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Abstract

Pulse compression techniques have been widely used for target detection and remote

sensing. The primary concern for pulse compression is the sidelobe interference.

Waveform design is an important method to improve the sidelobe performance. As a

multi-functional aircraft platform in aviation safety domain, ADS-B system performs

functions involving detection, localization and alerting of external traffic. In this work,

a binary phase modulation is introduced to convert the original 1090 MHz ADS-B sig-

nal waveform into a radar signal. Both the statistical and deterministic models of new

waveform are developed and analyzed. The waveform characterization, optimization

and its application are studied in details. An alternative way to achieve low sidelobe

levels without trading off range resolution and SNR is the adaptive pulse compres-

sion - RMMSE (Reiterative Minimum Mean-Square error). Theoretically, RMMSE

is able to suppress the sidelobe level down to the receiver noise floor. However, the

application of RMMSE to actual radars and the related implementation issues have

not been investigated before. In this work, implementation aspects of RMMSE such

as waveform sensitivity, noise immunity and computational complexity are addressed.

Results generated by applying RMMSE to both simulated and measured radar data

are presented and analyzed. Furthermore, a two-dimensional RMMSE algorithm is

derived to mitigate the sidelobe effects from both pulse-compression processing and

antenna radiation pattern. In addition, to achieve even better control of the sidelobe

level, a joint transmit and receive optimization scheme (JTRO) is proposed, which

xv



reduces the impacts of HPA nonlinearity and receiver distortion. Experiment results

obtained with a Ku-band spaceborne radar transceiver testbed are presented.
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Chapter 1

Introduction

1.1 Introduction

Most of the modern radar systems employ a pulsed waveform which provides range

information accurately. For a point target, the relationship between range R and

delay T is

R =
c · T

2
(1.1)

where c is the speed of light. A longer pulse width can achieve a larger maximum

detection range, since the energy in the pulse is increased. A narrower pulse width

corresponds to a better range resolution. With a signal bandwidth B, the range

resolution r is expressed as (Levanon and Mozeson 2004)

r ≈ c

2B
(1.2)

It is also known that the Doppler resolution is inversely proportional to the pulse

width T . Radar ambiguity principle states that the spectral content of the signal

determines the range resolution and the temporal structure of the signal determines

the Doppler resolution. In addition, to increase the radar measurement accuracy and

target sensitivity, high pulse energy is required (Skolnik 2002). Therefore, to en-

hance radar sensing performance, transmit signals with large time-bandwidth-energy

product are required.
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In general, more signal energy can only be achieved by increasing the pulse du-

ration due to limited peak transmit power, especially for the modern solid state

transmitters (Skolnik 2008). Fig. 1.1 shows the long and short pulse comparison.

A long pulse with frequency or phase modulation can have the same spectral band-

width as a short pulse. The modulated long pulse with increased bandwidth B is

compressed by the receiver to a width equal to 1/B. This process is referred to as

pulse compression. Pulse compression allows a radar to achieve the energy of a long

pulse and the resolution of a short pulse simultaneously.

Figure 1.1: Radar long and short pulses. The two pulses have the same energy, i.e.

Pshort · Tshort = Plong · Tlong

The main drawback of traditional pulse compression is the impact of range (or

time) sidelobes, which can be mistaken for targets or can mask nearby weaker targets.

To achieve acceptable range sidelobe levels, additional waveform design and filtering

need to be considered.

In airborne and spaceborne applications, pulse compression has been widely used

for weather and surface remote sensing, while strong sidelobes generated by ground or

sea surface have affected the observations (Griffiths (1993); Tanner et al. (1994)). The
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NASA Ku-band Precipitation Radar (PR) for the Tropical Rainfall Measuring Mission

(TRMM) satellite requires about -70 dB sidelobe level for rainfall detection (Fischman

et al. 2005). Conventional windowing technique can achieve such a low sidelobe level

by trading off range resolution and SNR. Other popular pulse compression techniques

such as nonlinear frequency modulation and phase coding can only achieve up to -

50 dB sidelobe without degradation of range resolution (Collins and Atkins (1999);

Levanon (2005)).

Signal processing techniques have also been used to develop sidelobe mitigation

filters. Inverse filters, which have a frequency response similar to the inverse re-

sponse the transmitted waveform, have been studied in (Daniels and Gregers-Hansen

2005). Optimal mismatched filters have been derived by a constrained Least-Squares

approach (Ackroyd and Ghani 1973).

Recently, a new approach based on minimum mean-square error (MMSE) formu-

lation has been proposed in (Blunt and Gerlach 2006). This method is called RMMSE

(Re-iterative MMSE) since the sidelobe mitigation is performed iteratively. RMMSE

is a Least-Square based algorithm and has superior sidelobe mitigation performance

compared to conventional pulse compression techniques. However, the application of

RMMSE to practical radars remains uncertain. Implementation aspects of RMMSE

such as waveform sensitivity, noise immunity, computational complexity as well as

the feasibility to weather observation have to be addressed. The nonlinear distortion

of the Solid-State Power Amplifier (SSPA) has been known to have impact on the

sidelobe mitigation performance (Vincent et al. 1996). In addition, there are other

nonlinear distortions existing in the radar transmit/receive chain. These distortions

have to be characterized and suppressed to achieve stringent sidelobe requirement.

In this work, sidelobe mitigation algorithms and their implementations for pulse

compression are addressed from the perspective of radar system design. First, the
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sidelobe mitigation is explored in terms of optimal waveform design followed by an ex-

ample of designing and optimizing binary phase-coded waveform. Then, the RMMSE

algorithm is studied and implemented to practical radar data. Last, to achieve better

control of the sidelobe level, joint transmitter and receiver optimization is investi-

gated, the distortion effects, including HPA nonlinearity and receiver distortion are

extracted and modeled. Fig. 1.2 summarizes the structure of the dissertation.

Figure 1.2: The structure of the dissertation

1.2 Organization of the Dissertation

The dissertation is organized as follows:

• Chapter 2 reviews the basic concept of pulse compression and estimation the-

ory. The applications of pulse compression in solid-state radar systems for both

hard and distributed targets are described. Previous work on pulse compression

and transceiver optimization is summarized.

4



• Chapter 3 discussed the multi-functional radar waveform design methodology.

First, conventional methods of pulse compression by waveform optimization

are summarized. Then the importance of multi-functional radar waveforms are

emphasized. In aviation safety domain, ADS-B system has both communica-

tion and non-cooperative target sensing functions. We establish a theoretical

foundation of non-cooperative target detection using modulated transponder

signal waveform - PPM/PM. Both the statistical and deterministic models of

PPM/PM waveform are developed and analyzed. Waveform characterization,

optimization and its application are studied in details.

• Chapter 4 discussed the theory and application of adaptive pulse compression

algorithm - RMMSE (Reiterative Minimum Mean-Square error). Techniques

to mitigate the sidelobe effects from both pulse-compression processing and

antenna pattern are discussed and Two-dimensional least-square (2D-LS) and

(2D-RMMSE) algorithms are derived and applied to scenarios containing both

hard targets and distributed weather targets. Simulation results based on realis-

tic weather model outputs and scattering models are presented. Implementation

issues of RMMSE are discussed with its application to practical radar data from

PX1000 and HiWRAP.

• Chapter 5 proposed a novel adaptive Joint Transmitter and Receiver Opti-

mization (JTRO) scheme. First, nonlinear distortion and its impact on sidelobe

mitigation are analyzed. Then a new Kernel-based nonlinear filtering algorithm

- KLMS is discussed and applied to nonlinear distortion modeling. The con-

cept of JTRO is proposed and implemented on a Ku-band spaceborne radar

transceiver testbed. Experiment results are presented followed by discussion of

aspects about implementations.

• Chapter 6 concludes the dissertation and provides future research directions.
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Chapter 2

Theory and Systems of Solid-State Radars

The applications of the solid-state transmitter, pulse compression, and multi-channel

antennas have become important trends of multi-mission radar sensing (Ohora and

Bech (2005); Salazar et al. (2008); Heimmer (2008); Zhang (2008); Wada et al.

(2009)). Extreme requirements from Unmanned Systems such as unmanned aerial

system (UAS) and satellites demand small, integrated, and multi-functional radar

sensor systems. In NASA’s space precipitation measurement mission, a −70 dB peak

sidelobe level without signal-to-noise ratio loss is required. This necessitates the

use of high-performance, high-efficient and high-power solid-state transmitters. The

rapid advances in the field of solid-state electronic also make feasible the integration

of radar/communications systems (Hussain (2007); Thompson and Stralka (2009)).

Therefore, the size, weight and power (SWaP) constrained designs are required to

address the various challenges in modern solid-state radar systems.

2.1 Solid-State Transmitters

Recently, in commercial applications, solid-state technology has dominated the trans-

mitters operating at VHF and below and started to migrate to higher frequency region

gradually. (Skolnik 2008) listed some of the advantages of solid-state over conven-

tional transmitters:
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• Size and cost: The transistor amplifiers operate at much lower voltages; there-

fore, power supply voltages are at the order of volts rather than kilovolts, which

save space and cost. This in turn make it more reliable and easier to maintain.

• Reliability: Transmitters designed with solid-state devices exhibit improved

meantime between failures in comparison with tube-type transmitters.

• Bandwidth: Solid-state transmitter can achieve 50% more fractional band-

width with acceptable power-added efficiency (PAE).

• Integration: A module with both transmit and receive path amplifiers, phase

shifters, switches and attenuaters can be achieved. Such integration is crucial

for phased array radar system.

One drawback of the solid-state radar is that the transmitted power is limited

compared to the conventional high-power transmitter such as TWTs (Traveling-Wave

Tube), klystrons and magnetrons. At around 10 GHz operation frequency, the typical

transmit power is about several hundred of Watts for GaN (Gallium Nitride) HEMT

(High Electron Mobility Transistor) and GaAs (Gallium Arsenide) PHEMT (Pseu-

domorphic HEMT) amplifiers. (Skolnik 2008). The required higher power levels can

be achieved by combining transistors and transistor amplifier modules in parallel,

which significantly increase the cost. In practice, the solid-state PA can be more

efficiently operated at low peak power and large duty cycle. This usually requires

the use of pulse compression to provide desired unambiguous range coverage together

with improved range resolution. A good pulse compression algorithm is essential to

the signal processing of pulse compression. One issue of solid-state power amplifier is

that it degrades the performance of pulse compression when operating in saturation

region. This will be addressed in Chapter 5. Throughout this work, we focus on min-

imizing the range sidelobe level via properly-designed waveforms, adaptive sidelobe

mitigation and joint transmit/receive optimization algorithms.
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2.2 Solid-State Radars Systems

2.2.1 General Architectures of Solid-State Radars

In terms of system architecture, solid-state radars are not quite different from conven-

tional pulsed-Doppler radars using TWT transmitters. The modern Doppler radars

consist of local oscillators, signal generator, power amplifier, receiver, up/down con-

verters, antenna, digital signal processor, etc. Fig. 2.1 shows a typical configuration

of a pulsed-Doppler radar utilizing digital signal processing, which is controlled by

a mission processor (Skolnik 2008). This system requires coherent processing for

doppler detection. The in-phase (I) and quadrature (Q) components at baseband

represent the real and imaginary parts of the receive signal. The main oscillator

provides a stable reference sinusoid on which the system coherency is based. The

antenna is designed to be scanned mechanically or electronically. Modern Doppler

radars have evolved to the use of active electronically scanned arrays (AESAs) (Hom-

mel and Feldle 2005). A duplexer is required so that the same antenna is used for

both transmit and receive. It can be a circulator or high-isolation switch. The digital

IF-sampled output of the receiver is downconverted to the baseband via a digital

product detector.

The I andQ signals are passed through the matched filter (MF). This radar system

adopts Doppler filter bank for main-beam clutter rejection and coherent integration.

The filter bank is usually realized by using the fast Fourier transform (FFT). Proper

window weighting is used to reduce the filter sidelobes. The pulse compression mod-

ulation can be used on the transmit pulse to increase target sensitivity and improve

range resolution. After the Doppler filter bank, the pulse compression is performed

digitally in the receiver. This will ensure the Doppler effect on the pulse compression

is included during the filter design stage. This is important because the doppler effect

does have the same impact on the pulse compression algorithm (MF, RMMSE and
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Mismatched Filter). The optimal performance of pulse compression can be achieved

with the prior knowledge about the doppler shift.

Figure 2.1: Diagram of a typical pulsed-Doppler target tracking radar (Skolnik 2008)

2.2.2 Solid-State Radars for Observing Hard Targets

2.2.2.1 Characterization of hard-targets

Limited number of point-targets constitutes hard targets such as buildings, signal

towers, aircrafts, etc. For a solitary point target (a point target is a target having

small dimensions compared to the angular and range resolution of the radar), the
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target characteristics are described by radar cross-section (σ2). The famous radar

equation can be expressed as (Skolnik 2002) (single pulse)

R4 =
PtGAeσ

(4π)2kTBFn(S/N)
(2.1)

where Pt is the transmitted power, G is the antenna gain, Ae is the antenna

aperture, k is Boltzmann’s constant, T is the receiver temperature (in degrees Kelvin),

B is the receiver noise bandwidth, Fn is the noise figure and S/N is the signal-to-noise

ratio (SNR).

2.2.2.2 Typical Systems

As the most important example for air-traffic control, Airport Surveillance Radars

(ASR-9) have been employed since 1990’s. ASR is designed for early warning, land

and maritime surveillance, weather for aircraft and helicopters (Taylor and Brunins

1985). The next-generation ASR-12 (Cole et al. 1998) is a modular, fully solid-state

S-Band radar systems that not only incorporate solid-state technology but also a host

of other technological advancements to improve upon the performance capabilities of

the current generation of terminal radars. Several new technologies have been imple-

mented in ASR-12: (1) Pulse compression. The use of pulse compression is necessary

to provide the required range resolution for an ATC radar. The associated sidelobe

will be suppressed to ≤ −50dB in order to meet the operational requirement for a

solid-state ATC radar. (2) Digital receiver. The ASR-12 adopts a digital receiver that

not only performs digital pulse compression but also forms In-phase and Quadrature

(I&Q) components for both long and short pulse returns. Large receiver dynamic

range is a key design feature of the ASR-12. The saturation, thus the nonlinear dis-

tortion of the pulse prior to compression is a key concern since it has severe impact

on range sidelobes. (3) All solid-state transmitter. ASR-12 uses precise pulse shap-

ing to reduce spectrum regrowth. Combined RF power amplifiers are employed for

transmission to the antenna.
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In addition, many of the solid-state radars designed for hard-target detection are

phased array systems. The advances in MMIC (Microwave Monolithic Integrated

Circuits) technology used in T/R module design have enabled most high-frequency

phased arrays. A Multifunction Phased Array Radar (MPAR) system has been pro-

posed as the next generation solution for the Nation’s weather and air surveillance

needs (Herd et al. 2010). To achieve the ambitious cost targets, highly integrated IC

and solid-state technologies are being implemented. In the current MPAR prototypes,

the RFICs, control IC and band pass filters are integrated onto a single multi-layer

printed circuit board (PCB) using best commercial practices. The critical technolo-

gies include dual-polarized balance-feed stacked patch, overlapped digital subarray

beamformer, polarization flexible T/R, etc. (Herd et al. 2010). The active phased

array techniques for MPAR require the cost reduction for T/R module, which is the

most significant aspect of the MPAR design. The estimated total number of T/R

modules is about 9000 (Galati et al. 2010). To save power budget of T/R module,

MPAR utilizes pulse compression to reduce the peak transmit power to the order of

Watts. Therefore, MPAR systems call for a relatively long transmit pulse, i.e. with

high duty-cycle to achieve good sensitivity. The low range sidelobes have to be guar-

anteed (low PSL for point targets, low ISL for distributed targets) (Galati and Pavan

2011). Traditional pulse compression techniques face the problems of range resolu-

tion degradation, SNR loss, Doppler tolerance, etc. In this work, novel waveform

design and adaptive pulse compression algorithms are introduced and implemented

to practical radar data, which provide insights for MPAR project.
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2.2.3 Solid-State Radars for Observing Distributed-Targets

Sensing

2.2.3.1 Characterization of distributed-targets

For distributed targets such as precipitation, the target characteristics are accounted

for in terms of reflectivity. It is a measure of the intensities of precipitation in the

scanned volume. Reflectivity is the superposition of the backscattering cross sections

weighed by particle size distribution. The weather radar equation is (Doviak and

Zrnic 1984)

P̄ (r0) =
Ptg

2ηcτπθ21λ
2

(4π)3r20l
216 ln 2

(2.2)

where P̄ (r0) is the weather signal mean power at the antenna, g is the antenna

gain, η is the reflectivity, c is the speed of light, τ is the equivalent pulse width, θ1

is the 3-dB antenna beamwidth, λ is the wavelength, r0 is the volume range and l is

the loss factor. In practice, for the short-wavelength (λ < 10cm) radars, reflectivity

is computed from

Z =
4λ4

π4|Kw|2

∫
|f(D)|2N(D)dD (2.3)

where D is the diameter of a hydrometeor, f(D) is the backscattering amplitude

at the horizontal polarization (calculated from Mie scattering model (Skolnik 2002)),

Kω is the dielectric factor of water, and λ is the radar wavelength. N(D), which

is from mixing ratio of rain, snow, hail, specifies the drop size distribution (Cheong

et al. 2008).

The SNR for distributed scatterers can be obtained by dividing Eq. 2.2 by kTBn,

which is the radar receiver noise power. This makes reflectivity propositional to SNR.

In this work, the intensity of both hard and distributed targets will be characterized

by SNR unless otherwise noted.

12



2.2.3.2 Example Systems

For distributed-target radars, we focus on meteorological radars. The distinguishing

factor between meteorological radar and other kinds of aviation or military radars

is the nature of distributed-targets, the resulting characteristics of the radar signal,

and the means by which these weather echoes are processed to suppress artifacts and

generate only the significant and essential weather information (Skolnik 2008).

The application of phased array radar (PAR) to weather observations has led to

innovative concepts in both sensing schemes and system architectures. The Radar

Innovations Lab (RIL) at University of Oklahoma has been working with NOAA-

NSSL on developing a low-cost, reconfigurable, small scale testbed for dualpolarized

phased array antenna prototype (Zhang et al. 2011), which is referred to as the

Conformal Phased Array Demonstrator (CPAD). CPAD is a laboratory testbed for

the future MPAR antenna array system. The T/R module used for CPAD is a MMIC-

based dual-polarized design (Fig. 2.2(a)). The power amplifiers used for the T/R

module consist of dual Class-E GaN HPAs with high PAE (Power-Added Efficiency).

Each individual TR module and radiating element can be configured in different

ways to study the impact of array manifolds on the radiation pattern performance.

Fig. 2.2(b) shows the CPAD in the anechoic chamber under evaluation for antenna

pattern.

Nowadays, many meteorological radars have migrated to replace the conventional

tube-based transmitters with solid-state HPAs. One of the examples is PX1000 (Po-

larimetric X-band 1000) radar, which is designed by ARRC (Advanced Radar Re-

search Center) at the University of Oklahoma. PX-1000 is a transportable, solid-

state and polarimetric (independent H/V channels) radar providing novel waveform

diversity for improving polarimetric quality (Cheong et al. 2012). PX1000 can trans-

mit up to 200-Watt total peak power using two solid-state power amplifiers (SSPA).
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(a) (b)

Figure 2.2: The prototype of CPAD. (a) T/R module assembly (b) CPAD under

evaluation.

Its operation frequency is 9550 MHz (X-band). The details about this radar will be

discussed in Chapter 4.

2.3 Pulse Compression and Parameter Estimation

A pulse compression radar transmits a long pulse with pulse width T an peak power

P . The pulse is processed by frequency or phase modulation to achieve a bandwidth B

that is large compared to that of an unmodulated pulse with the same duration. Pulse

compression originated with the purpose to amplify the signal power by temporal

compression. It is a method that combines the energy of a long pulse with resolution

of a short pulse. The use of pulse compression provides several advantages over

unmodulated pulses: (1) The peak transmit power is reduced. The required transmit

energy can be achieved by increasing the waveform pulse width without exceeding

the peak transmit power constrain. Energy of long-duration, low-power pulse will be

comparable to that of the short-duration, high-power pulse. The reason to reduce

transmit power is that the high-power transmitters present problems such as high-

voltage, low reliability, safety issue, size and weight, etc. The low pulse-power is
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especially suitable for the SSPA transmitters. (2) The maximum range is expected

according to the conventional radar equation - Eq. 2.1. (3) The compressed pulse

can obtain a better range resolution compared to unmodulated one. The resolution is

improved by a metric called pulse compression ratio, which is approximately the time-

bandwidth (TB) produce of the waveform. The pulse compression ratio is usually

much larger than unity. (4) The pulse compression radars are less vulnerable to

interfering signals that differ from the modulated transmit signal. In addition, the

coded waveform also has better jamming immunity (Skolnik 2008).

Conventional pulse compression techniques are facing challenges on modern radar

systems, especially with solid-state transmitters. Limited power budget calls for long

transmit pulses, which require a large compression ratio. In the mean time, traditional

methods of pulse compression can only achieve sufficient sidelobe suppression with the

compromised range resolution or target sensitivity. Advanced waveform design and

pulse compression techniques have to be developed for excellent sidelobe mitigation

capabilities without tradeoffs. In this work, new methods of waveform and pulse

compression optimization will be discussed in Chapter 3∼5.

2.3.1 Matched Filter

The impulse response of a traditional matched filter is defined by the particular signal

to which the filter is matched. Under the matching circumstance, the maximum

signal-to-noise ratio (SNR) of the filter output is achieved as long as the receiver

noise is Gaussian. The impulse response of the matched filter is defined as (Skolnik

2002)

h(t) = c · s∗(t0 − t) (2.4)

where s(t) is the transmit signal, c is a constant and t0 is the time when the receiving

signal is sampled.
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The receiving signal at the l-th range gate can be expressed as (discretized version)

y(l) =
∑
i

s(i)x∗(l − i) (2.5)

where x(i) is the impulse response of the i-th range gate.

Consider x = [x(1) x(2) · · · x(L)]T as a vector containing L samples of the range

profile impulse response within the processing window. Then the summation term of

Eq. (2.5) can be readily converted to an expression of matrix multiplication

Y = S · x (2.6)

where Y = [y(1) y(2) · · · y(L + N − 1)]T and S is the waveform matrix defined

as

S =



s∗0 0 · · · · · · 0

... s∗0
...

s∗N−1
...

. . .

0 s∗N−1
. . .

...

... 0
. . . . . . 0

. . . s∗0
...

...
. . .

...

0 0 · · · · · · 0 s∗N−1


S is actually a Toeplitz matrix (Golub and Loan 1996) of L + N − 1 × L. N is the

number of waveform samples.

Eq. (2.6) plays an important role in pulse compression theory from digital signal

processing perspective. It makes possible to incorporate some key linear system and

matrix theory into the pulse compression framework. The matrix expression is also

a preferred style of expression for parallel computing. Adaptive pulse compression

is one of the examples that can take advantage of parallel processing. This will be

discussed in Chapter 4.
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Traditionally, the range sidelobe is suppressed by applying a windowing weighting

either on the waveform or after the matched filter. Fig. 2.3 shows the diagram of a

typical radar system utilizing conventional pulse compression and window weighting.

