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Abstract

Temporal GIS research has historically focused on change, motion, and
events. This research introduces a framework to represent concepts of fluid
kinematics with the emphasis on the concept of flows. General circulation
models (GCMs) and other spatially explicit environmental models produce
massive time series of geographic fields (e.g. temperature) thédrcall
effective GIS approaches to elicit temporal information embedded in these
model outputs. Common temporal GIS approaches with discrete constructs in
space and time tend to overlook the spatiotemporal continuity that is
fundamental to the understanding of geographic dynamic fields, such as
temperature. Common methods of analyzing climatological characteristics
center on trend analysis at fixed locations or monitoring meteorological
phenomena, such as storm tracks, to evaluate circulation changes. The
proposed temporal GIS framework, on the other hand, uses the velocity of
virtual particles with fixed climatological values to capture chamyessalar
continuous fields. The resulting spatiotemporal distributions of velocity
suggest kinematic flows that can be used to recognize features indi¢ative o
geographic processes, such as divergence and convergence of isolines.
Summative characterizations of these kinematic features highlight the
embedded change and motion in these temporal sets of scalar fields and

facilitate understanding and comparing model outputs.
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Chapter 1:  Introduction

1.1  Introduction

This research focuses on the representation of kinematics and the ahabguts for
grids of regularly spaced spatial data generated from environmerdallmg. Manual
approaches to spatiotemporal correlation analysis are easily ovemdhieynthe flood of
data from finite element models such as general circulation models (G@MIsther
spatially explicit environmental models. Effective spatiotemporal techsigreerequired
to fully digest these massive amounts of data to overcome the challenges ofgfutani
analysis of GCM data (Sauchyn, Joss & Nyirfa, 2004). Statistical analy&CM data
at fixed locations and fixed time intervals is currently supported with statisind
reanalysis tools at the NOAA Earth System Research Laboratory (Ketlah, 1996).
Analysis of the characteristics and dynamics of output from these saieceaunting
task due to the lack of descriptive terminology for fields of scalar datalthage with
time (Sauchyret al.2004). The terabytes of raster or gridded data represent snapshots or
estimates of the environment, yet the key emphasis of temporal sequencedenf data
is to reveal changes over space and time. Such changes as well as thengnderly
processes implied by the changes cannot be fully revealed or interpreted wathout
effective data organization for analysis. The dissertation hypothesizes thfiective
data organization for analysis is a kinematics-based framework with acitesdeiment
representing change and motion. The research builds the conceptual framework,
implements the representation in a Geographic Information System (Gi8lppuke
algorithms to characterize kinematic patterns of change and movement of regions

embedded in gridded data, and demonstrates the advantage of the kinematics-based

1



approach to help discover spatiotemporal patterns of events and processes. @ase studi
are built upon GCM outputs and compare the findings of spatiotemporal patterns of

climate events from the proposed approach with discoveries in the climattutiéer

1.2  Background

1.2.1 The Research Challenges in Temporal GIS

GIS is a spatially enabling technology with emphases on spatial components and
relationships in data analysis and decision support. The spatiotemporal repoesentat
chosen to support the inclusion of time must support the storage, analysis and odtrieva
information gathered from time dependent phenomena (Longley, Goodchild, Maguire, &
Rhind, 2005). A temporal representation that explicitly combines time and space in a
single attribute eliminates the need for a new dimension in a spatiotemp®ral Gl
representation. A temporal representation compatible with the current spfatiadation
representation both simplifies the extension and leverages the current Gigalnal
capabilities.

The integration of time into a GIS has been a research topic for several decades
Geographical phenomena are inherently time dependent yet the current GIS
representation has only rudimentary support for analysis of time varying geagtaphi
information. There are several conceptually object orientated spatioempmdels that
treat events as basic data objects such as the Event-based Spatio TBatpadvéddel
(Peuquet & Duan, 1995) and the Three-Domain Representation (Yuan, 1998). Some
focus on structural similarities in events (Worboys, 2001), object transformaitittns
respect to cadastral data (Spery, Claramunt & Libourel, 2001) or the cownstroich
temporal topology (Marceau, Guindon, Bruel & Marios, 2001). These object oriented

2



constructs in discrete space and time are difficult to apply to continuous sppbcaém
fields.

For continuous spatiotemporal fields, a temporal GIS provides the ability to
analyze raster based or gridded snapshots (Galton, 2004) and highlight regitomg mee
certain spatial and temporal criteria. This research proposes an tiedegparoach, based
on the concepts of kinematics, that conjoins space and time into a singleegttribut
velocity. Specifically, the goal of the dissertation research appkasddias of fluid
kinematics to develop a new representation of spatiotemporal information lfiggiana
Kinematics describes the motion of the field without being concerned with thespesc
that affected the attribute in the past or about what process will affectrtbatatin the
future (Bluestein, 1992). The proposed representation of kinematics is based on the
direction and amount of change in space and time e.g. velocity. Velocity eypaiits
two snapshots by determining a field of displacements that transform a fiiehek & to
the field at time T Kinematics based representation, therefore, advances location based
to velocity based GIS analysis.

This research applies image processing techniques to merge spatial andltempor
characteristics of a spatiotemporal field into the single spatiotemgtniate, velocity.
Image processing algorithms determine motion by tracking intensitysvafdight
across multiple snapshots (Horn & Schunck, 1981). Light intensity snapshots aae simil
to attribute snapshots. Images could be considered as an attribute field whecerttied
attribute is the reflectance. Conceptualizing an attribute field as an gnabées the

application of image processing.



1.3  Research Goals and Dissertation Organization

This dissertation research hypothesizes that kinematics-based mégiresausing
displacement over time is an effective means to characterize and compaearies of
gridded data sets. Under this hypothesis, the research builds object cotstmessure
kinematics with pre-defined isolines. The method is similar to the use of icassifs of
500 mb heights in Huth (2000). Four objectives are identified to support this activity:
1) Develop a kinematics-based representation that uses displacement/velticgy a
basis for spatiotemporal analysis of a time series of scalar {ieddgridded data

sets).

Case studies use temperature data from the Intergovernmental Panehaie Cli
Change (IPCC) ZiCentury climate change analysis. The kinematic
representation for GCM temperature data shows bimodal polar displacements in
they displacement histogram: one to the north and one to the south. Cluster
analysis shows regional clusters of displacement vectors of largetuthey

Large displacement clusters are compared and contrasted to identiyisesil

and differences between the two GCMs. The divergence map is inspected to
determine if there are regions of large positive or negative divergence. Regions

exhibiting suggestive divergence are discussed.

2) Apply the kinematics-based representation to develop analytical methods that
measure spatiotemporal characteristics of regions embedded in temporally

sequenced gridded data.



3)

4)

Case studies use 2Century precipitation from GCM model output. The research
uses kinematic attributes of the objects to measure positive or negativeyortici
longitudinal and latitudinal deformation, and divergence. Patterns of objects with
particular kinematic characteristics are examined. The deformation and
divergence attributes for regions that merge or split are examined foriglotent

drivers for the merges or splits.

Apply the kinematics-based representation to develop analytical methods to

compare climate projections from two GCM models and two reanalysis datasets

Case studies use data from the Twentieth-Century Climate in CoupledsModel
project and reanalysis datasets. The differences in displacemens\emtothe

six combinations of the four datasets are evident with distinctive expected value
based on an F-test. The six combinations have different Interquartile Ranges and
contain regions of differences that cluster. Clustered patterns conaistests
comparison pairs with a particular dataset in common indicate locatiorfsatreat
fundamental modelling differences in the model. A literature reviewrducted

on any clustered difference regions.

Establish that the representation has different grid point value ranges binagpply
the F-test to the grid point range increases counts generated by addigigtlan e
model realization to a seven member Same Model Ensemble (SME) versus

adding a different model realization. Compare and contrast the spread of the



kinematics-based representation to temperature data trends for a Sarhe Mode

Ensemble (SME) and a Multiple Model Ensemble (MME).

Case study uses data from the Twentieth-Century Climate in Coupledsviodel
project datasets. Eight permutations of eight realizations from the sade ane
formed with seven realizations in each one. The number of grid points with
increased range when adding the eighth same model realization versus the
different model realizations is calculated. An F-test is applied to theetts@b

counts to determine if there is a significant difference in expected values. The
variance characteristics of the kinematics-based representation and that of
temperature data trends are compared for both SME and MME at the grid point
resolution and the hemisphere means. Hemisphere means are further divided into
land and sea hemisphere means. Temperature data trend variance ctarscter

for SME’s and MME's are determined from a literature review.

The dissertation consists of six chapters to meet the four research goals: an
introduction, four core stand-alone papers that target the four goals, andusiconcl
chapter. The first objective is addressed in Chapter Two, the second in ChaptethEhree
third in Chapter Four and the fourth in Chapter Five. The introduction chapter provides
an overall context for the dissertation while the conclusion chapter sumnthgzes
findings and suggests future research. Figure 1.1 highlights the structurdanfrtbere

chapters of this dissertation.
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Figure 1.1: Dissertation Organization and the logical connections amonghepters

1.3.1 Conceptual foundation

Chapter Two lays the conceptual foundation of this research and applies the ghropose

representation to the output of two GCMs. A space-time integrative approacH te use

7



represent the spatiotemporal characteristics of gridded data. Data@ifeons the

National Center for Atmospheric Research (NCAR) Community ClilSgstem Model
(CCSMS; Collinset al, 2006) and the Center National Weather Research (CNRM)
global ocean-atmosphere coupled system (CM3; Salas-®tédia in review). Climatic

30 year mean isotherms are used as a filter to remove short term vgriklshin

isotherms are assigned displacement velocities by utilizing virtualtslgetined by
isotherm boundaries. An optical flow algorithm (Horn & Schenk, 1981) is applied to the
boundaries at two different times. Grid points without directly calculatedadesplent
vectors are assigned interpolated displacement values. The extractety Vielodcis
examined to determine if the results are in agreement with expectednsatienges.

The velocity field characteristics are compared to the expected motsotloérms under
the anthropomorphic climate change regime. Regions of unusual motion are examined for
agreement with previous climate change research. Regions of unusual digpitbase
confirmed using others research to provide support for using displacement as a

spatiotemporal characteristic of fields.

1.3.2 Kinematic Representation of regions

Chapter Three demonstrates spatiotemporal database content indicesutat incl
kinematic values used to characterize a point, a region or the entire fielibte3pporal
data mining attributes are different from spatially derived attribasethey must capture
both time and space in their representation (Pfoser & Tryfona, 1998). A useful
spatiotemporal database contains content based indices to support the locating of

predefined patterns in time and space as well the discovery of new spatiotemporal



patterns (Stoloret al.,1995). Regions are defined using precipitation threshold values to
formulate clusters of values greater than the thresholds (Mcintosh & Yuan, 2005). The
region’s characteristics across multiple GCM output datasets arenus@ahparisons to
demonstrate the utility of regional kinematic indices. Comparing and comdy #s¢
difference in region shifts between datasets reveal differences ipifatan changes in
space and time. Kinematic indices of divergence, rotation, and deformation support the
search for precipitation regions that are influenced primarily by lacalitons or by

general circulation patterns of water vapor transport. The use of the irdpatial

variations and external interactions among precipitation features sup@oftd t

guantification of changes in precipitation patterns.

1.3.3 Quantitatively Comparing GCM output using the Kinematic Field Representation

Chapter Four demonstrates the direct comparison of the velocity field,aefmgshe
kinematics of a scalar spatiotemporal field, with fields from other tiroeatibns or
models. Differences and similarities in the velocity field highlightiapeegions where
further research may determine potential underlying reason for theedifés and
similarities. Differences in displacement vector characteozs of GCMs and reanalysis
data support the identification of regions with conflicting climate changerps.
Statistical temporal randomness is reduced using interval meansspéiiial filters are
used to smooth small scale variation. The pattern differences in displacertiens

reveal meaningful data set differences.



1.4  Variability characteristics of the Kinematic Field Representation

Chapter Five evaluates the effect on grid point range of combining muléifdsets from
same GCM or from different GCMs. A set of eight Same Model Ensembless)SBHEN
of seven datasets, are formulated from eight NCAR datasets. An eightR N&aset is
evaluated for the number of grid points for which the eighth dataset is outsidadee r
of the seven datasets in that SME. The single CNRM dataset impact on rsingjéaisy
analyzed. The F-test is then applied to the two sets of eight numbers to detethene if
expected values are different.

The spread of the displacements of GCM ensembles at the grid point, hemisphere
land, hemisphere sea, hemisphere and global scale are evaluated foitysimilieend
characteristics. The variance of a Same Model Ensemble and a Mixed Modebknse
are compared to the ensemble regional, hemispherical, global and grid pleint sca
variance of temperature trends. Similar differences in scale varidbilityelocity vectors
versus temperature trends provide evidence the spatiotemporal varidtalidgteristics
are similar to that of the temperature trends.

1.5 Dissertation Organization

This introductory chapter outlines the research questions, objectives and plans for
Chapters Two through Five as well as for the dissertation as a whole. CHamers
through Five provide details of the conceptual context, methodology, results and
interpretations for each chapter’s research questions. The final chapteaszes the
findings from the research for Chapters Two though Five and proposes aressréor f

research.
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Chapter 2. Incorporating Concepts of Fluid Kinematicsin Temporal GISto
Represent Continuous Geographic Fieldsin Spaceand Time

Abstract

Much temporal GIS research has addressed change, motion, and events. This
chapter introduces a temporal GIS framework to represent concepts of fluid
kinematics with the emphasis on the concept of flows. General circulation
models (GCMs) and other spatially explicit environmental models produce a
massive time series of geographic fields (e.g. temperature) thédrcall

effective GIS approaches to elicit temporal information embedded in these
model outputs. Common temporal GIS approaches with discrete constructs

in space and time tend to overlook the spatiotemporal continuity that is
fundamental to many geographic fields. A representation is developed to
capture the direction and speed of change in space and time, using velocity as
the basic unit of representation. Spatiotemporal distributions of velocity
suggest kinematic flows that can be further used to recognize features
indicative of geographic processes, such as divergence and convergence, with
attendant ideas about isoline sources and sinks. Summative characterizations
of these kinematic features highlight the embedded change and motion in
these temporal sets of scalar fields and facilitate understanding and
comparing model outputs. The proposed kinematic representation is applied
to characterize and compare climate projections based on IPCC A2 scenario
from two GCMs: 1) The Center National Weather Research global ocean-

atmosphere coupled system (CNRM-CM3) and, 2) the National Center for
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Atmospheric Research Community Climate System Model (NCAR-CCSM3).
Results from this research suggest distinct regions of rapid isotherm
movement. Several of these regions appear consistent with findings from
previous climate findings. The regions of convergence and divergence
identified from the two GCM models are similar except for the following: a
high latitude region in southern Greenland; a band of regions at -15° latitude
extending from the middle of South America to east of Madagascar; a region
over the Arabian Sea; a region over Indonesia; and several regions in the
tropical oceans. The case study shows that fluid kinematics approach offers
an alternative means to time-stamped or event-based representations of
geographic phenomena and provides a new foundation for spatiotemporal
analysis of geographic fields.

Keywords. temporal GIS, geographic kinematics, change, motion, and climate
change.

21 I ntroduction

This research applies the concepts of fluid kinematics to characterrmgechiad motion

of spatiotemporally continuous geographic phenomena by using velocity of flaviis. E
Observation Systems, ground-based radar, weather networks, and environmentl model
generate peta-bytes of regular or irregular grid-based datatdaignitor changes to
field-based geographic phenomena, such as vegetation, temperature, and land cover.
Changes are commonly characterized through differences at locatiorisreeiith the

concepts of fluid kinematics, the grid-based scalar observations (such asatenepean

14



be transformed to flow vectors (directions and speed of the movement of a cold front) to
address how changes progress through space.

Historically, the development of temporal GIS has largely focused on the scala
component of geographic data. Yuan (1999) reviewed four main approaches to temporal
GIS data modeling: snapshot model, space-time composite model, spatiotempgatal obj
model, and event-based spatiotemporal data model. All the four approaches build upon
the scalar data of locations, objects, or events. The rich amount of spatiotemporal
information about change progression, however, is not readily available because the
kinematics of geographic phenomenon cannot be easily recognized by discrete
measurements in space and time. A space-time integrative approach ssuryetces
directly examine changes or movements occurring to geographic phenomena. To this
end, a representation scheme is proposed based on the concept of fluid kinematics to
characterize flows and movement directly. By characterizing flows awveément in two
granules: (1) the phenomenon as a whole or (2) identifiable features represearittite
phenomenon, the representation is able to capture both the movement of the phenomenon
as an object and the change in its properties across space and time.

In contrast, most temporal GIS research efforts have been based on the object-
based approach with a focus on various concepts of “events” and “change.” Largyran a
Chrisman (1988) proposed a GIS spatiotemporal representation, the “Space-Time
Composite Modél, in which events are used as triggers to state changes in a cadastral
GIS. When an event occurs and alters the spatial configuration of a casiasttal, the
“Space-Time Composite Model” divides the existing spatial constructs intoderaous

spatial units and records the change through time-stamped attributes. As, apasehk
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time composites are the smallest spatial units with common changesboftestover
one’s life span. Other early spatiotemporal GIS database approachdsistaras
snapshots of gridded data (Armstrong, 1988), yet temporal GIS analysis for giatded
was established much later (Christakbsal, 2001).

In the 1990’s the focus of spatiotemporal GIS research shifted to the objedt-bas
approach (Peuquet, 2001). Worboys (1994) proposed "spatiotemporal atoms” that
consist of homogeneous attributes in space and time as the basic unit of reprasentat
and developed temporal lineages among spatiotemporal atoms to form spatiotemporal
objects. Peuquet and Duan (1995) proposed the Event-based Spatiotemporal Data Model
to assemble location-based changes that were triggered by individual events.
Furthermore, Yuan (2000) developed a representation based on hierarchies of zones,
sequences, processes and events to capture the change and motion of multi-scalar
spatiotemporal aggregates across space and time. Zones are footpiitirig) feson a
process at a given instant in time, and sequences are temporal aggrefyatigsiofs
over time which represent changes in morphology and location. Processes are
spatiotemporal aggregates of sequences which highlight branching and meaging t
occur during the process development. Finally, events are spatiotemporabtegyoég
processes under common driving forces. With fields, objects, and a hierarchy of
spatiotemporal aggregates, Yuan’'s approach applies the Hierarchy TABb&yAllen,

1996) to enable spatiotemporal analysis using a knowledge base of definitional objects t
elicit empirical objects from GIS data (Yuan, 2000).
From mid the 1990’s to 2000’s, the emphasis on “event” or “movement” was

fundamentally based on ideas of objects. The object-oriented temporal GIShekgarc
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not lead to broad acceptance of any particular spatiotemporal data model amongst the
GIS research community due largely to the mismatches between datareggement

and application needs. More than a decade after the initial conceptualizatiandrgin

and Chrisman (1988) challenges remain, both methodologically and technolggically
when updating large cadastral databases (Spery, Claramunt, & Lit00#), The
mismatches between database management and applications were echoegiély Pe

(2001) who argued that the chosen conceptualization, field or object, should depend upon
the application of the database and that there is no universal spatiotemporal
representation adaptable to all application needs. Managing data objecte iobjlees

oriented GIS data models is a task in itself. Hornsby and Egenhofer (2000) developed the
Identity State Change Description Language to facilitate the maeageidata objects

and their temporal states of properties. While GIS modeling of moving objedés ma
significant strides in recent years (Gutetgal, 2000; Hornsby & Egenhofer, 2002;

Pfoser & Theodoridis2003), management of temporal objects with high dimensional
complexity (such as changing shapes, spatially varying propextidsaltering

continuity) continues to be challenging.

Nevertheless, the new direction of moving objects in temporal GIS data modeling
shows great promises with the use of movement and deformation to an object as the basis
for spatiotemporal representation, such as spatiotemporal helixes by &sefani
Eickhorst, Agouris, & Partsinevelos (2003). The complexity of data management is only
one issue with object-oriented spatiotemporal representation in GIS. Maiworéal
spatiotemporal phenomena go beyond the representation power of object-oriented or

event-based data models (Galton, 2004).
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While most research efforts on temporal GIS data modeling center on the object
view of the world, many geographic phenomena are spatially continuous with field
properties that can be represented by functions of locations (Gooethllg2007).
Field-based representation cannot be overlooked for the temporal GIS development
(Christakos, Bogaert, & Serre, 2001; Mennis, Viger, & Tomlin, 2005). Reseafthes
proposed several hybrid approaches to combine field and the object conceptualizations
Yuan (2001) proposed the idea of “field-objects” which behave as objects butsposses
fields that define the internal structure and spatially varying propertiadigidual
objects. Cova and Goodchild (2002) combined objects and fields with the idea of “object
fields” where continuous fields were mapped to spatial objects, such as locations at a
elevation field are mapped to respective watersheds.

Most hybrid approaches so far have emphasized storing and relating olects a
fields in GIS databases and have not addressed the underlying physical meslizatis
connect fields and objects. Temporal GIS needs integrated space-timauhaadrks
to be compatible with physically based models, to provide the means for sound scientific
inferences rather than mere statistical inferences, and moreover to sinysaralp
knowledge integration and query processing (Christakas,2001).

The fluid kinematics based GIS representation attempts to enable ntgatiese
of manifestations of the focal phenomenon in the GIS database. Concepts from fluid
kinematics are applied in the design of a hybrid field-object representatiocadss are
developed to test the proposed representation with global temperature changedoroject
by two general circulation models (GCMs). This section highlights thdajeaent of

temporal GIS representation and illustrates the need for incorporation ofghhysic
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mechanisms of geographic phenomena to improve temporal GIS support for scientifi
inferences and knowledge integration. Section 2 discusses the concepts arfaragorit
for the proposed kinematics approach. Discussions will elucidate how the concepts of
kinematics are used to discern change and movement in geographic fields, and how the
characterizations of change and movement can facilitate understanding the
spatiotemporal properties of geographic phenomena. Section 3 presents use cases on
analysis of climate change scenarios to illustrate the capabidlittae proposed
representation and analytical approaches. In particular, emphasis ak q@idhe
spatiotemporal information that can be elicited from the kinematics approaclaypibiem
cumbersome to discern or even overlooked by other existing methods. Finally, the key
features of the proposed kinematics approach are summarized with regardshiogenri

temporal GIS for geographic fields.

2.1.1 The conceptual basis to incorporate fluid kinematics into GIS representation and
analysis of spatiotemporal phenomena

The proposed kinematics-based representation facilitates analysis of howpgaogra
phenomena change over space and time. A precursor to analysis of change or movement
is to identify an object or a feature that experiences the change os carribe

movement. Identification of objects or features in a geographic field departdsnan

cognition and problem domains of interest. Once identified, the object or feature become
a surrogate of analysis for the geographic phenomenon of interest. For exsotyales

in an air pressure field can be used as surrogates to characterizerithatidistof the

pressure field and how the pressure changes over space and time. The fastearthe is

move outwards the greater the divergence of the respective air mass.
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At the finest granule, individual grid cells are surrogate objects of aagugr
field in a grid-based data set, where each grid cell serves as the minimsereable unit
of property change to the geographic phenomenon of interest. Kinematicssanalysi
examines not only change in cell values but the direction of change based onligvet gra
among surrounding cells. Different levels of spatial and temporal aggregatianeate
additional surrogate objects to meet application needs.

At the feature level, kinematic analysis operates on the points along each
surrogate object boundary (such as along an urban-wildland interfacesotlearm).
Movement of these points, which may or may not be uniform, reflect the overall motion
of the surrogate object. Collective patterns of all surrogate objectseepre
spatiotemporal characteristics of the geographic field in consideration.

From grid cells to features, the proposed kinematics-based representation
incorporates both field- and object-based approaches to analysis of change and movement
by constructing surrogate objects in geographic fields and tracing swewtsoinj a
temporal sequence in which the geographic field has been observed. Kinematiorbehavi
of these surrogate objects characterizes the change and movemengrésuttithe
geographic phenomenon. For terrain analysis, ontological features, such asmaairnta
slopes, can serve as surrogate features. For land cover analysisytddigtecover types
may be used for surrogate objects. For climate, isolines of atmospheridipsy®eich as
isotherms or isobars, are good candidates for surrogate objects.

For analysis, the proposed kinematic approach applies concepts from Lagrangian
and Eulerian systems for fluid flow. In an Eulerian system, kinematicsasured by the

velocity at fixed locations and time, which is analogous to cell-based vetoutysis of
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property change in a geographic field. Complimentarily, a Lagrangiéensysldresses
kinematics through tracing a fluid parcel over space and time, which is congparabl
tracing feature-level surrogate objects over space and time in a geodr@phiEulerian
kinematics captures local change, and Lagrangian kinematics seftestge or
movement at the regional level or at a larger scale. The two distinct pemspéat
kinematics analysis allow flexibility to facilitate understanding vidfiflows through
spatial gradient (an Eulerian property) or based on parcel trajectoagi@angian
property).

The proposed kinematics-based analysis utilizes Eulerian and Lagrangian
concepts in two stages. First, surrogate objects are identified, and fluidyeloci
calculated at locations along each of the surrogate objects to determinaticseaha
given time. The Lagrangian approach considers a parcel as a whole moving atra unif
speed. Surrogate objects for geographic fields may not exhibit such unifdraity
spatial variability and deformation. Therefore, the second step involves icardifiof
points along the surrogate objects and calculates velocity values at theseAtant
conceptual level, the kinematic nature of a geographic phenomenon is then redresent
by surrogate objects that move across space in temporally sequencededdalaFbr
example, surrogate objects of a temperature field may be isotherms. graadian
approach characterizes the “temperature flow” by how fast these resthasve and to
what direction they move. Alternatively, the Eulerian approach determines tumtof
temperature change and the direction of change gradient at grid points in dindieicis.

