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ABSTRACT 

 

The -aminoadipate (AAA) pathway for lysine biosynthesis is nearly unique to 

higher fungi, including human and plant pathogens and euglenoids; an exception is the 

thermophilic bacterium Thermus thermophilus.  Knock-out of the genes in this pathway 

has been shown to be lethal in Saccharomyces cerevisiae.  It has been shown that 

scavenging of lysine is insufficient for survival in the host.  Thus, enzymes of this 

pathway could be potential drug targets.  The AAA pathway is comprised of eight 

enzymatic reactions catalyzed by seven enzymes.  Homocitrate synthase (HCS) 

catalyzes the first and regulated step in this pathway, the condensation of acetyl-CoA 

(AcCoA) and -ketoglutarate (-Kg) to give homocitrate and coenzyme A (CoASH).  

The homocitrate synthase from Thermus thermophilus (TtHCS) is a metal activated 

enzyme with either Mg
2+

 or Mn
2+

 capable of serving as the divalent cation.  The 

enzyme exhibits a sequential kinetic mechanism.  The mechanism is steady state 

ordered with -Kg binding prior to AcCoA with Mn
2+

, while it is steady state random 

with Mg
2+

, suggesting a difference in the competence of the EMn-KgAcCoA and 

EMg-KgAcCoA complexes. The mechanism is supported by product and dead-end 

inhibition studies. The primary isotope effect obtained with deuterioacetylCoA 

(AcCoA-d3) in the presence of Mg
2+

 is unity at low concentrations of AcCoA, while it 

is 2 at high concentrations of AcCoA.  Data suggest the presence of a slow 

conformational change induced by binding of AcCoA that accompanies deprotonation 

of the methyl group of AcCoA.  The solvent kinetic deuterium isotope effect is also 

unity at low AcCoA, but is 1.7 at high AcCoA, consistent with the proposed slow 
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conformational change. The maximum rate is pH independent with either Mg
2+

 or Mn
2+

 

as the divalent metal ion, while V/Ka-Kg (with Mn
2+

) decreases at low and high pH 

giving pK values of about 6.5 and 8.0. Lysine is a competitive inhibitor that binds to the 

active site of TtHCS, and shares some of the same binding determinants as -Kg.  

Lysine binding exhibits negative cooperativity, indicating crosstalk between the two 

monomers of the TtHCS dimer. Data are discussed in terms of the overall mechanism 

of TtHCS. 

Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the 

aminoadipate pathway, the conversion of L-saccharopine to L-lysine and -

ketoglutarate using NAD
+
 as an oxidant.  The enzyme utilizes a general acid-base 

mechanism to carry out the multistep saccharopine dehydrogenase reaction with a base 

proposed to accept a proton from the secondary amine in the oxidation step and a 

second group proposed to activate water to hydrolyze the imine.  A pair of thiols in the 

dinucleotide binding site forms a disulfide in the wild type (WT) enzyme as isolated, 

which interferes with binding of the dinucleotide substrate.  The SDH enzyme with a 

C205S mutation, has been characterized recently and is referred to as a pseudo-WT 

enzyme.  Crystal structures of an open apo-form of the pseudo-WT SDH (C205S), as 

well as a closed form of the C205S enzyme with saccharopine and NADH bound have 

been solved.  The structure of a ternary complex between the C205S pseudo-WT 

enzyme, NADH, and Sacc provided a closed form of the enzyme and a more accurate 

description of the interactions between enzyme side chains and reactant functional 

groups.  Importantly, the distance between C4 of the nicotinamide ring to C8 of Sacc is 

3.6 Å, a reasonable hydride transfer distance.  The side chains of H96 and K77 now 
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appear properly positioned to act as acid-base catalysts.  Mutation of K77 to M results 

in a 145-fold decrease in V/Et and greater than a three order of magnitude increase in 

V2/KLysEt and V2/K-KgEt.  A primary deuterium kinetic isotope effect of 2.0 and an 

inverse solvent deuterium isotope effect of 0.77 on V2/KLys were observed, suggesting 

that hydride transfer is rate-limiting.  The hypothesis was corroborated by the value of 

2.0 obtained when the primary deuterium kinetic isotope effect was repeated in D2O.  

The viscosity effect of 0.8 observed on V2/KLys indicated the solvent deuterium isotope 

effect resulted from stabilization of an enzyme form prior to hydride transfer.  The 

deuterium isotope effect on V is slightly lower than that on V/K and decreases when 

repeated in D2O, suggesting a contribution to rate limitation of product release, likely 

release of NAD
+
.  A small normal solvent isotope effect is observed on V, which 

decreases slightly when repeated with NADD, consistent with a contribution from 

product release to rate limitation.  In addition, V2/KLysEt is pH independent consistent 

with the loss of an acid-base catalyst and perturbation of the pKa of the second catalytic 

group to higher pH, likely a result of a change in the overall charge in the active site.  

The H96Q mutation results in about a 28-fold decrease in V2/Et and >10
3
-fold decreases 

in the second order rate constant.  The primary deuterium kinetic isotope effect is within 

error 1, but a large solvent deuterium isotope effect of 2.4 is observed, suggesting rate 

limiting imine hydrolysis, consistent with the proposed role of H96 in protonating the 

leaving hydroxyl as the imine is formed.  In agreement, the multiple isotope effects, 

repeating the primary deuterium effect in D2O and the solvent effect with NADD, are 

identical to the individual effect.   The pH-rate profile for V2/KLysEt exhibits the pKa for 

K77, perturbed to a value of about 9, which must be unprotonated in order to accept a 
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proton from the -amine of the substrate Lys so that it can act as a nucleophile.  The 

proposed roles of H96 and K77 are corroborated by the nearly 700-fold decrease in 

V2/Et and >10
5
-fold decreases in the second order rate constants for the double mutant.  

Thus, data consistent with an acid-base mechanism in the non-physiologic reaction 

direction suggest that the K77 side chain initially accepts a proton from the -amine of 

the substrate lysine and eventually donates it to the imino nitrogen as it is reduced to a 

secondary amine in the hydride transfer step, and then H96 protonates the carbonyl 

oxygen as the imine is formed. 

 Lysine13, positioned near the active site base (K77), hydrogen-bonds to a 

glutamate neutralizing it, contributing to setting the pKa of the catalytic residues to near 

neutral pH.  Glutamate16 hydrogen-bonds with N of R18 which in turn has strong H-

bonding interactions with -carboxylate of -Kg.  Mutation of K13 to M and E16 to Q 

decreased kcat ~ 15-fold, and primary and solvent deuterium isotope effects measured 

with the mutant enzymes indicate hydride transfer is rate limiting of SDH reaction.  The 

pH-rate profiles for K13 exhibited no pH dependence, consistent with an increase in 

negative charge in the active site resulting in the perturbation in the pKas of catalytic 

groups.  Elimination of E16 affects optimal positioning of R18 for binding and holding 

-Kg in the correct conformation for optimum catalysis.  As a result, the G°’ value 

of 2.60 kcal/mol for E16 suggests its contribution in binding of Lys. 

Overall, data are consistent with the proposed acid-base mechanism in the non-

physiologic reaction direction in which the K77 side chain initially accepts a proton 

from the -amine of the substrate lysine and eventually donates it to the imino nitrogen 

as it is reduced to a secondary amine in the hydride transfer step, and then H96 



xx 
 

protonates the carbonyl oxygen as the imine is formed.  Lysine13 and E16 play an 

important role of balancing the charge in the active site and elimination of either of the 

residues perturbs pKas of the catalytic residues, positioning of R18 residue for optimum 

binding of -Kg is affected and the step contributing to the rate-limitation is changed to 

hydride transfer while in the case of C205S enzyme neither hydride transfer nor imine 

hydrolysis was solely responsible for rate-limitation. Thus K13 and E16 are important 

for favorable binding of Lys and -Kg and optimum catalysis. 
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CHAPTER 1 

Introduction 

Amino acid biosynthesis is an important aspect of the living.  Microorganisms 

and plants are capable of synthesizing essential and nonessential amino acids, but 

mammals acquire the essential amino acids from their diet.  Amino acid biosynthesis is 

broadly divided into five families based on the initial precursor used to synthesize that 

group of amino acids (1).  The serine family includes Ser, Cys and Gly and in addition 

provides intermediates that are diverted to other biosynthetic pathways.  The aspartate 

family includes Asp, Asn, Met, Thr and Lys (except in fungi).  These pathways are 

highly branched with multiple regulatory points along the way.  Isoleucine, Val, Ala 

and Leu belong to the pyruvate family with highly interrelated pathways.  Biosynthesis 

of all the aromatic amino acids are grouped into one family, which consists of a 

common aromatic pathway leading to biosynthesis of chorismate from which the three 

aromatic amino acids, Tyr, Trp and Phe are derived.  The glutamate family includes 

Glu, Gln, Pro and Arg biosynthesis.  Most fungi and the thermophilic bacterium 

Thermus thermophilus derive lysine (Lys) from -ketoglutarate, which is in equilibrium 

with glutamate (1).  Thus, Lys biosynthesis, in these cases, has been included in the 

Glutamate family.  Regulation of the amino acid biosynthetic pathways is at two levels, 

one at the level of enzyme activity and metabolite concentrations and the second at the 

level of gene expression.   

Lysine has two distinct biosynthesis pathways.  The diaminopimelate pathway 

operates in plants, bacteria and lower fungi while the -aminoadipate pathway is found 
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in euglenoids and higher fungi, including the human pathogens Candida albicans, 

Cryptococcus neoformans, Aspergillus fumigatus, the plant pathogen Magnaporthe 

grisea, and the thermophilic bacterium Thermus thermophilus (2-4).  The-

aminoadipate pathway consists of seven enzymatic reactions in eight steps (Figure 1). 

Candidiasis, cryptococcosis and aspergillosis represent a major health threat for patients 

with cancer, AIDS, those that received a transplant, and those undergoing 

immunosuppressive treatment.  With the essentiality of the lysine biosynthetic pathway 

reported in Aspergillus fumigatus in vivo (5), one might expect the pathway to also be 

essential in the other human fungal pathogens.  Thus, the enzymes of the pathway could 

be good targets for anti-fungal drug development (6, 7).  The kinetic and chemical 

mechanisms of all the enzymes have been studied (8-20). 

Figure 1.1 The-aminoadipate pathway for lysine biosynthesis in yeast. The enzymes 
involved are 1. Homocitrate synthase (HCS; EC 4.1.3.21). 2. Homoaconitase (HAc; EC 
4.2.1.36). 3. Homoisocitrate dehydrogenase (HIcDH; EC 1.1.1.87). 4. α-Aminoadipate 
aminotransferase (AAT; EC 2.6.1.39). 5. α-Aminoadipate reductase (AAR; EC 1.2.1.31). 6. 
Saccharopine reductase (SR; EC 1.5.1.10). 7. Saccharopine dehydrogenase (SDH; EC 1.2.1.31). 
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 The -aminoadipate pathway begins with HCS catalyzing a Claisen 

condensation between AcCoA and -Kg.  The methyl of AcCoA attacks the carbonyl of 

-Kg. This is followed by hydrolysis of the thioester which traps the product 

homocitrate.  HAc catalyzes the next two reactions in the pathway.  In the first reaction 

homocitrate is dehydrated to form homoaconitate which is then hydrated to form 

homoisocitrate in the second reaction.  The third enzyme in the pathway, HIcDH 

catalyzes the oxidative decarboxylation of homoisocitrate to -ketoadipate.  In the next 

step amino group from glutamate is transferred to -ketoadipate, catalyzed by AAT.  

Once -aminoadipate is formed the -carboxylate is reduced to an aldehyde by AAR.  

The aldehyde is then condensed with -amine of glutamate followed by reduction to 

give saccharopine which is the direct precursor for lysine; the enzyme catalyzing this 

reaction is SR.  The last reaction in the pathway is catalyzed by SDH which gives lysine 

and -Kg via an NAD-dependent oxidative deamination. 

The research in this dissertation is directed toward a determination of the 

mechanism of HCS and SDH.  An introduction to these enzymes will be presented in 

detail below.  

 

1.1 HOMOCITRATE SYNTHASE  

Homocitrate synthase (HCS) (acetyl-coenzyme A: 2-ketoglutarate C-transferase; 

E.C. 2.3.3.14) catalyzes the first and regulated step in -aminoadipate pathway, the 

condensation of Acetyl-CoA (AcCoA) and -ketoglutarate (-Kg) to give homocitrate 

and CoA (21, 22). 
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Multiple sequence alignment at the amino acid level of HCS from 

Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, 

Schizosaccharomyces pombe and Thermus thermophilus showed highly conserved 

regions suggesting high similarity in the structure at the active site (Figure 2).  In most 

bacteria, lysine is synthesized from aspartic acid through the diaminopimelate pathway.  

However, in T. thermophilus, lysine is synthesized via the -aminoadipate pathway (4, 

23, 24).  The T. thermophilus HCS (TtHCS) has a 54% sequence identity at the amino 

acid level to S. cerevisiae HCS (ScHCS) and ~53% identity to C. albicans HCS 

(CaHCS).  Disruption of the LYS20 gene (encoding HCS) of T. thermophilus resulted in 

a lysine auxotroph (4). 

 

1.1.1 Stability and Divalent Metal Ion Requirement. 

Saccharomyces cerevisiae HCS is unstable as isolated.  Careful studies with a 

variety of solvents and additives were carried out to develop conditions to stabilize the 

enzyme.  A combination of 100 mM guanidine hydrochloride, 100 mM -cyclodextrin, 

and 600 mM ammonium sulfate maintained the enzyme active for 2 months when 

stored at 4 °C (25).  The CaHCS was also unstable and could be stabilized with the 

same combination of reagents (Appendix 3).   

Saccharomyces cerevisiae HCS as isolated was analyzed for bound metal ions by 

inductively coupled plasma mass spectrometry (ICP-MS) (9), which suggested 87 ± 5 

% Zn2+.  Only Zn2+ could reactivate the enzyme after treatment with EDTA, suggesting 

that the ScHCS is a Zn-metalloenzyme (9).  Monovalent (Li
+
, Cs

+
, K

+
 and NH4

+
) and 

divalent (Mg
2+

, Mn
2+

 and Ca
2+

) cations tested exhibited various levels of inhibition. The 
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best monovalent cation for the activity of ScHCS was K
+
 which gave only slight 

inhibition (26). 

An ICP-MS analysis of TtHCS showed Cu2+, Fe2+, and Zn2+ at 0.25, 0.12, and 

0.04 mol/mol, respectively (27).   

 

 
Figure 1.2 Multiple sequence alignment at the amino acid level of HCS from Saccharomyces 

cerevisiae (ScHCS), Candida albicans (CaHCS), Aspergillus fumigatus (AfHCS), 
Schizosaccharomyces pombe (SpHCS) and Thermus thermophilus (TtHCS).  *, fully conserved 
residue; :, groups of strongly similar properties; ., groups of weakly similar properties. 



6 

 

 When treated with EDTA, TtHCS had negligible activity, but addition of Mg2+, 

Mn2+ and Co2+ restored the activity, suggesting TtHCS required the biologically relevant 

metal ions Mg2+ and Mn2+ for its activity (27). 

 

1.1.2 Kinetic Mechanism. 

For ScHCS, an ordered kinetic mechanism was proposed with -Kg binding to 

the enzyme prior to AcCoA and with CoA released before homocitrate (Figure 3) (8). 

Uncompetitive product inhibition by CoA against -Kg suggested an 

irreversible reaction consistent with the downhill hydrolysis of the intermediate 

homocitryl-CoA.  Studies with desulfo-CoA and citrate as dead-end inhibitors 

supported the proposed ordered kinetic mechanism.  When initial velocity patterns were 

obtained over a wide range of AcCoA, competitive substrate inhibition by AcCoA was 

observed with a KIAcCoA of 0.93 mM, suggesting binding of AcCoA to free enzyme, 

giving a non-productive EAcCoA dead-end complex (26).  Kinetic parameters for the 

WT enzyme at pH 7.5 were as follows : KAcCoA, 24 M; K-Kg, 1.3 mM; and kcat, 37 min-

1 (8). 

E E--Kg E--Kg-AcCoA E-Hc-CoA E-Hc E

-Kg

E-AcCoA

CoAAcCoA Hc

 

Figure 1.3 Proposed Kinetic Mechanism for Saccharomyces cerevisiae Homocitrate 

Synthase.  An ordered kinetic mechanism is shown with a dead-end E-AcCoA complex. 
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Other than kinetic parameters, there is little information available for the 

Schizosaccharomyces pombe HCS.  Kinetic parameters for WT SpHCS were as follows: 

KAcCoA, 11 M; K-Kg, 0.16 mM; and kcat, 300 min-1(28).   

 

1.1.3 Chemical Mechanism. 

A general acid-general base, Lewis acid chemical mechanism has been proposed 

for ScHCS (figure 4) (9).  -Ketoglutarate binds to the enzyme with its -carboxylate 

and -oxo groups coordinated to the active site Zn.  At this point Zn is coordinated with 

two imidazoles, a glutamate, the -carboxylate and -oxo groups of -Kg and a water 

molecule.  The general acid (B1H) hydrogen bonds to the carbonyl of -Kg, while the 

C5-carboxylate interacts with a protonated residue on the enzyme (B3H).  AcCoA binds 

with its methyl group positioned near the enzyme residue that will act as a general base 

(B2).  The general base abstracts a proton from the methyl of AcCoA which generates 

an enolate, this step comes to equilibrium prior to the condensation reaction.  A 

nucleophilic attack of the methyl of AcCoA on the carbonyl of -Kg is carried out 

resulting in the alkoxide of homocitryl-CoA, which then accepts a proton from B1H.  

The resulting homocitryl-CoA is then hydrolyzed by a Zn-activated water molecule, 

with B1 acting as a base. The products are then released. 

 

1.1.4 Site-directed Mutagenesis. 

A crystal structure was not available for HCS when the site directed mutagenesis 

was carried out.  The structure of a homolog of HCS, isopropylmalate synthase from 
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Mycobacterium tuberculosis (MtIPMS), was used to guide mutagenesis.  ScHCS and 

MtIPMS have a 27% sequence identity, and a 39% similarity. 

 

Figure 1.4  Proposed Chemical mechanism for Saccharomyces cerevisiae homocitrate synthase 
(9).  [I] -Kg binds to the enzyme with its -carboxylate and -oxo groups coordinated with the 
active site Zn.  [II] Formation of the enolate.  [III] Formation of the alkoxide of homocitryl-
CoA.  [IV] Potonation to give homocitryl-CoA. [V] Hydrolysis to give homocitrate and CoA. 

   

The active site residues, Glu155, His309, and Tyr320, are conserved in all HCSs 

for which sequence is available.  On the basis of the proposed chemical mechanism (9) 

and the crystal structure of MtIPMS (29), the roles of Glu155, His309 and Tyr320 were 

studied by site-directed mutagenesis (10).  From initial velocity and pH studies, it was 

suggested that H309 and E155 function as a catalytic dyad to deprotonate the methyl 

group of AcCoA, while hydrogen-bonding between E155 and H309 increased the 

basicity of H309.  The increased proton affinity would in turn aid in efficiently 

accepting a proton from the methyl of AcCoA.  Y320 was believed to aid in correct 

positioning of the substrates and/or the catalytic dyad (10).   
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On the basis of the SpHCS structure (28), active site residues involved in either 

binding of substrate and/or catalysis were mutated.  The T197S mutant enzyme gave a 

slight decrease in kcat, while T197A gave a 25 fold decrease, suggesting that a hydrogen-

bond between the hydroxyl of T197 and the C1 carboxylate of -Kg contributed to 

catalysis, likely by properly orienting the substrate.  Mutations of R43, which hydrogen-

bonds with carboxylate of -Kg, abolished activity completely, consistent with its role 

in protonating the carbonyl of -Kg in the condensation reaction.  Mutations in residues 

interacting with C5 carboxylate of -Kg impaired or abolished activity, the R163K 

mutant enzyme showed an increase in K-Kg of >150 fold.  Data suggested residues 

interacting with C5 carboxylate are important to -Kg binding. 

 

1.1.5 Location of Slow Steps. 

Isotope effects were measured for ScHCS to determine the location of slow steps 

along the reaction pathway.  A solvent deuterium kinetic isotope effect of unity 

suggested protons were not in flight in the rate-limiting transition state. A small primary 

kinetic deuterium isotope effect of 1.3 suggested the deprotonation of the methyl of 

AcCoA came to equilibrium prior to a rate-limiting condensation to form the alkoxide 

of homocitryl-CoA. 

Values of about 1.5 and 2 were estimated for D
V and D(V/KAcCoA), respectively, 

for E155A.  Data suggested formation of lower amount of the enolate of AcCoA prior 

to condensation, consistent with E155 increasing the basicity of H309 via direct 

hydrogen-bonding.  Primary kinetic deuterium isotope effects of 1.8 and 1.4 were 

observed on V and V/KAcCoA for Y320F mutant enzyme, consistent with the enolization 
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step being rate limiting at saturating substrate concentration, but with some substrate 

stickiness on the basis of the smaller isotope effect on V/KAcCoA compared to V. 

 

1.1.6 Mechanism of Regulation. 

The kinetic mechanism of regulation of ScHCS by Na+ and lysine has been 

studied (26).  Na+ is an activator at low concentrations and an inhibitor at high 

concentrations.  The inhibition by Na+ is eliminated at high concentrations of AcCoA, 

and thus, the monovalent cation as an inhibitor is proposed to bind the same site as the 

AcCoA.  Feedback inhibition by lysine was linear competitive against -Kg over the 

physiological concentration range (≤ 5 mM).  Binding of lysine to HCS when measured 

by fluorescent titration was biphasic, consistent with negative cooperativity of binding.  

In the absence of a crystal structure for HCS, lysine binding to an allosteric site, 

stabilizing a less active conformer of the enzyme, was suggested. 

L-Lysine was also competitive against -Kg and non-competitive against 

AcCoA for the SpHCS.  When the key residues Asp123 and Glu222 interacting with -

amino group of lysine, were mutated to Asn and Gln, respectively, inhibition by lysine 

was abolished (30). 

 

1.1.7 Structural Studies. 

The structure HCS from S. pombe was the first one solved (28).  The SpHCS is a 

homodimer with N-terminal and C-terminal domains.  The N-terminal domain forms an 

(/)8 TIM barrel, while the C-terminal domain consists of two subdomains, 1 and 2.  

Subdomain 1 has a  sheet with three consecutive 310 helices forming a lid motif, while 
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subdomain 2 consists of a 3-helix bundle.  The C-terminal lid domain of monomer A 

closes on the TIM barrel of monomer B. The active site of SpHCS is located within the 

C-terminal end of the TIM barrel. The divalent cation in the active site has octahedral 

geometry and is coordinated to E44, H224, H226 and the -carboxylate and  -oxo 

groups of -Kg.  Upon binding of -Kg, pronounced structural changes occur in the 

linker between 4 and 4 of the TIM barrel, which is disordered in apoenzyme.  

Superimposition of the active sites of the apo-enzyme and -Kg-bound closed complex 

showed the carboxylate groups of D123 and E222 rotating away from the site to 

accommodate C5 of -Kg, while H103, R43, R163 and S165 re-orient towards the 

center of the  barrel to form hydrogen bonds and/or salt bridges with -Kg.  The -

carboxyl and -oxo groups of -Kg hydrogen bond to T197 and R43, firmly 

positioning the substrate (Figure 1.5).  

A molecular basis for the feedback regulation by lysine was proposed on the 

basis of a comparison of the lysine-bound structure with that of the -Kg-bound 

structure and/or that of the free enzyme.  With lysine bound, the structure (30) was 

similar to the substrate bound structure (28) with a few important differences.  The lid 

motif from the C-terminal domain, which regulates the substrate access to the 

neighboring active site, was in a closed conformation.  When the active sites were 

compared, the positions of the four key residues, H103, D123, R163, and E222 were 

significantly different in the lysine and -Kg bound structures. Histidine-103 and R163 

were rotated towards -Kg (28) forming hydrogen bonding with its C5-carboxylate, 

while in the lysine-bound structure these residues moved away and D123 and E222 
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were rotated inwards forming hydrogen-bonds and/or salt bridges with the -amine 

group of lysine.  These findings were supported by kinetic data which showed that L-

lysine was competitive against -Kg. 

 

Figure 1.5  Superimposition of the active sites of the SpHCS apo- and -Kg bound enzymes.  
Active site residues of the apo-enzyme (PDB code 3IVS) are shown as green carbons and -Kg 
bound enzyme (PDB code 3IVT) as gray carbons.  The active site Zn2+ is shown as a sphere in 
gray.  Hydrogen bonds are shown as dashed lines in black. 
 

