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Abstract 

Low-energy conformation search on biological macromolecules remains a 

challenge in biochemical experiments and theoretical studies. Finding efficient 

approaches to minimize the energy of peptide structures is critically needed for 

researchers either studying peptide-protein interactions or designing peptide drugs. In this 

study, we aim to develop a heuristic-based algorithm to efficiently minimize a promising 

PD-L1 inhibiting polypeptide, TPP-1, and build its low-energy conformer pool to 

advance its subsequent structure optimization and molecular docking studies. Through 

our study, we find that, using backbone dihedral angles as the decision variables, both 

PSO and GA can outperform other existing heuristic approaches in optimizing the 

structure of Met-enkephalin, a benchmarking pentapeptide for evaluating the efficiency 

of conformation optimizers. Using the established algorithm pipeline, hybridizing PSO 

and GA minimized TPP-1 structure efficiently and a low-energy pool was built with an 

acceptable computational cost (a couple days using a single laptop). Remarkably, the 

efficiency of hybrid PSO-GA is hundreds-fold higher than the conventional Molecular 

Dynamic simulations running under the force filed. Meanwhile, the stereo-chemical 

quality of the minimized structures was validated using Ramachandran plot. In summary, 

hybrid PSO-GA minimizes TPP-1 structure efficiently and yields a low-energy 

conformer pool within a reasonably short time period. Overall, our approach can be 

extended to biochemical research to speed up the peptide conformation determinations 

and hence can facilitate peptide-involved drug development.      
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Chapter 1 : Introduction 

 

1.1 The Rise of Immunotherapy  

Cancer is one of the leading causes of human death on earth. According to the 

statistics from National Cancer institute (NCI), 8.2 million people died of cancer-related 

disease in 2012 with another 1.4 million new cases developed that year worldwide. To 

make it even worse, the number of newly developed cancer cases each year keeps 

increasing. For example, an estimated 1.7 million new cancer patients will be diagnosed 

in the United States in 2018 (https://www.cancer.gov/about-cancer).   

Formed by irregularly shaped cells, tumor typically proliferates in an abnormally 

high growth rate, and it invades neighboring organs and causes damages until functional 

failure/loss of the hosting organ. Due to cell-to-cell heterogeneity and rapid gene 

mutations among tumor cells, malignant tumor is hard to predict at its early stages and 

pharmaceutically difficult to treat. In fact, the current prevailing cancer therapies, i.e. 

chemotherapy and radiotherapy, are still plagued by their accompanying severe adverse 

side effects and low efficacies [1-4].   

Immunotherapy has become a promising alternative treatment for cancer patients 

in recent years after a striking success of several clinical trials targeting human immune 

checkpoints [5-9], mainly referring to the two proteins on T cell surface, i.e. CTLA-4 and 

PD-1 (Fig. 1-1). These two proteins were discovered by two cancer immunologists James 

P. Allison and Tasuku Honjo, respectively. Both of the two scientists were awarded the 

2018 Nobel Prize in Physiology or Medicine for their contributions to unveil the 

complexity of molecular mechanisms regulating the immune responses based upon the 
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two aforementioned immune checkpoints [10], and their important findings laid a solid 

foundation for the blooming of immunotherapy. In plain words, cancer immunotherapy 

targets and destroys cancer cells through enhancing human body’s immune activities by 

releasing some of the ‘brakes’ on the host immune system.   

 

 
Figure 1-1. The immune checkpoints of T-cells.  
Both PD-1 and CTLA-4 are the T-cell receptor responsible for the immune checkpoint. Inhibitor 
drugs exert their functions through blocking the interactions between PD-1 (or CTLA4) and its 
ligand.  
[Nature] REF. 10 © (2018). 

In the past several years, multiple novel cancer immunotherapy drugs have been 

developed as the immune checkpoint antagonists and these approaches have focused on 

anti-PD-1 and anti-PD-L1 checkpoint inhibitors, anti-CTLA-4 monoclonal antibodies 

and immune-modulatory drugs.  Since 2015, the Food and Drug Administration (FDA) 

has approved eight antibody-related immunotherapy drugs targeting either one or 

multiple proteins [11]. In addition, multiple antibody immunotherapy candidates are 

being actively investigated in clinical trials, and some of them have already shown 

potentials to advance to real patient treatments [9, 12]. Chinese FDA also approved its 

first antibody drug used for immunotherapy in the summer of 2018. The pharmaceutical 
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value of immunotherapy has kept increasing and the immunotherapy drugs market is 

projected to reach $201.52 billion by 2021.  This increases from $108.41 billion in 2016, 

with an annual growing rate at 13.5% during the forecasting period [13].  

1.2 Low-energy Conformation Search of TPP-1 

Organic molecules are still the dominating force on the pharmaceutical drug 

market. Approximately 70% of the top 200 pharmaceutical products (ranked by retail 

sales in 2016 by the Njardarson Group at The University of Arizona) are developed from 

small organic molecules. However, adverse side effect caused by the toxicity of organic 

compounds is a major challenge and concern for late stage clinical studies.  

As an alternative strategy, peptide-based pharmaceutical drug development has 

gained increasing attention in recent years considering its natural biodegradability and 

lower toxicity. Whilst less toxic, studying and optimizing short peptide structures are 

more effort-intensive during pre-clinical investigations than designing/synthesizing 

organic compounds because the three dimensional conformations of short peptides tend 

to be more flexible while, in contrast, small organic compounds are usually rigid. The 

structural flexibility of short peptides is mainly attributed to a large number of feasible 

combinations of the dihedral angles within the peptide backbone. Therefore, this causes 

the peptide conformational searching space to be a vast number, rendering the 

computation very expensive. Since peptide low-energy conformers are needed in peptide 

conformation-related studies, such as peptide docking, binding free energy calculations 

and peptide structure optimization. Therefore, low-energy conformational search is 

unavoidable, and naturally, efficient approaches to expedite the peptide low-energy 

conformer searching is critically needed. 
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1.2.1 Discovery of Polypeptide TPP-1 

TPP-1, with an amino acid sequence of SGQYASYHCWCWRNPGRSGGSK, 

has been actively studied in the field of cancer immunotherapy. It was shown to be 

effective in inhibiting cancer cell proliferation and could potentially improve current 

tumor therapy [14]. TPP-1, which works as a PD-L1 blockade agent, was discovered from 

biological high-throughput screening assay for its blocking of the signaling pathway to 

one major immune checkpoint PD-1 on the T-cells. PD-L1 is expressed regularly on the 

normal human cell surfaces and serves as a key cellular signal for T-cells to distinguish 

self-cells from non-self-cells. However, during the course of evolution, mutated tumor 

cells hijack this mechanism by expressing PD-L1 on its own cell surface and take 

advantage of this protein as an escaping tool of human immune surveillance. And 

discovery of TPP-1 has opened new ways to the improvement of immunotherapy tools. 