For proof of concepts, isotherms are chosen to be surrogate objects that

characterize temperature fields projected by two general ci@muletodels. In particular,
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temperature thresholds are selected to identify isotherms of interegé pracessing
techniques are applied to analyze the change and movement of these isotheawisdy tr

these surrogate objects over space and time (Figure 2.1).

The vector length and

direction are assigned Timeg lsotherm Time, Isotherm
to the vector origin position position
e —— _— 1

Figure 2.1: An example of an isotherm moving inwards to indicate the change in a
temperature field fromfto T;.

The vector calculation algorithm is run for all grid points on an isotherm. The
vectors are oriented with the local gradient, usually perpendicular t@ thetfierm, if
the T; value is less thangvalue, or opposite to the gradient if thgvalue is less than
the T; value. The vector is assigned a length equal to the distance in line with tlegradi
to the nearest equivalent tineotherm. The algorithm does not calculate a vector to the
T, isotherm if the difference between the current grid point and the previous gas a si
opposite of the gradient’s sign somewhere along the vector.

Isotherms are effective means to capture the transitional and continuousohature
temperature fields. Certain isotherms carry strong physical iniphsa e.g., 8C, and

shifts of these isotherms may have further implications on ecologicahsysfnalysis
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of positions and movements of isotherms over time can provide summative assessment of
climate trends. Comparison of temperature fields estimated from diffelnrmate change
models can suggest the discrepancies in spatial and temporal trends of theutpadg
as well as areas and periods of high discrepancies for further investigati

Furthermore, this study tracks motion of surrogate objects, calculategweloc
and assigns velocity to the properties of the surrogate objects. Veldcdsitsd as a part
of an isotherm’s properties. Velocity is the first derivative of spaceniy @nd is
required to calculate the second order, acceleration, and higher order deivative
addition velocity is intuitively understood by a higher percentage of the population and is
easier to conceptually understand (Rosenblatt, Sayre, & Heckler, A., 2009; Tgeybri
& McDermott, 1981). Velocity is the simplest conjoining of space and time and is
directly calculated with optical flow. This study applies algorithmeslus analyze
optical flows in image processing (Horn & Schunck, 1981) and stores the flow field wit
velocity and displacement in GIS grid data. Kinematics maps are usedlyae
spatiotemporal fields in the following three ways: identifying statisbatliers in the
flow field that highlight unique areas, examining autocorrelation in displatereetors
that identify cohesive fluid objects and comparing flow fields from differetat slaurces.
Moreover, a 2D continuous field, such as temperature, can be perceived with flows of
convergence and divergence. Regions of convergence and divergence may suggest area
of interesting processes driving the dynamics of the scalar field. D#fflew generates
isoline fiat objects that maintain an outflow boundary. Such outflow boundaries across

time slices are tracked to elicit the patterns of diffusive flows.
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2.2 A Case Study to Compare Global Temperature Projections from Two General
Circulation Models (GCM)

Previously GCM projections have been compared using spatial metrics amdspatte
Hulmeetal. (1993)used precipitation and mean temperature along with gale frequency
to compare the output of multiple GCMs. Felzer and Heard (1999) looked at the weather
pattern storm tracks that affect precipitation in the southwestern Unatzs $ assess
output of different GCMs. Pepin (1995) examined the spatial increase in the annual
temperature accumulation, days multiplied by Celsius temperature, of 1006 dagse
or more in the Northern England area to compare and contrast the UKHI (United
Kingdom Meteorological Office High Resolution GCM Equilibrium Experimeml
GISS (Goddard Institute for Space Studies) GCMs. Sengupta and Boyle (1€83) us
limited number of independent time sequences of equatorial Pacific spteahpao
differentiate the performance of two GCMs. Huth (2000) used classification of 500mb
heights to determine patterns used for T-mode PCA analysis of the GCM outpwt. Thes
studies all used temporal sequences of observed attribute patterns to dalyze t
spatiotemporal projections of GCMs. The largest spatial extent in thelsessis a region
extending 15°S-15°N by 120°E-255°E. These studies all determined that there is a good
match between different GCM'’s output.

Departing from these mostly trend based approaches, this research compares
GCM outputs using GIS representation and analysis based on fluid kinematics. This
research uses the full global extent with a temporal dimension of limit@ldtrens, i.e.
the changes between the climatic averages of two 30 year periods3fitfear gap in
between. The approach in this research adds a pattern of change andlgsissmat

require the use of meteorological phenomena such as storm tracks or galecfyeque
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2.2.1 Data and Methods

Two GCMs are selected, based on availability, from the group of GCMs ugled by
IPCC for climate change analysis: National Center for Atmosphese&ch
Community Climate System Model (NCAR CCSM3) (Colletsal.,2005) at 1.4°x1.4°
resolution and the Center National Weather Research Global Coupled SysteM (CNR
CMB3) (Salas-Mélieet al., in review) with 2.8°x2.8° resolution. The kinematics
representation is shown to be insensitive to differences in grid sizes (&xelixpA)
because the emphasis is on the general pattern of flows rather than absolutegatper
location.

The case study extracts two climatological means from 95 years (208p&t09
monthly meteorological data using 30 year moving averages ending in 2030 and 2090.
The distribution of CNRM CM3 30-year mean temperatures in 2030 is shown below in

Figure 2.2.

High: 33°C

Low: -54°C

Figure 2.2: Mean Temperature for the Years 2000-2030 from the CNRM CM3 GCM
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Projected monthly temperature data for the period of 2030— 2090 from the CNRM
CM3 and the NCAR CCSM3 for IPCC scenario A2 are obtained from the Wontcht&él
Research Program’s Coupled Model Inter-comparison Project Multi-Modas&tat
Archive. The A2 scenario is chosen because it follows more closely the atéuaf ra
change during the years available than the other scenarios. The yeamlpiht&CM
surface temperature data is calculated for the years 2000-2030 and 2060-2090.

The grid dimension of the CNRM CM3 model is 128 by 64 units of
approximately 2.8° latitude and longitude, andtfee NCAR CCSM GCM, 256 by 128
units of approximately 1.4°. The projected temperature data is used to3feadar
mean monthly temperature data for 2000- 2030 and 2060- 2090. To facilitate
comparisons, the temperature range for all displays is set to the rabge’Gfto 33 °C.
Maps based on projected temperatures show dependence of temperature on latitude and
elevation (Figures 2.2 and 2.3 for CNRM CM3). The Himalayan Mountain range is

particularly noticeable in the Asian continent.

Figure 2.3: Mean Temperature for the Year 2060-2090 from the CNRM CM3 GCM
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Visualization alone is not powerful enough to identify differences betweerefig
Figure 2.2 and Figure 2.3 to determine spatial shifts of temperature behedaro 30-
year periods. Isotherms for the two periods are generated at the choseati@@per
thresholds (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, D PBese
thresholds are based on Koppen Climate Classification (Lamb, 1972) boundary
temperatures with subdivisions to insure a dense spatial sample of the tanedfeiat

Binary boundary images were created for each isotherm (Figures 2.4 and 2.5)

Figure 2.4: Image of 16 °C isotherms from the CNRM GCM output in the 30-year mean
from the period of 2000-2030.
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Figure 2.5: Image of 16 °C isotherms from the CNRM GCM output in the 30-year mean
from the period of 2060-2090

While the isotherm of 16 °C shows differences in locations and shapes between
the two 30-year periods, the differences for other isotherms were less obatsty
maps are generated to show the spatial distribution of change vectorsflaeetisent
and direction) with x displacements and y displacements to portray the magnidude a

direction of shifts in isotherms. Kinematics states that the changef féwev at a fixed
. F, . . .d .
point (Z—t) is equal to the total rate of change of fluid pal’tI%E@ (ninus the flow

velocity at a location\) multiplied by the field’s gradient (material derivative or

advection term).

Z_IZ — %_ V-VF Eq, 2.1 (Bluestein 1992)
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This research makes the assumption that the attribute values are transported b
constant value particles and thus there is no change in the rate of fIO\%%).Es équal

to zero.

dF

i 0 Eg. 2.2 (Bluestein 1992)

All change at a given Iocation'}:(), is the result of the advection; ¥ - VF ), of
constant value particles.

2 =-V-VF Eq.23 (Bluestein 1992)

Determination o¥ requires Iocatin.g the most likely location from which the new
value ofF is advected. The velocity fiel®&) is determined through the use of surrogate
objects with boundaries defined by a range of threshold values. From the tereperatur
grids, the borders of multiple surrogate objects are defined using isotheamsuad
mean temperature. The assumption of particles with unchanging attribute lealde to
Eq. 2.3 which is equivalent to the Optical Flow Constraint equation (Horn & Schunck,

1981) wherd represents the image intensity.

(%‘l' V-VI=0) Eq. 2.4 (Bluestein 1992)

Using attribute value instead of intensity enables the determination of theéweloc
of the isotherm aligned with the local gradi€Wif) using the optical flow approach
(Horn and Schunck 1981) with modifications for the use of the isotherm location at the
next time instance. The magnitude of the displacement is determined by rigllithei
local gradient to a point on the isotherm in the next time slice.

The velocity of isotherm movement (following the local gradient) is calailate
and mapped to form a global distribution of the velocity field. The local gradient is
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determined using a local estimate based on a configurable window size. Four wifidows
size 3x3 are defined, one on each side of the point. The average value of the attribute for
each window is determined and then the horizontal and vertical differenceatadcul

using the window’s means (Konrad, 2005). The velocity is represented as two scalar
measures) = (x displacementit andv = (y displacementjt. x displacemenandy
displacemenéare the isotherm displacement in the latitudinal and longitudinal direction
while At is the interval between time instances. The displacement vectors aserdpd

as two point data tables, one for the longitudinal component and the other for the

latitudinal component. A latitudinal table is show in table 2.1.

latitude | Longitudel value

76.71 -132.19 8.00
73.92 177.19 0.99
73.92 174.38 1.22

73.92 171.56 1.00
Table 2.1: Latitudinal table for CNRM displacements

Each point is represented by latitude, longitude, the latitudinal velocity anduldingi

velocity. The displacement point tables contain values for points on the isotherms for the
chosen thresholds. The isotherms used for this study (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 22, and %B) are a subdivision of the mean yearly temperature values
used in the Koppen Climate Classification (Lamb, 1972), Additional isotherms can be
used to assign displacements to more points in the area of interest. A dexysef auid

points with assigned displacements enables the identification of fineisdetddw as

can be seen in appendix A. The large regional features remain consistent wrdntliff
sampling percentages. GIS provides a means for spatial interpolation of sptral pa

realizations (Burrough, 2001). Interpolation determines the values for the apatelyim
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three quarters of the total points without calculated values. The values grelatest
using the Environmental Systems and Research InstE®RI1) Natural Neighbor
Algorithm. The Natural Neighbor Algorithm uses a set of points within a givemdesta
of the new point and applies a weighting based on the area overlap of a Thiessen polygon
associated with the new points and Thiessen polygons associated with the cuntent poi
(Gold 1989). Natural Neighbor interpolation does not produce minima or maxima that are
not present in the input samples (Gold 1989).

The kinematic map is created by using point sets containing both the displacement
and direction attributes generated from the grids of displacement componentsds$he gri
of longitudinal and latitudinal components are processed to create values auch@gni
direction and convergence. The direction and magnitude of resultant vectors are
calculated using the distance formula and arctangent functions. The dig@atio
magnitude attributes are then used to create the kinematic map consistsyjaufestnent

arrows of size proportional of the magnitude at the locafigure 2.6).
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Figure 2.6: Processes to create kinematics map of displacement vectors

The final step in kinematic mapping is to identify regions of high convergence

and divergence. Divergence is calculated based on longitudinal velgatyd
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latitudinal velocity (1) using the centered difference formula. For locatigh (

divergence is:

Divergence(i,j) = (u(iﬂ'j;;l(i_l'j)) + (v(i’jﬂz;(i’j_l)) Eq. 2.5 (Bluestein 1992)

Ax is the grid spacing in the latitudinal direction, atyds the grid spacing in the
longitudinal direction. Convergence occurs when the divergence value is less than zer
The resulting field has no discernible spatial structure due to spatial irgriabihe
divergence values. Instead, this case study took another approach that used an areal
average. The areal average is calculated using the average of thelaegésin flow

directly by using an area integral over a regin{ounded by a curveCy:

JI, ViV dA Eq. 2.6 (Bluestein 1992)

V,, is the horizontal divergence akds the displacement vector with componangsd
v. The use of a closed contour integral can be substituted for the area integral by

application of Green’s theorem:

/I, Vi- VdA= ¢, V-ids EQ.2.77 (Bluestein 1992)

7 is the vector normal to the cur@anddstraverses the curve in a counter
clockwise direction. While the contour integral approach appeared challenging for
regions with irregular boundaries, the case study uses moving square windovwsusf va
sizes to generate mean divergence values. A moving window is used to smooth spatial
variability and produce discernible regions of divergence. Through trial eorg &7 x7

moving window is found to produce aggregated regions convergence and divergence.
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When cool regions are embedded in a warmer field the regions isotherms
converge towards the interior as the overall field warms up. Expanding wgions
embedded in a cooler field produce divergence as new isotherms emerged in the warm
region and move outwards into the surrounding cooler field. Convergence and divergence
are also identified in regions of large displacements embedded in a fieldeof mor
moderate displacements. The leading edge of the larger displacementsseap
isotherms producing convergence while the trailing edge produces largegspacin

between isotherms leading to divergence.

2.3 Results and Discussions

2.3.1 Velocity Fields and Vector Displacement Analysis of the CNRM CM3 Projected
Temperature for Scenario A2 during the period of 2030-2090

Distributions of displacements in latitudin&) &nd longitudinalyf) directions
provide insights into the trends in temperature change. The CNRM displaseshew a
bimodal distribution of longitudinal displacements for the 30-year means oédng y

2000-2030 and 2060-2090 (Figure 2.7).
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Figure 2.7: Frequency distribution of longituding)l displacements for CNRM. The
displacement range of -216 to 228 is divided into 100 bars.

The most frequent longitudinal displacements in the southern hemisphere occur at
a rate of approximately 40 km/decade (third tallest bar in Figure 2.7) and/@8dade
(second tallest bar in Figure 2.7) over the 60-year period. In the northern hemisphere
however, the most frequent longitudinal displacements occur around 50 km/decade
(tallest bar in Figure 2.7) over the 60 years. The greater displacemerdsdiea polar
region correlates to a faster rate of isotherm shift.

Figure 2.8 shows the spatial distributions of longitudinal displacements from 2030

to 2090.
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Figure 2.8: CNRM CM3 Longitudinal Isotherm Displacement 2030-2090

Figure 2.8 shows a clear trend of isotherms moving towards the polar regions.
Large movements towards the north (“green spots”) occur around the equitooal reg
In the norther hemisphere, most isotherms move at a similar rate towandstth@n
yellow and beige colors), suggesting a wide spread moderate warnmdgHi@vever,
areas in the mid-section of the U.S., Russia, Euroasia, and Siberia show isotherms
moving toward the south, suggesting the presence of local temperature minima. In
comparison, spatial patterns of isotherm displacements are much more frabméinée
southern hemisphere than in the north. While the general trend is warming in the
southern hemisphere, regional patches of higher warming areas are almost comtinuous
the subtropical and temperate zones, and in a strip of area near the polar regiack The |
of higher warming areas in the higher southern latitudes is a possible re&Solitbérn

Ocean heat uptake.
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The CNRM CMa3 latitudinal displacement histogram has a leptokurtic distribution

with a dominant peak at approximately -2 km/60 years (Figure 2.9).

=00

430

400

350

()
=
=

Count

o)
h
=

200

150

100

a0 ‘r

oL e ~ R :
[-68; -67) [-38; -36) [0 1] [30; 32) [65; 69
kmidecade

Figure 2.9: Histogram of latitudinal displacements for CNRM CM3 2030 — 2090. The
displacement range of -68 to 71 is divided into 100 bars.

The latitudinal displacement distribution is centered around the zero displacement
and is the possible result of the majority of isotherms having a dominantly east we
orientation. The distribution of displacement in the minus or plus x direction is not
spatially restricted to a particular hemisphere but rather is digdlagross the globe

(Figure 2.10).
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Figure 2.10: CNRM CM3 Isotherm Latitudinal Displacement 2030-2090

The displacement pattern in the latitudinal direction suggests that most of the
world experiences small shifts (in beige and light brown colors). Regateies show
isotherms moving towards the east, and by large these patches occur in or around the
zones of easterlies. Comparably smaller and more isolated areas shownisathiéing
towards the west (in green and light yellow colors).

The iso cluster analysis identifies clusters of large displacementbafaide
convergence/divergence. The iso cluster analysis makes an initgpdrassit using
histogram peaks and then modifies the assignments using variance and covaseaice ba
on an assumed normal distribution (de Sreithl, 2007). The analysis modifies the
cluster assignment after each iteration using two criteria: (Lrtuster centers which
are closer than a set tolerance level are combined and (2) clusters withiauham
number of members are dissolved with members assigned to surviving cluststersC

are broken up when they are overly large, have excessive standard deviation thhevhe

38



average distance from cluster center is excessive. The CNRM GCM kioenagi

(Figure 2.11) has multiple locations of large convergence/divergence andeof larg

displacement vectors.
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Figure 2.11: CNRM CMa3 rapid displacement vectors

divergence areas for 2030

-2090.

Divergence regions are scattered, but two interesting regions appear over

Indonesia (I in Figure 2.11) and at the center of the Nifio 3 region (N in RAduire

These locations for divergence hint that ENSO processes may be changing due to

anthropomorphic climate change (IPCC 2001). A band around 67° across the North

American Continent with clusters in southern Greenland, a region in the westam Indi

Ocean and the southwest coast of Africa shows suggestively large isatibogament.

The band at 67° is likely related to rapid climate change at polar areas (Hollandzand B

2003). The high change rate over the Arabian Sea is possibly due to an increase in
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monsoon strength leading to cooler than normal SSTs in the Arabian Sea and the
influence of a strengthening Indian Ocean Dipole which affects zonal S8iEgis

along the Equator (Sagt al.,2006). The divergence region over the Arabian Sea
indicates a possible warming region with rapid isotherm outflows in both the northern
and southern directions. The rapid change in the south western coastal regioneof Afric
may be the result of an increase in the western flow from the Sahara durmgisum

brought about by global warming as suggested by Semazzi and Song (2001).

2.3.2 Velocity Fields and Vector Displacement Analysis of the NCAR CCSM Projected
Temperature for Scenario A2 during the period of 2030-2090

The histogram of NCAR CCSM longitudinal displacement for the 30-year meafoshi
the years 2030-2090 shows a bimodal distribution similar to the CNRM-CM3 model

output but with different modal values (Figure 2.12).
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Figure 2.12: NCAR CCSM3 longitudinal isotherm movement histogram. The
displacement range of -156 to 182 is divided into 100 bars.
Spatially, the longitudinal displacement shows a dominant polar motion of apprdyimate
equal magnitude in the temperature shifts for both hemispheres.

The southern displacement is characterized by a mode centered on a displacement
of 105 km/decade over the 60-year period. The northern displacement mode is dominated
by a north-bound displacement of approximately 25 km/decade over the 60 year period

with other lesser peaks at larger displacement values.
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Figure 2.13 shows the velocity field of isotherm movements projected by the

NCAR CCSM.
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Figure 2.13: NCAR CCSM3 Longitudinal Displacement 2030-2090

The Northern Hemisphere displacement is almost exclusively towards ttie Nor
Pole with the exception of the following regions; on the northwest Scandinavian coast,
northern Greenland and in the vicinity of the Tibetan Plateau. The Tibetan Réateau
predicted to be cooler than the surrounding region in 2030 and acts as a local temperature
minimum and thus a sink for isotherms. Regions of the most rapid northern movement
occur at approximately 67°N. A different pattern is seen in the southern hemisphere
where the locations with the most rapid southerly motion are just south of the equator.
The longitudinal isotherm displacement map from NCAR CCSM data shows
large displacements in two north-eastern regions of Russia and a band of large
displacement vectors at approximately 68°N in the North American continent. tastont

the southern regions of the Southern Hemisphere have very low values for digplacem
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vectors. This is expected as the large amount of thermal mass in the Southern
Hemisphere oceans moderate the temperature changes resultingtiiomp@morphic
climate change (IPCC 2001).

The NCAR CCSM3 latitudinal displacement histogram (Figure 2.14) has a

leptokurtic distribution with a dominate peak at approximately -0.5 km.
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Figure 2.14: NCAR CCSM3 Latitudinal Displacement Histogram. The displant
range of -51 to 54 is divided into 100 bars.

The distribution of displacement to the east or west is not spatially redtrich
particular hemisphere but rather is distributed across the globe. FigureshiHyslthe

NCAR CCSMS3 output latitudinal displacement across the globe.
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Figure 2.15: NCAR CCSM3 Latitudinal Displacement

The displacement pattern at the latitudinal direction suggests that most of th
world will experience small shifts (in beige and light brown colors). Regionethgs
show isotherms moving towards the east with patches occurring in or around thefzones
easterlies and throughout most of the Northern Hemisphere. Considerably andhlle
more isolated areas in the Northern Hemisphere alone show isotherms shuangdst
the west (in green and light yellow shades). Multiple concentrations of &otpeim
displacements and the high convergence/divergence areas are idewtifieddo cluster

algorithm in the NCAR CCSM3 projections (Figure 2.16).
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Figure 2.16: NCAR CCSM rapid displacement and high convergence/dive@yease
for 2030-2090.

Bands of rapid displacement northward are found at approximately 67° latitude
across North America and on the northern portion of central Eurasia in the NCAR
CCSM3 dataset. These regions are at the boundary of the polar amplification nagentione
by Holland and Bitz (2003). A region in the western Indian Ocean and the southwest
coast of Africa show rapid isotherm movement southward. However, no support was
found for the band of comparatively more rapid warming over the South AtlanticaAf
and the Indian Ocean east of Madagascar at approximately 15°S that corréspbads
region of rapid isotherm movement. Nevertheless, Gatral. (1997) using an earlier
version of the NCAR CCSM GCM identified an area of more rapid warming in thie sout
Atlantic just south of the region at approximately15°S. Divergence regiossattered,

and one area appears substantial: a tropical ocean region east of Braafidheast of
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Brazil is possibly a result of a shift in the Inter-Tropical Converg@&oce (ITCZ) due to
changes in the Atlantic Ocean (Labraga, 1997). The ITCZ penetrates fundhaoee
quickly to the south during the southern season due to pressure differences between the

equatorial Pacific and Atlantic oceans (Labraga, 1997).

2.3.3 Comparison of the two datasets from CNRM CM3 and NCAR CCSM

The two datasets share several regions of rapid movement including the higlsedatit

in both North America and Eurasia (Figure 2.17and Figure 2.18).

Figure 2.17: CNRM CM3 rapid displacement map for 2030-2090.
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Figure 2.18: NCAR CCSM rapid displacement map for 2030-2090.

Classification as rapid is determined by applying Jenks Natural Bregieitlain to both
distributions and using the lower value of the next to highest classificatibe tib
datasets as the threshold. The absence of a region of rapid isotherm movememgh the

southern latitudes is as expected as there will be minimal warming due toheesga
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uptake (IPCC 2001) resulting in minimal isotherm shifts. Both model's maps have rapid
displacement in North America and Asia. The CNRM model had unique regions in the
vicinity of Greenland, the Arabian Sea, southwest Africa and the ENSO reglua in t
Pacific (Figure 2.17).

The difference in the shared rapid displacement locations of the high northern
latitudes is examined using the positions of an isotherm confined to the Polan®&eqi
16°C. The NCAR CCSM model suggests rather different patterns 8C-igbtherm
movement than the CNRM model. In the northern hemisphere, the NCAR isotherm in
the north is small and localized to a region over Greenland (Figure 2.19); whereas, the

CNRM CM-3 model suggests the -1 isotherm spans the globe (Figure 2.20).

Figure 2.19: NCAR -16° Isotherm for the 2000-2030 mean.
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Figure 2.20: CNRM -16° Isotherm for the 2000-2030 mean.

The NCAR -16°C 2060-2090 mean isotherm in the north remains over Greenland
and is smaller than the 2000-2030 isotherm (Figure 2.21) while the CNRM CM-3 model

16 °C isotherm shrinks to Greenland over Greenland only (Figure 2.22).
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Figure 2.21: NCAR -16° Isotherm for the 2060-2090 mean
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Figure 2.22: CNRM -16° Isotherm for the 2060-2090 mean

While both models suggest the ABisotherms span the globe in the southern
hemisphere, the initial isotherm pattern suggested by CNRM elisiterager warming
trend about Greenland than the one by NCAR CCSM.

The Greenland differences are the possible result of sea ice modehdiée ges
the extent of the -16°C isotherms in NCAR is less than the extent in the CNRM model.
Holland and Bitz (2003) determined that in the earlier versions of these two GCMs the
CNRM model produced a slower sea ice melt rate than the NCAR model and ityis likel
that this difference persists in the current model versions. The -16°C isotbenrthé
two models show that the Arctic ice in the NCAR model has melted to a gertdnat
than in the CNRM CM3 model. The maximum warming that occurs at the latitude of t
sea ice extent (Holland and Bitz 2003) is captured by the kinematic map regiesent

The equatorial differences seen between the two datasets are the posdildé res
cloud modelling and the EIl Nifio - Southern Oscillation (ENSO) modelling in thefidl Ni

region. The ENSO modelling is a possible underlying cause for GCM output difference
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as the Nifio 3 region, an area over Indonesia, and an Indian Ocean area all have

differences.

