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A GENERALIZATION OF CONVEXITY
CHAPTER O
INTRODUCTION

Convex sets were first studled systematically by Brunn
(2], in 1887. There has been interest recently in the study
of generalizations of convexity, the majority of these being
algebralc or topological in nature. Several of these are
mentloned in [5]. It is the author's opinion that while
such examples are useful in studylng the structure of convex
sets, they tend to lead one away from the geometric intult-
ion that convexity offers.

In thls paper, we study a generalization of convexity
where one does not require the join of each palr of points
in the set to lie in that set, but, instead, one requires
some subset of each m > 2 points to determine joins which
belong to the set. This concept is but a special case of
an even more generalized convexity proposed by J.E. Allen
(1].

The preclse definition of our generalization of convex-
ity appears in the next chapter along with several necessary
baslic set theoretic, algebraic, and topological properties.
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2
A Helly order for one class of generalized convex sets 1s
determined and several finite convex covering theorems are
proved, By a convex covering of a set S we mean a family
of convex sets whose unlon is S,

In Chapter II, we characterize the kernel of a certaln
family of m-convex sets, answer a conjecture posed by Danzer,
Grunbaum, and Klee, prove a generalized Helly theorem, and
introduce the notion of local nonconvexity. The later con-
cept leads us to several representation theorems for m=convex
sets.

Valentine's theorem states that a closed, connected
3=-convex set in E2 1s the union of three or fewer closed
convex sets. Guay has extended this result in showing that
a closed 4-convex set in Ez, which is not simply-connected,
is the unlon of five or fewer closed convex sets. In
Chapter III, we show that any closed 4-convex set in E2 is
the unlon of nlne or fewer closed convex sets.

Except for one or two symbols, the notation used in

this paper 1s consistent with that used by Valentine [18].



CHAPTER I
(M,N) CONVEXITY

The results of this chapter apply generally to subsets
of a linear topological space E, as defined in such sources
as Kelley and Namioka {11}, while others will apply only to
finite dimensional spaces, denoted EY (d = dimension). Some
of the more combinatorial results will apply even to subsets
of a vector space over an ordered field. The segment, or
Jolin, between two polnts x and y in E 1s the set of all
points in E of the form ax + (l-a)y, where 0 < a < 1, denot-
ed Xy In order to simplify later notation, we let the sym-
bol Cm stand for the number of combinations of m things tak-
en two at a time. That 1s, C = m(m=-1)/2, m > 1, Familiar-
ity with the baslic properties of convex sets, as found in
{18), 1s assumed. In this chapter the basic combinatorial,
set theoretic, and linear properties of (m,n) convex sets
will be developed, the Helly order for the family of (3,2)
convex sets in the plane wlll be dlscussed, and several con-

vex covering theorems for (m,n) convex sets will be derived.

1.1, DEFINITION: A set S 18 said to be (m,n) convex pro-
vided |S} > m and if for each m distinet points of S at

3



4
least n of the posslble Cm Joins between these m points are
contained in S. (It is understood that m and n are non-
negative integers, with 0 < n < Cp, and m > 2). A set is
sald to be exactly (m,n) convex iff it is (m,n) convex but
not (m,n + 1) convex (a simple combinatorial argument shows
that for n > 0 this 1s equivalent to saying that a set is
exactly (m,n) convex iff it is (m,n) convex but neither
(m - 1,n) nor {(myn + 1) convex)., 4An (m,l) convex set is
referred to simply as an m=convex set, or a set having
property Pm. An exactly m-convex set ls one which 1ls m-convex
but not (m - 1)-convex. As in Kay and Guay [9], we make the
convention that no nonempty set is l-convex., Thus, a convex
set having more than one point 1s exactly 2-convex.

In considering the preceding definition, we find that
(2,1) convexity 1s ordinary convexity, and more generally
any (m.cm) convex set for m > 2 1is oconvex, It 1s a stralght-
foward application of the definition of (m,n) convexity to
show that if S is (m,n) convex, then S is also (m,k) convex

for 0 <k < n, and therefore m=convex,

1,2. PROPOSITION: If S is an (m,n) convex set with n > Cp1
then S 1s connected.

Proof. Suppose that S 1s not connected; then it has at
least two components, say A and B. Choose any m - 1 points
in A and a poilnt in B, But there exists at most C,_, Jolns
between these m points, and thus n < C,_,» & contradiction. (4

By considering a set consisting of a convex set and an
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isolated point, we can see that the bound in 1.2 1s best
possible.
The next proposition shows that the bound used in 1.2
is also large enough to ensure convexity for a closed (m,n)
convex set, and thus 1.2 becomes a corollary. For conventence,
T will stand for the set {1,2,...,r}, where r is any natural

number,

1.3, PROPOSITION: If S is a closed (m,n) convex set for
which n > C ., then S 1s convex,

Proof. This result will be immedlate if it 1ls estab-
lished that for any integer m > 2 a closed (m + 1,C, + 1)
convex set 1s (m.cm_1 + 1) convex, Let S be a closed (m + 1,
Cp + 1) convex set in E, and select Xy,...,X; any m polnts
in 8. Suppose that there are not more than C _, Jjoins det-
ermined by these m points. Let y be any other polnt in S,
and suppose there are r jJoins of the type YXy for 1¢ ﬁ. in
S. We have r + C__, > C_+ 1 by hypothesis, which implies
that r > m, Therefore VX, is in S, for all 1¢ 2 and for any
v in S\{x3seee,x;}. Since S is closed and connected (by 1,2)
and we may take y in an arbitrary neilghborhood of Xy we have
x;x; in S for any 1 and in @, a contradiction. §

If S is a closed (m,n) convex set which 1s also con-
nected, then Kay has shown that if n > %2(m - 1)2. then S is
convex., It can be seen that this result is best possible by
considering two intersecting lines.

In an (m,n) convex set, if n > Cpal then in the proof

of 1.3 we see a relationship between the given (m,n) convex-
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ity of a closed set and a lower order convexity for the same
set. In the direction of higher order convexity for an (m,n)

convex set we offer the following proposition,

1.4, PROPOSITION: An (m,n) convex set is (m + k,n + k)

convex, where n > 0 and k is any natural number.

Proof. Consider any m + k points pl""’pm+k in s.
Among pl.....pm. there are at least n joins. Suppose that
pipJ is one of them, where 1 <1 < jJ < m. The polnts in the
set {pl.....pm+1]\\{pi}. determine n jolns, none of them being
the Jjoin pipJ. Let P.Pg denote one of these Jjoins., Now
there are at least n jolns among the m points {pl.....pm+2}\\
{pi.pr}. none of these joins being PyPy DOT P Pge Continu-
ing this process, we obtain n + k joins between the given
m + k points in S, and we have shown that S is (m + k,n + k)
convex, {

The necessity of the restriction n > 0 in 1.4 is evident
when one considers the set M consisting of four 1s§1ated
points: M is (3,0) convex and also (4,0) convex, but not

(4,1) convex, The subset in E2

defined by m - 1 segments
emanating from a single point is an example of a connected
set which is (m,l) convex and (m + k,k + 1) convex but not
(m + k,k + 2) convex for X = 1,,.e,m - 1, This shows that
l.4 is best possible for the case when n = 1,

It 1s not hard to construct examples to convince one-

self that the set of (m,n) convex sets, in E, for fixed m

and n 1s not closed under intersection, union, set differ-



7

ence, complementation, or cross product in E X E. This is
to be expected, since even convex sets in general are not
closed under union, set difference, or complementation.

However, certain set theoretic properties of (m,n)
convex sets are true. In fact, as a consequence of the
definition of (m,n) convexity, we have that the union of k
disjoint (m,n) convex sets is exactly (k(m - 1) + 1,n) con=-
vex.

The next result together with Zorn's lemma will be used
later to establish the existance of certaln maximal m-convex

subsets of a set,

1,5, PROPOSITION: The union of the members of a family of
(m,n) convex sets which is directed by 2 (the union of any
two members is contained in some third) is an (m,n) convex set.

Broof. Let & = {C_iag A} be such a family and consider
U{c,:a€ A= B. Select any m points in B,58F PysesesPp e
Suppose p, 1s in c“i' for 1€ @, By induction there 1s a set
CB such that C“ic CB for all 183. Therefore Pyres «sP, 8TE
in Cg. Now Cg 1s (m,n) convex and hence the p, determine at
least n joins in Caz since CBC B, they determine at least n
joins in B. Thus B is an (m,n) convex set. {

The most singular difference between general (m,n) con-
vex sets and convex sets 1s closure under intersection. A
comblnatorial result may be stated, where the underlying
assumption 1s that the intersection under consideration con-

talns at least m points., Here the square brackets will denote
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the greatest integer function. An easy preliminary result
is that the intersection of two (m,n) convex sets is (m,l)
convex if n > [%Cm] + 1, By considering the two (3,2) convex
sets X and Y indicated in Figure 1.1, we see that this result

1s best possible (dashed lines indicate the deletion of
boundary points).

P

q

Figure 1.1

More generally, we have:

1.6 PROPOSITION: For each integer k > 2, the intersection
of ¥ (m,n) convex sets is (m,1) convex provided n >
Cnx - 1)/k]+ 1.

Proof. Let C = AlnAzn---nAk. where A, for 1E’lz is
an (m,n) convex set with n Z[Cm(k - 1)/k]+ 1. Choose any
m distinct points in C. It is obvious that among these nm
points in A, We can be missing at most Cp - ([Cm(k - 1)/k]+ 1)
joins. Regarding this as a matrix, with a column for each
set Al and a row for each of the possible Cm joins, labeling
these joins consecutively from 1 to Cm , We put a oné in the
aij-th position if the 1-th join is in the set A‘1 and zero
otherwise. We need to show that if we put at most C, -
([Cm(k - 1)/x]+ 1) zeros arbitrarily in each column, then

there is still one row free of zeros, or equivalently that,
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k(Cy - [Cqk - 1)/ - 1) < ¢ < k(G - o tx - DAY, @)
However, thls lnequality is an immediate consequence of a
property of the greatest integer functlion, namely, .
[x] < x < [x] +1. (The value on the right of (1.1) shows
that our bound is best possible). Therefore, under the hypo=~
thesis given, the intersection of k (m,n) convex sets is
(m,1) convex. o .

To establish several basic algebralc properties of (m,n)
convex sets we recall the well known result that if A and B
are nonempty subsets of E and o and B are scalars then
conv(aA + BB) = a(conv A) + B(conv B), where conv A denotes
the convex hull of A. This result implies that the scalar
multiple of a convex set 1ls convex and thé sum of two convex
sets 1s convex, If we are careful with the value for n, we
have some idea what the sum of two (m,n) convex sets 1s like.
It is straightfoward to show that if A and B are (m,n) convex
sets with n > [%Cm]-i- 1, then the sum A + B = {a + b:a;A,bEB}
is (m,1) convex, Hoﬁever, if we wish to conclude that the sum
is (m,n) convex for general values of m and n, then it is suf=-
ficlent to assume that one of the summands be convex, as the

following result shows.,

1,7, PROPOSITION: If C is convex and S is (m,n) convex, then
for any two scalars a and 8, aC + BS is (m,n) convex,

Proof. Let A = aC + BS. Choose any m distinct points
in A and denote them by a, = ac, + Bs,, Where ¢, €C, S, € S,

and x€m, If s:l's.1 is one of the guaranteed joins in S, then
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ajayC A, Since for 0 < y < 1 we have
vay + (1-y)ay = y(acy + B8sy) + (1-y)(acy + Bsy)

alyey + (l=y)ey) + Blysy + (L-y)sy)
€ aC + 8BS,
Since we have at least n Jjolns in S, we must have at least n
joins in A., Hence, A is (m,n) convex. ¢
An immedlate consequence of 1.7 1s that the translate of
an (m,n) convex set is (m,n) convex. This fact together with
the next result shows that in any real vector space, (m,n)

convexlty 1s an affine invariant.

1,8, PROPOSITION: If S is an (m,n) convex set in a real
vector space V and T is a linear transformation over V, then
T(s) is (m,n) convex,.

Eroof. Let yy,eees¥, be any m distinct points in T(S).
There exlst m distinct polnts XyseeesXy in S such that ¥y =
T(xy), for 1€ @. Since S is (m,n) convex there are at least
n joins among the points Xyre00)X o Suppose one of thenm 1s
X3X4» Where 1 <1 < j<me Now for 0 < a £ 1, we have

T(ax; + (1-a)xy) = al(xy) + (1-a)T(xy)

= ayy + (1-a)yy.
That 1s, yiyj is contained in T(S). Hence, since there are
at least n joins in 8, there will be at least n joins in T(S),
among the corresponding points., Thus T(S) is (m,n) convex, 0

Using the techniques of the last two propositions it
can be shown that the Cartesian product of a convex set and

an (m,n) convex' set is (m,n) convex, and the intersection of
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a convex set withan (m,n) convex set is (m,n) convex,

Several topological properties of (m,n) convex sets,
listed below, wlll be useful in establishing later results.,
All of these propertles are stralghtfoward for convex sets.
Recall that a set S 1s polygonally connected if for any x
and y in S there exists a finite set Zyseee Xy of points in
S, such that XXy sX7XoseeesXp)Xpne Xy are contained in S.
Let ¢l S denote the closure of S in E. The followlng def-
inition will introduce another concept which will be useful.

1,9, DEFINITION: A set S 1s sald to be relatively (m,n)
convex wWith respect to a set T 1f for each m polnts Xj,eeesXy
in S there exist n Joins XXy determined by these points such ‘
that for each such 1 # j the open segment (xixJ) = xixj‘\\
{xi.xj} is a subset of T, (We use the term absolute (m,n)
convexity to designate ordinary (m,n) convexity of a subset
of T independent of T, and relative convexity for relative
(2,1) convexity.) S is sald to be exactly (m,n) convex with
respect to T iff it is (m,n) convex but not (m,n + 1) convex
with respect to T, and S is exactly m-convex with respect to
T 1ff 1t is m-convex but not (m - 1l)=-convex with respect to
Ts (Again, we aéSﬁme that no nonempty subset of T is l-convex
relative to T.)

Observe that if a set S 1s (m,n) convex it is (m,n)
convex relative to any set T containing it, and (m,n) convex-

ity for subsets of a convex set T 18 equivalent to relative

(m,n) convexity with respect to T,
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1,10, PROPOSITION: If S is an (m,n) convex set in E, then
cl S is (m,n) convex with respect to ¢l S.

