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Abstract 

The past 50 years have seen exponential advances in digital integrated circuit 

technologies which has facilitated an explosion of uses and functionality. 

Although this rate (generally referred to as “Moore’s Law”) cannot be sustained 

indefinitely, significant advances will remain possible even after current 

technologies reach fundamental limits. However if these further advances are to 

be realized, nanoelectronics designs must be developed that provide significant 

improvements over, the currently-utilized, complementary metal-oxide 

semiconductor (CMOS) transistor based integrated circuits. One promising 

nanoelectronics paradigm to fulfill this function is Quantum-dot Cellular 

Automata (QCA). QCA provides the possibility of THz switching, molecular 

scaling, and provides particular applicability for advanced logical constructs 

such as reversible logic and systolic arrays within the paradigm. These 

attributes make QCA an exciting prospect; however, current fabrication 

technology does not exist which allows for the fabrication of reliable electronic 

QCA circuits which operate at room-temperature. Furthermore, a plausible path 

to fabrication of circuitry on the very large scale integration (VLSI) level with 

QCA does not currently exist. This has caused doubts to the viability of the 

paradigm and questions to its future as a suitable nanoelectronic replacement 

to CMOS. In order to resolve these issues, research was conducted into a new 

design which could utilize key attributes of QCA while also providing a means 
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for near-term fabrication of reliable room-temperature circuits and a path 

forward for VLSI circuits. 

The result of this research, presented in this dissertation, is the Lattice-based 

Integrated-signal Nanocellular Automata (LINA) nanoelectronics paradigm. 

LINA designs are based on QCA and provide the same basic functionality as 

traditional QCA.  LINA also retains the key attributes of THz switching, 

scalability to the molecular level, and ability to utilize advanced logical 

constructs which are crucial to the QCA proposals. However, LINA designs also 

provide significant improvements over traditional QCA. For example, the 

continuous correction of faults, due to LINA’s integrated-signal approach, 

provides reliability improvements to enable room-temperature operation with 

cells which are potentially up to 20nm and fault tolerance to layout, patterning, 

stray-charge, and stuck-at-faults. In terms of fabrication, LINA’s lattice-based 

structure allows precise relative placement through the use of self-assembly 

techniques seen in current nanoparticle research.  LINA also allows for large 

enough wire and logic structures to enable use of widely available photo-

lithographical patterning technologies. These aspects of the LINA designs, 

along with power, timing, and clocking results, have been verified through the 

use of new and/or modified simulation tools specifically developed for this 

purpose. To summarize, the LINA designs and results, presented in this 

dissertation, provide a path to realization of QCA-type VLSI nanoelectronic 

circuitry. Furthermore, they offer a renewed viability of the paradigm to replace 

CMOS and advance computing technologies beyond the next decade. 
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Chapter 1  

Introduction 

Few would doubt the importance of the integrated circuit (IC) to the societies of 

the modern world. They have permeated nearly every aspect of our everyday 

lives and enabled unquestioned creativity, unparalleled togetherness, and the 

instantaneous spread of information throughout the globe. The man given most 

of the credit for the invention of the IC is Jack Kilby, who won the Nobel Prize 

for physics in 2000 for his work developing the first IC at Texas Instruments in 

1958 [1]. Kilby’s original ICs consisted of a single phase-shift oscillator and a 

digital flip flop circuit whose functionality was well known and not at all 

revolutionary.  What was revolutionary, however, was that the logical 

components, passive elements, and interconnection wiring were constructed 

and integrated together using only a single piece of germanium.  This change 

removed the expensive, time-consuming, and unreliable process of hand wiring 

and soldiering of several individual components to achieve the desired circuit 

function [2]. It also allowed the IC to be rapidly and effectively scaled, both up in 

the number of components integrated in a device (termed integration level 

scaling), and down in the size of the components and interconnections (termed 

size scaling).  

These scaling advances allowed for not only the addition of functionality and 

efficiencies into ICs but also for decreased power per circuit element and 

increased circuit speed due to the underlying nature of the physics of the host 

semiconductors.  
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It could be argued, very effectively, that the ability to be scaled has been the 

driving force in the success of the integrated circuit, giving rise to an 

exponential increase in computing performance over the past 50 years. This 

success can clearly be seen in microprocessor ICs which have grown in 

complexity from around 2,300 transistors in the early 1970s to currently being 

distributed with billions of transistors integrated on a piece of silicon only a few 

square centimeters in area while running at clock speeds which allow several 

billion calculations to be performed per second. 

However, size scaling of the current processor IC technology, complementary 

metal-oxide semiconductor (CMOS), is rapidly approaching practical, if not 

fundamental, limits [3]. This is due to the size of today’s CMOS transistors 

which have gate widths in the lower tens of nanometers.  At this size scale, 

quantum mechanical effects, such as tunneling, begin to affect device behavior. 

In fact, circuit designers are already being plagued by these small scale effects 

as limited per element power consumption gains are no longer able to support 

large increases in circuit clock speeds. In order to offset these challenges, 

designers are turning to more parallel multi-core designs to continue the 

increase in IC performance, but they are most assuredly a harbinger of other, 

more fundamental, difficulties to come. Therefore, if the pace of progress seen 

in computing over the past 50 years is to be maintained, new technologies must 

be developed to supplement and eventually replace CMOS transistor-based 

designs and provide a paradigm which can continue the scaling of electronic 

circuit elements into the quantum and molecular regimes.  
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Nanoelectronics, named after the nanometer dimensions of the field’s electronic 

elements, contain the emerging IC implementation paradigms from which will 

come the next generation of computing technologies. While CMOS is itself 

delving into the nanometer realm for size dimensions, CMOS is not a 

nanoelectronics paradigm. Instead, current nanoelectronics paradigms include 

single electron transistors (SET) [4, 5, 6, 7], Superconducting electronics [8, 9, 

10], carbon nanotube (CNT) [11, 12, 13, 14], nanowire and nano-ribbon 

transistors [15, 16, 17, 18], resonant tunneling devices [19, 20], spintronics [21, 

22, 23, 24], and Quantum-Dot Cellular Automata (QCA) [25, 26, 27, 28].  Many 

of these technologies simply offer the potential to extend the life of CMOS and 

expand more traditional circuit design techniques to smaller scales. However, 

this extension will only delay the inevitable necessity of a completely new 

processing paradigm. In Figure 1-1, a projection of roles and timeline for 

several of these nanoelectronics proposals based on current industry 

projections [3] is shown. 

 

Figure 1-1. Outlook of Computing Technologies 
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There are certain attributes which make nanoelectronics proposals suitable 

candidates to replace CMOS electronics. Specifically, the particular proposal 

must offer a technology which exceeds current and projected CMOS abilities in 

areas such as: clock speed, power requirements, parallel structure, circuit area, 

and/or circuit robustness. Many proposals are able to exceed the abilities of 

current technologies in some areas, but fall short in others. For example, single 

electron transistors can be made much smaller than current CMOS transistors 

(potentially down to a single nanometer sized molecular component). 

Additionally, their power requirements are very low compared to CMOS. 

However, robust operation at room temperature has been very difficult to 

achieve especially at the very large scale integration (VLSI) level.  

Other paradigms have similar advantages and disadvantages. For instance, 

QCA offers molecular scalability and low power, similar to the SET, along with 

the potential of THz switching speeds and an inherently parallel circuit structure. 

Further exploration of the potential of the QCA paradigm reveals the hope for 

revolutionary advancements in logic design and computing circuitry through 

constructs such as reversible computing [29] and/or reconfigurable systolic 

architectures [30]. These attributes along with the advancements in size, speed, 

and power have attracted many researchers to QCA, making it one of the most 

theoretically well-developed nanoelectronics paradigms. However, QCA have 

also been hampered by the inability to provide robust large scale circuits in a 

room temperature environment; a challenge that if left unsolved will undermine 
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the promising potential of QCA and the confidence of the nanoelectronics 

community in the paradigm. 

1.1 Advancement and impact of this work 

Major advancements in two areas of research must be achieved if the QCA 

paradigm is able to fulfill its promise as a nanoelectronic replacement to CMOS. 

First, an architecture which allows for robust room-temperature operation of 

QCA must be developed; and second, that architecture must be amenable to 

currently available or near term fabrication technologies. Too often, researchers 

in the QCA field have overlooked these two challenges and resorted to the 

traditional QCA cellular structure and architecture paradigm. The effect of this 

lack of attention has been the steady decline in confidence of the electronics 

community as to the theoretical predictions made for QCA [31, 32, 33]1, and 

thus the paradigm itself.  In this work, we tackle these two pressing challenges 

and produce a new design which retains the promising potential in logic design 

methods and performance, and also provides viable implementation strategies 

which fit with current and near term technologies. The new design is called the 

Lattice-based Integrated-signal Nanocellular Automata (LINA) (example shown 

in Figure 1-2). LINA is a design strategy and circuit architecture that is a variant 

of the QCA paradigm. However, it is built around a lattice-based structure which 

allows for common self-assembly methods to be utilized in the deposition and 

                                                      
1
 These references highlight theoretical disagreements between physicists and system 

designers.  Lack of fabrication methods has served to facilitate these disagreements 
and doubts. 
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placement phase of circuit construction. Additionally, LINA provides a dramatic 

increase in reliability (for a constant cell size) over traditional QCA designs by 

integrating several “signals” of information together in a process that continually 

corrects faults. The increase in reliability allows for larger cells and spacings to 

be used to fabricate circuitry for room-temperature operation and additional 

opportunities for currently available materials to be used as circuit elements. 

Additionally, the larger footprint of the logical and communicative elements 

should allow for traditional lithographic patterning methods to be used for the 

fabrication of LINA circuitry allowing utilization of current VLSI technologies and 

fabrication facilities. The LINA designs also allow for continued scaling of 

circuitry to the molecular level as technologies improve.    

 

Figure 1-2. Lattice-based Integrated-signal Nanocellular Automata (LINA) 
wire design structure 
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The theories and structures which will be presented in this work have been 

verified using physics based simulation methods which were originally produced 

for traditional QCA and have been modified to also be applicable to LINA.   The 

software provides data on timing, logical function, power, reliability, and other 

physical parameters whose results were checked against other commonly 

available simulation tools.  It also provides a design tool for creating logical 

elements and circuitry in the LINA design framework. 

In summary, QCA is one of the most theoretically well-developed 

nanoelectronics design paradigms. Its challenges have been with the inability to 

fabricate reliable room-temperature large scale circuitry. The results of the LINA 

research have the potential to overcome these challenges and alter the course 

of QCA nanoelectronics by making QCA designs more applicable to existing 

materials and technologies. This could then position QCA as one of the favorite 

candidates to replace CMOS based integrated circuitry in the coming decades 

and usher in a new era of electronics and computing.  

1.2 Organization 

This dissertation is organized as follows. Background material for the QCA 

paradigm is presented in Chapter 2.  2D 2-Dot QCA designs, which are the 

basic building block of LINA, are presented in Chapter 3.  The details of the 

simulation engines used in the development of the 2D 2-dot QCA and LINA are 

given in Chapter 4. Chapter 5 details the new LINA designs and methods and 

presents simulation results which provide critical evidence to support its 

suitability. Chapter 6 provides further analysis for LINA and two LINA design 
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examples. The dissertation is then concluded with Chapter 7, which provides 

summaries and an outlook to future research on LINA.  
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Chapter 2  

Background Material 

Before a thorough discussion of LINA theory and designs can be presented, it is 

important that traditional QCA principles of structure, design, and fabrication 

must be understood.  This is because LINA are based on many of these QCA 

principles. Additionally, a great deal of the published theoretical research is 

applicable to both paradigms. Therefore, this chapter provides the material 

necessary to this understanding, beginning with an introduction to cellular 

automata concepts and QCA basics.  This is followed by current QCA 

implementation technologies and theory which provide the starting point to 

further advances provided in this dissertation.  More complex QCA topics such 

as clocking and advanced logical concepts will also be discussed due to their 

criticality to the LINA architecture.  Finally, the chapter ends with a discussion 

on analysis of important QCA properties which provide the motivation for further 

exploration of QCA as a nanoelectronics replacement for CMOS ICs. 

2.1 Quantum-dot cellular automata (QCA) Basics 

2.1.1 Cellular Automata (CA) 

Cellular Automata (CA), first proposed by von Neumann [34], are generally n-

dimensional fully populated arrays of identical cells, which may be in any one of 

a set of finite states.  Each of these cells updates their states at discrete time 

intervals based on a global evolution function that is typically dependent on the 

states of a set of neighboring cells. Because the CA computation model obeys 
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physical principles of locality and invariance to shifts in time and space, many 

scientists have suggested a link between CA and the physics of the quantum 

world [35].  Additionally, the fact that many molecular structures have natural 

attributes demonstrating CA interaction suggests that CA may be ideal 

computational elements for nanoelectronics. 

This suggestion is further substantiated by the fact that CA can achieve 

complexity and even logical completeness with very simple structure and 

evolution functions.  This fact is exemplified in research by Wolfram, who 

classified and proved that elementary CA, (which are bi-state, 1-D, fully 

populated arrays) achieve complexity by means of a specific set of rules (here 

another name for the evolution function), such as rule 110 [36], which can be 

seen in Figure 2-1.  

 

Figure 2-1. Rule 110 CA - The figure is a graphical representation of the 
evolution of a 1-D array of two-state cells (white depicting a “0” state and 
black depicting a “1” state).  The CA begins with a single “1” surrounded 
by all “0”s which is the top of the triangle.  Each row of the figure is a 
discrete time step of the evolution of the cells beginning at the top and 
progressing down [36]. 
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2.1.2 QCA as CA 

The QCA paradigm deviates from conventional CA in that QCA achieve logical 

completeness and complexity by selectively patterning (meaning adding or 

deleting) cells based in a 2-D grid and actively driving certain input cells2. 

Because of this, QCA cell patterns more closely resemble the form and function 

of traditional logical circuits compared to other CA types. This provides benefits 

in circuit design techniques but also limits inherent advantages of the QCA 

paradigm, such as parallelism.   

QCA also deviate in that the cells’ evolution functions are not based on the 

state of the neighboring cells at the previous time step as in conventional CA, 

but instead on the least energy configuration of the entire system at that time 

step. This means that QCA are not inherently sequential, instead the input cells 

are used to explicitly set the cell states of the remaining cells. In order to make 

QCA sequential, clocking schemes are applied to effectively lock cell states of 

certain neighboring cells in a cyclic fashion. This provides a more conventional 

CA evolution function to the QCA circuit states.  

The evolution functions for both clocked and unclocked QCA are based on the 

summation of the electromagnetic interaction of neighboring cells.  The strength 

and polarization of this interaction has factors of relative placement, cellular 

geometry, and distance; and, due to the structure of QCA cells, essentially 

limits the cell interaction neighborhood to a radius of two or three cell spacings.  

                                                      
2 Input cells thus have evolution functions that are not dependent on neighboring cells. 
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Additionally, the bipolar nature of the electromagnetic interaction produces QCA 

cells which are two-state, allowing for simplicity, robustness, and even logical 

gain.  

The evolution function produces a ferromagnetic3 type of interaction for cells 

directly horizontal or vertically positioned to each other.  Cells which are 

positioned diagonally relative to each other tend to produce an anti-

ferromagnetic type of interaction.  This produces a logical majority voter 

function for cells at the ferromagnetic position with similar distances, and a 

logical minority function for cells at the anti-ferromagnetic positions with similar 

distances (shown graphically in Figure 2-2). This inherent property of QCA will 

become a critical piece to allow logic and communication in the QCA computing 

architecture. 

 

 

Figure 2-2. A. Configuration of cells which produce a majority voter (MV) 
logical function. B. Configuration of QCA cells which produces a minority 

(anti-majority) voter (AMV) function. 