24 Conclusion and Future Research

GIS support for scientific inferences and knowledge integration is limytekleblack of
spatiotemporal kinematic descriptors for geographic phenomena. Kinematches

the motion of phenomena without attempting to capture the dynamics underlying the
motion. The development of a kinematic approach within the GIS enabled the
spatiotemporal analysis of the output of dynamics models including Generalla@on
Models.

The concepts of kinematics are used to capture change and movement in
geographic fields in this research. The change and movement is captured by the
application of image processing approaches (Horn & Schenk, 1981). Change amd moti
is characterized utilizing velocity as the basic unit of change.

Grid-based scalar observations (such as temperature) are transformed t
displacement vectors (directions and speed of the movement of an isoline) toedescr
how changes progress through space and time. The approach integrates Eulerian and
Lagrangian approaches by following moving virtual object’s boundaries amghiagsi
the boundary displacements to field locations. Optical flow is applied to the derroga
virtual objects’ boundaries in order to characterize the scalar fieldi®tgmaporal
changes. The majority of locations in a field are calculated directlg nsidtiple virtual
objects with missing locations assigned values using interpolation. The resulting
spatiotemporal representation of change and movement facilitates thetamdiags of

the spatiotemporal properties of geographic phenomena.
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The capabilities of the proposed representation and analytical approach are
demonstrated by its application to the analysis of IPCC A2 climate changeiecas
depicted in two GCM’s: the NCAR CCSM3 and the CNRM CM3. The analysis focused
on spatiotemporal information more easily elicited by the kinematic apprioacty
current GIS supported methods. The enhancements to spatiotemporal GIS analysis
provided by the integrated space and time kinematics approach were summarized. Maps
of the displacement portrayed the spatial pattern of the spatiotemporal€hange

A migrating means algorithm (Ball & Hall, 1965) was used to identify $sitzls
outliers in the flow field that highlighted unique areas, examining autocoorelati
displacement vectors that identify cohesive fluid objects and comparingidiols from
different data sources. Movement extremes exhibited autocorrelation beyond the
magnitude expected from an artifact from the natural neighbor tool. A 2D continuous
field, such as temperature, can additionally be perceived with flows of coneerged
divergence. Regions of convergence and divergence may suggest areas ahmterest
processes driving the dynamics of the scalar field as well as higldaditrhinima and
maxima due to elevation or other geographic factors.

The distribution of northward and southward velocities show the poleward motion
discussed in the IPCC reports (IPCC 2001). Additional areas exhibited flow conergenc
and divergence due to local minima and maxima. The distribution of motion amplitude in
the longitudinal histograms hinted that the warming in the Northern Hemisphess is |
homogeneous than in the Southern Hemisphere. The polar amplification of Holland and
Bitz (2003) is captured in both GCM model’s outputs by the representation in this

research.
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Duplicating the analysis in this paper without the spatiotemporal represantati
would have required manual sampling of the climate values at the two time @ssfanc
a grid point, the scaling of the change rate at the point by the spatial derivatifreadly
the grouping of the changes that were statically significant. Thesesgegion in this
research enables users to easily spot areas of unusual spatiotemporal mthdinge a
compare the regions of unusual movement between different GCMs. Regiongrexhibit
differences hinted at the fundamental difference in sea ice models beéheddCAR
and CNRM GCMs as described by Holland and Bitz (2003). The general pattern of polar
amplification stood out in both models.

The approach developed in this research could not calculate displacement vectors
for complex shapes with multiple concavities. Displacement vectors for coctpages
such as merges and splits in the isotherms are also not accuratelyccaatusntherm
ring that disappears by the next interval leads to displacements that canalcttzex
by the algorithm as no ending location for the vectors can be determinedrigjraiia
isotherm near the boundary of the globe that disappears by the next samydé liesiels
to failed attempts to quantify the change. The inability to track complgesiznd
transitions leads to loss of some of the fine grain displacements. One apprtvaching
complex shapes worth further study is to use active contours ( Kass, Witkin &

Terzopoulos, 1987).

52



References

Ahl, V., & Allen, T.F.H. (1996). Hierarchy Theorg Vision, Vocabulary, and
EpistemologyColumbia University Press, New York.

Armstrong, M. P. (1988). Temporality in spatial databases. In Proceedings of
GIS/LIS'88, 2. Bethesda, MDAmerican Congress of Surveying and Mapping
880-9.

Ball, G. H., & D. J. Hall. (1965)SODATA, A Novel Method of Data Analysis and
Pattern ClassificationMenlo Park, California: Stanford Research Institute.

Bluestein, H. B. (1992)5ynoptic-Dynamic Meteorology in Midlatitudé&3xford
University Press, New York.

Konrad, J. (2005). Handbook of image and video processing. In A. C. Bovik (Eds.)
Motion Detection and Estimatiqipp 253-274). Burlington, MA: Elsevier
Academic Press.

Burrough, P. A. (2001). GIS and geostatistics: Essential partners fal spetiysis.
Environmental and Ecological Statisti&,361-377.

Carril, A. F., Menede, C. G., & Nunez, M. N. (1997). Climate Change Scenarios Over the
South American Region: an Intercomparison of Coupled General Atmosphere-
Ocean Circulation Model$nternational Journal of Climatology, 17613-1633.

Christakos, G., Bogaert, P., & Serre, M. (200Bmporal GIS Advanced Functions for
Field-Based ApplicationsSpringer-Verlag Berlin Heidelberg New York.

Collins, W. D., Bitz, C. M., Blackmon, M. I., Bonan, G. B., Bretherton, C. S., Carton, J.
A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W.
G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2005). The Community
Climate System Model: CCSM3gpurnal of Climate, 192122-2143.

Cova, T. J. & Goodchild, M. F. (2002). Extending geographical representation to include
fields of spatial objectdnternational Journal of Geographical Information
Science, 16(6509-532

de Smith, M.J., Longley, P.A. & Goodchild, M.F. (200@Geospatial analysis: A
comprehensive guide to principles, techniques and software(foE05).
Winchelsea: Winchelsea Press.

Felzer, B. & Heard, P. (1999). Precipitation Differences Amongst GCMd Ber The
U.S. National Assessmerdpurnal of the American Water Resources Association
35 (6), 1327-1339.

Galton, A. (2004). Fields and Objects in Space, Time and SpaceSgragal Cognition
and Computation, 4(1)-29

53



Gold, C. M. (1989): Surface interpolation, spatial adjacency and G.I.S. in: J. Raper (ed.):
Three Dimensional ApplicatiomnsGeographical Information Systenmsp( 2 I-35).
London: Taylor and Francis Ltd. 1989.

Goodchild, M. F., Yuan, M., & Cova, T. (2007). Towards a general theory of geographic
representation in Gl$nternational Journal of Geographic Information Science
21(3): 239.

Glting, R. H., Bohlen, M. H., Erwig, M., Hensen, C. S., Lorentzos, N. A., Schneider,
M., & Vazirgiannis, M. (2000). A foundation for representing and querying
moving objectsACM Transactions on Database Systems, 23(4Q.

Horn, B. K. P., & Schunck, B. G. (1981). Determining Optical Flavtificial
Intelligence, 17, 185-203.

Hornsby, K., & Egenhofer, M.J. (2000). Identity-based change: A foundation for spatio-
temporal knowledge representatiémternational Journal of Geographical
Information Science, 14(207-204

Hornsby, K., & M. Egenhofer. (2002). Modeling Moving Objects over Multiple
GranularitiesAnnals of Mathematics and Artificial Intelligence 36(1)7-194

Hulme, M., Briffal, K. R., Jones, P. D., & Senior C. A. (1993). Validation of GCM
control simulations using indices of daily airflow types over the Britisls
Climate Dynamics, 9(295-105

Huth, R. (2000). A circulation classifcation scheme applicable in GCM studies.
Theoretical Applied Climatology, 67518

IPCC, Climate Change (200D)he scientific basis. Contribution of Working Group 1 to
the Third Assessment Report of the Intergovernmental Panel on Climate Change
Albritton, D. L., Meira Filho, L. G., Cubasch, U., Dai, X.; Ding, Y., Griggs, D. J.,
Hewitson, B., Houghton, J. T., Isaksen, I., Karl, T.; McFarland, M., Meleshko, V.
P., Mitchell, J. F. B., Noguer, M., Nyenzi, B. S., Oppenheimer, M., Penner, J. E.,
Pollonais, S., Stocker, T., Trenberth, K. E., Maskell K., & Johnson C.A. (eds)
Cambridge University Press, Cambridge, UK pp 881

Holland, M.M., & Bitz, C.M. (2003). Polar amplification of climate change in coupled
models.Climate Dynamics21(3-4),221-232.

Kass, M., Witkin, A., & Terzopoulos, D. (1987) Snakes: Active contour models,
International Journal of Computer Vision. 1(4321-331.

Lamb, H. H. (1972)Climate: Present, Past and Future, vol. 1, Fundamentals and
Climate Now(pp 613), Methuen, New York.

Langran, G. and Chrisman, N. R. (1988). A Framework for Temporal Geographic
Information.Cartographica 25(3), 1-14.

54



Labraga, J. C. (1997). The Climate Change in South America Due to a Doubling in the
CO2 Concentration: Intercomparison of General Circulation Model Equilibrium
Experimentsinternational Journal of Climatology, 13,77-398

Mennis, J., Viger, R., & Tomlin, C. D. (2005). Cubic Map Algebra Functions for Spatio-
Temporal AnalysisCartography and Geographic Information Science, 32{%),
32.

Pepin, N.C. (1995). The Use of GCM Scenario Output to Model Effects of Future
Climatic Change on the Thermal Climate of Marginal Maritime Uplands.
Geografiska Annaler. Series A, Physical Geography, 7163);185

Peuquet, D. J., & Duan, N. (1995). An Event-based Spatiotemporal Data Model
(ESTDM) for Temporal Analysis of Geographical Dataternational Journal of
Geographical Information Systems, 9(1)24.

Peuquet, D. J. (2001). Making space for Time: Issues in Space-Time Data
RepresentatiorGeolnformaticab(1), 11-32.

Pfoser, D., & Theodoridis, Y. (2003). Generating Semantics-Based Tragsobbri
Moving Objectsintl. J. of Computers, Environment and Urban Systems (Special
issue on Emerging Technologies for Geo-Based Applicatidng),243—-263.

Rosenblatt, R., Sayre, E. C., & Heckler, A. F. (2009). Modeling students' conceptual
understanding of force, velocity, and acceleratAP. Conference Proceedings
245-248

Saji, N. H., Xie, S.-P., & Yamagata, T. (2006). Tropical Indian Ocean Varialnilitye
IPCC Twentieth-Century Climate Simulationdournal of Climate. 1%4397-
4416.

Salas-Mélia D., Chauvin F., Déque” M., Douville H., Gueremy J. F., Marquet P., Planton
S., Royer J. F., & Tyteca S. (in review) Description and validation of the CNRM-
CM3 global climate modeClimate dynamics

Semazzi, F. H. M. and Song, Y. (2001). A GCM study of Climate Change induced by
Deforestation in AfricaClimate Research 17169-182.

Sengupta, S. K., & Boydle, J. S. (1993). Statistical intercomparison of globatelim
models: A common principal component approach with application to GCM data.
UCRL-ID—114222. Downloaded 10/04/07 from
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10173301

Spery, L., Claramunt, C., & Libourel, T. (2001). A Spatio-Temporal Model for the
Manipulation of Lineage Metadat@eolnformatics(1): 51-70.

Stefanidis , A., Eickhorst , K., Agouris , P., & Partsinevelos, P. (2003). Modeling and
comparing change using spatiotemporal heliResceedings of the 11th ACM

55



international symposium on Advances in geographic information sygigmg6-
93, November 07-08, 2003, New Orleans, Louisiana, USA.

Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanfling
the concept of acceleration in one dimensfAmerican Journal of Physics, 49(3),
242-253.

Worboys, M. F., (1994). Object-oriented approaches to georeferenced information.
Internationallournal of Geographical Information Systeris 385-399.

Yuan, M. (1999). Representing Geographic Information to enhance GIS support for
complex spatiotemporal queridgansactions in GI153(2):137-160.

Yuan, M. (2000). Representation dynamic geographic phenomena based on hi¢rarchica
theory. Proceedings: 9th International Symposium on Spatial Data Handling
Spatial Data Handling, P. Forer Eds. Pp. 2a.19-2a.29.

Yuan, M. (2001). Representing Complex Geographic Phenomena with both Object- and

Field-like PropertiesCartography and Geographic Information Scie28£2):
83-96.

56



Chapter 3: A Kinematics-based GI S Methodology to Represent and Analyze
Spatiotemporal Patternsof Precipitation Change

Abstract
A kinematics-based GIS methodology is applied to identify, represent, and

analyze spatiotemporal patterns and pattern transitions in very largeatéd sise case

is built from two precipitation data products projected for the A2 scenario by the
International Panel for Climate Change (IPCC): (1) the Community Clinyater8

Model (CCSM3) from the National Center for Atmospheric Research (NCAR, USA
Boulder Colorado) and, (2) the global ocean-atmosphere coupled system (CM3) from the
Center for National Weather Research (CNRM, METEO-France, Toulousestuthe

takes a predefined threshold to delineate regions of interest, calculétesfsine

regions between years, and characterizes the pattern change. Thé feseaes on the
topics as changes in the tropics affect extra-tropical climate. Thessed precipitation

over 213 cm/year in 2001 and 2048 to illustrate the kinematics approach to comparing
precipitation patterns predicted from the CCSM3 and CM3. Even though the precipitation
data in 2001 and 2048 cannot be considered temporally continuous, the differential used
here was to simulate the transition of precipitation patterns between thedvgounder

the assumption that changes to spatial patterns of precipitation for 213 cwéyear

gradual from 2001 to 2048. The 213 cm/year precipitation threshold is met when a large
number of precipitation events occur during the year. The 213 cm/yr threshalblés st

from year to year versus lesser thresholds which may be discontinubresjaire

temporal averaging to smooth the rapid variation.
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The kinematics approach quantifies divergence, rotation, and deformation about
changes to precipitation patterns and enables the search for precipitabos reg
influenced primarily by local conditions or by general circulation pattermgater vapor
transport. The study demonstrates that the kinematics approach is able to discern
transitional patterns from a continuous field of geographic properties ovelbyime
defining objects through thresholds and analyzing the object’s internal sandagx
movement patterns in space and time.

Keywords. temporal GIS, objects, geographic kinematics, internal change, motion,
and climate change.

3.1 | ntroduction

Many climatological studies examine aggregated patterns from elievants to
generalize spatially the overall outcome of climate change at ttenedgir global scales
(Carelton, 1999). Van Ulden and Oldenborgh (2006) studied five GCMs and discovered
significant differences in circulation patterns leading to differentesdcipitation
patterns. This research continues the tradition of seeking effectiveavagdress
spatiotemporal patterns, specifically, precipitation patterns projected sténario
defined by the International Panel for Climate Change (IPCC). Insteadrofreérg
precipitation patterns at individual time frames, the research appliehadetsed on
kinematics, originally designed for the analysis of changes in tempepatierns, to
emphasize spatiotemporal transitions of precipitation. By adopting the idea moikics
the GIS method identified areas of high precipitation and characterized theodisscd
distance of movement for these areas over space and time. Measures f@a'she are

internal spatiotemporal characteristics and transitions provide new insigghts
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precipitation patterns projected by two General Circulation Models (GCMI}BCMs
produce massive climate projection products, and the essence of predicteel climat
patterns and the differences among data outputs from models are difficult to dibeern. T
study shows how the kinematics approach can facilitate the elicitation andaspofm
changes in spatiotemporal precipitation patterns from volumes of GCM data products.
Elicitation of precipitation patterns out of massive GCM data products is non-
trivial. Effective detection of patterns relies heavily on the desigapgrtsentation
schemes and analytical methods (Yuan, Mark, Egenhofer, & Peuquet, 2005). To this end,
the applied method adopts the concepts of kinematics to represent areas of high
precipitation as individual objects and track the direction and movement of these objects
over space and time. The shift patterns of precipitation are then examined through linki
these objects across time steps as in a flow field defined by Theisel det(3@03).
Shifts measured by the rates of emergence, dissipation, splitting and meagibg m
indicative of the effects of large scale circulation patterns on pre@pitdthe near fifty
year interval revealed movement in tropical precipitation that resultelthinges that can
be analyzed for isohyet shifts. Climatic data are analyzed to determiloedhien, type
and rate of internal change of precipitation objects. These measures ctnedjfe
summarize and contrast precipitation patterns suggested by differenn@d#&ls or for
different climate change scenarios. Furthermore, the summative stefigamay help
formulate hypotheses about forcing functions or environmental variables rddpdosi
precipitation change.
This research applies the method developed previously for analysis of changes to

temperature patterns, but adds a new dimension in the measure of internal ahanges t
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individual objects (i.e. precipitation areas) to enable insights into changeipifation
patterns. Expanding upon the concepts of kinematics with measures of direction and
movement, the research quantifies the rate of change internally and kxtertiree

identified feature. Precipitation features defined by a given threshold, s2di8a

cm/year, include areas with annual precipitation at the threshold orrgf@epitation

objects may merge, split, emerge or dissipate as change progressesseg@hehrposits

the hypothesis that changes to precipitation patterns can be representaathvitiiernal

and external kinematic measures. With the proposed quantitative measurkaptbe c
presents the kinematics-based method and demonstrates the application of the method to
spatiotemporal analysis of precipitation patterns suggested for theARGCenario.

This chapter is divided into four sections: introduction; conceptual bases and
related research; datasets and methods; and results and discussions. The introductory
section overviews the research goal, problem context, and approach. The maxt sect
highlights the underlying conceptual frameworks and related studies that support the
development of the proposed method. The section on datasets and methods discusses the
GCM data products used in the case study and procedures that implement thedsnemati
based GIS method to elicit spatiotemporal patterns of precipitation. Fitnalgettion
on results and discussions presents the findings and elaborates on broaderonglicati

and directions for future research.

3.2  Conceptual Bases and Related Research

3.2.1 Information Representation

In an information system, representation is the key to effective informatadyses
(Yuan, Mark, Egenhofer, & Peuquet, 2005). This is particularly true for verytiange
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series data sets from General Circulation Models (GCM). In the caftexpresentation,
these data products are compatible to temporal sets of snapshots that show spatial
distributions of climate variables. By examining one snapshot at a time,ianslys
limited to spatial characterization rather than change over space an(Ctmsman,
1998). Due to spatial and temporal autocorrelation, neighboring propertiediass tri
pattern analysis of geographic phenomena, including climate change (6xdidray,
Huang, & Vatsavai 2003).

Past approaches used spatial grouping to identify regions of cells that show
similar temporal trends. For example, Tan, Steinbac, Kumar, Potter, and KIQO§2)
applied temporal classification to data at each grid location to determitentperal
pattern and then grouped similar patterns. Another approach took pair-wisetiomsela
between time series at different geographical locations and found regionsieghibi
spatial autocorrelation with each member of the pairs (Steirdiaadh 2001).
Alternatively, this research aggregates grid points based on a threshold value into a
object and then characterizes the spatiotemporal behavior of each objecat€alcul
change rates are in contrast to the spatiotemporal helix model proposed bigiStefa
Eickhorst, Agouris, and Partsnevelos (2003), which requires the user to infer the rate
change. The kinematics-based GIS method stores (Table 3.1) the diveegence r
(divergobj), dominate axis of deformation (deforming ), deformation expansion or
contraction (deform_pri) and rotation (vorticobj) information to enable databasesjuer

regarding any of these spatiotemporal growth characteristics.
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B Attributes of cnrm_pr2001_reg213_kin_thies_pos_wvortic

FID | Shape | 1uf.ﬂLLUE| SUM_F_AREA | vorticobj | divergobj | deform_ang | deform_pri |
u 1 |Polygon 14| 20474641675 279722 -10.3926 -0.61 0692 128152
u 5 |Polygon 42| 303645330016 303235 -4 43075 1.31644 -9.17174
u 6 |Polygon 49| 230971706954 14 9402 27 0631M -0.353933 -32.1581
n 8 |Polygon 63| 155491267327 83.570503 70074097 -0.653 75 -66 630699
| 14 |Palygon 105 316108606530 17 2857 -15.475401 -0.0275835 127012
| 18 |Palygon 133 | 9442722756640 452953 23377 -0.600E3 -31 692499
| 20 |Palygon 147 | 7858950057969 49.3589M 4 45629 -0.6453597 -32 236099
| 24 |Palygon 175 787358331361 57.423 G4.971397 -0.655072 -55.342701
| 28 |Paolygon 203 78527444356 35223585 -43.3580199 0966261 -51.030102
| 29 |Paolygon 20 78527444356 3 .4155M -20.2577389 0.909306 -18.234301
| 31 [Palygon 224 TBOB2636957 1 22756589 -3.12602 1.05944 -150.146
| 32 |Paolygon 231 | TBOB2636957 .2 45472 -5.49036 0474714 -23.957399
| 33 |Polygon 2353 207009535234 36655999 21 4611 -0.544093 -26.355301

Recaord: ﬂj 1] jﬂ Show; IW Selected Records (0 out of 13 Selected) j

Table 3.1: An example data table for a set of precipitation objects and thedderive
kinematic attributes

Using kinematic concepts incorporates the rich history of kinematic aalys
Meteorology. The basis of kinematic analysis is the change in velocity foratibtialinal
flow and longitudinal flow (Bluestein, 1992). Kinematics is usually applied tdflcedl
flow, but this research applies the concept to a virtual flow that reflecthémges in
scalar attribute values over the Earth’s surface. The kinematic nefates@ combines
Lagrangian and Eulerian concepts of fluid kinematics to effectively catbteir@direction
and amount of change in space and time of a field. The spatiotemporal distributions of
velocity define kinematics. In addition to the velocity that measures thdioirend
movement of an object, the research considers the following as measurestiat inter
kinematics to the object: divergence, deformation and rotation. Divergence is the
fractional rate of area change to the object, deformation captures ansolgeenf
expansion or contraction, and rotation addresses changes in orientation due to differential

velocity (Figure 3.1). Once calculated, the three measures are storedabasdand
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used to differentiate regions that may have the same shape and change to shape but

exhibit very different patterns of kinematics.

T0

T1

Rotation Deformation

Figure 3.1: Internal kinematics is needed to determine rotation or deformation of a
object.

The first step to apply concepts of kinematics to a dataset representadgra s
field of geographic properties is to construct objects in the scalar fieddcdritinuous
field representation is converted to an object-base representation (Peuquetsa21)
bona-fide or fiat boundaries to demarcate the objects’ extent (Smith and Mark 1998).
Bona-fide boundaries are defined by natural discontinuities in a geographic phenomenon
(such as watershed divides), whereas a fiat boundary is based on subjectiadarite
spatially delineate geography (such as county boundaries to delineate land
administration). The creation of conceptual objects (e.g. precipitation a@adjdlds

in this study is based on fiat boundaries defined by a subdivision of the isohyet range
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used in the Koppen climate classification (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
120, 130, 140, 150, 161, 178, 213, and 284 cm/year). The discrete nature of precipitation
fundamentally fits well with the object-based conceptualization. The kimematsures

are then used to summarize spatiotemporal patterns of precipitation exhibiteddéy
conceptual objects individually and collectively.

A data model, expanding upon the three-domain model (Yuan 1999), was used for
storing and analyzing the conceptual objects of precipitation areas. Threaslomai
semantics, space, and time provide the basis for digital representatiorterodd et
location as well as lifecycle of geographic objects. Yuan (2001) furthepoeded
concepts of hierarchies into the three-domain model to facilitate the reptesent
events and processes across multiple levels of spatial and temporalldoales.
kinematics-based method further incorporates the concepts of kinernatiqsand the
three-domain model with quantitative values for the internal kinematicst @bjiects

identified through defined thresholds in a field.

