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ABSTRACT 
 
 

Hypochlorous acid (HOCl) is one of the major neutrophil-derived oxidants used to 

kill invading pathogens. However, excess or misplaced production of HOCl can 

damage host tissue as it reacts indiscriminately with biological molecules such as 

amino acids. Chloramines are a major product of the reaction between HOCl and 

amino acids. As they decompose, protein-bound chloramines can permanently 

damage proteins by altering their structures and function. Thiocyanate (SCN-) 

reacts efficiently with HOCl and thus is able to limit its propensity to inflict host 

tissue damage. The concentration of SCN- in human physiologic fluids varies 

depending on the source of fluid and the individuals dietary and smoking habits. 

For example, normal human blood plasma has micromolar levels of SCN- while 

the oral cavity has millimolar concentrations.  

 

The first chapter of this dissertation covers the objectives of the research and the 

introduction of the important themes.  The second chapter summarizes the 

experimental methods and the analytical techniques used to conduct the 

research. The third chapter of this dissertation is focused on the reaction of SCN- 

with chloramines. We found that SCN- reacts efficiently with chloramines in small 

molecules, in proteins, and in Escherichia coli cells to give OSCN- and the parent 

amine.  We also observed that chloramines react faster with OSCN- than SCN-. 

This suggests that the reductions of chloramines by SCN- and OSCN- have 

potential biological significance as they may repair some of the damage infected 

by HOCl on proteins.  



xviii 

Under slightly acidic pH conditions, chloramines disproportionate to 

dichloramines. In the fourth chapter, the reactivity of dichloramines towards thiols 

was examined. We found that at equimolar concentrations, the dichloramines 

react much faster with thiols than monochloramines. Chlorotaurine reacts with 

thiols with a (pH-dependent) pseudo-second order rate constant of 102 M-1s-1 

while the rate constant for dichlorotaurine is 106 M-1s-1 at pH 7.4. These results 

suggest that the more stable dichloramines (e.g. those on lysine residues and on 

taurine) may be playing a role, at least in part, in the killing of phagocytosed 

bacteria. 

 

The fifth chapter of this dissertation evaluates the biological significance of the 

reaction of SCN- with chloramines. To achieve this goal, we investigated the 

extent to which SCN- restored the activity of glutathione reductase (GR) and also 

how it affected the population of viable A549 lung cancer cells after treatment 

with HOCl. Under certain conditions, we found that approximately half of GR 

activity that was inactivated by a large molar excess of HOCl was recovered after 

incubation with SCN-. We speculate that the cysteine active site of the protein 

was protected from irreversible over-oxidation by its hydrophobicity. The 

observed reversibility upon reaction with thiocyanate is attributed to a chlorinated 

key histidine. The viability studies of A549 cells incubated with HOCl for 20 min 

and then with SCN- show a significant increase in the proportion of live cells and 

a decrease in the proportion of necrotic cells. We surmise based on these results 

that early SCN- intervention (≤ 20 min) after the exposure of A549 cells to low 
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concentrations of HOCl can repair and reverse some of the damage. Overall, the 

results of the investigation described in this dissertation indicate that SCN- may 

play a more active role in quenching chloramines in vivo than has been 

previously appreciated. 
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CHAPTER 1: FRAMEWORK FOR THE RESEARCH 
 
 
1.1  Statement of problems and objectives 

Neutrophils whose main responsibility is to defend the host against invasion by 

foreign microbes are increasingly being suspected to play a mediatory role in the 

exacerbation of inflammatory diseases (1). As part of their ammunition, they 

release a concoction of reactive oxygen species that are capable of destroying 

the invading microbes (2).  It has however been reported (3) that neutrophils lack 

or have very little innate ability to distinguish between foreign and normal cells 

and relies on other parts of the immune system to pick its targets. As a 

consequence of misidentification (3), normal host tissue damage occur thus 

aggravating inflammatory diseases such as rheumatoid arthritis, atherosclerosis 

and cystic fibrosis (3-5). It is therefore not surprising that finding therapeutic 

agents to prevent neutrophils from engaging in host tissue damage has become 

a subject of extensive research in recent years (3). Despite all these initiatives, 

the mechanism of tissue destruction and of the killing of invading microbes are 

still not fully understood. This lack of understanding is due in part to the complex 

nature of the reactive species in the neutrophil’s armor (2-3). It is believed that 

hypochlorous acid (HOCl) produced by the myelopeoxidase (MPO) catalysed 

oxidation of chloride by hydrogen peroxide is the main defense factor employed 

by neutrophils against microbes (2, 6-7). Some studies have raised doubts about 

this claim pointing to the highly non-specific reactivity of HOCl, which potentially 

limits its effect/impact to the surface of the microbe (2, 8-11). More recent studies 

have suggested that it is the secondary reactive species produced by HOCl that 
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are responsible for the eventual killing of microbes (12-14). The main goal of this 

research was to investigate the reactions of chloramines (small molecular, 

macromolecular and cellular) with thiocyanate. We wanted to ascertain whether 

these interactions resulted in the repair of HOCl induced damage to proteins and 

restoration of enzyme activity. To aid with our investigation, we employed 

chlorotaurine, ubiquitin, glutathione reductase, E. coli and A549 cancer cells as 

models.  A more detailed summary of this work is given in section 1.8 below. 

 

1. 2  Phagocytosis 

Phagocytes generally refer to white blood cells, which provide a front line of 

defense against invading microorganisms (15). They are critical for fighting 

infections and subsequent immunity (15-16). Their responsibility includes 

hunting, ingesting and destroying bacteria, viruses and dead or injured cells (15-

16). The actual process of engulfing particles is called phagocytosis. Although 

there are many cells in the human body capable of phagocytosis, macrophages 

(which are derived from monocytes) and neutrophils (or polymorphonuclear 

neutrophilic leukocytes) are the two that are considered more efficient (15). 

Macrophages are the first to recognize the foreign agents and have been found 

to also play a key role in alerting the rest of the immune system to the invaders 

(15). Phagocytes were first described by the Russian Zoologist, Metchnikoff in 

the 1880s after observing that specialized cells were involved in defense against 

microbial infections (16). He was later (in 1908) awarded a Nobel Prize in 

physiology or medicine for his discovery. There are several stages in 
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phagocytosis, and the key ones include: (i) identification and hunting of the 

foreign intruder (ii) adherence to and ingestion of the intruder, (iii) digestion of the 

intruder, (iv) discharge of waste material. 

 

 
Figure 1.1.  Phases of phagocytosis 
 

Soon after entering the host tissues, the intruders begin to replicate. This is 

accompanied by the release of chemicals that are immediately detected by 

phagocytes (17). The phagocytes are then recruited to the site of infection. Upon 

reaching the site of infection, they attach to the surface of the foreign material 

and the cell membrane becomes involuted thereby forming pseudopods which 

engulfs the material forming a vacuole known as a phagosome (17). Inside the 

cell, the phagosome fuses with lysosomes to form a phagolysosome. The 

lysosome contains digestive enzymes (lysozyme, lipases and proteases, 



4 

RNAses and DNAses) which kill most bacteria within 30 minutes. After digestion, 

residual material is then discharged out of the cell (17).   

 

1.3 Oxidative burst 

It has been reported (6-7, 18-19) that the consumption of molecular oxygen by 

neutrophils increases during phagocytosis of microbial intruders, an event 

commonly known as oxidative burst. This leads to the production of a variety of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) which are 

unleashed upon the ingested microbe (Figure 1.2) (6-7, 18-19).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Neutrophil oxidative burst 
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The cascade of reactive species is initiated by NADPH oxidase, a dormant 

membrane-bound enzyme that is activated during oxidative burst. Upon 

activation, NADPH catalyzes the one-electron reduction of molecular oxygen to 

superoxide radical (O2
·-) (Eq.1) (6-7, 18-19). Superoxide is a mild and somewhat 

selective oxidant that is relatively unreactive towards most biological substrates.  

 

NADPH + O2   → NADP+ + O2
•− + H+       (1) 

 

In addition to ROS, neutrophils produce RNS such as nitric oxide (·NO). Nitric 

oxide is produced endogenously by nitric oxide synthase (NOS) through the 

conversion of L-arginine to L-citrulline (Eq. 2).  

 

L-arginine → ·NO + L-citrulline       (2) 

 

Nitric oxide reacts with superoxide at rates close to the diffusion limit (23-25) to 

produce peroxynitrite (ONOO-) (Eq. 3), a reaction catalyzed by nitric oxide 

synthase (NOS) (20-25).  Peroxynitrite is very cytotoxic and its reactivity towards 

biological substrates is similar to that of ·OH (22). 

 

·NO + O2
•− → ONOO-        (3) 

 

The majority of superoxide radical is converted to hydrogen peroxide (H2O2) (Eq. 

4), through a disproportionation reaction catalyzed by superoxide dismutase 
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(SOD) (6-7, 18-19). Hydrogen peroxide can engage in both one-electron and 

two-electron reactions but has been found to react slowly with most biological 

molecules including thiols and antioxidants (26).  

 

2H+ + 2O2
•− → O2 + H2O2

        (4) 

 

However, H2O2 reacts efficiently with iron (and/or copper) to produce the more 

damaging hydroxyl radical (·OH), a reaction that is known as Fenton chemistry  

(27) (Eq. 5). The hydroxyl radical is an extremely reactive species and reacts 

immediately with many biomolecules at close to diffusion limited rates of 

reactions (~ 109 M-1s-1) (20, 28). The concentrations of free iron and copper in 

biological fluids are extremely low as most are bound in proteins for storage and 

transportation (20). This significantly limits the formation of ·OH via the Fenton 

reaction. The other mechanism by which the hydroxyl radical can be produced is 

via the reaction of HOCl with superoxide (Eq. 6). 

 

H2O2 + Fe2+ → Fe3+ + OH- +  ·OH       (5) 

HOCl + O2
•− → ·OH + O2  + Cl-        (6) 

 

The production of the hydroxyl radical by neutrophils however remains a subject 

of debate (29-33). This is because it is extremely reactive and evidence 

presented for its existence is based on identification of potential secondary 
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products which can be produced by other oxidants such as superoxide and 

hypochlorous acid (29-33).  

 

Myeloperoxidase (MPO), is a major heme enzyme that is released by neutrophils 

into phagosomal compartments and extracellularly (34). MPO has the unique 

capability to catalyze the oxidation of Cl- by H2O2 to produce HOCl (Eq. 7). 

Depending on the physiological environment, some studies have reported that up 

to 80% of hydrogen peroxide produced by neutrophils is converted to micromolar 

to low millimolar HOCl (35-37). HOCl is a powerful oxidizing agent and is 

believed to be a potent bactericidal agent on a per-mole basis produced by 

neutrophils (28).   

 

Cl- + H2O2 + H+ → HOCl + H2O       (7) 

 

The MPO-H2O2 system can also oxidize Br- and the pseudohalide SCN- to 

produce corresponding hypohalous acids (HOBr and HOSCN) (35-37). HOCl can 

react with amines to produce chloramines.  Typically, the concentrations of the 

halides and pseudo-halides in plasma are (100-140 mM) [Cl-], (20-100 µM) [Br-] 

and (≤ 120 µM) [SCN-] (38-40).   
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1.4 Chloramines  

HOCl is known to be very reactive towards a number of important biological 

molecules including proteins, DNA, lipids and antioxidants (28). However, 

because of their high concentration, proteins which are major constituents in 

cells, tissue and biological fluids are likely to be the major targets (8). Extensive 

kinetic data for the reactions of HOCl with biological molecules have been 

published (9-11, 41-42). These studies reveal that sulfur and amino groups are 

preferred HOCl kinetic targets (9-11, 41-42). These functional groups are present 

in proteins in the form of lysine, histidine, cysteine and methionine side chains. 

The following second-order rate constants for the reaction of HOCl with these 

functional groups have been reported cysteine and methionine (k > 107 M-1s-1), 

histidine (k ~ 105 M-1s-1) and lysine (k ~ 5x103 M-1s-1) (9-11, 41-42). The reaction 

of HOCl with amino compounds produces secondary oxidants known as (mono- 

and di-) chloramines.  Chloramines retain the oxidizing equivalence of HOCl and 

thus can undergo secondary reactions.  Relative to HOCl, chloramines are 

typically milder reactants and more selective towards thiols.  

 

HOCl + RNH2 → RNHCl + H2O                                (8)  

2HOCl (excess) + RNH2 → RNCl2 + 2H2O                              (9) 

 

Despite being key HOCl-derived intermediates, the possible contribution of 

chloramines in the pathogenesis of inflammatory diseases has not been fully 

explored. A few studies have reported the second-order rate constants for the 
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reaction of selected chloramines with important biological molecules (12-13, 43).  

Peskin and Winterbourn observed that chloramines vary in their chemical 

reactivities towards thiols, with N-acetyl lysine and glycine chloramines being 

more reactive than taurine chloramine (12). The reaction of chloramines with the 

various low molecular weight thiols was dependent on the pKa of the thiol group. 

The reactivity of other chloramines particularly histidine and histamine 

chloramines have subsequently been investigated (13, 43-45). It was found that 

histidine side-chain (imidazole) chloramine may be responsible for the oxidative 

attack on other protein components through secondary chlorine transfer 

reactions (44). The second-order rate constants determined for the reaction of 

histidine chloramine with protein components were found to be among the fastest 

that have been reported (46-47).  Typically, the reactivity of histidine chloramine 

towards thiols was only 5-10 times less than that for HOCl, compared to other 

chloramines (lysine, taurine etc.) which are 25-50 times less reactive than HOCl.  

Encouraged by the results of histidine chloramine, other studies hypothesized 

that similar reactions were possible with histamine chloramine (13, 43, 45). 

Histamine which is stored in granules of mast cells at concentrations as high as 

100 mM is released at sites of inflammation and thus has a potential to intercept 

some of the neutrophil HOCl thereby forming histamine chloramine (13, 43, 45). 

Relatively higher rate constants were measured for the reaction of histamine 

chloramine with thiols than taurine, lysine and glycine chloramines (13, 43, 45). 

Some studies have also investigated the ability of chloramines to inactivate thiol 

proteins (14, 48-49).  It was reported by these studies that owing to its selectivity 
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for thiols, chloramines are more effective than HOCl at inactivating enzymes. In 

the absence of target molecules in the vicinity of chloramines, they ultimately 

decompose to radical intermediates and aldehydes (50-51).   

 

1.5 Hypothiocyanite (OSCN-) 

Thiocyanate (SCN-), a pseudohalide serving as a preferred substrate for MPO is 

present in some biological fluids including saliva and stomach lining fluid at high 

concentrations (52-53). Plasma concentrations of SCN- in smokers are 

substantially higher (54). Other dietary sources of SCN- which may result in 

elevated plasma concentrations include cabbage, broccoli, almond, corn, 

cassava and horseradish (55-56). Members of the peroxidase family including 

lactoperoxidase, salivary, gastric, eosinophil are all capable of catalyzing the 

formation of OSCN- from H2O2 and SCN- (54). Wang et al. have proposed that 

the peroxidase catalyzed reaction produces OCN- in addition to OSCN- which 

they have hypothesized is responsible for the carbamylation of proteins (Eq. 10) 

(54).   

 

SCN–  +  H2O2   →   HOSCN          →         OCN–   + other products     (10) 

    

Several studies have shown that OSCN- can also be produced non-enzymatically 

through the oxidation of SCN- with HOCl and HOBr  (Eq. 10) (57-58). 

Hypohalous acids (HOCl, HOBr) including the pseudo-hypohalite HOSCN form 

part of the human immune system.  It has also been suggested by a number of 

MPO 
Decomposition 
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studies that excessive production of these oxidants leads to host tissue damage 

and thereby play an active role in inflammatory diseases including 

atherosclerosis, arthritis, cystic fibrosis, kidney disease and some cancers (59).   

 

SCN–  +   HOX (X=Cl or Br) →   HOSCN   +   X–    (10) 

 

Unlike HOCl and HOBr which seem to indiscriminately attack a variety of cellular 

targets, HOSCN appears to be more selective towards thiol groups (60-61).  

Hawkins et al. published a study in which they investigated the reactions of 

HOSCN with thiols and other targets (62). They reported observing that free 

tryptophan and peptide-containing tryptophan were unreactive towards HOSCN.  

