
A PORTABLE SYSTEM FOR

DETECTING INFRASOUND

 By

 STEVEN BERGREN

 Bachelor of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, OK

 2001

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2018

ii

 A PORTABLE SYSTEM FOR
DETECTING INFRASOUND

 Thesis Approved:

Dr. Carl Latino

Thesis Adviser

Dr. George Scheets

Dr. Keith Teague

iii
Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

ACKNOWLEDGEMENTS

I would not have been able to complete this thesis without the help and encouragement of

Dr. Carl Latino. Though I doubted my ability to complete this, his advice and guidance along the

way allowed me to finish. Thanks also go to Dr. Charles Abramson. The idea for this device

started with him and I only hope I was able start a work that others may be able to build upon,

and that it may possibly be used to save the lives of zookeepers.

I would like to thank the other members of the committee, and the entire faculty of the

school of Electrical Engineering, as their ideas to solve problems that occurred during the course

of this project were extremely helpful.

Several members of the Parallax Forums, especially Jon McPhalen, were vital to my

understanding of the Propeller microcontroller and its intricacies. I would not have been able to

make this device do anything at all if it wasn’t for their insight and suggestions for solving the

many issues I had during the course of this effort.

Lastly, my thanks go to my wife, Cindy, who has had to bear with me for the past year

and a half, and the long days and nights I was cloistered away in my office accomplishing class

work or this thesis. Her patience, encouragement, and belief in me is remarkable.

iv

Name: STEVEN BERGREN

Date of Degree: MAY, 2018

Title of Study: A PORTABLE SYSTEM FOR DETECTING INFRASOUND

Major Field: ELECTRICAL ENGINEERING

Abstract: The purpose of this project is to create a device to detect infrasound
communication from elephants in order to inform handlers of possible impending
aggressive behavior. Elephants often communicate using infrasound which is low-
frequency sound below the threshold of human hearing. Elephants may be trying to
communicate with zookeepers but the handlers are unable to hear their call. Knowing
that an elephant is communicating may give handlers time to move to safety. A device is
designed and prototyped that is capable of monitoring an input signal for infrasound and
produces a warning alarm for handlers. This device can also record audio for long
periods of time to a digital storage device. It can be utilized for other areas of study with
some modification. The device is low-cost so it would be able to be procured more easily
and in higher quantities than more expensive laboratory monitoring equipment. This
device could also be used as an educational and research device for students studying
animal behavior in the field and laboratory. Infrasound is not limited to only elephants,
but hippopotamuses, rhinoceroses and giraffes also communicate with infrasound.
Environmental infrasound from sources such as wind turbines, sonic booms, explosions,
tornadoes, and earthquakes can also be monitored. Test results showed that the device
accurately recorded low-frequency input signals. The device also was able to detect
infrasound frequencies and triggered an alarm.

v

TABLE OF CONTENTS

Chapter Page

INTRODUCTION .. 1

Elephant Communication .. 2

Thesis Objective.. 3

Design Considerations .. 4

REVIEW OF LITERATURE .. 6

Elephant Listening Project .. 6

Low-cost Recording System ... 8

The Propeller Experimental Controller ... 9

METHODOLOGY ... 11

Signal Input ... 11

Microcontroller ... 19

Amplifier ... 21

Analog to Digital Converter .. 22

Interface .. 23

External Storage .. 24

Digital to Analog Converter .. 24

Software .. 25

Implementation ... 27

Frequency Analysis ... 36

Device Assembly .. 39

Device Specifications .. 42

vi

Chapter Page

RESULTS .. 43

Recording .. 43

Playback .. 46

Infrasound Detection ... 47

 Pure Tones... 47
 Elephant Calls ... 49

CONCLUSION ... 53

Future Work .. 54

A SCHEMATICS AND LAYOUT ... 59

Main Board ... 59

Buttons Board ... 61

LED Board .. 62

B PARTS LIST .. 63

C SOFTWARE ... 64

D USER MANUAL .. 92

vii

LIST OF TABLES

Table Page

Table 1 - Battery Duration Test .. 44

Table 2 - Elephant Calls .. 49

Table 3 - Infrasound Monitoring Results .. 51

viii

LIST OF FIGURES

Figure ... Page

Figure 1- Shure SM58 Frequency Response (9) .. 12

Figure 2 – PCB Piezotronics 378A07 Frequency Response (13) .. 13

Figure 3 - Mark Products L-25 .. 15

Figure 4 - Signal from L-25 due to tap on table ... 15

Figure 5 - Sercel JF-20DX 28 Hz Geophone Amplitude Response... 16

Figure 6 - L-25 response to 4 Hz table taps ... 17

Figure 7 - L-25 response to 4 Hz table taps (zoomed in) ... 17

Figure 8 - L-25 response to 10 Hz table taps ... 18

Figure 9 - L-25 response to 10 Hz table taps (zoomed in) ... 18

Figure 10 - Propeller Hub and Cog Interaction (17) .. 21

Figure 11 - Software Module Block Diagram ... 26

Figure 12 - Propeller ASC+ (21) ... 28

Figure 13 - Schematic of Anti-aliasing filter using FilterLab .. 30

Figure 14 - Frequency Response of Anti-aliasing filter using FilterLab 30

Figure 15 - Butterfly diagram of a Fast Fourier Transform ... 38

Figure 16 - Infrasound Detection Device ... 40

Figure 17 - Block Diagram .. 41

Figure 18 - Infrasound Detection Device (Cover Open) .. 41

ix

Figure ... Page

Figure 19 - Signal and Frequency Spectrum of Recorded WAV File (22 Hz Signal Input) 46

Figure 20 - Frequency Response of Device Using Sound Card Output .. 48

Figure 21 - Frequency Response Using Function Generator for Two Different Coupling Capacitor

Inputs ... 48

Figure 22 - Frequency Analysis of Elephant Calls .. 50

1

CHAPTER I

INTRODUCTION

The purpose of this project is to create a device to detect infrasound from elephants in

order to inform handlers of possible impending aggressive behavior. Detection of elephant

infrasonic communication with real-time feedback will aid zookeepers in remaining safe during

elephant-handling activities. A small and inexpensive system could be employed by elephant

keepers as a safety device to warn them of aggressive elephant actions. This device could also be

used as an educational and research device for students studying animal behavior in the field and

laboratory.

Elephants were chosen as the focus animal for this device for several reasons. Safety is

the primary concern of this project, and elephant interactions can be dangerous. Elephants can

turn aggressive seemingly without warning, so a device that can make interactions safer is a

desired product. In 2010, a Toledo, Ohio zookeeper was critically injured when the elephant he

had worked with almost daily for seven years suddenly turned on him with seemingly no warning

(1). In 2013, a Springfield, Missouri keeper was killed while feeding an elephant he worked with

for over 23 years. (2) The latter zookeeper was a friend of Oklahoma State professor Charles

Abramson and was one of the inspirations of this project.

2

Secondly, elephants, as a popular exhibit animal, are readily available at zoos throughout

the world for observation, including the Tulsa and Oklahoma City zoos. This availability also

makes them easier to study compared to other animals that are rare and secluded. As a popular

attraction to children and many other zoo patrons, increasing the safety of their care ensures a

more valuable experience for the observers.

Elephants in the wild are a concern for villages in Asia and Africa. A group of elephants

will raid a village with little warning. A system that detects infrasound can provide early warning

to humans in the area, giving them a chance to move to safety before the elephants attack.

Lastly, in addition to safety, students can learn more about elephant communication by

incorporating the device into the elephant enclosure and to other zoological exhibits in which

animals emit infrasound.

Elephant Communication

Elephants utilize many senses for communication – hearing, vision, smell, and touch – as

do all social mammals. Many of their sounds are audible to human hearing, especially those

produced through their trunks. However, elephants also communicate through very-low-

frequency sounds, most often referred to as rumbles. These sounds fall into a range known as

infrasound, which is a range of sound below the threshold of audible human hearing, generally

defined as below 30 Hz. Therefore, any communication an elephant attempts toward humans in

this manner would be unheard. The ability of an elephant keeper to be warned when infrasonic

communication is taking place could assist the keeper in remaining safe should the elephant emit

warning signals.

Elephants are extremely large and powerful animals, and though human-elephant

interactions are often safe, accidents do still occur, often with disastrous results for the humans

involved. Though declining since World War II, elephants are still used in Asia as beasts of

3

burden. Their chores include clearing trees and performing other heavy labor tasks. This

requires very close contact with their human handlers, putting the handlers in dangerous

situations daily (3). In zoos throughout the world, there are multiple elephant and human

accidents yearly. Many of these accidents occur between elephants and keepers that have

interacted together without incident for many years, only to have one poor interaction that results

in the severe injury or death of a keeper. The deaths mentioned previously are just two of the

approximately 500 that occur each year when humans interact with elephants (4). Any system

that may warn keepers about impending aggressive behavior would be an improvement and

possibly save lives.

Thesis Objective

The objective of this thesis is three-fold. First: to design and construct a low-cost device

that is able to monitor infrasound frequencies and warn zookeepers of possibly aggressive

behavior by the elephants in their care. Second: to have the ability to record for extended periods

infrasound data that can be analyzed in the future. Lastly: to have a device that can serve as an

educational tool and a basis for further studies as research equipment is expensive.

The primary function of the device would be to constantly monitor frequencies in the

infrasound range and produce an audible alarm to signal zookeepers that the elephant is

communicating in infrasound and that they should move to a safer place. This warning system

could potentially save lives; therefore, it is the most important objective. However, the

information that could be gathered through this device could assist in future elephant

communication research, so other functions will be included to assist in that effort. The device

should also be able to record the sounds to a storage device for later analysis.

4

Design Considerations

As a safety device, two requirements need to be established in order for it to be effective.

First, the device needs to be small, light-weight, and battery-operated; the availability of electrical

outlets and the needed placement of the device would vary between different elephant enclosures,

zoos, and facilities, as would the voltages provided in different countries. Though data

acquisition systems are readily available for laptop computers, their size and power consumption

does not lead them to be used because they do not meet the portability and low-cost objectives.

Secondly, it needs to be easy to use with little to no setup required to ensure reliable function

during each and every use. A complicated system that requires adjustment or multiple button

presses each time the system is powered on could accidently be configured incorrectly which

could result in the alarm function disabled and unable to properly monitor and warn zookeepers.

In addition to safety, another consideration is cost. First, the proposed device will often

be used in outdoor animal enclosures. The device could easily be damaged by rain and other

environmental causes. Additionally, the elephants themselves could damage the device, no

matter how hardened a casing it could possibly have. By using a low-cost device, the device

could be replaced easily without much expense, especially compared to a laptop-based system.

Secondly, due to the size of enclosures, having multiple warning devices in several locations

would increase the ability to properly detect the infrasound signals and ensure that a device was

near enough to a keeper to hear the alarm. Lastly, producing the device at low cost would allow

researchers to utilize these in poorer areas of the world that cannot afford expensive equipment.

As infrasound travels across long distances, villagers could be warned well in advance of an

elephant raid, giving them time to seek shelter. Given the right sensor, there is no need for the

elephant to be extremely close to trigger the device.

5

Though designed as a safety device, the system could be easily modified to be used for a

variety of applications beyond that of elephant-human interaction safety. Animal behavioral

scientists could utilize the devices in many scenarios to record animal sound in nature as well as

in laboratory experiments. Commercial recording systems are often expensive. These are out of

the budget of public schools, and university systems may have some recording devices, but this

device could potentially allow many more students to have access to recording devices that could

be used to study animal sounds and behaviors.

Chapter 2 explores the literature involving infrasound measurement and recording, tools

for controlling animal behavior experimentation, and elephant calls. This review will explain

concepts used in the design of the device. Chapter 3 covers the methodology and design of the

device, including the sensor, controller, interface, and software. Chapter 4 reports the test results

of the device. Chapter 5 concludes with future work and offers suggestions on how the

capabilities of the device can be extended.

6

CHAPTER II

REVIEW OF LITERATURE

Elephant Listening Project

The study of elephants and their behaviors are a common occurrence in their native lands

of Africa and Asia. The Elephant Listening Project (ELP), part of The Cornell Laboratory of

Ornithology at Cornell University, has been studying the sounds of elephant calls for over 30

years. Katharine Payne and her team worked mostly with African elephants in western Africa.

The fundamental frequencies of the calls they recorded were between 15-35 Hz with pressure

levels up to 117 dB at a range of 1 meter from the source (4). These low-frequency sounds can

travel over long distances because neither the air nor the ground will attenuate the signals

significantly. These long-distance communication methods explain elephant behavior which was

not previously understood. Elephant groups separated by several kilometers would

simultaneously perform similar movements for several hours. They could also, still separated by

kilometers, turn and head directly towards each other. Additionally, though males and females

spend most of their time apart from each other, they could find each other easily during mating

seasons. The researchers tested these theories by playing back the recorded sounds while

observing elephant groups. Elephants seen 2 kilometers away from the sound source would

freeze and/or turn and walk towards the source and often respond to these prerecorded calls the

majority of the time.

7

The Elephant Listening Project has recorded over 700,000 hours of sounds in the areas of

west-central Africa (5). Self-contained recording devices were designed to record for up to 6

months at a time. One particular study analyzed 5 years of data – from 2007 to 2012. The goal of

the analysis was to determine if elephant calls could be detected electronically rather than

manually. Manual detection consisted of having a person listen to find the elephant calls on

recordings. The recordings used for data analysis were at 16-bit resolution at either a 2000 or

4000 Hz sampling rate. The rumbles they found ranged from 8-180 Hz and lasted from 2 to 8

seconds. The fundamental frequency of the rumble was between 8 and 34 Hz with a median of

15 Hz.

Members of the ELP listened to the recordings and tagged true elephant calls in order to

score whether the algorithm correctly identified a true elephant call. The algorithm would divide

the recordings into 100 millisecond frames to then score with the likelihood of containing an

elephant rumble. All audio was converted to a 2 kHz sampling rate and a short-time Fourier

Transform was produced over 1024 points. These spectrographs were split into 20 second

segments. Though elephant rumbles are highly varied, they typically have constant power at a

specific frequency throughout a rumble. Looking at these frequency and power characteristics,

46 elements were identified in a vector for each time frame.

They found that the first harmonic, 2∙F_0, which ranged from 20-24 Hz, was more

prominent than the fundamental frequency. They were unsure as to the reason for this but

suspected the microphones’ inability to capture the lower frequencies without loss was the cause.

These harmonic features were a factor in their scoring. Image filters were applied to the 20

second frames to look at the horizontal characteristics of the signal to determine how well they

matched with elephant calls, as well as to reject noise that came from the hard drive used.

Utilizing machine learning algorithms, they were able to detect and classify the sounds found on

the recordings. Across about 4000 hours of recordings, the algorithm correctly identified an

8

elephant call between 80-90% of the time and a false positive rate of less than 9%. When the

threshold was lowered to reach a 90% detection rate, the false positive rate exceeded 40%. This

analysis was performed on an 8 core Dell laptop with 16 GB of RAM, and 24 hours of recordings

were analyzed in 9 minutes.

Similar research was performed in India. The researchers performed a comparable

spectral analysis and a neural network classification of the signals, having only 21 elements in

their vector. Their results were similar to the ELP project, detecting the signal 90% of the time,

but having false positives 30% of the time (6).

Low-cost Recording System

The recordings captured by the ELP utilize autonomous recording devices placed in trees

in elephant habitats in Africa. These are specialized devices with long recording time of at least 6

months; therefore, the battery and storage capabilities are great. These often come at great cost.

Researchers in Sri Lanka developed a way to record elephant infrasound much more

economically (7). Their goal was to develop a recording system that was easy to use and could be

made at a fairly low-cost. In their country, as in much of southwest Asia, elephants are common

and often used as work animals; therefore, elephant-human conflict is also a common occurrence.

According to the Sri Lankan Department of Wildlife Conservation, an average of 150 elephants

and 65 people die each year due to these confrontations. Some of these deaths occur from

elephant raids on villages. Electric fences, built for village protection, are not able to keep the

elephants out. A warning system was needed to detect elephants. Keying in on infrasound

communications was the goal of their system.

Their system was based around a PC application that would record the elephant sounds.

They needed to develop an analog input, an amplifier, an anti-aliasing filter, and an analog-to-

digital converter. The output of the analog to digital converter was then sent to the PC that would

9

record the digital representation of the elephant rumbles. For the analog sensor, they utilized a

speaker which was mounted on a stand and directed toward the elephants at the Dehiwala zoo.

The speaker was used instead of a microphone because of its greater sensitivity to lower

frequencies and because there was no need for additional circuitry in order to power the device,

as a condenser microphone would require. Though no specifications on the speaker are given,

pictures of the device show it to be approximately 2-3 inches in diameter. The amplifier they

selected was a simple op amp inverting amplifier. The resistances chosen gave the amp a fixed

gain of 200 V/V. The anti-aliasing filter used was a second-order Butterworth filter with a cutoff

of 100 Hz. The Butterworth was selected to keep a constant gain across the passband without

ripples. For the analog to digital converter, a microcontroller was selected that had an onboard

10-bit converter. The microcontroller was then connected to the parallel port on the PC, where a

software application recorded the data and provided for a simple graphical interface to allow

users to see the frequency components of the recorded sounds. The sampling rate utilized was

7500 Hz.

They tested their device at a zoo and captured signals that contained infrasound

characteristics of elephant calls mentioned previously. Fourier transforms of these recordings

showed strong results in the 7-15 Hz range with duration of about 7 seconds. Their recording

system was also tested on a diesel engine, finding the dominant frequency for it to be below 1 Hz.

They showed that their system was able to record infrasound reliably, and the cost for the

hardware, from speaker input to microcontroller output (excluding the PC and application) was

only $35.