1.2.2 Polypeptide TPP-1, as an Alternative for Tumor Immunotherapy   

From the perspective of manufacturing pharmaceutical products, the cost of 

producing peptides is much lower than producing antibodies. Moreover, since antibody 

molecules are usually larger in size than peptides, their absorption efficiency is much 

lower in patients’ body when compared with small organic molecules or short peptides. 

However, small organic molecules also suffer from high probability toxicity issues [15-

18], especially in the late stage clinical studies. Considering all these above factors, 

developing short peptides as anti-cancer therapies is more promising. In fact, while 

peptides as a cancer treatment has attracted the therapeutic focus for many years [19, 20] 

only recently it gained a lot of momentum  in the field of immunotherapy.  
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TPP-1, which has been shown to be effective in inhibiting cancer cell 

proliferation, is now regarded as, if not alone, at least a supplemental, promising 

checkpoint immunotherapy strategy through a proposed working mechanism as shown in 

Figure 1-2. Despite encouraging pre-clinical results of TPP-1 [14], structural optimization 

steps will be needed to advance TPP-1 to clinical studies for more comprehensive 

investigations. In fact, conventional computational methodologies to characterize peptide 

structures or to find low-energy conformations are still limited to molecular dynamic 

(MD) simulations using empirical force fields. While the result of MD simulations is 

usually reliable, the execution of this approach is computationally expensive. Thus, in 

order to meet the increasing demand of peptide sequence optimization and low-energy 

structure prediction, it is important to accelerate existing global optimizers through 

designing novel algorithms.  

Finding the low-energy conformers of TPP-1 is beneficial to molecular docking 

studies to characterize the binding poses and binding free energy calculations to evaluate 

the binding strength. For instance, in the optimization of TPP-1 sequence to either 

strengthen or weaken the binding strength to its target, low-energy conformers can be 

utilized to guide the TPP-1 amino acid mutations. In this project, we aim to find the low-

energy conformers of TPP-1 to provide a basis for the subsequent TPP-1: PD-L1 

interaction studies both computationally and experimentally. 
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Figure 1-2. AptPD-L1, a DNA aptamer, blocks PD-1/PD-L1 interaction and attenuates T 
cell suppression.  
The figure is adapted from a paper published in 2016 [21], and the inhibition of tumor cell 
proliferation by TPP-1 is proposed to perform in a similar manner to AptPD-L1. 
[Nucleic Acids] REF. 21 © (2016). 

1.3 Heuristic Approaches  

Heuristic, meaning “to find” or “to discover”, is a strategy that was derived from 

the previous experience accumulated from tackling similar problems. The study of 

heuristic in human decision-making can be dated back to 1970-1980s by psychologists 

Amos Tversky and Daniel Kahneman [22], however, the formal concept of heuristic 

approaches originated with Nobel laureate Herbert A. Simon.  

Heuristic techniques are not guaranteed to find optimal solutions, but practically 

speaking, they do offer an approach to efficiently discover high-quality solutions which 

satisfy goals.  Additionally, metaheuristics for optimization are general frameworks 

which provide rules for guiding heuristic search in optimization problems.  Metaheuristic 

algorithms include well known techniques such as evolutionary algorithms and simulated 

annealing.  Such techniques have been applied to many famous and typical NP-hard 

problems, such as scheduling problems [23-25], knapsack problems [26, 27] and 

travelling salesman problems [28, 29], etc.  
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Heuristic or metaheuristic approaches are usually chosen when finding an exact 

solution to the problem of interest is impractical as it cannot be obtained within an 

acceptable amount of time or with the available computing resources. There are four 

typical principles for applying heuristic methods. These principles can be ordered 

sequentially as: understanding the problem, making a plan, carrying out the plan, and 

evaluating/adapting. These principles were first proposed in a monograph titled “How to 

solve it” by a Hungarian mathematician György (George) Pólya in 1945.  Nowadays, 

these principles have been widely applied to address difficult problems in computer 

science and many other scientific fields. 

1.3.1 Heuristic Approaches in Addressing Scientific Problems 

In theoretical chemistry, intensive calculations are needed to carry out simulations 

of biological molecule conformation changes in a dynamic process. Many heuristic 

methods are implemented in the field of computational chemistry. For example, before 

Molecular Dynamic (MD) simulations, typically steepest descent algorithm was applied 

to quickly orient the molecule to a local lower-energy conformation [30]; in 

computational protein design, multiple stochastic search algorithms were applied and 

compared [31]; in molecular docking software, simulated annealing approach was used 

to bring organic molecules to their low-energy conformations during the docking 

processes [32, 33].  

The application of heuristic approaches can also be found in the field of 

bioinformatics. One example, sequence alignment problem can be very challenging when 

the size and number of sequences increases, researchers have taken the advantages of 

simulated annealing, ant colony optimization and particle swarm optimization approaches 
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to help finding the optimal or near-optimal solutions for efficient DNA sequence 

alignment [34]. 

 
1.3.2 Particle Swarm Optimization and Genetic Algorithm 

 Here, two metaheuristic approaches, Particle Swarm Optimization and Genetic 

Algorithm, are discussed. 

Particle Swarm Optimization (PSO) is first introduced by James Kennedy and 

Russell C. Eberhart in 1995 and since then tens of thousands of papers have been 

published about particle swarms. PSO was inspired by the social behavior of birds and 

shoals of fish and it is a population-based optimization technique. The main advantage of 

PSO is that, with only a few tunable parameters, it is simple to implement. Another 

attractive feature of PSO is that, since it does not require the gradient of the problem being 

optimized, it is applicable to many not-differentiable problems. This makes it distinctive 

from classic optimization methods, such as gradient descent algorithm. Moreover, in 

many cases, PSO tends to converge to the ‘best’ solution quickly and hence it has the 

potential to solve many difficult problems with a high efficiency.  