Proof., Select any m points Xjseee,Xy in ol S, and sup-
pose that x,x, ¢ol S for at least Cy - n + 1 pairs (1,)),
where 1 < j, Let Uj(xi) and Ui(xj) be neighborhoods of x,
and x, respectfully with the property that for ue U.1 (xi) and
veUi(xJ) uv¢S. Let U, = ﬂj Uj(xl)' where J is such that
xlxj¢el S. Now from the construction of the Ui’ ir ¥y is a
point in SnUi’ ie 1'1‘1, then yiyj¢ S. Hence, for at least
C, = n +1 pairs (1,) where 1 < J, ¥,7;¢ S, contradicting
the (m,n) convexity of S.o

It is natural to ask, 1f S is an (m,n) convex set in E,
whether the topological interior of S is (m,n) convex. At
thls writing, however, a proof of the conjecture has not been

found. The truth of the conjecture 1ig, of course, well known

for convex sets.

Several useful concepts are now introduced.,

1,11. DEFINITION: For any point x in SCE, let S_= {y€ s:
xy€ s} Sy 1s called the X _star of S. The kernel of a set
S, denoted by ker S, is defined as the set {z€£S: 3, = s}.
A set S in E 1s called gtarshaped if there exists a point x
in S with the property that S_ = S. A set S 1s called
locally starshaped iff each point x in S lies in some neigh-

borhood whose lntersection wlth S is starshaped with respect to x,

1,12, DEFINITION: For any point x in SCE, let S* = {y& s:
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xy¢s}. s* is called the x_anti-star of S. (Note that if

S is closed then S* is relatively open for any x&€ S and if S
is m-convex then S* is (m - 1)=-convex with respect to S).

It is shqwn in [9] that every closed m-convex set 1is
locally starshaped and that in a finlte dimensional linear
space every connected m-convex set 1s polygonally connected.
Since every (m,n) convex set 1s k-convex for some k > 2, we
have both of these results valid for (m,n) convex sets.,

We frequently have occasion to deal with exactly (m,n)
convex sets., One may generate such sets by using the fol-

lowing constructive proposition.

1.13. PROPOSITION: Given the nonnegative integers m > 2,

n,r, and k such that:
1) 0<ngcCp,
11) 1r is the least nonnegative integer such that n + r
1s in the set {C. 1 8 = 1,2,...1,
111) k=%(zm -1 - /B{r +n) + 1 ),

then the regular (m - k)=-gon (interior inclﬁded), with r
ad jJacent open sldes removed, together with k i1solated points
is an exactly (m,n) convex set.

Proof. Consider the regular (m - k)-gon M with the k
isolated points as described above. To show that this set
is exactly (m,n) convex, we must prove it is (m,n) convex and
obtain m distinct points which determline exactly n joins in
this set. Choose the k isolated points and the m - k vertlices

of M. The only Jjoins in the set determined by these points cor-
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responds to the C,_, Joins between the vertices of M, minus
the r deleted open sldes., Hence, the number of Jjoins in
the set determined by these m polnts is cm-k - =
2(m - k¥)(m - k¥ - 1) = r =n (by use of iil). By changing
the cholce of the m points it is obvious that the number of
jo;ns in M increases. Thus, m arbitrary points determine
at least n Joins in the set, and some m determine no more
than n. Therefore, the set described is exactly (m,n) convex.<>

In connection with the hypothesis of the theorem, it is
desirable to show that such a cholce of integers r and k
satisfying (ii) and (111) is always possible, and that
m-k>r (and that m = k > 2 if r £1). Choose s the
smallest integer such that n < CS+1; then put n + r = Cs+1
(thus satisfying the choice of r > 0 in (il1)). Now we have

n+r=42%s(s +1)
or 2
8(n+1r) +1= (28 +1)°,
It follows by the definition of k in (iil) that k =m - s - 1,
and thus k 1s an integer. To show that k > 0, observe that
our cholice of s demands that since n < C;, s +1 < m,
Finally, to show that m -~ k > r (and > 2) note that s =
m -k -1 and from the definition of s, n > CS + 1, hence,
we have
Cs+l = Cs + s
n+r =C, +m-k- 1

<(n-1) +m=~-k -1
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or, ' r<m-k- 2,
Hence, m = k > r + 2,

Krasnossel'skil's theorem states that if S is a com-
pact, connected set in a normed linear space of dimension
n and for each set of n + 1 points xl""’xn+l in S there
is at least one point y in S such that yxy is contained
in S for 1 in ﬁ/:\i, then S is starshaped. A conditilon
that would guarantee a subset of Ed to be the union of at
most two starshaped sets was glven by Koch and Marr [}2].
For m-convexity it 1s easy to show that every m-convex
set is the union of m - 1 or fewer starshaped sets, as in
[6]. Glven an (m,n) convex set, it too can be represent-
ed as a finite union of starshaped subsets. In 1l.1l4 we
not only get a bound, but we also get Guay's result for

the case n = 1,

1,14, PROPOSITION: If S is an (m,n) convex set in a

linear space with k = Cm - n, let r be determined by
Cpr Sk < Cpyy for k > 1. Then S is the unlon of r or
fewer starshaped sets.

Before proceeding with the proof, let us establish
a lemma. For convenience, we adopt the terminology that a
subset V = {vl....,vt}. of a set S is visually independent
relative to S if for all 1 and J such that 1 <1 < j < ¢,
v1v3¢s. We say that a point x can see a point y via S

iff the open segment (xy) belongs to S.

1,15, LEMMA: An (m,Cm - 1) convex set S is the union of
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two starshaped sets. If m > 3, then S is the union of
two convex sets.

Proof. Let S be an (m,C, - 1) convex set, m > 2
(the conclusion of the lemma is false if m = 2), Consider
the case where m = 3, If for any two polnts x and y in
S, Wwe have xyCS, then S 18 convex, and the result follows,
Suppose that there exists x and y in S such that xy¢s.

For any other point z in S, we have xz (S, for otherwlse,
the set §x,y,z] would consist of three points in S with
only one joiln in S. Hence S = qu{y} , and the lemna is
true for this case.

Let m > 3, and suppose that S 1s not convéx. Hence,
there exist u and v in S such that uv ¢ S. Suppose that
there are points w and z in S such that wz¢8. where (w,z)
and (u,v) are distinct pairs, Consider the case where the
four points are distinct. If we choose u,v,w,z, and m - 4
other points in S, then we have m points in S with at most
Cp ~- 2 joins between them, a contradiction of the (m,Cp = 1)
convexlity of S¢ If w = u or v, we get a similar contra-
diction by considering u,v,z, and m = 3 other points in
Se. Similarly Af z = u or v, Hence, given a pair (w,z) of
points in S distinet from (u,v), wz&€S. For any x in S,
therefore, xu€ S (obviously, uv€bd S). Hence S = S,V {v}.
From the fact that uv is the only join not contalined in S,
su 1s convex, thus completing the proof, o

Proof of 1,14. Suppose that r 1s determined by

Cp <k <Chyqes Assume k > 1, There cannot exist r +1
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visually independent points in S, for otherwlise any other
m - = 1 poilnts of S determine with these r + 1 points
a set of m points in S missing at least crﬁl > k joins
in S, a contradiction to the (m,Cm - k) convexity of S,
Therefore, assuming S 1s not convex there exists a larg-
~ est positive integer t with 2 < t < r, such that there
exists a set of t visually independent points in S, Let
PyseeesPy be such a set, It 1s a stralghtfoward appli-
cation of the maximality of t to see that for any other
point x 1n S, We must have xp,C S, for at least one value
of 1 1nf%. Therefore S = SpiLJ-o'LJSpt. and the proof
is complete. ¢

It was pointed out in 1.1l5 that (m,C

m
sets are expressible as the union of two convex sets.

- 1) convex

Sets of thls type are also starshaped, since by 1.2
they are connected. In fact, if S is a (m,n) convex set
in B with n > C,., one can show that int S, core S, and
1in S are all convex (see Valentine [;7, Do 1:]).

One useful description of (m,n) convex sets, and most
difficult to obtailn, is in terms of finite unions of con-
vex sets. For general (m,n) convex sets with n suffici-
ently large such characterlizations are easy to obtain.
For example, if S is closed and (m,n) convex with n > Cp
then S is convex (by l.3). However, if S is not élosed.
then S 1s still representable as a finite union of convex

‘sets in some cases. Prior to characterizing these (m,n)

convex sets‘with n > cmpl' we have the next result, which

-1?
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exhibits a strong topological property characteristic of

such sets.,

1,16, PROPOSITION:s Let A be an (m,n) convex set with

n > cm-l' If points x,y, and z in A are such that xy

and xz lie in A, then int(convix,y,z})&A, where the int-
erior is taken relative to the plane of x,y, and 2.

Proof. Since there is nothing to prove 1f x,y, and
z are collinear, assume they are not. Choose w in (xy)
and u in (xz) and suppose that there is a v in (wu) such
that v is not in A, It is clear from the (m,n) convexity
of A that there can be at most a finlte number of points
in (wu)AA., S0 choose m - 1 points in (wu)QC(A), where
C(A) denotes the complement of A relative to E, say
Qyeesesdp e Let 2z, = zq, N (xw), for i€ m/-\l. Now
Z1Zys0ee92, 4 18 & set of m polnts in A determining at
most C, - (m -1) = Cp.y Joins in A, a contradiction.
Hence, there cannot exist such a v in (wu)f\C(A) and 1t
follows that int(conv{x,y,z})CA. ,

It should be mentioned here that in stating 1.16 for
(3,2) convex sets, (3,2) convexity implies that xyyuxzCA.
It should also be pointed out that since the rather large
lower bound on n (n > C, ;) implies that the closure
(and therefore the interior) of S is convex, the noncon-
vexlity characteristics of such a set are derived from

properties of the boundary.

1.17. PROPOSITION: A planar, bounded (m,n) convex set
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S, with n > Cm-l' may be expressed as the union of k convex
sets, where k¥ < #(1 + /Bm - 15). The result is best possible.

Proof. We shall make use of a well~known theorem of
graph theory: If G 1s any graph without circuits (that 1s,
a tree), then the vertices of G can be colored with two colors.,

The proposition is trivlial for all cases except when
int S # @, and it readily follows that int S is convex and
cl S = cl(int S). Suppose p and q are points in bd S such
that pq¢S. Then pqC bd S. Since S 1s bounded, let J = xy
be the maximal segment in cl S contalning pg. Thus, Xy¢ S
and hence xyC bd S. Since xy contalns no infinite subset of
S (by the (m,Cm_1 + 1) convexity of S), then xy\S consists
of a finite set of points, say

X3 = Ps Xy = Qs X3y eeey X, r2> 2,

Clearly, r < ﬁ. for otherwlise S contalns m points none of
whose jolns belong to S. Choose m - r distinct points Xpgl
coe X, from int S and consider Xyseee9X . These polnts deter-

m
mine no more than Cm - Cr Joins belonging to S, so Cm_1 +1 <

n<Cy = Cne The inequality r < #(1 + +Bm - 15) follows.
Since this argument applies to all the maximal segments Jl'JZ""
lying in bd S and containing points not in S we may let k <
2(1 + J/Bm - 15) be the maximal cardinality of the sets Jins.
12>1,
If T =Dbd S\U1_>_1 (J3), where (J,) denotes the open
segment J4, let A1,A2.... denote the components of T; since
1t lles in the boundary of a convex set, each component is

eilther a single point or an arc. There are two cases.,
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Case 1: At least one component A, 1is an arc, or there
exist infinltely many components Ay, If E(Al) denotes the
endpoints of Ai' define the graph G(T) having as vertex set
V= Sﬂ[E(Al)UE(Az)U *++] and as edge set those pairs (x,y)
in VXV such that xy¢ S. Suppose G(T) contains a circuit

xl'ooo’xn+1 = X1. with (x1.x1+1). 1 S i S N, edges in G(T)o

In thls case, the points XyseeesXpyn = X lie in bd S and

In
determine the joins Xy Xy x2x3. coer X Xy not in S, Clearly,
bd S = U121 X,X, o+ But then T could have at most n com-
ponents and none of them is an arc, a contradiction. Hence,
G(T) i1s a tree and can be colored with two colors. There-
fore, V = VlU V2. where Vl and V2 are the verticeé of empty
subgraphs of G(T). Define O(4;) = A,\ E(4;) for 1 > 1 and
conslder the set
¢, = v,U (1nt )Y Y_Uzgl o(a ), j=1,2.

We show that each CJ is convex. Let x€ CJ and y € CJ. Ifr z€
xyNint S, then since each interilor point of S can see bd S
via int S, it follows that (xy) = (xz2] U [zy)C int S. Thus,
assume xy€ bd S. Then if xyCS, xy lies in one of the com-
ponents A, of T, and (xy)co(Ai) or xyccj. Finally, if
xy¢ S then xy belongs to one of the segments J, and
{x.y} n[uigl O(Ai)] = @ implies {x.y}CVJ or xyC S, a con~
tradictlon.

It remalns to conslider the points of (Ji)n S. Por
convenience, let Jl(\ S have maximal cardinality k among the
Jy NS, and suppose (J3)NS = {Xy,e00sX,_5}. There is an

onto mapping f . + (J3)A 8+(J,)NS for each r > 1, so define.
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Cypp = conv( Uy (x40, J=1,2,000,k = 2,

Since‘xy¢s impllies xyCbd S for x and y in CJ+2. it follows
easily that C, , 1s a convex subset of S. Thus, S = LJJEI(le\s).

Case 2. There exists finltely many components Al.....AS
and all components are sinéletons. It follows that there are
finitely many maximal segments Jy,...,Jy and bd S = L)izl Jye
Thus, we may suppose that J,(\ S = {Xyys+.e1X;3}, that x4
and X,, are the endpoints of J, (1 £1 £ ¢), x;, = X441,1
(1 <1<t -1), and Xy = x99. (If J, S has cardinality

less than k simply choose arbltrary points on J, to define the

i
xij's.) We have two subcases:

Case 2.1t t even, Let t = 2r and define the sets
C, = int S"ixil'x31'x51""'er-l.l}'
C, = int SU Xy Xy sXgy 000 01Ton 1 b
Cj_’_1 = int SLJ{xlj.xzj.xBJ.....er.J}, J = 250000k = 1,
It is clear that C,A\S 1s a convex subset of S, and S = ijgl(cjr\s).
Cagse 2,21 t odd. Let t = 2r + 1. Assuming k > 3, define
Cy = int SU{xyy X0 %y 0Xg e 0sTop o 10350 1}
Cp = Ant SU[x) peXp30X300Typ0e o0 Xpr, 20%2r41 2}

CJ = int sU{xldtxz’3+10133.143.ooo.xzr,agx2r+l’3}.
e e 2 _<_ J S k-2’
Ck_l = int SU{xl.k-1.131|x4'k-l 'xs.k_lpooo ’x2r+1'k_l;.