Only tryptophan residues in enzymes appeared to be favored HOSCN targets 

(62). It must be noted however that the authors indicated that the identification of 

the reaction products and the proposed mechanism for the reaction of HOSCN 

with tryptophan were tentative and required further investigation (62). 

Surprisingly, tryptophan oxidation was observed even in the presence of 

glutathione, which suggests that this reaction may be competitive in vivo. 

Interestingly, they also noticed that the products of this oxidation reaction were 

stable and thus proposed that they could be used as biomarkers for HOSCN 

mediated attack on proteins. The proposed mechanism for the oxidation reaction 

is shown in Figure 1.3. It indicates that the two major products due to the 

HOSCN attack on the pyrrole ring of tryptophan are dioxindolyalanine or N-
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formylkynurenine (NFK). The formation of these products is believed to result in 

the loss of protein integrity via unfolding.   

 

 

Figure 1.3. Proposed mechanism for the oxidation of protein-derived tryptophan 

by HOSCN 
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1.6 Glutathione reductase (GR) 

Glutathione (GSH), is the most abundant non-protein bound thiols in eukaryotes 

and some prokaryotes (59-60, 63-64).  One of the prominent roles of GSH is to 

ensure the protection of cells against oxidative damage, i.e. it acts as an 

antioxidant (59-60, 63-64). High concentrations of reduced glutathione in the 

cells are maintained by glutathione reductase (GR), a crucial housekeeping 

enzyme. GR catalyzes the reduction of oxidized glutathione (GSSG) to the 

sulfhydryl form (GSH) by NADPH. It is a member of a growing family of 

homodimeric flavoprotein disulfide oxidoreductases. Research on GR began with 

Meldrum and Tarr who observed that GSSG was reduced by rat blood and they 

showed that NADPH was a cofactor in this system (65). Since then a number of 

investigators have succeeded in purifying GR from a variety of sources including 

microorganisms, plants and animals (66-69). GR is a homodimeric enzyme with 

a molecular weight of 100 kDa (67).  It is believed that the dimeric nature of GR 

is critical for its function as both subunits contributes to its catalytic activity.  One 

of the subunits is responsible for a reductive-half and the other for the oxidative-

half of the reaction. During the reductive half-reaction, FAD is reduced by 

NADPH and the reducing equivalence is then transferred to the redox-active 

disulfide.  In the oxidative half-reaction, the resulting dithiol reacts with oxidized 

glutathione (GSSG), reducing it to two GSH. GR contains in its active site an acid 

catalyst (His467) which has a pKa of 9.2 and whose responsibility is to protonate 

the first glutathione that is released (67-68). The stability of GR has been tested 

in many organisms and it was found to be one of the most thermostable enzymes 
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(70-71).  The inhibition of GR activity under conditions of oxidative stress creates 

an imbalance between prooxidant and antioxidant species which in turn may 

contribute to the genesis of many diseases  (59).   

 

1.7 Fluorescence microscopy for cell imaging 

During the last three decades, fluorescence microscopy has seen a level of 

growth that has enabled it to emerge as a powerful and widely used imaging tool 

for biological research (72).  This has resulted in the development of a significant 

number of various cation and anion fluorescent probes (73-75).  Because of their 

import role in biology and in the environment, transition elements have been the 

main focus of the new probes (76-81).  To explore fully the contribution of ROS in 

human diseases, new fluorophores affording an accurate detection of ROS in 

living cells are needed. The major drawback for most fluorescent probes is their 

susceptibility to auto-oxidation and their inability to distinguish between various 

ROS (76-81). Given the fact that different ROS are likely to play a unique role in 

the pathogenesis of inflammatory conditions, selective detection of specific ROS 

is required (4-5). Recently, fluorescent probes designed for the detection of the 

ROS especially HOCl and H2O2 have attracted considerable attention (82-86). 

Some of the most popular fluorescent dyes developed for HOCl detection are 

sulfonaphthoaminophenyl fluorescein (SNAPF), dipyrromethene boron difluoride 

(BODIPY) and rhodamine-based derivatives (87-89).  Most of these probes have 

displayed reasonable selectivity for HOCl over other ROS; however, probes with 

better selectivity and sensitivity are still sought after. Tae et al. have recently 
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developed a new rhodamine-hydroxamic acid-based probe which they claim has 

superior sensitivity and selectivity for HOCl (90). Spectroscopic probes usually 

have two units: (1) a signaling unit, one whose properties are changed upon the 

reaction with the analyte, (2) a recognition unit, one responsible for the selective 

reaction with the analyte (73). The new probe was synthesized from rhodamine 

6G (signaling unit) and thus contains the nonfluorescent spirocyclic form with 

hydroxamic acid incorporated into the rhodamine amide system.  In phosphate 

buffer at pH 7.4, the probe forms a colorless solution but instantly develops a 

pink color upon coming in contact with HOCl.  The color change is associated 

with the oxidation of the hydoxamic acid component (recognition unit) which 

leads to the ring opened fluorescent form (1). Unlike the HOCl probe reported by 

Nagano et al. whose synthetic route was rather complicated, the new probe can 

be synthesized by a simple three step synthetic procedure (Figure 1.4).  
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Figure 1.4.  Synthesis of the rhodamine-hydroxamic acid probe (1) 
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1.8 Summary of this work 

The work constituting this dissertation is comprised of several independent but 

related projects. Some parts of the research work on A549 cells were performed 

in collaboration with Dr Dario Ramirez. Although the chapters are interlinked, 

each contains its own introduction of important concepts. 

 

Chapter 1 presents the framework for the research describes in broad terms the 

objectives of the research work and also the introduction of the main themes.  Its 

purpose is to introduce the reader to the basic concepts of this research work. 

 

Chapter 2 summarizes the experimental methods cover the sample preparation 

and analytical techniques used to conduct this research. Since the bulk of the 

reagents used in each project were similar, we decided to put them together in 

one chapter. These procedures are not repeated within each chapter.   

 

Chapter 3 describes our finding that small molecular, macromolecular and 

cellular chloramines reacted effectively with thiocyanate to give the human 

defense factor hypothiocyanite.  The identity of the product(s) of the reaction of 

chloramines with thiocyanate has eluded many researchers who ended-up 

speculating them to be the unstable chlorine thiocyanate (ClSCN) which rapidly 

decomposes to thiocyanogen (SCN)2 (91).  In this study, using two independent 

approaches we were able to demonstrate for the first time that the product of the 

reaction of chloramines with thiocyanate is hypothiocyanite (OSCN-).  One of the 
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techniques we used in our endeavor was to look for the unique UV-visible 

spectroscopic signature of OSCN- (λmax = 376 nm, ɛ = 26.5 M-1cm-1) (92). We 

suspect that the main reason why prior attempts to identify this product fell short 

is its very low extinction coefficient.  We were able to overcome this challenge by 

using the Ocean Optics UBC2000 CCD spectrometer equipped with a 1 meter 

WPI fiber optic cell. We were able to substantiate the UV-visible spectroscopic 

data by developing a kinetic model in which the product of the reaction of 

chloramines with SCN- was reacted with TNB. The kinetic model exploited the 

highly selective reactivity of OSCN- with thiols. The kinetic approach made it 

possible to detect OSCN- in cases where a direct spectroscopic measurement 

could not be used, such as those involving protein and cellular chloramines. One 

of the most surprising findings of this study was that OSCN- reacts faster with 

chloramines than does SCN-. We surmise based on our data that the reaction of 

chloramines with SCN- and OSCN- may repair some damage inflicted by HOCl 

on proteins.   

 

Chapter 4 describes the kinetics and the mechanism of the reactions of 

dichloramines (e.g. dichlorotaurine) with thiols (e.g. TNB). While the potential 

contribution of monochloramines in the killing of invading bacteria has been 

receiving a lot of attention (2, 14, 91), the role played by dichloramines remains 

largely un-explored. As a result of their low stability, it was reported recently that 

when they decompose, organic dichloramines form more toxic inorganic 

chloramines (93). The fate of the more stable dichloramines (e.g. dichlorotaurine) 
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was left to speculation including possibly decomposing to organic radicals. To 

our knowledge, the rate constant(s) for the reaction of dichlorotaurine with thiols 

have not been measured. The main finding of this study was that the reaction of 

dichlorotaurine with thiols is pH-dependent and at pH 7.4 it reacts ~ 1000 times 

faster with thiols than chlorotaurine. The mechanistic data for the reaction of 

dichlorotaurine with thiols are consistent with the reaction proceeding via the 

deprotonated thiolate (nucleophile) and dichlorotaurine acting as an electrophile. 

The stopped-flow studies, show that the reaction under first-order conditions is 

fast with a second order-rate constant of 1.1 x 106 M-1s-1 for the TNB thiolate and 

1.3 x 106 M-1s-1 for the cysteine and glutathione thiolates at pH 7.4. These rate 

constants are only three-orders of magnitude lower than that for the reaction of 

HOCl with cysteine thiolate 1.2 x 109 M-1s-1 which clearly indicates that these 

reactions are fast. 

 

Chapter 5 addresses the reaction of thiocyanate with A549 cellular chloramines 

and glutathione reductase (GR) chloramine which resulted in an increase in the 

fraction of viable cells and the recovery of the enzyme activity. Using the 

rhodamine probe and confocal fluorescence microscopy, we were able to show 

that SCN- was effective at quenching cellular chloramines. Cellular chloramine 

showed strong red fluorescence and no fluorescence was observed after the 

cells were treated with SCN-. The preliminary flow cytometry data supports the 

confocal data as it suggests that the reaction of cellular chloramines with SCN- 

repairs the damage caused by HOCl and thus ensures cell survival. The positive 
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effects of SCN- on cellular chloramines were only observed when cells were 

incubated with HOCl for 20 min. The fraction of necrotic cells in the samples that 

were incubated with HOCl for 1 h remained high and relatively unchanged after 

the addition of SCN-. When GR which was inactivated with excess HOCl was 

subsequently incubated with SCN-, about 47 % of its activity was recovered.  As 

explained in detail later, we surmise that this was due to the reaction of SCN- 

with the chloramine on the histidine residue in the active site which is directly 

involved in the catalytic activity of GR.    
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CHAPTER 2: EXPERIMENTAL METHODS 
 
 
2.1 Reagents. All chemicals were A.C.S certified grade or better. Water was 

doubly distilled in glass and was used for all aqueous solutions. All reagents 

were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated. 

The phosphate buffer solution was prepared from NaH2PO4·H2O (99%) and 

Na2HPO4 (99%) purchased from Mallinckrodt, the ionic strength was adjusted 

with NaCl (99%). Unless otherwise stated, all solutions were prepared using 0.1 

M phosphate buffer at pH 7.4 (I = 1.0). Sodium hydroxide (98%), sodium 

thiocyanate (99%), taurine (98%), hydrogen peroxide (30 wt % in H2O), ascorbic 

acid (99%), L-cysteine (98%), glutathione (98%), methionine (98%), dithiothreol 

(98%), N-acetyl cysteine (98%), S-methyl cysteine (98%), S-methyl glutathione 

(97%), N-acetyl lysine (99%), Ubiquitin (98%) and bovine lactoperoxidase were 

all used as received from Sigma-Aldrich.   

 

The tetrasodium salt of ß-nicotinamide adenine dinucleotide phosphate (NADPH, 

reduced form) and the glutathione reductase from baker’s yeast (as a suspension 

in 3.6 M (NH4)2SO4 at pH 7.0, containing 0.1 mM dithiothreitol) were obtained 

from Sigma-Aldrich. The enzyme was stored at T = 4 oC, and NADPH was stored 

at T = -20 oC until needed. The concentration of the stock NADPH solutions were 

spectrophotometrically determined in phosphate + EDTA buffer at pH 7.4 using 

ε(NADPH)340nm = 6.22 mM-1cm-1) (1-3). 
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2.2. Sample preparation 

2.2.1 Hypochlorite (OCl-) .Stock solutions of OCl- were prepared by sparging Cl2 

into a 0.3 M solution of NaOH. Solutions of NaOH, mostly free of CO2 

contamination, were quantified by titration with a standardized HCl solution using 

phenolphthalein as an indicator. The sparging was stopped when the [OCl-] 

achieved approximately 100 mM (pH 12), as determined spectrophotometrically 

(ε(OCl-)292nm = 350 M-1cm-1) (4-5). 

 

2.2.2 Taurine chloramine (TauCl). A 2.5 mM stock solution of TauCl solution, 

free of dichloramine (TauCl2) and excess taurine (Tau), was prepared by adding 

5.0 mM OCl- in 0.10 M NaOH dropwise to 5.0 mM Tau in 0.10 M NaOH while 

vortexing (6). The formation of TauCl was confirmed by observation of the 

characteristic absorbance spectrum (ε252nm = 429 M-1cm-1) (6). Solutions of TauCl 

in 0.10 M phosphate buffer were prepared from the stock solution by adjusting 

the pH to 7.4 using a 10 mM solution of HCl.  

 

2.2.3 Reaction of TauCl with SCN- and quantification of OSCN-. Solutions of 

OSCN- were prepared by addition of 5 mL TauCl (100 µM) to 5 mL SCN- (100, 

200, and 500 µM) while vortexing over a period of ~1 min. The samples were 

transferred to 10 mL plastic syringes, the solutions were injected into the 1 m 

fiber optic cell, and the UV-vis spectra were recorded. 
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2.2.4 Taurine dichloramine (TauCl2). A 2.5 mM stock solution of TauCl2 

solution, free of chlorotaurine (TauCl) and excess taurine (Tau), was prepared by 

adding 5.0 mM Tau in 0.10 M phosphate buffer to 10 mM OCl- in 0.10 M 

phosphate buffer dropwise while vortexing  at pH 5.5 (6).  The formation of 

TauCl2 was confirmed by observation of the characteristic absorbance spectrum 

(ε300nm = 370 M-1cm-1) (6). There was no evidence of a shoulder at 252 nm, 

indicating that there was no detectable TauCl present (ε252nm = 429 M-1cm-1) (6). 

Solutions of TauCl2 in 0.10 M phosphate buffer were prepared from the stock 

solution by adjusting the pH to 7.4 using a 10 mM solution of NaOH.  

 

2.2.5 Synthesis of 5-thio-2-nitrobenzoic acid (TNB).  TNB was synthesized by 

the reduction of DTNB with NaBH4. To a DTNB solution (3.96 g, 10mmol) in 20 

mL THF was added NaBH4 (0.76 g, 20 mmol) at 0 oC.  The reaction mixture was 

stirred at room temperature for 2 h.  To the mixture was then added 20 mL of 6 N 

HCl at 0 oC. After the removal of THF under vacuum, Et2O (20 mL) and water (20 

mL) were added to the residue, and the organic phase was extracted with Et2O 

three times. The combined organic solution was washed with brine and dried 

over MgSO4. After filtration and the removal of the solvents, crude TNB was 

obtained in quantitative yield (>99% purity).   

 

2.2.6 Hypothiocyanite (OSCN-).  Fresh solutions of OSCN- were prepared 

enzymatically using LPO-catalyzed oxidation of SCN- with H2O2.  LPO (~ 0.1 µM) 

was incubated with SCN- (5 mM) and the reaction was initiated by the addition of 
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H2O2 (1 mM) in phosphate buffer (pH 7.4, 0.1 M) at room temperature.  The 

concentration of OSCN- stock solution was quantified by absorbance at ε376nm = 

25.6 M-1 cm-1 (7). The OSCN- samples were used with 1 h (i.e. about half-life of 

OSCN-) after preparation due to their low stability. This method typically 

produced ~ 1 mM OSCN-.   

