates 1-4 and 2-3 were consistent thigir visual aspect.
Their surfaces appeared to be smooth and better finishedhamdninimum zones were
estimated to be.2 times bigger than the accuracy of the CMM probe. At thisescile

impact of artifacts are not negligible with regard to theattefations of the surface as it is

illustrated in Figure 4.9.

Plate 2-3: deviation surface and measurements
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Figure 4.9: Deformations of plate 2-3.

The artifacts of plate 2-3 were generated by random pettioris(vibrations, etc..) and
they do not represent actual deformations of the surface. chioice of a Gaussian RBF
kernel was an important factor to the robustness of the sairfeodel and it gave consistent
results during the validation procedure. This show thagfcelly selected models can handle
noisy observations at scales which are few times largertt@probe accuracy.

Different meshes were also tested on the same plates tesabhgesonsistency of the
chosen models. Tests performed on plate 1-3 are reprodaocEable 4.2. They indicate

the estimated minimum zones (second column) with respebetaumber of nodes of the
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mesh (first column).

Table 4.2: Minimum zones against the number of nodes of a mesh.

Number of points  Minimum zone

36 58.7 um
64 61.2 um
81 56.4 ym
138 61.0 um
174 60.2 um
202 61.7 um
219 58.4 um
283 58.4 um
348 57.9 um

No significant effects were found between the density of tieshmand the estimated
minimum zones for the four tested plates. All the meshes hailas estimated minimum
zones regardless of the number of nodes of the mesh (all iexpais were made with
meshes of at least 36 nodes). Thus, if this behavior is foarmbtgeneral, then relatively
small uniform meshes could be used for the flatness inspectitace-milled plates since
such meshes reduce time-induced errors during measurement

Finally, in order to test the robustness to perturbationthefGaussian RBF kernel,
measurements were made on a 76.2 mm X 76.2 mm portion of azabfbéit (z 127 mm
Lapmaster optical flat) for which the accuracy is certifieq%dh light band. This accuracy
is much higher than the probe accuracy of the CMM (which is #Bgn the position of
a particular point along each axis), hence deviations fieennominal plane obtained by
ULMs are only artifacts and not actual deviations. If theragh is robust to artifacts, then
the interpolated deformation surface should be a planengalsg the coordinate origin and
parallel to the canonicalOyplane.

The deformation surface shown in Figure 4.10 appears to impletely flat and con-
tained within a cloud of artifacts. Additional numericaste showed it to be true. This test

seems to confirm the immunity of the surface model againstmanvariations.
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Figure 4.10: Deformations of the Lapmaster optical flat.

109



Chapter 5

State Forecasts of a Weather System

5.1 Introduction, Context and Aims

Kalman Filters (KF) have been traditional approaches t@ @assimilation in the geo-
sciences for the past few decades [Kalman and Bucy, 1961§ H@ve been constantly
improved to better fit their application requirements arrdwinvent their implementation
issues. Nevertheless, these approaches were never ahlertmme their unrealistic as-
sumptions (e.g. linearity, multivariate normality, prikmowledge of the model, error co-
variances properties, etc.), and their scalability issmesn handling large sets of data.
The inability to efficiently process large amounts of data &@gnificant drawback of KFs
since, at any instant, huge sets of data are always availalgleosciences. Furthermore,
the size of the data to be processed is growing at an everasitry rate. Therefore, the
data processing technology should be rendered capablealyzarg the huge amounts of
information to come. Fortunately, the rapid discovery atgras within data can be done
with a clever use of state-of-the-science supervised madearning techniques such as
ULMs.

The analysis of weather systems require a framework capaldssimilate temporal
patterns in vector fields outputs and make accurate predgtiegarding the future states
of these fields. The assimilation part of the analysis ofaefaelds also requires the ability
to remove noise within observations and to properly gueste $tajectories, even with a
partial lack of knowledge on the way data were generateds [Eaid to consider several

objectives for ULM-based techniques for weather systenyaisa

110



develop robust near real-time procedures based on ULMssimiate state trajecto-

ries of the weather systems;

 provide fast “zero-knowledge” prediction schemes as ihglpools for traditional,

but computationally intensive, techniques such as KFs.

» exploit geometric characteristics of observation sethito data and make assimila-

tion procedures scalable (see Sub-Section 2.1.3);

automate model validation procedures in a weather systenext.

While some objectives will be the subject of future work, thist two points of the list

have been investigated in this dissertation. The ULM-basbdst assimilation procedure
is described in Sub-Section 5.2.1 and the “zero-knowleggetictive analysis in Sub-
Section 5.2.2. Additionally, simulations were run on siifiitl weather models: the Lorenz

96 model (Section 5.3), and the Quasi-Geostrophic modeti($e5.4).