Ck = int SU{x21,13.k_1.151.x?1,....121,_1’1.121,4_1.1}.
Again each CJl\S is a convex subset of S, and S = \JJEI(CJ(\S).

Flnally, 1f k = 2 then S conslists of a convex polygon

and interlor, having vertices xl""'12r+1' with the open
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sides (xyXy,;) removed. Here, let C; = {xﬂ » C, = int S U
o Xy XgreeosXon Y C3 = int Sl){xB.xs.x7.....x2r+1},
and S = \)le(cjfys). It remains to show that in this case,
unless the cardinality of SM{Xysee+1X5.,9} 1s less than 3,

3 <31 + JBn - 13).
But 1t 1s clear that regardless of the value of r > 1, S
cannot be (3,C2 +1) = (3,2) nor (4.03 + 1) = (4,4) convex;

hence, m > 5 and we have 3 = %(1 + /25) < #(1 + /Bm - 135).
The result 1s best possible as“the obvious example shows., <>

1,18, COROLLARY: A planar, bounded (3,2) convex set is the

unlon of two convex sets.

1,19, COROLLARY: A planar, bounded (4,4) convex set 1s the
union of two convex sets.

Eduard Helly discovered a theorem in 1913 concerning
the intersection of convex sets. The first published proof
of this important theorem was given by Radon in 1921, For

future reference, we state the theorem,

1.20. HELLY'S THEOREM: Suppose that § 1s-a family of at

least d + 1 convex sets in EO, and { 1s finite or each

members of ; is compact. Then 1f each d + 1 members of C
have a common point, then there is a point common to all
members of ; .

For a compendium on Helly's theorem and its appli-
cations, see the excellent paper by Danzer, Grunbaum,
and Klee [4]. In that paper several generallza-

tions of Helly's theorem are mentioned. A useful concept
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in deriving such theorems 1s the following definition.,

1,21, DEFINITION: Let J be & family of sets in EC,
is sald to have Helly order n, if n is the smallest card-
inal number such that for each finite subfamily ﬂ of ﬁ a
nonempty intersection of any combination of n sets in ,‘L
implies a nonempty intersection of all sets in /dz.

Helly's theorem states that the Helly order of a finlte
or compact famlly of convex sets in Ed isd +1, It isan
interesting but somewhat difficult problem to determine the
Helly order of the family of (m,n) convex sets 1ﬁ Ed for
general m and n. We restrict ourselves in this paper to the
speclial casesm = 3 and n = 1,2, A series of lemmas will
lead us directly not only to the finiteness of the Helly
order for the family of (3,2) convex sets in E2. but to an
exact value for 1t. This development will reveal the Helly
order for the family of (m.Cm - 1) convex sets in E2 since
it i1s easy to show that (m,cm - 1) convexity implies (3,2)
convexity. We have already shown that a (3,2) convex set is
in general a (3 + k,2 + k) convex set (k > 0), However,
due to the strong topologlcal properties of a (3,2) convex
set, we get the following result,

1,22, PROPOSITION: A (3,2) convex set B in a linear
topological space E is (m,C, - [/2]) convex, for m > 2,
Proof, Let PpseessPp be any m distinet points in B,
Wwhere m > 2, Note that (plpj) and (pipk) cannot both have
points in common with C(B), for otherwise B would not be
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(3,2) convex. We can therefore have at most [@/2] open
segments Joining the given m points having a nonempty
intersection with C(B) (for example, (pilpiz)....,(pir_lpir).
where (13,...,1;) is some element of order [m/2] in S([@/é]).
the permutation group on [@/2] objects). Hence in b. we
have at least C, - [m/2] joins between the given m points.
Thus, B ls‘zm,cm - ‘?/é}) convex. ()

An extremely useful result is the following, which 1s

an extension of 1.16 in the plane.

1,23. LEMMA: Given X,y,z, and W in a planar (3,2) convex

set A, then 1nt(conv{x.y.z,w}).1s a subset of A.

Proof. If one of the four polnts lies in the convex
hull of the other three, then the result follows immedi-
ately from 1,16 and the application of (3,2) convexity.
Consider the case where no one point is in the convex hull
of the other three. That 1s, we have the four polints det-
ermining a convex quadrilateral. By the previous result,
A is (4,4) convex. If one of the four guaranteed joins 1s
a diagonal, then it follows from 1,16 that int(convix,y,z,w})
is a subset of A. Suppose on the contrary that the dla-
gonals, say xz and yw, are not subsets of A. Thus, the
boundary of conv{x,y,z,w} is in A. Again by 1.16, we have
every point of conv{k.y.z,w} in A, except possibly v =
Xzyw. But if v is not in A, by considering the set
{x.z,si. where 8 1s an element of xvyvz, we get a contra-

diction of the (3,2) convexity of A. Therefore
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int(conv{x,y,z,w}) 1s a subset of A.{
The next lemma 1s the main tool in establishing the
finite Helly order for the family of (3,2) convex sets in

Ez. It is an interesting result in itself.

1,24, LEMMA: Any five (3,2) convex sets in E2 each four

of which intersect have nonempty intersection.

A
Proof. Let Ai' for 1€ 5, be five (3,2) convex sets in

2
E , each four of which intersect. Denote by pi the point

guaranteed in n321 j#1 Ay If at least one of the five
points 1s in the interlor of the convex hull of the other
four, then that polnt 1s in all five sets by 1.23. So con~
Sider the three remalning cases where no one of the flve
points 1s in the interlior of the convex hull of the other four.
Case 1. No three points are collinear, then the five points
are vertices of a convex pentagon. Let €3y = pipj' Tg =
e13(\ ey and ry, for i Eﬁ, defined similarly. Let T =
conv(Uif_l ry). Since 1nt(conv[p1: 1;?, 1 £ j}) 1is a sub-
set of AJ. by 1.23, we have int T a nonempty subset of AJ.
for J€ 5. Hence, int T is a subset of (\,2 4,.

Case 2. EBExactly three of the points are collinear. We may
assume without loss of generallity that p3.p4. and,p5 are
collinear, with p, & P3P (see Figure 1.2). Define the seg-
ments eij and the points Ty as before, and let L =
~conv{r3.r4.r5.p4}. Since 1nt(conv{b1: 1 5, 1 # J}) is a
subset of AJ. by 1.23, 1t follows that int L 1s a nonempty
subset of (\121 Ai'
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Figure 1.2

Case 3. Exactly four of the points are collinear. Assume

that pl.pz.py and p, are the four collinear points, taking
the order indicated in Figure 1.3.

\
%

1

%\ s

Py

d

Figure 1.3

Now pl.p3. and Py are in Az. and it follows that plpucAzs
for, the existance of a single point of C(‘Az) on pypy denles
the (3,2) convexity of A2. Hence P, € A2 and therefore P, € |
N2 4 Q

It is stralghtfoward to see that if x,y,2, and w are
any four distinct points in niil A,, where for all 1¢ £
Ay 1s a (3,2) convex set in E?, then int(conv{x,y,z,w}) 1is
a subset of (),T; A;. It follows that 1f Aj.Ap,Aq, and Ay
are four (3,2) convex sets in E2, and A5 = nizl B,: Where
B

3 for 1¢ Sisa planar (3,2) convex set, and if each four

of the sets Ay,A3,A3,4;, and Ag have a polnt in common,
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then there is a point common to all five sets (simply apply

the argument of the preceding lemma in each of the cases

regarding pl.....p5 to Al'Az'AB’ n and any one of the sets Bi)'

1.25, LEMMA: Given n - 1 (3,2) convex sets in E2 Al""’

An-l' and An a finite intersection of planar (3,2) convex

sets, if each four of the sets Ay, for i€ ﬁ, have a common
n

point, then (\1=1 Ay # ¢,

Proof. The conclusion is true if n = 5, by the preceding
observation. Suppose the lemma is true for n = k. Conslder
the k + 1 sets Al""'Ak+1' where each A, is (3,2) convex
for 1§ 1?, a.nd-Ak_‘_1 is a finite intersection of (3,2) convex
.sets in the plane, such that each four of Al""’Ak+l have

empty intersection. L =
nonempty in ec et Bk Akr\Ak+1‘ Al""’Ak-l'Bk
is a collection of k sets the first k - 1 of which are (3,2)
convex, and the k-th, a finite intersection of (3,2) convex
sets. Each four of the sets in the collection A1""’Ak-1’Bk
have a common point. For, consider Ai'AJ'Am and Bk' Each

four of the sets Ai’Aj’Am’Ak’ and Ak+1 have a common point
by hypothesis. Hence, Ai'AJ'Am' and Bk have a point in com-
mon by the observation preceding this lemma. Therefore, by

the induction hypothesis (V;r3 8 # 9.9

1.26, LEMMA: Given n (3,2) convex sets in E2 each four of

which intersect, then they all have a common point, where n > 5.
Proof. If the number of sets is five, then the result
is already true by 1.24. Suppose it is true when n = k > 5.
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Let Ajseseshyy, be k +1 (3,2) convex sets in E2 each four
of which have a common point. Consider the collection
AyseeesAyy 1By Where By, = AL N4, 4. Each four of the sets
have a point in common. For, conslder‘Ai.AJ,Am, and By s
each four of the sets Ai'Aj'Am'Ak' and Ak+1 have a point
~ in common, and by 1.24 the intersection of these five sets
is nonempty. Thus Ai’Aj’Am' and Bk have a common point.
We now have k - 1 (3,2) convex sets AjsecesBy 0 and By,
where B, is the intersection of two (3,2) convex sets, each

four of which have a point in common. By l1l.25, we have

1.27. PROPOSITION: The Helly order of the family of (3,2)

convex sets in E2 is four.

Proof. From the previous lemma we have proved that
the Helly order for the family of (3,2) convex sets in
the plane 1s no greater than four. The following example
is offered to show that the bound used in 1.24 is best
possible, and that the Helly order 1s exactly four.
Example. With the usual coordinatization of E2. let x =
(0,0), ¥y = (1,0), z = (0,1), and w = (1,1). Take A as the
interior of the triangle formed by x,y, and z, including
the sides xy and xz, B the interior of the triangle form-
ed by x,y, and w including the sides xy and yw, C the
interlor of the triangle formed by y,z, and w including
the sides yw and wz, and , finally, D the interior of the
triangle formed by x,z, and w together with the sides

xz and zw. : -
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We have four (3,2) convex sets A,B,C, and D in E2
each three of which have a point in common yet the inter-
sectlon of all four sets 1s empty. o
It would be 1nterest1ng to know 1f 1.27 generalizes
to Ed. That is, 1f c i1s a finlite famlly of at least
d + 2 (3,2) convex sets in E% each 4 + 2 of which have

a common point, then is there a common point for all the

members of c?



CHAPTER II
M=CONVEXITY

It 1s interesting to speclalize the concept of (m,n)
convexity to (m,1) convexity in order to discover-the more
basic properties of such sefs (every (m,n) convex set 1s
(x,1) convex, or k-convex, for some k > 2). In this chap-
ter, therefore, we turn our attention to m-convexity. We
will characterize the kernel of a certalin family of
m=-convex sets, glve a negative answer to a conjecture pf
Danzer, Grunbaum, and Klee concerning the Helly order of
3-convex sets, and introduce the notion of local non-
convexity, which will lead us to several convex coverlng
theorems for m-convex sets., In the process, we prove a
generalized Helly theorem.

The concept of the kernel of a set was introduced by
Brunn [}], when he showed that in EY the kernel of any
set 1s convex, and is closed iff the original set is clos-
ed. Toranzos ‘}6] formulated in another connection a pre-
viously unpublished result which has been common know-
ledge in the theory of convexity for some time, namely
that the kernel of a set 1s the intersection of all its

maximal convex subsets. In connection with this, Hare and

30
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Kenelly [7] have shown that the intersection of the max-
imal starshaped subsets of a compact, simply=-connected,
planar set 1s starshaped or empty. For m-convex sets in

Ed

, We obtain the following results. Flrst, we observe
that a stralghtfoward application of the proof of 1.5
implies that the union of a chaln of relatively m-convex
subsets of a set 1ls relatively m-convex with respect to

that set.

2.1, PROPOSITION: For each relatively r-convex subset T

in S, where S 1s any set containing at least k visually
independent points, there exists a maximal closed subset
of S which is exactly k~convex with respect to S and con-
talns T, where 2 < r < k.

Proof, If T 1s a relatively r-convex subset of S it
will be an exactly s-convex subset of S relative to S for
some 8 < r. Let X),..s,X) be a set of k visually indepen-
dent points in S. Inductively, consider the sets '1‘° = T,
T, = TUI,T, = TURU ..o = TUIULS, X} 4t
least one of these sets, say Ti’ must be exactly k-convex
relative to S since To 1s relatively exactly s-convex, Ty
1s relatively exactly t-convex for some t > k, and the ad~-
dition of a point 1in S to each ’I‘J does not increase the
order of the relative, exact m-convexity of TJ by more than
one. By Zorn's lemma, there is a maximal subset M of S
contalning TipT which 1s k-convex relative to S. But

since Ty 1s exactly k-convex relative to S, it contalns
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k - 1 points YyresesVyp which are visually independent
relative to S. Since M contalns Yyseoo Yy q M itself

is exactly k-convex relative to S. 0

2.2, COROLLARY: If T is any convex subset of an exactly

m-convex set S, then there exists for each k, 2 < k < m,
a maximal subset of S containing T which 1s exactly
k-convex relative to S.

We shall need the following concept for subsequent

results:

2.3, DEPINITION: T€S 1is saild to be weakly relatively

convex with respect to S iff for each two points x and
y of T such that (xy)C€ S, then xyCT.