Figure 2.3: Diagram of a typical pulse compression radar

2.3.2 Least-Square (LS) Estimation Algorithm

LS estimate has been successfully applied to the optimization of pulse compression

waveform and algorithms. For instance, (Baden and Cohen 1990) proposed a opti-

mal mismatched filter for biphase coding waveform using iteratively reweighted least

squares and (Blunt and Gerlach 2006) suggested an adaptive pulse compression algo-

rithm based on reiterative minimum-mean-square errors.
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The problem of the statistical least square estimate can be stated as follows (Lewis

et al. 2006): Given an unknown variable x and the known observation y, find the best

linear estimation for x, when x and y are related as

y = Hx+ v (2.7)

where H is a known matrix and v is the additive random noise corrupting the

observation. The noise vector v has a zero-mean and positive definite covariance

matrix R. In addition, v and x are uncorrelated. The residual cost function is

defined as

c = ‖y −Hx‖2 (2.8)

The derivation of least square estimate is by minimizing Eq. (2.8). The details

can be found in literature such as (Lewis et al. 2006). The best estimate in the least

square sense is concluded as:

x̂LS = (HTR−1H)−1HTR−1y (2.9)

Gauss-Markov Theory states that among the class of all linear estimates of the

state variable x, x̂LS is the best linear unbiased estimate (BLUE) (Lewis et al. 2006).

2.4 Previous Work On Waveform and Radar

Transceiver Optimization

2.4.1 Conventional Methods for Improved Pulse Compression

One of the methods for improving pulse compression performance is waveform de-

sign, which is an important aspect of radar and communication theory. (Pillai et al.

2011) suggests the use of various waveforms (signals) in both transmitter (Tx) and re-

ceiver (Rx) designs for improving the overall performance such as mitigation of range

sidelobe, and detection/identification of targets in interference and noise. Previous
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examples on waveform design include phase coding, nonlinear frequency modulation,

step-frequency modulation, etc.

Phase coding: (Frank 1963) first proposed an N-phase codes which have an

autocorrelation function with one main peak and very small side peaks. (Lewis and

Kretschmer 1981) suggests another new class of codes that are not subject to mainlobe

to sidelobe ratio degradation caused by bandlimiting prior to sampling and digital

pulse compression. They are referred to as P3 and P4 codes. To further improve

the antocorrelation sidelobes and tolerance of low Doppler shifts, (Felhauer 1994)

presented the P(n,k) codes which are derived by step approximation of the phase

function of a nonlinear-frequency modulated. For biphase coding, Barker codes are

well-known to have the best autocorrelation function. (MacWilliams and Sloane

1976) summarized the properities of the pseudo-noise (PN) binary sequences (a.k.a

maximal-length shift-register sequences, or m-sequences). In order to apply PN codes

to pulse compression for lower sidelobe level, (Ackroyd and Ghani 1973) suggested the

use of least-square approximate inverse filtering techniques to radar range sidelobe re-

duction. (Baden and Cohen 1990) demonstrated the generation of mismatched filters

to minimize the peak sidelobe of the biphase codes. In order to achieve the optimal

peak sidelobe and integrated sidelobe level, it is important to choose a signal with

favourable autocorrelation (Levanon 2005). The biggest issue for mismatched filters

is the mismatch loss due to the use of cross-correlation instead of autocorrelation.

LFM and Weighting: One of the important technologies in the pulsed radar is

the pulse compression by means of chirp signals. The chirped waveform obtained by

linear frequency modulation of the pulse is used for transmission. At the reception,

a correlation process with the transmission waveform is carried out to obtain a ideal

impulse response. To suppress the range sidelobes, the frequency characteristics of the

pulse compression filter may be weighted. The popular choices of weighting functions

are Hamming, Cosine-squared, Kaiser, Blackman, etc. (Zhu et al. 2008) reported
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the use of double Kaiser windows for sidelobe suppression and the Peak Sidelobe

Level (PSL) can reach -75 dB. The well-known issue for weighing is the SNR loss

and range resolution degradation. There exists a tradeoff between sidelobe level and

range resolution.

Nonlinear frequency modulation: In airborne and satellite-borne applica-

tions, however, the sidelobes of the ground echo (both in range and azimuth/elevation)

must be sufficiently low. (Griffiths and Vinagre 1994) described a technique for the

design of a radar waveform with ultralow range sidelobes (< -60 dB), by means of

piecewise nonlinear FM (NLFM) waveform. Later, a continuous NLFM waveform de-

sign capable of achieving range sidelobe levels of better than -70 dB was introduced

in (de Witte and Griffiths 2004).

Other methods of pulse compression include step-frequency modulation (Gill 1996),

CLEAN algorithm (Deng 2004), doppler-tolerant waveform (Yang 2007), neural net-

work match filter (Baojun et al. 2000), compressive sensing (Xu 2012), etc.

In the field of weather application, (Keeler and Hwang 1995) investigated several

coded waveforms and compression filters for weather radar applications. Minimum

integrated sidelobe (inverse) filters were demonstrated to be superior to matched fil-

ters for compression processing of distributed weather echoes. (Mudukutore et al.

1998) developed a simulation procedure to accurately describe the signal returns

from distributed weather targets, with pulse compression waveform coding. It takes

into account the effect of target reshuffling during the pulse propagation time. Pulse

compression data from the CSU-CHILL radar were analyzed. (Alberts et al. 2008)

evaluated pulse compression for use in phased array weather radar systems. The per-

formance of the codes with regard to errors in estimating equivalent reflectivity, radial

velocity, and spectral width is examined. In addition, the pulse compression scheme

implemented on the Imaging Wind and Rain Airborne Proler (IWRAP) is described
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in (McManus et al. 2008). IWRAP is a dual-band (C and Ku) Doppler scatterome-

ter designed to map the atmospheric boundary layer wind fields, ocean surface wind

fields, and precipitation within tropical cyclones (McManus et al. 2008). Recently,

(Bharadwaj and Chandrasekar 2012) demonstrated the blind-range mitigation that is

inherent in pulse compression by using a time-frequency multiplexed waveform while

compression is performed in pure software architecture.

2.4.2 Radar Transceiver Optimization

Recall from Eq. 2.5 that the signal echo y is equal to the convolution between the

transmitted signal s and the target impulse response h. Maximization of the receiver

output SNR in white noise scenario leads to the matched filter. Since the output SNR

depends on the transmitted signal s, further improvement in the output SNR can be

obtained by exploiting the freedom present in selecting s at the transmitter. Thus,

by combining the matched filter receiver with the transmit signal design problem, we

are able to achieve a joint optimal transmitter-receiver design. This is equivalent to

solving the following constrained optimization problem,

maximize
L∑
l=0

|y(l)|2 subject to
N∑
l=0

|s(l)|2 = C (2.10)

where L is the number of range gate, and N is the number of waveform samples. t0

is the moment when the receiver samples the echo signal. y is defined in Eq. 2.5.

More generally, the desired target is buried in both interference and noise. The

transmit signal excites the target and interference simultaneously. The interference is

often signal-dependent, which requires comprehensive transmit and receive designs.

The goal of the receiver design is to enhance the target returns and simultaneously
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suppress both the interference and noise signals. Thus, the signal power to aver-

age interference pulse noise ratio (SINR) at the receiver output can be used as an

optimization goal. (Pillai et al. 2011) derived the maximum obtainable SINR

SINRmax =
1

2π

∫ +∞

−∞

|H(ω)|2|S(ω)|2

Hc(ω)|S(ω)|2 +Hn(ω)
dω (2.11)

where H(ω) is the Fourier transform of h(l). S(ω) is the Fourier transform of s(l).

Hc(ω) and Hn(ω) are the power spectrum of interference and noise, respectively. The

corresponding optimal receiver impulse response is defined as

Wopt(ω) =
H∗(ω)S∗(ω)

Hc(ω)|S(ω)|2 +Hn(ω)
e−jωt0 (2.12)

in which (∗) denotes the complex conjugate operation. Thus, the optimal transmit

signal can be obtained by maximizing Eq. 2.11 subject to the energy constraint (the

transmit signal pulse has finite energy)

1

T

N∑
l=0

|s(l)|2 =
1

2π

∫ +∞

−∞
|S(ω)|2dω = E (2.13)

where T is the sampling interval and E is the energy constrain. (Pillai et al. 2011)

proved the minimum phase condition of the optimum solution of joint optimization

and summarized the various aspects of waveform diversity designs. In Chapter 5, we

will discuss a novel solution of joint transmit and receive optimization for mitigation

of nonlinear distortion together with adaptive pulse compressions.
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Chapter 3

Multi-Functional Radar Waveforms Design and

Application

3.1 Introduction of Multifunctional Radar

Waveform

Radar technology is advancing towards higher resolution, better precision and more

versatile functions. In spaceborne application for example, NASA first demonstrated

the combination of radar and communication functionality in Tracking and Data Re-

lay Satellite System (TDRSS) (Cager et al. 1978). Recently, as with the advance of

solid-state electronic and optoelectronic devices, the principles of carrier-free radar

and radio communications have been implemented into practical systems (Taylor

(1995); Di Benedett (2006)). (Surender and Narayanan 2006) suggested a combina-

tion of UWB waveform and OFDM technology to achieve a dynamic, ad-hoc, and

covert communication network. This hybrid system also has the advantage of Low-

Probability of Interception (LPI), which benefits from the noise-like spectrum behav-

ior of UWB waveform. Fig. 3.1 depicts the simplified waveform generation portion of

such system.
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Figure 3.1: UWB OFDM waveform generator

Another field getting a lot of attentions recently is the aviation safety, where col-

lision avoidance is one of the most critical issues involving detection, localization and

alerting of external traffic. External traffic can be cooperative (with transponder

response) or non-cooperative. It is believed that the combination of primary and

secondary surveillance radar on a single aircraft platform is a promising solution to

this situation, i.e., the radar receivers can use the reflected transponder signals from

non-cooperative targets for detection and even tracking. If this is possible, both co-

operative and non-cooperative targets can be detected using a single avionics. The

concept and system aspects of using multi-functional ADS-B signal waveform for pri-

mary surveillance was first described in (Zhang et al. 2008), in which a binary phase

modulation is introduced to convert the original 1090 MHz ADS-B signal waveform

into a radar signal, and a “burst” of the reflected pulses from targets can be com-

pressed to enhance the signal-to-noise ratio (SNR). Fig. 3.2 shows the diagram of

ADS-B system. In this chapter, the basic concept of radar ambiguity function and

sidelobe constrain will be reviewed, followed by the introduction of basic waveforms.

Those are the building blocks of the multi-functional waveforms. Then the PPM/PM

waveform characterization, optimization and its application are studied in details.
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Figure 3.2: Concept of a multi-functional Sense and Avoid (SAA) system (Zhang

et al. 2008)

3.2 Radar Ambiguity Function

Before we proceed with discussion of any type of radar waveforms, it is necessary to

reiterate the concept of radar ambiguity function. The ambiguity function (AF) is

defined as the time response of a filter matched to a given finite energy signal when

the signal is received with a delay τ and a Doppler shift of ξ relative to the nominal

values (zeros) expected by the filter (Levanon and Mozeson 2004). It describes how

the receiver system can discern targets with different distance and velocity. The AF

is defined as

χ (τ, ξ) =

∫ ∞
−∞

u (t)u∗ (t+ τ) ej2πξtdt (3.1)

The definition Eq. (3.1) can be extended to the cross ambiguity function by simply

replacing the second u term with a new waveform w, where w is another set of

waveform instead of the original waveform.

To simplify the calculation, AF can be obtained by applying the Fourier Transform

on the waveforms first and then calculating the multiplication of Fourier Transforms
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instead of convolution in the time domain. It is demonstrated by the following equa-

tions:

χ (τ, ξ) =

∫ ∞
−∞

u (t)w∗ (t+ τ) ej2πξtdt (3.2)

=

∫ ∞
−∞

[
u(t)ej2πξt

]
w∗ [τ − (−t)] dt (3.3)

=
[
u(t)ej2πξt

]
⊗ [w∗(−t)] (3.4)

= F−1 [U (ξ − f ) ·W ∗(ξ)] (3.5)

where U (ξ) and W (ξ) are the Fourier Transforms of u(t) and w(t), respectively.

3.3 Phased-Modulated Waveform

3.3.1 Linear Frequency-Modulated Waveform

Linear frequency modulation (LFM) waveform is the first and most popular pulse

compression method. It achieves a large Time-Bandwidth (TB) product by a nonlin-

ear phase modulation. The advantage of LFM is that it can tolerant large Doppler

shift of the return signal. This tolerance significantly reduces the complexity of the

signal processing system. The disadvantage of the LFM is also obvious: the output

response has a time delay propositional to Doppler shift. Another drawback of LFM

is the high sidelobe response of the matched filter. This can be overcome by applying

windowing on the waveform, but with the trade off of spacious resolution (Skolnik

2002).

The complex LFM waveform with a rectangular pulse shape can be expressed as

s(t) = u(t)ej2πf0t =
1√
T
rect(

1

T
)ej2π(f0t+Kt

2/2) (3.6)

where

u(t) =
1√
T
rect(

1

T
)ejπKt

2

, K =
B

T
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T is the pulse width and B is the LFM bandwidth. The spectrum of LFM is expressed

as (Levanon and Mozeson 2004)

U(f) =
1

2KT
e−jπf

2/K [{C(U1) + C(U2)}+ j {S(U1) + S(U2)}] (3.7)

where

C(x) =

∫ x

0

cos(t2)dt, S(x) =

∫ x

0

sin(t2)dt, U1 =
√

2K(
T

2
− f

K
), U2 =

√
2K(

T

2
+
f

K
)

As the TB product becomes large, the spectral amplitude of LFM is approximately

a rectangle while the phase converges to −πf 2/4 + π/4. According to Eq. (3.1), the

LFM AF is calculated as

|χ(τ, ξ)|2 =

∣∣∣∣∣sin π(ξ −Kτ)(T − |τ |)
π(ξ −Kτ)(T − |τ |)

(1− |τ |
T

)

∣∣∣∣∣
2

, |τ | ≤ T (3.8)

Fig. 3.3 shows the ambiguity function of a LFM waveform with B = 4MHz and

T = 2µs

3.3.2 Nonlinear Frequency Modulation Waveform

The autocorrelation function of the unweighted LFM waveform suffers from relatively

high sidelobe level (approximately -13.2dB). Applying a certain weighting window

function on LFM can significantly reduce the sidelobes, but the mismatch introduced

by windowing can cause serious SNR loss. Shaping the transmitting waveform could

also results in nonuniform amplitude of the pulse, which requires linear power ampli-

fiers. Backing off from the saturated power is not efficient. The windowing method is

actually trying to control the waveform spectrum. Another way of shaping the wave-

form spectrum is by weighting on the phase instead of the amplitude of LFM. This

approach is termed Nonlinear Frequency Modulation (NLFM). The design details of

NLFM can be found in literature such as (Johnston and Fairhead (1986); Collins and

Atkins (1999)).
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(a)

(b)

Figure 3.3: The autocorrelation function and ambiguity function of a LFM waveform

with B = 4MHz and T = 2µs.(a) LFM autocorrelation function; (b) Ambiguity

function
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3.4 Phased-Coded Waveform

One of the early methods for pulse compression is phased-coding (PC). Its phase

modulation function has finite states. This is different from LFM waveform whose

phase modulation is continuous. Most of these waveform utilize pseudo-random (PN)

coding. The complex form of PN waveform is defined as

u (t) =
1√
N

N−1∑
n=0

cn · p (t− nT ) (3.9)

where

p(t) =


1√
T
, 0 < t < T

0, otherwise.

(3.10)

cn is the PN sequence. p(t) is the subpulse function. T is the pulse repetition time

(PRT). N is the code length.

The power spectrum density (PSD) of the phase code is defined as

U(f) =

√
T

N

sin(πfT )

πfT
e−jπfT

[
N−1∑
k=0

cke
−j2πfkT

]
(3.11)

The spectrum of the phase code is primarily determined by the spectrum of the pulse

itself.

3.4.1 Barker Code

Barker sequence is a special type of binary pseudo-random code. The binary pseudo-

random code is a pulse compression code whose periodic auto-correlation function

satisfies

χ(m, 0) =
N−1∑
k=0

ckck+m =


N, m = 0(modN)

a < N, m 6= 0(modN)

(3.12)

Barker code has a more strict aperiodic auto correlation function as follows

χ(m, 0) =

N−1−|m|∑
k=0

ckck+m =


N, m = 0(modN)

0 or ± 1, m 6= 0(modN)

(3.13)
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Obviously, |χ(m, 0)| ≤ 1,m 6= 0. Therefore, Barker sequence is also called the “best”

finite binary sequence. There are only 7 Barker codes available. The longest has 13

bits. The 13-bit Barker code will be used in the Chapter 4 and 5.

3.4.2 M-Sequence

Another commonly-used code is m-sequence (MacWilliams and Sloane 1976). It is

also known as maximal-length shift register sequence. Its periodic auto-correlation

function is also very ideal and its ambiguity function has a thumbtack shape. m-

sequence is generated by a linear feedback shift register (LFSR), which is the heart

of many digital systems that rely on pseudorandom sequence. To construct an m-

sequence of length N = 2m − 1, one needs a primitive polynomial g(x) of degree m.

For instance, the following expression corresponds to a polynomial degree of 7,

g(x) = x7 + x+ 1 (3.14)

Eq. (3.14) specifies a LFSR as shown in Fig. 3.4. Theoretically, the side lobe level

of m-sequence’s aperiodic auto-correlation function is approximately
√
N .

This type of waveform will be designed and optimized for radar sensing application

later in this chapter.

Figure 3.4: Feedback shift register corresponding to x7 + x+ 1
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3.4.3 Polyphase Code

Barker code and m-sequence are both binary codes. Efforts have been done to search

for polyphase codes with good sidelobe ratio and Doppler tolerance. Of the many

polyphase codes, Frank code (Frank 1963) is most frequently used. Based on Frank

code, a new class of symmetric radar pulse compression codes was introduced in

(Lewis and Kretschmer 1981). They are P3 and P4 codes.

P3 Code: Define the signal bandwidth B and pulse width T . Then the phase

of successive code samples is defined as

Φ
(3)
k =

π(k − 1)2

BT
(3.15)

P4 Code is defined as (Phase):

Φ
(4)
k =

π(k − 1)2

BT
− π(k − 1) (3.16)

Table. 3.1 shows the phase for P3 and P4 code samples with BT = 16.

k 1 2 3 4 5 6 7 8

Φ
(3)
k 0 π/16 4π/16 9π/16 π 25π/16 4π/16 17π/16

Φ
(4)
k 0 17π/16 4π/16 25π/16 π 9π/16 4π/16 π/16

k 9 10 11 12 13 14 15 16

Φ
(3)
k 0 17π/16 4π/16 25π/16 π 9π/16 4π/16 π/16

Φ
(4)
k 0 π/16 4π/16 9π/16 π 25π/16 4π/16 17π/16

Table 3.1: Phase for P3 and P4 codes (modulo 2π), with BT = 16. Φ
(3)
k and Φ

(4)
k are

the phase for P3 and P4 codes, respectively. It is noticed that the largest adjacent

phase difference is in the middle of P3 code but on the two ends of P4 code.
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3.5 Waveform Optimization For Low Sidelobe

In multi-target environment, the sidelobe of a strong target or clutter tends to overlap

with the weak targets. Certain sidelobe suppression techniques must be adopted to

prevent target from fading and increase the capability of detection for pulse compres-

sion systems. It is often desired to control the range-time sidelobe characteristic of

waveforms. For point targets, the sidelobe and pulse compression performance can

be characterized by the following definitions:

PSL = 10 log10

Max sidelobe power

main lobe power
(3.17)

ISL = 10 log10

Total sidelobe power

main lobe power
(3.18)

SNRL = 10 log10

SNR of weighting network

SNR of matched filter
(3.19)

PSL, ISL and SNRL refer to as peak sidelobe level, integrated sidelobe level and

SNR loss respectively. The most commonly-used sidelobe rejection approach is by

applying weighting function in the transmitter or receiver end (Skolnik 2002). An-

other notable method is mismatched filter (Ackroyd and Ghani 1973). The pulse

compression receiver uses an optimized correlation filter to achieve the best sidelobe

performance.

3.5.1 Weighting Method

LFM is the primary waveform for weighting method. From previous section we

know that the sidelobe characteristic for LFM is approximately a sinc function. The

maximum sidelobe level is -13.2 dB and the rest of sidelobes decays at a rate of

1/x. As a spaceborne radar of NASA Tropical Rainfall Measuring Mission (TRMM),

the Second-Generation Precipitation Radar (PR-2) adopts a LFM signal with B =
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4 MHz and T = 50 µs (Fischman et al. 2005). After applying Kaiser window, the

near surface sidelobes can be suppressed to -55 dB. Table. 3.2 compares the perfor-

mance of different window functions applied to the LFM signal.

Window

functions

Sidelobe

(dB)

Mainlobe width

(µs)

SNRL

(dB)

Sidelobe decay

(dB/octave)

Rectangle -13 0.22 0 6

Hanning -31 0.36 1.49 18

Hamming -42 0.33 1.34 6

Blackman -58 0.42 1.89 18

Kaiser(β=6) -58 0.35 1.66 12

Table 3.2: Pulse compression performance comparison for different window functions

(B = 4 MHz, T = 50 µs)

3.5.2 Mismatched Filter

The idea of mismatched filter was first proposed and applied to polyphase code pulse

compression (Baden and Cohen 1990), in which the ISL optimized filter is calculated

initially, then the PSL optimized filter can be derived iteratively.

The polyphase code is defined as {si} with a length of N and the mismatched

filter is h of length P ≥ N . h will minimize the PSL of the cross correlation between

s and h. The details about optimal mismatched filter theory will be discussed within

the following section.
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3.6 Pulse Position and Phase Modulation

Waveform Design and Application

In this section, we will discuss the design, optimization and application of a waveform

with both phase modulation (PM) and pulse position modulation (PPM). The gen-

eral concept of ADS-B radar system using this waveform is described in (Zhang et al.

2008). As mentioned before, the purpose of such waveform is to support detecting

and tracking noncooperative collision threat in the airspace, while maintaining com-

patibility with the standard ADS-B transponders. This requires that the matched

filter output have a low sidelobe level to recover the targets masked by the coupling

signal of the transmitted waveform. The original transponder signal PPM waveform

does not possess a stable sidelobe structure. The PM coding technique is applied to

PPM waveforms to improve the auto-correlation and side-lobe performance.