                                                      
3 Ferromagnetic is in the sense of an Ising model and does not necessarily mean 
magnetism 



13 
 

2.2 QCA Basics 

2.2.1 QCA Cell Structure 

Standard QCA cells are, at their most basic, a configuration of charge 

containers which enable the localization of a fixed number of free electrons in a 

way which produces a two state CA.  The first “model” QCA cells were 

theoretical structures, proposed by Lent et al. [25], containing five quantum dots 

arranged in the manner shown in Figure 2-3.  These quantum dots act as the 

charge containers for the localization of two free electrons, which because of 

Coulombic repulsion prefer to occupy diagonal corner quantum dot sites. Each 

quantum dot is electrically separated from the other dots by a potential barrier 

generated by the electrical properties of the surrounding material. Classically, 

after an electron falls into one of these dots and relaxes sufficiently, it cannot 

escape until it is given suitable energy to overcome the dot’s barriers. However, 

quantum mechanical principles allow, at some non-zero probability, electrons to 

travel, or “tunnel”, from one dot to another without the application of extra 

energy. This occurs with a frequency and likelihood dependent on properties 

such as the electron’s energy, applied force to the electron, and the potential 

energy barrier height the quantum dot provides. These properties must be 

precisely controlled in QCA cells allowing the design of specifically placed 

paths, or tunnel junctions, between specific dots internal to a single cell but not 

between dots of two separate cells.    
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Figure 2-3. Original QCA Cell - Here shown with two free electrons 
completely localized on quantum dot sites.  

2.2.2 Theoretical Development of a model QCA cell 

The theoretical development of a physical model of a QCA cell begins with a 

graphical schematic of what was originally called the “standard” QCA cell [25, 

37] (shown in Figure 2-4).  The standard cell contains quantum dot sites which 

are labeled from 0 to 4, and are connected with tunnel junctions which are 

labeled based on the sites which they connect. It is assumed that the barriers to 

tunneling for any path not shown in the model are so large to effectively 

eliminate tunneling in them. A standard distance of   is used to denote the base 

measurement of this cell as given   one could determine any distance in the 

cell based on standard geometry. 
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Figure 2-4. Graphical schematic of the original “standard” QCA cells with 
numbered quantum dot sites, tunnel junctions, and the distance measure 

“a” 

This graphical model allows construction of a model Hamiltonian for the cell.  A 

Hubbard-type Hamiltonian was chosen and any internal degrees of freedom to 

the dots of the cell were ignored.  The Hamiltonian for the cell is: 

  
      ∑    ̂   

   

  ∑       ̂   
  ̂     

     

 ̂   
  ̂      ∑   ̂    ̂   

 

  ∑   

 ̂    ̂    

        
        

 

(2.1) 

In (2.1) the second quantization notation is used where  ̂   
   ̂     creates 

(annihilates) an electron at site   with spin  . The number operator for site   with 

spin   is   ̂     ̂   
  ̂   . The first term of (2.1) is the energy,   , associated with 

an electron confined on the     site.  The second term is the tunneling energy 
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between sites   and   where         for neighboring sites and        for 

antipodal sites.  The third term is the energy cost associated with confining two 

electrons on the same dot and the fourth term is the Coulombic interaction 

between electrons at different sites. To find the stationary states of the model 

cell, the time-independent Schrödinger equation ((2.2) must be solved. 

 ̂       〉        〉 
(2.2) 

 

In (2.2),     
〉 is the     eigenstate of the Hamiltonian and    is the associated 

eigenvalue.  These eigenstates are found using the many-particle site-ket basis 

for the five sites and two electrons of opposite spins such as seen in (2.3): 

   〉   |
         
         

〉  

   〉   |
         
         

〉  

 …  

    〉   |
         
         

〉  

(2.3) 

where the columns correspond to the sites and the rows to the spins (with the 

upper row being spin up and the lower row spin down). 

Using this basis, the Hamiltonian matrix is calculated numerically as in (2.4) 

      ⟨  | ̂  ⟩ 
(2.4) 

and diagonalization of this 25x25 matrix leads to the calculation of the ground 

states of this model system. 
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The ground states of the model are the two preferred configurations shown in 

Figure 2-5 for the case of high tunneling barriers and essentially localized 

electrons. Tunneling barriers of this type create difficulty in fast switching which 

is essential in digital systems. However, as tunneling barriers are lowered the 

localization on the sites is reduced and the electron wavefunctions become 

spread out amongst the sites making the polarization of the cell weak.  This is 

also an unsuitable situation for digital electronics due to the resultant 

indeterminate nature of the logic state in this situation.  Therefore, a balance 

must be found to optimize among these two considerations.   

In order to quantify the polarization of the cell in regards to the two logic states, 

(2.5) defines a value P (polarization) which equals -1 for the completely 

localized logic “0” case and +1 for the completely localized logic “1” case. 

   
                  

                  
 (2.5) 

 

In (2.5),    is the expectation value for the number operator for site  . 
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Figure 2-5.  Two ground state electron configurations of the model QCA 

cells and the logical values associated with them. 

2.2.3 Other cell configurations 

Other types of QCA cells have been proposed in literature and are utilized in 

QCA designs including cells with four quantum dots, six quantum dots, four 

quantum dots rotated by 45 degrees with respect to corners of the cell, and 

cells composed of two dot half-cells.  These different cellular configurations, 

which are shown in Figure 2-6, have slightly different advantages or functions 

than the model cell. Of particular importance, is the 6-dot configuration, shown 

in Figure 2-6b, due to its ability to allow for clocking in molecular or 

macromolecular implementations (which will be discussed later in this chapter).  

A common trait of all of these configurations is that they all have two free 

electrons and two preferred electron configurations corresponding to the binary 

logic values. Therefore, all cell configurations benefit from the basic research 

into QCA logical design and circuit layouts of the other configurations.  Also, 
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development of the physical model and calculations of these cells utilize the 

same methodology and similar equations which are used for the model cell.  

 

 

Figure 2-6. Other QCA cell configurations - A. Four-dot QCA cell 
configuration – B. Six-dot QCA cell configuration – C. Rotated four-dot 

QCA cell configuration – D. Two-half-cell QCA cell configuration 

2.2.4 Cell to Cell Interaction 

In order to be useful as digital communication and logic devices, the state (and 

subsequent binary value) of QCA cells must be highly influenced by its 

neighbors. A cell should also saturate at the strongest polarization value 

possible even in response to weak polarization of a neighboring driver cell. A 

measure of these properties takes the form of polarization gain in QCA, where 

                         . High polarization gain provides good noise immunity 

to QCA circuitry and thus allows for reliable communication and computation.  

In the early QCA studies [37, 38, 39], several cellular configurations were 

examined to determine which one produced the highest polarization gain. 

These studies resulted in the choice of the standard cell configuration due to its 

high      around the logical transition point. This can be seen In Figure 2-7, 

where the cell-to-cell response function is shown for various cells and dot 

configurations. High       at this point causes a large swing in polarization in 
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the resultant    to the saturation level of +/- 1 as the polarization of the driver 

cell transitions from negative to positive. In cases where        , (polarization 

loss), the signal is degrading as it is communicated down the line and thus as is 

will not be acceptable for circuit construction. An example of this, occurs in the 

cell D configuration at the higher input polarization values.  For this case, 

another mechanism (which will be discussed later in this chapter) must be used 

to provide signal gain.   

 

Figure 2-7. Four cell configurations and the resultant cell-to-cell response 
function.  Here the Cell B geometry produces the best polarization gain 

and is thus the optimal choice based on this parameter.  Taken from [37] 
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As has been discussed, the mechanism for producing the bistable cell-to-cell 

response for standard electrostatic QCA cells is the electron localization in the 

quantum dots and the Coulombic interaction with electrons in neighboring cells. 

Therefore, the configuration of the dots, intracellular tunneling barriers, and 

inter-cellular geometry play an important role in this interaction. The ratio of 

tunneling energy to the Coulombic energy is also important in determining the 

abruptness of the bistable response function and       value as are factors such 

as temperature, dot size, and relative placement of the cells. For example, 

Figure 2-8 shows the change in response function with respect to a change in 

the tunneling energy.  The extremes of this function are the cases when the 

tunneling energies are very high or zero.  In both of these cases the polarization 

gain would be zero and would not allow for communication or logic.  
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Figure 2-8. Polarization response of cell 1 to the polarization of cell 2.  
Tunneling energy t is modified from .2meV (solid line), .3meV (dot line), 

.5meV(dash line), and .7meV (dot-dash line).  Taken from [37] 

2.3 Logical and Communication Structures in QCA 

2.3.1 The binary wire 

The QCA properties that have been mentioned thus far provide a favorable 

base to build digital logic and communication structures with the paradigm. 

However, until a set of logically complete circuit elements can be constructed 

with QCA cells, its full use cannot be determined. A basic component of this set 

is a digital communication element, which for QCA, takes the form of a binary 

wire.  The binary wire (or just wire) was designed based on the principle that the 

polarization of each cell tends to be equal with its neighbor when the cells are 

linearly aligned [40, 41]. Therefore, the wires travel in either a horizontal or 
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vertical line and are able to turn only 90o corners.  The wires are robust and are 

able to effectively transmit signals if the polarization gain for its cells is greater 

than one. In contrast, if the polarization gain value is less than 1 then the wire 

will eventually fail after a certain length is exceeded. Binary wires with this 

property are shown in Figure 2-9. The figure demonstrates indeterminate cell 

states resulting from a finite length wire with a low       value. 

 

Figure 2-9. Binary wires with polarization gain less than 1, equal to 1, and 
greater than 1.  Expectation of the number operator for each of the 4 

logically interactive sites are shown as black dots.  A expectation number 
of 1 is shown as a full black dot and of 0 as a full white dot.  Expectation 

values between 0 and 1 are shown as dots filled to various degrees. 

2.3.2 The QCA inverter 

As has been discussed, if two cells are oriented in a diagonal manner with 

respect to each other, the resultant polarization of the driven cell is the inverse 

of the driver cell.  This is used to create a logical gate that functions as an 
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inverter. In the typical QCA inverter design, shown in Figure 2-10, a single 

binary wire is inverted with two diagonally positioned wire segments.  These 

segments are then condensed back down to the single wire for output of the 

gate. Using two segments (instead of one) makes up for the loss of polarization 

gain due to the increased distance between centers of diagonally oriented cells.  

 

Figure 2-10. QCA inverter and associated symbol 

2.3.3 The majority voter 

The most fundamental logic element in the QCA architecture is a direct result of 

the majority-type interaction of horizontally and vertically aligned cells. This 

element is the three-input majority gate, which has a Boolean logic equation 

equal to (2.6).  

             (2.6) 

Its structure, shown in Figure 2-11, requires only a single QCA cell to perform 

the function. The gate can be used to directly perform three-input majority 

operations or it can be used implement more traditional two-input AND or OR 
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gates by adding a fixed input (0 or 1 respectively) to the gate’s third input. 

However, while using AND-OR logic is a more traditional design method, it does 

not provide optimal logic minimization or circuit reduction. Therefore, research 

into design techniques and tools which utilize majority gate logic is an active 

area of interest [42, 43, 44, 45].  

 

Figure 2-11. QCA majority gate with associated symbol and truth table 

2.3.4 Co-planer wire crossing 

Another fundamental communication element in the QCA architecture is the 

coplanar wire crossing.  In traditional CMOS digital logic, in plane wire 

crossings are not possible. Instead chips must be made with several layers so 

that wires can pass above or below each other. In QCA, it will be difficult to 

create structures which could transition to different layers and so a planer wire 

crossing structure is preferred.  Luckily the original designs were able to create 

a planer wire crossing structure by using QCA cells whose quantum dot sites 
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were rotated 45o internal to the cell.  In this way two wires could intersect at a 

90o angle and pass through without affecting each other.  The cellular structure 

of a planer wire crossing and its associated symbol is shown in Figure 2-12. 

 

Figure 2-12. Planer wire crossing structure in QCA. Taken from [40] 

With these fundamental and logically complete circuit primitives, the QCA 

architecture is able to produce any desired logical function. Examples of the use 

of QCA to produce more advanced logic can be seen in [40, 46, 47, 48].     

2.4 QCA Implementation Technologies 

In the early stages, the theoretical development of QCA was restricted to the 

original coupled quantum-dot systems which took the form of electrostatic 
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metal-dot implementations. However, these systems represent only a part of 

the experimental implementations which have been attempted or theorized for 

QCA to date. This is due to fact that other implementations have been found to 

provide the same fundamental characteristics of a local bistable cell to cell 

response, majority voter evolution function, and ground state computing as the 

original metal-dot systems. Furthermore, these new implementations are able to 

utilize other materials and other state variables to provide advantages in size, 

robustness, or fabrication concerns over traditional designs.  

The new QCA implementations, along with the metal-dot realizations, can be 

grouped into two categories relating to the physical state variable used for 

computation.  The first of these groups is the electrostatic QCA which contains 

the original designs and is the most prevalent.  The second group contains 

magnetic QCA implementations. The electrostatic implementations can be 

subdivided into three additional groups: the original metal-dot QCA, 

semiconductor QCA, and molecular QCA. This section contains a brief 

description of these implementations along with their advantages and 

disadvantages. 

 

2.4.1 Electrostatic Metal-Dot QCA 

Early experimental fabrication of QCA cells and logical devices was 

accomplished through the use of cells constructed of metal quantum dots. In 

particular, several metal-dot QCA cells were fabricated utilizing Al dots with 

Al/AlOx/Al tunnel junctions [49, 50, 51, 52, 53], one example of which is shown 
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in Figure 2-7. These cells were shown to produce the required bi-stability of 

QCA devices and effectively demonstrated communication [54], majority gate 

logic [55], clocking of QCA cells [56], and fan out structure [57]. 

However, they were fabricated as more of proof of concept demonstrations and 

not feasible paths to large scale nanoelectronic circuitry.  Thus, they were 

composed of relatively large cells which were difficult to fabricate except for 

very simple circuits.  Additionally, due to the very small energies associated 

with their operation, they had to be operated at liquid He temperatures 

(<100mK) and with magnetic fields to suppress resultant superconductivity. 

 

Figure 2-13. SEM image of Metal-dot QCA cell and associated schematic. 
From [52] 

 

2.4.2 Electrostatic Semiconductor QCA 

Due to the prevalence of semiconductor devices and technologies, QCA 

fabricated with semiconductor quantum-dots would potentially enable direct 
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integration with current CMOS and allow for an easier transition to the new 

paradigm. Because of this, research into a semiconductor realization of QCA 

has been strong, yielding QCA fabricated with GaAs/AlGaAs quantum dots [58, 

59] and recently published implementation based on Silicon [26] (shown in 

Figure 2-14). Unfortunately, current semiconductor patterning technologies do 

not allow for a small enough size scale to make room temperature operation 

possible4. Therefore, semiconductor QCA suffer from the same temperature 

and speed limitations found with metal-dot QCA. 

 

Figure 2-14. Silicon based QCA schematic and SEM images from [26] 

                                                      
4
 Size scale is inversely proportional to energy separation of ground and excited states, thus smaller size 

QCA allow for greater noise immunity, a fact which will be shown later in the dissertation. 
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2.4.3 Molecular QCA 

In order to compete with conventional CMOS electronics circuitry in terms of 

speed [60], reliability, and room-temperature operation [61], projections indicate 

that traditional QCA will require cells on the size scale of individual molecules 

[27, 62].  As such, a large amount of research into potential molecular QCA 

implementations has been accomplished.  This research can be broken down 

into two major fields, the placement and construction of QCA circuits and the 

choice of a suitable molecule which can provide the required QCA cellular 

attributes.  

One of the more promising potential technologies for molecular QCA circuit 

construction involves the use of DNA rafts which are able to form templates for 

the self-assembly of candidate QCA molecules.  The DNA rafts are positioned 

into lithographically defined trenches in a Si base structure [63] (shown in 

Figure 2-15). This technique utilizes electron beam lithography which does not 

scale well into VLSI level circuitry and also produces QCA cells which are 

slightly above the size scale required for room-temperature operation.  