 

2.2.7 Ubiquitin chloramines (Ub*Cl).  Quantitative oxidation of ubiquitin Met-1 

to a sulfone (Ub*) was accomplished with performic acid using a literature 

procedure (8). The performic acid was prepared by mixing 0.50 mL of 30 % 

hydrogen peroxide with 9.5 mL of 99% formic (HCOOH) acid and allowing the 

mixture to stand for 2 h at room temperature. Before use, this freshly-prepared 

performic acid (10 ml) was pre-cooled to 0 oC (ca. 1 mL of methanol was added 

to the reagent to prevent freezing). Ub (3.0 mg) was dissolved in the performic 

acid (3.0 mL), the mixture was allowed to stand for 4 h at 20 oC, and cold HBr 

(2.0 ml of 48%) was added to destroy the excess performic acid. The volatiles 

were removed using a rotary evaporator at 37oC, and the residue was re-

dissolved in 0.10 M phosphate buffer at pH 7.4. Oxidized ubiquitin (25 µM Ub*, 

as determined by the absorption at 280 nm) was treated with OCl- (250 µM) for 

various amounts of time (0-2 hours) in 0.1 M phosphate buffer at pH 7.4. The 

resulting chloramines (Ub*Cl) were quantified with 5-thio-2-nitrobenzoic acid 

(ε412nm = 14,150 M-1cm-1) (9-10). Ub*Cl was incubated with TNB for 3 min before 

the UV-vis measurements were made. Based on the TNB analysis, 33-41% (n = 

3) of the original HOCl oxidizing equivalents were recovered from Ub*Cl.   
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2.2.8 Reaction of Ub*Cl with SCN- and quantification of OSCN-. Equal 

volumes (5 mL) of 6.8 µM Ub*Cl with 0.50 mM SCN- were mixed. After 20 min, 

the Ub*Cl/SCN- mixture was reacted with TNB (59 µM) in a stopped-flow 

spectrophotometer with 1:1 mixing in single-mixing mode. The rate constant 

observed (3.73 ± 0.01 x 105 M-1s-1) is consistent with the value that was 

independently measured for the reaction of TNB with authentic samples of 

OSCN-. The absorption change (∆ Abs) was constant with the recovery of 80 % 

of the redox equivalents that were measured for Ub*Cl using TNB. 

 
2.2.9 Chlorination of E. coli and quantification of oxidizing equivalents. 

Cultures of E. coli (MG1655) were grown from frozen stocks to their terminal 

density in 15 h at 37 oC in Luria-Bertani medium using a shaking water bath. A 

portion of the culture (40 ml) was centrifuged (10 min at 5000 g and 5 oC), 

washed twice with 0.1 M phosphate buffer (2 x 4 ml), and the resulting cell pellet 

was re-suspended in phosphate buffer (4 mL) to give a cell density of ca. 109 

cells/ml (OD600 = 0.76). The cell suspension was treated with OCl- (1 mM after 

dilution) for 5 hours.  After incubation, the chlorinated cells were centrifuged (10 

min at 5000 g and 5 oC), the supernatant was removed, and the cells were re-

suspended in 0.1 M phosphate buffer (4 ml). This washing procedure was 

repeated three times.  Following the final resuspension, the oxidizing equivalence 

(i.e., “chlorine cover”) was determined by treating the chlorinated cells with TNB 

in 0.10 M phosphate buffer for 12 min. Approximately 423 µM of 2-electron 

oxidizing equivalents (42 % of the OCl-) were recovered.   



38 

2.2.10 Reaction of chlorinated MG1655 with SCN- and quantification of 

OSCN-. Equal volumes (5 ml) of chlorinated E. coli (107 cells/ml, 6 µM of 2-

electron oxidizing equivalents) and SCN- (2.5 mM) were mixed. After 12 min., the 

cell suspension was filtered through a 0.2 µm polyamide filter. The supernatant 

was reacted with TNB (61 µM) in a stopped-flow spectrophotometer with 1:1 

mixing in single-mixing mode. Quantification of OSCN- was computed from ∆ Abs 

at 412 nm within the timeframe of reaction of OSCN-. 

 
2.2.11 Synthesis of the Rhodamine derivative 1. The rhodamine derivative 1 

was prepared from rhodamine 6G in three steps using the procedure described 

by Tae et al (11). Sodium hydroxide (1.69 M) was added to a 0.08 M solution of 

rhodamine 6G in ethanol and stirring the mixture for 2 h under reflux conditions.  

After 2 h, 15 mL of distilled water were added and the solution was cooled to 

room temperature.  The resulting precipitate was filtered and dried at 70 oC for 30 

min to give 400 mg (85%) of rhodamine 19.  In the second step, phosphorus 

oxychloride (0.26 mL) was added dropwise over 2 min to a 0.096 M solution of 

rhodamine 19 in dichloromethane. The solution was refluxed for 3 h.  The mixture 

was then cooled and evaporated in vacuo to give a crude rhodamine acid 

chloride. The crude product was not purified but dissolved dichloromethane (10 

mL). The solution of the crude product was reacted with hydroxylamine 

hydrochloride (150 mg) and triethylamine (0.3 mL). The reaction mixture was 

stirred for 6 h at room temperature and extracted with dichloromethane (20 mL x 

3). The organic layer was collected and dried over anhydrous MgSO4.  

Concentrating the mixture under vacuum, yielded a crude product which was 
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purified by column chromatography (hexane/ethyl acetate = 2:1 to 1:1). The 

result was 150 mg of a pink solid of the rhodamine derivative 1. 

 
2.2.12 Assay for the Glutathione reductase (GOR) reduction of GSSG. The 

activity of glutathione reductase was assayed using a published procedure (12). 

The depletion of NADPH was followed at λ = 340 nm with added EDTA (0.5 mM). 

Conditions for a typical assay solution (control): [GSSG]o = 1 mM, [NADPH]o = 

0.1 mM, [GOR] = 0.025 U/mL, [phosphate buffer] = 0.1 M, pH 7.4 and T = 25 oC. 

The reaction was initiated by the addition of GSSG. Unit definition: One unit will 

reduce 1.0 µmol of oxidized glutathione per min at pH 7.4 at 25 °C. The 

inactivation of GOR was achieved by incubation with 40 µM HOCl for 20 min and 

with iP for an additional 20 min before the GOR assay. The reactivation of GOR 

was done by incubating HOCl-modified GOR with 160 µM SCN- for 20 min before 

the GOR assay.  

 

2.3 Instrumentation and data analysis 
 

2.3.1 UV/Visible spectroscopy. Electronic spectra were measured using a HP 

8452A diode array spectrophotometer and quartz cells with calibrated 1 cm path 

lengths.  For the identification of OSCN- (λmax = 376 nm,  ε = 26.5 M-1cm-1) (7) as 

a product of the reaction of TauCl with SCN-, we collected the UV-vis spectra 

using an Ocean Optics UBC2000 CCD spectrometer equipped with a 1 meter 

WPI fiber optic cell and an ATS D 1000 CE UV light source. 
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2.3.2 Fluorescence spectroscopy. Fluorescence spectra were recorded using 

a Shimadzu RF-5301 PC spectrofluorometer. The slit width was 2.5 nm for both 

excitation and emission and the photomultiplier voltage was 700 V. To reduce the 

fluctuation in the excitation intensity during measurement, the lamp was kept on 

for 1 h prior to the experiment. All fluorescence spectra were measured with an 

excitation wavelength of 500 nm. 

 

2.3.3 pH measurements. The [H+] of the buffered solutions was determined with 

an Orion Ion Analyzer EA920 using a Ag/AgCl combination pH electrode.  

 

2.3.4 Stopped-flow studies. Kinetic measurements were made using a Bio-

Logic SFM-400/Q mixer and a MOS-450 spectrophotometer equipped with a Xe 

arc lamp and a PMT detector. All monochromatic traces for the reaction of 

chloramines with TNB were collected at λmax = 412 nm using a 1 cm optical path 

length.  Single-mixing mode was used for all the stopped-flow experiments. The 

pseudo-second-order rate constants were obtained by nonlinear least-squares 

fits of the data with KaleidaGraph 3.6 (Synergy Software). All stopped-flow kinetic 

traces represent the average of at least nine mixing cycles.   

 

2.3.5 Confocal microscopy and flow-cytometry. The cells were imaged with 

an Olympus FLUOVIEW (FV500) microscope which is configured on an Olympus 

BX-61 motorized research microscope. The system has laser lines in the green 

(488 nm), red (543 nm), far-red (633 nm) spectrum. The microscope is 
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configured for phase contrast and differential interference contrast (DIC) in 

addition to fluorescence. Images were analyzed with confocal assistant software 

(LaserSharp computer software). 

 

The extent of apoptosis and necrosis was quantified using the Annexin V-FITC 

Apoptosis Detection Kit (eBioscience, USA). Briefly, A549 cells treated with HOCl 

and SCN- (according to the protocol in Table 2.1) were harvested by scrapping 

and re-suspended binding buffer (10 mM Hepes, pH 7.4; 140 mM NaCl and 2.5 

mM CaCl2). The cells were then doubly-stained with Annexin V-FITC and 

propidium iodide prior to quantification. Cell fluorescence was read with a Becton 

Dickinson LSR II flow-cytometer (housed at OMRF, OKC) and a Beckman 

Coulter Elite ESP flow-cytometer (housed in the department chemistry and 

biochemistry, University of Oklahoma).   

 

2.3.6 Cell assay and Protocol. A549 human lung carcinoma cells (American 

Type Culture Collection, Manassas, VA) were cultured in RPMI 1640 medium 

supplemented with 10% FBS, 50 unit/mL of penicillin and 50 µg/mL of 

streptomycin at 37 oC in a 5 % CO2 humidified incubator. They were seeded in T-

25 flasks.  After three days, the cells approached confluence and to keep them 

proliferating, they were subcultured. This included the removal of the old 

medium, followed by washing with phosphate buffer. The cells were then 

detached by the addition of 1 mL 0.25% trypsin/EDTA solution and gently tapping 

the sides of the flask. Once the cells were detached, they were then mixed with 
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fresh medium to form a cell suspension.  The cell suspension was further diluted 

(1:10) with fresh medium and stored in the incubator at 37 oC. For the confocal 

experiments, A549 cells were subcultured in 4-well plates 24 hours prior to the 

experiment at a density of 104 cells per mL. After 24 hours, the cells were treated 

with SCN-, OSCN- and/or HOCl according to the protocol below (Table 2.1). The 

protocol was adopted in order to ensure that all samples including the controls 

were handled the same way:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



43 

Table 2.1: Protocol adopted for treatment of A549 cells (controls and 

experiments) 

 

1 2 3 5 5 6 7 
HOCl SCN- HOCl + 

SCN- 
SCN- + 
HOCl 

OSCN- Buffer No 
treatment 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Add 800 µl 
(50 mM 
HOCl) 

Add 800 µl 
(50 mM 
SCN) 

Add 800 
µl (50 mM 

HOCl) 

Add 400 µl 
(100 mM 

SCN) 

Add 800 µl 
(50 mM 
OSCN) 

Add 800 µl 
(medium)  

Add 400 µl 
(Dye)  

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

Add 400 µl 
(100 mM 

HOCl) 

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

Incubate 10 
min at 37 

oC 
Remove 
medium 

Remove 
medium 

Remove 
medium 

Incubate20 
min at 37 oC 

Remove 
medium 

Remove 
medium 

Imaging 

Wash 
(PBS) 

Wash 
(PBS) 

Wash 
(PBS) 

Remove 
medium 

Wash 
(PBS) 

Wash 
(PBS) 

- 

Add 800 µl 
(medium)  

Add 800 µl 
(medium)  

Add 800 
µl (500 

mM SCN) 

Wash (PBS) Add 800 µl 
(medium)  

Add 800 µl 
(medium)  

- 

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

Add 800 µl 
(medium)  

Incubate 
20 min at 

37 oC 

Incubate 
20 min at 

37 oC 

- 

Remove 
medium 

Remove 
medium 

Remove 
medium 

Incubate 20 
min at 37 oC 

Remove 
medium 

Remove 
medium 

- 

Wash 
(PBS) 

Wash 
(PBS) 

Wash 
(PBS) 

Remove 
medium 

Wash 
(PBS) 

Wash 
(PBS) 

- 

Add 400 µl 
(Dye)  

Add 400 µl 
(Dye)  

Add 400 
µl (Dye)  

Wash (PBS) Add 400 µl 
(Dye)  

Add 400 µl 
(Dye)  

- 

Incubate 
10 min at 

37 oC 

Incubate 
10 min at 

37 oC 

Incubate 
10 min at 

37 oC 

Add 400 µl 
(Dye)  

Incubate 
10 min at 

37 oC 

Incubate 
10 min at 

37 oC 

- 

Imaging Imaging Imaging Incubate 10 
min at 37 oC 

Imaging Imaging - 

- - - Imaging - - - 
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CHAPTER 3: SMALL MOLECULAR, MACROMOLECULAR AND CELLULAR 

CHLORAMINES REACT WITH THIOCYANATE TO GIVE THE HUMAN 

DEFENSE FACTOR HYPOTHIOCYANITE 

 

 
3.1 Introduction 
 
This chapter describes the reactions of thiocyanate (SCN-) with chloramines of 

free amino acid (taurine), low molecular protein (ubiquitin) and cellular (E. coli).  

The main question we sought to answer was whether chloramines are capable of 

oxidizing SCN- to OSCN- at physiological conditions pH 7.4. Peroxidase enzymes 

(including myeloperoxidase (MPO), eosinophil peroxidase (EP), lactoperoxidase 

(1) and salivary peroxidase (SP)) play an important role in human defense 

mechanisms (2-3). They catalyze the oxidation of halides (Cl- and Br-) and 

pseudohalide (SCN-) by hydrogen peroxide to produce HOCl, HOBr and HOSCN 

respectively which are implicated in human health and disease (2, 4-7).  

 

     

        

 

The hypohalides HOCl, HOBr and HOSCN have pKa values of 7.6; 8.5 and 5.3 

respectively (8), which means that at physiological pH conditions (pH = 7.4) they 

exist as mixtures of both the acid (i.e. HOX) and anion (OX-) forms.  HOCl and 

HOBr are powerful oxidizing agents that are responsible for the killing of invading 

pathogens (9-13).  However, it has been hypothesized that the over production of 

X- (X= Cl, Br or SCN) + H2O2                              OX- + H2O     (1) 
    

Peroxidase 
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these oxidants can initiate host tissue damage and this has been detected in a 

wide range of inflammatory diseases including atherosclerosis, kidney disease, 

asthma and cystic fibrosis (9-10, 12-13). It has been reported that at 

physiological halide ion concentrations (100-140 mM Cl-, 20-100 µM Br- and ≤ 

120 µM SCN-) approximately 50% of the H2O2 consumed by MPO oxidizes SCN-  

with most of the remaining H2O2  (45%) being used to oxidize Cl- (14-16).   

 

 
While many studies have focused on HOCl and HOBr, the role of SCN--derived 

oxidants (e.g. OSCN-) in human health and disease remains poorly understood 

(11-13). This is due in part to the lack of specific biomarkers for SCN--mediated 

damage and challenges associated with the characterization and quantification of 

OSCN-. Recently, the importance of SCN--derived oxidants was demonstrated by 

the detection of elevated levels of carbamylated proteins in atherosclerotic 

plaques (17).  

 

NCO- + protein-NH2                                  protein-NHCONH2                     (2) 

 

This was attributed to the reaction of the amino groups with OCN-, a minor 

product generated by the peroxidase system. In addition to the peroxidase-

catalyzed system, OSCN- can also be produced cleanly by the non-catalytic 

reaction of HOCl and HOBr with SCN- (18-19).  A study that sought to reconcile 

conflicting reports in literature regarding the spectra of OSCN- reported that it has 

a unique UV absorption spectra (λmax = 376 nm, ε = 26.5 M-1cm-1) (20).   To date, 
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some of the known methods for the production of OSCN- include the peroxidase-

catalyzed oxidation of SCN- by H2O2 at pH 7 (Eq. 1); the hydrolysis of (SCN)2 at 

pH 13 and the oxidation of SCN- by OX- (X = Cl and Br) at pH 13 (20).  

 

In the present study, we demonstrate another method for the production of 

OSCN- through the oxidation of SCN- by chloramines (free small molecule, 

protein-bound and cellular).   

 

 

 

This method has potential biological implications since a recent study has 

suggested that in human plasma like environment, HOCl would preferentially 

react with proteins thereby producing protein chloramines as one of the 

significant initial products (12). The chloramines ultimately initiate secondary 

damage as they hydrolyse to aldehydes and radical intermediates or transfer of 

the chlorine to other substrates (eq. 5). It is conceivable that a small molecule 

such as SCN-, especially in environments where it is present in high 

concentrations (e.g. oral cavity and plasma of smokers), will be among the 

primary targets of these protein-bound chloramines. We propose that the 

reaction of SCN- with chloramines repairs some of the damage inflicted on 

proteins by HOCl. 