Genetic algorithm (GA), on the other hand, is inspired by the process of natural 

selection and thus Darwin’s theory of evolution. It is first introduced by John Holland in 

1960. In 1989, his student Goldberg further extended GA into a protocol that is in 

common use today. GA is a powerful meta-heuristic tool being frequently and widely 

used to find near-optimum solutions for many combinational problems in the field of 

business, scientific and engineering. The working principle of GA is rather 

straightforward: during each successive generation, individual solutions with desired 
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fitness, as measured by the evaluation function, are retained and advanced to generate 

offspring, and this step is repeated iteratively till optimized solutions are produced.  

With GA being easily implementable, it is also suitable to hybridize with other 

optimization methods. Other advantages of GA are that it is normally guaranteed to 

improve the current solution and that it also works for problems with a ‘noisy’ 

environment. However, GA has its limitations as well. One major disadvantage is the 

curse of dimensionality. In other words, GA does not scale well with problem complexity. 

The problem search space increases exponentially with the dimension of the problem. In 

addition, for some dynamic problems, GA cannot always produce consistent solutions 

because early convergence issues can become prominent. 

1.3.3 Pros and Cons of Heuristic Approaches  

Overall, applying heuristic approaches for problem-solving can be very beneficial 

and efficient. It tends to provide a quick and relatively inexpensive feedback to us. 

Especially for the early-phase of a designing process, the intuitive feedback from heuristic 

technique would be helpful to problem-designers. However, one major shortcoming of 

using heuristic approaches is that the different heuristic methodologies may perform very 

differently, and no single approach can be used to solve all kinds of problem instances. 

Trained experts are usually required to implement heuristic approaches efficiently and 

effectively, especially in addressing practical scientific questions. 
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Chapter 2 : Both PSO and GA are Efficient in Minimizing Met-

enkephalin  

 

2.1 Introduction 

Peptides are short biopolymers, whose components are the 20 unique amino acids 

in nature. The number of amino acid units within a peptide usually ranges from a few to 

a few tens. When the amino acid number grows even larger, it usually adopts a more rigid 

structure and becomes a protein. In biological systems, peptides perform important 

physiological roles. For example, peptides form one major class of hormones and are 

essential for human homeostasis regulations; some peptides can function as transporters 

mediating the trans-membrane processes of nutrients or small molecules; other peptides 

can function as enzymes to catalyze metabolism reactions. Overall, an appropriate 

concentration and activity levels of peptides are necessary to achieve body homeostasis 

and maintain health. 

Studying peptides is important for not only understanding the fundamental 

molecular mechanism of the endogenous biological system, but also presenting 

tremendous values for pharmaceutical drug development. Especially in recent years, 

developing peptides as cancer therapy drugs have gained increasing attention, because of 

their lower production cost (than antibodies) and less toxicity (than small organic 

compounds).  These two factors will be critically evaluated when a potential drug 

candidate advances into clinical trials. In pre-clinical research, however, emphasis is 

usually placed onto optimizing the binding affinity of the peptide of interest to its 

targeting proteins.  
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Based on the “thermodynamic hypothesis” by Anfinsen in 1973, the native state 

of protein is the structure that minimizes the free energy [35]. In other words, such a 

native state corresponds to the structure conformation with the global minimum energy. 

The immediate question to address is then how to quickly find such a structure with a 

global minimum energy. Performing the conformational search to find this global 

minimum energy is an obvious approach and it is called as a conformational optimization 

problem. Optimizing peptide structures has been a challenging task for many decades 

because of its large conformational searching space caused by a vast number of dihedral 

angle combinations for the peptide backbone. And notably, when the amino acid 

sequence becomes longer, the conformational search space grows exponentially.  

Over the past years, many research have been carried out to apply heuristic 

approaches to facilitate the peptide structure minimization, such as Tabu Search (TS) 

[36], Simulated Annealing (SA) [37], Monte Carlo Minimization (MCM) [38] and 

Conformational Space Annealing (CSA) [39]. However, these optimizers can only 

minimize short (typically less than 10 amino acids) peptide structures because the 

computational cost of searching becomes too high to handle larger peptides. Meanwhile, 

restraints were applied to the dihedral angle combinations. Thus, it is important to fill the 

gap of technologies to perform long peptide conformation searches efficiently and 

effectively.   

In this chapter, the adaptation of Genetic Algorithm, Memetic Algorithm, and 

Particle Swarm Optimization techniques to minimize a common testing peptide, Met-

enkephalin, will be performed. Met-enkephalin, with a primary amino acid sequence 

YGGFM, is an endogenous pentapeptide that has an opioid effect. Met-enkephalin is 
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highly unstable and has a low bioavailability and short half-life (minutes). These 

properties cause difficulties to study this peptide using traditional biochemical 

techniques. That explains why it has attracted many chemists’ attention to study its 

structure computationally. As a benchmarking peptide, it has been widely used to perform 

the evaluation of peptide conformation optimizers.  For a direct comparison with other 

existing approaches, we will also use Met-enkephalin to test our algorithm.  

2.2 Methodology 

2.2.1 Energy Evaluation Function  

Many different force fields for defining the potential energy of protein structures 

have been designed, and the most used ones are ECEPP, OPLS, GROMOS, CHARMM 

and AMBER. In this study, we choose the AMBER force field that is a preferable choice 

among computational chemists when performing the molecular mechanic studies [30].  

Below is the functional form of the AMBER force field; this equation defines the 

potential energy of a macromolecule system (peptide in our case). 

 

The first two terms represent the bond and angle energies, respectively. The last 

term is composed of two parts: van der Waals (non-bonded energy between all atom pairs) 

and electrostatics. The third term, which depends on the torsion angles, will be the only 

energy to be minimized in this study. The principle/fact behind this is that, under 

biological conditions, the dihedral angle changes will primarily determine the overall 

peptide structures; whilst, the bond length and angle terms are relatively constant. Thus, 

to reduce the size of the problem, bond lengths and bond angles will be fixed at their 
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equilibrium values; and the changes to van der Waals and electrostatics during the 

conformation searches were also handled by using the default values in Amber. 