The Propeller Experimental Controller

Microcontrollers are being utilized in other behavioral laboratory experiments. The

Laboratory of Comparative Psychology and Behavioral Biology at Oklahoma State University

10

experimented with the use of microcontrollers, specifically, the Parallax Propeller, rather than the

much more expensive laboratory experiment controllers marketed by several instrument

companies. In order to engage students in live animal studies, an easier way to get more students

involved was needed. Computer simulations were not providing the learning experience that

instructors desired, and the expense, size, and setup of the commercial experiment controllers

limited the number of people that could be involved in the live animal experiments (8).

The laboratory found the Propeller easy to setup and program, and it could be easily

connected to various sensors and outputs, such as switches, thermometers, lights/light sensors,

and audio devices. The Propeller is also capable of generating video signals to see real-time data.

They found the Propeller Spin programming language to be the easiest to use of any they had

experienced. The Propeller is a multi-core microcontroller, with 8 independent cores. The cores,

called “cogs”, allowed several unrelated experiments to be run simultaneously without any

interference between them. The ability to utilize already-written modules available at the

Parallax Object Exchange, as well as the help from the community forums also at the Parallax

website, allowed users to write their programs faster and accomplished tasks that may be beyond

their programming skill set.

The portability of the device was also noted. Only a few inches in each dimension, and

easily powered by USB, the device can be taken and setup nearly anywhere quite simply. This

microcontroller has been used for automatic control and measurements that would be laborious if

not impossible to accomplish manually in a reliable fashion. The laboratory went so far as to

write experiment controller software that they have made available for other behavior laboratories

to use.

11

CHAPTER III

METHODOLOGY

The design of the device began with identifying components capable of meeting the

requirements of a portable, infrasound-detecting, and low-cost device. A microcontroller is

required to manage the operations of the device. A signal input device, such as a microphone, is

required to capture the infrasound frequencies. That input signal would then need to be amplified

and filtered. An analog to digital converter (ADC) is needed to convert the analog signal into a

digital representation for the microcontroller to work with. An external storage device is needed

in order to store the recordings. A digital to analog converter (DAC) is required in order to take

the sampled signal and play it back for the user. Finally, a display and interface control buttons

and switches are required to operate the device.

Signal Input

Typical microphones used to record voices or musical instruments have poor low

frequency response. Common microphones, such as the Shure SM57 and SM58 (Shure

Americas, Niles, IL), have a low frequency response that resides at about 0 dB near 100 Hz and

continually drops, with frequency response charts showing a -10 dB loss at 50 Hz (9). The charts

end there, as these microphones are intended for human hearing ranges, so there is neither a need

to show lower frequencies, nor a need to test microphones to respond to such low frequencies.

12

Figure 1- Shure SM58 Frequency Response (9)

Extrapolating from that decline, however, shows that infrasound will not be detected well

by these microphones. Clearly a different kind of microphone or sensor will be required in order

to detect the infrasound. Additionally, these kinds of vocal microphones cost about $100, which

detracts from the low-cost intent of the device (10).

Specialty microphones designed for infrasound are manufactured. The intended

applications for the PCB 378A07 (PCB Piezotronics, Depew, NY) are environmental testing,

including wind turbine, sonic boom, explosion, tornado, and earthquake monitoring (11). They

are also used to test machinery noise levels, such as industrial equipment and engines, and for the

GRAS 41AC-2 (GRAS Sound & Vibration, Holte, Denmark), aircraft and community noise (12).

The frequency response for these microphones is very low, some losing only 3 dB at 0.1 Hz. The

characteristics of the frequency response are ideal for the purposes of the infrasound recording

device.

13

Figure 2 – PCB Piezotronics 378A07 Frequency Response (13)

However, several other characteristics prevent these types of microphones from being

used. First, these microphones are often of a free-field design. Free-field microphones work best

when pointed directly at the sound source. Sounds coming from other angles are greatly affected.

In the operation of this recording device, it is doubtful that a person would be constantly moving

the microphone to aim it directly at the elephants, as the most likely need of this device is during

movement procedures. Though the effects on this angle of incidence are less for low-frequency

signals, this is a factor to be considered. Secondly, these microphones are designed to work with

preamplifiers that require at least a 28V power supply (11). That need violates the requirement

that this device is small and battery operated. Lastly, these microphones typically cost greater

than $1000 each, and often much more. This also violates the goal of being a low-cost device.

A larger diaphragm in a microphone is better suited to detecting lower frequencies. De

Silva and De Zoyza designed their own microphone using a speaker. (7) The underlying concepts

between microphones and speakers are the same – sound pressure is converted to electrical

signals, and vice-versa. A diaphragm with a coil of wire attached is suspended in a frame. A

large magnet is placed behind this coil to induce a magnetic field. When the diaphragm vibrates,

the movement of the coils in the magnetic field induces a current in the wire proportional to the

vibrations. This concept is feasible and would be sufficient. It does, however, suffer from the

14

same problem as any microphone in that it needs to be directed toward the sound source in order

to be most effective. A second problem that plagues microphones and speakers is wind noise.

Wind can cause turbulence at the microphone diaphragm which results in signal generation at

very low frequencies (14). These wind-generated signals can be difficult to separate from the

actual infrasound intended to be recorded.

Another sensor of a different type is to be considered. Though it is not known with

certainty how infrasound signals are detected by elephants, is it suspected that they can detect the

signals through their feet (15). This implies that the pressure waves travel through the ground in

a seismic fashion. A seismometer is a relatively simple device that can detect vibrations in the

earth and convert them to electrical signals. One of the simplest seismographs is very much like

the microphone and speaker described previously, but instead of a diaphragm reacting to sound

pressure, an inertial mass suspended via a spring reacts to the vibrations. The mass itself is often

a magnet, which then induces a current in a coil, effectively turning the vibrations into electrical

signals. Unlike a microphone, there is no need to point the seismograph toward the source of the

sound, as it is travelling up from the ground into the seismograph, just like it would through

elephant’s feet.

Seismometers are often used in petroleum exploration. One such item, a Mark Products

L-25 (formerly Mark Products, now Sercel, Nantes, France) was available to use for this project.

It is a cylindrical device approximately 1.5” in diameter and 2.25” tall, weighing less than a

pound.

15

Figure 3 - Mark Products L-25

No specifications were available for this device, but it is very similar to more recent and

available devices. This type of small seismometer is called a geophone. Geophones are used on

the ground surface, whereas seismometers are typically much larger and heavier and are buried in

order to better sense the very small vibrations of distant earthquakes. Geophones have a spike

attached to them which is driven into the ground in order to hold them in place and transfer the

ground vibrations to the device.

Due to the lack of specifications, some experimentation was required in order to

understand its capabilities. The device was connected to an oscilloscope and then placed on a

table. The table was tapped by hand and the measurements recorded. The recorded waveform of

an average-strength tap on the table shows that the signal peaks at 50mv and with a frequency of

about 29 Hz.

Figure 4 - Signal from L-25 due to tap on table (100 mV/div, 50 ms/div)

16

 The oscillation is due to the nature of the device, with the spring stretching and

contracting, dampening to a small amplitude in about 6 periods. Very faint writing on the side of

the device was found that looks like it says 28-30 Hz, so this must mean it is the natural

frequency of the mass and spring. Specifications for other geophones that are commercially

available, such as the Sercel JF-20DX (Sercel, Nantes, France), show that a commonly-used

natural frequency for geophones is 28Hz, so it is likely that the L-25 has a similar design (16).

Sercel is also formerly known as Mark Products, further increasing that probability. A

specification for that device shows that peak output occurs at a frequency of 28 Hz.

Figure 5 - Sercel JF-20DX 28 Hz Geophone Amplitude Response (16)

Additional testing consisted of patterns of taps on a table to simulate specific frequencies.

A 4 Hz table tap (with a stronger tap at each 1-second mark, or every 4 taps, for points of

reference) was recorded. The same pattern of dampening oscillations was observed.

17

Figure 6 - L-25 response to 4 Hz table taps (10 mV/div, 500 ms/div)

The same 29 Hz oscillations are seen clearly when the 4 Hz signal is zoomed in. It takes

until the 5th oscillation for the amplitude to be significantly less than the first oscillation. A

method of filtering out the 29 Hz signal could be devised that would leave only the 4 Hz signal.

Figure 7 - L-25 response to 4 Hz table taps (10 mV/div, 50 ms/div

When the tapping rate was increased to about 10 Hz, the signals from the taps were

unable to be distinguished from each other. As was seen on the 4 Hz signal, it took until about

the 5th oscillation for the amplitude of the signal to be significantly lower than the first

oscillation. At 29 Hz, that comes out to be about 116 ms. Therefore, any signal with a period

smaller than about 116 ms will be hard to distinguish from the natural oscillations of the spring

mechanism.

18

Figure 8 - L-25 response to 10 Hz table taps (30 mV/div, 500 ms/div)

At 10 Hz, the period is 100 ms, and the signals all seemed to mesh together with no way

to differentiate between true signal and oscillation. In figure 8, stronger taps were generated at 1

Hz for points of reference. Though those 1 Hz signals are able to be identified, there is no clear

10 Hz signal to be seen under it.

A zoomed-in figure of the same oscilloscope capture shows the difficulty in separating

the signals. There is a 1 second difference between the two peaks with the highest amplitude in

the figure. Though there are some stronger peaks in between that may be part of the 10 Hz

signal, it is just too intertwined to differentiate. The oscillations of the mass have not diminished

enough by the time another tap was registered for the new signal to stand out from the

oscillations.

Figure 9 - L-25 response to 10 Hz table taps (30 mV/div, 300 ms/div)

Any infrasound that was picked up by this geophone would be hard to identify

specifically by frequency and amplitude for signals above 10 Hz. Therefore, this sensor would

not be a good choice for anyone wishing to capture the true audio signal of an elephant call.

19

However, the sensor may still be effective for simply capturing whether there is any infrasound at

all in a location. For the purposes of sensing infrasound as a safety device, this geophone type of

sensor may be sufficient for triggering an alarm at the presence of an elephant call.

Microcontroller

The primary component of this device is the microcontroller. Selecting the

microcontroller required estimating the microcontroller speed needed, the core bit size, and the

amount of IO pins required. As this device is intended to be low cost and small, a microcontroller

would be the most likely solution to meet those requirements. The clock frequency required is

tied to the highest sampling speed desired. The goal of this device is to sample infrasound, which

is less than 30 Hz, so a slow microcontroller would be sufficient. However, the additional

objective of making this device usable in many applications requires a much higher sampling

rate, such as the CD-quality sampling rate of 44,100 Hz. Each sample will take dozens of clocks

for the operations, not to mention the additional processes of storing the data to an external

storage device and any other device functions occurring simultaneously, such as human interface

monitoring. A “safe” clock rate would be at least 1000 clocks per sample, therefore a

microcontroller clock greater than 44MHz would be the best bet in order to meet the required

sampling speed.

The core size of the microcontroller would need to be sufficient to handle the bit depth of

the analog to digital converter. An 8-bit core could only handle a -128/127 value from the ADC

which would only provide a signal to quantization noise ratio of 48.16 dB. A greater bit depth is

desired, so the core of the microcontroller should be more than 8 bits.

The microcontroller also requires enough IO pins to interface with all peripherals.

Connections need to be made to at least the ADC, DAC, display, interface buttons, and external

storage device. This does not even include any spare pins that should be made available to future

20

uses or expansion. These requirements allow for no less than 16 IO pins be available on the

microcontroller.

There is a wide range of microcontrollers that meets these requirements. Any one of

them would be sufficient for the purposes of this device. An additional factor that would help the

choice of microcontroller is the programming language. As these devices are intended to be used

by individuals who are not necessarily frequent programmers, utilizing a programming language

and interface that is easier to understand would make the device more usable by a wider range of

individuals. Though some functions may reside in assembly-level instructions, the portions of the

code that may need to be changed by future users in order to meet their application should be in a

higher-level language that is much easier to access.

To that end, the Parallax Propeller microcontroller meets the desired requirements. In

addition to meeting all of the technical requirements stated above, the company has its own

programming language called Spin made just for the Propeller. There is also the Propeller

Assembly (PASM) language which allows for more detailed control of the microcontroller. This

microcontroller has already been used in the Comparative Psychology and Behavioral Biology

Laboratory at Oklahoma State University. Dr. Charles Abramson suggested this microcontroller

due to its ease of use in his laboratory. Psychology students are not focused on programming yet

have successfully used the Propeller to control experiments in their laboratories. Utilizing a

Propeller microcontroller for this device increases the likelihood of maintainability and easier

modification by individuals who are not strong programmers.

The Propeller is a multiprocessor microcontroller. It contains 8 individual processors

called cogs. The starting and stopping of the cogs is controlled by a hub which manages all

operations. The cogs process in parallel, but access to main RAM takes place in a round-robin

fashion, allotting each cog exclusive access on a regular cycle. (17 p. 21) All cogs have access to

21

the IO pins and the system clock at the same time. These characteristics allow the Propeller to be

run without the need for interrupts to control event-handling. Different cogs can be free to run

their dedicated function, such as ADC processing, writing to external storage, display, etc. The

processor speed can be multiplied to 80 MHz using a phase-locked loop method.

Figure 10 - Propeller Hub and Cog Interaction (17)

The Propeller can be purchased by itself, but also comes in a variety of development

boards that contain voltage regulation, USB connections for programming and terminal access,

and other peripherals. Determining which development board to use, if any, required selecting

what other components were required in order to meet the device requirements.

Amplifier

No matter the sensor type, the input signal would need to be amplified and/or buffered.

The signal coming from the input sensor will be AC in nature and in the millivolt range. This

signal will need to be adjusted to fit within the range of the analog to digital converter. This

range is approximately 0-5 volts. Many amplifying circuits are capable of meeting this

requirement. A non-inverting op amp circuit was chosen to accomplish this. The op amp is also

powered with 0 and 5 volts. The input signal is sent through a coupling capacitor and biased to

the midpoint of the range (2.5VDC.) The circuit also incorporates a potentiometer to allow for a

variable gain. This allows the device to accommodate a wide range of input sensors. The design

22

for this amplifier is modified from the MPLAB Starter Kit from Microchip Technology (18 p.

43). The gain of the amplifier is 2-229 V/V. The end result of this amplifier is a signal with a

maximum allowable amplitude of 2.5 VAC centered at 2.5 VDC.

An anti-aliasing filter is required prior to sending the signal to the ADC. The filter is a

low-pass filter than has a cutoff less than half of the sampling frequency. Because the signals in

question are less than 30 Hz, the Nyquist frequency could be as low as 60 Hz. However, to

prevent any loss of signal, the cutoff frequency should be a bit higher than the highest frequency

desired to be captured so that is it not attenuated. To minimize ripple in the passband, a

Butterworth filter was selected. The frequency roll off of a Butterworth is slow. Therefore, the

sampling frequency would need to be higher than double the frequency where magnitude is

deemed filtered sufficiently to ensure there is no aliasing.

Analog to Digital Converter

Similar to the point made in the microcontroller section, an 8-bit ADC would not produce

a signal with the precision easily capable with common components, nor with the fidelity desired

in order to capture a signal faithful to the original. Those 8 bits could only produce 256 points of

quantization. Therefore, a higher-order ADC is desired.

ADCs typically come in the range of 8 to 24 bits of resolution. As 8 bits has been

deemed too few bits, 16 bits is then considered. Sixteen bits provides for 65,536 points of

quantization. If the maximum range of this device of 5 volts, the least significant bit would

represent around 0.076 millivolts. This is much smaller than the device would need to

differentiate, so that depth of resolution is not needed. Midway between the two, a 12-bit ADC,

provides 4096 points of quantization, which results in 1.2 millivolts at the least significant bit.

This number is more in line with the capabilities of the rest of the device.

23

Interface

The device requires an interface in order to control the functions to be executed. A

display is required for visual feedback, as well as buttons for control. The number of top-level

functions is fairly small, e.g. Monitor, Record, Playback; therefore, a tiered menu-style control

setup suffices to completely control the device. Four momentary switches for control are all that

is needed (Back, Up, Down, and Select.) This limits some kinds of input, such as character and

number input, but keeps the interface simple.

The display chosen is a Parallax 2x16 character LCD (#27922) with backlight and a

piezospeaker (19). This display is small enough to meet the small design requirement of the

device yet provides enough information to properly use the device. Being a Parallax product, it

also interfaces well with the Propeller, so controlling the display is simple. The speaker is loud

enough that it can be used to create an alarm to warn zookeepers to infrasound detection.

A 5-LED block is used to show the audio level coming into the device (PN SSA-

LXB525-G2YAID, Lumex.) It is similar to many used in audio meter devices. Three LEDs are

green, yellow, amber, and red. The input into the ADC is analyzed and the LEDs are lit

depending on the maximum value detected over a period of time. This feedback is needed to help

the use in setting the gain level on the potentiometer as there is no audio feedback available to

inform the user as to the audio level coming into the device. Though the maximum value for a

12-bit DAC is 4095 bits, the input signal needs to be biased at the midpoint to avoid the incoming

audio signal from being cutoff with negative-peaked signals. Therefore, when deciding how to

light the LEDs, the minimum value is 2047 and the maximum is 4095. The LEDs are

programmed to light at 20%, 40%, 60%, 80%, and 90% of maximum value, respectively from

green to red.

24

The device would need to be battery-powered. Optionally, an external DC adapter could

also be considered if a power source were available where the device is to be placed.