3.2.2 Elicit Spatiotemporal Patterns from Massive Data

Spatiotemporal analytical methods, traditionally developed for sampled data, ar
incapable of dealing with large heterogeneous geographic databades ghtl Han
2001). The field of Knowledge Discovery in Databases (KDD) aims to develop methods
that can elicit non-trivial patterns from ever increasing databasézirigta KDD for
analyzing large geographic databases must be done carefully as KieDsysnd to
generate correlation patterns of little interest (Silberschatz & TuA896;

Padmanabhan 2004), unless the KDD process is guided interactively or resyritted b
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underlying abstract data representation. One key KDD step is data miningakyssaof
low level abstract data to produce a set of patterns from the datadCdleh996,
Fayyadet al. 1996, Padmanabhan 2004). Spatiotemporal data mining requires
considering what to mine from the spatiotemporal database and how the data sif intere
are formatted in the database (Abraham and Roddick 1998). The goal of a data mining
activity should guide the creation of representation and tailor the re@egenb the
production of summative information from massive databases (Roddick and Lees 2001).
The kinematics-based method is one approach to offer GIS support for data
mining of meaningful spatiotemporal patterns by leveraging the kinesmagasures to
characterize spatiotemporal patterns. A spatiotemporal database shabilel toe a
describe how an object is changing in a manner that provides insight to spatiadgsoces
that lead to pattern change. A similar approach was taken by Thomipsiorf2002)
who utilized point-level vortexes to identify physics-based objects througmilaitag.
This research quantifies kinematics within precipitation objects definéudsholds to
identify precipitation patterns. Spatiotemporal characteristics of goisgimn object are
determined by aggregating the mean spatiotemporal characteristias jpbigis within
the region. The points identified as being in an object are aggregated gitoildib and
Zhao'’s (1996) work on 2D fields, but, in contrast to Yip and Zhao, precipitation objects
are determined by pre-defined thresholds. The aggregated characteribigs® gioints
become attributes for the region, and the region is then conceptualized as an bbeject. T
collection of objects with their internal and external characteristichkarige enables the
analysis of differences and similarities between datasets and akensto locate

interesting spatiotemporal regions.
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Six descriptors are required to adequately describe object spatiotemporal
dynamics:
¢ |ocation (Abraham and Roddick 1998);
e attribute or theme representing a characteristic assigned a value at a
location (Sinton as quoted by Abraham and Roddick 1998);
e extent: the static spatial boundary of an object;
e mutation: the change in an object’s attributes such that an object is
assigned a new classification;
e movement: a change in the location of an object; and
e evolution: the change in an object’s internal structure.
The formulation used by Abraham and Roddick (1998) to determine the six descriptors is
object centric. This study extends the descriptors to field-based (or grutadoy
considering the spatiotemporal behavior of fiat objects delineated from ges wala

field.
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Claramunt, Parent and Theriault (1997) proposed an object-relationship data
model that includes six basic extent evolutions of a spatial object: stathdfyrmation,

expansion/contraction, and rotation and translation (Table 3.2).

Spatio-

Temporal Geometric

Process types Shape Size Orientation  Location

Stability Any constant  constant constant Constant

Deformation  any but point changed constant constant Congtant

Expansion Any constant  growing constant Constant

Contraction any but point constant  shrinking constant Constant

Rotation any but point constant  constant changed Congtant

Translation Any constant  constant constant Changed
merging/

Branching Any constant splitting constant Constan

Table 3.2: Spatial Entity Evolution (Claramuattal. 1997)

An additional index, extent evolution branching (merging or splitting), was
previously suggested by Peuquet (1994). The kinematics-based method supports all seven
classifications. The method computes the fluid kinematics deformation andsassig
deformation rates along with the orientation of the expansion axis and the contracti
axis. The divergence determines the overall rate of expansion or contractien whi
vorticity assigns a rotation rate. Branching is determined by trackiegtslkgcross two

or more time instances and noting objects that divide into many or merge into one.

3.3 Datasets and Methods

This research applies two GCM datasets for IPCC climate changesiantie National

Center for Atmospheric Research Community Climate System Model (NCBRW3)
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from the United States at 1.4° x 1.4° resolution (Cokihal 2005) and the Center
National Weather Research global ocean-atmosphere coupled system {CMBM
from France (Salas-Meliet al 2005) at 2.8° x 2.8° resolution. Over the global
coverage, the NCEP/NCAR output is in a 256 x 128 grid, whereas the CNRM-CM3
output is in a 144 x 73 grid. Precipitation data out of the GCM products for IPCC
scenario A2 were obtained from the World Climate Research Program’s Coupdiesti M
Inter-comparison Project Multi-Model Dataset Archive. The A2 scenarich@sen as a
case to demonstrate the kinematics approach. The A2 scenario more closety tiod
actual rate of change during the last 5 years than the other scenarios.

Isohyets of annual precipitation were delineated from the climate de2a@ar
and 2048. Mean annual isohyets over three or more years showed too little difference
over the intervening (47) years to produce a sufficient number of calculapéacdiment
vectors. The yearly isohyets from 2001 and 2048 have enough differences to have
transitions while exhibiting enough continuity to allow the Optical flow amabps
succeed. The analysis was applied to annual isohyets of the values 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 110, 120, 130, 140, 150, 161, 178, 213 and 284 cm/year in years 2001
and 2048 and displacement vectors were calculated along each of the defined isohyets

(Figure 3.2 and 3.3).
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Displacement
vector:

213 cm/year isoline ¢

213 cm/year isoline ¢

Figure 3.2: Calculating displacement vectors for the 213cm/year isohyet
284 cmlyear isoline at t

Displacement vector

[92)

284 cmlyear isoline at t
Figure 3.3: Calculating displacement vectors for the 284cm/year tsohye

Displacement vectors were spatially interpolated using the ESRI natural
neighbour interpolation function to estimate displacement vectors for thenregai

approximately 70% of the grid points. The natural neighbour interpolation deterfmnes t
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set of points with Thiessen polygons overlapping the polygon of the new point and
applies proportionate weights based on the overlap (Gold 1989). Natural Neighbor
interpolation does not produce minima or maxima that are not present in the input
samples (Gold 1989). The absence of interpolated minima and maxima insures any
minima and maxima found are from calculated data.

This case study extends Claramenal.’'s (1997) extent evolution classifications
utilizing displacement vectors along precipitation object boundaries and withojdet
itself. An object with boundary displacement vectors equal to 0 has a stable and
unchanging extent. Claramugttal.’s deformation extent evolution has non zero
boundary displacement vectors but the areas within the object remains constans. For thi
study the deformation axis of expansion and contraction were calculated using interna
flow field kinematics. Claramurdt al.’'sexpansion evolution classification has an extent
increase captured by outward oriented displacement vectors along the object’'syoundar
that conserve the shape. The contraction evolution conserves the shape but has a
decreased extent captured by inward displacement vectors along the dogentsry.
Incorporating concepts of fluid kinematics, the study uses divergence to gulaatif
increase in size due to expansion and convergence to quantify the size decrease due to
contraction while ignoring shape conservation. Convergence and divergence are
calculated using an area integral of the net flow defined Greene’s theqtewvalent to

the contour integration of the boundary vectors (Bluestein 1992).

[, V- VdA= §. V-ads Eq.3.1

In equation 3.%,is the horizontal divergenc¥,is the vector function andl is
the vector normal to the curé@anddstraverses the curve in a counter clockwise
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direction. Rotation is suggested by a divergence value of zero and all dispiaceme
vectors with the same magnitude and angle in reference of the respectia vextor at
the boundary. In other words, rotation is measured by evaluating the internarsthear
the resulting vorticity inside each object. Translation is determined by ckspéant
vectors with a divergence value of 0 and equal magnitude and equal angle withteespect
the coordinate system. Branching includes both merging and splitting. Brarghing i
determined through assigning regions from a time instance to correspondorts riegi
the next time instance using a tracking algorithm detailed in the lagtorses

When transitions can be considered spatially and temporally continuous, a
moving object can be conceptualized as a manifold in a two-dimensional spaeatfx,y)
one-dimensional time (t) in six possible transitions: emergence, dissipamugrgence,

divergence, merging and splitting (Figure 3.4).
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Convergence Divergence Dissipative
Emerger Split Merge

Figure 3.4: A manifold model to represent six basic types of spatiotentzorsitions.

Emergent spatiotemporal objects are those initially do not exist and then appear
later in the data. Dissipative spatiotemporal objects exist at the imt&@but disappear
in a later time. Convergent objects are shrinking versus divergent objectsasbic
expanding. Merging objects join into one object whereas splitting objects formpleult
objects.

Regions are defined from chosen isohyets values that represent further divisions
of the Koppen climate classification precipitation levels. In particulalnyists of
213cml/year are used to delineate regions contained within the Koppen tropical wet or
monsoonal climate classification. The 213cm/year regions are redtracthe tropics but
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tropical changes are of interest as they affect global climate($S8tanstator, Dijkstra

& Kliphuis, 2004). Precipitation rates lower than 213 cm/year generate only tme 0
large equatorial regions along with smaller mid latitude regions. The e@liségions

are of little interest because these precipitation regions mostly raweststand, as a
result, all divergence and deformation would be in poleward direction. Additionally th
equatorial regions do not exhibit any of the six spatiotemporal transitionsmEters
regions of less than 213cm/year precipitation are too discontinuous for the optical flow
algorithm to trace. The use of 213 cm/year delineates 20-40 regions in both years of
study, allowing for proper comparisons of shifts in precipitation distributiorgioRe
enclosed by isohyets are created by identifying areas with attridues\greater than or

equal to the threshold value of 213 cm/year of precipitation (Figure 3.5).
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Figure 3.5: CNRM precipitation regions greater than 213 cm/year for 2001

73



3.3.1 Kinematic analysis

Only grid points within regions enclosed by 213cm/year isohyets are retamed f
the following analysis. The displacement in the x direction is denotedahbd in the y
direction byv. Displacement vectors are used to calculate kinematic parameters at eac
grid point:ou/ox, ouldy, oviox andovioy to determine divergence, deformation and
rotation at each point location (Equations 3.1-5) wiaghe ando/oy represent changes
in velocity in the x and y direction, respectively The calculatioduddx, ou/oy, oviox
andovidy is done by applying a kernel of a 3 x 3 window for each differentiation (Table

3.3 shows thé/ox kernel ).

0 0 0
-0.5 0 0.5
0 0 0

Table 3.3d/dxkernel

A different kernel is applied to compute the finite differences differeotiavith

respect to y (Table 3.4).

0 0.5 0
0 0 0
0 -0.5 0

Table 3.4d/dykernel
The kernels are applied to each grid point to calculate the finite difference
velocity in the x direction and the y direction at the grid’s center location forucanil

v. The kernel results are divided by the distance between the grid locations ianithe x
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orientations to get the finite differences that correspond to equations 3.2-S€Blues

1992):

a_u _u(i+1,)-u(i-1,j)
ax  x(i+1,))-x(i-1,)) q.3.2

a_u _ u(i,j+1)-u(i,j—1)
oy  y(i,j+1)-y(i,j-1) Eq.3.3

Q _ v(i+1,j)-v(i—-1,j)
ax  x(i+1)-x(i-1) Eq.3.4

v _ v(i,j+1)-v(ij-1)
ay  y@j+D-y(i,j-1) Eq. 3.5

Even though the precipitation data in 2001 and 2048 cannot be considered
temporally continuous, empirical measurements of the pattern transitionsidetéhat
changes were gradual from 2001 to 2048. Hence, the concept of fluid kinematics is
applied.

The kinematic equations below (Equations 3.6-13) are applicable to any fluid
regardless of scale (Warsi 2006). Divergence measures the change in ateaeofieq.
3.6). In a transition, area change is determined by the differences in mowewssnoait
and outward in respect to the area. A negaiivéx along the boundary of an object
suggests an inward move toward the object, and therefore results in reductionof area i
thex direction. Similarly, a negativ@/0y suggests a contractionyrdirection. Hence,
positive divergence represents an increase in spacing between differens isphne
increase in the region enclosed by an isoline. Negative divergence, convergence,
represents a decrease in spacing between different isolines or a dectkasegion

enclosed by an isoline.
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divergence % + Z—; Eq. 3.6 (Bluestein 1992)

Rotation represents the angular change counter clockwise (positive) or clckwis
(negative) of an isohyet region over time. Larger vertical flow atdbeend of a
boundary than the west side of thet boundary indicates counter clockwise rotatian as is

lesser flow on the northern t boundary versus the southern boundary.

. 2
rotation = —z

ou i
% " 3y Eg. 3.7 (Bluestein 1992)

Deformation includes two types of spatial changes in flow patterns : théhstgetc
difference, the change in isoline spacing parallel to the change in positioeangdtae
change in isoline spacing perpendicular to the change in position. The D1 term in Eq. 3.8
describes the orientation of the region’s most rapid extent increase withtiseand of
the most rapid decrease due to stretching witly ie@s. Shear in the D1 term acts along
they = x andy = x lines.

du  av

Dy =~ oy Eq. 3.8 (Bluestein 1992)
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Figure 3.6: D1 stretching deformation along xrexis
The D2 term describes the orientation of the region’s most rapid increase due to
stretching along the =y line and decrease along the x line. The D2 term quantifies

shear with respect to thxeandy axis.

d 0 .
D, = 0—1 + a—; Eq. 3.9 (Bluestein 1992)
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Figure 3.7: D2 stretching deformation along yivex axis

Combining these two terms and obtaining a single axis of deformation simplifies
the comparison of the deformation orientation and rate among objects. The deformat
terms is combined by changing the coordinate system so that there is ingjle anen
zero term. The deformation angh, is the angle at which the coordinate system must
be rotated counter clockwise so that the new coordinate system only retaigle @sn
zero deformation term (ie. DO = 0 leaving thereasure only).The deformation terms

for the new coordinate system are:

' dur avr .

D', = a_z, —a—;’" Eq. 3.10 (Bluestein 1992)
’ av/ ous .

D', = % % Eq. 3.11 (Bluestein 1992)
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The coordinate system rotation angle is determined by s%ﬁéiﬁg—z—;: in the

new coordinate system so that the rm D', = 0 is eliminated. The remaining term
D’; now completely describes the deformation of the boundary under the influence of the

displacement field whereas before &hd B were both required.

deformation angle 8, = ltan-122 Eq. 3.12

2 D,
The resultant deformation PSummarizes the difference between the expansion
in the x’ direction and in the y’ direction due to stretching andthg line andy = -x

line due to shear.

D,
sin 20p

resultant deformation b’ = ... Eq. 3.13

The axis with the larger rate of increase is the axis of expansion, whibkeighe a

with the lesser rate is the axis of contraction (Figure 3.8).
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AXis of contraction

Axis of expansion\ /

Figure 3.8: Deformation

3.3.2 Region transition tracking

The virtual particle hypothesis associates a region enclosed by aat&Rtg a
region of the same isohyet value in the time instance. Displacement vectegsrpéte
two region’s boundaries (Figures 3.2 and 3.3) represent precipitation transitions ove
space and time. The displacement vectors are used to associate isoblygetdiitefined

regions from one time to another (Figure 3.9).
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vectors from
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213 cmlyear
threshold region
#2 at year |

Displacement | .
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threshold region
#5 at yeart

Figure 3.9: Determining region associations between time instances

Figure 3.9 shows the mapping of region 2 to region 5. All tiggri@l points with
a displacement origin are associated with the tiaggid point at the end of the
displacement. Grid locations within regions bounded by the threshold isohygisen

unique gridded region identifiers for both 2001 (Figure 3.10) and 2048 data.
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In Figure 3.10 there are three regions of varying sizes with ID 21, 28 and 35.

21
21| 21| 21
21| 21| 21
21| 21| 21
21
28| 28
35| 35 28| 28

35| 35| 35| 35

35| 35| 35| 35| 35

35| 35| 35| 35| 35

35| 35| 35

Figure 3.10: Gridded Region Identifiers

Regions at time jthat spatially overlap regions at timgare also associated
with the Tp regions. The associations are summarized in a table of time region IDQs for T
and the Tregions associated by following displacement vectors (Table 3.5). Each row
the table is associated with a region ID in year 2001 and a region ID in year 28:48. T
example table contains a merge as several different region IDy&an2001 are
associated with a single year 2048 region (9 regions [28,35,49, 56, 63, 70, 77, 84 and 98]

in the grey 2001 table cells merge into a single 2048 cell with the ID of 24).

region ids 2001 (J) | region ids 2048 (1)

213cm/year 213cm/year
21 32
28 24
35 24
42 64
49 24
56 24
63 24
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70 24
77 24
84 24
91 80
98 24

105 96

Table 3.5: Mapping regions between time steps for CNRM.
The regions involved in a merge are visually separated using vertical
displacement in Figure 3.11. The single lower region is from 2048 while the multiple

semi-transparent upper level regions are from 2001.

Figure 3.11: Merge from CNRM CM3 213 cm/year regions.

After the calculations, each grid point within regions enclosed by 213 cm/year
isohyets are assigned a region ID, divergence value, rotation valugamedeformation

D’,, and the deformation angdg (Table 3.6).
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Attributes of enrm_pr2001_reg?13_kin_thies_pos_vortic

FID | Shape | 1|.|'.ﬂtLUE| SUM_F_AREA | vorticobj | divergobj | deform_ang | deform_pri |

| 1 |Polygon 14| 210474641678 279722 -10.3926 -0.610692 12.8152
| 5 |Polygon 42| 303645330016 3.03235 -4 43075 1.31644 -8917179
| & |Polygon 49| 230971706954 14.9402 27 063101 -0.883933 -32.1581
n 8 |Polygon 63| 155431267327 83.570503 70.074037 -0653175 -66 630699
| 14 |Polygon 105 516108606530 17.2857 -15.475401 -0.027835 127012
| 18 |Paolygon 133 | 9442722736640 45.2953 238177 -0600E3 -31 692499
| 20 |Polygon 147 | TEGH50057I6.9 49 353901 443629 -0 6455597 -32.236099
| 24 |Polygon 175 TV 38331 361 ST 423 G4 871397 -0 655072 -55.3427
| 28 |Polygon 203 TE527444 3356 35.223595 -4.3.35801589 0 966261 -51.030102
| 28 |Polygen 20 735274443356 31415501 -20.257789 0909506 -15.234301
| 31 |Polygen 224 | TEOS2636957 .1 22736599 -3.12602 105944 -150.146
| 32 |Polygon 231 | TEOS2636957 .2 45472 -8.49036 0174714 -238957399
| 33 |Polygon 238 207009535234 36.658999 21 4611 -0.544093 -26.355301

Record: ﬂj 0 jﬂ Showg W Selected Records {0 out of 13 Selected) j

Table 3.6: Attribute table for areas of precipitation objects

Because the GCM output products are in latitude and longitude units (NCAR-
CCSM3 at 1.4° x 1.4° resolution, and CNRM-CM3 at 2.8°%2.8° resolution), the metric
extent of these grid cells is not transformed directly to square cetlsru€dS data. A
Thiessen polygon routine is used to construct two polygon layers in meters: one is based
on CCSMa3 grid points and the other, CM3 grid points. Both layers are in Robinson
projection to provide a balance between areal distortion and shape distortion atdhe glob
scale. Because CCSMa3 grid points are spaced in a lattice structure, i ipielyg@®n
routine creates matrices of rectangles that centered at each CC8N8igti The same
outcome is applied to the Thiessen polygon layers based on CNRM-CM3 grid points. As
shown later in the results, most regions of analysis are in low or mid latitudes and,
therefore, are less sensitive to areal or shape distortions in Robinson projectibigtha
latitude area. For each region enclosed by 213 cm/year isohyets, valuesnuditic
parameters are weighted by the size of respective Thiessen polygons dsamdigen

normalized by the area of each region.
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34 Results and Discussion

The use of kinematics to interpret precipitation patterns enables the campris
precipitation distribution patterns (Austin & Houze, 1972). Two levels of kinematic
properties are examined; one the internal kinematics at grid points withineggmh r
and, the other is external kinematics. Internal kinematics measuresetimalint
composition and structure of movement inside a region. In the case of precipitation,
internal kinematics characterizes transitions of precipitation atgratpoint within a
region. External kinematics are attributed to a region enclosed by theoldresohyets
as a whole and characterizes how the region evolved over time. A region might have
active internal kinematics with variable precipitation within a region, butreadty, the
region might remain stationary without significant shifts in location or shapdn Bot
internal kinematics and external kinematics support the assessment of @tieqipit
patterns in space and time and quantification of differences in changesipitgtiea
patterns from 2001 to 2048 projected by NCAR CCSM3 and CNRM-CM3.

The kinematics of precipitation fields may imply complex interactions dxstw
contributing phenomena. Tropical precipitation is a function of water vapor fields,
general circulation, orographic lifting and sea surface temperatuwvad@s 1998).
Tropical easterlies transport moisture in the tropics along with a compomarts the
equator (Chen, 1985). Water transport has a uniform net westward componehf@xce
in the tropical and subtropical Indian Ocean regions (Rosen, Salstein, &d?4i980).
The rate of transport increases from the equatorial rate towards a peakR\l tladitude

(Roseret al.,1980). Mean precipitable water in general decreases from the equator
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poleward with the Southern Hemisphere acting as a moisture and latent heat@ource
the Northern Hemisphere (Rosen, Salstein, & Peixoto, 1979). Tropical rainbands are
usually located above regions of warm sea surface temperatures (Maahbe: H
Holloway, 1974). The wind field and the water vapor transport field show rotation,
convergence, divergence and deformation. The complex interaction of vapor transport,
circulation, orographic lifting, and sea surface temperatures, each with kmegueatics,
influence precipitation patterns.

Climate change pushes circulation patterns poleward as the Hadley celisencre
in size (Mitas & Clement, 2005). Hadley cell shifts affect the Sahafiatawhich is
dependent on the northward penetration of the equatorial airmass during the summer
(Landsberg, 1975). A similar dependency exists for Antiplano rainfall and thadoli
high in South America (Lenters & Cook, 1999). The changes in convergence zones in the
tropics are associated with a decrease in the frequency of strong updiaftsinorease
in weak updrafts (Vecchi & Soden, 2007).

The CNRM CM3 GCM model output includes area encompassed by 213 cm/year
isohyets expands from 42.41 X°1n? in 2001 to 52.52 x Fkm? in 2048 with most of

the increase occurring in the Indian Ocean (Figure 3.12).
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Figure 3.12: CNRM precipitation regions greater than 213 cm/year with 2001 dutine
green and 2048 in solid blue

Regions enclosed by 213 cm/year isohyets from the NCAR CCSM3 products
expand from 39.43 x £&m? in 2001 to 41.48 x Fkm? in 2048 (Figure 3.13) with

most of the increase occurring in the Indian Ocean similarly to the CNRM output..
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Figure 3.13: NCAR precipitation regions greater than 213 cm/year with 2001 duiine
green and 2048 in solid blue

Figures 3.14-17 illustrates regions indicative of changes in precipitationngatte
based on CNRM and NCAR data, respectively. The CNRM model has 16 regions that

were deforming with an east-west expansion axis (Figure 3.14).
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Figure 3.14: CNRM precipitation regions greater than 213 cm/year for 2001natst
west expansion orientation

An east-west expansion is a possible result of the intensification of regional
precipitation driven by increased latitudinal moisture transport that expe8fsi§ ar
orographic triggered precipitation region. An ITCZ shift likely leads to a norths
expansion of a precipitation region. A single large region of size 4.88 knf@ver the
Indian Ocean and several small regions exhibit east west expansion areadiapline
CNRM output. The CNRM shows a marked increase in the 213 cm/year precipitation
extent for the Indian Ocean and the Western Pacific Equatorial Region. The sedond a
third largest regions of east-west expansion are in Africa and in Southcarfarthe
CNRM output. The NCAR model has 15 regions that deform along an east-west axis of

expansion (Figure 3.15).
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Figure 3.15: NCAR precipitation regions greater than 213 cm/year for 2001 exgpandi
latitudinally (east-west)

The largest region with east-west expansion in the NCAR model is in Afilca wi
a size of 1.49 x fkm®. The second largest region with east-west expansion is east of
Japan in the Pacific, and the third, in South America. The two regions with major non-
seasonal water vapor content are northern South America and equatoral@hen,
1985). The study shows that both CCSM and CNRM model outputs attribute an east-
west expansion, which is a possible result of increases in moisture transport. Rkt CN
Western Pacific Region may be an intensification of a seasonal highwapte content
region (Chen, 1985).

The rotation of annual precipitation regions with large east-west exterdas a
possible result of zonal mean flow or moisture transport. The zonal flow is eadstirgy

equator and changing to a westerly at approximately 30° N and S (M&sgPlaimb,
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2008). The westerlies strengthen until 50° N and S (Marshall & Plumb, 2008). The study
measures rotation by averaging the shear within the boundaries of the region.
Precipitation regions under the influence of the zonal mean flow would rotate deckw
between 0° and 50° N and counter-clockwise between 0° and 50° S.

The moisture flow in the region in between 50°S and 50°N is also easterly but
with increasing magnitude to 25°N or S (Chen, 1985) and consequently has a shear and
rotation opposite than that of the zonal mean wind. Increased water vapor tragegort |
to the expansion of precipitation regions. Regions exhibit the zonal flow rotation
direction resulting from zonal shear or opposite direction due to water vapspdra

The CNRM model had 13 regions with counter clockwise rotation (Figure 3.16).

\\‘[‘(D\\ E
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Figure 3.16: CNRM precipitation regions greater than 213 cm/year for 2001owitec
clockwise rotation

Regions of limited east west extent are possibly due to the influences of

meridional flow and local annual flow. The CNRM regions with counter clockwise
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rotation are mostly in the southern hemisphere, as mean zonal wind shear would,indicat
with a large region in the Western Pacific.

There is a region in the western Atlantic with counter clockwise rotatioméut t
center of this location is far enough north for its rotation to be explained bywimaal
influences. There are four regions in the northern hemisphere: one in the wastien P
and three continental regions, with counter clockwise rotation hinting at potentigkesha
in moisture transport. There are several regions in South America and Southean Afr
which exhibit counter clockwise rotation in the same direction as Southern Heraispher
zonal wind shear. The NCAR model has fifteen regions with counter clockwisemotat
in the Northern Hemisphere at less than 40° N latitude which is the same direc¢htien as

vapor transport field (Figure 3.17).
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Figure 3.17: NCAR precipitation regions greater than 213 cm/year for 200 tovihter
clockwise rotation

These counter clockwise rotating regions include two in the Atlantic off the east

coast of the North American Continent at 41° and 36° N, two regions in close proximity
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to the Indian Peninsula and two regions in the Pacific east of Asia at apatelyid0°
N. There is a region shared with the CNRM model in the southern Pacific of cleckwis
rotation. This rotation is the result of the zonal mean flow shear which is common to both
models.

