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Abstract 
 

Temporal GIS research has historically focused on change, motion, and 

events. This research introduces a framework to represent concepts of fluid 

kinematics with the emphasis on the concept of flows.  General circulation 

models (GCMs) and other spatially explicit environmental models produce 

massive time series of geographic fields (e.g. temperature) that call for 

effective GIS approaches to elicit temporal information embedded in these 

model outputs.  Common temporal GIS approaches with discrete constructs in 

space and time tend to overlook the spatiotemporal continuity that is 

fundamental to the understanding of geographic dynamic fields, such as 

temperature.  Common methods of analyzing climatological characteristics 

center on trend analysis at fixed locations or monitoring meteorological 

phenomena, such as storm tracks, to evaluate circulation changes. The 

proposed temporal GIS framework, on the other hand, uses the velocity of 

virtual particles with fixed climatological values to capture changes in scalar 

continuous fields. The resulting spatiotemporal distributions of velocity 

suggest kinematic flows that can be used to recognize features indicative of 

geographic processes, such as divergence and convergence of isolines. 

Summative characterizations of these kinematic features highlight the 

embedded change and motion in these temporal sets of scalar fields and 

facilitate understanding and comparing model outputs.  
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Chapter 1: Introduction 

1.1 Introduction 
 
This research focuses on the representation of kinematics and the analytical needs for 

grids of regularly spaced spatial data generated from environmental modelling. Manual 

approaches to spatiotemporal correlation analysis are easily overwhelmed by the flood of 

data from finite element models such as general circulation models (GCMs) and other 

spatially explicit environmental models. Effective spatiotemporal techniques are required 

to fully digest these massive amounts of data to overcome the challenges of meaningful 

analysis of GCM data (Sauchyn, Joss & Nyirfa, 2004). Statistical analysis of GCM data 

at fixed locations and fixed time intervals is currently supported with statistical and 

reanalysis tools at the NOAA Earth System Research Laboratory (Kalnay et al., 1996). 

Analysis of the characteristics and dynamics of output from these sources is a daunting 

task due to the lack of descriptive terminology for fields of scalar data that change with 

time (Sauchyn et al. 2004).  The terabytes of raster or gridded data represent snapshots or 

estimates of the environment, yet the key emphasis of temporal sequences of gridded data 

is to reveal changes over space and time. Such changes as well as the underlying 

processes implied by the changes cannot be fully revealed or interpreted without an 

effective data organization for analysis.  The dissertation hypothesizes that an effective 

data organization for analysis is a kinematics-based framework with an explicit element 

representing change and motion. The research builds the conceptual framework, 

implements the representation in a Geographic Information System (GIS), develops 

algorithms to characterize kinematic patterns of change and movement of regions 

embedded in gridded data, and demonstrates the advantage of the kinematics-based 
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approach to help discover spatiotemporal patterns of events and processes. Case studies 

are built upon GCM outputs and compare the findings of spatiotemporal patterns of 

climate events from the proposed approach with discoveries in the climate literature.  

1.2 Background 

1.2.1 The Research Challenges in Temporal GIS  

 
GIS is a spatially enabling technology with emphases on spatial components and 

relationships in data analysis and decision support.  The spatiotemporal representation 

chosen to support the inclusion of time must support the storage, analysis and retrieval of 

information gathered from time dependent phenomena (Longley, Goodchild, Maguire, & 

Rhind, 2005).  A temporal representation that explicitly combines time and space in a 

single attribute eliminates the need for a new dimension in a spatiotemporal GIS 

representation. A temporal representation compatible with the current spatial information 

representation both simplifies the extension and leverages the current GIS analytical 

capabilities.  

The integration of time into a GIS has been a research topic for several decades. 

Geographical phenomena are inherently time dependent yet the current GIS 

representation has only rudimentary support for analysis of time varying geographical 

information. There are several conceptually object orientated spatiotemporal models that 

treat events as basic data objects such as the Event-based SpatioTemporal Data Model 

(Peuquet & Duan, 1995) and the Three-Domain Representation (Yuan, 1998).  Some 

focus on structural similarities in events (Worboys, 2001), object transformations with 

respect to cadastral data (Spery, Claramunt & Libourel, 2001) or the construction of a 

temporal topology (Marceau, Guindon, Bruel & Marios, 2001).  These object oriented 
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constructs in discrete space and time are difficult to apply to continuous spatiotemporal 

fields. 

For continuous spatiotemporal fields, a temporal GIS provides the ability to 

analyze raster based or gridded snapshots (Galton, 2004) and highlight regions meeting 

certain spatial and temporal criteria. This research proposes an integrated approach, based 

on the concepts of kinematics, that conjoins space and time into a single attribute, 

velocity.  Specifically, the goal of the dissertation research applies the ideas of fluid 

kinematics to develop a new representation of spatiotemporal information for analysis. 

Kinematics describes the motion of the field without being concerned with the processes 

that affected the attribute in the past or about what process will affect the attribute in the 

future (Bluestein, 1992). The proposed representation of kinematics is based on the 

direction and amount of change in space and time e.g. velocity. Velocity explicitly pairs 

two snapshots by determining a field of displacements that transform a field at time T0 to 

the field at time T1. Kinematics based representation, therefore, advances location based 

to velocity based GIS analysis. 

This research applies image processing techniques to merge spatial and temporal 

characteristics of a spatiotemporal field into the single spatiotemporal attribute, velocity. 

Image processing algorithms determine motion by tracking intensity values of light 

across multiple snapshots (Horn & Schunck, 1981). Light intensity snapshots are similar 

to attribute snapshots. Images could be considered as an attribute field where the recorded 

attribute is the reflectance. Conceptualizing an attribute field as an image enables the 

application of image processing. 
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1.3 Research Goals and Dissertation Organization 
 

This dissertation research hypothesizes that kinematics-based representation using 

displacement over time is an effective means to characterize and compare a time series of 

gridded data sets. Under this hypothesis, the research builds object constructs to measure 

kinematics with pre-defined isolines. The method is similar to the use of classifications of 

500 mb heights in Huth (2000). Four objectives are identified to support this activity: 

1) Develop a kinematics-based representation that uses displacement/velocity as the 

basis for spatiotemporal analysis of a time series of scalar fields (i.e. gridded data 

sets). 

 

Case studies use temperature data from the Intergovernmental Panel on Climate 

Change (IPCC) 21st Century climate change analysis. The kinematic 

representation for GCM temperature data shows bimodal polar displacements in 

the y displacement histogram: one to the north and one to the south. Cluster 

analysis shows regional clusters of displacement vectors of large magnitude. 

Large displacement clusters are compared and contrasted to identify similarities 

and differences between the two GCMs. The divergence map is inspected to 

determine if there are regions of large positive or negative divergence. Regions 

exhibiting suggestive divergence are discussed.  

 
2) Apply the kinematics-based representation to develop analytical methods that 

measure spatiotemporal characteristics of regions embedded in temporally 

sequenced gridded data. 
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Case studies use 21st Century precipitation from GCM model output. The research 

uses kinematic attributes of the objects to measure positive or negative vorticity, 

longitudinal and latitudinal deformation, and divergence. Patterns of objects with 

particular kinematic characteristics are examined. The deformation and 

divergence attributes for regions that merge or split are examined for potential 

drivers for the merges or splits. 

 
3) Apply the kinematics-based representation to develop analytical methods to 

compare climate projections from two GCM models and two reanalysis datasets.  

 

Case studies use data from the Twentieth-Century Climate in Coupled Models 

project and reanalysis datasets. The differences in displacement vectors from the 

six combinations of the four datasets are evident with distinctive expected values 

based on an F-test. The six combinations have different Interquartile Ranges and 

contain regions of differences that cluster. Clustered patterns consistent across 

comparison pairs with a particular dataset in common indicate locations that have 

fundamental modelling differences in the model. A literature review is conducted 

on any clustered difference regions. 

 

4) Establish that the representation has different grid point value ranges by applying 

the F-test to the grid point range increases counts generated by adding an eighth 

model realization to a seven member Same Model Ensemble (SME) versus 

adding a different model realization. Compare and contrast the spread of the 
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kinematics-based representation to temperature data trends for a Same Model 

Ensemble (SME) and a Multiple Model Ensemble (MME). 

 

Case study uses data from the Twentieth-Century Climate in Coupled Models 

project datasets. Eight permutations of eight realizations from the same model are 

formed with seven realizations in each one. The number of grid points with 

increased range when adding the eighth same model realization versus the 

different model realizations is calculated. An F-test is applied to the two sets of 

counts to determine if there is a significant difference in expected values. The 

variance characteristics of the kinematics-based representation and that of 

temperature data trends are compared for both SME and MME at the grid point 

resolution and the hemisphere means. Hemisphere means are further divided into 

land and sea hemisphere means. Temperature data trend variance characteristics 

for SME’s and MME’s are determined from a literature review.  

 

The dissertation consists of six chapters to meet the four research goals: an 

introduction, four core stand-alone papers that target the four goals, and a conclusion 

chapter. The first objective is addressed in Chapter Two, the second in Chapter Three, the 

third in Chapter Four and the fourth in Chapter Five. The introduction chapter provides 

an overall context for the dissertation while the conclusion chapter summarizes the 

findings and suggests future research. Figure 1.1 highlights the structure of the four core 

chapters of this dissertation. 
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Figure 1.1: Dissertation Organization and the logical connections among core chapters  
 
 

1.3.1 Conceptual foundation 

 
Chapter Two lays the conceptual foundation of this research and applies the proposed 

representation to the output of two GCMs. A space-time integrative approach is used to 
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represent the spatiotemporal characteristics of gridded data. Data are used from the 

National Center for Atmospheric Research (NCAR) Community Climate System Model 

(CCSM3; Collins et al., 2006) and the Center National Weather Research (CNRM) 

global ocean-atmosphere coupled system (CM3; Salas-Mélia et al., in review). Climatic 

30 year mean isotherms are used as a filter to remove short term variability. Mean 

isotherms are assigned displacement velocities by utilizing virtual objects defined by 

isotherm boundaries. An optical flow algorithm (Horn & Schenk, 1981) is applied to the 

boundaries at two different times. Grid points without directly calculated displacement 

vectors are assigned interpolated displacement values. The extracted velocity field is 

examined to determine if the results are in agreement with expected isotherm changes. 

The velocity field characteristics are compared to the expected motion of isotherms under 

the anthropomorphic climate change regime. Regions of unusual motion are examined for 

agreement with previous climate change research. Regions of unusual displacement are 

confirmed using others research to provide support for using displacement as a 

spatiotemporal characteristic of fields.  

 

1.3.2 Kinematic Representation of regions 

 
Chapter Three demonstrates spatiotemporal database content indices that include 

kinematic values used to characterize a point, a region or the entire field.  Spatiotemporal 

data mining attributes are different from spatially derived attributes as they must capture 

both time and space in their representation (Pfoser & Tryfona, 1998). A useful 

spatiotemporal database contains content based indices to support the locating of 

predefined patterns in time and space as well the discovery of new spatiotemporal 
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patterns (Stolorz et al., 1995). Regions are defined using precipitation threshold values to 

formulate clusters of values greater than the thresholds (McIntosh & Yuan, 2005). The 

region’s characteristics across multiple GCM output datasets are used in comparisons to 

demonstrate the utility of regional kinematic indices. Comparing and contrasting the 

difference in region shifts between datasets reveal differences in precipitation changes in 

space and time. Kinematic indices of divergence, rotation, and deformation support the 

search for precipitation regions that are influenced primarily by local conditions or by 

general circulation patterns of water vapor transport. The use of the internal spatial 

variations and external interactions among precipitation features supports the full 

quantification of changes in precipitation patterns.  

1.3.3 Quantitatively Comparing GCM output using the Kinematic Field Representation 

 
Chapter Four demonstrates the direct comparison of the velocity field, representing the 

kinematics of a scalar spatiotemporal field, with fields from other times, locations or 

models. Differences and similarities in the velocity field highlight spatial regions where 

further research may determine potential underlying reason for the differences and 

similarities. Differences in displacement vector characterizations of GCMs and reanalysis 

data support the identification of regions with conflicting climate change patterns. 

Statistical temporal randomness is reduced using interval means while spatial filters are 

used to smooth small scale variation. The pattern differences in displacement vectors 

reveal meaningful data set differences. 

  



 
 

10 
 

1.4 Variability characteristics of the Kinematic Field Representation 
 
Chapter Five evaluates the effect on grid point range of combining multiple datasets from 

same GCM or from different GCMs. A set of eight Same Model Ensembles (SMEs), each 

of seven datasets, are formulated from eight NCAR datasets. An eighth NCAR dataset is 

evaluated for the number of grid points for which the eighth dataset is outside the range 

of the seven datasets in that SME. The single CNRM dataset impact on range is similarly 

analyzed. The F-test is then applied to the two sets of eight numbers to determine if the 

expected values are different.  

 The spread of the displacements of GCM ensembles at the grid point, hemisphere 

land, hemisphere sea, hemisphere and global scale are evaluated for similarity to trend 

characteristics. The variance of a Same Model Ensemble and a Mixed Model Ensemble 

are compared to the ensemble regional, hemispherical, global and grid point scale 

variance of temperature trends. Similar differences in scale variability for velocity vectors 

versus temperature trends provide evidence the spatiotemporal variability characteristics 

are similar to that of the temperature trends. 

1.5 Dissertation Organization  
This introductory chapter outlines the research questions, objectives and plans for 

Chapters Two through Five as well as for the dissertation as a whole. Chapters Two 

through Five provide details of the conceptual context, methodology, results and 

interpretations for each chapter’s research questions. The final chapter summarizes the 

findings from the research for Chapters Two though Five and proposes areas for future 

research.  
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Chapter 2: Incorporating Concepts of Fluid Kinematics in Temporal GIS to 
Represent Continuous Geographic Fields in Space and Time 
 

Abstract 
 

Much temporal GIS research has addressed change, motion, and events. This 

chapter introduces a temporal GIS framework to represent concepts of fluid 

kinematics with the emphasis on the concept of flows.  General circulation 

models (GCMs) and other spatially explicit environmental models produce a 

massive time series of geographic fields (e.g. temperature) that call for 

effective GIS approaches to elicit temporal information embedded in these 

model outputs.  Common temporal GIS approaches with discrete constructs 

in space and time tend to overlook the spatiotemporal continuity that is 

fundamental to many geographic fields.  A representation is developed to 

capture the direction and speed of change in space and time, using velocity as 

the basic unit of representation. Spatiotemporal distributions of velocity 

suggest kinematic flows that can be further used to recognize features 

indicative of geographic processes, such as divergence and convergence, with 

attendant ideas about isoline sources and sinks. Summative characterizations 

of these kinematic features highlight the embedded change and motion in 

these temporal sets of scalar fields and facilitate understanding and 

comparing model outputs. The proposed kinematic representation is applied 

to characterize and compare climate projections based on IPCC A2 scenario 

from two GCMs: 1) The Center National Weather Research global ocean-

atmosphere coupled system (CNRM-CM3) and, 2) the National Center for 
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Atmospheric Research Community Climate System Model (NCAR-CCSM3). 

Results from this research suggest distinct regions of rapid isotherm 

movement.   Several of these regions appear consistent with findings from 

previous climate findings.  The  regions of convergence and divergence 

identified from the two GCM models are similar except for the following: a 

high latitude region in southern Greenland; a band of regions at -15° latitude 

extending from the middle of South America to east of Madagascar; a region 

over the Arabian Sea; a region over Indonesia; and several regions in the 

tropical oceans. The case study shows that fluid kinematics approach offers 

an alternative means to time-stamped or event-based representations of 

geographic phenomena and provides a new foundation for spatiotemporal 

analysis of geographic fields.  

 
Keywords: temporal GIS, geographic kinematics, change, motion, and climate 
change.  

 
 

2.1 Introduction  
 

This research applies the concepts of fluid kinematics to characterize change and motion 

of spatiotemporally continuous geographic phenomena by using velocity of flows. Earth 

Observation Systems, ground-based radar, weather networks, and environmental models 

generate peta-bytes of regular or irregular grid-based data daily to monitor changes to 

field-based geographic phenomena, such as vegetation, temperature, and land cover.  

Changes are commonly characterized through differences at locations over time. With the 

concepts of fluid kinematics, the grid-based scalar observations (such as temperature) can 
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be transformed to flow vectors (directions and speed of the movement of a cold front) to 

address how changes progress through space.  

Historically, the development of temporal GIS has largely focused on the scalar 

component of geographic data. Yuan (1999) reviewed four main approaches to temporal 

GIS data modeling: snapshot model, space-time composite model, spatiotemporal object 

model, and event-based spatiotemporal data model. All the four approaches build upon 

the scalar data of locations, objects, or events.  The rich amount of spatiotemporal 

information about change progression, however, is not readily available because the 

kinematics of geographic phenomenon cannot be easily recognized by discrete 

measurements in space and time.  A space-time integrative approach is necessary to 

directly examine changes or movements occurring to geographic phenomena. To this 

end, a representation scheme is proposed based on the concept of fluid kinematics to 

characterize flows and movement directly. By characterizing flows and movement in two 

granules: (1) the phenomenon as a whole or (2) identifiable features representative of the 

phenomenon, the representation is able to capture both the movement of the phenomenon 

as an object and the change in its properties across space and time.   

In contrast, most temporal GIS research efforts have been based on the object-

based approach with a focus on various concepts of “events” and “change.” Langran and 

Chrisman (1988) proposed a GIS spatiotemporal representation, the “Space-Time 

Composite Model” , in which events are used as triggers to state changes in a cadastral 

GIS. When an event occurs and alters the spatial configuration of a cadastral system, the 

“Space-Time Composite Model” divides the existing spatial constructs into homogeneous 

spatial units and records the change through time-stamped attributes. As a result, space-
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time composites are the smallest spatial units with common changes of attributes over 

one’s life span. Other early spatiotemporal GIS database approaches stored data as 

snapshots of gridded data (Armstrong, 1988), yet temporal GIS analysis for gridded data 

was established much later (Christakos et al., 2001).  

 In the 1990’s the focus of spatiotemporal GIS research shifted to the object-based 

approach (Peuquet, 2001).  Worboys (1994) proposed ”spatiotemporal atoms” that 

consist of homogeneous attributes in space and time as the basic unit of representation 

and developed temporal lineages among spatiotemporal atoms to form spatiotemporal 

objects. Peuquet and Duan (1995) proposed the Event-based Spatiotemporal Data Model 

to assemble location-based changes that were triggered by individual events. 

Furthermore, Yuan (2000) developed a representation based on hierarchies of zones, 

sequences, processes and events to capture the change and motion of multi-scalar 

spatiotemporal aggregates across space and time. Zones are footprints resulting from a 

process at a given instant in time, and sequences are temporal aggregates of footprints 

over time which represent changes in morphology and location. Processes are 

spatiotemporal aggregates of sequences which highlight branching and merging that 

occur during the process development. Finally, events are spatiotemporal aggregates of 

processes under common driving forces. With fields, objects, and a hierarchy of 

spatiotemporal aggregates, Yuan’s approach applies the Hierarchy Theory (Ahl & Allen, 

1996) to enable spatiotemporal analysis using a knowledge base of definitional objects to 

elicit empirical objects from GIS data (Yuan, 2000).  

From mid the 1990’s to 2000’s, the emphasis on “event” or “movement” was 

fundamentally based on ideas of objects. The object-oriented temporal GIS research did 
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not lead to broad acceptance of any particular spatiotemporal data model amongst the 

GIS research community due largely to the mismatches between database management 

and application needs. More than a decade after the initial conceptualization by Langran 

and Chrisman (1988) challenges remain, both methodologically and technologically, 

when updating large cadastral databases (Spery, Claramunt, & Libourel, 2001). The 

mismatches between database management and applications were echoed by Peuquet 

(2001) who argued that the chosen conceptualization, field or object, should depend upon 

the application of the database and that there is no universal spatiotemporal 

representation adaptable to all application needs. Managing data objects in these object-

oriented GIS data models is a task in itself. Hornsby and Egenhofer (2000) developed the 

Identity State Change Description Language to facilitate the management of data objects 

and their temporal states of properties. While GIS modeling of moving objects made 

significant strides in recent years (Güting et al., 2000; Hornsby & Egenhofer, 2002; 

Pfoser & Theodoridis, 2003), management of temporal objects with high dimensional 

complexity (such as changing shapes, spatially varying properties, and altering 

continuity)  continues to be challenging.  

Nevertheless, the new direction of moving objects in temporal GIS data modeling 

shows great promises with the use of movement and deformation to an object as the basis 

for spatiotemporal representation, such as spatiotemporal helixes by Stefanidis, 

Eickhorst, Agouris, & Partsinevelos (2003). The complexity of data management is only 

one issue with object-oriented spatiotemporal representation in GIS. Many real-world 

spatiotemporal phenomena go beyond the representation power of object-oriented or 

event-based data models (Galton, 2004).  



 
 

18 
 

While most research efforts on temporal GIS data modeling center on the object-

view of the world, many geographic phenomena are spatially continuous with field 

properties that can be represented by functions of locations (Goodchild et al., 2007). 

Field-based representation cannot be overlooked for the temporal GIS development 

(Christakos, Bogaert, & Serre, 2001; Mennis, Viger, & Tomlin, 2005). Researchers have 

proposed several hybrid approaches to combine field and the object conceptualizations. 

Yuan (2001) proposed the idea of “field-objects” which behave as objects but possess 

fields that define the internal structure and spatially varying properties of individual 

objects. Cova and Goodchild (2002) combined objects and fields with the idea of “object 

fields” where continuous fields were mapped to spatial objects, such as locations at an 

elevation field are mapped to respective watersheds.  

Most hybrid approaches so far have emphasized storing and relating objects and 

fields in GIS databases and have not addressed the underlying physical mechanisms that 

connect fields and objects.  Temporal GIS needs integrated space-time data frameworks 

to be compatible with physically based models, to provide the means for sound scientific 

inferences rather than mere statistical inferences, and moreover to support physical 

knowledge integration and query processing (Christakos et al., 2001).  

The fluid kinematics based GIS representation attempts to enable representation 

of manifestations of the focal phenomenon in the GIS database. Concepts from fluid 

kinematics are applied in the design of a hybrid field-object representation. Use cases are 

developed to test the proposed representation with global temperature change projected 

by two general circulation models (GCMs).  This section highlights the development of 

temporal GIS representation and illustrates the need for incorporation of physical 
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mechanisms of geographic phenomena to improve temporal GIS support for scientific 

inferences and knowledge integration. Section 2 discusses the concepts and algorithms 

for the proposed kinematics approach. Discussions will elucidate how the concepts of 

kinematics are used to discern change and movement in geographic fields, and how the 

characterizations of change and movement can facilitate understanding the 

spatiotemporal properties of geographic phenomena. Section 3 presents use cases on 

analysis of climate change scenarios to illustrate the capabilities of the proposed 

representation and analytical approaches. In particular, emphasis are placed on the 

spatiotemporal information that can be elicited from the kinematics approach but may be 

cumbersome to discern or even overlooked by other existing methods. Finally, the key 

features of the proposed kinematics approach are summarized with regards to enriching 

temporal GIS for geographic fields.  

2.1.1 The conceptual basis to incorporate fluid kinematics into GIS representation and 
analysis of spatiotemporal phenomena 

 
The proposed kinematics-based representation facilitates analysis of how geographic 

phenomena change over space and time.  A precursor to analysis of change or movement 

is to identify an object or a feature that experiences the change or carries out the 

movement. Identification of objects or features in a geographic field depends on human 

cognition and problem domains of interest. Once identified, the object or feature becomes 

a surrogate of analysis for the geographic phenomenon of interest.  For example, isobars 

in an air pressure field can be used as surrogates to characterize the distribution of the 

pressure field and how the pressure changes over space and time. The faster the isobars 

move outwards the greater the divergence of the respective air mass.    
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At the finest granule, individual grid cells are surrogate objects of a geographic 

field in a grid-based data set, where each grid cell serves as the minimum observable unit 

of property change to the geographic phenomenon of interest. Kinematics analysis 

examines not only change in cell values but the direction of change based on the gradient 

among surrounding cells. Different levels of spatial and temporal aggregation can create 

additional surrogate objects to meet application needs.   

At the feature level, kinematic analysis operates on the points along each 

surrogate object boundary (such as along an urban-wildland interface or an isotherm). 

Movement of these points, which may or may not be uniform, reflect the overall motion 

of the surrogate object. Collective patterns of all surrogate objects represent 

spatiotemporal characteristics of the geographic field in consideration.  

From grid cells to features, the proposed kinematics-based representation 

incorporates both field- and object-based approaches to analysis of change and movement 

by constructing surrogate objects in geographic fields and tracing such objects in a 

temporal sequence in which the geographic field has been observed.  Kinematic behavior 

of these surrogate objects characterizes the change and movement resulting from the 

geographic phenomenon. For terrain analysis, ontological features, such as mountains or 

slopes, can serve as surrogate features. For land cover analysis, different land cover types 

may be used for surrogate objects. For climate, isolines of atmospheric properties, such as 

isotherms or isobars, are good candidates for surrogate objects.  