 

 
 

RNHCl + SCN- + H3O
+                            OSCN- + Cl- + RNH3

+      (3) 
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3.2 Results and discussion 
 
 
3.2.1 Reaction of small molecular chloramines with thiocyanate 
 
In a recent publication, Calvo, et al. (23) studied the nucleophilic substitution 

reactions of N-chloramines.  The study involved the mechanism of the reaction of 

taurine chloramine (TauCl) with thiocyanate (SCN-). While they succeeded in 

showing that the reaction was slow around physiological pH conditions (128.6 ± 

0.1 M-1s-1 at pH 7.4) they however were unable to identify the reaction product(s).  

They concluded that the product was possibly unstable chlorine thiocyanate 

(ClSCN) which rapidly decomposes to form thiocyanogen (SCN)2. Based on 

previous studies that were published by our laboratory in which it was observed 

that the reactions of the electrophilic halogenating agents (HOCl and HOBr) with 

SCN- at high pH conditions (18-19) produced hypothiocyanite (OSCN-), we 

wondered whether TauCl reacted with SCN- to give the same product?  

 
Since OSCN- is already known to have a unique spectroscopic signature (λmax = 

376 nm,  ε = 26.5 M-1cm-1) (20), we employed the UV-vis technique to identify the 

product of TauCl with SCN-. The additional advantage of this approach was that 

no interference from TauCl ((λmax = 252 nm, ε = 429 M-1cm-1) was expected.  The 

main challenge however was the fact that OSCN- has a small molar extinction 

coefficient. To resolve this issue we used two approaches, first we employed a 

spectrophotometric cell with a long (effectively 1 meter) pathlength which 

enabled us to use low (physiologically relevant) concentrations of TauCl and 

SCN- [TauCl]0 = 50 µM  and 50 ≤ [SCN]0 ≤ 250 µM (Figure 3.1). The range of 
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[SCN-] we used is comparable to the normal reference values in human 

physiological fluids (33.5 ± 25.4 and 111.2 ± 92.1 µM in  plasma, and 542 ± 406 

and 1655 ± 841 µM in saliva, for smokers and non-smokers, respectively) (24).  

Similar results to those of Figure 3.1 were obtained for [TauCl]0 = 80 µM  and 0.5 

≤ [SCN]0 ≤ 5 mM, with chemical yields of OSCN- of  27-100%  (Figure 3.2). In 

both cases we successfully confirmed our suspicion that TauCl was capable of 

oxidizing SCN- to OSCN-.    
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Figure 3.1.  UV-vis spectra obtained for the reactions of TauCl (50 µM) with 

SCN- (50-250 µM) in phosphate buffer (100 mM, pH 7.4) at 20 oC. The spectra 

were recorded with a 1 meter fiber optic cell. The chemical yield of OSCN- is 

indicated versus [SCN-]0. 
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Figure 3.2.  UV-vis spectra obtained for the reactions of TauCl (80 µM) with 

SCN- (0.5-5.0 mM) in phosphate buffer (100 mM, pH 7.4) at 20 oC. The spectra 

were recorded with a 1 meter fiber optic cell. The chemical yield of OSCN- is 

indicated versus [SCN-]0. 

 

The second approach we took to identify the product of TauCl with SCN- was to 

use a 10 cm pathlength spectrophotometric cell which allowed us to use high 

concentrations of the reactants (SCN- and TauCl [SCN-] = 10 mM and [TauCl]0 = 

0.25, 0.50, 1.0, and 2.0 mM (Figure 3.3)). The main concern with this approach 

was that it has been reported previously that the presence of excess SCN- 

accelerates the decomposition of OSCN- (25). In his study, Thomas (25) 

observed that at high concentration (0.1-1 M) SCN-, the decomposition of OSCN- 

(generated by an enzyme system LPO+SCN-+H2O2) was instantaneous.  At 

intermediate concentrations (1-10 mM SCN-), the decomposition appeared to be 

first order with respect to [OSCN-]. At low concentration (0.2-1 mM SCN-), the 



52 

decomposition was second order with respect to [OSCN-]. It was observed that 

by keeping the concentration of SCN- constant (10 mM) and increasing the 

chloramine concentration 0.25 ≤ [TauCl]0 ≤ 2.0 mM the yield of OSCN- appears 

to be first-order (Figure 3.3). 
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Figure 3.3.  Chemical yield of OSCN- for [SCN] = 10 mM and [TauCl]0 = 0.25, 

0.50, 1.0, and 2.0 mM in phosphate buffer (100 mM, pH 7.4) at 20 oC. 

The observed inverse relationship between the yield of OSCN- upon the [TauCl]0 

indicate that OSCN-  is capable of further reaction with TauCl resulting in over-

oxidized products  (18-19).   
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The kinetics of the reaction of OSCN- with TauCl at pH 7.4 was briefly 

investigated. One of the challenges we encountered was that in all the existing 

methods for OSCN- preparation, excess SCN- (a competing reductant for TauCl) 

is required. We chose to synthesize OSCN- using the LPO-catalyzed system 

since it is a more efficient method for preparing high (mM) concentrations of 

OSCN-.that are relatively free of excess SCN- and over-oxidation products (20).  

The LPO-catalyzed oxidation of 5.0 mM SCN- by 5.0 mM H2O2 produced 3.5 mM 

OSCN-. No attempts were made to destroy unreacted H2O2 that remained after 

catalysis by the addition of catalase because we did not know the effects of 

catalase on the TauCl (26).  Also the possible reaction of H2O2 with SCN- was 

ignored because it is known that the uncatalyzed reaction is very slow (27-28).  

Figure 3.4 illustrates the reaction of equimolar concentrations of TauCl and 

OSCN- (mixed second-order conditions). The reaction was monitored at two 

wavelengths, 252 nm (filled circles, λmax for TauCl, ε = 429 M-1cm-1) and 376 nm 

(open circles, λmax for OSCN-, ε = 26.5 M-1cm-1).  

 

 

 

 

RNHCl + OSCN- + H2O                            “O2SCN-“+ Cl- + RNH3
+               (4) 
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The observed absorption change at 252 nm (∆ Abs(obs) = 0.38 AU) was 

comparable to the change expected for the consumption of 0.74 mM TauCl (∆ 

Abs(calc) = 0.38 AU). The observed absorption change at 376 nm (∆ Abs(obs) = 

0.008 AU) was about half that expected for the consumption of 0.74 mM OSCN- 

(∆ Abs(calc) = 0.019 AU). The apparent discrepancy between the expected and 

the observed change in absorbance is possibly due to some reaction products.  

In order to fit the kinetic data to a mixed second-order rate equation (Figure 3.4, 

solid lines), we assumed that the absorption changes were due to the 

consumption of 0.74 mM of both TauCl and OSCN-. Given the order-of-

magnitude difference in absorptivities of TauCl and OSCN-, the data at 252 nm 

are more precise than the data at 376 nm. The data show that TauCl reacts 

much faster with OSCN- (2.8x103 M-1s-1) than with SCN- (128.6 M-1s-1).  We note 

that the reaction is more complicated and possibly involves a lot of intermediates; 

as such a detailed mechanistic study is necessary for a better understanding of 

the overall redox cascade.   
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Figure 3.4. Concentrations determined at 252 nm (solid circles, λmax for TauCl) 

and 376 nm (open circles, λmax for OSCN-) versus time for the reaction of 

[TauCl]0 = 0.74 mM and [OSCN-]0 = 0.74 mM in phosphate buffer (100 mM, pH 

7.4) at 20 oC. The OSCN- was prepared by the LPO-catalyzed oxidation of 5 mM 

SCN- by 5 mM H2O2 to give a 3.5 mM stock solution of OSCN- (determined 

spectrophotometrically). The solid lines are imperfect nonlinear least-squares fit 

of the experimental data (for clarity, 1% and 10% shown for TauCl and OSCN-, 

respectively) using a mixed second-order rate equation k = (1.182 ± 0.002) x 103 

and (2.84 ± 0.03) x 103 M-1 s-1 at 276 and 376 nm, respectively). The dashed line 

is the expected absorption change for a second-order absorption decay for k = 

128.6 ± 0.1 M-1 s-1 (the independently measured rate constant for the reaction of 

TauCl and SCN- under the same reaction conditions). 
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 3.2.2 Reaction of protein chloramines with thiocyanate 

It was not possible to identify products of the reaction of protein derived 

chloramines with SCN- by following changes in the UV-vis at 376 nm (i.e. OSCN-) 

due to its low molar absorptivity compared to the protein. To address this 

limitation, we employed a kinetic approach taking advantage of the fact that thiols 

are preferred targets of OSCN-with rate constants ranging between 103 – 106 M-

1s-1 reported (8). We selected 5-thio-2-nitrobenzoic acid (TNB) as a model 

compound for thiols because of its high molar absorptivity (ε412 = 14,150 M-1cm-1) 

which allowed us to follow the reaction at low (µM) concentrations.  TNB was 

used both to quantify the concentration of protein chloramines and also to 

measure the rate constant of the reaction of chloramines with OSCN-.  Before 

investigating the reaction of SCN- with protein chloramines, OSCN- was 

independently synthesized using the enzyme system (LPO + SCN- + H2O2) (20) 

and the reaction of TauCl with SCN- (which was shown in section 2.3.1 to 

produce OSCN-).  The kinetic measurements in each case (Figure 3.5 – 3.6) for 

the reaction of OSCN- with TNB, resulted in a second-order rate constant of 105 

M-1s-1.   
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Figure 3.5.  Observed absorbance decrease at 412 nm for the reaction of 

OSCN- (4 µM, produced by the LPO-catalyzed oxidation of SCN- by H2O2) with 

TNB (56 µM) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 20% of the data 

(black circles) are illustrated. 
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Figure 3.6.  Observed absorbance decrease at 412 nm for the reaction of 

OSCN- (5.5 µM, produced by the uncatalyzed oxidation of SCN- by TauCl) with 

TNB (56 µM) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 10% of the data 

(black circles) are illustrated. 
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Ubiquitin (Ub) a small protein (8.5 KDa) found in cells of plants and animals 

(including humans) where it’s used mainly to label damaged or old proteins 

earmarked for degradation was chosen for the protein chloramines investigation 

(29). It is a very stable protein that can withstand extreme temperatures and pH 

conditions (30-31). Its selection for our investigation was based purely on the fact 

that it has no thiols, only one methionine and loaded in amino groups (seven 

lysines). Since methionine (Met) reacts much faster with HOCl (3.8 x 107 M-1s-1) 

than any of the other groups (36), we decided that it would be best to block the 

methionine before mixing the protein with HOCl. This undertaking was important 

for two reasons including the reduction of the non-recoverable oxidizing 

equivalence and also the prevention of the subsequent competitive reaction of 

chloramines with Met (a reaction that has recently been shown to produce a 

reactive dehydromethionine derivative) (31). A procedure involving the use of 

performic acid was employed to block the N-terminal methionine by oxidizing It to 

a sulfone (hereafter Ub*) (22).  After treating Ub* with HOCl for various amounts 

of time the amount of protein chloramines (Ub*Cl) was quantified by TNB 

analysis. We found that the yield of the recoverable oxidizing equivalence 

(Ub*Cl) varied between 33-41% (based upon the amount of HOCl).  This yield is 

consistent with the 45% recovery reported by Davies and Hawkins for lysozyme 

chloramines. The rest of the HOCl oxidizing equivalence is lost through the 

oxidation of other protein side chains such as tyrosine and the decomposition of 

the protein chloramines. In the case of lysozyme chloramines, Davies and 

Hawkins observed that about 50% of the protein chloramines decomposed in ca 
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30 min (32-33).  We measured the rate constant for the reaction of Ub*Cl with 

TNB and found that the kinetics were biphasic with pseudo-second order rate 

constants of ca. 103 and 103 M-1s-1 (Figure 3.7) which are comparable with 1.38 ± 

0.08 x 104 M-1s1 for TauCl with TNB (Figure 3.8).  To assess whether OSCN- was 

formed by the reaction of protein chloramines with SCN-, Ub*Cl was reacted with 

excess SCN- followed by the reaction of the mixture with TNB.  A rate constant of 

3.73 ± 0.01 x 105 M-1s1 which is similar to the one independently measured for 

authentic OSCN- with TNB was measured (Figure 3.9).   

 



61 

0.45

0.5

0.55

0.6

0.65

0.7

0 5 10 15 20 25 30 35

A
bs

time (s)

y = m1+m2*exp(-m3*m0)+m4*exp(-m5*m0)

ErrorValue

0.000114130.45489m1 

0.000509120.10181m2 

0.0100091.0467m3 

0.000258680.11398m4 

0.000454150.094914m5 

NA0.0027687Chisq

NA0.99939R

 

 

Figure 3.7.  Observed biexponential (decrease-decrease) absorbance decrease 

at 412 nm for the reaction of Ub*Cl (6 µM, based upon the amount of HOCl used) 

with TNB (68 µM) at pH 7.4 and I = 1.0 M. A biexponential fit (red) and 10% of 

the data (black circles) are illustrated. 
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Figure 3.8.  Observed absorbance decrease at 412 nm for the reaction of 

TauCl (208 µM) with TNB (16 µM) at pH 7.4 and I = 1.0 M. A first-order fit (red) 

and 2% of the data (black circles) are illustrated. 
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Figure 3.9.  Observed absorbance decrease at 412 nm for the reaction of 

Ub*Cl (6.75 µM) with SCN- (0.5 mM) for 20 minutes, followed by reaction with 

TNB (58.66 µM) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 10% of the 

data (black circles) are illustrated. 
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3.2.3 Reaction of cellular chloramines with thiocyanate 
 
The investigation was extended to include cellular-derived chloramines using E. 

coli (MG1655) as a model bacteria.  Chlorination of bacteria to kill them is one of 

the mechanisms used by human leucocytes in vivo (34). The chlorinating agents 

used include HOCl produced by the enzyme system (MPO+Cl-+H2O2) and 

chloramines (e.g. TauCl). The chlorination of the bacterial surfaces was achieved 

by incubating 109 cell/ml E. coli (MG1655) with 1 mM HOCl for 5 h in phosphate 

buffer at physiological pH conditions.  After incubation, the chlorinated cells were 

washed and centrifuged with phosphate buffer to remove any unreacted HOCl.  

TNB assay was then used to quantify the generated chloramines on the surface 

of the cells and 42% of the oxidizing equivalence (based on the initial 

concentration of HOCl) was recovered. Previously some authors (21) have 

suggested that the reaction of chloramines with TNB is usually complete during 

mixing time, however it was reported recently (34) that a contact time of at least 8 

min was necessary for the reaction of chlorinated bacteria with TNB. We 

conducted a few trial experiments by allowing between 5-15 min waiting period 

after mixing the chloramines with TNB. We found that approximately 12 min 

contact time was optimal for the reaction of cellular chloramines with TNB under 

the conditions of our experiments. In measuring the rate constant(s) for the 

reaction of chlorinated cells with TNB, we observed biphasic kinetic trace, 

possibly indicating the reaction of different chloramines with TNB (Figure 3.10). 

The chlorinated cells were then treated with 2.5 mM SCN- and filtered through a 

0.2 µm polyamide filter. The supernatant was reacted with TNB and 71% of the 
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oxidizing equivalence was recovered.  The rate constant of the oxidant in the 

supernatant with TNB was measured and found to be 9.40 ± 0.01 x 105 M-1s1 

(Figure 3.11) a value consistent with the presence of OSCN-. 
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Figure 3.10.  Absorbance decrease at 412 nm for the reaction of chlorinated 

E. coli (6 µM, based upon the HOCl used) with TNB (60.8 µM) at pH 7.4 and I 

= 1.0 M. A biexponential fit (red) and 10% of the data (black circles) are 

illustrated. The kinetics are apparently multi-phasic. 
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Figure 3.11.  Observed absorbance decrease at 412 nm for the reaction of 

chlorinated E. coli (6 µM, based upon the HOCl used) with SCN- (2.5 mM) for 

12 minutes, followed by reaction with TNB (58.66 µM)  at pH 7.4 and I = 1.0 M. 