The CNRM CM3 output for the 213 cm/yr isohyets shows that eleven of 34
regions show expansion (Figure 3.18) with the largest being in the southern efjuatoria

Pacific.
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Figure 3.18: CNRM precipitation regions greater than 213 cm/year for 2001 witivgos
divergence

The NCAR model has very few regions of divergence with the largest being east

of Japan in the Pacific (Figure 3.19).
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Figure 3.19: NCAR precipitation regions greater than 213 cm/year for 2001witivgpos
divergence

Though both GCMs show area expansion of regions enclosed by the 213 cm/year
isohyets, few regions show divergence. The isohyets flow displacemegenarated
from twenty different isohyets, not just the isohyets for 213 cm/year. Tranrefjthe
Indian Ocean that fills in for the 213 cm/year isohyet in the CNRM dataset igidiyas

shown by (Figure 3.20) divergence in the north but convergence in the south.
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Figure 3.20: External divergence and convergence

The lack of divergence in regions that expand hints that drivers external to the 213
cm/year threshold defined regions may be responsible for the extent changes. fThe mos
discernable difference between the two datasets is the high growth rate fufr266
CNRM 213 region (Figure 3.12) versus 5% for the NCAR 213 cm/year regions (Figure
3.13). The difference is a possible result of differences in the forecasts oh&gjes
between the two models. Compared to CCSM3, the CNRM shows a larger SSTeincreas
in the Indian Ocean which results in higher precipitation increase (Vautti8@den
2007). The flow field external to isohyet regions in the CNRM output for the Indian
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Ocean mapped the increase in extent and the joining of twelve regions into a sgegle lar
one (Figure 3.12). The join was recognized as the region mapping table had multiple
region IDs in the 2001 column that shared a single region ID in the 2048 column (Table
3.5). Regions involved in a split are also mapped using the region mapping table as well

(Figure 3.21).

Split Region

Figure 3.21: Region from 2048 with split into three parts from one. Lower flatitevel
from 2001.

In addition, regions without an entry in the region association table are either
dissipating or emerging. The region association table only contains regioasethat
associated across two time instances (i.e. 2001 and 2048). Regions in 2001 that are not in
the association table are dissipative and regions in 2048 not in the table arenemerge
Emerging and dissipating regions are mapped as shown in Figure 3.22 andBFgure
The NCAR emerging dissipating map has emergent locations in the Atlantella

(Figure 3.23).
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- emergence before 2048

- dissipation after 2001

Figure 3.22: CNRM precipitation regions greater than 213 cm/year thagesner
dissipated during the interval 2001-2048
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emergence after 2001

- dissipationbefore 2048

Figure 3.23: NCAR precipitation regions greater than 213 cm/year thagetnar
dissipated during the interval 2001-2048

The paired emergent and dissipative regions hint at the amount of variability that
exists in the precipitation processes resulting from the driving phenontema. T
displacement calculation algorithm proceeds to the next location withoutndetey a
displacement value when the displacement line passes through a minima oamaxim

before locating the position of the isoline in the next time instance.

35 Conclusion and Future Work

The kinematics-based method presented here attempted to measure directly gradua
changes in spatiotemporal patterns. Under the assumption that changes in foecipita

patterns of regions receiving 213 cm/year of rainfall are gradual from 2001 to 2048, t
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research applied the proposed method to evaluate the transition of precipitatiors patte
projected by NCAR CCSM3 and CNRM-CM3 for Scenario A2 defined by IPCC. Central
to the proposed method is the concept of kinematics that characterizes movement
patterns. In the case study, isohyets are tracked to determine shibtsyetssfrom 2001
to 2048. The shifts are measured by displacement vectors measured along ti® isohye
and then spatially interpolated to grid points not on a isohyet. Furthermore, the 213
cm/year isohyets are used to form surrogate objects. Kinematic pasfdatergence,
rotation, and deformation) are calculated internally at grid points within eauifietd
region and summed to the region as the overall kinematic properties for the region.
Both internal and external kinematic properties are then used to assess
spatiotemporal patterns and compare outputs from the two GCM products. Spatial
patterns of divergence and rotation are displayed (Figure 3.14, Figure 31irg, F.itp,
Figure 3.17) in order to identify patterns of precipitation change betweenate23@1
and 2048. The axes of expansion, rotation and divergence provide hints as to the potential
drivers for the precipitation extent evolution. The comparison of the CNRM and NCAR
output provide indications of the generality of potential drivers of common regions.
Thirteen regions extracted from CNRM 2001 dataset merge into a single reg
(Figure 3.12) in 2048 as a result of model precipitation intensification in the Indian
Ocean. Only three of the thirteen regions have positive divergence. The GigiRv
over the Indian Ocean has a negative divergence value, yet the areaastgngadnsion
was the Indian Ocean in the CNRM model. The growth of precipitation regions is driven
by conditions outside the 2001 regions. The major increase in isohyet extent@ame fr

outside the 213 cm/year isopleths that existed in 2001 (Figure 3.5).
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Long term circulation patterns are likely the determining factor for the
precipitation patterns (Van Ulden & Oldenborgh, 2006). Further research comparing
general circulation patterns and isohyets displacement patterns real/wéere there
are significant differences. The differences may help determine siotteer than general
circulation to changes in precipitation patterns.

Future research should include use cases with lower threshold values to determine
if the kinematics-based methodology can identify, represent, and analyin¢éespaoral
patterns and pattern transitions for temporally average data. The 213 cnulgatss
result when large numbers of precipitation events affect a location during & yag|
Lower thresholds will require temporal averaging to smooth the rapid variati@airioy

year rainfall.
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Chapter 4:  Use Displacement Vectorsto Discern Differencesin Temperature
Changein the 20th Century

Abstract

4.1

This research develops a new temporal Geographic Information Sysi8in (G
framework to compare General Circulation Model (GCM) products and
reanalysis datasets to discern differences in patterns of change arahkcati
of change. The framework incorporates the concept of kinematics to rgprese
the movement of isolines as displacement vectors. Comparison of
displacement vectors from the four datasets show differences inrrothe
shifts, and the differences are prominent in several well defined regions
across the globe. Among the four datasets used in the study, the two
reanalysis datasets have the smallest mean of differences in displaceme
vectors. The CNRM CM3 20C3M dataset contains an Antarctic Cooling that
led to most of the differences in displacement vectors against the other
datasets. The research shows the effectiveness of displacemerg vecto
analysis to elicit spatial differences in climate patterns amag<data and
reanalysis data. While temperature data were used in the case study, the
proposed method is based on concepts applicable to other isolines of

geographic variables (such as isobars or isohyets).

| ntroduction

One challenge of examining GCM products and reanalysis data reldéitesmassive

spatiotemporal data volume and the difficulty of determining patterns nfjetfeom a

temporal set of gridded data. To meet the challenge, the research trangfiolched

datasets to isolines of geographic properties and calculates displacentenst ekthese
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isolines to capture the rate of change and spatial distribution of change ovérteane
rate of change is determined by novel applications of image motion detagfooithms
to isolines of geographic properties. Furthermore, algorithms areogedeio discern
regions exhibiting significant differences among data from GCMs amalyes3s.
Displacement vectors offer two key advantages to change analydis. Firs
displacement vectors capture both rate and direction of change simultan&egsiyd,
spatial analyses of differences in displacement vectors suggest regiopsssgitiie
conflicting climate change patterns from the different models. Thesurels focuses on
regions characterized by large differences in displacement vecte tiasomparisons
of data from GCMs and reanalyses. Effects of statistical randomnessiewidés are

reduced through the use of time intervals and spatial filters to smootlu&taal

4.2  Comparison of Model Data in Climate Change Research

Comparative studies of climate model data are common for enhancing the level of
confidence on patterns and effects of climate change. Much research atlizdates of
climate change such as storm tracks, precipitation, climate clasisifis and other
manifestations of climatology. In each of these comparisons similaatelisystem
response across the different GCMs adds support to the predicted impact of climate
change on the manifestation of climatology under study. This research addsityoabil
compare and contrast the output of climate models based on the spatiotemporal
characterization of scalar climatic fields such as temperature. Campaibased on
manifestations of climate are dependent on the locations and time scalesofyjiea
manifestations. The spatiotemporal characterization developed in thisheseanly

dependent on the temporal span and spatial resolution of the data instead of the
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manifestation. The differences between the GCM outputs are used to provide a
description of the potential range of the response to climate change.

A consistent poleward shift and intensification of the storm tracks was found in
an ensemble of 15 coupled climate models for 21st century climate simulatians (Yi
,2005). Ulbrich and Christoph (1999) determined that the North Atlantic Oscillation
would shift and there would be increasing storm track activity over Europe due to
anthropogenic greenhouse gas forcing by comparing the output of several GCMet Pint
al. (2007) compared changes in storm tracks and cyclone activity across three SRES
ensemble experiments to compare and contrast several GCMs.

Comparison of multiple model outputs helps draw conclusions on regional
patterns of climate change. Hanstral (2006) determined that the increased Equatorial
Pacific West—East temperature gradient during the last century hageatincreased the
likelihood of strong El Nifilos and that, based on the output of future emission scenarios,
this may become permanent. Similarly, likely future precipitation patieanges from
climate change were found by van Ulden and van Oldenborgh (2006) when they studied
five GCMs and concluded significant differences in circulation patteruogdvwazcur.

Past work with reanalysis datasets included the determination by Hu and Fuq®@07)
poleward shift in the Hadley cells during the last half a century baseddargies in
three meteorological reanalyses and three outgoing long-wave radiatiBy) ¢@tasets.
The poleward shift was determined to continue under the regime of anthropomorphic
climate change driven by future emission scenarios.

Other research focuses on differences in GCM products. é&raél(2006) and

Lefebvre and Goosse (2008) identified the uniqueness of CNRM model output in the
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Weddell Sea area. Holland and Bitz (2003) determined that the CNRM model produced a
slower ice melt rate than the NCAR model. In all researched instahGg&SM output
comparison the basis is phenomena that enabled the researcher to focus @n specifi

regions to determine similarity or differences between model outputs.

4.2.1 Approaches to Analyze Temporal Gridded Datasets

Fluid velocity and local trend classifications are commonly used to analygmtal
gridded datasets in earth sciences. For example, Biausser, Grilliiaamdd{2004)
applied velocity fields to simulate a wave breaking over a sloping ridgestTan(2001)
classified the temporal pattern at each grid location to and then searchpdtial
correlates among the temporal classes to discern spatiotemporal patsaihsnoiisture,
temperature, precipitation and net primary productivity.

Expanding upon the ideas of fluid velocity and local trends, this research develops
a GIS framework to analyze and compare spatiotemporal patterns based omltempor
gridded data. The velocity field of fluid flow has been used in severaplins as a
basis for analysis in addition to fluid mechanics. Astronomy uses an axisymmetri
velocity field to help analyze and interpret data about movement of and dsstance
between stars (Brand & Blitz, 1993). This research compares reanéiysiteaata and
GCM model data. Furthermore, this research extends the concept of flowgarsaift
temperature field characterized by temperature transitions ovex. §paplacement
vectors of temperature change over space represent the direction of thatiereper
transition and the rapidness of temperature change. Displacement vect@ad fiiem
temporal gridded datasets highlight patches of differences in changapatiggested

by GCMs and reanalysis data
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4.2.2 Research Hypotheses and Goals

The growing availability of temporal gridded datasets from remoterggnmaimerical
models, and reanalyses poses great challenges for spatiotempysisatdbbal
statistics or clustering analyses allow identification of ayeteends over the world and
spatial patterns at a given time, but the conventional approaches are limited in
summarizing how changes progress over space and time. Global and regitstaisst
mask finer grain changes while cluster analysis requires care whennthadsend for
clustering.

The premise of this research posits the use of displacement vectors as snafasure
the direction and magnitude of changes over space and time. The chosen geographic
attribute, temperature, is representative of continuous fields in which chaages a
conceptualized as flows. Comparisons of displacement vectors help idegittysref
differences among the tested datasets, and hence suggest the neecdefetudyunf
potential causes. Under the premise, the research tests the followingdsgsothth four
temperature data sets: two GCM model outputs and two climate reanalyses:

1. The expected values for the differences between the six permutations of
pairs of the four displacement sets are significantly different (95%
confidence level). The hypothesis is evaluated by applying the F-test to the
six difference sets. The difference sets are leptokurtic so aHarglele is
required to have confidence in the results.

2. The median and box plot interquartile range of the six difference sets are
larger between different types of data sources (i.e. GCM data versus

reanalysis data) than between same data source types. The standard
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deviation does not have meaning for leptokurtic data so a substitute
measure, the box plot Interquartile Range (IQR) is used.

3. The displacement vectors themselves reveal meaningful patterns of
differences among the four datasets. Differences are substdriiat
studies of multiple data sources that have similar conclusions.

The introduction section covers the concepts and approaches in developing the
proposed GIS method for spatiotemporal analysis of temporal gridded datasets. The
following sections elaborate on the proposed method with temperature data from four
climate datasets. The datasets section discusses the sources andfnhéudatasets
used in the study as well as the rationale and procedures for data selection and
processing. The methods section details the proposed method to compute displacement
vectors and comparison. The results and discussions section evaluatgethedex
values of the differences of displacement vectors among the data sourcethé@digol),
differences in median and IQR (Hypothesis 2) and relates the tef@aiogs to
previous climate research (Hypothesis 3). Finally, the chapter concluthesuwimaries
of intellectual contributions of the research and opportunities for future researc
4.3  Data Setsused in the Study
Four datasets, two reanalysis products and two GCM products from the Twentieth
Century Climate in Coupled Models experiments (hereafter, 20C3M datasetsed
for this study. The two GCM products are from the National Center for Atmospheric
Research (NCAR) Community Climate System Model (CCSM3; Cadlirad 2006)
and, the other Center National Weather Research (CNRM) global ocean-atraospher

coupled system (CM3; Salas-Mé&aal, in review). Reanalysis data is from the
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National Center for Environmental Prediction/National Center for AtmospR&search
(NCEP NCAR; Kalneyet al.,1996) and European Centre for Medium-Range Weather
Forecasts (ECMWF; Uppa&t al.,2005) ERA-40 projects.

Two from each type are chosen to allow comparisons within the reanalysis
datasets, within the 20C3M datasets and between the reanalysis and 20G&t4 data
Both the reanalysis datasets and 20C3M datasets are single realizatiensenables of
multiple realizations, based on historical data observations or GCM modedtestiwith
all the variability of the climate intact. One expects that diffezeraze smaller within a
dataset type but larger between the dataset types.

The ERA-40 reanalysis dataset is based on meteorological observations from
September 1957 to August 2002 (Uppetial.,2005). The goal of ERA-40 reanalysis is
to provide a uniform analytical technique for meteorological value interpolationghr
the use of the ECMWF's Integrated Focus System (IFS; Caires & 3368). The
heterogeneity of the observations in terms of technique, location and samplingl inte
remains after the IFS processing. The data collection tools changettaighifover the
period of September 1957 to August 2002, with increasing satellite-borne instruments
from the 1970s onwards but a declining number of radiosonde ascents since the late
1980s (Uppalat al.,2005. The dominance of satellites corresponds with increased
small scale uncertainty in the ERA-40 reanalysis dataset due to the dechdesondes
and aircraft observations. The decline diminishes the ability to analyflessaia
aspects as represented by the vorticity field (Bengtssah 2004). The location and

temporal coherence of cyclones captured with satellite data have a wiehet #pan the
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cyclones captured with terrestrial data when compared with the coatrks thased on
combined surface, terrestrial and satellite data (Bengetsar2004).

On the other hand, NCEP/NCAR re-analysis aimed to produce a 40-year record of
global analyses of atmospheric fields for the research and climateonmanit
communities (Kalnagt al, 1996) through the recovery of observational data from land
surface, ship logs, rawinsonde, pibal, aircraft, satellite and other data Sourttes
period 1957 through 1999. The data assimilation system used for reanalysis remained
unchanged throughout the data auditing and assimilation processes so amébeelim
perceived climate jumps associated with changes in data assimilatemsyUppalat
al., 2005).

The NCEP reanalysis did not use surface temperature (Kalnay & Ming, 2003)
whereas the ERA-40 reanalysis did (Uppetlal.,2005. The missing surface forcing did
not affect the long term NCEP reanalysis accuracy as Cai and Kab2y) determined
that the trends from absent surface forcings, including major volcanicogrsipdre
captured in the reanalysis surface data within a few assimilatitesdyom the non
surface data assimilation.

The initial data assimilation scheme for the ERA-40 reanalysis was m
constrained by satellite data than the NCEP scheme which was initeatjym
constrained by observation stations (Bromwich & Fogt, 2004). The different asgimi
dependencies led to substantial differences in the reanalysis datasetsteltite data
became the main data source in the 1970s for both ERA-40 and NCEP. The ERA-40 and
NCEP reanalysis products agree closely for most fields (e.g. septesslre and zonal

winds), especially after 1970 (DeWeaver & Bitz, 2006).
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The 20C3M datasets included the Center National Weather Research global
ocean-atmosphere coupled system (CNRM- CM3; Salas-et&dih in review) from
France and the National Center for Atmospheric Research Community€hystem
Model (NCAR- CCSMS; Colliret al. 2006) from the United States. The two GCMs were
chosen as the different surface grid resolutions (Table 1) gave opportunities for
proposed method of displacement vectors to demonstrate the robustness in analysis of
difference in change with respect to grid resolution. The CNRM-CM3 20C88&m
includes forcings from ozone, aerosols, GHGs, sulphates, sea salt and desentosdods
(Salas-Mélieet al, 2004). The NCAR 20C3M model forcings include ozone, aerosols,
GHGs, sulphates, DMS emissions and oxidants (Cadlirad., 2006). Both models use
the Hadley Centre's global sea-ice and sea surface temperature (latay/setet al.,

2003) for surface temperature on non land areas (Fadtaald 2002).

Temperature is chosen in this research for two reasons. First, tempesatur
spatially continuous property that fits well with the concepts of fields.g& go
understanding of changes to a field needs effective functions to elic#tl yaatations
over time, and hence temporal fields of temperature provide a good test case for the
proposed displacement vectors. Second, temperature is one key parametetén clim
change research. Temperature is a common proxy to evaluate the impacts of
anthropogenic causes on climate. Climate observations and modelling efboiser
diverse ranges of climate data and model outputs. Comparison of temperatuns atter
important to determining whether suggested patterns of climate change agdilolamp

Through the case study of changes in temperature fields, this reseamsttates the
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effectiveness and value of the proposed method of displacement vectors in idgntifyin
differences in spatiotemporal patterns of climate change.

The temperature data for this research was obtained from the Earth System G
(ESG) data site, the ECMWEF data server and the Earth System Resdacitdry. The
data are in different grid sizes as a result of balances between outputioasand
computation power available in different modelling processes. The effectinditai
resolution on GCMs have been studied since the 1970s and increased resolution does not
lead to a guaranteed improvement in the model ( Maetbke 1978; Wellck et al.,

1971; Miyakodeet al, 1971). Manabet al (1978) showed that some phenomena, such
as low-level westerlies, can degrade with increased resolution. Baumhedigoaney
(1978) showed that increased resolution beyond a limit does not necessarily guarantee
better accuracy.

Although for many phenomena, the fidelity of the model varies monotonically
with resolution, increasing resolution does not always guarantee an ov@raly@ment
in the results. The lack of consistency between models versus resolution suggests t
physical parameterizations play a large role, and that parametarizate best within a
limited resolution range. Increasing resolution can lead to degradation off oubplet if
parameterizations are broken by the resolution change. Tddadtli(1990) found that
the change from medium to high resolution did not always increase the fidelity o
model. The zonal-mean diagnostic did not show improvement for resolution beyond T42,
a spectral resolution that approximates to a 2.8125° x 2.815° grid, in several models

(Boyle 1993). Increased resolution, nevertheless, enhances the NCAR CCSM3sproduc
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through the reduction of inaccuracy in Arctic Sea Ice inaccuracies andsincy dae

resolution of the Arctic Anticyclones modeling. (DeWeaver & Bitz, 2006).

Dataset Organization| Country| Atmospheric Source

Name Horizontal
Resolution

CCSM3 NCAR USA 256 x 128 Colliret al (2006)

CNRM- Meteo- France 128 x 64 Salas-Meka al

CM3 France/CNR (2005)

M

ERA-40 ECMWF UK 25x2.5 http://www.ecmwif.int
144 x 73

NCEP NCAR USA 25x2.5 http://dss.ucar.edu/pub
144 x 73 /reanalysis/

Table 4.1: Datasets and their horizontal resolution.

A set of isotherms is used as reference features to determine changes in a
temperature field. The data extends from 1959 to 1999 for all four datasets. Two tempora
averages and a gap are needed to generate means and noticeable ctveegeshee
means. The isotherms are fourteen year means using the years 1958-1971 for the 1971
mean and the years 1986-1999 for the 1999 mean. There is a fourteen year gap from 1972
through 1985 so as to provide noticeable changes between the 1971 and 1999 mean value
grids. When temperature changes over space, isotherms shift accordinglyodsegr
method calculates the displacement vectors of isotherm shifts to measurec¢herdi
and magnitude of temperature change; for exampfeCifotherm shift north. The
values of reference isotherms used in the case study, (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10,

12, 14, 16, 18, 20, 22, and %B), are chosen using the Koppen Climate Classification
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temperature division lines with further subdivisions to provide a more complete sgmpli

of the scalar temperature field (Figure 4.1).

Isotherm Contour Lines

-20--16 -15--4 -3-4 5-12 13-20 — 21-26

Figure 4.1: Isotherm contour lines from the NCAR NCEP dataset for 1971

The change in climatic temperature drives changes in bioclimatic zones that
manifest as changes in morphology (Parmesan & Yohe, 2006). Comparing the changes in
climatic temperatures provides insight into the differences betweerticlidagasets with

an emphasis on bioclimatic envelopes.

44  Methods and Methodol ogy

The proposed method transforms a time series of scalar fields, such as ktempora
grids of temperature, into displacement vectors to reveal the spatiotpatterns of
change in the GCM or reanalysis datasets. Conceptually, the propdsadueds
applicable to any resolution and interval as long as due consideration is given te the rat
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at which the phenomena traverse the data field. The method identifies regscatar

data that are changing at different rates between two dataspiee(#i2).

1. Read x and y

displacement
data

for the two

models to be

compared

!

2. Calculate x an<||
y difference rater$
between the two
models

!

3. Convert x and l/
differences to
magnitude and
angle vectors

v

4. Run ISO
Cluster tool on x
and y difference
rasters

|

5. Execute
maximum
likelihood tool
using

ISO Cluster outpiit

|

6. Display the twc
ISO Cluster
regions with
largest poleward
displacements

}

7. Display
difference
vectors in
identified
regions

indicate more
Regions shoul
be added?

End | | yes

v

9. Add further
ISO Cluster
regions and
difference vectors

Figure 4.2: Anomalous displacement region identification and display
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4.4.1 Displacement Vectors and Comparisons of Differences

This research is built around the concept of kinematics and the utilizationraftthe
history of kinematic analysis in Meteorology. The foundation of kinematiysisas the
change in velocity for both latitudinal and longitudinal flow (Bluestein, 1992). This
research applies kinematics to a virtual flow that reflects the sgratatral changes of
scalar attributes over the Earth’s surface. The kinematic repmésanttilizes
Lagrangian and Eulerian concepts of fluid kinematics to capture the spgtosm
characteristics of a field. Fiat boundaries based on subjective ¢rigetizerms in this
study, are used to spatially delineate surrogate objects. The surrogatse afgd¢raced
across multiple time instances and displacements calculated for thésobpertdaries
using optical flow analysis. The displacement vectors for each datesstienlated
based on contour matching from image processing algorithms developed in chapter 2.

(Figure 4.3)

5. Execute maximum :
likelihood tool using 6. Display the two ISO
ISO Cluster output Cluster regions with

Figure 4.3: Calculating displacement vectors
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An attempt is made to create a vector parallel to the local tempegehalient
that intercepted a same value isotherm at tinfier &ll grid points on a particular
isotherm at time . Interpolation is used to assign displacements to all grid points
without an explicitly calculated displacement. Differences in the dispiant vectors for
each grid point are then calculated for each pair combination.

The displacement difference vectors contrast the shifts in isothermstimathe
datasets being compared. The differences in x and y directions are convexeds
with magnitudes and angles at locations.

The Iterative Self Organizing (ISO) clustering tool is used to ifyeretgions of
similar differences of displacement vectors based on maximum likelihassifatation
functions. These identified clusters may relate to underlying geophyseabpiena. All
difference vectors outside the defined large vector region are rerfrouethe map to
remove the spatial and temporal randomness intrinsic to the models (Cairel & Ste
2003). The remaining difference vectors are symbolized as arrows withatinant
dictated by the displacement vector’s direction.