3.6.1 Waveform Characterization

3.6.1.1 Waveform Description

Figure 3.5: The structure of phase-modulated transponder waveform

Fig. 3.5 shows a simplified model for phase-modulated transponder signals. The

pulses are transmitted in bursts, i.e., Nb Pulse-Position-Modulation (PPM) symbols

are transmitted during Tburst time period. For binary PPM used in most transponders,
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each PPM symbol contains a pulse having pulse width Tp , which is placed at either

the first or the second half of the symbol period T . Moreover, each pulse is phase-

modulated. The simplest binary phase modulation (PM) results in either 180◦ or

−180◦ phase of each pulse in the burst, which correspond to either ‘0’ or ‘1’ in

the binary phase codes. The 1090 ADS-B standard is the focus of this work. For

this particular transponder standard, the parameter values in the signal model are

Nb = 112 (ignoring the header pulses), Tburst = 112 µs, Tp = 0.5 µs and T = 1 µs.

The pulse-burst is transmitted once per second. The carrier frequency of pulses is

1090 MHz. On the other hand, the discussions in this work can be easily generalized

to other parameter sets or other transponder waveform standards.

There are two reasons PM is important to convert the transponder waveform to

radar signals. First, since the PPM is used to carry the aircraft location informa-

tion, it is not under the waveform designers control, the phase modulation improves

the correlation performance and sidelobe structures, thus enabling the possibility of

waveform optimization. Second, the PM code allows the discrimination of reflected

transponder signals from the received transponder signals broadcast from other air-

crafts. Even though random PM creates a spectrum spreading effect, it can be shown

that the detection and demodulation specifications of the ADS-B signals can still be

met. Therefore, there is no significant difference between normal transponder signals

and phase-modulated transponder signals to those aircraft with general Mode-S or

ADS-B transceivers.

3.6.1.2 Statistical Signal Model

The statistical model of the phase-modulated transponder signal is used to study the

power spectrum density (PSD) of the waveform over a sufficiently long observation

time. This is the key to facilitate the compliance and interference analysis. In general,
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a phased-coded, PPM modulated long signal u(t) observed over a long time can be

modeled as

u (t) =
∞∑

n=−∞

anp (t− nT − εn) (3.20)

which is a pulse train consisting of an infinite number of received pulse bursts,

where T is the pulse repetition period. The single pulse p (t) is defined as

p(t) =


1√
Tp
, 0 < t < Tp

0, otherwise.

(3.21)

At baseband, both the PM symbols an and the PPM sequence εn are binominal-

distributed random processes, and their probability distribution functions are given

by

Pr {an} =

 p, an = 1

1− p, an = −1
(3.22)

and

Pr {εn} =

 q, εn = 0

1− q, εn = ε0

(3.23)

ε0 in Eq. (3.23) represents the pulse position in term of delay-time. For a particular

case of transponders, ε0 = T/2 . Assuming an is a wide sense cyclostationary (WSCS)

process with period Nb, following similar analysis procedures in (Win (1998); Durnea

(2007)), it is seen that the PSD of u (t) is the summation of both continuous and

discrete components. The continuous portion of the spectrum is given by

Scu (f) =
1

T
|P (f)|2

∞∑
l=−∞

[
1

Nb

Nb−1∑
n=0

Ka,ε (n, l, f, f)

]
e−j2πflT (3.24)

where

Ka,ε (n, l, f, f) =E
{
ana

∗
n+l

}
E
{
e−j2πfεne+j2πfεm

}
−

E {an}E
{
a∗n+l

}
E
{
e−j2πfεn

}
E
{
e+j2πfεm

} (3.25)

E {.} denotes statistical average. The discrete portion of the spectrum is given by
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Sdu (f) = 1
(NbT )

2

∞∑
l=−∞

∣∣∣P ( l
NbT

)∣∣∣2 ∣∣∣∣Nb−1∑
n=0

E {an}E
{
e
j 2πεnl
NbT

}
e
j 2πnl
Nb

∣∣∣∣2 δ (f − l
NbT

)
(3.26)

where δ(·) is the Dirac Delta function. It is evident that

E
{
ej2πfεn

}
= q + (1− q) · ej2πfε0 (3.27)

and

E
{
ej2πfεne−j2πfεm

}
=

 1, m = n

1− 4q(1− q) sin2 (πfε0) , m 6= n
(3.28)

If the sequence an is assumed to be wide sense stationary (WSS), the continuous

spectrum in Eq. (3.24) can be simplified as

Scu (f) =
1

T
|P (f)|2K0 (f) +

∞∑
l=−∞
l 6=0

K (f) e−j2πfT l (3.29)

where

K0 (f) = 1− (2p− 1)2
[
1− 4q(1− q) sin2 (πfε0)

]2
(3.30)

and

K (f) = (2p− 1)2
[
q2 − j2q(1− q) sin 2πfε0 − (1− q)2 ej4πfε0

]
(3.31)

In order to match this model with actual transponder waveforms, and obtain

convergent summation of the exponential series in Eq. (3.29), we limit the range of

the index from −M to +M ( M is a sufficiently-large positive integer), which leads

to

Scu,M (f) =
1

T
|P (f)|2K0 (f) +K (f) · sin (MπfT )

sin (πfT )
cos [(M + 1) πfT ] (3.32)

Similarly, the discrete spectrum portion in Eq. (3.26) can also be simplified with

the WSS assumption. The result is given by

Sdu (f) =
1

T 2

∞∑
l=−∞

∣∣∣∣P ( l

T

)∣∣∣∣2 |G (l)|2 δ
(
f − l

T

)
(3.33)
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where G(l) is related to p and q through

G (l) = (2p− 1)
[
q + (1− q) ej2πl

]
(3.34)

Given the pulse shape in Eq. (3.21) and the PPM/PM codes (with statistics p

and q), and the length parameter M, the PSD of the pulse burst can be predicted

by Eq. (3.24), (3.26), and (3.30)∼ (3.34). The analytical predictions of this model

are compared with the spectrum analysis results of actual PPM/PM pulse bursts.

The actual PPM/PM bursts are recorded from the repeating output of an arbitrary

waveform generator. One example is given in Fig. 3.6. It is seen that besides some

noise effects, the analytic results match the actual signal spectrums shape, spectrum

width, and spectrum peak locations. Especially, the locations of the discrete line

spectrum are accurately predicted.

The impact of phase modulation on the PSD can be observed from Eq. (3.29)

∼ (3.34). When there is no phase modulation (i.e., p = 1 ), the PSD is dominated

by the PPM sequence. If the entire PPM message is ‘0’ or ‘1’, that is equivalent

to a simple periodic pulse-train, the continuous spectrum vanishes and the discrete

spectrum remains. On the other hand, the phase modulation tends to reduce the

level of the discrete spectrum. If the phase modulation has sufficient randomness

(p = 0.5 ), the second part of the continuous spectrum and the discrete spectrum will

disappear, and the PSD of the modulated transponder waveform is equivalent to the

PSD of a single pulse in the burst.

The spectrum width of u (t) is a parameter of interest because it is related to the

evaluation of whether the phase-modulated transponder signals still be processed by

standard ADS-B receivers (RTCA 2003) and whether it can be easily intercepted or

jammed. It can be seen from Eq. (3.34) that the PM changes the overall power level,

but not the structure of Sdu (f) . Therefore, the spectrum width is determined by the

continuous portion Scu (f) . As such, the spectrum width factor can be defined as

σ2
u =

∫ ∞
−∞

ω2Scu (ω) dω −
[∫ ∞
−∞

ωScu (ω) dω

]2
(3.35)
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(a)

(b)

Figure 3.6: Example of theoretically predicted PSD compared with calculated PSD

for repeating baseband PPM+PM pulse burst. The PPM and PM codes are both

pseudo-random code with length Nb of 127. Tp = 0.5 s, T = 1 s, p = 0.496 and q =

0.52. (a) Analytical PSD from Eq. (3.24) and (3.26), and (b) PSD of a PPM/PM

code calculated by periodogram.
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where ω = 2πf . For ADS-B standard pulse burst, Fig. 3.7 shows a numerically

calculated 2D plot of σ2
u with p and q run from 0 to 1, respectively. Different combina-

tions of PPM and PM codes can result in up to 9 dB variation in the spectrum width

factor. It can be seen that if the PM code is random enough, e.g., p has values within

the range of 0.3∼0.7, the effect of PPM on the spectrum is very small (less than 1 dB

on σ2
u ). This observation indicates it is possible to control the correlation properties

of the waveform independently through phase modulation. Large amounts of simula-

tions with different PM codes also show the 3dB bandwidth of the phase-modulated

PPM sequences still satisfies the roll-off requirement of the ADS-B standard.

Figure 3.7: Calculated spectrum width factor versus different p and q

3.6.1.3 Deterministic Signal Model

The statistical signal model of the PPM/PM pulse burst is able to predict the

ensemble-averaged behavior of the waveform when a large number of waveform real-

izations are stored and processed. In reality, however, the data available for real-time

radar detection is generally a single-burst of pulses, which is just one realization of
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the waveform and has limited time span. This case is especially important for wave-

form optimization, i.e., finding the best PM code sequence for target detection given

a PPM sequence in the pulse burst. A deterministic signal model is used in such

situations, which is given by

uN (t) =

Nb−1∑
n=0

anp (t− nT − εn) (3.36)

where Nb is the number of pulses in a pulse burst, an (taking values +1 and -1) and

εn (taking values 0 and ε0 ) are now deterministic sequences. The autocorrelation of

uN (t) is

Ru (τ) =
∫∞
−∞ uN (t)u∗N (t+ τ) dt

=
Nb−1∑
n=0

Nb−1∑
m=0

ana
∗
m

∫∞
−∞ p (t− nT − εn)p (t+ τ −mT − εm) dt

(3.37)

The integral in respect to t in Eq. (3.37) only depends on the PPM sequence, and

can be defined as

RPPM (m,n, τ) =

∫ ∞
−∞

p (t− nT − εn) p (t+ τ −mT − εm)dt (3.38)

and Eq. (3.37) is then reduced to

Ru (τ) =

Nb−1∑
n=0

Nb−1∑
m=0

ana
∗
mRPPM (m,n, τ) (3.39)

Eq. (3.39) is applicable to any pulse shape. For general transponder signals, p (t)

is considered as a square pulse, or in the more specific case of ADS-B, Tp = T/2.

With such assumptions, in order to yield non-zero values in Eq. (3.38), the following

condition needs to be satisfied:

|(m− n)T − τ + (εm − εn)| ≤ Tp (3.40)

Eq. (3.40) indicates that when the PPM sequence as well as τ and n are given, not

all the values of m will contribute to the autocorrelation. For general PPM modulated

transponder burst, considering

|εm − εn| ≤
T

2
(3.41)
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there are only two possible values of m that can satisfy Eq. (3.41):

m = [n+ τ ] ,m = [n+ τ ] + 1 (3.42)

where [·] denotes taking the closest integer value (rounded down). Next, for every

index value n, we define ∆εn,k as the time-position difference between the n th and

the n+ k th PPM pulse, i.e.,

∆εn,k = εn+k − εn (3.43)

then the autocorrelation is further simplified as

Ru (τ) =

Nb−1∑
n=0

anan+[τ ]Rp (n, τ) +

Nb−1∑
n=0

anan+[τ+1]Rp (n, τ + 1) (3.44)

and

Rp (n, τ) =

∫ T
2

−T
2

p (t)p
{

[τ ]T − τ + ∆εn,[τ ]
}
dt, (3.45)

Rp (n, τ + 1) =

∫ T
2

−T
2

p (t)p
{

[τ + 1]T − τ + ∆εn,[τ+1]

}
dt (3.46)

Eq. (3.44) through Eq. (3.46) separate the effects of PPM and PM in the deter-

ministic autocorrelation function. For the special cases where q = 1 or q = 0 (all

‘0’ or all ‘1’ in the PPM message), Eq. (3.44) indicates that the autocorrelation at

delay τ is nothing but the weighted-average of RPM ([τ ]) and RPM ([τ + 1]) , which

are the autocorrelations of the elementary pulses at two consecutive time delays. The

autocorrelation function Eq. (3.44) derived from the deterministic model is the basis

of the time-domain waveform optimization in the following sections.

3.6.1.4 The Radar Ambiguity Function and Receivers

It is interesting to observe the characterizations of hybrid PPM/PM waveforms in

presence of both time delay τ and Doppler shift ξ . Also, how the modulation coding

schemes affect the radar waveform characterizations is also a critical issue. The

radar ambiguity function (Skolnik (2002); Levanon (2005)) can be analyzed for such
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purposes. The traditional definition of the ambiguity function assumes a correlation

receiver, or matched filter, is used. For the phase-modulated transponder waveforms,

however, two important aspects need to be emphasized: (1) the ambiguity function

depends not only on the coding scheme, but also the relative change of PM codes

within a sequence; (2) since the length of the transponder signal burst is short (112

pulses in one burst of ADS-B signal), the sidelobe structures of the autocorrelation

result may not meet the detection requirements at certain SNR. A new category of

receiver technique, called mismatched filtering (Baden and Cohen (1990); Ackroyd

and Ghani (1973); Griep et al. (1995); Levanon (2005); Davis et al. (2007)), could be

used if better sidelobe performance is desired. The cross ambiguity function should

be used for this case. See Eq. 3.5.

To further elaborate on the ambiguity functions and take into account the com-

bined impact of the PPM and PM on autocorrelation, the general ambiguity function

can be expressed as the convolution of the pulse train and associated modulations

(Titlebaum and DeClaris 1966), i.e.,

χ (τ, ξ) = χ1(τ, ξ)⊗τ χ2(τ, ξ) (3.47)

=

Nb−1∑
i=−(Nb−1)

χ1(τ − iT, ξ)χ2(iT, ξ) (3.48)

where χ1(τ, ξ) and χ2(τ, ξ) are the ambiguity functions of p(t) and v(t) , respectively,

and ⊗τ denotes convolution with respect with τ .

The ambiguity function for the rectangular signal p(t) can be easily calculated as:

χ1(τ, ξ) = ejπξ(Tp−τ)
sin πξ(Tp − |τ |)
πξ(Tp − |τ |)

(
1− |τ |

Tp

)
, |τ | < Tp. (3.49)
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The ambiguity function of v(t) can be derived in a similar manner as in Eq. (3.37),

χ2(τ, ξ) =
1

Nb

Nb−1∑
k=0

Nb−1∑
l=0

∫ +∞

−∞
akal · δ(t− kT − εk) · δ(t+ τ − lT − εl)ej2πξtdt (3.50)

=
1

Nb

Nb−1∑
k=0

Nb−1∑
l=0

∫ +∞

−∞
akal · δ(t) · δ[t+ τ − (l − k)T − (εl − εk)]ej2πξ(t+kT+εk)dt

(3.51)

=
1

Nb

Nb−1∑
k=0

Nb−1∑
l=0

akale
j2πξ(kT+εk)δ[τ − (l − k)T − (εl − εk)]e−j2πξ[τ−(l−k)T−(εl−εk)]dt

(3.52)

It is obvious that ∆ε = εl − εk ∈
{
−T

2
, 0, T

2

}
and since the double summation is

nonzero only for τ = (l− k)T + ∆ε , let τ = mT/2 , where m is an integer. We could

further simplify χ2(τ, ξ) to yield single summation forms:

χ2

(
mT

2
, ξ

)
=


1
Nb

Nb−1∑
k=0

aka[m
2
+k] · ej2πξ(kT+εk),∆ε = 0,m is even,

1
Nb

Nb−1∑
k=0

aka[m±1
2

+k] · ej2πξ(kT+εk), |∆ε| = T
2
,m is odd.

(3.53)

From Eq. (3.53), the ambiguity function of this combined PPM/PM signal heavily

depends on the coding and receiving schemes. It is seen that the ambiguity function

is symmetrical for m < 0 and m > 0 . Also, we can conclude from Eq. (3.53) that as

an impact of random PPM modulation, χ2(τ, ξ) has different expressions depending

on |∆ε| = 0 or |∆ε| = T/2 . This is because when the Doppler shift ξ is constant, the

PPM modulation affects the correlation structure of the PM codes and introduces

additional phase change like a filter.

To illustrate the radar ambiguity function for phase-modulated transponder wave-

forms, several ambiguity function plots computed for different PPM/PM coding

schemes are shown in Fig. 3.8∼3.10. These figures are representative examples of

large amounts of computation results from different code selections. It is noted that

both PPM and PM codes can be random binary numbers (MacWilliams and Sloane

1976). Normally, they can be generated from either a Linear Recursive Sequence
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(LRS) with random initial register states, or Maximum Length Binary (MLB) se-

quence (also called m-sequence) (MacWilliams and Sloane 1976) as a smaller code

space. Simulated bursts of PPM/PM binary codes with ADS-B waveform parameters

are used for the computations in Eq. (3.5). Since PM is of more concern, we only

change the PM codes for Fig. 3.8∼Fig. 3.9 while the PPM codes are the same. In

Fig. 3.8, a specific realization of the general pseudo-random code is used for PPM and

an MLB code is used for PM. The detailed procedure of generating the mismatched

filter coefficients for a particular waveform is given in the next section. An example

of the calculated cross ambiguity function is depicted in Fig. 3.10.

It is well-known that an MLB sequence has excellent autocorrelation sidelobe

performance. From the zero-delay cut of the ambiguity functions in Fig. 3.8 and

Fig. 3.9, it is observed that using MLB in phase modulation also gives better delay-

correlation performance for the hybrid PPM/PM waveform. The simulations also

show that using the MLB code in phase modulation can also improve the sidelobes

in the Doppler plane, thus reduce the velocity ambiguity. However, both the general

LRS and MLB result in satisfactory Doppler response. This indicates that the range

correlation performance has a higher priority in waveform optimizations. In Fig. 3.10,

the lowest sidelobe level in the time-delay domain is achieved through mismatched

filtering, although there is ignorable SNR loss. This owes to the excellent sidelobe

suppression property of the mismatched filter. Compared to the range correlation

performance, the Doppler response in Fig. 3.10 has relatively larger sidelobes and

lower resolutions. This is due to the fact that these codes are optimized numerically

for good autocorrelation sidelobes instead of joint range-Doppler performance. On

the hand, it is seen from the zero-Doppler cuts that Doppler performance similar to

the conventional pulsed Doppler radars can be achieved.

In summary, the ambiguity function of a PPM/PM hybrid signal is characterized

by a thumbtack shape and is appropriate for radar application. In addition, large
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(a)

(b)

Figure 3.8: An Illustration of radar ambiguity function (a) Ambiguity function χ(τ, ξ)

. (b) Zero-Doppler χ(τ, 0) and zero-delay cut χ(0, ξ). The PPM code is generated by

a normal LRS random code generator and the PM code is produced by MLB code

generator.
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(a)

(b)

Figure 3.9: Same as Fig. 3.8 except that both the PPM and PM modulation codes

are generated by a normal LRS random code generator.
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(a)

(b)

Figure 3.10: An Illustration of radar cross-ambiguity function based on the mismatch

receiver: (a) Cross-ambiguity function χ(τ, ξ) (b) Zero-Doppler χ(τ, 0) and zero-delay

cut χ(0, ξ) . Both the PPM and PM modulation codes are generated by a normal

LRS random code generator.
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amounts of simulations show that once the PM code is fixed, choosing different PPM

codes does not affect the overall shape of the ambiguity function. It is concluded

from these observations that the phase modulations may play a dominate role in the

waveform designing. This is a useful result since the PPM codes (ADS-B messages)

cannot be controlled by waveform designers.

3.6.2 Waveform and Receiver Optimization

3.6.2.1 Criteria

For every PPM transponder message consisting of N symbols, there are 2N possible

binary sequences for phase coding (e.g., 2112 for ADS-B burst). Each PPM/PM com-

bination displays unique correlation/ambiguity functions, which makes it not feasible

to search all the possible codes for optimization. Also there is no algorithm developed

to automatically compose the optimal PM codes given the PPM messages. There-

fore, the current solution to such a challenge is to search in an organized manner,

i.e. having specific criteria and construct the PM codes progressively in a minimized

set to satisfy the criteria. Based on the discussions of Section 3.6.1, there are three

conclusions that can help the optimization process: First, the PPM modulation is

not under control, and does not have significant impact compared with to PM. The

MLB sequence for PM is shown to have superior performance for ambiguity functions.

Second, the range correlation performance has more variety than the Doppler plane

performance with different PM codes. Third, the simplified, analytical solutions for

correlation functions are available.

As a consequence, the priority of waveform optimization of a PPM/PM signal has

been focused on the optimization of the range sidelobes based on different criteria.

Since the PM code is seen to play a dominant role in correlation performance, it

should be treated with higher priority. In addition to the general criteria for wave-

form optimizations (Golomb and Gong 2005), the following specific criteria are used
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in this work: (a) Integrated Sidelobe Level (ISL) (for a scenario dominated by dis-

tributed clutter), and (b) Peak Sidelobe Level (PSL) (for a scenario requiring target

detection in the presence of large discrete clutter). And if neither ISL nor PSL of the

autocorrelation (matched filter) is satisfactory, mismatched filtering could be utilized

to suppress the time sidelobe power. Also, the sidelobes of strong mutual coupling

interference can be subtracted, similar to the “first order” implementation of the

CLEAN algorithm in (Deng 2004). To further reduce the computation load, the ISL

and PSL can be applied to a “localized” time-delay region, i.e. the area where the

targets of interest may reside.

3.6.2.2 Optimization Algorithms

The procedure of PPM/PM code optimization is introduced in Fig. 3.11. Given the

PPM message (generated by the transponder) and the area of interest (as a range of

delay [τa, τb] ), the optimization procedure first searches possible MLB sequences to

satisfy the ISL and PSL requirements, based on Ru(τ) calculations from Eq. (3.44).

If none of the possible MLB sequences satisfies the ISL/PSL requirements, this step

ends with a PPM/PM combination with achievable minimum-sidelobe autocorrela-

tion. The PPM and PM-MLB codes are merged together to form an Extended Code

Sequence (ECS) to be optimized, and the mismatched filtering procedure is then in-

voked. Filter coefficients hISL are calculated in the first iteration. If the sidelobes of

the cross-correlation between ECS and hISL are not satisfactory, further iterations

to improve the mismatched filtering coefficients (hPSL ) need to be computed. The

procedure finally results in an optimized MLB sequence for PM modulation and the

corresponding receiver coefficients for sidelobe control. Several details of this proce-

dure are elaborated as follows:

a. ISL/PSL optimization for matched filtering For this specific ADS-B appli-

cation, the pulse compression ratio is 112. The code length is first designed
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Figure 3.11: The flowchart of PM code optimization process used in transponder-

based radar systems
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No. x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

1 1 0 0 0 0 0 1 1

2 1 0 0 0 1 0 0 1

3 1 0 0 0 1 1 1 1

4 1 0 0 1 0 0 0 1

5 1 0 0 1 1 1 0 1

6 1 0 1 0 0 1 1 1

7 1 0 1 0 1 0 1 1

8 1 0 1 1 1 0 0 1

9 1 0 1 1 1 1 1 1

10 1 1 0 0 0 0 0 1

11 1 1 0 0 1 0 1 1

12 1 1 0 1 0 0 1 1

13 1 1 0 1 0 1 0 1

14 1 1 1 0 0 1 0 1

15 1 1 1 0 1 1 1 1

16 1 1 1 1 0 0 0 1

17 1 1 1 1 0 1 1 1

18 1 1 1 1 1 1 0 1

Table 3.3: All possible MLB generators for n = 7
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to be 127 and then truncated to 112, which introduces a 1.3 dB loss of PSL.