For analysis, the proposed kinematic approach applies concepts from Lagrangian 

and Eulerian systems for fluid flow. In an Eulerian system, kinematics is measured by the 

velocity at fixed locations and time, which is analogous to cell-based velocity analysis of 
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property change in a geographic field. Complimentarily, a Lagrangian system addresses 

kinematics through tracing a fluid parcel over space and time, which is comparable to 

tracing feature-level surrogate objects over space and time in a geographic field. Eulerian 

kinematics captures local change, and Lagrangian kinematics reflects change or 

movement at the regional level or at a larger scale.  The two distinct perspectives to 

kinematics analysis allow flexibility to facilitate understanding of fluid flows through 

spatial gradient (an Eulerian property) or based on parcel trajectory (a Lagrangian 

property).   

The proposed kinematics-based analysis utilizes Eulerian and Lagrangian 

concepts in two stages. First, surrogate objects are identified, and fluid velocity is 

calculated at locations along each of the surrogate objects to determine kinematics at a 

given time. The Lagrangian approach considers a parcel as a whole moving at a uniform 

speed.  Surrogate objects for geographic fields may not exhibit such uniformity due to 

spatial variability and deformation. Therefore, the second step involves identification of 

points along the surrogate objects and calculates velocity values at these points. At a 

conceptual level, the kinematic nature of a geographic phenomenon is then represented 

by surrogate objects that move across space in temporally sequenced scalar fields.  For 

example, surrogate objects of a temperature field may be isotherms.  The Lagrangian 

approach characterizes the “temperature flow” by how fast these isotherms move and to 

what direction they move. Alternatively, the Eulerian approach determines the amount of 

temperature change and the direction of change gradient at grid points in the scalar fields.  

For proof of concepts, isotherms are chosen to be surrogate objects that 

characterize temperature fields projected by two general circulation models. In particular, 
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temperature thresholds are selected to identify isotherms of interest. Image processing 

techniques are applied to analyze the change and movement of these isotherms by tracing 

these surrogate objects over space and time (Figure 2.1).  

 

Figure 2.1: An example of an isotherm moving inwards to indicate the change in a 
temperature field from T0 to T1. 

 

The vector calculation algorithm is run for all grid points on an isotherm. The 

vectors are oriented with the local gradient, usually perpendicular to the T0 isotherm, if 

the T1 value is less than T0 value, or opposite to the gradient if the T0 value is less than 

the T1 value. The vector is assigned a length equal to the distance in line with the gradient 

to the nearest equivalent time1 isotherm. The algorithm does not calculate a vector to the 

T1 isotherm if the difference between the current grid point and the previous has a sign 

opposite of the gradient’s sign somewhere along the vector. 

 Isotherms are effective means to capture the transitional and continuous nature of 

temperature fields. Certain isotherms carry strong physical implications, e.g., 0oC, and 

shifts of these isotherms may have further implications on ecological systems. Analysis 
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of positions and movements of isotherms over time can provide summative assessment of 

climate trends. Comparison of temperature fields estimated from different climate change 

models can suggest the discrepancies in spatial and temporal trends of the model outputs 

as well as areas and periods of high discrepancies for further investigations.  

Furthermore, this study tracks motion of surrogate objects, calculates velocity, 

and assigns velocity to the properties of the surrogate objects. Velocity is treated as a part 

of an isotherm’s properties. Velocity is the first derivative of space by time and is 

required to calculate the second order, acceleration, and higher order derivatives. In 

addition velocity is intuitively understood by a higher percentage of the population and is 

easier to conceptually understand (Rosenblatt, Sayre, & Heckler, A., 2009; Trowbridge, 

& McDermott, 1981). Velocity is the simplest conjoining of space and time and is 

directly calculated with optical flow. This study applies algorithms used to analyze 

optical flows in image processing (Horn & Schunck, 1981) and stores the flow field with 

velocity and displacement in GIS grid data. Kinematics maps are used to analyze 

spatiotemporal fields in the following three ways:  identifying statistical outliers in the 

flow field that highlight unique areas, examining autocorrelation in displacement vectors 

that identify cohesive fluid objects and comparing flow fields from different data sources. 

Moreover, a 2D continuous field, such as temperature, can be perceived with flows of 

convergence and divergence. Regions of convergence and divergence may suggest areas 

of interesting processes driving the dynamics of the scalar field. Diffusive flow generates 

isoline fiat objects that maintain an outflow boundary. Such outflow boundaries across 

time slices are tracked to elicit the patterns of diffusive flows. 
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2.2 A Case Study to Compare Global Temperature Projections from Two General 
Circulation Models (GCM) 
 
Previously GCM projections have been compared using spatial metrics and patterns. 

Hulme et al. (1993) used precipitation and mean temperature along with gale frequency 

to compare the output of multiple GCMs. Felzer and Heard (1999) looked at the weather 

pattern storm tracks that affect precipitation in the southwestern United States to assess 

output of different GCMs. Pepin (1995) examined the spatial increase in the annual 

temperature accumulation, days multiplied by Celsius temperature, of 1000 degree days 

or more in the Northern England area to compare and contrast the UKHI (United 

Kingdom Meteorological Office High Resolution GCM Equilibrium Experiment) and 

GISS (Goddard Institute for Space Studies) GCMs. Sengupta and Boyle (1993) used a 

limited number of independent time sequences of equatorial Pacific spatial patterns to 

differentiate the performance of two GCMs.  Huth (2000) used classification of 500mb 

heights to determine patterns used for T-mode PCA analysis of the GCM output.  These 

studies all used temporal sequences of observed attribute patterns to analyze the 

spatiotemporal projections of GCMs. The largest spatial extent in these studies is a region 

extending 15°S-15°N by 120°E-255°E. These studies all determined that there is a good 

match between different GCM’s output.    

Departing from these mostly trend based approaches, this research compares 

GCM outputs using GIS representation and analysis based on fluid kinematics. This 

research uses the full global extent with a temporal dimension of limited resolution, i.e. 

the changes between the climatic averages of two 30 year periods with a 30 year gap in 

between. The approach in this research adds a pattern of change analysis that does not 

require the use of meteorological phenomena such as storm tracks or gale frequency.  
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2.2.1 Data and Methods 

 
Two GCMs are selected, based on availability, from the group of GCMs used by the 

IPCC for climate change analysis: National Center for Atmospheric Research 

Community Climate System Model (NCAR CCSM3) (Collins et al., 2005) at 1.4°x1.4° 

resolution and the Center National Weather Research Global Coupled System (CNRM 

CM3) (Salas-Mélia et al., in review) with 2.8°x2.8° resolution. The kinematics 

representation is shown to be insensitive to differences in grid sizes (See appendix A)  

because the emphasis is on the general pattern of flows rather than absolute properties at 

location.  

The case study extracts two climatological means from 95 years (2000-2095) of 

monthly meteorological data using 30 year moving averages ending in 2030 and 2090.  

The distribution of CNRM CM3 30-year mean temperatures in 2030 is shown below in 

Figure 2.2. 

 
Figure 2.2: Mean Temperature for the Years 2000-2030 from the CNRM CM3 GCM 
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Projected monthly temperature data for the period of 2030– 2090 from the CNRM 

CM3 and the NCAR CCSM3 for IPCC scenario A2 are obtained from the World Climate 

Research Program’s Coupled Model Inter-comparison Project Multi-Model Dataset 

Archive. The A2 scenario is chosen because it follows more closely the actual rate of 

change during the years available than the other scenarios. The yearly mean of GCM 

surface temperature data is calculated for the years 2000-2030 and 2060-2090.    

The grid dimension of the CNRM CM3 model is 128 by 64 units of 

approximately 2.8° latitude and longitude, and for the NCAR CCSM GCM, 256 by 128 

units of approximately 1.4°. The projected temperature data is used to create 30-year 

mean monthly temperature data for 2000- 2030 and 2060- 2090.  To facilitate 

comparisons, the temperature range for all displays is set to the range of -54 °C to 33 °C.  

Maps based on projected temperatures show dependence of temperature on latitude and 

elevation (Figures 2.2 and 2.3 for CNRM CM3). The Himalayan Mountain range is 

particularly noticeable in the Asian continent.  

 
Figure 2.3: Mean Temperature for the Year 2060-2090 from the CNRM CM3 GCM 
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Visualization alone is not powerful enough to identify differences between figures 

Figure 2.2 and Figure 2.3 to determine spatial shifts of temperature between the two 30-

year periods. Isotherms for the two periods are generated at the chosen temperature 

thresholds (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 26 0C). These 

thresholds are based on Koppen Climate Classification (Lamb, 1972) boundary 

temperatures with subdivisions to insure a dense spatial sample of the temperature field. 

Binary boundary images were created for each isotherm (Figures 2.4 and 2.5).  

 

 

Figure 2.4: Image of 16 °C isotherms from the CNRM GCM output in the 30-year mean 
from the period of 2000-2030. 
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Figure 2.5: Image of 16 °C isotherms from the CNRM GCM output in the 30-year mean 
from the period of 2060-2090 
 
 

While the isotherm of 16 °C shows differences in locations and shapes between 

the two 30-year periods, the differences for other isotherms were less obvious. Velocity 

maps are generated to show the spatial distribution of change vectors (i.e. displacement 

and direction) with x displacements and y displacements to portray the magnitude and 

direction of shifts in isotherms. Kinematics states that the change rate of flow at a fixed 

point (
��
��) is equal to the total rate of change of fluid particle (

��
��� minus the flow  

velocity at a location (V) multiplied by the field’s gradient (material derivative or 

advection term).  

 

��
�� �  ��

�� � 	 · ��   Eq, 2.1 (Bluestein 1992) 
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This research makes the assumption that the attribute values are transported by 

constant value particles and thus there is no change in the rate of flow; i.e. ( 
��
��) is equal 

to zero.  

 
��
�� � 0   Eq. 2.2 (Bluestein 1992) 

 

 All change at a given location, (
��
���, is the result of the advection, (�	 · �� ), of 

constant value particles.  

 
��
�� � �	 · ��   Eq. 2.3 (Bluestein 1992) 

. 
 Determination of V requires locating the most likely location from which the new 

value of F is advected. The velocity field (V) is determined through the use of surrogate 

objects with boundaries defined by a range of threshold values.  From the temperature 

grids, the borders of multiple surrogate objects are defined using isotherms of annual 

mean temperature. The assumption of particles with unchanging attribute values leads to 

Eq. 2.3 which is equivalent to the Optical Flow Constraint equation (Horn & Schunck, 

1981) where I represents the image intensity. 

( 
��
�� � 	 · �� � 0 )  Eq. 2.4 (Bluestein 1992) 

 

Using attribute value instead of intensity enables the determination of the velocity 

of the isotherm aligned with the local gradient ���� using the optical flow approach 

(Horn and Schunck 1981) with modifications for the use of the isotherm location at the 

next time instance. The magnitude of the displacement is determined by following the 

local gradient to a point on the isotherm in the next time slice. 

The velocity of isotherm movement (following the local gradient) is calculated 

and mapped to form a global distribution of the velocity field. The local gradient is 
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determined using a local estimate based on a configurable window size. Four windows of 

size 3×3 are defined, one on each side of the point. The average value of the attribute for 

each window is determined and then the horizontal and vertical difference calculated 

using the window’s means (Konrad, 2005). The velocity is represented as two scalar 

measures, u = (x displacement)/∆t and v = (y displacement)/∆t. x displacement and y 

displacement are the isotherm displacement in the latitudinal and longitudinal direction 

while ∆t is the interval between time instances. The displacement vectors are represented 

as two point data tables, one for the longitudinal component and the other for the 

latitudinal component. A latitudinal table is show in table 2.1. 

latitude Longitude value 

76.71 -132.19 8.00 

73.92 177.19 0.99 

73.92 174.38 1.22 

73.92 171.56 1.00 
 Table 2.1: Latitudinal table for CNRM displacements 
 

Each point is represented by latitude, longitude, the latitudinal velocity and longitudinal 

velocity. The displacement point tables contain values for points on the isotherms for the 

chosen thresholds. The isotherms used for this study (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 

12, 14, 16, 18, 20, 22, and 26 0C) are a subdivision of the mean yearly temperature values 

used in the Koppen Climate Classification (Lamb, 1972), Additional isotherms can be 

used to assign displacements to more points in the area of interest. A denser array of grid 

points with assigned displacements enables the identification of finer details in flow as 

can be seen in appendix A. The large regional features remain consistent with different 

sampling percentages. GIS provides a means for spatial interpolation of spatial pattern 

realizations (Burrough, 2001). Interpolation determines the values for the approximately 
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three quarters of the total points without calculated values. The values are interpolated 

using the Environmental Systems and Research Institute (ESRI) Natural Neighbor 

Algorithm. The Natural Neighbor Algorithm uses a set of points within a given distance 

of the new point and applies a weighting based on the area overlap of a Thiessen polygon 

associated with the new points and Thiessen polygons associated with the current points 

(Gold 1989). Natural Neighbor interpolation does not produce minima or maxima that are 

not present in the input samples (Gold 1989). 

The kinematic map is created by using point sets containing both the displacement 

and direction attributes generated from the grids of displacement components. The grids 

of longitudinal and latitudinal components are processed to create values of magnitude, 

direction and convergence. The direction and magnitude of resultant vectors are 

calculated using the distance formula and arctangent functions. The direction and 

magnitude attributes are then used to create the kinematic map consisting of displacement 

arrows of size proportional of the magnitude at the location. (Figure 2.6). 
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Figure 2.6: Processes to create kinematics map of displacement vectors 
 
 

The final step in kinematic mapping is to identify regions of high convergence 

and divergence. Divergence is calculated based on longitudinal velocity (v) and 
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latitudinal velocity (u)  using the centered difference formula. For location (i,j) 

divergence is:  

������������, �� � ����� ,!�" ���" ,!�
#$% & �  �'��,!� �" '��,!" �

#$( &   Eq. 2.5 (Bluestein 1992) 

 
  

 
∆x is the grid spacing in the latitudinal direction, and ∆y is the grid spacing in the 

longitudinal direction. Convergence occurs when the divergence value is less than zero. 

The resulting field has no discernible spatial structure due to spatial variability of the 

divergence values.  Instead, this case study took another approach that used an areal 

average. The areal average is calculated using the average of the area’s change in flow 

directly by using an area integral over a region (R) bounded by a curve (C): 

) �*+ ·  	 ,-  Eq. 2.6 (Bluestein 1992) 
.  

 

�* is the horizontal divergence and V is the displacement vector with components u and 

v. The use of a closed contour integral can be substituted for the area integral by 

application of Green’s theorem: 

) �*+ ·  	 ,- �  . 	 ·  �/ ,0 1    Eq. 2.77 (Bluestein 1992) 
 

 

�/ is the vector normal to the curve C and ds traverses the curve in a counter 

clockwise direction. While the contour integral approach appeared challenging for 

regions with irregular boundaries, the case study uses moving square windows of various 

sizes to generate mean divergence values. A moving window is used to smooth spatial 

variability and produce discernible regions of divergence. Through trial and error, a 7×7 

moving window is found to produce aggregated regions convergence and divergence. 
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When cool regions are embedded in a warmer field the regions isotherms 

converge towards the interior as the overall field warms up. Expanding warm regions 

embedded in a cooler field produce divergence as new isotherms emerged in the warm 

region and move outwards into the surrounding cooler field. Convergence and divergence 

are also identified in regions of large displacements embedded in a field of more 

moderate displacements. The leading edge of the larger displacement compresses 

isotherms producing convergence while the trailing edge produces larger spacing 

between isotherms leading to divergence. 

2.3 Results and Discussions 
 

2.3.1 Velocity Fields and Vector Displacement Analysis of the CNRM CM3 Projected 
Temperature for Scenario A2 during the period of 2030-2090 

 
Distributions of displacements in latitudinal (x) and longitudinal (y) directions 

provide insights into the trends in temperature change. The CNRM displacements show a 

bimodal distribution of longitudinal displacements for the 30-year means of the years 

2000-2030 and 2060-2090 (Figure 2.7).  
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Figure 2.7: Frequency distribution of longitudinal (y) displacements for CNRM. The 
displacement range of -216 to 228 is divided into 100 bars. 
 

The most frequent longitudinal displacements in the southern hemisphere occur at 

a rate of approximately 40 km/decade (third tallest bar in Figure 2.7) and 60 km/decade 

(second tallest bar in Figure 2.7) over the 60-year period. In the northern hemisphere, 

however, the most frequent longitudinal displacements occur around 50 km/decade 

(tallest bar in Figure 2.7) over the 60 years. The greater displacement towards the polar 

region correlates to a faster rate of isotherm shift.  

Figure 2.8 shows the spatial distributions of longitudinal displacements from 2030 

to 2090.  
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Figure 2.8: CNRM CM3 Longitudinal Isotherm Displacement 2030-2090 
 

 Figure 2.8 shows a clear trend of isotherms moving towards the polar regions. 

Large movements towards the north (“green spots”) occur around the equitorial region.  

In the norther hemisphere, most isotherms move at a similar rate towards the north (in 

yellow and beige colors), suggesting a wide spread moderate warming trend. However, 

areas in the mid-section of the U.S., Russia, Euroasia, and Siberia show isotherms 

moving toward the south, suggesting the presence of local temperature minima. In 

comparison, spatial patterns of isotherm displacements are much more fragmented in the 

southern hemisphere than in the north.  While the general trend is warming in the 

southern hemisphere, regional patches of higher warming areas are almost continuous in 

the subtropical and temperate zones, and in a strip of area near the polar region. The lack 

of higher warming areas in the higher southern latitudes is a possible result of Southern 

Ocean heat uptake. 
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The CNRM CM3 latitudinal displacement histogram has a leptokurtic distribution 

with a dominant peak at approximately -2 km/60 years (Figure 2.9).  

 

Figure 2.9: Histogram of latitudinal displacements for CNRM CM3 2030 – 2090. The 
displacement range of -68 to 71 is divided into 100 bars. 
 

The latitudinal displacement distribution is centered around the zero displacement 

and is the possible result of the majority of isotherms having a dominantly east west 

orientation. The distribution of displacement in the minus or plus x direction is not 

spatially restricted to a particular hemisphere but rather is distributed across the globe 

(Figure 2.10).  
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Figure 2.10: CNRM CM3 Isotherm Latitudinal Displacement 2030-2090 
 

The displacement pattern in the latitudinal direction suggests that most of the 

world experiences small shifts (in beige and light brown colors).  Regional patches show 

isotherms moving towards the east, and by large these patches occur in or around the 

zones of easterlies.  Comparably smaller and more isolated areas show isotherms shifting 

towards the west (in green and light yellow colors).   

The iso cluster analysis identifies clusters of large displacements and the large 

convergence/divergence. The iso cluster analysis makes an initial assignment using 

histogram peaks and then modifies the assignments using variance and covariance based 

on an assumed normal distribution (de Smith et al., 2007). The analysis modifies the 

cluster assignment after each iteration using two criteria: (1) two cluster centers which 

are closer than a set tolerance level are combined and (2) clusters without a minimum 

number of members are dissolved with members assigned to surviving clusters.  Clusters 

are broken up when they are overly large, have excessive standard deviation or when the 
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average distance from cluster center is excessive. The CNRM GCM kinematic map 

(Figure 2.11) has multiple locations of large convergence/divergence and of large 

displacement vectors.  

 

Figure 2.11: CNRM CM3 rapid displacement vectors, high convergence and high 
divergence areas for 2030-2090.  

 

Divergence regions are scattered, but two interesting regions appear over 

Indonesia (I in Figure 2.11) and at the center of the Niño 3 region (N in Figure 2.11). 

These locations for divergence hint that ENSO processes may be changing due to 

anthropomorphic climate change (IPCC 2001). A band around 67° across the North 

American Continent with clusters in southern Greenland, a region in the western Indian 

Ocean and the southwest coast of Africa shows suggestively large isotherm movement. 

The band at 67° is likely related to rapid climate change at polar areas (Holland and Bitz 

2003). The high change rate over the Arabian Sea is possibly due to  an increase in 

I
N
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monsoon strength leading to cooler than normal SSTs in the Arabian Sea and the 

influence of a strengthening Indian Ocean Dipole which affects zonal SST gradients 

along the Equator (Saji et al., 2006). The divergence region over the Arabian Sea 

indicates a possible warming region with rapid isotherm outflows in both the northern 

and southern directions. The rapid change in the south western coastal region of Africa 

may be the result of an increase in the western flow from the Sahara during summer 

brought about by global warming as suggested by Semazzi and Song (2001).  

2.3.2 Velocity Fields and Vector Displacement Analysis of the NCAR CCSM Projected 
Temperature for Scenario A2 during the period of 2030-2090 

 

The histogram of NCAR CCSM longitudinal displacement for the 30-year mean shift for 

the years 2030-2090 shows a bimodal distribution similar to the CNRM-CM3 model 

output but with different modal values (Figure 2.12).  
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Figure 2.12: NCAR CCSM3 longitudinal isotherm movement histogram. The 
displacement range of -156 to 182 is divided into 100 bars. 
 

Spatially, the longitudinal displacement shows a dominant polar motion of approximately 

equal magnitude in the temperature shifts for both hemispheres.  

The southern displacement is characterized by a mode centered on a displacement 

of 105 km/decade over the 60-year period. The northern displacement mode is dominated 

by a north-bound displacement of approximately 25 km/decade over the 60 year period 

with other lesser peaks at larger displacement values.  
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Figure 2.13 shows the velocity field of isotherm movements projected by the 

NCAR CCSM. 

 

Figure 2.13: NCAR CCSM3 Longitudinal Displacement 2030-2090 
  

The Northern Hemisphere displacement is almost exclusively towards the North 

Pole with the exception of the following regions; on the northwest Scandinavian coast, 

northern Greenland and in the vicinity of the Tibetan Plateau. The Tibetan Plateau is 

predicted to be cooler than the surrounding region in 2030 and acts as a local temperature 

minimum and thus a sink for isotherms.  Regions of the most rapid northern movement 

occur at approximately 67°N. A different pattern is seen in the southern hemisphere 

where the locations with the most rapid southerly motion are just south of the equator. 

The longitudinal isotherm displacement map from NCAR CCSM data shows 

large displacements in two north-eastern regions of Russia and a band of large 

displacement vectors at approximately 68°N in the North American continent. In contrast 

the southern regions of the Southern Hemisphere have very low values for displacement 
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vectors.  This is expected as the large amount of thermal mass in the Southern 

Hemisphere oceans moderate the temperature changes resulting from anthropomorphic 

climate change (IPCC 2001). 

The NCAR CCSM3 latitudinal displacement histogram (Figure 2.14) has a 

leptokurtic distribution with a dominate peak at approximately -0.5 km.  

 
Figure 2.14: NCAR CCSM3 Latitudinal Displacement Histogram. The displacement 
range of -51 to 54 is divided into 100 bars. 

 

The distribution of displacement to the east or west is not spatially restricted to a 

particular hemisphere but rather is distributed across the globe. Figure 2.15 displays the 

NCAR CCSM3 output latitudinal displacement across the globe. 
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Figure 2.15: NCAR CCSM3 Latitudinal Displacement 
 
 

The displacement pattern at the latitudinal direction suggests that most of the 

world will experience small shifts (in beige and light brown colors).  Regional patches 

show isotherms moving towards the east with patches occurring in or around the zones of 

easterlies and throughout most of the Northern Hemisphere.  Considerably smaller and 

more isolated areas in the Northern Hemisphere alone show isotherms shifting towards 

the west (in green and light yellow shades). Multiple concentrations of large isotherm 

displacements and the high convergence/divergence areas are identified by the iso cluster 

algorithm in the NCAR CCSM3 projections (Figure 2.16). 
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Figure 2.16: NCAR CCSM rapid displacement and high convergence/divergence areas 
for 2030-2090.  
 

 Bands of rapid displacement northward are found at approximately 67° latitude 

across North America and on the northern portion of central Eurasia in the NCAR 

CCSM3 dataset. These regions are at the boundary of the polar amplification mentioned 

by Holland and Bitz (2003). A region in the western Indian Ocean and the southwest 

coast of Africa show rapid isotherm movement southward. However, no support was 

found for the band of comparatively more rapid warming over the South Atlantic, Africa 

and the Indian Ocean east of Madagascar at approximately 15°S that corresponds to the 

region of rapid isotherm movement. Nevertheless, Carril et al. (1997) using an earlier 

version of the NCAR CCSM GCM  identified an area of more rapid warming in the south 

Atlantic just south of the region at approximately15°S. Divergence regions are scattered, 

and one area appears substantial: a tropical ocean region east of Brazil. The region east of 
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Brazil is possibly a result of a shift in the Inter-Tropical Convergence Zone (ITCZ) due to 

changes in the Atlantic Ocean (Labraga, 1997).  The ITCZ penetrates further and more 

quickly to the south during the southern season due to pressure differences between the 

equatorial Pacific and Atlantic oceans (Labraga, 1997).   