External Storage

An external storage device must be included in order to capture the recorded audio. This

memory should be non-volatile so that the memory is retained when powered down. It also

should be low power, and does not need to be excessively large, as these audio files will rarely

exceed several megabytes. Raw data audio file types, such as the WAV format, perform no

compression on the audio data, and so each sample is stored exactly is it is measured. The WAV

format has 40 bytes of header information; the remaining data is all audio samples. Therefore,

the file size is: 40 bytes + # of bytes per sample × # of samples (20). Assuming a 32-bit

microcontroller, the largest file that could be handled would be 231 bytes, or 2GB. A 2-byte data

word sampled at 10,000 Hz could be as long as 107,374 seconds, which is 29 hours and 49

minutes. Elephant calls last less than 10 seconds, and the sampling rate could be much lower due

to the low frequencies being recorded. Theoretically, a single file could record continuously for

nearly two weeks at 900 Hz. There is clearly no need for large external storage devices. 2GB of

storage would be more than enough.

Digital to Analog Converter

A Digital to Analog Converter (DAC) was included in order to have playback of

recordings. The DAC selected is a 12-bit DAC that essentially reverses the process that the ADC

and recording procedures executed. The data is read from the SD card WAV files and buffers are

filled, with the data being sent to the DAC at the rate specified in the WAV file header. Because

the output of the DAC is in the range 0-5 VDC, the output is connected to the headphone jack via

a coupling capacitor to block DC current so that only the AC component transfers to the

headphones.

25

Because infrasound is below human hearing thresholds, a simple playback of the WAV

file is not helpful if desiring to hear the recorded elephant call. The signal would need to be

modified in order for the user to be able to hear any infrasound that had been recorded. A simple

software solution to this problem is to provide a method for the user to increase the speed of the

playback by lowering the number of clocks between inputs to the DAC. A ten-fold increase in

the playback speed would allow an inaudible signal to be heard, e.g., 15 Hz output is 150 Hz.

Software

The Propeller Spin and PASM languages are object-based, meaning that different

functions can be separated into modules whose methods can then be called from a higher-level

module, the highest level of which is called the top object. Many objects for performing

particular functions, such as serial terminal control, SD card file handling, etc., are available on

the Parallax website in a section called the Object Exchange (obex.parallax.com.) The exchange

is a community-supported, “open source” depository of code written by users and by Parallax

employees. It is a relatively small collection of only about 800 objects. These objects range from

simple modules as listed above, that are not stand-alone programs themselves, to complete

programs that perform various functions, such as an IR Remote Decoder, a function generator,

and a pulse-width modulated motor driver. These objects are programmed in Spin, PASM, and

some in C. Perhaps even more helpful are the forums where comments and questions can be

posted and other users and experts can answer questions and help with debugging code. During

the course of this project, the members of the forum were extremely helpful in my attempts to

understand the Propeller and how to use it to accomplish my goals with it.

Many of the objects available were written to function with specific development boards

from Parallax. Because of that, most modules require modification in order to utilize the code for

development boards of a different configuration. Sometimes the changes are as simple as

26

changing the pin numbers for connection to a device, such as connections between the Propeller

and micro SD card slot are different on different development boards. Often, however, the code

from several different objects would need to be merged in a way to get the desired result. For

example, a module designed to use the Propeller Board of Education to record WAV files may

use the on-board microphone, send it to the Propeller and use sigma-delta analog to digital

conversion, and write that to an SD card. Though much of the code could be reused, it would

need to be modified to use a different input source and different type of ADC.

Most modules built in Spin have one particular purpose. Keeping them single focused

allows many modules to be used together. There is always a main module that is then used to call

methods, Parallax’s term for a sub-procedure. These methods can be in the main module or in

other modules. The diagram of software module relationships is as follows:

Figure 11 - Software Module Block Diagram

The main module sends parameters, including pointers to memory locations, that the

other modules can then act on. The methods are run sequentially when called by the main

Main

WAV Recorder

SD-
MMC_FATEngine

heater_fft

WAV Player

SD-
MMC_FATEngine

LED Driver FullDuplexSerial
[LCD]

27

module unless a new cog is created to run them. If a new cog is initialized that then calls the

methods, the main module continues executing while the new cog and its methods run separately

in parallel. The Main and LED Driver modules were created for this project. FullDuplexSerial is

a module supplied by Parallax with their compiler. The remaining modules were acquired from

the Parallax Object Exchange. WAV Recorder and WAV Player were heavily modified,

however; for instance, the original code used a sigma-delta analog to digital conversion and was

replaced with code for the dedicated ADC chip, among other changes. Heater_fft was not

functional when first downloaded so errors had to be corrected. SD-MMC_FATEngine was used

without modification except for the removal of unused methods in order to reduce module size.

Implementation

Based on the design considerations, the proposed device should be able to be handheld.

Finding a Propeller board that incorporates some, if not all of the desired component would

simplify the design. The smallest board is the Propeller Mini. Though containing the Propeller, a

crystal, program storage, and voltage regulators, all connections must be soldered. A device

called the Project Board is a Mini with a USB connector and an area with through holes and pads

to allow for prototyping. Next is the Quickstart. In addition to the components of the Mini, it has

a USB connection for programming and power, 8 programmable LEDs, and 8 resistive touch

buttons. All IO pins are available via sockets. An optional Human Interface Board can connect

to the Quickstart. It contains a micro SD card slot, two PS/2 ports, an infrared transceiver, and

multiple audio and video output connectors. Though it has some additional components that may

be helpful, it has many that are unneeded.

The Propeller ASC+ contains a micro SD slot, a 12-bit ADC, and an external DC supply

power jack. This board contains many of the additional components desired with the same

footprint of the Quickstart, so it is the board that was selected as the basis for this device. There

28

are additional Propeller boards, such as the Board of Education and the Activity Board WX, but

they are larger, more expensive, contain additional features not required, and are not as easily

arranged and accessible for usage inside of an enclosure.

Figure 12 - Propeller ASC+ (21)

The geophone described in the previous chapter was chosen for further experimentation.

A low frequency vibration is easier to generate than a low-frequency sound, so it will be easier to

test the function of the device using the geophone as an input.

The design for the amplifier is modified from the MPLAB Starter Kit (Microchip

Technology, Chandler, AZ) (18). Several changes were made to the design in order for it to meet

the needs of this device. First, the MPLAB circuit had circuitry at the input that could provide

power for a condenser microphone, if that was going to be used. That circuitry was removed.

Secondly, the input signal was biased at 2.5VDC before going to the op amp. The same model op

amp from the MPLAB circuit was used, an MCP6024, a Rail-to-Rail Input/Output, 10 MHz Op

Amp. The same resistor values were selected, and the potentiometer is the same as the MPLAB

circuit at 500kohms, which provides a gain from 2 to 229 V/V.

The anti-aliasing filter was designed using FilterLab 2.0 software from Microchip

Technology (22). An anti-aliasing filter wizard is included in the tool that will design an

29

operational amplifier filter given certain parameters. The tool asks the user for the cut-off

frequency, the sampling frequency, the resolution in bits of the analog-to-digital converter being

used, and the desired signal-to-noise ratio of the final signal. On a final summary page, the

software shows the parameters, and gives the user a choice between Butterworth and Chebyshev,

with the filter order and the stopband attenuation listed. Once selected, the tool presents a

schematic for the designed filter and a frequency response graphic for the magnitude and phase.

Infrasound is sound less than 30 Hz, therefore no signals greater in frequency than that

are desired to be recorded or detected. For the filter tool, a cut-off frequency of 40 Hz was

selected. Using 40 Hz instead of 30 Hz helped to keep the magnitude at 30 Hz the same as lower

frequencies, i.e. no -3dB drop at 30 Hz.

With desired signals less than 40 Hz, the sampling frequency could be extremely low,

e.g. 80 Hz using the Nyquist theorem. However, the design of a filter to reduce the magnitude far

enough to prevent aliasing at 80Hz, yet maintain unity magnitude at 30 Hz, is extremely difficult.

This software tool could not do it, stating it would be a filter order of greater than 8, which was

out of the bounds of this tool to generate. It also would be hardware intensive, requiring much

more space and power than desired. Researchers in (5) and (6) utilized sampling frequencies of 1

to 2 kilohertz in their infrasound research. This higher sampling frequency allows for a lower-

order anti-aliasing filter to be designed because the magnitude of the output does not have to meet

the stopband threshold until 500 Hz for a 1000 Hz sampling frequency. The researchers were

also interested in capturing multiple harmonics of the infrasound, resulting in a passband of at

least 150 Hz. This would also drive an increase in sampling frequency. Though 40 Hz was the

selected cutoff frequency for this filter, a 1 kHz sampling frequency was selected to allow for a

low order filter to be designed. The Propeller ASC+ ADC is 12 bits, so there was no ability to

change that parameter in the filter tool. Setting the signal-to-noise ratio parameter to -65 dB

created a filter order of 3, which only needed two op amps and 3 each of resistors and capacitors.

30

A Butterworth filter was selected because of the smooth frequency response in the passband.

The tool then output the schematic and frequency response graphics for this filter.

Figure 13 - Schematic of Anti-aliasing filter using FilterLab

Figure 14 - Frequency Response of Anti-aliasing filter using FilterLab

The format for data storage on the SD card needed to be determined. Data could be

written in human-readable form, such as ASCII characters. This could be the integer values that

came directly from the ADC, or the calculated voltage levels based off of the ADC reference

voltage. These values could be comma-separated values in a spreadsheet-style file stored to the

SD card. The other option would be to store the raw data in a binary file. This could be

accomplished by just writing the data as 16-bit words, or utilizing some other data format, such as

a WAVE file. The human-readable versions would take more processing to turn the raw data into

ASCII characters; therefore, it may not be able to be done at the speeds desired.

31

To test the speed of the ASCII-character writing, a program was written in Spin to time a

write sequence. A new file was opened on the SD card. The current system counter value, CNT,

was then stored to memory. One-hundred values were written to the SD card in ASCII integers,

each separated by a new line, and the system counter was captured again. The average time to

complete a write for a single value using this method was 148,241 clocks, or less than 539

samples per second. This human-readable value method of storing data is not compatible with

recording audio data. The process of turning the raw ADC value into ASCII characters is much

too time consuming.

The same experiment was performed, this time writing the raw data directly to the SD

card. Using this method, the average number of clocks needed per sample was 435 clocks, which

correlates to over 183,000 samples per second. A raw data format is the needed storage method.

The WAVE file format, a Microsoft and IBM audio file standard, is a fairly simple,

uncompressed format for audio data (20). The file header contains information such as the

sample rate, number of bits per sample, number of channels, and other information needed to

properly describe the data in the file. Starting at byte 44, the raw data is written through until the

end of the file. This file format will be the easiest to work with without requiring additional

processing.

Before continuing with a WAVE recording program, it is important to understand how

the Propeller’s timing and cogs work. The Propeller has a 32-bit system counter (CNT) that

increments every system clock cycle. All cogs have access to this value via the CNT register.

Functions that need to be synchronized on different cogs can sync off of the CNT value. There is

no need to have a cog set aside that only performs timing for the rest of the cogs. The Spin and

assembly languages both have a command called WAITCNT(cnt value) which halts the processor

until CNT equals cnt value. The cog will sit idle, waiting for the system counter to reach that

32

value. Once it does, execution will resume. Command usage such as WAITCNT(50000 + cnt)

would read the current CNT value, add 50000 to that number, and then wait 50000 cycles before

continuing (17).

The second way to use WAITCNT, and more valuable to this project, is for synchronized

delay timing, such as what would be needed to accurately capture audio samples at evenly spaced

intervals. The command looks more like WAITCNT(Time += 50000). This usage requires the

variable Time to have been set previously. The cog waits until Time, but then continues execution

and adds 50000 to the value of Time. That command would then be followed by statements, such

as capturing the ADC value. It would then be looped and return to the WAITCNT command, where

it waits for the next 50000 clock interval. This form evenly spaces each WAITCNT by exactly

50000 clocks, therefore keeping perfect time between samples. Care should be taken to ensure

that the statements following the WAITCNT command do not exceed 50000 clocks themselves. If

they should, then the system counter would have passed the value of Time, and the WAITCNT

procedure would halt all execution on this cog until the system counter loops and returns to the

value of Time in the WAITCNT command. With a 32-bit counter, even at the Propeller maximum

speed of 80MHz, it would take 53 seconds for the counter to loop back around to the “missed”

value.

Cog function is another important aspect of the function of the Propeller. The Propeller

does not have an interrupt function. Each cog on a Propeller is an independent processor core,

complete with its own registers and RAM. Because of this multi-core design, there is no need to

stop execution of the main program in order to execute an interrupt routine. What would be the

interrupt routine can just be run on another cog, leaving the main program to continue execution

without interruption. This ensures more deterministic timing, as there is no stopping and starting

of the main program for interrupt events. There are several ways for this “interrupt routine” to

happen at the needed time. As mentioned previously, the WAITCNT command will wait until a

33

specific system counter value is reached before continuing execution which works well for

synchronized delay events. WAITPEQ halts execution until an input IO pin or set of pins matches

an expected state. Execution of the rest of the code then commences. This function, as well as its

inverse (WAITPNE), work well for halting execution until input values change, such as buttons

being pressed or asynchronous inputs beginning. The input pins are checked every clock cycle,

so it is a very responsive command. There is also a command, WAITVID, for use with the

Propeller’s video generation hardware. Lastly, a more brute force method is to read memory

locations in Main RAM and wait for a certain condition to be met. A variable may get set in the

Main program/cog, and a cog that is monitoring that variable’s memory location could begin

execution of code if that variable state changes. This is not quite as responsive as the previous

commands, however, because of the way cogs get memory access. The Hub of the Propeller

controls access to mutually exclusive resources, such as the Main RAM, to ensure system

integrity. The hub runs at half of the system clock rate and gives access to each cog in a round

robin fashion; therefore, there are 16 clock cycles between RAM access opportunities by a single

cog. There could be up to 15 clocks of waiting before a cog can get access to the RAM if it

missed the request window by 1 clock. Hub instructions also take more time to execute (8 cycles)

so a RAM access takes between 8 and 23 clocks.

In order to accomplish high-bandwidth operations, a separate cog is started to perform

that function. Cog startup, however, takes a bit of time itself. When a new cog is started,

instructions and data from Main RAM are copied to the cog RAM. If assembly language is either

the starter or what is started, it takes less than 9000 clocks, or a little less than 100us at 80 MHz.

If Spin is launching a Spin cog, this can take about 25,000 clocks or 300 us (23). In either case, it

is best to have a cog started and waiting for a trigger rather than try and start a cog the instant you

need it to perform a function. This time delay could cause a WAITCNT to miss its mark and need

another 53 seconds to wrap the system counter around again. This issue caused many early

34

problems when developing the audio sampling procedures. It could work correctly at sampling

rates less than 3000 Hz, but when using higher sampling rates, it took many minutes to get very

small blocks of data sampled. 3000 Hz is 333us, which is very near the cog startup time of

300us. Increasing the sampling frequency much more than that caused the WAITCNT value to be

passed by the time the cog was started, so the system counter had to loop around.

The proper way to handle cogs is to start a cog before you need it, and have it wait for a

trigger of some sort – either an IO value changing or even a variable set by another cog, whatever

is practical for the function of the cog. Other cogs can run continuously, if needed. For instance,

an object available for the ADC from the Parallax Object Exchange starts a cog in which the

ADC runs continuously, taking samples and writing to a single Main RAM address as quickly as

the cog can process it. Other cogs that want the current ADC value simply read from that

memory address.

Now that the SD card data format and cog function is understood, the software can be

written in order to access the SD card files. Several objects are available at the Object Exchange

for writing to SD cards. Each has different capabilities and different levels of error-checking and

file system handling, but the basics of reading and writing data are all the same. These objects

typically have a start method which is called in order to create a new cog devoted to file handling.

This cog can be started as the device is powered up and sit ready, waiting for calls to its methods

to write and read data to the SD card. One of these objects called SD-MMC_FATEngine.spin.

Before beginning work on the WAV recorder, the accuracy of sampling needed to be

tested; could the microcontroller capture a value at the exact same time interval every time? To

test this, a program was written in Spin to loop 20 times. During each loop, the command

WAITCNT(Time += Period) was called, and then the current system counter value was stored to a

variable. The period was 10000 clocks, or 8000 Hz with the 80 MHz clock. After the loop

35

completed, the difference between sample values was calculated and the results sent to the

terminal display on the PC. The difference between two values was 10000 clocks for all 19

intervals. Therefore, the WAITCNT command does exactly as claimed, and accurately spaced each

sample.

Of the many objects available in the Object Exchange, there was a WAV recorder.

However, this recorder used a sigma-delta analog-to-digital conversion technique that did not

require a separate chip. To use the 12-bit ADC chip, the code had to be changed significantly to

use a different method of analog-to-digital conversion. However, the overall structure of the code

remained the same. Similar to the SD card object, this object also starts a new cog to initialize

some settings, such as the sample rate. It also starts the ADC sampling, which continuous

samples at the specified rate and writes the values to a data block in Main RAM. However, no

files are being written to the SD card at this time. Once a method is called to start recording, a

call to the SD card object opens a new file on the SD card, writes the header to the file, and then

starts writing the data to the file. The data block to be written is broken into two 512-byte

segments. These 512 bytes are the same size as a complete sector on the SD card. Flags are set

by the ADC cog to signal which memory segment is being written to at the time. Once a segment

gets filled, the flag is toggled, and the first cog then calls the WRITEDATA command to copy the

segment to the file on the SD card. This process continues until a signal is given to stop the

recording. At that time, the final file size is determined, appropriate data is written to the file

header, and the file is closed. The SD card cog and ADC cog, however, are still always running

and ready to begin another recording at any time.