Again, we only focus on the MLB code, which is a commonly used low-sidelobe

pseudorandom code generated by shift registers (or a generator polynomial h(x)

). The length of the code is N = 2n − 1 . Fig. 3.4 has shown one example con-

figuration of the phase registers for 127/112 bit sequence generation. In order

to obtain an MLB sequence, the polynomial of the MLB generator must be

irreducible and primitive (Tan and Godfrey 2001). According to this principle,

all the possible structures of MLB generators are found and summarized in Ta-

ble. 3.3. A search in this set of 127× 18 = 2286 codes for the optimal ISL and

PSL of the PPM/PM signal is performed. This search process is illustrated in

Fig. 3.12, where the PSL and ISL of all possible MLB codes for 4 particular

PPM codes are depicted.

It is seen from Fig. 3.12 that a -21 dB PSL sidelobe level is attainable for the

four example PPM codes. The calculated ISL is around -3 dB, except for the

all-one PPM scenario, because half of the autocorrelation results are actually

zero, resulting in the loss of half of the ISL power. This rarely happens in real-

life scenarios, since there is always some meaningful information contained in

the PPM sequence.

b. Mismatched filtering for further sidelobe control The ISL optimization for

the mismatch filtering is essentially a process to solve a least-square-error min-

imization problem (Baden and Cohen (1990); Griep et al. (1995)), and the

solution has the following form:

hISL = B−1s (s∗Bs)−1N (3.54)

where

hISL: The optimal ISL mismatched filter coefficients;

s: The ECS (Extended Code Sequence), which consists of a series of -1, 0, 1
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Figure 3.12: Illustration of PSL versus ISL (in dB) of 2286 possible PPM/PM

codes for four different PPM message codes. PPM#1: 127 1s (11111 · · · ); PPM#2:

127 alternative 0s and 1s (010101010101 · · · ); PPM#3: pseudo-random code gen-

erated by MATLAB ‘rand’ command; PPM#4: 40 0s plus 47 1s plus 40 0s

(00000 · · · 11111111 · · · 000000);
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codes. They are combined PPM/PM baseband symbols, e.g., If PPM and PM

codes are both 112 in length, then s is 224 in length.

B = XFX∗ : Quadratic function of the original code s;

X : Hankel matrix of the code s vector, or

X =



0 . . . 0 s0 s1 . . . sN−1
... 0 . . . 0

0 s0 s1 . . . sN−1 0
...

s0 s1 . . . sN−1 0 . . . 0


(3.55)

F: The weighting matrix used to place arbitrary weights on the sidelobes in the

minimization problem;

Thus, y = sh∗ defines the cross-correlation between the original code and the

filter. E = yFy∗ defines the sidelobe energy, and the final optimal ISL solution

actually minimizes the variable E. (Griep et al. 1995) suggests a set of steps

of general PSL mismatched filter optimization, which iteratively solves the ISL

optimization problems with updated F until the specific lower bound is reached.

This method will be applied to the ADS-B-based phase coding optimization

scheme.

3.6.2.3 Examples of Waveform Optimization

As an example, the PPM/PM code#3 from Fig. 3.12 was selected, and the corre-

sponding ISL and PSL optimal filters are calculated. The result is shown in Fig. 3.13.

The first plot of Fig. 3.13 is the autocorrelation of optimized PPM/PM code for

PPM#3 in Fig. 3.12; the second one is the cross-correlation between the original

PPM/PM code and the ISL mismatched filter; the third plot is the cross-correlation
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between the PPM/PM code and the PSL mismatched filter. Along with the tremen-

dous sidelobe suppression for mismatched filters (-35.18 dB for ISL, -42.34 dB for

PSL), there is a LOSS of -3.557 dB and -3.35 dB for ISL and PSL filters, respec-

tively.

Figure 3.13: Time correlation of matched filter and mismatched filter

3.6.3 Prototype Radar Transceiver System

3.6.3.1 Transceiver Architecture

To further investigate the waveform design and detection performance, a prototype

radar transceiver system is designed and fabricated. As is shown in Fig. 3.14, de-

pending on the target range in the experiment, the PPM sequence is generated first,

and the waveform optimization procedure is performed to generate the PM codes.

The intermediate frequency (IF) PPM/PM waveform (modulated ADS-B waveform)
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is generated at 70 MHz carrier, and then loaded into an arbitrary waveform gener-

ator (AWG). This signal is upconverted to 1090 MHz (Transponder band), then fed

through a narrow band filter centered at 1090 MHz with 2% fractional bandwidth.

The signal is amplified to 10 watt (+40 dBm) then transmitted to antenna. Both

the 1090 MHz horn antenna and the omni-directional antennas (as are in transpon-

ders) are used in the experiments. At the receiver side, the signals from the receive

antenna are first filtered at 1090 MHz center frequency, then down-converted and fil-

tered before the I & Q data is extracted. The received IF signals are passed through

70 MHz low pass filters, amplified, and then sampled by a high-speed digital storage

oscilloscope (DSO). It is emphasized here that for sidelobe and noise reduction, a

data acquisition system with high bit-resolution (> 10 bit) is preferred. The acquired

waveforms from the DSO are processed using either auto-correlation or mismatched

filtering (cross-correlation) for target detection.

Figure 3.14: Simplified block-diagram of a transponder based PPM/PM radar system

with interference cancellation circuitry.
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3.6.3.2 Coupling Interference Control

The transponder-based radar faces various kinds of interference including multipath

and direct antenna coupling. The generated signal is 112 µs in length, effectively

making this a continuous wave system for target distances less than 33.6 km. The

direct coupling from the transmitter can be a severe limiting factor of the receiver’s

dynamic range. The waveform optimization is able to minimize the sidelobes from

direct coupling correlation, but these sidelobes may still be stronger than the target

signal at particular ranges. As such, interference between transmit and receive due

to coupling needs to be carefully managed.

Using directional, low sidelobe antenna is the most effective hardware solution

to the direct coupling problem. Since an omni-directional TCAS (Traffic Collision

Alerting System) antenna is used in the experiment, a ground plane can be inserted

between the transmit and receive antennas to reduces coupling, and interference is

further reduced by the introduction of additive cancellation at the front-end. For

a given cable length and antenna spacing, the path due to direct coupling is pre-

dominantly a single path and fairly stable. This path is measured, and a secondary

path is introduced using a 180◦ power splitter (shown in the dashed box, Fig. 3.14.

The secondary path is tuned using a variable attenuator and phase trimmer until the

coupled signal and secondary signal are lined up and 180◦ out of phase. A power com-

biner adds them together, resulting in destructive interference. Fig. 3.15 shows the

output of the canceller for a single 0.5 µs pulse, as well as the entire 112 µs burst. To-

gether with a directional transmit antenna, a larger than 50 dB total transmit-receive

isolation can be achieved.
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(a)

(b)

Figure 3.15: Effectiveness of active cancellation of direct coupling interference at

front-end: (a) Measured interference, single pulse before (top) and after (bottom)

additive cancellation. (b) Cancellation results of entire 112 µs burst for the emulated

PPM/PM waveform.
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3.6.4 Indoor and Field Experiments

3.6.4.1 In-door Hardware Emulation

A hardware emulation experiment is performed in an RF chamber using the transceiver

system discussed in the previous section. The generated radar IF waveform is embed-

ded with a simulated target signature (which is scaled according to the predicted re-

turn power and delayed transmit replica), and this combined waveform is transmitted

to the empty range. Meanwhile, the waveform is coupled back from the transmitter to

the receiver. As a result, the emulation accurately preserves the direct coupling inter-

ference and tests the receiver performance under various Signal-to-Interference (SIR)

Ratios. Since the receive signal comes mostly from direct coupling with the transmit

signal, the actual echo from the target would be hardly distinguishable in reality. In

this particular case, the simulated signal power is 20 dB below the direct coupling

interference. The received coupling signal is sampled and processed. Fig. 3.16 shows

the example results of detecting such a simulated target at 4 µs. Both correlation

reception and mismatched filters are utilized. Also, the receiver output when there is

no target present is subtracted as “background”. This can be considered as cancella-

tion of the coupling interference in the digital domain. The cross-correlation receiver

output, as shown in Fig. 3.16(a), results in a target peak about 10 dB higher than

the nearest sidelobe. The mismatched filtering result shows significant improvement

(almost 10 dB) on the target peak to sidelobe ratio. Note that an arbitrarily selected,

un-optimized PM code can easily result in a sidelobe peak at the target location and

overwhelm the true target signature.

3.6.4.2 Field Test With Stationary Targets

The first field experiment uses a water tower (considered to be a steel sphere with

about 13-meter diameter) as the stationary target and the radar system was placed

at two different observation locations with 300 m and 200 m range from the target,
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(a)

(b)

Figure 3.16: The in-door emulation experiment embeds a simulated target signature

into the transmit waveform and receives through the direct coupling channel. The

received signals contains direct coupling and processed to detect the simulated target.

(a) Processing result using correlation receiver and digital cancellation, (b) Processing

result using mismatched filtering and digital cancellation.
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Figure 3.17: Field experiment setup schematic diagram.

respectively. Fig. 3.17 shows the geometry of the experimental setup. There is strong

ground clutter present in this scenario, so it is seen that the target cannot be detected

using un-optimized PPM/PM waveforms. Again, the digital cancellation technique is

performed. The correlation output when the transmit antenna is aimed at clear sky

is the background for the cancellation operation. The PPM/PM code in the mod-

ulated ADS-B waveform has been optimized by selecting MLB sequences satisfying

the minimum ISL/PSL over the desired target range.

The measured range profiles based on these two optimized waveform and cross-

correlation receivers are displayed in Fig. 3.18∼ 3.19. It is seen that there are strong

interference signatures around 0.6∼1.0 µs, which are caused by ground clutter (the

radar is set on the roof of Building#1 and on the balcony of Building#2). In Fig. 3.18,

the peak at 2.0 µs is identified as the target echo with 300 m range. In Fig. 3.19, the

peak appearing at 1.35 µs is the target echo with 200 m range. In both scenarios,
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there are some sidelobes and targets further away, which are much lower than the

expected target signal levels. The range profiles obtained from mismatched filtering

do not display significant improvement in terms of the target peak to sidelobe ratios,

due to the fact that the outdoor environment is much more complicated than the RF

chamber, thus ground clutter and other interference at L band can alter the return

signal structure optimized for specific filter coefficients. On the other hand, ground

clutter will be a less severe factor for actual mid-air collision avoidance scenarios,

and optimal mismatched filtering can be improved by incorporating the clutter and

interference knowledge as long as they are available.

3.6.4.3 Field Test With Moving Airborne Target

A flight test using a small twin-engine, general aviation aircraft was performed on

Oct 29, 2008 at the Max Westheimer research campus airport of the University of

Oklahoma. The basic setup and geometry of this flight test is shown in Fig. 3.20.

The aircraft approached the runway (a flight path shown in white arrows) at a fixed

height of 100∼200 feet and normal landing speed. And the radar observation position

is located at about 300 feet away from the center of the runway. The PPM/PM

waveform was optimized and generated from an arbitrary waveform generator, a

directional horn antenna and high-power amplifier were used for transmit (∼ 60 watts

peak power), and signals from one channel of the TCAS antenna were recorded once

per second. The received signals from the antennas are correlated with transmit

templates, and each correlation result represents a “scan” of the interested ranges.

Combination of these scanning data results in a two dimensional scan-range map as

shown in Fig. 3.21.

Since the transmit antenna and the receive beam of the TCAS channel pointed in a

fixed direction perpendicular to the runway, the target signature is expected to reach

peak amplitude when the aircraft is within the transmit beam. This expectation is
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well-validated by the scan-range map illustrated in Fig. 3.21, where the “zooming in”

scan-range map around the expected target range (0.7 µs) are illustrated. Fig. 3.21(a)

and (b) display the target signatures of two consecutive approach flights, respectively.

The amplitude of the correlation signature first becomes stronger as the airplane

enters the radar beams, and then diminishes as the target exits the radar beams.

The strongest target signature appears at 6 ∼ 8 seconds, which corresponds to the

time the target enters transmit illumination. It is seen from the flight test result that

it is possible to use a basic correlation receiver (matched filter) to detect or even track

a moving target, with PM-optimized transponder-type signals.
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(a)

(b)

Figure 3.18: Field experiment result with “water tower” as the target. The water

tower is about 300m away from the radar observation position#1. (a) and (b) are

results from two different PPM/PM waveforms, both meet the optimization criteria.
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(a)

(b)

Figure 3.19: Field experiment result with “water tower” as the target. The water

tower is about 200m away from the radar observation position#2. (a) and (b) are

results from two different PPM/PM waveforms corresponding to Fig. 3.18 (a) and

(b).
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Figure 3.20: The setup for the airport flight test. The aircraft cruises along the

runway (a flight path shown in white arrows) at a fixed height of 100 feet. And the

radar observation position is located at about 300 feet away from the center of the

runway.
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(a) (b)

Figure 3.21: Flight experiment result with significant target signatures. The horizon-

tal coordinate is the time delay based on distance between the radar and the target;

the vertical coordinate is the time step of the radar data (one scan for every second)

when the aircraft is flying along the runway (15 second data are collected in this

case). The figures show the amplitude of the matched filter correlation. (a) Flight

#1, flight altitude 100 ft, (b) Flight #2, flight altitude is 200 ft.
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Chapter 4

Adaptive Pulse Compression

4.1 Adaptive Sidelobe Mitigation Algorithms

In the previous Chapter, we focus on the sidelobe mitigation algorithm of pulse com-

pression. In particular, we are seeking a methodology for waveform design optimiza-

tion. A good autocorrelation function of the waveform itself is fundamental to our

optimization problem. It sets a lower bound for the sidelobe level that can be reached.

In this Chapter, however, we pay our attention to a waveform-independent sidelobe

mitigation algorithm, which intends to further reduce the sidelobe levels set by the

waveform itself and achieve optimal estimation of ground-truth.

4.1.1 Least Square (LS) Estimation

Consider a discrete radar signal model, where the transmitted waveform signal is

defined as s = [s0 s1 · · · sN−1]T . The radar scattering field is described by L samples

of the range profile impulse response: x = [x(0) x(1) · · · x(L − 1)]T . The received

echo signal is denoted as y = [y(0) y(1) · · · y(L+N − 2)]T . The length of s, x and y

are N , L and L+N − 1, respectively. Fig. 4.1 shows the concept of the signal model.

With the above definition, the receiving signal samples y is related to the trans-

mitted signal x by

y = S · x + v (4.1)
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Figure 4.1: Concept of radar signal model

where

S =



s∗0 0 · · · · · · 0

... s∗0
...

s∗N−1
...

. . .

0 s∗N−1
. . .

...

... 0
. . . . . . 0

. . . s∗0
...

...
. . .

...

0 0 · · · · · · 0 s∗N−1



(4.2)

v is a white noise vector of length L+N − 1. S is a Toeplitz matrix (Golub and

Loan 1996) of L−N + 1× L .

Then, the least square estimate can be employed to derive the optimal ground

truth impulse response estimation:

x̂LS = (STR−1S)−1STR−1y (4.3)

where R is the L+N − 1× L+N − 1 covariance matrix of noise vector v.

One of the drawback of LS algorithm is that it requires available all the receiving

samples corresponding to one transmitted pulse, i.e. L + N − 1 samples. In order

to reduce the number of samples required for each processing, we can truncate the
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receiving samples into blocks with size of N . This can reduce significant amount

of memory especially when L >> N . This truncated LS algorithm is called TLS

(Truncated Least Square). The implementation of TLS is similar to LS as in Eq. (4.3).

Replace the original variables with truncated ones, yields

x̂TLS = (STt R−1t St)
−1STt R−1t yt (4.4)

where St,Rt and yt are truncated version of S,R and y.

4.1.2 Recursive Minimum Mean Square Error (RMMSE)

Algorithm

LS algorithm should obtain statistically optimized estimation of ground truth in the-

ory. However, implementation of LS to pulse compression faces issues such as large

matrix for inversion, windows effect, and sensitivity to noise. To overcome the draw-

back of direct calculation algorithms such as LS, an adaptive iterative algorithm was

proposed by (Blunt and Gerlach 2006). Instead of a matrix-wise cost function in LS

algorithm, the RMMSE algorithm employs a point-wise cost function. This is equiv-

alent to transforming the overall optimization problem into a partial solution without

significantly degrading the performance. The MMSE cost function is,

c(n) = E
[
‖x(n)−wH(n)Y(n)‖2

]
(4.5)

where n = 0, 1, · · · , L−1. E denotes expectation. w(n) has a dimension of N×1,

which is to match the waveform length N . Y(n) = [y(n) y(n+ 1) · · · y(n+N − 1)].

Take the partial derivative of both sides of Eq. (4.5) with respect to w(n), the MMSE

filter is found to take the form of

w(n) = (E[Y(n)YH(n)])−1E[Y(n)x(n)] (4.6)

Also, the matrix form of the signal model can be expressed as

Y(n) = A(n)s + v (4.7)
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where A(n) is the matrix of the ground truth

A(n) =



x(n) x(n− 1) · · · x(n−N + 1)

x(n− 1) x(n)
. . .

...

...
. . . . . . x(n− 1)

x(n+N − 1) · · · x(n+ 1) x(n)


(4.8)

Using Eq. (4.7), Eq. (4.6) can be further simplified as

w(n) = ρ(n)(C(n) + R)−1s (4.9)

where ρ(n) = |x(n)|2, and R is the N ×N noise covariance matrix similar to that in

Eq. (4.3) . C(n) = E[AT (n)s sHA∗(n)], The details of this algorithm and implemen-

tation related issues can be found in (Blunt and Gerlach 2006).

4.2 Performance Evaluation of 1D RMMSE

Algorithm

In this section, the MF, LS, and RMMSE algorithms will be applied to various sce-

narios where pulse compression is employed. The simulation scenario includes both

hard/point and distributed targets. Since the processing of sidelobe is dedicated to

range domain, we refer it as 1D algorithm, specifically 1D-RMMSE, 1D-MF (Matched

Filter) and 1D-LS (Least Square). In the next section, we will consider the 2D sce-

nario where antenna sidelobe effect is incorporated.

4.2.1 RMMSE with Hard Targets

(Blunt and Gerlach 2006) discussed a scenario where only 2 solitary point targets

are present. Fig. 4.2 depicts a similar simulation in which RMMSE, LS, and MF

algorithm are compared. The ground truth response is used as a reference. Table. 4.1
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Figure 4.2: Simulation of RMMSE on hard targets

System parameter Values

Waveform P3 code

SNR 60 and 30 dB

Target position gate 40 and 55

Table 4.1: Radar parameters for RMMSE simulation
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Figure 4.3: Simulation of RMMSE and TLS

lists the key parameters for RMMSE simulation. Fig. 4.3 also shows the results of

TLS.

According to the simulation, all the algorithms can accurately estimate the posi-

tion and signal level of the strong target. For MF algorithm, the sidelobe generated

by the strong target is about −22 dB, which corresponds to a SNR of 38 dB. This

indicates that anything with a SNR less than 38 dB is very likely to be masked by

the strong sidelobe, especially if the weak target lies in proximity of the strong one.

MF in this case fails to discern the secondary target. For TLS algorithm, although

the weak targets can be recovered, some artifacts also appear due to the truncation

effect. Both RMMSE and LS can predict the targets accurately. One interesting

observation is that at around gate # 90, RMMSE shows a “drooping” effect. The

reason is that ideally RMMSE needs more receiving samples to achieve the similar re-

sult as LS. The additional number of samples is proportional to the iteration number.
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For a 3-iteration RMMSE, the 2(N − 1) additional samples are required to obtain

comparable result to LS.

To numerically characterize the sidelobe mitigation performance, the estimations

are further compared with the ground truth. The normalized mean-square-error

(MSE) is calculated by using the ground truth as the reference,

NMSE(dB) = 10 log

(
‖x̂− x‖2

‖x‖2

)
(4.10)

where x̂ and x are the estimate and the ground truth respectively.

Table. 4.2 lists the NMSE for different algorithms, which is based on the simple

cases illustrated here. RMMSE for general hard target scenarios has been studied

extensively in previous literatures.

Algorithm NMSE(dB)

MF -12.33

TLS -14.02

LS -54.77

RMMSE -48.22

Table 4.2: NMSE for hard-target scenario

4.2.2 RMMSE with Distributed Targets

In case of distributed targets, the adjacent ground truth impulse responses are not

uncorrelated. The potential correlation might affect the estimation accuracy. This

can be demonstrated with a scenario where some distributed scatterers are manually

created. Fig. 4.4 shows the result. The SNR of the distributed targets varies from

0∼10 dB and they are located from gate #25∼#45. The strong solitary target is

about 70 dB above the noise floor. The distributed targets are set to an extreme case

where the signal is barely above the noise floor. Form Fig. 4.4, it is obvious that MF
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Figure 4.4: Simulation of RMMSE on distributed targets

has a bad correlation with the ground truth. LS has excellent performance. When it

comes to RMMSE, the estimation is not as good as LS. In some region close to the

strong peak, the sidelobe is much higher than that of LS. This is due to the fact that

the “adjacent impulse response” is not uncorrelated. Despite its imperfect estimate

accuracy, RMMSE is a much more flexible algorithm in terms of adaptivity, efficiency

and tolerance to noise. This will be further discussed. Table. 4.3 lists the NMSE for

this example.

4.2.3 Simulation of Weather Radar Observations

The RMMSE algorithm has been applied to an atmospheric filed generated from a

high-resolution numerical weather model. A realistic numerical simulation can pro-

vide a deterministic and controlled environment for the pulse compression study.

There are large amount of random variable having impacts on radar observations.
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Algorithm NMSE(dB)

MF -10.7

TLS -13.64

LS -65.8

RMMSE -56

Table 4.3: NMSE for distributed-target scenario

The NWP-model based simulation (Alberts et al. (2007); Cheong et al. (2008)) has

been accepted as a realistic approach for weather radar simulations and algorithm

performance evaluations. Also, the simulations provide important ground truth in-

formation for result comparisons. Table. 4.4 lists the key sensor parameters used in

this simulation.

Parameters Values

Operating frequency 14 GHz (Ku Band)

PRF 3 KHz

Pulse width 10µs

Waveform 13-bit Barker code

Receiver Sensitivity -100 dBm

Max SNR of weather field 45 dB

Scan coverage angle −30 ◦ ∼ 30 ◦

Number of range gates L = 200

Azimuth resolution 3 ◦

Table 4.4: Key Radar Parameters for Weather Simulation

The simulation begins with the input of Advanced Regional Prediction System

(ARPS) data (Xue et al. (2000); Xue et al. (2001); Xue et al. (2003)). Following the
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basic procedures given in (Cheong et al. 2008), the input data, including mixing ratio

of rain, snow, hail ([qr, qs, qh]), wind velocity components ([u, v, w]) and turbulent

kinetic energy (tke), of each sample point in a severe weather field are read from

ARPS, and reflectivity (Ze) is then calculated from [qr, qs, qh]. Monte Carlo simulation

is performed for each sample, where 500 scatterers are put into a cubic volume of 1000

m3. The amplitude and phase of each scatterer are composited together to form the

return signal at that particular sampling time. As shown in Eq. (4.11), xi[m,n] is

the return signal for the ith pulse before overlapping at mth gate and nth time step

(sub-pulse):

xi[m,n] =
S′−1∑
s′=0

A(s′)exp[−j(ψ(s′) + φn)] (4.11)

whereA(s′) and ψ(s′) are the amplitude and phase of the s′-th scatterer in the volume as

given in (Cheong et al. 2008). φn is the phase of th waveform sample, n = 1, 2, · · · , N .