2.2.2 Decision Variables 

In Section 2.2.1, we mentioned that the dihedral angles are the only parameters 

we are trying to optimize. Hence, the decision variables are the dihedral angles for each 

amino acid that forms the peptide sequence. Specifically, they include the backbone 

dihedral angles: phi (f), psi (j) and omega (w), and also the amino acid side chain 

dihedral angles, chi (c). Table 2-1 shows the detailed numbers of the decision variables 

for peptide Met-enkephalin. 

 
Table 2-1. Number of all the dihedral angles within peptide Met-enkephalin 

Amino Acid Psi angle (f) Psi angle (j) Omega angle (w) Chi angle (c) 
Tyr (Y) 1 1 1 3 
Gly (G) 1 1 1 0 
Gly (G) 1 1 1 0 
Phe (F) 1 1 1 2 
Met (M) 1 1 1 3 

Sum of all dihedral angles: 23 
 
 
2.2.3 Particle Swarm Optimization  

Particle Swarm Optimization has been applied to solve many NP-hard problems. 

We choose PSO in this study because it is simple to implement with only a few parameters 

to adjust. Furthermore, in many cases, PSO converges to the best solution quickly and 

hence it can solve some difficult problems efficiently.  

As denoted in the name, there are two main components for PSO, the swarm and 

the particle. All particles together form a swarm and there is a social component to guide 

them move synergistically. For each individual particle, the movement is influenced by 
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three factors: inertia, cognitive influence and social influences where inertia velocity of a 

particle maintains its capability to explore the search space, cognitive influence comes 

from its personal best history and social influences consider the effect of found global 

best. Therefore, each individual particle tries to achieve self-improvement through both 

cognitive and social influences, and eventually the whole swarm moves towards the best 

area of solution quickly. The two variables being considered for each particle within the 

swarm are velocity and position, and they are updated at each iterative cycle based on the 

equations (1) and (2) below, respectively. 

𝑉"#$% = 𝑉"# + 𝜑% ∗ 𝑟%(𝑃" − 𝑋"#) + 𝜑0 ∗ 𝑟01𝑃2 − 𝑋"#3	                                      (1) 

𝑋"#$% = 𝑋"# + 𝑉"#$%                                                                                          (2) 

Both parameters, velocity and position, are initialized randomly from the solution 

space. During each cycle, both individual particle best solution (𝑃") and global particle 

best solution (𝑃2) are retained, and velocity and position update their values in a sequential 

order. Briefly, the velocity updates itself by considering all three components (i.e. inertia, 

cognitive influence and social influences), and afterwards, the position simply updates 

itself by adding the updated velocity. The iterative cycle is repeated until termination 

criteria is satisfied.  

2.2.4 Genetic Algorithm  

Genetic Algorithm is a powerful meta-heuristic tool that has been frequently used 

to seek near-optimum solutions for many combinational problems. We also test GA as a 

Met-enkephalin conformation optimizer with the consideration that GA is suitable to 

hybridize with other existing methods, so that we can easily combine, if necessary, with 

other implemented heuristic methods in our study.  
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Overall, GA generates offspring through, firstly, a linear combination of two 

parents as denoted below in equations (3) and (4), where β is	randomized	between	0	

and	 1, and secondly, performing crossover with one parent and thirdly, randomly 

selecting one point for mutation to a random value within the solution space. The 

corresponding rate for crossover and mutation being optimized to be 0.8 and 0.1, 

respectively, in our study.  

O1=P1 - β*(P1-P2)                                                                                (3) 

O2=P2 + β*(P1-P2)                                                                               (4) 

Importantly, it is usually not efficient to replace the entire parental generation with 

all new offspring in the children generation. Hence, we applied the elitism to maintain 

high fitness for the continuing population by retaining the top 50% individuals from the 

parental generation and another top 50% individuals from the children generation in terms 

of their fitness values determined by the evaluation function. 

2.2.5 Memetic Algorithm  

The Memetic Algorithm, as a hybrid Genetic Algorithm, was developed in the 

most recent decade and has been successfully applied to solve many real-world problems, 

such as maintenance scheduling [40, 41], gene expression clustering [42] and gene feature 

selection [43]. When combined with the local search, the MA performance proves to be 

an improvement to GA in some problem domains. In this study, we perform a very simple 

MA with the local neighborhood structure being defined as the value of one dihedral 

angle ± 0.5 degrees. Thus, the size of the neighborhood is two-fold of the problem 

dimension.  
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2.2.6 Amber and Pyrosetta Software  

The evaluation function was implemented using the Amber fore field as stated in 

Section 2.2.1, thanks to the contribution from Amber developers who developed the 

Python Application Programmer Interface (API). The Python API makes it possible for 

us to use sander (an Amber module which carries out energy minimization) 

functionalities inside our own Python scripts without worrying about a) how strings map 

to the underlying Fortran code and additionally, or b) bugs arising from uninitialized 

variables (see Amber manual Section 17.13.4 [30]). Specifically, in this study, we 

employed the sander functionality of AMBER software to compute the total potential 

energy of our peptide systems. 

Another important question to tackle is how to generate the new atom coordinates 

after changing the dihedral angles during each iterative cycle. One useful software 

package we employed for this question is called Pyrosetta [44], which is an interactive 

Python-based interface modified based on Rosetta. Pyrosetta enables users to design their 

own molecular modeling algorithms, and we used the software to regenerate new atomic 

coordinates from a set of new dihedral angles.    

 

2.3 Results 

2.3.1 Conversion between Amber and Sybyl Atom Type 

To compute the potential energy of the peptide system, all atomic coordinates 

need to be provided. In this study, we regenerate the coordinates of all peptide atoms 

using Pyrosetta software, which can directly take the dihedral angles of the peptide 

sequence as the input and quickly output the new coordinates. However, a major 
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challenge is that Pyrosetta code utilizes Sybyl atom type, whist Amber package only 

accept Amber atom type. The atom type incompatibility causes problematic cooperativity 

between the two software packages. After a detailed output file comparison, we find that 

the differences between using these two atom types appear as only different atom orders 

(Fig. 2-1).  Specifically, the order of atom coordinates for each amino acid regenerated 

from Pyrosetta need to be reshuffled before passing to Amber software for energy 

calculations. As a solution, we manually find the matching orders for all 20 amino acids 

denoted using either Amber or Sybyl Atom Type, and then use this mapping to link  the 

two software packages. For researchers who may face similar issues whenever need to 

connect the Amber and Pyrosetta, the matching orders from this study can be easily used. 