However, the direct utilization of both self-assembly for correct relative 

placement of cells and lithography methods for circuit construction is sound and 

directly applicable to work proposed in this dissertation. 
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Figure 2-15. QCA full adder templates formed by electron beam 
lithographical patterning from [63] 

Other work in molecular QCA has focused on the identification of suitable 

molecules for which QCA cells can be constructed.  These molecules are 

generally mixed valence complexes with either two or four redox centers acting 

as the quantum dots [64, 65, 66, 67].  In these cells, electron transport between 

and localization in the redox centers define which molecules will be suitable for 

QCA.  A typical molecular candidate is shown in Figure 2-16 along with Ab Initio 

simulation results for the surfaces of constant potential for each of the QCA 

states. 
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Figure 2-16. Mixed valence candidate molecular cell for QCA, along with 
the constant charge radiuses for the two logical QCA states, taken from 

[27] 

2.4.4 Magnetic QCA 

Implementations which utilize magnetic dipole interaction between cells have 

recently gained much attention due to their ability to allow for near room-



33 
 

temperature operation and very low power requirements [68, 69, 70, 71].  

Magnetic QCA are constructed of oblong nano-magnetic particles which form 

QCA half cells. Due to shape anisotropy, the magnetic dipole aligns along the 

longer part of the cell.  Therefore, these cells can be laid out in the way shown 

in Figure 2-17 to produce QCA computing and communication. In several 

instances these cells have been laid out in a way which deviates from the 

square QCA cell in order to more effectively utilize their half-cell geometry 

especially for logic structures [28].  One instance of this can be seen in Figure 

2-17 for a majority gate.  

Magnetic implementations have relatively slow switching speeds, which are in 

the MHz range, making them unsuitable for competition with even current 

CMOS electronics. However, because of their robust nature and natural 

radiation immunity, certain specific applications may find benefit by using this 

implementation. 



34 
 

 

Figure 2-17. Implementations of a majority gate for magnetic quantum-dot 
cellular automata. From [28] 

2.5 QCA Adiabatic Switching and Clocking 

As has been discussed, the QCA paradigm is dependent on the state of the 

system being in the preferable least energy configuration based on the 

Hamiltonian in (2.1).  However, utilizing this property for digital electronics has 

several difficulties which must be addressed.  Most importantly, the QCA 

system is not isolated and thus other factors play into the system energy state 

other than the QCA cells themselves.  Temperature for instance, may play a 

large role in determining system state of QCA devices.  Thermal excitations 

may promote the QCA cells to a higher energy configuration and thus cause 



35 
 

errors in the digital logic. To be robust and protect against these types of 

excitations the lowest energy configuration must be separated from the 1st 

excited state by several times     (the Boltzmann constant multiplied by the 

temperature).  This separation in the first energy levels of the system is 

dependent on several factors including the spacing between quantum dot and 

QCA cells and the configuration of the dots. Therefore, these properties must 

be determined before robust application can occur.  

Another source of error in QCA is states that provide local energy minimums 

which may be attractive as the system switches.  These states are called 

metastable states and can produce circuit errors if they are not overcome within 

the normal settling timescales. Unfortunately, the process of overcoming the 

barriers associated with these states is probabilistic and dependent on several 

factors including the barrier height and energy of the system. However, 

adjusting these parameters to create favorable conditions for successfully 

transitioning through meta-stable states will cause other problems that may lead 

to circuit errors.   

A simple example of metastable states and their potential to cause circuit errors 

is seen in Figure 2-18.  In this figure, a switching event occurs in a simple 

binary wire as the input cell is set from a logic 1 to a logic 0 state.  Ideally, this 

switching event would move down the wire sequentially until all of the cells in 

the wire had the same logic value (this is the global minimum wire state). 

However, the process of switching is not instantaneous and therefore as the 

wire transitions, it is possible for a cell to be caught in a unpolarized state with 
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the cells to the left and right inducing equal and opposite polarizations on it.  

Because of this the cell would not transition out of the unpolarized state and 

thus the switched signal would not propagate to the end of the wire.   

 

Figure 2-18. Binary wire switching event may lead to a correct output or 
metastable states. 

The process and dynamics by which this switching happens is dependent on 

the coupling of the QCA to the environment and the ability of the QCA to gain 

and then dissipate the energy gained through the change of input.  These 

processes also affect circuit properties such as speed and temperature in which 

robust operation is possible and provide a very challenging environment for 

optimization. 
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2.5.1 Adiabatic Switching of QCA 

To overcome the problems of metastable states and their effects on the 

correctness of QCA computation and the speed at which switching may occur, 

an alternate mode of switching was proposed in [72] and verified in metal-dot 

implementations in [73].  In this method, the system is switched slowly enough 

to allow it to continuously remain in the lowest energy state.  This adiabatic 

switching is accomplished through direct control of tunneling barrier heights 

which allow or inhibit interdot electron tunneling.  The process works by 

lowering the tunneling energy barriers internal to the cells prior to switching 

inputs of the system. Then, as the cells are in a state in which the electrons are 

delocalized, the inputs are changed. The tunneling energy barriers are then 

slowly increased and the system converges to the instantaneous global ground 

state which corresponds to the correct logical configuration.  Figure 2-19 shows 

an example of this process.  

While adjustment of each individual cell’s tunneling barriers is crucial to enable 

adiabatic switching, it is necessary to limit the complexity of the wiring which 

allows for it. If this is not accomplished, the wiring required to distribute the 

switching signals would easily dominate the device design and therefore 

improvements over modern digital circuits would not be achieved. Therefore, 

switching groups of QCA cells with the same wire and signal is the preferred 

method of laying out clocking circuitry and making implementation tractable [74, 

75].  This process would resemble the functional pipelining found in modern 

processor circuitry and the adjusting of tunnel barriers would resemble a clock.  
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In fact, the process for raising and lowering tunnel barriers should be thought of 

this way in order to organize the circuitry to perform logical operations [76].   

 

Figure 2-19. Adiabatic Switching of QCA binary wire 

2.5.2  QCA clocking 

The adiabatic clocking process is divided into four phases which correspond to 

the raising and lowering of tunnel barriers.  These four phases, shown in Figure 

2-20 are:  

 Relax - in which the tunnel barriers are lowered and the electrons are 

delocalized,  
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 Null – in which the electrons are delocalized and the cells have no logical 

effect on other QCA cells,  

 Switch – in which the cells tunneling barriers are raised, the cell’s 

electrons become localized and are switched to their new ground state, 

and  

 Hold – in which the interdot barriers are made high enough to where no 

switching is allowed; thus allowing for these cells to be used as inputs to 

other parts of the circuit without the other cells affecting their state.  

The QCA clock not only allows for pipelining of QCA circuitry which allows for 

fast operation, but it also allows for more robust operation, higher complexity 

potential in circuit layouts, and important logical constructs such as feedback of 

signals [75, 77].   In fact, clocking has become crucial to the theoretical 

development of QCA electronics.   

 

Figure 2-20. Four phases of the QCA clock 
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Figure 2-21.Four clocks used for QCA 

In large scale QCA circuitry, it is required to have four different clocks (shown in 

Figure 2-21) distributed throughout the circuit. These four clocks all contain the 

exact same waveform and each clock is out of phase with the others on ¼ cycle 

intervals.  This produces a single clock in each of the four QCA phases at any 

given instant. With this design, clocking is applied to the QCA cells so that cells 

in the Hold phase drive cells which are in the Switch phase. An example of a 

circuit with each of these four clocks being utilized is shown in Figure 2-22.  In 

this figure, a sequential circuit element is shown (in this case a QCA memory 

cell) to demonstrate feedback with QCA. This clocking scheme is usually 

referred to as Laudaner clocking and is the basic way of pipelining throughout a 

circuit. Other clocking schemes such as Bennett Clocking are suitable for 

reversible clocking of QCA circuitry [78] and will be discussed further, later in 

this chapter. 
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Figure 2-22. QCA memory cell.  The cells are colored with different shades 
of grey corresponding to the usage of one of the four clock zones. Taken 

from [79] 

2.5.3  Implementation of QCA Clocking 

In the original experimental realizations of QCA which utilized metal dots, 

clocking was implemented by the addition of a third “middle dot” to each half of 

the QCA cell.  These middle dots ware then capacitively coupled to a gate 

electrode [53].  The voltage of the gate electrode was adjusted to provide the 

waveform shown in Figure 2-20.  Using this mechanism to clock QCA allowed 

for an effective barrier to be raised between outer, logically interacting, dots.  

Additionally, since only the potential of the middle dot was raised, and that dot 

was equally spaced between outer dots, the effect of the induced electrical field 
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did not disturb the degeneracy of the logical states. However, it is clear that this 

direct method of clocking would not scale well to the single nanometer QCA cell 

size of a reasonable nanoelectronics proposal, as the wiring for the clocks 

would dictate the minimum feature size and therefore not provide a large 

improvement over current technologies. 

For these reasons a new method of implementing the clocking mechanisms for 

molecular scale QCA was proposed in [62].  In this proposal, traditional 

molecular QCA cells were constructed using two V-shaped molecules such as 

shown in Figure 2-23.  The proposal depends on these molecules being 

attached to the surface with the middle dot down.  A wire embedded in the 

surface material then induces a perpendicular electrical field in the plane with 

the molecule and has the effect of either pushing the free electron into one of 

the arms of the V-molecule or pulling the electron into the middle clocking dot.  

When the electrons are pushed into the arms, they are able to induce an effect 

on the polarization of neighboring cells and therefore this state is, the afore 

mentioned, “hold” clock phase.  When the free electrons are pulled into the 

middle clocking dot, there is no net effect to the polarization of surrounding 

QCA cells and therefore this becomes the “null” clock phase. Also, by using the 

electric field of the embedded clocking wire, there no longer has to be direct 

connection with each QCA.  Therefore, a large area of QCA can be clocked 

with the same wire, naturally allowing for the clock zone approach. 
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Figure 2-23. Candidate QCA molecules when clocked – Buried clocking 
wires induce a perpendicular electric field into the QCA molecular cells – 
red dot shows free electron in each of the two molecule parts – from [80] 

2.6 QCA Logic Advances 

With the addition of the clocking scheme, QCA circuits can be built which are 

logically equivalent to standard CMOS based circuits. However, as with the 

change to any new paradigm, challenges which are specific to the new 

paradigm must be addressed.  For many nanoelectronics proposals, including 

QCA, fault tolerance will play a major role in the correct operation of any circuit. 

This is due to many factors, such as the probabilistic nature of circuit assembly 

at this level and the low relative magnitude of the state energies compared to 

environmental, thermal, and stray energy sources.  Therefore, fault tolerance 

must be addressed at both the physical level of device implementation and the 

logical design level. 
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In addition to the attention that must be given to the challenges which are 

specific to the QCA paradigm, attention must also be given to opportunities to 

advance the state of logic design and computing by utilizing the inherently 

useful properties of QCA.  In particular, two interesting opportunities such as 

these exist for QCA. The first utilizes the inherent parallel nature of QCA, along 

with the possibility for coplanar wire crossing and subsequent simpler circuit 

layout and design, to provide advanced resources in the design of systolic and 

parallel architectures [81, 82].  The other opportunity involves the 

implementation of reversible circuitry by utilizing the charge state based logic of 

QCA and some unique clocking proposals which are possible through the 

paradigm.  The proceeding sections discus fault tolerance techniques for QCA 

as well as reversible computing concepts of QCA. 

2.6.1 QCA Fault Tolerance 

Logic level fault tolerance designs are common in nearly all nanoelectronics 

proposals.  This is generally due to the lower power and probabilistic processes 

involved when using devices at the ultra-small size scales. Common logical 

techniques to accomplish this often fall into the categories of re-configurability 

[83, 84, 85] or redundancy [86, 87, 88].  While the need for logic level fault 

tolerance is common to nanoelectronics paradigms, the choice of methods for 

designs should be specific to the underlying implementation technology and 

analyzed based on the tenants and physics of the paradigm. 

With this in mind, Finjay and Toomeran [89] proposed block gates and thick 

wires shown in Figure 2-24 to provide increased robustness in the presence of 
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QCA specific fault mechanisms. However, the design stopped short of providing 

details to important circuit design specifics such as how to route or connect 

gates and wires.  However, this work did provide an important first step in 

understanding how QCA specific fault tolerance would work.  Additional QCA-

specific fault tolerance works also focused on this sort of hardware redundancy 

by adding additional width to wires or creating block gates to account for cell 

misalignment, addition, or deletion affects [90, 91, 92]. Additionally, other works 

on N-modular redundant QCA designs have shown limited overall benefits due 

to the extra complexity involved with their addition [93]. 

 

Figure 2-24. Block of QCA composing two cascading majority gates a) 
regular arrays b) irregular defective arrays. From [89]  

2.6.2 Reversible Logic Designs and Bennett Clocking 

Power dissipation is ever increasing in importance as feature sizes decrease 

and clock speeds increase. This is especially true of the QCA paradigm as cell 

size of 1nm and clock speeds of 1 THz have been predicted.  In order to 

achieve these results power dissipation must be limited. Fortunately, the QCA 
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paradigm is particularly well suited to implement reversible computing; which 

enables computing without destroying information and thus invoking the 

fundamental      limit of power dissipation according to Landauer’s Principle 

[94].  

In QCA, there are two different methods to reversible computing.  The first 

method involves implementing reversible gates in QCA and clocking the 

circuitry with the Landauer method which was previously discussed in the last 

section.  The other method to reversible computing does not require specialized 

reversible gates.  Instead the clocking mechanisms themselves save all of the 

information in the system and keep it from being erased. The clocking style 

used in the second method is named after Bennett who extended Landauer’s 

principle by suggesting that reversible computing could be achieved if copies of 

the inputs were echoed to the outputs [95]. 

An example of the information flow for Bennett and Landauer clocking methods 

can be seen in Figure 2-25. These methods have been shown to be highly 

effective for reducing power dissipation requirements in QCA circuitry [78].  

Additionally, reversible gate designs have been shown in [29, 96, 97] to aid in 

testing and fault detection. 
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Figure 2-25. Example of the information propagation for Landauer 
clocking (right) and Bennett Clocking (left). From [78] 
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2.7 Power, Speed, and Reliability in QCA 

It has already been shown that QCA is one of the most well developed and 

promising nanoelectronics paradigms as evidenced with the advanced logical 

constructs of fault tolerance and reversibility discussed in the previous section.  

However, even more important to the future of the QCA paradigm are the 

fundamental properties of power, speed, and reliability (particularly at room-

temperature). These factors drive design decisions and system performance for 

currently available electronics systems and for QCA, or any other 

nanoelectronics candidate, they will be even more crucial. Due to this 

observation, research has been ongoing to attempt to understand and optimize 

these properties and develop solutions to the most pressing challenges 

associated with them.  This goal extends to this research presented in this 

dissertation and thus a background in the evaluation of current QCA designs is 

warranted. 

For QCA, the properties of circuit speed, power dissipation requirements, and 

reliability in a thermal environment are highly interrelated. This creates 

problems with investigating the system performance of any of these 

characteristics individually. This is further complicated as other properties such 

as cell size and circuit layout, which are not fixed, due to a lack of specific 

implementation material, have additional significant impact. To simplify the 

process, early non-clocked QCA are used which yield information concerning 

individual cell dynamics and environmental coupling.  This information can then 

be used as clocked QCA cells are studied to provide quantitative results on 
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potential circuit speeds, power, and reliabilities.  (These attributes are highly 

favorable to QCA, compared to projections for other technologies, if a suitable 

implementation material can be fabricated.) 

2.7.1 Non-clocked QCA evaluation 

Switching in QCA without an applied external clocking mechanism takes place 

as the influence of neighboring cells provides energy through Coulombic 

interaction to shift the cellular state to a higher energy level. During this 

process, other states are also shifted energetically leading to a different ground 

state for the cell and the system. As the cell dissipates energy through a 

coupling to the environment, the cell ideally “falls” into the new ground state.  