The structure of TtHCS has also been solved (27).  The binary complex of 

enzyme and -Kg had a metal ion which was identified as Cu2+ on the basis of the 

electron density.  The enzyme-homocitrate complex, derived from the addition of -Kg 

and AcCoA to the crystallization medium with enzyme had the same metal ion.  A third 

structure, E-KgMg2+ was derived from apo-enzyme (treatment with EDTA), with the 

addition of Mg2+ and -Kg during crystallization.  TtHCS has an overall structure 

similar to that of SpHCS.  The α-carboxylate and α-oxo groups of α-Kg are coordinated 



13 

 

to the bound divalent metal ion and the α-carboxylate accepts a hydrogen bond from 

T166, while the α-oxo group interacts with the guanidium group of R12.  The side 

chains of A164 and L94 make van der Waals contact with the C3 and C4 atoms of α-

Kg, and the C5-carboxylate is stabilized by hydrogen bonds and ionic interactions with 

H72 and R133 and, via a water molecule, interacts with S135.  Lysine bound to the 

active site of TtHCS exhibits the same interactions as -Kg with the divalent metal ion, 

T166, A164 and L94.  However, the α-amino of lysine is also within hydrogen bonding 

distance to Tyr297* (the * indicates the residue is from the other subunit of the dimer), 

and the ε-amino group of lysine is stabilized by interactions with D92 and E193 (see 

Chapter 2 for figure).  The most significant difference in binding of α-Kg and lysine is 

in the displacement of residues surrounding the C5-carboxylate of α-Kg to 

accommodate binding of the ε-amino group.  The overall rearrangement includes: 1) 

movement of R133 away from the active site, forming an ion pair with E43; and 2) 

movement of H72, which formed a hydrogen bond to the C5-carboxylate of α-Kg, to 

stack with the side chain of R12, which formed a hydrogen bond to the α-oxo group of 

α-Kg.  Overall, there is a 44 Å displacement of the position of the α11 helix, which 

includes Y297*, moving it closer to the active site (27). 

 

1.2 SACCHAROPINE DEHYDROGENASE 

The last reaction in the AAA pathway is catalyzed by saccharopine 

dehydrogenase (SDH, N6-(glutaryl-2)-L-lysine: nicotinamide adenine dinucleotide 

(NAD) oxidoreductase (L-lysine forming); (EC 1.5.1.7)). The enzyme catalyzes the 

reversible pyridine nucleotide dependent oxidative deamination of saccharopine (Sacc) 
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to generate -Kg and Lys using NAD as an oxidant (Figure 1) (3).  The enzyme from 

Saccharomyces cerevisiae (ScSDH) is a monomer with a reported molecular weight of 

~39 000 with one binding site for reactants (31). 

 

1.2.1 Kinetic Mechanism. 

A sequential kinetic mechanism has been proposed for ScSDH with binding of 

NAD followed by Sacc, while release of the products, -Kg and Lys is random and 

precedes release of NADH (18).  Competitive inhibition by lysine verses NADH 

indicated formation of a dead-end ELys complex, and -Kg gave substrate inhibition 

that was uncompetitive versus NADH at saturating Lys concentration, suggesting the 

presence of a dead-end ENAD-Kg complex; this inhibition requires the ENAD 

complex to exist in the steady-state, i.e. release of NAD must contribute to rate 

limitation.  Results from the product and dead-end inhibition experiments were 

consistent with the proposed mechanism (Figure 6) 

 

Figure 1.6 Proposed Kinetic Mechanism of ScSDH.  The reaction is shown in the non-
physiological direction with NADH binds prior to -Kg and Lys.  Ordered release of Sacc prior 
to NAD is shown.  
 

The substrate dependence of isotope effects, e.g. primary deuterium isotope 

effects, provides information on kinetic mechanism.  In the case of an ordered 
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mechanism V/K for the first substrate bound is equal to the on-rate for the reactant, 

which is not sensitive to isotopic substitution, and D(V/K) will be equal to 1.  On the 

other hand, D(V/Kb) will be finite if the isotopic step contributes to rate limitation.  In 

the case of a random kinetic mechanism, values of D(V/Ka) and D(V/Kb) will be finite.  If 

the values of D(V/Ka) and D(V/Kb) are equal, data would suggest either a rapid 

equilibrium random mechanism, or that both reactants are equally sticky suggesting a 

steady state random mechanism.  If they are not equal, reactant with the larger D(V/K) 

provides an indication of preferential release from the central complex. (32).  For 

ScSDH, D(V2/KNADH) was close to unity at neutral pH, supporting the proposed ordered 

binding of NADH to free enzyme (18).  However, D(V2/KLys) and D(V2/K-Kg) had finite 

values suggesting random addition of these two substrates.  A larger value was observed 

for D(V2/K-Kg), suggesting that -Kg is preferentially released from ENADHLys-

Kg complex prior to Lys.  In addition, D(V2) was similar to 
D(V2/KLys) suggesting the 

off-rate for lysine from the ENADHLys-Kg complex is similar to off-rate for NAD 

from the ENAD complex, corroborating the existence of ENAD in the steady state 

(18).   

The Keq for ScSDH was experimentally determined by carrying out the reaction 

at fixed concentrations of all the reactants except for NAD, and monitoring change in 

absorbance at 340 nm.  The empirical value of Keq estimated was 3.9 × 10-7 M, similar 

to the value determined by the Haldane relationship (18). 

 

 

 



16 

 

1.2.2 Use of Inhibitors to Map the Active Site. 

Extensive kinetic studies with substrate analogs were carried out to map the 

interaction between the functional groups on the substrates and the residues in the 

substrate binding pocket (33).  Inhibition by a number of nucleotide analogs suggested 

that most of the binding energy came from the AMP portion of the molecule, and that 

the conformation generated upon binding of oxidized and reduced dinucleotide might 

be different.  The presence of a 2’-phosphate had an adverse effect on binding of 

substrates.  A hydrophilic binding pocket was suggested for the nicotinamide ring on 

the basis of a decreased affinity for 3-acetylpyridine adenine dinucleotide compared to 

NAD.  The -Kg binding pocket was studied using aromatic and aliphatic keto acid 

analogs.  An optimal length of three carbons from the -keto group up to and including 

the side chain carboxylate was estimated.  The distance between the C1, C2 unit and the 

C5 carboxylate was important and the -oxo contributed a factor of about 10 to affinity.  

The -Kg binding pocket is larger and more flexible than the lysine binding pocket, 

which is more hydrophobic. Lysine was the only substrate found; ornithine was not a 

substrate.  Extensive inhibition studies using aliphatic amino acids suggested that the 

amino acid binding pocket could accommodate a branch at the -carbon, but not at the 

-carbon (33). 

 

1.2.3 Chemical Mechanism. 

The pH dependence of kinetic parameters provides information on the optimal 

protonation state of groups on reactant and enzyme involved in binding and/or catalysis.  

The pH dependence of V is determined at saturating substrate concentrations, while V/K 
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is obtained at saturating concentrations of all substrates but one which is maintained 

limiting.  Thus, the V profile reflects the groups involved in catalysis and V/K reflects 

groups on enzyme and/or substrate involved in binding and/or catalysis (32). 

A proton shuttle mechanism was suggested for the ScSDH (Figure 7) with two 

groups on enzyme proposed as acid-base catalysts.  Once NAD and Sacc are bound, a 

group with a pKa of 6.2 accepts a proton from the secondary amine of Sacc as it is 

oxidized to the imine [II].  The conjugate acid then does not participate further until Lys 

is formed.  The general base, possibly a Lys or His residue with a pKa of 7.2 accepts a 

proton from H2O as it attacks the Schiff base carbon forming a carbinolamine 

intermediate [III].  The same residue then donates its proton to the carbinolamine 

nitrogen to form a protonated carbinolamine [IV].  Collapse of the carbinolamine occurs 

with the conjugate base of the group with a pKa of 7.2,.accepting the proton from the 

hydroxyl of the carbinolamine and generating -Kg and Lys [V].  The amine nitrogen 

of Lys is then protonated by the residue that accepted a proton from secondary amine of 

Sacc in the very first step [VI] (19). 

 

1.2.4 Isotope Effects and Chemical Mechanism. 

Primary deuterium isotope effect (19) for V2/KNADH was unity while finite values 

of 1.56 ± 0.05 and 1.9 ± 0.1 for D(V2/KLys) and D(V2/K-Kg) respectively, were observed.  

D(V2/K-Kg) > D(V2/KLys) suggested preferential release of -Kg from ENADHLys-

Kg complex.  The value of 1.45 ± 0.07 for D(V2) was similar to that for D(V2/KLys) 

suggesting steady state existence of ENAD.  Finite values for the primary deuterium 

isotope effects reflected hydride transfer contributing to rate limitation.  D(V2) was pH 
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independent but D(V2/KLys) decreased as pH was increased.  The data suggested that pH 

and isotope sensitive steps were not the same and hydride transfer step was not 

completely rate limiting in the overall reaction.  Isotope insensitive step contributed to 

V2 at low pH. 

 

Figure 1.7 Proposed Chemical Mechanism for Saccharomyces cerevisiae SDH (19).  [I] Central 
complex ENADSacc once NAD and Sacc bind; [II] Schiff base intermediate; [III] 
Carbinolamine intermediate; [IV] Protonated carbinolamine; [V] Central complex ENADH-
KgLys; [VI] Protonated Lys. With the exception of Sacc, no stereochemistry is implied. 
 

The solvent deuterium isotope effects were finite with D2O
V2 and D2O

V2/KLys of 

2.2 ± 0.1 and 1.9 ± 0.1, suggesting significant contribution of proton transfer steps to 

rate limitation of the overall reaction.  Larger solvent isotope effects as compared to 

primary kinetic isotope effects suggest imine hydrolysis step contributing more to rate-

limitation than hydride transfer step. 

In order to determine whether the substrate and solvent isotope effects were on 

the same step along the reaction pathway, multiple isotope effects were carried out.  If 
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the isotope sensitive step is completely rate-limiting, then isotope effects will not 

change in presence of the second isotope.  An increase in the isotope effects will be 

seen if the step is not completely rate-limiting.  If the substrate and solvent isotope 

effects are on two different steps, then deuteration of the substrate would make the 

deuterium-sensitive step more rate-limiting as a result decreasing the observed solvent 

isotope effect.   

Multiple isotope effects can be carried out in two ways 1) primary substrate 

deuterium isotope effect in D2O; 2) solvent isotope effects with NADD as the 

dinucleotide (32).  In the case of ScSDH, both multiple isotope effects were measured 

on V2 and V2/KLys.  There was no change in the solvent isotope effects when obtained 

using NADD as compared to NADH, D2O(V2)D = 1.76 ± 0.08 and D2O(V2/KLys)D = 1.86 ± 

0.08.  Similarly, there was no change in primary isotope effects on D(V2) and D(V2/KLys) 

when measured in D2O as against H2O, D(V2)D2O = 1.50 ± 0.15 and D(V2/KLys) D2O = 1.55 

± 0.14.  Data suggested a concerted proton and hydride transfer that is completely rate-

limiting in the overall reaction.  However, the isotope effect on V2/K-Kg was greater 

than that observed for V2/KLys at pH 7.  Moreover, with decrease in pH, D
V2/KLys 

increased and D2O(V2)D decreased as compared to D2O(V2)H, suggesting that hydride 

transfer was not the only rate-limiting step.  Thus, hydride transfer had a proton transfer 

step in addition to another proton transfer step such as hydrolysis of imine (19). 

When pre-steady-state kinetic studies were carried out in the direction of lysine 

production, a prominent burst was observed at the beginning of the progress curve.  The 

calculated burst rate was 8.8 ± 1.0 s-1 and this was followed by a steady-state rate of 0.8 

± 0.1 s-1, similar to V/Et.  The calculated burst amplitude was about 30% of Et.  The 
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burst indicated a slow step occurred after the formation of NADH (34).  The pH 

dependence of isotope effects suggested that a step other than hydride transfer becomes 

rate limiting as the pH was increased (19). It was proposed that the slow step was 

protonation/deprotonation of carbinolamine nitrogen formed as an intermediate in imine 

hydrolysis (34). 

 

1.2.5 Structure of ScSDH. 

The structure of the apo-enzyme form of ScSDH was solved at 1.64 Å 

resolution.  The enzyme is comprised of two domains, an N-terminal domain and a C-

terminal domain with a narrow cleft between them (35).  The two domains were 

structurally similar and include a Rossmann fold.  The crystal structure also showed a 

disulfide bond between C205 and C249 at the center of the Rossmann fold in the 

dinucleotide binding site.  It was suggested that this disulfide bridge might be 

physiologically significant, since its presence did not significantly change the 

conformation of the surrounding residues, and the two cysteines were conserved among 

all known fungal SDHs.  A molecular model of the ternary complex of ScSDH, NAD 

and Sacc suggested K77 and E122 were potentially important in substrate binding 

and/or catalysis (35).   

Additional structural information was obtained from three subsequent crystal 

structures of ScSDH with sulfate, AMP or the -Kg analog oxalylglycine (OG) bound, 

respectively (36).  In the sulfate bound structure, the sulfate ion mimics a substrate 

carboxylate and binds in the cleft between the two domains.  Binding induced a rotation 

of 11.8° between the domains leading to 65% closure of the active site.  Oxalylglycine 
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binds with its carboxylates bound to R18 and R131, and its carbonyl oxygen within 

hydrogen-bonding distance to K77 and H96.  The structure corroborates the prediction 

from kinetic data (33) that the optimum number of carbon atoms between R18 and 

R131 is five.  In the EAMP structure, AMP is bound to the dinucleotide binding 

domain via eight hydrogen bonds and hydrophobic interactions resulting in domain I 

rotating by 3.9° with regard to domain II.  On the basis of the pH dependence of Ki for 

AMP (33), two functional groups on the enzyme (one protonated and one unprotonated) 

were involved in the binding of AMP.  From structural studies the unprotonated group 

was proposed to be D227, which accepts a hydrogen bond from the AMP ribose.  The 

AMP-bound structure also showed that the two cysteines were in close proximity to the 

phosphate moiety of AMP.  It was proposed that AMP binds only to the dithiol form of 

the enzyme, which is catalytically active.   

The two active site thiols, C205 and C249, form a disulfide bridge in the sulfate- 

and OG-bound structure, but are present as the reduced dithiol in the AMP-bound 

structure.   

On the basis of sulfate-, AMP- and OG-bound structures a semiempirical model 

of the active site was constructed with NAD- and Sacc-bound. The model did not 

consider the conformational change that must occur on binding of both substrates, but 

predicted electrostatic and hydrogen-bonding interactions between Sacc and active site 

residues that were used to guide site directed mutagenesis (see section Dissecting the 

Active Site) (36). 
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1.2.6 Role of Active Site Thiols. 

As discussed above, a pair of thiols was observed in the dinucleotide binding 

site as a disulfide in the structure of apo-enzyme, but as a dithiol in the AMP-bound 

structure (36).  When treated with 5,5’-dithiobis (2-nitrobenzoate) (DTNB), 1.2 – 1.5 

thiols/mol enzyme were modified, and NADH protected against modification (37).  A 

RedOx titration of the WT enzyme with monobromobimane (mBBr) gave an average 

E’0 value of -200 ± 10 mV at pH 7.0. 

 

 

Figure 1.8  Semiempirical Model of the ScSDHNADSacc Ternary Complex.  The interactions 

between the enzyme residues and substrates are shown as dashed lines in gray.  Glutamate 78 or 

E122 (:B1 in Figure 7) and K77 or H96 (:B2 in Figure 7) were proposed to be the catalytic 

residues.  It was also proposed that Sacc might form an intramolecular electrostatic bond, thus 

folding itself to accommodate the highly hydrophilic active site.  NAD presents its pro-R face 

for hydride transfer.  Reprinted with permission from Andi, B., Xu, H., Cook, P. F., and West, 
A. H. (2007) Crystal Structures of Ligand-Bound Saccharopine Dehydrogenase from 
Saccharomyces cerevisiae, Biochemistry 46, 12512–12521.  Copyright 2007 American 
Chemical Society. 
 

A mutant enzyme where C205, one of the thiols, was replaced by S, gave the 

mutant enzyme a much higher V/Et and V/KEt in both reaction directions at pH 7 

compared to the WT enzyme.  The kinetic mechanism of C205S remained similar to the 

WT enzyme.  The primary kinetic and solvent isotope effects were larger than those of 

WT enzyme.  Thus, the slow step in the reaction catalyzed by WT enzyme must be 
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faster in the reaction catalyzed by C205S.  However, the multiple isotope effects for 

C205S were similar to WT suggesting that hydride transfer and imine hydrolysis 

contribute more to rate limitation in C205 but the relative rates of the two steps to one 

another are the same.   

At pH 6, a >10 fold higher rate was observed for the WT enzyme treated with 

tris(2-carboxyethyl)phosphine (TCEP) as compared to untreated enzyme.  On the basis 

of maximum rates, it was proposed that WT had 10-20% of dithiol form of enzyme and 

the disulfide form seemed to lock the enzyme in a less active conformation.   

In the highly reducing environment of the cytoplasm, the possibility of forming 

a disulfide bridge is low. In addition, the presence of thioredoxin reductase in the 

cytoplasm may prevent disulfide bond formation (38).   

 

1.2.7 Dissecting the Active Site. 

On the basis of semiempirical model of the ENADSacc complex (35, 36) a 

number of ionizable residues are found in the active site.  An alignment of the primary 

sequences from C. albicans, Pichia guilliermondii, S. cerevisiae, A. fumigatus, and C. 

neoformans SDHs indicates all ionizable residues in the active site are conserved, 

suggesting they are important to the overall reaction.  To determine the contribution of 

each of these residues to binding and/or rate enhancement, individual mutations of each 

residue were made, and double mutants were also made to estimate the interrelationship 

between the residues. 

The role of E78 and E122 was studied by changing these residues to either Q or 

A, alone and as a pair where both residues were mutated to Q.  The kinetic mechanism 
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was qualitatively similar to that of WT SDH with the exception that for E78A, -Kg 

binds to free enzyme and the ENADH complex (39).  There was not much change in 

V/Et for any of the mutants, but V/KLysEt decreased significantly suggesting a decrease 

in the affinity for Lys.  This result suggested that absence of E122 and E78 affected the 

binding constant for Lys (39).  Isotope effects were similar to those of WT for the 

E122Q, E87Q and E122Q/E87Q mutants suggesting chemistry still contributed to rate 

limition.  The pH dependence of kinetic parameters changed drastically with pKa values 

shifted to low and high pH by ≥ 1.5 pH units suggesting an effect on the basicity of the 

catalytic residues.   

The role of another conserved residue K99 was studied by changing it to M (40). 

K99 was proposed to hydrogen-bond to the -amine of Sacc (36).  When mutated to M, 

the charge balance of the active site is lost resulting in poor binding of the substrates 

indicated by a decrease in V/K values as compared to those of the C205S enzyme.  The 

primary deuterium isotope effects on V and V/KLys increased, while solvent isotope 

effects decreased suggesting a change in the partition ratio of the imine intermediate to 

favor hydrolysis.   

Aspartate319 is close to the carboxamide side chain of nicotinamide ring of 

NAD.  Changing D319 to A reduced the negative charge and increased the positive 

charge of the active site.  A 33-fold decrease in V/KLys suggested D319 was involved in 

binding of the substrate.  A decrease in isotope effects compared to C205S suggested a 

non-isotope sensitive step had become slower in D319A mutant enzyme.  The slower 

step was proposed to be a conformational change that occurs on binding of NADH. 
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1.3 MAIN PROJECTS AND OTHER CONTRIBUTIONS. 

In this dissertation, two projects are discussed. The first one is on the 

mechanism of homocitrate synthase from Thermus thermophilus.  The second project 

concerns the roles of active site residues of saccharopine dehydrogenase from 

Saccharomyces cerevisiae.  In chapter 2, the kinetic mechanism of HCS from T. 

thermophilus is discussed.  This chapter also has a report on the slow steps along the 

reaction pathway and regulation by lysine.  In chapter 3, the roles of K77 and H96, two 

of the two active site residues, are determined.  Lysine77 and H96 were proposed as 

catalytic residues for SDH from S. cerevisiae.  In chapter 4, the role of K13 and E16 

was probed.  Although not directly involved in catalysis, the residues are essential for 

optimum charge distribution and positioning of the catalytic residues.   

I have also contributed to a number of other published studies that are not 

discussed in the dissertation.  Publications that resulted from the additional studies are 

listed below. 

1. Bobyk, K. D., Kim, S. G., Kumar, V. P., Kim, S. K., West, A. H., and Cook, P. 

F. (2011) The Oxidation State of Active Site Thiols Determines the Activity of 

Saccharopine Dehydrogenase at Low pH. Arch. Biochem. Biophys. 513, 71-80. 

2. Wickham, S. E., Regan, N., West, M. B., Kumar, V. P., Thai, J., Li, P. K., Cook, 

P. F., and Hanigan, M. H. (2011) Divergent Effects of Compounds on the 

Hydrolysis and Transpeptidation Reactions of Gamma-Glutamyl 

Transpeptidase. J. Enz. Inhib. Med. Chem. doi:10.3109/14756366.2011.597748. 

3. Mozzarelli, A., Bettati, S., Campanini, B., Salsi, E., Raboni, S., Singh, R., 

Spyrakis, F., Kumar, V. P., and Cook, P. F. (2011) The multifaceted pyridoxal 
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5'-phosphate-dependent O-acetylserine sulfhydrylase. Biochim. Biophys. Acta. 

1814, 1497-1510. 

4. Tyapochkin, E., Kumar, V. P., Cook, P. F., and Chen, G. (2011) Reaction 

product affinity regulates activation of human sulfotransferase 1A1 PAP 

sulfation. Arch. Biochem. Biophys. 506, 137-141. 

5. Tian, H., Guan, R., Salsi, E., Campanani, B., Bettati, S., Kumar, V. P., Karsten, 

W. E., Mozzarelli, A., and Cook, P. F. (2010) Identification of the structural 

determinants for the stability of substrate and aminoacrylate external Schiff 

bases in O-acetylserine  sulfhydrylase-A. Biochemistry 49, 6093-6103. 
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CHAPTER 2 

Mechanisms of Homocitrate Synthase from Thermus thermophilus 

“Reproduced with automatic permission from [Kumar, V. P., West, A. H., and Cook, P. F. (2011) Kinetic 

and chemical mechanisms of homocitrate synthase from thermus thermophilus, J. Biol, Chem, 286, 29428 

– 29439]. Copyright [2011] The American Society for Biochemistry and Molecular Biology, Inc.” 

 

2.1 INTRODUCTION 

The -aminoadipate (AAA) pathway for lysine biosynthesis is nearly unique to 

higher fungi, including human and plant pathogens and euglenoids; an exception is the 

thermophilic bacterium Thermus thermophilus.  The AAA pathway is comprised of 

eight enzymatic reactions catalyzed by seven enzymes.  Homocitrate synthase (HCS) 

catalyzes the first and regulated step in this pathway, the condensation of acetyl-CoA 

(AcCoA) and -ketoglutarate (-Kg) to give homocitrate and coenzyme A (CoASH) 

(Scheme 2.1) (1, 2).  As a result, it is a potential target for the development of new 

antifungals against human pathogens such as Candida albicans and Aspergillus 

fumigatus (3). 
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Scheme 2.1  Reaction Catalyzed by Homocitrate Synthase. 

 

The best studied of the homocitrate synthases is that from Saccharomyces 

cerevisiae (4-8).  The homocitrate synthase from Saccharomyces cerevisiae (ScHCS) is 
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a Zn-metalloenzyme (8).  The ScHCS and that from Candida albicans (CaHCS) are not 

particularly stable as isolated; but they are stable for at least 2 months at 4 °C in the 

presence of the additives, guanidine hydrochloride, -cyclodextrin, and (NH4)2SO4 (5, 

Appendix 3).  In the absence of the additives, however, the enzymes rapidly lose 

activity, and this limits the type of experiments that can be carried out, especially 

structural studies (5). 

An ordered kinetic mechanism has been proposed for ScHCS and CaHCS with 

-Kg binding prior to AcCoA (4, unpublished data of VPK in this laboratory).  Lysine 

is a feedback inhibitor of ScHCS, and is competitive vs -Kg.  Inhibition was thought to 

result from binding to an allosteric site, stabilizing a less active conformer of the 

enzyme. 