2.3.3 Comparison of the two datasets from CNRM CM3 and NCAR CCSM  

 
The two datasets share several regions of rapid movement including the higher latitudes 

in both North America and Eurasia (Figure 2.17and Figure 2.18).  

 

Figure 2.17: CNRM CM3 rapid displacement map for 2030-2090. 

 
Figure 2.18: NCAR CCSM rapid displacement map for 2030-2090. 
 
 
Classification as rapid is determined by applying Jenks Natural Breaks algorithm to both 

distributions and using the lower value of the next to highest classification of the two 

datasets as the threshold. The absence of a region of rapid isotherm movement in the high 

southern latitudes is as expected as there will be minimal warming due to ocean heat 
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uptake (IPCC 2001) resulting in minimal isotherm shifts.  Both model’s maps have rapid 

displacement in North America and Asia. The CNRM model had unique regions in the 

vicinity of Greenland, the Arabian Sea, southwest Africa and the ENSO region in the 

Pacific (Figure 2.17).  

The difference in the shared rapid displacement locations of the high northern 

latitudes is examined using the positions of an isotherm confined to the Polar Regions, -

16 oC. The NCAR CCSM model suggests rather different patterns of -16 oC isotherm 

movement than the CNRM model.  In the northern hemisphere, the NCAR isotherm in 

the north is small and localized to a region over Greenland (Figure 2.19); whereas, the 

CNRM CM-3 model suggests the -16 0C isotherm spans the globe (Figure 2.20).  

 

 

Figure 2.19: NCAR -16° Isotherm for the 2000-2030 mean. 
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Figure 2.20: CNRM -16° Isotherm for the 2000-2030 mean. 
 

The NCAR -16 0C 2060-2090 mean isotherm in the north remains over Greenland 

and is smaller than the 2000-2030 isotherm (Figure 2.21) while the CNRM CM-3 model -

16 0C isotherm shrinks to Greenland  over Greenland only (Figure 2.22).  

 

 
Figure 2.21: NCAR -16° Isotherm for the 2060-2090 mean 
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Figure 2.22: CNRM -16° Isotherm for the 2060-2090 mean 
 

While both models suggest the -16 0C isotherms span the globe in the southern 

hemisphere, the initial isotherm pattern suggested by CNRM elicits a stronger warming 

trend about Greenland than the one by NCAR CCSM.  

The Greenland differences are the possible result of sea ice model differences as 

the extent of the -16°C isotherms in NCAR is less than the extent in the CNRM model. 

Holland and Bitz (2003) determined that in the earlier versions of these two GCMs the 

CNRM model produced a slower sea ice melt rate than the NCAR model and it is likely 

that this difference persists in the current model versions. The -16°C isotherm from the 

two models show that the Arctic ice in the NCAR model has melted to a greater extent 

than in the CNRM CM3 model. The maximum warming that occurs at the latitude of the 

sea ice extent (Holland and Bitz 2003) is captured by the kinematic map representation.  

The equatorial differences seen between the two datasets are the possible result of 

cloud modelling and the El Niño - Southern Oscillation (ENSO) modelling in the El Niño 

region. The ENSO modelling is a possible underlying cause for GCM output differences 
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as the Niño 3 region, an area over Indonesia, and an Indian Ocean area all have 

differences.  

2.4 Conclusion and Future Research 
 
GIS support for scientific inferences and knowledge integration is limited by the lack of 

spatiotemporal kinematic descriptors for geographic phenomena. Kinematics describes 

the motion of phenomena without attempting to capture the dynamics underlying the 

motion. The development of a kinematic approach within the GIS enabled the 

spatiotemporal analysis of the output of dynamics models including General Circulation 

Models.  

The concepts of kinematics are used to capture change and movement in 

geographic fields in this research. The change and movement is captured by the 

application of image processing approaches (Horn & Schenk, 1981). Change and motion 

is characterized utilizing velocity as the basic unit of change.  

Grid-based scalar observations (such as temperature) are transformed to 

displacement vectors (directions and speed of the movement of an isoline) to describe 

how changes progress through space and time. The approach integrates Eulerian and 

Lagrangian approaches by following moving virtual object’s boundaries and assigning 

the boundary displacements to field locations. Optical flow is applied to the surrogate 

virtual objects’ boundaries in order to characterize the scalar field’s spatiotemporal 

changes. The majority of locations in a field are calculated directly using multiple virtual 

objects with missing locations assigned values using interpolation. The resulting 

spatiotemporal representation of change and movement facilitates the understanding of 

the spatiotemporal properties of geographic phenomena.  



 
 

51 
 

The capabilities of the proposed representation and analytical approach are 

demonstrated by its application to the analysis of IPCC A2 climate change scenario as 

depicted in two GCM’s: the NCAR CCSM3 and the CNRM CM3. The analysis focused 

on spatiotemporal information more easily elicited by the kinematic approach than by 

current GIS supported methods. The enhancements to spatiotemporal GIS analysis 

provided by the integrated space and time kinematics approach were summarized. Maps 

of the displacement portrayed the spatial pattern of the spatiotemporal changes.  

A migrating means algorithm (Ball & Hall, 1965) was used to identify statistical 

outliers in the flow field that highlighted unique areas, examining autocorrelation in 

displacement vectors that identify cohesive fluid objects and comparing flow fields from 

different data sources. Movement extremes exhibited autocorrelation beyond the 

magnitude expected from an artifact from the natural neighbor tool. A 2D continuous 

field, such as temperature, can additionally be perceived with flows of convergence and 

divergence. Regions of convergence and divergence may suggest areas of interesting 

processes driving the dynamics of the scalar field as well as highlight local minima and 

maxima due to elevation or other geographic factors. 

The distribution of northward and southward velocities show the poleward motion 

discussed in the IPCC reports (IPCC 2001). Additional areas exhibited flow convergence 

and divergence due to local minima and maxima. The distribution of motion amplitude in 

the longitudinal histograms hinted that the warming in the Northern Hemisphere is less 

homogeneous than in the Southern Hemisphere. The polar amplification of Holland and 

Bitz (2003) is captured in both GCM model’s outputs by the representation in this 

research.  
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Duplicating the analysis in this paper without the spatiotemporal representation 

would have required manual sampling of the climate values at the two time instances for 

a grid point, the scaling of the change rate at the point by the spatial derivative and finally 

the grouping of the changes that were statically significant. The representation in this 

research enables users to easily spot areas of unusual spatiotemporal change and then 

compare the regions of unusual movement between different GCMs. Regions exhibiting 

differences hinted at the fundamental difference in sea ice models between the NCAR 

and CNRM GCMs as described by Holland and Bitz (2003). The general pattern of polar 

amplification stood out in both models.  

The approach developed in this research could not calculate displacement vectors 

for complex shapes with multiple concavities. Displacement vectors for complex changes 

such as merges and splits in the isotherms are also not accurately captured. An isotherm 

ring that disappears by the next interval leads to displacements that cannot be calculated 

by the algorithm as no ending location for the vectors can be determined. Similarly, an 

isotherm near the boundary of the globe that disappears by the next sample interval leads 

to failed attempts to quantify the change. The inability to track complex shapes and 

transitions leads to loss of some of the fine grain displacements. One approach to tracking 

complex shapes worth further study is to use active contours ( Kass, Witkin & 

Terzopoulos, 1987). 

  



 
 

53 
 

References  
 
Ahl, V., & Allen, T.F.H. (1996). Hierarchy Theory: A Vision, Vocabulary, and 

Epistemology. Columbia University Press, New York. 

Armstrong, M. P. (1988). Temporality in spatial databases. In Proceedings of 
GIS/LIS’88, 2. Bethesda, MD, American Congress of Surveying and Mapping: 
880-9. 

Ball, G. H., & D. J. Hall. (1965). ISODATA, A Novel Method of Data Analysis and 
Pattern Classification. Menlo Park, California: Stanford Research Institute. 

Bluestein, H. B. (1992). Synoptic-Dynamic Meteorology in Midlatitudes. Oxford 
University Press, New York. 

Konrad, J. (2005). Handbook of image and video processing. In A. C. Bovik (Eds.) 
Motion Detection and Estimation (pp 253-274). Burlington, MA: Elsevier 
Academic Press. 

 
Burrough, P. A. (2001). GIS and geostatistics: Essential partners for spatial analysis. 

Environmental and Ecological Statistics, 8, 361-377.  

Carril, A. F., Menede, C. G., & Nunez, M. N. (1997). Climate Change Scenarios Over the 
South American Region: an Intercomparison of Coupled General Atmosphere-
Ocean Circulation Models. International Journal of Climatology, 17, 1613-1633. 

Christakos, G., Bogaert, P., & Serre, M. (2001). Temporal GIS Advanced Functions for 
Field-Based Applications. Springer-Verlag Berlin Heidelberg New York. 

Collins, W. D., Bitz, C. M., Blackmon, M. I., Bonan, G. B., Bretherton, C. S., Carton, J. 
A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. 
G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2005). The Community 
Climate System Model: CCSM3, Journal of Climate, 19, 2122-2143. 

Cova, T. J. & Goodchild, M. F. (2002). Extending geographical representation to include 
fields of spatial objects. International Journal of Geographical Information 
Science, 16(6), 509-532. 

de Smith, M.J., Longley, P.A. & Goodchild, M.F. (2007). Geospatial analysis: A 
comprehensive guide to principles, techniques and software tools (pp 105). 
Winchelsea: Winchelsea Press.  

 
Felzer, B. & Heard, P. (1999). Precipitation Differences Amongst GCMs Used For The 

U.S. National Assessment. Journal of the American Water Resources Association 
35 (6), 1327–1339. 

Galton, A. (2004). Fields and Objects in Space, Time and Space-time. Spatial Cognition 
and Computation, 4(1), 1-29. 



 
 

54 
 

Gold, C. M. (1989): Surface interpolation, spatial adjacency and G.I.S. in: J. Raper (ed.): 
Three Dimensional Applications in Geographical Information Systems (pp. 2 l-35). 
London: Taylor and Francis Ltd. 1989. 

 
Goodchild, M. F., Yuan, M., & Cova, T. (2007). Towards a general theory of geographic 

representation in GIS. International Journal of Geographic Information Science 
21(3): 239. 

 Güting, R. H., Böhlen, M. H., Erwig, M., Hensen, C. S., Lorentzos, N. A., Schneider, 
M., & Vazirgiannis, M. (2000). A foundation for representing and querying 
moving objects. ACM Transactions on Database Systems, 25(1), 1-42. 

Horn, B. K. P., & Schunck, B. G. (1981). Determining Optical Flow. Artificial 
Intelligence, 17, 185-203. 

Hornsby, K., & Egenhofer, M.J. (2000). Identity-based change: A foundation for spatio-
temporal knowledge representation. International Journal of Geographical 
Information Science, 14(3):207–204. 

Hornsby, K., & M. Egenhofer. (2002). Modeling Moving Objects over Multiple 
Granularities. Annals of Mathematics and Artificial Intelligence 36(1-2), 177-194. 

Hulme, M., Briffal, K. R., Jones, P. D., & Senior C. A. (1993). Validation of GCM 
control simulations using indices of daily airflow types over the British Isles. 
Climate Dynamics, 9(2), 95-105. 

Huth, R. (2000). A circulation classifcation scheme applicable in GCM studies. 
Theoretical  Applied Climatology, 67, 1-18.  

IPCC, Climate Change (2001). The scientific basis. Contribution of Working Group 1 to 
the Third Assessment Report of the Intergovernmental Panel on Climate Change. 
Albritton, D. L., Meira Filho, L. G., Cubasch, U., Dai, X.; Ding, Y., Griggs, D. J., 
Hewitson, B., Houghton, J. T., Isaksen, I., Karl, T.; McFarland, M., Meleshko, V. 
P., Mitchell, J. F. B., Noguer, M., Nyenzi, B. S., Oppenheimer, M., Penner, J. E., 
Pollonais, S., Stocker, T., Trenberth, K. E., Maskell K., & Johnson C.A. (eds) 
Cambridge University Press, Cambridge, UK pp 881 

Holland, M.M., & Bitz, C.M. (2003). Polar amplification of climate change in coupled 
models. Climate Dynamics, 21(3-4), 221-232. 

Kass, M., Witkin, A., & Terzopoulos, D. (1987)  Snakes: Active contour models, 
International Journal of Computer Vision. 1(4),  321-331. 

Lamb, H. H. (1972). Climate: Present, Past and Future, vol. 1, Fundamentals and 
Climate Now (pp 613), Methuen, New York.  

 
Langran, G. and Chrisman, N. R. (1988). A Framework for Temporal Geographic 

Information. Cartographica, 25(3), 1-14. 



 
 

55 
 

Labraga, J. C. (1997). The Climate Change in South America Due to a Doubling in the 
CO2 Concentration: Intercomparison of General Circulation Model Equilibrium 
Experiments. International Journal of Climatology, 17, 377–398 

 
Mennis, J., Viger, R., & Tomlin, C. D. (2005). Cubic Map Algebra Functions for Spatio-

Temporal Analysis. Cartography and Geographic Information Science, 32(1),17-
32. 

Pepin, N.C. (1995). The Use of GCM Scenario Output to Model Effects of Future 
Climatic Change on the Thermal Climate of Marginal Maritime Uplands. 
Geografiska Annaler. Series A, Physical Geography, 77(3), 167-185  

Peuquet, D. J., & Duan, N. (1995). An Event-based Spatiotemporal Data Model 
(ESTDM) for Temporal Analysis of Geographical Data.  International Journal of 
Geographical Information Systems, 9(1), 7-24. 

Peuquet, D. J. (2001). Making space for Time: Issues in Space-Time Data 
Representation. GeoInformatica 5(1), 11-32. 

Pfoser, D., & Theodoridis, Y. (2003). Generating Semantics-Based Trajectories of 
Moving Objects. Intl. J. of Computers, Environment and Urban Systems (Special 
issue on Emerging Technologies for Geo-Based Applications), 27(3), 243–263. 

Rosenblatt, R., Sayre, E. C., & Heckler, A. F. (2009). Modeling students' conceptual 
understanding of force, velocity, and acceleration. AIP Conference Proceedings, 
245-248. 

Saji, N. H., Xie, S.-P., & Yamagata, T. (2006). Tropical Indian Ocean Variability in the 
IPCC Twentieth-Century Climate Simulations.  Journal of Climate. 19, 4397-
4416. 

Salas-Mélia D., Chauvin F., Déque´ M., Douville H., Gueremy J. F., Marquet P., Planton 
S., Royer J. F., & Tyteca S. (in review) Description and validation of the CNRM-
CM3 global climate model. Climate dynamics. 

 
Semazzi, F. H. M. and Song, Y. (2001). A GCM study of Climate Change induced by 

Deforestation in Africa. Climate Research 17, 169-182. 

Sengupta, S. K., & Boydle, J.  S. (1993). Statistical intercomparison of global climate 
models: A common principal component approach with application to GCM data. 
UCRL-ID—114222. Downloaded 10/04/07 from 
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10173301. 

Spery, L., Claramunt, C., & Libourel, T. (2001). A Spatio-Temporal Model for the 
Manipulation of Lineage Metadata. GeoInformatics 5(1): 51-70. 

Stefanidis , A., Eickhorst , K., Agouris , P., & Partsinevelos, P. (2003). Modeling and 
comparing change using spatiotemporal helixes. Proceedings of the 11th ACM 



 
 

56 
 

international symposium on Advances in geographic information systems, pg. 86-
93, November 07-08, 2003, New Orleans, Louisiana, USA. 

Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of 
the concept of acceleration in one dimension. American Journal of Physics, 49(3), 
242-253. 

Worboys, M. F., (1994). Object-oriented approaches to georeferenced information. 
International Journal of Geographical Information Systems, 3:  385-399. 

Yuan, M. (1999). Representing Geographic Information to enhance GIS support for 
complex spatiotemporal queries. Transactions in GIS, 3(2):137-160.  

Yuan, M. (2000). Representation dynamic geographic phenomena based on hierarchical 
theory. Proceedings: 9th International Symposium on Spatial Data Handling 
Spatial Data Handling, P. Forer Eds. Pp. 2a.19-2a.29. 

Yuan, M. (2001). Representing Complex Geographic Phenomena with both Object- and 
Field-like Properties. Cartography and Geographic Information Science 28(2): 
83-96. 

 
  



 
 

57 
 

Chapter 3: A Kinematics-based GIS Methodology to Represent and Analyze 
Spatiotemporal Patterns of Precipitation Change  

Abstract  
   A kinematics-based GIS methodology is applied to identify, represent, and 

analyze spatiotemporal patterns and pattern transitions in very large data sets.  A use case 

is built from two precipitation data products projected for the A2 scenario by the 

International Panel for Climate Change (IPCC):   (1) the Community Climate System 

Model (CCSM3) from the National Center for Atmospheric Research (NCAR, USA, 

Boulder Colorado) and, (2) the global ocean-atmosphere coupled system (CM3) from the 

Center for National Weather Research (CNRM, METEO-France, Toulouse). The study 

takes a predefined threshold to delineate regions of interest, calculates shifts of the 

regions between years, and characterizes the pattern change. The research focuses on the 

topics as changes in the tropics affect extra-tropical climate. The study uses precipitation 

over 213 cm/year in 2001 and 2048 to illustrate the kinematics approach to comparing 

precipitation patterns predicted from the CCSM3 and CM3. Even though the precipitation 

data in 2001 and 2048 cannot be considered temporally continuous, the differential used 

here was to simulate the transition of precipitation patterns between the two years under 

the assumption that changes to spatial patterns of precipitation for 213 cm/year were 

gradual from 2001 to 2048. The 213 cm/year precipitation threshold is met when a large 

number of precipitation events occur during the year. The 213 cm/yr threshold is stable 

from year to year versus lesser thresholds which may be discontinuous and require 

temporal averaging to smooth the rapid variation.  
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The kinematics approach quantifies divergence, rotation, and deformation about 

changes to precipitation patterns and enables the search for precipitation regions 

influenced primarily by local conditions or by general circulation patterns of water vapor 

transport.  The study demonstrates that the kinematics approach is able to discern 

transitional patterns from a continuous field of geographic properties over time by 

defining objects through thresholds and analyzing the object’s internal and external 

movement patterns in space and time. 

 
Keywords: temporal GIS, objects, geographic kinematics, internal change, motion, 
and climate change.  

 

3.1 Introduction 
 
Many climatological studies examine aggregated patterns from climate events to 

generalize spatially the overall outcome of climate change at the regional or global scales 

(Carelton, 1999). Van Ulden and Oldenborgh (2006) studied five GCMs and discovered 

significant differences in circulation patterns leading to differences in precipitation 

patterns.  This research continues the tradition of seeking effective ways to address 

spatiotemporal patterns, specifically, precipitation patterns projected in A2 scenario 

defined by the International Panel for Climate Change (IPCC).  Instead of examining 

precipitation patterns at individual time frames, the research applies a method based on 

kinematics, originally designed for the analysis of changes in temperature patterns, to 

emphasize spatiotemporal transitions of precipitation. By adopting the idea of kinematics, 

the GIS method identified areas of high precipitation and characterized the direction and 

distance of movement for these areas over space and time. Measures for the area’s 

internal spatiotemporal characteristics and transitions provide new insights into 
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precipitation patterns projected by two General Circulation Models (GCMs). All GCMs 

produce massive climate projection products, and the essence of predicted climate 

patterns and the differences among data outputs from models are difficult to discern. The 

study shows how the kinematics approach can facilitate the elicitation and summary of 

changes in spatiotemporal precipitation patterns from volumes of GCM data products.  

Elicitation of precipitation patterns out of massive GCM data products is non-

trivial. Effective detection of patterns relies heavily on the design of representation 

schemes and analytical methods (Yuan, Mark, Egenhofer, & Peuquet, 2005). To this end, 

the applied method adopts the concepts of kinematics to represent areas of high 

precipitation as individual objects and track the direction and movement of these objects 

over space and time. The shift patterns of precipitation are then examined through linking 

these objects across time steps as in a flow field defined by Theisel and Seidel (2003). 

Shifts measured by the rates of emergence, dissipation, splitting and merging may be 

indicative of the effects of large scale circulation patterns on precipitation. The near fifty 

year interval revealed movement in tropical precipitation that resulted in changes that can 

be analyzed for isohyet shifts. Climatic data are analyzed to determine the location, type 

and rate of internal change of precipitation objects. These measures can effectively 

summarize and contrast precipitation patterns suggested by different GCM models or for 

different climate change scenarios. Furthermore, the summative shift patterns may help 

formulate hypotheses about forcing functions or environmental variables responsible for 

precipitation change.   

This research applies the method developed previously for analysis of changes to 

temperature patterns, but adds a new dimension in the measure of internal changes to 
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individual objects (i.e. precipitation areas) to enable insights into changes in precipitation 

patterns.  Expanding upon the concepts of kinematics with measures of direction and 

movement, the research quantifies the rate of change internally and externally to the 

identified feature. Precipitation features defined by a given threshold, such as 213 

cm/year, include areas with annual precipitation at the threshold or greater. Precipitation 

objects may merge, split, emerge or dissipate as change progresses.  The research posits 

the hypothesis that changes to precipitation patterns can be represented with both internal 

and external kinematic measures. With the proposed quantitative measures, the chapter 

presents the kinematics-based method and demonstrates the application of the method to 

spatiotemporal analysis of precipitation patterns suggested for the IPCC A2 Scenario. 

This chapter is divided into four sections: introduction; conceptual bases and 

related research; datasets and methods; and results and discussions. The introductory 

section overviews the research goal, problem context, and approach. The next section 

highlights the underlying conceptual frameworks and related studies that support the 

development of the proposed method. The section on datasets and methods discusses the 

GCM data products used in the case study and procedures that implement the kinematics-

based GIS method to elicit spatiotemporal patterns of precipitation. Finally, the section 

on results and discussions presents the findings and elaborates on broader implications 

and directions for future research.  

 

3.2 Conceptual Bases and Related Research 

3.2.1 Information Representation 

In an information system, representation is the key to effective information analysis 

(Yuan, Mark, Egenhofer, & Peuquet, 2005). This is particularly true for very large time-
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series data sets from General Circulation Models (GCM). In the context of representation, 

these data products are compatible to temporal sets of snapshots that show spatial 

distributions of climate variables.  By examining one snapshot at a time, analysis is 

limited to spatial characterization rather than change over space and time (Chrisman, 

1998). Due to spatial and temporal autocorrelation, neighboring properties are critical to 

pattern analysis of geographic phenomena, including climate change (Shekhar, Zhang, 

Huang, & Vatsavai 2003).  

Past approaches used spatial grouping to identify regions of cells that show 

similar temporal trends. For example, Tan, Steinbac, Kumar, Potter, and Klooster (2002) 

applied temporal classification to data at each grid location to determine the temporal 

pattern and then grouped similar patterns. Another approach took pair-wise correlations 

between time series at different geographical locations and found regions exhibiting 

spatial autocorrelation with each member of the pairs (Steinbach et al., 2001). 

Alternatively, this research aggregates grid points based on a threshold value into an 

object and then characterizes the spatiotemporal behavior of each object. Calculated 

change rates are in contrast to the spatiotemporal helix model proposed by Stefanidis, 

Eickhorst, Agouris, and Partsnevelos (2003), which requires the user to infer the rate 

change. The kinematics-based GIS method stores (Table 3.1) the divergence rate 

(divergobj), dominate axis of deformation (deforming ), deformation expansion or 

contraction (deform_pri) and rotation (vorticobj) information to enable database queries 

regarding any of these spatiotemporal growth characteristics. 
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Table 3.1: An example data table for a set of precipitation objects and the derived 
kinematic attributes 
 
 Using kinematic concepts incorporates the rich history of kinematic analysis in 

Meteorology. The basis of kinematic analysis is the change in velocity for both latitudinal 

flow and longitudinal flow (Bluestein, 1992). Kinematics is usually applied to real fluid 

flow, but this research applies the concept to a virtual flow that reflects the changes in 

scalar attribute values over the Earth’s surface.  The kinematic representation combines 

Lagrangian and Eulerian concepts of fluid kinematics to effectively capture the direction 

and amount of change in space and time of a field. The spatiotemporal distributions of 

velocity define kinematics. In addition to the velocity that measures the direction and 

movement of an object, the research considers the following as measures for internal 

kinematics to the object: divergence, deformation and rotation. Divergence is the 

fractional rate of area change to the object, deformation captures an object’s rate of 

expansion or contraction, and rotation addresses changes in orientation due to differential 

velocity (Figure 3.1). Once calculated, the three measures are stored in a database and 
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used to differentiate regions that may have the same shape and change to shape but 

exhibit very different patterns of kinematics. 

 

 
 

 

 

The first step to apply concepts of kinematics to a dataset representing a scalar 

field of geographic properties is to construct objects in the scalar field. The continuous 

field representation is converted to an object-base representation (Peuquet 2001) using 

bona-fide or fiat boundaries to demarcate the objects’ extent (Smith and Mark 1998). 