5.2 Assimilation and State Predictions

5.2.1 Assimilation using ULMs

Consider an FCD system represented by the 5-tGpl&, x, f,g) (see Chapter C). The
domainT of the system igtp,t.) and the input spadd is the set of all constant functions
overT with values inQ, whereQ is a compact domain d&™, with 1 < m< 3. In other
words, for allt € (to,t-), we haveu(t) = u € Q ¢ R™. The state functiox: T — R" is
such that

dx(t) = f(x(t),u,t), (5.1)

wheref is continuously differentiable. The output functigns defined ovelR" x Q x T

with values inRP.
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Given a locatioru € Q, we assume that there exigtencreasingobservationnstants

t] <t, <...<t/in T such that we havétargetsoutputsyy,...,y, in RP defined by

yi = g(x(t),u,t), (5.2)

for alli € [1,¢]. Without loss of generality, the output functigris deemed to b&nown
such that it is possible to identify its outputs with the syststates. Namely, we hape=n
and

yi = X(ti_1) + titil f(x(t),ut)dt+ & =x(t) + &, (5.3)
where g € R" is an unknownperturbation. The state-transition functidnis deemed
unknown(unlike in the KF framework) and it is not to be recovered byNtbased ap-
proaches. However, ULM-based robust regression appreamigeused in this context to

estimaten functionsFy, .. ., F, such that

A

|(vi)j —Fj(t)| < (&)j, (5.4)

forall (i, ) € [1,¢] x [1,n]. In fact, ULM-based approaches are used to recover the func-

tionsFy, ..., F, at a given location € Q such that

(V)i —Fj()] < (e);, (5.5)

for all t € [ty,t,] andj € [1,n] wheree is an arbitrary perturbation dependent of a certain
confidence level. Naturally, this approach is valid if we sider weather system to be
non-Markovian since ULMs are searching for dependenciésdsn states taken at the
same location but at different times. This assimilatiom séehen repeated for all discrete
locationsuy, ..., Uq in Q. The results of this analysis by ULM-based regression tigcias

are smooth interpolated state trajectories at each déstoeation of a compact domain in
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R™, with 1< m< 3.

5.2.2 Predictive Analysis

The predictive analysis attempts to give correct estimafethe system states(t) for
t € (t,tw) and for all possible locations iQ. Unfortunately, this step cannot be done
with great accuracy if the state-transition functibrs unknown. Furthermore, attempts to
estimatef would require to recover state trajectories at a fairly dangimber of different
locations in the domaif2, and assume that perturbations were all successfully rechov
during the assimilation step. Additionally, the upper badsion the generalization errors of
the estimates of the state trajectoffigs . ., F increase drastically as the tirhmoves away
fromt, (see Sub-Section 2.3.4). Henég(t),...,Fn(t), witht € (t;,t.), are not necessarily
good estimates of the future system states, excepted whéalose” tot,.

Hence, there are two possible ways to extrapolate the stgeetories of a weather

system at a location € Q when the timé is in the neighborhood df:
« Compute the estimatég(t),...,Fn(t) fort > t,.
» Compute a polynomial extrapolation.

The polynomial extrapolation is an extrapolation methat #itempts to alleviate the gen-
eralization error of the state trajectories estimatesidethe time domaitity,t,]. To per-
form such an extrapolation, we choose a time windipw- ot t;] of sizedt > 0 in which
g > 2 Chebyshev nodéd, ..., f; are computed. Then, for all, j) € [1,q] x [1,n], we
compute the outputs

(%) = Fi (@) (5.6)

Theq > 2 Chebyshev nodes on the inter{tal- 5t,t/] are defined by

fi =t,+ 3t (cos((2i —1)m/(2q)) — 1) /2,

foralli € [1,q]. Interpolation polynomials built upon those nodes are mining Runge’s phenomenon.
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Then, for allj € [1,n], the pairs(fy, (§1)j),- -, (fg, (¥g);) are used to compute thieth

Lagrange polynomidl; defined by

The state estimates for> t, are then given by4(t), ..., Ln(t).

5.2.3 Summary

(5.7)

The assimilation and prediction of the states of a weathsesyis accomplished as follows

(see Figure 5.1):

1. One locatioru in the domaim? is selected. This location is usually the position of a

node on a grid ilR? or R,

2. There aren feature for the state of the system at the locationHence, thej-th

feature, withj € [1,n], is selected.

3. For the specific feature that was selected, we cotjaitservationgfy, (1)), .,

(fg, (¥9);) which will be used during the assimilation step.

4. An ULM-based robust regression approach (see Sub-8e8t®3) assimilate the

pastq observations of thg-th feature of the system state at location

5. A polynomial extrapolation estimate the future valug&) to Ln(t), with t > t;, of

the j-th feature of the system state at locatio(see Sub-Section 5.2.2).

6. The next state feature is selected and the procedure lmgsto point 2. If no

feature is left then the procedure continues to point 6.

7. The next location on the grid is selected and the procedoges back to point 1. If

no nodes are left on the grid then the procedure stops.

114



Lastq
assimilated

Choose a - Choose a Incumbent
new node 7| new feature observation
data

Robust regression V ‘

observations
STOP Form the
Solvethe €] kernel matrix

Kernel
Parameters
linear system

Yes No No
¢ Update

LZSZ kernel
node: parameters

Does the
function fit?