A chemical mechanism for ScHCS has been proposed in which -Kg is bound 

to the active site Zn via its -carboxylate and -oxo groups, in the vicinity of the 

thioester of AcCoA.  A general base accepts a proton from the methyl group of AcCoA 

as it attacks the thioester of AcCoA, and a general acid protonates the carbonyl of -Kg 

in the formation of homocitryl-CoA.  The general acid then acts as a base in the 

deprotonation of Zn-OH2 in the hydrolysis of homocitryl-CoA to give homocitrate and 

CoA (8).  Isotope effect data suggest the product of the condensation of AcCoA and -

Kg is the alkoxide, which is then protonated by a general acid in the next step (8). 

Multiple sequence alignment of the residues around the active site of HCS show 

conservation of ScHCS residues E155, H309* (* indicates a residue from the other 

monomer), and Y320 in TtHCS, isopropylmalate synthase (IPMS), and citramalate 
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synthase (CMS).  Site-directed mutagenesis indicates that E155 and H309* form the 

catalytic dyad that is proposed to deprotonate the methyl of AcCoA and Y320 may be 

involved in orienting the reactants and/or the catalytic dyad for catalysis (6). 

In most bacteria, lysine is synthesized from aspartic acid via the 

diaminopimelate pathway.  However, in Thermus thermophilus, lysine is synthesized 

via the AAA pathway.  Crystal structures of TtHCS recently have been solved (10), but 

a detailed study of the kinetic and/or chemical mechanism of TtHCS has not been 

carried out.  In this manuscript, the TtHCS has been subjected to initial rate, and isotope 

effect studies, and the pH dependence of kinetic parameters has been measured.  Based 

on these results kinetic and chemical mechanisms are proposed for the TtHCS enzyme 

and comparisons are made to those proposed for ScHCS. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Chemicals.  

-Ketoglutarate, AcCoA, CoA, DCPIP, oxaloacetate, oxalate, EDTA and 

Chelex 100 were from Sigma.  N-oxalylglycine was obtained from Frontier Scientific.  

Imidazole, KCl, CaCl2, MgCl2, MnCl2, ZnCl2, CoCl2 and NiCl2 were from Fisher 

Scientific.  The buffers, Taps, Hepes, Bis-Tris and Mes, were from Research Organics, 

while the NiNTA resin was purchased from 5 Prime.  MagicMedia used for cell growth 

was purchased from Invitrogen.  Perdeuterioacetic anhydride (98 atom% D) and D2O 

(99 atom% D) were purchased from Cambridge Isotope Laboratories, Inc.  

Deuterioacetyl-CoA was prepared from CoA and perdeuterioacetic anhydride according 

to the method of Simon and Shemin (11). 
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2.2.2 Cell Growth and Expression.   

Histidine-tagged homocitrate synthase from T. thermophilus was previously 

cloned into the pET26b
+
 (Novagen) vector (12).  The TtHCS clone was transformed 

into Escherichia coli BL21(DE3) RIL star cells and the culture was grown in 

MagicMedia containing chloramphenicol (34 µg/ml) and kanamycin (10 µg/ml) at 37˚C 

overnight.  Cells were lysed by sonication in 50 mM Hepes, pH 7.5, containing 30 mM 

KCl, 5 mM imidazole and enzyme was purified using the Ni-NTA resin, with elution at 

360 mM imidazole.  The enzyme was >95% pure by SDS-PAGE.  The enzyme was 

stored at 4˚C in the elution buffer. 

 

2.2.3 Enzyme Assay.   

HCS activity was measured using the dichlorophenol indophenol (DCPIP) assay 

developed previously (5), monitoring the decrease in absorbance at 600 nm as DCPIP is 

reduced by CoASH.  Reactions were carried out in quartz cuvettes with a path length of 

1 cm and a final volume of 0.5 ml containing 50 mM Hepes, pH 7.5, 0.1 mM 

dichlorophenol indophenol (DCPIP), and variable concentrations of -Kg and AcCoA.  

The concentrations of AcCoA and DCPIP were estimated spectrophotometrically, using 

the following extinction coefficients: AcCoA, 260 = 16,400 M
-1 

cm
-1

; DCPIPred, 600 = 

19,100 M
-1 

cm
-1

.  Assays were carried out at 25˚C and reactions were thermally 

equilibrated to allow completion of the reaction between the small amount of CoA in 

the AcCoA solution and DCPIP before adding the enzyme to the reaction mixture. 
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2.2.4 Divalent Metal Ion Specificity.   

In order to determine the effect of metal ions on TtHCS, apo-enzyme was 

prepared by dialyzing the isolated enzyme against 50 mM Hepes, pH 7.5 containing 100 

mM EDTA, followed by dialysis against 50 mM Hepes, pH 7.5 buffer.  All reagents 

used either for dialysis or enzyme assay, were passed through Chelex resin to remove 

metal ions.  All reagents used in these experiments were stored in polypropylene bottles 

and tubes.  The effect of the presence of divalent cations such as Mg
2+

, Mn
2+

, Ca
2+

, 

Ni
2+

, Zn
2+

 and Co
2+ 

and
 
monovalent cations such as Na

+
 and K

+ 
on the

 
activity of TtHCS 

was tested by initial velocity measurements.  The enzyme assay was carried out as 

described above. 

 

2.2.5 Initial Velocity Studies.  

To determine the kinetic mechanism of TtHCS, initial velocity patterns were 

obtained by measuring the initial rate as a function of AcCoA
 
concentration at different 

fixed concentrations
 
of -Kg (or oxaloacetate).  The reaction typically consisted of 50 

mM Hepes, pH 7.5, 0.1 mM DCPIP, 200 µM MgCl2, 1 µM TtHCS and variable 

concentrations of -Kg and AcCoA.  Similar initial velocity patterns were also obtained 

with 200 µM MnCl2 as the metal ion in place of MgCl2. 

Inhibition patterns were obtained by measuring initial rates at different 

concentrations of one reactant at a fixed concentration of the other (AcCoA was 

maintained at 50 µM, while -Kg was maintained at 1 mM) in the absence and presence 

of inhibitor.  Inhibition by CoASH, made use of the disappearance of absorbance at 232 

nm (reflecting the thioester bond of AcCoA) using an 232 = 4500 M
-1

cm
-1

 (4).  The 
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apparent inhibition constant for lysine was also measured as a function of pH from 5.9 – 

8.8 at fixed concentrations of -Kg (100 µM) and AcCoA (50 µM) in presence of 

MgCl2 (200 µM). 

 

2.2.6 pH Studies.   

It is important to confirm that the enzyme is stable for the duration of the assay 

in the pH range that is being tested.  To test this, the enzyme was pre-incubated at the 

given pH and aliquots were removed at regular time intervals and assayed at pH 7.5, 

where the enzyme is known to be stable.  The pH dependence of V and V/K was 

obtained by measuring the initial rate as a function of one substrate, maintaining the 

other at a fixed concentration (-Kg, 5 mM; AcCoA, 5 µM).  Initial velocity patterns 

were obtained over the pH range of 6 – 9 and Km values estimated for both -Kg and 

AcCoA (not done for Mg
2+

.)  This information determined the concentration range of 

substrates to be used over the entire pH range.  Buffers were maintained at 50 mM 

concentration in the following pH range; Bis-Tris, 6.0 - 7.0; Hepes, 7.0 - 8.0; Taps, 8.0 - 

9.0. The pH of the reaction mixture was recorded before and after the reaction with little 

difference noted.  The data were then analyzed by plotting logV or logV/K vs pH.  

 

2.2.7 Isotope Effects.  

Primary deuterium kinetic isotope effects were measured by direct comparison 

of initial velocities, where AcCoA-d3was used as the deuterated substrate and -Kg was 

fixed at saturating concentration (400 µM).  Solvent deuterium isotope effects were 

obtained by direct comparison of initial rates as a function of -Kg at different fixed 
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levels of AcCoA in H2O and D2O over the pH(D) range 6 - 9 (around the pH-

independent region of  the V (or V/K) pH-rate profile).  For these studies, all the 

reagents including buffers, substrates and DCPIP were first dissolved in a small amount 

of D2O, then lyophilized overnight to remove H2O and re-dissolved in the required 

volume of D2O.  The pH(D) was adjusted using KOD or DCl.  The initial rate was 

measured in H2O and D2O. 

 

2.2.8 Data Processing.  

Data were fitted to the appropriate rate equation using the EnzFitter program 

from BIOSOFT, Cambridge, UK.  In some cases data could not be fitted by the 

computer program, and kinetic parameters were obtained from graphical analysis.  

Initial velocity data with MnCl2 were fitted to eq. 1.  Competitive and uncompetitive 

inhibition data were fitted using eqs. 2 and 3.  Isotope effect data were fitted to eq. 4. 
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In eqs. 1-4, v and V are initial and maximum velocities, respectively, A, B, and I are 

substrate and inhibitor concentrations, Ka and Kb are Michaelis constants for substrates 

A and B, respectively, while Kis and Kii are slope and intercept inhibition constants, 

respectively.  In eq. 4, Fi is the atom fraction of deuterium in the labeled component, 

while EV/K and EV is the isotope effect minus 1 on the given parameter. 

Data for lysine inhibition were fitted to eq. 5 (13): 

 



logv  log
V dAA

2 
c bAA

2














 (5) 

 

where b, c, and d are defined in eqs. 6-8. 

 



b  d 
SLo

INTo
 (6) 



c  d
SL

INTo









 (7) 



d 
SLo  SL

INT  INTo
 (8) 

 

The parameters SLo and SL∞ refer to the slope of the double reciprocal plot with the 

concentration of A tending toward zero and infinity, while INTo and INT∞ refer to the 

intercept of the double reciprocal plot extrapolating the linear asymptote at low A to the 

ordinate and the ordinate intercept at infinite A, respectively. 
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The pH dependence of V/KAcCoA was fitted to eq. 9, while data for the pH 

dependence of the apparent KILys was fitted to eq. 10. 

 



log y  log C / 1
H

K1


K2

H



















 (9) 



log y  log

YL YH 1
109.5

H











1
109.5

H





















 (10) 

 

In equation 9, y is the observed value of V/K at any pH, C is the pH-independent value 

of y, H is the hydrogen ion concentration, and K1 and K2 are the acid dissociation 

constants of functional groups required in a given protonation state on enzyme or 

substrate for optimal binding and/or catalysis.  In eq. 10, y is the value of 1/KILys at any 

pH, YL and YH are the pH independent values of 1/KILys at low and high pH, 

respectively, and the value 10
-9.5

 is the acid dissociation constant for the -amine of 

lysine. 

 

2.3 RESULTS 

2.3.1 Divalent metal ion specificity.   

 As isolated, TtHCS has metal ions bound.  Treatment with EDTA removed the 

bound metal ions.  The dependence of rate on added metal ion was measured with the 

EDTA-treated TtHCS.  In the absence of any exogenous metal ion, apo-enzyme had 

negligible activity, Figure 2.1.  The enzyme could be reactivated by the addition of 
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Mg
2+

 or Mn
2+

,
 
while in the presence of Ni

2+
, or Zn

2+
 no detectable activity was 

observed, Figure 2.1.  Slight activity was observed in the presence of Co
2+

, but the stock 

used was only 97% pure and had significant contamination with other divalent metal 

ions including Mg
2+

 and Mn
2+

.  Reactivation to a lesser extent was found with addition 

of the monovalent cations, Na
+
 and K

+ 
(data not shown).  It is likely that activation by 

Na
+
, and K

+
 results from contaminating Mg

2+
.  A saturating concentration of Mn

2+
 or 

Mg
2+

 is 200 µM.  Dialysis of the Mg-reconstituted enzyme does not result in an 

appreciable loss of activity, suggesting Mg
2+

 is tightly bound to enzyme. 

 

Figure 2.1  Effect of metal ions on TtHCS activity.  Apo-enzyme is EDTA-treated TtHCS.  All 

metal ions were tested at 5 mM final concentration in the reaction; Zn
2+

 was also tested at 50 

mM and showed no activation of TtHCS (data not shown).  Enzyme concentration was 

maintained at 4 M. 

 

2.3.2 Initial velocity studies.   

An initial velocity pattern was obtained in the presence of 200 µM MnCl2 varying 

the concentration of -Kg at different fixed concentrations of AcCoA, Figure 2.2.  At 

low concentrations of AcCoA the pattern is nearly parallel, while at concentrations 
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above 25 µM AcCoA competitive substrate inhibition by AcCoA vs -Kg is observed, 

Figure 2.2; the slope replot exhibits the inhibition.  Kinetic parameters are summarized 

in Table 2.1. 

In the presence of 200 µM MgCl2, the initial velocity pattern differs from that seen 

with MnCl2.  The primary plot with -Kg as the varied substrate exhibits a set of lines 

that intersect to the right of the ordinate at low AcCoA, but the slope and intercept 

increase as the concentration of AcCoA increases, Figure 2.3A.  Plotted with AcCoA as 

the varied substrate, all curves are near parallel at low concentrations, but curve upward 

at all -Kg concentrations as the concentration of AcCoA increases, giving a finite 

intersection point on the ordinate, Figure 2.3B. 

Figure 2.2  Initial Velocity Pattern with Mn
2+

 as the Catalytic Divalent Metal Ion.  Initial rates 

were measured at pH 7.5 and 25 
o
C as a function of -Kg at different concentrations of AcCoA 

as follows: 10 M (); 14.6 M (); 27.3 M (); and 200 M ().  Enzyme concentration 

was maintained at 1 M.  Graphs on the right hand side are replots of intercepts and slopes 

obtained from the primary plot vs the reciprocal of AcCoA concentration.  Note the substrate 

inhibition exhibited in the slope replot indicating competitive substrate inhibition by AcCoA vs 

-Kg.  Points in the primary plot are experimental, while the solid lines are theoretical based on 

a fit to eq 1. 
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Attempts to fit the data in Figure 2.3 were unsuccessful as the equation was not 

well conditioned to the data.  Thus, kinetic parameters were estimated graphically from 

plots of V and V/Ka-Kg (Figure 2.3C and D) obtained from fits of the individual lines in 

Figure 2.3A to the Michaelis-Menten equation; parameters are summarized in Table 

2.2. 

Table 2.1 Summary of Kinetic Parameters with Mn
2+

 

V/Et (s
-1

) 0.068 ± 0.005
 

V/K-KgEt (M
-1

s
-1

) (4 ± 2) x 10
3 

V/KAcCoAEt (M
-1

s
-1

) (2.5 ± 0.4) x  10
3 

K-Kg (µM) 16 ± 7 

KAcCoA (µM) 27 ± 4 

KI AcCoA (µM) 10 ± 5 

Data were obtained at pH 7.5 and 25 
o
C with Mn

2+ 
fixed at 200 µM. 

Table 2.2  Summary of Estimated Kinetic Parameters with Mg
2+ 

 Low AcCoA
a 

High AcCoA
a
 

V/Et (s
-1

)
b 

 0.117 ± 0.002 



 0.035 ± 0.002 

V/K-KgEt (M
-1

s
-1

)
 b
  2300 ± 380 



 880 ± 

V/KAcCoAEt (M
-1

s
-1

)
 b
  7800 ± 1500 ~1400 

K-Kg (µM) 50 ± 8 40 ± 7 

KAcCoA (µM) 15 ± 3 ~25 

a
Data were obtained at pH 7.5 and 25 

o
C (Mg

2+ 
was fixed at 200 µM). 

b
Kinetic parameters were estimated graphically from plots of V and V/K-Kg, Figure 2.3C and D. 
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Figure 2.3  Initial Velocity Pattern with Mg
2+

 as the Catalytic Divalent Metal Ion.  Initial rates 

were measured at pH 7.5 and 25 
o
C.  A) Data are plotted as a function of -Kg at different 

concentrations of AcCoA as follows: 14 (), 22 (), 31 (∆), 40 (), 54 (+), 200 () and 500 

() M.  B) Data are plotted as a function of AcCoA at different concentrations of -Kg as 

follows: 25 (), 36 (▲), 67 (), and 400 () M.  The enzyme concentration was maintained 

at 1 M.  C) and D) Plots of V and V/K-Kg obtained from a fit of the individual saturating 

curves in A) (at each AcCoA concentration to the Michaelis Menten equation).  Note the 

apparent substrate inhibition exhibited in both replots.   Individual lines in A) are from a fit to 

eq. 1, while the curves in B) are drawn by hand.  Kinetic parameters listed in Table 2.2 were 

estimated as shown in C and D. 

 

2.3.3 Inhibition studies.   

In the presence of Mg
2+

, or Mn
2+

, product inhibition by the CoA, was 

competitive vs AcCoA with a Ki of 26 ± 10 µM (data not shown), but was 

uncompetitive vs -Kg with a Ki of 110 ± 30 µM.  (A value of 31 ± 8 µM, within error 

identical to the value of 26 µM, is obtained correcting the appKi for the fixed 
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concentration of AcCoA, 2.5 KAcCoA; Ki = (appKi)/(1+A/Ka)), Figure 2.4B.  At high 

concentrations of CoASH, curved double reciprocal plots were observed, Figure 2.4A.  

Data are summarized in Table 2.3. 

Oxalylglycine (OG), a -Kg analog, is competitive vs -Kg, and KiOG is 

independent of the concentration of AcCoA (data not show). Oxaloacetate was a slow 

alternative substrate analog of -Kg, with a V/Et of 0.0230 ± 0.0006 s
-1

 and V/KOAAEt 

of 0.065 ± 0.019 M
-1

s
-1

 (data not shown).  Although the maximum rate with OAA is 

only 5-fold lower than that with -Kg, V/KOAAEt is 3.5 x 10
4
-fold lower than V/Ka-KgEt, 

suggesting OAA binding is about 7000-fold weaker than -Kg.
2
  

 

 

Figure 2.4  Inhibition by CoA at Variable Concentrations of -Ketoglutarate.  Initial rates were 

obtained as a function of -Kg concentration as shown with AcCoA fixed at 50 M (A).  The 

concentrations of CoASH used are as follows: 0 (◊), 5 (), 50 (▲), 100 () and 200 () M.  

(B) Additional data for the concentration range shown in the dotted box in (A).  The enzyme 

concentration was maintained at 1 M.  Data at high concentration of -Kg (>100 mM) were fit 

to eq. 3. 

 

Other analogs of -Kg, including oxalate showed no significant inhibition at 1 

mM with -Kg fixed at 1.5Km.  Malonyl CoA and pantothenate, analogs of 
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AcCoA/CoASH, gave no inhibition at 1 mM concentration, with AcCoA fixed at Km 

and -Kg fixed at a saturating concentration (1 mM).  Data are summarized in Table 

2.3. 

Table 2.3  Summary of Inhibition Studies. 

Variable 

Substrate 

Fixed 

Substrate 

Inhibitor Kis ± S. E. 

(mM) 

Kii ± S. E. 

(mM) 

Pattern 

AcCoA -Kg CoASH 0.026 ± 0.01 - C 

-Kg AcCoA CoASH - 0.11 ± 0.03 UC 

-Kg AcCoA OG 0.9 ± 0.1 - C 

-Kg AcCoA Lysine Site 1 – 0.23 ± 0.06 

Site 2 – 56 ± 14 

- C 

 

Lysine, the final product of the aminoadipate pathway, exhibits feedback 

inhibition of HCS (6).  Lysine is a competitive inhibitor vs -Kg up to a concentration 

of 1 mM, Figure 2.5A.  Inhibition by lysine is nonlinear, as shown by a Dixon plot of 

1/v vs lysine at fixed concentrations of -Kg (16Ka-Kg) and AcCoA (2.5KAcCoA), Figure 

2.5B.  Data are suggestive of negative cooperativity in the binding of lysine.  A fit of 

the data to eq. 4, gives well-defined Ki values for binding the first and second molecules 

of lysine, Table 2.3.  Inhibition by lysine is also competitive vs -Kg in the high lysine 

concentration range, however the double reciprocal plots are concave upward at high 

lysine concentration, Figure 2.5C.  Data suggest that the presence of high 
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concentrations of lysine induce positive cooperativity in binding -Kg, as observed for 

CoASH. 

 

Figure 2.5  Inhibition by Lysine.  A) Double reciprocal plot of competitive inhibition by lysine 

against -Kg concentration.  Data were obtained at pH 7.5 and 25 
o
C.   The rate was measured 

as a function of the -Kg concentrations shown and AcCoA fixed at 50 M, and lysine at 

different fixed concentrations as follows:  0 (), 1 (), 10 (), 100 () and 500 () M.  

Points are experimental, while curves are theoretical based on a fit to eq. 3.  B)  Dixon plot of 

reciprocal initial rate vs the concentration of lysine with -Kg and AcCoA concentrations fixed 

at 100 M and 50 M, respectively; lysine was varied from 0 to 50 mM.  The points are 

experimental, while the curve is theoretical based on a fit to eq. 5. C) Double reciprocal plot of 

competitive inhibition by lysine against -Kg concentration as in A), with lysine in the high 

concentration range as follows: 0 (), 1 (), 3 (), 5 () and 15 (▲) mM.  The enzyme 

concentration was maintained at 1 M for all experiments.  D) Plot of the log (1/app KiLys) vs 

pH.  Points were obtained from a Dixon analysis as shown in B) for the linear low concentration 

range.  The curve is theoretical based on a fit to eq. 10. 
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2.3.4 Primary substrate deuterium kinetic isotope effects.   

Primary substrate deuterium kinetic isotope effects were measured with Mg
2+

 as 

the divalent metal ion by direct comparison of initial rates at pH 7.5 with acetyl-d3 CoA 

as the labeled substrate.  An isotope effect of unity was obtained at low AcCoA 

concentration, but a kinetic isotope effect of about 2 is observed at high concentrations 

of AcCoA, Figure 2.6. 

 

Figure 2.6  Primary Deuterium Kinetic Isotope Effect with AcCoA-d3.  Double reciprocal plot 

of initial rate as a function of AcCoA-h3 (), and AcCoA-d3) (▲); reactions with 400 M -

Kg. The enzyme concentration was maintained at 1 M.  Inset shows the apparent isotope effect 

(appIE) vs the concentrations of AcCoA (the appIE is the ratio of the rates obtained with 

deuterated and undeuterated AcCoA). Curves are drawn by hand. 

 

2.3.5 Solvent deuterium kinetic isotope effects.   

Solvent deuterium kinetic isotope effects were measured in the presence of 200 
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µM Mg
2+

 at pH(D) 7.5, in the pH independent region of the pH-rate profiles.  Initial 

velocity patterns were obtained by measuring the initial rate at varying -Kg 

concentrations and different fixed levels of AcCoA in H2O and D2O, Figure 2.7A and 

B.  Slope and intercept replots derived from the primary plot are shown in Figure 2.7C 

and D.  Solvent isotope effects were unity at low concentrations of AcCoA, but were 

finite at high concentrations of AcCoA, with estimated values for 
D2O

V of 1.7 and 

D2O
(V/KAcCoA) of 2.8, Figure 2.7E. 

 

Figure 2.7  Solvent Deuterium Kinetic Isotope Effect.  Double reciprocal plots of initial rate as a 

function of -Kg at different concentrations of AcCoA as follows: 14 (), 20 (), 39 () and 

500 (◊) M in H2O (A) and 14 (), 20 (▲), 39 () and 500 () M in D2O (B).  The enzyme 

concentration was maintained at 1 M.  Intercepts (C) and slopes (D) from (A) and (B) plotted 

against the reciprocal of AcCoA concentration in D2O and H2O.  E) Apparent isotope effect 

(appIE) vs concentration of AcCoA for slopes () and intercepts (), respectively (the appIE is 

the ratio of rates in D2O to H2O). 
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2.3.6 pH dependence of kinetic parameters.   

The pH dependence of kinetic parameters provides information on the optimal 

protonation state of functional groups on enzyme and/or substrate for binding and/or 

catalysis.  To be certain that the kinetic mechanism of the enzyme does not change with 

pH and to obtain estimates of Km values for both substrates as a function of pH, initial 

velocity patterns were obtained with -Kg and AcCoA concentrations varied at each 

pH.  In presence of MnCl2 with AcCoA as the varied substrate, V is pH independent, 

while V/KAcCoA decreased at low pH with a slope of 1 giving a pKa of about 6.5 and at 

high pH with a slope of -1, giving a pKa of about 8.0, Figure 2.8. Vmax with Mg
2+

 as the 

divalent metal ion is also pH independent (data not shown).  The pH dependence of 

V/KAcCoA was not determined because of the large uncertainty in the values, Table 2.2, 

estimated from data similar to those in Figure 2.3. 

 

An apparent Ki for lysine inhibition was measured by Dixon plot for the low 

lysine concentration range, Figure 2.5B.  Over the pH range studied, KiLys decreases 

from a constant value below pH 6.0 to another constant value above pH 8.8, Figure 

2.5C.  A value of 9.5 was assumed for the pKa obtained from the change in Ki (see 

explanation in the Discussion), and data were fitted to eq. 10.  The pH independent 

values of KiLys at high and low pH are 1.9 ± 0.4 µM and about 8 mM, respectively, and 

the pKa of the -amine of lysine when it is bound to enzyme is 5.9 ± 0.2. 