This research utilizes a pairing approach for analysis of differencesniyyaring
the difference in displacement vectors among the four test datasets byiagame six
possible pairings. The simplistic approach is taken for this research forasmnee the
number (4) of models in the comparison is manageable for direct comparisons and pair

comparison supports the recognition of differences that are unique to a pantiodkr
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45 Results and Discussions

The differences in displacement vectors between the CNRM 20C3M dataset and the

NCEP reanalysis dataset are depicted in Figure 4.4 as a kinemaggisaaghmple.
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Figure 4.4: CNRM minus NCEP displacement map
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The differences are calculated by subtracting the NCEP longitudinal and
latitudinal displacement values from the CNRM values. The large magnituttievact
arrows in the Weddell Sea, at the center of the map north of the Antarctic, resuhdrom
CNRM dataset portraying a northward shift of the isotherms, i.e. cooling. T lievaoat
arrows over Africa result from the larger northward shift in isothermsh®CNRM
dataset than the NCEP dataset as well. There is good agreement betweerdtdtagets

in the southern mid latitudes of the oceans depicted by the light blue in figure Eigur

4.5.1 The findings

The differences for the six possible permutations of pair kinematic differentlee four
datasets were calculated at each grid point. The difference set for @&atdptokurtic

with a kurtosis value from four to six. The mean and standard deviation do not apply to
datasets with such a large deviation from a normal distribution. The box plguiartie
range (IQR) of 25% to 75% is used to compare ranges. The IQR and the median

difference are displayed in the table below for comparison purposes (Table 2)

Source NCAR i
Dotnee | CNRM20C|  ERA40 | NCAR20G =5 | Median
CNRM
CNRM 20C 16 11 -9 20C
4
ERA40 67 0 ERA40
NCAR
NCAR 20C 60 -6 20C
NCAR
NCEP 80 M
Box Plot sSource
OR CNRM20C| ERA40 | NCAR 20 Dataset
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Table 4.2: The median and data range of differences in the longitudinal displagement
km/decade

The NCAR CNRM difference dataset histogram is show in Figure 4.5.

Frequemcy'lO'E Count :6849 |[Skewness :0.12981
350 = PR || o 1 -273.32 |[Kurtosis L A77ED
| | |5 Max 127434 |1-st Quartile 1 -27.23
Mean : 46417 |Median 13,7538
e = B std, Dev.:59.567 |3-rd Quartile : 32.653
214
143 -
072 Hﬂ —‘7 £
oL r-v—ﬂﬂ—l—v—m‘l_ﬁ_‘ Hm‘\‘h—ﬂ_ﬁ—.
-2.73 -2.14 -1.64 -1.08 -0.84 0m 0.565 ] 1.688 22 274
Dats 10"

Figure 4.5: Histogram of the NCAR minus CNRM longitudinal displacementrOthe
difference histograms are similar.

The ANOVA F-test was applied to the 6 differences datasets which had a total of
43776 data points, 5 degrees of freedom in the numerator and 43771 in the denominator.
The F-test result was 466 indicating an almost certainty of the datagietg tidferent
expected values. The 99.9% confidence level for 5 degrees of freedom in the numerator
and 1000 in the denominator is 4.1392. Hypothesis #1 is confirmed.

Comparisons between the two reanalysis datasets and the two 20C3M datasets
produced two groups of comparison similarities/differences when the medial3rRand
of the longitudinal displacement are evaluated. The reanalysis datastis &IGAR
20C3M dataset had less difference in longitudinal displacement diffemegsian and
IQR, and therefore, the two reanalysis datasets along with the NCAR 20C3dtdata
appear to have the most similar spatial patterns of temperature change oiyehe 14
mean temperature. The kinematic similarity of the NCAR 20C3M dataisetespect to
the reanalysis datasets supports the fo€ing built into the NCAR model (Collinet

al., 2004). The differences between the CNRM GCM and all the others are the larger
123



three of the set of six differences. Hypothesis #2 is not confirmed as the déferenc
between the NCAR and CNRM displacements are larger than between NCARand bot
reanalysis displacement sets. The finding indicates that the CNRM 20C3Mibas

and significant differences, versus the other three datasets, in the moversetiteshs

during the period used for this study

4.5.1.1Similarity maps

There is general agreement between the maps of the isotherm displadéfeence
vectors from comparisons between the two reanalysis datasets and theZQC3R
dataset. The similarities between the three datasets include the nretljzereentile
range of the differences calculated by subtracting the longitudinal disgateat all

grid points for the datasets being compared. Vector close agreement id dsfimihin
the IQR for the set of differences. The two reanalysis datasets aosénagreement over

approximately 77% of the earth’s surface (Figure 4.6).
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Km per decade

0-16 + 17-33 + 34-56 V¥ 57-87 Y 88-155

Figure 4.6: Map of ERA40 Displacement minus NCEP Displacement where the
difference is within a standard deviation. Locations with a greaterelfte were left
blank for clarity.

The similarities between the reanalysis datasets and the NCARtda@svidespread

and cover approximately 75% of the earth surface for the ERA40 difference and

approximately 74% for the NCEP differences (Figure 4.7 and Figure 4.8).
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Figure 4.7: Map of EAR40 Displacements minus NCAR 20C3M Displacements where
the difference is within a standard deviation. Locations with a greateredifie were left

blank for clarity.

Km per decade

51-81  82-225

¥

31-50

Figure 4.8: Map of NCAR 20C3M Displacement minus NCEP Displacement where the
difference is within a standard deviation. Locations with a greatereatiiferwere left

blank for clarity.
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The agreement of the NCAR 20C3M and reanalysis datasets with respedig¢misot

movement bolster support for the explicit £0rcing in the NCAR model.

4.5.1.2Difference maps

The results exhibit clusters of comparatively larger displacements Arclie, Antarctic

for CNRM, Greenland, Indian Ocean, several ENSO regions and other spatialiytdisjoi
regions (Figures 4.9-14). A literature review on the Antarctic and the CNRBIG@CM
(Figure 4.9, Figure 4.10 and Figure 4.13) locates past research that corresponds to the
patch of larger differences in all three comparisons with CNRM products.iéwhlit
literature is reviewed for the Arctic, Greenland, the Indian Ocean and E&isans with
respect to the 2DCentury climate and the GCMs. Findings from these literature reviews

validate several of the regions identified by iso clusters of differenalisplacement

vectors.
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Figure 4.9: CNRM 20C3M minus NCEP large difference regions.
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Iso Cluster Km per decade
[ Northhward [ Southward ©2-54 ¢ 55-93 +  99-140 v 141-183 ¥  184-307

Figure 4.10: ERA-40 minus CNRM 20C3M large difference regions.

Iso Cluster Km per decade

[ Northward [ Southward . 1-32 . 33-58 4 59-84 + 85-111  112-160

Figure 4.11: ERA-40 minus NCAR 20C3M large difference regions.
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109 - 202

2-3

32-56 ¢ 57-83 + 84-108 ¥
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Figure 4.12: ERA-40 minus NCEP large difference regions.

v 169-238

Km per decade

90-128 + 129-168

2-50 + 51-89 ¢t

Iso Cluster

! Northward - Southward
Figure 4.13: NCAR 20C3M minus CNRM 20C3M large difference regions.

129



Iso Cluster Km per decade
[ Northward [ Southward ¢ 1-39 4 40-67 ¢ 68-97 + 98-127 ¥ 128-209

Figure 4.14: NCAR 20C3M minus NCEP large difference regions.

45121 Antarctic Regions based on Differences in Displacement Vectors with
CNRM data sets

Differences of displacement vectors from comparing CNRM and any ofttee ot
datasets all showed noticeable discrepancy in the Weddell Sea region anitther s
Hemisphere (Figure 4.9, Figure 4.10 and Figure 4.13). The CNRM displacem@ns vec
indicate a cooling in the Weddell Sea portrayed by the northward isotherm nmaveme
The northward push of isotherms in this region is a likely result of an extension of the
Weddell Sea ice. Several researchers have found such an extension during the time
interval used in this study when examining outputs from the CNRM CM model. Using
the CNRM CM3 20C3M dataset, Lefebvre and Goosse (2008) and&irake(2006)
both identified a noticeable sea ice increase in the Weddell Sea piddictiee late 28
Century. According to the CNRM CM3 the overall global climate is wettdrcalder

than the observed climate in thé"a@ntury (Salas-Méliat al, 2005). While the
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isotherm movement is unique among the four datasets, the finding is supported by the
studies of Arzekt al (2006) and Lefebvre and Goosse (2008).

The cooling trend in the Antarctic Sea depicted in the CNRM dataset is sgpor
by several prior studies of the region. Doedral (2002) concluded that the Antarctic
station data show an East Antarctic coast cooling in recent decadesetfak¢P006),
Lefebvre and Goosse (2008) and Cavalieri, Parkinson and Vinnikov (2003) all suggested
that an increase of 1.3 -k in sea ice occurred from 1981-2000 in the Southern
Hemisphere. This change was after a period of noticeable decreasesatid8ta ice
over the period 1973-1977 (Cavalietial, 2003), indicating the changes in sea ice
extent were short term fluctuations not long term trends. Causal meché&mishes
Antarctic Sea Ice growth are attributed to atmospheric variations 9#@s that
included appreciable changes in tropospheric circulation at middle and high &airtude
the Southern Hemisphere (Hurrell & Van Loon, 1994). Though only the CNRM dataset
shows the Antarctic sea ice changes, observations actually support the @iiRyal

of Weddell Sea temperature changes during the last forty years.

45122 NINO3.4 Region based on Differences in Displacement Vectors with
CNRM datasets

A common region, NINO3.4, appears in comparisons of displacement vectors with
CNRM datasets (Figure 4.9, Figure 4.10 and Figure 4.13). The NINO3.4 reggons a
attributable to the model’s implementation of the El Nifio—Southern Oscillati8 Q&
teleconnection which is considered a dominant pattern of ocean—atmospherétyariabi

with substantial global climate impacts. Studies on the climate of thee?tury showed
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that anthropomorphic CGCemissions could result in a wide range of effects on the ENSO
phenomena.

Climate change predictions on regional to continental scales are hampered by low
fidelity in handling physical processes, such as ENSO, in climatarsystelels (Joseph
& Nigam 2006). The majority of coupled GCMs strongly underestimated the e@latori
sea surface temperature signature of the ENSO variability @talf, 2001; Rao &
Sperber, 2002). Contrarily, the modeled equatorial negative response to the east of the
SST anomaly in the central Pacific is too strong when compared to the readatgsi
(van Oldenborgh, Philip, & Collins, 2005). No definitive studies that would attribute the
NINO3.4 area differences in Figure 4.9, Figure 4.10 and Figure 4.13 to a specific model
or models were found. The appearance of the NINO3.4 region for all comparisons
involving CNRM suggests that an investigation of the CNRM implementation of ENSO

may yield interesting results.

45123 Arabian Sea Region identified from Differences in Displacement Vectors
with NCEP datasets

The three comparisons of displacement vectors with NCEP datasets e @i@uFigure
4.12 and Figure 4.14) show a common region of large northward displacement in the
Arabian Sea just west of the tip of India. There are two potential mechanisths for
region; a stronger monsoon season, which is usually followed by cooler thaa norm
SSTs in the Arabian Sea, and the influence of the Indian Ocean Dipole, a pattern of
coupled ocean—atmosphere interaction, which affects zonal SST gradients along the
equator (Saji, Xie & Yamagate2006). These mechanisms are represented differently in

GCMs’ representations of mixed layer physics in the Indian OceanetZ4ji 2006).
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The NCEP reanalysis dataset has a greater difference when coniviélstdhe other
three datasets than when they have when contrasted with each other. Thiprisiagur
result as the ERA-40 and NCEP reanalysis datasets were expected tddse i
agreement with each other. The two reanalysis products agree closely fdiefdsst

especially after 1970. (DeWeaver & Bitz, 2006).

45124 Middle East Region Identified by Differences in Displacement Vectors
between ERA-40 and CNRM 20C3M datasets

Large magnitude difference vectors for the Middle East Region emergedartiparison

of displacement vectors based on the ERA-40 reanalysis dataset and CNRM C20C
dataset (Figure 4.10). The Middle East is difficult for GCMs to model agtherhas

high natural inter-annual variability with a complex topography with maltipountain

ranges and inland seas (Evans, Smith & Oglesby 2004; Evans, 2009). The NCAR 20C3M
comparisons do not exhibit the large magnitude difference region in the Midstle Ea
(Figure 4.11, Figure 4.13 and Figure 4.14). The lack of good observational data and the
challenges to GCMs modelling for the region suggests a shortage oy gliaiate

datasets for the region. The Middle East region recognized by the proposed method

suggests an area of interest to climate change research.

45.1.25 Greenland and North Atlantic Region based on Differences of
Displacement Vectors with NCAR 20C3M datasets

The differences of displacement vectors based on NCAR 20C3M and the reanalysi
datasets show large magnitude difference regions in the vicinity of GreeRlgnoe(
4.11 and Figure 4.14). The largest region in this area resulted from the comparsgshs ba

on NCAR 20C3M and the NCEP datasets. The differences of displacement shotwrs
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a large area of the Northern Atlantic at approximately 57° |atitioohgy ahe Baffin Bay,
Davis Straits and Labrador Sea. These differences are indicativagfedisment on how
rapidly the sea surface temperatures in the region increased durind'ttenf@y. The
departure of NCAR 20C3M from ERA-40 in displacement vectors also suggests
smaller region of disagreement around Greenland (Figure 4.11).

Around the area of inland Greenland, displacement vectors from the CNRM CM3
dataset exhibit warming differences from the other three datasgts€.9, Figure 4.10
and Figure 4.13). Holland and Bitz (2003) determined that the CNRM model produced a
slower ice melt rate than the NCAR model. The differences in displacenwtotsve
suggest a higher rate of northward flow in the CNRM datasets than the otleer thre
datasets. This flow difference is in the opposite direction than what would baezkpec
given the slower ice melt in the CNRM dataset. This is explained when isotheechn
the datasets are examined. The -20°C isotherm from the NCAR 20C3M for 1971 (Figure

4.15) and 1999 (Figure 4.16) is confined to the Greenland region and shrinking.

Figure 4.15: NCAR 20C3M -20°C isotherm for 1971
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Figure 4.16: NCAR 20C3M -20°C isotherm for 1999

The result is a ring of displacement with the northern boundary of the -20°C
region generating displacements to the south. A similar region around Greenland is
evident in both reanalysis datasets as well. The differences seen in the ri&reegien
are the result of all but the CNRM 20C3M dataset having displacement vectoes wit
southern orientation. The CNRM dataset has a -20°C isotherm in the Arctibdhges
little from the 1971 position to the 1999 position (Figure 4.17) and generates very small
magnitude displacement vectors in the Arctic region. The smaller disgatesctors

are a result of slower ice melt in the CNRM dataset (Holland & Bitz, 2003).
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Figure 4.17: CNRM 14 year mean -20°C isotherms for 1971 and 1999.

45.1.2.6 Equatorial Regions off of the northern coast of Brazil and eastern coast of
Columbia Region

The CNRM 20C3M dataset show large displacement of Sea Surface Bamp¢BEST)
around two areas: (1) equatorial regions off the northern coast of Brazil, aaab{@)n

coast of Columbia in South America (Figure 4.9, Figure 4.10 and Figure 4.13). No
research was found to address any of these areas. These areas maypbelaatéitis of

interest for further climate change research.

45.1.2.7 Australia and South America Regions

Differences of displacement vectors from the ERA-40 datasets in coopaiiih

NCAR 20C3M and NCEP datasets suggest regions of interest in inland South America
and Australia (Figures Figure 4.11 and Figure 4.12). No past research abouabpotenti
differences caused by modeling issues was found to address potentia climat

mechanisms in these regions.
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45.1.2.8 The Verkhoyansk Range in East Siberia

The CNRM 20C3M dataset shows a smaller northward displacement indicating a lowe
rate of warming for Verkhoyansk Range in east Siberia (Figure 4.9 eMgld and
Figure 4.13). The CNRM dataset exhibits a slower warm up in the area whigehyis

due to slower ice melt in the CNRM dataset (Holland and Bitz 2003).

4.6  Summary, Intellectual Contribution and Future Study

The research applies displacement vectors to evaluate differencesate gmducts

from two GCM models and two reanalysis datasets. The research demorisatates t
displacement vectors effectively elicit meaningful change pettieom temporal gridded
datasets. Hypothesis #1, that the expected values for the differences between the s
permutations of pairs of the four displacement sets are significantly difféese

confirmed. Hypothesis #2 is not validated as climate patterns are notimoae within

the same types of data sources (such as comparison within GCM produittsror
reanalysis products) than data sources from different realizations (i pB@ducts

versus reanalysis data). Differences of displacement vectorseatesjrwhen

comparisons are made with the CNRM 20C3M dataset. The other 20C3M dataset, from
NCAR, has change patterns that were more similar with the two rearddyasets than

with the CNRM dataset. Hypothesis #3 is confirmed by the discovery of therprima
cause of the uniqueness of the CNRM displacement set. The impact of the Wealdell Se
cooling, captured in the CNRM output but missing in the other three dataskss, is t
primary cause of this unexpected result. Aetedl (2006), Lefebvre and Goosse (2008)

documented the Weddell Sea cooling in the CNRM dataset and along with Catalieri
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al. (2003) provide evidence that the cooling was a real event in the Antarctic. The equa
level of similarities of climate change patterns between the readbtssets and NCAR
20C3M dataset supports the inclusion of Green House Gases and other forcings in the
NCAR model. Overall, the proposed method of displacement vector allows the mesearc
to quickly locate potential regional differences among the two GCM and twalyses
datasets. The method identified and geographically located the Antarctiogcand

unique Arctic cooling pattern contained in the CNRM output.

The proposed method uses displacement vectors to capture change in continuous
fields. Central to the proposed method is the concept of flows that progressively move
across a continuous field. By extracting isolines of flows from tempodepli datasets,
the research defines displacement vectors as shifts in contours of defunesiorgdr
space and time. The method successfully captured the spatiotemporal clséicsctda
scalar field as portrayed across a time interval. The method can bedappdiny scalar
that is continuous in nature as long as the time between grid instances is chasém S
exhibit a change that generates noticeable displacement vectors.

The proposed method can be further used to analyze the members of an ensemble
and of the mean ensemble value to assess the similarity of climatgegrafections for
IPCC scenarios. This research uses the distribution function of the entire set of
differences between two different GCMs. Further research will foousore than two
sets of displacement values at regions and grid points. Displacement vectbes f
ensemble should fall within the envelope of displacement vectors aggregatetidrom

members of the ensemble as a validation of the proposed method. Regions of large
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differences in displacement vectors suggest different assumptions or {ggizatiens in

climate models and provide opportunities for further investigations.
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Chapter 5. The Similarity of the Variability Characteristics of Datasets Produced
by Applying the Temporal Geographic Information System Framework to GCM
output with that of Trends Embedded in GCM Output

Abstract
Separability and variability of the kinematic representation is evaluated f
model dependence and similarity to trend variability. The variability of
temporal change in General Circulation Models (GCM) output has been
evaluated using trends at fixed locations. A new temporal Geographic
Information System (GIS) framework, based on the concept of kinematics,
characterizes change using the motion of virtual particles of fixed valee. Th
framework is applied to eight realizations of the National Center for
Atmospheric Research (NCAR) Community Climate Systems Model
(CCSM3)GCM and one realization from the Center National Weather
Research (CNRM) global ocean-atmosphere coupled system G&N)
from the Twentieth-Century Climate in Coupled Models (20C3M) datasets to
generate displacement datasets. Eight sets of seven NCAR memhessdare
to form Single Mode Ensembles (SME) for the analysis of the impact on grid
point displacement range of adding a NCAR or CNRM realization. The F-test
determined that the different expected value for the larger number of grid
points with increased range when adding a CNRM realization versus a NCAR
realization is significant. The GCM dependent difference indicates that
displacement datasets from one GCM can be distinguished from another by
the differences in the displacement vectors. The standard deviation is used to

measure areal variability. Displacement vector spread and range are
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5.1

compared for a collection of eight NCAR realizations, constituting a SME

and the set of nine realizations ( the eight NCAR realizations and a CNRM
realization) a Mixed Model Ensemble (MME). Grid point range and spread
increases when adding the CNRM realization to the SME as the combination

is a bimodal distribution. In contrast, the northern hemisphere, southern
hemisphere, northern hemisphere land, northern hemisphere sea, southern
hemisphere land and southern hemisphere sea all exhibit a decrease in spread
when the CNRM realization is added to the SME to form a bimodal MME.
These results are similar to the results of trend variability analgsis in

several papers. The variability characterizations of the trend and kinemati

representation are similar as both represent the changes in the GCM data.

| ntroduction

The new temporal GIS framework characterizes the kinematics of iselimesdded in

gridded datasets of geographic properties as displacement vectors. Thestgaiors

kinematic analysis by capturing both rate and direction of change. Displacesntors

datasets from multiple realizations of the same General Circulation Me@dllY are

expected be more similar to each other than to different GCM datibetdramework

characterizes a model’s dynamics. In addition the variability ctearstics of

displacement vectors derived from Single Model Ensembles (SME) and el

Ensembles (MME) are compared to the variability of trend charadierizsft SME and

MME datasets. The variability of temporal change in General Circulatmatel (GCM)

output has been evaluated using trends at fixed locations (Tebaldi, & Knutti, 2007;

Gleckleret al, 2008; Lambert, & Boer, 2001; Zhou, & Yu 2006). The variability of
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trends and displacement vectors are expected to have similar scale dejpsndeales

in this study include grid point, hemisphere sea, hemisphere land, entire hensigpitere
global. Global mean poleward displacement variability is compared to global tnemd

by using an inverted longitudinal axis in the southern hemisphere. The inverted axis
keeps the predominately poleward displacement in the two hemispheres fromraancell

each other.

5.2  Hypothesis

The differences between realizations from different GCMs agerdhan between
realizations from the same model (Barnett 1999). The temporal GIS framework
displacement datasets should reflect this larger inter model differemeetivdnrange of
displacements is compared at the grid point level. The first research hypathes
1) The F-test determines if there is a statistically significaf¢m@ihce in the number
of grid points of the CNRM realization versus an NCAR realization outside the
current range of a SME. The SME is composed of seven NCAR realizations that
do not include the NCAR realization being compared against the range. A 95%
confidence level is used to allow leptokurtic distributions.
A climatic variable simulated in GCMs can be used as a basis for a vayiabilit
characteristic comparison between displacement vectors and trend$igiersphtial
extents. Additional hypothesis are:
2) MME displacement variability will more often exceed SME displacement
variability at the grid point level. The MME has a bimodal distribution as it has

displacement datasets from two different GCMs.
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3) SME displacement variability will exceed MME displacement varighdlitthe
hemisphere, hemisphere land and hemisphere sea as does trend variabiky. Spat

averaging will filter the point bimodal distributions in the MME displacement

The introduction section covers the focus of this paper, the similarity of
displacement datasets from the same GCM versus a different GCM atbriyevi
comparison of trend and displacement vector variability. The concepts and approfich
the temporal GIS framework are discussed in previous chapters. The choiceatitcli
variable and a discussion of studies of trend variability provide background for the
research hypotheses. The datasets section discusses the sources and hatdataskts
used in the study as well as the rationale and procedures for data selection and
processing. The methods section provides an overview of the process for computing
displacement vectors covered in detail in previous chapters. The results asdidise
section evaluates the effect of dissimilar GCMs on displacement grip ptanadge
(Hypothesis 1), the variability of displacement vectors for a SME versus a &Mkhe
grid point scale (Hypothesis 2) as well as at the hemisphere, hemisphesadand
hemisphere sea scale (Hypothesis 3). This chapter concludes with a swhthary

findings that increase confidence in the framework displacement vepteseatation.

5.3  Moded variable choice

Quantifying climate change can be done using primary climate vesiaitluding
surface air temperature and precipitation. Temperature and precipita&itwstaorder
drivers of climate change and induce secondary effects that include weatbpresx sea

ice thinning, ocean circulation changes and glacier retreat. In additionrsgmpeand
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precipitation are the best-observed variables over large scales wivehglang
historical records (Sheffield & Wood, 2008). Models are assessed magrglfidelity
to historical observations, model convergence and inter model agreemeqgt &ior
Mearns, 2002). Gleckler, Taylor, and Doutriaux (2008) compared model differeoces f
historical records to determine that models simulate temperature bastsewlevel
pressure less well and, precipitation worst. General circulation modelstgnestiorder
drivers such as temperature and precipitation better than the secondasy effect

This research uses surface air temperature changes over a 42 year period, 1958
1999 inclusive, captured by a spatiotemporal representation. The model’s temepera
output is transformed into displacement vectors that capture the spatioterhpoges
of the 1958-1972 and 1985-1999 means of the surface temperature. The displacement
vectors from the temporal temperature data capture the dynamics of the GGigetD
displacement ranges from different models are compared to demonstrajgatiabitiey
of datasets from different GCMs. Finally the displacement variabilityudtiple scales

is compared with trend variability to show similar scale dependencies.

54  Variability

Model created uncertainty arises from four main areas: parametarjzatplementation,
lack of theoretical knowledge and stochasticity (Knutti, Furrer, Tebaldi, Cermak, &
Meehl, 2010). Parametric uncertainty results when small scale processestia be
captured by the large scale model are described empirically radimeretbolved.
Implementation uncertainty is caused by the model’s imperfect represera
dynamics which fail to match the real word observations. A third source of unterta

results from incomplete theoretical understanding of a process such as tbieampa
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aerosols on cloud formation (Knu#i al, 2010). The first three sources of uncertainty
cause differences between the outputs for different models as well asrdiffeibetween
same model realizations that can be reduced through the model refinement. iStochast
uncertainty is an additional differentiator between models and between sanie mode
realizations that is an inherent uncertainty characteristic of the modie tim¢ other
sources of uncertainty, variability is a desired part of the model. Vatyatiiéates the
frequency of oscillatory events such as the North Atlantic Oscillati&®(Nand the

Arctic Oscillation (AO) (Holland, 2003).