Compute the
regression function

Yes \
Last Predictive analysis 3
feature?
Compute Select
N] Extrapolation < Lagrange [ Chebyshev
polynomial nodes

Figure 5.1: Simplified outline of the ULM-based assimilation scheme borad with a
polynomial predictive analysis.

5.3 Lorenz 96 Model

The Lorenz 96 model is representing the values of atmosphasentities at discrete loca-
tions spaced equally on a latitude circle (i.e. it is a 1-Difen). The system state at the
i-th location on the latitude circle is noted By< R, with i € [1,1]. The state transition

model at a locatiomon the latitude circle is

dxi:(xi+1—§—2>xi—3 —x + _F K (5.8)
advection dissipation external forcing

for all i € [1,1] with the convention thaty = x; andx .1 = X;. The states represent an
unspecified scalar meteorological quantity, e.g. “vati@r temperature” [Lorenz and
Emanuel, 1998]. This model was introduced in order to selath locations on a latitude
circle are the most effective in improving weather assitiataand forecasts.

The observations for this example where generated with @&@uperturbation with a
variance of one (of the order of 10% noise) and the extermairfg was set to the strongly

supercritical value of eight. The results were obtained onoael with 40 locations on
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the latitude circle and the time step for integrating Equat.8 was set totd= 0.01. The

assimilation results obtained with a Gaussian RBF kerreeshown in Figure 5.2.

Observations Assimilated Observations (ULM-based Method)

State

Time Step Location Number Time Step Location Number

Figure 5.2: Assimilation results for the Lorenz 96 model. The left plbow/s the obser-
vations before assimilation (the noise component has avegiequal to 1). The right plot
shows the assimilated states. The analysis of the resibatlseen assimilated states and
the true field have an average RMSD equal (8.1

The average RMSD between assimilated states and the trdidlfistrates the problem
of using an ULM-based approach with a model thatlgrkovian by designThe RMSD
that was obtained is just half the value of the variance o@hassian perturbation, which is
still a good result when it is considered that the modeh@otic by naturend that the state
transition function of Equation 5.8 was first ignored anditgeessed from scratch by the
ULM-based approach. Nevertheless, actual weather systertgpically non-Markovian
which is a factor mitigating such an high RMSD on the assitedastates.

In our framework, the ULM-based approach used for assimitdas only the step that
pre-process observations for making predictions on theréusystem states. While this
approach alone is not particularly remarkable on Markoyiestesses, it actually shows
more potential when combined with the polynomial extrapotadiscussed in Sub-Section

5.2.2. The results of the chosen approach for state foragastshown in Figure 5.3 where
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the RMSD of the forecasts of the polynomial extrapolatian@mpared to the RMSDs of

the forecasts obtained by the Ensemble Kalman Filter (EnKF)

RMSD

w

N
o woh oo

T l I T TTT

=

[y

0.5

Lorenz 96 model, 40 variables

Forecasts RMSDs, var(obs) = 1, dt = 0.01

~w

LY 4

aptr?
v_,~,,1' v/ Sep?”

AY
a
A ",

s

I

-

T T

\

4
v

Kernel forecasts ||
EnKF: 20 ens.
= = = EnKF: 100 ens.

an
R LA VY AN

1
4
\’

0.25 I I I I I I I I I
150 200 250 300 350 400 450

Step Number

500

Figure 5.3: Evolution of the Root Mean Square Deviations (RMSDs) betwibe forecasts
and the truth for the Lorenz 96 model. Comparisons are matieeba the EnKF with a
different number of ensembles and the forecasts obtainedassimilation with the kernel
approach.

The average RMSD of the forecasts for the machine learnipgpagh is B while this
number is M for the EnKF with 100 ensembles [Evensen, 1994]. The patyabextrap-
olation is twice less accurate than the EnKF with 100 ensesnblit it requires far less
computational resources (100 ensembles are never usedi& real-life weather systems
since it would require more computational power than whatuisently available. The
“usual” number of ensemble & most20). The RMSDs of the ENKF with 20 ensembles
keep growing from 5 to 6 after 500 steps which shows that the forecasts obtaitad
such a number of ensembles are completely irrelevant (ala@&error of 6 units on the
forecasts represents a deviation of 50% from the true field).

Forecasts results show that, despite the chaotic behalvtbed.orenz 96 model and
the relatively high observational error, the ULM-basedragation scheme was able to
correctly approximate the true states and, hence, prowdd gssimilation for viable fore-

casts. It also demonstrates that the EnKF needs a high nwwhbesembles, much higher
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than commonly used in meteorological applications, to pl®veliable forecasts. Such a
large number of ensembles increases computational timedldd be detrimental for an

online system.