 



49 

 

 

Figure 2.8  The pH Dependence of Kinetic Parameters with Mn
2+

 as the Divalent Metal Ion.  

Data were obtained at 25
o
C.  At each pH, initial rates were obtained at a saturating 

concentration of -Kg (10Km) as a function of AcCoA concentration.  The V pH-rate profile is 

pH independent, while V/KAcCoA decreases at low and high pH giving limiting slopes of 1 and -1, 

respectively.  The points shown are the experimentally determined values, while the curve for 

V/KAcCoA is theoretical, and based on a fit to eq 9. 

 

2.4 DISCUSSION 

2.4.1 Divalent metal ion specificity.   

The apo-enzyme of TtHCS can be activated by Mg
2+

 and Mn
2+

, and is thus 

likely a Mg-dependent metal-activated enzyme.  Although Mn
2+

 also activates the apo-

enzyme to the same extent as Mg
2+

, the total cellular levels of Mn
2+

 are generally in the 

µM range (21, 22, 29) and it is thus unlikely that Mn
2+

 is the physiologic activator.  

Interestingly, the initial velocity patterns obtained with Mg
2+

 and Mn
2+

 as the activator 

are different (see below), suggesting that the size of the metal ion and its coordination 

geometry, may contribute to this difference.  TtHCS differs from the ScHCS, which is a 
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Zn-metalloenzyme; Zn
2+ 

does not activate TtHCS.  A recent crystal structure (10) 

suggests Co
2+

 is bound to TtHCS in an apparent octahedral geometry with three ligands 

from enzyme, the side chains of Glu13, His197 and His 195, the C1-carboxylate and 

C2-oxo groups of -Kg and a water molecule.  However, these authors also showed 

significant activity of the enzyme in the presence of Co
2+

, while no significant 

activation of TtHCS was seen with Co
2+

 in these studies.  There was not enough 

information provided to determine how metal ion solutions were treated in the previous 

study (10), and activity could result from contaminating metal ions in the Co
2+

 solution. 

 

2.4.2 Kinetic mechanism.   

The kinetic mechanism depends on the divalent metal ion and keto acid 

substrate used in the TtHCS reaction.  In the presence of Mn
2+

, an initial velocity pattern 

is obtained that is near parallel at low concentrations of AcCoA, suggesting a Ki-Kg/K-

Kg ratio that is low.  Under these conditions the KiaKb term in the sequential rate 

equation (



v 
VAB

KiaKb KaBKbBAB
) becomes negligible and the rate equation reduces 

to the same as that for a ping pong mechanism.  The replot of slope vs. 1/AcCoA is 

concave upward, Figure 2.2.  However, the intercept replot is linear indicating substrate 

inhibition by AcCoA that is competitive vs -Kg.  Thus, the kinetic mechanism appears 

to be steady state ordered with -Kg binding prior to AcCoA, Scheme 2.2, with a dead-

end E-AcCoA complex allowed at high concentrations of AcCoA, described by eq. 1.  

It is interesting to note that the substrate inhibition constant for AcCoA is essentially 

equal to its Km, 10 ± 5 µM compared to 27 ± 4 µM.  At low, sub-saturating -Kg, the E-
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AcCoA complex will form at concentrations of AcCoA around 10 µM, decreasing the 

overall amount of productive enzyme, while at high, saturating concentrations of -Kg, 

the reaction proceeds toward product at the same concentration of AcCoA.  Thus, with 

Mn
2+

 as the metal ion activator, -Kg determines the rate of the TtHCS reaction. 

E E--Kg E--Kg-AcCoA E-Hc-CoA E-Hc E

-Kg

E-AcCoA

CoAAcCoA Hc

 

Scheme 2.2  Kinetic Mechanism Proposed for Thermus thermophilus Homocitrate Synthase 

with Mn
2+

 as the Metal Ion.  An ordered kinetic mechanism is shown with a dead-end E-AcCoA 

complex. 

 

The mechanism differs considerably in the presence of Mg
2+

.  The initial 

velocity pattern obtained varying -Kg at different fixed levels of AcCoA intersects to 

the left of the ordinate at low AcCoA, but slope and intercept replots exhibit curvature 

at high AcCoA concentrations, insets to Figures 2.3A. Note, however, that in the 

primary plot of 1/v vs. 1/[AcCoA], the pattern exhibits near parallel lines at low 

AcCoA, Figure 2.3B, with the extrapolated curves at high AcCoA, intersecting the 

ordinate at a finite value.  Data are indicative of a steady state random kinetic 

mechanism, Scheme 2.3.   

The near parallel lines at low AcCoA suggest, as for data obtained with Mn
2+

, a 

low Ki-Kg/K-Kg ratio.  The pathway to which this condition applies is that for -Kg 

adding prior to AcCoA, the same pathway that is productive with Mn
2+

 as the divalent 

metal ion.  Limits of the kinetic parameters were estimated as discussed above in 
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Results, Table 2.1.  The pathway with -Kg adding prior to AcCoA is about 3-times 

faster than the pathway with AcCoA adding prior to -Kg as shown by the ratio of the 

maximum rates obtained at low and high AcCoA.  The Km values for -Kg and AcCoA 

are not significantly different for the two pathways, and thus the V/K values for -Kg 

and AcCoA mirror changes in V. 

-Kg AcCoA

E--Kg E--Kg-AcCoA

-Kg

E E*--Kg-AcCoA

E-AcCoA

AcCoA

E*-AcCoA

Products

E-Lysine

 

Scheme 2.3  Kinetic Mechanism Proposed for Thermus thermophilus Homocitrate Synthase 

with Mg
2+

 as the Metal Ion.  A random kinetic mechanism is shown highlighting the 

conformational change that occurs upon AcCoA binding.  The conformations of the enzymes 

are denoted as E and E*.  Lysine binds to free enzyme competing with -Kg, and generating a 

dead-end E-Lysine complex. 

 

It is interesting to note that the pathway with AcCoA binding to free enzyme is 

productive with Mg
2+

 as the divalent metal ion, while AcCoA exhibits substrate 

inhibition binding to E with Mn
2+

 as the divalent metal ion.  (A small amount of activity 

at high AcCoA cannot be ruled out.)  Data certainly suggest something different about 

the active site with Mg
2+

 and Mn
2+

 bound. 

Product inhibition by CoASH provides additional information on the kinetic 

mechanism of TtHCS.  In the presence of Mg
2+

, or Mn
2+

, CoASH was competitive 

against AcCoA suggesting the binding of CoASH to the same enzyme form(s) as 
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AcCoA, free enzyme and the E--Kg complex (data not shown).  Inhibition by CoASH 

vs -Kg was uncompetitive, Figure 2.4B.  In addition, at high concentrations of 

CoASH, curved double reciprocal plots were observed with -Kg varied, Figure 2.4A.  

Data suggest induction of positive cooperativity of -Kg binding, and this will be 

discussed below when lysine inhibition is considered.  The CoASH inhibition patterns 

differ from those found for ScHCS, which exhibits noncompetitive inhibition by 

CoASH vs AcCoA, and uncompetitive inhibition vs -Kg (4).  Data for the yeast 

enzyme were consistent with the ordered addition of a-Kg prior to AcCoA and with 

binding of CoASH to the E--Kg and E-homocitrate (E-Hc) complexes.  The CoASH 

inhibition patterns obtained for the TtHCS are consistent with CoASH binding to E--

Kg, but not to the E-Hc complex.  Data suggest that release of homocitrate from the E-

Hc complex does not contribute to rate-limitation of the bacterial enzyme. 

The -Kg analog, OG, is competitive as expected, but KiOG is independent of the 

concentration of AcCoA, suggesting binding of OG to E and E-AcCoA with equal 

affinity.  The binding site for -Kg apparently does not change whether or not the 

conformational change induced by the binding of AcCoA has taken place.  The Ki for 

OG is about 18-times lower than K-Kg, suggesting somewhat stronger binding of OG.  

-Kg binds in an extended conformation, but with the -carboxylate slightly twisted 

compared to its -carboxylate, Figure 2.10A (10).  The stronger binding is thus likely 

the result of interaction between the amide nitrogen of OG with enzyme.  Oxaloacetate, 

a methylene shorter than -Kg, binds 700-fold weaker, indicating unfavorable 

interactions of the -carboxylate with (a) group(s) on enzyme. 
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2.4.3 Inhibition by lysine.   

Lysine is known to inhibit TtHCS, suggesting end-product feedback regulation 

of the biosynthetic pathway (8).  A Dixon plot of the reciprocal rate vs the 

concentration of lysine is biphasic, Figure 2.5, suggesting negative cooperativity of 

binding lysine, Figure 2.9.  Lysine is a competitive inhibitor vs -Kg at low 

concentrations, where it has the highest affinity for enzyme and at high concentrations, 

where it binds with lower affinity, Scheme 2.3.  The difference in affinity for the two 

sites is about 250-fold, Table 2.3.  At high concentrations, however, lysine induces 

positive cooperativity of -Kg binding, similar to that observed with CoASH.  The 

positive cooperativity is likely a result of the two sites generated by lysine binding, i.e. 

induced asymmetry in the enzyme dimer in the presence of lysine.   

 

Figure 2.9 Lysine inhibition of TtHCS.  TtHCS as a dimer depicted as circles.  Change in 

conformation of enzyme on binding of Lys to one subunit shown as square and effect of which 

on the other subunit shown as a triangle.  Binding of Lys to one subunit brings about a 

conformational change in the enzyme such that its affinity to bind the other subunit is lowered, 

thus making it relatively easier for -Kg to compete. 

 

By analogy a similar phenomenan likely occurs with CoASH.  Since lysine and 

-Kg compete for the same site, -Kg can effectively compete for lysine at much lower 

concentrations at the low affinity site, but higher concentrations are required to compete 



55 

 

for lysine at the high affinity site.  This would require that -Kg competing with lysine 

at the weak site would decrease the affinity for lysine at the tight site, while increasing 

its own affinity for that site, i.e., the two ligands have opposing effects. 

TtHCS exists as a homodimer and this, in conjunction with the crystal structure 

of TtHCS with lysine bound, Figure 2.10B (10), provide a possible molecular basis for 

the negative cooperativity of lysine binding.  The competitive inhibition suggests, and 

the lysine-bound structure confirms, that lysine binding is at the active site.  In fact, the 

-amine and -carboxylate of lysine occupy the same coordination positions on the 

active site Mg
2+ 

as the -oxo and -carboxylate of -Kg occupy once bound.  The 

hypothesis is that binding of the first molecule of lysine into the first active site brings 

about a conformational change in the enzyme such that its affinity for the second active 

site of the homodimer is reduced, resulting in the second phase observed in the Dixon 

plot, Figure 2.5.  Binding of lysine results in dramatic structural changes (10).  For 

example, helix 11 moves by about 44 Å from one side of the protein to the other.  In 

addition, although lysine and -Kg share some of the same active site binding 

determinants, there are a number of differences (see Structure below).  The 

conformational change differs from the one(s) generated upon binding of reactants (see 

Structure or below). 

In agreement with the above, and consistent with the structure, is the pH 

dependence of pKiLys for binding to site 1.  Lysine is coordinated to the active site Mg
2+ 

by its -amine and -carboxylate.  As a result, the -amine must be neutral for 

optimum binding.  The app pKiLys decreases from a constant value at high pH (above 

pH 9) and goes to a lower constant value at low pH (below pH 5.5).  Thus, the group 
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with a pKa above 9 that must be unprotonated in order to coordinate to the metal ion is 

the a-amine of lysine, which has a pKa of about 9.5.  A fit of the data to eq. 9 gives an 

estimate of about 6 for the pKa of the -amine of lysine bound to the active site Mg
2+

. 

The Ki for lysine changes by more than three orders of magnitude as the pH increases 

with the value above pH 10 reflecting the true Ki (2 µM) for lysine with a neutral -

amine binding to enzyme.  Lysine with a protonated -amine binds 4000-fold weaker, 

and the pKa of the -amine has decreased by 3.6 pH units, reflecting the much lower 

proton affinity for lysine bound to the active site in the vicinity of the metal ion. 

The negative cooperativity of lysine binding essentially results in decreasing 

activity of both active sites of the HCS dimer upon occupancy of a single subunit.  The 

physiologic concentration of lysine can reach 5 mM (23-28), a concentration at which 

the tight site of the TtHCS is saturated (Ki is 230 µM, Table 2.3).  This suggests the 

activity of TtHCS will depend on the concentration of -Kg.  Although the physiologic 

concentration will likely not get high enough to allow binding to the loose site, the 

phenomenon of negative cooperativity in conjunction with the structural data available, 

aid in determining the mode of lysine binding. 

 

2.4.4 Rate-determining steps.   

In the presence of Mg
2+

, isotope effect data are complex, but revealing.  A 

substrate deuterium isotope effect of unity is measured with AcCoA-d3, at low 

concentrations of AcCoA, but a finite primary kinetic isotope effect of about 2 is 

observed at high AcCoA.  Data can be interpreted in terms of the steady state random 

kinetic mechanism proposed for TtHCS (see Kinetic Mechanism above). 
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At low AcCoA, -Kg binds prior to AcCoA and this is the dominant pathway. 

The deuterium kinetic isotope effect reflects deprotonation of the methyl of AcCoA, 

while the solvent deuterium kinetic isotope effect reflects protons in flight in the rate-

limiting transition state.  Both isotope effects are unity for the pathway with -Kg 

binding first, indicating deprotonation of the methyl group of AcCoA does not 

contribute to rate-limitation, nor does hydrolysis of the homocitryl CoA that is produced 

in the Claisen condensation.  As a result, we propose that a conformational change that 

likely follows the chemical steps limits the overall reaction (see below). 

At high AcCoA, where it binds prior to -Kg, a finite primary kinetic isotope 

effect of about 2 is observed, Figure 2.6.  We propose that binding of AcCoA to free 

enzyme elicits a conformational change that is slower than the one that must occur 

when AcCoA binds second.  The difference between the two is the presence or absence 

of -Kg, which can pre-organize the active site for binding of AcCoA.  Since an isotope 

effect is observed when AcCoA binds first, deprotonation of the methyl group of 

AcCoA must accompany the conformational change.  The solvent deuterium kinetic 

isotope effects exhibits the same behavior as the substrate kinetic isotope effect, 

suggesting the conformational change that occurs when AcCoA binds first must have 

protons in flight in the transition state for the conformational change, giving an apparent 

solvent effect of about 1.7, Figure 2.7. 

If the conformational change elicited by AcCoA binding after -Kg were slow, 

one would expect finite primary deuterium and solvent deuterium kinetic isotope 

effects.  Thus, the slow step in the pathway with AcCoA binding after -Kg likely 

occurs after the chemical steps, i.e., release of the first product.  The interpretation is 
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illustrated in Scheme 2.4.  In the scheme, the mechanism is broken down to show the 

two pathways.  Pathway A is the dominant pathway with -Kg binding before AcCoA, 

and the slow step is the conformational change that accompanies release of CoA.  

(Product inhibition by CoA is strictly competitive vs. AcCoA and uncompetitive vs -

Kg, consistent with absence of binding of CoA to free enzyme or an E-Hc product 

complex.  By analogy to the forward reaction, release of CoA before Hc is predicted, 

and data therefore suggest rapid release of Hc.)  Pathway B, on the other hand, 

describes binding of AcCoA before -Kg, and the slow step in this case is the 

conformational change elicited upon binding of AcCoA, which includes deprotonation 

of the methyl of AcCoA. 

 

E E--Kg

E-AcCoA

E--Kg-AcCoA

E*-AcCoA

E*--Kg-AcCoA E*-Hc-CoA E-Hc E

Slow

D, D2O

E E*--Kg-AcCoA

Slow

D, D2O

A

B

-Kg AcCoA HcCoA

E*-Hc-CoA E-Hc E

HcCoA

 

Scheme 2.4  The two pathways of the random mechanism shown in Scheme 2.3 are shown.  

Pathway A is the dominant pathway and exhibits rate-limiting release of CoA.  The deuterium 

and solvent deuterium sensitive steps reflect the conversion of E*--Kg-AcCoA to products. 

Pathway B occurs at high concentrations of AcCoA.  The slow step in this case is the 

conformational change that accompanies AcCoA binding to give the E*-AcCoA  complex.  

This step exhibits finite deuterium and solvent deuterium isotope effects. 

 

2.4.5 pH dependence of kinetic parameters.   

The pH dependence of V/Et is obtained at saturating concentrations of all 



59 

 

substrates.  The V profile will thus reflect ionizable groups within the enzyme-substrate 

complex involved in catalysis.  The V/KEt pH-rate profile reflects ionizable groups, on 

free substrate and the enzyme form to which it binds, required in an optimum 

protonation state for binding and/or catalysis.  Data for the pH dependence of V and V/K 

were obtained in the presence of Mn
2+

, however, the difference in kinetic mechanism 

with Mg
2+

 and Mn
2+

 lies in the competence of the E-AcCoA complex.  Catalytic and 

binding groups, and the pH dependence of kinetic parameters for the pathway with -

Kg binding first should be very similar whatever the divalent metal ion used. 

With Mn
2+

 as the divalent metal ion, V is pH independent, while V/KAcCoA 

decreases at low and high pH giving pKa values of about 6.5 and 8.0, respectively.  

(The maximum rate obtained with Mg
2+

 was also pH independent (data not shown).)  

The pH dependence of V/KAcCoA was not determined because of the large uncertainty in 

the values, Table 2.2, estimated from data similar to those in Figure 2.3.  Data are 

consistent with the requirement for general base, general acid mechanism, as proposed 

for the Saccharomyces enzyme, ScHCS.  By analogy to ScHCS, the base is proposed to 

accept a proton from the methyl of AcCoA to allow nucleophilic attack on the carbonyl 

of -Kg, while the acid is proposed to donate a proton to the carbonyl oxygen to form 

homocitryl CoA (6).  The active site residues of ScHCS and TtHCS are conserved, and 

will be further described below. 

 

2.4.6 Structure.   

TtHCS is a dimer comprised of a TIM barrel domain and C-terminal small 

domains (I and II) (10).  Small domain II of one monomer is a 3-helix bundle that 
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covers the active site of the other monomer; the active site is on the C-terminal end of 

the TIM barrel.  This arrangement, described as domain swapping, has also been 

observed in the case of Schizosaccharomyces pombe HCS (SpHCS) (19).  The substrate 

-Kg and the feedback inhibitor lysine bind to the active site and share some of the 

same binding interactions (10). 

-Kg binds to the enzyme via several specific interactions.  The C1-carboxylate 

and C2-oxo groups of -Kg are coordinated to the bound divalent metal ion.  The C1-

carboxylate accepts a hydrogen bond from T166, while the C2-oxo group interacts with 

the guanidium group of R12.  The side chains of A164 and L94 (not shown) make van 

der Waals contact with the C3 and C4 atoms of -Kg, and the C5-carboxylate is 

stabilized by hydrogen bonds and ionic interactions with H72 and R133 and, via a 

water molecule, interacts with S135, Figure 2.10A.  Lysine bound to the active site of 

TtHCS is coordinated to the divalent metal ion via its -carboxylate and -amino, 

accepts a hydrogen bond from T166 and the aliphatic portion of the lysine side chain is 

stabilized by van der Waals contacts from A164 and L94, Figure 2.10B.  It is these 

interactions that are in common with -Kg binding.  However, the -amino of lysine is 

within hydrogen bonding distance to Tyr297* (the * indicates the residue is from the 

other subunit of the dimer), and the -amino group of lysine is stabilized by interactions 

with D92 and E193.  The most significant difference in binding of -Kg and lysine is in 

the displacement of residues surrounding the C5-carboxylate of -Kg to accommodate 

binding of the -amino group.  The overall rearrangement includes: 1) movement of 

R133 away from the active site with formation of an ion pair with E43; and 2) 
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movement of H72, which formed a hydrogen bond to the C5- carboxylate of -Kg, to 

stack with the side chain of R12, which formed a hydrogen bond to the C2-oxo group 

of -Kg.  Given the contribution of residues from both subunits of the dimer to binding 

of lysine, cross talk between the two subunits of the dimer as lysine binds is not 

unexpected.  We propose, that in the case of feedback inhibition by lysine in TtHCS 

(and by analogy SpHCS and ScHCS), lysine binding to the first active site reduces the 

affinity for lysine binding to the second active site as a result of the crosstalk discussed 

above resulting in negative cooperativity as shown in Figure 2.5B.  The specific active 

site interactions made by lysine as it binds result in substantial gross changes in the 

structure of the protein.  Overall, there is a 44 Å displacement of the position of 11 

helix, which includes Y297*, moving it closer to the active site.  The conformation of 

the enzyme in general and the active site specifically is quite different with -Kg or Lys 

bound. 

Though there is no structure available with AcCoA bound, there is one with 

homocitrate bound, and this sheds some light on the residues involved in AcCoA 

binding.  The C1-carboxyl of Hc, which is derived from AcCoA, is hydrogen bonded to 

H292*, which stacks with Y303*.  H292* moves by 13 Å away from the active site 

upon binding of Lys (10).  This large displacement indicates the conformation of the 

active site with Lys or AcCoA bound is different.  It follows that the conformational 

change generated upon reactant binding is distinct from that with Lys bound at the 

active site.  Lysine bound structure (PDB 3A9I) has one monomer in the asymmetric 

unit.  Two-fold crystallographic symmetry makes the dimer.  The Lys bound form has a 

different space group (C2221) than the other structures (P6322) (10).  This may result in 
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different crystal contacts at the active site. 

All active site residues are conserved in ScHCS, SpHCS, LiCMS, and TtHCS (5, 

9, 15).  In ScHCS a catalytic dyad comprised of E155 and H309* was proposed as the 

base that deprotonates the methyl group of AcCoA, while Y320 contributed to 

providing the optimum orientation of the dyad and/or the reactant; E137 and H292* of 

TtHCS correspond to the residues of the proposed catalytic dyad (E155 and H309* in 

ScHCS) (5).  A conserved arginine, R31 in ScHCS (R12 in TtHCS), is within hydrogen-

bond distance to the carbonyl oxygen of -Kg and may have a role of a general acid in 

the catalytic mechanism.  Comparing the structures of TtHCS and SpHCS, the C-

terminal small domain I is similar to that of the corresponding domain of SpHCS (10, 

16).  Lysine binding in these structures is also similar with H72 in TtHCS (H103 in 

SpHCS) playing an important role by changing its side chain orientation to stabilize 

R12.  H72 is conserved among lysine-sensitive HCSs, suggesting a role in feedback 

inhibition by lysine.  In contrast, feedback inhibition by leucine in Mycobacterium 

tuberculosis IPMS (MtIPMS) occurs by binding of the inhibitor to a separate regulatory 

domain linked to the C-terminal catalytic domain (28).  A mechanism similar to that 

proposed for IPMS is expected for LiCMS since it also possesses a C-terminal 

regulatory domain. 
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Figure 2.10  Close-up view of the Active Site of TtHCS with Ligand Bound.  Active site 

residues and bound ligands are shown as stick models.  A putative Co
2+

 ion is shown as a sphere 

in faint pink.  Hydrogen bonds are shown as dashed lines in black.  A) The structure with -Kg 

bound (pdb 2ZTJ).  Distances for the hydrogen bonds for T166 - the C1 carboxyl group of -

Kg, N1 and N2 of R12 - the C2 keto group of -Kg, the -amine of H72 - the C5 carboxyl 

group of -Kg, N1 and N2 of R133 - the C5 carboxyl group of -Kg are 2.6 Å, 2.3 Å, 3.1 Å, 

3.0 Å, 2.7 Å, 3.3 Å, and 2.8 Å, respectively.  B) The structure with lysine bound (pdb 3A9I).  

Distances for the hydrogen bonds for T166 - the lysine -carboxylate, Y297* (the * indicates 

the residue is from the other subunit of the dimer)- the lysine -amino, S135 to the -amine of 

lysine, E193 to the -amine of lysine, and D92 to the -amine of lysine are 2.6 Å, 3.2 Å, 3.1 Å, 

3.5 Å, and 2.6 Å, respectively. 
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2.6 FOOTNOTES 

1
Abbreviations: HCS, homocitrate synthase; Hc, homocitrate; IPMS, isopropylmalate 

synthase; CoA, coenzyme A; AcCoA, acetyl-CoA; AcCoA-d3, deuterioacetylCoA; -

Kg, -ketoglutarate; DCPIP, 2,6-dichlorophenolindophenol; EDTA, 

ethylenediaminetetraacetic acid; Mes, 2-morpholinoethanesulfonic acid; Taps, N 

[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid; Hepes, 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid; Bis-tris, 2-bis(2-hydroxyethyl)amino-2-

(hydroxymethyl)-1,3 propanediol.  