 

Figure 2-1. Example of atom order difference between Amber atom type and Sybyl atom 
type using amino acid Serine. 
A) Amber atom type expression of amino acid Serine (SER); B) Sybyl atom type expression of 
amino acid Serine (SER). The atom symbol and order differences are highlighted with a red box.  

2.3.2 PSO, GA and MA all Efficiently Minimize Met-enkephalin 

Three heuristic approaches (i.e. PSO, GA and MA) are implemented in this study 

to test and compare the algorithm minimization efficiency on Met-enkephalin.  All three 

algorithms are coded in Python and their corresponding experimental designs can be 
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found in detail in Section 2.2. As shown in the left panel of Figure 2-2, using the 23 

dihedral angles within Met-enkephalin as the decision variables (refer to Table 2-1), all 

three heuristic approaches (i.e. PSO, GA and MA) can obtain minimized Met-enkephalin 

three-dimensional structures with the system total energy below -30.0 kcal/mol (Fig. 2-

2A). Although both of GA and MA converge to minimized conformations with quite 

close total energies, GA performs 2-fold faster than MA. A possible explanation is that 

the MA method needs to spend a non-negligible amount of time to perform the local 

search for each individual before moving to the next iterative generation, which causes 

its slower convergence compared to GA without any local searches. Of note, the PSO 

algorithm stands out strikingly in regard to its efficiency in finding a further lower-energy 

conformation with the least computational effort among the three methods (Fig. 2-2B).  

 

 

Figure 2-2. Efficient structure minimization of Met-enkephalin using PSO, GA and MA 
heuristic methods.  
A) Plot of the energy decrease during Met-encephalin structure minimization using PSO, GA and 
MA; B) Comparison of minimization efficiency between our algorithms and other existing global 
optimizers from literature, including MCM, CSA and 𝝰BB. 
 

To further evaluate the exciting results using our methods, all three algorithms are 

compared with some existing approaches found in the literature, such as Monte Carlo 

Minimization (MCM) [38], Conformational Space Annealing (CSA) [39] and 𝝰-Branch 
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and Bound (𝝰BB) [45] (Fig. 2-2B). The results demonstrate that all three approaches 

implemented herein are comparable, and in particular, our PSO method significantly 

outperforms all other methods. Overall, the study of these three algorithms on a testing 

peptide, Met-enkephalin, lays the foundation to study another novel and longer peptide, 

namely TPP-1. Given these results, we advance PSO and GA methods for the TPP-1 

structure minimization considering their efficient optimization performance.  

 

2.3.3 Minimized Met-enkephalin Structure by PSO 

From the results in Section 2.3.2, PSO minimizes the Met-enkephalin structure to 

a much lower energy than all other applied techniques. Here, we use a molecule graphic 

software, Chimera [46], to represent the minimized lowest-energy Met-enkephalin 

structure (Fig. 2-3, colored in tan). And through comparison with the Met-enkephalin 

structure before running any minimization (Fig. 2-3, colored in cyan), we find that the 

two middle flexible residues, Glycine (G), exist as the overall structural turning points 

after minimization. In addition, the two peptide terminal ends, i.e. the amino and 

carboxylic acid groups, are found in close proximity, indicating electrostatics play a role 

in attracting these two groups after minimization. Furthermore, the optimized structure is 

considered feasible after being submitted to the online software, PROCHECK [47] for 

the stereo-chemical quality evaluation. 
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Figure 2-3. Ribbon representation of Met-enkephalin before and after minimization.  
The ribbon structure colored in Cyan is the linearized Met-enkephalin, i.e. before minimization; 
The ribbon structure colored in Tan is the Met-enkephalin after minimization. Corresponding 
amino acid residues are labeled adjacent to the ribbon structures, Y: Tyrosine, G: Glycine, F: 
Phenylalanine, M: Methionine. 
 
2.4 Discussion  

In the past decades, the Met-enkephalin has attracted considerable interest in the 

area of developing more efficient global optimizers for protein or peptide. In this chapter, 

we choose Met-enkephalin to evaluate our algorithms for the purpose of convenient 

comparison with other existing methods.  

To exclude the discrepancies caused by the continuingly updated force fields, we 

re-calculated the results from literature using the same Amber force field that was used 

in our study. Another interesting point is the mismatching atom orders expressed by 

Amber and Pyrosetta. Although manually assigned atom order correction was used in our 

study to solve this problem, it would be more efficient to develop a script so that the atom 

type conversions can be done automatically within either Amber or Pyrosetta software.  

Based on our experimental data, we found that all three algorithms, i.e. PSO, GA 

and MA, can efficiently minimize the structure of Met-enkephalin to a comparable low-
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energy conformation with other existing methods. Of note, the PSO approach minimizes 

the Met-enkephalin structure very efficiently, outperforming all other methods as shown 

in Figure 2-2. Noticeably, when we compare the performance of MA and GA, MA, with 

the local search, found a slightly lower energy conformation than GA, however, the 

computational cost of MA becomes double of GA. Seemingly, this phenomenon is caused 

by an inefficient local structure refinements. In fact, we have tried multiple local 

neighborhood structures, and none of them can efficiently decrease the CPU cost in 

comparison with GA. In my opinion, a reasonable explanation is that the domain of 

dihedral angles is continuous, and local neighborhood structure works more efficient for 

discrete variables than continuous values. With the optimization results from Met-

enkephalin, we decide to advance both PSO and GA for the TPP-1 structure minimization 

in the Chapter 3.  

 



22 

Chapter 3 : Building a Low-energy Pool of TPP-1 Conformers Using 

Hybrid PSO and GA 

 

3.1 Introduction 

Cancer immunotherapy was proposed as far as 100 years ago, but it is only revived 

until recent successes in the clinical studies that target the immune-checkpoint with 

antibodies [48]. The protein-protein interaction between PD-1, programmed death-1 

protein, and its ligand PD-L1, programmed death-1 protein ligand, has become the focal 

target to develop new immune checkpoint antagonists in both clinical and pre-clinical 

trials. Although using antibodies as the immune-checkpoint antagonists have achieved 

effective results in clinical studies, before advancing further towards therapeutic drugs, 

some disadvantages of antibodies still give rise to concerns among researchers, such as 

low oral bioavailability, very long half-life time, low penetration rate and more 

importantly, difficult and expensive production. Taken all the above factors into 

consideration, developing small molecule or peptide antagonists for targeting immune 

checkpoints has become the alternative resort in immunotherapy.   