Thus, any set 1s weakly relatively convex wlth res-
pect to itself while 1t need not be convex relative to
itself (see 1.9). The convexity of a set implies both
weak relative convexity and relative convexity with res-
pect to any set contalning it, but, unfortunately for the
terminology, a relatively convex subset of even a convex
set need not be weakly relatively convex., Moreover, it 1is
not necessarily true that a maximal, absolutely k-convex
subset of an m-convex set S be weakly convex relative to S,
as the following example shows. The set S illustrated in
Figure 2.1 consists of two squares (interiors included)
and two line segments. S 1s 5-convex, but the subset T
consisting of U, pq, and rs is a maximal 4-convex subset of

S which 1s not weakly cOnvex'relative to S. For, consider
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the points x and y, as shown in the figure. (This exam-
ple also shows that relative convexity does not imply

weak relative convexity.)

Figure 2.1
For k-convex subsets which do satisfy weak relative

convexity we can establish a positive result.

2.4, PROPOSITION: If S 1s any set, then the intersection

of any collection of (absolutely) k-convex subsets of S
(k fixed, k > 2) which are weakly convex relative to S,
where the intersection contains at least k points, is
k-convex,

Proof. Let M = (\{S;:+ 1€ I}, where each S, 1is a
k-convex subset of S which 1s weakly convex relative to S.
Choose any k distinct points in M ZyreeerXye Now each
x,, for J€X, 1s in Sy for all 1 in I. If for some s and
t in ﬁ and u in 1 xsxtcsu. then X X¢ is in S, since
Sy€S. Hence, x xi 1s in S, for all 1 in I by the weak
relative convexity of sl. Therefore XgX¢ 1s in M. Since
S, 1s k-convex, 1t must contaln at least one Jo;n XgX¢
determined by these k points. Hence, M contalns a join

determined by the k glven points, and thus M is k-convex.'o
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>.5. REMARK: It would be interesting to obtain a direct

analogue to the Hare-Kenelly result mentloned earlier,
that is, to establish that the intersection of the max-
imal k-convex subsets of a closed, simply-connected,
planar set is k-convex. Thls assertion remalns a con-
jecture at this time, however.

It 1s easy to show that the kernel of any m=-convex
set T 1s contained in any maximal subset R of T which is
k-convex relative to T, 2 < k <m. PFor if x § (ker T)\R,
then {x}UR 1is clearly k-convex relative to T and con-
tains R properly, denying the maximal propérty of R. A
slightly different result is possible when T is not requir-

ed to be m-convex,

2.6. DEFINITION: The join of x and A 1s the set xA =
fox + (1 -a)ar a€4, 0 <as 1}. This 1s sometimes

referred to as the cone over A with vertex x.

2.,7. PROPOSITION: If R 1s any maxlimal absolutely
(relatively) k-convex subset of T, then ker TCR.
Proof. We prove thls only for absolute k-convexity;
the proof for relative k-convexity is similar. Suppose
that there 1s an element x in ker T which is not in R,
where R 1s & maximal k-convex subset of T. Hence, R
is a proper subset of xR, Moreover, xR 1is k-convex,
For, 1f we are to select any k points PyrecesPy in xR,
then there exlst polints x,ER, Tor 1€ ‘1;. such that

A T
Py & XX, There is an 1 and J in k such that le_x‘1 is in R,
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since B is k-convex. Hence, PyP4C conv{x,xl.xj'{c xR. But
this contradicts the fact that R is a maximal k-convex
subset of T. Therefore, ker TCR. Q

2.8. COROLLARY: The kernel of any set T is contained in

the intersection of all maximal absolutely (relatively)

k=convex subsets of T.

The next result contalns Toranzos's theorem in the

speclal case k = 2,

2.9, PROPOSITION: Suppose T 1ls any set with the property

that for some integer k > 2 and for any x &§ T\ ker T, =
has at least k - 1 points which are visually independent
relative to T, Then ker T is the intersection of all the
maximal subsets of T which are exactly k-convex relative
to T.

Proof. Let ker T = K and consider x any element of T\ K.
By hypothesis, % contains k - 1 points XyveoesXp q Ain TF
visually independent relative to T (if k = 2, simply
choose any point xy in 7). The set S = X KU e U, 1K
1s the union of k - 1 convex ubse41:s of T and hence 1s
relatively k-convex. It is easy to show that S 1is also
exactly k-convex relative to T. There exists a maximal
subset M of T containing S which is exactly k-convex
relative to T. The point x cannot be an element of M
since X,X),e¢ee4X 5 a8re visually independent relatlve to
T« Therefore x cannot be in the intersection of all max-

imal k-convex subsets of T, Hence, the intersection of
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the maxlimal k-convex subsets of T is a subset of ker T.

By 2.8 the proposition is establlshed.<>

2.10, COROLLARY: If T is any m=-convex set, with k a

positive integer 2 < k < m - 1, and T has the property

that Tx for x€ T\ker T is exactiy r-convex for some r > k,
then ker T 1s the intersection of all maximal, relatively
exactly k-convex subsets of T.

Proof, Stralghtfoward, since an exactly r-convex set
relative to T for some r > k has at least k - 1 visually
independent polnts.<>

Note that, in the event ker T 1s not the 1htersection
of all the maximal k-convex subsets of T, then 1t cannot
have the property of T assumed in the theorem., A simple

example of this 1s shown in the figure below.

X3

L % Xy

Flgure 2.2
Here, ker T = ¢, but the intersection of all maximal
Y-convex subsets of T is the point x3. Thus, at least one
anti-star T* for x € T\ker T = T is 3-convex (T3 1s obviou-
sly that set, and the only one). This observation shows
that the plausible conjecture

ker T = Ny en M (2.1)
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where the intersection is taken over all maximal rela-
tively k-convex subsets, 1s false even for m=-convex sets,
m >k + 1; some condition similar to that given in the
corollary is needed. A more interesting counterexample
to (2.1) is indicated in the next figure. Thls set is

compact, simply-connected, and 4=-convex, but the kernel

Figure 2.3

is not obtalned by intersecting maximal k-convex sets for
any k > 2 (that is, k = 3). Here, ker T = conv{x,y,uf,
but nMCT M (M = maximal 3-convex subsets) = convfw,x,y.z}.
Moreover, note that v is convex relative to Te On the

- positive side, Figure 2.4 shows an example of a set T in
E2 which satisfles the property required in 2.9 for each
k > 2; using complex notation, T consists of a small’
square B centered at the origlin, and the union of the
cones of the polnts zgj and 223*1 over B, n = 1,2,¢00)
and j = 0,1,2,3, Wwhere 223 = exp(nj/2 = a + a/n - a/nz)i
and 223+1 = exp(ni/2 + a - a/n + a/nz)i. with a chosen

so that Z, (J = 0y00e,7) are the points of intersection
of the sides of B and the unit cirecle |z| = 1. Here,

ker T = B, and, according to 2.9, B is obtalined by inter-
secting all maximal, relatively exactly k-convex subsets



of T, for each value of k.

Figure 2.4

Danzer, Grunbaum, and Klee have conjectured [4] that
the family of all 3-convex subsets of Ed has finlte Helly

order. The next result gilves a negative answer to this

conjecture.

2.11. PROPOSITION: The Helly order of the family of

closed, connected, planar 3-convex sets is infinite.
Proof. It suffices to exhibit a set of k closed,
connected, planar 3-convex sets each k - 1 of which have
a point in common but with all k of them having empty
intersection, for each even integer k > &4,
Let z = (1.0).22.....zk be the k-th roots of unity.
Let k = 2m and consider for 4 <1 < k - 1 the following

sets,

Al = conv i22|23. ey zm+1} \J convtzm*lg eoe .Zk}.
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Az = conv{ 23.214‘, sse ,Zm+23 ) OOnVIZm..h?'. XK .zk. zl} ’
A3 = convtzu. 25’ XK .zm+33 U GOHV{Zm*B' eve .zkpZI.ZZ}.

A = c:onv{zl.'_l.....zm_‘_i iV conv{zm*i ""’zk’zl""'zi-l}'

A = conv{z) 1Zoseverzy JU convizy seeeszi g}
By construction, we have zii«()3¥1 Ay. Hence, the inter-
section of any kX - 1 of the glven sets 1s nonempty. Let
¢ = (0,0), every point in convle,....zkx must, for some j,
lie in B, = 1nt(conv{c.zj_l.zj.zj+1})l){c}. Since B, 1s a
subset of the complement of A,, We have r\izl A, =4, 0

Thus, a family of sets each of which is closed, connect-
ed, and is the union of three or fewer convex sets nced not
have finite Helly order. The difficulty lies 1n the fact
that the intersection of members of such a family may be
more complicated in structure than the members themselves,
In (5], Grunbaum and Motzkin considered a modified situ-
ation in which :ﬁ conslists of sets which are expressible
as the union of at most n distinct compact convex sets,
and which also have the property that the intersection of
n or fewer members of jﬁ can be expressed as the union of
at most n disjoint compact convex sets. In Ed, let Di.d
denote the collection of those sets which can be expres-
sed as the union of at mbst i disjoint compact convex sets.
Grinbaum and Motzkin were able to establish for the case

1 = 2 that if Jr 1s a famlly of sets in Dy 4 such that

any i(d + 1) members have nonempty intersection, and for
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r < 1 the intersection of any r members of J 1s a member

of Di.d' then nFESF #£ @d. Larman in [14] has extended this

result fdr the case when 1 = 3,

A different way of obtaining a finlte Helly order for a

family of sets in Ed each of which is the union of k or fewer

convex sets 1s to requlire that the lntersection of members
of the famlly be in the family. One may also require that
each set in the family be a special union of k-convex sets.
Turning our attention in that direction, we can obtain a

generalization of Helly's theorem in Ed.

2.12. DEFINITION: A k-isolated set 1s a set consisting of
a convex set and k or fewer lsolated points, for k a non-
negative lnteger.

Since convex sets are O-1solated sets, the next result

reduces to a form of Helly's theorem when k = O,

2.13. PROPOSITION: The Helly order of the family of
k-1solated sets in Ed is no greater than (d + 1)(k + 1).
Proof. We shall prove the lnductlve proposition for
each integer r > (d + 1)(k + 1) + 1 : If {Si' ie %} is a
family of r k-lsolated sets in E® each r - 1 of which have
nonempty intersection, then all r sets have nonempty inter-
section. It is obvious that this willl then imply the
deslired result since by mathematical induction it follows
that each family'{si.: l¢ ?‘} of r k-1solated sets in Ed‘ )
each (@ + 1)(k + 1) of which intersect have nonempty inter-

section. Assume that {Si: 1€7T} 1s a family of r k-isolated
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sets in Ed each r - 1 of which have nonempty intersection,
r>(d+1)(k+1)+ 1, Let the set of isolated points
Of SyseeesS, D& PysecesPgi thus, each S1 has the form
JERNCE RN NN
where each C, 1s convex and t(1) < k. Choose ay in
nie 2,143 Sy for each J€T (since each r - 1 of the sets
Sy have nonempty intersection), and put T = {ql.....qr},
Note that for any ut?' S, contains r - 1 of the qj's. Hence,
each C, must contain at least r - k - 1 of the qj's (of the

- ]
r - l1q,.'s in S, at most k can belong to Su\cu)' Now

considei any two sets S, and S;,. Letting A denote the
cardinality of A and applying the inclusion-exclusion
formula JAAB|} = Al + | B| - |AUB|, it follows that
lcgne)n?l 2 (r -k -1) + (r-k=1) =r=r~2(k+1).
Continuing inductively, each intersection of the form

ciln ...ncidﬂ contains at least r - (4 + 1)(k + 1) 21 of
the q,'s. Hence, fcys 1€ £} 1s a family of convex sets in

g4

each d + 1 of which have a common point. By Helly's
theorem, (\1:]_ Cy # #. Therefore 01:1 s, # 4. 0

We now turn our attentlon to the concept of m-convex-
ity as a tool in characterizing sets which are the union
of finitely many convex sets. The following example, due
to Kay, shows that if one attempts to use m-convexity as the
only criterion then the restriction to closed sets is

necessary.

2,14, EXAMPLE: Let E2 be identified with the complex
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plane and let C be the unit circle {z| = 1, with z, =
e™™/2% for n = 0,1,2,.... Let P be the infinite sided
polygon which circumscribes C, touching C at precisely the
points l,e'ni/z, and z, for n even. The set S 1s then
defined as the set of points on and inside P with those z,
deleted for which n is odde It can then be shown that S
is 4-convex but is not the union of any finite number of
convex sets (see [9]).

Many of the convex covering theorems for m-convex sets
have been obtained by imposing conditions on certain sub-
sets of S, For example, if one requires that the kernel of
a compact m-convex set be empty, then the compact m-convex

set 18 the union of finitely many compact (m - 1l)-convex

sets. Another useful concept for us is the following:

2,15. DEFINITION: A set T 1s sald to be locally convex
at a point p in T if there exists a nelghborhood N of p
such that TON is relatively convex in T, If a set is
locally convex at every point, it is sald to be locally
convex, A point q of T is a point of local nonconvexity
(or lnc point) if T is not locally convex at q.

It 18 clear that q is an 1lnc point of T iff it is a
limit point of a pair of nets {x,:1¢g D} and {yislt D} in T
such that for every 1€ D the join xiy1¢ Te Knowledge of
the set of lnc points of a set is useful in determining
properties of the set. In [6) 1t is proved that if SCE
and the set Q of lnc points of S consists of a single point,
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then S is starshaped from Q. A representation theorem
appearing in the same paper states that if ({Q|{ =1 and S
is m-convex, then S is the unlon of m - 1 or fewer convex
sets. Stamey and Marr [lj} have shown that if S is a bound-
ed 3-convex set with |Q| > 1 and a point q g (ker S)N (bd S)
and S is locally convex at q, then S can be expressed as
the union of two closed convex sets,

For the sake of completeness, and to give an indlca-
tion of the importance of the concept of local convexity,

we state Tietze's theorem. A proof may be foundlin [}8].

2.,16., TIETZ2E'S THEOREM: A closed, connected set in a

linear topological space which 1s locally convex is convex.

Kay and Guay [}d} have recently generalized Tietze's
theorem by showing that 1f the set Q of lnc points of a
closed set T in a linear topological space has finite card-
inality n > 0 and T\ Q 1s connected, then T is planar and
is the union of n + 1 or fewer convex sets.