This program was tested using the output from the headphone jack of an iPhone

connected to the ADC input. The sampling rate was set to 22,050 Hz, or half of CD quality. A

song was played from the phone, recorded to the SD card, and moved to a PC to hear the result.

The song played back correctly, though with some noise. This test was repeated later with the

36

amplifier circuit. There was headroom in the prior test because the iPhone output did not drive

the ADC input to its limits. With the amplifier circuit, it was able to be amplified to the

maximum unclipped setting prior to recording, resulting in a louder sound when played back.

Writing data to a display is one of the easier aspects of using the Propeller. This device

needed to remain small, so a 2-line, 16-character display was chosen. It was also designed by

Parallax, so the interface is just as simple to control. ASCII DEC characters 32-127 are

supported, as well as music tones using its built-in piezoelectric speaker. Whole character strings

can be sent with a single command. A simple serial interface object written by Parallax and

available on the Object Exchange can be used to communicate with the LCD display.

Frequency Analysis

A key component of the device is the ability to determine the frequencies included in the

input signal. This analysis must be performed in real time in order to produce a timely alarm for

elephant handlers in the event of elephant infrasound communication. Performing a Discrete

Fourier Transform (DFT) on sampled input data can turn the sampled data into frequency

information. Additionally, the utilization of the Cooley-Tukey algorithm, which follows,

increases the efficiency and speed of performing the operation.

The complex Fourier series

would normally require N2 complex multiplications and additions. The algorithm

developed by Cooley and Tukey can reduce the computations to less than 2N log2 N operations

without the need for additional memory locations (24).

37

 A Radix-2 FFT using decimation-in-time can accomplish this. Splitting the

Fourier series into two sequences of even and odd indices results in

With the following substitutions made:

The series can be rewritten

F1 and F2 are the N/2 DFTs of f1[k] and f2[k]. Because of the periodicity of the

summations and the symmetry of WN, the series can be written

 This rearrangement of the equation cut the number of multiplies needed in half (25 p.

457). The recursive nature of this method then allows the N/2 DFTs to be decimated themselves,

38

repeating the process until there is only a 2-point DFT to compute. Most importantly, this allows

computations to occur in-place without the need for additional memory. Once the calculations

are made there is no need for the original input pair. These computations are called butterflies

due to their diagram. Given complex input pair (a,b), the calculation is

Figure 15 - Butterfly diagram of a Fast Fourier Transform

This Fast Fourier Transform (FFT) method has been created in a module available on the

Parallax forums (https://forums.parallax.com/discussion/128292/heater-s-fast-fourier-transform.)

The module uses the Cooley-Tukey method to perform the transform. It is written to take a 1024

sample input. It is capable of using a different sample size; however, changes would have to be

made to the twiddle factors. To use the module, the addresses to two long-sized buffers are sent:

bx, which contains the samples to transform, and by, used to perform the complex calculations

and must be initialized to zeros. The steps to perform are also sent to the module via pre-defined

command bits. These commands include CMD_DECIMATE, CMD_BUTTERFLY, and

CMD_MAGNITUDE. All operations of the module are executed using assembly code, which

greatly increases the speed of computation compared to using Spin.

CMD_DECIMATE performs a radix-2 decimation in time, reversing the order of the bits

as per the Cooley-Tukey method. CMD_BUTTERFLY then performs the FFT through the

different stages. CMD_MAGNITUDE converts the complex output to a magnitude number

stored in bx.

39

The first 512 indices of bx contain the magnitudes of each frequency bin. If the sampling

rate is equal to the number of samples in the FFT, then the indices in bx equal the frequency in

hertz of the magnitude results. For example, if the sampling rate is 1024 Hz, and a 1024-sample

FFT is performed, then the magnitude found at index 30 of bx is the magnitude at 30 Hz. No

additional calculations would need to be made to convert the frequency bins to a range of

frequencies in Hz. To ensure the FFT performs as desired, a software-derived waveform of

known frequency was loaded in the bx array. A 16 Hz waveform ranging in magnitude from -

2047 to +2047 was input and the resultant magnitude in index 16 was 2046, with magnitudes of 0

for all other indices.

Device Assembly

The Propeller ASC+ card is a rather small board at 2.70 x 2.10 in (68.6 x 53.3 mm). It is

Arduino-shield compatible; therefore, it has headers for all IO pins as well as for VIN to the

board’s regulators, ground, and +5 VDC out. A perfboard with compatible headers was

connected to the ASC+. This board, from here forward called the main board, contains the

amplifier, anti-aliasing filter, DAC, and LED driver chips, as well as connector jacks for cables to

other boards. This board has approximately the same dimensions as the ASC+.

40

Figure 16 - Infrasound Detection Device

A plastic enclosure of size 4.724" L x 3.157" W (120.00mm x 80.19mm) X 2.311"

(58.70mm) contains all components. Slots and holes were cut into the enclosure to allow for

connections. The connected boards were mounted in the enclosure to allow access to the USB

port, the SD Card slot and DC power connector. The four control buttons were placed on

perfboard and connected to the main board via a cable and affixed to the enclosure cover.

Likewise, the LED bar was put on perfboard, affixed to the cover and connected to the main

board via a cable. The LCD Display was also affixed to the cover and connected to the main

board via cable. The potentiometer, input jack, and output jack were wired directly to the main

board and attached to the enclosure. An AAAx4 battery holder was attached to the inside of the

enclosure. It was connected to an external power switch and its wires connected via jumper-style

pin to the VIN and GND headers on the main board.

41

Figure 17 - Block Diagram

Figure 18 - Infrasound Detection Device (Cover Open)

42

Device Specifications

Power – 6-9 VDC external power jack; OR mini USB jack; OR 4 x AAA

Input – 3.5mm audio jack (mono); 0-1.25 peak-to-peak VAC; 2Hz – 10,000 Hz

Output – 3.5mm audio jack (mono)

Storage – micro SD card

Physical Dimensions: 4.7 in x 3.5 in x 2.5 in.

Weight: 10.5 ounces

43

CHAPTER IV

RESULTS

In this chapter the device is tested to determine if it meets the objectives. The first

objective to test is the ability to accurately record infrasound. The second objective to test is the

ability as a learning device and/or for field study. Last, the objective to accurately monitor

infrasound frequencies will be tested.

The results showed that the device was able to record infrasound for extended periods of

time. The device is easy to use and could be used for field usage, though the current battery

capacity is limited. Testing also showed that infrasound was accurately detected and triggered

the alarm.

Recording

The recording capabilities of the device were tested using several input devices and two

modes. The recording modes of the device are 1) Record continuous, until stopped or maximum

file length is reached, or 2) Timed recording, where the recording stops after the selected timer is

complete.

44

The maximum file length in number of bytes is 231 bytes, or 2 GB. This is the maximum

positive number that can be held in a long memory location, therefore the largest number the

Propeller can track. The sampling rate on the device was set to the highest value (20,000 samples

per second) and a continuous recording started. The file stopped with size 2,097,152KB, which is

2 GB. The length of the file was 14 hours, 54 minutes and 47 seconds. This test was conducted

utilizing external power through the USB port.

The second test for recording was to examine the length of time the batteries could

sustain recording. The device uses 4 AAA batteries providing 6 VDC. A regulator onboard the

Propeller ASC+ board provides 5 VDC for the rest of the device. To conduct this test, the

sampling rate was set to 1000 Hz and new Amazon Basics AAA batteries were installed. The

record continuously option was started and the recording occurred until the batteries died. The

resulting file stored on the SD Card was incomplete, since it could not be closed properly by the

file system. However, based on the number of bytes written, it could be determined how long the

device recorded before power down. This experiment was conducted three times.

Test File Size (KB) Seconds Duration
1 37280 19087 5:18
2 37952 19431 5:23
3 42464 21742 6:02

Table 1 - Battery Duration Test

The results were not as good as expected. After just two hours, the display had faded

completely. A DMM was connected to the device in order to monitor the current being drawn

during operation. After initial startup, the device drew 58 mA from the batteries. During

recording or playback operations, 80 mA were drawn. The current draw would spike to over 200

mA when the piezospeaker was being used.

The capacity of a battery in milliamp-hours (mAh) depends on the current it is

discharging. An Energizer Max AAA has a capacity of 1100 mAh at a continuous current of 25

45

mA if dropping its output voltage to 0.8 VDC from the original 1.5 VDC. However, at 100 mA,

it only has a capacity of just over 900 mAh (26). The same specification sheet contains a graph

that shows the typical usage for a digital audio device at 50 mAh and the voltage vs. hours curve

for that usage. The curve shows that the voltage will drop to less than 1.25 VDC in about 10

hours of use. Considering that the bare minimum usage by the device when the display is the

only function executing is 58 mA, it follows that it will take even less time to drop to 1.25 VDC,

which with 4 batteries gives 5 VDC, the bare minimum needed to drive the 5-volt components.

The third recording test was to judge the accuracy of the timed recording. A record time

of one minute was selected. Two recordings were made at 1000 Hz and two recordings at 20,000

Hz. Once complete, the WAV files were opened on a PC using Audacity audio software. The

software reported the recording length to be 1 min 0.416 sec for the 1000 Hz files and 59.507 and

59.149 sec for the 20,000 Hz. The variability can be explained because after the timer is started,

the recording cog must complete a 256-sample block before it starts sending the data to the SD

card. At a sampling rate of 1000 Hz, it would be over a quarter second of delay before recording.

Likewise, at the end of the timer, recording is only shut down between 256-sample blocks. This

could potentially add another quarter second of recording time.

The final recording test was for recording quality. The low pass filter on the device can

be bypassed using a jumper. This allowed recordings in normal human aural range to be assessed

for quality. The sampling frequency was set to 20,000 Hz and songs were played from an iPhone

headphone jack through a cable to the input jack on the infrasound device. The gain knob was

adjusted to get the amplitude in the proper range according to the LED readings. The songs were

recorded and the SD card then taken to a PC to playback using its speakers. The songs were

faithful representations of the original input from the iPhone. The low pass filter was included

back into the signal back and recordings of signals from a function generator were made.

46

A 22 Hz signal from a function generator was recorded. The resulting WAV file was

analyzed on a PC using Audacity software. The signal was a very clean sine wave with an exact

frequency of 22Hz with no variation. The device is able to record very low frequencies

accurately.

Figure 19 - Signal and Frequency Spectrum of Recorded WAV File (22 Hz Signal Input)

Playback

The second objective to be tested was usability in the field. The recording portion of this

objective has been shown. However, feedback is needed by the user to ensure that the recordings

are in fact being made and sound proper, e.g. volume loud enough, not over-driven, etc. The

recordings made previously were used in order to test the playback function of the device.

Earbuds were connected to the output headphone jack. The interface was used to select a file on

the SD card and played. Music files played the song accurately; however, there was a noise

included in the sound which was worse on the beats of the song. There seems to be an issue with

how the signal is sent from the DAC to the headphones. The only circuitry from the output of the

DAC is a 0.1 uF capacitor in series to block the DC output of the DAC, since the signal is biased

at 2.5 VDC.

47

One of the WAV files was a 44 Hz signal. Though technically it is not infrasound, it is

still inaudible using earbuds because they are unable to produce low frequencies well. Pressing

the 10x button on the interface played the tone back, now at 440 Hz. This matched the musical

tone of “A”. The pitch matched when compared against an “A” generated by a tuner; therefore,

the speed up function is accurate and allows the listener to “hear” infrasound. This, however,

shortens the length of the signal, so an elephant call that is less than 10 seconds is now less than 1

second in length; however, it does let the user know that a sound was captured, which is the intent

of the increased speed function. These signals are also plagued with a noise that prevents the

signal from being a clean sound; however, the recorded sound is discernible from the noise.

Infrasound Detection

The most important feature to test was the infrasound detection. Several input types were

used, including pure tones, recorded elephant calls, and the geophone.

Pure Tones

An online tone generator (http://www.szynalski.com/tone-generator/) was used to

generate sine wave signals for device input. The output of a PC was connected to the device

input jack. The initial tone was set to 30 Hz, the gain adjusted, and then the frequency was

changed and FFT results output to a serial terminal on the PC. The results of the experiment

seem to show the weakness of the PC sound card in its ability to produce signals in the infrasound

range. The frequencies detected were accurate, e.g. a 24 Hz tone was detected at 24 Hz by the

device; however, the amplitudes of the signals varied greatly depending on the frequency

generated, with a noticeable notch at 40 Hz.

http://www.szynalski.com/tone-generator/

48

Figure 20 - Frequency Response of Device Using Sound Card Output

Due to the poor results of the PC tone generator, a function generator was used to provide

a more accurate input. Although the notch at 40 Hz was no longer present, there was still

significant signal loss starting at 40 Hz toward DC, very similar to the sound card source. It was

found that the input coupling capacitor and impedance of the amplifier circuit were acting as a

high-pass filter with a corner frequency of

which was filtering out all of the infrasound, but especially the lowest frequencies. By changing

the input coupling capacitor to 1.1 uF, the corner frequency was now 6.2 Hz, which allowed the

desired frequencies to pass through.

Figure 21 - Frequency Response Using Function Generator for Two Different Coupling Capacitor Inputs

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160

M
ag

ni
tu

de

Hz

49

Elephant Calls

Despite the amplitude issues of the PC sound card noted earlier, recordings of elephant

calls played into the device would provide a more realistic signal to test infrasound detection

capabilities. ElephantVoices, an elephant advocacy group, has a database of elephant calls on

their website (27). Their collection includes recordings of 7 rumbles, which are the calls

containing infrasound. The following table gives their descriptions.

Name Description Length
A3203414 A relatively long, undulating rumble by a juvenile female 0:06
B1400110 A soft, short rumble by a calf 0:05
B3304802 A long, powerful and highly modulated rumble by an adult female 0:06
C2312431 A long, unmodulated rumble by an adult female 0:09
F1200221 A throaty rumble with a roaring quality by an adult female 0:05
U1605722 A long pulsating rumble by an adult male 0:07
U1700443 A short breathy rumble by an adult male 0:02

Table 2 - Elephant Calls

The gain was set with the peak of the input between 60-80% of maximum magnitude

with A3203414. The MP3 of the elephant call was played on a PC and sent via the headphone

jack to the input of the device. The device was put into monitor mode, and the results of the FFT

sent to the serial terminal and then transferred to MATLAB and plotted.

The MP3 was then input into MATLAB where it was resampled at 1024 Hz and an FFT

performed on the data, which was then also plotted. The following figure shows a few

comparisons of the MATLAB FFT results (on the left) to the device’s FFT results (on the right.)

50

Figure 22 - Frequency Analysis of Elephant Calls

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

A3203413, MATLAB

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

A3203413, Device

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

B1400110, MATLAB

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

B1400110, Device

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

C2312431, MATLAB

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

C2312431, Device

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

U1605722, MATLAB

0 20 40 60 80 100

Frequency, Hz

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
, d

B

U1605722, Device

51

The MATLAB-generated FFT had more bins than the device FFT, which only had

integer bins; therefore, the device FFT results look smoother. The FFT on the device accurately

determined the frequencies that were prominent in the elephant call. For example, A3203413 had

a peak at around 35 Hz which is clearly shown on both FFTs. The same can be shown on the

other examples, as well.

When in the Monitor/Alarm mode, the device runs the FFT on 1 second of samples. If it

detects a magnitude greater than the threshold (102 at a 10% detection threshold) at a frequency

at or below 40 Hz, the alarm is tripped. It then displays the magnitude and frequency of the peak

magnitude. The results of each elephant call were as follows:

Name Results Detected?
A3203414 203 at 37 Hz, 190 at 37 Hz, 458 at 36 Hz Yes
B1400110 117 at 26 Hz, 103 at 34 Hz, 139 at 38 Hz Yes
B3304802 104 at 36 Hz, 146 at 30 Hz, 147 at 31 Hz Yes
C2312431 480 at 25 Hz, 610 at 29 Hz, 423 at 28 Hz Yes
F1200221 106 at 36 Hz, 106 at 36 Hz, 109 at 36 Hz Yes
U1605722 116 at 40 Hz, 131 at 37 Hz, 134 at 37 Hz Yes
U1700443 138 at 36 Hz, 103 at 36 Hz, 108 at 35 Hz Yes

Table 3 - Infrasound Monitoring Results

All 7 elephant calls were detected. The upper limit frequency is 40 Hz. Though that is

not technically infrasound, low-frequencies are harder to discern. According to the ISO 226:2003

equal loudness curves, frequencies below 50 Hz would have to be over 35 dB louder than a

normal conversation to have the same effective loudness. The higher-than-infrasound threshold

was chosen to account for this.

Geophone Test

To test the geophone for infrasound detection capability, a rig was constructed to suspend

the geophone to allow for free movement. A small vibration motor was attached to the geophone

and powered to provide a slow turn rate, less than 1200 RPM, which simulates a vibration less

52

than 20 Hz. The infrasound-detection device was set to monitor mode. It triggered the alarm

several times, displaying detected frequencies around 29 Hz each time.

53

CHAPTER V

CONCLUSION

In this work, it was shown that a low-cost device can be built which is capable of

recording various analog inputs. The device can perform frequency analysis on those inputs and

provide feedback to the user. The device is also shown to be low-cost and able to record for

extended periods of time left unattended. The three objectives of this thesis – a low-cost

infrasound warning device, an extended-period recording capability, and an educational tool –

were met.

The total cost of components for the device was under $120. $75 were only for the

Propeller board and the display; the remaining $45 were for the remaining electronics, interface,

and enclosure components. If this were a production item, a designer could develop their own

board instead of utilizing the ASC+ prototyping board used during this project. That board could

be much less expensive because only the desired components would be included.