A first-order fit (red) and 50% of the data (black circles) are illustrated. 
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3.2.4 Possible biological significance of the reduction of chloramines by 

SCN- and OSCN- 

The formation of HOCl in human blood plasma has been a subject of a number 

of studies (5, 34-36). The investigations have focused on quantifying the 

consumption of known primary targets of HOCl such as thiols, antioxidants and 

amines.  Efforts have also been made to identify and quantify the decomposition 

products of chloramines (products of HOCl reaction with amines) such as oxo-

aldehydes and radical intermediates (37-39). The question that remained 

unanswered was, given the number possible HOCl targets in a complex 

biological environment such as plasma, which are the major primary targets?  To 

shed some light on this matter, Pattison, et al. has developed a mathematical 

model which can be used to predict the fate of HOCl in plasma (12).  The model 

included plasma proteins (albumin), free amino acids, antioxidant (ascorbate) 

and SCN-.   

 

The model predicts that proteins are the major targets consuming about 94% of 

HOCl which results in 5% yield of protein chloramines. This is in contrast with the 

suggestion by some studies that free amino acid chloramines are the major 

products of HOCl oxidation in plasma (37, 39). Perhaps one of the most 

important conclusions of the kinetic model was that chloramines formed on cell 

surfaces are significant, thus future studies should consider the role of protein-

bound chloramines in mediating oxidative damage. The data also indicates that 

antioxidants have a low efficacy to prevent HOCl-mediated plasma damage. 
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Depending upon the individuals smoking habits, the model predicted that about 

2-8% of HOCl is consumed by SCN- to form OSCN-. The kinetic model however 

suffers from some limitations. These include the use of experimental rate 

constants for small molecules despite the evidence that proteins were a major 

target of HOCl, not making distinctions between intermolecular reactions 

involving two small molecules, a small molecule and a protein, or between two 

proteins. The reactions involving two proteins relative to the other reaction 

pathways are presumably kinetically disfavored.   

 

The redox cascade that begins with HOCl produces chemically inert products 

(e.g. chlorotyrosine and methionine sulfoxide) and also reactive intermediates 

(e.g. free and protein-bound chloramines and OSCN-). Chloramines are the 

major species resulting from HOCl-attack on proteins in biological fluids such as 

plasma (12). The formation of protein-bound chloramines can result in 

irreversible alterations to protein structure and function (33). The mechanism 

proposed for this type of modification result in the formation of an aldehyde (33). 

 

 

 
 
 
 

The present study suggests that the reaction of chloramines with SCN- to 

produce OSCN- may be important biologically as the rate constant of 129 M-1s1 is 

comparable to that of the best nucleophiles such as cysteine (200-900 M-1s1) and 

 
RNHCl                      R-CH=NH                   R-CH=O + NH3        (5)                

-HCl +H2O 
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methionine (40-300 M-1s1) at pH 7.4. This reaction ensures that no permanent 

alterations of protein amino groups occur. On the other hand, the formation of 

OSCN- is potentially harmful as it preferentially targets thiols.  Recently, it has 

been suggested that the selective targeting of thiols by OSCN- may play a major 

role in inflammation–induced oxidative damage (40). We found that OSCN- 

reacts with chloramines much faster than SCN-, possibly producing the over-

oxidized product(s). These over-oxidized products presumably hydrolyze to give 

inert products. Between the repair of the damage caused by HOCl (through the 

formation of chloramines) and the potential subsequent attack on the thiol groups 

by OSCN-, the biological implication of the reaction of chloramines with SCN- in 

human health/disease remains unclear.  

 

 
3.3 Conclusions 
 
The present study demonstrates that chloramines (i.e. major secondary products 

of HOCl-mediated attack on proteins) are capable of oxidizing SCN- to OSCN- (a 

human defense factor).  This reaction is important because it suggests that in 

vivo SCN- potentially repairs some of the HOCl inflicted damage on the proteins.  

The implication of the OSCN- formation on human health/disease remains 

unclear since OSCN- itself oxidizes thiols more efficiently than either HOCl or 

HOBr.  Evidence showing that OSCN- may play a critical role in the health of 

individuals with elevated levels of SCN-arising from cigarette smoking has been 

provided (17). Surprisingly, this study also reports that OSCN- reacts with a 

chloramine (TauCl) much faster than SCN-, a reaction which we suspect 
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produces the over-oxidized product(s). These over-oxidized products presumably 

hydrolyze to give inert products.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



71 

3.4 References 
 
1. Hoyano, Y., Bacon, V., Summons, R.E., Pereira, W.E., Halpern, B., 

Duffield, A.M. (1973) Chlorination studies .4. reaction of aqueous 

hypochlorous acid with pyrimidine and purine bases, Biochem. Biophys. 

Res. Commun. 53, 1195-1199. 

2. Pattison, D. I., Davies, M.J. (2006) Reactions of myeloperoxidase-derived 

oxidants with biological substrates: Gaining chemical insight into human 

inflammatory diseases, Curr. Med. Chem. 13, 3271-3290. 

3. Davies, M. J., Hawkins, C. L., Pattison, D. I., and Rees, M. D. (2008) 

Mammalian heme peroxidases: From molecular mechanisms to health 

implications, Antioxid. Redox Signaling 10, 1119-1234. 

4. Mainnemare, A., Megarbane, B., Soueidan, A., Daniel, A., Chapple, I. L. 

C. (2004) Hypochlorous acid and taurine-N-monochloramine in 

periodontal diseases, J. Dent. Res. 83, 823-831. 

5. Venglarik, C. J., Giron-Calle, J., Wigley, A. F., Malle, E., Watanabe,N., 

Forman, H. J. (2003) Hypochlorous acid alters bronchial epithelial cell 

membrane properties and prevention by extracellular glutathione, J. Appl. 

Physiol. 95, 2444-2452. 

6. Kruidenier, L., Kuiper, I., Lamers, C. B. H. W.,  Verspaget, H. W. (2003) 

Intestinal oxidative damage in inflammatory bowel disease: semi-

quantification, localization, and association with mucosal antioxidants, J. 

Pathol. 201, 28-36. 



72 

7. Krasowska, A., Konat, G. W. (2004) Vulnerability of brain tissue to 

inflammatory oxidant, hypochlorous acid, Brain Res. 997, 176-184. 

8. Skaff, O., Pattison, D. I., Davies, M. J. (2009) Hypothiocyanous acid 

reactivity with low-molecular-mass and protein thiols: absolute rate 

constants and assessment of biological relevance Biochem. J. 422, 111-

117. 

9. Weiss, S. J., Test, S.T., Eckmann, C.M., Roos, D., Regiani, S. (1986) 

Brominating oxidants generated by human eosinophils, Science 234, 200-

203. 

10. Hawkins, C. L., Davies, M.J. (2005) The role of reactive N-bromo species 

and radical intermediates in hypobromous acid-induced protein oxidation, 

Free Radical Biol. Med. 39, 900-912. 

11. Pattison, D. I., Davies, M.J. (2004) Kinetic analysis of the reactions of 

hypobromous acid with protein components:implications for cellular 

damage and use of 3-bromotyrosine as a marker of oxidative stress, 

Biochemistry 43, 4799-4809. 

12. Pattison, D. I., Hawkins, C.L., Davies, M.J. (2009) What are the plasma 

targets of the oxidant hypochlorous acid? a kinetic modeling approach., 

Chem. Res. Toxicol. 22, 807-817. 

13. Thomas, E. L., Bozeman., P. M., Jefferson, M. M., King, C. C. (1995) 

Oxidation of bromide by the human leukocyte enzymes myeloperoxidase 

and eosinophil peroxidase: formation of bromamines, Journal of Biological 

Chemistry, 270, 2906-2913. 



73 

14. Thomas, E. L., Fishman, M. (1986) Oxidation of chloride and thiocyanate 

by isolated leukocytes, J. Biol. Chem. 261, 9694-9702. 

15. vanDalen, C. J., Whitehouse, M. W., Winterbourn, C. C., Kettle, A. J. 

(1997) Thiocyanate and chloride as competing substrates for 

myeloperoxidase, Biochem. J. 327, 487-492. 

16. Slungaard, A., Mahoney, J.R. (1991) Thiocyanate is the major substrate 

for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity, 

J. Biol. Chem. 266, 4903-4910 

17. Wang, Z., Nicholls, S.J., Stephen, J.; Rodriguez, E.R., Kummu, O., 

Horkko, S., Barnard, J., Reynolds, W.F., Topol, E.J., DiDonato, J.A., 

Hazen, S. L. (2007) Protein carbamylation links inflammation, smoking, 

uremia and atherogenesis, Nat. Med. 13, 1176-1184. 

18. Ashby, M. T., Carlson, A.C., Scott, M.J. (2004) Redox buffering of 

hypochlorous acid by thiocyanate in physiologic fluids, J. Am. Chem. Soc. 

126, 15976-15977. 

19. Nagy, P., Beal, J. L., Ashby, M. T. (2006) Thiocyanate is an efficient 

endogenous scavenger of the phagocytic killing agent hypobromous acid, 

Chem. Res. Toxicol. 19, 587-593 

20. Nagy, P., Alguindigue, S. S., Ashby, M. T. (2006) Lactoperoxidase-

catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation 

of hypothiocyanite by nuclear magnetic resonance and optical 

spectroscopy, Biochemistry 45, 12610-12616. 



74 

21. Calvo, P., Crugeiras, J., Rios, A., Rios, M.A. (2007) Nucleophilic 

substitution reactions of N-chloramines: evidence for a change in 

mechanism with increasing nucleophile reactivity, J. Org. Chem. 72, 3171-

3178. 

22. Tsuge, K., Kataoka, M., Seto, Y. (2000) Cyanide and thiocyanate levels in 

blood and saliva of healthy adult volunteers, J. Health Sci. 46, 343-350. 

23. Thomas, E. L. (1981) Lactoperoxidase-catalyzed oxidation of thiocyanate: 

equilibria between oxidized forms of thiocyanate, Biochemistry 30, 3273-

3280. 

24. Maskino, T., Fridovich, I. (1988) NADPH mediates the inactivation of 

bovine liver catalase by monochloroamine., Arch. Biochem. Biophys. 265, 

279-285. 

25. Wilson, I. R., and Harris, G. M. (1960) The oxidation of thiocyanate ion by 

hydrogen peroxide. I. The pH-independent reaction, J. Am. Chem. Soc. 

82, 4515-4517. 

26. Wilson, I. R., and Harris, G. M. (1961) The oxidation of thiocyanate ion by 

hydrogen peroxide .II. The acid-catalyzed reaction, J. Am. Chem. Soc. 83, 

286-289. 

27. Schmitt, H. P. (2006) Protein ubiquitination, degradation and the 

proteasome in neuro-degenerative disorders: No clear evidence for a 

significant pathogenetic role of proteasome failure in Alzheimer disease 

and related disorders, Med. Hypotheses 67, 311-317. 



75 

28. Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S., Shaw, K. 

(1994) Synthetic, structural and biological studies of the ubiquitin system: 

the total chemical synthesis of ubiquitin., Biochem. J. 299, 151-158. 

29. Ibarra-Molero, B., Loladze, V.V., Makhatadze, G.I., Sanchez-Ruiz, J.M. 

(1999) Thermal versus guanidine-induced unfolding of ubiquitin. an 

analysis in terms of the contributions from charge−charge interactions to 

protein stability, Biochemistry 38, 8138-8149. 

30. Pattison, D. I., Davies, M.J. (2001) Absolute rate constants for the reaction 

of hypochlorous acid with protein side chains and peptide bonds, Chem. 

Res. Toxicol. 14, 1453-1464. 

31. Ashby, M. T., Beal, J.L., Foster, S.B. (2009) Hypochlorous acid reacts with 

the N-terminal methionines of proteins to give dehydromethionine, a 

potential biomarker for neutrophil-induced oxidative stress, Biochemistry 

48, 11142–11148. 

32. Simpson, R. J. (2003) Proteins and proteomics: A laboratory manual, New 

York: Cold Spring Harbor 

33. Hawkins, C. L., Davies, M.J. (2005) Inactivation of protease inhibitors and 

lysozyme by hypochlorous acid: role of side-chain oxidation and protein 

unfolding in loss of biological function, Chem. Res. Toxicol. 18, 1600-

1610. 

34. Gottardi, W., Nagl, M. (2005) Chlorine covers on living bacteria: the initial 

step in antimicrobial action of active chlorine compounds., J. Antimicrob. 

Chemother. 55, 475-482. 



76 

35. Thomas, E. L., Grisham, M. B., and Jefferson, M. M. (1986) Preparation 

and characterization of chloramines, Methods Enzymol. 132, 569-585. 

36. Hawkins, C. L., Pattison, D.I., Davies, M.J. (2003) Hypochlorite-induced 

oxidation of amino acids, peptides and proteins, Amino Acids 25, 259-274. 

37. Pattison, D. I., Hawkins, C. L., Davies, M. J. (2007) Hypochlorous acid-

mediated protein oxidation: how important are chloramine transfer 

reactions and protein tertiary structure?, Biochemistry 46, 9853–9864. 

38. Hazen, S. L., d’Avignon, A., Anderson, M. A., Hsu, F. F., Heinecke, J. W. 

(1998) Human neutrophils employ the myeloperoxidase-hydrogen 

peroxide-chloride system to oxidise alpha-amino-acids to a family of 

reactive aldehydes: mechanistic studies identifying labile intermediates 

along the reaction pathway, J. Biol. Chem. 273, 4997-5005. 

39. Hawkins, C. L., Davies, M. J. (1999) Hypochlorite-induced oxidation of 

proteins in plasma: Formation of chloramines and nitrogen-centred 

radicals and their role in protein fragmentation, Biochem. J. 340, 539–548. 

40. Hazen, S. L., Hsu, F. F., d’Avignon, A., Heinecke, J. W. (1998) Human 

neutrophils employ myeloperoxidase to convert alpha-amino acids to a 

battery of reactive aldehydes: A pathway for aldehyde generation at sites 

of inflammation, Biochemistry 37, 6864-6873. 

41. Hawkins, C. L., Pattison, D.I., Stanley, N.R., Davies, M.J. (2008) 

Tryptophan residues are targets in hypothiocyanous acid-mediated protein 

oxidation Biochem. J. 416, 441-452. 

 

 



77 

CHAPTER 4: FORMATION OF STABLE ORGANIC DICHLORAMINES AND 

THEIR REACTIVITIES TOWARDS THIOLS AND OTHER ANTIOXIDANTS 

 

 
4.1 Introduction 
 
Hypochlorous acid (HOCl) is believed to be the main killing agent used by 

neutrophils during phagocytosis to eliminate invading bacteria (1). Proteins are 

the primary targets of HOCl due to their high concentrations (2-4). The rate 

constants for the reaction of HOCl with sulfur-containing side chains at pH 7.4 

(e.g. cysteine (k = 3.0 x 107 M-1s-1) and methionine (k = 3.8 x 107 M-1s-1)) and for 

amino groups (e.g. lysine and histidine) ranges between k >103-105 M-1s-1 (5). 

Chloramines, the intermediates of the reaction of HOCl with amines retain the 

oxidizing ability of HOCl (6-10).  Depending on the conditions, the reaction of 

HOCl with the amines produces monochloramines (RNHCl) and/or dichloramines 

(RNCl2).   

 

It has been more than 40 years since it was first discovered that oxidants, 

including chloramines play an important role in the human defense system (11-

12). Chloramines have since been recognized both for their ability to kill bacteria 

and also to regulate the inflammatory response. In 1930, the dichloramine of 

glycine was reported as efficient in the killing of Bacillus anthracis spores (13).  

To date, there have been a number of published studies describing the 

antibacterial and antifungal activities of chloramines (14-20).  It wasn’t until the 
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1990s that it was discovered that at sub-lethal levels, monochloramines down-

regulated proinflammatory chemokines, cytokines and enzymes (21-24). 

Taurine (2-aminoethanesulfonic acid, H2NCH2CH2SO3H) is abundant in 

mammalian tissue with concentrations of 22 mM in neutrophils and 26 mM in 

leukocytes (25). In neutrophils, taurine forms about 50% of the amino acid pool 

(26).  Among its various physiological functions, it is believed to be a scavenger 

for HOCl produced by the myeloperoxidase-H2O2-Cl- system (25). N-

chlorotaurine (TauCl) is the main product of the reaction of taurine with HOCl 

under physiological conditions. TauCl is milder, long-lived and more selective 

oxidant than HOCl and thus its formation is a mechanism by which cellular 

components are protected against an indiscriminant, more powerful oxidant i.e. 

HOCl (27).  Due to its unique characteristics (including its high concentration and 

superior stability), TauCl is considered a good representative of 

monochloramines (28-29).   