This process often may lead to the cell falling into a state with a low local 

energy and thus becoming trapped in a meta-stable state. In order to “find” the 

correct ground state the cell must then be given suitable energy to overcome 

the metastable state and hopefully move to the more energetically favorable 

ground state.  So, two factors are present here which affect the speed at which 

the correct switching of un-clocked QCA cells occur. The first is the speed at 

which the cell may dissipate energy to the environment and relax into a lower 

energy state.  The second is the amount of thermal energy which can be gained 

from the environment to overcome metastable states. Furthermore, the actual 

ground state barriers, which are directly related to tunneling energies and 

cellular and circuit geometries, may also be overcome and state errors may 

occur if thermal energy exceeds other limits. Therefore, a balancing exists 

between the high temperature and cellular geometrical and electrical properties.   
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Generally, un-clocked cellular switching is a statistical process in QCA, which 

has a direct effect on the reliability of circuits and the speed at which they can 

be switched. In [98], this switching is measured as relaxation time       , or 

the time it takes the circuit to relax to the correct output state.  As can be seen 

in Figure 2-26, average and worst case relaxation times are a function of 

temperature to a certain point but then, as high temperatures are reached, the 

cells cease to relax at all to the ground state and the function breaks down. The 

cells analyzed here operate in the energy regimes of the original metal-dot 

implementations, meaning that very low temperature operation is required 

(seen clearly in the figure.)  However again, as cell dimensions decrease, the 

temperature dependence becomes more favorable to a room-temperature 

operation.  
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Figure 2-26. Average and range of relaxation times        for metal dot 
implementations as a function of temperature. From [98] 

In [61], alternate cellular geometries were tested to determine statistical 

probabilities of correct output.  These results are shown in Figure 2-27, and 

point to a dependence of the probability of correct output on cellular geometry, 

temperature, and number of cells in a wire.  Circuit complexity is also given as a 

factor affecting these probabilities.   
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Figure 2-27. Reliability dependence of non-clocked QCA wires on cellular 
geometry, temperature, and number of cells. From [61] 

2.7.2 Clocked QCA circuits 

Results from analysis of non-clocked QCA cells and circuits show reliability 

dependence on temperature and energy.  Also shown, are a dependence on 

relaxation times, which is directly correlated to switching speed. In clocked QCA 

circuits these dependences are even stronger, as problems with metastable 

states are removed and clock speeds are able to increase by many times. 

Clocking also limits the complexity of circuit constructs as cells in different 

clocking zones switch at different times and do not affect each other from a 

statistical prospective. However, this has an effect on overall circuit timing and 

reliability.  In [99], it was found that as wire length increases there is a linear 

decrease in reliability, thus making short wires and a large number of clocking 

zones advantageous.  However, as the number of clocking zones increased 

there was an exponential decrease in reliability.  Therefore, there is a balance 

that must be found between clock zone size and circuit complexity. This 
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relationship can be seen in Figure 2-28. where reliabilities for two different wire 

lengths are shown. 

 

Figure 2-28. Relationship between reliability and clocking zone size in wire 
of different sizes.  From [99] 

The power that must be dissipated from clocked versions of QCA come from 

two different sources.  The first is the clocking itself and has been described as 

a process analogous to leakage current in CMOS electronics. The leakage 

current does not depend on cell switching, but instead depends on the clock 

rate and its deviation from the adiabatic ideal, which is directly influenced 

through circuit energies (and thus cellular geometries) and coupling to the 

environment.  The other power mechanism in QCA comes from the unavoidable 

cost of irreversible switching of cells and the subsequent information that must 

be dissipated to the environment.   
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As the clock speeds increase, power dissipation requirements for each of these 

mechanisms increase. This is due to the extra switching events which could 

occur at each clock cycle, but also the quicker switching and therefore greater 

deviation from the adiabatic ideal. 

Therefore, clock speeds, cellular geometries, and coupling to the environment 

have direct effects on the power which must be dissipated by a single QCA cell.  

However, cellular geometries also affect circuit density and therefore the power 

density required of each QCA circuit. For example, results in [60], show that if a 

maximum power of 100W*cm-2 were allowed, a maximum worst case clock rate 

for specific circuit geometries could be calculated.  The results of this can be 

seen in Figure 2-29 as an operational range of QCA circuits.  The range is 

bounded on the top by the 100W*cm-2 limit and non-adiabatic continuously 

irreversible switching, and on the bottom by quasi-adiabatic reversible 

switching.  These results also show that greater than THz clock speeds are 

possible for molecular size scale devices with these reasonable power limits.  

These results are also collaborated in [98, 100]. 

The effects of the interplay of power, clock speed, and reliability in QCA will be 

crucial to the development of paradigm in the coming years. The research that 

is presented in this dissertation has recognized this fact and has been improved 

immensely due to it.  
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Figure 2-29. Projected circuit speeds and power dissipation for QCA 
circuits as well as previous CMOS technology (A-D).  (30nm and 20nm 

gate length CMOS circuits are shown as C and D, A and B are somewhat 
older CMOS versions). From [60] 

2.8   Chapter Summary 

With many possible implementation technologies, the potential for THz 

switching, and advanced logic constructs, QCA seem to be well positioned to 

fulfill the role as a nanoelectronics replacement to CMOS ICs in the coming 

decades. This chapter has highlighted these important attributes and discussed 
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others as well which are critical to the understanding of QCA devices going 

further. However, the chapter has not provided a path to solving the two most 

important unsolved challenges facing QCA, these being reliable room-

temperature operation and an architecture that provides the path to VLSI 

integration. For these challenges, new research will be presented in the next 

chapters that will be built on the strong base of theoretical and experimental 

QCA research to provide potential solutions and enable a path to 

nanoelectronics realization.   
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Chapter 3  

Design of 2D 2-Dot Quantum Dot Cellular Automata 

The path to LINA begins with the development of new QCA cell and circuit 

designs which mimic the 2 dimensional lattice structures of many common self-

assembled materials. This is important due to the wide range of new 

technologies that these new designs allow for construction of circuits and the 

precise relative cellular placement that is required. In this way, the first of the 

two critical design challenges, discussed in Chapter 1, is addressed. However, 

in order to be preferred to traditional QCA for these reasons, these designs 

must also be logically equivalent to traditional QCA and scalable to the 

molecular level. To accomplish these goals, a cell with 2 logically interacting 

quantum-dots (which is based on the half-cell proposed for many molecular 

implementations) was found to be the most suitable choice. This cell allows a 

directional component to the layout which provides minimization of complexity 

compared to traditional QCA designs along with applicability for many other 

dipolar molecules or macromolecules. This chapter introduces the first step to 

LINA in these designs which are called “2-D 2-dot QCA” and addresses the 

underlying architecture and the logical constructs which make it functionally 

equivalent to traditional QCA and explores other benefits as well. 

The organization of this chapter is as follows. Section 3.1 provides a further 

introduction to the new 2-dot QCA design.  Section 3.2 discusses advantages of 

the 2-dot designs and establishes the 2-D 2-dot QCA “map,” which offers the 

possibility of easier implementation by using a more regular structure than seen 
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in other designs. Section 3.3 introduces logic constructs developed by using the 

2-dot QCA cell and Section 3.4 summarizes the chapter. 

 

3.1 Introduction 

As the evolution of QCA research has progressed to include other cell 

configurations and implementation technologies which were discussed in the 

previous chapter, the 4-logically-interacting quantum dot cell configuration 

proposed in the original QCA papers remains to be the most widely used and 

studied design. This design has been shown to provide better bistability when 

compared with other configurations, which is especially important when 

considering devices with the relatively large dimensions of the original metal-dot 

or semiconductor experimental implementations. However, QCA cells 

consisting of only two logically interacting quantum dots have also been 

explored in literature as possible candidates for QCA cell designs or ways to 

simplify QCA calculations [61, 62, 28]. Interestingly, these 2-dot QCA may offer 

many advantages over the traditional QCA designs because of their relative 

simplistic operation, natural fit to many advanced QCA implementations, and 

ability to produce logic functions while being arranged in highly regular patterns. 

Even with these advantages, limited work has been accomplished using 2-dot 

QCA because an architecture which is able to utilize the unique properties of a 

2-dot QCA has not previously been produced. Furthermore, design and 

simulation tools have not included 2-dot QCA to allow design and verification of 
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2-dot QCA logic elements. Therefore, a new architecture is proposed in this 

chapter which is based on the use of 2-dot QCA cells [101].  

 

3.2 2-D 2-Dot QCA Architecture 

The 2-dot QCA consists of a quantum dot and electron configuration similar to 

the half-cell parts used in clocked conventional QCA cells of the six dot variety. 

Hence, the cell is comprised of three total quantum dots which are oriented in 

the way shown in Figure 3-1 with the central dot being used only for clocking 

purposes. The quantum dots are connected to each other via tunnel junctions, 

which allow movement of a single free electron in each cell. Logic values “1” 

and “0” are then assigned according to a pre-determined convention based on 

electron localization and position on the outer quantum dots. Additionally, the 2-

dot QCA cell relies on a four phase clock in the same way other clocked QCA 

designs do.  

 

Figure 3-1. Electrostatic 2-dot QCA cell consisting of 2 logically 
interacting quantum dots (quantum dot) and a single quantum dot used 

for clocking. 
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3.2.1 Advantages of a 2-dot QCA architecture 

With a 2-dot QCA cell, the two possible electron positions at the QD locations 

each correspond to either a logical 1 or 0. This is different from the case of a 4-

dot QCA cell which may have as many as six different possible configurations 

of localized electrons. This is due to the two electrons and four possible QD 

positions in each cell and does not include the highly unlikely possibility of two 

electrons sharing the same QD. Among the six possible electron configurations, 

Figure 3-2 shows two nominal unambiguous configurations, and the remaining 

four possible ambiguous configurations. It is also seen that even in 4-dot QCA 

cells consisting of two half-QCA parts there are still four possible electron 

configurations. This increases the chances for a logic error impacting the QCA 

device reliability. Additionally, it increases the chance of error in simulation 

programs which often dismiss the unassigned electron configurations to allow 

for simpler calculations. In a 2-dot QCA, however, there are no ambiguous 

electron configurations.  



61 
 

 

Figure 3-2. Six possible configurations of 4-dot QCA cells a) Nominal 
unambiguous configurations b) Possible additional ambiguous 

configurations 

Another added benefit of the 2-dot QCA design is simply that the number of 

electrons and dots needed to implement logic circuitry is reduced (which will be 

shown in the next section). This is important due to the statistical nature of 

errors when these devices are operated at non-absolute zero temperatures.  

3.2.2 2-D lattice structure of the 2-dot QCA 

Individual placement of QCA cells may be difficult or impossible and may pose 

a serious roadblock to QCA fabrication especially at the size scales required to 

make it a viable alternative to CMOS.  For this reason, utilizing a crystal lattice 

structure for QCA design may be helpful for fabricating QCA circuitry. This is 

due not only to the lattice structure of many well-known molecules and 

compounds, but also artificial self-assembled structures [102, 103, 104] (see 
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Figure 3-3), which both may be explored for the realization of periodically 

positioned QCA on this scale. 

 

Figure 3-3. a-d) TEM images of self-assembled binary superlattices from 
[102] e) HRTEM image of centered rectangular 2-D molecular lattice of 
cross section of MnGe [103] f) HRTEM image from molecular β-Si3N4 

lattice [104] 

 However, because of the layout of the 4-dot QCA cell, it is difficult to utilize a 

regular structure to perform many essential operations. Inversion, for example, 

relies on a 4-dot QCA cell which is offset by at least half a cell from the input or 

which is rotated by 45 degrees with respect to other cells. Planer wire crossings 

also rely on these 45 degree rotations. Moreover, most current QCA circuit 

layout designs tend to take on a similar structure to CMOS, and thus, may 

require lithographic techniques (to be used for both patterning and cellular 

layout) that are predicted to not be available at the scales required of traditional 
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QCA technologies. Therefore, creating a QCA architecture which could benefit 

from these periodic structures may, on its own, provide a breakthrough to 

realizable nano-scale QCA.   

With these factors in mind, a “centered rectangular” 2-D periodic lattice (similar 

to those found in Figure 3-3) was chosen to provide the structure for possible 2-

dot cell positions. It will be shown, that by residing only in the positions specified 

by this 2-D 2-dot QCA “map,” the 2-dot QCA cells provide a design architecture 

which is better than functionally equivalent to modern CMOS. Additionally, the 

map provides circuit designers opportunities to take advantage of the inherently 

parallel and reversible properties of cellular automata. 

The 2-dot QCA map contains locations for 2-dot QCA cells which are orientated 

either horizontally or vertically (thus the 2-D name) in the manner shown in 

Figure 3-4b. In the vertical orientation, the cell is given the logic “1” state when 

the upper QD is occupied by the free electron and the “0” state when the lower 

QD is occupied by the free electron. For the horizontal orientation, the logic “1” 

state occurs when the electron is found in the right position and logic “0” when it 

is found in the left position. This convention is shown in Figure 3-4a.  

Many logic constructs which utilize the 2-D 2-dot QCA map, such as those 

which will be presented in following sections, require that some map locations 

do not contain logically interacting cells.  These locations may be left empty or 

otherwise nullified through means such as providing a continuously null phase 

clocking mechanism for these particular cells.   
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Figure 3-4. a) 2-D 2-dot QCA logic convention b) Completely populated 2-
dot QCA “map” with lattice points placed on the cells for illustration 

purposes only 

3.3 Logic design using 2-D 2-Dot QCA 

The traditional QCA architecture utilizes the majority gate, which, along with an 

inverter, provides logically complete computation along with allowing for several 

interesting logic constructs to be designed [29, 42, 105, 106, 107]. The following 

section will recreate the complete logic of the traditional designs by introducing 

five new constructs to the 2-dot QCA architecture. These constructs are: the 

binary wire, the fan-out gate, the inverter, the planer wire crossing, and the 

majority gate. Together with the delay flip-flop, they will bring the 2-dot QCA 

architecture logically on par with the traditional architecture. However, it should 
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be pointed out that the 2-dot QCA constructs will require less dots and electrons 

for the implementation of the same logic function and will reside in the 

rectangular centered 2-D QCA map. 

3.3.1 The binary wire 

The first of a group of fundamental logic constructs is the binary wire. The wire 

consists of a string of like-oriented 2-dot QCA with the adjacent opposite 

oriented sites uninhabited by QCAs.  During switching, each QCA passes the 

information to its adjacent QCA cell, starting at the input QCA and continuing 

throughout the wire. 

3.3.2 Inverter 

The next fundamental logic construct to be introduced is the inverter. There are 

at least two ways to invert a signal in the 2-dot QCA architecture. For the first 

way, one oppositely oriented QCA is placed in a position next to the binary wire 

between two like oriented QCAs. This QCA, in turn, passes the information on 

to the next QCA except now the binary information is inverted.  This inverter 

can be seen in Figure 3-6b. The second way to invert a bit in the 2-dot QCA 

architecture is by “turning a corner” in the correct direction. Of the four possible 

ways to turn a corner, two produce inverted signals, and two produce original 

signals. An example of this can be seen in Figure 3-5. 
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Figure 3-5. Direction of inverting corners 

3.3.3 The fan out gate 

Fan-out is important in computing systems as a means of using the same bits of 

information to drive more than one logic operation. For the 2-dot QCA 

architecture, fan-out gates consist of two branches coming perpendicular off of 

a central input driver. Then, another perpendicular branch sends the information 

in the original direction. The second perpendicular branch is important due to 

the fact that one side of the fan-out gate will be inverted after the first branch. Of 

course, inverters can be used to transform the bit back to its original state if the 

direction used in the second branch is undesired. An example fan-out gate is 

shown in Figure 3-6c. 

3.3.4 The 2-D 2-dot planer wire crossing 

Because of the unique structure of the 2-dot QCA architecture shown, it is 

possible to cross wires without adding another level or dimension to the 

structure. This is accomplished by using QCA wires which are using different 
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clocks. For example, two QCA wires which cross at a point (shown in Figure 

3-6d) do not affect each other unless they are using the same clock. This allows 

the clock 1 wire to pass unaffected by the clock 3 wire. In general, this effect 

holds true for any clocking scheme for a wire crossing, as long as the wires are 

not using the same clock. The ability to clock individual QCA or groups of QCA 

independent of other, possibly adjacent, QCA is assumed for this planer wire 

crossing scheme.  Clocking with this precision may prove to be a challenge, 

especially for molecular scale implementations; however, the architecture is 

flexible enough to allow for other constructs based on other wire crossing 

schemes, such as multilayer crossing, if it becomes necessary. 
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Figure 3-6. Fundamental logic constructs:  a) Binary wire b) Inverter c) 
Fan-out gate d) Planer wire crossing. 