S ′ is the number of scatterers in the volume. At the next time step, position of

each scatterer is updated according to the wind field and turbulent kinetic energy.

Totally N time steps are taken for each range gate, matching the case where N sub-

pulse within one pulse arrives sequentially. After samples from all azimuth and range

positions are taken, return signal is superposed from gate to gate to form oversampled

return with sidelobe effects, as given in Eq. (4.12):

y[i, j] =
∑

∀m+n−1=j

x[m,n] + ν (4.12)

where y[i, j] is the radar signature for the jth gate of ith pulse (PRTs) and ν rep-

resents additive white Gaussian noise. After superposing, the antenna steers to the

next azimuth direction, and repeats the above procedures until the complete scan is

finished.

In addition to the numerical model, the simulation also emulates two hard targets

with a SNR of 45 dB and 25 dB. The RMMSE, LS, MF and TLS algorithms are then

applied to the above mixed scenario. Fig. 4.5 shows the result.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Estimation of weather reflectivity based on the simulated radar with

parameters listed in Table. 4.4. The antenna sidelobe effect is not considered in this

case. SNR ranges from -5 to 45 dB over the entire scan. (a) Ground truth (sidelobe-

free SNR in dB referenced to -100 dBm receiver noise floor), (b) LS estimate result,

(c) MF result, (d) RMMSE result - 3 iterations, (e) TLS result, (f) AMSE result
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To numerically characterize sidelobe mitigation performance, the estimations are

further compared to the ground truth in Fig. 4.5(a) cell-by-cell. The average mean-

square-error (AMSE) for a particular SNR category is calculated through the following

procedure: (1) Add 20 realizations of random fluctuation term v to receive signals

(with sidelobe contamination); (2) For each iteration, use three different methods

(MF, LS and RMMSE) to estimate, and calculate errors by comparing the results

to the ground truth; (3) Average the errors of 20 time Monte-Carlo simulation, as

the averaged error term ε for each radar cell; (4) Average the ε again among all the

resolution cells belonging to the same SNR category; (5) Normalize the result from

step (4) with unit signal amplitude (the result is denoted as ε̄ ) and convert to dB

scale, according to:

AMSE = 10 log 10
[
|ε̄|2
]

(4.13)

The simulation indicates that LS has the best overall performance. Both RMMSE

and LS can sufficiently suppress the sidelobe despite of the slightly downgraded per-

formance for RMMSE. TLS has good mitigation by visual inspection. MF fails to

recover both the weather and hart targets as expected. Fig. 4.5(f) shows the statis-

tics for the simulation. In terms of AMSE, MF and TLS are at the same level. LS

outperforms RMMSE by about 10 dB.

4.2.4 Impact of Antenna Sidelobes

Simulations in Section 1.2.3 do not consider the effect of antenna sidelobes. In a radar

system, the antenna effect on the system performance can be significant. Antenna

response can bias the reflectivity, velocity and spectrum width estimates. The side-

lobes introduced from both pulse compression waveform (Bucci and Urkowitz (1993);

Mudukutore et al. (1998); Zhu et al. (2008)) and antenna radiation patterns (Doviak

and Zrnic 1984) can lead to degraded, or “masked” target signatures. Sidelobes are

generally known as the leakage of energy from the desired spatial focal point, thus
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bringing in the interferences from neighboring resolution gates/cells. In airborne

and spaceborne application, the antenna sidelobe is limited by the aperture size,

which causes further degradation. To address the issue of both pulse compression

and antenna sidelobe, we construct a joint signal model based on two-dimensional

convolution. We assume the antenna effect only at the azimuth direction which is

perpendicular to the radar line-of-sight. The antenna pattern is assumed to generated

from a uniform linear array.

For a solitary point target, sidelobes are expected from both the range and azimuth

direction. In Fig. 4.6, a point target is processed with MF and an antenna pattern

of uniform linear array. Fig. 4.6 shows that in this simplest case, sidelobe will affect

any target within 15 range gates and ±10◦ in azimuth (assuming -40 dB SNR).

Furthermore, the sidelobe contamination is actually extended to a two-dimensional

square-shape area instead of a cross-shape in range and azimuth.

Figure 4.6: Joint pattern of antenna and pulse compression

A 2D simulation is generated to verify the performance of various algorithms in

presence of antenna sidelobe effects. The procedure is similar to the one adopted in

Eq. (4.11) and Eq. (4.12). To imitate pulse compression and beam sidelobe effects
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while balancing computation load and accuracy, the array beam pattern and pulse

compression waveforms are uniformly sampled. There are a total of M samples in

beam pattern a and N sub-pulses in the transmit waveform s. By adding the antenna

effect, the formula can be updated as,

x(l, k) =
Ks∑
m=1

λ(m)exp(−jψ(m)) (4.14)

β(l′, k′, n) = ak′ · x(l, k) · exp(−jφn) (4.15)

In equation Eq. (4.14), β(l′, k′, n) is the raw return signal at l′th range bin, k′th

sampled beam pattern angular position and nth time step (sub-pulse). Ks is the

number of scatterers in the volume; ak′ is the antenna radiation pattern response at

the k′th beam angular position, k′ = 1, 2, · · · ,M ; λ(m) , ψ(m) are the amplitude and

phase of the mth scatterer in the volume computed from Mie scattering model, φn

is the phase of nth waveform sample, n = 1, 2, · · · , N . Both λ(m) and ψ(m) are l, k

dependent. At the next time step, the position of each scatterer is updated according

to the wind field and turbulent kinetic energy. A total of N time steps are taken for

each range bin, as in the case where N sub-pulses within one pulse arrive sequentially.

After samples from all the angular beam positions and range bins are taken, the return

signal is superposed from range bin to range bin and beam position to beam position,

to form the oversampled return with sidelobe effects, as given in Eq. (4.16):

y(l) =
∑
∀k′

∑
∀l′+n−1=l

β(l′, k′, n) + ν (4.16)

where y(l) is the composite radar return signal (due to the pulse compression and

antenna sidelobe effects) for the lth range bin (l = 1, 2, · · · , L) at a particular azimuth

scanning angle, ∀ is the mathematical “for all” symbol and ν represents additive white

Gaussian noise. After superposing, the antenna steers to the next azimuth direction,

and repeats the above procedures until a complete scan (scanning azimuth angle from

1 to K ) is finished.
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A simulation with the same weather ground profile as before is generated using

the above technology. In addition to the parameters listed in Table. 4.4, the antenna

pattern is based on a 10-element uniform linear array. The radar scanning angle

is −30◦ ∼ 30◦. The antenna pattern is composed of 21 samples from −15◦ ∼ 15◦.

The azimuth resolution is 3◦. The simulation result is presented in Fig. 4.7. The

antenna effect on the azimuth direction is quite significant (Fig. 4.7(b)∼(e)). The

hard targets spread the antenna sidelobe in azimuth in particular. It is obvious

that the pulse compression processing on range domain can not resolve the antenna

sidelobe issue. Thus, sidelobe mitigation algorithms should be developed for both

range and azimuth dimensions.

4.2.4.1 Sequential 1D Processing

One possible solution for the 2D sidelobe mitigation problem is to perform sequen-

tial 1D processing. From Eq. (4.14) and Eq. (4.15), the antenna radiation pattern

samples ak′ is applied to each range profile as a weighting function. Impacts of both

antenna and pulse compression sidelobes can be characterized by the convolution

operation. Conceivably, RMMSE, LS and MF algorithms can be used to mitigate an-

tenna sidelobes in a similar way as mitigating pulse compression sidelobes. Thus, the

1D sequential mitigation applies the adaptive pulse compression algorithm on range

domain and then the azimuth direction. Since the processing in the two dimensions

are treated independently, the order of range or azimuth processing does not matter.

As is seen from Fig. 4.8, the antenna sidelobe effect has been removed for LS and

RMMSE. The result of RMMSE is very promising. Fig. 4.8(e) indicates that the

antenna sidelobe has been removed by RMMSE and the overall mitigation result is

very comparable to the LS result in Fig. 4.8(b).

It is noted that sequential 1D processing is very computationally intensive. The

inversion of N ×N matrix has to be solved in each range gate for a specific azimuth
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Estimation of weather reflectivity based on the simulated radar with

parameters listed in Table. 4.4 and ULA antenna pattern. SNR ranges from -5 to

45 dB over the entire scan. (a) Ground truth (sidelobe-free SNR in dB referenced to

-100 dBm receiver noise floor), (b) LS estimate result, (c) MF result, (d) RMMSE

result - 3 iterations, (e) TLS result, (f) AMSE result
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Estimation of weather reflectivity based on the simulated radar with

parameters listed in Table. 4.4 and ULA antenna pattern. SNR ranges from -5 to

45 dB over the entire scan. (a) Ground truth (sidelobe-free SNR in dB referenced

to -100 dBm receiver noise floor), (b) 1D LS estimate result, (c) 1D MF result, (d)

Result after range RMMSE, (e) Result after azimuth RMMSE, (f) AMSE result
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angle. Roughly O(N3LK) computational operations are required. Therefore, the

sequential algorithm is not recommended from the perspective of practical implemen-

tation.

4.3 Theory of 2D Sidelobe Mitigation Algorithms

4.3.1 Improved Radar Signal Model

A 2D signal model has to be developed in order to find a more efficient sidelobe

mitigation algorithm. Instead of a 1D ground truth x(n), consider a two-dimensional

scatterer field x(l, k). The index l represents the range resolution bin and the index

k represents the azimuth angle. Assuming N samples of the time-waveforms are

transmitted, denoted as s = [s0 s1 · · · sN−1]T . Also, assume M samples of the angular

positions are illuminated by the antenna and the corresponding radiation pattern

response is defined as a = [a0 a1 · · · aM−1]T . To address the typical forward-looking

scenario and simplify the discussion, only the 1D azimuth direction antenna pattern

is considered in this study. Due to the extended pulse width and antenna radiation

pattern, the received radar echoes from the lth range bin and kth azimuth angle can

be written as

y(l, k) =
[∑

i

∑
j

si aj x(l − i+ 1, k − j + 1)
]

+ v (4.17)

with 1 ≤ l ≤ L + N − 1, 1 ≤ k ≤ K + M − 1 and max(1, l + 1 − L) ≤ i ≤

min(l, N),max(1, k + 1 − K) ≤ j ≤ min(k,M), L is the number of range bins and

K is the number of azimuth scan angles. v is the combined receiver noise from

thermal noise and oscillator sources, and is assumed as additive white Gaussian.

This expression is essentially a two-dimensional discrete convolution among s, a and

the ground truth.
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4.3.2 Derivation of the 2D-LS and RMMSE procedures

First, to simplify the matrix representation, the following expression is introduced to

describe the ground truth and receiving sample matrices:

Cx(l, k,N,M) =
[
x(i, j)

]
i=l,l+1,··· ,l+N−1; j=k,k+1,··· ,k+M−1

(4.18)

In other words, Cx(l, k,N,M) is an N ×M matrix with x(i, j) as its elements. The

element in the first row and the first column is x(l, k).

As an example,

Cx(1, 1, 2, 3) =

 x(1, 1) x(1, 2) x(1, 3)

x(2, 1) x(2, 2) x(2, 3)

 (4.19)

In addition, it is convenient to define a generalized Toeplitz matrix (Golub and Loan

1996) that represents the convolution operation in Eq. (4.17), with

Tz(D) =



z1 0 · · · · · · 0

... z1
...

zP
...

. . .
...

0 zP
. . . 0

... 0
. . . z1

...
...

. . .
...

0 0 · · · 0 zP


(D+P−1)×D

⇒ Ts(3) =



s0 0 0

... s0 0

sN−1
... s0

0 sN−1
...

0 0 sN−1


(3+N−1)×3

(4.20)

where z is a P -element vector with z = [z1, z2, · · · , zP ]T , and D is the number of

columns in the Toeplitz matrix. The number of rows is always D+P − 1. The Ts(3)

in equation Eq. (4.19) illustrates the concept of this notation.

Using the above definitions, Eq. (4.17) can be converted into matrix representation

using

Ȳ = S · X · AH + V (4.21)
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where X = Cx(1, 1, L,K), Ȳ = Cy(1, 1, L+N−1, K+M−1), S = Ts(L),A = Ta(K),

and V is a Gaussian noise matrix.

2D-LS estimation, which supposes the optimum estimation of X in terms of mean

square error, can be readily obtained and is shown in Eq. (4.22):

X̂LS = (SHS )−1SHYA(AHA)−1 (4.22)

In contrast, 2D-RMMSE estimation leads to a recursive and adaptive procedure

operating on a portion of the observation data for each iteration. In this work, a

point-wise version of MMSE cost function is defined as

ξ = E
[
‖x(l, k)−wHYu‖2

]
(4.23)

where w and u are the range (N × 1) and azimuth (M × 1) sidelobe suppression

filters, respectively. E[·] denotes the expectation operator. Y is an N by M block

matrix given by

Y = Cy(l, k,N,M) (4.24)

The 2D Matched filter (2D-MF) is usually used as the initial stage of RMMSE. It is

obtained by setting w = s ,u = a, such that the 2D-MF estimate of x(l,k) is

x̂MF (l, k) = sHYa (4.25)

To derive the 2D-RMMSE estimate of x(l, k), Eq. (4.21) can be further elaborated as

a block-wise expression according to Eq. (4.17):

Y = SHXA + V (4.26)

where X = Cx(l − N + 1, k −M + 1, 2N − 1, 2M − 1), S = Ts(N), A = Ta(M). S

is a (2N − 1) × N matrix and A is a (2M − 1) ×M matrix. X has a dimension of

(2N − 1)× (2M − 1), and V is an N by M Gaussian noise matrix. Using Eq. (4.23),

the optimal filter coefficients w and u can be obtained to minimize ξ. Taking the
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partial derivatives of Eq. (4.23) with respect to w and u, and setting the results to

zero, after some manipulation, we obtain
w =

(
E[YuuHYH ]

)−1 · E[Yx∗(l, k)u]

u =
(
E[YHwwHY]

)−1 · E[YHx∗(l, k)w]

(4.27)

Furthermore, combined with Eq. (4.26), Eq. (4.27) can be simplified with the assump-

tion that the adjacent ground truth terms are uncorrelated, as

w =
(
SHΩS

)−1 · s · aHu · ρ(l, k) (4.28)

where ρ(l, k) = |x(l, k)|2 which is the power of the ground profile response, and

Ω = Λ[ρ1/2 ·Λ[AuuHAH ] · (ρ1/2)H ], ρ = Cρ(l−N + 1, k−M + 1, 2N − 2, 2M − 2) is

the element-wise square of X. Λ[·] denotes the operation that preserves the diagonal

elements of a square matrix and zeroes out the others.

4.3.3 Algorithm Implementation

After obtaining the filter coefficients w and v, the MMSE estimation of x(l, k) is

computed with

x̂(l, k) = wHYu (4.29)

Note that the filter coefficients w and u are calculated for each specific (l,k), i.e. each

range bin l and azimuth angle k. Eq. (4.28) is an iterative expression. The current

filter coefficients w, u and the ground truth power ρ(l, k) can be utilized to generate

filter coefficients for the next iteration. Also, as a special form of RMMSE, Eq. (4.28)

alternatively iterates between two dimensions (2D-RMMSE). The dimensions of the

processing window for 2D-RMMSE are always N ×M . Fig. 4.9 depicts the detailed

computation flow of 2D-RMMSE. Simulations have verified that for uncorrelated point

scatterers, 2 ∼ 4 iterations are enough to produce a result comparable to the LS

estimator.
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Due to lack of prior knowledge about w, u and the ground truth x(l, k) at ini-

tialization, the matched filter coefficients w0 = s are used at the beginning of the

2D-RMMSE process. So, the initial estimation of the ground truth is essentially

the matched filter output. The initial ground truth estimate can use the uniform

(All-1s) matrix. Similarly, the initial filters w or u can be set to a normalized uni-

form vector. It is noted that the matrix dimension of Y is reduced by 2(N − 1)

rows and 2(M − 1) columns from iteration to iteration. Therefore, for 2D-RMMSE

implementation with I iterations, the sample matrix Y is zero-padded to a size of

[L+ (2I − 1)(N − 1)]× [K + (2I − 1)(M − 1)] at initiation.

4.4 Evaluation of 2D Sidelobe Mitigation

Algorithms

4.4.1 2D-RMMSE Simulation

The 2D-RMMSE and 2D-LS algorithms are applied to the simulated weather targets.

The key parameters are listed in Table. 4.5. For 2D-RMMSE, the number of iterations

is set to 4, and u0 = a with ρ set to a uniform matrix initially. The 2D matched filter

(2D-MF) is also applied here for comparison.

Fig. 4.10 presents the results after converting the computed receiving signal power

to the signal-to-noise ratio (SNR) for an airborne radar scan. For this case, the return

signal power ranges from -105∼-55 dBm, the noise floor is set to -100 dBm, so the

maximum SNR is 45 dB. It is obvious that 2D-MF (Fig. 4.10(c)) has the worst

performance, as the weather signature is severely affected by the sidelobes. From

visual inspection, 2D-LS seems to have less estimation errors than 2D-RMMSE around

the regions with high reflectivity, compared with the ground truth in Fig. 4.10(a).
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Figure 4.9: Illustration of 2D-RMMSE algorithm
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(a) (b)

(c) (d)

Figure 4.10: Estimation of weather reflectivity based on the simulated radar with

parameters listed in Table. 4.5. SNR ranges from -5 to 45 dB over the entire scan.

(a) Ground truth (sidelobe-free SNR in dB referenced to -100 dBm receiver noise

floor), (b) 2D-LS estimate result, (c) 2D-MF result, (d) 2D-RMMSE
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Parameters Values

Antenna pattern azimuth coverage −15 ◦ ∼ 15 ◦

Max SNR of weather field 45 dB

Receiver noise level -100 dBm

Scan coverage angle −30 ◦ ∼ 30 ◦

Number of range bins L = 200

Number of azimuth angles in the scan K = 21

Azimuth resolution for plotting 3 ◦

Table 4.5: Key parameters of simulated scenarios for weather sensing

Fig. 4.11(a) shows the SNR distribution (percentage of occurrence) of the simu-

lated weather scenario in Fig. 4.10. There are 4200 weather cells (L×K) in this simu-

lation. The SNR from -5 dB to 45 dB is divided into 8 bins, as shown in Fig. 4.11(b).

The AMSE corresponding to each SNR bin is calculated using Eq. (4.13). Fig. 4.11(b)

shows the AMSE comparison of the three algorithms. As expected for most cases,

AMSE values decrease as the SNR level increases. Both RMMSE and MF show

about 10 dB variation of AMSE, while the AMSE of LS changes more than 20 dB.

Theoretically, the estimation performance bound of 2D-LS is proportional to noise

power, while the estimation performance of 2D-RMMSE is also related to the statis-

tical correlations among the neighboring ground truth responses. Based on similar

observations from many simulations, it is safe to conclude that 2D-RMMSE has better

noise immunity than 2D-LS for low Signal-to-Noise Ratio (SNR) or Signal-to-Clutter

Ratio (SCR) scenarios.

4.4.2 Computation Load Considerations

Table. 4.6 gives the computation load estimations of 2D-MF, 2D-LS and 2D-RMMSE.

Compared with the 2D-LS algorithm, the 2D-RMMSE needs less memory, since only
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(a) (b)

Figure 4.11: AMSE of reflectivity estimation. (a) AMSE comparison of different side-

lobe suppression techniques with 20 Monte-Carlo simulation runs (For 2D-RMMSE,

the result of iteration #4 is used), (b) The SNR distribution of the simulated weather

scenario with respect to −100 dBm noise level.

an N ×M receiving matrix block Y is required to calculate x̂(l, k) at each specific

resolution cell (l, k). For 2D-LS, the required data sample matrix size is L ×K(the

entire scan).

2D-MF 2D-LS 2D-RMMSE

Number of Operations O(NMLK) O(L3 +K3)† O(N3LK +M3LK)

Memory Requirement N ×M L×K N ×M

Table 4.6: Computational requirement of sidelobe mitigation algorithms

† This would be O(LK2 + KL2), provided that the 2D-LS filter coefficients are

pre-calculated.

In term of computational complexity, 2D-LS is more appropriate for short-range,

airborne hazard avoidance radar as L and K can be small but N and M may need

to be sufficiently large to achieve required resolutions. RMMSE has a significant

advantage for the scenarios of scanning over large spatial volume, long range (which

is more common for ground-based weather radars and scientific radars), and using
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small antenna aperture (i.e., cannot afford extra low sidelobe antennas). After the

third iteration, the number of operations required to implement 2D-RMMSE will

be O(N3 + M3) at each range bin and azimuth angle. In addition, a tradeoff may

be made by RMMSE between computational efficiency and error performance by

choosing appropriate M and N values. The primary computation burden of 2D-

RMMSE results from matrix inversions. A possible way to speed-up the RMMSE

computation is to exploit the Toeplitz structures of A and S in Eq. (4.28).

4.4.3 Comparison to 1D Sidelobe Mitigations

Fig. 4.12 presents the MSE comparison between 1D sequential and 2D mitigations,

using MF, LS and RMMSE. The MSE difference between 1D and 2D processing

is not significant for MF and LS. This is because the azimuth and range domain

for MF and LS are independent during the implementation of algorithms. The 2D

approaches for MF and LS essentially improve the computational efficiency without

performance degradation. For RMMSE, however, the 2D algorithm not only reduces

the computational load but also boost the MSE performance. This improvement

along with the waveform template tolerance is believed to be the main contribution

of the 2D-RMMSE algorithm.

4.5 The Application of Waveform-Independent

Adaptive Pulse Compression to Practical

Radars

4.5.1 Algorithm Implementation

Several issues arise when implementing the adaptive pulse compressions to practical

radars: a. A waveform template s is required for accurate estimation. In practice, this
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Figure 4.12: AMSE comparison between Sequential 1D and 2D algorithm

template is usually acquired by sampling the RF transmitting signal before antenna.

b. The noise covariance matrix plays an important role in estimation accuracy of

RMMSE and LS especially for the region of “noise floors”. c. Downsampling data

properly can also reduce the computational load and improve the performance of

sidelobe mitigation, while too much downsampling will lose the precision of waveform

matching with template.