5.4 Quasi-Geostrophic Model

The Quasi-Geostrophic (QG) model is a 2-D atmospheric dyca&lmodel involving an
approximation of actual windse R? which is used in the analysis of large scale extratrop-
ical weather systems. System states are scalar quanéiiessenting the air flow, namely
the geopotential fielgp. Horizontal windsv = vg+ Vv, are replaced by thegeostrophié
valuesvg in the horizontal acceleration terms of the momentum equoatithe termv,
represents thageostrophiowinds), and the horizontal advection in the thermodynamic
equation is approximated by geostrophic advection. Howdwe practical forecasting
purposes, the horizontal momentum equation is typicalyaeed by the vorticity equa-
tion in the quasi-geostrophic model where the geostrophitioity {q is equal toA@/ fo
(the quantityfg is the Coriolis forcg. Furthermore, vertical advection of momentum is

neglected. The quasi-geostrophic equations are:

vg=K XfOD‘p (5.9)
alyg=—Vg-0(Lg+ fo+ By) + fodpw (5.10)
divva+dpw =0 (5.11)
(0 +Vg-0)(—0pp) — 0w = K—pJ (5.12)

The system variables are the geopotential fgglthe geostrophic winuy, the ageostrophic
wind v, and thepressure change following the motian These variables are all dependent

and the system states can be expressed solely on the getgddteld ¢. All the other

2Geostrophic winds are theoretical winds which result friwa balance between the Coriolis force and
the pressure gradient force. They are directed paralldl teodars.
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terms in Equations 5.9 to 5.12 are constants in which we have:

The vector normal to the surfa&e

* The timet;

* The pressure;

« The rate of heating per unit of mads= 0.01 J-kg~*-s1;
« The advection ternw = 4-10°>m?.Pa2.s72

« The coefficienf3 =2-10"" m~;

* The ratiok = R/cp whereRis the specific gas constant of the air (288 J kg™t
K1) andcp, is the specific heat capacity of the air (1093 kg~1-K—1). It follows

thatk is a dimensionless number equal t@86;

Equation 5.9 is the definition of the geostrophic wing Equation 5.10 is theorticity
equation Equation 5.11 is theontinuity equatiopand Equation 5.12 is thbermodynamic
energy equation This system of equations is the quasi-geostrophic moa@gelishused in
the numerical experiments of this section where geopatefitilds are assimilated then
predicted with machine learning based approaches.

For the experiments, the atmosphere has a single level indtieal and was repre-
sented by a 3& 33 square grid where each system state is located on a noldatajrid.
Observations were generated with a Gaussian noise of earegqual to 1 and the time step
for integration was set to 5.

Experiments with the ULM-based assimilation techniquenshihat the average RMSD
between assimilated states and the true field w&S @hich is an excellent value overall.
The left plot on Figure 5.4 illustrates the performancedefdssimilation step at one spe-

cific location on the 2-D grid. The assimilated state cunasely matched the true state
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Figure 5.4: lllustration of the robustness of the ULM-based assinolatapproach (left
plot) and accuracy of the polynomial extrapolation (righitp The stream of observed
states for the QG model was located on the point (10,3) of ay3Blyrid was captured.

curve despite the high noise and the absence of knowledg# Hi®state transition func-
tion of this system. The computational time required tormiéate the state trajectory of
Figure 5.4 was only a fraction of the time needed by the EnKEhogeduring the assimi-
lation step.

The right plot on Figure 5.4 shows how the polynomial exttapon technique be-
haves with respect to a classic EnKF approach. The smootaipgbilities of the assim-
ilation step paved the way to the extrapolation approachiing the guarantee that the
assimilated state curve was following the trend of the trekel fand was not significantly
influenced by the noise. On the other hand, the EnKF has no myeofiche previously
assimilated states and was not able to properly follow trediof the true field. This lack
of memory in a non-Markovian process was detrimental to tredast, and the EnKF
prediction was completely off the real value of the geoptiééfield.

Figure 5.5 illustrate the evolution of the forecast RMSD&naen the polynomial ex-
trapolation technique and the EnKF with various number skembles. While the RMSD
for the polynomial extrapolation technique stays arour8l@®er the first 500 steps, the

forecast RMSDs for all EnKF approaches increase. The sesidilthe 100 ensembles
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Figure 5.5: Evolution of the forecast root mean square deviations oQBenodel. Com-
parisons are made between the EnKF with a different numbensémbles and the fore-
casts obtained after assimilation with the ULM-based apgino

EnKF become unreliable after 250 steps, and the perfornsanit a lower number of
ensembles are much worse than that. These poor results@ate dome structural inad-
equacies of Kalman filters for this specific example, namie¢ylack of memory and the
non-robustness of the approach. If the noise amplitudetantinhe step are decreased then
the EnKF results get a bit better for the variant with 100 ertsles.