 
2
Oxaloacetate was not further characterized as a substrate in these studies, but will be 

considered in a future manuscript. 
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CHAPTER 3 

Catalytic residues in saccharopine dehydrogenase  

Characterization of enzymes using kinetic parameters and isotope effects was done by me.  

Crystallization and structural studies were done by Thomas, L. M., Bobyk, K. D., Andi, B. 
 

3.1 INTRODUCTION 

Saccharopine dehydrogenase (N6-(glutaryl-2)-L-lysine: NAD oxidoreductase; 

EC 1.5.1.7) (SDH)
1
 catalyzes the final step in the -aminoadipate (AAA) pathway for 

the de novo synthesis of L-lysine in fungi (1, 2).  The enzyme catalyzes the reversible 

pyridine nucleotide dependent oxidative deamination of saccharopine to generate -Kg 

and Lys using NAD as an oxidant, Scheme 3.1 (1).  

The proposed kinetic mechanism for the Saccharomyces cerevisiae SDH is 

ordered in the physiologic reaction direction with NAD binding before saccharopine 

(Sacc), while in the opposite direction -ketoglutarate (-Kg) and lysine (Lys) bind in 

random fashion once NADH is bound (3).  A chemical mechanism involving two acid-

base catalytic groups has been proposed on the basis of the pH dependence of kinetic 

parameters, Scheme 3.1 (4).  Once the ENADH-KgLys central complex is formed, 

the first base (B1) accepts a proton from the -amine of Lys to allow nucleophilic attack 

on the carbonyl of -Kg (II).  Nucleophilic attack gives a protonated carbinolamine 

with donation of a proton from the conjugate acid of B2 to the carbonyl oxygen (III).  

The conjugate base of B2 then accepts a proton from the carbinolamine nitrogen (IV) 

and this is followed by elimination of water to give the imine (V), which is reduced by 

NADH concomitant with protonation of the imine nitrogen by the conjugate acid of B1.  
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A number of residues (E78, E122, K99, D319) in the active site of SDH have been 

mutated and mutant enzymes have been characterized (5, 6).  To date, none appear to 

serve as acid-base catalytic residues. 

In this study the roles of K77 and H96 have been determined by mutating them 

to M and Q, respectively.  Mutations of K77 and H96 were prepared in the C205S 

mutant enzyme, which eliminates disulfide formation, so that 100% of the enzyme is in 

the “reduced” active form (8).  A 1.6 Å X-ray structure the apo-wild-type SDH enzyme 

was solved by the Berghuis group (7) and showed a tertiary fold consisting of two 

domains (I and II) with a narrow cleft in between.  Each domain can be described as a 

modified nucleotide-binding Rossman-like fold.  The active site is located at the bottom 

of the cleft between the two domains.  Three additional X-ray structures have been 

solved of SDH bound to a sulfate anion, adenosine monophosphate (AMP), and 

oxalylglycine (OxGly), respectively (8).  The sulfate-bound structure revealed features 

of how the -keto acid substrate binds to R131 in the active site and showed a modest 

closure of the cleft between domains I and II.  AMP was found to bind in the active site 

region expected to be occupied by the dinucleotide cofactor NAD.  OxGly, an analogue 

of -Kg, was observed to bind to two arginines, R18 and R131 in the active site.  A 

semi-empirical model was proposed based on these ligand-bound structures with NAD 

and Sacc modeled in the active site.   

We now report a crystal structure of the ternary E•NADH•Sacc complex for the 

first time, which shows an enzyme form with a closed active site with K77 and H96 

properly positioned to serve as acid-base catalysts.  Mutant enzymes were characterized 
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via the pH dependence of kinetic parameters and isotope effects.  Data are discussed in 

terms of the proposed mechanism of SDH. 

 

Scheme 3.1:  Chemical Mechanism Proposed for Saccharopine Dehydrogenase. The reaction is 

written in the direction of Sacc formation.  [I], protonated Lys; [II], the formed central complex 

ENADH-KgLys; [III], protonated carbinolamine; [IV], carbinolamine intermediate; [V], 

Schiff base intermediate; [VI], hydride transfer and formation of Sacc. With the exception of 

Sacc, no stereochemistry is implied. 
 

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals.  

Ampicillin, chloramphenicol, Sacc, Lys, -Kg, AMP, OxGly, polyethylene 

glycol 3350, Bis-Tris propane, horse liver alcohol dehydrogenase, yeast aldehyde 

dehydrogenase, and the GenElute plasmid miniprep kit were obtained from Sigma.  -

NADH, -NAD, Luria-Bertani (LB) broth, LB-agar, and imidazole were purchased 

form U. S. Biochemical Corp.  The buffers, Ches, Taps, Hepes, and Mes, were from 

Research Organics, while NiNTA resin was purchased from 5 Prime.  Ethanol-d6 (99 atom % 

D) and D2O (99.9 atom % D) were purchased from Cambridge Isotope Laboratories.  
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Ethanol (absolute, anhydrous) was from Pharmaco-Aaper.  Polyethylene glycol 

monomethyl ether (PEG-MME) and Sodium Malonate were from Hampton Research.  

Isopropyl--D-1-thiogalactopyranoside was from Invitrogen.  The QuikChange site-

directed mutagenesis kit was from Stratagene, which includes PfuTurbo DNA 

polymerase and the Dpn I restriction enzyme.  4R-4-
2
H NADH (NADD) was prepared 

as described previously (9).  The concentration of NADD was estimated using an 340 of 

6220 M
-1

cm
-1

.  All chemicals were obtained commercially, were of the highest grade 

available and were used without further purification. 

 

3.2.2 Site-directed mutagenesis.   

Template DNA used for site-directed mutagenesis was the plasmid containing 

the C205S mutation of SDH (10), to change K77 and H96 to M and E, respectively.  

The forward and reverse primers used to generate the K77M mutant enzyme are as 

follows:  

K77f, 5’-CATTATAGGTTTGATGGAAATGCCTGAAACCG-3’;  

K77r, 5’-CGGTTTCAGGCATTTCCATCAAACCTATAA-3’.   

Primers used to generate the H96Q mutant enzyme are as follows:  

H96f, CATCCAGTTTGCTCAGTGCTACAAAGACCAAGC-3’;  

H96r, 5’-GCTTGGTCTTTGTAGCACTGAGCAAACTGGATG-3’.   

In addition, a double mutant enzyme was prepared using the K77M forward and 

reverse primers and the H96Q mutant gene to generate K77M/H96Q.  The mutated 

codon is shown in bold.  PCR followed by mutagenesis was carried out according to the 

instructions in the QuikChange site-directed mutagenesis kit as described previously 
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(5).  The XL-1-Blue competent cell strain of Escherichia coli was transformed with the 

plasmids containing mutations.  Plasmids were isolated and purified using the GenElute 

plasmid mini preparation kit.  Mutations were confirmed by sequencing the entire gene 

at the Sequencing Core of the Oklahoma Medical Research Foundation, Oklahoma 

City, OK. 

 

3.2.3 Expression and purification.   

Escherichia coli BL21 (DE3)-RIL cells were transformed with plasmids 

containing mutant genes and expression was carried out as reported previously (3) with 

some modifications.  Once cell density reached an A600 of 0.3−0.4, induction of protein 

expression was carried out at 37C by addition of 0.2 mM IPTG, followed by 3-4 h 

incubation.  Cells were harvested by centrifugation at 10,000g for 10 min, and then 

sonicated in 100 mM Hepes, pH 7.5, containing 300 mM NaCl, 5 mM imidazole.  

Enzymes were purified by Ni-NTA affinity chromatography, with elution using 300 

mM imidazole.  The enzymes were >95% pure as judged by SDS-PAGE.  The enzymes 

were stored at 4˚C in the elution buffer. 

 

3.2.4 Enzyme assay.   

Initial velocities were measured using a Beckman DU 640 UV-visible 

spectrophotometer.  All assays were performed at a temperature of 25°C.  Enzyme 

activity was measured in quartz cuvettes with a path length of 1 cm in the direction of 

Sacc formation by monitoring the decrease in A340 (ε340 = 6220 M
-1

 cm
-1

) as NADH is 

oxidized.  When NADH had to be maintained at high concentrations the reaction was 
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monitored at 366 nm (ε366 = 3110 M
-1

 cm
-1

) using a path length of 0.4 cm.  Reactions 

were initiated by addition of enzyme to a reaction mixture with a final volume of 0.5 

mL containing 100 mM Hepes, pH 7.0, saturating NADH (0.5 mM) and variable 

concentrations of -Kg and Lys. 

 

3.2.5 pH Studies.   

The pH dependence of V, V/KLys, and V/K-Kg was measured over the pH range 

5–10 with NADH maintained at 0.5 mM, and either -Kg or Lys maintained at 

saturation with the other varied.  Buffers were maintained at 100 mM concentration in 

the following pH range; Mes, 5.5 - 7.0; Hepes, 7.0 - 8.0; Taps, 8.0 - 9.0; Ches, 9.0 – 

10.0.  None of the buffers had any effect on the activity of any of the mutant enzymes.  

The pH was recorded before and immediately after the reaction; no significant 

differences were detected.  To be certain that the kinetic mechanism of the enzyme did 

not change with pH and to obtain estimates of Km values for both substrates at the pH 

extremes, initial velocity patterns were obtained at extreme pH values (5.5 and 10.0) 

with -Kg and Lys concentrations varied, and NADH was maintained at a saturating 

concentration (0.5 mM). 

 

3.2.6 Kinetic Isotope Effects.   

Isotope effects were measured for K77M and H96Q mutant enzymes in the pH 

independent region of their pH-rate profiles (pH 9).  Isotope effects on V2 and V2/KLys 

were measured with NADH(D) (10Km) and -Kg (10Km) maintained at saturation and 

Lys varied.  Solvent deuterium kinetic isotope effects were measured at pH(D) 9, in the 
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pH independent region of the pH(D)-rate profiles.  For rates measured in D2O, 

substrates (α-Kg and Lys) and buffers were first dissolved in a small amount of D2O 

and then lyophilized to replace exchangeable protons.  The lyophilized powders were 

then re-dissolved in D2O to give the desired concentrations, and pD was adjusted using 

either DCl or NaOD.  NADH was dissolved in D2O directly.  Reactions were initiated 

by adding a small amount of each of the mutant enzymes in H2O; the final 

concentration of D2O in the reaction mixture was about 98%.  Multiple isotope effects 

were determined by direct comparison of the initial rates in H2O and D2O as for solvent 

deuterium effects, varying lysine at fixed saturating concentration of NADD and -Kg. 

 

3.2.7 Viscosity Effects.   

Initial velocities were determined in H2O at a relative viscosity of 1.24 at pH 8.0 

and 25
O
C.  Assays contained 9% glycerol (w/v) as the viscosogen, which generates the 

same relative viscosity as 100% D2O at 25 °C (11).  The effect of viscosity on V and 

V/K (
η
V and 

η
(V/K)) were determined as the ratio of V and V/K in the absence and 

presence of glycerol.  

 

3.2.8 Data Analysis.   

Initial rate data were first analyzed graphically by double reciprocal plots to 

determine the quality of the data and the proper rate equation for data fitting.  Data were 

then fitted using the appropriate equations (12) using the Marquardt-Levenberg 

algorithm (13), supplied with the EnzFitter program from BIOSOFT, Cambridge, U.K.  
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Kinetic parameters and their corresponding standard errors were estimated using a 

simple weighing method. 

Data from saturation curves for pH-rate profiles and viscosity effects were fitted 

to eq. 1.  Data obtained from the initial velocity patterns were fitted to eq. 2.  Data for V 

and V/K deuterium isotope effects were fitted using eqs. 3 and 4.  Equal isotope effects 

on V and V/K are assumed in eq. 3, while the isotope effects on V and V/K are allowed 

to be independent in eq. 4.  The S.E. of a product or dividend was estimated using eq. 5. 
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In eqs. 1-4, v and V are initial and maximum velocities, respectively, A, B, are 

substrate concentrations, Ka and Kb, are Michaelis constants for substrates A and B, 

respectively, and Kia is the dissociation constant for A from the EA complex.  In eqs. 3 

and 4, Fi is the fraction of label in substrate or solvent, Ev, EV and EV/K are isotope 

effects minus 1 for the equal isotope effects on V and V/K, and the independent isotope 
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effects on V and V/K, respectively.  In eq. 5, S.E. x, and S.E. y are computer generated 

standard errors of values for kinetic parameters x and y. 

Data for pH-rate profiles exhibiting a partial change on the acid side were fitted 

to eq. 6. 
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In eq. 6, y is the observed value of V or V/K at any pH, H is the hydrogen ion 

concentration, K1 is the acid dissociation constant of functional group required in a 

given protonation state on enzyme or substrate for optimal binding and/or catalysis, and 

YL and YH are pH-independent constant values of y at low and high pH, respectively. 

 

3.2.9 Crystallization. 

The purified SDH C205S mutant enzyme was crystallized based on fine 

screening of the conditions described by Andi et al. (8) for the apo-SDH wild-type 

enzyme.  The final reservoir conditions for crystallization of the SDH C205S enzyme 

were 100 mM Tris (pH 7.0), 30% (w/v) PEG-MME 2000 at 4 °C using the hanging 

drop vapor diffusion method.  The hanging drop contained equal volumes of protein 

(14-18 mg/mL in 0.1 M Hepes, pH 7.0) and reservoir solution (2 µl each).  Trays were 

cooled and setup at 4 °C.   

Diffraction quality crystals could not be obtained by soaking Sacc and NADH 

into the apo-C205S SDH crystals.  Likewise, co-crystallization trials with the SDH 
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C205S enzyme with Sacc and NADH using the original apo-SDH conditions did not 

produce diffraction quality crystals.  New co-crystallization conditions were found 

based on broad screen crystallization trials carried out using the Mosquito liquid handler 

from TTP Labtech.  A series of optimization screens were developed by varying the 

concentrations of polyethylene glycol (PEG) 3350 from 10 – 25 % w/v, malonate from 

0 – 0.3 M with 0.1 M Bis-Tris Propane (pH 6.5).  Trials were set up in 24 well VDX 

crystallization plates using a Rigaku Automation Alchemist II liquid handler.  The final 

conditions that yielded diffraction quality crystals of the ESaccNADH complex were 

22% PEG 3350, 0.3 M malonate and 0.1 M Bis-Tris Propane (pH 6.5) at 4 °C. 

 

3.2.10 X-ray data collection.  

All data was collected at 100 K and crystals were cryo-protected by transfer 

through increasing concentrations of glycerol to a final concentration of 15%.  All 

crystals were rapidly cryo-cooled in liquid nitrogen.  X-ray data for the C205S apo-

enzyme and ESaccNADH complex crystals were collected at 100 K using CuK ( = 

1.5418 Å) radiation on a Rigaku RU3HR rotating anode generator and RAXIS IV
++

 

image plate detector.  Diffraction data were integrated using Mosflm, scaled and 

merged using SCALA and structure factors were calculated using TRUNCATE as 

found in the CCP4 program suite (14).  Data collection statistics are given in Table 1. 

 

3.2.11 Molecular replacement.   

Initial phasing for both structures was done by molecular replacement using 

PHASER (15)  The native apo-enzyme structure (PDB ID: 2Q99) was used as the initial 
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search model for the apo-C205S structure (7).  The resultant C205S structure was used 

as a search model in molecular replacement to solve the ESaccNADH structure.  

There is a significant conformational change that occurs upon Sacc/NADH binding, and 

as a result the apo-enzyme model had to be edited by separating it into two halves at 

residues Phe135 and Pro326.  Refinement was conducted using REFMAC (16), with a 

round of simulated annealing done initially in PHENIX (17) to reduce model bias.  

Model visualization, rebuilding and the fitting of Sacc and NADH were done using 

COOT (18).  Water molecules were added toward the end of refinement using the Add 

Waters function in COOT and visually inspected after initial placement.   A glycerol 

molecule was also found in the ligand bound structure.  Refinement statistics are given 

in Table 1. 

 

3.2.12 Molecular graphics.   

Structure figures were prepared using PyMOL
TM 

version 0.99 (19). 

 

3.3 RESULTS 

3.3.1 Cell Growth, Expression and Purification.   

Expression of the K77M/C205S, H96Q/C205S and K77M/H96Q/C205S mutant 

enzymes was similar to that of the WT SDH.  All enzymes eluted from the Ni-NTA 

column with buffer containing 300 mM imidazole at pH 8.  Purity of the proteins was 

assessed by SDS-PAGE, and all of the mutant proteins were estimated to be >95% pure.  

The His-tagged mutant enzymes maintained stability and remained active for months 

when stored at 4 °C in 100 mM Hepes, 300 mM KCl, and 300 mM Imidazole at pH 8. 
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3.3.2 Structural studies.   

The X-ray structure of the pseudo-WT C205S apo-enzyme (PDB ID code: 

3UGK) was solved from crystals grown as described in MATERIALS AND 

METHODS.  Diffraction data indicated a space group of P212121 and the highest 

resolution shell was 2.01 Å, Table 1.  The structure was solved by molecular 

replacement and initially built from the SDH model (PDB ID 2Q99) published by 

Berghuis and colleagues (7).  The structure of the C205S apo-enzyme is virtually 

identical to that of the WT enzyme.  A superimposition of the two structures gives an 

rmsd of 0.31 Å (data not shown). 

Attempts to crystallize a ternary complex of the WT enzyme were unsuccessful, 

likely as a result of very weak binding of the cofactor to enzyme with an oxidized 

disulfide (5).  A ternary complex structure was obtained by co-crystallization of the 

C205S enzyme with Sacc and NADH (PDB ID code: 3UH1).  Diffraction data indicated 

a space group of P43 and the highest resolution shell was 2.17 Å, Table 1.  The structure 

was solved by molecular replacement using the structure of the apo-C205S enzyme as 

discussed in MATERIALS AND METHODS.  A superimposition of the 

E•Sacc•NADH ternary complex structure with the apo-C205S structure indicated 

significant changes that result in a closure of the active site, Figure 3.1A.  In the ternary 

complex, there is a slight rotation and rigid body movement of almost 9 Å of domain I 

towards domain II that effectively closes the cleft region as shown in the CPK models 

in Figure 3.1B (apo) versus Figure 3.1C (ternary complex).  The net displacement of 

K99 in the C97-K103 loop region is 8.8 Å in the ternary complex relative to the apo-

enzyme.  
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Figure 3.2A shows a stereo view of an Fo-Fc difference electron density map of 

the active site region to illustrate the positions of the bound NADH and Sacc molecules.  

Figure 3.2B is a mono view of the active site with hydrogen-bond and ionic interactions 

shown for protein side chains in contact with the ligands.  The distances between 

enzyme side chain atoms and reactants are given in Table 4.  The N atom of K77 and 

the N2 atom of H96 form hydrogen bonds with the N atom of Sacc.  Other important 

contacts are made through R18, E122.  Also shown is an ionic interaction between 

D227 and NADH. 

 

 

Figure 3.1 Overall Structures of the C205S Apo-enzyme and ENADHSaccharopine 

Ternary Complex.  A. Superimposition of the apo-enzyme (red) and ternary complex (green) 

structures.   Note the change in the position of the loop and helix in domain I (right) to close the 

active site.  B.  CPK model of the apo-enzyme with the active site entrance at the top (same 

orientation as in A).  C.  CPK model of the ternary complex structure in the same orientation as 

shown in B. 
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There are several hydrogen-bond interactions between the cofactor NADH and the 

substrate saccharopine. 

 

Figure 3.2 Close-up view of the Active Site of SDH in the Ternary Complex with NADH and 

Saccharopine.  A. Stereoview of a Fo-Fc difference electron density map contoured at 3with 

ligand atoms omitted.  B. Mono view of the active site with NADH and Sacc bound.  Residues 

within hydrogen bond distance (shown as a dashed line) to NADH and Sacc are shown.  

Distances represented by the dashes are given in Table 3.2. 

 

We also attempted to co-crystallize SDH with NADH and lysine using the same 

screening conditions as for the E•Sacc•NADH ternary complex crystals.  However, we 
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only observed density for NADH in the solved structure (PDB ID: 3UHA) and the 

enzyme was observed to be in the open conformation (data not shown).  

 

3.3.3 Initial velocity studies.   

Initial velocities were measured in the direction of Sacc formation for the 

K77M, H96Q and K77M/H96Q mutant enzymes.  Replacing K77 with M resulted in a 

145-fold decrease in V2/Et and >10
4
-, and >10

3
-fold decreases in V2/Kα-KgEt and 

V2/KLysEt, respectively.  This results in 28- and 90-fold increases in KLys  and Kα-Kg, 

respectively.  Replacing H96 with Q resulted in a 28-fold decrease in V2/Et and >10
3
-

fold decreases in V2/Kα-KgEt and V2/KLysEt, respectively.  The Kα-Kg and KLys increased 

80-, and 300-fold, respectively.  The K77M/H96Q double mutant gave the largest 

changes in kinetic parameters, as expected, with 660-, >10
6
-, and ~10

5
-fold decreases in 

V2/Et, V2/Kα-KgEt, and V2/KLysEt, respectively; Kα-Kg and KLys increased >10
3
- and 10

2
-

fold, respectively.  Kinetic parameters are summarized in Table 3.3, and compared to 

those obtained for the pseudo-WT, C205S (10). 

 

3.3.4 pH dependence of kinetic parameters.   

The pH dependence of kinetic parameters provides information on the optimal 

protonation state of functional groups on enzyme and/or substrate for binding and/or 

catalysis.  Studies were carried out with K77M and H96Q mutant enzymes in the 

direction of saccharopine formation, at 25 °C; the rate obtained with the double mutant 

enzyme were too low to allow data to be collected as a function of pH.  Both mutant 

enzymes were active and stable over the pH range 5–10, and initial rate studies at pH  
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Table 3.1.  Data Collection Statistics 

 C205S apo-enzyme Sacc/NADH bound 

space group P212121 P43   

unit cell dimensions (Å) 64.95, 75.23, 75.31 68.88,  68.88, 

 101.85  

wavelength (Å) 1.5418 1.5418 

temperature (K) 100 100 

resolution (Å) 41.71-2.01 35.2-2.17 

solvent content (%) 43.9 57.3 

no. of observations 98649 89656 

no. of unique reflections 24396 25006 

completeness (%) 97.1(81.8)
 a
 99.8(99.8) 

average multiplicity 4.0(2.6) 3.6(3.4) 

<I/I> 15.8(3.0) 14.5(3.4)  

Rmerge
 b

 0.052(0.295) 0.063(0.300) 

 

Refinement Statistics 

 

resolution range (Å) 41.71-2.01 35.2-2.17  

no. of protein atoms 2921 2884 

no. of solvent molecules 152 134 

no. of ligand molecules 0 3 

avg. B factor (all atoms) 25.01 24.37 

Rcryst
 c
 0.197 0.178 

Rfree
 d

 0.273 0.228 

rms deviation
 e
 

 bond length (Å) 0.022 0.022  

 bond angle (°) 1.74 1.89 

Ramachandran plot f 

 favored 97.8 97.5 

 allowed 2.2 2.5  

 outliers 0.00 0.00 

 disallowed 0.00 0.00 

  
a
 The data in parentheses refer to the highest resolution shell. 

b
 Rmerge = hi Ihi – <Ih>/hi<Ih>.   Ihi is the ith used observation for unique hkl h, and 

<Ih> is the mean intensity for unique hkl h. 
c
 Rcryst = Fo– Fc/Fo where Fo and Fc are the observed and calculated structure 

factors, respectively. 
d 

Rfree was calculated using 5% of randomly selected diffraction data which were 

excluded from the refinement. 
e
 Ideal values taken from ref. 16 

f
 calculated using MolProbity (20). 
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5.5 and 10 suggest the kinetic mechanism did not change (data not shown).  For the 

K77M mutant enzyme, V2/KLysEt is pH independent, while V2/Et exhibits a partial 

change on the acid side giving a pKa of about 7.4.  pH independent values of V2/Et are 

0.20 ± 0.03 s
-1

 at low pH and 1.4 ± 0.1 s
-1

 at high pH.   