4.5.1.1 Waveform Template

The waveform s is a prior knowledge for pulse compression. Theoretically, the origi-

nal waveform generated by the waveform generator can be used as the template for

pulse compression. However, the original waveform is contaminated with noise and

distortion during the process of digital-to-analog conversion, modulation, RF upcon-

version, RF amplification, etc. So, the transmitted RF signal is not exactly the same

as its baseband digital waveform any more. This could lead to the degraded sidelobe

mitigation performance. To overcome the nonlinearity and noise on the waveform
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template, many modern radars utilize the technique of sampling the RF transmitted

signal. Instead of the original baseband waveform, the receiver uses this contaminated

waveform as the template for pulse compression. Fig. 4.13 shows a typical X-band

weather radar which uses the coupling technique to obtain the transmitted waveform.

Figure 4.13: Typical Radar diagram using coupling technique to obtain transmitted

waveform

There are two problems of this approach. First, additional hardware is needed

to couple and loop back to the receiver, which also add significant requirements on

the TR isolations. Second, the sampled transmitted waveform template still con-

tains noise and other nonlinear effect during the RF-to-baseband conversion. These

distortions are out-of-control and can significantly increase the sidelobe levels. To fur-

ther investigate the sensitivity of RMMSE and LS algorithm to waveform template

distortions, we develop a closed-form perturbation model for RMMSE and LS.

For LS algorithm, (Lewis et al. 2006) has developed an analytical expression for

predicting the impact of model error. Assume the new model matrix S̄ can be ex-

pressed as

S̄ = S + εE (4.30)
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where ε is the small perturbation constant, and E is the error matrix including all

the error introduced by baseband-to-RF conversion. Then the new LS estimate of

the ground truth can be derived by combining Eq. (4.3) and Eq. (4.30)

ˆ̄xLS = (S̄TR−1S̄)−1S̄TR−1y ≈ x̂LS − ε(STR−1S)−1STR−1E · x̂LS (4.31)

For RMMSE, to simplify the derivation of the error model, an alternative version

of Eq. (4.1) can be written as

y = S ·X + v (4.32)

where

S =



0 · · · · · · 0 s0 · · · sN−1

· · · 0 s0 · · · sN−1 0

... 0 · · · ...

0 · · · 0
...

...

s0 · · · sN−1 0 · · · · · · 0


(4.33)

X = [x(l −N + 1) x(l −N + 2) · · · x(l) · · · x(l +N − 2) · · · x(l +N − 1)]T

(4.34)

Also, assume the contaminated waveform template is

S̄ = S + εE (4.35)

Then the new RMMSE estimate of x̄(l) is defined as

ˆ̄x(l) = E(yyT )−1E(y · x(l)) (4.36)

Substitute with Eq. (4.32) and Eq. (4.36), yields

ˆ̄x(l) = E(S̄XXT S̄T )−1E(S̄X · x(l)) (4.37)

=
(
SX2S

T
)−1 · s̄ (4.38)
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where

X2 =



ρ(l −N + 1) · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · ρ(l) · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · ρ(l +N − 1)


(4.39)

with ρ(l) = ||x(l)||2 and s̄ = s + ε · e. After further simplification, the new RMMSE

estimate is

ˆ̄x(l) = x̂(l) + ε
[
eTΛ−1 + STΛ−1ΨΛ−1

]
y (4.40)

where Λ = SX2S
T and Ψ = −EX2S

T − SX2E
T .

Figure 4.14: Algorithm sensitivity to waveform template inaccuracy. The waveform

used in this case is a Haming-windowed chirp signal. ε = 1e−2, E = randn-Matlab R©.

Two hard targets exist at Gate#1,#100 with SNR of 65 and 20dB separately.
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In order to investigate the impacts of waveveform template on different algorithms,

a simulation is developed, in which the waveform template is contaminated only by

noise for simplicity. Fig. 4.14 shows the simulation output. The result indicates

that the RMMSE and MF both has a much better immunity to noise interference.

For LS, erroneous estimation appears all over the field, even though LS has almost

perfect performance of sidelobe reduction in the initial simulation. The waveform

template simulation illustrates that LS is very sensitive to the waveform template

error, which limits the algorithm for practical use. RMMSE and MF have certain

waveform tempalte immunity, which makes them more attractive for implementations.

According to the waveform error model of Eq. (4.31) and Eq. (4.40), the estima-

tion inaccuracy caused by random perturbation can be reduced by taking average

of the estimates from multiple pulses, i.e. E
[
ˆ̄x
]

= x̂, since E[E] = 0 and E[e] = 0.

It is equivalent to the non-coherent pulse integration. In practice, the pulse inte-

gration might be affected by the target radar cross-section fluctuation. This will be

demonstrated via real radar data in next section.

4.5.1.2 Noise Covariance Estimate

Without appropriate estimation of the noise covariance, RMMSE algorithm may suf-

fer from numerical instability. Accurate estimating of noise covariance is key to

achieve good sidelobe reduction performance. In practical implementation, the noise

consists of not only thermal noise but also some environmental interference. A com-

mon method to estimate noise covariance matrix is to select the radar data where

there is no target or “clear weather”, and then take the corresponding data sam-

ples y to get the estimate of R. Simulation and real implementation has proven the

feasibility of this method.
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4.5.1.3 Doppler Effect

As mentioned in Chapter 2, the Doppler effect does have some impact on pulse

compression. Doppler shift introduced by moving targets generates mismatch between

the original transmit waveform and the receive signal. Therefore, it is essentially a

waveform template issue. (Blunt and Gerlach 2006) has shown that RMMSE has

better Doppler immunity than LS and MF algorithms. Fig. 4.15 simulates the impact

of Doppler effect on RMMSE. There are two point-targets located in Gate #50 and

#57 with SNR of 65 dB and 25 dB, respectively. The simulated radar frequency

is at S-band (3 GHz). The stronger target has a radial velocity of 60 m/s. The

other target has zero Doppler speed. The RMMSE can still achieve -50 dB sidelobe

level for the stronger target with such significant Doppler shift. In rare cases where

the Doppler effect is overwhelming, Doppler filter bank (Shin et al. (2003); Wang

and Akansu (2012)) can be adopted to further reduce the Doppler impact. It is also

observed that the Doppler impact on sidelobe mitigation is not significant for RMMSE

implementations on practical weather radar data, as is discussed in the Section 5.2.

4.5.1.4 Oversampling and Supper-resolution

In modern radar systems, with the advance of digital-to-analog conversion and DSP

technique, commercial data acquisition and processing hardware such as FPGA is

widely available. Oversampling is frequently performed in digital receivers. The

sampling frequency can go up to tens time of the radar signal bandwidth. Some data

processing techniques such as noise whitening filter (Wei and Rasmussen 1996) and

super-resolution (Liu and Xiang 1999) rely on the oversampling of the data. RMMSE

and LS are both inherently supper-resolution algorithms. The procedure to achieve

supper-resolution is straightforward: Apply oversampling on both the received radar

data samples y and waveform s to obtain oversampled version, ỹ and waveform s̃,

and then perform RMMSE/LS to ỹ. Fig. 4.16 demonstrates the supper-resolution
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Figure 4.15: The impact of Doppler effect on RMMSE performance. The target at

Gate #50 has a Doppler speed of 60 m/s. The waveform used is LKP3 with N = 30.

Total pulse width τ = 30 µs. Wavelength λ = 10 cm. 4 iterations are adopted for

RMMSE.

capability of RMMSE and LS along with MF for comparison. MF has no supper-

resolution capability since it fails to discern the targets. Both RMMSE and LS suffer

from the increased sidelobe caused by oversampling. Extensive follow-on studies show

that this sidelobe actually results from the increased noise floor.

From the above observation, if sidelobe is more concerned, the data sampling rate

should match the original waveform bandwidth. For example, if the original waveform

has 30 samples (such as a LFM signal with B = 1 MHz and T = 30 µs), then the

equivalent sampling rate at the receiver should be also around 1 MHz, so that the

actual waveform samples match the receiver data samples.
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(a) (b)

Figure 4.16: Demonstration of supper-resolution. (a) The oversampled waveform,

(b) Simulation of supper-resolution of RMMSE and LS. The waveform used in the

simulation is P3 code with N = 30. 3 point targets are located in Gate# 39, 40 and

41 with equal SNRs

4.5.2 Algorithm Implementations on HIWRAP and PX1000

Radar Data

4.5.2.1 Radar parameters

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency,

dual-beam, conical scan, solid-state transmitter-based Doppler radar system (Li et al.

2008). It was designed for operation on the high-altitude (20 km) Global Hawk UAV

(Brown et al. 2011).

HIWRAP was configured as fixed nadir pointing with one Ku-band beam and one

Ka-band beam. Within each Ku or Ka-band channel, both 20 µs/1MHz LFM chirp

and 2 µs conventional pulse are transmitted. Table. 4.7 lists the radar waveform

parameters for HIWRAP system for the Ku band channel.

PX1000 is a dual-polarization X-band mobile radar developed by the Advanced

Radar Research Center (ARRC) of the University of Oklahoma (OU). It is primarily

used as a platform for waveform studies and various signal processing techniques,

103



Parameters Pulse1 Pulse2

Pulse Type LFM chirp Short Pulse

Pulse Width (µs) 20 2

Bandwidth (MHz) 1 2

DDS Output (MHz) 114.5 126

Tx IF (MHz) 225.5 214

Tx RF (MHz) 13915.5 13904

RF LO (MHz) 13690

PRF (Hz) 4516.12/3589.75

Antenna Gain Ga(dB) 34.8

Ant Beamwidth Along Track φ(◦) 3.07

Ant Beamwidth Cross Track 2.96

Table 4.7: Radar parameters for HIWRAP
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such as pulse compression, polarimetric signal processing, refractivity retrieval and

supplementary validations for field campaigns. Table. 4.8 lists the PX1000 radar

parameters.

Parameters Values

Operating frequency 9550 MHz

Typical PRF 2000 Hz

Antenna gain 38.5 dBi

3-dB beamwidth 1.8 ◦

Peak power 100 W

Maximum pulse width 69 µs

ADC resolution 14 bit

Receive bandwidth 5MHz

Typical gate spacing 30m

Table 4.8: Radar parameters for PX-1000

4.5.2.2 Pulse Compression on HIWRAP

In each data profile, there is one calibration pulse at near range and one surface return

at about 20 km range. Fig. 4.17 is the raw data profile for both short and long pulses

respectively. For both scenarios, there are 600 samples for each pulse. The range

resolution is about 75 meters for LFM and 150 meters for the short pulse. Only the

Ku band channel data were used in the following experiments.

Fig. 4.18 shows the processing result of different algorithms. The strongest peak

indicates the direct-coupled transmit signal, which is used for system calibration.

The sidelobe of this peak is reduced to -66 dB by LS and -75 dB by RMMSE. The

secondary peak at around 20 km corresponds to the surface return. This is due to

the fact that the aircraft’s altitude is 20 km. RMMSE can successfully suppress this
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(a) (b)

Figure 4.17: HIWRAP Raw Data Display. (a) Received signal with long pulse (LFM),

(b) Received signal with short pulse.

sidelobe to noise floor. However the sidelobe mitigation for MF and LS is limited. In

addition, there is some weather signature from 7∼15 km. They are marked with a

circled area in Fig. 4.18. They are very weak scatterers: only several dB above noise

floor. The short pulse range profile is also plotted for comparison. Obviously, the

short pulse has a high noise floor because of the limitation of SNR (limited by the

peak power). LS is also suffering from the high estimation error in practice. Both

RMMSE and MF can recover the weather signature. Overall, RMMSE has the best

performance in this scenario.

The result in Fig. 4.18 is implemented by 50-pulse integration. As is proven by

Eq. (4.31) and Eq. (4.36), Pulse integration greatly help to reduce the noise and

distortions. Fig. 4.19 compares the case of pulse integration and without pulse inte-

gration. It can make a difference upto 10 dB in spite of the slightly degraded SNR in

the surface return (1.5 dB).

One important observation from Fig. 4.18 is that LS seems to be comparable to

RMMSE in terms of sidelobe. However, the template of LS algorithm has to be

very accurate. Fig. 4.20 shows a scenario where the waveform template is slightly

off, which is truncated from 60 to 55 chips. The LS fails to suppress the sidelobe,
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Figure 4.18: HIWRAP pulse compression result with 50-pulse integration

Figure 4.19: HIWRAP pulse compression result with 3-pulse integration and without

pulse integration
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whereas MF and RMMSE are still tolerant to this template inaccuracy. Even though

RMMSE has larger estimate error than using the “good” template, it is not a concern

since the errors are only located within the coupling range (<5 km), which has no

meteorological activities.

Figure 4.20: HIWRAP pulse compression result with erroneous template

Fig. 4.21 is the waveform template adopted for the best performance of RMMSE

and LS. It is noticed that in practice the template is not exactly the same as the

original LFM signal. Some samples are distorted as indicated in the circled areas. The

template used is also extended compared with the original waveform. The additional

“tail” samples help to reduce the noise floor and make LS less sensitive.

4.5.2.3 Pulse Compression on PX-1000

Several different types of waveforms have been implemented in PX1000 radar. These

include 13-bit Barker code, P3/P4 code, windowed LFM and nonlinear FM. In ad-

dition, there are both hard and distributed targets existing in the radar observation
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Figure 4.21: HIWRAP extended template and the original LFM signal.

Bandwidth=1 MHz, Pulse width=20 µs, Sampling rate=2 MHz

field. The raw data are all oversampled by a factor of 5. So, for 70 µs pulse width, the

number of the waveform samples is 350, which takes excessive computational power

to process. A 2∼3 downsampling rate is adopted for more efficient data processing

and better range resolution. As discussed in the previous section, RMMSE is a super-

resolution algorithm, but to gain more resolution, certain trade off has to be made,

such as SNR loss and sidelobe degradation. Extensive simulation has been made to

determine the best sampling rate for RMMSE algorithm. The best result is obtained

by setting the downsampling rate to 2, which corresponds to an actual oversampling

rate of 5/2 = 2.5. Unless otherwise specified, all the data processed by RMMSE are

downsampled by 2.

The data of PX1000 radar can be generally divided into two types: hard targets

and weather. We will present one hard-target scenario and two weather scenarios,

where the details about waveforms and target features are listed in Table.4.9. The
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(a)

(b)

Figure 4.22: PX1000 data with hard targets presented. Processed by MF, RMMSE

and LF for comparison. (a) PPI Scan generated by MF, (b) Pulse compression

comparison
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Scenario Waveform Target Feature Figure

Hard target Windowed LFM Bulidings and towers 4.22

Weather
Windowed LFM Squall line, >15 km 4.23

Nonlinear FM Scattered weather, 10∼15 km 4.24

Table 4.9: PX1000 experiment scenario description

hard targets include buildings, mobile communication tower, water tower, etc. The

data processed by MF can be used as a baseline result. Fig. 4.22 presents a hard-

target scenario, where Fig. 4.22(a) shows the PPI scan processed by MF. The red

line indicates the LOS (line of sight). Clearly, there are 4 strong point targets. They

are believed to be the buildings in the local area. Fig. 4.22(b) shows the results of

different algorithms. For the hard-targets, there are three different processing results

in similar range profiles. The differences are more significant at the direct-coupling

response, which shows some artifacts at about 3 km. The sidelobe levels for MF

are higher for the direct-coupling response while they are at similar levels for the

interested targets, due to the low-sidelobe of the Kaiser-windowed LFM waveforms

used in this experiment. The close-to-peak sidelobe of RMMSE can reach up to -80

dB. LS algorithm has slightly increased noise floor.

For weather observations, there are two scenarios available. The weather field of

Case #1 is presented in Fig. 4.23(a). The waveform used is a windowed LFM signal.

Squall line signature appears about 15 km from the radar. The PPI scan shows the

result obtained with MF algorithm. To better compare the performance of different

algorithms, a LOS cut is taken at 20◦, as indicated in Fig. 4.23(a). Fig. 4.23(b) shows

the comparison result. RMMSE has the best sidelobe mitigation and lowest noise

floor, whereas LS suffers from additional uncertain sidelobe and noise problem. MF

has good performance overall, but the close-to-peak sidelobe is limited to about -40

dB.

111



(a)

(b)

Figure 4.23: PX1000 data with weather targets presented - Case #1. Processed by

MF, RMMSE and LF for comparison. (a) PPI Scan generated by MF, (b) Pulse

compression comparison
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Fig. 4.24(a) presents another weather scenario. The waveform used is a nonlinear

FM signal. As expected, significant sidelobes appear within 10 km from the radar.

Our interested LOS is 290◦. Fig. 4.24(b) shows the comparison of algorithms. Ap-

parently, RMMSE is the best in terms of sidelobe and noise floor level. MF suffers

from the strong sidelobes resulting from the downsampling. The noise floor for LS is

degraded significantly.

Fig. 4.25 presents the PPI scan results generated by RMMSE, MF and LS sep-

arately. Fig. 4.25(a) is the original pulse compression result by MF without any

downsampling. This can be used as a general reference for performance evaluation.

Fig. 4.25(b) is the RMMSE result. It removes the strong sidelobe in Fig. 4.25(a), while

the weather signature is preserved. Fig. 4.25(c) has sidelobe defect caused by down-

sampling. Fig. 4.25(d) indicates LS suffers from the waveform template sensitivity

issue.

In summary, we have studied several scenarios of practical observation data where

weather/hard targets are presented, however, the above experiments are just demon-

strative examples of applying adaptive PC algorithms to PX1000 data, we are expect-

ing more cases to be studied and more data to be analyzed to achieve comprehensive

analysis and performance evaluations of these processing techniques.
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(a)

(b)

Figure 4.24: PX1000 data with weather targets presented - Case #2. Processed by

MF, RMMSE and LF for comparison. (a) PPI Scan generated by MF, (b) Pulse

compression comparison
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(a) (b)

(c) (d)

Figure 4.25: PX1000 PPI Scan Comparison. (a) PX1000 PPI Scan by MF , (b)

PX1000 PPI Scan by RMMSE , (c) PX1000 PPI Scan by MF downsampled ,(d)

PX1000 PPI Scan by LS
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Chapter 5

Adaptive Joint Radar Transceiver Optimization

In the previous chapters, the adaptive pulse compression algorithm RMMSE is demon-

strated to have better performance than traditional MF and LS algorithms. Although

RMMSE is less sensitive to waveform template inaccuracy than other algorithms, it

does show some degradation, due to the mismatched waveform template. Multi-

ple factors contribute to the transmit signal distortion, such as PA saturation and

drooping effect, AD/DA distortion, RF impedance mismatch, phase and amplitude

imbalance, etc. Among all kinds of distortions, Power Amplifier(PA) non-linearity

plays an important role. PA is the major source of signal distortion and spurious

signal generation, harmonics and inter-modulation products (Schreurs and O’Droma

2009). Phase distortion and long-term memory effect of PA can further deteriorate

the signal waveform (Ku and Kenney (2003);Ai et al. (2007)). Further, it accounts for

the majority of power consumption in the RF chain. The linearization of PA is still

an active research topic nowadays. Fig. 5.1 shows that the imperfection of waveform

has great influence on sidelobe suppression performance in PX1000 radar (Kurdzo

et al. 2013). The degradation of the range sidelobe is about 20 dB for this case.

Traditionally, PA can be linearized through the Digital Predistorter (Aschbacher

et al. (2004); Ding et al. (2007)), which cascades with the signal generator before

PA. However, DPD (Digital Pre-Distortion) requires significantly amount of compu-

tational power. In addition, the PA is not the only source of signal distortion. RF
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receiver chain can introduce distortion too. In this chapter, a joint transmitter and

receiver optimization scheme is proposed. It first captures and models the distortions

of the entire transmit and receiver chain, then the constructed distortion model is

utilized to recover the original (un-distorted) waveform in the receiver. The adap-

tive sidelobe mitigation algorithm RMMSE calculates the receiver output based on

this recovered waveform. The iterative process of sidelobe mitigation is referred to

as Joint Transmitter and Receiver Optimization (JTRO). A significant distinction

between JTRO and the DPD is all the adaptive learning and estimation are done in

the receiver.

Figure 5.1: Degradation of sidelobe suppression performance caused by distortion.(a)

Optimized sidelobe, (b) Distorted sidelobe. (Kurdzo et al. 2013)
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5.1 Nonlinear Transceiver Models

There are a large variety of nonlinear models (Arce 2004). The application-based

behavioral models are what we concern about. Such models can characterize the

system non-linearity without knowing the detailed hardware-level structures. In gen-

eral, AM-AM and AM-PM conversions are the basis for defining a behavioral model.

AM-AM and AM-PM represent Amplitude-to-Amplitude and Amplitude-to-Phase,

respectively. The concept of AM-AM and AM-PM has been used for many years

because of its generally easier computational implementation, relative efficiency in

system simulations and acceptable level of accuracy in many situations (Jeruchim

et al. (2000); Schreurs and O’Droma (2009)). The system dominant distortion effects,

such as inter-modulations and memory effect are mostly due to the PA non-linearity.

It necessitates the understanding of the commonly-used PA models. A system-level

behavioral model of an RF nonlinear PA can be described mathematically by a static

nonlinear relation between the input and output signals, i.e. x(t) and y(t) by

y(t) = G · x(t) (5.1)

where G is the instantaneous gain of the nonlinear PA. If the signal is narrow-band

(a valid assumption for most radar systems), then the RF input and output may be

represented by its base-band equivalents x̃(t) and ỹ(t) by

x(t) = Re[x̃(t)ejω0t] and y(t) = Re[ỹ(t)ejω0t] (5.2)

x̃(t) and ỹ(t) are also referred to the complex-envelop input and output signals.

ω0 is the carrier radian frequency. The phaser form of the input signal x(t) can be

written as

x(t) = r(t) · cos[ω0t+ φ(t)] = Re[x̃(t)ejω0t] (5.3)

where r(t) and φ(t) are the general envelop amplitude and phase components of

the input signal respectively, and

x̃(t) = r(t) · ejφ(t) (5.4)
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The PA output in Eq. (5.1) will include the desired signal plus harmonics and

inter-modulations (IMPs). In practical radars, the out-of-band harmonics and inter-

modulation are readily identified and removed by BPFs (band-pass filter). The goal

of RF chain design is to transmit and receive, without further distortion, the part of

y(t) output signal that is located in the same band as the input x(t) (Schreurs and

O’Droma 2009). Thus, the output y(t) can be expressed as

y(t) = g(r(t), ω0) · cos[ω0t+ φ(t) + Φ(r(t), ω0)] (5.5)

where the nonlinear envelop characteristics are g(r(t), ω0) and Φ(r(t), ω0). g and

Φ represent the AM-AM and AM-PM modulation conversion. If the signal is narrow-

band (i.e. the signal bandwidth is much smaller than carrier radian frequency ω0),

then the dependent term ω0 for g and Φ can be dropped. Fig. 5.2 shows the AM/AM

and AM/PM conversion plots for a typical RF transmitter. The data are collected

by a practical Ku-band radar.

5.1.1 Typical Nonlinear Behavioral Models

AM-AM and AM-PM model are used to characterize the nonlinear behavior of the

system or device in general. Specific mathematical models have been developed used

to assist the characterization and analysis of non-linearity.