Results demonstrated that the ULM-based assimilationnsehgan mitigate the ef-
fect of noise on observations, without specific knowledgéhefunderlying mathematical
model. The uncovered state trajectories and their trentiseirstate space were success-
fully used for short-term weather forecast which is an aspgthe method that may prove

useful in retrieving knowledge from unknown parts of the nesmatical weather model.
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Conclusions and Recommendations

This dissertation introduced a family of supervised leagnalgorithms calledJncon-
strained Learning MachinefJLMs). Elementary notions of supervised learning, data
processing, kernel methods and statistical learning yhwere discussed in order to prop-
erly construct ULMs. Very little statistical assumptionsthe data are required. Only the
existence of gattern functiorbetweerobservationandtargetsis needed. The statistical
distribution of the features of the data or the structurehefpattern function can remain
unknown. ULMSs rely heavily on kernel methods which allow {h@®cessing of exotic
forms of data through the use of particular measures of aiityilbetween observations.
Furthermore, the capabilities of ULMs to recover complerlimear patterns from data is
demonstrated by the combination of the fundamentals aéstatl learning theory and the
elementary properties of kernels.

The design and implementation of ULMs aim to provide sca&atibust and accurate
methods for solving supervised learning tasks such asifitas®n and regression. ULMs
require the storage of a Gramian matrix which grows quachHyi with the number of
observations. A couple of general data thinning schemes discussed to counter this
memory requirement, including a pipe-lining techniquet tten be used to emulate on-
line schemes. The mathematical programming formulatibasform the core of ULMs
are intrinsically error-tolerant which allows observatioto have outliers and/or inaccu-
rate measurements. The numerical stability of the implaatem of ULMs is guaranteed
under certain conditions that were properly establishedwéver, it is the impact of the
implementation of ULMs on the actual values of the optimalisons that still need to be
analyzed further.

The research work left a few theoretical and practical qaestopened. Regarding the
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background of ULMs, the connection between the ULM perfaroes and the condition

number of the linear systems to be solved is a novel kind afrtecal consideration that

needs further investigation. This question of numericab#ity is rather important since

that solutions are always guaranteed in theory, but thernagerise where no implementa-
tion can compute viable solutions for a specific problemerestingly, that point was never
investigated for closely related learning algorithms. stance, the implementations of
SVMs rely heavily on third party software (e.g. quadratiognamming solvers) with very

little focus, if any, on numerical stability. This aspectbees critical as the use of ML
techniques for many supervised learning tasks increasesyrsensitive applications (e.g.
aerospace engineering).

The investigations in manufacturing engineering openeditior to new applications.
For example, the registration technique that was tailooedJL.Ms can be used to solve
offshoot problems such as the parallelism or the concatyto€many surfaces with an un-
precedented confidence level. The technique also overctiraesystemic bias introduced
by many minimum zone computation techniques due to an inh&aelty registration. The
ULM-based nonlinear nonparametric regression approacthéodetermination of mini-
mum zones is a general approach that can be applied to anysbiatimensional surface
embedded irR3. Hence, it is no longer needed to change the numerical médthidatie
computation of the minimum zone when switching from platesytlinders for example.
Furthermore, the ULM approach allows the definition of theimum zone on surfaces for
which it was not defined before (e.g. catenoid, pseudospuedeiloid).

The applications of ULMs for the analysis of numerical weatmodels need additional
investigations. The assimilation and prediction of sysseates was successfully tested on
a limited number of simple weather models, but these tectasgtill need to be adapted to
more realistic models with much larger sets of observatimmpats. Future improvements
have to include computationally efficient ways to recoveinestes of the state-transition

function of the dynamical systems. Specialized data thipmethods for weather data and
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reliable ULM-based pipe-lining assimilation methods miistimplemented to guarantee
the viability of the approach in actual meteorological agaiions. Additionally, future
research will investigate the automation of this assinafdforecast approach in the context

of meteorology.
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Appendix A

Glossary

A.1 Sets

The empty setis 0. The set of natural integers is wrikleand the group of relative integers

is writtenZ. The set of consecutive integers betweeandb is written [a, b]. The field of
rational numbers is represented@y The real algebras of dimensions 1 and 2 are denoted
respectively byR andC. The interval ofR betweena andb is [a, b] when closed(a,b)
when opened, an@, b| or [a,b) when semi-closed or semi-opened. If a set does notinclude
the element 0O, then a super-scripted star is added. For éxathe set of strictly positive
natural integers is writtel*. For the spac®, the set of non-negative real number®Ris

and the set of non-positive real number®is.

Any other set is represented by an uppercase Latin lettetaimdard or calligraphic
shape (e.g., sets and.”7’). The use of uppercase Gothic letters for sets is not exdlude
For example, the set of the subsetdoWwill be written B(E). The Cartesian product of
two space€ andF is writtenE x F, and the exponential notation is used in the case of
multiple Cartesian products (e.dR!"). The dual of a vector spadeis represented bE*

and the cardinal of a finite discrete $ets written|F|.

A.2 Scalars, Vectors and Matrices

The notation allows the distinction between scalars, ye@ad matrices by using different
typefaces. Scalars and functions are all written with l@ase characters (e.g., scaar

function f). The Latin lettersf, g, h and the Greek lettep, ¢ and 8 commonly refer to
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functions. In the same fashion, Latin lettdgd, i, j, n, m often represent integers while
Latin letterst, u, v, w, X, y often represent real numbers. The imaginary unit is written

Vectors are written with boldface lowercase characters,(gectorv) and are assumed
to be column vectors unless specified otherwise. Non-bodd@reek letters can also be
used to write vectors. The transpose of a vewstds represented by and the vector of
dimensionn for which all components are equal to one is writiign The canonical unit
vectors which form the basis &" are writteney, ..., e,. Thei-th element of a vector is
a scalar writtery;, and the sub-vector generated from a set of indidsy,.