3.3.5 The majority gate 

The addition of a majority gate into the fundamental logical constructs already 

presented for the 2-dot QCA architecture creates a logically complete set of 

primitives. Before the majority gate is presented however, it is required that 

sufficient explanation of the terms used to describe the majority gate must be 

given. First, “global inputs” are individual QCAs which are locked into their 

respective logic configurations. This type of QCA is common to all QCA 

architectures and could be implemented either by an external user input or a 
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specifically created cell which is inherently fixed in regards to its electron 

configuration.  “Local inputs” are cells which serve as inputs to a specific logic 

construct but are not external circuit inputs and are not fixed. Thus, these cells 

have variable electron configurations which add to the total energy evolution of 

the system. “Outputs” must always have variable electron configurations and 

must also be assumed to dynamically contribute to total system configurations. 

Like the 2-dot QCA architecture in general, the 2-dot QCA majority gate allows 

for greater control over its operation than the traditional QCA majority gate. This 

is accomplished by the use of clocking, orientation, and global and local inputs. 

The simplest 2-dot QCA majority gate can be created with only 4 2-dot QCA 

cells. Shown in Figure 3-7b, three of these QCA are held as global inputs 

(denoted by the blue dashed outline). The single output QCA must be either 

clocked where it is driven by the inputs or, since the global inputs do not 

change, they may also be clocked using the same clock signal. The first clue 

that the 2-dot QCA variety of the majority gate will be different than the 

traditional QCA variety is that the top input to the majority gate is naturally 

inverted in its addition to the majority logic. This is due to properties which invert 

signals as they turn corners in a specific direction (which is also used in the 

inverter of Figure 3-6b). This simple majority gate can be used to create two-

input AND and OR gates by using the top input to “program” which gate is 

needed. For example, if a static logic 1 is applied to the top input and variable 

inputs “A” and “B” are applied to the bottom and left inputs, the operation of the 

gate is an AND(A,B) gate. If the same orientation has instead a logic 0 applied 
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to the bottom input the operation of the gate is an OR(A,B) gate. (Note that 

because the top input is inverted, the typical majority gate logic of adding a 

static “1” to one input to produce an OR gate and adding a static “0” to one 

input to produce an AND gate is itself inverted.)  The simple 2-dot QCA majority 

gate can also be used to create gates which perform the AND(A’,B) and 

OR(A’,B) operations by adding the static input to the bottom or left inputs 

instead of the bottom input.  Additionally, this majority gate can also be used as 

an inverter if opposite static inputs are applied to the bottom and left inputs and 

the bottom input is reserved for a variable input. The fact that this majority gate 

can be both an AND gate, an OR gate, or an inverter allows the 2-dot QCA 

majority gate to be in itself a logically complete gate. 

 

Figure 3-7. a) Schematic for the simplest of 2-dot QCA majority gates b) 
implementation of this majority gate 

The vast majority of complex circuitry will require that global inputs are not 

applied directly to individual majority gates. However, converting global inputs 

to local inputs can modify the logical function produced. This is due to the 

configuration of the 2-dot QCA map which places diagonally neighboring cells 

closer in spacing (thus giving them greater influence) compared to collinear or 
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parallel neighbor cells. An example of this can be found in the following majority 

gate configuration, in which, the local input sites are driven by collinear global 

inputs (simulating short collinear wires). The operation of this majority gate, 

shown in Figure 3-8, does something interesting. It changes its function from 

the gate of Figure 3-7 to a majority gate with the top - and also left - inputs 

inverted. This interesting feature is due to the majority gate “rejecting” local 

inputs of the gate. For this layout, the four local cells making up the majority 

gate (3 local inputs and 1 local output) prefer only two different configurations. 

Because of the strength of the interaction of the local cells and relative 

weakness of the collinear wires driving them, they reject single inputs. (This is 

shown in Figure 3-8b where the left input is rejected by the majority gate.)  This 

is the property that produces the modified majority gate function, which can be 

used to create a NAND gate, a NOR gate, an AND(A’,B) gate, an OR(A, B’)gate 

or an inverter and is thus, in itself, a universal logic gate as well.  

Clocking can also be used to change the action of the majority gate. Using the 

same QCA orientation found in Figure 3-8 we can recover the operation of the 

majority gate in Figure 3-7. We do this by clocking the cells so that the inputs 

drive the output. Other clocking and orientation schemes produce similar logic 

gate operations to the gates shown in Figure 3-7 and Figure 3-8. These 

different schemes for producing different types of majority gates begin to show 

and unlock the complexity of the 2-dot QCA architecture. This complexity and 

richness will be used as the more complex constructs are formed. 
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Figure 3-8. Majority gate with global inputs which are removed from the 
local input sites a) Schematic b) 2-dot QCA implementation 

3.3.6 The delay flip flop (D-FF) 

The previous five logic constructs can form any desired combinational logic 

element. However, for sequential logic another construct is needed. The 

simplest sequential element is the delay flip-flop, or D-FF. The D-FF simply 

passes, as an output, the bit state of the input after one complete clock cycle. 

The D-FF implementation in the 2-dot QCA logic looks very much like a binary 

wire, except that its 2-dot QCA cells are each found to be using different clocks.  

An example of a D-FF can be found in Figure 3-9. This is the first construct 

which uses all of the possible QCA clocks and has at least one element found 

in each. Other more complex constructs will have this same property but might 
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not be intended to be sequential constructs. This interesting aspect is shared by 

all QCA architectures which is different from modern IC design, in that every 

QCA is clocked, even those used in combinational type circuitry like majority 

gates. This property will allow the architecture to provide both the combinational 

and sequential circuitry using the same integrated QCA and will be 

demonstrated in the following two sections. 

 

Figure 3-9. Delay flip-flop implementation in the 2-dot QCA 

3.3.7 The XOR gate 

The XOR gate is a standard two-input gate which produces a logic “1” output 

when its two inputs are different and a logic “0” output when its two inputs are 

the same. Owing to the inherent properties of QCA, a simple QCA logic 

construct has not been found to produce the XOR gate. Therefore, a design 

based on majority gates has been developed in part to demonstrate the use of 

majority gate based logic. The functional design of the XOR gate is shown in 

Figure 3-10 along with its implementation in the 2-dot QCA, and logical trace of 

its functionality. 
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This gate also serves to show some important aspects of the 2-dot QCA design; 

including how corner inversion is handled and also how information is 

propagated using the four clocks. In the first and second “stages” of the XOR 

gate, the two signals, “A” and “B”, are passed to majority gates in their original 

and inverted form, with one input being inverted for each gate. In the third and 

fourth stages, the output of this first group of majority gates is used to drive the 

local inputs of the last majority gate. (Note the wire crossing of input “B” which 

requires the output of the top majority gate to have a different clock than this 

input.)  The fifth stage produces the output of the last majority gate and 

provides the XOR output as well. In this circuit, the configuration of each of the 

majority gates produces the same logic function with an inverted top input and 

non-inverted left and top inputs (the same operation that can be found in Figure 

3-7). If other circuits were connected to this XOR gate and the programming 

inputs to the majority gates were not global inputs, the operation (and thus 

required layout of the QCA) might be slightly altered. In general, it is important 

to note that while the operation of all logic operations can be easily generated 

without global inputs, it might not correspond to the exact circuitry which is 

developed when using global inputs (as has been discussed).  

 It is also interesting to note that the circuit here may be “reprogrammed” to 

provide different operations. For instance, the XNOR operation can be 

generated by inverting all of the programming inputs to the majority gates, or 

the circuit can produce a constant “1” or “0” output, also with a change to the 
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programming inputs. This reconfigurability is easily verifiable with some simple 

logic calculations by using the schematic in Figure 3-10. 

 

Figure 3-10. Majority gate based XOR gate using 2-dot QCA cells along 
with its schematic 
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3.3.8 The Toggle Flip-Flop 

The toggle flip-flop or T-FF is a sequential circuit in which the output is toggled 

when its only input is set to a one, or the output remains constant as long as the 

input is a logic “0”. This circuit can be created by connecting the XOR output to 

the “B” input of the circuit in Figure 3-10. Its implementation is shown in Figure 

3-11 and provides an example of many important characteristics of a sequential 

circuit using the proposed 2-dot QCA architecture.   

This circuit also provides an interesting example of a QCA specific sequential 

design method in which a combinational circuit can become a sequential circuit 

by simply feeding back the output into an input. This is, of course, only possible 

when the QCA clock for the output is the same as the input QCA or drives the 

input QCA. 
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Figure 3-11. 2-dot QCA implementation of Toggle Flip-Flop 

 

3.4 Chapter Summary 

This chapter has presented a new architecture, based on the lattice structure of 

naturally occurring and artificial self-assembled materials and 2-dot QCA cells.  

When compared to the traditional QCA cell designs, 2-dot cells offer 

advantages at size scales required to make them a viable replacement to 

CMOS.  Functionally complete sets of logic constructs which can implement 

any combinational and sequential logic were developed.  These new QCA 

constructs demonstrate a rich and flexible nature of the 2-D 2-dot QCA 

architecture.  
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Chapter 4  

Simulation Methods and 2D 2-Dot QCA Results 

4.1 Chapter Introduction 

When designing logic constructs for the 2-D 2-dot QCA and resultant LINA 

architectures it was necessary to use simulation software to verify and aid in 

their design. Because most, if not all, publically available QCA simulations are 

set up for the traditional QCA case, new software had to be created to make 

this possible. However, this new software depends heavily on simulation 

techniques developed for the traditional QCA architecture and modified to be 

used with the 2-dot QCA case. This chapter presents the new and modified 

simulation engines in Sections 4.2- 4.4 and results of these simulations for the 

2-D 2-dot case in Section 4.5. 

4.2 Simulation Engines 

“Ab-Initio” simulations of QCA cells provide very accurate results for at most 

about two interacting QCA cells. Because of the computational complexity 

involved, more cells cannot be added to the simulation without increasing the 

required simulation time beyond practical limits. For this reason, when 

simulating a larger number of cells, other methods which employ 

approximations must be used to simplify the calculations. There are many 

different models which can be generally counted on to give reasonably accurate 

results for specific aspects of QCA operation. For instance, Coherence vector, 
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and bistable simulation methods are utilized in software including QCA designer 

[79, 108], which is a tool used to simulate traditional clocked QCAs.  Each of 

these methods has its own pros and cons but both models provide reasonably 

accurate logic simulations.  Coherence vector simulations are generally 

accepted as the most accurate simulation engine for clocked QCA due to the 

quantum mechanical properties which are integrated in the simulations.  They 

also provide information on power, speed, and reliability and include 

temperature and other electrical properties.  For these reasons, coherence 

vector simulations were chosen to do complex analysis on larger clocked QCA 

circuits especially LINA.  For simpler circuits or circuit elements, traditional 

statistical mechanical analysis techniques were used to generate Boltzmann 

distributions to predict correct logical output and temperature dependant 

reliability.  When possible, an exhaustive analysis of all possible circuit states 

were examined, however, this limits circuit sizes to around 16 cells due to the 

exponential increase in computing time required for each additional cell added.  

For slightly larger circuits, Monte Carlo techniques were used to approximate 

distributions without the exponential increase.  These techniques are presented 

here and results for the statistical mechanical simulation for the 2-D 2-dot 

architecture.  

4.3  Statistical mechanical simulation 

The technique to find the statistical mechanical Boltzmann distribution, and 

therefore provide information on the temperature reliability of QCA circuits, 

assumes that the QCA clocking mechanism is perfect; thereby, providing 
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perfectly localized electron wave functions with instantaneous electron 

transitions. This assumption is thought of as a semi-classical approximation and 

allows for certain properties of the system to be studied independently and in 

more detail. The simulation operates by performing the following calculations.  

In a circuit with   cells, there are    possible circuit states which correspond to 

all the two-state combination of cells.  Each of these possible states has an 

energy which is calculated as a summation of all of the point charges of the 

circuit according to (4.1).   

       ∑ ∑ 
        

          
 

        

          
 

        

          
 

        

          
  

 

   

   

 

 (4.1) 

where,     is the amount of charge in cell   at dot location  ,       is the 

distance between cell   dot location   and cell   dot location  , and      is the 

electric permittivity of the material. The configuration with the lowest total 

energy produced the ground state of the system and resultant correct logic 

output of the circuit. When degenerate ground state configurations were 

identified, they were examined to determine if different logical outputs were 

produced by the degenerate states. If the outputs were the same in each of the 

degenerate states, the circuit was maintained as an acceptable circuit; if not, 

then the circuit output was deemed to be random, from a logical sense, and 

thus unacceptable. 

At non-zero temperatures and finite energies, the circuit may deviate from the 

ground state due to thermally induced state transitions.  This effect is 

probabilistic in nature and dependent on the temperature, or amount of thermal 
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energy present, and the energy separation between circuit states.  It is always 

found that the most likely single state for a circuit to be in at any given time 

corresponds to the state with the minimum system energy, or the ground state.  

For states with higher system energy, or excited states, the ratio of the 

probability of the circuit being in this state compared to the circuit being in its 

ground state is calculated with the usual Boltzmann distribution law which 

states: 

        

       
    

(                 )

    (4.2) 

where    is the relative probability of the circuit being in the state  ,    being the 

energy of state  ,   being the Boltzmann constant, and   being the absolute 

temperature.  Since the sum of all of the probabilities must be 1, this equation 

can be modified to directly calculate the probability of any circuit state as in 

(4.3). 
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This equation does not give the probability of correct logical output directly, 

however. To know that quantity the logic value of the output cell of each circuit 

state must be known Furthermore, this value may be correct even for excited 

circuit states.  An example of this is seen in Figure 4-1 where 4 different circuit 

states consisting of all of the possible configurations of a binary wire is shown.  

In this figure, the input cell is held constant, (denoted by the blue outline) and 

the output is taken at the right most 2-dot cell.  For this wire, the    configuration 
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produces the ground state of the system and thus the correct logical output is a 

logical “1”.  The first excited states (   and   ) produce equal energies 

configurations which are greater than the ground state by the energy difference 

between a correctly aligned neighbor and incorrectly aligned neighbor. This 

difference is known as the “kink” energy (     ) and is an important parameter 

when studying different QCA configurations as all energy levels will be an 

integer multiple of the kink energy above the ground state. The logic level of 

first excited states is opposite to the correct logical output and thus degraded 

the probability of correct logical output (PCLO).  The highest energy of all of the 

states occurs for at         above the ground state at   . Because of its 

relatively high energy, this state has the least probability of occurring in the 

example system. However,    also produces a correct logical value at the 

output and therefore adds to the PCLO for the circuit and thus adds to the 

circuits overall reliability.  

 

Figure 4-1. Possible circuit states of small binary wire example 



83 
 

In order to factor in the excited states into the PCLO, statistical mechanical 

equations based on a system in thermodynamic equilibrium is used.  The 

equation, shown in (4.4), produces an expectation value of the output cell which 

can then be used to calculate the PLCO value.  

〈 〉  
 

 
∑    

      
  

    

          

 
(4.4) 

In this equation,   is the partition function for the system,       
 is the energy of 

the     circuit state when the output cell has polarization equal to   , and 〈 〉 is 

the expectation value of the polarization of the output cell.  The canonical 

partition function for the system is: 

   ∑  
     
  

    

 

 
(4.5) 

These equations allow for the probability of correct logical output (PCLO) to be 

determined which can be used as an effective reliability metric when analyzing 

alternate circuit geometries, like our 2-D 2-dot layouts, different circuit designs 

and temperature reliabilities. However, for a more detailed analysis of QCA 

properties of speed, reliability, power, and logic operation in the presence of a 

reasonable clocking mechanism a more extensive quantum mechanical 

simulation is required.  The following section presents the “coherence vector” 

simulation engine that was adapted to be used with the 2-D 2-dot QCA designs. 
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4.4 Coherence vector simulation 

The coherence vector simulation engine is based on a density matrix approach 

to describe the statistical state of the QCA system.  It has the features of being 

able to model dissipative processes as well as the dynamics of cell switching.  