 

H3N
+CH2CH2SO3

- + HOCl           ClHNCH2CH2SO3H + H2O              (1)  

 

In addition to monochloramines, dichloramines (e.g. N-dichlorotaurine, TauCl2) 

can be formed.  Two pathways for formation of dichloramines are oxidation of 

taurine by excess HOCl and disproportionation of TauCl. In the presence of 

excess amounts of HOCl (HOCl:amine ratio ≥ 2), the reaction produces 

quantitative amounts of  N-dichloramines at 5.0 ≤ pH ≤ 8 (5, 30-31). 
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2HOCl + RNH2                 RNCl2 + 2H2O      (2) 

 

Under acidic (pH < 6.0) conditions monochloramines disproportionate to 

dichloramines.  

 

2RNHCl + H3O
+                  RNCl2 + RNH3

+ + H2O    (3) 

 

Zgliczynski et al. were the first investigators of TauCl that noticed its tendency to 

disproportionate to TauCl2 and taurine (32). A detailed kinetic study for the 

reversible disproportionation reaction of TauCl was later conducted by Antelo et 

al. (5). Prior studies by several authors on disproportionation reactions have 

proposed a 2 step mechanism (Scheme 1), including the protonation of TauCl in 

a pre-equilibrium step followed by the reaction of the protonated chloramine with 

an unprotonated form to give the corresponding  TauCl2 and taurine (33-35).  

 

Scheme 1 

ClH2N
+CH2CH2SO3

- + H2O      ClHNCH2CH2SO3
- + H3O

+ 

ClHNCH2CH2SO3
- + ClH2N

+CH2CH2SO3
-  H3N

+CH2CH2SO3
-  +  

Cl2NCH2CH2SO3
- 

 

Antelo et al. proposed that contrary to prior reports, the disproportionation of 

TauCl occurs by a concerted mechanism in which the proton and chlorine 

transfer takes place simultaneously in the transition state (Scheme 2) (5). This 
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conclusion was reached after observing that the reaction of protonated TauCl2 

with TauCl was subject to general base catalysis. This observation indicates that 

the mechanism is stepwise and involves a fast equilibrium reaction to give the 

protonated TauCl2 intermediate, followed by a slow proton transfer to the 

medium. However, Antelo et al. argued that since protonated TauCl2 is extremely 

acidic with a pKa of approximately -10 (5), its deprotonation in aqueous solutions 

would be diffusion-controlled. This implies that the proposed TauCl2 intermediate 

is too unstable to have a significant lifetime in aqueous solutions which supports 

a concerted mechanism in which deprotonation of a neutral chloramine molecule 

occurs simultaneously with chlorine transfer. 

 

Scheme 2 

ClH2N
+CH2CH2SO3

- + ClHNCH2CH2SO3
-  H3N

+CH2CH2SO3
- +  

Cl2NCH2CH2SO3
- 

 

It was reported that the second-order rate constant for disproportionation was 

1.51 x102 M-1s-1 pH 7.4 and equilibrium constant was 1.10 x106 M-1 pH 1.8 - 9. 

Following a successful synthesis of pure crystalline sodium salt of N-

chlorotaurine (ClHNCH2CH2SO3Na), Gottardi and Nagl investigated its chemical 

properties including disproportionation (36). A new equilibrium constant for the 

disproportionation reaction of 4.50 x106 M-1 at pH < 7 was reported. The rate 

constants for the reaction of N-chlorotaurine with nucleophiles (e.g. thiols) have 

been reported (1, 37), however the kinetic information involving dichloramines is 
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missing. Without measuring the actual rate constants, Thomas et al. (38) 

observed that RNCl2 reacted rapidly with thiols and Gottardi and Nagl were 

surprised to observe that RNCl2 was less efficient at chlorinating other amines 

compared to RNHCl (39). The observed lower potency of RNCl2 was attributed to 

mechanistic effects.  The reactive species for the reaction of RNHCl with RNH2 is 

RN+H2Cl (39). 

 

 PhCH2NH2 + RN+H2Cl    PhCH2N
+H2Cl + RNH2    (4) 

 

In the case of RNCl2, the authors believe that the presence of the two chlorine 

atoms on the same nitrogen, creates a high enough partial positive charge on the 

nitrogen thus negating the need to form the protonated reactive species 

RN+Cl2H. In a recent publication, Coker et al. investigated the stability and 

bactericidal activity of dichloramines likely to be formed within the phagosome 

(40). It was found that most were unstable (except those of lysine and taurine) 

and decomposed to give cytotoxic inorganic monochloramine (NH2Cl) and 

dichloramine (NHCl2). It was then proposed that this is probably one of the 

mechanisms by which HOCl kills ingested bacteria. The inorganic chloramines 

are lipophilic and thus can diffuse easily from the neutrophil and damage the host 

tissue. However, the study did not discuss the fate of the stable dichloramines 

(dichlorotaurine and dichlorolysine), but speculated that they eventually 

decompose via metal-catalyzed reactions to form radicals.   
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4.2 Results and discussion 
 

4.2.1 The chemical stability of dichloramines 

The stability of various small peptide dichloramines were investigated recently by 

Coker et al. (40). The compounds that were investigated include alanine, 

aspartate, glutamate, glycine, N-α-acetyl lysine and taurine. By monitoring 

changes in the UV maxima of dichloramines around 300 nm they were able to 

measure the half-lives for the decomposition of these dichloramines (Table 4.1).   

 
 
Table 4.1: Stabilities of monochloramines and dichloramines at pH 7.4 
 
 

Amine TauCl2 
half-life(min) 

TauCl 
half-

life(min) 
Alanine 61 <0.3 
Aspartate 14 <0.3 
Glutamate 38 <0.3 
Glycine >> 120 14 
Lysine >>120 >>120 
Taurine >>120 >>120 
   

 
The stabilities of chloramines were determined by monitoring changes in their UV 
absorption spectrum recorded every minute. In each case, 1 mM chloramine in 
PBS at pH 7.4 was used and the half-lives (t1/2) were estimated from their decay 
curves.  No rate law was proposed for the decomposition data. 
 

We confirmed their observation in this study by monitoring the stability of 

dichlorotaurine (TauCl2) at pH 7.4. No absorbance change at 300 nm (which 

indicates high stability) was observed over a period of 5 hours. Gottardi and Nagl 

observed that acidic solutions (pH ≤ 5.0) of dichlorotaurine had a half-life of over 
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30 days (39). The relatively high stability of dichlorotaurine warrants further 

investigation as to its eventual fate in vivo.  

 

4.2.2 Reactions of TauCl2 with thiols, ascorbate, methionine, and lysine 

Gottardi and Nagl were surprised to observe that dichlorotaurine was a poorer 

trans-halogenating agent than chlorotaurine (39).  We investigated its reactivity 

towards other important biological molecules such as thiols, methionine, 

ascorbate, and lysine. 5-thio-2-nitrobenzoic acid (TNB) was selected as a model 

compound for thiols in this study because of its high extinction coefficient (ε = 

14,150 M-1cm-1 at 412 nm). Much like TNB, ascorbate has a large extinction 

coefficient (ε = 14700 M-1cm-1) at 265 nm.  The second-order rate constants for 

the reaction of TNB and ascorbate with TauCl2 at various pH conditions were 

measured directly using the stopped-flow technique by following changes in 

absorbance at 412 and 256 nm respectively (Figure 4.1 and 4.2). The rate 

constant obtained at pH 7.4 for the reaction of TauCl2 with TNB reaction was 

later used in subsequent competition experiments to determine the rate 

constant(s) of the other nucleophiles which unlike TNB do not have a strong 

absorbance.   The reaction of excess TauCl2 with TNB exhibited pseudo-first-

order kinetic behavior and the fitting of the data to a single-exponential function 

allowed for the calculation of pseudo-second-order (pH-dependant) rate 

constants at pH 7.4) given in Table 4.2.  The low pH measurements were 

included in this work to represent what might happen in the phagosome as the 

pH drops (41-44).   
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Figure 4.1. Observed absorbance decrease at 412 nm for the reaction of 

TauCl2 (40 µM) with TNB (4 µM) at pH 7.4 and I = 1.0 M. A first-order fit 

(red) and 10% of the data (black circles) are illustrated. 
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Figure 4.2. Observed absorbance decrease at 265 nm for the reaction of 

TauCl2 (200 µM) with ascorbic acid (16 µM) at pH 7.4 and I = 1.0 M. A first-

order fit (red) and 10% of the data (black circles) are illustrated. 
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The rate constants for the reaction of TauCl2 with the other nucleophiles (nu) 

were estimated by competition kinetics with TNB as a competing substrate.  The 

concentration of each competitive nucleophile was varied while that of TNB was 

kept constant. At the point where the absorbance of TNB remains constant, the 

rates of the reaction of TauCl2 with TNB and the nucleophile are presumed to be 

the same and thus the following equation was used to determine the rate 

constant of the nucleophile: 

 

k (nu) [nucleophile] = k (TNB) [TNB]                               (5) 

 

Knowing the rate constant of TNB allowed for the rate constant(s) of TauCl2 with 

the other nucleophiles to be estimated.  Not surprising, the amino groups (which 

are relatively poor nucleophiles) were less reactive than thiols (good 

nucleophiles). The relatively poor reactivity of TauCl2 towards methionine 

compared to thiols was unexpected (Table 4.2).   
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Table 4.2: Pseudo-second-order rate constants for the reactions of TauCl2 with 

thiols, methionine, ascorbate, and lysine at pH 7.4.   

 

Nucleophile pKa HOCl TauCl2 TauCl 
TNB 4.38 - 1.1 x106 970 
Ascorbate - - 1.0 x103 13 
Methionine 9.21 3.8x107 102 39 
N-acetyl lysine - 5.0x103 67 nd 
S-methyl 
glutathione 

- - 164 nd 

S-methyl cysteine - - 110 nd 
N-acetyl cysteine 9.7 - 1.8x105 46 
Dithiothreol 9.3 - 1.8x105 48 
Cysteine 8.3 3.0x107 1.3 x106 205 
Glutathione 8.7  1.3 x106 115 
     

 
*nd= not determined 

 

4.2.3 pH dependency of the reaction of TauCl2 with TNB and ascorbate 

The effect of pH on the rates of reaction of ascorbic acid and TNB with TauCl2 

were investigated between pH 5.5 and pH 8.0.  In all cases, phosphate buffer 

was used to control the pH and the concentrations of TNB and ascorbic acid 

were kept constant at 4 and 16 µM respectively. As can be seen in a sample 

trace (Figure 4.1 and 4.2), only one reaction was observed under the conditions 

of excess TauCl2. Although the rates of oxidation of both ascorbate and TNB 

showed a dependency on the pH, differences in terms of the trend were 

observed. Over the pH 7.5-6.5 range, an inverse relationship between k 

(k=kobs/[TauCl2]) and the pH was observed for the reaction with TNB (Figure 4.3). 

The kinetic traces are given in Figure 4.4-4.7.  These results are not surprising 
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since the reaction of TNB with chloramines (TauCl and TauCl2) is believed to 

proceed via nucleophilic substitution.  At pH > 6.5, TNB is expected to be present 

entirely as the thiolate (pKa (SH) = 4.38) which is a good nucleophile. 
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Figure 4.3. pH-rate profile for the reaction of TauCl2 with TNB  
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Figure 4.4. Observed absorbance decrease at 412 nm for the reaction of 

TauCl2 (40 µM) with TNB (4 µM) at pH 5.9 and I = 1.0 M. A first-order fit (red) 

and 10% of the data (black circles) are illustrated. 
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Figure 4.5. Observed absorbance decrease at 412 nm for the reaction of 

TauCl2 (40 µM) with TNB (4 µM) at pH 6.2 and I = 1.0 M. A first-order fit 

(red) and 10% of the data (black circles) are illustrated. 
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Figure 4.6. Observed absorbance decrease at 412 nm for the reaction of 

TauCl2 (40 µM) with TNB (4 µM) at pH 6.7 and I = 1.0 M. A first-order fit (red) 

and 10% of the data (black circles) are illustrated. 
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Figure 4.7. Observed absorbance decrease at 412 nm for the reaction of 

TauCl2 (40 µM) with TNB (4 µM) at pH 7.1 and I = 1.0 M. A first-order fit (red) 

and 10% of the data (black circles) are illustrated. 

 

 

 



93 

Ascorbic acid has two pKa values of 4.15 and 11.4 (for pK1 and pK2 respectively).  

This means that depending on the pH, there is a maximum of three species that 

are present as a function of pH including H2A, HA- and A2- (equation 6 and 7).  

 

      (6) 

       (7) 

 

The three species rank as follows H2A < HA- << A2- in terms of their 

nucleophilicity. It is reported in the literature that at pH > 6.0, HA- and A2- are the 

present forms of ascorbic acid. Within the pH range studied, a plot of k 

(k=kobs/[TauCl2]) vs. pH showed a direct relationship (Figure 4.8).  The kinetic 

traces are given in Figure 4.9-4.12. This is expected since within the pH range of 

7.5-6.5, the dominant species is HA- which reacts with TauCl2.   
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Figure 4.8. pH-rate profile for the reaction of TauCl2 with ascorbate 
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Figure 4.9. Observed absorbance decrease at 265 nm for the reaction of 

TauCl2 (200 µM) with ascorbic acid (16 µM) at pH 7.2 and I = 1.0 M. A first-

order fit (red) and 10% of the data (black circles) are illustrated. 
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Figure 4.10. Observed absorbance decrease at 265 nm for the reaction of 

TauCl2 (200 µM) with ascorbic acid (16 µM) at pH 6.9 and I = 1.0 M. A first-

order fit (red) and 10% of the data (black circles) are illustrated. 
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Figure 4.11. Observed absorbance decrease at 265 nm for the reaction of 

TauCl2 (200 µM) with ascorbic acid (16 µM) at pH 6.8 and I = 1.0 M. A first-

order fit (red) and 10% of the data (black circles) are illustrated. 
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Figure 4.12. Observed absorbance decrease at 265 nm for the reaction of 

TauCl2 (200 µM) with ascorbic acid (16 µM) at pH 5.0 and I = 1.0 M. A first-

order fit (red) and 10% of the data (black circles) are illustrated. 

 
 
 
 
 
 
 
 
 



99 

 
4.2.4 Kinetics of the reaction of TauCl2 with TNB  
 
 
4.2.4.1 Concentration dependencies 
 
To determine the rate law for the reaction of TauCl2 with TNB, the reaction was 

followed under pseudo first-order conditions.  In all cases, the obtained kinetic 

traces fitted to single exponential equations.  Under conditions of excess [TauCl2] 

over [TNB], a plot of [TauCl2] versus kobs exhibits a linear dependency on [TNB] 

(Figure 4.13).  Similarly, a linear relationship was observed between [TNB] and 

kobs when [TNB] was used in excess over [TauCl2] (Figure 4.14).  Although the 

linear fits in both cases do not pass through the origin, they do however 

demonstrate that the reaction is first-order in both reactants.  The positive 

intercept in each plot is characteristic of a reversible reaction, probably indicating 

the equilibrium mixture of N,N-dichlorotaurine and N-chlorotaurine.  The slopes of 

these linear correlations give the same second-order rate constants of 1.3 ± 0.01 

x 106 M-1s-1 and 1.2 ± 0.01 x 106 M-1s-1 respectively.   