 

Table 3.2.  Distances Between Enzyme Side Chains and Reactants 

Side Chain – Reactant Distance (Å) 

R18_NH1 – Sacc_O1 2.8 

R18_NH2 – Sacc_O2 2.8 

R131_NH1 – Sacc_O3 2.8 

R131_NH1 – Sacc_O4 2.6 

K77_N

 – Sacc_N

 3.4 

H96_N
2

 – Sacc_N

 3.5 

K13_ N

Q78_O

 2.6 

D227_O1 – NAD_O2 2.6 

D227_O1 – NAD_O3 2.8 

a
NAD_4C – Sacc_C8

 
3.6 

a
Numbering for Sacc is from C1 of the lysine  

half to C11, the -carboxylate of the glutamate half. 

 

The average pH independent value of V2/KLysEt is 0.8 ± 0.5.  In the case of 

H96Q, V2/Et exhibits a decrease at low pH with a slope <1, giving an app pKa of about 

6.7, while V2/KLysEt exhibits a partial change with a pKa of about 9, decreasing from a 

constant value at high pH to a lower constant value at low pH, Figure 3.3.  The pH 
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independent value of V2/Et is 4.8 ± 0.3 s
-1

, while values of 450 ± 280 and 4.5 ± 2.9 M
-1

s
-

1
 are obtained for V2/KLysEt at high and low pH, respectively. 

 

Table 3.3: Summary of the Kinetic Parameters. 

 C205S K77M
a 

H96Q
a 

K77M/H96Q
a 

V2/Et (s
-1

) 106 0.73 ± 0.02 3.83 ± 0.03
 

0.16 ± 0.02 

V2/K-KgEt (M
-1

s
-1

) 9.7 x 10
5 

73 ± 6 435 ± 116 0.50 ± 0.05 

V2/KLysEt (M
-1

s
-1

) 1.2 x 10
5 

29 ± 2 14 ± 3 1.7 ± 0.8 

K-Kg (mM) 0.11 10.0 ± 0.8 9 ± 2 267 ± 60 

KLys (mM) 0.89 25 ± 2 267 ± 60 96 ± 9 

a
Mutations prepared in the C205S background (10). 

 

3.3.5 Isotope effects.   

Isotope effects were measured for the K77M mutant enzyme at pH 9, the high 

pH independent region of the pH-rate profiles.  Values of 1.8 and 2.0 were obtained for
 

D
V2 and 

D
(V2/KLys), and both are greater than the value of 1.3 reported for the pseudo-

WT enzyme (C205S).  A small normal 
D2O

V is observed, but 
D2O

(V/KLys) is inverse.  

Repeating the solvent effect with NADD gave only slight changes.  On the other hand, a 

repeat of the primary deuterium effect in D2O gives a decrease in the isotope effect on V 

from 1.8 to 1.4, but no change in the isotope effect on V2/KLys. 
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Figure 3.3: pH Dependence of Kinetic Parameters for SDH WTSDH (C205S), K77M/C205S 

and H96Q/C205S in the Direction of Saccharopine Formation. Data for WT SDH (C205S)(A 

and B) are from ref. (4), and are reproduced with permission, while (C and D) are data for the 

K77M/C205S, (E and F) are for H96Q/C205S mutant enzymes. Units for V/Et and V/KEt are s
-1

 

and M
-1

 s
-1

, respectively. Points are the experimentally determined values. The curves are 

theoretical and based on fits to eq. 6 for panel C, E and F.  

 

Table 3.4: Summary of the Kinetic Isotope Effects
a
 

 C205S
b 

K77M
c, d 

H96Q
c, d 

D
V 1.3 ± 0.2 1.81 ± 0.02 1.17 ± 0.40  

D
(V/KLys) 1.3 ± 0.2 2.03 ± 0.04 1.17 ± 0.40 

D2O
V 1.5 ± 0.1 1.45 ± 0.01 2.43 ± 0.02  

D2O
(V/KLys) 1.5 ± 0.1 0.77 ± 0.05 2.43 ± 0.02 

D2O
(V)D 1.5 ± 0.1 1.32 ± 0.02 2.24 ± 0.05  

D2O
(V/KLys)D 1.5 ± 0.1 0.62 ± 0.07 2.24 ± 0.05 

D
(V)D2O ND 1.42 ± 0.01 1.06 ± 0.11 

D
(V/KLys)D2O ND 2.03 ± 0.03 1.06 ± 0.11 

a
Isotope Effects were measured at pH 9. 

b
From reference (10). 

c
Errors are standard error of the mean. 

d
Data for K77M were fitted to eq. 4, while data for H96Q were fitted to eq. 3. 
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For H96Q, the primary deuterium isotope effect is within error unity, whether 

measured in H2O or D2O.  The solvent deuterium kinetic isotope effect is 2.4 and there 

is no significant change when it is measured with NADD.  Data are summarized in 

Table 3.4, and compared to those obtained for C205S mutant enzyme (10). 

 

3.3.6 Viscosity effects.   

In order to determine whether the SKIEs reflect the increased viscosity in D2O, 

the initial rate was measured in the absence and presence of 9% glycerol, which gives a 

relative viscosity of 1.24, the same as 100% D2O (21).  There was no effect of viscosity 

on V and V/K for the H96Q mutant enzyme; a value of 1.02 ± 0.01.  For K77M, 
η
V and 

η
(V/K) were 1.18 ± 0.03 and 0.61 ± 0.06.

 

3.4 DISCUSSION 

3.4.1 Structures.   

Previous structures of apo-wild type SDH (7) and substrate analogue bound 

structures (8) showed an open or partially closed cleft between domains I and II.  The 

E•NADH•Sacc ternary complex structure described here reveals a closed conformation 

in which reactants are tightly bound to the enzyme via hydrogen bond and ionic 

interactions and poised for acid-base catalysis.  A slight rotation and 8.8 Å shift of 

domain I towards domain II is responsible for closing the active site.   

On the basis of the ternary ENADHSacc complex of SDH, there are a number 

of ionizable residues in the active site as discussed in the Introduction.  Residues 

include R18, R131, K99, K77, K13, E122, E78, E16, and H96.  A multiple sequence 
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alignment of the SDH from Saccharomyces cerevisiae, Candida albicans, Aspergillus 

fumigatus, Cryptococcus neoformans, Magnaporthe grisea, Yarrowia lipolytica and 

Schizosaccharomyces pombe indicated that all of these active site residues are 

conserved in these fungal species (data not shown), consistent with their importance in 

the mechanism. 

As shown in Figure 3.2A, K77 and H96 are within hydrogen-bond distance (3.4 

Å and 3.5 Å, respectively) to the secondary amine of saccharopine, and could serve as 

acid-base catalysts in the dehydrogenase reaction.  The proposed mechanism suggests 

that one of the residues accepts a proton from the secondary amine in the hydride 

transfer step, while the second activates water for hydrolysis of the resulting imine.  The 

lysine and imidazole side chains of K77 and H96 are in proper position to carry out 

these functions.  Data presented in Results above are in agreement with this hypothesis 

and further discussed below. 

 

3.4.2 Kinetic Parameters.   

All three mutant enzymes, K77M, H96Q, and K77M/H96Q, were characterized 

in the direction of Sacc formation.  Initial rates measured as a function of reactant 

concentration suggested the kinetic mechanism did not change compared to that 

proposed for the C205S pseudo-WT enzyme, i. e., binding of NADH first, followed by 

random addition of -Kg or Lys (data not shown).   

Mutating K77 to M decreases the positive charge in the site, while changing 

H96 to Q likely does not change the overall charge assuming the imidazole side chain is 

neutral at neutral pH.  Mutation of K77 gives a 145-fold decrease in V/Et, the largest 



88 

 

thus far observed for any site-directed mutation in SDH (5, 6).  The two order of 

magnitude decrease in the turnover number and 3 to 4 order of magnitude decreases in 

the second order rate constants are consistent with the K77 side chain playing a direct 

role as an acid-base catalyst in the SDH reaction.  Substitution of a glutamine for H96 

leads to a 28-fold decrease in the turnover number of SDH and greater than 3 order of 

magnitude decreases in second order rate constants.  Although the decreases are not as 

great as those observed for the K77M mutant enzyme, the data are suggestive of a 

catalytic role for H96.  In agreement, the double mutant enzyme, K77M/H96Q, gives a 

nearly 3 order of magnitude decrease in V2/Et and 5 to 6 order of magnitude decreases 

in the second order rate constants.  These data, together with the position of the two 

residues in the site are consistent with their role as acid-base catalysts in the reaction. 

 

3.4.3 Isotope effects.   

Primary and solvent isotope effects are sensitive tools to investigate the slow 

step / rate determining steps in the reaction.  The primary deuterium kinetic isotope 

effect (PKIE) reflects the hydride transfer step (see Scheme 3.1) (4).  A solvent kinetic 

isotope effect (SKIE) is observed when protons are in flight in transition states that 

contribute to rate limitation.  In the WT and C205S enzymes, the SKIE was derived 

from protons in flight in the hydride transfer and imine hydrolysis steps, corroborated 

by a concave downward proton inventory (4). 

The maximum rate for the C205S mutant enzyme is slightly pH dependent 

decreasing from a constant value at high pH to another constant value at low pH.  The 

isotope effects for the C205S enzyme reported in Table 4 were measured at pH 9 (10).  
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The effects obtained at pH 5.6 are about 2, similar to the value obtained for the K77M 

mutant at pH 9.  The data suggest hydride transfer is slower for the K77M mutant 

enzyme.  The slightly lower isotope effect on V suggests release of NAD or 

isomerization of the E-NADH complex contributed to rate limitation.  The SKIE on V is 

similar to that obtained for C205S, but the effect on V/KLys is unexpectedly inverse, and 

will be discussed further below.  A repeat of the PKIE in D2O gives a value of 
D
(V/KLys) 

equal to that obtained in H2O suggesting that the hydride transfer step is rate-

determining at pH 9, and the observed solvent deuterium isotope effect reflects changes 

that occur or have occurred once the transition state for hydride transfer is attained.  The 

PKIE on V in D2O decreases slightly consistent with a step in addition to hydride 

transfer contributing to rate limitation; the data are consistent with the suggestion that 

release of NAD or isomerization of the E-NADH complex contributed to rate limitation.  

A repeat of the SKIE with NADD fixed gives values that are either identical to or 

decreased slightly compared to the value in H2O.  Taken together, the data indicate 

hydride transfer as the step that is largely rate-determining at limiting Lys (V/KLys), and 

is a major contributor to rate limitation at saturating reactant concentrations.  Thus, as 

suggested on the basis of structural studies and pH-rate profiles (see below) K77 is, in 

all likelihood, the base that donates a proton to the secondary amine of Sacc in the 

hydride transfer step as the imine is reduced.  

Inverse SKIEs are expected for ionization of a thiol, hydrolysis of metal-H2O, a 

medium effect (21), or an effect derived from the increase in viscosity generated by 

D2O.  Although there is a thiol in the vicinity of the dinucleotide-binding site, it is 

unlikely this ionization contributes to the chemistry in the site.  If anything it would be 
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expected to decrease the affinity of enzyme for NADH, and this is not observed.  There 

is no metal ion involved in the SDH reaction.  It is thus possible that either a medium 

effect or an effect of viscosity is responsible for the observed inverse SKIE, and may 

reflect the conformational change to close the site to form the productive Michaelis 

complex upon binding of Lys.  The viscosity effect is identical to the measured SKIE, 

consistent with a preference for the closed conformation because of the higher viscosity 

of D2O. 

The solvent isotope effects, listed in Table 3.4, are nearly identical to the 

viscosity effects obtained for K77M.  Data strongly suggest the inverse isotope effect on 

V/K is a consequence of the change in solvent viscosity in D2O, i.e., the solvent 

deuterium isotope effect on V/K is 1.0, while a slight normal isotope effect of about 1.23 

± 0.02 (1.45/1.18) is observed on V.  Effects near unity suggest proton transfer steps do 

not contribute or contribute to a very small extent to the rate limitation in the reaction 

with Lys limiting.  The reason for the increased rate in the presence of a viscosogen is 

not known at this point but likely results from stabilization of an enzyme conformation 

along the reaction pathway as suggested above.  At saturating reactant concentrations, 

there is a slight contribution from diffusion (viscosity effect) and there is at least one 

proton in flight in a step that contributes to rate limitation.  As suggested above, the step 

reflects either release of NAD or isomerization of the ENADH complex, and the 

presence of a contribution from diffusion suggests that it is likely release of NAD. 

Observation of an inverse viscosity effect is not unique to SDH.  Similar 

observations have been made for the Ascaris suum NAD malic enzyme (21), and the 

homoisocitrate dehydrogenase from S. cerevisiae (22) using 9% glycerol as the 
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viscosogen.  Inverse solvent deuterium isotope effects and viscosity effects of about 0.8 

and 0.5 were estimated on V and V/Kmalate for the malic enzyme.  These results, with a 

larger inverse effect on V/K than V, are qualitatively identical to those obtained in these 

studies.  Data were interpreted in terms of stabilizing the closed form of the enzyme at 

higher viscosity.  The increase in rate is thus a result of an increase in the concentration 

of the productive Michaelis complex.  Isocitrate, a slow substrate for homoisocitrate 

dehydrogenase, also gave similar inverse solvent isotope and viscosity effects of 0.8 and 

0.6 on V and V/KIc.  Data were again interpreted in terms of stabilizing an enzyme form 

along the reaction pathway. 

Isotope effects measured for H96Q are very straightforward and easy to 

interpret.  A primary deuterium effect near 1 indicates the hydride transfer step does not 

contribute to rate limitation.  The SKIE is about 2.3 on V and V/KLys, significantly 

greater than the value obtained for C205S.  Data are consistent with the proposed role of 

H96 in formation of the imine prior to its reduction in the hydride transfer step. 

Inverse SKIEs are expected for ionization of a thiol, hydrolysis of metal-H2O, a 

medium effect (21), or an effect derived from the increase in viscosity generated by 

D2O.  Although there is a thiol in the vicinity of the dinucleotide-binding site, it is 

unlikely this ionization contributes to the chemistry in the site.  If anything it would be 

expected to decrease the affinity of enzyme for NADH, and this is not observed.  There 

is no metal ion involved in the SDH reaction.  It is thus possible that either a medium 

effect or an effect of viscosity is responsible for the observed inverse SKIE, and may 

reflect the conformational change to close the site to form the productive Michaelis 

complex upon binding of Lys.  The viscosity effect is identical to the measured SKIE, 
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consistent with a preference for the closed conformation because of the higher viscosity 

of D2O. 

The solvent isotope effects, listed in Table 2, are nearly identical to the viscosity 

effects obtained for K77M.  Data strongly suggest the inverse isotope effect on V/K is a 

consequence of the change in solvent viscosity in D2O, i.e., the solvent deuterium 

isotope effect on V/K is 1.0, while a slight normal isotope effect of about 1.23 ± 0.02 

(1.45/1.18) is observed on V.  Effects near unity suggest proton transfer steps do not 

contribute or contribute to a very small extent to the rate limitation in the reaction with 

Lys limiting.  The reason for the increased rate in the presence of a viscosogen is not 

known at this point but likely results from stabilization of an enzyme conformation 

along the reaction pathway as suggested above.  At saturating reactant concentrations, 

there is a slight contribution from diffusion (viscosity effect) and there is at least one 

proton in flight in a step that contributes to rate limitation.  As suggested above, the step 

reflects either release of NAD or isomerization of the ENADH complex, and the 

presence of a contribution from diffusion suggests that it is likely release of NAD. 

Observation of an inverse viscosity effect is not unique to SDH.  Similar 

observations have been made for the Ascaris suum NAD malic enzyme (21), and the 

homoisocitrate dehydrogenase from S. cerevisiae (22) using 9% glycerol as the 

viscosogen.  Inverse solvent deuterium isotope effects and viscosity effects of about 0.8 

and 0.5 were estimated on V and V/Kmalate for the malic enzyme.  These results, with a 

larger inverse effect on V/K than V, are qualitatively identical to those obtained in these 

studies.  Data were interpreted in terms of stabilizing the closed form of the enzyme at 

higher viscosity.  The increase in rate is thus a result of an increase in the concentration 
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of the productive Michaelis complex.  Isocitrate, a slow substrate for homoisocitrate 

dehydrogenase, also gave similar inverse solvent isotope and viscosity effects of 0.8 and 

0.6 on V and V/KIc.  Data were again interpreted in terms of stabilizing an enzyme form 

along the reaction pathway. 

Isotope effects measured for H96Q are very straightforward and easy to 

interpret.  A primary deuterium effect near 1 indicates the hydride transfer step does not 

contribute to rate limitation.  The SKIE is about 2.3 on V and V/KLys, significantly 

greater than the value obtained for C205S.  Data are consistent with the proposed role of 

H96 in formation of the imine prior to its reduction in the hydride transfer step. 

 

3.4.4 pH dependence of kinetic parameters.   

To further probe the role of K77 and H96, the pH dependence of kinetic 

parameters was measured.  These studies allow a determination of the optimal 

protonation state of the functional groups on the enzyme and/or substrate involved in 

either binding and/or catalysis.  On the basis of the above discussion, the proposed 

general base in the direction of Sacc formation is K77, which must accept a proton from 

the -amine of Lys as it attacks the -carbonyl of -Kg to form the imine.  Histidine 96 

is proposed to serve a role as a general acid in the reaction, first protonating the 

carbonyl oxygen to form the protonated carbinolamine, accepting a proton from the 

protonated carbinolamine to generate the neutral carbinolamine, and eventually 

protonating the leaving hydroxide to give water (III in Scheme 3.1). 

Data for the C205S mutant enzyme (10) are shown in Fig. 1 as a reference for 

interpreting the pH-rate profiles for K77M and H96Q.  V2 decreases from a constant 
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value at low pH to a lower constant value at high pH.  The pKa estimated for the change 

is 7.5 and the ratio of the constant values is about 9.  The pH dependence was attributed 

to a conformational change in enzyme, with the low pH conformation the more active 

of the two.  (This aspect will be discussed further below.)  The V/K for Lys exhibits a 

bell-shaped pH-rate profile with pKa values of 7 and 8.1 attributed to the general base 

and general acid in the SDH reaction. 

Data for the K77M mutant enzyme differ considerably.  The V2 pH-rate profile 

exhibits a partial change, but requires the group unprotonated, opposite the situation for 

C205S.  It is clear that the presence of the K77 side chain influences the pKa and 

perhaps the group responsible for pH-dependent conformational change.  On the basis 

of the isotope effects presented in RESULTS and discussed above, the hydride transfer 

step is slow for the K77M mutant enzyme, and we propose that K77 donates a proton as 

the imine is reduced to the secondary amine in Sacc.  The loss of the side chain of K77 

results in a significant decrease in the rate at low pH, which increases with increasing 

pH giving a pKa of about 7.5.  The data obtained in these studies suggest an 

interpretation that is alternative to a pH dependent conformational change.  Although 

chemistry contributes to rate limitation for the pseudo-WT enzyme, the conformational 

changes required to close the site prior to catalysis and open it prior to product release 

also make significant contributions (5, 8).  The pH dependence observed in the V2 pH-

rate profile may reflect two pathways that differ depending on the protonation state of 

the -amino groups of the Lys substrate and the side chain of K77.  For the C205S 

mutant enzyme, the optimum protonation state exists when the substrate -amine is 

protonated and the side chain of K77 is unprotonated.  The proximity of the side chain 
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of Lys and K77, results in a decrease in the pKa of both -amino groups facilitating 

proton transfer from one to the other.  As the pH increases, the proton shared between 

the two side chains is lost; the global pKa is about 7.5 for the Lys-K77 pair on the basis 

of the observed pKa values reported in Table 2.  Once unprotonated, the rate decreases 

by 9-fold, likely as a result of a change in orientation of the Lys side chain.  In the 

K77M mutant enzyme the protonation state of the substrate Lys -amine may also 

contribute to rate limitation at saturating reactants.  Once bound the Lys -amine must 

be unprotonated to act as a nucleophile as it attacks the -carbonyl of -Kg to form the 

imine.  Other active site side chains, e.g., E78, E16, or K13, must abstract the Lys -

amine proton, perhaps via the intermediacy of a water molecule.  As the pH increases 

the -amine of Lys becomes unprotonated (the pKa is around 7.5 for the bound 

substrate), can serve as a nucleophile, and the rate increases by about 10-fold. 

The dominant forms of enzyme and substrate present when V/KLys is measured is 

the ENADH-Kg complex and free Lys.  The V/KLys is pH independent, while a bell-

shaped pH-rate profile was obtained for C205S with pKa values of about 7 and 8.  Since 

free Lys is dominant, the observed pKas are on enzyme; the pKa of the - and -amino 

groups of Lys are 9.5 and 10.5, respectively.  One of the pKa values likely reflects the 

K77 side chain, and intrinsic values are observed.
2
  It is likely the group with a pK of 

about 7 that reflects the K77 side chain, consistent with the discussion of the pKa of 7.5 

in the V2/Et pH-rate profile above.  The pKa of the H96 side chain is thus about 8 and in 

the absence of the K77 side chain is perturbed to a pH higher than 9.5, perhaps resulting 
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from the influence of E78, which is in the vicinity and no longer neutralized by K77.  

The absence of the pKa of about 7 is consistent with its attribution to K77. 

In the case of the H96Q mutant enzyme, interpretation will begin with the V/KLys 

pH-rate profile.  Note that the profile exhibits a partial change, decreasing from a 

constant value above pH 9 to a lower constant value below pH 6; the ratio of the 

constant values is about 100.  The observed pKa of about 9 reflects the side chain of 

K77, while the pKa observed at high pH in C205S is absent consistent with assignment 

of H96 as this group.  The loss of the H96 side chain resulted in an increase in the pKa 

of K77 from about 7.5 to 9, suggesting an influence of the imidazole side chain on the 

proton affinity of the K77 side chain.  The H96 side chain must be protonated for 

optimum reaction in the direction of Sacc formation, and the proximity of the positive 

charge on the imidazole will certainly result in a decrease in the pKa of the -amino 

groups of K77.  The finite rate obtained at low pH suggests K77 is important for 

catalysis, but is not absolutely essential.  This is in agreement with the data obtained for 

the V2/Et pH-rate profiles for C205S, K77M and H96Q (see below). 

 The V2/Et pH-rate profile of H96 is similar to that of K77M at face value.  

However, since the K77 side chain is absent the pKa reflected is that of the bound 

substrate, Lys.  Thus, the bound Lys has a pKa of about 7.  As the pH increases and the 

-amino of bound Lys becomes neutral, the rate increases since the amine can now act 

as a nucleophile in the attack of the -carbonyl of -Kg to form the imine. 
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3.4.5 Conclusions.   

A structure of a ternary complex between the C205S pseudo-WT enzyme, 

NADH, and Sacc provided a closed form of the enzyme and a more accurate description 

of the interactions between enzyme side chains and reactant functional groups 

compared to the semi-empirical model published previously (6).  Importantly, the 

distance between C4 of the nicotinamide ring to C8 of Sacc is 3.6 Å as shown in Figure 

3.2, a reasonable hydride transfer distance, compared to a distance of >4.5 Å estimated 

from the semi-empirical model, which was constructed from open forms of the enzyme.  

The side chains of H96 and K77 now appear properly positioned to act as acid-base 

catalysts.  

Mutation of K77 to M results in 145-fold decrease in V/Et and greater than three 

order of magnitude increase in the second order rate constants.  Together with the large 

primary deuterium isotope effect (2.0) and small solvent deuterium isotope effect 

(1.45), data suggest rate limiting hydride transfer, consistent with the proposed general 

acid role of K77 in protonating the imine nitrogen concomitant with hydride transfer.  

In agreement with this proposal, V2/KLysEt is pH independent.  The H96Q mutation, 

results in about a 28-fold decrease in V2/Et and >10
3
-fold decreases in the second order 

rate constant.  A primary deuterium isotope effect near unity and a large solvent 

deuterium isotope effect (2.4) is consistent with the proposed role of H96 in protonating 

the leaving hydroxyl as the imine is formed.  Elimination of H96 results in a pH-rate 

profile for V2/KLysEt that exhibits the pKa for K77, which must be unprotonated in order 

to accept a proton from the -amine of the substrate Lys so that it can act as a 
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nucleophile.  The proposed roles of H96 and K77 are corroborated by the nearly 700-

fold decrease in V2/Et and >10
5
-fold decreases in the second order rate constants. 
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3.6 FOOTNOTES 

1
Abbreviations: AAA, α-aminoadipate pathway; E, enzyme; SDH, saccharopine 

dehydrogenase; α-Kg, α-ketoglutarate; Sacc, L-saccharopine; Lys, L-lysine; NAD, -

nicotinamide adenine dinucleotide (the + charge is omitted for convenience); NADH, 

reduced -nicotinamide adenine dinucleotide; NADD, reduced -nicotinamide adenine 

dinucleotide with deuterium in the 4-R position; AMP, adenosine monophosphate; 

OxGly, oxalylglycine; WT, wild type; Mes, 2-(N-morpholino)ethanesulfonic acid; Taps, 

3-[N-tris(hydroxymethyl) methylamino]-propanesulfonic acid; Hepes, N-(2-

hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid); Ches, 2-(N-cyclohexylamino) 

ethanesulfonic acid; PEG-MME, polyethylene glycol monomethyl ester; PKIE, primary 

kinetic isotope effects; SKIE, solvent kinetic isotope effects; MKIE, multiple kinetic 

isotope effects. 