Bona-fide boundaries are defined by natural discontinuities in a geographic phenomenon 

(such as watershed divides), whereas a fiat boundary is based on subjective criteria to 

spatially delineate geography (such as county boundaries to delineate land 

administration). The creation of conceptual objects (e.g. precipitation areas) from fields 

in this study is based on fiat boundaries defined by a subdivision of the isohyet range 

T0 

T1 
T0 

T1 

Rotation Deformation 

Figure 3.1: Internal kinematics is needed to determine rotation or deformation of an 
object. 
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used in the Koppen climate classification (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 

120, 130, 140, 150, 161, 178, 213, and 284 cm/year). The discrete nature of precipitation 

fundamentally fits well with the object-based conceptualization. The kinematic measures 

are then used to summarize spatiotemporal patterns of precipitation exhibited by these 

conceptual objects individually and collectively.  

A data model, expanding upon the three-domain model (Yuan 1999), was used for 

storing and analyzing the conceptual objects of precipitation areas. Three domains of 

semantics, space, and time provide the basis for digital representations of histories at 

location as well as lifecycle of geographic objects. Yuan (2001) further incorporated 

concepts of hierarchies into the three-domain model to facilitate the representation of 

events and processes across multiple levels of spatial and temporal scales. The 

kinematics-based method further incorporates the concepts of kinematics to expand the 

three-domain model with quantitative values for the internal kinematics of fiat objects 

identified through defined thresholds in a field.  

 

3.2.2 Elicit Spatiotemporal Patterns from Massive Data 

 
Spatiotemporal analytical methods, traditionally developed for sampled data, are 

incapable of dealing with large heterogeneous geographic databases (Miller and Han 

2001). The field of Knowledge Discovery in Databases (KDD) aims to develop methods 

that can elicit non-trivial patterns from ever increasing databases. Utilizing a KDD for 

analyzing large geographic databases must be done carefully as KDD systems tend to 

generate correlation patterns of little interest (Silberschatz & Tuzhilin 1996; 

Padmanabhan 2004), unless the KDD process is guided interactively or restricted by the 
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underlying abstract data representation. One key KDD step is data mining, the analysis of 

low level abstract data to produce a set of patterns from the data (Chen et al. 1996, 

Fayyad et al. 1996, Padmanabhan 2004). Spatiotemporal data mining requires 

considering what to mine from the spatiotemporal database and how the data of interest 

are formatted in the database (Abraham and Roddick 1998). The goal of a data mining 

activity should guide the creation of representation and tailor the representation to the 

production of summative information from massive databases (Roddick and Lees 2001).   

The kinematics-based method is one approach to offer GIS support for data 

mining of meaningful spatiotemporal patterns by leveraging the kinematics measures to 

characterize spatiotemporal patterns. A spatiotemporal database should be able to 

describe how an object is changing in a manner that provides insight to spatial processes 

that lead to pattern change. A similar approach was taken by Thompson et al.  (2002) 

who utilized point-level vortexes to identify physics-based objects through data mining. 

This research quantifies kinematics within precipitation objects defined by thresholds to 

identify precipitation patterns. Spatiotemporal characteristics of a precipitation object are 

determined by aggregating the mean spatiotemporal characteristics at grid-points within 

the region. The points identified as being in an object are aggregated similarly to Yip and 

Zhao’s (1996) work on 2D fields, but, in contrast to Yip and Zhao, precipitation objects 

are determined by pre-defined thresholds. The aggregated characteristics at these points 

become attributes for the region, and the region is then conceptualized as an object. The 

collection of objects with their internal and external characteristics of change enables the 

analysis of differences and similarities between datasets and allows users to locate 

interesting spatiotemporal regions.  
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Six descriptors are required to adequately describe object spatiotemporal 

dynamics:  

• location (Abraham and Roddick 1998);  

• attribute or theme representing a characteristic assigned a value at a 

location (Sinton as quoted by Abraham and Roddick 1998);  

• extent: the static spatial boundary of an object;  

• mutation: the change in an object’s attributes such that an object is 

assigned a new classification;  

• movement: a change in the location of an object; and  

• evolution: the change in an object’s internal structure.  

The formulation used by Abraham and Roddick (1998) to determine the six descriptors is 

object centric. This study extends the descriptors to field-based (or gridded) data by 

considering the spatiotemporal behavior of fiat objects delineated from set values in a 

field. 
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Claramunt, Parent and Theriault (1997) proposed an object-relationship data 

model that includes six basic extent evolutions of a spatial object: stability, deformation, 

expansion/contraction, and rotation and translation (Table 3.2).   

 
Spatio-
Temporal 
Process 

Geometric 
types  Shape  Size Orientation Location 

Stability Any constant constant constant Constant 
Deformation any but point changed constant constant Constant 
Expansion Any constant growing constant Constant 
Contraction any but point constant shrinking constant Constant 
Rotation any but point constant constant changed Constant 
Translation Any constant constant constant Changed 

Branching Any constant 
merging/ 
splitting constant Constant 

 
Table 3.2: Spatial Entity Evolution (Claramunt et al. 1997) 

 

An additional index, extent evolution branching (merging or splitting), was 

previously suggested by Peuquet (1994). The kinematics-based method supports all seven 

classifications. The method computes the fluid kinematics deformation and assigns 

deformation rates along with the orientation of the expansion axis and the contraction 

axis. The divergence determines the overall rate of expansion or contraction while 

vorticity assigns a rotation rate. Branching is determined by tracking objects across two 

or more time instances and noting objects that divide into many or merge into one.   

 

3.3 Datasets and Methods 
 

This research applies two GCM datasets for IPCC climate change analysis: the National 

Center for Atmospheric Research Community Climate System Model (NCAR-CCSM3) 
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from the United States at 1.4° × 1.4° resolution (Collins et al.  2005) and the Center 

National Weather Research global ocean-atmosphere coupled system (CNRM-CM3) 

from France (Salas-Melia et al. 2005)  at 2.8° × 2.8° resolution. Over the global 

coverage, the NCEP/NCAR output is in a 256 × 128 grid, whereas the CNRM-CM3 

output is in a 144 × 73 grid. Precipitation data out of the GCM products for IPCC 

scenario A2 were obtained from the World Climate Research Program’s Coupled Model 

Inter-comparison Project Multi-Model Dataset Archive. The A2 scenario was chosen as a 

case to demonstrate the kinematics approach. The A2 scenario more closely follows the 

actual rate of change during the last 5 years than the other scenarios.  

Isohyets of annual precipitation were delineated from the climate data for 2001 

and 2048. Mean annual isohyets over three or more years showed too little difference 

over the intervening (47) years to produce a sufficient number of calculated displacement 

vectors. The yearly isohyets from 2001 and 2048 have enough differences to have 

transitions while exhibiting enough continuity to allow the Optical flow analysis to 

succeed. The analysis was applied to annual isohyets of the values 10, 20, 30, 40, 50, 60, 

70, 80, 90, 100, 110, 120, 130, 140, 150, 161, 178, 213 and 284 cm/year in years 2001 

and 2048 and displacement vectors were calculated along each of the defined isohyets 

(Figure 3.2 and 3.3).  
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Figure 3.2: Calculating displacement vectors for the 213cm/year isohyet 

 
Figure 3.3: Calculating displacement vectors for the 284cm/year isohyet 
 
 

Displacement vectors were spatially interpolated using the ESRI natural 

neighbour interpolation function to estimate displacement vectors for the remaining 

approximately 70% of the grid points. The natural neighbour interpolation determines the 

284 cm/year isoline at t0 

284 cm/year isoline at t1 

  

Displacement vectors 

 

 

213 cm/year isoline at 

213 cm/year isoline at 

Displacement 
vectors 
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set of points with Thiessen polygons overlapping the polygon of the new point and 

applies proportionate weights based on the overlap (Gold 1989). Natural Neighbor 

interpolation does not produce minima or maxima that are not present in the input 

samples (Gold 1989). The absence of interpolated minima and maxima insures any 

minima and maxima found are from calculated data. 

This case study extends Claramunt et al.’s (1997) extent evolution classifications 

utilizing displacement vectors along precipitation object boundaries and within the object 

itself. An object with boundary displacement vectors equal to 0 has a stable and 

unchanging extent. Claramunt et al.’s deformation extent evolution has non zero 

boundary displacement vectors but the areas within the object remains constant. For this 

study the deformation axis of expansion and contraction were calculated using internal 

flow field kinematics. Claramunt et al.’s expansion evolution classification has an extent 

increase captured by outward oriented displacement vectors along the object’s boundary 

that conserve the shape. The contraction evolution conserves the shape but has a 

decreased extent captured by inward displacement vectors along the object’s boundary. 

Incorporating concepts of fluid kinematics, the study uses divergence to quantify the 

increase in size due to expansion and convergence to quantify the size decrease due to 

contraction while ignoring shape conservation. Convergence and divergence are 

calculated using an area integral of the net flow defined Greene’s theorem equivalent to 

the contour integration of the boundary vectors (Bluestein 1992).  

) �*+ ·  	 ,- �  . 	 ·  �/ ,0 1    Eq. 3.1 
 

In equation 3.1 �*is the horizontal divergence, V is the vector function and �/ is 

the vector normal to the curve C and ds traverses the curve in a counter clockwise 
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direction. Rotation is suggested by a divergence value of zero and all displacement 

vectors with the same magnitude and angle in reference of the respective normal vector at 

the boundary. In other words, rotation is measured by evaluating the internal shear and 

the resulting vorticity inside each object. Translation is determined by displacement 

vectors with a divergence value of 0 and equal magnitude and equal angle with respect to 

the coordinate system. Branching includes both merging and splitting. Branching is 

determined through assigning regions from a time instance to corresponding regions in 

the next time instance using a tracking algorithm detailed in the later session.  

When transitions can be considered spatially and temporally continuous, a 

moving object can be conceptualized as a manifold in a two-dimensional space (x,y) with 

one-dimensional time (t) in six possible transitions: emergence, dissipation, convergence, 

divergence, merging and splitting (Figure 3.4). 
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Figure 3.4: A manifold model to represent six basic types of spatiotemporal transitions.  
 
 

Emergent spatiotemporal objects are those initially do not exist and then appear 

later in the data. Dissipative spatiotemporal objects exist at the initial time but disappear 

in a later time. Convergent objects are shrinking versus divergent objects which are 

expanding. Merging objects join into one object whereas splitting objects form multiple 

objects.  

Regions are defined from chosen isohyets values that represent further divisions 

of the Koppen climate classification precipitation levels. In particular, isohyets of 

213cm/year are used to delineate regions contained within the Koppen tropical wet or 

monsoonal climate classification. The 213cm/year regions are restricted to the tropics but 
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tropical changes are of interest as they affect global climate (Selten, Branstator, Dijkstra 

& Kliphuis, 2004). Precipitation rates lower than 213 cm/year generate only one or two 

large equatorial regions along with smaller mid latitude regions. The equatorial regions 

are of little interest because these precipitation regions mostly ran east-west, and, as a 

result, all divergence and deformation would be in poleward direction. Additionally the 

equatorial regions do not exhibit any of the six spatiotemporal transitions. The smaller 

regions of less than 213cm/year precipitation are too discontinuous for the optical flow 

algorithm to trace. The use of 213 cm/year delineates 20-40 regions in both years of 

study, allowing for proper comparisons of shifts in precipitation distributions. Regions 

enclosed by isohyets are created by identifying areas with attribute values greater than or 

equal to the threshold value of 213 cm/year of precipitation (Figure 3.5).  

 

Figure 3.5: CNRM precipitation regions greater than 213 cm/year for 2001 
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3.3.1 Kinematic analysis 

 
Only grid points within regions enclosed by 213cm/year isohyets are retained for 

the following analysis. The displacement in the x direction is denoted by u and in the y 

direction by v. Displacement vectors are used to calculate kinematic parameters at each 

grid point: ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y  to determine divergence, deformation and 

rotation at each point location  (Equations 3.1-5) where ∂/∂x and ∂/∂y represent changes 

in velocity in the x and y direction, respectively The calculation of ∂u/∂x, ∂u/∂y, ∂v/∂x 

and ∂v/∂y  is done by applying a kernel of a 3 × 3 window  for each differentiation (Table 

3.3 shows the ∂/∂x kernel ).  

0 0 0 

-0.5 0 0.5 

0 0 0 

Table 3.3: d/dx kernel  

A different kernel is applied to compute the finite differences differentiation with 

respect to y (Table 3.4).  

0 0.5 0 

0 0 0 

0 -0.5 0 

Table 3.4: d/dy kernel  

The kernels are applied to each grid point to calculate the finite differences in 

velocity in the x direction and the y direction at the grid’s center location for both u and 

v. The kernel results are divided by the distance between the grid locations in the x and y 
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orientations to get the finite differences that correspond to equations 3.2-5 (Bluestein 

1992): 

��
�% � ���� ,!�"���" ,!�

%��� ,!�"%��" ,!�  Eq. 3.2 

 
��
�( � ���,!� �"���,!" �

(��,!� �"(��,!" �  Eq.3.3 

�'
�% � '��� ,!�"'��" ,!�

%��� �"%��" �    Eq.3.4 

�'
�( � '��,!� �"'��,!" �

(��,!� �"(��,!" �   Eq. 3.5 

 

Even though the precipitation data in 2001 and 2048 cannot be considered 

temporally continuous, empirical measurements of the pattern transitions determine that 

changes were gradual from 2001 to 2048. Hence, the concept of fluid kinematics is 

applied.  

The kinematic equations below (Equations 3.6-13) are applicable to any fluid 

regardless of scale (Warsi 2006). Divergence measures the change in area over time (Eq. 

3.6). In a transition, area change is determined by the differences in movement inward 

and outward in respect to the area. A negative ∂µ/∂x along the boundary of an object 

suggests an inward move toward the object, and therefore results in reduction of area in 

the x direction. Similarly, a negative ∂ν/∂y suggests a contraction in y direction.  Hence, 

positive divergence represents an increase in spacing between different isolines or an 

increase in the region enclosed by an isoline. Negative divergence, convergence, 

represents a decrease in spacing between different isolines or a decrease in the region 

enclosed by an isoline.  
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divergence =  ��
�% �  �'

�(  Eq. 3.6 (Bluestein 1992) 

 
Rotation represents the angular change counter clockwise (positive) or clockwise 

(negative) of an isohyet region over time. Larger vertical flow at the east end of a 

boundary than the west side of thet boundary indicates counter clockwise rotation as is a 

lesser flow on the northern t boundary versus the southern boundary.  

rotation =  �'
�% � ��

�(  Eq. 3.7 (Bluestein 1992) 

 
 

Deformation includes two types of spatial changes in flow patterns : the stretching 

difference, the change in isoline spacing parallel to the change in position; and shear, the 

change in isoline spacing perpendicular to the change in position. The D1 term in Eq. 3.8 

describes the orientation of the region’s most rapid extent increase with the x axis and of 

the most rapid decrease due to stretching with the y axis. Shear in the D1 term acts along 

the y = x and y = -x lines.  

� � 23
24 � 25

26   Eq. 3.8 (Bluestein 1992) 
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Figure 3.6: D1 stretching deformation along the x axis  
 

The D2 term describes the orientation of the region’s most rapid increase due to 

stretching along the x = y line and decrease along the y = -x line. The D2 term quantifies 

shear with respect to the x and y axis.  

 D# � 25
24 � 23

26  Eq. 3.9 (Bluestein 1992) 
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Figure 3.7: D2 stretching deformation along the y = x axis  
 

Combining these two terms and obtaining a single axis of deformation simplifies 

the comparison of the deformation orientation and rate among objects. The deformation 

terms is combined by changing the coordinate system so that there is only a single non 

zero term. The deformation angle (89� is the angle at which the coordinate system must 

be rotated counter clockwise so that the new coordinate system only retains a single non 

zero deformation term (ie. D0 = 0 leaving the D1 measure only).The deformation terms 

for the new coordinate system are: 

�: � 23;
24; � 25;

26;  Eq. 3.10 (Bluestein 1992) 

 D:# � 25;
24; � 23;

26;  Eq. 3.11 (Bluestein 1992) 
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The coordinate system rotation angle is determined by setting 
25;
24; � � 23;

26;  in the 

new coordinate system so that the D’2 term  D:# � 0  is eliminated. The remaining term 

�:  now completely describes the deformation of the boundary under the influence of the 

displacement field whereas before D1 and D2 were both required. 

deformation angle = 89 �  
# tan" 9?

9@
    ... Eq. 3.12 

 
The resultant deformation D’1 summarizes the difference between the expansion 

in the x’ direction and in the y’ direction due to stretching and the x = y line and y = -x 

line due to shear. 

resultant deformation =  �:  A 
9?

BCD #EF
    ... Eq. 3.13 

 
The axis with the larger rate of increase is the axis of expansion, while the axis 

with the lesser rate is the axis of contraction (Figure 3.8).  
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Figure 3.8: Deformation 

 

3.3.2  Region transition tracking 

 
The virtual particle hypothesis associates a region enclosed by an isohyets Pi to a 

region of the same isohyet value in the time instance. Displacement vectors between the 

two region’s boundaries (Figures 3.2 and 3.3) represent precipitation transitions over 

space and time. The displacement vectors are used to associate isohyet threshold defined 

regions from one time to another (Figure 3.9).  
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Axis of expansion 
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Figure 3.9: Determining region associations between time instances 
 
 

Figure 3.9 shows the mapping of region 2 to region 5. All time T0 grid points with 

a displacement origin are associated with the time T1 grid point at the end of the 

displacement. Grid locations within regions bounded by the threshold isohyets are given 

unique gridded region identifiers for both 2001 (Figure 3.10) and 2048 data.   

  

213 cm/year 
threshold  region 
#2 at year t

0
 

213 cm/year 
threshold  region 
#5 at year t

1
 

Displacement 
vectors from 
213 isolines 

Displacement 
vectors from 
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In Figure 3.10 there are three regions of varying sizes with ID 21, 28 and 35. 

21 

21 21 21 

21 21 21 

21 21 21 

21 

28 28 

35 35 28 28 

35 35 35 35 

35 35 35 35 35 

35 35 35 35 35 

35 35 35 

Figure 3.10: Gridded Region Identifiers 

Regions at time T1 that spatially overlap regions at time T0 are also associated 

with the T0 regions. The associations are summarized in a table of time region IDs for T0 

and the T1 regions associated by following displacement vectors (Table 3.5). Each row in 

the table is associated with a region ID in year 2001 and a region ID in year 2048.  The 

example table contains a merge as several different region IDs from year 2001 are 

associated with a single year 2048 region (9 regions [28,35,49, 56, 63, 70, 77, 84 and 98] 

in the grey 2001 table cells merge into a single 2048 cell with the ID of 24).  

 
 
 
 
 
region ids 2001 (T0) 
213cm/year 

region ids 2048 (T1) 
213cm/year 

21 32 
28 24 
35 24 
42 64 
49 24 
56 24 
63 24 
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70 24 
77 24 
84 24 
91 80 
98 24 

105 96 
Table 3.5: Mapping regions between time steps for CNRM.  
 

The regions involved in a merge are visually separated using vertical 

displacement in Figure 3.11. The single lower region is from 2048 while the multiple 

semi-transparent upper level regions are from 2001. 

 

 

Figure 3.11: Merge from CNRM CM3 213 cm/year regions.  
 
 

After the calculations, each grid point within regions enclosed by 213 cm/year 

isohyets are assigned a region ID, divergence value, rotation value, resultant deformation 

D’1, and the deformation angle θD (Table 3.6). 
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Table 3.6: Attribute table for areas of precipitation objects 
 
 

 Because the GCM output products are in latitude and longitude units (NCAR-

CCSM3 at 1.4° × 1.4° resolution, and CNRM-CM3 at 2.8°×2.8° resolution), the metric 

extent of these grid cells is not  transformed directly to square cells used in GIS data. A 

Thiessen polygon routine is used to construct two polygon layers in meters: one is based 

on CCSM3 grid points and the other, CM3 grid points. Both layers are in Robinson 

projection to provide a balance between areal distortion and shape distortion at the global 

scale. Because CCSM3 grid points are spaced in a lattice structure, Thiessen polygon 

routine creates matrices of rectangles that centered at each CCSM3 grid point. The same 

outcome is applied to the Thiessen polygon layers based on CNRM-CM3 grid points.  As 

shown later in the results, most regions of analysis are in low or mid latitudes and, 

therefore, are less sensitive to areal or shape distortions in Robinson projection than high 

latitude area.   For each region enclosed by 213 cm/year isohyets, values of kinematic 

parameters are weighted by the size of respective Thiessen polygons, summed, and then 

normalized by the area of each region.  
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3.4 Results and Discussion 
 
 The use of kinematics to interpret precipitation patterns enables the comparison of 

precipitation distribution patterns (Austin & Houze, 1972). Two levels of kinematic 

properties are examined; one the internal kinematics at grid points within each region 

and, the other is external kinematics. Internal kinematics measures the internal 

composition and structure of movement inside a region. In the case of precipitation, 

internal kinematics characterizes transitions of precipitation at each grid point within a 

region.  External kinematics are attributed to a region enclosed by the threshold isohyets 

as a whole and characterizes how the region evolved over time. A region might have 

active internal kinematics with variable precipitation within a region, but externally, the 

region might remain stationary without significant shifts in location or shape.  Both 

internal kinematics and external kinematics support the assessment of precipitation 

patterns in space and time and quantification of differences in changes of precipitation 

patterns from 2001 to 2048 projected by NCAR CCSM3 and CNRM-CM3.  

The kinematics of precipitation fields may imply complex interactions between 

contributing phenomena. Tropical precipitation is a function of water vapor fields, 

general circulation, orographic lifting and sea surface temperature (Cavazos, 1998). 

Tropical easterlies transport moisture in the tropics along with a component towards the 

equator (Chen, 1985). Water transport has a uniform net westward component except for 

in the tropical and subtropical Indian Ocean regions (Rosen, Salstein, & Peixoto, 1980). 

The rate of transport increases from the equatorial rate towards a peak at the 25N latitude 

(Rosen et al., 1980). Mean precipitable water in general decreases from the equator 
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poleward with the Southern Hemisphere acting as a moisture and latent heat source for 

the Northern Hemisphere (Rosen, Salstein, & Peixoto, 1979). Tropical rainbands are 

usually located above regions of warm sea surface temperatures (Manabe, Hahn & 

Holloway, 1974). The wind field and the water vapor transport field show rotation, 

convergence, divergence and deformation. The complex interaction of vapor transport, 

circulation, orographic lifting, and sea surface temperatures, each with unique kinematics, 

influence precipitation patterns. 

Climate change pushes circulation patterns poleward as the Hadley cells increase 

in size (Mitas & Clement, 2005). Hadley cell shifts affect the Sahel rainfall which is 

dependent on the northward penetration of the equatorial airmass during the summer 

(Landsberg, 1975). A similar dependency exists for Antiplano rainfall and the Bolivian 

high in South America (Lenters & Cook, 1999). The changes in convergence zones in the 

tropics are associated with a decrease in the frequency of strong updrafts and an increase 

in weak updrafts (Vecchi & Soden, 2007).   

The CNRM CM3 GCM model output includes area encompassed by 213 cm/year 

isohyets  expands from 42.41 × 106 km2 in 2001 to 52.52 × 106 km2 in 2048 with most of 

the increase occurring in the Indian Ocean (Figure 3.12).   
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Figure 3.12: CNRM precipitation regions greater than 213 cm/year with 2001 outlined in 
green and 2048 in solid blue 
 
 

Regions enclosed by 213 cm/year isohyets from the  NCAR CCSM3 products  

expand from 39.43 × 106 km2  in 2001 to 41.48 × 106 km2   in 2048 (Figure 3.13) with 

most of the increase occurring in the Indian Ocean similarly to the CNRM output..   
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Figure 3.13: NCAR precipitation regions greater than 213 cm/year with 2001 outlined in 
green and 2048 in solid blue 
 

Figures 3.14-17 illustrates regions indicative of changes in precipitation patterns 

based on CNRM and NCAR data, respectively.   The CNRM model has 16 regions that 

were deforming with an east-west expansion axis (Figure 3.14). 
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Figure 3.14: CNRM precipitation regions greater than 213 cm/year for 2001 with an east 
west expansion orientation 

 

 An east-west expansion is a possible result of the intensification of regional 

precipitation driven by increased latitudinal moisture transport that expands a SST or 

orographic triggered precipitation region. An ITCZ shift likely leads to a north south 

expansion of a precipitation region. A single large region of size 4.89 × 106 km2 over the 

Indian Ocean and several small regions exhibit east west expansion are displayed in the 

CNRM output. The CNRM shows a marked increase in the 213 cm/year precipitation 

extent for the Indian Ocean and the Western Pacific Equatorial Region. The second and 

third largest regions of east-west expansion are in Africa and in South America for the 

CNRM output.  The NCAR model has 15 regions that deform along an east-west axis of 

expansion (Figure 3.15).   