For the traditional QCA designs coherence vector simulations assumed that 

each cell was two state, which is not entirely correct. For the 2-dot designs this 

assumption is correct and thus provides a more accurate simulation model.  

Therefore, the two-state Hamiltonian in (4.6) can be constructed for the 2-dot 

system. 

    ∑[
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 (4.6) 

where     
    is the kink energy between cells   and  ,    is the polarization of cell 

 , and   is the tunneling energy of the electrons in cell  . The tunneling energy 

term,   , is where the clock comes into the Hamiltonian and thus this term varies 

with clocking zones.  As has been discussed with the Boltzmann distribution 

engine, the kink energy is the difference between the favorable and unfavorable 

Coulomb interaction in two cell possible cell states.  The summation   is over all 

cells besides  , but can be limited to the cells in a small radius for complex 

calculations because the dipole-dipole interaction of the cells decays inversely 

as a power of five of the distance between cells. This allows cell-to-cell 

interaction which is outside a small neighborhood to be ignored. 
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The coherence vector,  , is a vector representation of the density matrix,  , of a 

cell, projected onto the basis spanned by the identity matrix and Pauli spin 

matrices       and   . The components of   are found by taking the trace of the 

density matrix multiplied by each of the Pauli matrices such as in (4.7). 

     { ̂ ̂ }              {     } (4.7) 

The polarization of cell  ,   , is then the z component of the coherence vector as 

in (4.8). 

       
 (4.8) 

The Hamiltonian must also be projected onto the spin matrices as in (4.9). 

   
  { ̂ ̂ }

 
             {     } 

(4.9) 

The   vector represents the energy environment of the cell and includes the 

effects of the neighboring cells.   can also be evaluated explicitly as in (4.10). 
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The equation of motion for the coherence vector including the dissipative effects 

is: 

 

  
 ⃗   ⃗    ⃗  
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(4.11) 

Here   is the relaxation time representing the dissipation to the environment.  

    is the steady state coherence vector defined as: 

 ⃗     
 ⃗

| ⃗|
         (4.12) 



86 
 

where   is the where the temperature comes in and is defined as the 

temperature ratio.  It is equal to: 

  
 | ⃗|

    
 

(4.13) 

The simulation evaluates the equation of motion using an explicit time marching 

algorithm where   and     are evaluated at each time step and the coherence 

vector then stepped forward in time. Further information on the coherence 

vector simulation and the time marching algorithm can be found in [109]. 

Additionally, the results of this simulation method are supplemented with 

calculations originally performed in [60, 100].  These new calculations separate 

power elements analogous to “leakage” and “switching” power in CMOS, which 

is important to the range of power values which may be required during worst 

case events. 

The coherence vector calculations provide a more complete view of complex 

QCA circuits which allows the analysis found in following chapters on LINA 

(including the power/speed/reliability tradeoffs to be achieved).  The next 

section take a step back however, and discuss results obtained for simple 2-D 

2-dot circuits running Boltzmann distributions.   

4.5 Comparison of 2-dot and traditional QCA wire 

Analysis of different variants of the QCA binary wire begins with an assumption 

of parameters which define the geometry of the given cells. For instance, given 

the QCA cell-to-cell distance (L) (which is the minimum distance between dots 

of different cells), and intracellular dot spacing (D) (the minimum distance 
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between dots of the same cell), a particular QCA binary wire requires a certain 

number, N, of cells to communicate information down a fixed length. This 

number N is also dependant on the type of layout geometry which spans the 

distance.  For example, 2-dot QCA cells which are laid out perpendicular to the 

direction of information propagation (shown in Figure 4-2a) will require more 

cells than 2-dot cells which are laid out parallel to the direction of information 

propagation (shown in Figure 4-2b). This factor becomes important when 

analyzing traditional and 2-D 2-dot QCA types because traditional QCA utilize 

the perpendicular approach (with two “half cells” making up the full cell also 

shown in Figure 2-6d) and 2-D QCA utilize the parallel approach.  However, in 

order to compare these two approaches without bias the same cellular structure 

is used and thus the half cell parts are treated as 2-dot full cells such as has 

been proposed in this dissertation. 

 

Figure 4-2.   a) Traditional QCA layout used by four dot designs b) Parallel 
2-D 2-dot QCA wire design 
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So, if the cells of the wire are arranged from 1 to N, (and 1 to M for the 

traditional cell layouts) increasing in number sequentially, and cell 1 is held 

constant to provide the driving input of the circuit, then the wire output is taken 

from cell N (or M).  For the traditional QCA layout, the correct operation of each 

successive QCA half-cell is to invert the signal of the previous cell as the signal 

is carried down the line.  So, if M is an even number the correct output of the 

wire would be an inversion of the input state and thus the probability of the 

inverted input would be analyzed as the PCLO.  However, if M is an odd 

number the correct output of the wire would be the same as the input state.  For 

the case of the 2-D 2-dot QCA layout the output is always the same state as the 

input cell regardless of wire length as long as the wire’s cells are collinear. 

4.5.1 Wire comparison simulation results 

Three different analyses were done with cells of different dimensions, which 

were chosen to be consistent with literature for current and proposed 

semiconductor and molecular fabrications.  In each of the sets of data the 

parallel or “collinear” wires were found to be more robust than traditional four-

dot designs for equal wire length as has been previously mentioned.  This result 

allows either the device to perform more reliably at higher temperatures or wire 

lengths to be longer for a given temperature for the collinear case.   

The first cell design is based on proposed molecular QCA dimensions, found in 

[61], of D=L=1nm with an      (results shown in Figure 4-3).  This data shows 

that the output expectation values for the collinear wires are closer to the ideal 

of -1 at all temperatures and thus more robust than traditional four-dot wires of 
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equal length. The data also shows that as the temperature increases the 

deviation from the traditional and 2-D designs gets larger. This indicates that 

the 2-D designs are also more resistant to changes in temperature. It must also 

be noted that reliable room temperature operation for each of these design 

types, at these L and D scales, is predicted to be possible by analyzing the data 

and the breakdown temperatures for each is likely well above any possible 

operational temperature. However, the additional advantages of the 2-D layout 

must also be factored in for a complete comparison of these two designs. 

 

Figure 4-3. D=L=1nm QCA cell wire expectation vs. temperature 

The next analysis set is based on proposed dimensions for GaAs/AlGaAs 

semiconductor quantum dot structures of D=L=40nm with         [110].  
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These QCA cell dimensions show very high susceptibility to thermal effects and 

degradation of reliability of all the wire lengths tested above 1K.  The collinear 

wires do again show improved results over the traditional designs in Figure 4-4.  

One interesting result is that the data for the 400nm collinear wire is nearly 

overlaid with that for the 240nm traditional wire demonstrating increased 

maximum wire length for any required fidelity. 

 

Figure 4-4. D=L=40nm QCA cell wire expectation vs. temperature 

Finally, a compromise dimension of L=D=5nm denoting another possible future 

QCA realization is shown.  Even at these relatively small scales, the length of 

wires is limited at room temperature by thermal effects (as shown in Figure 4-5).  

However, it has been proposed that devices cooled to liquid nitrogen 
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temperatures (~77K) may become a viable alternative until molecular operation 

is possible.  The further results using these size scales show similar patterns to 

the other wire dimensions tested with improved reliability for the collinear wire 

designs. 

 

Figure 4-5. D=L=5nm QCA cell wire expectation vs. temperature 

4.5.2 Thermodynamic analysis of 2-D 2-dot majority gates 

It is clear by reviewing the data of the previous section that 2-D binary wire 

layouts provide benefits in robustness in the presence of thermal noise and 

consequently more reliable operation at finite temperatures when compared to 

traditional designs.  It is also important to analyze the 2-D 2-dot majority gate 

with this method as well in order to complete the investigation.  Therefore, the 
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majority gate design of Figure 3-8 was utilized. The results are shown in Figure 

4-6 for two different sets of spacings corresponding to the molecular 1nm 

spacing and the compromise 5nm spacing.  The results continue to show the 

thermal robustness of the 1nm cells and possibility of room temperature 

operation at these scales and the liquid nitrogen operation temperature of the 

5nm cells.  This confirms what has been seen with the binary wire and allows 

for the extension of these results to complete 2-D circuitry. 

 

Figure 4-6. Thermodynamic analysis of universal logic gate of Figure 3-8 
for devices with D=L=1nm (solid lines) and D=L=5nm (dotted lines) with 
different inputs given to the gate (circles indicate all inputs favorable to 

the output, triangles indicate perpendicular (to output QCA) input 
rejection and squares indicate collinear (to output) input rejection 
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4.6 Chapter Summary 

In this chapter calculations based on statistical Boltzmann distributions were 

developed for 2-D 2-dot cells. Additionally, coherence vector calculations were 

presented which give more in-depth results and also show power and speed 

potential of 2-dot QCA circuitry.  The results of these calculations provided 

insight into how the reliability of 2-D 2-dot binary wires as well as majority gates 

are affected by temperature and cellular and circuit geometries. These results 

also showed reliability advantages over traditional QCA designs with similar cell 

and dot spacings. 
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Chapter 5  

Lattice-based Integrated-Signal Nanocellular Automata (LINA) 

The 2-D 2-dot QCA architecture has been shown to provide advantages in 

terms of reliability of components and the hope for viable implementation 

strategies.  Furthermore, this new architecture has been shown to be 

functionally equivalent to traditional QCA designs.  However, challenges remain 

to the realization of large-scale room-temperature QCA, including 2-D 2-dot 

QCA designs, for experimentation in the near future and commercialization 

beyond that. For this reason, research was conducted into techniques to 

improve the reliability of 2-D 2-dot QCA to the point where cells constructed 

using nanoparticles, of the size scale currently available, may be used for 

fabrication. The result of this research is realized in the Lattice-based 

Integrated-signal Nanocellular Automata (LINA) design variant.  LINA uses 

integrated signals to boost reliabilities even more than could be achieved with 

traditional redundant designs, while also allowing for flexibility of design which 

may allow for currently available large scale patterning technologies. LINA 

theory and new logical constructs designed for LINA will be introduced in this 

chapter along with simulation results of the improvements LINA provides. This 

chapter proceeds as follows: Section 5.1 will discuss the theory and advantages 

of LINA, Section 5.2 will discuss the basic logic and communication structures 

of which the paradigm is built. 

 

 



95 
 

5.1 Theory and Advantages of LINA 

One of the most pressing challenges facing the implementation of room 

temperature electric QCA into large reliable circuits is the precise deposition 

and patterning of single nanometer sized molecules into structures which 

perform useful communication and logic. Single nanometer sized molecules are 

required to increase energy separation between ground and excited cell states 

above error producing thermal noise for all previously proposed QCA designs. 

Research using a mixture of self-assembly and patterning on DNA tiles is 

promising, but currently has issues at the required size scales and integration 

levels [63]. Specifically, the electron beam lithography (EBL) used does not 

scale well to mass production techniques for VLSI circuitry, and the resultant 

DNA tile cells were on the order of 10nm which is still too large to enable room-

temperature operation of previous QCA designs. In general, techniques to 

deposit and pattern molecules on the required size scale and with the precise 

placement of traditional QCA designs remain very difficult if not impossible in 

the near term. 

One reason for this difficulty lies in traditional QCA cellular designs, and the 

resultant circuit layouts, which utilize some circuit design methods developed 

for other technologies. 2-D 2-dot cells with lattice positioning found in Figure 3-3 

have been presented in Chapter 3, thereby producing a method in which the 

relative cellular layout can be achieved.  However, the ability to pattern large 

scale complex circuit layouts on this small cellular size scale is not available for 

most large scale lithography techniques. Additionally, the 2-D 2-dot QCA 
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designs do not account for common fabrication defects such as cell deletion, 

misalignment, or other fault mechanisms, commonly found with any self-

assembly process. LINA attempts to advance the transition to lattice based 

QCA designs by adding “width” to the communication and logic structures and 

“integrated signals” to communication and logic structures. The increased width 

allows for robustness in the presence of the self-assembly circuit layout errors 

and flexibility to adjust structure widths based on large scale patterning 

technologies. The additional integrated signals have the effect of increasing 

reliability by taking advantage of the inherent majority property of QCA to self-

correct logical errors due to thermal noise, stray charge, fabrication defect, or 

other probabilistic error process. The increased reliability also allows for larger 

cell sizes and cell spacings (possibly greater than 20nm), to be utilized for 

reliable room-temperature operation, which may allow for other larger 

nanoparticles, to be utilized in the role of a LINA QCA cell.  This last attribute of 

LINA would greatly increase the likelihood of full scale QCA nanoelectronics by 

opening up fabrication to a much larger group of well understood and currently 

available materials.  

Redundant QCA designs have been previously proposed which advocate for 

the use of triple modular redundancy or n-modular redundancy in some cases 

[93].  The integrated signals of the LINA designs communicate extra 

information, much like redundant designs would, but advance the concept by 

restoring and repairing signals continually and allowing for multiple paths for 

each individual signal. Additionally, due to the unique geometries of these 
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integrated signal designs, they do not require condensing the multiple signals 

into a single wire or cell for input to logic. This is possible because LINA gates 

are able to accept each of the full integrated-signal wires as separate inputs.  

This allows for robust communication and logic structures and removes weak 

points which are susceptible to logical faults.  Additionally, the structure of the 

integrated signal wires and gates does not require complicated layouts with 

additional wire crossings, which is a major drawback to traditional redundant 

designs. 

The structure of the integrated signal wires can be seen in Figure 5-1, where 

three different possible wire widths are shown. The term “wire width” or “n-wide” 

is in reference to the number of integrated signals which are contained in the 

wire and not to its geometrical width. For example, the wire of Figure 5-1B has 

a width of 3 (making it a “3-wide” wire) even though the geometrical width is 7 

times the lattice spacing. In general LINA wires can be made any odd integer 

number width providing design flexibility for increased reliability or to fit with 

clocking or patterning technologies. 
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Figure 5-1. (a) 1-wide LINA wire (b) 3-wide LINA wire (c) 5-wide LINA wire 

5.1.1 LINA design convention 

The addition of integrated signals to the design adds complexity due to the fact 

that the information carried by LINA wires must be understood based not only 

on cell state, but also geometric position. Another added complexity arises in 

the fact that LINA utilize two cellular orientations in the lattice arrangement, 
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such as was also seen in the 2-D 2-dot designs of Chapter 3. Therefore, in 

order to be able to quantify and study the operation of LINA wires and gates, a 

convention will be developed based on the geometrical layout shown in Figure 

5-2.  In this convention, the binary state of the cell is determined by the position 

of the free electron as developed for 2-D 2-dot QCA and shown in Figure 3-4. 

When the electron is in the positive location, according to the axis parallel to the 

cell’s orientation, the cell is given the binary value of 1 and polarization of +1.  

When the electron is in the negative direction, the cell is given the binary “0” 

value and polarization of -1.  

The convention also dictates that the origin of the coordinate plane (0,0) is 

taken as the center cell of the input plane of a wire or gate, regardless of width. 

From there, the axes must be positioned along the directions of the two cellular 

orientations. This convention allows for the wire shown in Figure 5-2 to be given 

the binary value of 1, due to the value of the cell at the coordinate origin. The 

scale of the axes is based on a common cellular lattice spacing (L) which 

directly corresponds to the eventual intercellular spacing and along with the 

intracellular-dot spacing (D) provides the position of the cells’ component parts. 

With this convention in hand, the expected binary value of the remaining cells of 

the wire can be found with (5.1) where       is the binary value of the cell at 

position (x,y).  For example, in the figure, the cell at position (0,0) has a binary 

value of 1 (so        ).  Therefore, using (5.1) we can surmise the expected 

binary value of the cell at (2,-2) to be (            ) because (     
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                ).  Likewise, for the cell at (3,5), the expected binary value 

(      ̅     ) because (                    ). 