Until recently, the first Å-resolution crystal structure of human PD-1/PD-L1 has 

been solved [49], which allows researchers to analyze the molecular interactions between 

these two proteins more in detail. Specifically, a large flat and hydrophobic interface was 

found between PD-1 and PD-L1.  This makes it very difficult to develop small organic 

molecule ligands due to either low binding specificity (when enough hydrophilic portion 

was maintained to make them soluble) or low water solubility (when hydrophobic 

moieties were largely included to improve the binding affinity) [50]. Therefore, small 
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organic molecules do not appear to be very promising for this particular target, and 

developing suitable peptide or peptide derivatives to target the immune checkpoint PD-

1/PD-L1 becomes more attractive.     

TPP-1, a 22-mer peptide, was discovered from biological high-throughput 

screening assay and shown to be effective in inhibiting cancer cell proliferation and could 

potentially improve current tumor therapy [14]. TPP-1, which works as a PD-L1 blockade 

agent, binds PD-L1 and disrupts the PD-1/PD-L1 interaction. Since TPP-1 contains only 

naturally occurring amino acids, it is projected to have a higher bioavailability and 

stronger binding selectivity properties than organic molecules.  

At current pre-clinical stage, TPP-1 optimization is critically needed in order to 

design more potent and effective peptide candidates before advancing to furthermore 

comprehensive clinical investigations. Serving as an important component towards this 

goal, building the low-energy pool of TPP-1 structures would be beneficial and expedite 

the process of TPP-1 drug development. 

Most current peptide global optimizers, such as aforementioned MCM, CSA, TS 

or SA in Chapter 2, cannot handle large (>10aa) peptides structural minimization 

efficiently. Given that dihedral angles determine primarily the overall peptide structures 

under biological conditions, in this project, we aim to efficiently collect the low-energy 

conformers of TPP-1 by evolving the combination of amino acid dihedral angles in the 

backbone, i.e. phi (f) and psi (j), and subsequently, running a brief energy minimization 

to adjust any stereo-inappropriate local structures or remove side chain clashes. 

With the advent of more and more complicated problems, single heuristic 

approach cannot solve problem as efficiently as required, alternatively, some researchers 
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have hybridized different heuristic approaches for solving complicated problems by 

taking each of their advantages [51-54]. Inspired by some of these work [52, 54], we are 

also interested in implementing the hybridized PSO and GA for TPP-1 conformational 

search. 

3.2 Methodology 

3.2.1 Energy Evaluation Function 

The same evaluation function from Section 2.2.1 is used to implement energy 

calculations of TPP-1.   

3.2.2 Decision Variables and Search Space 

Here we define the decision variables for TPP-1 similar to the decision variables 

in Section 2.2.2 for Met-enkephalin. TPP-1 sequence includes 22 amino acids, i.e. 

SGQYASYHCWCWRNPGRSGGSK using one letter representation. However, due to 

the search space grows exponentially as the size of the decision variable linearly 

increases. Therefore, to simplify the problem, we only take into the consideration of the 

conformation-dominating dihedral angles, specifically, the backbone dihedral angles: phi 

(f) and psi (j). And the peptide plane dihedral angle omega (w), and amino acid side 

chain dihedral angles chi (c) were not included. For excluded dihedral angles, their values 

were taken by default from the software Pyrosetta. Table 3-1 below shows the detailed 

numbers of the decision variables for TPP-1 peptide. 

 
 

Table 3-1. Number of dihedral angles within peptide TPP-1. 

Amino Acid Psi angle (f) Psi 

angle 

(j) 

Omega angle (w) Chi angle (c) 
Ser (S) 1 1 1 1 
Gly (G) 1 1 1 0 
Gln (Q) 1 1 1 3 
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Tyr (Y) 1 1 1 3 
Ala (A) 1 1 1 0 
Ser (S) 1 1 1 1 
Tyr (Y) 1 1 1 3 
His (H) 1 1 1 2 
Cys (C) 1 1 1 1 
Trp (W) 1 1 1 2 
Cys (C) 1 1 1 1 
Trp (W) 1 1 1 2 
Arg (R) 1 1 1 5 
Asp (D) 1 1 1 2 
Pro (P) 1 1 1 2 
Gly (G) 1 1 1 0 
Arg (R) 1 1 1 5 
Ser (S) 1 1 1 1 
Gly (G) 1 1 1 0 
Gly (G) 1 1 1 0 
Ser (S) 1 1 1 1 
Lys (K) 1 1 1 4 

Sum of all backbone dihedral angles: 44 

Note: The values of dihedral angle w and c are taken from Pyrosetta by default. 

3.2.3 Hybrid PSO-GA 

Both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) methods 

have been specified in detail in Section 2.2. In this chapter, we implement the algorithms 

similarly for each method per se.  

Hybrid PSO and GA is introduced to this work by performing PSO first and then 

GA. Specifically, one-hundred particles were initialized randomly from the variable 

domain, i.e. from -180° to 180°, for PSO minimization. Taking the quick convergence of 

PSO into a consideration, we output and save the best population of particles after the last 

iterative cycle. Subsequently, fifty chromosomes of GA are randomly selected from the 

aforementioned one-hundred PSO particles instead of being randomly initialized again 

from the whole variable domain. This allows GA to start from lower-energy 

conformations, avoiding a large number of unnecessary searches within poor quality 
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solution space, and thus improving the GA search efficiency. The optimized parameters 

of PSO and GA from Section 2.2 are directly inherited in this chapter.        

3.2.4 Molecular Dynamic Simulation 

The linearized TPP-1 structure, generated from Pyrosetta, is used as the initial 

structure to run molecular dynamics (MD). Specifically, the peptide was solvated in 105 

cubic Å water box, and a 50 nanoseconds (ns) MD simulation is implemented using 

software NAMD on OU Supercomputing Center for Education and Research (OSCER) 

with GPU acceleration. Amber force field is used to model peptide. The MD simulation 

system is equilibrated at 300K for 2 ns. Periodic boundary conditions are selected, and 

long-range electrostatic interactions are calculated with particle mesh Ewald method, 

with non-bonded cutoff set to 12.0 Å and SHAKE algorithm is used to constrain bonds 

involving hydrogen atoms. Time step is 2 femtoseconds (fs) and the trajectories are 

recorded every 10 picoseconds (ps). 