 
 

90 
 

 

Figure 3.15: NCAR precipitation regions greater than 213 cm/year for 2001 expanding 
latitudinally (east-west)  

 

 The largest region with east-west expansion in the NCAR model is in Africa with 

a size of 1.49 × 106 km2. The second largest region with east-west expansion is east of 

Japan in the Pacific, and the third, in South America. The two regions with major non-

seasonal water vapor content are northern South America and equatorial Africa (Chen, 

1985).  The study shows that both CCSM and CNRM model outputs attribute an east-

west expansion, which is a possible result of increases in moisture transport. The CNRM 

Western Pacific Region may be an intensification of a seasonal high water vapor content 

region (Chen, 1985). 

The rotation of annual precipitation regions with large east-west extents are a 

possible result of zonal mean flow or moisture transport. The zonal flow is easterly at the 

equator and changing to a westerly at approximately 30° N and S (Marshall & Plumb, 
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2008). The westerlies strengthen until 50° N and S (Marshall & Plumb, 2008). The study 

measures rotation by averaging the shear within the boundaries of the region. 

Precipitation regions under the influence of the zonal mean flow would rotate clockwise 

between 0° and 50° N and counter-clockwise between 0° and 50° S.  

The moisture flow in the region in between 50°S and 50°N is also easterly but 

with increasing magnitude to 25°N or S (Chen, 1985) and consequently has a shear and 

rotation opposite than that of the zonal mean wind. Increased water vapor transport leads 

to the expansion of precipitation regions. Regions exhibit the zonal flow rotation 

direction resulting from zonal shear or opposite direction due to water vapor transport.  

The CNRM model had 13 regions with counter clockwise rotation (Figure 3.16). 

 

Figure 3.16: CNRM precipitation regions greater than 213 cm/year for 2001 with counter 
clockwise rotation 

 

Regions of limited east west extent are possibly due to the influences of 

meridional flow and local annual flow. The CNRM regions with counter clockwise 
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rotation are mostly in the southern hemisphere, as mean zonal wind shear would indicate, 

with a large region in the Western Pacific. 

There is a region in the western Atlantic with counter clockwise rotation but the 

center of this location is far enough north for its rotation to be explained by zonal wind 

influences. There are four regions in the northern hemisphere: one in the western Pacific 

and three continental regions, with counter clockwise rotation hinting at potential changes 

in moisture transport. There are several regions in South America and Southern Africa 

which exhibit counter clockwise rotation in the same direction as Southern Hemisphere 

zonal wind shear. The NCAR model has fifteen regions with counter clockwise rotation 

in the Northern Hemisphere at less than 40° N latitude which is the same direction as the 

vapor transport field (Figure 3.17).  

 

Figure 3.17: NCAR precipitation regions greater than 213 cm/year for 2001 with counter 
clockwise rotation  
 
 

These counter clockwise rotating regions include two in the Atlantic off the east 

coast of the North American Continent at 41° and 36° N, two regions in close proximity 
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to the Indian Peninsula and two regions in the Pacific east of Asia at  approximately 40° 

N. There is a region shared with the CNRM model in the southern Pacific of clockwise 

rotation. This rotation is the result of the zonal mean flow shear which is common to both 

models. 

The CNRM CM3 output for the 213 cm/yr isohyets shows that eleven of 34 

regions show expansion (Figure 3.18) with the largest being in the southern equatorial 

Pacific.  

 

Figure 3.18: CNRM precipitation regions greater than 213 cm/year for 2001 with positive 
divergence 

 

The NCAR model has very few regions of divergence with the largest being east 

of Japan in the Pacific (Figure 3.19).  
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Figure 3.19: NCAR precipitation regions greater than 213 cm/year for 2001with positive 
divergence 

 

Though both GCMs show area expansion of regions enclosed by the 213 cm/year 

isohyets, few regions show divergence. The isohyets flow displacements are generated 

from twenty different isohyets, not just the isohyets for 213 cm/year. The region of the 

Indian Ocean that fills in for the 213 cm/year isohyet in the CNRM dataset is diverging as 

shown by (Figure 3.20) divergence in the north but convergence in the south.   
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Figure 3.20: External divergence and convergence 
 
 

The lack of divergence in regions that expand hints that drivers external to the 213 

cm/year threshold defined regions may be responsible for the extent changes. The most 

discernable difference between the two datasets is the high growth rate of 20% for the 

CNRM 213 region (Figure 3.12) versus 5% for the NCAR 213 cm/year regions (Figure 

3.13). The difference is a possible result of differences in the forecasts of SST changes 

between the two models. Compared to CCSM3, the CNRM shows a larger SST increase 

in the Indian Ocean which results in higher precipitation increase (Vecchi and Soden 

2007). The flow field external to isohyet regions in the CNRM output for the Indian 

divergence 

convergence 
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Ocean mapped the increase in extent and the joining of twelve regions into a single large 

one (Figure 3.12). The join was recognized as the region mapping table had multiple 

region IDs in the 2001 column that shared a single region ID in the 2048 column (Table 

3.5). Regions involved in a split are also mapped using the region mapping table as well 

(Figure 3.21).  

 
Figure 3.21: Region from 2048 with split into three parts from one. Lower flat level is 
from 2001.  

 

In addition, regions without an entry in the region association table are either 

dissipating or emerging. The region association table only contains regions that are 

associated across two time instances (i.e. 2001 and 2048). Regions in 2001 that are not in 

the association table are dissipative and regions in 2048 not in the table are emergent. 

Emerging and dissipating regions are mapped as shown in Figure 3.22 and Figure 3.23. 

The NCAR emerging dissipating map has emergent locations in the Atlantic as well 

(Figure 3.23). 

Split Region 
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Figure 3.22: CNRM precipitation regions greater than 213 cm/year that emerged or 
dissipated during the interval 2001-2048 
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Figure 3.23: NCAR precipitation regions greater than 213 cm/year that emerged or 
dissipated during the interval 2001-2048 

 

The paired emergent and dissipative regions hint at the amount of variability that 

exists in the precipitation processes resulting from the driving phenomena. The 

displacement calculation algorithm proceeds to the next location without determining a 

displacement value when the displacement line passes through a minima or maxima 

before locating the position of the isoline in the next time instance.  

3.5 Conclusion and Future Work 
 
The kinematics-based method presented here attempted to measure directly gradual 

changes in spatiotemporal patterns. Under the assumption that changes in precipitation 

patterns of regions receiving 213 cm/year of rainfall are gradual from 2001 to 2048, the 
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research applied the proposed method to evaluate the transition of precipitation patterns 

projected by NCAR CCSM3 and CNRM-CM3 for Scenario A2 defined by IPCC. Central 

to the proposed method is the concept of kinematics that characterizes movement 

patterns. In the case study, isohyets are tracked to determine shifts in isohyets from 2001 

to 2048.  The shifts are measured by displacement vectors measured along the isohyets 

and then spatially interpolated to grid points not on a isohyet. Furthermore, the 213 

cm/year isohyets are used to form surrogate objects. Kinematic parameters (divergence, 

rotation, and deformation) are calculated internally at grid points within each identified 

region and summed to the region as the overall kinematic properties for the region.  

 Both internal and external kinematic properties are then used to assess 

spatiotemporal patterns and compare outputs from the two GCM products. Spatial 

patterns of divergence and rotation are displayed (Figure 3.14, Figure 3.15, Figure 3.16, 

Figure 3.17) in order to identify patterns of precipitation change between the years 2001 

and 2048. The axes of expansion, rotation and divergence provide hints as to the potential 

drivers for the precipitation extent evolution. The comparison of the CNRM and NCAR 

output provide indications of the generality of potential drivers of common regions.   

Thirteen regions extracted from CNRM 2001 dataset merge into a single region 

(Figure 3.12) in 2048 as a result of model precipitation intensification in the Indian 

Ocean. Only three of the thirteen regions have positive divergence. The CNRM region 

over the Indian Ocean has a negative divergence value, yet the area of greatest expansion 

was the Indian Ocean in the CNRM model. The growth of precipitation regions is driven 

by conditions outside the 2001 regions. The major increase in isohyet extent came from 

outside the 213 cm/year isopleths that existed in 2001 (Figure 3.5). 
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Long term circulation patterns are likely the determining factor for the 

precipitation patterns (Van Ulden & Oldenborgh, 2006). Further research comparing 

general circulation patterns and isohyets displacement patterns may reveal where there 

are significant differences. The differences may help determine drivers other than general 

circulation to changes in precipitation patterns.   

Future research should include use cases with lower threshold values to determine 

if the kinematics-based methodology can identify, represent, and analyze spatiotemporal 

patterns and pattern transitions for temporally average data. The 213 cm/year isohyets 

result when large numbers of precipitation events affect a location during a single year. 

Lower thresholds will require temporal averaging to smooth the rapid variation in year to 

year rainfall.  
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Chapter 4: Use Displacement Vectors to Discern Differences in Temperature 
Change in the 20th Century 

Abstract  
This research develops a new temporal Geographic Information System (GIS) 

framework to compare General Circulation Model (GCM) products and 

reanalysis datasets to discern differences in patterns of change and locations 

of change. The framework incorporates the concept of kinematics to represent 

the movement of isolines as displacement vectors.  Comparison of 

displacement vectors from the four datasets show differences in isotherm 

shifts, and the differences are prominent in several well defined regions 

across the globe. Among the four datasets used in the study, the two 

reanalysis datasets have the smallest mean of differences in displacement 

vectors. The CNRM CM3 20C3M dataset contains an Antarctic Cooling that 

led to most of the differences in displacement vectors against the other 

datasets.  The research shows the effectiveness of displacement vectors 

analysis to elicit spatial differences in climate patterns among GCMs data and 

reanalysis data. While temperature data were used in the case study, the 

proposed method is based on concepts applicable to other isolines of 

geographic variables (such as isobars or isohyets).  

4.1 Introduction 
 
One challenge of examining GCM products and reanalysis data relates to the massive 

spatiotemporal data volume and the difficulty of determining patterns of change from a 

temporal set of gridded data. To meet the challenge, the research transforms gridded 

datasets to isolines of geographic properties and calculates displacement vectors of these 
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isolines to capture the rate of change and spatial distribution of change over time. The 

rate of change is determined by novel applications of image motion detection algorithms 

to isolines of geographic properties. Furthermore, algorithms are developed to discern 

regions exhibiting significant differences among data from GCMs and reanalysis.  

Displacement vectors offer two key advantages to change analysis. First, 

displacement vectors capture both rate and direction of change simultaneously. Second, 

spatial analyses of differences in displacement vectors suggest regions with possible 

conflicting climate change patterns from the different models.  This research focuses on 

regions characterized by large differences in displacement vectors based on comparisons 

of data from GCMs and reanalyses. Effects of statistical randomness in differences are 

reduced through the use of time intervals and spatial filters to smooth local data.  

4.2 Comparison of Model Data in Climate Change Research 
 
 Comparative studies of climate model data are common for enhancing the level of 

confidence on patterns and effects of climate change. Much research utilizes correlates of 

climate change such as storm tracks, precipitation, climate classifications and other 

manifestations of climatology. In each of these comparisons similar climate system 

response across the different GCMs adds support to the predicted impact of climate 

change on the manifestation of climatology under study. This research adds the ability to 

compare and contrast the output of climate models based on the spatiotemporal 

characterization of scalar climatic fields such as temperature. Comparisons based on 

manifestations of climate are dependent on the locations and time scales typical of the 

manifestations. The spatiotemporal characterization developed in this research is only 

dependent on the temporal span and spatial resolution of the data instead of the 
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manifestation. The differences between the GCM outputs are used to provide a 

description of the potential range of the response to climate change. 

 A consistent poleward shift and intensification of the storm tracks was found in 

an ensemble of 15 coupled climate models for 21st century climate simulations (Yin 

,2005). Ulbrich and Christoph (1999) determined that the North Atlantic Oscillation 

would shift and there would be increasing storm track activity over Europe due to 

anthropogenic greenhouse gas forcing by comparing the output of several GCMs. Pinto et 

al. (2007) compared changes in storm tracks and cyclone activity across three SRES 

ensemble experiments to compare and contrast several GCMs.  

  Comparison of multiple model outputs helps draw conclusions on regional 

patterns of climate change. Hansen et al. (2006) determined that the increased Equatorial 

Pacific West–East temperature gradient during the last century might have increased the 

likelihood of strong El Niños and that, based on the output of future emission scenarios, 

this may become permanent. Similarly, likely future precipitation pattern changes from 

climate change were found by van Ulden and van Oldenborgh (2006) when they studied 

five GCMs and concluded significant differences in circulation patterns would occur. 

Past work with reanalysis datasets included the determination by Hu and Fu (2007) of a 

poleward shift in the Hadley cells during the last half a century based on similarities in 

three meteorological reanalyses and three outgoing long-wave radiation (OLR) datasets. 

The poleward shift was determined to continue under the regime of anthropomorphic 

climate change driven by future emission scenarios. 

Other research focuses on differences in GCM products.  Arzel et al. (2006) and 

Lefebvre and Goosse (2008) identified the uniqueness of CNRM model output in the 
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Weddell Sea area. Holland and Bitz (2003) determined that the CNRM model produced a 

slower ice melt rate than the NCAR model. In all researched instances of GCM output 

comparison the basis is phenomena that enabled the researcher to focus on specific 

regions to determine similarity or differences between model outputs. 

4.2.1 Approaches to Analyze Temporal Gridded Datasets 

 
Fluid velocity and local trend classifications are commonly used to analyze temporal 

gridded datasets in earth sciences. For example, Biausser, Grilli, and Fraunié (2004) 

applied velocity fields to simulate a wave breaking over a sloping ridge. Tan et al. (2001) 

classified the temporal pattern at each grid location to and then searched for spatial 

correlates among the temporal classes to discern spatiotemporal patterns of soil moisture, 

temperature, precipitation and net primary productivity.  

Expanding upon the ideas of fluid velocity and local trends, this research develops 

a GIS framework to analyze and compare spatiotemporal patterns based on temporal 

gridded data. The velocity field of fluid flow has been used in several disciplines as a 

basis for analysis in addition to fluid mechanics. Astronomy uses an axisymmetric 

velocity field to help analyze and interpret data about movement of and distances 

between stars (Brand & Blitz, 1993). This research compares reanalysis climate data and 

GCM model data.  Furthermore, this research extends the concept of flow to shifts in a 

temperature field characterized by temperature transitions over space. Displacement 

vectors of temperature change over space represent the direction of the temperature 

transition and the rapidness of temperature change.  Displacement vectors derived from 

temporal gridded datasets highlight patches of differences in change patterns suggested 

by GCMs and reanalysis data 
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4.2.2 Research Hypotheses and Goals 

 
The growing availability of temporal gridded datasets from remote sensing, numerical 

models, and reanalyses poses great challenges for spatiotemporal analysis. Global 

statistics or clustering analyses allow identification of average trends over the world and 

spatial patterns at a given time, but the conventional approaches are limited in 

summarizing how changes progress over space and time. Global and regional statistics 

mask finer grain changes while cluster analysis requires care when choosing a trend for 

clustering.  

The premise of this research posits the use of displacement vectors as measures of 

the direction and magnitude of changes over space and time. The chosen geographic 

attribute, temperature, is representative of continuous fields in which changes are 

conceptualized as flows.  Comparisons of displacement vectors help identify regions of 

differences among the tested datasets, and hence suggest the need for future study of 

potential causes. Under the premise, the research tests the following hypotheses with four 

temperature data sets: two GCM model outputs and two climate reanalyses:  

1. The expected values for the differences between the six permutations of 

pairs of the four displacement sets are significantly different (95% 

confidence level). The hypothesis is evaluated by applying the F-test to the 

six difference sets. The difference sets are leptokurtic so a large F value is 

required to have confidence in the results.  

2. The median and box plot interquartile range of the six difference sets are 

larger between different types of data sources (i.e. GCM data versus 

reanalysis data) than between same data source types. The standard 
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deviation does not have meaning for leptokurtic data so a substitute 

measure, the box plot Interquartile Range (IQR) is used.  

3. The displacement vectors themselves reveal meaningful patterns of 

differences among the four datasets. Differences are substantiated by 

studies of multiple data sources that have similar conclusions.  

The introduction section covers the concepts and approaches in developing the 

proposed GIS method for spatiotemporal analysis of temporal gridded datasets. The 

following sections elaborate on the proposed method with temperature data from four 

climate datasets. The datasets section discusses the sources and nature of the datasets 

used in the study as well as the rationale and procedures for data selection and 

processing.  The methods section details the proposed method to compute displacement 

vectors and comparison. The results and discussions section evaluates the expected 

values of the differences of displacement vectors among the data sources (Hypothesis 1), 

differences in median and IQR (Hypothesis 2)  and relates the research findings to 

previous climate research (Hypothesis 3). Finally, the chapter concludes with summaries 

of intellectual contributions of the research and opportunities for future research.  

4.3 Data Sets used in the Study 
Four datasets, two reanalysis products and two GCM products from the Twentieth-

Century Climate in Coupled Models experiments (hereafter, 20C3M datasets) are used 

for this study. The two GCM products are from the National Center for Atmospheric 

Research  (NCAR) Community Climate System Model (CCSM3; Collins et al. 2006)  

and, the other Center National Weather Research (CNRM) global ocean-atmosphere 

coupled system (CM3; Salas-Mélia et al., in review).  Reanalysis data is from the 
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National Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP NCAR; Kalney et al., 1996) and European Centre for Medium-Range Weather 

Forecasts (ECMWF; Uppala et al., 2005) ERA-40 projects.   

Two from each type are chosen to allow comparisons within the reanalysis 

datasets, within the 20C3M datasets and between the reanalysis and 20C3M datasets. 

Both the reanalysis datasets and 20C3M datasets are single realizations, not ensembles of 

multiple realizations, based on historical data observations or GCM model estimates with 

all the variability of the climate intact. One expects that differences are smaller within a 

dataset type but larger between the dataset types.  

The ERA-40 reanalysis dataset is based on meteorological observations from 

September 1957 to August 2002 (Uppala et al., 2005). The goal of ERA-40 reanalysis is 

to provide a uniform analytical technique for meteorological value interpolation through 

the use of the ECMWF’s Integrated Focus System (IFS; Caires & Sterl, 2003). The 

heterogeneity of the observations in terms of technique, location and sampling interval 

remains after the IFS processing. The data collection tools changed significantly over the 

period of September 1957 to August 2002, with increasing satellite-borne instruments 

from the 1970s onwards but  a declining number of radiosonde ascents since the late 

1980s (Uppala et al., 2005).  The dominance of satellites corresponds with increased 

small scale uncertainty in the ERA-40 reanalysis dataset due to the decline in radiosondes 

and aircraft observations. The decline diminishes the ability to analyse small scale 

aspects as represented by the vorticity field (Bengtsson et al., 2004). The location and 

temporal coherence of cyclones captured with satellite data have a wider spread than the 
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cyclones captured with terrestrial data when compared with the control tracks based on 

combined surface, terrestrial and satellite data (Bengtsson et al.2004). 

On the other hand, NCEP/NCAR re-analysis aimed to produce a 40-year record of 

global analyses of atmospheric fields for the research and climate monitoring 

communities (Kalnay et al., 1996) through the recovery of observational data from land 

surface, ship logs, rawinsonde, pibal, aircraft, satellite and other data sources for the 

period 1957 through 1999. The data assimilation system used for reanalysis remained 

unchanged throughout the data auditing and assimilation processes so as to eliminate 

perceived climate jumps associated with changes in data assimilation systems (Uppala et 

al., 2005).   

The NCEP reanalysis did not use surface temperature (Kalnay & Ming, 2003) 

whereas the ERA-40 reanalysis did (Uppala et al., 2005). The missing surface forcing did 

not affect the long term NCEP reanalysis accuracy as Cai and Kalnay (2005) determined 

that the trends from absent surface forcings, including major volcanic eruptions, are 

captured in the reanalysis surface data within a few assimilation cycles from the non 

surface data assimilation. 

The initial data assimilation scheme for the ERA-40 reanalysis was more 

constrained by satellite data than the NCEP scheme which was initially mostly 

constrained by observation stations (Bromwich & Fogt, 2004). The different assimilation 

dependencies led to substantial differences in the reanalysis datasets until satellite data 

became the main data source in the 1970s for both ERA-40 and NCEP. The ERA-40 and 

NCEP reanalysis products agree closely for most fields (e.g. sea level pressure and zonal 

winds), especially after 1970 (DeWeaver & Bitz, 2006).   
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The 20C3M datasets included the Center National Weather Research global 

ocean-atmosphere coupled system (CNRM- CM3; Salas-Mélia et al., in review) from 

France and the National Center for Atmospheric Research Community Climate System 

Model (NCAR- CCSM3; Collin et al. 2006) from the United States. The two GCMs were 

chosen as the different surface grid resolutions (Table 1) gave opportunities for the 

proposed method of displacement vectors to demonstrate the robustness in analysis of 

difference in change with respect to grid resolution. The CNRM-CM3 20C3M model 

includes forcings from ozone, aerosols, GHGs, sulphates, sea salt and desert dust aerosols 

(Salas-Mélia et al., 2004). The NCAR 20C3M model forcings include ozone, aerosols, 

GHGs, sulphates, DMS emissions and oxidants (Collins et al., 2006). Both models use 

the Hadley Centre's global sea-ice and sea surface temperature data set (Raynor et al., 

2003) for surface temperature on non land areas (Folland et al., 2002). 

Temperature is chosen in this research for two reasons. First, temperature is a 

spatially continuous property that fits well with the concepts of fields. A good 

understanding of changes to a field needs effective functions to elicit spatial variations 

over time, and hence temporal fields of temperature provide a good test case for the 

proposed displacement vectors. Second, temperature is one key parameter in climate 

change research. Temperature is a common proxy to evaluate the impacts of 

anthropogenic causes on climate. Climate observations and modelling efforts produce 

diverse ranges of climate data and model outputs. Comparison of temperature patterns is 

important to determining whether suggested patterns of climate change are compatible. 

Through the case study of changes in temperature fields, this research demonstrates the 
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effectiveness and value of the proposed method of displacement vectors in identifying 

differences in spatiotemporal patterns of climate change.  

The temperature data for this research was obtained from the Earth System Grid 

(ESG) data site, the ECMWF data server and the Earth System Research Laboratory. The 

data are in different grid sizes as a result of balances between output resolution and 

computation power available in different modelling processes. The effect of horizontal 

resolution on GCMs have been studied since the 1970s and increased resolution does not 

lead to a guaranteed improvement in the model ( Manabe et al., 1978;  Wellck et al., 

1971;  Miyakoda et al., 1971). Manabe et al. (1978) showed that some phenomena, such 

as low-level westerlies, can degrade with increased resolution. Baumhefner and Downey 

(1978) showed that increased resolution beyond a limit does not necessarily guarantee 

better accuracy.  

Although for many phenomena, the fidelity of the model varies monotonically 

with resolution, increasing resolution does not always guarantee an overall improvement 

in the results. The lack of consistency between models versus resolution suggests that 

physical parameterizations play a large role, and that parameterizations are best within a 

limited resolution range. Increasing resolution can lead to degradation of model output if 

parameterizations are broken by the resolution change. Tibaldi et al. (1990) found that 

the change from medium to high resolution did not always increase the fidelity of a 

model. The zonal-mean diagnostic did not show improvement for resolution beyond T42, 

a spectral resolution that approximates to a 2.8125° × 2.815° grid, in several models 

(Boyle 1993).  Increased resolution, nevertheless, enhances the NCAR CCSM3 products 
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through the reduction of inaccuracy in Arctic Sea Ice inaccuracies and increasing the 

resolution of the Arctic Anticyclones modeling. (DeWeaver & Bitz, 2006). 

 
Dataset 
Name 

Organization Country Atmospheric 
Horizontal 
Resolution 

Source 

CCSM3  NCAR USA 256 x 128 Collins et al. (2006) 

CNRM-
CM3  

Meteo-
France/CNR
M 

France 128 x 64 Salas-Melia et al. 
(2005) 

ERA-40 ECMWF UK 2.5 x 2.5 
144 x 73 

http://www.ecmwf.int 

NCEP NCAR USA 2.5 x 2.5 
144 x 73 

http://dss.ucar.edu/pub
/reanalysis/ 

Table 4.1: Datasets and their horizontal resolution. 
 
 

 A set of isotherms is used as reference features to determine changes in a 

temperature field. The data extends from 1959 to 1999 for all four datasets. Two temporal 

averages and a gap are needed to generate means and noticeable changes between the 

means. The isotherms are fourteen year means using the years 1958-1971 for the 1971 

mean and the years 1986-1999 for the 1999 mean. There is a fourteen year gap from 1972 

through 1985 so as to provide noticeable changes between the 1971 and 1999 mean value 

grids. When temperature changes over space, isotherms shift accordingly. The proposed 

method calculates the displacement vectors of isotherm shifts to measure the direction 

and magnitude of temperature change; for example, 100 C isotherm shift north.  The 

values of reference isotherms used in the case study, (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 

12, 14, 16, 18, 20, 22, and 26 0C), are chosen using the Koppen Climate Classification 
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temperature division lines with further subdivisions to provide a more complete sampling 

of the scalar temperature field (Figure 4.1). 