 
2
A partial change was observed in the V2/Et pH-rate profile of C205S, which was 

proposed to reflect a pH dependent conformational change (10).  pKas for the catalytic 

groups are not observed suggesting optimum binding of only the correctly protonated 

forms of reactants and enzyme.  In this case, intrinsic pKa values are observed (12). 
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CHAPTER 4 

Supporting role of K13 and E16 in the acid-base mechanism of 

saccharopine dehydrogenase from Saccharomyces cerevisiae 
 

4.1 INTRODUCTION 

Saccharopine dehydrogenase (N6-(glutaryl-2)-L-lysine: NAD oxidoreductase; 

EC 1.5.1.7) (SDH)
1
 catalyzes the final step in the -aminoadipate (AAA) pathway for 

the de novo synthesis of L-lysine in fungi (1, 2).  The enzyme catalyzes the reversible 

pyridine nucleotide dependent oxidative deamination of saccharopine (Sacc) to generate 

-ketoglutarate (-Kg) and lysine (Lys) using NAD as an oxidant (1).  The proposed 

kinetic mechanism for the Saccharomyces cerevisiae SDH (ScSDH) in the 

physiological reaction direction is ordered with NAD binding before Sacc and random 

release of -Kg and Lys prior to NADH (3).  An acid-base chemical mechanism has 

been proposed for ScSDH, and is shown in the direction of Sacc formation in Scheme 

4.1.  Once the ENADH-KgLys central complex is formed, the first base (B1) 

accepts a proton from the -amine of Lys prior to imine formation (I).  Resulting 

carbinolamine is protonated by the second acid (B2) (II).  The conjugate base B2 then 

accepts a proton from the carbinolamine nitrogen which is then given to the leaving 

hydroxyl to form water (III).  The imine then is reduced by NADH concomitant with 

protonation of the imine nitrogen by the conjugate acid of B1 (IV) (4).  On the basis of 

isotope effect studies and the pH dependence of kinetic parameters for the K77M and 

H96Q mutant enzymes, K77 was proposed as B1, while H96 was proposed as B2 

(Chapter 3).  On the basis of the structure of a dead-end ENADHSacc ternary 
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complex, K77 and H96 are within hydrogen-bond distance (3.4 Å and 3.5 Å) to the 

secondary amine of saccharopine, supporting the proposed role of these residues, Figure 

4.1 (Chapter 3).   

In the crystal structure of apo-enzyme, a pair of thiols was observed in the 

dinucleotide binding site to form a disulfide, but were present as a dithiol in the AMP-

bound structure (5).  A mutation at C205, one of the thiols, to S, gave a mutant enzyme 

with much higher rates at pH 7 compared to the WT enzyme.  The kinetic and chemical 

mechanisms of C205S remained qualitatively identical to the WT enzyme.  The C205S 

mutant enzyme is thus used as a pseudo-WT enzyme and the frame of reference for site-

directed mutagenesis studies with mutations generated in a C205S background (6). 

There are a number of ionizable residues (K99, E122, H96, R131, E78, K77, 

K13, E16, R18 and D319) in SDH active site (5, 7).  An alignment of the primary 

sequences from C. albicans, Pichia guilliermondii, S. cerevisiae, A. fumigatus, and C. 

neoformans SDHs indicated all of the ionizable residues are conserved (data not 

shown), suggesting they are important to the overall reaction. 

According to the crystal structure of the ENADHSacc tertiary complex 

(Chapter 3), K13 forms salt bridge with E78, thus neutralizing it, while E16 hydrogen-

bonds to N of R18 which has strong H-bond interactions with carboxyl- and oxo- 

groups of -Kg, Figure 4.1 (Chapter 3).  In this study the roles of K13 and E16 have 

been determined by mutating them to M and Q respectively.  Elimination of K13 is 

expected to decrease positive charge in the active site, while mutation of E16 to Q 

would decrease negative charge, disrupting the overall charge balance in the active site.  

We hypothesize that these residues play a supportive role in catalysis and/or binding of 
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-Kg and Lys on the basis of their positions in the active site (5) (Chapter 3).  Mutant 

enzymes were characterized via the pH dependence of kinetic parameters and isotope 

effects.  Data are discussed in terms of the proposed general acid - general base 

mechanism of SDH. 

 

Scheme 4.1 Chemical Mechanism Proposed for Saccharopine Dehydrogenase. The reaction is 

written in the direction of Sacc oxidation.  [I], the formed central complex ENADSacc once 

NAD and Sacc bind; [II], Schiff base intermediate; [III], carbinolamine intermediate; [IV], 

protonated carbinolamine; [V], the generated central complex ENADH-KgLys; [VI], 

protonated Lys. With the exception of Sacc, no stereochemistry is implied. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Chemicals.  

Ampicillin, chloramphenicol, Sacc, Lys, -Kg, horse liver alcohol 

dehydrogenase, and yeast aldehyde dehydrogenase were obtained from Sigma.  -
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NADH, -NAD, Luria-Bertani (LB) broth, LB-agar, and imidazole were purchased 

form U. S. Biochemical Corp.  The buffers, Ches, Taps, Hepes, and Mes, were from 

Research Organics, while Ni-NTA resin was purchased from 5 Prime.  Ethanol-d6 (99 atom % 

D) and D2O (99.9 atom % D) were purchased from Cambridge Isotope Laboratories.  

Ethanol (absolute, anhydrous) was from Pharmaco-Aaper.  Isopropyl--D-1-

thiogalactopyranoside was from Invitrogen, and the GenElute plasmid miniprep kit was 

from Sigma.  The QuikChange site-directed mutagenesis kit was from Stratagene.  4R-

4-
2
H NADH was prepared as described previously (8).  The concentration of NADD 

was estimated using an 340 of 6220 M
-1

cm
-1

.  All chemicals were obtained 

commercially, were of the highest grade available and were used without further 

purification. 

 

Figure 4.1 Close-up view of the Active Site of SDH in the Ternary Complex with NADH and 

Saccharopine.  Residues within hydrogen bond distance (shown as a dashed line) to NADH and 

Sacc are shown.  The average hydrogen-bond distance was 2.98 Å. 
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4.2.2 Site-directed mutagenesis.   

Template DNA used for site-directed mutagenesis was the plasmid containing 

the C205S mutation of SDH, (9), to change K13 and E16 to M and Q, respectively.  The 

forward and reverse primers used to generate the K13M mutant enzyme are as follows:  

K13f, 5’-CTAAGAGCTGAAACTATGCCCCTAGAGGCACGTG-3’;  

K13r, 5’-CACGTGCCTCTAGGGGCATAGTTTCAGCTCTTAG-3’.   

Primers used to generate the E16Q mutant enzyme are as follows:  

E16f, 5’-GAAACTAAACCCCTACAGGCACGTGCTGCC-3’;  

E16r, 5’-GGCAGCACGTGCCTGTAGGGGTTTAGTTTC-3’.     

Mutagenesis was carried out according to the instructions in the QuikChange site-

directed mutagenesis kit as described previously (10).  The XL-1-Blue competent cell 

strain of Escherichia coli was transformed with the plasmids containing mutations.  

Plasmids were isolated and purified using the GenElute plasmid mini preparation kit.  

Mutations were confirmed by sequencing the entire gene at the Sequencing Core of the 

Oklahoma Medical Research Foundation, Oklahoma City, OK. 

 

4.2.3 Expression and purification.   

Escherichia coli BL21 (DE3)-RIL cells were transformed with plasmids 

containing mutant genes and expression was carried out as reported previously (3) with 

some modifications.  Once cell density reached an A600 of 0.5−0.6, induction of protein 

expression was carried out at 37C by addition of 0.1 mM IPTG, followed by 16 h 

incubation at 25C.  Cells were harvested by centrifugation at 10,000g for 10 min.  

Cells were sonicated in 100 mM Hepes, pH 7.5, containing 300 mM NaCl, 5 mM 
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imidazole.  Enzymes were purified by Ni-NTA affinity chromatography, with elution at 

300 mM imidazole.  The enzymes were >95% pure by SDS-PAGE.  The enzymes were 

stored at 4˚C in the elution buffer. 

 

4.2.4 Enzyme assay. 

Initial velocities were measured using a Beckman DU 640 UV-visible 

spectrophotometer.  All assays were performed at a temperature of 25°C.  Enzyme 

activity was measured in quartz cuvettes with a path length of 1 cm in the direction of 

Sacc formation by monitoring the decrease in A366 (ε366 = 3110 M
-1

 cm
-1

) as NADH is 

oxidized.  Reactions were initiated by addition of enzyme to a reaction mixture with a 

final volume of 0.5 mL containing 100 mM Hepes, pH 7.5, saturating NADH (0.5 mM) 

and variable concentrations of -Kg and Lys. 

 

4.2.5 pH Studies.   

The pH dependence of V, V/KLys, and V/K-Kg was measured over the pH range 

5–10 with NADH maintained at 0.5 mM, and either -Kg or Lys maintained at 

saturation with the other varied.  Buffers were maintained at 100 mM concentration 

over the following pH range; Mes, 5.5 - 7.0; Hepes, 7.0 - 8.0; Taps, 8.0 - 9.0; Ches, 9.0 

– 10.0.  None of the buffers had any effect on the activity of any of the mutant enzymes.  

The pH was recorded before and immediately after the reaction; no significant 

differences were detected.  To be certain that the kinetic mechanism of the enzyme did 

not change with pH and to obtain estimates of Km values for both substrates at the pH 
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extremes, initial velocity patterns were obtained at pH 5.5 and 10.0 with -Kg and Lys 

concentrations varied, with NADH maintained at saturating concentration (0.5 mM). 

 

4.2.6 Kinetic Isotope Effects. 

Isotope effects were measured for K13M and E16Q mutant enzymes in the pH 

independent region of their pH-rate profiles (pH 7.2).  Isotope effects on V2 and V2/KLys 

were measured with NADH(D) (0.5 mM) and -Kg (10Km) maintained at saturation 

and Lys varied.  Solvent deuterium kinetic isotope effects were measured at pH(D) 7.2, 

in the pH independent region of the pH(D)-rate profiles.  For rates measured in D2O, 

substrates (α-Kg and Lys) and buffers were first dissolved in a small amount of D2O 

and then lyophilized to replace exchangeable protons.  The lyophilized powders were 

then re-dissolved in D2O to give the desired concentrations, and pD was adjusted using 

either DCl or NaOD.  NADH was dissolved in D2O directly.  The pD was determined 

by adding 0.4 to the pH meter readings (11).  Reactions were initiated by adding a small 

amount of each of the mutant enzymes in H2O; the final estimated concentration of D2O 

in the reaction mixture was about 98%.  Multiple isotope effects were determined by 

direct comparison of the initial rates in H2O and D2O as for solvent deuterium effects, 

varying lysine at fixed saturating concentrations of NADD and -Kg. 

 

4.2.7 Data Analysis. 

Initial rate data were first analyzed graphically by double reciprocal plot to 

determine the quality of the data and the proper rate equation for data fitting.  Data were 

then fitted using the appropriate equations (12) and the Marquardt-Levenberg algorithm 
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(13), supplied with the EnzFitter program from BIOSOFT, Cambridge, U.K.  Kinetic 

parameters and their corresponding standard errors were estimated using a simple 

weighing method. 

Data for substrate saturation curves for pH-rate profiles and viscosity effects 

were fitted to eq. 1.  Data obtained from the initial velocity patterns were fitted to eq. 2.  

Data for V and V/K deuterium isotope effects were fitted using eqs. 3; equal isotope 

effects are assumed on V and V/K.  The S.E. of a product or dividend was estimated 

using eq. 4. 

 



v 
VA

Ka A
     (1) 



v 
VAB

KiaKb KaBKbAAB
 (2) 



v 
VA

Ka A  1FiEv 
 (3) 

 (4) 

 

In eqs. 1-3, v and V are initial and maximum velocities, respectively, A, B, are 

substrate concentrations, Ka and Kb are Michaelis constants for substrates A and B, 

respectively, and Kia is the dissociation constant for A from the EA complex.  In eq. 3, 

Fi is the fraction of label in substrate or solvent, Ev, is isotope effect minus 1 for the 

equal isotope effects on V and V/K.  In eq. 4, S.E. x, and S.E. y are computer generated 

standard errors of values for kinetic parameters x and y. 
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Data for pH-rate profile that decreased with a slope of +1 at low pH and -1 at 

high pH were fitted to eq. 5, while pH-rate profile exhibiting a slope of +1 on the acid 

side were fitted to eq. 6. 

 


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
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









H

H 2

1
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K
Cy    (5) 



















1
1/loglog

K
Cy

H
  (6) 

In eqs. 5 and 6, y is the observed value of V or V/K at any pH, H is the hydrogen 

ion concentration, K1 and K2 are the acid dissociation constants of functional groups 

required in a given protonation state on enzyme or substrate for optimal binding and/or 

catalysis, and C is the pH-independent value of y. 

 

4.3 RESULTS 

4.3.1 Cell Growth, Expression and Purification. 

Expression of the K13M/C205S and E16Q/C205S mutant enzymes was similar 

to that of the WT SDH under similar conditions.  All the enzymes were eluted from the 

Ni-NTA column with buffer containing 300 mM imidazole at pH 8.  Purity of the 

proteins was assessed by SDS-PAGE, and all of the mutant proteins were estimated to 

be >95% pure.  His-tagged mutant enzymes maintained stability and remained active 

for months when stored at 4 °C in 100 mM Hepes, 300 mM KCl and 300 mM imidazole 

at pH 8. 
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4.3.2 Initial velocity studies.   

Initial velocities were measured in the direction of Sacc formation for the K13M 

and E16Q mutant enzymes.  Replacing K13 with M resulted in a 14-fold decrease in 

V2/Et and ~200-, and ~12-fold decreases in V2/Kα-KgEt and V2/KLysEt, respectively.  This 

results in a 16-fold increase in KLys  and no significant change in Kα-Kg.  Replacing E16 

with Q resulted in a 15-fold decrease in V2/Et and ~10
3
- and ~200-fold decreases in 

V2/Kα-KgEt and V2/KLysEt, respectively.  The values of Kα-Kg and KLys increased 70-, and 

15-fold, respectively.  Kinetic parameters are summarized in Table 4.1, and compared 

to those obtained for the pseudo-WT enzyme, C205S (9). 

 

4.3.3 pH dependence of kinetic parameters. 

The pH dependence of kinetic parameters provides information on the optimal 

protonation state of functional groups on enzyme and/or substrate for binding and/or 

catalysis.  Studies were carried out with K13M and E16Q mutant enzymes in the 

direction of Sacc formation, at 25 °C.  Both mutant enzymes were active and stable over 

the pH range 5–10, and initial rate studies at pH 5.5 and 10 suggested the kinetic 

mechanism did not change (data not shown).  For the K13M mutant enzyme, V2/Et , 

V2/KLysEt and V2/K-KgEt are pH independent, Fig. 2, with average values of 8.1 ± 0.7 s
-

1
, (1.2 ± 0.3) × 10

3
 M

-1
 s

-1
 and (2.0 ± 0.9) × 10

3
 M

-1
 s

-1
, respectively.  In the case of 

E16Q, Fig. 4.2, V2/Et decreases at low and high pH with a slope of +1 and -1, giving 

pKa values of about 6.9 and 8.6; the pH independent value is 9.8 ± 1.5 s
-1

.  V2/KLysEt 

decreases with a slope of 1 on the acid side with a pKa of about 6.4 with a pH 
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independent value of (4.0 ± 0.2) × 10
2
 M

-1
 s

-1
.  V2/K-KgEt is pH independent with an 

average value of (5.1 ± 0.2) × 10
2
 M

-1
 s

-1
. 

 

Table 4.1: Summary of the Kinetic Parameters 

 C205S K13M
a 

E16Q
a 

V2/Et (s
-1

) 106 7.53 ± 0.004 6.87 ± 0.05
 

V2/K-KgEt (M
-1

s
-1

) 9.7 x 10
5 

(4.33 ± 0.04) × 10
3
 (8.95 ± 0.93) × 10

2
 

V2/KLysEt (M
-1

s
-1

) 1.2 x 10
5 

(1.01 ± 0.004) × 10
4
 (5.27 ± 0.78) × 10

2
 

K-Kg (mM) 0.11 1.74 ± 0.02 7.7 ± 0.8 

KLys (mM) 0.89 0.75 ± 0.003 13.1 ± 1.9 

a
Mutations prepared in the C205S background. 

 

Table 4.2: Summary of the Kinetic Isotope Effects
a 

 C205S
b 

K13M
c, d 

E16Q
c, d 

D
V2 and 

D
(V2/KLys) 

1.3 ± 0.2 2.06 ± 0.03 2.17 ± 0.06 

D2O
V2 and 

D2O
(V2/KLys) 

1.5 ± 0.1 unity unity 

D
(V2)D2O and 

D
(V2/KLys)D2O 

ND 1.90 ± 0.10 2.09 ± 0.04 

a
Isotope Effects were measured at pH 8.2. 

b
From reference (9). 

c
Errors are standard error of the mean. 

d
Data for K13M and E16Q were fitted to eq. 3. 
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4.3.4 Isotope effects. 

Isotope effects were measured for the K13M mutant enzyme at pH 8.2, within 

the pH independent region of the pH-rate profiles.  All values of the PKIE are finite 

while the SKIE values are within error unity, Table 4.2.  To be certain the SKIE was 1, 

the PKIE was repeated in D2O; no significant difference was found. 

 

4.4 DISCUSSION  

4.4.1 Kinetic Mechanism.   

A lower value of kcat was observed for both the K13M and E16Q mutant 

enzymes.  Even though both mutant enzymes showed an increase in K-Kg, the value 

was significant higher (~70-fold) for E16Q compared to WT.  Isotope effects of about 2 

suggested the hydride transfer step was rate limiting for both enzymes.  This is 

corroborated by a SKIE of 1.0 measured with either NADH or NADD. 

The deuterium isotope effects on V2 and V2/KLys are equal for K13M and E16Q 

mutant enzymes, as found for the C205S pseudo-WT enzyme (9), indicating KLys is 

equal to the Kd for Lys from the ENADH-KgLys complex (14).  The free energy of 

binding can thus be calculated for all three enzymes, C205S, K13M and E16Q (G°’ = 

-RTlnKeq = -RTln(1/Kd), where 1/Kd is association constant, Ks).  The Ks values 

estimated from the data in Table 1, for C205S, K13M and E16Q mutant enzymes are 

1.12 × 10
3
 M

-1
, 1.33 × 10

3
 M

-1
 and 0.08 × 10

3
 M

-1
, respectively, giving values of -4.16, 

-4.26 and -2.60 kcal/mol, respectively. There is no contribution of K13 to binding Lys 

indicated by the value of G°’ of 0.1 kcal/mol, while a value of 1.56 kcal/mol for 

E16Q mutant enzyme suggests a modest contribution of E16 to binding Lys. 
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4.4.2 pH studies.   

The role of K13 and E16 was probed further by measuring the pH dependence 

of kinetic parameters.  In the case of C205S, the maximum rate decreases from a 

constant value at low pH to another constant value at high pH giving a pKa of 7.5.  The 

group with a pKa of 7.5 needs to be protonated for optimum catalysis.  The pH 

dependence was attributed to a conformational change in the enzyme which is optimum 

at lower pH.  The pH dependence of V2/KLysEt is bell shaped and exhibits pKas of 7 and 

8; one group is required protonated and the other unprotonated for optimum binding 

and/or catalysis.  V2/Kα-KgEt decreases below a pKa of 5.7, while at high pH a partial 

change is observed with a pKa of 7.5 .  The pKa of 5.7 could be as a result of pH 

dependent conformational change which was also observed in WT-SDH (4, 9). 

 

Figure 4.2: pH Dependence of Kinetic Parameters for SDH WTSDH (C205S), K13M/C205S 

and E16Q/C205S in the Direction of Saccharopine Formation. Data for WT SDH (C205S)(A to 

C) are from ref. (9) and are reproduced with permission, while (D to F) are data for the 

K13M/C205S, (G to I) are for E16Q/C205S mutant enzymes. Units for V/Et and V/KEt are s
-1

 

and M
-1

 s
-1

, respectively. Points are the experimentally determined values. The curves are 

theoretical and based on fits to eq. 5 for panel G and eq. 6 for panel H. 
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The kinetic parameters observed for K13M are pH independent, Figure 4.2.  

K13 is positioned near K77 and hydrogen-bonds to E78 and E319.  In the absence of 

K13, hydrogen-bonding with E78 and E319 are lost, increasing negative charge and 

likely resulting in a new hydrogen bond between K77 and E78, giving an increase in 

pKas of K77 and N of Lys.  In the case of H96, the increased pKa of N of Lys, results 

in charge-charge repulsion when the imidazole is protonated, giving the perturbation of 

its pKa to a lower pH.  From the data reported in RESULTS and the discussion above, 

K13 could be playing a significant role in balancing charge in the active site, thus 

achieving the optimal conformation for binding of substrates and catalysis. 

The V2/Et profile for E16Q is bell shaped with the maximum rate decreasing 

below pH 6.9 and above pH 8.6.  The two catalytic residues proposed for SDH are K77 

and H96 (Chapter 3) with pKas of 7 and 8, the same groups seen in the V2/KLysEt profile 

for C205S.  Thus, it is proposed that the two groups seen in the V2/Et profile for E16Q 

are the catalytic residues K77 and H96.  When referring to the tertiary structure, the 

position of E16 is within hydrogen-bonding distance of 2.6Å from N of R18.  R18 has 

strong hydrogen bond/ ionic interactions with the -carboxylate of -Kg (Chapter 3).  

When apo-structure of SDH was superimposed onto the ENADHSacc ternary 

complex structure, a repositioning of E16 and R18 was shown (Chapter 3).  Mutating 

E16 to Q would affect the correct positioning of R18 for binding and holding -Kg in 

the correct position for optimum catalysis.  Consistent with this is the 3 order of 

magnitude decrease in V2/Kα-KgEt resulting in a 70-fold increase in Kα-Kg in the case of 

E16Q mutant enzyme as compared to C205S enzyme.  The V2/KLysEt profile for E16Q 

decreases below pH 6.4 and stays constant up to the maximum pH investigated, while 
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V2/Kα-KgEt profile is pH independent.  The difference in these two conditions is the 

enzyme complex to which the limiting substrate binds.  In the case of V2/KLysEt, it is 

ENADH-Kg.  When ENADH-Kg complex is formed, in absence of E16, to 

balance the positive charge in the active site the pKa for K77 might be slightly lowered.  

The group with pKa of 6.4 seen in V2/Kα-KgEt profile of E16Q could be K77.  While in 

the case of V2/Kα-KgEt, ENADHLys complex is formed.  Absence of E16 would affect 

-Kg binding to R18 as R18 is not positioned correctly.  Perturbation of pKas could be 

as a result of ill-positioning of R18 resulting in lack of neutralization of the carboxylates 

of -Kg, thus changing the fine charge balance in the active site.  Thus suggested role 

of E16 could be of correct positioning of R18 for optimal binding of -Kg and 

catalysis. 
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 4.6 FOOTNOTES 

1
Abbreviations: AAA, α-aminoadipate pathway; E, enzyme; SDH, saccharopine 

dehydrogenase; α-Kg, α-ketoglutarate; Sacc, L-saccharopine; Lys, L-lysine; NAD, -

nicotinamide adenine dinucleotide (the + charge is omitted for convenience); NADH, 

reduced -nicotinamide adenine dinucleotide; NADD, reduced -nicotinamide adenine 

dinucleotide with deuterium in the 4-R position; WT, wild type; Mes, 2-(N-

morpholino)ethanesulfonic acid; Taps, 3-[N-tris(hydroxymethyl) methylamino]-

propanesulfonic acid; Hepes, N-(2-hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid); 
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Ches, 2-(N-cyclohexylamino) ethanesulfonic acid; PKIE, Primary kinetic isotope 

effects; SKIE, Solvent kinetic isotope effects; MKIE, Multiple kinetic isotope effects. 
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APPENDIX 1 

Oxaloacetate as a substrate of homocitrate synthase 

 

Introduction 

Homocitrate synthase (HCS) catalyzes the condensation of Acetyl-CoA 

(AcCoA) and -ketoglutarate (-Kg) to give homocitrate and CoA.  With Mg2+ as the 

metal ion, a steady state random kinetic mechanism was proposed for Thermus 

thermophilus HCS (TtHCS). (Chapter 2).  The pathway with -Kg binding first was 

proposed to be three times faster than the one where AcCoA binds to free enzyme.  