• Volterra series . In the pass-band, a nonlinear power amplifier with memory

can be approximated by the Volterra series,

yn(t) =

+∞∫
−∞

· · ·
+∞∫
−∞

+∞∫
−∞

hn(τ1, · · · , τn)
n∏
p=1

x(t− τp)dτp (5.6)

where the impulse response hn(τ1, · · · , τn) is called nth-order Volterra kernel

(Alper 1965). It represents a nonlinear system response with nonlinear memory

effect. Volterra series is the most important tool for nonlinear system modeling

and characterization (Fakhouri (1980); Ewen and Weiner (1980); Glentis et al.

(1999)).
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(a)

(b)

Figure 5.2: Nonlinear conversion curves. (a) AM-AM, (b) AM-PM
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• Complex power series . A general form for an Kth-order power series mem-

oryless model representing the instantaneous RF output as a polynomial ex-

pansion of the instant RF input is expressed as (Gutierrez et al. (2000); Gard

et al. (1999); Heutmaker et al. (1996))

y(t) =
K∑
k=1
k odd

bk · x(t)|x(t)|k−1 (5.7)

bk are complex-valued coefficients. Only odd-order coefficients are considered

in that the out-of-band harmonics and IMPs are ignored.

• Hammerstein-Wiener model . The most frequently used configuration for

nonlinear system with LTI (linear time-invariant) dynamic behavior is the finite

nonlinear ARMA (auto-regressive moving-average) representation (Chrisikos

et al. 1998). The system non-linearity is assumed to be static, which can

be represented by a power series or polynomial model. The linear memory

subsystem can be represented by the linear FIR (finite impulse response) fil-

ter. These types of nonlinear dynamic system configuration are also known as

Hammerstein-Wiener model (Rugh (1981); Pan and Cheng (2011)). It can ap-

proximate most of the nonlinear behavior of PAs with good accuracy. Fig. 5.3

shows the model structure. The Hammerstein model is a memoryless non-

linearity followed by a LTI system. The Wiener model is a LTI system followed

by a static nonlinear model. The Hammerstein model can be expressed by

z(n) =
K∑
k=1
k odd

bk · x(n)|x(n)|k−1 (5.8)

y(n) =
L−1∑
l=0

cl · z(n− l) (5.9)
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Figure 5.3: Two-box models: Hammerstein and Wiener models

where bk are the coefficients for the memoryless non-linearity and cl are the im-

pulse response values of the LTI system. Substitution of Eq. (5.8) into Eq. (5.9)

leads to

y(n) =
L−1∑
l=0

cl ·
K∑
k=1
k odd

bk · x(n− l)|x(n− l)|k−1 (5.10)

Eq. (5.10) will be adopted to analyze the impact of nonlinear distortion on the

performance of LS algorithm later.

• Saleh model . Saleh model (Saleh 1981) tries to approximate AM-AM and

AM-PM envelop characteristics. This model has been applied to both TWT

(traveling-wave tube) and SSPA (Solid-State PA). The polar Saleh model can

be written as

P (r) =
αpr

1 + βpr2
, Q(r) =

αqr
3

(1 + βqr2)2
(5.11)

Fig. 5.4 demonstrates the Saleh modeling result of a high-power Ku-band PA

module: 83050A. The measurement is done by an Agilent PNA E8364B. The

frequency dependence of the response is also shown. Fig. 5.4(a) indicates that

this PA has a small amplitude memory distortion effect. The phase memory

effect appears when PA is driven into saturation mode according to Fig. 5.4(b).
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(a)

(b)

Figure 5.4: Measured Saleh models for Ku-band 83050A amplifier: (a) In-phase non-

linearity, (b) Quadrature non-linearity
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5.1.2 The Impact of Nonlinear Distortion

5.1.2.1 Impact on Matched-Filter Response

The nonlinear distortion has serious impacts on the sidelobe suppression performance

of matched filters, especially for applications requiring good sensitivities. Fig. 5.5

demonstrates the nonlinear distortion impact on the sidelobe performance. A LFM

waveform is firstly designed to meet the -70 dB range sidelobe requirement. Then

the signal is fed into the nonlinear system with an AM-AM conversion as shown in

Fig. 5.5(a). The input signal power is set to about 3 dB above P1dB compression

point. This simulation configuration is close to a typical SSPA operation. Fig. 5.5(b)

plots the matched-filter outputs for both the original waveform and the distorted one.

From this simulation, we can see that a 4 dB gain compression in saturation region

can degrade the sidelobe performance by upto 35 dB.

5.1.2.2 Impact of Nonlinear Distortion on Performance of LS Algorithm

RMMSE and LS are both MSE-type algorithms in a sense that they both attempt

to minimize the MSE of certain cost function. Although LS is inferior to RMMSE

in terms of practical performance of sidelobe suppression and noise immunity, LS

is an important analytical tool, as it usually provides a performance baseline to be

compared to other adaptive techniques, such as RMMSE. Therefore, by observing the

impact of transceiver non-linearity on LS algorithm, we can obtain some clues of how

such non-linearities affect the performance of other algorithms. Assume a memory

polynomial model for the nonlinear distortion as

y[k] = φ(x) =
P∑
p=1

Q∑
q=0

cp,q · x[k − q] · |x[k − q]|p−1 (5.12)

The original waveform for LS is s = [s0, s1, · · · , sN−1]T . The distorted waveform

s̄ = [s̄0, s̄1, · · · , s̄N−1]T with
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(a)

(b)

Figure 5.5: The Impact of Nonlinear Distortion. (a) AM-AM curve of the simulated

PA non-linearity, (b) sidelobe mitigation comparison
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s̄k = φ(s) =
P∑
p=1

Q∑
q=0

cp,q · sk−q · |sk−q|p−1 ⇒ s̄ =
P∑
p=1

Q∑
q=0

cp,q · s−q · |s−q|◦(p−1) (5.13)

where (·)◦(p−1) denotes the matrix element-wise power operation. s−q is defined as

s−q = [0, 0, · · · , 0︸ ︷︷ ︸
q

, s0, s1, · · · , sN−1−q]T (5.14)

Further, take out the linear term:

s̄ = c1,0 · s︸ ︷︷ ︸
linear static

+

Q∑
q=1

c1,q · s−q +
P∑
p=3

Q∑
q=0

cp,q · s−q · |s−q|◦(p−1)︸ ︷︷ ︸
nonlinear dynamic

(5.15)

where s−q · |s−q|◦(p−1) is the nonlinear model basis functions. Eq. (5.15) is a power-

ful analytical equation. The similar nonlinear equations can be obtained by simply

replacing s−q · |s−q|◦(p−1) in Eq. (5.15) with other nonlinear cores such as Volterra or

Wiener series. Then the distorted waveform can be divided into two parts: linear and

nonlinear terms with

s̄ = g · s + ε · e (5.16)

in which g = c1,0. ε is defined as a nonlinear coefficient vector related to cp,q. e

denotes the nonlinear basis vector related to s−q · |s−q|◦(p−1). It is noticed that the

nonlinear coefficient vector ε is usually very small compared to the linear static gain

g . When it comes to the LS algorithm, the Eq. (5.15) is further extended to a matrix

form:

S̄ = g · S + ε · E (5.17)

with

S =



s0 0 0

... s0 0

sN−1
... s0

0 sN−1
...

0 0 sN−1


=



s 0 · · · 0

0 s · · · 0

0 0
. . .

...

0 0 · · · s


and S̄ =



s̄ 0 · · · 0

0 s̄ · · · 0

0 0
. . .

...

0 0 · · · s̄


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Recall from Chapter 4, the received signal model is simply Y = S · X with X be-

ing defined as the ground truth impulse response matrix. The LS estimate of X is

X̂LS = (SHS )−1SHY (Lewis et al. 2006) without any signal distortion. When the

distorted signal s̄ is considered, the received signal model becomes Ȳ = S̄ · X. The

corresponding LS estimate becomes X̂LS = (S̄H S̄ )−1S̄HȲ . Accurate estimate is ob-

tained since the waveform S̄ and the receive signal Ȳ are matched. However, without

knowing the distortion the actual LS estimate is expressed as X̂
′
LS = (SHS )−1SHȲ .

Estimate is biased due to the mismatch between S and Ȳ . After plugging in Eq. (5.17),

X̂
′

LS = [(
S̄

g
− ε

g
E)H(

S̄

g
− ε

g
E)]−1(

S̄

g
− ε

g
E)HȲ (5.18)

With further manipulation and approximation (higher-order error terms are ignored),

X̂
′

LS ≈ g
[
X̂LS − gε(S̄T S̄)−1ET (Ȳ − S̄ · X̂LS︸ ︷︷ ︸

distortion error

) + gε(S̄T S̄)−1S̄TE · X̂LS

]
(5.19)

In Eq. (5.19), the distorted estimate X̂
′
LS has a linear relationship with X̂LS . In

addition, the second term is caused by distorted estimation. It is relatively small

compared to the third term. Thus,

X̂
′

LS ≈ g
[
X̂LS + εC · X̂LS

]
(5.20)

with C = g(S̄T S̄)−1S̄TE being a constant. This analytical model can be populated

into another more complicated form. Incorporating Eq. (5.15) into Eq. (5.20),

X̂
′

LS = c1,0 · X̂LS︸ ︷︷ ︸
linear static

−c1,0(S̄T S̄)−1S̄T ·
[ Q∑
q=1

c1,q · S−q +
P∑
p=3

Q∑
q=0

cp,q · S−q · |S−q|◦(p−1)︸ ︷︷ ︸
nonlinear dynamic

]
·X̂LS

(5.21)

where

S−q =



s̄−q 0 · · · 0

0 s̄−q · · · 0

0 0
. . .

...

0 0 · · · s̄−q


and S−0 = S̄
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(a)

(b)

Figure 5.6: The simulated PA nonlinear distortion. (a) AM-AM, (b) AM-PM
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A simulation is implemented to study the degradation of sidelobe level caused

by nonlinear distortion. Three point targets with SNR = 100, 80 and 60 dB are

setup without receiver noise (The noise level is set to -100 dB such that the noise

impact can be ignored). The PA has AM/AM and AM/PM characteristics as shown

in Fig. 5.6 (which is typical and used in previous literatures such as (Schreurs and

O’Droma 2009)), and the estimation results by MF, LS and RMMSE are presented

in Fig. 5.7. Because there is no noise presented in the simulation, the ground truth is

the ideal impulse response (spike-shape). It is obvious that the presence of distortion

greatly increases the noise-floor level for LS, which even overwhelms the weaker tar-

get. RMMSE is also suffering from the sidelobe introduced by nonlinear distortion,

even though RMMSE result does not show sidelobe degradation far from the target

region. The simulation also indicates that RMMSE has better immunity to nonlinear

distortion than LS algorithms.

5.2 Kernel Adaptive Filter

A nonlinear adaptive filter called Kernel Adaptive Filter (KAF) is important to the

receiver self-learning process. RF systems, especially PAs are complex dynamic sys-

tems that combine both memory effects and nonlinear phenomena. The traditional

nonlinear model with linear memory effect such as Wiener-Hammerstein models can

predict nonlinear effect efficiently. However, their capability of capturing memory

effect is limited. The choice of the nonlinear behavior model is highly problem depen-

dent, and there are local minima during training. The popular nonlinear models with

nonlinear memory effect such as the time-delay neural network (TDNN) (Lavagetto

1997) and the Volterra series (Alper 1965) can model nonlinear system with strong

memory and nonlinear effects. However, they are computationally intensive to im-

plement in practice. The complexity of the Volterra series explodes exponentially as

its modeling capacity increases. Also, the non-convex optimization nature of neural
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Figure 5.7: Nonlinear distortion impact on pulse compression algorithms

network hinders their widespread use in online applications. Trade-offs have to be

made between computational efficiency and modeling accuracy.

Recently, the concept of Kernel Adaptive Filter is proposed by (Liu et al. 2009).

The Kernel method is a powerful non-parametric modeling tool. It attempts to trans-

form the input data into a high-dimensional feature space via a reproducing kernel

such that the inner product operation in the feature space can be computed efficiently

through the kernel mapping (Liu et al. 2010). It maintains the nonlinear modeling

capability of kernel while improving the computational efficiency.

5.2.1 RKHS and KLMS

RKHS (reproducing kernel Hilbert space) is a complete inner product space, in which

the reproducing kernel space is defined (Liu et al. 2010). The analytic power of RKHS
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is expressed in an important theorem called the Mercer theorem (Burges 1998), which

states that any reproducing kernel κ(u,u′) can be expanded in Eq. (5.22):

κ(u,u′) =
∞∑
i=1

λiφi(u)φi(u
′) (5.22)

where λi and φi are the eigenvalues and eigenfunctions, respectively. By setting

φ(u) = [
√
λ1φ1(u),

√
λ2φ2(u), · · · ] (5.23)

It is easy to obtain

κ(u,u′) = φ(u)·φ(u′)T (5.24)

In the literature of non-parametric regression, it is known that the Gaussian kernel

has the universal approximating capability and creates a RKHS. Another choice of

kernel function is polynomial kernels. (Franz and Scholkopf 2006) shows that Volterra

and Wiener series can be represented implicitly as elements of a RKHS by utilizing

polynomial kernels. The Gaussian and Polynomial kernels are expressed in Eq. (5.25)

and Eq. (5.26):

κ(u,u′) = exp(−||u− u′||2

h2
) (5.25)

κ(u,u′) = (1 + u′u)p =

p∑
n=0

(p
n

)
(u′u)n (5.26)

where h is defined as kernel bandwidth. p is the order of polynomials.

Least-mean-square(LMS) is a widely used stochastic gradient algorithm. The

most important features of LMS are the simplicity and robustness, because LMS is

model-independent and also free of matrix inversion operation. The LMS core can

be summarized as:

e(i) = d(i)− ωT (i− 1)u(i) (5.27)

ω(i) = ω(i− 1) + ηe(i)u(i) (5.28)
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where u(i) is the input at ith iteration. d(i) is the desired output. ω(i) is the weighting

coefficient. η defines the learning step length. Replacing u(i) with high-dimensional

feature space mapping function φ(u(i)), yields

e(i) = d(i)− ωT (i− 1)φ(i) (5.29)

ω(i) = ω(i− 1) + ηe(i)φ(i) (5.30)

Also, the repeated application of the weight-update Eq. (5.30) through iterations

yields:

ω(i) = η
i∑

j=1

e(j)φ(j) (5.31)

Further, apply the “kernel trick” to Eq. (5.31), i.e. multiply both sides of Eq. (5.31)

and substitute with Eq. (5.24)

ω(i)Tφ(u′) = η
i∑

j=1

e(j)κ(u(j),u′) (5.32)

Thus, the resulting KLMS core can be expressed as:

fi−1 = η
i∑

j=1

e(j)κ(u(j), ·) (5.33)

fi−1(u(i)) = η
i∑

j=1

e(j)κ(u(j),u(i)) (5.34)

e(i) = d(i)− fi−1(u(i)) (5.35)

fi = fi−1 + ηe(i)κ(u(i), ·) (5.36)

where fi is denoted as the estimate of the input-output nonlinear mapping at

time i. (Liu et al. 2008) provides the detailed derivation of KLMS algorithm. In

short words, KLMS is the LMS in RKHS. The filtering is done by kernel evaluation.

KLMS allocates a new kernel unit for the new training data with input ui as the center

and ηe(i) as the coefficient. The coefficients and the centers are stored in memory

during training. Fig. 5.8 illustrated the KLMS algorithm flow, where a = η · e, and

a = [a1, a2, · · · , ai]T ,e = [e(1), e(2), · · · , e(i)]T .
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Figure 5.8: KLMS Signal Flow at ith iteration

KLMS has a similar structure as RBF(Radial Basis Function) in neural network

(Huang et al. 2005). However, they actually work differently. Table. 5.1 summarizes

the difference.

Network RBF KLMS

Weighting Independent coefficients Scaled prediction errors

Size Stable Growing†

Core Mostly Gaussian functions Mercer kernel

†: The size of KLMS grows with the number of training samples

Table 5.1: Comparison between RBF and KLMS network

5.2.2 KLMS Application to Nonlinear Distortion Modeling

We present an example in which KLMS is applied to nonlinear system modelling. The

measurement data are taken from the input and output of a RF transmitter system,

which includes a PA operating in saturation region. The KLMS is adopted to model

the AM/AM and AM/PM conversion of the system. Fig. 5.9 shows the modeling
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(a)

(b)

Figure 5.9: Application of KLMS in nonlinear modeling. (a) Measurement vs Model

for AM-AM, (b) Measurement vs Model for AM-PM
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results. Fig. 5.10 depicts the MSE (mean-square-error) along with the number of

iterations. KLMS demonstrates good convergence in the modeling process.

Figure 5.10: Convergence of KLMS modeling in Fig. 5.9

Furthermore, to evaluate the performance of KLMS in recovering the waveform

under nonlinear distortion, another simulation with waveform input is conducted.

The waveform adopted is a LK-P3 signal with N=60, and the nonlinear distortion is

assumed to be the same as in Fig. 5.9.

First, the input waveform s is fed into the nonlinear model to get a distorted output

d. Then d is utilized as the regulation for KLMS training. After N iterations, KLMS

completes the training, and the network size grows to N . Last, the input s is again

fed into the “trained” KLMS network and the predicted output waveform is obtained.

KLMS network with waveform input is depicted in Fig. 5.11. The simulation result

is shown in Fig. 5.12. Fig. 5.12(a) shows the input waveform without any distortion.
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Figure 5.11: KLMS waveform training network

Fig. 5.12(b) is the comparison between the original distorted waveform and KLMS

modeled waveform output. There is good correlation between the two output curves.

5.3 Hammerstein-LS Nonlinearity Modeling

Hammerstein model as discussed in Section 1 is a very efficient and accurate non-

linear estimation method. The coefficients for LTI and static nonlinear parts can be

calculated iteratively by LS algorithm. (Ding et al. 2007) summarizes the procedure.

To test the performance of Hammerstein-LS algorithm and also the nonlinear

response of the Ku band transceiver testbed platform, the measured input and out-

put data of the verification platform are used to train the Hammerstein-LS model.

The waveform used in the experiment is a Kaiser-windowed LFM signal with band-

width B = 2MHz, Kaiser β = 6 and pulse width T = 20 µs. Since the waveform

itself contains both amplitude modulation (AM) and phase modulation (PM), the

AM/AM and AM/PM curves of the system is easily obtained. Fig. 5.13(a) and

(b) show AM/AM and AM/PM conversion curves derived from measurement and

Hammerstein-LS model. Interestingly, the AM/AM is not consistent with the regular

PA AM/AM curve. There is some sort of distortion even with low input power. This
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(a)

(b)

Figure 5.12: KLMS waveform distortion modeling. (a) Input waveform, (b) Desired

output waveform and KLMS modeled result
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(a)

(b)

Figure 5.13: Hammerstein-LS algorithm in nonlinear modeling. (a) AM/AM, (b)

AM/PM
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is because the nonlinear distortion we try to model include the behavior of the entire

transmit and receive chain. The distortion results from not only PA but also some

other components such as LNA, mixer, band-pass filter, IQ-demodulator etc. Overall,

Hammerstein-LS achieves a nonlinear model very close to the measurement results.

Fig. 5.14 is the MSE convergence curve for the Hammerstein-LS training. Usually,

5 iterations are enough to achieve a decent training result. The Hammerstein model

will be used as the nonlinear modeling method as shown in the “Adaptive Receiver”

block of Fig. 5.18(b).

Figure 5.14: MSE Convergence of Hammerstein-LS
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5.4 Ku-band Spaceborne Radar Transceiver

Testbed

To characterize the performance of various algorithms for sidelobe and nonlinear

distortion mitigation, a Ku-band Radar transceiver emulator is built based on COTS

(Commercial Off-The-Shelf) components. Fig. 5.15 shows the overall system diagram.

The RF section is composed of a two-stage superheterodyne transceiver. The transmit

IF signal is up-converted by a 1st-LO at 3 GHz and a 2nd-LO at 10.6 GHz. The

resultant RF signal after up-conversion is about 13.6 GHz, which is at Ku-band (12

∼ 18GHz). A GaAs pHEMT PA with a maximum output power about 3 watts is

adopted to introduce nonlinear distortion to the transmit signal. To save budget,

only one filter (HMC891LP5E, tunable bandwidth and center frequency) is used in

frequency conversion chains so the noise floor of the transceiver is a little high, which

could limit the visible sidelobe suppression levels (discussed in section 5.5.3). The

details about the RF section of the platform is shown in Fig. 5.16(a) and (b). The

digital portion of the system consists of an arbitrary waveform generator (AWG),

control PC and an FPGA-based baseband receiver. AWG has a sampling rate of

625MS/s with DDS output and 15-bit DAC resolution. It can generate the transmit

signal directly at IF (70MHz).

5.5 Adaptive Joint Transceiver Optimization

5.5.1 Options for Transceiver Nonlinearity Mitigation

Traditionally, the nonlinear distortion in the transceiver system is handled by digital

predistortion (DPD). DPD technique has been widely used in wireless communication

system, where transmission formats such as CDMA (code-division multiple access)
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Figure 5.15: Ku-band spaceborne radar transceiver testbed

and OFDM (orthogonal frequency-division multiplexing) are vulnerable to PA non-

linearities (Xiao et al. (1998); O’Droma and Mgebrishvili (2005)). Numerous DPD

algorithms have been developed, such as (Ai et al. (2007);Ding et al. (2007);As-

chbacher et al. (2004)), just to name a few. Fig. 5.18(a) shows an RF transceiver

system basd on predistortion. DPD is a technique used to improve the linearity of

radio transmitter. By reducing the distortion created by the transmitter in their

nonlinear regions, the transmitted waveform can be made more closer to the original

and thus the sidelobe introduced by nonlinear effect can be reduced. DPD utilizes

the error signal between the original and distorted waveform to regularize the coef-

ficients in the predistorter. The trained coefficients can be stored as a look-up table

(LUT). Then both amplitude and phase of the transmitted waveform can be adjusted

according to the LUT. The drawbacks of this configuration are a. The transmitter
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(a)

(b)

Figure 5.16: Ku-band Radar Experimental Platform. (a) Experimental transceiver

box, (b) Demonstration of data acquisition
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DPD is totally independent of the receiver. The sidelobe mitigation performance is

highly dependent on the DPD; b. DPD requires excessive computational power and

its learning procedure is complicated. A dedicated feedback signal path is required

to perform the PA model training.

Another option to suppress the nonlinearity is based on nonlinear channel equal-

ization in communication systems, in which the channel is modeled as the combination

of linear and nonlinear components. The optimal bit error rate can be achieved by

mitigating the nonlinear distortion via kernel processing (kai Ruan and Zhang 2009).

Compared to the idea of DPD, the nonlinearity mitigation is performed in the receiver

instead of the transmitter. The major problem for this equalization-based method is

that the “channel” is unknown for radar application. This will cause mitigation error

in a general.

Both of the two methods discussed above require the inverse modeling of the non-

linear distortion. An alternative may is the forward modeling, in which the distorted

waveform is updated and fed-forward to the receiver for pulse compression processing.

This will minimize waveform template mismatch between transmitter and receiver.