  
 
 



100 

20

30

40

50

60

70

15 20 25 30 35 40 45 50

k o
b

s (
s-1

)

[TauCl
2
] (uM)

 
 
Figure 4.13. [TauCl2] dependence of the rate law under pseudo-first order 

conditions. 
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Figure 4.14. [TNB] dependence of the rate law under pseudo-first order 
conditions. 
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4.2.4.2 pH dependency 
 
At pH > 5.5, a linear dependency on the [H+] was observed (Figure 4.15).  Under 

these pH conditions, TNB is a good nucleophile (pKa (SH) = 4.38) while TauCl2 is 

a good electrophile.  The drop in the rate with increasing pH is probably due to 

the decomposition of TauCl2 to TauCl.   
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Figure 4.15. Dependence of the observed second-order rate constant keff (M
-1s-1) 

for the reaction of TauCl2 with TNB on [H+] at pH > 5.5 
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4.2.4.3 Proposed mechanism 
 
 
Scheme 3: kinetics and mechanism of the oxidation of TNB with TauCl2 
 

 
             TNB-SH-   TNB-S2-  +  H+                             pKa = 4.38 

 
 TauCl2  + TNB-S2-                        products           k = 1.3 x106 M-1s-1 

 
 
 
 
4.2.5 Possible biological significance 
 
We have shown in this study that dichlorotaurine (TauCl2) is more reactive 

towards thiols and other biologically important compounds (e.g. ascorbic acid) 

than chlorotaurine (TauCl) under physiologically-relevant conditions. TauCl2 

reacts approximately 1000 times faster with thiols and about 100 times faster 

with ascorbate than TauCl at pH 7.4. It is conceivable that under conditions of 

oxidative stress, both mono- and dichloramines are formed. Surprisingly, unlike 

HOCl, TauCl2 despite being more reactive towards thiols was found to be less 

reactive towards methionine. Evidence for the formation of dichloramines in 

isolated neutrophil granules that were treated with hydrogen peroxide was shown 

by Thomas et al. (30). In a recent publication, Gottardi et al. (39) reported that 

TauCl2 was significantly more bactericidal than TauCl against gram-negative 

bacteria E. coli, P. aeruginosa and P. mirabilis.  
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Due to their hydrophilic nature, it has been suggested that chlorotaurines are 

restricted to the extracellular milleu which limits its potential cytotoxicity (45).  

Thomas et al. have shown that upon oxidation, the zwitterion taurine is converted 

to an organic anion (chlorotaurine and dichlorotaurine) which can be taken up by 

red blood cells through the anion transport system. After entering the cell, the 

chloramines react with glutathione (or other reductants) and are reduced back to 

taurine.  When the taurine chloramine uptake exceeds red blood cell glutathione, 

cytotoxicity ensues (38).  Cantin  later reported that the respiratory secretions of 

patients with cystic fibrosis (CF) and other inflammatory disorders have high 

taurine concentrations (22). The source of the taurine is believed to be the 

neutrophils which are recruited to the site of inflammation. They showed that 

chlorotaurines were taken up by lung epithelial cells where TauCl2 was observed 

to be most toxic (22).  They concluded that taurine plays a role in protecting lung 

epithelial cells against MPO-derived oxidants such as HOCl through the 

formation of the less toxic monochlorotaurine.  However, the protective effect is 

significantly decreased in the presence of excess HOCl and in acidic milieu due 

to the formation of the more reactive TauCl2.   

 

It is suggested in the literature that phagocytosis is a highly complex and highly 

regulated process (44). Although it has been studied extensively, many of the 

previous studies have neglected to consider the various stages of phagocytosis 

(44). Broadly, it can be divided into three main processes including 

internalization, acidification and completion of phagosomal-endosomal fusion 
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(44).  The actual changes in the intraphagosomal pH are still a subject of debate 

as studies continue to report conflicting results.  Earlier studies that employed pH 

sensitive dyes agreed that the pH of the phagosome dropped significantly but 

varied on the extent of the pH reduction.  It was noted that low pH enhances host 

defenses as it prevented microbial growth and also increases the activity of the 

degradative enzymes. Over 100 years ago, Metchnikoff observed using 

particulate litmus that the ingested organism inside the phagocyte changed from 

blue to red which meant that an acid reaction within the cell may have been 

responsible for the death of the ingested organism (46-47).  Subsequently, Rous 

using mammalian leukocytes concluded that the intracellular pH may be as low 

as 3 (41-42).  Later, Sprick (48) , Pavlov and Solov’ev (49), Jacques and Bainton 

(50) found that while the intracellular pH falls, it does not drop as low as originally 

reported by Rous, but they found it to be pH 4.5-5.5. Jensen and Bainton (47) 

reported that following ingestion of yeast particles, the pH in rodent 

polymorphonuclear leukocytes (PMN) drops to 6.5 in 3 min and to 4.0 in 7-15 

min.  Jacques and Bainton (50) modest changes in pH (6.0-6.5) were also 

observed by Mandell (51) using human PMN over a period of two hours.  

Recently, some studies by Segal et al. (52), Geisow et al. (53), Cech and Lehrer 

(54) and Jiang et al (55) have found an initial rise in pH followed by a modest fall 

(pH 7.7 to 6.5). More recent studies by Griffiths and Mayorga (43) and Hiddessen 

et al. (44) confirmed the pH levels (4-5.5) reported by the earlier studies.  While 

the intraphagosomal pH issue is yet to be fully resolved, it is fair to assume that 

the majority of the published studies agree that the pH does fall to at least pH 
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5.5.  At this pH level, N-chlorotaurine will quickly (t1/2 ~ 1.1 min) disproportionate 

to taurine and N-dichlorotaurine (39).   

 
 
4.4 Conclusions 
 
The contribution of chlorotaurine in the killing of invading bacteria is widely 

recognized and accepted.  There are very few published studies that have 

focused on the role played by dichlorotaurine. It is conceivable that 

dichlorotaurine is formed in vivo either in the presence of excess HOCl and/or 

through disproportionation of chlorotaurine in acidic pH conditions. Such 

conditions are believed to exist at sites of inflammation during phagocytosis. In 

this study, we have shown that dichlorotaurine reacts 1000 times faster with 

thiols and ~100 times faster with ascorbate than TauCl. The high reactivity 

towards thiols suggests that dichlorotaurine may be the reactive species in vivo.  
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CHAPTER 5: REPAIR OF CELLULAR DAMAGE AND RECOVERY OF 

ENZYME ACTIVITY BY SCN- FOLLOWING TREATMENT WITH HOCl 

 
 
 
5.1 Introduction 
 
Optical cellular imaging is one of the most popular techniques used in biological 

research to explore microscopic structures at cellular and sub-cellular levels (1). 

During the past few decades, there has been a surge in the development of 

fluorescent probes which can be used as biomarkers (2). Owing to its versatility 

and noninvasiveness, fluorescence microscopy is emerging as one of the 

preferred imaging techniques for real-time monitoring of protein and enzyme 

activities in vitro and in vivo (3-7). Fluorescent detection offers several 

advantages which include high sensitivity, low cost and easy handling over other 

techniques (8).  Unfortunately, only a limited number of fluorescent probes have 

been successfully developed thus far for the detection of HOCl and chloramines 

in living cells (9). However, rhodamine-based fluorescent probes are promising 

and are currently attracting considerable attention (10-11).  

 

Reactive oxygen species including HOCl are employed by activated neutrophils 

as part of the immune arsenal (12-14). HOCl is believed to be the major 

microbiocidal agent in the phagolysosomes of neutrophils, but its excessive 

extraphagosomal production leads to host tissue damage and has been 

implicated in the progression of a number of inflammatory diseases (12-13, 15-

16). The design of some of the probes that have been proposed is based on 
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oxidation reactions of p-methoxyphenol to benzoquinone, dibenoylhydrazine to 

dibenzoyl diimide, thiol to sulfonate derivative and p-alkoxyaniline by HOCl (9-11, 

17-18) . While most of these probes have demonstrated reasonable selectivity for 

HOCl over other reactive oxygen species, the need for better probes that are 

highly selective and more reactive towards HOCl still exists. Recently, Tae et al.  

described the successful synthesis of a new highly selective and sensitive 

fluorescent probe for HOCl detection in aqueous media (19). The new probe is 

rhodamine-hydroxymic acid-based and is designed in a way that HOCl 

selectively and irreversibly oxidizes the hydroxamic acid unit of the probe, 

resulting in ring opening and the production of a highly fluorescent compound 

(Figure 5.1).   

 
 

 
 
 
 
 
Figure 5.1.  HOCl-induced oxidation of the fluorescent probe 
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An increase in fluorescence intensity was observed when the probe was mixed 

with HOCl solutions but not with other ROS at pH 7.4 (19). A549 cancer cells and 

zebra fish, were used to investigate whether the new probe could be used to 

detect “HOCl” in living cells. In these biological studies, a strong fluorescence in 

both A549 cells and zebra fish was observed after the exposure to HOCl and the 

new probe. The two issues that piqued our interest about this study were the 

claim that this probe was selective for HOCl (in vitro and in vivo) and also that it 

could be applied to detect HOCl in biological systems (19). There are other 

biologically relevant two-electron oxidants (e.g. HOBr and chloramines) that were 

not tested by the authors which we believed could react just as well as HOCl with 

the probe. Also, HOCl is highly reactive towards biological molecules with 

second-order rate constants of (105-107 M-1s-1) for sulfur-containing groups and 

(103-105 M-1s-1) for amino groups (20). The authors used a time-scale (i.e., the 

cells were incubated with HOCl for 20 min) which is long enough for all of the 

HOCl to react with the cellular components both on the surface and inside the 

cells thus making the claim for in vivo HOCl detection suspicious. We were more 

inclined to believe that the authors were observing the reaction of cellular 

chloramines (which are secondary products of the reaction of HOCl with amino 

groups) with the probe. Chloramines are less reactive and more selective than 

HOCl (21-22).    
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In this study we demonstrate that contrary to the claims by the authors, the probe 

is not as selective for HOCl as it was observed to react with chloramines.  We 

recently published a study that demonstrated using kinetic and spectroscopic 

techniques that chloramines react with thiocyanate (SCN-) to produce 

hypothiocyanite (OSCN-) (23). This reaction is potentially important in vivo since 

it is our assertion that SCN- plays a repair role on proteins that are damaged by 

HOCl. Herein, we employed an optical cellular imaging technique using the new 

probe to demonstrate the reaction of cellular chloramines with SCN-.  We further 

extended our study to investigate whether the reaction of chloramines with SCN- 

could restore enzyme activity and cellular function. 

 
 
 
5.2 Results and discussion 
 
 
5.2.1 In vitro study of the reactions of the probe with HOCl and chloramines 

A closer inspection of the other reactive oxygen species (24) that were tested by 

Tae et al. for their ability to oxidize the rhodamine-probe reveals that with the 

exception of H2O2, all were one-electron species. The reactive species that were 

investigated includes nitric oxide (NO·), hydroxyl (·OH), alkylperoxy radical 

(ROO·) and superoxide (·O2
-) radicals. Hypochlorous acid (HOCl) reacts with 

amines with a second-order rate constant of 103-105 M-1s-1 at physiological pH 

conditions to produce chloramines. It is therefore unexpected that after 20 min of 

incubation of the A549 cells with HOCl and the washing of residual HOCl, there 

would be any HOCl present. Accordingly, we investigated whether inorganic and 
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organic chloramines (NH2Cl and –SO3CH2CH2NHCl) were able to oxidize the 

rhodamine probe by monitoring changes in fluorescence intensities. Figure 5.2 

(a-b) shows the fluorescence spectra of the rhodamine probe (10 µM) and its 

reaction with 50 and 100 µM HOCl, NH2Cl, –SO3CH2CH2NHCl, SCN- and OSCN- 

at pH 7.4. The spectra were measured 10 min after the respective solutions were 

mixed. Not surprising, under both concentration conditions, there was significant 

fluorescence enhancement when the probe was treated with HOCl due to the 

rapid oxidation of the probe by HOCl. Relatively lower fluorescence intensity 

changes were observed in the case of NH2Cl and –SO3CH2CH2NHCl. This is due 

to HOCl reacting faster with the probe than chloramines. In addition to HOCl and 

the chloramines, we investigated whether SCN- and OSCN- would react with the 

rhodamine probe. As shown in Figure 5.3, no enhancement of the fluorescence 

intensity in the presence of SCN- or OSCN- was observed which indicates that 

they do not oxidize the rhodamine probe. Based on these results, it appears that 

contrary to the claim of Tae et al. the rhodamine fluorescent probe may not be 

selective for HOCl as it also reacts with other electrophillic two-electron oxidants 

(i.e. chloramines). 

 

 



120 

0

100

200

300

400

500

520 540 560 580 600

F
lu

o
re

sc
en

ce

Wavelength (nm)

HOCl

NH
2
Cl

-SO
3
CH

2
CH

2
NHCl

Controls: 

SCN- and OSCN-

 

(a) 



121 

0

100

200

300

400

500

600

700

520 540 560 580 600

F
lu

o
re

sc
en

ce

Wavelength (nm)

HOCl

NH
2
Cl

-SO
3
CH

2
CH

2
NHCl

Controls: 

SCN- and OSCN-

 

 

Figure 5.2.  Fluorescence response of the probe (10 µM) 10 min after the 

addition of (a) 50 µM; (b) 100 µM HOCl, NH2Cl and –SO3CH2CH2NHCl 

 
 

 

 

 

(b) 
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5.2.2 Cellular imaging studies with A549 cancer cells 

Tae et al. evaluated the possible biological application of the rhodamine probe as 

a fluorescence chemosensor for HOCl detection in living cells using A549 lung 

cancer cells (19). After incubating the cells with HOCl, washing and treating them 

with the probe, the cells were imaged using a confocal fluorescence microscope. 

It was observed that the cells that were not exposed to HOCl showed no 

fluorescence but those treated with HOCl exhibited a strong red fluorescence.  

Using the protocol of Tae et al., we sought to reproduce their results by 

conducting the same experiments at pH 7.4. We treated the A549 cells with 

various amounts of HOCl and then stained them with 10 µM of the fluorescent 

probe. As shown in Figure 5.3, (a) in the absence of HOCl treatment, no 

fluorescence was observed (b) 50 µM HOCl treatment displayed red 

fluorescence (c) 100 µM HOCl treatment showed an even stronger red 

fluorescence. These results are consistent with those of Tae et al. who observed 

that increasing the concentration of HOCl resulted in the corresponding increase 

in fluorescence intensity.  

 

 A                      
 

Figure 5.3. Fluorescence images of A549 cells (A) untreated; (B) treated with 50 

µM HOCl; (C) treated with 100 µM HOCl 

C B  
C B A 

B A C 
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We further investigated the reaction of the rhodamine fluorescent probe with 

A549 cells that were treated with SCN- subsequent to incubation with HOCl. The 

purpose of these experiments was to evaluate whether the optical imaging 

technique could be used to study the reaction of cellular chloramines with SCN-.  

A549 cells were incubated with 50 µM HOCl in culture medium for 20 min at 37 

oC and washed with the medium to remove residual HOCl, the cells were then 

incubated for an additional 20 min at 37 oC with 50 µM SCN- and washed again 

with the medium. The HOCl and SCN- treated cells were then incubated with the 

fluorescent probe (10 µM) in the medium for 10 min at 37 oC. Immediately after 

incubation, the cells were imaged using a confocal fluorescence microscope.  

Control experiments included untreated cells, cells treated with HOCl, SCN- and 

OSCN- (Table 5.1). For qualitative comparisons of relative fluorescence 

intensities, we used the sample treated with HOCl as a baseline/reference for 

setting the microscope. This implies that the Z-series was adjusted based upon 

the HOCl treated sample and was not changed when imaging of the other 

samples was conducted. As expected, the HOCl treated sample showed an 

intense red fluorescence, indicating the reaction of the probe with cellular 

chloramines (Figure 5.4 b). No fluorescence was detected in any of the control 

experiments (i.e. no treatment; SCN- and OSCN- treatment). Interestingly, the 

sample that was subsequently treated with SCN- following HOCl treatment did 

not show any fluorescence (Figure 5.4 c). The absence of fluorescence in this 

sample suggests that the chloramines reacted with SCN- to form OSCN- which 

does not oxidize the rhodamine probe.  

B A C 
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Figure 5.4. Fluorescence images of A549 cells (A) untreated; (B) treated with 50 

µM HOCl; (C) treated with 50 µM SCN- subsequent to treatment with 50 µM 

HOCl; (D-F) the corresponding transmission images 

 

In addition to fluorescence images, we took transmittance images in order to 

confirm that despite the absence of fluorescence, the A549 cells were present in 

all the samples. The corresponding transmittance images show that in each 

chamber A549 cells were present during fluorescence imaging. A recent study 

published by Hawkins et al. reports that hypothiocyanous acid was found to 

induce apoptosis and necrosis with greater efficacy, and at lower concentrations, 

than HOCl or HOBr (25). We further extended the imaging studies to include 

investigation into possible morphological changes following each treatment (with 

HOCl, OSCN- or SCN-). Morphological examination shows that most of the cells 

were not detached and no visible differences in cell shapes were observed in 

D E F
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each experiment (Figure 5.5).  No signs of “popcorn-like” blebs which are typical 

of cells undergoing apoptosis (26).  