 
3.3 Results 

3.3.1 Hybrid PSO-GA Minimizes TPP-1 More Efficiently Than PSO or GA 

In this experiment, we implement both PSO and GA in TPP-1 structure 

minimization with 44 peptide backbone dihedral angles, i.e. the phi (f) and psi (j) angles, 

being used as the decision variables. As the results show, neither PSO nor GA itself can 

minimize TPP-1 efficiently. Note that when the PSO implementation converges, no 

further improvement is obtained with more iteration cycles (Fig. 3-1A). In contrast, when 

the PSO and GA algorithms are hybridized following the procedures specified in Section 

3.2.3, we find a significant increase of the structure minimization efficiency (Fig. 3-1B). 

Hybrid PSO-GA further minimizes the TPP-1 structure to a conformation at around -100 
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kcal/mol from the conformation minimized by PSO at around 300 kcal/mol. This 

hybridization also outperforms GA, which only minimizes TPP-1 to a conformation at 

about -9 kcal/mol. Overall, the performance of hybrid PSO-GA is significantly more 

efficient than using single heuristic method. 

 
 

Figure 3-1.Comparison of the minimization efficiency between GA, PSO and hybrid PSO-
GA. 
A) The TPP-1 structure is minimized with either PSO algorithm (blue line) or GA (red line); B) 
The TPP-1 structure is minimized with a hybrid algorithm, i.e. GA (red line) is subsequently 
performed after PSO (blue line) minimization. 

 
3.3.2 A Pool of Lower-energy TPP-1 Conformers 

Following the same approach as used in Section 3.3.1, we collect 30 low-energy 

conformations of TPP-1 by randomly selecting 50 particles from the PSO minimization 

and advancing them to the GA step as the initial chromosomes. After computing the 

energies of all 30 TPP-1 conformers, we arbitrarily choose the top ten lowest-energy 

conformations to build the low-energy TPP-1 pool. Interestingly, we find that all ten low-

energy conformers have unique structural conformations (Fig 3-2A), indicating the 

conformation flexibility property of peptide folding. Furthermore, Ramachandran plot 

([55]) of the phi-psi (f-j) torsion angles are used to validate the stereo-chemical quality 

and feasibilities of all TPP-1 conformations minimized by hybrid PSO-GA. A 

Ramachandran plot built from 500 non-homologous proteins is used as a dihedral angle 
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feasibility reference [56] (shown in Figure 3-2B). And all our 30 minimized TPP-1 

structures are used to generate a similar plot to compare (Figure 3-2C). Through this 

comparison, we find that a majority of the structures adapted b-strand as its main 

secondary structure with some of them also maintaining a-helix structures locally. See 

Figure 3-2A for a depiction of these results. Quantitatively, above 90% of the dihedral 

angles fell into the favorable or additional allowed regions in the Ramachandran plot, 

given by the online software PROCHECK [47].  

 

 

Figure 3-2. A Diversified low-energy conformation pool of TPP-1. 



29 

A) Ribbon representation of top 10 TPP-1 low-energy conformers, prepared using software UCSF 
Chimera; B) Ramachandran plot from published literature [56]; C) The Ramachandran plot for 
TPP-1 low-energy conformers from this study. 
 
 
3.3.3 Comparable Results from Hybrid PSO-GA and Molecular Dynamic 

Simulation 

Table 3-2. Comparison between hybrid PSO-GA and Molecular Dynamic simulation. 

 

 
              Note: * done by 10,000 steps steepest descent algorithm, unit: kcal/mol. 

 
 

To rationally evaluate the efficiency of our PSO-GA algorithm, conventional 

theoretical calculation, i.e. Molecular Dynamics (MD) simulation under the force field, 

was performed to minimize TPP-1 structure from a linearized configuration. As the 

results in Table 3-2 show, after a 10 ns and 50 ns MD simulation, the TPP-1 structure was 

minimized to conformations at energy -517.41 and -563.67 kcal/mol, respectively. As a 

comparison, we find that the TPP-1 conformers minimized using our hybrid PSO-GA 

approach are comparable with the MD simulation results (Table 3-2). In terms of the 
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computational efficiency, a 10 ns MD simulation requires ~20 hours computational cost 

with GPU acceleration (20 cores) on the University of Oklahoma Supercomputing Center 

(OSCER). In contrast, our hybrid PSO-GA requires only 2-3 hours on only one CPU core 

and achieved even lower energy conformers. When considering the fact that normally 

GPU accelerates calculations 6~7 times (over a 20-core CPU node), our PSO-GA 

algorithm improves the conformational search efficiency by at least two orders of 

magnitude. Moreover, it is encouraging that the hybrid PSO-GA also obtained stereo-

chemically reasonably structures. Therefore, using the established hybrid PSO-GA 

algorithm, we can quickly generate a pool of low-energy conformers for peptides, and 

this low-energy structure pool can be potentially used as valuable initial structures for 

subsequent peptide molecular docking and peptide-protein binding free energy 

calculations. 

 
3.4 Discussion 

Peptide conformational search has been a challenging scientific task for many 

decades and due to its conformation flexibility, finding only the global minimum structure 

may not suit some research needs.  

In this study, in order to meet an increasing demand for peptide drug development 

in the field of cancer immunotherapy recently, we choose a promising PD-L1 inhibiting 

peptide, TPP-1, as our studying target. We apply a hybridized PSO and GA approach to 

minimize the TPP-1 structure. More importantly, our goal is to build a low-energy 

structure pool of TPP-1 other than finding only the global minimum structure.  

As our results show in Figure 3-1, hybrid PSO-GA is more efficient in searching 

for minimized TPP-1 structures than either PSO or GA itself. And notably, multiple TPP-
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1 low-energy structures can be collected within only couple days using one single laptop 

(Table 3-2). Overall, these minimized structures are also sterically feasible as shown on 

the Ramachandran plot (Fig. 3-2C). When compared with the conventional Molecular 

Dynamics simulation approach, our hybrid PSO-GA stands out significantly as it 

increases TPP-1 structure minimization efficiency by more than two orders of magnitude 

(Table 3-2). 