     {
                      

    
̅̅ ̅̅ ̅                  

 (5.1) 

In addition, the correct binary value of any true output plane of a LINA circuit will 

be the expected value of the center cell on the output plane. Furthermore, the 

total probability of correct logical output (PCLO) of this output can be obtained 

with knowledge of the individual probability of all the cells of having their 

respective expected logical values. The individual probabilities are combined 

through the use of the probabilistic ensemble majority voting methods, such as 

shown for an 3-wide wire in (5.2) where    is the probability for       (here      , 

     , and       are the output cells) and        is the total output PCLO.  For 

example, if the individual expected logic value probabilities of the three output 

signals in the wire in Figure 5-1B are .95, .97, and .95, then        would be 

equal to .99465 according to (5.2). 

         ∑        

 

           

              (5.2) 
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Figure 5-2. Geometrical layout convention used for LINA designs 

5.1.2 LINA Thermal reliability improvements 

Although there is an increase in LINA design and/or layout complexity as 

opposed to traditional QCA, this is offset by the significant increase in 

reliabilities of LINA. An example of this reliability increase can be seen in the 

coherence vector reliability results for two wires shown in Figure 5-3.  As can be 

seen from the figure, a 300nm wire created from cells with an inter-dot distance 

(D) equal to 10nm and an intercellular lattice space (L) distance also equal to 

10nm was simulated.  10nm was chosen due to the fact that many 

nanoparticles arrays which are currently able to be fabricated have lattice 

spacings and cell sizes that are equal to or greater than 10nm. The simulations 

of these wires were ran assuming a relative permittivity equal to 1, and 
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tunneling energies, which are driven by the QCA clock, oscillating between 

9.8e-20 J and 3.8e-23J (which are typical QCA simulation values). The results 

show a PCLO of .86 for the wire of the traditional QCA design at the room 

temperature of 300K.  PCLO for the LINA designs are much improved at this 

temperature with 1-wide LINA PCLO of .97, 3-wide PCLO of four 9’s (.9999), 

and 5-wide PCLO of six 9’s.  The PCLO value is the expected reliability rate of 

the component being tested.  In this case, a six 9’s reliability would mean that 

with a clock rate of 1 GHz, the expected error rate would be 1000 errors per 

second down this length of wire, well exceeding error rates for current 

technologies but also a dramatic improvement over traditional QCA designs.  

Additional methods of fault tolerance, such as in-time redundancy or error 

correction methods, would have to be used in this case, but it opens the 

possibility of room-temperature QCA circuitry at this previously unavailable size 

scale.  

The predicted increase in room-temperature reliability is consistent for different 

L and D values (as well as for other simulation methods such as those which 

use Boltzmann distributions).  PCLO for room temperature operation of the 

L=D=20nm 200nm long wire demonstrates this fact. Traditional QCA designs 

are nearly completely random (PCLO ~.5) at this temperature. The 1-wide LINA 

PCLO is also nearly random here; however, 3-wide LINA PCLO is .96 and 5-

wide PCLO is .98. The dramatic improvement in thermal reliability for such a 

large scale QCA cell opens up the possibility to even semiconductor 
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realizations, although the other fault tolerant methods would certainly be 

required here also. 

 

Figure 5-3. Probability of Correct Logical Output (PCLO) for traditional and 
LINA wires utilizing different cell sizes and spacings (The simulations 

were performed with relative permittivity of 1, high clock level of 9.8e-20 J, 
and low clock level of 3.8e-23J.) 

5.1.3 LINA robustness to fabrication defect 

In addition to improving reliability in the presence of logical errors caused by 

thermal noise, LINA is also well suited to provide robust operation in the 

presence of fabrication defect such as cell addition, deletion, and/or trapped 

stray charge. This is critical due to the probabilistic processes which usually 

govern any self-assembly process and the small scales in which the circuits 

would be patterned.  Figure 5-4 shows an example of this type of tolerance. 

Part C in the figure shows a fully functional section of 3-wide LINA wire 

complete with many randomly placed cell additions and deletions. The results 

shown here are common to the LINA paradigm and indicate that errors that 
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would cause permanent faults in other QCA circuitry are able to be tolerated for 

LINA.  This effect is increased further as the width of the wires is made larger.  

Therefore, wire width could be adjusted in the design phase to account for the 

amount of expected layout errors. 

 

Figure 5-4. Figure 1a) 2-D 2-dot QCA wire which, like traditional QCA, are 
not robust in the presence of fabrication errors b) ideal 3-signal LINA wire 

c) Fully functional LINA wire with random cell additions and deletions 
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5.2 LINA Logic Structures and Circuitry 

5.2.1 LINA majority gates and blocks 

Traditional QCA logic design is centered on the three input majority voter gate 

which is typically made up of a single QCA cell.  This gate along with the ability 

to invert a signal gives the traditional QCA design logical completeness. The 

LINA designs are also based on the three input majority gate; however, the 

implementation of this logic gate requires a fully populated n x n area of the 

lattice map to perform computations (where the input and output wires are n-

wide).  The LINA majority gate performs the majority function in a way similar to 

the majority gates developed for the 2-D 2-dot QCA except that the input which 

comes into the gate 90 degrees clockwise from the output is always inverted.  

This is shown in Figure 5-5, where the bottom “C” input is being inverted in the 

majority gate. In the figure the cells which are circled in red correspond to the 

values of the inputs and outputs of the gate.  In general, the closest cell in the 

center of the LINA wire to the majority gate for each wire is chosen, and the 

output is taken from the center cell of the wire one block spacing from the gate 

on the output wire.  
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Figure 5-5. Majority Voter gate in 1-wide LINA 

Due to the regular structure of the LINA lattice map and other clocking 

considerations, it is convenient and in many ways necessary to group LINA 

cells together when laying out circuitry. The proposed 1-wide LINA majority gate 

is an example of this with the gate defined as a square block; however, the 

wires should also be grouped this way. This provides the advantage of allowing 

a simplified layout and design process as groups, or blocks, of cells are used.  

Blocks are defined as squares of cells that have a length equal to the LINA 

design width.  It should be pointed out that the width of the blocks and therefore 

the LINA design should be directly related to the layout technologies for the 

clocking structures as well as the cells themselves; therefore, intra-block cells 

should utilize the same clock phase. It also should be noticed that the same 

block layout can be used for circuitry regardless of wire width. Figure 5-6 and 

Figure 5-7 show examples of 3-wide and 5-wide LINA majority gates where this 

can be seen. 
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Figure 5-6. 3-wide LINA majority gate with associated LINA block 
representation 
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Figure 5-7. 5-wide LINA majority gate 

The same majority gate/block structure shown can also be used for different 

functionality depending on how the circuit is laid out and/or how the clocking 

signals are distributed.  For instance, a single input wire can be fanned out 

using this structure or be used to turn a corner, if the other wires are down the 

signal path from the input. The following section shows yet another use of the 

structure for a planer wire crossing. 
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5.2.2 LINA planer wire crossing 

In LINA, a planer wire crossing can be made by using the same block structure 

as the majority gate. However, due to the structure of LINA, it will not be 

available without a modification to the traditional QCA clocking scheme. The 

required clock signal which will drive the crossing block does not have hold or 

null phases. Instead it has two switch and relax phases per normal clock period. 

This allows a signal to pass across the block in each switching phase.  

However, only one wire should be allowed to affect the block during each 

switching phase, so the two wires which cross at the block should be ½ a clock 

period out of phase with each other for the block to function properly. This will 

assure that only one signal crosses the block at any given time. Simulations 

verify correct functioning of this wire crossing block which is shown in Figure 5-

8.  Additionally shown in Figure 5-8 is the triangle waveform of the clocking 

signal used by the crossing block (as opposed to the clipped sinusoid for the 

other clock signals) to give it two switch/relax phases per normal clock period. 
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Figure 5-8. Planer wire crossing using a 1-wide LINA crossing block.  
Other width of LINA crossing will use the same block scheme.  At time A, 
the first signal passes through the block from left to right.  At time B, the 
second signal passes through the block from top to bottom.  QCA circuit 

shows actual simulation results. 

5.2.3 LINA Inverter 

The last logic block that is required for logic completeness for the LINA 

paradigm is an inverter, which in LINA can come in many forms.  Due to the 

inherent inverter chain nature of the LINA design, the simplest inverter can be 

achieved by carefully choosing the correct length of wire. However, this method 

of inverting a signal will be intolerant to even the slightest patterning errors and 

thus may not be the optimal choice for this function.  Also, the method of 

controlling the length of the wire does not scale well to large circuitry where 

wires must meet at precise locations to perform logic with some of the inputs 

being inverted and some not.  Instead a dedicated LINA logic block to invert 
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signals is preferred.  The inverter block is created by removing a column in an 

otherwise normal LINA wire.  This method is applicable to any width LINA 

technology and is shown in 1 and 3 - wide implementations in Figure 5-9. 

 

Figure 5-9. LINA inverter implemented with 1-wide LINA, block 
representation, and 3-wide LINA. Note output reference cell circled in red. 

5.3 Chapter Summary 

This chapter presents the logically complete functionality of LINA and the 

potential advantages that it provides in reliability and fabrication practicality 

going forward. However, power and speed considerations for these devices 
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must present an improvement over end of the line CMOS to justify the 

significant investment required to develop any replacement technology. 

Therefore, simulations results will be used in the next section to analyze 

properties of these LINA designs for high temperature reliability, power 

dissipation densities and switching speeds and compare these to end of the line 

CMOS. 
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Chapter 6  

LINA Analysis and Design Study 

It has already been shown, in the previous chapter, how LINA designs can 

improve reliability by adding width to gates and wires.  However, it is common 

to nanoelectronics proposals (and QCA specifically) that an increase in 

reliability is usually accompanied by an increase in power requirements.  

Certainly, adding additional QCA to circuitry, in the form of LINA wires and 

gates will create additional power which must be dissipated to the environment. 

However, LINA designs actually generate less heat for fixed reliabilities as 

opposed to reducing cell dimensions and spacing for certain conditions.  To 

prove this statement, formulas derived in [60] (and presented in Section 4.4) for 

power dissipation are utilized along with coherence vector simulation methods. 

6.1 LINA design trade space: power, speed, geometry, and reliability 

Concurrent evaluation of power, speed, and reliability is complicated by their 

interrelated nature and the fact that QCA cells both process and communicate 

information. This provides a rather difficult task in developing suitable metrics 

for quantifying the results of this evaluation. However, by borrowing concepts 

used to categorize CMOS technology levels, a reasonable metric called the 

“effective QCA pitch” was formulated.  This value is based on the distance 

between basic QCA and LINA blocks (whether they be used for majority gates, 

fan-out, or planer crossing), as shown in Figure 6-1, and provides a measure of 
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the circuit density available for particular power, speed, and reliability 

constraints. 

 

Figure 6-1. a) Small array of blocks (in this case Majority (M) and Fan-out 
(F) gates) with associated full pitch (Fp) b)  Example of smallest possible 

1-wide LINA full pitch  

The process to calculate the half-pitch value begins by assuming a reasonable 

upper limit of power dissipation of 100W/cm2, and that the average per cell 

power dissipation is evenly distributed throughout the cell.  This allows for 

calculations of the maximum density of cells based on the average power per 

cell that must be dissipated at a given clock frequency.  The constants in the 

calculation are: the density of cells for a particular LINA width wires and gates 

and the minimum distance which two blocks can be placed together.  For 

examples, Figure 6-2a shows a minimum pitch of 10 times the distance L for 3-

wide LINA.  In general, the minimum “full” pitch can be found with (6.1). 
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(6.1) 

where   is the width of the LINA wire and   is the cell to cell spacing as defined 

in Section 4.5. 
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Figure 6-2. Basic array circuit for calculation of pitch a) minimum pitch for 
a 3-wide LINA b) larger pitch allowing for less circuit density 
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The minimum pitch occurs with a single row or column of QCA cells separating 

the block gates. In general, these wire lengths are an integer value of cells 

because of the cellular nature of the QCA paradigm.  The value of the full pitch 

is therefore generalized to (6.2). 

                (6.2) 

where   is the integer value cells in the length of each wire (with   equal to 1 for 

the minimum case. Therefore, the full pitch becomes an integer value of the cell 

to cell lattice spacing.  Also, the length and the size of the block gates allows for 

calculation of number of cells within a square area of the array with sides equal 

to the length of the full pitch.  This number of cells is also dependant on the 

width LINA used, due to the fact that the cells of each wire must stay together 

and is equal to (6.3). 

    
      

         
                                    

    
      

         
                                     

(6.3) 

It is clear from these equations that the number of cells required,   , by 

traditional QCA can be significantly less than that required by LINA for a fixed 

pitch value,   .  This is offset by the need to utilize smaller cells, and therefore 

larger power dissipation per cell,   , to obtain the reliabilities that the LINA 

arrangements provide.  Therefore, for a constant reliability, the LINA designs 

dissipate a smaller amount of    and require larger    when compared with 

traditional QCA. Whether the    element of this trade or the    element is the 

largest contributor to overall circuit size is determined by the geometrical QCA 
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properties (  = intracellular dot spacing and   = cell-to-cell spacing) as well as 

the frequency of the clock compared to the relaxation time for cell switching 

(therefore the deviation from the adiabatic ideal). 

 Therefore the minimum     based on per cell power dissipation requirements 

and number of cells is determined by (6.4) with the predefined 100W/cm2 

maximum. 

        
          ⁄  (6.4) 

Results of these calculations can be seen in Figure 6-3 for various L and D 

values and various QCA types.  In part a) of the figure, the PCLO was 

calculated for a length of wire of                 for traditional, 1-wide LINA, 

3-wide LINA, and 5-wide LINA designs for various cell geometries.  As is 

expected, the LINA wires increase PCLO as the wire width increases.  In part b) 

of the figure, the minimum   value was calculated based on these room-

temperature calculations, a 1THz clock frequency, and a required PCLO 

reliability of .9999.  The results show that while the traditional QCA requires 

smaller cell geometries and requires fewer cells per length of wire, LINA 

designs actually have a smaller effective pitch based on power requirements.  

Furthermore, the LINA designs are able to provide these attributes at larger cell 

geometries which increases the opportunity for fabrication, as has been 

discussed. 
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Figure 6-3. (a) Probability of correct logical output (PCLO) for room 
temperature operation with increasing lattice spacing from 1nm to 25nm 
for traditional and 1,3,5-wide LINA wire designs.  Wire length is 20L. (b) 
Minimum “effective majority” half pitch for 4 traditional and LINA wire 

circuit design along with the 4 9’s reliability point at 1THz. Note the 
minimum half pitch is seen with the 3-wide LINA design at this reliability.  
The simulations feeding this data was ran with relative permittivity of 1, 

high clock level of 9.8e-20 J, and low clock level of 3.8e-23J. 
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Table 1 shows calculated values for full pitch for various reliabilities based on 

this process.  The table shows clear advantages for the LINA designs at high 

frequencies and with high reliability requirements.  The data also shows that the 

traditional QCA designs are advantageous in circuits where the desired 

frequency or reliabilities are low. (Further data reiterating these claims can be 

found in [111, 112])   

It is interesting to see in Table 1, that the 1nm cell spacing does not provide a 

minimum pitch for any of the entries. This is due in part to the number of cells 

and thus switching events that must be accounted for using such relatively 

small cells and the large power per cell values which scales inversely with cell 

spacing due to higher kink energies. It is also interesting to note that 

simulations involving QCA designs do not yield a particular small circuit area if 1 

THz switching with high reliabilities is desired; instead a tradeoff between circuit 

area, clock frequency, and reliability will have to be made. These types of 

trades are common for IC designers even today and as technologies improve 

these trades are sure to grow more favorable. 
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Table 1 - Minimum full pitch and wire design parameters for various clock 
speeds, and reliabilities 

Clock Speed Reliability > 6 9’s Reliability > 5 9’s Reliability > 4 9’s 

1THz Fp = 1180nm 

L = 12nm 

5-wide LINA 

Fp = 1034nm 

L=13nm 

5-wide LINA 

Fp = 720nm 

L=10nm 

3-wide LINA 

500GHz Fp = 360nm 

L = 10nm 5-wide 

LINA 

Fp = 308nm 

L = 11nm 

5-wide LINA 

Fp = 182nm 

L=13nm 

5-wide LINA 

100 GHz  Fp = 30nm 

L = 3nm 

1-wide LINA 

Fp = 24nm 

L = 4nm 

1-wide LINA 

Fp = 18nm 

L=3nm 

Traditional QCA 

 

6.2 LINA design examples (full adder circuit) 

As an example of LINA designs and how the results found in the previous 

sections may be used, the full adder circuit, based on the simplified sum and 

carry outputs found in [45] and shown in Figure 6-4, will be constructed.  The 

design of this example will require greater than 5 9’s reliability at the circuit 

outputs, a 100GHz clock speed, and one full clock cycle for operation.  