 

Figure 4.1: Isotherm contour lines from the NCAR NCEP dataset for 1971 
 
 

 The change in climatic temperature drives changes in bioclimatic zones that 

manifest as changes in morphology (Parmesan & Yohe, 2006). Comparing the changes in 

climatic temperatures provides insight into the differences between climatic datasets with 

an emphasis on bioclimatic envelopes. 

 

4.4 Methods and Methodology 
 

The proposed method transforms a time series of scalar fields, such as temporal 

grids of temperature, into displacement vectors to reveal the spatiotemporal patterns of 

change in the GCM or reanalysis datasets. Conceptually, the proposed technique is 

applicable to any resolution and interval as long as due consideration is given to the rate 
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at which the phenomena traverse the data field. The method identifies regions in scalar 

data that are changing at different rates between two datasets (Figure 4.2). 

 

 
Figure 4.2: Anomalous displacement region identification and display 
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4.4.1 Displacement Vectors and Comparisons of Differences  

 
This research is built around the concept of kinematics and the utilization of the rich 

history of kinematic analysis in Meteorology. The foundation of kinematic analysis is the 

change in velocity for both latitudinal and longitudinal flow (Bluestein, 1992). This 

research applies kinematics to a virtual flow that reflects the spatiotemporal changes of 

scalar attributes over the Earth’s surface.  The kinematic representation utilizes 

Lagrangian and Eulerian concepts of fluid kinematics to capture the spatiotemporal 

characteristics of a field. Fiat boundaries based on subjective criteria, isotherms in this 

study, are used to spatially delineate surrogate objects. The surrogate objects are traced 

across multiple time instances and displacements calculated for the object’s boundaries 

using optical flow analysis. The displacement vectors for each dataset are calculated 

based on contour matching from image processing algorithms developed in chapter 2. 

(Figure 4.3) 

 

 

Figure 4.3: Calculating displacement vectors 
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An attempt is made to create a vector parallel to the local temperature gradient 

that intercepted a same value isotherm at time T1for all grid points on a particular 

isotherm at time T0. Interpolation is used to assign displacements to all grid points 

without an explicitly calculated displacement. Differences in the displacement vectors for 

each grid point are then calculated for each pair combination.  

The displacement difference vectors contrast the shifts in isotherms in the two 

datasets being compared. The differences in x and y directions are converted to points 

with magnitudes and angles at locations.  

 The Iterative Self Organizing (ISO) clustering tool is used to identify regions of 

similar differences of displacement vectors based on maximum likelihood classification 

functions. These identified clusters may relate to underlying geophysical phenomena. All 

difference vectors outside the defined large vector region are removed from the map to 

remove the spatial and temporal randomness intrinsic to the models (Caires & Sterl, 

2003). The remaining difference vectors are symbolized as arrows with orientation 

dictated by the displacement vector’s direction. 

This research utilizes a pairing approach for analysis of differences by comparing 

the difference in displacement vectors among the four test datasets by examining the six 

possible pairings. The simplistic approach is taken for this research for two reasons: the 

number (4) of models in the comparison is manageable for direct comparisons and pair 

comparison supports the recognition of differences that are unique to a particular model. 
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4.5 Results and Discussions 
 

The differences in displacement vectors between the CNRM 20C3M dataset and the 

NCEP reanalysis dataset are depicted in Figure 4.4 as a kinematic analysis example. 
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Figure 4.4: CNRM minus NCEP displacement map 
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The differences are calculated by subtracting the NCEP longitudinal and 

latitudinal displacement values from the CNRM values. The large magnitude northward 

arrows in the Weddell Sea, at the center of the map north of the Antarctic, result from the 

CNRM dataset portraying a northward shift of the isotherms, i.e. cooling. The northward 

arrows over Africa result from the larger northward shift in isotherms for the CNRM 

dataset than the NCEP dataset as well. There is good agreement between the two datasets 

in the southern mid latitudes of the oceans depicted by the light blue in figure Figure 4.4.  

4.5.1 The findings 

 
The differences for the six possible permutations of pair kinematic differences of the four 

datasets were calculated at each grid point. The difference set for each was leptokurtic 

with a kurtosis value from four to six. The mean and standard deviation do not apply to 

datasets with such a large deviation from a normal distribution. The box plot interquartile 

range (IQR) of 25% to 75% is used to compare ranges. The IQR and the median 

difference are displayed in the table below for comparison purposes (Table 2).  

Source 
Dataset 

CNRM 20C ERA40 NCAR 20C 
NCAR 
NCEP Median 

 

CNRM 20C 
  

16 11 -9 
CNRM 

20C   

ERA40 67 
  -4 

0 ERA40 
  

NCAR 20C 60 44 
  

-6 
NCAR 
20C   

NCAR 
NCEP 

80 41 52 
  NCAR 

NCEP   

Box Plot 
IQR  

CNRM 20C ERA40 NCAR 20C 
NCAR 
NCEP 

Source 
Dataset 
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Table 4.2: The median and data range of differences in the longitudinal displacement in 
km/decade 
 
The NCAR CNRM difference dataset histogram is show in Figure 4.5. 

 

 
Figure 4.5: Histogram of the NCAR minus CNRM longitudinal displacement. Other 
difference histograms are similar. 
 
 

The ANOVA F-test was applied to the 6 differences datasets which had a total of 

43776 data points, 5 degrees of freedom in the numerator and 43771 in the denominator. 

The F-test result was 466 indicating an almost certainty of the datasets having different 

expected values. The 99.9% confidence level for 5 degrees of freedom in the numerator 

and 1000 in the denominator is 4.1392. Hypothesis #1 is confirmed. 

Comparisons between the two reanalysis datasets and the two 20C3M datasets 

produced two groups of comparison similarities/differences when the medians and IQR 

of the longitudinal displacement are evaluated. The reanalysis datasets and the NCAR 

20C3M dataset had less difference in longitudinal displacement difference median and 

IQR, and therefore, the two reanalysis datasets along with the NCAR 20C3M dataset 

appear to have the most similar spatial patterns of temperature change on the 14-year 

mean temperature.  The kinematic similarity of the NCAR 20C3M dataset with respect to 

the reanalysis datasets supports the CO2 forcing built into the NCAR model (Collins et 

al., 2004). The differences between the CNRM GCM and all the others are the larger 
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three of the set of six differences. Hypothesis #2 is not confirmed as the differences 

between the NCAR and CNRM displacements are larger than between NCAR and both 

reanalysis displacement sets. The finding indicates that the CNRM 20C3M has unique 

and significant differences, versus the other three datasets, in the movement of isotherms 

during the period used for this study  

4.5.1.1 Similarity maps 

 
There is general agreement between the maps of the isotherm displacement difference 

vectors from comparisons between the two reanalysis datasets and the NCAR 20C3M 

dataset. The similarities between the three datasets include the median and percentile 

range of the differences calculated by subtracting the longitudinal displacements at all 

grid points for the datasets being compared. Vector close agreement is defined as within 

the IQR for the set of differences. The two reanalysis datasets are in close agreement over 

approximately 77% of the earth’s surface (Figure 4.6).  
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Figure 4.6: Map of ERA40 Displacement minus NCEP Displacement where the 
difference is within a standard deviation. Locations with a greater difference were left 
blank for clarity. 
 
 
The similarities between the reanalysis datasets and the NCAR dataset are widespread 

and cover approximately 75% of the earth surface for the ERA40 difference and 

approximately 74% for the NCEP differences (Figure 4.7 and Figure 4.8).  
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Figure 4.7: Map of EAR40 Displacements minus NCAR 20C3M Displacements where 
the difference is within a standard deviation. Locations with a greater difference were left 
blank for clarity. 
 
 

 
Figure 4.8: Map of NCAR 20C3M Displacement minus NCEP Displacement where the 
difference is within a standard deviation. Locations with a greater difference were left 
blank for clarity. 
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The agreement of the NCAR 20C3M and reanalysis datasets with respect to isotherm 

movement bolster support for the explicit CO2 forcing in the NCAR model.  

4.5.1.2 Difference maps 

 
The results exhibit clusters of comparatively larger displacements in the Arctic, Antarctic 

for CNRM, Greenland, Indian Ocean, several ENSO regions and other spatially disjoint 

regions (Figures 4.9-14). A literature review on the Antarctic and the CNRM CM3 GCM 

(Figure 4.9, Figure 4.10 and Figure 4.13) locates past research that corresponds to the 

patch of larger differences in all three comparisons with CNRM products. Additional 

literature is reviewed for the Arctic, Greenland, the Indian Ocean and ENSO regions with 

respect to the 20th Century climate and the GCMs. Findings from these literature reviews 

validate several of the regions identified by iso clusters of differences in displacement 

vectors.      

 
 

 

Figure 4.9: CNRM 20C3M minus NCEP large difference regions. 
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Figure 4.10: ERA-40 minus CNRM 20C3M large difference regions. 
 

 
Figure 4.11: ERA-40 minus NCAR 20C3M large difference regions. 
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Figure 4.12: ERA-40 minus NCEP large difference regions. 
 

 
Figure 4.13: NCAR 20C3M minus CNRM 20C3M large difference regions. 
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Figure 4.14: NCAR 20C3M minus NCEP large difference regions. 
 

4.5.1.2.1 Antarctic Regions based on Differences in Displacement Vectors with 
CNRM data sets  

 
 Differences of displacement vectors from comparing CNRM and any of the other 

datasets all showed noticeable discrepancy in the Weddell Sea region in the Southern 

Hemisphere (Figure 4.9, Figure 4.10 and Figure 4.13). The CNRM displacement vectors 

indicate a cooling in the Weddell Sea portrayed by the northward isotherm movement. 

The northward push of isotherms in this region is a likely result of an extension of the 

Weddell Sea ice. Several researchers have found such an extension during the time 

interval used in this study when examining outputs from the CNRM CM model. Using 

the CNRM CM3 20C3M dataset, Lefebvre and Goosse (2008) and Arzel et al. (2006) 

both identified a noticeable sea ice increase in the Weddell Sea predicted for the late 20th 

Century. According to the CNRM CM3 the overall global climate is wetter and colder 

than the observed climate in the 20th century (Salas-Mélia et al., 2005). While the 
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isotherm movement is unique among the four datasets, the finding is supported by the 

studies of Arzel et al. (2006) and Lefebvre and Goosse (2008).  

The cooling trend in the Antarctic Sea depicted in the CNRM dataset is supported 

by several prior studies of the region. Doran et al. (2002) concluded that the Antarctic 

station data show an East Antarctic coast cooling in recent decades. Arzel et al. (2006), 

Lefebvre and Goosse (2008) and Cavalieri, Parkinson and Vinnikov (2003) all suggested 

that an increase of 1.3 · 105 km2 in sea ice occurred from 1981-2000 in the Southern 

Hemisphere. This change was after a period of  noticeable decreases in Antarctic Sea ice  

over the period 1973–1977 (Cavalieri et al., 2003), indicating the changes in sea ice 

extent were short term fluctuations not long term trends. Causal mechanisms for the 

Antarctic Sea Ice growth are attributed to atmospheric variations in the 1970s that 

included appreciable changes in tropospheric circulation at middle and high latitudes in 

the Southern Hemisphere (Hurrell & Van Loon, 1994). Though only the CNRM dataset 

shows the Antarctic sea ice changes, observations actually support the CNRM portrayal 

of Weddell Sea temperature changes during the last forty years.  

4.5.1.2.2 NIÑO3.4 Region based on Differences in Displacement Vectors with 
CNRM datasets  

 
A common region, NIÑO3.4, appears in comparisons of displacement vectors with 

CNRM datasets (Figure 4.9, Figure 4.10 and Figure 4.13). The NIÑO3.4 regions are 

attributable to the model’s implementation of the El Niño–Southern Oscillation (ENSO) 

teleconnection which is considered a dominant pattern of ocean–atmosphere variability 

with substantial global climate impacts. Studies on the climate of the 21st century showed 
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that anthropomorphic CO2 emissions could result in a wide range of effects on the ENSO 

phenomena.  

Climate change predictions on regional to continental scales are hampered by low 

fidelity in handling physical processes, such as ENSO, in climate system models (Joseph 

& Nigam 2006). The majority of coupled GCMs strongly underestimated the equatorial 

sea surface temperature signature of the ENSO variability (Latif et al., 2001; Rao & 

Sperber, 2002). Contrarily, the modeled equatorial negative response to the east of the 

SST anomaly in the central Pacific is too strong when compared to the reanalysis data 

(van Oldenborgh, Philip, & Collins, 2005).  No definitive studies that would attribute the 

NIÑO3.4 area differences in Figure 4.9, Figure 4.10 and Figure 4.13 to a specific model 

or models were found. The appearance of the NIÑO3.4 region for all comparisons 

involving CNRM suggests that an investigation of the CNRM implementation of ENSO 

may yield interesting results. 

4.5.1.2.3 Arabian Sea Region identified from Differences in Displacement Vectors 
with NCEP datasets  

 
The three comparisons of displacement vectors with NCEP datasets   (Figure 4.9, Figure 

4.12 and Figure 4.14) show a common region of large northward displacement in the 

Arabian Sea just west of the tip of India. There are two potential mechanisms for the 

region; a stronger monsoon season, which is usually followed by cooler than normal 

SSTs in the Arabian Sea, and the influence of the Indian Ocean Dipole, a pattern of 

coupled ocean–atmosphere interaction, which affects zonal SST gradients along the 

equator (Saji, Xie & Yamagata., 2006). These mechanisms are represented differently in 

GCMs’ representations of mixed layer physics in the Indian Ocean (Saji et al., 2006). 
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The NCEP reanalysis dataset has a greater difference when contrasted with the other 

three datasets than when they have when contrasted with each other. This is a surprising 

result as the ERA-40 and NCEP reanalysis datasets were expected to be in close 

agreement with each other. The two reanalysis products agree closely for most fields, 

especially after 1970. (DeWeaver & Bitz, 2006). 

4.5.1.2.4  Middle East Region Identified by Differences in Displacement Vectors 
between ERA-40 and CNRM 20C3M datasets 

 
Large magnitude difference vectors for the Middle East Region emerge in the comparison 

of displacement vectors based on the ERA-40 reanalysis dataset and CNRM C20C 

dataset (Figure 4.10). The Middle East is difficult for GCMs to model as the region has 

high natural inter-annual variability with a complex topography with multiple mountain 

ranges and inland seas (Evans, Smith & Oglesby 2004; Evans, 2009). The NCAR 20C3M 

comparisons do not exhibit the large magnitude difference region in the Middle East 

(Figure 4.11, Figure 4.13 and Figure 4.14). The lack of good observational data and the 

challenges to GCMs modelling for the region suggests a shortage of quality climate 

datasets for the region.  The Middle East region recognized by the proposed method 

suggests an area of interest to climate change research. 

4.5.1.2.5 Greenland and North Atlantic Region based on Differences of 
Displacement Vectors with NCAR 20C3M datasets 

 
The differences of displacement vectors based on NCAR 20C3M and the reanalysis 

datasets show large magnitude difference regions in the vicinity of Greenland (Figure 

4.11 and Figure 4.14). The largest region in this area resulted from the comparisons based 

on NCAR 20C3M and the NCEP datasets. The differences of displacement vectors show 
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a large area of the Northern Atlantic at approximately 57º latitude along the Baffin Bay, 

Davis Straits and Labrador Sea. These differences are indicative of disagreement on how 

rapidly the sea surface temperatures in the region increased during the 20th century. The 

departure of NCAR 20C3M from ERA-40 in displacement vectors also suggests a 

smaller region of disagreement around Greenland (Figure 4.11). 

Around the area of inland Greenland, displacement vectors from the CNRM CM3 

dataset exhibit warming differences from the other three datasets (Figure 4.9, Figure 4.10 

and Figure 4.13). Holland and Bitz (2003) determined that the CNRM model produced a 

slower ice melt rate than the NCAR model. The differences in displacement vectors 

suggest a higher rate of northward flow in the CNRM datasets than the other three 

datasets. This flow difference is in the opposite direction than what would be expected 

given the slower ice melt in the CNRM dataset. This is explained when isotherms used in 

the datasets are examined. The -20°C isotherm from the NCAR 20C3M for 1971 (Figure 

4.15) and 1999 (Figure 4.16) is confined to the Greenland region and shrinking. 

 

Figure 4.15: NCAR 20C3M -20°C isotherm for 1971 
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Figure 4.16: NCAR 20C3M -20°C isotherm for 1999 

 
The result is a ring of displacement with the northern boundary of the -20°C 

region generating displacements to the south. A similar region around Greenland is 

evident in both reanalysis datasets as well.  The differences seen in the Greenland region 

are the result of all but the CNRM 20C3M dataset having displacement vectors with a 

southern orientation. The CNRM dataset has a -20°C isotherm in the Arctic that changes 

little from the 1971 position to the 1999 position (Figure 4.17) and generates very small 

magnitude displacement vectors in the Arctic region. The smaller displacement vectors 

are a result of slower ice melt in the CNRM dataset (Holland & Bitz,  2003). 



 
 

136 
 

 
Figure 4.17: CNRM 14 year mean -20°C isotherms for 1971 and 1999. 
 

4.5.1.2.6 Equatorial Regions off of the northern coast of Brazil and eastern coast of 
Columbia Region  

 
The CNRM 20C3M dataset show large displacement of Sea Surface Temperature (SST) 

around two areas: (1) equatorial regions off the northern coast of Brazil, and (2) eastern 

coast of Columbia in South America (Figure 4.9, Figure 4.10 and Figure 4.13). No 

research was found to address any of these areas.  These areas maybe additional areas of 

interest for further climate change research. 

4.5.1.2.7 Australia and South America Regions  

 
Differences of displacement vectors from the ERA-40 datasets in comparison with  

NCAR 20C3M and NCEP datasets  suggest  regions of  interest in inland South America 

and Australia (Figures Figure 4.11 and Figure 4.12).  No past research about potential 

differences caused by modeling issues was found to address potential climate 

mechanisms in these regions. 
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4.5.1.2.8  The Verkhoyansk Range in East Siberia  

 
The CNRM 20C3M dataset shows a smaller northward displacement indicating a lower 

rate of warming for Verkhoyansk Range in east Siberia (Figure 4.9, Figure 4.10 and 

Figure 4.13). The CNRM dataset exhibits a slower warm up in the area which is likely 

due to slower ice melt in the CNRM dataset (Holland and Bitz  2003).  

4.6 Summary, Intellectual Contribution and Future Study 
 
The research applies displacement vectors to evaluate differences in climate products 

from two GCM models and two reanalysis datasets. The research demonstrates that 

displacement vectors effectively elicit meaningful change patterns from temporal gridded 

datasets. Hypothesis #1, that the expected values for the differences between the six 

permutations of pairs of the four displacement sets are significantly different, is 

confirmed. Hypothesis #2 is not validated as climate patterns are not more similar within 

the same types of data sources (such as comparison within GCM products or within 

reanalysis products) than data sources from different realizations (i.e. GCM products 

versus reanalysis data). Differences of displacement vectors are greatest when 

comparisons are made with the CNRM 20C3M dataset. The other 20C3M dataset, from 

NCAR, has change patterns that were more similar with the two reanalysis datasets than 

with the CNRM dataset. Hypothesis #3 is confirmed by the discovery of the primary 

cause of the uniqueness of the CNRM displacement set. The impact of the Weddell Sea 

cooling, captured in the CNRM output but missing in the other three datasets, is the 

primary cause of this unexpected result. Arzel et al. (2006), Lefebvre and Goosse (2008) 

documented the Weddell Sea cooling in the CNRM dataset and along with Cavalieri et 
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al. (2003) provide evidence that the cooling was a real event in the Antarctic. The equal 

level of similarities of climate change patterns between the reanalysis datasets and NCAR 

20C3M dataset supports the inclusion of Green House Gases and other forcings in the 

NCAR model. Overall, the proposed method of displacement vector allows the researcher 

to quickly locate potential regional differences among the two GCM and two reanalysis 

datasets. The method identified and geographically located the Antarctic cooling and 

unique Arctic cooling pattern contained in the CNRM output.  

The proposed method uses displacement vectors to capture change in continuous 

fields. Central to the proposed method is the concept of flows that progressively move 

across a continuous field. By extracting isolines of flows from temporal gridded datasets, 

the research defines displacement vectors as shifts in contours of defined values over 

space and time. The method successfully captured the spatiotemporal characteristics of a 

scalar field as portrayed across a time interval. The method can be applied to any scalar 

that is continuous in nature as long as the time between grid instances is chosen so as to 

exhibit a change that generates noticeable displacement vectors.  

The proposed method can be further used to analyze the members of an ensemble 

and of the mean ensemble value to assess the similarity of climate change projections for 

IPCC scenarios. This research uses the distribution function of the entire set of 

differences between two different GCMs. Further research will focus on more than two 

sets of displacement values at regions and grid points. Displacement vectors for the 

ensemble should fall within the envelope of displacement vectors aggregated from the 

members of the ensemble as a validation of the proposed method. Regions of large 
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differences in displacement vectors suggest different assumptions or parameterizations in 

climate models and provide opportunities for further investigations.   
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Chapter 5: The Similarity of the Variability Characteristics of Datasets Produced 
by Applying the Temporal Geographic Information System Framework to GCM 
output with that of Trends Embedded in GCM Output 

Abstract 
 

Separability and variability of the kinematic representation is evaluated for 

model dependence and similarity to trend variability. The variability of 

temporal change in General Circulation Models (GCM) output has been 

evaluated using trends at fixed locations. A new temporal Geographic 

Information System (GIS) framework, based on the concept of kinematics, 

characterizes change using the motion of virtual particles of fixed value. The 

framework is applied to eight realizations of the National Center for 

Atmospheric Research (NCAR) Community Climate Systems Model 

(CCSM3) GCM and one realization from the Center National Weather 

Research (CNRM) global ocean-atmosphere coupled system (CM3) GCM 

from the Twentieth-Century Climate in Coupled Models (20C3M) datasets to 

generate displacement datasets. Eight sets of seven NCAR members are used 

to form Single Mode Ensembles (SME) for the analysis of the impact on grid 

point displacement range of adding a NCAR or CNRM realization. The F-test 

determined that the different expected value for the larger number of grid 

points with increased range when adding a CNRM realization versus a NCAR 

realization is significant. The GCM dependent difference indicates that 

displacement datasets from one GCM can be distinguished from another by 

the differences in the displacement vectors.  The standard deviation is used to 

measure areal variability. Displacement vector spread and range are 
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compared for a collection of eight NCAR realizations, constituting a SME 

and the set of nine realizations ( the eight NCAR realizations and a CNRM 

realization) a Mixed Model Ensemble (MME). Grid point range and spread 

increases when adding the CNRM realization to the SME as the combination 

is a bimodal distribution. In contrast, the northern hemisphere, southern 

hemisphere, northern hemisphere land, northern hemisphere sea, southern 

hemisphere land and southern hemisphere sea all exhibit a decrease in spread 

when the CNRM realization is added to the SME to form a bimodal MME. 

These results are similar to the results of trend variability analysis done in 

several papers. The variability characterizations of the trend and kinematic 

representation are similar as both represent the changes in the GCM data.   

5.1 Introduction 
 
The new temporal GIS framework characterizes the kinematics of isolines embedded in 

gridded datasets of geographic properties as displacement vectors. The vectors support 

kinematic analysis by capturing both rate and direction of change. Displacement vectors 

datasets from multiple realizations of the same General Circulation Model (GCM) are 

expected be more similar to each other than to different GCM datasets if the framework 

characterizes a model’s dynamics. In addition the variability characteristics of 

displacement vectors derived from Single Model Ensembles (SME) and Multiple Model 

Ensembles (MME) are compared to the variability of trend characterization of SME and 

MME datasets. The variability of temporal change in General Circulation Models (GCM) 

output has been evaluated using trends at fixed locations (Tebaldi, & Knutti, 2007; 

Gleckler et al., 2008; Lambert, & Boer, 2001; Zhou, & Yu 2006). The variability of 
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trends and displacement vectors are expected to have similar scale dependencies; scales 

in this study include grid point, hemisphere sea, hemisphere land, entire hemispheres and 

global. Global mean poleward displacement variability is compared to global mean trend 

by using an inverted longitudinal axis in the southern hemisphere. The inverted axis 

keeps the predominately poleward displacement in the two hemispheres from cancelling 

each other. 

 

5.2 Hypothesis 
 
The differences between realizations from different GCMs are larger than between 

realizations from the same model (Barnett 1999). The temporal GIS framework 

displacement datasets should reflect this larger inter model difference when the range of 

displacements is compared at the grid point level. The first research hypothesis is: 

1) The F-test determines if there is a statistically significant difference in the number 

of grid points of the CNRM realization versus an NCAR realization outside the 

current range of a SME. The SME is composed of seven NCAR realizations that 

do not include the NCAR realization being compared against the range. A 95% 

confidence level is used to allow leptokurtic distributions. 