Model emulated variability may be of low fidelity with markedly different
frequencies and magnitudes than exist in the observed data. Variability magfotude
the NAO and AO are less in the models than in the real world (Holland 2003).
Comparing different models highlights additional variability due to the ireohusi
different physical processes or differing implementations of the same geaces
Combining results from multiple models in an ensemble set that is analyaed as
collective entity leads to further reduced variability (Tebaldi, & Knutti, 2@éckleret
al., 2008; Lambert, & Boer, 2001). The multiple model ensemble is extensively used
even though the ensemble mean exhibiting less error than any single ensemisés imem
a possible result of problems with the modeling of internal variability accotding
Kirtman and Shulka (2002).

An ensemble data set is a collection of set members where the member sets
contain time dependent data from spatial state variables generated by tomauta
models. Delworth and Knutson (2000), @teal (2001) and many others determined that

individual realizations of a Single Model Ensemble (SME) can show considerable
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difference between runs. Delworth and Knutson (2000) emphasized the SME mean
instead of data from a single realization due to the large internal vayiabilhe
simulated time series of global mean surface temperature for the 20thycBatunett
(1995) determined that due to sometimes large internal model variabilityngfl@ s
simulation the predications of an inter-annual climate event or generateclisiag the
single realization is unreliable and a poor depiction of the model’'s capsbilitne
averaging resulting from ensemble construction reduces the impact ofetral
variability on the state variables.

The SME approach leads to closer adherence to recorded global means values for
temperatures and other climatic primary variables. The SME does not corrén f
three non-variability uncertainty sources but rather provides an output tbss is |
dependent on the initial conditions and model internal variability. Small variations in
initial and boundary conditions are not consequential for long term climate pedict
(Knutti et al, 2010). Giorgi and Francisco (2002) determined that 30 year global means of
climatic variables did not vary substantially between different remlirmbf a SME.

Past research determined multiple model ensembles provide superiortforecas
than any single model ensemble, in terms of skill, reliability, and consjst@hen
considering primary variables or secondary effects (Tebaldi, & Knutti, Zb@ckleret
al., 2008; Lambert, & Boer, 2001). The inclusion of different models in a Multiple Model
Ensemble (MME) dataset has a large impact on the fidelity for tempeeatdieng
wave radiation. The impact of multiple models is predominately a reduction ameari
magnitude which results in higher correlation coefficients for trends (Johfsgimarma

2008).
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5.4.1 SME versus MME

Variations among outputs from a single model ensemble (SME) set result from
differences in input conditions while variation from a multiple model ensemiEM
set also include parameterization, implementation and theoretical untyerainckel et
al (2006) determined that internal intra-model variability is dominant at thenadgcale
with trends that varied by up to 1.8°C per century. Delworth and Knutson (2000)
determined that internal variability generated 0.50°C of the observed 0.53°C par$5 ye
trend from 1910-1944. Uncertainty from a model’s climate sensitivity and otleer int
model differences add uncertainty to the same model realization di#sresgulting
from internal model variability (Allen, Stott, Mitchell, Schnur, & Delwqrg®00;
Kattenberget al,1996). Internal variability closely matches regional variability for model
climate yet MME averages with structurally different models exhiliteb&arge scale
agreement with observations (Meehlal, 2007). Though MMEs exhibit higher
correlation with historical temperatures the increased state varaaige at the grid
points can delay change recognition due to the increase in the magnitude rexqared f
change to be statistically significant ( Delworth, & Knutson, 2000; Shefi#&MWood,
2008).

Variability is smoothed when members of an ensemble are averaged, retiecing
difference between the ensemble mean and recorded values. AnalysigméerhQDO0-
yr control runs of the Geophysical Fluid Dynamics Laboratory model suggéste
intra-model variability is much smaller than inter-model variability (&, 1999). Inter-
model variability is in addition to the internal variability which according toesom

previous papers (Delworth, & Knutson, 2000) matches observed large scale trends. The
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dominate source of uncertainty in a simulation of average regional tempesatuss-i
model variability with inter-scenario and internal model variability haargsser impact
(Giorgi, & Fransicso, 2000). Zonal means showed larger differences betweenl|S mode
than between the same model (Delworth, & Knutson, 2000). The total effect oflinterna

variability and inter-model differences leads to excess variabilityeaglobal scale.

5.4.2 Scale of region, range, variability and spread

The correlation of a model ensemble with the recorded mean climate trends apea
dependent on the scale of the region being compared. Among eight realizations of the
NCAR CCSM2 analyzed by Zhou and Yu (2006), correlations for the global mean
Surface Air Temperature (SAT) range from 0.79 to 0.87, the mean Northern Hemispheric
from 0.69 to 0.82, and those for the SAT averaged over China range from 0.23 to 0.44.
Spatial and temporal averaging mask internal variability which dominatde sing
realization climate changes modeling at the regional (length of ap@at®iim03 km)
and smaller scales (Dat al 2001). The decrease in data samples averaged within a
region at finer resolution reduces the smoothing of variability. The spread ofsnode
climate output for the Chinese region is larger than the spread for the Northern
Hemisphere and for the globe (Zhou, & Yu, 2006). This suggests that as the scale of the
region used to compare model realization outputs diminishes the spread increases.
Averaging reduces the variability that is an intrinsic charactenstiimate phenomena.
Using ensembles improves the correlation as the amplitude of random variations
is modulated by the averaging (Zhou, & Yu, 2006). The resulting higher camelkaa
product of a better phase relationship, not necessarily a better simulatiors wfféoe

air temperature values. Working with ensembles increases the corraelahdrends but
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decreases the amplitude. The amplitude of a single realization, equal toidbhédityaof

recorded climatic variables at the regional scale, is greater thasf traensemble.

55  Data Setsused in the Study

The research uses model output data from the Twentieth-Century Climate indCouple
Models (20C3M) project located in the World Climate Research Program's Coupled
Model Intercomparison Project Phase 3 (WCRP CMIP3) data archive. The 20C3M
simulations are driven by historical greenhouse gas concentrations, sulgiusia-a
loadings and other forcings since the start of the industrial revolution. The 20C33dt proj
produces multiple models with ensembles with multiple realizations for each.mbde
two GCM products used are based on the National Center for Atmospheric Research
(NCAR) Community Climate Systems Model (CCSMS3; Codliral. 2006) and the

Center National Weather Research (CNRM) global ocean-atmospheredsygiem
(CM3; Salas-Méliaet al., in review).The research uses eight realizations of the NCAR

CCSM ensemble and a single CNRM-CMa3 realization.

56  Methods and Methodology

The research uses individual grid points with a size of 1.4° x 1.4° degrees. The CNRM
CM3 model data has half this resolution, 2.8° x 2.8° degrees, so CNRM displacements
are interpolated to match the NCAR CCSM resolution (See appendix A for asiiscus

of potential interpolation artifacts). A set of isotherms is used as mefefeatures to
determine changes in a temperature field. The isotherms are fromefoye@ means

using the years 1958-1971 for the 1971 mean and the years 1986-1999 for the 1999

mean. There is a fourteen year gap from 1972 through 1985 to provide noticeable
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changes between the 1971 and 1999 mean value grids. When temperature changes over

space, isotherms shift accordingly. Displacement vectors are calcidaisotherm

shifts to measure the direction and magnitude of temperature change; for exidfh@le

isotherm shift north. The values of reference isotherms used in the case study, (-20, -16,

12,-8, -4, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, aflCRare chosen using the Koppen

Climate Classification bioclimatic boundary temperature demarcéties with further

subdivisions to provide a more complete sampling of the scalar temperature field.
Varying amounts of point estimates are made in the ensembles due to the

difference in isotherm movement. This variation is a result of the tracingthlg and

the resolution of the GCM. The algorithm utilizes threshold defined boundaries from one

time interval mean to a second. No displacement calculation is done if a gridmpaint

threshold defined isotherm has not shifted to a different grid location. The NCAR

realizations generated displacement for 3707 to 6268 of the 32000 grid points. The

variable number is expected as the members of the ensemble are initidlzddferent

values and generate different dynamics. Slower rates of isotherm mogenerdte

less displacement vector calculations. The following figure shows thedoatall

displacement vectors calculated from an example run (Figure 5.1).
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Figure 5.1: Grid points for NCAR #1 realization with calculated displacements

The map of calculated displacements (Figure 5.2) shows more rapid change over

continental areas, in particular in Alaska.
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Figure 5.2: NCAR #1 realization North American region displacements
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The displacement vectors are replaced with the poleward displacement
component to simplify analysis. The poleward displacements are on a reglilautghe
locations actually calculated by the displacement algorithm areilaredNatural
neighbor interpolation was used to fill in missing grid points. Any clustering of the
variance maximums resulting from the application of the natural neighborthigda
the 3707 to 6268 calculated grid points are between grid points with explicitly cadculate

displacements.

5.7 Results

The spatiotemporal representation captures the changes in 14 year meahsgihttieg
and end of the period 1958 through 1999 inclusive. Nine maps of the isotherm motion

from the eight NCAR realizations and the CNRM realization are madar@=5.3).
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A set of eight SMEs is created by taking all permutations of seven NCAR
realizations from the set of eight available realizations. The NCAlRation missing
from each permutation is evaluated to determine the number of grid points for which the
missing NCAR realization is outside the range of the seven member SME. The CNRM
realization is then evaluated to determine the number of grid point locations &br tivli

realization is outside the range of the SME (Table 5.1).

SME formulated by | Number of grid points Number of grid points
leaving out NCAR for which the missing| for which the CNRM
realization # NCAR realization is | realization is outside
outside the range of | the range of the SME
the SME
1 12573 16761
2 5250 14586
3 4310 14490
4 8614 14887
5 7937 15094
6 5975 14751
7 7983 14798
9 5370 14647

Table 5.1: Grid points count for range expansion when 8th NCAR realization or CNRM
realization was added

The F-test is applied to the two sets to determine whether the grid pointoogerg
variability is the same as the intra-group variability. The result, 63.7uch arger than
the .01 critical value of 8.862 for the F-test with 1 degree of freedom in the namerat
and 14 degrees in the denominator. The two range exceeded sets are shown to have
different expected values. The significant difference in range égdezxpected values
implies a difference in the displacement datasets that is model deperigent. T
combination of NCAR displacements and CNRM displacement likely leads tooaldim

distribution with increasing range and variance. The range in 52% of the grid point
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locations had an increase when the CNRM data was added to the eight member NCAR
SME (Figure 5.4). Adding a ninth member to a sample set is expected to fall déside

range of the original set a proportional percentage or about 11% of locations.

_

CNRM outside the range of the 8 NCAR realizations

- CNRM within NCAR ensemble range - CNRM outside NCAR ensemble range

Figure 5.4: CNRM dataset values contained by SME range of data at the grid point
resolution

The map showing where there is an increase in range in the MME versus the SME
is almost identical to the map showing the 60% of grid points where MME spread is
larger than the SME (Figure 5.5). The increase in sample size from theodiightnine
normally results in a decrease in variance unless the ninth sample has a dikpested

value.
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Grid points where MME standard deviation was larger than the SME's

- Decrease in std - Increase in std

Figure 5.5: Grid points where the MME dataset values have a larger standatidulevia
than the SME displacements dataset

The variance of region means is then compared for the eight member SME and
the nine member MME. Determining mean regional displacements requirgedhe a
weighting of the grid points on the Earth’s surface. Weighting is done by fiieg
Robinson projection of a 128 (longitudinal) by 256 (latitudinal) grid in the World
Geodetic Survey 1984 coordinate system with Thiessen polygons. Grid point data are
weighted by the area of the corresponding Thiessen polygon. The area weighted
displacement spread, standard deviation (Zhou and Yu 2006), for the single realization
from the CNRM-CM3 model are compared to the NCAR model realizations
displacement spread. The CNRM global spread is larger than all but NCARtiealit,
the northern hemisphere spread is larger than all but NCAR 1,4 and 5 realizations
whereas the southern hemisphere displacement spread is greater thdreal ©AR

realizations (Table 5.2).
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Hemisphere, NCAR NCAR | NCAR | NCAR | NCAR | NCAR | NCAR | NCAR | CNRM
#1 #2 #3 #4 #5 #6 #7 #9

Global 58 49 50 52 55 50 56 44 57
Northern 62 49 49 53 59 48 52 44 53
Southern 53 46 49 46 50 51 54 43 58

Table 5.2: Spread for the 8 NCAR and the CNRM hemisphere realization dataset i
km/decade

A SME is formed from the eight NCAR displacement datasets. A MME is formed
by combining the CNRM displacement dataset with the SME. The use of MMEs to
increase global, hemisphere, hemisphere land, and hemisphere ocean tréaittbosrre
indicates that at these scales the displacement spread in the MA4E flsdn the SME. In
contrast, the spread of the MME is larger than the SME at the grid point.

The displacements for the eight members of NCAR CCSM ensemble are

averaged to obtain an ensemble mean at each grid point (Figure 5.6).

Km/decade

[ 1-233--300[ ] -165--232 [ -07--164 [ ]-30--96 [ ]38--20 [  ]106-39[ |174-107 [ ] 242- 175 [N 311- 249
Figure 5.6: Poleward displacement of isotherms from NCAR 20C3M SME.
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The SME has a northern hemisphere mean area weighted northward displacement
of 22 km/decade with a spread of 42. The SME southern hemisphere displacement
exhibits a southern displacement of -6 km/decade with a spread of 10. The lower
southern spread is a likely result of more uniform isotherms and isotherm motighever
sea surface.

The displacements for the eight NCAR realizations with the CNRM eg@liz

MME are then averaged to obtain an ensemble mean (Figure 5.7).

R . . R
P .

Km/decade

-311 --243 -242 - -175 -174 --107 | |-106--39 | | -38-29 | | 30- 96 | | 97- 164 | | 165- 232 | |233-3oo|

Figure 5.7: Poleward displacement of isotherms from NCAR/CNRM MME.
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The global, northern, and southern hemisphere spread for the MME and SME is

listed in table 5.3.

Model Global Northern Southern
Hemisphere Hemisphere
SME 42 38 44
MME 39 34 40

Table 5.3: Spread for mean global, northern, and southern hemisphere displacement
km/decade.

The spread decreases for the MME versus the SME even though the grid point
distributions of the MME are bimodal. The land and ocean hemisphere displacement

spreads for the MME and the SME are listed in table 5.4.

Northern Hemisphere Southern Hemisphere
Land Ocean Land Ocean
SME 42 33 59 37
MME 38 32 55 34

Table 5.4: Spread for land and ocean in both hemispheres.

The hemisphere spread for land and ocean also shows a decrease in spread in the
MME versus the SME for northern and southern hemisphere land and sea. Spatial
averaging at some scales removes the increased spread at the grid |eofrdradde

bimodal MME distribution.

5.8 Discussion

The displacement datasets have different expected values for the number ofigsid poi
with an expanded range when a same model realization was added to a SME versus a
different model. This demonstrates that displacement datasets from Rid &Nl

NCAR GCMs are likely distinguishable using grid point range differerides CNRM

displacement is outside of the range of seven NCAR displacements compared to an
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eighth NCAR realization a statistically significantly larger projort Chapter four
established the difference between these two GCMs is large and it is imicerttaer
GCM pairs will have similar differences.

Adding the CNRM to the set of eight NCAR realizations increases the range and
variance at the grid point resolution. The combination of the NCAR and CNRM datasets
results in a bimodal distribution. The poleward displacement range of the CNRM
northward motion is -110 to 86 km/decade which is smaller than the NCAR realization’s
range of -110 to 107 km/decade. Although the NCAR has a larger global range the
addition of the CNRM dataset adds to grid point range and to variability.

The increase in spread at the majority of locations when a MME is formed by
adding the CNRM data to the NCAR SME is in contrast to the spread of regions. All
hemisphere regions, hemisphere land regions and hemisphere ocean regions showed a
decrease in both range and spread in the MME. This is consistent with the previous
research by Zhou and Yu (2006) on the spread of trend data for regions at the sub
continental scale and larger. An ensemble mean, single or multiple model, isHaetter
any single realization with respect to variation as the mean modulaigrtbmes from

the single realizations.

5.9 Conclusion

The displacement differences for multiple GCMs are evaluated at thpant and

larger scales. Single realization displacements are compared to ssfdadatnents to
determine if the single realization is outside the range of the set. Theot@uiu points

in an NCAR or CNRM realization outside the range of a seven member SME shows a

difference that is dependent on the GCM realization added. The F-testidetéas
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statistically significant the difference counts resulting from addiegme model

realization versus a different model realization confirming hypothesiBhél.

displacement datasets for the isotherm changes in the CNRM GCM and the BICMR
produce significantly different datasets that affect grid point range.drmparison of
increased range grid points counts needs to be done with GCMs other than the pair used
for this research to verify the separablilty of GCM displacement datd&esearch using
multiple realizations for both models will also strengthen the finding athparison

for this research used a single CNRM realization.

This research also focuses on spread to examine the interaction of scale,
variability and ensemble type. Displacement variability is shown to hawaisim
characteristics to that of trend variability. At the grid point level the aaddf a
different model to an ensemble leads to increased variability and intreasgg in the
majority (60% and 52%) of locations confirming hypothesis #2. The impact on the
global, hemisphere and sub hemisphere temperature displacements from adding a
different model to an ensemble is a reduction in variability and range in ialhseg
confirming hypothesis #3. The reduction in variability and range when spatialging

is done matches trend data research reports.

166



References

Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., & Delworth, T. L. (2000).
Quantifying the uncertainty in forecasts of anthropogenic climate ehbature
417, 617-620.

Barnett. T. P. (1995). Monte Carlo Climate Forecastingrnal of Climate8, 1005-
1022.

Barnett, T. P., (1999): Comparison of Near-Surface Air Temperature VagiabilitL
Coupled Global Climate Model3ournal of Climatel12, 511-518

Bluestein, H. (1992)Synoptic-dynamic meteorology in midlatitudes: Volume 1,
principles of kinematics and dynamit¢éew York, NY (United States), Oxford
Univ. Press

Collin, W. D., Bitz, C. M., Blackmon, M. I, Bonan, G. B., Bretherton, C. S., Carton, J.
A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W.
G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2005). The Community
Climate System Model: CCSM3opurnal of Climate, 19, 2122-2143

Dai, A., Wigley, T. M. L., Boville,B. A., Kiehl, J. T. & Buja, L. E. (2001): Clitea of
the twentieth and twenty-first centuries simulated by the NCAR Cligdéem
Model. Journal of Climatel4, 485-519.

Delworth, T. L., & Knutson, T. R. (2000). Simulation of early 20th century global
warming.Science287, 2246—2250.

Giorgi, F., & Francisco, R. (2000). Evaluating Uncertainties in the PredictiRegibnal
Climate ChangeGeophysical Research Lettep¥(9), 1295-1298.

Giorgi, F., & Mearns, L. O. (2002). Calculation of Average. Uncertainty Range, and
Reliability of Regional climate Changes from AOGC Simulations via the
“Reliability Ensemble Averaging” (REA) Methodournal of Climatel5, 1141-
1158.

Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008): Performance metriadifoate
models.Journal of Geophysical Research, 1D86104.

Holland, M. M. (2003). The North Atlantic Oscillation—Arctic Oscillation in theSB@2
and lts Influence on Arctic Climate Variabilityournal of Climate, 162767-
2781

Johnson, G., & Sharma, A. (2009). Measurement of GCM skill in Predicting Variables

Relevant for Hydroclimatological Assessmegsurnal of climate22,4373-
4382

167



Kattenberg, A., Giorgi, F., Grass, H., Meehl, G.A., Mitchell, J.F.B., Stousser, R.J.,
Tokioka, T., Weaver, A.J., & Wigley, T.M.L. (1996) Climate models +
Projections of future climate. In: Houghton, J.T., Filho, L.G.M, Callandar, B.A.,
Harris, N., Kattenberg, A., Maskell, K. (edSlimate change 199%ambridge
University Press, Cambridge, UK, pp 285-357

Kirtman, B. P., & Shukla, J. (2002). Interactive coupled ensemble: A new coupling
strategy for CGCMsGeophysical Research Letters, 29(11B67

Kolstad, E. W., & Bracegirdle, T. J. (2008). Marine cold-air outbreaks in the future: an
assessment of IPCC AR4 model results for the Northern HemisgiHienate
Dynamis, 30 (7-8, 871-885.

Kunkel, K. E., Liang, X. Z., Zhu, J., & Lin, Y. (2006). Can CGCMs Simulate the
Twentieth-Century “Warming Hole” in the Central United Statés®nal of
Climate 19, 4137-4153

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G.A. (2010), Challenges in
combining projections from multiple climate modelsurnal of Climate23,
2739-2758.

Lambert, S. J., & Boer, G. J. (2001): CMIP1 evaluation and intercomparison of coupled
climatemodelsClimate Dynamics, 183-106.

Meehl G. A.,StockerT. F., Collins W. D., Friedlingstein P., Gaye A. T., Gregory J. M.,
Kitoh A., et al Global climate projectiongn: SolomonS.QinD., ManningM,
Chenz, MarquisM, AverytK. B., TignorM,, et al, editors.Climate Chang007:
The Physical Science BagfSontribution of Working Group 1 to the Fourth
Assessment Report of thetergovernmental Panel on Climate Chareg 5
Solomonet al (Cambridge: Cambridge University Prepp) 747—-845

Salas-Mélia, D., Chauvin, F., Déqué, M., Douville, H., Gueremy, J. F., Marquet, P.,
Planton, S., Royer, J. F., & Tyteca, S. (in review). Description and validation of
the CNRM-CM3 global coupled mod&limate Dynamics

Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under
future global warming from multi-model, multi-scenario, IPCC AR4 sinnorhet
Climate Dynamics 31, 79-105

Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic
climate projectionsPhilosophical Transactions of the Royal Society B: Biological
SciencesA365 2053-2075

WCRP CMIP3. The WCREMIP3 multi-model dataset archive at the Program for
Climate Model Diagnostics and Intercomparison. http://www-
pcmdi.linl.gov/ipcc/diagnostic_subprojects.php.

168



Zhou, T., & Yu, R. (2006). Twentieth-Century Surface Air Temperature over China and
the Globe Simulated by Coupled Climate Modétsyrnal of Climatel9, 5843-
5858.

169



Chapter 6  Conclusion

6.1  Introduction

A temporal Geographical Information Systems (GIS) frameworkyoanhic fields or
gridded data provides a representation that supports temporal analysis. GIS
spatiotemporal research has been predominately object and event orientsb\itiner
spatiotemporal analysis of fields or gridded data requires a differerttaagbpThis
research demonstrates a kinematic representation based on velocity thia¢slése
spatiotemporal characteristics of a time varying scalar fieldsttat and reanalysis
tools such as those at the NOAA Earth System Research Laboratory sixguolbrt f
location analysis without direction. Representing change over space anasting a

vector representation captures direction along with magnitude at fixatblos:

6.1.1 The Kinematic Representation Applied to Spatiotemporal Analysis

The spatiotemporal analysis of large datasets from satellites and 4Defament models

is difficult with current techniques. Researchers utilize known spatiotemporal

phenomena, such as ENSO, to focus their analysis of GCM output on a subset of the data.
A second approach uses regional and grid point trends at fixed locations (Zhou & Yu,
2006). The spatiotemporal representation developed for this research enables analysi
without requiring a higher level abstraction such as gales, cyclonic sborotiser
spatiotemporal phenomena. In contrast to fixed locations trends this Lagrapgiroach

tracks the apparent motion of fixed value virtual particles. The result iackspént

vectors with both magnitude and direction in contrast to the scalar magnitude of trends

The kinematic representation is applied to the surface temperature inghesaittwo
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GCMs in chapter two. Regions are formed by aggregating rapid displacemgmigts
in temperature displacement maps. The regions are compared for sesilarlbcation
across the two GCMs. In contrast, chapter three uses displacements teedharhat
objects defined by isohyets in two GCM'’s datasets. The characteristies abjects are
used to compare the output of GCM precipitation data. Chapter four introduces
displacement difference vectors which have different expected valuesnsiadthbox
plot interquartile ranges for different dataset pairs. Differebetseen reanalysis
datasets are smallest but unexpectedly the difference between the twoisG&SMEge
as between the GCM and reanalysis datasets. Finally in chapter fives idiaility
characteristics for ensembles are examined. The values from one Ggplhtdment
dataset are shown to cluster at the grid point scale when compared to a secorth&CM.
displacement variability is similar to region trend variability atesal scales. Details of

the findings are in the following sections.

6.2  Summary of findings

6.2.1 Representing Continuous Temporal Geographic Fields using Fluid Kinematic
Concepts

The temporal GIS framework is applied to the IPCC A2 scenario output for two differe
GCMs, the (French) Center National Weather Research (CNRM) Global CoyglethS
(CM3; Salas-Méliaet al., in review) and the (U.S.) National Center for Atmospheric
Research (NCAR) Community Climate System Model (CCSM3; Cetlia.,2006). The
spatiotemporal information elicited by the temporal GIS framework ctearzes the

changes embedded in the GCM datasets. The characterizations are comgared a
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contrasted with each other and to previous works by others to provide support for the

representations.