Additionally, the circuit uses a simple design rule which dictates a single block 

spacing between adjacent wires. An initial design presupposing the most 

efficient implementation technology is available will be presented. Then another 

design with many practical limitations will be given.   
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Figure 6-4. Logical Schematic of the full adder used in the design 
examples of Section 6.2 

6.2.1 Greatest space/power efficiency approach 

Table 1 shows that, for the required speed and reliability, 1-wide LINA provides 

the greatest space/power efficiency using a 4nm spaced LINA circuit.  So, it 

would be ideal to use these circuit geometries if the implementation 

technologies required are available. These technologies include: 

 A 4nm bipolar molecule which self assembles at the 4nm lattice spacing 

as is seen for the lattice map 



123 
 

 Patterning technologies which is able to pattern both the LINA circuit and 

the underlying clocking circuitry at a resolution equal to half a single 

block width (which in this case of a 1-wide LINA design with L=4nm and 

D=4nm, is 16nm). 

 Input/Output mechanisms which are able to individually force and read 

QCA states at the 4nm range. 

Assuming, for the time being, that these technologies are all available the first 

design of the full adder will use the 4nm 1-wide geometry. 

As has been briefly discussed, for complex circuitry, such as seen for this 

circuit, it is important to utilize a blocks design methodology. The first step in 

constructing the blocks representation of the adder will be to determine the 

number of blocks which will be required between each logical element.  The 

circuit design rule which dictates that at least one block be present between 

each wire is the first consideration which must be used.  Additionally, Table 1 

gives a minimum full pitch of 24nm to remain under the allotted power 

requirements.  For this design we are required to use the maximum of these 

two requirements to be certain that both are full filled.  In the 1-wide LINA 

design the width of a block is equal to the width of two full cells, therefore, the 

full pitch for a single block spacing according to (6.2), is 8L.  So for this case, 8L 

is equal to 32nm, which is less than the 24nm power dissipation requirement 

and thus the design rule will set the minimum block spacing.  With the minimum 

block spacing set, the blocks design for the adder now turns attention to the full 

clock cycle requirement.  This requirement dictates that, the inputs and outputs 
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of the adder be tied to the same clock. Furthermore, all wire crossings must 

occur ½ a clock cycle out of phase (or two clock zones out of phase).  And 

lastly, it is beneficial to the design to have the inputs to all majority gates be on 

the previous clock from the gate itself.  This allows for more robust operation 

due to rejection of the inputs as previously discussed.  These considerations 

produce the blocks design seen in Figure 6-5.  In the figure, the blocks are 

labeled with either the input (A, B, or C) or the block function (M for majority, X 

for crossing, or I for inversion). This design has dimension of 12 blocks x 16 

blocks or for this technology 192nm x 256nm (due to 4*L per block for 1-wide 

LINA and L = 4nm for this design).   

A couple of observations which must be pointed out with this design, first in 

order to reduce the total number of wire crossing blocks, input A comes in from 

the bottom of the circuit while inputs B and C come in from the top.  It is 

interesting to note the directional dependence of LINA blocks here, which, 

because of the logic convention used, creates an inversion of input A when fed 

into each of the majority gates.  Although, the inverted state of input A is 

required for the leftmost majority gate, the others require a non-inverted input A.  

Therefore, an inverter is placed in line upstream from these gate inputs.  In 

general terms, the direction from which a signal enters the circuit is important as 

is the direction from which an output leaves the circuit, although, in a global 

sense, the natural inversion as wire corners are turned in a specific direction 

cancels out all of the inversions internal to the circuitry (even for the inversion 

seen on the input of the majority gate!)  This discovery greatly simplifies circuit 
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construction and LINA blocks design by allowing the design to progress more 

intuitively. 

 

Figure 6-5. Blocks design for the first LINA full adder example (1-wide 
4nm) 

Once the blocks design has been completed, the implementation of the LINA 

cells and clocking circuitry can proceed naturally.   
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Figure 6-6. 1-wide LINA layout of full adder circuit 

Figure 6-6 shows the 1-wide 4nm LINA layout for the circuitry corresponding to 

the blocks design. As seen in the LINA layout and blocks design, sum and 

carry-out outputs are taken from the bottom of the circuit and, as can be seen 

by the simulation results of Figure 6-7a, are valid one complete clock cycle after 

the corresponding inputs are latched in.  Another important feature that should 

be discussed further is the use of five LINA coplanar wire crossing blocks and 

both LINA wire crossing clock patterns.  As has been discussed, the coplanar 

crossings are able to pass signals which are half a clock out of phase with each 
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other (Clocks 0 and 2 or clocks 1 and 3).  The clock signals which allow this are 

shown along with the traces for all of the other clock signals in Figure 6-7b.  

 

Figure 6-7. a) Clock traces used for the full adder b)Traces for the inputs 
and outputs of full adder circuit  

 As has been mentioned, the blocks design for this full-adder can be 

implemented with any width LINA wire. However, this blocks design will not be 

allowed if other factors such as power requirements create block wire spacings 

which are not supported by this design.  In general, other practical issues must 

also be accounted for in the design of LINA circuitry. These issues along with 

the layout and simulation of a circuit which is based on them is seen in the next 

section.  

6.2.2 Full adder design using practical implementation issues 

In the previous section, implementation technologies were assumed to be ideal.  

This allowed the full adder design to be solely influenced by the design 

minimum specifications and efficiencies based on power density and circuit 
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area.  For this design, other limitations will be considered which may arise in the 

construction of actual LINA circuitry.  

Firstly, it will be assumed that three different materials have been found which 

fit the LINA requirements of bipolar interaction, and the self-assembly pattern of 

the lattice map.  These materials can produce LINA cells with the following 

spacings: 

 Material 1 - L1 = 10nm D1 = 10nm 

 Material 2 - L2 = 13nm D2 = 8nm 

 Material 3 - L3 = 8nm L3 = 8nm 

Additionally, high density large scale lithographical techniques are assumed to 

allow for patterning of clock and LINA circuitry with a resolution which is no less 

than 35nm.  (Certainly smaller resolutions should be possible but just for this 

example the large resolution is chosen.) 

With the larger cells and cell spacings, a larger width LINA wire will be required 

to provide the 5 9’s reliability requirement for the circuitry.  Simulation results 

show that 3-wide LINA wire would provide this reliability for material 1, greater 

than 7-wide LINA would be required for Material 2, and a 3-wide LINA would be 

required for material 3. All other things being equal, choosing the smallest width 

LINA wire with the smallest spacings possible for the required reliability seems 

ideal.  However, it has already been shown how power dissipation requirements 

have an effect on this choice.  Additionally, the resolution with which the circuit 

can be patterned affects this choice.  For instance, the minimum resolution of 

the patterning technologies is 35nm and the minimum width of LINA block must 
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be greater than or equal to 2 times this width. For material 3, the width of a 3-

wide LINA block is 8 * L = 64nm.  Since this number is less than two times the 

minimum patterning resolution, the block width (and thus the LINA width) must 

be expanded.  Also since the width of LINA must be an odd integer number the 

LINA design for material 3 must be a 5-wide design.  This 5-wide design then 

creates blocks with a width equal to 12 * L = 96nm.  In contrast, a 3-wide LINA 

block for material 1 would be 8 * L = 80nm in width and also contains less cells 

than a 5-wide LINA design using material 3.  In this case, it is better to use the 

slightly larger cell and lattice spacing material, because of limitations in the 

patterning technologies.  

Since these materials provide blocks which are much larger than the minimum 

blocks and full pitch based on power dissipation limitations, the design rule of 

one block per spacing will be the dominant property setting the wire and gate 

spacings.  Since this is the same case as was shown in the previous section, 

the same blocks design shown in Figure 6-5 can be used.  This demonstrates 

how LINA designs can scale with different technologies.  The layout for the 

circuit is shown in Figure 6-8.  Although, due to the relative size of the cells the 

clocks are difficult to see they are the same as in the blocks diagram. 
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Figure 6-8. 3-wide LINA layout for Section 6.2.2 

The apparent complexity of the clocking circuitry may be an issue when 

developing circuitry.  At this time, only primitive clocking mechanisms consisting 

of buried clocking wires have been proposed [62].  Therefore, the design of the 

underlying clocking structure must also be of utmost importance to any LINA 

design. However, in order to de-mystify the process, a clocking layout 

consisting of 6 layers (one for each clocking zone, including the crossing 

clocks) has been developed for this circuit.  The layout conforms to the 

minimum patterning resolution of 35nm set as a design limitation at the 

beginning of this section.  The layout of the clocking layers is shown in Figure 

6-9.  In the figure, vias carry the clocking signal from layer to layer in much the 
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same way they would in modern electronics.  In fact, the technology to produce 

the clocking circuitry for this full adder currently exists. 

 
Figure 6-9. Proposal layout of clocking wires for full adder implementation 
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6.3 Chapter Summary 

In this chapter a more thorough understanding of the tradeoffs between power, 

reliability, geometry, and speed was presented. This study culminated in the 

QCA full pitch metric that can be used to drive design decisions. Additionally, it 

was shown that LINA designs provide smaller circuitry for fixed speeds and 

reliability requirements as opposed to traditional QCA designs.  These design 

metrics were then used to develop a LINA full adder.  The full adder had 

requirements which dictated not only the design that was used, but also the 

material implementation used.  In all, two implementations were presented, a 1-

wide 4nm LINA implementation and a 3-wide 10nm LINA implementation.  

Clocking layers were also proposed for this structure based on the rule that the 

resolution of patterning technologies was ½ the size of the standard LINA block. 
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Chapter 7  

Summary and Future Directions 

This dissertation has provided designs and simulation results for a new 

nanoelectronics computing architecture based on the quantum-dot cellular 

automata (QCA) paradigm. The design, which is called the lattice-based 

integrated-signal nanocellular automata (LINA), retain the great potential of 

QCA in terms of size, speed, power dissipation, and logic; but also enable the 

potential for room-temperature operation and a viable path to VLSI scale circuit 

construction.   

7.1 Dissertation Summary 

The development of these new designs began with an introduction to the past, 

present, and future state of digital integrated circuit technologies.  This 

introduction included the prospects for many nanoelectronics paradigms and 

highlighted the potential advances which could be garnered in size, power, and 

circuit speed if the major drawbacks of nanoelectronics circuits based on 

quantum-dot cellular automata (QCA) could be overcome. These drawbacks 

include the lack of viable path to implementation of QCA for precise placement 

and/or patterning of cells at the size scale required for reliable room-

temperature operation. Major components in the challenges relating to these 

drawbacks are the lack of architecture which is amenable to self-assembled 

materials and the size of cells required to increase energy separations between 

ground and excited energy states in the traditional QCA designs. Therefore, the 
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need for a new design was exposed and the motivation for research that 

culminated in LINA was shown.  

LINA is largely based on QCA principles and a thorough background into QCA 

was required before detailed discussions on LINA could occur.  Therefore, it 

was shown that QCA is a theoretically well-developed nanoelectronics 

paradigm loosely based on the mathematical constructs of cellular automata. 

The physics of individual QCA cells and their interaction with each other was 

presented.  Several different experimental QCA implementations were grouped 

into two categories of magnetic and electrostatic QCA which relate to the 

physical state variable used for computation. Each of these groups contained 

the fundamental logical elements of a binary wire, fan-out, inverter, and majority 

gate, thereby, achieving logical completeness and the ability to produce any 

desired logical function. Adiabatic switching and clocking of QCA were shown to 

be crucial to the proper operation of the paradigm and analysis into power, 

speed, and reliability showed this to be the case. 

In order to break from the architecture of traditional QCA and provide a design 

which was amenable to self-assembled materials implementation, 2-D 2-dot 

QCA designs were presented. These designs utilize a cell composed of two 

logically interacting quantum dot locations and a single free electron.  Cells in 

this design are positioned according to a 2-D 2-dot cell “map” consisting of a 

centered rectangular lattice with a two cell basis. Even with these restrictions on 

positioning, the fundamental logic components of a binary wire, fan-out gate, 

inverter, and majority gate were designed and were shown to have advantages 
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as opposed to traditional QCA designs.  In order to demonstrate the design of 

more complex logic components, examples including an XOR and toggle flip-

flop circuit were presented. 

Circuits for the 2-D 2-dot QCA and LINA were simulated using modified 

software originally designed for the traditional QCA. Simulation engines based 

on thermodynamic Boltzmann distributions provide insight into the ground state 

and thermodynamic properties of circuit designs. The details of the Boltzmann 

simulation were given as were details regarding another potentially more 

powerful coherence vector simulation engine. The coherence vector engine 

relies on a density matrix approach to describe the dynamical state of a 2-dot 

QCA circuit and system. It provides information on logical state, temperature 

dependent reliability, circuit speed, power requirements for the QCA circuit 

being simulated.  Results from both the Boltzmann distribution and the 

coherence vector simulation are critical in the design of traditional QCA circuits, 

2-D 2-dot QCA and LINA. 

With these foundations in place, the lattice-based integrated-signal nanocellular 

automata (LINA) design paradigm was presented. LINA offers an alternate 

design strategy which is more amenable to currently available or near-term 

nano-particle implementation technologies by adhering to lattice maps and cell 

types used in the 2-D 2-dot QCA and allowing for flexible wire widths to adjust 

to the resolution of large scale patterning technologies. LINA have also been 

shown to increase reliability in the presence of thermal excitations and 

assembly or patterning errors, thereby increasing the potential for room-
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temperature operation and near term fabrication of cellular automata based 

computing systems. With these facts in mind, this work has built a foundation 

upon which LINA logical devices can be designed by developing a logically 

complete set of primitives including a LINA majority gate, inverter, and a planer 

wire crossing structure. LINA designs have also been evaluated in terms of the 

power/speed/reliability/area trades and have been shown to be advantageous 

compared to traditional QCA designs in this respect. As an example of the LINA 

design process, two LINA full adders was designed, laid out, and simulated with 

good results. Additionally, the requisite underlying clocking structure for this full 

adder was laid out and is shown to be able to be fabricated with even current 

technologies. 

Taken as a whole, this work provides an important foundation to logical design 

of LINA nanoelectronic circuits and devices.  In LINA, a strategy is provided that 

offers hope for large scale room temperature implementation and continued 

viability of the QCA paradigm to supplement and/or replace CMOS in the near 

future.  Further, LINA offers the hope to extend the exponential increase in 

computing technologies into the next decades and overcome fundamental 

limitations being seen even today. 

7.2 Future Directions 

There are several areas of future work that should be pursued as a direct result 

of the foundations provided by this dissertation. One key area which must be 

pursued is research into material implementations of LINA.  Certain materials 

have been shown to provide the self-assembled lattice structure that is 
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required, however, materials which provide the correct bipolar interaction and 

bistable nature in this lattice must be found.  Once found, the properties of this 

material(s) must be extracted and applied to the calculations which were 

developed here to give a more exact representation of the limitations of the 

LINA architecture. Once a suitable material has been chosen, experimental 

implementations should proceed utilizing lithographical techniques for VLSI 

scale development. 

Further development of materials also should lead to detailed reliability and fault 

tolerance models which take into account experimentally derived probabilities of 

layout and patterning faults.  This will enable a design which is suitable to build 

full logic library of components necessary to the paradigm.    

Simulation techniques provided in this dissertation are limited in the number of 

cells and devices which can be tested.  As a deeper understanding of the 

attributes of suitable materials comes into view, these simulation engines 

should be extended to included research into probabilistic Bayesian networks 

which could be used to develop larger scale circuit design tools.  These tools 

should then be integrated into currently existing design interfaces to bring the 

electronics community the tools necessary to develop circuits for LINA [113]. 
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