A climatic variable simulated in GCMs can be used as a basis for a variability 

characteristic comparison between displacement vectors and trends at multiple spatial 

extents. Additional hypothesis are: 

2) MME displacement variability will more often exceed SME displacement 

variability at the grid point level. The MME has a bimodal distribution as it has 

displacement datasets from two different GCMs. 
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3) SME displacement variability will exceed MME displacement variability at the 

hemisphere, hemisphere land and hemisphere sea as does trend variability. Spatial 

averaging will filter the point bimodal distributions in the MME displacements. 

 
The introduction section covers the focus of this paper, the similarity of 

displacement datasets from the same GCM versus a different GCM along with the 

comparison of trend and displacement vector variability. The concepts and approaches of 

the temporal GIS framework are discussed in previous chapters. The choice of climatic 

variable and a discussion of studies of trend variability provide background for the 

research hypotheses. The datasets section discusses the sources and nature of the datasets 

used in the study as well as the rationale and procedures for data selection and 

processing.  The methods section provides an overview of the process for computing 

displacement vectors covered in detail in previous chapters.  The results and discussions 

section evaluates the effect of dissimilar GCMs on displacement grip point data range 

(Hypothesis 1),   the variability of displacement vectors for a SME versus a MME at the 

grid point scale (Hypothesis 2) as well as at the hemisphere, hemisphere land and 

hemisphere sea scale (Hypothesis 3). This chapter concludes with a summary of the 

findings that increase confidence in the framework displacement vector representation. 

5.3 Model variable choice 
 
Quantifying climate change can be done using primary climate variables including 

surface air temperature and precipitation. Temperature and precipitation are first order 

drivers of climate change and induce secondary effects that include weather extremes, sea 

ice thinning, ocean circulation changes and glacier retreat. In addition temperature and 
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precipitation are the best-observed variables over large scales with relatively long 

historical records (Sheffield & Wood, 2008). Models are assessed by evaluating fidelity 

to historical observations, model convergence and inter model agreement (Giorgi & 

Mearns, 2002). Gleckler, Taylor, and Doutriaux (2008) compared model differences from 

historical records to determine that models simulate temperature best, mean sea level 

pressure less well and, precipitation worst. General circulation models predict first order 

drivers such as temperature and precipitation better than the secondary effects. 

This research uses surface air temperature changes over a 42 year period, 1958-

1999 inclusive, captured by a spatiotemporal representation. The model’s temperature 

output is transformed into displacement vectors that capture the spatiotemporal changes 

of the 1958-1972 and 1985-1999 means of the surface temperature. The displacement 

vectors from the temporal temperature data capture the dynamics of the GCM. Dataset 

displacement ranges from different models are compared to demonstrate the separability 

of datasets from different GCMs.   Finally the displacement variability at multiple scales 

is compared with trend variability to show similar scale dependencies. 

5.4 Variability 
 
Model created uncertainty arises from four main areas: parameterization, implementation, 

lack of theoretical knowledge and stochasticity (Knutti, Furrer, Tebaldi, Cermak,  & 

Meehl, 2010). Parametric uncertainty results when small scale processes that cannot be 

captured by the large scale model are described empirically rather than resolved. 

Implementation uncertainty is caused by the model’s imperfect representation of 

dynamics which fail to match the real word observations. A third source of uncertainty 

results from incomplete theoretical understanding of a process such as the impact of 
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aerosols on cloud formation (Knutti et al, 2010).  The first three sources of uncertainty 

cause differences between the outputs for different models as well as differences between 

same model realizations that can be reduced through the model refinement.  Stochastic 

uncertainty is an additional differentiator between models and between same model 

realizations that is an inherent uncertainty characteristic of the model. Unlike the other 

sources of uncertainty, variability is a desired part of the model. Variability creates the 

frequency of oscillatory events such as the North Atlantic Oscillation (NAO) and the 

Arctic Oscillation (AO) (Holland, 2003). 

Model emulated variability may be of low fidelity with markedly different 

frequencies and magnitudes than exist in the observed data. Variability magnitudes for 

the NAO and AO are less in the models than in the real world (Holland 2003). 

Comparing different models highlights additional variability due to the inclusion of 

different physical processes or differing implementations of the same processes. 

Combining results from multiple models in an ensemble set that is analyzed as a 

collective entity leads to  further reduced variability (Tebaldi, & Knutti, 2007; Gleckler et 

al., 2008; Lambert, & Boer, 2001). The multiple model ensemble is extensively used 

even though the ensemble mean exhibiting less error than any single ensemble member is 

a possible result of problems with the modeling of internal variability according to 

Kirtman and Shulka (2002).  

An ensemble data set is a collection of set members where the member sets 

contain time dependent data from spatial state variables generated by computational 

models. Delworth and Knutson (2000), Dia et al. (2001) and many others determined that 

individual realizations of a Single Model Ensemble (SME) can show considerable 
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difference between runs. Delworth and Knutson (2000) emphasized the SME mean 

instead of data from a single realization due to the large internal variability in the 

simulated time series of global mean surface temperature for the 20th century. Barnett 

(1995) determined that due to sometimes large internal model variability of a single 

simulation the predications of an inter-annual climate event or general climate using the 

single realization is unreliable and a poor depiction of the model’s capabilities. The 

averaging resulting from ensemble construction reduces the impact of the internal 

variability on the state variables. 

The SME approach leads to closer adherence to recorded global means values for 

temperatures and other climatic primary variables. The SME does not correct for the 

three non-variability uncertainty sources but rather provides an output that is less 

dependent on the initial conditions and model internal variability. Small variations in 

initial and boundary conditions are not consequential for long term climate prediction 

(Knutti et al, 2010). Giorgi and Francisco (2002) determined that 30 year global means of 

climatic variables did not vary substantially between different realizations of a SME. 

Past research determined multiple model ensembles provide superior forecasts 

than any single model ensemble, in terms of skill, reliability, and consistency, when 

considering primary variables or secondary effects (Tebaldi, & Knutti, 2007; Gleckler et 

al., 2008; Lambert, & Boer, 2001). The inclusion of different models in a Multiple Model 

Ensemble (MME) dataset has a large impact on the fidelity for temperature and long 

wave radiation. The impact of multiple models is predominately a reduction in variance 

magnitude which results in higher correlation coefficients for trends (Johnson, & Sharma 

2008).  
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5.4.1 SME versus MME 

 
Variations among outputs from a single model ensemble (SME) set result from 

differences in input conditions while variation from a multiple model ensemble (MME) 

set also include parameterization, implementation and theoretical uncertainty. Kunckel et 

al (2006) determined that internal intra-model variability is dominant at the regional scale 

with trends that varied by up to 1.8°C per century. Delworth and Knutson (2000) 

determined that internal variability generated 0.50°C of the observed 0.53°C per 35 years 

trend from 1910-1944. Uncertainty from a model’s climate sensitivity and other inter 

model differences add uncertainty to the same model realization differences resulting 

from internal model variability (Allen, Stott, Mitchell, Schnur, & Delworth, 2000; 

Kattenberg et al.,1996). Internal variability closely matches regional variability for model 

climate yet MME averages with structurally different models exhibit better large scale 

agreement with observations (Meehl et al., 2007). Though MMEs exhibit higher 

correlation with historical temperatures the increased state variable range at the grid 

points can delay change recognition due to the increase in the magnitude required for a 

change to be statistically significant ( Delworth, & Knutson, 2000; Sheffield, & Wood, 

2008).   

Variability is smoothed when members of an ensemble are averaged, reducing the 

difference between the ensemble mean and recorded values.  Analysis of multiple 1000-

yr control runs of the Geophysical Fluid Dynamics Laboratory model suggested that 

intra-model variability is much smaller than inter-model variability (Barnett, 1999). Inter-

model variability is in addition to the internal variability which according to some 

previous papers (Delworth, & Knutson, 2000) matches observed large scale trends. The 
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dominate source of uncertainty in a simulation of average regional temperature is inter-

model variability with inter-scenario and internal model variability having a lesser impact 

(Giorgi, & Fransicso, 2000). Zonal means showed larger differences between 5 models 

than between the same model (Delworth, & Knutson, 2000). The total effect of internal 

variability and inter-model differences leads to excess variability at the global scale. 

5.4.2 Scale of region, range, variability and spread 

 
The correlation of a model ensemble with the recorded mean climate trends appears to be 

dependent on the scale of the region being compared. Among eight realizations of the 

NCAR CCSM2 analyzed by Zhou and Yu (2006), correlations for the global mean 

Surface Air Temperature (SAT) range from 0.79 to 0.87, the mean Northern Hemispheric 

from 0.69 to 0.82, and those for the SAT averaged over China range from 0.23 to 0.44. 

Spatial and temporal averaging mask internal variability which dominates single 

realization climate changes modeling at the regional (length of approximately 103 km) 

and smaller scales (Dai et al. 2001). The decrease in data samples averaged within a 

region at finer resolution reduces the smoothing of variability. The spread of model’s 

climate output for the Chinese region is larger than the spread for the Northern 

Hemisphere and for the globe (Zhou, & Yu, 2006). This suggests that as the scale of the 

region used to compare model realization outputs diminishes the spread increases. 

Averaging reduces the variability that is an intrinsic characteristic of climate phenomena. 

Using ensembles improves the correlation as the amplitude of random variations 

is modulated by the averaging (Zhou, & Yu, 2006). The resulting higher correlation is a 

product of a better phase relationship, not necessarily a better simulation of the surface 

air temperature values. Working with ensembles increases the correlation with trends but 
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decreases the amplitude. The amplitude of a single realization, equal to the variability of 

recorded climatic variables at the regional scale, is greater than that of an ensemble. 

5.5 Data Sets used in the Study 
 
The research uses model output data from the Twentieth-Century Climate in Coupled 

Models (20C3M) project located in the World Climate Research Program's Coupled 

Model Intercomparison Project Phase 3 (WCRP CMIP3) data archive. The 20C3M 

simulations are driven by historical greenhouse gas concentrations, sulphate-aerosol 

loadings and other forcings since the start of the industrial revolution. The 20C3M project 

produces multiple models with ensembles with multiple realizations for each model. The 

two GCM products used are based on the National Center for Atmospheric Research 

(NCAR) Community Climate Systems Model (CCSM3; Collin et al. 2006) and the 

Center National Weather Research (CNRM) global ocean-atmosphere coupled system 

(CM3; Salas-Mélia et al., in review).The research uses eight realizations of the NCAR 

CCSM ensemble and a single CNRM-CM3 realization.  

5.6 Methods and Methodology 
 
The research uses individual grid points with a size of 1.4° x 1.4° degrees. The CNRM 

CM3 model data has half this resolution, 2.8° x 2.8° degrees, so CNRM displacements 

are interpolated to match the NCAR CCSM resolution (See appendix A for a discussion 

of potential interpolation artifacts). A set of isotherms is used as reference features to 

determine changes in a temperature field. The isotherms are from fourteen year means 

using the years 1958-1971 for the 1971 mean and the years 1986-1999 for the 1999 

mean. There is a fourteen year gap from 1972 through 1985 to provide noticeable 
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changes between the 1971 and 1999 mean value grids. When temperature changes over 

space, isotherms shift accordingly. Displacement vectors are calculated for isotherm 

shifts to measure the direction and magnitude of temperature change; for example, 100 C 

isotherm shift north.  The values of reference isotherms used in the case study, (-20, -16, -

12, -8, -4, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 26 0C), are chosen using the Koppen 

Climate Classification bioclimatic boundary temperature demarcation lines with further 

subdivisions to provide a more complete sampling of the scalar temperature field.  

Varying amounts of point estimates are made in the ensembles due to the 

difference in isotherm movement. This variation is a result of the tracing algorithm and 

the resolution of the GCM. The algorithm utilizes threshold defined boundaries from one 

time interval mean to a second. No displacement calculation is done if a grid point on a 

threshold defined isotherm has not shifted to a different grid location. The NCAR 

realizations generated displacement for 3707 to 6268 of the 32000 grid points. The 

variable number is expected as the members of the ensemble are initialized with different 

values and generate different dynamics.  Slower rates of isotherm movement generate 

less displacement vector calculations. The following figure shows the location of all 

displacement vectors calculated from an example run (Figure 5.1).  
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Figure 5.1: Grid points for NCAR #1 realization with calculated displacements  
 

The map of calculated displacements (Figure 5.2) shows more rapid change over 

continental areas, in particular in Alaska. 

 
 Figure 5.2: NCAR #1 realization North American region displacements 
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The displacement vectors are replaced with the poleward displacement 

component to simplify analysis. The poleward displacements are on a regular grid but the 

locations actually calculated by the displacement algorithm are irregular. Natural 

neighbor interpolation was used to fill in missing grid points. Any clustering of the 

variance maximums resulting from the application of the natural neighbor algorithm to 

the 3707 to 6268 calculated grid points are between grid points with explicitly calculated 

displacements.  

5.7 Results  
 
The spatiotemporal representation captures the changes in 14 year means at the beginning 

and end of the period 1958 through 1999 inclusive. Nine maps of the isotherm motion 

from the eight NCAR realizations and the CNRM realization are made (Figure 5.3).  
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Figure 5.3: Displacement maps for 8 NCAR CCSM realizations and the CNRM realization

158 
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A set of eight SMEs is created by taking all permutations of seven NCAR 

realizations from the set of eight available realizations. The NCAR realization missing 

from each permutation is evaluated to determine the number of grid points for which the 

missing NCAR realization is outside the range of the seven member SME. The CNRM 

realization is then evaluated to determine the number of grid point locations for which the 

realization is outside the range of the SME (Table 5.1).  

 
SME formulated by 
leaving out NCAR 
realization # 

Number of grid points 
for which the missing 
NCAR realization is 
outside the range of 
the SME 

Number of grid points 
for which the CNRM 
realization is outside 
the range of the SME 

1 12573 16761 
2 5250 14586 
3 4310 14490 
4 8614 14887 
5 7937 15094 
6 5975 14751 
7 7983 14798 
9 5370 14647 

Table 5.1: Grid points count for range expansion when 8th NCAR realization or CNRM 
realization was added 
 

The F-test is applied to the two sets to determine whether the grid point intergroup 

variability is the same as the intra-group variability. The result, 63.7, is much larger than 

the .01 critical value of 8.862 for the F-test with 1 degree of freedom in the numerator 

and 14 degrees in the denominator. The two range exceeded sets are shown to have 

different expected values. The significant difference in range exceeded expected values 

implies a difference in the displacement datasets that is model dependent. The 

combination of NCAR displacements and CNRM displacement likely leads to a bimodal 

distribution with increasing range and variance. The range in 52% of the grid point 
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locations had an increase when the CNRM data was added to the eight member NCAR 

SME (Figure 5.4). Adding a ninth member to a sample set is expected to fall outside the 

range of the original set a proportional percentage or about 11% of locations.  

 

 
Figure 5.4: CNRM dataset values contained by SME range of data at the grid point 
resolution 
 
 

The map showing where there is an increase in range in the MME versus the SME 

is almost identical to the map showing the 60% of grid points where MME spread is 

larger than the SME (Figure 5.5). The increase in sample size from the eight to the nine 

normally results in a decrease in variance unless the ninth sample has a different expected 

value.  
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Figure 5.5: Grid points where the MME dataset values have a larger standard deviation 
than the SME displacements dataset 

 

The variance of region means is then compared for the eight member SME and 

the nine member MME. Determining mean regional displacements requires the area 

weighting of the grid points on the Earth’s surface. Weighting is done by filling the 

Robinson projection of a 128 (longitudinal) by 256 (latitudinal) grid in the World 

Geodetic Survey 1984 coordinate system with Thiessen polygons. Grid point data are 

weighted by the area of the corresponding Thiessen polygon. The area weighted 

displacement spread, standard deviation (Zhou and Yu 2006), for the single realization 

from the CNRM-CM3 model are compared to the NCAR model realizations 

displacement spread. The CNRM global spread is larger than all but NCAR realization 1, 

the northern hemisphere spread is larger than all but NCAR 1,4 and 5 realizations 

whereas the southern hemisphere displacement spread is greater than all of the NCAR 

realizations (Table 5.2). 
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Hemisphere NCAR 

#1 
NCAR 
#2 

NCAR 
#3 

NCAR 
#4 

NCAR 
#5 

NCAR 
#6 

NCAR 
#7 

NCAR 
#9 

CNRM 

Global 58 49 50 52 55 50 56 44 57 
Northern 62 49 49 53 59 48 52 44 53 
Southern 53 46 49 46 50 51 54 43 58 
Table 5.2: Spread for the 8 NCAR and the CNRM hemisphere realization dataset in 
km/decade 
 
 

A SME is formed from the eight NCAR displacement datasets. A MME is formed 

by combining the CNRM displacement dataset with the SME. The use of MMEs to 

increase global, hemisphere, hemisphere land, and hemisphere ocean trend correlations 

indicates that at these scales the displacement spread in the MME is less than the SME. In 

contrast, the spread of the MME is larger than the SME at the grid point. 

The displacements for the eight members of NCAR CCSM ensemble are 

averaged to obtain an ensemble mean at each grid point (Figure 5.6).  

 
Figure 5.6: Poleward displacement of isotherms from NCAR 20C3M SME.  
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The SME has a northern hemisphere mean area weighted northward displacement 

of 22 km/decade with a spread of 42. The SME southern hemisphere displacement 

exhibits a southern displacement of -6 km/decade with a spread of 10. The lower 

southern spread is a likely result of more uniform isotherms and isotherm motion over the 

sea surface.  

The displacements for the eight NCAR realizations with the CNRM realization 

MME are then averaged to obtain an ensemble mean (Figure 5.7).  

 
Figure 5.7: Poleward displacement of isotherms from NCAR/CNRM MME. 
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The global, northern, and southern hemisphere spread for the MME and SME is 

listed in table 5.3. 

 
Model Global Northern 

Hemisphere 
Southern 

Hemisphere 
SME 42 38 44 
MME 39 34 40 
Table 5.3: Spread for mean global, northern, and southern hemisphere displacements in 
km/decade. 
 
 

The spread decreases for the MME versus the SME even though the grid point 

distributions of the MME are bimodal. The land and ocean hemisphere displacement 

spreads for the MME and the SME are listed in table 5.4. 

 Northern Hemisphere Southern Hemisphere 
 Land Ocean Land Ocean 
SME 42 33 59 37 
MME 38 32 55 34 
Table 5.4: Spread for land and ocean in both hemispheres. 
 
 

The hemisphere spread for land and ocean also shows a decrease in spread in the 

MME versus the SME for northern and southern hemisphere land and sea. Spatial 

averaging at some scales removes the increased spread at the grid point scale from the 

bimodal MME distribution. 

5.8 Discussion 
 
The displacement datasets have different expected values for the number of grid points 

with an expanded range when a same model realization was added to a SME versus a 

different model. This demonstrates that displacement datasets from the CNRM and 

NCAR GCMs are likely distinguishable using grid point range differences. The CNRM 

displacement is outside of the range of seven NCAR displacements compared to an 
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eighth NCAR realization a statistically significantly larger proportion.  Chapter four 

established the difference between these two GCMs is large and it is uncertain if other 

GCM pairs will have similar differences.  

Adding the CNRM to the set of eight NCAR realizations increases the range and 

variance at the grid point resolution. The combination of the NCAR and CNRM datasets 

results in a bimodal distribution. The poleward displacement range of the CNRM 

northward motion is -110 to 86 km/decade which is smaller than the NCAR realization’s 

range of -110 to 107 km/decade. Although the NCAR has a larger global range the 

addition of the CNRM dataset adds to grid point range and to variability.  

The increase in spread at the majority of locations when a MME is formed by 

adding the CNRM data to the NCAR SME is in contrast to the spread of regions. All 

hemisphere regions, hemisphere land regions and hemisphere ocean regions showed a 

decrease in both range and spread in the MME. This is consistent with the previous 

research by Zhou and Yu (2006) on the spread of trend data for regions at the sub 

continental scale and larger. An ensemble mean, single or multiple model, is better than 

any single realization with respect to variation as the mean modulates the extremes from 

the single realizations.  

5.9 Conclusion 
 
The displacement differences for multiple GCMs are evaluated at the grid point and 

larger scales. Single realization displacements are compared to sets of displacements to 

determine if the single realization is outside the range of the set.  The count of grid points 

in an NCAR or CNRM realization outside the range of a seven member SME shows a 

difference that is dependent on the GCM realization added. The F-test determined as 
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statistically significant the difference counts resulting from adding a same model 

realization versus a different model realization confirming hypothesis #1. The 

displacement datasets for the isotherm changes in the CNRM GCM and the NCAR GCM 

produce significantly different datasets that affect grid point range. The comparison of 

increased range grid points counts needs to be done with GCMs other than the pair used 

for this research to verify the separablilty of GCM displacement datasets. Research using 

multiple realizations for both models will also strengthen the finding as the comparison 

for this research used a single CNRM realization.  

This research also focuses on spread to examine the interaction of scale, 

variability and ensemble type. Displacement variability is shown to have similar 

characteristics to that of trend variability. At the grid point level the addition of a 

different model to an ensemble leads to increased variability and increased range in the 

majority (60% and 52%) of locations confirming hypothesis #2. The impact on the 

global, hemisphere and sub hemisphere temperature displacements from adding a 

different model to an ensemble is a reduction in variability and range in all regions 

confirming hypothesis #3. The reduction in variability and range when spatial averaging 

is done matches trend data research reports.  
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Chapter 6: Conclusion 

6.1 Introduction 
 
A temporal Geographical Information Systems (GIS) framework for dynamic fields or 

gridded data provides a representation that supports temporal analysis. GIS 

spatiotemporal research has been predominately object and event oriented whereas the 

spatiotemporal analysis of fields or gridded data requires a different approach. This 

research demonstrates a kinematic representation based on velocity that describes the 

spatiotemporal characteristics of a time varying scalar field. Statistical and reanalysis 

tools such as those at the NOAA Earth System Research Laboratory support fixed 

location analysis without direction. Representing change over space and time using a 

vector representation captures direction along with magnitude at fixed locations.  

6.1.1 The Kinematic Representation Applied to Spatiotemporal Analysis 

 
The spatiotemporal analysis of large datasets from satellites and 4D finite element models 

is difficult with current techniques. Researchers utilize known spatiotemporal 

phenomena, such as ENSO, to focus their analysis of GCM output on a subset of the data. 

A second approach uses regional and grid point trends at fixed locations (Zhou & Yu, 

2006). The spatiotemporal representation developed for this research enables analysis 

without requiring a higher level abstraction such as gales, cyclonic storms or other 

spatiotemporal phenomena. In contrast to fixed locations trends this Lagrangian approach 

tracks the apparent motion of fixed value virtual particles. The result is displacement 

vectors with both magnitude and direction in contrast to the scalar magnitude of trends. 

The kinematic representation is applied to the surface temperature in the outputs of two 
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GCMs in chapter two. Regions are formed by aggregating rapid displacement grid points 

in temperature displacement maps. The regions are compared for similarities in location 

across the two GCMs. In contrast, chapter three uses displacements to characterize fiat 

objects defined by isohyets in two GCM’s datasets. The characteristics of the objects are 

used to compare the output of GCM precipitation data. Chapter four introduces 

displacement difference vectors which have different expected values, medians and box 

plot interquartile ranges for different dataset pairs. Differences between reanalysis 

datasets are smallest but unexpectedly the difference between the two GCMs is as large 

as between the GCM and reanalysis datasets. Finally in chapter five the variability 

characteristics for ensembles are examined. The values from one GCM displacement 

dataset are shown to cluster at the grid point scale when compared to a second GCM. The 

displacement variability is similar to region trend variability at several scales. Details of 

the findings are in the following sections. 

6.2 Summary of findings 
 

6.2.1 Representing Continuous Temporal Geographic Fields using Fluid Kinematic 
Concepts 

 
The temporal GIS framework is applied to the IPCC A2 scenario output for two different 

GCMs, the (French) Center National Weather Research (CNRM) Global Coupled System 

(CM3; Salas-Mélia et al., in review) and the (U.S.) National Center for Atmospheric 

Research (NCAR) Community Climate System Model (CCSM3; Collin et al., 2006). The 

spatiotemporal information elicited by the temporal GIS framework characterizes the 

changes embedded in the GCM datasets. The characterizations are compared and 
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contrasted with each other and to previous works by others to provide support for the 

representations. 