54

Future Work

This device was only a prototype. More work could be done to enhance some features of

the device. Using a printed circuit board to build the circuitry would enhance the look, clean

operation, and reliability of the device. Additional circuitry may need to be added and/or

software changed to enhance playback to remove the noise that was present in this device. A

slightly larger enclosure to better accommodate the internal components would make the device

easier to build and maintain. That larger enclosure may also allow room for larger batteries,

would help in allowing the device to be powered internally for longer periods of time.

Just simply switching to AA batteries may increase powered-on time to over 15 hours.

Likewise, an external battery source could be plugged in using the DC power jack for a much

longer usability period. The device can take an input of up to 9 VDC. This would also allow the

device to stay in place without the external battery pack needing swapped in and out.

The ability to identify and eliminate constant background noise, such as an air

conditioner, would be helping in preventing false alarms when infrasound from those sources

would be able to surpass the alarm threshold.

The most important future work would be on the input sensor. The experimentation with

the geophone showed that it is able to detect vibration; however, that does not seem to be the

most efficient sensor for infrasound, nor is it capable of recording the actually infrasound.

Without a sensor that can consistently and accurately detect infrasound, the safety capability of

this device would be in question. Finding a microphone or other input sensor for low-cost would

be an important piece of the continuing work.

55

REFERENCES

1. Boyd-Barrett, Claudia. Elephant attacked zoo keeper when he returned to stall

second time. Toledo Blade. [Online] July 22, 2010.

http://www.toledoblade.com/local/2010/07/22/Elephant-attacked-zoo-keeper-when-he-returned-

to-stall-second-time.html.

2. Johnston, Chuck. Elephant kills keeper at Springfield, Missouri, zoo. CNN.com.

[Online] October 11, 2013. https://www.cnn.com/2013/10/11/us/missouri-zoo-death/index.html.

3. American Museum of Natural History. Asian Elephants: Threats and Solutions.

[Online] July 2007. https://www.amnh.org/explore/science-bulletins/bio/documentaries/wild-at-

heart-the-plight-of-elephants-in-thailand/asian-elephants-threats-and-solutions/.

4. African Elephants Respond to Distant Playbacks of Low-Frequency Conspecific Calls.

Langbauer, Jr. William et al. 1991, The Company of Biologists Limited, pp. 35-46.

5. Automated detection of low-frequency rumbles of forest elephants: A critical tool for.

Keen, Sara C. et al. 2017, The Journal of the Acoustical Society of America, pp. 2715–2726.

6. An Automatic Method to Detect the Presence of Elephant. Mohapatra, Arpit Sourav

and Solanki, Sandeep Singh. 2014, IEEE International Conference on Advanced

Communication Control and Computing Technologies (ICACCCT), pp. 1515-1518.

56

7. A Low Cost Infrasonic Recording System. De Silva, Girisha Durrel and Kasun De

Zoyza. 2007, 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications.

8. The propeller experiment controller: low-cost automation for classroom experiments

in learning and behavior. Varnon, Christopher A. and Charles I. Abramson. 2013, Innovative

Teaching.

9. Shure. SM58 Vocal Microphone Specification Sheet. Shure. [Online] 2015.

http://www.shure.com/specification-sheets/sm58-specification-sheet-english.pdf.

10. —. SM | Microphones | Shure Americas. Shure. [Online]

http://www.shure.com/americas/products/microphones/sm.

11. 1/2" Infrasound Prepolarized Microphone. PCB Piezotronics. [Online]

http://www.pcb.com/microphones_preamplifiers_acoustic_accessories/specialty/low-frequency.

12. GRAS Sound and Vibration. GRAS 41AC-2 LEMO Outdoor Microphone with

RemoteCheck for Community and Airport Noise. GRAS Sound and Vibration A/S. [Online]

https://www.gras.dk/products/special-microphone/outdoor-microphones/product/631-41ac-2.

13. PCB Piezotronics. Layout 1. PCB Piezotronics. [Online]

https://www.pcb.com/contentstore/MktgContent/LinkedDocuments/Acoustics/TM-AC-

378A07_LowRes.pdf.

14. Le Pichon, A. et al. (eds.). Infrasound Monitoring in Atmospheric Studies. s.l. :

Springer Science + Business Media, 2010.

57

15. Elephant low-frequency vocalizations propagate in the ground and seismic playbacks

of these vocalizations are detectable by wild African elephants (Loxodonta africana). O'Connell-

Rodwell, Caitlin E. et al. 2004, The Journal of the Acoustical Society of America, p. 2554.

16. Sercel. Geophones_Specifications_Sercel_EN.pdf. Sercel - Seismic Acquisition

Systems. [Online]

http://www.sercel.com/products/Lists/ProductSpecification/Geophones_specifications_Sercel_E

N.pdf.

17. Martin, Jeff. Propeller Manual Version 1.2. Propeller Manual | Parallax Inc.

[Online] 10 08, 2012. https://www.parallax.com/sites/default/files/downloads/P8X32A-Web-

PropellerManual-v1.2.pdf.

18. Microchip Technology. 51700B.pdf. MPLAB Starter Kit for dsPIC DSCs User

Guide. [Online] 2010. http://ww1.microchip.com/downloads/en/DeviceDoc/51700B.pdf.

19. Parallax. Parallax 2 x 16 Serial LCD (Backlit) | 27977 | Parallax Inc. Parallax Inc.

[Online] https://www.parallax.com/product/27977.

20. Sapp, Craig. Microsoft WAVE soundfile format. sapp.org. [Online]

http://soundfile.sapp.org/doc/WaveFormat/.

21. Parallax. Propeller ASC+. [Online]

https://www.parallax.com/sites/default/files/styles/full-size-

product/public/32214a_0.png?itok=u607HJZc.

22. Microchip Technology. Filterlab Filter Design Software. Microchip Technology.

[Online] https://www.microchip.com/development-tools/resources/filterlab-filter-design-

software.

58

23. Parallax Inc. Cogs. Parallax Inc. [Online]

http://www.parallax.com/propeller/qna/Content/QnaTopics/QnaCogs.htm.

24. An Algorithm for the Machine Calculation of Complex Fourier Series. Cooley,

James W. and Tukey, John W. 90, s.l. : American Mathematical Society, 1965, Vol. 19.

25. Proakis, John G. and Manolakis, Dimitris K. Digital Signal Processing:

Principles, Algorithms and Applications (3rd Edition). s.l. : Prentice Hall, 1995.

26. Energizer. Energizer Alkaline E92. Energizer.com. [Online]

http://data.energizer.com/pdfs/e92.pdf.

27. Elephantvoices. Elephant Call Types Database. Elephantvoices. [Online]

https://www.elephantvoices.org/multimedia-resources/elephant-call-types-database.html.

59

APPENDICES

A SCHEMATICS AND LAYOUT

Main Board

60

61

Buttons Board

62

LED Board

63

B PARTS LIST

PN Manufacturer Description Qty Price
32214 Parallax Propeller ASC+ board 1 $ 49.99

PRT-11417 SparkFun Electronics Protoboard Snappable 1 $ 7.95

PRT-13268 SparkFun Electronics Arduino Stackable Header Kit 1 $ 1.50

1591TSBK
Hammond
Manufacturing

BOX PLASTIC BLK 4.72"L X
3.16"W 1 $ 6.50

27977 Parallax
Parallax 2 x 16 Serial LCD
(Backlit) 1 $ 24.99

A06KR06KR26E152A JST Sales America JUMPER 06KR-6S-P - 6" 2 $ 2.56

B6B-PH-K-S(LF)(SN) JST Sales America
CONN HEADER PH TOP 6POS
2MM 4 $ 1.32

ACJS-MV35-3 Amphenol CONN JACK STEREO 3.5MM 2 $ 1.92

SSA-LXB525-G2YAID Lumex

LED Bars and Arrays LED Bars
and Arrays 1.8x5.3mm 5 Unit
LED Green/Ylw/Amb/Red 1 $ 3.58

1825910-7

TE Connectivity
ALCOSWITCH
Switches

SWITCH TACTILE SPST-NO 0.05A
24V 4 $ 0.40

2482 Keystone Electronics
HOLDER BATTERY 4CELL AAA 6"
LEAD 1 $ 2.23

TLC5916IN Texas Instruments
IC LED DRIVER LINEAR 120MA
16DIP 1 $ 1.37

MCP6024-E/P Microchip Technology IC OPAMP GP 10MHZ RRO 14DIP 1 $ 2.01

MCP4922-E/P Microchip Technology IC DAC 12BIT DUAL W/SPI 14DIP 1 $ 2.70

296UD504B1N
CTS
Electrocomponents

POT 500K OHM 0.15W CARBON
LINEAR 1 $ 1.54

CF14JT10K0 Stackpole Electronics RES 10K OHM 1/4W 5% AXIAL 4 $ 0.40

CF14JT47K0 Stackpole Electronics RES 47K OHM 1/4W 5% AXIAL 2 $ 0.20

MFR-25FBF52-14K7 Yageo RES 14.7K OHM 1/4W 1% AXIAL 1 $ 0.10

CF14JT2K20 Stackpole Electronics RES 2.2K OHM 1/4W 5% AXIAL 2 $ 0.20

MFR-25FBF52-4K99 Yageo RES 4.99K OHM 1/4W 1% AXIAL 1 $ 0.10

CF18JT1K00 Stackpole Electronics RES 1K OHM 1/8W 5% CF AXIAL 1 $ 0.10

MFR-25FBF52-9K76 Yageo RES 9.76K OHM 1/4W 1% AXIAL 1 $ 0.10

A14042900UX0338 Uxcell CAP TANTALUM 10U 35V RADIAL 1 $ 0.67

C440C105M5U5TA7200 Kemet CAP CER 1U 50V Z5U AXIAL 2 $ 0.82

SA115E274MAR AVX CAP CER 0.27U 50V Z5U AXIAL 2 $ 2.10

FG24X7R1H224KNT06 TDK Corporation CAP CER 0.22UF 50V X7R RADIAL 1 $ 0.29

SA115C104KARC AVX CAP CER 0.1U 50V X7R AXIAL 3 $ 0.78

Total

 $116.42

64

C SOFTWARE

!Main.spin
{{
///
// This program is the top level module for the Infrasound detection device. It handles
// the LCD, LED, and button interface.
///
}}

CON
 _clkmode = xtal1 + pll16x 'Standard clock mode * crystal frequency = 80 MHz
 _xinfreq = 5_000_000

 _dopin = 12
 _clkpin = 13
 _dipin = 11
 _cspin = 8
 _cdpin = -1 ' -1 if unused.
 _wppin = -1 ' -1 if unused.

 _rtcres1 = -1 ' -1 always.
 _rtcres2 = -1 ' -1 always.
 _rtcres3 = -1 ' -1 always.

 _rate = 1000 ' Default sample rate.
 '_rate = 8000
 '_rate = 22050

 _thresh = 10 'Default Threshold level

VAR
 long i,j,k,SamplingFreq, AlarmThresh,FileName, maxfreq, maxamp, Stopped, CardCheck
 long AlarmOn, RecTime, PlayFlag
 long maxValue 'maximum value of current sample block
 long Stack[100]
 long x10

OBJ
 LCD : "FullDuplexSerial.spin"
 adc : "WAV-Recorder.spin"
 LED : "LED Driver.spin"
 dac : "WAV-Player.spin"

PUB Main
 'LCD.start(9, 9, %1000, 19_200)
 LCD.start(9, 9, %1000, 9_600) 'initiate LCD screen communication
 Wait(1000)
 FormFeed
 LCD.tx(17)
 LCD.str(String("Starting..."))
 LCD.tx(211) 'Startup melody
 LCD.tx(220)
 LCD.tx(224)
 LCD.tx(227)
 LED.init
 LED.LED(4000) 'flash LEDs
 CustomChar
 Wait(1000)
 LED.LED(0)
 SamplingFreq := _rate 'initialize
 AlarmThresh := _thresh 'initialize
 Top

Pub Top
 WaitForNoButton
 repeat
 LCD.tx(18)

65

 FormFeed
 LCD.str(@TopMenu[i * 32])
 LCD.tx(148)
 LCD.str(String(" "))
 LCD.tx(0)
 LCD.tx(1)
 LCD.str(String(" OK:Select"))

 WaitForAnyButton
 if (ina & $F == UP)
 i += 1
 if (i > TopMenuLen)
 i := 0
 if (ina & $F == DWN)
 i -= 1
 if (i < 0)
 i := TopMenuLen
 if (ina & $F == SEL)
 case i
 0: Monitor
 1: Recording
 2: Playback
 3: Settings
 Wait(500)

Pub Monitor
 adc.ADCEngineStart(1024, @maxValue)
 WaitForNoButton
 LCD.tx(18)
 FormFeed
 LCD.str(String("Monitoring:Alarm"))
 LCD.tx(3)
 LCD.str(String(": To Stop"))
 Stopped := false
 cognew(spinMonitor(@AlarmOn, @maxfreq, @maxamp, @Stopped), @Stack)
 Wait(500)
 LCD.tx(18)
 repeat until (ina & BCK == BCK)
 if AlarmOn == true
 AlarmSignal
 AlarmOn := false
 FormFeed
 LCD.str(String("Monitoring:Alarm"))
 LCD.tx(3)
 LCD.str(String(": To Stop"))
 LED.LED(maxValue)
 maxValue := 0
 Wait(100)

 Stopped := true
 LED.LED(0)
 adc.ADCEngineStop
 Top

Pub Recording
 WaitForNoButton
 repeat
 FormFeed
 LCD.tx(2)
 LCD.str(@RecMenu[j * 32])
 brb
 LCD.str(String(" OK:Select"))
 WaitForAnyButton
 if (ina & $F == UP)
 j += 1
 if (j > RecMenuLen)
 j := 0
 if (ina & $F == DWN)
 j -= 1
 if (j < 0)
 j := RecMenuLen

66

 if (ina & $F == BCK)
 Top
 if (ina & $F == SEL)
 case j
 0: TimedRec
 1: RecUntilStop
 Wait(500)

Pub TimedRec | temp
 adc.ADCEngineStart(SamplingFreq, @maxvalue)
 adc.FATEngineStart
 WaitForNoButton
 k:=2
 repeat
 LCD.tx(18)
 FormFeed
 LCD.tx(2)
 LCD.tx(2)
 LCD.str(String("Record "))
 LCD.str(@RecLength[k * 7])
 brb
 LCD.str(String(" OK:Record"))
 LCD.tx(137)
 LCD.tx(24)
 WaitForAnyButton
 if (ina & $F == UP)
 k += 1
 if (k > RecValLen)
 k := 0
 if (ina & $F == DWN)
 k -= 1
 if (k < 0)
 k := RecValLen
 if (ina & $F == BCK)
 adc.unmount
 adc.ADCEngineStop
 adc.FATEngineStop
 Recording
 if (ina & $F == SEL)
 CardCheck := \adc.SDCardCheck
 if CardCheck <> true
 FormFeed
 LCD.str(String("No SD Card found"))
 Wait(2000)
 else
 Stopped := false
 RecTime := RecVal[k] * 60
 cognew(spinRecorder(@RecTime, @Stopped, @filename), @Stack)
 LCD.tx(18)
 FormFeed
 LCD.str(String("Recording "))
 LCD.str(@RecLength[k * 7])
 LCD.tx(148)
 LCD.str(String("Press OK to Stop"))
 Wait(4000)
 WaitForNoButton
 repeat until ((Stopped == true) OR (ina & SEL == SEL))
 LED.LED(maxValue)
 maxvalue := 0
 LCD.tx(128)
 LCD.str(String("Rec < "))
 if RecTime > 3600
 LCD.dec((RecTime / 3600) + 1)
 LCD.str(String(" hr rem "))
 else
 temp := RecTime / 60 + 1
 LCD.dec(temp)
 LCD.str(String(" m rem "))
 Wait(200)
 Stopped := true
 FormFeed

67

 LCD.str(String("Recording Stopped"))
 LED.LED(0)
 Wait(3000)
 adc.unmount
 WaitForNoButton
 Wait(500)

Pub RecUntilStop
 adc.ADCEngineStart(SamplingFreq, @maxvalue)
 adc.FATEngineStart
 WaitForNoButton
 repeat
 LCD.tx(18)
 FormFeed
 LCD.tx(2)
 LCD.tx(2)
 LCD.str(String("Rec Continuous"))
 BackSym
 LCD.str(String(" OK: Start Rec"))
 waitpne(%0000,%1001,0) 'wait for BCK or SEL button to be pressed
 if (ina & $F == BCK)
 adc.ADCEngineStop
 adc.FATEngineStop
 Recording
 if (ina & $F == SEL)
 CardCheck := \adc.SDCardCheck
 if CardCheck <> true
 FormFeed
 LCD.str(String("No SD Card found"))
 Wait(2000)
 else
 Stopped := false
 RecTime := 0
 cognew(spinRecorder(@RecTime, @Stopped, @filename), @Stack)
 LCD.tx(18)
 FormFeed
 LCD.str(String("Recording... "))
 LCD.tx(148)
 LCD.str(String("Press OK to Stop"))
 WaitForNoButton
 repeat until ((Stopped == true) OR (ina & SEL == SEL))
 LED.LED(maxValue)
 maxValue := 0
 Wait(200)
 Stopped := true
 LED.LED(0)
 FormFeed
 LCD.str(String("Recording Stopped"))
 Wait(3000)
 WaitForNoButton
 Wait(500)

Pub Playback
 dac.FATEngineStart
 dac.DACEngineStart(5000)
 CardCheck := \adc.SDCardCheck
 if CardCheck <> true
 FormFeed
 LCD.str(String("No SD Card found"))
 Wait(2000)
 dac.unmount
 dac.FATEngineStop
 dac.DACEngineStop
 Top
 WaitForNoButton
 filename:=\dac.ListNextFile
 repeat
 FormFeed
 LCD.tx(2)
 LCD.str(filename)
 BackSym