A result due to Valentlne (}7] states that if S 13 a
closed, connected, planar 3-convex set, then S 1s the unlon of
three or fewer closed convex sets, Guay, in his thesils,
was able to extract the essence of Valentine's proof and
establish a result we shall make use of later. From now

on, Q denotes the lnc polints of S and K denotes the kernel

of S,

2
2,17, GUAY'S THEOREM: Let SCE be closed, connected,

and have at least two points of local nonconvexity. If
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Q€K, then S may be expressed as the union of three or
fewer closed convex sets.,

By considering the five pointed star, one may see that
for both Valentine and Guay's results the number three is
best possible. Two representatvion theorems follow direct-
ly from Guay‘'s theorem. We introduce the notation T, =

A
1z €T: xaCT for all a€Af.

2:18. COROLLARY: If S has the property that Q = \Jyo; @
and S = Uif-.ll SQ:\.' then S 1s the union 0. 3n or fewer

closed convex sets.

2.19. COROLLARY: 4n (m,n) convex set S with n > C,_, is

the union of three or fewer closed convex sets.

Proof. We need to show that if n > C;_,, then QCK.
Suppose that q € Q\ K, and let x be a point 1n S suca that
qx¢S. Take a sequence {xl} of points in S with the prop-
erty that lim x, = x. In addition, there exist two sequen-

i o
ces {7,} and {z,} such that lim y, = 1lim z, = q and Y121¢S'

Lde0 t—pe0

for all i, There exists a positive integer 10 such that
for 1 > 10 qx1¢ 3. Hence, there exlists a Jo with the pro-
perty that yjo and zjo' together with any m - 1 elements
of {xia 1> 10} , form a set of m points in S with at most

Cp.2 Joins, a contradiction. Hence, Q 1s a subset of K. {

2,20, DEFINITION: A set T 1s called an L, set 1if every pair

of points in T can be Joined by a polygonal arc in T consist-
ing of at most n segments,
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In [ﬁ], Horn and Valentine characterize propertles of
L2 sets in the plane. It 1s straightfoward to see that in
a linear space every connected m-convex set is an Lz!n_3
set, assuming the set 1s polygonally connected (a result
obtained in (9] for finite dimensions). For if P =
X XU X XU e UKy 1, (X, = X and X, = y) is a polygon-
al arc in S jJoining x and y such that the number of sides
is minimal among all such paths jolning x and y, and
n >2m - 2, then X, for 1em/-\1 is a set of m visually
independent points in s, a contradiction. It can also be

shown that any closed m-convex set 1s an Lp_j set.

2,21, PROPOSITIONQ Every m=-convex set T which 1s an
exactly Lp,_3 set (an Lpp.3 set which 1s not an Lop.y set)
can be expressed as the union of 2m - 3 convex sets.

Proof., Let x and y be points in T such that the min-
1mal number of sides of any polygonal arc joining x and y
is 2m - 3, and let P be such an arc, with the vertlces of
P denoted by x = xo'xl""'me-3 =Yy » Denote by L1 the
set of all points z in T with the property that the min-
imal number of sides of a polygonal arc Jjoining x and 2z
is 1, for 152{-\3. It is clear that T = Ufﬂ? L, Uix}.
Now each Ly 1s convex; for otherwise if there exist p and q
in Ly with pqqﬁT. then by considering {x = XgeXpseee 91Xl
PsQsTpppnsseesXop o] (even subseripts) if 1 = 2k, or
{xl'xB"'"12k-3'p’q'x2k+1’°"’12mu3} (odd subscripts) if
i1 =2k - 1, we see that since P was a minimal polygonal
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arc jolning x to y, in eilther case we have a set of m
visually independent points in T, a contradliction of the
m-convexity of T, Also I, U 1z} 1s convex since x can see
every polnt in I; and L; itself 1s convex., Thus, T 1is
the union of 2m - 3 convex sets. 0

Valentine has shown [19] that knowledge of Q in certain
cases lmplies polygonal connectednesvs. He proves that if
T is a closed, connected set in ¢ with Q = Uigl Qy» Where
Q3 1s relatively convex, connected, and closed for all 1§ ﬁ.
then T is an L2n+1 set, As a corollary, he shows that a

closed, connected set in E¢ with 12l = n is an L.+ set.

222, LEMMA: Any closed, connected, m-convex set is local-
ly starshaped.

Proof, Let xgS and suppose no such nelghborhood of
x exists. There 1s a net N = {x,1 n€¢D}C S converging to
x such that xx, ¢S for frequently many Xn. Let x, be an
element of the net such that xxnl¢ S. There exists a
nelighborhood Unl about x such that xnl cannot see any point
in that neighborhood via S. since S is closed. Let xn
be any point in NAU, such that xx, ¢ S. Thus, x, T, ¢ Se

2
There 1s a nelghborhood Unz of x such that U, CU, and x
2

o | n,

- cannot see any point in Ur12 via S. Select any point in
Nf\Unz. S8y X then {x,xnl,xnz.an'f forms a visually inde-
pendent set with respect to S. There exists a neighborhood

U, ofx such that X cannot see any point of Un via S
3 3 3
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and Un3C Unz' Continuing this process, we obtain a contra-
diction of the m-convexity of S.<>

A conjecture of Kay [9] that a closed, m-convex set in
En is the union of finitely many convex sets has been est-
ablished for several speclal cases, but the conjJecture for
more general sets remains. We develop here a few tools

which might be useful toward establishing the conjecture

in E2

» Which we also use in case of 4-convexity in the fol-
lowing chapter.

First let S be a closed, m=convex set in Ez. and let Q
be the set of all lnc points of S. We use the notation
H = conv Q, and {W1= o I] will denote the collection of
connected components of S \H (for the m-convex sets we
shall consider, H will be a subset of S). Note that if
HECS, then Q€bd H; for otherwise, there exists an lnc point
q € int HCint S, denying the obvious property q €bd S for
all q€ Q.

By m=convexity there can be at most finitely many one-
dimensional components Wi (each such component must be a
segment or ray, and thus, for all but possibly one other
component, no point in W; can see via S any point of any
other component). The remaining components have mutually
disjoint interiors. Hence, I 1s countable, and we shall
assume I consists of a subset of the poslitive integers.,

For convenlence, we shall now assume that S 1s compact.
This will simplify many of the arguments, although many of

these results can be established without that assumption.
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A gimply-connected subset of o 1s a set whose complement

contains no bounded component. We establish the following

result:

2.23. LEMMA: If S is a connected, compact, m-convex sub-

set of E2 with conv Q €S, then S is simply-connected.

Proof., With H = conv Q, suppose G ls a bounded compo-
nent of EZ\S, and let g€ G. Slnce g#H and H is compact
there is a line [ strongly separating g and H, and let the
closed half-plane determined by 1 not contalning H be denot-
ed by F. Let {ZJ: J€J}, denote the closures of the compo-
nents of FAS. The m~-convexity of S implies that there can
be only finitely many components ZJ, SO We may assume with-
out loss of generality that J = {1,2,...,k}. Each Zy is a
compact, connécted subset of F; we can show further that Z‘1
is locally convex, and therefore convex by Tietze's theo-
rem, For, let xEZJ. Since fo, there exlsts a convex
neighborhood U of x deviod of points of H, and if {y,} and
{zn], n=1,2,s00, are sequences in UnZJ converging to x
such that ynzn¢ Z'j then since Yn2,CF, we have ynzn¢s. for
otherwise Poinfs of y,Z, belong to different components of
FAS. Then x is an 1lnc point of S proving that x&H, a
contradiction. Thus, Z j is convex for each J.

It 1s an obvious (easily proved) property of a compact
convex subset of a half-space that its complement relative

to that half-space 1s connected. Hence, for each ) I-‘\Z‘1

is connected. Suppose 1t has been proved that
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F\(Z]_UZZU"'UZJ) is an open, connected subset of F.
Consider F\ (VU 2oV ***UZ4\J Z441), Which will be shown
to be connected (it is obviously open in F). There is a
sufficiently small circular neighborhood V of 0 such that
Zjﬂ + V is disjoint from 21UZZU"'UZJ. Since
(zj+1 + )\ Zy4y 1s open and comnnected (the proof is basic-
ally the argument for the connectedness of the boundary of
a compact convex set), then (Zj-t-l + )\ Zy41 1s polygonally
connected. Let X and y be any two points of
F\(ZIUZZU"'UZJ.,.J_)CF\(ZJ_U Z2;U°**\UZy). There is a
polygonal arc P with consecutive vertices x = XorXyreee Xy =¥
in F\(Z,U2Z,y**° VUZ;) jolning x and y. If P is disjoint
from Z,,, then PC FN\(ZU2Z,U ***UZ34;) and we are done.
Otherwise P cuts ZJ+1, and without loss of generality (by
the convexity of ZJ,,_]_) We may assume that Panﬂ = XyX4 49
But x; and x4 6 bd Zj;l-l so there exlst polnts x; and X541
in Pﬂ((ZJ.,,l + )\ ZJ+1)' and there is a polygonal arc in

(Zy4q + VI\ 24y Jolining xi and x; , say, With consecutive

i
vertices xi = Yor¥yseees¥p = xiﬂ. Thus,

X = XgrXyre001Xy 39T 50T 00 eesT 1Ty 4000009X, = aTre the
consecutive vertices of a polygonal arc P' in

F\(zV ZZU-HUZJ,,,I) joining x and y, so the latter is a
connected open subset of F. This‘ proves, by mathematical
induction, that F\Ud_l_fl Zy 1s connected. Since g€ FAlG
and G 1s a maximal connected subset of EZ\ S, G contains
p\ U,jl:l zJ. denylng the boundedness of G. Hence, S is
simply connected. {
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In the proof of 2.23 the situation arose where a cer=-
taln convex set (the half-plane F) disjoint from Q met S,
It was then shown that any lnc point of a component of
FAS 1s an 1lnc point of S. The contrauiction thereby est-
ablishes the local convexity of each component of FS, and
since these components were closed and connected Tietze's
theorem implies they are convex. This situation is of suf-
ficlent generality and occurs frequently, so we clte a cor-

responding lemma, the obvlious proof of which will be omitted.

h2.2’+. LEMMA: If S is any closed set in Ed, with Q the set

of 1lnc points and C any closed convex set disjoint from Q,
then any component of CMlS 1s convex,
At this point we also state the classical Caratheodory

theorem for Ez, which willl be used frequently.

2.25. LEMMA: If xgconv S there exist points y,z, and w
in S such that x € conv{y,z,w}.

We prove a result which will be used later to extend
any convex covering of S of the form S = UJ:J. CJ, CJ convex,
when | Q] < @, to the case |Q| =e . The proof uses the con-
cept of the Hausdorff limlt and a theorem of C. | Kuratowski
[13] (Theorem VIII, p. 246) which states that any sequence
of subsets of a second countable topological space contains
a topologlcally convergent subsequence. From the defini-
tion of the Hausdorff limit, it follows that 1f the seqﬁ-

ence conslsts of convex sets, then the set to which the

sequence converges 1is convex. We have then, the following
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lemma, phrased 1n the context in which it will be used.

2.26, LEMMA: Each subsequence of convex sets in Ed

contains a subsequence which converges to a closed convex
set.

If xil.xiz....,xin.... represents a subsequence Y of
X11Xpsee0sXpseeey We Write ¥ = §xy1 JE€I'}, where I' =
f2102000000ds00s} (I 1tself will denote the set of posi-

tive integers).

2.27, LEMMA (KAY): If S = c:l(u1eI S;) and for each 1¢1I
Sj_ i1s the union of m convex sets and 81C31*1, then S 1s

the union of m convex sets,

Proof. Let Sy = ijzl Cyj» where C;4 1is convex for
each 1 and j. Apply 2.26 to {C;31 L€ I}. There exists a
- convex set Cy (perhaps empty) and a subsequence {cil‘ 1€:H}
such that }.%lillcu = Cj. Consider {sla l¢ Il} and the corres-
ponding {C;,+ 1€I;}. Apply 2.26 once again to {Cy,: 16 I},
There exlsts a subsequence {012‘ 1€ IZ}. I,C€I, and a con-
vex set C, such that 12?2012 = Cye Assume that Cy and I,
have been defined and apply 2.26 to {Cj .41+ 1 €If. There
exists a convex set ck+1 and a subsequence Ik-l-l CIk such
that ié?k+aci'k+1 = Cy41. Hence C3,Cyee4,Cpy and Iy may be
defined. Slnce {Si' i¢ I} 1s a nondecreasing family, it is
clear that S = °1(LJ1¢Imsi)’ also i%?hcij = C4 for each
jg B, We claim that S = qu__‘l Cy. Let x€ ujgl Cy» Hence,

for some J, x€ C,. There exists a sequence fy,: k¢I of
J k m
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elements of ijCSk converging to x. Hence x is a limit
point of S, and since S is closed, xS. On the other hand,
1f x€S there exists a }J o such that x 1s contained in infin-
itely many ciJo’ 1 €I, Therefore x€ %%?mcijo = CJo’ which
implies that x¢ szl Cye &

A similar prqposition may be established for a noninc-
reasing sequence {Si' 1!1‘,(81‘; Sj41)s the set S =
niGI cl S; 1s the union of m convex sets if each S, 1s so

expressible.

We continue the study of the structure of closed m-convex

sets in E2

in a sequence of results, The hypothesis that S
is compact, connected and conv Q€S (agaln we write H =

conv Q) will be carried throughout.