6.2.1.1 Displacement analysis of Project Temperature for Scenario A2 during the period 
of 2030-2090 

 
Histograms of the longitudinal displacement vectors show a bimodal distribution with 

modes for both the northern and southern displacements for both CNRM data (Figure 2.8, 

p.36) and the NCAR data (Figure 2.12, p.41). The southern hemisphere shows a wider 

spread of displacement magnitudes than the northern hemisphere for the CNRM data 

while the NCAR data’s southern hemisphere displacement magnitude is less than the 

northern hemisphere. The assignment of the displacement mode to the northern 

hemisphere and the southern hemisphere is done using a longitudinal displacement map 

that shows the spatial distribution of the longitudinal component for CNRM (Figure 2.8, 

p.36) and NCAR (Figure 2.13, p. 42).  The CNRM and NCAR displacements suggest a 

distributed moderate warming trend in the northern hemisphere with some northern areas 

showing southward movement that are the possible result of local minima. Large 

displacements occur at multiple locations at approximately 67°N in both models. The 

CNRM southern hemisphere motion is more varied with more rapid warming in the 

subtropical and temperate zones with cooling bordering the polar region. The NCAR 

southern hemisphere displacements are smaller and less varied with the exception of just 

south of the equator. The differences are the likely result of different sea ice models in 

the two GCMS.  Latitudinal displacement for both models is dominated by widespread 

small shifts of magnitude 33km/decade or less (Figure 2.10, p.38 and Figure 2.15, p.44).  
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Iso cluster (de Smith, Longley & Goodchild, 2007) analysis discerns clustered 

large displacements and large convergence/divergence rates for both CNRM (Figure 

2.11, p. 39) and NCAR (Figure 2.16, p.45). The northern band of rapid motion at 67° in 

both models is a possible result of rapid change at the Polar Regions (Holland & Bitz, 

2003). Sea surface temperature changes due to a strengthening monsoon are possibly 

captured by the rapid change portrayed over the Arabian Sea in the CNRM output. The 

rapid change highlighted by the CNRM model in the south western coastal region of 

Arica may be the result of increased western flow from the Sahara due to global warming 

(Semazzi & Song, 2001). The NCAR displacements in the South Atlantic Ocean portray 

rapid warming seen in earlier version of the NCAR CCSM by Carril, Menede, and Nunez 

(1997). In the CNRM output regions of divergence over Indonesia and Niño 3 may 

indicate the ENSO process is changing due to anthropomorphic climate change (IPCC 

2001). The NCAR output has a divergence region east of Brazil that is a possible result of 

a shift in the Inter-Tropical Convergence Zone (ITCZ), (Labraga, 1997). 

Differences in the displacement maps for the two models suggest very different 

patterns of -16o C isotherms indicating that the Arctic ice in the NCAR model has melted 

to a greater extent than in the CNRM CM3 model. Holland and Bitz (2003) determined 

that in the earlier versions of these two GCMs the CNRM model produced a slower sea 

ice melt rate than the NCAR model and it is likely that this difference persists in the 

current model versions. 

 The result of applying the kinematic representation to spatiotemporally 

characterize a time dependent scalar field is successful. Several regions of similarity and 
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differences have potential underlying phenomena identified that support the kinematic 

differences.  

6.2.2 Applying the Kinematics-based Methodology to Represent and Analyze 
Spatiotemporal Patterns of Precipitating Change 

 
This research applies a method based on kinematics, originally designed for the 

analysis of changes in temperature patterns, to emphasize spatiotemporal transitions of 

precipitation. Areas of high precipitation, in the A2 scenario defined by the International 

Panel for Climate Change (IPCC), are aggregated into objects. Concepts of kinematics 

are used to track the direction and movement of these objects over space and time. 

Instead of examining precipitation patterns at individual time frames, patterns of 

precipitation changes are examined through linking objects across time steps similarly to 

the flow field defined by Theisel and Seidel (2003). Divergence, deformation and 

rotation, measures for internal kinematics of an object, are used to measure shifts in the 

rates of emergence, dissipation, splitting and merging that may be indicative of the 

effects of large scale circulation patterns on precipitation.  The three-domain model of 

Yuan (1999) is expanded by adding the rate of internal changes in fiat objects (i.e. 

precipitation areas) to bring insights into changes in precipitation patterns.   

6.2.2.1 Eliciting Spatiotemporal Patterns 

 
Optical flow analysis is applied to annual isohyets of the values 10, 20, 30, 40, 50, 60, 70, 

80, 90, 100, 110, 120, 130, 140, 150, 161, 178, 213 and 284 cm/year in the years 2001 

and 2048 to calculate displacement vectors (Figure 3.2, p. 69 and Figure 3.3, p. 69). 

Precipitation features defined by a given threshold of 213 cm/year, which include areas 

with annual precipitation 213cm or greater, are formulated from CNRM and NCAR data 
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for IPCC climate change analysis (Figure 3.5, p.73 and Figure 3.13, p.88). The threshold 

is set to a level that shows change over the time interval without exhibiting 

spatiotemporal discontinuities. Displacement vectors are used to calculate the kinematic 

parameters ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y (Equation 3.2-5, p.74) to determine divergence 

(Equation 3.6, p.75), deformation (Equation 3.10, p.77), and rotation (Equation 3.7, p. 

75), at each point location. The values of these kinematic parameters are weighted by the 

size of each grid point’s respective Thiessen polygons, summed, and then normalized by 

the area of each region. Displacement vectors determined between the two region’s 

boundaries (Figure 3.2, p. 69 and Figure 3.3, p. 69) represent precipitation transitions 

over space and time and are used to associate regions from one time to the next (Figure 

3.10, p. 82) (Table 3.5, p. 83).  

6.2.2.2 Results Interpretation 

 
Internal and external kinematics of fiat objects are compared and contrasted for both 

CNRM and NCAR datasets. Kinematic characterizations are validated by finding 

research by others that supports the characterizations. Both models (Figure 3.12, p.87 and 

Figure 3.13.14, p88) show an expansion of the 213 cm/year objects in the Indian Ocean. 

The CNRM model shows east-west expansions that are the possible result of increase 

latitudinal moisture transport or an orographic triggered precipitation. The CNRM model 

has an east-west expansion region in western Africa overlapped by an expansion region 

in the same location for the NCAR data. 

The lack of divergence in expanding regions in both GCMs hints that drivers 

external to the 213 cm/year threshold defined regions drive the extent changes. The most 

discernable difference between the two datasets is the high growth rate of 20% for the 
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CNRM 213 region (Figure 3.12, p.87) versus 5% for the NCAR 213 cm/year regions 

(Figure 3.13, p.88). The difference is a possible result of differences in the forecasts of 

SST changes. Paired emergent and dissipative regions are discovered that are the likely 

result of the variability that exits in precipitation processes (Figure 3.22, p.97 and Figure 

3.23, p.98). 

The temporal framework supports all six classifications of Claramunt, Parent and 

Theriault (1997); location, attribute, extent, mutation, movement and evolution; as well 

as a seventh from Peuquet (1994); branching. These seven classifications enable the 

articulation of differences in datasets based on the characteristics assigned to virtual 

objects by the framework.  

6.2.3 Discerning Differences in Temperature Change in the 20th Century datasets 

 
The temporal framework is applied to four datasets, two reanalysis products and two 

GCM outputs from the Twentieth-Century Climate in Coupled Models (20C3M).  The 

reanalysis datasets are from the National Center for Environmental Prediction/National 

Center for Atmospheric Research (NCEP NCAR; Kalney et al., 1996) and European 

Centre for Medium-Range Weather Forecasts (ECMWF; Uppala et al., 2005) ERA-40 

projects. The 20C3M datasets are from the CNRM CM3 GCM and the NCAR CCSM3 

GCM. Temperature is chosen as the variable of interest as it is spatially continuous 

property that fits well with the concepts of fields and is a key anthropomorphic climate 

change parameter. The temporal GIS framework is used to create displacement vectors of 

temperature change over reference isotherms (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 12, 14, 

16, 18, 20, 22, and 26 0C) (Figure 4.1, p.116), representing the direction and magnitude 

of the temperature transitions.   
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The displacement vectors enable the spatial analysis of differences in vectors 

between model pairs to suggest regions with conflicting climate change.  The difference 

in displacement vectors among the four datasets is analyzed by examining the six 

possible pairings. Differences in the displacement vectors for each grid point are 

calculated for each pair combination to contrast the isotherm shifts in the pair being 

studied. Regions of large displacement vector differences based on comparisons of data 

from GCMs and reanalyses are highlighted. The Iterative Self Organizing (ISO) 

clustering tool is used to identify regions of significant differences based on maximum 

likelihood classification functions. The research tests the following hypotheses:  

1. The expected values for the differences between the six permutations of 

pairs of the four displacement sets are significantly different (at the 95% 

confidence level). The hypothesis is evaluated by applying the F-test to the 

six difference sets. The difference sets are leptokurtic so a large F value is 

required to have confidence in the results.  

2. The median and box plot interquartile range (IQR) of the six difference 

sets are larger between different types of data sources (i.e. GCM data 

versus reanalysis data) than between same data source types. The standard 

deviation does not have meaning for leptokurtic data so the IQR is used.  

3. The displacement vectors themselves reveal meaningful patterns of 

differences among the four datasets. Differences are validated by studies 

of multiple data sources that have similar conclusions about climate 

change patterns.  
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The six difference sets, formed from six permutations of the four displacement 

sets, have a non-normal distribution with kurtosis values of between 4 and 6 (Figure 4.5, 

p.123). The expected values for the six difference sets are shown to be distinct with a 

confidence level much larger than 95%. The statistical characteristics of the leptokurtic 

difference sets are compared using median and the IQR. More agreement between 

reanalysis displacement datasets is expected as the reanalysis products process historical 

data in order to create their datasets. The reanalysis difference set has the smallest median 

and IQR of the six datasets partially confirming hypothesis #2.  The difference dataset for 

the two 20C3Ms has the second largest median and the third largest IQR which negates 

hypothesis #2. The comparison of the CNRM dataset with the NCAR NCEP dataset 

produces the third largest median difference and largest IQR (Table 4.2, p.123). The 

performance of the NCAR 20C3M versus either reanalysis is better than the NCAR 

NCEP versus CNRM comparison.  Hypothesis 3 is verified when the possible reason for 

the CNRM GCM uniqueness is discovered using the difference maps. A potential reason 

for the large differences for pairs with the CNRM model is the sea ice model of the 

CNRM GCM (Lefebvre & Goosse, 2008). 

The similarities between the reanalysis datasets and the NCAR dataset cover 

approximately 75% of the earth surface for the ERA40 difference and approximately 

74% for the NCEP differences (Figures Figure 4.7 and Figure 4.8, p.126). The kinematic 

similarity of the NCAR 20C3M dataset with respect to the reanalysis datasets supports 

the CO2 forcing built into the NCAR model (Collins et al., 2003).  

The differences between the CNRM GCM and all the other three datasets are the 

largest of the set of six differences (Figure 4.9-15, p.127). The difference maps for 
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CNRM CM3 versus any other dataset have anomalous regions in the Weddell Sea region 

in the Antarctic and eastern Russia. Lefebvre and Goosse (2008) determined that the 

CNRM CM3 C20C data shows a sea ice increase in the Weddell Sea for the late 20th 

Century. Though the CNRM model is the exception in the Antarctic Sea Ice region it is 

not erroneous. Doran et al. (2002) determined that the Antarctic station data show an East 

Antarctic coast cooling in recent decades. Arzel, Fichefet and Goosse(2006), Lefebvre 

and Goosse (2008) and Cavalieri et al. (2003) all determined that the observations 

indicate a slight increase in sea ice extent  from 1981-2000 of about 1.3 · 105 km2 in the 

Southern Hemisphere. The temporal framework is successful in capturing the uniqueness 

of the CNRM dataset. 

6.2.4 Variability of Displacement Vectors Compared to Fixed Location Trends 

 
The variability of trends at fixed location in GCM output is compared to that of the 

kinematic representation of the GCM. The variability should be similar as both represent 

the dynamics in the GCM data.  The temporal GIS framework is applied to eight 

realizations of the NCAR CCSM GCM and one realization from the CNRM CCM GCM 

from the 20C3M datasets. Eight sets of seven NCAR members are used to form Single 

Model Ensembles (SME). The effect on grid point range of adding an eighth NCAR or 

the single CNRM realization displacements to the SME is analyzed. The following 

hypotheses are evaluated: 

1) There is a statistically significant difference in the number CNRM realization grid 

point displacements outside the range of the SME versus for an NCAR 

realization. The SME is composed of seven NCAR realizations that do not 



 
 

180 
 

include the NCAR realization being compared. The F-test at more than 95% 

confidence level is desired to account for non-normal distributions. 

2) MME displacement variability more often exceeds SME displacement variability 

at the grid point level. The MME has a bimodal distribution as it has displacement 

datasets from two different GCMs. 

3) SME displacement variability will exceed MME displacement variability at the 

global, hemisphere, hemisphere land and hemisphere sea as does trend variability. 

Spatial averaging will filter the point bimodal distributions in the MME 

displacements. 

The F-test evaluation of the larger number of grid points with increased range for the 

added CNRM realization versus an added NCAR realization (Table 5.1, p.159) indicating 

a much higher than 95% confidence level of the two sets having different expected values 

confirming hypothesis #1. Displacement vector spread, measured as the standard 

deviation, is compared for a SME of eight NCAR realizations and a MME consisting of 

the SME plus the CNRM realization. Areal averages at the global, hemisphere and 

regional scale show a decrease in spread for the MME versus the SME (Table 5.3, p164 

and Table 5.4, p.164) confirming hypothesis #3. In contrast, grid point range and spread 

is larger for the MME than for the SME in the majority of grid points (Figure 5.4, p.160 

and Figure 5.5, p.161) confirming hypothesis #2. The results are similar to the results of 

trend variability analysis in several papers. The kinematic framework and trend analysis 

have similar variability characteristics at different scales.  
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6.3 Concluding Remarks 
The framework developed in this dissertation enables the kinematic characterization and 

analysis of spatiotemporal fields, in which anomalous regions are identified by inspection 

after small magnitude differences have been removed. Subsequent efforts in the research 

investigate potential underlying phenomena and analyse the validity of identified 

anomalous regions. Regions exhibiting differences between different datasets hint at the 

fundamental difference in sea ice models between the CNRM GCM and the other 

datasets as described by Holland and Bitz (2003). The areal variability characteristics of 

the representation applied to GCM output are determined to be similar to the 

characteristics of areal trends.  

The utility of the proposed representation beyond the existing temporal GIS 

approaches is shown by six spatiotemporal transitions, including split and merge, to 

threshold defined objects (Figure 3.4, p.72). Objects are characterized with deformation 

orientation, rate of divergence and vorticity using the representation. The translation 

characterization is demonstrated through the comparison of two different GCM datasets. 

Four datasets, two reanalysis and two GCM, are compared by calculating six 

maps of the differences between the permutations of the datasets. The F-test established 

there are different expected values for the difference sets. The median and IQR are 

compared to establish that the two reanalysis have the smallest difference while all 

differences with the CNRM GCM have large differences. The regions of large 

differences in the six maps lead to the identification of the probable reason for the unique 

CNRM data. 

Nine realizations of two different GCMs are compared for variability and range. 

Comparing the effect of adding a same model realization and a different model 
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realization on the range of seven member Same Model Ensemble indicate the 

displacement datasets are separable by GCM. The variability characteristics of the 

kinematic representation match that of trend data at fixed points. 

6.3.1 Future research 

 
Several limitations in the proposed framework call for future research. The framework 

developed in this dissertation cannot calculate displacement vectors for complex shapes. 

Displacement vectors for complex changes such as merges and splits in the isotherms are 

also not captured. An isotherm ring that disappears by the next interval leads to 

displacements that cannot be calculated by the algorithm as no ending location for the 

vectors can be determined. The limits of the temporal framework are dependent on the 

time interval and the displacement magnitude. Objects that move more than half of the 

objects length parallel to the motion generate erroneous displacements (Figure 6.1). 

 

 
Figure 6.1: Displacements with incorrect magnitudes. Correct displacement are solid 
arrows, incorrect are dashed arrows. 
 

  

Incorrect 

  

Incorrect 

  

Correct 



 
 

183 
 

All displacements should be the same in the figure 6.1, but the local maximum or 

minimum contained within the object may result in errors. A fiat object of a circular 

isoline implies a minimum or maximum that is internal to the object. The solid arrows 

have the correct length while the dashed arrows are incorrect.  The error introduced to the 

displacement values does not increase as the object shift magnitude increases further. The 

differences between the actual displacement and the measures remain constant after the 

displacement is greater than the total length of the object.  

The framework requires spatially continuous data for a field. Spatially repetitive 

patterns will cause the algorithm to generate erroneous displacements. Local maxima or 

minima can halt the displacement calculation algorithm, while the user needs to be aware 

of these limitations and with careful choices of time intervals avoid errors due to 

excessive displacement. The spatially repetitive patterns are more difficult to remedy as 

fiat objects that are larger than the spatial lag of reoccurring patterns will generate errors 

regardless of the displacement. If the spatially lag in the repetitive pattern is larger than 

the fiat objects, careful selection of interval will allow the kinematic algorithm to be used.  

While applications for the temporal framework can be limited by the spatial and 

temporal restrictions mentioned above, most of phenomena in human and physical 

geography are potential applications for the temporal framework. Physical geography is 

the study of change across the earth’s surface and amenable to analysis with the 

framework. For terrain analysis, ontological features, such as mountains or slopes, can 

serve as surrogate features. For land cover analysis, different land cover types may be 

used for surrogate objects. For climate, isolines of atmospheric properties, such as 

isotherms or isobars, are good candidates for surrogate objects. The population density of 
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organisms is an attribute that is used by in biogeography and in urban planning. Other 

human geography applications include the spread of disease, growth of cities and 

population, growth of commerce, and economics with respect to the biophysical 

environment. An outstanding restriction on applications of the framework is the time 

interval versus displacement magnitude and the field periodicity. 

An alternative approach to the optical flow algorithm used to determine 

displacement vectors in the proposed framework is the active contours algorithm (Kass, 

Witkin, & Terzopoulos, 1987). Active contours are used in the field of image processing 

to locate and track contours and edges that define an object of interest. Active contours 

resolve gaps and other minor discontinuities in a boundary. The active contour algorithm 

(a. k. a. snake algorithm) uses energy field functions derived from the image to flow 

towards lines, edges and endpoints. The energy function for boundaries is formulated in 

ways that vary from a simple gradient formulation to more complex formulations such as 

the Laplacian of a Gaussian. Determining the energy function that is successful for a 

given image is difficult. In addition, local minima within the image and spline energy 

formulation are avoided with a careful choice of an external force (Kass, Witkin, & 

Terzopoulos, 1987).  Choosing the energy field function and the force function require 

multiple iterations. 

The potential applications of the temporal framework can be broadened by an 

algorithm that uses curvature along the boundary and pairs the curvature at points to 

equivalent points on a later boundary removes the gradient or gradient energy function 

requirement. The approach applies a spatial filter to the boundary grid points to reduce 

the number of curvature points to be matched across the interval. In addition, the 
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approach uses an energy function based on the sum of the distances between the many 

possible point pairings to arrive at an optimal solution. For example, the curvature 

approach will allow the application of the proposed temporal framework to classifications 

such as the Köppen climate zones. Yet, the expanded application is subject to the 

constraint that some of the paired boundaries curvature must be similar in the different 

snapshots in order for the curvature approach to be successful. The aforementioned 

algorithms are examples that show how the proposed temporal GIS representation can 

improve the analytical capabilities of the existing GIS platforms. Research into new 

algorithm development is needed to advance GIS analytical capabilities for complex and 

dynamic geographic phenomena beyond the current capabilities of the conventional GIS 

technology. 
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Appendix A  
 

A.1 Introduction 
 

The sampling technique for this research uses boundaries of virtual objects 

defined by threshold values. The percentage of grid points sampled is a function of the 

number of threshold values used to delineate virtual object boundaries. Grid points 

without calculated displacement values are assigned displacements using the natural 

neighbor interpolation algorithm. Patterns in the resulting displacement map could be the 

result of the interpolation algorithm instead of the data’s spatiotemporal dynamics. 

Confidence in using interpolation can be increased by demonstrating that higher sampling 

level leads to a more detailed depiction of the displacement shown in maps using low 

levels. Feature similarity that is independent of sample percentage would support the 

assertion that the interpolation technique does not generate noticeable artefacts.  

A.2 Background  
The sampling technique for this research uses aggregation to form virtual objects 

and then traced grid points on the objects’ boundaries. The best performance, when 

tracing changes in environmental data, is achieved using iosline tracking for fronts and 

range aggregation for hot spot tracking (Solis & Obraczka, 2005). This research 

combines the two approaches, using aggregation to form virtual objects and then tracking 

the virtual object boundaries which are approximate isolines. Interpreting data using 

samples from the data isolines results in DEM’s exhibiting terraces or stripping (Persson, 

Pilesjo & Eklundh, 2005). The displacements calculated for this research are independent 

of the isoline based values used to sample the data, surface temperature. The calculated 
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displacement values have significant variance along a single isotherm. The longitudinal 

displacement values for the single isoline of 0°C range from 130km/decade southward to 

126 km/decade northward. The maps output with missing displacement values assigned 

using the natural neighbor interpolation also do not generate terracing (Figure A.1, A.2 

and A.3).  

 
Figure A.1: Longitudinal moment based on a sampling of 20% of the grid locations 
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Figure A.2: Longitudinal moment based on a sampling of 38% of the grid locations 
 

 
Figure A.3: Longitudinal moment based on a sampling of 63% of the grid locations 
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A.3 Procedure 
 

Maps of longitudinal displacement at three levels of sampling are generated from 

the same dataset and then compared. Comparisons are done qualitatively, by looking for 

significant feature differences across the sampling levels, and quantitatively, by 

comparing difference vectors between two different sampling levels. Higher sampling 

rates enable the discernment of finer details in the displacement field features. The 

general distribution pattern of displacement remains consistent. Multiple sampling 

percentages generate consistent results but with better definition of extremes as the 

sampling level increases. Lower sampling level maps are quantitatively compared to 

maps with a higher sampling level by taking the difference between the two maps 

displacement values. The differences between 20% and 38% are compared with 38% and 

63%. 

A.4 Results and discussion 
 
Figures 1, 2 and 3 are the output of the kinematic representation longitudinal 

displacement using 20%, 38% and 63% sampling. Utilization of virtual object boundaries 

limits the ability of achieving a given sampling level precisely. The shapes of extreme 

regions’ change as the sampling percentage increase but the results are similar across the 

three different sampling percentages. Sampling by threshold value leads to more fluidity 

in regions defined by extreme values than sampling by regular spatial resolutions as 

extreme regions have closely spaced isolines. There is a similarity of structures with 

regions remaining in the same location as evidenced by the three maps at different 

sampling levels (Figures A.1, A.2 andA.3).  
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There are noticeable differences between the displacement map based on a 20% 

sampling rate and the map based on a 38% sampling rate but the regions of extreme 

longitudinal displacement have similar locations and shapes. The differences between the 

sampling rates are compared to zero instead of the mean displacement difference as the 

goal was to highlight any difference between the two displacement maps, not just where 

there are unusual displacement differences. As sampling approached 100% of the grid 

points the differences with the 100% sampling would approach 0 as well. A difference 

map shows the absolute value of the difference between the 20% and 38% sampling 

displacement values (Figure A.4).  

 
Figure A.4: Absolute value of the differences between displacement for 38% sampling 
minus 20%  
 
 

As with the 20% sampling versus the 38% sampling maps, there are noticeable 

differences between the displacement map based on a 38% sampling rate and the 63% 

sampling rate. Regions of extreme longitudinal displacement have similar locations and 
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shapes. A difference map of the absolute value of the difference between the 38% 

sampling values from the 63% sampling values is shown below (Figure A.5).  

 

Figure A.5: Absolute value of the differences between displacements from 63% sampling 
and 38% sampling  
 

The decrease in the number of grid points in five difference ranges for the 63% 

and the 38% sampling rate versus the difference between the 38% and the 20% sampling 

rate is in table A.1. 

Displacement 
Difference 
km/decade 

Grid point count change from 63% and 38% difference versus 
the difference between the 38% and 20% sampling. 

0-17 +1879 

18-33    -846 

34-50    -375 

51-67    -205 

>67    -272 

Table A.1: Change in difference count when sampling at 63% and 38% versus 38% and 
20%. 
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The larger displacement difference ranges all have a decreased count with 

increasing sampling rates with a corresponding increase in the smallest displacement 

range.  The mean deviation for the 63% versus the 38% sampling rate is 35 km/decade 

and 53 km/decade for the 38% versus 20%. Both displacement range counts and mean 

deviation show improvement as the sampling percentage increases. 

A.5 Conclusion 
 
Concerns about the sampling technique based on virtual objects defined by threshold 

values are reduced by examining multiple sampling percentages for the same data. The 

sampling percentage is a function of the number of threshold values used to delineate 

virtual objects. Higher sampling level leads to a more accurate depiction of the 

displacement while lower levels of sampling lead to maps that exhibited similarities to 

maps with higher sampling levels. The ratio of change, defined by the absolute value of 

the difference between the two sampling levels’ maps at each point, improved as the 

sampling level increase. The number of grid points with a displacement difference that is 

less than 17 km/decade increased by 1879 while all other displacement difference value 

ranges decreased with the region of largest difference decreasing in count by 67%. The 

mean deviation also showed improvement changing from 53 to 35 as sampling rates is 

increased. Visual inspections of the displacement maps also showed qualitatively that the 

displacements were similar regardless of the sampling percent.  
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