Fig. 5.7 has already demonstrated the impact of nonlinear distortion on pulse com-

pression sidelobe. To understand how the effects of nonlinear distortion in Fig. 5.7

can be suppressed, a simulation is performed to compare the three options discussed

above, i.e. DPD-based, equalization-based and forward-modeling methods. The sim-

ulation procedure is simplified based on a 5th-order nonlinear polynomial model :

f(x) = x−0.1x3−0.05x5. All the nonlinear modeling of the three options are trained

by Hammerstein-LS algorithm. After the nonlinearity is mitigated or modeled, the

resultant waveform and receiving signal are further processed by LS and RMMSE.

The target setting is the same as that in Fig. 5.7. The simulation results are pre-

sented in Fig. 5.17. Table. 5.2 summarizes the peak sidelobe levels of the 4 plots

in Fig. 5.17. Overall, RMMSE has a better immunity to nonlinear distortion than
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(a) (b)

(c) (d)

Figure 5.17: Sidelobe comparison after nonlinear mitigation (a) No nonlinear mitiga-

tion, (b) DPD-based nonlinear mitigation, (c) Equalization-based nonlinear mitiga-

tion, (d) Forward-modeling mitigation
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LS, except in Fig. 5.17(d) where LS has no sidelobe at all. Both DPD-based and

equalization-based methods suffer from the possible inaccuracy of inverse nonlinear

modeling. For equalization-based method, inverse modeling of nonlinear distortion

alone is not adequate for sidelobe mitigation in the present of multiple targets. In

general, the target structure is not a prior knowledge for radar application, which

makes equalization-based method less accurate. In the following sections, we focus

on developing a joint optimization scheme based on forward-modeling method.

Fig. 5.17 Mitigation Method RMMSE Peak Sidelobe

(a) None -30 dB

(b) DPD-based -58 dB

(c) Equalization-based -40 dB

(d) Forward-modeling -76 dB

Table 5.2: Sidelobe comparison for different nonlinear mitigation options.

5.5.2 Concept of Joint Transceiver Optimization

To overcome the hardware complexity and improve the overall transceiver linearity,

we propose a novel Joint Transmitter and Receiver Optimization (JTRO) scheme

based on the forward-method discussed in previous section for sidelobe mitigation and

optimized ground truth estimation. Joint transmitter-receiver optimization method

has been developed in communication systems with multiple access channels. (Luo

et al. 2004) shows that the optimal MMSE transceivers can be obtained by appropriate

subcarrier allocation. A general solution for the optimum linear transformation is

derived jointly subject to the MMSE criterion in (Jang et al. 1998). It is shown that

joint transmitter-receiver optimization outperforms significantly compared to either

transmitter optimization or receiver-based techniques alone. In this Chapter, instead

of trying to linearize the transmitter by predistorters, the adaptive receiver “learns”
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(a)

(b)

Figure 5.18: Simplified radar transmit/receive architecture. (a) Traditional DPD-

based structure, (b) The JTRO scheme based on forward-method
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the nonlinear distortion of the entire transmitter/receiver chain and suppresses the

sidelobe caused by distortion using adaptive pulse compression. The self-learning

and adaptive pulse compression are performed simultaneously in the radar receiver.

The joint optimization concept is demonstrated in Fig. 5.18(b). Instead of using a

predistorter to linearize the transmitted waveform, the original waveform is directly

inserted into the digital receiver. The nonlinear behavior of the transceiver system is

approximated by an adaptive nonlinear model. The nonlinear model output is used

by RMMSE pulse compression algorithm to achieve optimal sidelobe suppression.

The error between the original waveform s and the distorted waveform s′ is used to

accurately capture the nonlinear distortion of the system.

5.5.3 Algorithm Description

The details of the JTRO algorithm can be described as follows: First, the signal with

distortion (s′) is transmitted with respect to a known ground truth x. This x can be

a calibration target or simply a direct coupling signal from transmitter to receiver.

Then the RMMSE pulse compression receiver estimates the distorted transmit signal

s′ by using the known impulse response x. Next, the estimated s′ is fed back to the

nonlinear model to calculate the model coefficients. The nonlinear model used here is

either Hammerstein-LS or KLMS. Last, the system switches into normal operation.

With known x in RMMSE, the signal s′ can be estimated by the following methods:

Recall in RMMSE algorithm, there exists the following relationship between x̂

and Y (mathematical model):

x̂ = ωHY (5.37)

And the RMMSE adaptive filter coefficient is (at l-th range gate):

ω = ρ · (C +R)−1 · s′ (5.38)

where C is the covariance matrix of the receiving samples and R is the noise

covariance matrix:
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C =



E[y2(l)] E[y(l)y(l − 1)] · · · E[y(l)y(l −N + 1)]

E[y(l − 1)y(l)] E[y2(l − 1)] · · · E[y(l − 1)y(l −N + 1)]

...
...

. . .
...

E[y(l −N + 1)y(l)] E[y(l −N + 1)y(l − 1)] · · · E[y2(l −N + 1)]


Y = Y (l) = [y(l) y(l − 1) · · · y(l +N − 1)]T

Combining Eq. (5.37) and Eq. (5.38) and by solving the under-determined LS

problem (Lewis et al. 2006), s′ can be derived as

s′ = ρ−1Y H(C +R)−1
[
Y H(C +R)−2Y

]−1 · x (5.39)

Eq. (5.37)∼(5.39) also indicate an iterative mechanism. First of all, as the number

of receiving samples are usually much larger than that of the waveform s, there will

be totally L different Y s. L is the number of range gates. Since x is a calibration

target, it usually has a solitary impulse response. Even for multi-target scenario, the

impulse response of x can be simply formulated as x = c0s(n − n0) + c1s(n − n1) +

c2s(n− n2) + · · · .

The estimated s′ from Eq. (5.39) can be re-inserted into Eq. (5.37) and Eq. (5.38)

to estimate a new x̂ (Eq. (5.37) and Eq. (5.38) actually constitute the core of RMMSE).

Then x̂ can substitute x as a new calibration target response, so that the whole cal-

ibration process reiterates until ||x − x̂|| < δ, where δ defines an acceptable MSE

error (e.g. 10−3). Fig. 5.19 demonstrates the calibration process. After s′ is obtained,

the nonlinear distortion is characterized by KLMS or Hammerstein-LS models. The

transceiver then switches to the normal operation as shown in Fig. 5.18(b).

5.5.4 Experiment Results

The JTRO validation experiment is conducted using the Ku-band transceiver plat-

form. As mentioned before, the joint optimization algorithm is expected to be

148



Figure 5.19: Demonstration of JTRO on estimating distorted waveform s′

waveform-independent. In this experiment, a LFM signal with both amplitude and

phase modulation is used (Kaiser window with α = 6 is applied). Fig. 5.20(a) shows

the transmit waveform, including both the inphase and quadrature components. This

windowed waveform is mainly used in the experiment Case # 1. Two other scenarios

are also considered. Case # 2 uses 13-bit Barker code waveform, and Case # 3 uses

30-bit LKP3 waveform. The reason to use Barker code and LKP3 in the Case 2

and 3 is that Barker code is the most popular binary pseudo-random code for radar

waveforms and LKP3 is a special type of poly-phase coding waveform. Since there

is no amplitude variation for Barker and LKP3 waveforms, the nonlinear distortion

effect is expected to be less significant than LFM. Fig. 5.21(a) and Fig. 5.22(a) show

the waveform samples for the Barker and LKP3 codes used in the experiment, re-

spectively.

After tuning the gain of the pre-amplifier, the PA is setup to operate at an input

power level of 3 dB above the P1dB (1dB compression point), resulting in strong

nonlinear distortion during the transceiver operation. To simplify the experiment

setup, the transmitted signal is “looped back” to the receiving chain via a 40 dB
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directional coupler. Therefore, the “ground truth” in this case is equivalent to the

impulse response of a solitary target (Dirac delta function ideally). Our expectation

is to achieve a clean solitary peak (main-lobe) with a minimized range sidelobe level.

After collecting the receiving samples, the joint optimization is applied to the data

to perform waveform distortion extraction and RMMSE adaptive pulse compression.

Two nonlinear models are adopted : Hammerstein-LS and KLMS. The experiment

results of three scenarios are shown in Fig. 5.20(b), Fig. 5.21(b) and Fig. 5.22(b),

respectively. It is evident that the nonlinear distortion not only has deteriorated the

sidelobe level (up to -35 dB in Case# 1), but also widened the main lobe, especially

in the proximity of main-lobe. Both nonlinear models with joint optimization can

successfully mitigate the sidelobe caused by distortion. In particular, KLMS outper-

forms Hammerstein-LS in that KLMS can achieve a lower sidelobe. With a ideal

solitary target used as a reference, Table. 5.3 lists the performance comparison in

term of the MSE metric, which is defined as

MSE = ||x̂− x||

where x is the impulse response of an idea point target and x̂ is the estimated response.

Method w/distortion KLMS Hammerstein-LS

MSE#1 +0.06 dB -29.45 dB -20.81 dB

MSE#2 -21.41 dB -26.30 dB -22.31 dB

MSE#3 -27.76 dB -33.84 dB -31.18 dB

Table 5.3: MSE comparisons of JTRO using KLMS and Hammerstein-LS training.

5.5.5 Discussions

As promising results from JTRO processing have been obtained in section 5.5.3,

there are natural questions on what are the optimized sidelobe and noise levels can
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(a)

(b)

Figure 5.20: Joint optimization experiment Case # 1. (a) Windowed LFM waveform,

(b) RMMSE JTRO comparison
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(a)

(b)

Figure 5.21: Joint optimization experiment Case # 2. (a) Barker-13 waveform, (b)

RMMSE JTRO comparison
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(a)

(b)

Figure 5.22: Joint optimization experiment Case # 3. (a) LKP3-30 waveform, (b)

RMMSE JTRO comparison
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be expected and how they can be achieved. First of all, it is the noise level of the

transceiver system that determines the ultimate sidelobe mitigation level one can

achieve. The JTRO processing can effectively remove the nonlinear distortion but

will not breakthrough this hardware limitation. As pointed out before, our current

JTRO testbed has a maximum SNR about 50 dB due to limitation of RF filtering.

This is equivalent to an achievable PSL. Another factor that affects the sidelobe level

is the pulse compression gain of the waveform. The compression gain is equal to

the time-bandwidth (TB) product of the waveform. It is necessary to have a large

TB product in order to achieve a very low sidelobe level. A waveform with low TB

product is more easily affected by the noise interference. In our experiment, it is

found that a TB product of at least 30 is necessary to achieve a good PSL (about 50

dB). The waveform in Case#1 and #3 has a TB product of 60 and 30, respectively.

In Case #2, Barker code has a TB = 13, which suffers from the degraded sidelobe

level about -40 dB.

In addition, several other aspects have to be pointed out for achieving good side-

lobe mitigation and distortion suppression.

5.5.5.1 Level of Nonlinear Distortions

Depending on how severe of the nonlinear distortion, adjustment has to be made to

the joint optimization mitigation algorithm. Fig. 5.20 is a scenario where the severe

nonlinearity exists in the transmit chain (due to amplitude modulation). However,

the same parameter setup will not apply to a moderate level of non-linearity case.

Otherwise, the joint optimization will suffer from over-fitting and the convergence is

not guaranteed. Fortunately, all those adjustment and parameter selection can be

performed during system calibration, in which the waveform extraction, nonlinear

modeling and RMMSE are conducted. The system will then proceed to the normal

operation until the waveform is changed and calibration is needed again.
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5.5.5.2 Selection of Model Paramaters

Another factor that affects the performance of joint-optimization is the selection of

nonlinear model parameters. For Hammerstein-LS, based on simulation and process-

ing of the measurement data, the recommended order for IIR, FIR and Polynomial is

less than 11, 6 and 7 respectively. The corresponding coefficients for nonlinear model

in Fig. 5.20(b) is listed in Table. 5.4

FIR(11) IIR(6+1) Polynomial(7, odd)

1.7677 - 0.0145i -0.0439 + 0.0776i 0.02 - 0.02i

-0.8693 + 0.0185i -0.0732 + 0.1957i 180.94 + 37.73i

0.8372 - 0.0198i 0.0356 + 0.1567i -28.71 + 3.32i

-1.3757 - 0.0056i -0.4784 - 0.1184i -0.04 + 0.01i

0.8031 + 0.0466i -0.5548 - 0.0496i

-0.9381 + 0.0030i -0.3940 - 0.2631i

0.8715 - 0.0080i -0.3611 + 0.1205i

-0.4171 - 0.0397i

0.5746 + 0.0133i

-0.3295 - 0.0065i

-0.0569 + 0.0113i

Table 5.4: Hammerstein-LS coefficients in JTRO

For KLMS, one of the concerns is the selection of kernel functions. For example,

the convergence of the polynomial kernel cannot be guaranteed due to the fact that

polynomial kernel is not bell-shaped and cannot be considered as a weight function

(Liu et al. 2010). In contrast, Gaussian kernel has a universal approximating capabil-

ity and numerically stable. For Gaussian kernel, one of most important parameters

is kernel bandwidth. The larger the kernel bandwidth, the better the nonlinear curve

is concentrated, and the worse the degree of nonlinearity, vise versa. Simulation and
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experiments suggest a kernel bandwidth from 1∼3 for the optimized performance.

During the iterations process of KLMS, another important factor is the step size η. It

is similar to that of LMS algorithm. A smaller η corresponds to a faster convergence

speed but worse modeling accuracy. An η ≈ 0.8 is found to obtain the best trade-off

between convergence speed and accuracy. Table. 5.5 lists the KLMS coefficients in

Case# 3.

Kernel

Map

Weight
Kernel

Map

Weight
Kernel

Map

Weight
Kernel

Map

Weight

κ(s′0, ·) 1.0000 κ(s′8, ·) -0.1223 κ(s′16, ·) -0.0072 κ(s′24, ·) -0.0047

κ(s′1, ·) -0.1989 κ(s′9, ·) -0.0104 κ(s′17, ·) 0.0084 κ(s′25, ·) -0.0114

κ(s′2, ·) -0.0177 κ(s′10, ·) -0.0033 κ(s′18, ·) -0.0056 κ(s′26, ·) -0.0071

κ(s′3, ·) 0.1332 κ(s′11, ·) -0.0273 κ(s′19, ·) -0.0308 κ(s′27, ·) -0.0059

κ(s′4, ·) -0.1451 κ(s′12, ·) -0.0134 κ(s′20, ·) -0.0017 κ(s′28, ·) -0.0042

κ(s′5, ·) -0.5860 κ(s′13, ·) 0.0789 κ(s′21, ·) 0.0064 κ(s′29, ·) 0.0054

κ(s′6, ·) -0.1071 κ(s′14, ·) 0.0111 κ(s′22, ·) -0.0121

κ(s′7, ·) 0.1256 κ(s′15, ·) 0.0121 κ(s′23, ·) 0.0148

Table 5.5: KLMS coefficients in Case# 3 (Only AM/AM coefficients are showed).

5.5.5.3 Impact of SNR

It has been pointed out in RMMSE implementation that the sidelobes can be sup-

pressed as low as the level of the noise floor. For the case of a solitary target, the

sidelobe level from the outputs of RMMSE processing in term of PSL is equivalent

to the SNR. Even though the nonlinear distortions are mitigated by JTRO, the noise

power still sets a lower bound for achievable PSL. In Fig. 5.20(b), the SNR is about

55 dB and about -55 dB sidelobe level is achieved. Fig. 5.23 shows two signals with

different SNRs. The signal has a 70 MHz carrier frequency. The signal in Fig. 5.23(a)

156



is less noisy than that of Fig. 5.23(b). Fig. 5.23(c) is the comparison the joint opti-

mization result based on these two input waveforms. It is clear that SNR has to be

sufficiently high to avoid being a bottleneck of sidelobe mitigation performance.

(a) (b)

(c)

Figure 5.23: Hammerstein-LS algorithm in nonlinear modeling. (a) Signal with good

SNR, (b) Signal with degraded SNR, (c) Comparison of joint optimization
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Chapter 6

Conclusion

This dissertation describes the application of pulse compression in solid-state radars

for both hard and distributed targets. Multi-functional waveform characterization

and optimization are studied with application in ADS-B radar PPM/PM waveform

design. Field experiment results are presented. Techniques to mitigate the sidelobe

effects from both pulse compression process and antenna pattern are discussed. A

2D-RMMSE and 2D-LS algorithms are derived and verified with simulations based

on realistic weather and target observation scenarios. Several implementation cases

for the adaptive RMMSE algorithm are analyzed. Experiment results on practical

radars are presented. To achieve better performance of target parameter estimation,

a joint transmit and receive optimization scheme is proposed to suppress the nonlin-

ear distortion in the radar transmit/receive chain. Joint optimization results on an

experimental testbed for different scenarios are presented.

6.1 Contributions

The dissertation is organized as follows:

• Developed both statistical and deterministic models for a multi-functional

PPM/random binary PM radar waveform. A practical controlled-searching and
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mismatched filtering algorithm was formulated for waveform optimization, and

a prototype radar sensor was developed for proof-of-concept experiments.

• Investigated the implementation of RMMSE algorithm to practical radars. Ap-

plied adaptive pulse compression algorithms to practical radar data. Developed

pulse compression algorithms 2D-RMMSE and 2D-LS to mitigate both range

sidelobe and antenna sidelobe effects. Verified the algorithm performance using

realistic numerical weather simulation.

• Formulated the impact of nonlinear distortion on the sidelobe mitigation. Ap-

plied the KLMS to nonlinear modeling.

• Designed a JTRO technique to suppress sidelobe effect, in which both the adap-

tive pulse compression and nonlinear modeling are integrated. Designed a Ku-

band spaceborne radar testbed and implemented JTRO algorithm.

6.2 Future Works

This dissertation can be extended with the following directions:

• Implement phase coding mismatched filtering technique to practical radars. As

presented in Chapter 3, the range profiles obtained from mismatched filtering

do not display significant improvement in terms of the target peak to sidelobe

ratios, due to the fact that the outdoor environment is much more complicated

than the RF chamber. The optimal mismatched filtering can be improved by

incorporating the clutter and interference knowledge.

• Apply 2D-RMMSE and JTRO algorithms to practical radar data. Similar to

waveform template issue in RMMSE implementation, the antenna pattern sen-

sitivity of 2D-RMMSE has to be addressed. Dimension reduction technique

for 2D-RMMSE is also required to further reduce the computational cost. For
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JTRO, to achieve a better sidelobe mitigation, the noise floor the Ku-band

testbed has to be further reduced. Hardware improvement has to be explored

and more data are to be acquired and analyzed. In addition, JTRO is demon-

strated to be able to handle a solitary target in Chapter 5, however, the per-

formance of JTRO in more complicated target scenarios has not been fully

evaluated.

• Real-time implementation of adaptive pulse compression on FGPA or DSP hard-

ware. Although RMMSE has been applied to practical radar data processing,

the real-time implementation has not been reported yet. This remains challeng-

ing because RMMSE requires matrix inversion operation, which is essential for

FPGA implementation. Popular techniques used for matrix inversion includes

QR, Cholesky and LU decompositions. The choice of a computing platform

includes ASIC, DSPs and FPGAs.
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Appendix A - List Of Symbols

a Antenna radiation pattern in form of azimuth re-

sponse vector

an Phase modulated code symbol

A Toeplitz matrix of the antenna pattern response

cp,q Nonlinear coefficient corresponds to q-th polyno-

mial and p-th delay

εn Pulse position modulated code symbol

fi The input-output nonlinear mapping at ith step

of KLMS

η Reflectivity

g(r(t), ω0) Instantaneous AM/AM conversion at ω0

k Boltzmann’s constant

K Number of azimuth angles in one scan

Kω Dielectric factor of water

κ(u,u
′
) Reproducing kernel with inputs u and u

′

λi ith eigenvalue for the reproducing kernel κ(·, ·)

L Number of range bins for each azimuth direction

M Number of antenna pattern response angular sam-

ples

N Number of transmitted waveform samples

ξ Doppler shift in Ambiguity function
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λ Radar wavelength

τ Pulse width

r(t) The envelope amplitude component of PA input

signal

s Transmit waveform

s̄ Distorted transmit waveform

S Transmit waveform matrix

S̄ Distorted transmit waveform matrix

S Toeplitz matrix of the transmitted waveform

Su(f) The PSD of the signal u(t)

σu The spectral width factor of u(t)

x̃ The baseband equivalent of x

XLS Least-Square estimate of X

x(l, k) Ground truth (radar “impulse response signal

without sidelobe interference) at the lth range bin

and kth azimuth angle

ρ(l, k) Power distribution of ground truth ρ(l, k) =

|x(l, k)|2

V (L+N − 1)× (K+M − 1) Gaussian noise matrix

X Complete ground truth impulse response matrix

with size L×K

X
′
LS Distorted Least-Square estimate of X

X∗ Complex conjugation of X

XT Transpose of X

XH Conjugate transpose (Hermitian) of X

y(l, k) The received radar echoes from the lth range bin

and kth azimuth angle
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φi ith eigenfunction for the reproducing kernel κ(·, ·)

φ(t) The envelope phase component of PA input signal

Φ(r(t), ω0) Instantaneous AM/PM conversion at ω0

χ Ambiguity function
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Appendix B - List Of Acronyms and Abbreviations

AF Ambiguity Function

AMSE Average Mean-Square-Error

AM/AM Amplitude-to-Amplitude

AM/PM Amplitude-to-Phase

ARPS Advanced Regional Prediction System

ARRC Advanced Radar Research Center

AWG Arbitrary Waveform Generator

COTS Commercial Off-The-Shelf

DPD Digital Pre-Distortion

DSO Digital Storage Oscilloscope

ECS Extended Code Sequence

FIR Finite Impulse Response

GaAs Gallium Arsenide

HIWRAP High-Altitude Imaging Wind and Rain Airborne

Profiler

HPA High-Power Amplifier

IF Intermediate Frequency

IMP Inter-Modulation Products

IQ Inphase and Quadrature

ISL Integrated Sidelobe Level

JTRO Joint Transmitter and Receiver Optimization

KAF Kernel Adaptive Filter
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KLMS Kernel Least-Mean-Square

LFSR Linear Feedback Shift Register

LKP3 Lewis-Kretschmer P3

LOS Line-Of-Sight

LRS Linear Recursive Sequence

LS Least-Square

MF Matched Filter

MLB Maximum Length Binary

MLS Maximum Length Sequence

MMSE Minimum Mean-Square Error

MPAR Multifunction Phased Array Radar

NMSE Normalized Mean-Square-Error

NLFM NonLinear Frequency Modulation

OU University of Oklahoma

PC Phased-Coding

PM Phase Modulation

PN Pseudo-Noise

PPM Pulse Position Modulation

PRT Pulse Repetition Time

PSD Power Spectrum Density

PSL Peak Sidelobe Level

PX1000 Polarimetric X-band 1000

P1dB 1dB Compression

RMMSE Re-iterative Minimum Mean-Square Error

RKHS Reproducing Kernel Hilbert Space

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio
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SSPA Solid-State Power Amplifier

TB Time-Bandwidth product

TCAS Traffic Collision Alerting System

TLS Truncated Least-Square

TRMM Tropical Rainfall Measuring Mission

Tx/Rx Transmit/Receive

TWT Traveling-Wave Tube

WSCS Wide Sense CycloStationary

1D One-Dimensional

2D Two-Dimensional
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