2.28, LEMMA: Each component W of S\ H has at least one
member of Q in its closure,

Proof. Certainly there exists x écl W{]bvd H (by con-
nectedness of S). If x€Q, we are finished. Otherwise,
since H is closed (S is compact, so Q and thus conv Q is
compact), x € H. By 2.25 there exlst points Q3195 and a5
in Q such that x tconv{ql.qz.QB}. Since xflnt H,
x€bd conv{ql.qz,q3} and hence, x € (q;q5), say. Consider
the maximal subsegment X X, of Q;4, containing x and belong-
ing to ¢l W. Again we are finished unless x;x,C (q1q2)\ Q.
ﬁence. in that case, a disk D centered at X; exists such
that DNS 1s convex, and if DNq,q, = ¥,7, and y3t DNV then
conv{yl.yz.yB}CDhscs. so it follows that X X,U¥1¥2 C
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qlqzncl W, denylng the maximal property of X1X, as a sub=-
set of qlqzﬁ ¢l W. Hence, X;X, = Q;Q, Proving that q; and
Q, belong to cl W. {

2.29. LEMMA: If H is two-dimensional, each component W of
S\ H contains at most two elements of Q 1n its closure.
Proof. We borrow a consequence of the Jordan closed
curve theorem for sz If Al'AZ' and A3 are arcs having
only endpoints x and y in common, then for some 1 = 1,2,
or 3 the open arc Ai\ {x,y; lies in the interior of the
simple closed curve formed by 4,4, and Aj4p (cyclic index-
ing understood). Suppose q; 19, and qy ere points of Q in
cl W, Since it 1s obvious that ¢l W contailns exactly one
point in Q if W is one-dimensional, we may assume W is two~
dimensional. It then follows that ¢l W = cl int W; since
cl W is polygonally connected it can be easily proved that
int W 1s also polygonally connected., Hence, since S 1is
locally starshaped, there exlist points Xy X5, and xq in
int W such that for 1 = 1,2,3, X39,€ S with the chosen
'sﬁfflciently close to make XyQ3,XQ2 and X403 palrwise
disjoint. It follows that points qi exist in Q such that
[xiqi)c Wy, 1 =1,2,3, and hence [xiqi)cmt W (we are using
here the local convexlty of W); for convenlence, we drop
the primes. Since int W 1s connected there are polygonal
arcs Plc int W and P,€int W joining the respectlve palrs
(x5,x3) and (x3,x;), such that P\ {x3} and P\ x5} are
disjoint from each other and from Q3% 1i=1,2,3., But H
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is two-dimensional, compact, and convex, so bd H is a simple
closed curve and Q3 +Q5p0 and q3 seperate bd H into three arcs
Bl'BZ’ and B3, with qQy and Q43 the endpoints of B1+2 for
1=1,2,3. Choose y¢§ BB distinct from q; and q,, separat-
ing B3 into two subarecs B31 and B32, with q € BBi’ i=1,2
By convexity of H, yq3c H. Hence, the arcs 4y =
BBlu(qlxl)uPz. Ay = B3ZU(q2x2)UP1. and A3 = ya5UQq4%5
have only the endpoints X3 and y in common. Denoting the
interlior region determined by the simple closed curve C by
I(C), the above~-mentioned consequence of the Jordan curve
theorem lmplies that for some 1,
A\ =37} CT(A3qU A 45)

But q4 € A,\ {x3.y} and by the simple connectedness of S,
I(A1 49U A142)C Int S, That 1is, q, € int S, which 1is impos-
sible, thus establishing the desired result.<>

That the above proof necessarlly breesks down if H 1s not
two-dimensional is easlly shown by examples, such as that
illustrated in the figure below (S is a 6-convex set with
HCS, but W 1s a component of S\ H with all of @ in its

closure):
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2.30. LEMMA: If H is two-dimenslonal, then the closure

of each 6omponent W of S\ H has at most two 1lnc points.

Proof. Let x€cl W, and suppose if‘Q. Since Q is closed
there exists a convex neighborhood U of x disjoint from Q,
and by 2.24 any component of UAS is convex. Thus Uflcl W
1s Yocally convex at x. It follows that if x is an l1nc
polnt of cl W then x€ Q. BHence, by 2.29 ¢l W has at most
“twlo lnc points. ¢

In the preceding lemma we find that, unless cl W 1is
convex, S' = cl W 1s a set similar to S in that it is a
closed, m=-convex subset of E2 with H', the convex hull of
the set of 1lnc points of S', a subset of S*', But in this
case, H' 1s a subset of a line. We then turn our atten-
tion to the case when the set H assoclated with S is a sub~
set of a line, since in that case the problem of covering S
by finitely many convex sets can be completely solved.

First, we shall need several concepts involving two-
dimensional compact, convex subsets of E2. If C 1s such a
set, bd C is a simple closed curve (homeomorphic to a circle)
and, as such, permits a cyclic ordering of its points.
With X, any point of bd C, this ordering induces a linear
ordering > on any arc on bd C contalning X, as an interior

point. Thus, if A is such an arc, we may consider the two
subarcs

+ -
Ay, = izea x >x 3, A’o ={xea x <x}.
For each x€ A, define R(x.xo) as the ray consisting of the set
{(1 - A)X + A t A > 0, A real}.
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As x tends to x, from one side 1t 1s well known that R(x,x,)

assumes a limiting position, which we can denote by
lim R(x,x,) (this i1s also a topological limit). Thus, the
one-sided support rays of C at >

+ +
R, = 11m R(x,xo), X eAx R
and _° )
R, = lim R(x, Xo)s X €
To  xax, ’ Ax ’

each exist. Note that the lines containlng R and B_
are ordinary lines of support of C at x,. Deflne further
the open half-planes G+ and G;o determined by the support
lines containing R a.n: Rx » respectively, and not contain-
ing C (thus, CCE \G )e

The following result will be used quite frequently
from this point on.

2.31., LEMMA: If C is a two-dimenslonal convex subset of

the plane and an arc ACDbd C which contalns a point x, bd C
in its interior is ordered by <, the open half-planes G;

o
and G; determined by the one-sided support rays R; and

o (o)
R; not contalning C have the property that given compact
o .
- +
subsets “15 Gxo and MZCGxo there exist points xi‘ A, 1 =1,2,
such that x) < x, < x, and for any point u€M,, ux,AiC = ixd.

Proof. It 1s only necessary to prove the desired pro-
perty for M (see Figure 2.6). For each x& A define the open
half-plane F, determined by R(x,x,) not containing bd C\A4,
and let I“;I denote the open half-plane whose edge is a sup-
port line of C parallel to the edge of Fy» with FJ':C Fx'

Elementary propertles of convex sets enable one to prove
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the topological limit

1im F, = 1im F* = ¢l G_ , X €A, .
4. 'x-vxo'x X' Axo
Now we show tha% for some x < X, Mlc F:'r' First, for any

y & M;, suppose some sequence [xn] of points on bd C, with
X3 < X5 < *et KX, <, and converging to X, exlists such
that y *’F'n. Let U be a circular neighborhood of y of
radius r > 0 such that UC G;o (since G;o 1s open and

Mlc Gzo). Since y €1lim F;‘n there 1s an n, such that for

n > n, U meets F;cn; since y ¢F’.‘n there is a circular neigh-
borhood VnCU wlth center z, of radius r/2 deviod of points
of F;‘n' We may assume without Loss of generallty that

lim 2z, = z€&U, with V the circuiar neighborhood about z of
radius r/2, and that for all n sufficiently large, vnnv
contains a fixed circular neighborhood V' of radius r/3.
But V'€ UCG;O so for all n sufficiently large Fin meets V*
and hence V,, a contradiction. Thus, given y & M, there 1is
an X < X, such that y¢g F& for x < u < 9 Suppose M1¢F;r

for all x < X, Then we may choose a sequence X, —$X, such

that x;3 < X5 < *** < X, < ***, and Y, €M such that yn{F;:n.
By compactness of M, wWe may assume yn-byle. But yg Ff;t

n
for all sufficiently large n as was proved, and if UCF‘;c is

n
a neighborhood of y then some yn('U or y & F;r , a contra-

n

diction. Hence, for some x < 99 ”1‘ F;. Ir Lx is the edge

of F; it is a support line of C and meets C in some point
P<x,e Ifp # X,» then set x; = p <x,5 1f p = X, then
by definition of F,, LyDR(X,x,) and hence x €L,, and in this

case set X =X < X o+ In elther case, since Lx is a line

(o]
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of suppgrt of C and xlt C, with Ml and C on opposite sides
of L, we have ux;N\C = {x;} for each ug¥ .

I<IO

origntation

of/bd C
e~ A
. h\ %o
g
£
Gx. |
Figure 2,6 bx Rix,<e) Rz

The figure below illustrates the fact that 2,31 does
not follow 1f-M1 1s merely closed.
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2+32. PROPOSITION: If S is a compact, m=convex subset of

EZ, with H = conv Q€S and H is one-dimensional or consists

of a single point, then S 1s the union of m - 1 convex sets,

Proof. Consider the components of S\ L, where L 1s a
line containing H. The m-convexity of S implies there are
.at most m - 1 of these on each side of L, If W is any such
component, let Lt denote a line parallel to L and at a dis-
tance t from it, Fy the closed half-plane determined by Lt
disjoint from L, and put Wy = wnFt. Since for each t > 0
Wy is a component of FeNS and F, 1s disjolint from Q, by
2.24 W, is convex and hence, W is convex. Thus, at this
point it has been proved that S 1s the union of 2(m - 1) + 1 =
2m - 1 or fewer convex sets, To finish the proof we shall
use linduction on m. |

Two simple cases must be ruled out first: When one or
more of the components of S\ HE (1) are one-dimensional, or
(2) contain only one point of L in their closure. For (1),
suppose W 1s a one-dimensional component of S\ L, and let
L' be the line containing W, with W' the component of SAL'
contalining W. Then W' is convex and it is clear that
cl(s \W') is (m - 1)-convex. Hence, by the induction
hypothesis cl(S\W*)YW' = S is the union of (m - 2) +1 =
m - 1 convex sets. For (2), suppose W is a component of
S\ L such that el WAL = 1x}. By (1) we may assume that W
is two-dimensional. Since W is convex, int W # @ and there
exlsts a circular disk UCW. Let xl.le.....x be any k > 2

k
points of (S\W)\ L. Since there are only finitely many
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lines passing through x and the polints X30Xpre0e Xy there is
obviously a point x,€ U not on any of these lines. Hence,
for each 1 = 1l,.04,k, X §XoX;. If X, lies on the same side
of L as x5 then x x, CS implies xle W (since oniﬂL = @
and W 18 a component of S\ L containing xo), a contradiction.
If x; lies on the opposite side of L as x, then X Xy meets
L in a point y # x and if x X, CS it follows that (yx JCW
or y€cl W, a contradiction of cl WAL = 1z§. Finally, ir
for some 1 and J, 1 <1 < J < Kk, xixjcs but xix3¢s\w
then there exists a z e'xixdn W and hence, by simllar reason-
ing either x4z or x4z belongs to W, a contradiction. Thus,
1f X) 4X50e0 09X aTe Visually independent via S\ W then they
are visually independent via S, By m-convexity of S, and
since x°x1¢s for all 1, k <m - 2 and hence any m - 1
points of S\ W\L are visually - dependent via S\W. But
el (S\W)\'L = 8S\W, since it may be assumed that ne compo~
nent of S\ H 11es on L (by (1) above). Therefore, S\ W is
a clogsed, (m - 1l)-convex set and by the induction hypo=-
t':hésis. (S\W)UW =S is the unionof (m - 2) +1 =m =1
convex sets.,

Thus, it may be assumed that each component cl W of S\ L
is a compact two=dimensional convex set which meets L in a
nontrivial segment xy. We may then designate the components
W and the corresponding segments in the order in which they

occur on L by

wlptlyllwzgxzyziou.lwr,xryr.
where wl.....wr are those components on one side of L, with
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WAL = x,y,, and

WY o Xq¥] sW2 XSV S8 eeesWa X oy
where Wi.....Wé are those components on the other side of L
and WAL = x{yj. Thus, if < denotes the natural ordering
on L, we may assume that Xy <y <X, <y, < *¢*r S X, <7,
and x]'_ < y]'_ < xé < yé < eoe < x; < y;. But fo.f notation we
have y; < y]'_, and either (1) y1 < xi, or (2) ¥y > xi.
Figure 2.8 illustrates the various cases in the following
argument,
Case 1: (y1 < x._l'_) Let < induce an orientation on bd(cl Wl)
and let A be any arc on bd(cl wl) containing XYy in 1its
interior. As previously defined, let R;1 be the one=gided
ray at yl and G;l = G the open half-plane determined by R;l
and not contalning ¢l Wy. If L' is the line contalning B;
consider z,,ZyieesZy q 8Ny m - 1 points in S\ecl W\ L',

where zl.zz.....zk lie in G and zk_'_l....,z lie in the

m-1
opposite open half-plane G' of G. Applying 2.31, with M =
(zl.zz....,zk]. there is a point z, €bd(cl W;)Cecl ¥, such
that z, > y; and z,2,Necl W = {z,} for 1 =1,2,.00,k It
follows that z°¢L3 thus zozi¢s. for otherwilse, 2524 meets

L in a point wgx,¥y, with z WwCcl W, a contradiction, For
i=k+1l,e0e,m -1, we note that 24 must either belong to

a component Wu different from W, or a component W"T. In the
former case zozl¢s or else z,€& cl W,, and in the latter,

Z,24 meets L at a point w < ¥y But w:x‘;y"r and hence g‘r <N
for some v, a contradiction that x;, >x) 2 Yqye Hence, z

1
cannot see zy via S, 1 > 0, and hence, for some

o



62
1<i1<j<m-1, ZinCS by the m-convexity of S, It
| remains to show that zlzJCcl(S\cl \r{l). But if zlzJ¢
cl(s\ ol W,) then there is some point z €2,2, not in
c1(s\cl W )s hence, z gs\cl W, so z€cl Wy. It follows
that z # y; for v, € cl(s\ecl Wy)e One of the points z, or

zj. Say 2z, must belong to G' and, since z, cannot belong

i
to any component wu. ziz meets X1¥1 at a point w < Yy
producing a contradiction similar to one observed previaus-
ly. Hence, 2,2,C c1(S\ecl Wy) and it follows that
c1(s\el W\ L') = c1(S\el ¥ ) is (m - 1)-convex., By the
induction hypothesis S = e¢l(S\ecl Wy){ecl Wy 1s the union
of (m - 2) +1 =m -1 convex sets,

Case 2% (yl > x]'_) Again define the line L' containing R;'l
and the open half-planes G and G' determined by L'. Con-
sider the closed, connectéd set C = cl WU cl(W]'_ﬂG'). If