68

 LCD.tx(1)
 LCD.str(String(" OK:Play"))
 WaitForAnyButton
 if (ina & $F == DWN)
 filename:=\dac.ListNextFile
 if (ina & $F == BCK)
 dac.unmount
 dac.FATEngineStop
 dac.DACEngineStop
 Top
 if (ina & $F == SEL)
 if filename == String("No WAV files")
 FormFeed
 LCD.str(String("Not a valid file"))
 else
 x10 := false
 FormFeed
 LCD.str(filename)
 LCD.tx(148)
 cognew(spinPlayer(filename,@Stopped, @x10), @Stack)
 Wait(500)
 WaitForNoButton
 repeat until ((Stopped == true) OR (ina & SEL == SEL))
 LCD.tx(148)
 LCD.tx(0)
 LCD.str(String(":"))
 if x10 == false
 LCD.dec(10)
 else
 LCD.dec(1)
 LCD.str(String("x OK:Stop "))
 if (ina & $F == UP)
 not x10
 WaitForNoButton
 Wait(200)

 Stopped := true
 FormFeed
 LCD.str(String("Playback Stopped"))
 Wait(2000)
 WaitForNoButton
 Wait(500)

Pub Settings
 WaitForNoButton
 repeat
 FormFeed
 LCD.tx(2)
 LCD.str(@SetMenu[j * 32])
 brb
 LCD.str(String(" OK:Select"))
 WaitForAnyButton
 if (ina & $F == UP)
 j += 1
 if (j > SetMenuLen)
 j := 0
 if (ina & $F == DWN)
 j -= 1
 if (j < 0)
 j := SetMenuLen
 if (ina & $F == BCK)
 Top
 if (ina & $F == SEL)
 case j
 0: SetSampFreq
 1: SetAlarmThresh
 Wait(500)

Pub SetSampFreq
 WaitForNoButton

69

 k:=1000
 if (SamplingFreq <> 0)
 k := SamplingFreq
 repeat
 FormFeed
 LCD.tx(2)
 LCD.tx(2)
 LCD.str(String("Freq: "))
 LCD.Dec(k)
 LCD.str(String(" Hz"))
 BackSym
 LCD.tx(0)
 LCD.tx(1)
 LCD.str(String(" OK:Set"))
 LCD.tx(24)
 LCD.tx(136)
 WaitForAnyButton
 if (ina & $F == UP)
 k += 1000
 if (k > 22000)
 k := 22000
 if (ina & $F == DWN)
 k -= 1000
 if (k < 1000)
 k := 1000
 if (ina & $F == BCK)
 Settings
 if (ina & $F == SEL)
 SamplingFreq := k
 FormFeed
 LCD.str(String("Frequency Set"))
 Wait(3000)
 WaitForNoButton
 Wait(500)

Pub SetAlarmThresh
 WaitForNoButton
 k:= AlarmThresh
 repeat
 FormFeed
 LCD.tx(2)
 LCD.tx(2)
 LCD.str(String("Threshold "))
 LCD.Dec(k)
 LCD.str(String("%"))
 brb
 LCD.str(String(" OK:Set"))
 LCD.tx(24)
 LCD.tx(140)
 WaitForAnyButton
 if (ina & $F == UP)
 k += 10
 if (k > 90)
 k := 90
 if (ina & $F == DWN)
 k -= 10
 if (k < 10)
 k := 10
 if (ina & $F == BCK)
 Settings
 if (ina & $F == SEL)
 AlarmThresh := k
 FormFeed
 LCD.str(String("Threshold Set"))
 Wait(3000)
 WaitForNoButton
 Wait(500)

Pub CustomChar

 LCD.tx(248) ' Define custom character 0 (Up arrow)

70

 LCD.tx(%00100)
 LCD.tx(%01110)
 LCD.tx(%11111)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)

 LCD.tx(249) ' Define custom character 1 (Down arrow)

 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%00100)
 LCD.tx(%11111)
 LCD.tx(%01110)
 LCD.tx(%00100)

 LCD.tx(250) ' Define custom character 2 (Right arrow)

 LCD.tx(%00000)
 LCD.tx(%00100)
 LCD.tx(%00110)
 LCD.tx(%11111)
 LCD.tx(%00110)
 LCD.tx(%00100)
 LCD.tx(%00000)
 LCD.tx(%00000)

 LCD.tx(251) ' Define custom character 3 (Left arrow)

 LCD.tx(%00000)
 LCD.tx(%00100)
 LCD.tx(%01100)
 LCD.tx(%11111)
 LCD.tx(%01100)
 LCD.tx(%00100)
 LCD.tx(%00000)
 LCD.tx(%00000)

Pub AlarmSignal
 'Displays the detected amplitude and frequency and plays tones, flashes screen
 LCD.tx(17)
 FormFeed
 LCD.Str(String("! "))
 LCD.dec(maxamp)
 LCD.Str(String(" @ "))
 LCD.dec(maxfreq)
 LCD.Str(String(" Hz !"))
 LCD.tx(212)
 AlarmOn := false
 repeat 15
 LCD.tx(225)
 LCD.tx(220)
 Wait(500)
 LCD.tx(18)
 LED.LED(0)
 Wait(500)
 LCD.tx(17)
 LED.LED(4000)
 if (ina & $F == BCK)
 quit
 WaitForNoButton
 LCD.tx(18)

PUB spinRecorder(RecTimeAddr, StoppedAddr, filenameaddr) ' Starts the recording

 adc.startRecordingWAVFile(RecTimeAddr, StoppedAddr, filenameaddr)

71

 cogstop(cogID)

PUB spinMonitor(AlarmOnAddr, maxfreqaddr, maxampaddr, StoppedAddr) ' Starts monitoring

 adc.Monitor(AlarmThresh, AlarmOnAddr, maxfreqaddr, maxampaddr, StoppedAddr)
 cogstop(cogID)

PUB spinPlayer(name,StoppedAddr, x10addr) ' Starts playback

 dac.startPlayingWAVFile(name, StoppedAddr, x10addr)
 cogstop(cogID)

PUB brb 'bottom row buttons

 BackSym
 LCD.tx(0)
 LCD.tx(1)

PUB BackSym '2nd line of display, space, then back symbol

 LCD.tx(148)
 LCD.tx(9)
 LCD.tx(3)

PUB FormFeed

 LCD.tx(12)
 Wait(10)
 LCD.tx(22)

PUB Wait(length) ' pause execution for 'length' msecs

 waitcnt((clkfreq / 1000 * length) + cnt)

PUB WaitForNoButton

 waitpeq(%0000,%1111,0) 'wait until no buttons are pressed

PUB WaitForAnyButton

 waitpne(%0000,%1111,0) 'wait for any button to be pressed

DAT
TopMenu byte "Monitor w/ Alarm",0[16]
 byte "Recording",0[23]
 byte "Playback",0[24]
 byte "Settings",0[24]
TopMenuLen byte 3
RecMenu byte "Timed Recording", 0[17]
 byte "Rec until Stop",0[18]
RecMenuLen byte 1
SetMenu byte "Sampling Freq", 0[19]
 byte "Alarm Threshold", 0[17]
SetMenuLen byte 1
RecLength byte "1 min",0[2]
 byte "10 min",0[1]
 byte "30 min",0[1]
 byte "1 hr",0[3]
 byte "2 hr",0[3]
 byte "4 hr",0[3]
 byte "8 hr",0[3]
 byte "12 hr",0[2]
 byte "24 hr",0[2]
RecValLen byte 8
RecVal word 1,10,30,60,120,240,480,720,1440
BCK byte %0001
UP byte %0010
DWN byte %0100
SEL byte %1000

{{

72

///
// TERMS OF USE: MIT License
///
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///
}}

Heater_fft.spin
'--
' heater_fft module
' This module performs a 1024 point fft and returns the results in the first 512 cells of
' the datablock.
' Original Module "heater_fft" found on Parallax Object Exchange (OBEX) obex.parallax.com

' In place Radix-2 Decimation In Time FFT
'
' Michael Rychlik. 2011-1-25
'
'User optimization controls
'#define PASM_BUTTERFLIES 'Set this for fast PASM FFT, about 30ms
'#define USE_FASTER_MULT 'Set this for faster multiply
'#define USE_FASTER_SQRT 'Set this for faster but much bigger square root.
'--

'--
CON
 'Specify size of FFT buffer here with length and log base 2 of the length.
 'N.B. Changing this will require changing the "twiddle factor" tables.
 ' and may also require changing the fixed point format (if going bigger)
 FFT_SIZE = 1024
 LOG2_FFT_SIZE = 10

 CMD_DECIMATE = %0001
 CMD_BUTTERFLY = %0010
 CMD_MAGNITUDE = %0100
 CMD_TEST = %1000
'--

'--
VAR
 long mailboxp
 byte cog
'--

'--
PUB start (mailp)
'#ifdef PASM_BUTTERFLIES
 mailboxp := mailp
 LONG[mailboxp] := 0
 cog := cognew (@bfly, mailp) 'Check error?

Pub stop

 cogstop(cog)

73

PUB butterflies(cmd, bxp, byp)
 LONG[mailboxp + 4] := bxp 'Address of x buffer
 LONG[mailboxp + 8] := byp 'Address of y buffer
 LONG[mailboxp + 0] := cmd 'Do butterflies and/or decimation
 repeat while LONG[mailboxp + 0] <> 0
'--

'--
DAT
 org 0
bfly mov mb_ptr, par
 rdlong command, mb_ptr wz 'Wait for run command in mailbox
 if_z jmp #bfly

 add mb_ptr, #4 'Fetch x array address from mbox
 rdlong bx_ptr, mb_ptr

 add mb_ptr, #4 'Fetch y array address from mbox
 rdlong by_ptr, mb_ptr
 sub mb_ptr, #8

 test command, #CMD_DECIMATE wz 'Bit reversal required on data?
 if_z jmp #:no_decimate

'Radix-2 decimation in time. (The bit reversal stage)
'Moves every sample of bx to a postion given by reversing the bits of its original array
'index. This is a direct translation of the Spin decimate above, original Spin code used
'as comments. N.B. Only the x array is bit-reversed it is up to the app to clear y.

 mov c, fft_size_ 'repeat i from 0 to FFT_SIZE - 1
 mov b, #0

:dloop mov a, b 'revi := i >< LOG2_FFT_SIZE
 mov rev_a, a
 rev rev_a, #32 - LOG2_FFT_SIZE

 cmp a, rev_a wc 'if i < revi
 if_nc jmp #:skip_rev

 shl a, #2 'Times 4 as we are reading longs
 shl rev_a, #2

 mov hub_ptr, bx_ptr 'tx1 := long[bxp + i * 4]
 add hub_ptr, a
 rdlong tx, hub_ptr

 mov hub_rev_ptr, bx_ptr 'long[bxp + i * 4] := long[bxp + revi * 4]
 add hub_rev_ptr, rev_a
 rdlong ty, hub_rev_ptr
 wrlong ty, hub_ptr

 wrlong tx, hub_rev_ptr 'long[bxp + revi * 4] := tx1

:skip_rev add b, #1
 djnz c, #:dloop

:no_decimate
 test command, #CMD_BUTTERFLY wz 'Perform buterflies?
 if_z jmp #:no_butterfly

'Apply FFT butterflies to N complex samples in buffers bx and by, in time decimated order
'Resulting FFT is produced in bx and by in the correct order.
'This is a direct translation from the Spin code above, original Spin code in comments.

 mov flight_max, fft_size_ 'flight_max := FFT_SIZE / 2
 sar flight_max, #1
 mov wangleSkip, fft_size_ 'wangleSkip := FFT_SIZE * 4
 shl wangleSkip, #2

 mov butterflySpan, #4 'butterflySpan := 4

74

 mov butterfly_max, #1 'butterfly_max := 1
 mov flightSkip, #4 'flightSkip := 4

 'Loop through all the decimation levels
 mov level, #LOG2_FFT_SIZE 'level := LOG2_FFT_SIZE
:lloop 'repeat
 mov b0x_ptr, bx_ptr 'b0x_ptr := @bx
 mov b0y_ptr, by_ptr 'b0y_ptr := @by

 mov b1x_ptr, b0x_ptr 'b1x_ptr := b0x_ptr + butterflySpan
 add b1x_ptr, butterflySpan

 mov b1y_ptr, b0y_ptr 'b1y_ptr := b0y_ptr + butterflySpan
 add b1y_ptr, butterflySpan

 'Loop though all the flights in a level
 mov flight, flight_max 'flight := flight_max
:floop 'repeat
{new} mov wangle, #0

 'Loop through all the butterflies in a flight
 mov butterfly, butterfly_max 'butterfly := butterfly_max

 'Do the initial pass optimization, when W = [1,0] we don't need to multiply
 ' c = 1 (well, 4096/4096), d = 0
 mov k2, #0 'k2 := (d * (a + b)) / 4096
 rdlong a, b1x_ptr 'a := LONG[b1x_ptr]
 mov k1, a 'k1 := (a * (c + d)) / 4096
 neg k3, a 'k3 := (c * (b - a)) / 4096
 rdlong b, b1y_ptr 'b := LONG[b1y_ptr]
 add k3, b 'k3 := (c * (b - a)) / 4096
 jmp #:continue_bloop

:bloop ' repeat 'At last...the butterfly.
 rdlong a, b1x_ptr 'a := LONG[b1x_ptr]

 'Precompute the optimization for c=0, d=-1
 neg k1, a 'k1 := (a * (c + d)) / 4096
 neg k2, a 'k2 := (d * (a + b)) / 4096

 rdlong b, b1y_ptr 'b := LONG[b1y_ptr]

 'Precompute the optimization for c=0, d=-1
 sub k2, b 'k2 := (d * (a + b)) / 4096
 mov k3, #0 'k3 := (c * (b - a)) / 4096

 mov c, wangle
{getcos} add c, sin_90 'For cosine, add 90Â°
 test c, sin_90 wc 'Get quadrant 2|4 into c
 test c, sin_180 wz 'Get quadrant 3|4 into nz
 negc c, c 'If quadrant 2|4, negate offset
 or c, sin_table 'OR in sin table address >> 1
 shl c, #1 'Shift left to get final word address
 rdword c, c 'Read word sample from $E000 to $F000
 negnz c, c 'If quadrant 3|4, negate sample

 sar c, #4 wz 'Scale to +/- 4095

 if_z jmp #:continue_bloop ' if c==0, we already kave k1, k2, k3

 mov d, wangle
{getsin} test d, sin_90 wc 'Get quadrant 2|4 into c
 test d, sin_180 wz 'Get quadrant 3|4 into nz
 negc d, d 'If quadrant 2|4, negate offset
 or d, sin_table 'OR in sin table address >> 1
 shl d, #1 'Shift left to get final word address
 rdword d, d 'Read word sample from $E000 to $F000
 negnz d, d 'If quadrant 3|4, negate sample

 sar d, #4 'Scale to +/- 4095
 neg d, d 'We want -cos

75

 mov m1, c 'k1 := (a * (c + d)) / 4096
 add m1, d
 mov m2, a
 call #mult
 mov k1, m1
 sar k1, #15 - 3

 mov m1, a 'k2 := (d * (a + b)) / 4096
 add m1, b
 mov m2, d
 call #mult
 mov k2, m1
 sar k2, #15 - 3

 mov m1, b 'k3 := (c * (b - a)) / 4096
 sub m1, a
 mov m2, c
 call #mult
 mov k3, m1
 sar k3, #15 - 3

:continue_bloop

 mov tx, k1 'tx := k1 - k2 (part I)
 mov ty, k1 'ty := k1 + k3 (part I)

 rdlong k1, b0x_ptr 'k1 := LONG[b0x_ptr]

 sub tx, k2 ' (part II) moved from above to take
 add ty, k3 ' advantage of the hub wait times

 rdlong k2, b0y_ptr 'k2 := LONG[b0y_ptr]

 mov a, k1 'LONG[b1x_ptr] := k1 - tx
 sub a, tx
 wrlong a, b1x_ptr

 mov a, k2 'LONG[b1y_ptr] := k2 - ty
 sub a, ty
 wrlong a, b1y_ptr

 mov a, k1 'LONG[b0x_ptr] := k1 + tx
 add a, tx
 wrlong a, b0x_ptr

 mov a, k2 'LONG[b0y_ptr] := k2 + ty
 add a, ty
 wrlong a, b0y_ptr

 add b0x_ptr, #4 'b0x_ptr += 4
 add b0y_ptr, #4 'b0y_ptr += 4

 add b1x_ptr, #4 'b1x_ptr += 4
 add b1y_ptr, #4 'b1y_ptr += 4

 add wangle, wangleSkip 'wangle += wangleSkip

 djnz butterfly, #:bloop 'while --butterfly <> 0

 add b0x_ptr, flightSkip 'b0x_ptr += flightSkip
 add b0y_ptr, flightSkip 'b0y_ptr += flightSkip
 add b1x_ptr, flightSkip 'b1x_ptr += flightSkip
 add b1y_ptr, flightSkip 'b1y_ptr += flightSkip
 djnz flight, #:floop 'while --flight <> 0

 shl butterflySpan, #1 'butterflySpan <<= 1
 shl flightSkip, #1 'flightSkip <<= 1

 shr flight_max, #1 'flight_max >>= 1

76

 shr wangleSkip, #1
 shr wSkip, #1 'wSkip >>= 1
 shl butterfly_max, #1 'butterfly_max <<= 1
 djnz level, #:lloop 'while --level <> 0
:no_butterfly
 test command, #CMD_MAGNITUDE wz 'Calculate magnitudes?
 if_z jmp #:no_magnitude