6.2.1.1Displacement analysis of Project Temperature for Scenario A2 during the period
of 2030-2090

Histograms of the longitudinal displacement vectors show a bimodal distribution wit
modes for both the northern and southern displacements for both CNRM data (Figure 2.8,
p.36) and the NCAR data (Figure 2.12, p.41). The southern hemisphere shows a wider
spread of displacement magnitudes than the northern hemisphere for the CNRM data
while the NCAR data’s southern hemisphere displacement magnitude is ledsethan t
northern hemisphere. The assignment of the displacement mode to the northern
hemisphere and the southern hemisphere is done using a longitudinal displacement map
that shows the spatial distribution of the longitudinal component for CNRM (Figure 2.8,
p.36) and NCAR (Figure 2.13, p. 42). The CNRM and NCAR displacements suggest a
distributed moderate warming trend in the northern hemisphere with some nortlasrn are
showing southward movement that are the possible result of local minima. Large
displacements occur at multiple locations at approximately 67°N in both motels. T
CNRM southern hemisphere motion is more varied with more rapid warming in the
subtropical and temperate zones with cooling bordering the polar region. The NCAR
southern hemisphere displacements are smaller and less varied withegbigoexaf just

south of the equator. The differences are the likely result of differentese@ontels in

the two GCMS. Latitudinal displacement for both models is dominated by widdspre

small shifts of magnitude 33km/decade or less (Figure 2.10, p.38 and Figure 2.15, p.44).
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Iso cluster (de Smith, Longley & Goodchild, 2007) analysis discerns r&dste
large displacements and large convergence/divergence rates for both CNRM (Fig
2.11, p. 39) and NCAR (Figure 2.16, p.45). The northern band of rapid motion at 67° in
both models is a possible result of rapid change at the Polar Regions (Holkite] &
2003). Sea surface temperature changes due to a strengthening monsoon are possibly
captured by the rapid change portrayed over the Arabian Sea in the CNRM output. The
rapid change highlighted by the CNRM model in the south western coastal region of
Arica may be the result of increased western flow from the Sahara due tbvggolreng
(Semazzi & Song, 2001). The NCAR displacements in the South Atlantic Ocean portray
rapid warming seen in earlier version of the NCAR CCSM by Carril, Menedd\anez
(2997). In the CNRM output regions of divergence over Indonesia and Nifio 3 may
indicate the ENSO process is changing due to anthropomorphic climate charng@e (IPC
2001). The NCAR output has a divergence region east of Brazil that is a possilblefresul
a shift in the Inter-Tropical Convergence Zone (ITCZ), (Labraga, 1997).

Differences in the displacement maps for the two models suggest vergmtiffer
patterns of -18C isotherms indicating that the Arctic ice in the NCAR model has melted
to a greater extent than in the CNRM CM3 model. Holland and Bitz (2003) determined
that in the earlier versions of these two GCMs the CNRM model produced a skaver
ice melt rate than the NCAR model and it is likely that this differencespeisithe
current model versions.

The result of applying the kinematic representation to spatiotemporally

characterize a time dependent scalar field is successful. Sevgoalsref similarity and
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differences have potential underlying phenomena identified that support thekimem

differences.

6.2.2 Applying the Kinematics-based Methodology to Represent and Analyze
Spatiotemporal Patterns of Precipitating Change

This research applies a method based on kinematics, originally designed for the
analysis of changes in temperature patterns, to emphasize spatioterapsibirs of
precipitation. Areas of high precipitation, in the A2 scenario defined by thedtiemal
Panel for Climate Change (IPCC), are aggregated into objects. Concepismakcs
are used to track the direction and movement of these objects over space and time.
Instead of examining precipitation patterns at individual time frames, matiér
precipitation changes are examined through linking objects across timeistigrdysto
the flow field defined by Theisel and Seidel (2003). Divergence, deformation and
rotation, measures for internal kinematics of an object, are used to mdafsaria she
rates of emergence, dissipation, splitting and merging that may be indiuiatines
effects of large scale circulation patterns on precipitation. The three+lomdel of
Yuan (1999) is expanded by adding the rate of internal changes in fiat obgects (

precipitation areas) to bring insights into changes in precipitation patterns.

6.2.2.1Eliciting Spatiotemporal Patterns

Optical flow analysis is applied to annual isohyets of the values 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 110, 120, 130, 140, 150, 161, 178, 213 and 284 cm/year in the years 2001
and 2048 to calculate displacement vectors (Figure 3.2, p. 69 and Figure 3.3, p. 69).
Precipitation features defined by a given threshold of 213 cm/year, which irrckae

with annual precipitation 213cm or greater, are formulated from CNRM and NC@R da

174



for IPCC climate change analysis (Figure 3.5, p.73 and Figure 3.13, p.88). The threshol
is set to a level that shows change over the time interval without exhibiting
spatiotemporal discontinuities. Displacement vectors are used to calbel&iaeématic
parametergu/ox, ou/oy, oviox andovioy (Equation 3.2-5, p.74) to determine divergence
(Equation 3.6, p.75), deformation (Equation 3.10, p.77), and rotation (Equation 3.7, p.
75), at each point location. The values of these kinematic parameters areabiglttie

size of each grid point’s respective Thiessen polygons, summed, and then normalized by
the area of each region. Displacement vectors determined between the tmtsregi
boundaries (Figure 3.2, p. 69 and Figure 3.3, p. 69) represent precipitation transitions
over space and time and are used to associate regions from one time to the mext (Fig

3.10, p. 82) (Table 3.5, p. 83).

6.2.2.2Results Interpretation

Internal and external kinematics of fiat objects are compared and cohfiasbeth
CNRM and NCAR datasets. Kinematic characterizations are validateaidiryof
research by others that supports the characterizations. Both models (Fl@uz &7 and
Figure 3.13.14, p88) show an expansion of the 213 cm/year objects in the Indian Ocean.
The CNRM model shows east-west expansions that are the possible resultaseincre
latitudinal moisture transport or an orographic triggered precipitation. TheMON&del
has an east-west expansion region in western Africa overlapped by an expagision re
in the same location for the NCAR data.

The lack of divergence in expanding regions in both GCMs hints that drivers
external to the 213 cm/year threshold defined regions drive the extent changessthe

discernable difference between the two datasets is the high growth rate fufr26&6
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CNRM 213 region (Figure 3.12, p.87) versus 5% for the NCAR 213 cm/year regions
(Figure 3.13, p.88). The difference is a possible result of differences in goadts of
SST changes. Paired emergent and dissipative regions are discovered thdikalg the
result of the variability that exits in precipitation processes (Fig@2 p.97 and Figure
3.23, p.98).

The temporal framework supports all six classifications of ClaramurénPand
Theriault (1997); location, attribute, extent, mutation, movement and evolution; as well
as a seventh from Peuquet (1994); branching. These seven classifications enable the
articulation of differences in datasets based on the characteristgpseaks® virtual

objects by the framework.
6.2.3 Discerning Differences in Temperature Change in the 20th Century datasets

The temporal framework is applied to four datasets, two reanalysis productgoand t
GCM outputs from the Twentieth-Century Climate in Coupled Models (20C3M). The
reanalysis datasets are from the National Center for Environmentattineational
Center for Atmospheric Research (NCEP NCAR; Kaleegl.,1996) and European
Centre for Medium-Range Weather Forecasts (ECMWF; Umgtalh, 2005) ERA-40
projects. The 20C3M datasets are from the CNRM CM3 GCM and the NCAR CCSM3
GCM. Temperature is chosen as the variable of interest as it is lgpadi@inuous

property that fits well with the concepts of fields and is a key anthropomorphatelim
change parameter. The temporal GIS framework is used to create digdeectors of
temperature change over reference isotherms (-20, -16, -12, -8, -4, 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, and 2&) (Figure 4.1, p.116), representing the direction and magnitude

of the temperature transitions.
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The displacement vectors enable the spatial analysis of differencesarsvec
between model pairs to suggest regions with conflicting climate change. fiEheraie
in displacement vectors among the four datasets is analyzed by exathesig
possible pairings. Differences in the displacement vectors for each gricapmint
calculated for each pair combination to contrast the isotherm shifts in the pajir bei
studied. Regions of large displacement vector differences based on compardatas of
from GCMs and reanalyses are highlighted. The Iterative Self Organi3iag (
clustering tool is used to identify regions of significant differences basedwimom
likelihood classification functions. The research tests the following hypotheses

1. The expected values for the differences between the six permutations of
pairs of the four displacement sets are significantly different (25%e
confidence level). The hypothesis is evaluated by applying the F-test to the
six difference sets. The difference sets are leptokurtic so aHarglele is
required to have confidence in the results.

2. The median and box plot interquartile range (IQR) of the six difference
sets are larger between different types of data sources (i.e. GCM data
versus reanalysis data) than between same data source types. The standard
deviation does not have meaning for leptokurtic data so the IQR is used.

3. The displacement vectors themselves reveal meaningful patterns of
differences among the four datasets. Differences are validatddigs
of multiple data sources that have similar conclusions about climate

change patterns.
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The six difference sets, formed from six permutations of the four displacement
sets, have a non-normal distribution with kurtosis values of between 4 and 6 (Figure 4.5,
p.123). The expected values for the six difference sets are shown to be dishiract wi
confidence level much larger than 95%. The statistical characteristicsleptbkurtic
difference sets are compared using median and the IQR. More agreemenhbetwee
reanalysis displacement datasets is expected as the reanalysissypoolcess historical
data in order to create their datasets. The reanalysis differertesdbe smallest median
and IQR of the six datasets partially confirming hypothesis #2. The difeecataset for
the two 20C3Ms has the second largest median and the third largest IQR whiels nega
hypothesis #2. The comparison of the CNRM dataset with the NCAR NCEP dataset
produces the third largest median difference and largest IQR (Table 4.2, pH23). T
performance of the NCAR 20C3M versus either reanalysis is better than #fe NC
NCEP versus CNRM comparison. Hypothesis 3 is verified when the possible reason for
the CNRM GCM uniqueness is discovered using the difference maps. A potenobal reas
for the large differences for pairs with the CNRM model is the sea ice robtihed
CNRM GCM (Lefebvre & Goosse, 2008).

The similarities between the reanalysis datasets and the NCARtdatasr
approximately 75% of the earth surface for the ERA40 difference and ampaiteky
74% for the NCEP differences (Figures Figure 4.7 and Figure 4.8, p.126). The kinematic
similarity of the NCAR 20C3M dataset with respect to the reanalysaselst supports
the CQ forcing built into the NCAR model (Collinst al.,2003).

The differences between the CNRM GCM and all the other three datastts are

largest of the set of six differences (Figure 4.9-15, p.127). The differencefanaps
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CNRM CM3 versus any other dataset have anomalous regions in the WeddeljiSea r

in the Antarctic and eastern Russia. Lefebvre and Goosse (2008) determinked that t
CNRM CM3 C20C data shows a sea ice increase in the Weddell Sea for th&'late 20
Century. Though the CNRM model is the exception in the Antarctic Sea Ice region i

not erroneous. Doragt al (2002) determined that the Antarctic station data show an East
Antarctic coast cooling in recent decades. Arzel, Fichefet and G2666¢( Lefebvre

and Goosse (2008) and Cavalietrial. (2003) all determined that the observations

indicate a slight increase in sea ice extent from 1981-2000 of about £ l&m’ifi the
Southern Hemisphere. The temporal framework is successful in capturing the ussquene

of the CNRM dataset.
6.2.4 Variability of Displacement Vectors Compared to Fixed Location Trends

The variability of trends at fixed location in GCM output is compared to that of the
kinematic representation of the GCM. The variability should be similar as hprdseat
the dynamics in the GCM data. The temporal GIS framework is applied to eight
realizations of the NCAR CCSM GCM and one realization from the CNRM CCM GCM
from the 20C3M datasets. Eight sets of seven NCAR members are used to foen Sing|
Model Ensembles (SME). The effect on grid point range of adding an eighth NCAR or
the single CNRM realization displacements to the SME is analyzed. Theifa@low
hypotheses are evaluated:

1) There is a statistically significant difference in the number CNRMzagain grid

point displacements outside the range of the SME versus for an NCAR

realization. The SME is composed of seven NCAR realizations that do not
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include the NCAR realization being compared. The F-test at more than 95%
confidence level is desired to account for non-normal distributions.
2) MME displacement variability more often exceeds SME displacemenbilayia
at the grid point level. The MME has a bimodal distribution as it has displacement
datasets from two different GCMs.
3) SME displacement variability will exceed MME displacement varighdlitthe
global, hemisphere, hemisphere land and hemisphere sea as does trend variability.
Spatial averaging will filter the point bimodal distributions in the MME
displacements.
The F-test evaluation of the larger number of grid points with increased rartge for
added CNRM realization versus an added NCAR realization (Table 5.1, p.159) nglicati
a much higher than 95% confidence level of the two sets having differentekpabties
confirming hypothesis #1. Displacement vector spread, measured as tiadtan
deviation, is compared for a SME of eight NCAR realizations and a MME comgsdti
the SME plus the CNRM realization. Areal averages at the global, henasgptbr
regional scale show a decrease in spread for the MME versus the SME (Tabl$%.3, p
and Table 5.4, p.164) confirming hypothesis #3. In contrast, grid point range and spread
is larger for the MME than for the SME in the majority of grid points (Figure 5160p.
and Figure 5.5, p.161) confirming hypothesis #2. The results are similar to the oésult
trend variability analysis in several papers. The kinematic framewarkrand analysis

have similar variability characteristics at different scales.
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6.3  Concluding Remarks
The framework developed in this dissertation enables the kinematic chaederand

analysis of spatiotemporal fields, in which anomalous regions are idetyfiedpection
after small magnitude differences have been removed. Subsequent effortegedrelr
investigate potential underlying phenomena and analyse the validityntifiet:
anomalous regions. Regions exhibiting differences between different d&iasetisthe
fundamental difference in sea ice models between the CNRM GCM and the other
datasets as described by Holland and Bitz (2003). The areal variabilitgtehigtecs of
the representation applied to GCM output are determined to be similar to the
characteristics of areal trends.

The utility of the proposed representation beyond the existing temporal GIS
approaches is shown by six spatiotemporal transitions, including split and merge, t
threshold defined objects (Figure 3.4, p.72). Objects are characterized withateform
orientation, rate of divergence and vorticity using the representation. Thiaticans
characterization is demonstrated through the comparison of two different G@sétdat

Four datasets, two reanalysis and two GCM, are compared by calculating six
maps of the differences between the permutations of the datasets. Thedtatdshed
there are different expected values for the difference sets. The medipRaace
compared to establish that the two reanalysis have the smallest difeviite all
differences with the CNRM GCM have large differences. The regions &f larg
differences in the six maps lead to the identification of the probable readbe farique
CNRM data.

Nine realizations of two different GCMs are compared for variabilityrande.

Comparing the effect of adding a same model realization and a different model
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realization on the range of seven member Same Model Ensemble indicate the
displacement datasets are separable by GCM. The variability arastcs of the

kinematic representation match that of trend data at fixed points.

6.3.1 Future research

Several limitations in the proposed framework call for future researcHrarmework
developed in this dissertation cannot calculate displacement vectors foeg@hapes.
Displacement vectors for complex changes such as merges and splits in the isatberms
also not captured. An isotherm ring that disappears by the next interval leads to
displacements that cannot be calculated by the algorithm as no ending location for the
vectors can be determined. The limits of the temporal framework are dependent on the
time interval and the displacement magnitude. Objects that move more thanthalf of

objects length parallel to the motion generate erroneous displacemente @i).

Correc Incorrec

Incorrec

Figure 6.1: Displacements with incorrect magnitudes. Correct dispéatere solid
arrows, incorrect are dashed arrows.
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All displacements should be the same in the figure 6.1, but the local maximum or
minimum contained within the object may result in errors. A fiat object otalar
isoline implies a minimum or maximum that is internal to the object. The s&wbws
have the correct length while the dashed arrows are incorrect. The eodudetd to the
displacement values does not increase as the object shift magnitude sfirgase. The
differences between the actual displacement and the measures renstamicafter the
displacement is greater than the total length of the object.

The framework requires spatially continuous data for a field. Spatiallitrepe
patterns will cause the algorithm to generate erroneous displacemerismiac@na or
minima can halt the displacement calculation algorithm, while the usds e be aware
of these limitations and with careful choices of time intervals avoaisdue to
excessive displacement. The spatially repetitive patterns are rffareltio remedy as
fiat objects that are larger than the spatial lag of reoccurring paittelt generate errors
regardless of the displacement. If the spatially lag in the repetititeripés larger than
the fiat objects, careful selection of interval will allow the kinemdgorgthm to be used.

While applications for the temporal framework can be limited by the spatial and
temporal restrictions mentioned above, most of phenomena in human and physical
geography are potential applications for the temporal frameworkiddhgsography is
the study of change across the earth’s surface and amenable to anéhtie
framework. For terrain analysis, ontological features, such as mountalop&s, £an
serve as surrogate features. For land cover analysis, differenolagrdtygpes may be
used for surrogate objects. For climate, isolines of atmospheric propertiess such a

isotherms or isobars, are good candidates for surrogate objects. The populatigrofiensit
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organisms is an attribute that is used by in biogeography and in urban plarthigrg. O
human geography applications include the spread of disease, growth of cities and
population, growth of commerce, and economics with respect to the biophysical
environment. An outstanding restriction on applications of the framework is the time
interval versus displacement magnitude and the field periodicity.

An alternative approach to the optical flow algorithm used to determine
displacement vectors in the proposed framework is the active contours algdtébs
Witkin, & Terzopoulos, 1987). Active contours are used in the field of image processing
to locate and track contours and edges that define an object of interest. Actougscont
resolve gaps and other minor discontinuities in a boundary. The active contouhalgorit
(a. k. a. snake algorithm) uses energy field functions derived from the imdge to f
towards lines, edges and endpoints. The energy function for boundaries is fednulat
ways that vary from a simple gradient formulation to more complex forrantasuch as
the Laplacian of a Gaussian. Determining the energy function that essfigcfor a
given image is difficult. In addition, local minima within the image and splineggner
formulation are avoided with a careful choice of an external force (Katdany\&
Terzopoulos, 1987). Choosing the energy field function and the force function require
multiple iterations.

The potential applications of the temporal framework can be broadened by an
algorithm that uses curvature along the boundary and pairs the curvaianetato
equivalent points on a later boundary removes the gradient or gradient enetgpnfunc
requirement. The approach applies a spatial filter to the boundary grid poiedsite r

the number of curvature points to be matched across the interval. In addition, the
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approach uses an energy function based on the sum of the distances between the many
possible point pairings to arrive at an optimal solution. For example, the curvature
approach will allow the application of the proposed temporal framework tdficiassns

such as the Koéppen climate zones. Yet, the expanded application is subject to the
constraint that some of the paired boundaries curvature must be similar irferendif
snapshots in order for the curvature approach to be successful. The aforementioned
algorithms are examples that show how the proposed temporal GIS represeatation ¢
improve the analytical capabilities of the existing GIS platforms. &elkento new

algorithm development is needed to advance GIS analytical capabilitiesriptex and
dynamic geographic phenomena beyond the current capabilities of the conventidnal Gl

technology.
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Appendix A

A.1 Introduction

The sampling technique for this research uses boundaries of virtual objects
defined by threshold values. The percentage of grid points sampled is a function of the
number of threshold values used to delineate virtual object boundaries. Grid points
without calculated displacement values are assigned displacementthesiagural
neighbor interpolation algorithm. Patterns in the resulting displacement map cdb&l be
result of the interpolation algorithm instead of the data’s spatiotemparairdgs.
Confidence in using interpolation can be increased by demonstrating that highengampl
level leads to a more detailed depiction of the displacement shown in maps using low
levels. Feature similarity that is independent of sample percentage would ghpport
assertion that the interpolation technique does not generate noticealbletsartef
A.2  Background

The sampling technique for this research uses aggregation to form virtuas object
and then traced grid points on the objects’ boundaries. The best performance, when
tracing changes in environmental data, is achieved using iosline trackingnis and
range aggregation for hot spot tracking (Solis & Obraczka, 2005). This research
combines the two approaches, using aggregation to form virtual objects and therg tracki
the virtual object boundaries which are approximate isolines. Interpretingisiag
samples from the data isolines results in DEM’s exhibiting terracesppisg (Persson,
Pilesjo & Eklundh, 2005). The displacements calculated for this research are independent

of the isoline based values used to sample the data, surface temperature.uldtedalc
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displacement values have significant variance along a single isothegzrforiitudinal
displacement values for the single isoline of 0°C range from 130km/decade southward to
126 km/decade northward. The maps output with missing displacement values assigned
using the natural neighbor interpolation also do not generate terracinge(Ridy A.2

and A.3).

F. = =
the data sampling rate of 20% by applying 14 isotherm vilaues,

Longitudinal movement for
Rate is km/decade.

Bl o5--152 [ |-108-66 [ ] 22-20 [lle4-106 [ ]150-192

P 151--100 [ ]165--23 [N 21-63 [ ] 107 - 149
Figure A.1: Longitudinal moment based on a sampling of 20% of the grid locations
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Longltudmal movement for the data samplmg rate of 38% by applying 28 isotherm viaues]
Rate is km/decade.

B o5-152 [ |-108-66 [ |-22-20 [l 64-106 [ ]150-192

[ 151--109 [ ]65--23 [l 21-63 [ ] 107 -149
Figure A.2: Longitudinal moment based on a sampling of 38% of the grid locations
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Longltudlnal movement for the data samplmg rate of 63% by applying 56 isotherm viaues)

Rate is km/decade.

Bl o5--152 [ ] -108--66 [ ] 22-20 [l 64-106 [ ] 150-192

151100 [ 1-65--23 [ 21-63 [ ] 107 - 149

Figure A.3: Longitudinal moment based on a sampling of 63% of the grid locations

191



A.3 Procedure

Maps of longitudinal displacement at three levels of sampling are geshénate
the same dataset and then compared. Comparisons are done qualitatively, by looking for
significant feature differences across the sampling levels, and quaeljtaky
comparing difference vectors between two different sampling levels. Highgpling
rates enable the discernment of finer details in the displacement fielceeal he
general distribution pattern of displacement remains consistent. Multipjeisg
percentages generate consistent results but with better definitiomevhestas the
sampling level increases. Lower sampling level maps are quantiatorapared to
maps with a higher sampling level by taking the difference betweewtheaps
displacement values. The differences between 20% and 38% are compared with 38% and

63%.

A.4 Resultsand discussion

Figures 1, 2 and 3 are the output of the kinematic representation longitudinal
displacement using 20%, 38% and 63% sampling. Utilization of virtual object boundaries
limits the ability of achieving a given sampling level precisely. The shafpedreme

regions’ change as the sampling percentage increase but the resultslarasioss the

three different sampling percentages. Sampling by threshold value deadsd fluidity

in regions defined by extreme values than sampling by regular spatialti@ss as

extreme regions have closely spaced isolines. There is a similarityciisgs with

regions remaining in the same location as evidenced by the three maferandif

sampling levels (Figures A.1, A.2 andA.3).
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There are noticeable differences between the displacement map based on a 20%
sampling rate and the map based on a 38% sampling rate but the regions of extreme
longitudinal displacement have similar locations and shapes. The differencesiéte
sampling rates are compared to zero instead of the mean displacement @iféesréme
goal was to highlight any difference between the two displacement mapsstnehgre
there are unusual displacement differences. As sampling approached 100% of the grid
points the differences with the 100% sampling would approach 0 as well. A difference
map shows the absolute value of the difference between the 20% and 38% sampling

displacement values (Figure A.4).
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Absolute v;Iue of the displagement difference for sampling at 38% minus 26%
km/decade 0-17 18-33 [ 34-50 [ 51 - o7 [l o5 - 174

Figure A.4: Absolute value of the differences between displacement for 388rgam
minus 20%

As with the 20% sampling versus the 38% sampling maps, there are noticeable
differences between the displacement map based on a 38% sampling rate 3% t
sampling rate. Regions of extreme longitudinal displacement have simd#éolecand
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shapes. A difference map of the absolute value of the difference between the 38%

sampling values from the 63% sampling values is shown below (Figure A.5).
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Absolute value of the displacement difference for sampling at 63% minus 38%
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Figure A.5: Absolute value of the differences between displacement$8&mnsampling

and 38% sampling

The decrease in the number of grid points in five difference ranges for the 63%

and the 38% sampling rate versus the difference between the 38% and the 20% sampling

rate is in table A.1.

Displacement

Grid point count change from 63% and 38% difference ve

ISus

Difference the difference between the 38% and 20% sampling.
km/decade

0-17 +1879

18-33 -846

34-50 -375

51-67 -205

>67 =272

Table A.1: Change in difference count when sampling at 63% and 38% versus 38% and

20%.
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The larger displacement difference ranges all have a decreaseavitbunt
increasing sampling rates with a corresponding increase in the smalatement
range. The mean deviation for the 63% versus the 38% sampling rate is 35 km/decade
and 53 km/decade for the 38% versus 20%. Both displacement range counts and mean

deviation show improvement as the sampling percentage increases.

A5 Conclusion

Concerns about the sampling technique based on virtual objects defined by threshold
values are reduced by examining multiple sampling percentages for teelatanThe
sampling percentage is a function of the number of threshold values used to delineate
virtual objects. Higher sampling level leads to a more accurate depiction of the
displacement while lower levels of sampling lead to maps that exhibitddrsies to

maps with higher sampling levels. The ratio of change, defined by the absolig®¥al

the difference between the two sampling levels’ maps at each point, improved as the
sampling level increase. The number of grid points with a displacement di#dtetgs

less than 17 km/decade increased by 1879 while all other displacement difference value
ranges decreased with the region of largest difference decreasing ilg@n86. The

mean deviation also showed improvement changing from 53 to 35 as sampling rates is
increased. Visual inspections of the displacement maps also showed qualithtivéhe

displacements were similar regardless of the sampling percent.
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