C has no lnc points then C is convex by Tletze's theorem,

and an argument similar to that glven in the preceding case
shows that ¢1(S\C) is (m - 1)-convex, Thus, S = ¢l(S\C)VUC
is the union of (m - 2) +1 = m - 1 convex sets., Otherwise,
C has an lnc polnt q, and it is clear that q = x; or q = x7
which implies q < ¥y and q€ Q. Let ZysZorenesZp o be any

m - 2 points of S\cl Wl\ cl Wi\L. Then no z, can see q
via S since, otherwise, zis wl or zlt Wi. Hence, since S is
closed, there exists a neighborhood U of q such that no
point of U can see any z, via S; if Znel
of U such that z m_]_zm4: S then by m-convexity there is an 1,)

and z, are points

withl <1< J<m-=-2and 2123‘;3' and it is obvious again



(C convex) (C not convex)
[ ]
Case 2. ¥y > x,

Case 1. vy < xi

Figure 2.8

that ziz\1 cannot meet cl Wlu cl W Thus,

2.
c1(s\el Wy\ecl Wi \L) = cl(s\ecl W\ el W) is (m - 2)-
convex., By the lnduction hypothesis S =

cl(s\ecl wl\cl WiJel Wy Uel W) 1is the union of (m - 3) +
l1+4+1=m=1 convex sets, completing the proof.o

We note that the above proposition applies to any closed
m-convex set S ‘having only one or two 1lnc points, thus pro-
viding the same result that appears in [10}. (The proof of
thls result given in [10] differs consliderably from the one
presented here.) In particular, it also shows that the
closure of any nonconvex component W of S\H. wWhere H 1s two-
dimensional, 1s the union of elither two or three convex sets
(by 2.30 and certain observations). It is clear that, in
our handling of the problem of proving that a closed m=-convex

set S 1s the union of finiltely many convex sets when HES and

H 1s two-dimenslonal, we need to distingulsh between the two
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cases: (1) The closure of some component of S\ H is not
convex, or (2) the closures of all components of S\H are
convex. We turn our attention to the first of these cases,

Suppose the component W of S\ H is such that ¢l W is
not convex, Then by 2.30, ¢l W has at most two lnc points
Qq and q,, and by the proof of that lemma, Qy and a4, belong
to Q. Thus, ¢l W has elther one lnc point qQ, or two dis-
tinct 1lnc points Qy and P belonging to QCH. In eithex; case
there 1s a line L through q such that w\L has a com-
ponent W]'_ on one side of L and precisely two components wl'
and W, on the other side, w'ith Wi and H on the opposite
slde of L (see Figure 2.9). (We may take L to be the line
determined by q1 and ""qz in the latter case, and in the for-
mer, Af x gcl W and y €cl W such that xy¢c1 W and qlﬁzy,

choose L any line through Qy not passing through x or y,)

*

L (cl W has one’ (cl W has two

lnc point) Figure 2.9 1nc points)
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As in the proof of the preceding theorem, ol wl. cl Wy, and
cl Wi are each convex sets, and since cl W is necessarily
two-dimensional then cl W, is two-dimenslonal, and since
w\q1 is connected ¢l W, must meet L in some point x; # a3
if < orders the points on L, we may assume X, < Qq e Taking
A any arc on bd(el wl) containing xyq; in 1its interilor we

may define R; as before and let L' be the line contalning
R; . We note that since H and W, lle on the same slde of
L, H and wl lie on opposite sides of L' (otherwise, it
could be shown that W 1§ not maximal as a connected subset
of S\ H). Thus, it follows that any point X >q, in AG
bd(cl wl) is in bd S. Now it follows, just as in a pre-
vious argument, that 1f G and G' are the two open half-
planes determined by L' with ch el G*', then ¢l WQlel G' =C
is convex and cl(S\C) is (m - 1)-convex, Thus, our pro-
blem would be solved by the inductlve hypothesis in thls case,
since s = c1(s\ C)UC.

Collecting a number of situations in which S can be

decomposed into a convex set and an (m - 1l)-convex set (by

use of previous arguments) we have

2.33. PROPOSITION: If S is any compact m=-convex subset of

E® such that HCS and H is two-dimensional, then S 1s the

union of a convex set and a compact (m - 1l)-convex set pro-
vided there exists a component W of S\ H such that elther

(a) W is one-dimensional,

(b) el W is convex and contains only one point of H, or
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(¢) ¢l W is not convex.

Thus, we turn to case (2) mentioned above and to the
cases not covered by 2.32 and 2.33. That 1s, we assume that
for a compact, m-convex set S, H is two-dimensional and the
closure of each component of S\ H 18 a two-dimensional convex
set, meeting H in at least two distinct points., Thus, if W
is a component of S\ H and ¢l WAH = xy 1t is clear that x
and y are points in Q. (However, it 1s not true that if
Wy sWosesesWysees are the components of S\ H then all points
of Q belong to \J 121 cl Wi. A counterexample is provided by
the infinlte-slded polygon and interlior S illustrated in
the filgure below, which is 3-convex since 1t is the union of 2
convex sets, has the properties belng discussed, but the
point q € Q shown does not belong to cl W, for any 1.)

Figure 2,10

But owing to 2.27 1f we conslder the sets Sl = HYW,,
_ - 1
S, = Huwlu Wz.....S1 = HU(UJ_]_ WJ).

sufflces to conslder each set Si‘ Ir Hy = conv Qi’ where

then 8 = \JS,, so it
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Qy is the set of lnc points of Si’ then there are only fini-
tely many lnc points, and only finitely many components 1in
Si\ Hyoe Sy is obviously m-convex, so thls means we have
only to consider sets having finltely many lnc points.

It is clear that any result giving a bound to the number
of convex sets decomposing a compact m-convex set can also
be obtained for closed sets by applying 2.27. Thus, to solve
the finite convex covering problem for closed m-convex sets

in E2

with H = conv Q€ S, it suffices to conslder sets S
having the following properties (in addition to HCS):

(1) S is compact.

(2) Q is finlte and there are finitely many components

WyoWyeeee,W of S\H.

(3) H is two-dimensional.

(4) Each set cl W, 1s convex and two-dimensional.

(5) For each i, cl wir\H = qlqi’ where q, and qi are
distinet lnc points,

For convenlence, such sets wlll be referred to as type W* (W=star).

2.34. REMARK: It was proved in [10) that if such a set has

n lnc points then it is the union of n + 1 or fewer convex
sets., However, thils result is not relevant to the present
situatlion as the example of the infinite-sided polygon and
interior given before emphatically shows,

The next two results will enable us to make other

assumptlons later.

2,35, LEMMA: 1If S 1s a compact m-convex set with HC S, then
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for any x€ S, Sx is also m-=-convex.

Proof. Since S 1s slimply-connected, 1if yle Sx and
yze Sx with ylyzcs, then AR LY R ST ylyzcs implies
convix.yl.yz}c S. Hence, for u€ y,y,, T1CS and UE€S,.
Therefore, ylyzcsx. If Y10Toseees¥py be any m polnts of Sx'
then by the m-convexity of S yiyjcs for some 1 <1 < Jj < m
Thus, by the preceding argument, yiyjc Sx and 1t follows that
S - is m-convex. The fact that Sx is compact 1ls a conse-

quence compactness of S. 0

2.36. LEMMA: If S is any closed m-convex set fhé antl-gstar

s* 1s (m - 1)-convex relative to S for any x€S: If x = q€ Q,
then s 1s (mn - 2)-convex relative to S.

Proof. Since s* 1s the set of all points of S which do
not see x via S, then obviously, the m-convexlity of S implies
that any m - 1 points of Sx must be visually dependent via
Se If x=q€Q, suppose Ypseee2¥y are any k points of s
which are visually independent via S. There 1s a neighbor-
hood U such that if ué U, uy1¢ S for all 1 (since S is
closed), In particular, there exist points Vel and Yis2
in U such that yk+1yk+2¢s' Hehce. Fyreees¥yyp aTE kK + 2
visually independent points. By m-convexity, k + 2 <m -~ 1
eand k <m - 3., Hence, s? 18 (m - 2)-convex, relative to S. ¢

It is not known whether an m-convex set of type W* for
values of m > 5 1s the unlion of even a finite number of
convex sets. The following result “localizes" the problem;
Q' will denote the set of 1limit polnts of lnc points. Note
that Q'C Q.
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2.37. PROPOSITION: A necessary and sufficlent condition

for a compact m-convex set S in E2

to be the union of fini-
tely many closed convex sets 1s that for each gqe¢ Q' MK there
is a neighborhood N of q such that ¢l N is the union of
finltely many closed convex sets.

Proof. The necesslty 1s obvlious., For the sufficlency,
we apply induction on m. The theorem 1s obvious if m = 2.
Each member q' of Q'N K by hypothesis has a neilghborhood N(q')
such that cl N(q') is the union of finitely many closed con-
vex sets, For q& (QNK)\ Q*, since q 1s not a limit point
of Q there exlists a convex nelghborhood N(q) devoid of points
of Q\ {q}. Then ¢l N(q) 1s a compact m-convex set in E2
having only one lnc point, namely q, and thus by 2.32, N(q)
is the union of m - 1 closed convex sets, For q& Q\ K, there
is a point x(q) and a convex neighborhood N(q) which
cannot see x(q). Then N(q) is (m - 1l)-convex, so by the
Anduction hypothesis ¢l N(q) is the union of finitely many
closed convex sets, Finally, for xg& S\ Q, by definition
of local convexity, there exists a convex neighborhood
N(x)c S. Thus, for each x€ S, N(x) is a neilghborhood of
x whose closure 1s a finite unlion of closed convex sets.
Since S is compact, there is a finite subcover N(xl).....N(xn)
of S, which proves that S itself is the union of finitely

many closed, convex sets. {



CHAPTER 111
4~CONVEXITY

It will be established that a closed, simply-connected

L-convex subset of Ez

is the union of 9 or 7Tewsi convex sets.
It is not known whether the bound on the number of convex
sets is best: 1t is highly probable that it is not., However,
up to this time even this bound had not been established,

in spite of attempts by several authors to do so. Guay's
thesis includes results concerning convex coverings for a
4-convex set S when S has a cut point, |QNK| =2, |Q] =1,
|Q\K| <1l, S 1s one-dimensional at some point not in Q, or
K is one-dimensional. (As before, K denotes the kernel of S,
Q stands for the set of lnc points of S, and H = conv Q.)

In the cases where |QNX| = 2 or |Q| = 1, Guay proved that S
may be expressed as the union of three or fewer closed con-
vex sets, and in the remaining cases, S is the union of four
or fewer closed convex sets, Guay's main result was that a
closed 4-convex set in E2 which is not simply-connected 1s
the union of five or fewer convex sets. (Thls result is
best possible as illustrated in Figure 3.1; the set S in=-
dicated there 1s compact, 4-con§ex and not simply-connected,

but it is not the union of any four convex sets.) Establishing a
70
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best bound for the remaining case, when S is simply con-
nected, would complete the finite convex covering problem

- for closed, connected, 4-convex subsets of E2.

Figure 3.1

The following preliminary result reverses a previous

one, namely 2.23, in the case of 4-convexity.

3.1, LEMMA: For a closed, connected 4-convex subset S of

Ez

y HC S 1s equivalent to the simple-connectedness of S.
Proof. For compact, connected sets in E2 2.23 implies
the result that S is simply-connected if HCS, and this 1s
clearly enough to establish that result for closed, con-
nected sets. Conversly, suppose S is simply-connected, and
let x¢€ H, By 2.25, there exist ql.qz.q3 in Q such that
b 4 Econv{ql.qz.qB}. Now 1f q1q2¢ S there exlst nelghborhoods
U; and U, of q; and q, such that for u, € Uy i1i=1,2,
u1u2¢s. But Q and q, are lnc points of S, so there exist
points uy and vy in Ui such that u1v1¢s. i=1,2, and hence
{ul.vl.uz,vz} is a set of four visually independent points
in S, denying 4-conveiity. Hence, qlqzc S, and in the same
. manner, q2q3c S and qquCS. By simple=connectedness,
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conv{ql,qz,q3§c S and x€S. Therefore, HCS. §

Thus, 18 S is a closed, simply-connected, 4-convex
subset of EZ. HCS: hence 1ﬁside every disk S is a compact,
simply=-connected 4-convex set. By 2.27 we may then restrict
our attention to compact, simply-connected 4~-convex sets.
All results on m-convexity established in the preceding
chapter, therefore, apply here. As pointed out there,
the problem has been reduced to the consideration of sets
of type W* since Valentine's theorem may be appllied to
the 3=-convexity arising from the use of 2.33.

If S 1s of type W*, suppose {wlt» are the closures of
the components of S\ H. Orient the boundary of H
counterclockwise, thereby inducing a clockwise orientation
of each bd Wys» 1 = 1,...,n (see figure below). Let A be
any arc on bd W, contalning in its interlor the two lnc
points of S in el Wy, and label those lne points q, and qi,

with q < qi. For convenlence, we lntroduce the further

Cy =cl(S\3B,\ B} )
Q) Figure 3.2 17 g,
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notatlion

- +
R, =R R! =R
1 qi ] 1 qi ’

= - = +
By =cl qun S» Bj =cl quns. ¢, = c1(S\B,\ B}).

Essentially from 2.31 1t follows that the sets Bi and Bj'_
are compact 3-convex subsets of S. Also, the set
wiU(Cin H) is convex, owing to its local convexity. For

each 1 we let Py and p' be the endpoints of the segments

i

RinH and RinH different from a, and qi respectively. The

following property of the components wi is a key result to

be used later.

3.2. LEMMA: The set wiqu is convex relative to S iff
1,ajCC, and q,a}CC,. |

Proof. If q:‘.qi¢0:1 then there exists a point xg§q,;a]\Cy,
which implies x ¢ B;) or xE,Bs- By 2.31 there exists a polnt
y € bd chwj such that xy¢sS. Hence, wiuwj is not convex

relative to S.

Conversely, assume qiqicc and qu3C Ci' Since there

J
is nothing to prove otherwlse, assume x§ wi and y € WJ.

Since qiq;.CH then qlquCJnH. and since WJU(CJn H) is
convex, for each u€4q,q;, uyC WJU(anVH)cs (see Figure 3.3).
Since u € Wi and W1 is convex, xuc€ wic S. Hence xuyuyc S.
Choose usqiqi such that xuyuy¢Cc s and e(x,u) + e(u,y) is
minimal, where e denotes the euclidean metric. Since u#WJ,
uy cuts bd WJ' at a point v, If v#qqu then v(H, and hence
there is a nelghborhood U of v devoid of points of H. Then

uve€ S implies there is a point on (uv) in another component
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Figure 3.3
of S\H, which is impossible., Hence v§ qqucciﬂH and
vx ¢ WIU(Cin H)CS. By the same reasoning as before there

is a poilnt we€ vxig Vv (Cjﬂ H)C S.