'Calculate magnitudes from the complex results in x and y. Results placed into x

 mov c, fft_size_ 'repeat i from 0 to FFT_SIZE
 add c, #1 'That is one more than half FFT_SIZE
 'so as to include the Nyquist freq
 mov b0x_ptr, bx_ptr
 mov b0y_ptr, by_ptr

:mloop rdlong m1, b0x_ptr
 sar m1, #LOG2_FFT_SIZE - 1
 mov m2, m1
 call #mult
 mov input, m1

 rdlong m1, b0y_ptr
 sar m1, #LOG2_FFT_SIZE - 1
 mov m2, m1
 call #mult
 add input, m1

 call #sqrt

 wrlong root, b0x_ptr 'Write result to x array

 add b0x_ptr, #4 'Next x and y element and loop
 add b0y_ptr, #4
 djnz c, #:mloop

:no_magnitude
 mov command, #0
 wrlong command, mb_ptr
 jmp #bfly
'--

'--
mult 'Account for sign
'#ifdef USE_FASTER_MULT
 abs m1, m1 wc
 negc m2, m2
 abs m2, m2 wc
 'Make t2 the smaller of the 2 unsigned parameters
 mov m3, m1
 max m3, m2
 min m2, m1
 'Correct the sign of the adder
 negc m2, m2
{{#else
 abs m3, m1 wc
 negc m2, m2
#endif}}
 'My accumulator
 mov m1, #0
 'Do the work
:mul_loop shr m3, #1 wc,wz 'Get the low bit of t2
 if_c add m1, m2 'If it was a 1, add adder to accumulator
 shl m2, #1 'Shift the adder left by 1 bit
 if_nz jmp #:mul_loop 'Continue as long as there are no more 1's
mult_ret ret

m1 long 0
m2 long 0
m3 long 0
'--

77

'---
'#ifdef USE_FASTER_SQRT
'Faster code square root (Chip Gracey after discussion with lonesock on Propeller Forums)
sqrt mov root, h40000000
 cmpsub input, root wc
 sumnc root, h40000000
 shr root, #1

 or root, h10000000
 cmpsub input, root wc
 sumnc root, h10000000
 shr root, #1

 or root, h04000000
 cmpsub input, root wc
 sumnc root, h04000000
 shr root, #1

 or root, h01000000
 cmpsub input, root wc
 sumnc root, h01000000
 shr root, #1

 or root, h00400000
 cmpsub input, root wc
 sumnc root, h00400000
 shr root, #1

 or root, h00100000
 cmpsub input, root wc
 sumnc root, h00100000
 shr root, #1

 or root, h00040000
 cmpsub input, root wc
 sumnc root, h00040000
 shr root, #1

 or root, h00010000
 cmpsub input, root wc
 sumnc root, h00010000
 shr root, #1

 or root, h00004000
 cmpsub input, root wc
 sumnc root, h00004000
 shr root, #1

 or root, h00001000
 cmpsub input, root wc
 sumnc root, h00001000
 shr root, #1

 or root, h00000400
 cmpsub input, root wc
 sumnc root, h00000400
 shr root, #1

 or root, #$100
 cmpsub input, root wc
 sumnc root, #$100
 shr root, #1

 or root, #$40
 cmpsub input,root wc
 sumnc root, #$40
 shr root, #1

 or root, #$10
 cmpsub input,root wc

78

 sumnc root, #$10
 shr root, #1

 or root, #$4
 cmpsub input,root wc
 sumnc root, #$4
 shr root, #1

 or root, #$1
 cmpsub input,root wc
 sumnc root, #$1
 shr root, #1
sqrt_ret ret

h10000000 long $10000000
h04000000 long $04000000
h01000000 long $01000000
h00400000 long $00400000
h00100000 long $00100000
h00040000 long $00040000
h00010000 long $00010000
h00004000 long $00004000
h00001000 long $00001000
h00000400 long $00000400

{{#else

'Faster code square root (Chip Gracey after discussion with lonesock on Propeller Forums)
sqrt mov root, #0 'Reset root
 mov mask, h40000000 'Reset mask (constant in register)
:sqloop or root, mask 'Set trial bit
 cmpsub input, root wc 'Subtract root from input if fits
 sumnc root, mask 'Cancel trial bit, set root bit if fit
 shr root, #1 'Shift root down
 shr mask, #2 'Shift mask down
 tjnz mask, #:sqloop 'Loop until mask empty
sqrt_ret ret
#endif }}
h40000000 long $40000000
'--

'--
'Large constants
fft_size_ long FFT_SIZE
sin_90 long $0800
sin_180 long $1000
sin_table long $E000 >> 1 'ROM sin table base shifted right

'COG variables
level long 0
flight long 0
butterfly long 0
flight_max long 0
wSkip long 0
butterflySpan long 0
butterfly_max long 0
flightSkip long 0
k1 long 0
k2 long 0
k3 long 0
a long 0
b long 0
c long 0
d long 0
tx long 0
ty long 0
b0x_ptr long 0
b0y_ptr long 0
b1x_ptr long 0
b1y_ptr long 0
mb_ptr long 0

79

bx_ptr long 0
by_ptr long 0
wangle long 0
wangleSkip long 0

rev_a long 0
hub_ptr long 0
hub_rev_ptr long 0
command long 0
root long 0
mask long 0
input long 0
'--
 fit 496
'#endif
'--

'--
' This file is distributed under the terms of the The MIT License as follows:
'
' Copyright (c) 2011 Michael Rychlik
'
' Permission is hereby granted, free of charge, to any person obtaining a copy
' of this software and associated documentation files (the "Software"), to deal
' in the Software without restriction, including without limitation the rights
' to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
' copies of the Software, and to permit persons to whom the Software is
' furnished to do so, subject to the following conditions:
'
' The above copyright notice and this permission notice shall be included in
' all copies or substantial portions of the Software.
'
' THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
' IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
' FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
' AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
' LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
' OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
' THE SOFTWARE.
'--

'--

LED Driver.spin
{{ LED Driver
\\ This module initializes communication with the LED driver, as well as takes an input
\\ value, decides the LEDs to turn on and send the command to the LED driver.
}}
CON
 ValMax = 4095
 CLK = 5
 SDI = 4
 LE = 6
 OE = 7

OBJ

PUB init

 dira[CLK]~~
 dira[SDI]~~
 dira[LE]~~
 dira[OE]~~
 outa[OE] := 0
 outa[CLK] := 0
 outa[LE] := 0

PUB LED(Value) | data

 data := %00000000
 if Value > 2457

80

 data := %00001000
 if Value > 2867
 data := %00011000
 if Value > 3276
 data := %00111000
 if Value > 3685
 data := %01111000
 if Value > 3890
 data := %11111000

 'debug - comment out for final
 'if Value > 1000
 ' data := %11111000

 repeat 8
 outa[SDI] := data & 1 'set SDI to lowest data bit
 outa[CLK] := 1 'set CLK to 1
 outa[CLK] := 0 'set CLK to 0
 data >>= 1 'shift data right 1 bit

 outa[LE] := 1
 outa[LE] := 0
 outa[SDI] := 0

PUB Out(data)

 repeat 8
 outa[SDI] := data & 1 'set SDI to lowest data bit
 outa[CLK] := 1 'set CLK to 1
 outa[CLK] := 0 'set CLK to 0
 data >>= 1 'shift data right 1 bit

 outa[LE] := 1
 outa[LE] := 0
DAT
{{

///
// TERMS OF USE: MIT License
///
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///
}}

SD-MMC_FATEngine.spin
Unedited from the Parallax object exchange except that many unused methods were
removed to conserve program space.

WAV-Player.spin
{{
///
// WAV-Player_DACEngine
// This module contains functions to play WAV files recorded by the device through the
// DAC.
// Original module from the Parallax OBEX (obex.parallax.com):

81

// WAV-Player - Author: Kwabena W. Agyeman
///
}}
CON
 dopin = 12
 clkpin = 13
 dipin = 11
 cspin = 8
 cdpin = -1 ' -1 if unused.
 wppin = -1 ' -1 if unused.

 rtcres1 = -1 ' -1 always.
 rtcres2 = -1 ' -1 always.
 rtcres3 = -1 ' -1 always.
OBJ fat: "SD-MMC_FATEngine.spin"

VAR

 long clocksPerSample, samplesPerSecond, dataSize, filesize
 word callerPointer, callePointer, data2DAC, count, LastVal
 byte stopped, cogIdentification
 long writeResult, curpos, i, switch, linecount, playFlag
 word datablock[512]

PUB startPlayingWAVFile(filePathName, StoppedAddr, x10addr) '' 52 Stack Longs
 result := \PlayWAV(filePathName, StoppedAddr, x10addr)

PRI PlayWAV(filePathName, StoppedAddr, x10addr) | x10' 48 Stack Longs
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)
 result := fat.openFile((filePathName), "R")
 fat.fileSeek(4)
 filesize := fat.readLong + 8
 fat.fileSeek(24) 'get samples per second
 samplesPerSecond := fat.readLong
 fat.fileSeek(40) 'get number of data bytes
 dataSize := fat.readLong
 clocksPerSample := (clkfreq / samplesPerSecond) 'calculate clocks to wait per samp
 fat.fileSeek(44) 'move to first data chunk
 stopped := false
 curpos := 0

 fat.fileSeek(44)
 callerPointer := callePointer := 0 'init flag
 fat.readData(@datablock,512)
 not callerPointer ' callerpointer = -1
 'callePointer was set to 0. After a block of DAC PASM, it will flip to -1.
 'Wait until it equals 0 again (playing A block)
 'then continue loading data into block B (callerpointer = -1)
 repeat while (callerPointer <> callepointer) 'callerpointer=1, callepointer = 0
 repeat while(callerPointer == callePointer) 'callerpointer=1, callepointer = 1
 long[StoppedAddr] := false 'ready to play first block
 repeat until(long[StoppedAddr] == true)
 x10 := long[x10addr]
 if x10 == true
 clocksPerSample := ((clkfreq / samplesPerSecond) / 10) #> (clkfreq / 80000)
 else
 clocksPerSample := (clkfreq / samplesPerSecond)
 playflag := 1
 fat.readData(@dataBlock[256 & callerPointer], 512) 'read next data block
 not callerPointer
 repeat while (callerpointer <> callepointer)
 curpos := fat.filetell
 if curpos >= filesize - 512
 fat.fileseek(44) 'loops playback
 playflag := 0

PUB DACEngineStart(sampleRate) '' 9 Stack Longs

'' //
'' // Starts up the ADC driver running on a cog.

82

'' //
 DACEngineStop
 if(chipver == 1)
 clocksPerSampleAddress := @clocksPerSample
 dataBlockAddress := @datablock
 callePointerAddress := @callePointer
 playFlagAddress := @playFlag
 playFlag := 0
 clocksPerSample := clkfreq / sampleRate

 cogIdentification := cognew(@initialization, 0)
 result or= ++cogIdentification

PUB DACEngineStop '' 3 Stack Longs

'' //
'' // Shuts down the ADC driver running on a cog.
'' //

 if(cogIdentification)
 cogstop(-1 + cogIdentification~)

PUB SDCardCheck
'' //
'' Tries to mount SD card. If successful, returns true (-1), else returns an error code.
'' //
 result := false
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)
 result := fat.partitionMounted
 unmount
 return

PUB unmount
 fat.unmountpartition

PUB ListNextFile | validwav, namebuffer, index
'' //
'' Searches through SD card and returns new WAV file name.
'' //
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)
 validWAV := false
 count := 0
 repeat until ((validWAV == true) OR (count > 1000))
 count += 1
 nameBuffer := fat.ListEntries(String("n"))
 repeat index from 0 to 8
 if (byte[namebuffer][index] == 46)
 if((byte[namebuffer][index + 1] == 87) OR (byte[namebuffer][index + 1] ==
119))
 if((byte[namebuffer][index + 2] == 65) OR (byte[namebuffer][index + 2] ==
97))
 if((byte[namebuffer][index + 3] == 86) OR (byte[namebuffer][index + 3] ==
118))
 validWAV := true
 quit
 quit
 quit

 if validWAV == false
 namebuffer := String("No WAV files")
 return namebuffer

PUB FATEngineStart
'' //
'' // Starts up the SDC driver running on a cog and checks out a lock for the driver.
'' //
 return fat.FATEngineStart(DOPin, CLKPin, DIPin, CSPin, WPPin, CDPin, RTCRes1, RTCRes2,
RTCRes3)

83

PUB FATEngineStop '' 6 Stack Longs
'' //
'' // Shuts down the SDC driver running on a cog and returns the lock used by the driver.
'' //
 fat.FATEngineStop

DAT

' ///
' DAC Driver
' ///

 org 0

' //////////////////////Initialization///

initialization or outa,smask 'CS high
 andn outa,cmask
 andn outa,dmask
 or dira,cmask 'output CLK
 or dira,smask 'output CS
 or dira,dmask 'output D

 mov playerPointer, dataBlockAddress '

 rdlong playerRate, clocksPerSampleAddress 'Setup timing

 mov timeCounter, playerRate
 add timeCounter, cnt

' ///
' Player
' ///

outerLoop rdlong outputOn, playFlagAddress 'Playing?
 mov counter, #256 '256 Samples
 rdlong playerRate, clocksPerSampleAddress

 ' //////////////////////Inner Loop//
innerLoop rdword value, playerPointer 'get value to write to DAC
 waitcnt timeCounter, playerRate ' Wait until next output
 mov command, comInit 'init command
 test outputOn, #1 wc ' set c to outputOn value
 muxc command, shutdown 'set shutdown bit to OutputOn val
 and value, mask12 'trim to ensure only 12 bits
 or command, value 'put value in command stream
 rev command, #16 'reverse bits

 andn outa,smask 'CS low

 mov bits,#16 'ready 16 bits

bloop test command, #1 wc 'get lowest bit
 muxc outa, dmask 'set data bit
 nop
 or outa,cmask 'CLK high
 nop
 nop
 andn outa,cmask 'CLK low
 nop
 shr command,#1
 djnz bits,#bloop 'next data bit

 or outa,smask 'CS high
 add playerPointer, #2 '
 djnz counter, #innerLoop '

' //////////////////////Outer Loop///

 rdword buffer, callePointerAddress wz 'Flip data pntr
 sumz buffer, #1 '

84

 wrword buffer, callePointerAddress '
if_nz mov playerPointer, dataBlockAddress '

 jmp #outerLoop wz ' Loop.

' ///
' Data
' ///

mask12 long $FFF
dmask long 1 << 15
cmask long 1 << 14
smask long 1 << 10
comInit word $3000
shutdown long $1000
command long 0
value word 0

' //////////////////////Addresses//

clocksPerSampleAddress long 0
dataBlockAddress long 0
callePointerAddress long 0
playFlagAddress long 0

' //////////////////////Run Time Variables///

buffer res 1
counter res 1
playerPointer res 1
playerRate res 1
timeCounter res 1
bits res 1
outputOn res 1

' ///

 fit 496

CON WAVFileHeaderSize = 44 ' DO NOT EDIT!

DAT WAVFileHeaderData ' DO NOT EDIT!

' ///

 byte byte "RIFF" ' "RIFF" chunk header.
 byte long 0 ' "RIFF" chunk size = (fileSize - 8). Offset 4.
 byte byte "WAVE" ' File type.

 byte byte "fmt " ' "fmt " chunk header.
 byte long 16 ' "fmt " chunk size.
 byte word 1 ' Audio format.
 byte word 1 ' Nuber of channels.
 byte long 0 ' Sample rate.EDITED by setup function!
 byte long 0 ' Byte rate. EDITED by setup function!
 byte word 2 ' Block align.
 byte word 16 ' Bits per sample.

 byte byte "data" ' "data" chunk header.
 byte long 0 ' "data" chunk size = (fileSize - 44). Offset 40.