In our study, no constraints were applied on the decision variables, meaning all 

the chosen dihedral angles were allowed to continuously change from -180° to 180°. 

However, it should be easy to adapt this algorithm for one who works with discrete 

variables. Previously, multiple studies applied heuristic methods to minimize peptide 

structures and they all applied restraints onto the dihedral angles in order to save 

computational cost [39, 45].  Therefore, our hybrid PSO-GA has higher chances of 

finding more low-energy conformations.      

We conclude that the hybrid PSO-GA is well suited for conformational searches 

of peptides. Especially, it could be a very important study to conduct for peptide-involved 

structure optimization or binding affinity investigations. It is obvious that our hybrid 

PSO-GA can be further improved if one can spend more time on the parameter tuning 

and optimization. In addition, working on different peptides, some of the parameters may 

need re-adjustment, such as the population size of GA, the inertia constant and also the 

constants for cognitive or social components of PSO. 
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Chapter 4 : Overall Summary and Future Directions 

 

How to efficiently search the low-energy conformation, especially for biological 

macromolecules remains a difficult question. This work aims to improve current peptide 

conformational search methods using meta-heuristic approaches. In particular, our study 

focused on improving peptide conformational searching in order to benefit researchers 

either studying peptide-protein interactions or developing peptide-involved drug design.  

Instead of just searching the global minimum structure, we built a low-energy 

conformer pool for a promising PD-L1 inhibiting polypeptide, TPP-1. Using the peptide 

backbone dihedral angles as the decision variables, both PSO and GA can outperform 

other existing approaches in minimizing the Met-enkephalin, a benchmarking 

pentapeptide for judging the efficiency of conformation optimizers. However, neither 

PSO and GA performed well on minimizing TPP-1, instead, we found that hybridizing 

PSO and GA can minimize TPP-1 structure efficiently. Strikingly, the efficiency of 

hybrid PSO-GA is hundreds-fold faster than the conventional Molecular Dynamic 

simulations running under the force filed. Meanwhile, the stereo-chemical quality of the 

minimized structures was also validated using Ramachandran plot. Overall, our hybrid 

PSO-GA minimization approach can benefit biochemical and biomedical researches with 

the demand of determining polypeptide conformations and hence can advance the field 

of studying peptide-involved anti-cancer drugs.  

For the future directions, another important question need to address is to obtain 

the trajectory cluster analysis result after peptide MD simulations. In theory, the overall 

structure moves towards low-energy conformations under the force field, but it may take 
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a long time for the simulation to escape certain local minima along the simulation path 

due to the reason that these local minima are already quite stable conformations with very 

low energies. Although the simulated structure at the simulation endpoint typically has a 

very low energy, it is still important to know all the low energy conformations within the 

entire MD simulation trajectory. Such a way, the comparison between minimized 

structures from hybrid PSO-GA and low-energy structures from the MD cluster analysis 

can give us more confidence on determining the robustness of the PSO-GA optimizer. 

Given more time on this thesis project, I would like to perform the trajectory cluster 

analysis using Amber Package. And furthermore, for structural similarity comparisons, 

the ‘match maker’ function in software UCSF Chimera can be utilized to align structure 

to structure. 

In peptide structure optimization studies, there are typically two main cases: either 

seeking more potent peptide interactions to achieve effective results or reducing some 

peptide interactions to an appropriate range to maintain its interaction reversibility. In 

either scenario, besides natural amino acids, some unnatural amino acids, which only 

differ in the side chains from 20 natural amino acids, may be introduced into the peptide 

sequence to help tune the peptide-protein binding affinity. And here, we propose that our 

method can work efficiently in a similar manner to meet either goal because we only used 

the backbone dihedral angles as the decision variables in our hybrid PSO-GA. But the 

side chain dihedral angles or clashes will be taken care of by a short (~s) steepest 

minimization step at the end. However, we expect this method to work well for peptide 

derivatives, which involves small organic moieties, although extensive testing will be 
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needed. But this could be another interesting future project to expand the applicability of 

our methods onto different types of biomolecules optimizations.  

Overall, as a proof of concept, this study demonstrates that hybridized meta-

heuristic strategies can be more efficiently applied to expedite peptide conformational 

searching. It significantly accelerates short peptide conformation searching by at least 

two orders of magnitude (while reaching similar quantity of results) than conventional 

MD simulations.     
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Appendix 

 

 
Figure 1. GA population size optimization results. TPP-1 energy minimization using seven 
different representative population sizes were shown above. Energy on the y-axis was cut at 
4000kcal/mol for convenient illustration and comparison. 
 
 
 
 

 

Figure 2. Ramachandran plot for optimized Met-enkephalin using PSO. 
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Figure 3. TPP-1 primary sequence and primary structure. 
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Table 1. All amino acids backbone dihedral angles for Met-enkephalin in the optimized 
structure by PSO. 
 

# Amino 

acid 

f (Phi) j (Psi) 
1 Tyr -150.3 118.8 
2 Gly 104.4 143.3 

3 Gly 71.7 -85.4 

4 Phe -130.2 -67.8 

5 Met -85.97 -21.6 

                                        _____________________________________ 
                                        Note: all the angles are expressed in degree (°). 
 
 
 
Table 2. All amino acids backbone dihedral angles for TPP-1 in the lowest-energy structure 
optimized by Hybrid PSO-GA. 
 

# Amino acid f (Phi) j (Psi) # Amino acid f (Phi) j (Psi) 
1 Ser -47.6 156.1 12 Trp -85.6 82.9 
2 Gly -122.0 -68.8 13 Arg 145.6 22.8 

3 Gln -153.5 55.1 14 Asp -122.4 72.6 

4 Tyr 154.9 122.0 15 Pro -37.9 6.3 

5 Ala 53.4 61.6 16 Gly 121.1 55.0 

6 Ser -61.9 -44.5 17 Arg -80.0 90.8 

7 Tyr 139.6 45.3 18 Ser -140.4 -45.7 

8 His -67.7 120.8 19 Gly 121.1 22.8 

9 Cys -85.6 122.7 20 Gly -139.5 88.8 

10 Trp 84.4 93.3 21 Ser -92.6 114.2 

11 Cys -73.6 116.3 22 Lys 135.4 48.8 

  _____________________________________ 
  Note: all the angles are expressed in degree (°). 
 
 