Boldface uppercase Latin letters (eld.) or uppercase Greek letters represent matrices.
The (i, j)-th element of a matri¥ is a scalar and is representedMy. Thei-th row of a
matrix M is written M. and itsj-th column is writterM ;. If two setsl andJ of row and
columns indices of a matriM is given, then the sub-matrix generated by the rowsand
the columns inJ is written M, 3. The identity matrix of dimension is writtenl,, and the

transpose of a matrid is represented biy'.

A.3 Dot Products, Norms and Other Operators

The Euclidean norm of a vectarc R" is written||v|| and the Euclidean dot product of two
vectorsu andv is written(u,v). Thep-norm of a vectow is represented bjv|| , (note that

Iv]| = ||v]|5). When using a dot product in a Hilbert spag€ or its associated norm, the
dot product of two vectors andv is written (u,v) ,, and the associated norm of a vector
v is written ||v|| ,,,. The operator between two matrices or vectors of equal dimensions is

the Hadamard product (i.e. the entry-wise multiplication)
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Appendix B

Additional Algorithms

B.1 Computation of Solutions of Linear Systems

B.1.1 Cholesky Decomposition

The Cholesky decomposition algorithm B.1 is a method thabdgoses a symmetric and
positive definite matriXA into the product of a lower triangular matiixand its transpose,
i.e. A =LL"[Press, 2007]. Ifhis the size of the matrix, then the method requimés3 +

n?/2+n/6 FLOPS to decompose the matrix.

Algorithm B.1: Cholesky Decomposition
Function [L] = CHOLDC (A)
Input: nx n symmetric positive definite matrix.
Output: n x nlower triangular matrixt .

1 L+ 0eR™N

2 fori € [1,n] do

3 for j € [i,n] do

4 s« Aj— DOT (Lj -1 L pi-1) Il Lig=0
5 if i = j then

6 ‘ Lii < /S
7 else

8 ‘ Lji <+ s/Lii
9 end

10 end

11 end

12 return L
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B.1.2 Computation of the Solution of a Triangular System

Algorithm B.2 uses the lower triangular mattixobtained from the Cholesky decompo-
sition of a symmetric and positive definite matAxto compute the solution of the linear
systemAx = b [Press, 2007]. Ifis the size of the matrix, then the method require$ 2

FLOPS to compute a solution.

Algorithm B.2: Triangular System Solution
Function [x] = CHOLSL (L,b)
Input: nx nlower triangular matrixt_, vectorb € R".
Output: vectorx € R".

1 X< 0eR"

2 forie[1,n] do

s | % ¢ (bi— DOT (Lj a1, X[zi—17)) /Li Il Lig=0,xp="0
4 end

(&)]

for i € [n,1] do
6 | %« (X— DOT (L{itni-Xfian))/Li
7 end

8 return x

B.1.3 Conjugate Gradient Method

The conjugate gradient algorithm B.3 is an iterative metfuwdolving linear systems of
equations whose matrix is symmetric and positive definitkeis Thethod is derived from
the method of Arnoldi which is based on orthogonal projetiwocesses onto Krylov
subspaces [Saad, 2003].rfs the size of the system andkfis the number of iterations
of the algorithm, then this method requirde®?+ (9k + 2)n+k— 1 FLOPS to compute a
solution. This method provides a computational advantage @ Cholesky decomposition
of the system matrix only if the linear system is large andrspa This situation may
arise for function evaluation problems with a large samplebservations and a Gaussian
RBF kernel tuned appropriately. In this case, the companaif the solution of the linear

systems in Algorithms 3.1, 3.2 and 3.3 can be done by a Cotgugiadient method rather
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than an approach based on a Cholesky decomposition.

Algorithm B.3: Conjugate Gradient Method
Function [x] = CG (A, b)
Data: tolerances > 0, iteration limitkmax > O.
Input: n x n symmetric and positive definite matix non-null vectob € R".
Output: vectorx € R".