., 1 W
1qi Moreover, xwUwyQC wlu 3

But
e(x,w) + e(w,y) < e(x,w) + e(w,v) + e(v,jr)
= e(x,v) + e(v,y)
< e(x,u) + e(u,v) + e(v,y)
= e(x,u) + e(u,y).
By the definition of u as a povint on qiqi. equallity prevalls
throughout, and e(x,u) + e(u,v) = e(x,v). Thus u€ xv and
v Euy, or x,u,v, and y are collinear., Hence Xy =
xuquuvycwlu HUWJC S, so wiuwj is relatively convex.o
We shall now consider a situatlion which will occur repeat-
edly throughout the remaining discussion. Suppose X, is a
point on bd H and that x, lles in the kernel of S. As before,
the removal of X, from bd H results in a set which can be

linearly ordered by <, with x. as the least element. Using

o
thls ordering to produce the notation introduced earlier, we

. L
have x, €Cy for all i, and if x,§q,q}, P, <q, <qj <P;
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(see Figure 3.4), and it may be assumed that the sets wi

have been so labeled that Q <q 5 whenever 1 < j. Moreover,

Figure 3.4
(int B,))bd H consists of those points x on bd H such that

Py <X <aqy, and similarly for int B;_ (here, the interior

is taken relative to S). Thus, we have
(Int B;)A\bd H = {x€bd H; p, <X <q,}, and
. — (] (]
(int Bi)ﬂbd H={xgbd H q) < x< pl].
It 1s easy to verify the further relation ’

¢;Nvd HE= {x€bd H q, SX<q)s XD, orxgpi;.

Now consider any two sets W, and W y0 for 1 < j. Then
. < qg!' < < q' (see PFlgure 3.5). Suppose X s
9y <ay £q, <aj ( gure 3.5) PP €9,9,, and

therefore x £€bd H and a <x< qi. It follows that qi <pP

implies x < p‘j or xﬁCJ. Conversely, if xf Cj then x > p

J
J

and therefore < ql. ' ' < .
pj qi Thus qiqiccj iff qi < p;l In a
similar fashion it can be proved that q Jq:‘ic C1 ifr pi <a 5°

In view of 3.2 this& _gives us

3.3. LEMMA: If x°€bd H is a point in the kernel of S and

< is the linear order on bd H determined by xo, with the

points Q, ordered accordingly, then for any two integers
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1 < 3 such that xo¢ UyUW,, Wy can see W, via S 1ff both

Figure 3.5
Another result which will be useful to us is the following:

3.4, LEMMA: If S is any closed, 4-convex subset of B2 of

type W¥, "and wl and Wz are the closures of any two compo-

nents of S\ H, let 'B'l be elther one of the sets B, or B}

and B, elther of B, or B}, with 51.51 and p,,q,
ponding endpoints of -ﬁlnbd H and §2nbd H, respectively.

the corres-

If elther
q. €& int B
or __1 _2
qQ_¢& int ,
then 2 Bl

int Blﬂint BzﬂQ = g,
Proof. Suppose 5,'1 € int §2 and that q & int B\ int BN\ Q
(the proof for the case Ezs int El is similar). Let §1 and

B2 denote the rays Rl or Ri and R2 or Ré corresponding to

q_l and Ez, respectively. Since Ela int 'ﬁz there exists a

convex neighborhood U of El such that U;Cint B,. Since
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q 1s on the opposite side of §1 as N Uy, 2.31 (with

C=WNU and K= {q}) implies the existance of a point
Xy € Wy Uy such that x1q¢S. Hence both x; and q lle on
the opposite side of ﬁz as W,, so again applying 2.3l
(with C = W, and M= {X,,q}) there exists a point x,g W,
such that x112¢s and qx,¢ S. Because S is closed there
exists a nelghborhood V of q such that X, and X, cannot
see V€ Ve Since q is an lnc point there exist points x3.x4
in V such that x3x4¢s. But then {xl'xz'XB’xl»} would be a
set of four visually independent points of S, denying U4-
convexity. Hence, we conclude that int Eln int -Ean =@g. O
We introduce one more concept which will be of use in

the proof of the next theorem.

3.5. DEFINITION: If J= {w,s 1€1}1s a family of clos-
ures of components of S\H. then {3‘,3‘.....}'} is called

‘ r
a convex partition of F of order r iff the sets 3,3,‘....3

partition JF (they are pairwlse disjoint and their union
1s J) and for each i1 the set U{WJ: WJE}"'} is a relative-
ly convex subset of S.

It 1s clear that 1t is pertinent to our problem to find
a convex partition of finlite order for the family 3‘ of clo-
sures of components of S\H, for if D, = conv{WJ: wjei':},
1 =1,2,0e0,r 1t would follow that D gs.and since

S = HU(U,yZ; Dy)s

S would be the union of r + 1 convex sets,
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3.6, THEOREM: If S is a closed 4-convex set in E2 which

has at least one lnc point in the kernel of S, then S 1s
the union of 8 or fewer convex sets,

_l_’_rgg_f. By previous observations, we may assume that
S is of type W¥. By hypothesls, S = Sq for some point
q € Q. Let < be the linear ordering on bd H induced by q,

and, as before, assume that the 1lnc points occur in the order
' < < s 'K < ¢ <

with q = ql’.l. Define inductively the lintegers nl,nz.....nk
as follows: Let n, be the largest integer such that the
family

F o={i1<1<n}
has a convex partition {3«%, F2, F3} of order 3. Let n,
be the largest integer such that the family

3& ={W1 1 21 <n,}\ {wnl}

has a convex partition {332'. 3«2,3\%} of order 3. In

general, having defined nl,nz,....nj. define n3+1 as the
largest integer such that the famlly
.?*’ = {wil 1 S_ 1< n3+1}\iwn1.wn2....,WnJ}

1 2 3
has a convex partition {j.'! 41 ! }j 1 jj +1} of order 3.
Since there are only finitely many sets wi, the process ends
in a finite number of steps and we let nk denote the last

such integer.

We shall prove first that for each n 3 < n there exist

integers r < s < t in the set {1\ \{n 1eeey } such that W
J 1 h] ny
cannot see wr.ws. or wt via S (that is, there 1s a point in

W, which cannot see via S some point in Wi, for 1 = r,s,t).
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Suppose on the contrary, that given such integers r,s, and
t, W can see at least one of W_,W_, or W_, Choose the
nJ r’’s t
A
three largest integers r < s < t in the set nj\{nl.....nJ];

- then W, can see W, vla S for eitheru=1r, u=gs, oru=t,

3
If W, cean see W., We may assume wti 5‘%, and consider any

J
other set W € 3]5. Since W can also see W., then by 3.3

' < ' < ' < d p! < « Th ore
qu hy pt' Pu > qt' qt < pn y 8an pt < qn erefore,
ql'l < q;; < P and pll < a, < q so that W, can see W, . That

J
is, W, can see all the members of }1 via S. If W, cannot
3 ) J

see W, then we have the cases (1) W, can see W  and (2) w
s ny
cannot see W, and therefore sees W, via S. In case (1),
assume Wg € 3’:13'. At most one W  for u < s exists such that
W, cannot see W, ,for if u < v and both ¥, and W, cannot
b [ ] [ ] [ ]
see ds then, since qu < qv < qs < pn » We must have both

- J
] L}
1M > qg and 1M > a so that

' . ‘nt
q‘u<qv5qr<qs<pu

' < < L
qv c13 pv
' ' ’ * -
which implies that qse int Bu(\ int Bv and q_€ int Bu’ con

and

tradicting 3.4. Suppose qu 3‘?. Then W, oan see all oth-
er W for v < s and hence, if Wtejlj. wnj can see all the
3 1
members of jjs if wtf. F § then W, can see all the members
of 3:;' In case (2), our basic assumption regarding an
implies that since W, cannot see Ws nor wt, it must see
1 .
all W for u < r. Suppose wrsfﬁj. If both W, and W, are

membefs of %L then w can see all the members of 2. and
J n J

J

1
Af nelther W, nor W, are members of jj then W, can see

all the members of j%. If either ws;'j?i or wtf,?:;. then
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We may assume W, (or wt) belongs to _"]'? and hence Wn can
see all the members of 3!%. In all cases, our assumgtion
has led us to the assertion that W, can see all the mem-
bers of F! (1 = 1,2, or 3). But tgen it follows that
{} §U {wnj] ,3;3"'1,33*2} is a convex partition of order 3
for j Ju{wnj} y» denying the maximal property of nj.
Therefore, given J there exist integers r < s < t in
the set ﬁj\{nl.....n:)] such that wnj cannot see Wp, Wg,
nor w,c. The implication is now that qte int an. For, if

[ ] '< t< . !>
al £ P then Q. <ai =P, and by 3.3, PL>q, and

J J J
p' > q +«+ Therefore, '
s n 3
] < L} < ] < < [ ]
and Cl:r.‘ qs qt - qn pr

] 1]
qs < qt s qn < ps ’
which implies that qt';e int Bz" Qint B; and q;e int B;, deny-
ing 3.4. Therefore,

L}
Pn:J <qssqt<qnj
and hence, q &€int Bn .
J

Now it can be proved that for each J such that n 343 <n
wn can see wn « Assume otherwlise, and that for some
J J+3
n < n elther (1) p! > g y or (2) p! <q and, by
+ -
3*3 By~ My By T Pyed

[ ]
303' an > pnj+3. |
Case 13 p' > qn . We consider the two subcases (1l.l)
n J+3

P >q' and (1.2) p <q' .,
nye3 = 7Ry Ny om
Case 1,1: pn“.3 > qnj. Let t # n, (1 = 1""'“34-3) be such
that qte int an+3. Hence,
Q' < p <q, < <p'
ny =gy T % T gy T Py

and since q, # q;’j'
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¢ <'q< <p'.
"oy~ % " Tngyg ” Pny

Therefore, q, € int B' int B and q € int B' , deny-
Te "y NAne By ny43 "n,

ing 3.4,

Case l.2: P, < q;1 . Here, we have

J+3 J < < < o
<q' <q' .
nysy - 0ny S Ingan S g T g T Py
Hencg. an+2£ int Bﬁjn int an+3 and q, € int B;lj' deny-

J+3

ing 3.40
Case 2t p' =< g and Q) > p « It follows that
I R L By P43
P > q' for 1f p < q' then
nyse = "ny’ Ny4p Ny

p <aq <aq
and ny+2 an Ny+2

<q! <

P <aq ’
. Rye3 Ty Mye2 Pye3
which implies qQ € int an+2n int Bn“3 and qnj+2E int an+3-

[ ]
a contradiction. Hence pnj+ > qn;) > pn3+3' Let t # n,
(i - 1..0..3 + 2) be Such that qte 1nt an.,.z' Then

P < < < <
Nye3 | Thgsp 06 Ingyp T Yngeg

and therefore Q. € int an+2n int B 3, with Q,

nJ+ € int Bn

j+2 J+3
Thus, the assumption that wnj cannot see Wy, + via S

has led in every case to a denial of 3.4. Therefore, we

conclude that wnJ can see wn3+3 for each j such that n‘1 < n.

It then follows that each of the sets u[wnjs J = r(mod 3),
ny < n} for r = 0,1, and 2 (define wno = ¢ for this purpose)
is relatively convex in S. Since the convex hull of any
relatively convex subset of S can easily be shown to lie
in S by virtue of the simple-connectedness of S, define:

Dy =H Dy = éonv(ujti)

D, = conv(J }i) Dy = conv(Ujg)
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Dy comr(l_)JEO Wp e my <n Dy = conv(lJ,_, an). ny<n
D6 = OonV( UJEJ- an)’ nJ <n D8 = Wn.

It then follows that S = Ulil Dy §

2

3.7. COROLLARY: Any closed L4-convex subset S of E” 1s the

union of 9 or fewer convex sets.

Proof. It is obvlious that we may assume that S is con-
nected; suppose first that S is slmply-connected. If g€ Q
consider s and Sq. Then by 2.35 S' = Sq is a closed, simply-
connected 4-convex subset of E® with q € Q' H', where Q' 1is
the set of 1lnc points of S*' and K' is the kernel. By 3.6,

Sq is the union of 8 convex sets, say Dl""’DB' By 2.36,
s% i1s relatively convex, and since S is simply-connected,
Dg = conv s is a convex subset of S. Then, S = Ui.?-l D,.
In the non-simply-connected case, Guay's result in [6] that
S is the union of 5 or fewer convex sets may be invoked. O

We note in concluslon that our methods make short work
of Valentine's theorem. For, 1f S 1s a closed 3-convex sub-
set of Ez, it follows that QCK (since qx¢s for g6 Q
implies that x cannot see via S any point in some neigh-
borhood U of Qs there are two points x2 and x3 in U such that
x2x3¢s by virtue of q being an lnc point, contradicting
3j-convexity). Hence, HCS and we may consider the closures
of the components {wi. 1 €I} in S\H. By 2.33, if one of
the w1 is not convex then S is the unlon of two convex sets,

As before, we need therefore only consider the case when S

is of type W*. Since QCK, we select q& Q at random and
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let < order the points of bd H, as before. The previous
results 3.3 and 3.4 still apply, so it may be easily
proved that for each 1, wi can see W“_z via S. PFor, if
elther qi > Py4p OT pi'_ > 4 40 then either
p1+2 < qi < A4 < qi+2 or qj'. < qi-l-l < q1+2 < pi and either
qj'_a int Bi+2 or q1+2£1nt B!. But in either case it fol=-
lows that an lnc point falls outside the kernel, Define

r = [n/Z]. where n = |Q|, and put

' _ r
D] = conv(U1=1 w21_1)
D! = conv({J,X, w,,)
and, if n is odd, 2 1=1 "21
v _
D3 = wn.
It follows that each D3 is a convex subset of S. Then let

[ ]
J.
Since QCX, H = conv QCconv K = K. Recall that K is the

D 3 denote any maximal convex subset of S contalning D

intersection of all maximal convex subsets of S; then KCDJ
and therefore HCDJ. Therefore, S = Dlu D2 if n is even
and S = D1UD2UD3 if n 1s odd. That 1s, S 1s the union of
3 convex sets (2 if n 1s even), which is the substance of
Valentline's theorem [1’?] +» For, 2,27 extends this result to
closed sets and to sets with |Q| = o0 (where S is the union

of two convex sets), as in Valentine's theorem,
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