Oxaloacetate (OAA) is a -Kg analog and serves as a slower substrate for TtHCS.  The 

kinetic mechanism for ScHCS exhibited some randomness i.e. a productive EAcCoA 

complex was formed (1). 

Oxaloacetate was used to identify and characterize slower steps involved in 

catalysis.   

Methods 

Initial velocity studies.  Initial rates were measured as a function of AcCoA 

concentrations at different fixed concentrations of OAA.  The reaction mixture typically 

consisted of 50 mM Hepes, pH 7.5, 0.1 mM dichlorophenol indophenol (DCPIP), 200 

M MgCl2, 2 M TtHCS and variable concentrations of and AcCoA. 

Isotope effects.  Primary deuterium kinetic isotope effects were measured by direct 

comparison of initial velocities, where deuterioacetyl-CoA (AcCoA-d3) was used as the 

deuterated substrate and was fixed at saturated concentration (10 mM).  AcCoA-
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d3 was prepared as described in Chapter 2.  Solvent isotope effects with were carried out 

by comparing initial velocity patterns in H2O and D2O at pH(D) 7.5. 

Dependence of initial rate on solution viscosity.  The initial rate was measured as 

a function of the concentration of OAA at different fixed levels of AcCoA at pH 7.5 and 

25 oC in the presence of 9% glycerol.  A glycerol concentration of 9% gives a relative 

viscosity of 1.24, identical to that obtained with 100% D2O. 

 

Data processing 

Data for initial rate studies were fitted to eq. 1 while isotope effects obtained were 

fitted using eq. 2. 



v 
VAB

KiaKb KaBKbAAB
 (1) 



v 
VAB

KaB 1
B

KIB









KbAAB

 (2) 



v 
VA

Ka 1FiEV /K A 1FiEV 
 (3) 

In eqs. 1-3, v and V are initial and maximum velocities, respectively, A and B, are 

substrate concentrations, Ka and Kb are Michaelis constants for substrates A and B, 

respectively.  Kia is the dissociation constant for A from the EA complex.  KIB is the 

substrate inhibition constant for B.  In eq. 3, Fi is the fraction of deuterium in D2O or in 

AcCoA-d3, and EV/K and EV are the isotope effects minus 1 on V/K and V, respectively. 

 

Results 

Initial velocity studies.  OAA is a slow alternative substrate analog of -Kg.  The 
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initial velocity pattern obtained with OAA and AcCoA is intersecting with no 

demonstrable substrate inhibition by AcCoA (Figure 2A) for the concentration range 

tested (0.2 – 200 M  AcCoA).  Kinetic parameters are summarized in Table 1. 

 

Table 1. Summary of Kinetic parameters with 200 M Mg
2+

 

 H2O D2O 

V/Et (s-1) 0.0230 ± 0.0006 0.028 ± 0.002 

V/KOAAEt (M-1s-1) 0.065 ± 0.019 UDa 

V/KAcCoAEt (M-1s-1) 0.74 ± 0.06 2.0 ± 0.4 s-1 

KOAA (M) 350 ± 50 19 ± 20 

KAcCoA (M) 31 ± 3 14 ± 3 

KI AcCoA (M)  11 ± 12  

 

Primary Isotope effect. Primary substrate deuterium kinetic isotope effects were 

measured with Mg
2+

 as the divalent cation by direct comparison of initial rates at pH 

7.5 with perdeuterio-acetyl CoA as the labeled substrate.  The isotope effect is 

dependent on the AcCoA concentration, the maximum apparent deuterium kinetic 

isotope effect is about 2.24, Figure 1B.  Fitting the data to eq. 3 resulted in the 

following values: 
D
V = 1.72 ± 0.29;  

D
(V/KAcCoA) = 0.90 ± 0.37  

Solvent isotope effect.  Initial velocity patterns, measuring the initial rate as a 

function of OAA concentration at different fixed levels of AcCoA, were obtained in 

H2O and D2O, Figure 2A, B. The patterns give near parallel lines in H2O and D2O, but 

substrate inhibition by AcCoA is observed in D2O.  Replots of the slope and intercept 

vs. the reciprocal of AcCoA concentration are shown in Figure 2C, D.  The intercept 
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replot indicates D2O
V is 1.03 ± 0.05, while D2O(V/KAcCoA) is equal to about 0.5.  The slope 

replot indicates a large apparent isotope effect as a result of the substrate inhibition. 

 

 

Figure 1. Primary isotope effects with OAA and AcCoA-d3. A. Double reciprocal plot for 

reactions with 10 mM  and variable concentrations of AcCoA-h3 (♦), and AcCoA-d3 (■).  

B. The apparent isotope effect (appIE) vs concentrations of AcCoA (the appIE is the ratio of 

data with deuterated and undeuterated AcCoA). Curves are drawn by hand. 

 

In the presence of glycerol as a viscosogen, there is a significant increase in 

V/KAcCoA and a decrease in the value of V.  The ratio of kinetic parameters determined in 

the absence and presence of 9% glycerol, the resulting value of D2O
V is 1.40 ± 0.06, 

while the value of 0.14 ± 0.03 and 0.76 ± 0.103 are observed on D2O(V/KAcCoA) and 

D2O(V/KOAA), respectively. 

 

Discussion 

The kinetic mechanism with OAA as a substrate in place of -Kg is sequential, 

similar to that seen for -Kg and AcCoA in presence of Mn2+ as the divalent cation.  

Competitive substrate inhibition by AcCoA is observed in D2O (≥ 200 M AcCoA), as 
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well as in H2O at very high concentration (≥ 500 M) suggesting ordered addition of 

OAA prior to AcCoA with a dead-end EAcCoA complex (Figure 3) 

 

 

Figure 2. Solvent isotope effects with OAA and AcCoA. 
Initial Velocity Pattern at pH 7.5 and 25 

o
C.  Data are plotted as a function of  at different 

concentrations of AcCoA as follows: 20 (), 29 (▲), 50 () and 200 (♦) M  in H2O (A) and 

D2O (B).  C) and D) are replots of slopes and intercepts obtained from the primary plots vs. the 

reciprocal of AcCoA concentration in H2O (▲) and in D2O (♦). Note the apparent substrate 

inhibition exhibited in the slope replot in D2O. 
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Figure 3.  Proposed Kinetic Mechanism for Thermus thermophilus Homocitrate Synthase.  

An ordered kinetic mechanism is shown with a dead-end EAcCoA complex. 

 

A substrate deuterium isotope effect of 1.4 is measured with AcCoA-d3, at low 

concentrations of AcCoA, for the pathway in which  binds before AcCoA.  

However, at high AcCoA, where it binds prior to , a finite primary kinetic isotope 

effect ≥ 2.2 is observed (Figure 1).  Data suggest the presence of a slow step 

contributing to rate limitation that occurs after AcCoA binds to enzyme, likely a 

conformational change in the enzyme.  For the pathway in which -Kg binds prior to 

AcCoA, the conformational change still occurs as AcCoA binds, but no isotope effect is 

observed.  Thus, deprotonation of the methyl group of AcCoA must occur together with 

the conformational change, which contributes to rate limitation when AcCoA binds 

first, but not when -Kg binds first (Chapter 2).  On the basis of primary kinetic isotope 

effects, similar conclusions can be made for the reaction with OAA and AcCoA. 

A solvent deuterium isotope effect of unity is obtained on V, but an inverse 

isotope effect of about 0.5 is observed on V/KAcCoA.  There are a number of reasons for 

observing an inverse solvent isotope effect, including ionization of a thiol, hydrolysis of 

metal water, and a medium effect that may reflect a structural change in enzyme (2).  

However, it is also important to consider the effect of solvent viscosity when carrying 
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out solvent deuterium isotope effects (3, 4).  Viscosity can affect the reaction in a 

number of ways (2).  Increased viscosity is routinely used to slow down diffusion-

controlled steps, such as the binding of reactant or release of product.  If these steps 

contribute to rate-limitation, a decrease in the limiting rate constants, V (release of 

product) and V/K (addition of reactant), will be observed.  It is also possible to speed up 

or slow down structural changes in the protein at higher viscosity (3, 4).  Substitution of 

D2O for H2O results in an increase in solvent viscosity (rel) to 1.24, a value identical to 

that in the presence of 9% glycerol (4).  A large inverse viscosity effect (0.14) was 

observed on V/KAcCoA, indicating a step becomes faster in D2O compared to H2O.  A 

logical possibility for the step affected is the conformational change that is proposed 

upon binding of AcCoA to enzyme.  Interestingly, a small normal viscosity effect of 1.4 

is observed on V, consistent with a solvent kinetic isotope effect of unity.  Data for V 

suggest little or no effect of either solvent deuterium or 9% glycerol, consistent with 

product inhibition experiments that suggest no contribution of product release to rate-

limitation at saturating reactant concentrations.  The inverse viscosity effect on V/KAcCoA 

is consistent with an increased rate of a conformational change to give the active 

Michaelis complex upon binding of AcCoA to the EOAA complex.  An inverse 

isotope effect is observed suggesting that the proposed conformational change in the 

enzyme on binding of AcCoA is faster in D2O compared to H2O.  An inverse viscosity 

effect on V/KAcCoA is consistent with this hypothesis, and suggests the active 

conformation is stabilized at higher viscosity. 
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APPENDIX 2 

Pyridine 2,6-dicarboxylate as an inhibitor of homocitrate synthase 

 

Introduction   

The first step in the -aminoadipate pathway for lysine biosynthesis is catalyzed 

by homocitrate synthase (HCS).  Inhibition studies with dead-end inhibitors aid 

significantly in determination of kinetic mechanism and binding determinants in the 

active site (1).  Pyridine 2,6-dicarboxylate (Pyr), an analog of -Kg, was used as a 

dead-end inhibitor in this study. 

 

Methods 

Inhibition studies.  Inhibition patterns were obtained by measuring initial rates at 

different concentration of one reactant at a fixed concentration of the other in the 

absence and presence of inhibitor.  AcCoA was varied from 15 – 100 M and -Kg was 

varied from 25 – 400 M and this was repeated in the presence of different 

concentrations of Pyr.  The reaction mixture typically consisted of 50 mM Hepes, pH 

7.5, 0.1 mM dichlorophenol indophenol (DCPIP), 200 M MgCl2, 1 M TtHCS and 

variable concentrations of Pyr ( including zero), -Kg and AcCoA. 

 

Results  

Pyridine 2,6-dicarboxylate is competitive vs -Kg with slight activation at lower 

concentrations, suggesting binding of the inhibitor to two distinct sites on enzyme, one 

as an activator and to the same site as -Kg as an inhibitor (Figure 1 and 2) (1). 
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Figure 1.  Inhibition pattern with AcCoA varied from 15 – 100 M and -Kg varied from 25 – 
400 M.  Concentrations of Pyr used were 15 mM (■), 7.5 mM (▲), 5 mM (×), 1 mM () and 
0 mM ().   
 

 

Figure 2. Slope Replot for Inhibition by Pyridine 2,6-dicarboxylate (Pyr).  The initial rate was 
measured as a function of -Kg concentration (25 to 400 M) with AcCoA fixed at 100 M at 
different fixed levels of Pyr (plot not shown).  A. The slope of the double reciprocal plot vs Pyr 
is shown.  The inset gives an expansion of the low concentration region to show what appears to 
be a slight activation by the analog.  Curves were drawn by hand.  B. Graphical analysis of the 
data. 
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Discussion 

Pyridine 2,6-dicarboxylate exhibits a combination of activation at low 

concentrations and competitive inhibition vs -Kg at higher concentrations.  Data 

indicate the binding of two molecules of the inhibitor, one as an activator and a second 

to the -Kg site of free enzyme.  Data should adhere to the following rate equation: 



slope slopeo

1
Pyr

Ki

1
Pyr

Kact









/ 1

Pyr

KId





























               (1) 

where slope is the observed value at any concentration of Pyr, slopeo is the values in the 

absence of Pyr, Ki is the inhibition constant for Pyr binding to the -Kg site, Kact is the 

activation constant, and KId is a constant that causes v to go to a constant value at 

infinite Pyr (in the absence of inhibition).  Attempts to fit the data in Figure 1 were 

unsuccessful, so the inhibition constant for Pyr was estimated from Figure 1 as follows.  

The inhibition by Pyr for the activated enzyme is exhibited for the rates at ≥ 5 mM.  

Assuming Pyr has equal affinity for the less active and activated enzyme, the line 

obtained from the three points in the graph from 5-15 mM Pyr will be parallel to a line 

that passes through the point on the slope axis at zero Pyr.  The abscissa intercept is 

then equal to the apparent KiPyr, which must be corrected for the -Kg concentration 

(Figure 1B).  Thus, the slope of the line obtained for data ≥ 5 mM Pyr divided by the 

intercept of the plot gives an appKiPyr of about 60 M, which gives a value of about 20 

M, correcting for -Kg equal to 2K-Kg.  A rough estimate of the ratio of KId to Kact 

can be obtained from the data at 1 mM Pyr.  At 1 mM Pyr, [slopeo(1 + Pyr/Ki)] will be 

equal to (10)(1 + 1 mM/0.06 mM), approximately 177.  The actual value of slope is 5 
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from Figure 3, and will be equal to 177/



1
Pyr

Kact









/ 1

Pyr

KId









.  A value of about 50 is 

obtained for KId/Kact.  In order to see any activation by Pyr, the value of Kact must be of 

the same order of magnitude as the Ki for inhibition, i. e., in the vicinity of 10 M, 

while KId will be about 50-times greater.  The binding site for Pyr activation is not 

known, but it must be on free enzyme, since activation and inhibition are only observed 

at low concentrations of both substrates.  Data are suggestive of conformational 

heterogeneity with Pyr binding to some site on enzyme stabilizing a more active form of 

the enzyme.  The complex inhibition patterns observed in these studies were not 

observed for Saccharomyces cerevisiae HCS, which exhibited linear inhibition in all 

cases (2). 
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APPENDIX 3 

Homocitrate synthase from Candida albicans 

 

Introduction 

Candidiasis represents a major health threat for patients with cancer, AIDS 

patients, and transplant patients undergoing immunosuppressive treatment.  

Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans are human 

pathogens.  These human pathogens in addition to the non-pathogenic yeast 

Saccharomyces cerevisiae and plant pathogen Magnaporthe grisea have -

aminoadipate pathway for biosynthesis of lysine (1, 2).  With essentiality of the lysine 

biosynthetic pathway reported in Aspergillus fumigatus for its survival in vivo (3), we 

could expect the pathway being essential also in the other human pathogen such as 

Candida albicans.  Homocitrate synthase being the first and committed step of -

aminoadipate pathway could be a very good target enzyme for drug development 

against candidiasis.  It catalyzes the condensation of Acetyl-CoA (AcCoA) and -

ketoglutarate (-Kg) to give homocitrate and CoA (Figure 1).   

 

Figure 1. Reaction catalyzed by Homocitrate Synthase (HCS) 
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Methods 

Cloning, protein expression and purification.  Candida albicans homocitrate 

synthase (CaHCS) lys1gene has been listed under putative gene function.  The lys1 gene 

was cloned into the pET16b vector (which was provided by Prof. Paula R. Sundstrom, 

Dartmouth Medical School) and was expressed as a N-terminal histidine tagged 48 kDa 

protein in the BL21(DE3)RIL star strain of E. coli. 

When the bacterial culture is grown in Luria Bertani Broth at 37°C and induced 

at various temperatures (37°C for 2-4 hrs, 18°C for 16 hrs, 25°C for 16 hrs) with 

different combinations of concentrations (0.5 and 1 mM) of IPTG, the protein was 

expressed as inclusion bodies.  In order to get soluble protein, the culture was grown in 

Magic Media from Invitrogen at 37°C for 16 hrs.  

Soluble fractions of the protein were purified using the Ni-NTA resin with 

buffer containing 50 mM Hepes at pH 7.5, KCl 300 mM with concentrations of 

imidazole from 30 – 300 mM.  CaHCS was eluted at 300 mM imidazole.  The isolated 

enzyme was stored in stabilization buffer containing 100 mM guanidine hydrochloride, 

600 mM ammonium sulfate, 100 mM -cyclodextrin along in the elution buffer (4). 

Protein stability at 4°C.  In order to check the stability of the protein stored in 

stabilization buffer at 4°C, the enzyme activity was tested at regular intervals upto 20 

days. 

Enzyme Assay.  HCS activity was measured using the enzyme assay described in 

Chapter 2.  

Initial Velocity Studies. To determine the kinetic mechanism, initial velocity 

patterns were obtained by measuring the initial rate as a function of AcCoA 
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concentration at different fixed concentrations of -Kg.  The reaction typically 

consisted of 50 mM Hepes, pH 7.5, 0.1 mM dichlorophenol indophenol (DCPIP), 0.3 

M CaHCS and variable concentrations of -Kg and AcCoA.  Data were plotted as 

double reciprocal plot of initial rate vs substrate concentration.  Data could not be 

obtained in the reverse direction due to the irreversibility of the reaction. 

pH Studies.  To confirm that the enzyme is stable for the duration of the assay 

time over the pH range tested, the enzyme was preincubated at the given pH and 

aliquots were taken out at regular time intervals and assayed at pH where the enzyme is 

known to be stable (pH 7.5 in case of CaHCS).  CaHCS was stable between pH 6.0 – 

9.0.  The effect on the kinetic parameters was also tested at the extreme end of the pH 

range e.g. pH 6 and pH 9.  This information aided in deciding the concentration of 

substrates to be used while testing the entire pH range.  The pH dependence of V and 

V/K was obtained by measuring the initial rate as a function of AcCoA, maintaining the 

-Kg at a fixed concentration (24 mM).  Different buffers were used at different pH 

ranges at 50 mM concentration – Bis-Tris, 6.0 - 7.0; Hepes, 7.0 - 8.0; TAPS and Ches, 

8.0 - 9.0. The pH of the reaction mixture was recorded before and after the reaction.  

The data was then analyzed by plotting logV or V/K vs pH. 

Data Processing. All data were fitted to the appropriate rate equation and the 

EnzFitter program from BIOSOFT, Cambridge, UK.  Initial velocity data were fitted to 

eq. 1 while the pH dependence of V/Et was fitted to eq. 2.   



v 
VAB

KiaKb KaBKbAAB
                               (1) 



log y  log C / 1
H

K1


K2

H



















                                (2) 
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In eqs. 1, v and V are initial and maximum velocities, respectively, A and B, are 

substrate concentrations, Ka and Kb are Michaelis constants for substrates A and B, 

respectively.  Kia is the dissociation constant for A from the EA complex.  In equation 2, 

y is the observed value of V/Et at any pH, C is the pH-independent value of y, H is the 

hydrogen ion concentration, and K1 and K2 are the acid dissociation constants of 

functional groups required in a given protonation state on enzyme for optimal catalysis. 

 

Results 

Protein expression and purification.  CaHCS was expressed as a soluble protein 

when grown for 16 hours in Magic Media at 37°C.  Nearly 95% pure protein was 

obtained using Ni-NTA column (Figure 2).  ~3mg of protein was purified from 5 g of 

wet cell mass.  The protein was stored in stabilization buffer at 4°C composition of 

which was mentioned earlier. 

 

Figure 2. Purification of CaHCS using Ni-NTA column. Most of the CaHCS protein was eluted 
at 300 mM imidazole to about 95% purity estimated by SDS-PAGE.  
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Stability of CaHCS in storage buffer at 4°C. Activity of the stored enzyme was 

measured at different time intervals at saturating concentrations of both the substrates.  

There was a sharp drop in activity in the first few days and then the activity stabilized 

and not much loss was seen until 20 days (Figure 3).   

 

Figure 3. Stability of CaHCS in storage buffer.  Aliquots of enzyme were tested for activity at 
saturated concentrations of -Kg and AcCoA at pH 7.5 and 25°C temperature. 
 

Initial Velocity Studies.  Initial velocity patterns were obtained at varying concentrations 

of -Kg (0.5 – 20 mM) at different fixed concentrations of AcCoA (3.36 - 200 M) 

(Figure 4).  The lines intersect to the left of the vertical axis suggesting a sequential Bi 

Bi kinetic mechanism.  The kinetic parameters are listed in Table 1.  

Table 1.  Summary of Kinetic parameters for CaHCS. 

Parameter Value ± S.E. 

V/Et (s-1) 0.0513 ± 0.0004 

V/K-KgEt (M-1s-1) 11.20 ± 0.88 

V/KAcCoAEt (M-1s-1) 1740 ± 113 

K-Kg (mM) 4.6 ± 0.36 

KAcCoA (mM) 0.03 ± 0.002 

Ki -Kg (mM) 1.26 ± 0.25 
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Figure 4. Initial velocity pattern of CaHCS with varying concentrations of -Kg at different 
fixed concentrations of AcCoA at pH 7.5 and 25 

o
C.  Data are plotted as a function of -Kg at 

different concentrations of AcCoA as follows: 5 (), 7.4 (▲), 9.8 (×), 14.3 (■) and 200 (♦) M.  

Points  in the plot are experimental, while the solid lines are theoretical based on a fit to eq 1. 
 

 

pH dependence of kinetic parameters.  

The pH dependence of log V/Et vs pH is obtained at saturating concentrations of 

the reactants while logV/K profile is obtained with one reactant at limiting 

concentrations and the other saturating. The V/Et profile will give pKa values of 

residues that are important for catalysis, while V/K will reflect groups either on enzyme 

or on substrate important for binding and/or catalysis. In the case of the V/KAcCoA pH-

rate profile, the groups are for E-Kg and/or AcCoA.   

The V/Et profile exhibits slopes of 1 and -1, indicating the requirement for one 

group to be unprotonated and one protonated for optimum catalysis (Figure 5).  A group 

with a pKa of 7.2 ± 0.2 must be unprotonated while a group with a pKa of 8.3 ± 0.2 must 

be protonated.  These groups also can be in reverse protonation states.  By analogy to 
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the chemical mechanism of ScHCS (5) the group with pKa of 7.2 would likely function 

as a general base to accept a proton from the methyl group of AcCoA.  The group with 

pKa of 8.3 is likely a general acid that donates a proton to the -Kg carbonyl as the 

nucleophilic attack by the methyl of AcCoA occurs.  V/KAcCoA profile is pH independent 

for the pH range tested.  The pKa of groups involved in binding of AcCoA could be 

outside the tested range and hence are not detected (Figure 7).  The pH independent 

value for V/Et and V/KAcCoA Et are 0.06 ± 0.01 s-1 and (7.03 ± 0.01) × 102 M-1 s-1, 

respectively. 

 

Figure 5.  pH dependence of kinetic parameters for the CaHCS reaction.  The points shown are 
the experimentally determined values, while the curve for V/Et profile is theoretical based on fit 
of the data using equation 2. 
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Discussion 

Candida albicans homocitrate synthase and ScHCS are 89% identical at the 

amino acid level.  This study was to see the differences between ScHCS and CaHCS if 

any and carry out detailed biochemical investigation of CaHCS.   

CaHCS was successfully over-expressed and purified in an active form. Soluble 

form of the protein was obtained when grown in Magic Media at 37 °C.  CaHCS was 

found to be very unstable as isolated.  It was amenable to short term storage at 4°C in 

presence of the stabilization buffer, the condition same as the one for ScHCS (4).  

Lower stability of the enzyme limited the kind of biochemical characterization that can 

be carried out.  Even in presence of the stabilization buffer, the enzyme would lose 

activity rapidly initially and then maintain its activity for about 2 months.   

Initial velocity patterns at pH 7.5 exhibited the lines intersecting to the left of the 

ordinate suggesting an ordered sequential kinetic mechanism, similar to that proposed 

for ScHCS.  The values for the kinetic parameters were similar to those in the case of 

ScHCS.  The pH profile for V/Et indicated presence of two groups required for optimum 

catalysis.  The group with pKa 7.2 needs to be unprotonated and is speculated to function 

as a general base aiding extraction of proton from methyl of AcCoA.  The second group 

with a pKa of 8.3 might function as a general acid donating a proton to form an alcohol 

as the methyl of AcCoA attacks.  The profile for V/KAcCoA was pH independent for the range 

of pH tested.  From the data in this study, it is concluded that the biochemical parameters tested 

are similar to ScHCS (4-6).  As CaHCS is also unstable, it is not suitable for crystallographic 

studies. 
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