1 k<0

2 X+ 0cR"

3r<+>b

4P

5 p <« DOT (r,r)

6 While p > £ and k< kmax do

7 g+ GEMWV (A,p)

8 | o< p/DOT(q,p)

9 X< X+ap

10 r<r—oaq

11 a < DOT (r,r)

12 | p«r+(a/p)p

13 p+—a

14 k«—k+1

15 end

16 return x

B.2 Algorithms for Elementary Linear Algebra

B.2.1 Symmetric Matrix Rank-2k Update

Algorithm B.4 performs a rank-2k upda®@ = AB! where A andB aren x m matrices
andC is an x n symmetric matrix. Despite that this algorithm is twice &sthan the
general naive matrix-matrix multiplication, the Strasségorithm is asymptotically faster
although less stable numerically [Strassen, 1969]. An asgtically faster algorithm also
exists, however it only brings an advantage for matricesahatoo large to be multiplied
on modern hardware [Coppersmith and Winograd, 1990h i#f the size of the matrices,

then the following algorithm requiregn+ 1)(m—%2) FLOPS to multiply the matrices.
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Algorithm B.4: Symmetric Matrix Rank-2k Update
Function [C] = SYR2K (A,B)
Input: nx mmatricesA andB.
Output: nx n matrix C.
1 C+ 0eR™N
2 forie[1,n] do
3 | for jel[i,n] do
4 Cij «+ DOT (A, Bj.)
5 if i #£ j then
6
7
8
9

| Cii <G
end
end
end
10 return C

B.2.2 General Matrix-Vector Multiplication

Algorithm B.5 is the implementation of the general matreetor multiplicationAx be-
tween an x m matrix A and a vectox € R™. This method requires(2m— 1) FLOPS to

perform the multiplication.

Algorithm B.5: General Matrix-Vector Multiplication
Function [z] = GEMV (A, X)
Input: n x msquare matrid, vectorx € R™.
Output: vectorz € R".

12+ 0ecR"

2 for i e[1,n] do

3 | z+« DOT (Ai,X)

4 end

5 return z

B.2.3 Dot Product

Algorithm B.6 is the implementation of the dot prodygty) between two vectors and
y in R". This method implies the use of a numerically stable sunonatigorithm named

SUMand requires2— 1 FLOPS to compute the result.
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Algorithm B.6: Dot Product

Function [Z] = DOT (x,Y)

Input : vectorsx andy in R".

Output: scalarz € R.

if n=0then /| Case for empty sets

| 2«0
else
if x € R" then
ify € RI*"then
|z SUM(x'-yh) /| Symbol- stands for Hadamard product
else
|z SUM(x!-y)
end
else
ify € RN then
|z SUM(x-y")
else
| Z+ SUM(x-y)
end
end
end
return z
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B.2.4 Matrix Row Summation

Algorithm B.7 computes the sum of the rows af a mmatrixA. The aim of this algorithm
is to use a numerically stable way to compute the resultirgove This method requires

n(m—1) FLOPS to compute the result.

Algorithm B.7: Matrix Row Summation
Function [x] = ROANSUM(A)
Input: nx mmatrix A.
Output: vectorx € R".

1 X< 0eR"

2 forie[1,n]do

3 | X < SUM(AL)

4 end

5 return x
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B.2.5 Diagonal-Matrix Multiplication

Algorithm B.8 computes the produA whereA is an x n diagonal matrix with diagonal

0 € R"andA is an x mmatrix. This method requiresm FLOPS to compute the result.

Algorithm B.8: Diagonal-Matrix Multiplication
Function [B] = DI MM(d,A)
Input: vectord € R", n x mmatrix A.
Output: n x mmatrix B.

1 B+~ 0eR™M

2 for i e[1,n] do

3 ‘ Bi. + §A.;.

4 end

5 return B

B.2.6 Matrix-Diagonal Multiplication

Algorithm B.9 computes the produ&A whereA is an x m matrix andA is amx m
diagonal matrix with diagonad € R™. This method requiresm FLOPS to compute the

result.

Algorithm B.9: Matrix-Diagonal Multiplication
Function [B] = MDI M(A, 9d)
Input: nx mmatrixA, vectord € R™,
Output: n x mmatrix B.

1 B+ 0gcR™M

2 for i € [1,m] do

3 ‘ B.j < A,

4 end

5 return B

B.2.7 Basic Tikhonov Regularization

Algorithm B.10 computes the suf+ ul, whereA is an x n matrix andu > 0 is a scalar.

This method requires FLOPS to compute the result. This algorithm is referred asity
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since the general Tikhonov regularization is a procedutkeformA +I" where the matrix
[ is positive definite. The general procedure then requifesperations which is an order

greater than the basic approach.

Algorithm B.10: Basic Tikhonov Regularization

Function [B] = TI KREG (A, 1)
Input: nx nmatrixA, scalaru € R
Output: n x n matrix B.

1 B+~ 0eR™N

2 for i e[1,n] do

3 | Bii« U+A;

4 end

5 return B
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Appendix C

Elementary Notions of Optimal Control

C.1 Dynamical Systems

Hereby we define the notion of dynamical systems based ones sdraxioms taken from
Athans and Falb [1966]. These axioms aim to abstract theviomehaf physical systems
in order to characterize them with adequate mathematicéds$.taBefore introducing the
axioms, it is necessary to define several variables we shooitld with. These variables

are:

» The sefl C R is a subset of the real numbers called doenainof the system.
» The ordered paifQ, w) is a metric space whef@ is a set andv is a distance oQ.

» The selJ is a set of bounded piecewise continuous functions dverth values in
Q. The setll is called theinput spaceof the system. The restriction of a function
u €U over the semi-open intervét,t] C T, denoted by, 1, is called arinput over

the observation intervel, t] to the system.