 

 

           
 

           

Figure 5.5.  Morphological changes to A549 cells (A) control (untreated); (B) 

exposed to 50 µM HOCl; (C) exposed to 50 µM SCN-; (D) exposed to 50 µM 

SCN- subsequent to treatment with 50 µM HOCl; (E) exposed to 50 µM OSCN-; 

(F) exposed to 50 µM SCN- and then treated with 50 µM HOCl; 
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5.2.3 Inhibition glutathione reductase (GR) and the recovery of enzyme 

activity after SCN- treatment 

 

We investigated the possible recovery of the activity of selected housekeeping 

enzymes by SCN- after they were treated with HOCl. We selected glutathione 

reductase (GR) an important component of the glutathione redox cycle, which 

catalyzes the reduction of oxidized glutathione (GSSG) to glutathione (GSH) by 

NADPH.   

 

GSSG + NADPH + H+    2GSH + NADP+ 

 

GR is a dimer with identical subunits and has a molecular weight of 100 kDa 

(27). The active site of this enzyme is located between the subunits. The 

prevailing understanding of the catalytic cycle of GR is that it involves a cascade 

of electron transfer reactions which are initiated by NADPH.  

 

 

 

 

 

 

 

 

GR 
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Figure 5.6. Scheme of the GR active site  

 

First, NADPH binds to and reduces the tightly bound FAD to FADH-. After 

transferring the hydride to FAD, NADPH leaves as FADH- quickly reduces the 

active site disulfide Cys58-Cys63. The reduction of the disulfide likely takes place 

via the formation of a transient adduct between flavin and the sulfur of Cys63 

plus a nucleophilic Cys58. In the next step of the catalytic cycle, the Cys58 

nucleophile attacks GSSG to form a mixed protein-glutathione disulfide (GS-

Cys58) while releasing the first glutathione molecule. Another important residue 

in the catalytic cycle is histidine (His467) which by acting as a proton acceptor 

and/or donor facilitates the Cys58 nucleophilic attack. In the final step, Cys63 
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reduces the mixed disulfide which releases the second GSH molecule and 

reoxidizes cysteine to the disulfide (Cys58-Cys63).   

 

Glutathione is a major non-protein thiol in cells where up to millimolar 

concentrations have been reported in some cells (28). One of its cellular 

functions is to serve as an antioxidant and thus it is essential for cell survival 

especially during conditions of oxidative stress. Many of the important residues in 

the active site of GR including cysteines (Cys-58 and Cyst-63), histidine (His467) 

and tyrosine (Tyr197) are susceptible to HOCl attack. The oxidation of these 

residues results in the inhibition of the enzyme activity. Under the conditions of 

our experiments, it is difficult to attribute the inactivation of GR by HOCl to just 

one of the important residues in the active site of the enzyme. While cysteines 

may be the primary targets of HOCl, the products of its reactions (i.e. sulfonates, 

sulfinates and disulfides) are not known to react with SCN-. As a result if the 

inactivation of GR by HOCl was exclusively linked to the oxidation of cysteines, 

the recovery of the enzyme activity by SCN- would not be expected. In our 

experiments, the activity of GR was monitored by following the depletion of 

NADPH at λ = 340 nm as it reduces GSSG to GSH (Figure 5.7).  
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Figure 5.7. Kinetic traces at λ = 340nm depicting the GR-catalyzed reduction of 

GSSG by NADPH.  Conditions: (A) [GSSG]o = 1 mM, [NADPH]o = 0.1 mM, [GR] 

= 0.025 U/mL, [PBS] = 0.1 M, pH 7.4 and T = 25 oC; (B) GR incubated with 40 

µM HOCl for 20 min and then treated with 160 µM SCN- for another 20 min. (c) 

GR incubated with 40 µM HOCl  for 20 min and then treated with phosphate 

buffer for an additional 20 min.  Each line represents an average of five data sets 

and only 10% of the data are illustrated. 
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The GR activity (mU/mL) was estimated using the linear portion of each of the 

curves in Figure 5.8. We calculated the rate of decrease of the absorbance 

(A340/min) from the slope of each line and then divided it by the molar absorptivity 

of GR (6.22x10-3  nmol/mL) to get the activity in (mU/mL). Lastly we corrected 

each measurement for the sample dilution in the assay by multiplying the mU/mL 

by 20 (i.e., 50 µL was diluted to 1000 µL). 
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Figure 5.8.  Enzyme activity estimated using the rate of change in the A340 and 

the molar absorptivity (6.22 x 10-3 nmol/mL) of GR. (a) Uncatalayzed: 0, (b) HOCl 

modified: 0.405, (c) SCN- treated: 2.25 and control: 4.82 (mU/mL)  
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The activity of un-modified GR is 4.82 (mU/mL) (control, Figure 5.8). However, 

the treatment of GR (~ 1.3 nM) with 40 µM HOCl resulted in severe loss (~ 92 %) 

of the enzyme activity. Since the experiment was done under conditions of large 

HOCl excess, the loss of activity is presumably due to the oxidation of one or 

more of the critical residues in the active site of GR. The observed activity (~ 8 

%) of the HOCl-modified GR presumably indicates that 40 µM HOCl was not 

enough to completely inactivate GR under the conditions of our experiment or 

indicates the reaction of NADPH with chlorinated GR. Surprisingly when the 

HOCl modified GR was subsequently treated with 160 µM SCN- for 20 min, most 

of the lost enzyme activity (~ 47 %) was recovered. We believe that the 

reactivation of GR by SCN- suggests possible involvement of the histidine 

residue. When HOCl reacts with His467, the enzyme is modified through the 

formation of histidine chloramine which presumably inactivates the enzyme.  

Boggaram and Mannervik  published a study in which it was shown that GR was 

inactivated by treatment with ethoxyformic anhydride through the modification of 

particularly the histidine residue (29). It was concluded that the histidine residue 

was essential for the catalytic activity of GR. Pattison and Davies showed that 

histidine containing compounds readily form imidazole chloramines (k = 1.6 x 106 

M-1s-1) and that these chloramines can rapidly chlorinate other target molecules 

such as amino groups via inter- or intramolecular chlorine transfer reactions (k = 

10-3-10-4 M-1s-1) (20). Transhalogenation reactions are typically very slow 

reactions (k = 10-2 M-1s-1) for the reaction of chlorotaurine with benzylamine (30). 

Given how fast the imidazole chloramine forms and also how fast it reacts with 
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other amino groups, it is conceivable that this chloramine in the active site of GR 

is capable of oxidizing SCN- to OSCN- . 

 

5.3 Detection of apoptosis and necrosis by flow cytometry 

We investigated the changes in the proportion of live, apoptotic and necrotic 

A549 cells after treating the cells with SCN- for 1 h following a 20 min and 1 h 

exposure to HOCl.  The preliminary data of cells incubated with HOCl for 20 min 

indicates that SCN- treatment results in a significant increase in the number of 

live cells and a decrease in the number of necrotic cells (Figure 5.9).    
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Figure 5.9. Proportion between living, apoptotic and necrotic cells after 20 min 

incubation with HOCl 
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The proportion distribution changed significantly when the cells were incubated 

with HOCl for 1 h (Figure 5.10).  The subsequent treatment of the cells with SCN- 

did not have any positive effect on both the live and necrotic cells.   
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Figure 5.10. Proportion between living, apoptotic and necrotic cells after 1 h 

incubation with HOCl 

 

We observed that in both cases, the fraction of apoptotic cells remained below 

0.7 %. This was unexpected given that some studies have suggested that HOCl 

and chloramines trigger apoptosis (24, 31-32). Our data are however consistent 

with the findings of Robaszkiewicz et al. who also observed low levels of 

apoptotic cells (< 8 %) after incubation (24 h) A549 cells with 500 µM HOCl (33).   
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5.4 Possible biological significance of these findings 

Chloramines are a major fraction of the secondary reactive intermediates 

produced by the reaction between HOCl and amino groups (23). In the absence 

of other functional groups (e.g. thiols) that can react with chloramines in vivo, 

they decompose to form aldehydes which and other products that can lead to 

permanent alteration of protein structure and function and cellular dysfunction.  

The reaction of chloramines with thiocyanate (SCN-) has received some attention 

recently, mainly because this reaction was found to produce hypothiocyanite 

(OSCN-), a species that is not lethal to mammalian cells (14, 23). The present 

study demonstrates that this reaction is effective at partially restoring the activity 

of glutathione reductase (GR) inactivated by HOCl and also may prevent cell 

death. Given the significant role of GR as a housekeeping enzyme for redox 

homeostasis (normally maintains cytosolic glutathione ca. 98% in its reduced 

state GSH), its inactivation makes the cellular contents vulnerable to attack by 

oxidants. In this work we observed that GR inactivated by HOCl can be 

reactivated by incubation with SCN-. These results, confirm that the histidine 

(His467) residue in the GR active site is involved in its catalytic activity. When 

SCN- reacts with the histidine chloramine, the result is the restoration of some of 

the GR activity. In a recent study Bozonet et al.  observed no morphology 

changes on endothelial cells treated with low concentrations of OSCN- (≤ 200 

µM) and the cells remained viable (34).  It was also reported that at these levels, 

OSCN- appears to block the initiation of apoptosis.  These finding are applicable 

to this study since the reaction of cellular chloramines with SCN- produces low 
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concentrations of OSCN-. The preliminary flow cytommetry data shows that the 

exposure to SCN- (50 µM) for 1 h of A549 cells that were pre-incubated with 

HOCl (50 µM) for 20 min, results in the slight reduction of necrotic cells and an 

increase of viable cells. This positive effect is attributable to both the reduction of 

the cellular chloramines by SCN- and the formation of the lower concentration of 

OSCN-. The results of this study suggest that the reaction of chloramines with 

SCN- may play a role in determining the outcome of inflammatory diseases.   

 

5.5 Conclusions  

This work began with the aim of disproving the claim made in a study published 

by Tae et al. that they had synthesized a rhodamine fluorescent probe which was 

selective for HOCl. The authors of this study did not investigate possible 

reactions of chloramines with the new rhodamine probe. This was rather a 

puzzling omission given that chloramines are the main products of the reaction of 

HOCl with amines. Our investigation reveals that both the inorganic and organic 

chloramines are capable of oxidizing the rhodamine probe as confirmed by an 

increase in fluorescence intensity. We then extended our study to include the 

reaction of chloramines with SCN- using the fluorescent probe by optical imaging 

techniques. Images of A549 cells treated only with HOCl showed strong red 

fluorescence while those treated with SCN- subsequent to HOCl did not show 

any fluorescence. It appears that the fluorescent rhodamine probe can be applied 

in biological systems not only to detect HOCl but its secondary products such as 

chloramines. We also found in this work that SCN- is effective at repairing 
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damage inflicted by HOCl on cells and GR enzyme. Approximately 47 % of GR 

was recovered by treating HOCl-modified enzyme with SCN-. Confocal images of 

A549 cells treated with SCN- subsequent to HOCl show the quenching of 

fluorescence by SCN- and preliminary flow cytometry data confirms this 

observation as the number of viable cells increased. 
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 CHAPTER 6: CONCLUDING REMARKS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

 
The main findings of this work include: 
 
 

• We successfully identified for the first time OSCN- as the product of the 

reaction of SCN- with chloramines (small molecular, protein and cellular). 

The product was identified by UV-visible spectroscopy and also kinetically 

by stopped-flow methods. Furthermore, we found that chloramines react 

faster with OSCN- than SCN-. Protein-bound chloramines eventually 

decompose by mechanisms that could irreversibly alter the structure and 

function of the protein. We surmise that the reactions of chloramines with 

SCN- and OSCN- has a potential biological significance as they may repair 

some of the damage inflicted by HOCl on proteins. 

• Dichloramines (e.g. dichlorotaurine) are formed when monochloramines 

(e.g. chlorotaurine) disproportionates under slightly acidic conditions. We 

found that under pseudo-first-order conditions, chlorotaurine reacts with 

thiols with a second-order rate constant of 102 M-1s-1 while dichlorotaurine 

reacts much faster, with a second-order rate constant of 106 M-1s-1 at pH 

7.4. The rate constant for dichlorotaurine is only three orders of magnitude 

lower than that for the reaction of HOCl with cysteine thiolate (109 M-1s-1). 

We extended our investigation to include information about the 

mechanism of the reaction of dichlorotaurine with TNB. We found that the 
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reaction proceeds by a pathway involving the deprotonated TNB thiolate 

(nucleophile) and TauCl2 (electrophile) over 6.5 ≤ pH ≥ 7.5 range.  These 

results suggest that dichloramines may be contributing towards the 

oxidative killing of invading pathogens. 

• We demonstrated using A549 lung cancer cells and the rhodamine-

hydroxamic acid-based fluorescent probe that SCN- quenches cellular 

chloramines. Cells that were treated with HOCl and the probe showed 

strong fluorescence while after treating the cells with SCN- no 

fluorescence was observed.  We further probed the effects of the reaction 

of SCN- with cellular chloramines on the viability of A549 cells. Using flow-

cytometry, we observed that when cells that were pretreated with 

sublethal concentration of HOCl were now treated with SCN-, the result 

was an increase in the proportion of live cells accompanied by a decrease 

in the proportion of necrotic cells. We believe that these experiments 

provide some evidence of SCN- repairing and reversing the damage 

caused by HOCl on the A549 cells. 

• We further investigated whether SCN- was capable of restoring some 

activity of glutathione reductase (GR) that was inactivated by HOCl. We 

recovered approximately close to half of the GR activity.  Since GR has a 

histidine residue in its active site, we suspect that the modification by 

HOCl affects this residue which leads to the formation of histidine 

chloramine. We believe therefore that the observed recovery of GR 

activity is due to the reaction of SCN- with the histidine chloramine. 
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Recommended future studies: 

 

• The reaction of OSCN- with chloramines requires further investigation.  

We only measured the rate constant but never characterized the reaction 

products nor conducted a detailed mechanistic investigation. This reaction 

may be important in vivo because we observed that chloramines react 

faster with OSCN- than with SCN-.  

• A more detailed mechanistic investigation for the reaction of 

dichlorotaurine with thiols is recommended. The work reported in this 

dissertation is a snapshot of a more complex mechanism.  It is still unclear 

why dichlorotaurine reacts so much faster with TNB than chlorotaurine. To 

bolster the case for possible involvement of dichloramines in the killing of 

pathogens by neutrophils, future endeavors should also focus on finding 

evidence for the presence of dichloramines in vivo as this information is 

very scarce. 

• A detailed investigation of the reaction of HOCl inactivated GR with SCN- 

is required. We speculated in our work that it was the reaction between 

the histidine chloramine of GR and SCN- that resulted in the restoration of 

GR activity.  We however, do not have concrete evidence for this 

conclusion.  Also, other housekeeping enzymes should be considered in 

future studies. 
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• The apparent ability of SCN- to recover some of the GR activity following 

HOCl treatment should be further demonstrated in cell lysate. Our 

attempts fell short due to the low GR concentration and lack of specificity 

of the assay we used.  New assays that are more specific and sensitive 

should be employed. 
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APPENDIX 

 

LIST OF ABBREVIATIONS 
 
 
A.C.S  American Chemical Society 
BODIPY  Dipyrromethene boron difluoride 
CF   Cystic fibrosis 
DIC   Differential interference contrast 
DTNB  5,5-Dithio-bis (2-nitrobenzoic acid) 
EDTA  Ethylenediaminetetraacetic acid 
FAD   Flavin adenine dinucleotide 
GR   Glutathione reductase 
GSH   Reduced glutathione 
GSSG  Oxidized glutathione 
LPO   Lactoperoxidase 
MPO  Myeloperoxidase 
NADPH  Nicotinamide adenine dinucleotide phosphate 
NCT   N-chlorotaurine 
NDCT  N-dichlorotaurine 
NFK   N-formylkynurenine 
OSCN-  Hypothiocyanite 
PMN   Polymorphonuclear leukocytes  
RNS   Reactive nitrogen species 
ROS   Reactive oxygen species 
RPMI  Roswell Park Memorial Institute 
SCN-  Thiocyanate 
SNAPF  Sulfonaphthoaminophenyl fluorescein 
TNB   5-Thio-2-nitrobenzoic acid 
Ub*Cl  Ubiquitin chloramines 
 
 
 