' ///

{{

///
// TERMS OF USE: MIT License
///
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,

85

// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///
}}

WAV-Recorder.spin
{{
///
// WAV-Recorder
// This module contains functions to record from the ADC convert onboard the ASC+ board
// and call FFT functions to determine the frequency content of the input.
//
// Original module from the Parallax OBEX (obex.parallax.com):
// WAV-Recorder Analog to Digital Converter Engine
// - Author: Kwabena W. Agyeman
///
}}
CON
 dopin = 12
 clkpin = 13
 dipin = 11
 cspin = 8
 cdpin = -1 ' -1 if unused.
 wppin = -1 ' -1 if unused.

 rtcres1 = -1 ' -1 always.
 rtcres2 = -1 ' -1 always.
 rtcres3 = -1 ' -1 always.
MAX_LEN = 64
OBJ fat: "SD-MMC_FATEngine.spin"
 fft: "heater_fft.spin"

VAR

 long clocksPerSample, bx[2048], by[1024], i, maxamp, maxfreq, RecTime
 long str2dec, count, TimerStack[20], idx, maxValue
 long fft_mailbox_cmd 'Command
 long fft_mailbox_bxp 'Address of x buffer
 long fft_mailbox_byp 'Address of y buffer
 word callerPointer, callePointer, samplesPerSecond, bxcallerPointer, bxcallePointer
 byte ADCcogID, nameCounter, TimerID, nstr[MAX_LEN], AlarmOn
 word datablock[512]

PUB getMaxamp

 return maxamp

PUB getmaxfreq

 return maxfreq

PUB startRecordingWAVFile(RecTimeAddr, StoppedAddr, filenameaddr) | namebuffer, index

'' //
'' // Mounts SD card. Finds the largest numbered file (first 3 digits) and increments
'' // for new file name.
'' //
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)

86

 'autoname the files.
 fat.listEntries("W") ' Goto the top of the directory.
 waitcnt(clkfreq + cnt)
 result := 0
 repeat while(nameBuffer := fat.listEntries("N"))
 i += 1
 str2dec := 0
 repeat index from 0 to 2 'first 3 chars of file name are used
 str2dec *= 10
 if (byte[namebuffer][index] - "0" > 9)
 str2dec := 0
 quit
 str2dec += byte[namebuffer][index] - "0"
 result #>= str2dec ' Find the largest number

 nameBuffer := decf(result + 1,3)
 nameCounter := strsize(nameBuffer)

 bytemove(@AUTONAMEArray, string("000"), 3)
 bytemove((@AUTONAMEArray + (3 - nameCounter)), nameBuffer, nameCounter)
 long[filenameaddr] := @AUTONameArray

 result := \recordWAV(@AUTONAMEArray,RecTimeAddr, StoppedAddr)

 \fat.unmountPartition

PRI recordWAV(filePathName, RecTimeAddr, StoppedAddr)
'' //
'' // Starts recording a WAV file to the SD/MMC card.
'' //
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)

 fat.openFile(fat.newFile(filePathName), "W")
 fat.writeData(@WAVFileHeaderData, WAVFileHeaderSize)

 long[StoppedAddr] := false
 if long[RecTimeAddr] > 0
 TimerID := cognew(Timer(RecTimeAddr, StoppedAddr), @TimerStack) 'Cog stops itself

 callerPointer := callePointer
 repeat until(long[StoppedAddr]==true or (fat.fileSize => posx))
 repeat while(callerPointer == callePointer)
 fat.writeData(@datablock[256 & callerPointer], 512)
 not callerPointer

 fat.fileSeek(4)
 fat.writeLong(fat.fileSize - 8)
 fat.fileSeek(40)
 fat.writeLong(fat.fileSize - WAVFileHeaderSize)
 long[StoppedAddr] := true

PUB Monitor(AlarmThresh, AlarmOnAddr, maxfreqaddr, maxampaddr, StoppedAddr) | temp
'' //
'' // Performs an FFT on incoming analog signal and sets alarm flag if results under
' // target freq are over the alarm threshold.
'' //
 AlarmThresh := 2047 * AlarmThresh / 200 'take original % * max magnitude / 2
 fft.start(@fft_mailbox_cmd)
 long[StoppedAddr] := false
 callerPointer := callePointer
 bxcallerPointer := bxcallePointer
 repeat until(long[StoppedAddr] == true)
 repeat while(bxcallerPointer == bxcallePointer)
 longfill(@by, 0, 1024)
 fft.butterflies(fft#CMD_DECIMATE | fft#CMD_BUTTERFLY | fft#CMD_MAGNITUDE, @bx[1024 &
bxcallerPointer], @by)
 long[maxfreqaddr] := 0
 long[maxampaddr] := 0
 repeat i from 2 to 40 'sum 3 consecutive frequencies and test against threshold

87

 'temp := bx[1024 & bxcallerPointer + i] + bx[1024 & bxcallerPointer + i - 1] +
bx[1024 & bxcallerPointer + i + 1]
 temp := bx[1024 & bxcallerPointer + i]
 if temp > AlarmThresh
 if temp > long[maxampaddr]
 long[maxfreqaddr] := i
 long[maxampaddr] := temp
 long[AlarmOnAddr] := true
 not bxcallerPointer
 fft.stop

PUB ADCEngineStart(sampleRate, maxvalueaddr)
'' //
'' // Starts up the ADC driver running on a cog.
'' // Returns true on success or false.
'' // SampleRate - Sample rate to record audio at.
'' // maxvalueaddr - Address of Max Value variable - used to set LED in top module
'' //
 ADCEngineStop
 if(chipver == 1)
 clocksPerSample := (clkfreq / (samplesPerSecond := ((sampleRate <# 44_100) #> 1)))
 bytemove((@WAVFileHeaderData + 24), @samplesPerSecond, 2)
 sampleRate := (samplesPerSecond << 1)
 bytemove((@WAVFileHeaderData + 28), @sampleRate, 4)
 clocksPerSampleAddress := @clocksPerSample
 dataBlockAddress := @datablock
 callePointerAddress := @callePointer
 bxAddress := @bx
 bxcallePointerAddress := @bxcallePointer
 maxValueAddress := maxvalueaddr
 longfill(@by, 0, 1024)
 ADCcogID := cognew(@ADCinit, 0)
 result or= ++ADCcogID

PUB ADCEngineStop
 if(ADCcogID)
 cogstop(-1 + ADCcogID~)

PUB FATEngineStart
'' //
'' // Starts up the SDC driver running on a cog and checks out a lock for the driver.
'' //
 return fat.FATEngineStart(DOPin, CLKPin, DIPin, CSPin, WPPin, CDPin, RTCRes1, RTCRes2,
RTCRes3)

PUB FATEngineStop '' 6 Stack Longs
'' //
'' // Shuts down the SDC driver running on a cog and returns the lock used by the driver.
'' //
 fat.FATEngineStop

PRI clrstr(strAddr, size)
' Clears string at strAddr
' -- also resets global character pointer (idx)
 bytefill(strAddr, 0, size) ' clear string to zeros
 idx~

PRI decf(value1, width) | t_val, field
'' Returns pointer to signed-decimal, fixed-width ("0" padded) string
 clrstr(@nstr, MAX_LEN)
 width := 1 #> width <# constant(MAX_LEN - 1) ' qualify field width
 t_val := ||value1 ' work with absolute
 field~ ' clear field
 repeat while t_val > 0 ' count number of digits
 field++
 t_val /= 10
 field #>= 1 ' min field width is 1
 if value1 < 0 ' if value is negative
 field++ ' bump field for neg sign
 if field < width ' need padding?
 repeat (width - field) ' yes

88

 nstr[idx++] := "0" ' pad with space(s)
 return decstr(value1)

PRI decstr(value1) | div, z_pad
' Converts value to signed-decimal string equivalent
' -- characters written to current position of idx
' -- returns pointer to nstr
 if (value1 < 0) ' negative value?
 -value1 ' yes, make positive
 nstr[idx++] := "-" ' and print sign indicator
 div := 1_000_000_000 ' initialize divisor
 z_pad~ ' clear zero-pad flag
 repeat 10
 if (value1 => div) ' printable character?
 nstr[idx++] := (value1 / div + "0") ' yes, print ASCII digit
 value1 //= div ' update value
 z_pad~~ ' set zflag
 elseif z_pad or (div == 1) ' printing or last column?
 nstr[idx++] := "0"
 div /= 10
 return @nstr

PRI Timer(RecTimeAddr, StoppedAddr) | Time, temp1
'starts a timer used to stop a timed recording. RecTime is the rec length in seconds.
 Time := cnt
 temp1 := long[RecTimeAddr]
 repeat until temp1 =< 0 or long[StoppedAddr] == true
 waitcnt(Time += clkfreq)
 temp1--
 long[RecTimeAddr] := temp1
 long[StoppedAddr] := true
 waitcnt(clkfreq + cnt)
 cogstop(cogID)

PUB SDCardCheck
'' //
'' Tries to mount SD card. If successful, returns true (-1), else returns an error code.
'' //
 result := false
 ifnot(fat.partitionMounted)
 fat.mountPartition(0)
 result := fat.partitionMounted
 unmount
 return

PUB unmount
 fat.unmountpartition

DAT
' ///
' ADC Driver
' ///
 org 0
' //////////////////////Initialization///
adcinit or dira,cmask 'output CLK
 or dira,smask 'output CS

 mov recorderPointer, dataBlockAddress '
 mov bxptr, bxAddress
 rdlong recorderRate, clocksPerSampleAddress 'Setup
timing.
 mov timeCounter, recorderRate '
 add timeCounter, cnt '
 mov bxcounter, #4

' ///
' Recorder
' ///

outerLoop mov counter, #256 ' 512Bytes/16Bits/1Ch = 256 Samp

89

' //////////////////////Inner Loop///

innerLoop waitcnt timeCounter, recorderRate 'wait for next sample

main_loop mov command,#$10 'init command
 mov t2,enables 'get enables
 mov t3,#8 'ready 8 channels

cloop shr t2,#1 wc 'if channel disabled, skip

 test t2,#$80 wc 'channel enabled, get single/diff
 muxnc command,#$08
 mov stream,command

 or outa,smask 'CS high
 or dira,dmask 'make DIN/DOUT output
 mov bits,#20 '(cs+1+diff+ch[3]+0+0+data[12])

bloop test stream,#$20 wc 'update DIN/DOUT
 muxc outa,dmask

 cmp bits,#14 wz 'if command done, input DIN/DOUT
 if_z andn dira,dmask

 andn outa,cmask 'CLK low

 or outa,cmask 'CLK high

 test dmask,ina wc 'sample DIN/DOUT
 rcl stream,#1

 andn outa,smask 'CS low

 djnz bits,#bloop 'next data bit

 and stream,mask12 'trim and write sample

 wrword stream,recorderPointer 'write data word to memory
 rdlong maxval, maxValueAddress 'get current maximum value
 cmp maxval, stream wc
 if_c wrlong stream, maxValueAddress 'if stream > current max val
 shr stream, #1 'bx values < 2048 so divide by 2
 wrlong stream,bxptr 'write value to bx buffer for fft

 add recorderPointer, #2 'increment buffer pointers
 add bxptr, #4 '

 rdlong recorderRate, clocksPerSampleAddress ' Loop.
 djnz counter, #innerLoop '

' //////////////////////Outer Loop///

 rdword buffer, callePointerAddress wz ' Switch pntr
 sumz buffer, #1 '
 wrword buffer, callePointerAddress '
if_nz mov recorderPointer, dataBlockAddress '

 sub bxcounter, #1 wz
if_z call #bxbuffer

 jmp #outerLoop ' Loop.

bxbuffer rdword buffer, bxcallePointerAddress wz 'flip bxpntr
 sumz buffer, #1
 wrword buffer, bxcallePointerAddress
if_nz mov bxptr, bxAddress
 mov bxcounter, #4 'reset bx cnt
bxbuffer_ret ret '1024, 4 sets
 'of 256)
' ///
' Data

90

' ///
mask12 long $FFF
dmask long 1 << 26
cmask long 1 << 25
smask long 1 << 27
enables long 1 'CH0 only, single mode

' //////////////////////Addresses//

clocksPerSampleAddress long 0
dataBlockAddress long 0
callePointerAddress long 0
bxcallePointerAddress long 0
bxAddress long 0
maxValueAddress long 0

' //////////////////////Run Time Variables///

buffer res 1
counter res 1
t2 res 1
t3 res 1
stream res 1
bits res 1
maxval res 1
bxcounter res 1
recorderPointer res 1
bxPtr res 1
recorderRate res 1
timeCounter res 1
command res 1

' ///

 fit 496

CON WAVFileHeaderSize = 44 ' DO NOT EDIT!

DAT WAVFileHeaderData ' DO NOT EDIT!

' ///

 byte byte "RIFF" ' "RIFF" chunk header.
 byte long 0 ' "RIFF" chunk size = (fileSize - 8). Offset 4.
 byte byte "WAVE" ' File type.

 byte byte "fmt " ' "fmt " chunk header.
 byte long 16 ' "fmt " chunk size.
 byte word 1 ' Audio format.
 byte word 1 ' Nuber of channels.
 byte long 0 ' Sample rate.EDITED by setup function!
 byte long 0 ' Byte rate. EDITED by setup function!
 byte word 2 ' Block align.
 byte word 16 ' Bits per sample.

 byte byte "data" ' "data" chunk header.
 byte long 0 ' "data" chunk size = (fileSize - 44). Offset 40.

DAT AUTONAMEArray byte "000_OKC.WAV", 0
'default file name. Change "_OKC" extension if desired.
' ///

{{

///
// TERMS OF USE: MIT License
///
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,

91

// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///
}}

FullDuplexSerial.spin – Unmodified code from Parallax, available in Propeller Tool 1.3.2

92

D USER MANUAL

Infrasound Detection Device

1. Mini USB Connector – Used to program and/or power the device.
2. Micro SD Card Slot – Cards are inserted face down (metal contacts face up)
3. 2.1 mm Power Jack – Used to power device (6-9 VDC)
4. Gain knob – Controls amplifier gain (2-229x)
5. Power Switch
6. Output Jack – 3.5 mm mono output *** RANGE SPECS ONCE FINALIZED***
7. LED Strip – Displays input amplitude
8. Display – 2-line interface displays device instructions and status

9. Back button – Interface control – displayed as 

10. Up Button – Interface control – displayed as 

11. Down Button – Interface control – displayed as 
12. Select Button – Interface control – displayed as OK
13. Input Jack – 3.5 mm mono input (0-2.5 VAC)

93

To operate device:

1. Slide power switch to ON position.

2. Display will illuminate showing Starting… and plays a startup tone. LED block will
flash on and off.

3. Menu options will show:

The display has two lines. The top line will show information and status. The bottom

line will show what button options are available. Press the UP and DOWN buttons to switch

between the options. Press BACK in any menu to return to a higher-level menu. Press OK to

select the option shown.

Menu Options

1. Monitor w/ Alarm
Press OK to select. This will put the device in Monitor mode. If the signal from the input
is a frequency below 40 Hz that exceeds the Alarm Threshold level, the alarm will sound
and display lights will flash. Pressing BACK will return the user to the main menu and
disable the monitor/alarm.

2. Recording
Press OK to enter the Recording menu. Recordings are made in the WAV format.
Filenames are auto-generated. The default filename is 000_OKC.WAV. Subsequent
files will increment the three-digit number at the front of the filename. Two options are
available:

a. Timed Recording
Press OK to select. This option allows the user to record the input signal for a
specified amount of time. Pressing UP or DOWN in this menu switches the
predefined time options ranging from 1 minute to 24 hours. When the desired
duration is displayed, press OK to start the recording. The device will record
until the time has elapsed or maximum file size has been reached, whichever is
earlier.

b. Rec Until Stop
Press OK to select. The display will show Rec Continuous. This option can start
a recording that will continue until either the OK button is pressed or maximum
file size is reached, whichever is earlier. Press OK to start and stop the
recording.

3. Playback
Press OK to enter the Playback menu. Valid WAV file names will be shown on the
display. Press DOWN to step through the files on the SD card. Press OK to start

94

playback of the selected file. While the file is playing, press DOWN to toggle between
1x and 10x playback speeds. Press OK to stop playback.

4. Settings
Press OK to enter the Settings menu. Two options are available:

a. Sampling Freq
Press OK to select. This option allows setting the sampling frequency between
1000 Hz and 20000 Hz in 1000 Hz increments. Press UP and DOWN to switch
between frequency settings. Press OK to set the frequency. This value is only
used while the device is powered on. On reset, the sampling frequency reverts to
default (1000 Hz.)

b. Alarm Threshold
Press OK to select. This option allows setting the amplitude threshold that will
trigger the alarm for frequencies below 40 Hz. The valid range is between 10%
and 90% of maximum amplitude. Press UP and DOWN to switch between
threshold percentages in increments of 10%. Press OK to set the threshold level.
This value is only used while the device is powered on. On reset, the alarm
threshold value reverts to default (10%.)

Setting Input Levels

 When monitoring or recording, the gain of the amplifier must be adjusted to

account for different input levels and different input devices.

1. Put the device in Monitoring w/ Alarm or a Recording mode.

2. While in these modes, the 5-light LED bar will show the input signal level.

3. Provide an input signal of a type similar to the expected volume level of the recording.
For example, if the device is a microphone and the expected volume level is similar to
human speech, speak into the microphone at the approximate volume level.

4. Adjust the gain control knob while providing an input signal until the signal is
consistently in the 3rd or 4th LED from the bottom. Reduce the gain if the 5th LED is lit
constantly or often to prevent clipping the signal.

5. The gain level is now set.

Changing Batteries

Remove the 4 screws on the top cover. Carefully lift off the cover. The battery

compartment is on the right face of the device. The device requires four AAA batteries.

95

Connections

There are three connections that could become unconnected if the cover is removed.

Two of the connections are the + and – connections to the battery. The last connection is a

jumper that connects the input signal to the microcontroller. The first option will connect through

a low-pass filter (needed for infrasound detection.) The second option bypasses the low pass

filter. Only one of these options can be connected at the same time. Ensure connections are in

place before reattaching the top cover. Connections are made by pushing the jumper contact

firmly into the female header slot (see figure below.)

VITA

Steven Marcus Bergren

Candidate for the Degree of

Master of Science

Thesis: A PORTABLE DEVICE FOR DETECTING INFRASOUND

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical Engineering at

Oklahoma State University, Stillwater, Oklahoma in May, 2018.

Completed the requirements for the Bachelor of Science in Electrical Engineering at

Oklahoma State University, Stillwater, Oklahoma in May, 2001.

Experience:

Electronics Engineer, Dept. of Defense, Tinker Air Force Base, 2001-present

	INTRODUCTION
	Elephant Communication
	Thesis Objective
	Design Considerations

	REVIEW OF LITERATURE
	Elephant Listening Project
	Low-cost Recording System
	The Propeller Experimental Controller

	METHODOLOGY
	Signal Input
	Microcontroller
	Amplifier
	Analog to Digital Converter
	Interface
	External Storage
	Digital to Analog Converter
	Software
	Implementation
	Frequency Analysis
	Device Assembly
	Device Specifications

	RESULTS
	Recording
	Playback
	Infrasound Detection
	Pure Tones
	Elephant Calls
	Geophone Test

	CONCLUSION
	Future Work

	A SCHEMATICS AND LAYOUT
	Main Board
	Buttons Board
	LED Board

	B PARTS LIST
	C SOFTWARE
	D USER MANUAL