» The ordered paifZ, o) is a metric space whef2is a set ana is a distance o.

The set> is calledstate spacef the system.
* The values of the functior: T — X for anyt € T are calledstatesof the system.

» The functiong: Z x Q x T — RP is calledoutput functiorof the system. The identity
Yitot] = g(X(to), u(toﬂ) is calledoutput equatiorof the system with the functioyy,

being anoutput over the observation intervgb, t] of the system.
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The following axioms that will define the notion of dynamisgistem.

Axiom C.1 (Uniquely defined output)For all (to,t] C T, all X(tg) € £ and allue U

the function y 1 is uniquely defined by(ty) and yy, 4 -

Axiom C.2 (Existence of states for input-output pair§pr all T € (to,t) C T and all

ueu,if Z(t,u) = {x(r) €Yy =9(X(1), U(r,t])} then for any e U,

(| =(r,u)#0.

Uer, g =V(r

Zadeh and Desoer [1963] showed that axioms C.1 and C.2 irhplexistence of a

so-calledransition functiong such that thestate equatiorf the system,

X(t) = (P(X(t0)7u(t0,t]7t)7 (C.1)

holds for any given semi-open intervgih,t] C T and any inputu € U. For an interval

| C T, the seiX(1) = {x(1) : T € 1} is called therajectory over the observation interval |

of the system.

Axiom C.3 (Smoothness condition)he functions g ang are continuous.

Axiom C.4 (Initial state is the starting point of trajectonyfor all (to,t] C T, all X(to) €

> and all ue U we havdimsup @((to), U, 1,t) = X(to).
t—tp '

Axiom C.5 (Transition condition) For all T € (tp,t) C T, all X(tg) € Zand alluc U

we have

(P(X(to) ) u(to,t]7t) = (P((p(X(t()), u(toﬂ']v T) s u(T,t]vt) .
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Axiom C.6 (Nonanticipatory condition)For all T € (tp,t] C T, all X(tg) € Z and alll

u < U we have

@(X(t0), Uy, T) = @(X(to), Uty 1), T)-

These axioms can now used to define a dynamical system.

Definition C.1 (Dynamical system)The 6-tuple denoted lyl, Q, >, U, x, g) which sat-

isfies axioms C.1 to C.6 is calleddgnamical system

Definition C.2 (Finite dimensional dynamical systen® dynamical system isfaite-

dimensionabystem of order n i = R" andQ = R™ with m< n.

Definition C.3 (Continuous-time dynamical systemA dynamical system is @ntin-

uous timesystem if the domain T of the system is an open interval.

Definition C.4 (Differential dynamical system)A dynamical system is differential
system if the transition functiog is the solution of the differential equatiaix(t) =

f (x(t),u(t),t) where Xto) is the initial point and where f is continuously differeritie.

In this dissertation, a finite-dimensional continuousetidifferential dynamical system

will be referred as &CD systenand denoted by a 5-tup(&,U, x, f,g) whereT = (o, tw).

C.2 Optimal-Control Problems

Let (T,U,x, f,g) be a FCD system with domaih = (to,t,) and let.” C R" x T be a set
calledtarget set Suppose < T then the functional : U — R U {0}, calledperformance

functional is defined by

J(u) =K(x(t)) + [ L(x(t),u(t),t)dt, (C.2)



whereK is a real-valued function of®" andL is a continuous real-valued function on
RMM™LIf there is no elementifi such thatthe se® (T) = {(x(r), T):T€E T} intersects
< then, conventionallyJ(u) = o for all t € T. If this element exists then the smallest
elementts € T such thatZ (T) intersects is calledterminal time The statex(ts) is

calledterminal stateandK (X(tf)) is calledterminal cost

Definition C.5 (Optimal-control problem)Let (T,U,x, f,g) be an FCD system with

domain T= (tp,t) and a target set”. Theoptimal-control problenis defined by

min{J(u) : Z°(T)N.7 # 0}.

ueU

Definition C.6 (Bounded-state optimal-control problentet (T,U, x, f,g) be an FCD
system with domain F (tp,t.) and a target set”. If SC R" is a closed set such that
& C Sx T, then the bounded-state optimal-control problem is ddfine

min{J(u) : 2 (T)N. # 0 andX ((to,tf]) € S}.

ueU

The optimal-control problem is calledfeee-timeproblem if the target se#” is of the
form Urer (S(t) x {t}) with 0 £ S(t) C R". Furthermore ifS(t) = z(t) wherez: T — R"
then the optimal-control problem is calledparsuit problem. On the other hand if we
suppose that the target set is of the f@m {t} whereSC R" andt € T are fixed elements
then the optimal-control problem is callediged-timeproblem. If the target set is of the
form {x} x T wherex € R" then the optimal-control problem is calledized-end-point,
free-timeproblem. Furthermore if for ali € T we havef(x,0,t) = 0 then the optimal-

control problem is called eegulator problem.
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