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A GENERALIZATION OP CONVEXITY 

CHAPTER 0 

INTRODUCTION

Convex sets were first studied systematically ly Bruxm 
In I887, There has been Interest recently In the study 

of generalizations of convexity* the majority of these being 
algebraic or topological In nature. Several of these are 
mentioned In [5]» It Is the author's opinion that while 
such examples are useful In studying the structure of convex 
sets, they tend to lead one away from the geometric Intuit­
ion that convexity offers.

In this paper* we study a generalization of convexity 
where one does not require the join of each pair of points 
In the set to lie In that set, but, Instead, one requires 
some subset of each m > 2 points to determine joins which 
belong to the set. This concept Is but a special case of 
an even more generalized convexity proposed by J.E. Allen
w .

The precise definition of our generalization of convex­
ity appears In the next chapter along with several necessary 
basic set theoretic, algebraic, and topological properties,
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A Helly order for one class of generalized convex sets is 
determined and several finite convex covering theorems are 
proved. By a convex covering of a set S we mean a family 
of convex sets whose union is S.

In Chapter II» we characterize the kernel of a certain 
family of m-convex sets, answer a conjecture posed by Oanzer, 
Grunbaum, and Klee, prove a generalized Helly theorem, and 
introduce the notion of local nonconvexity. The later con­
cept leads us to several representation theorems for m-convex 
sets.

Valentine's theorem states that a closed, connected
23-convex set in E is the union of three or fewer closed 

convex sets. Guay has extended this result in showing that 
a closed 4-convex set in E^, which is not simply-connected, 
is the union of five or fewer closed convex sets. In 
Chapter III, we show that any closed 4-oonvex set in E^ is 
the union of nine or fewer closed convex sets.

Except for one or two symbols, the notation used in 
this paper is consistent with that used by Valentine l̂ETj.



CHAPTEE I 

(M,N) CONVEXITY

The results of this chapter apply generally to subsets 
of a linear topological space E, as defined In such sources 
as Kelley and Namloka [in] , while others will apply only to 
finite dimensional spaces, denoted E^ (d = dimension)• Some 
of the more combinatorial results will apply even to subsets 
of a vector space over an ordered field. The segment. or 
■loin, between two points z and y In E Is the set of all 
points In E of the form ox + (l-a)y, where 0 < a < 1, denot­
ed zy. In order to simplify later notation, we let the sym­
bol stand for the number of combinations of m things tak­
en two at a time. That Is, Ĉ  ̂= m(m-l)/2, m > 1. Familiar­
ity with the basic properties of convex sets, as found In 
[l8], Is assumed. In this chapter the basic combinatorial, 
set theoretic, and linear properties of (m,n) convex sets 
will be developed, the Helly order for the family of (),%) 
convex sets In the plane will be discussed, and several con­
vex covering theorems for (m,n) convex sets will be derived.

1.1. DEFINITIONI A set S Is said to be (m,n) convex pro­
vided |S| > m and If for each m distinct points of S at



least n of the possible joins between these m points are
contained In S. (It Is understood that m and n are non-
negative Integers, with 0 < n < and m > 2). A set Is
said to be exactly (m,n) convex Iff It Is (m,n) convex but
not (m,n + 1) convex (a simple combinatorial argument shows
that for n > 0 this Is equivalent to saying that a set Is
exactly (m,n) convex Iff It Is (m,n) convex but neither
(m - l,n) nor (m,n + 1) convex). An (m,l) convex set Is
referred to simply as an m-convex set, or a set having 

mproperty P . An exactly m-convex set Is one which Is m-convex 
but not (m - 1)-convex. As In Kay and Guay [9], we make the 
convention that no nonempty set Is 1-convex, Thus, a convex 
set having more than one point Is exactly 2-convex.

In considering the preceding definition, we find that
(2,1) convexity Is ordinary convexity, and more generally 
any (m,C^) convex set for m > 2 Is convex. It Is a stralght- 
foward application of the definition of (m,n) convexity to 
show that If S Is (m,n) convex, then S Is also (m,k) convex
for 0 < k < n, and therefore m-convex.

1.2. PROPOSITION » If S Is an (m,n) convex set with n > 
then S Is connected.

Proof. Suppose that S Is not connected; then It has at 
least two components, say A and B. Choose any m - 1 points
In A and a point In B. But there exists at most joins
between these m points, and thus n < ^ contradiction. 0

By considering a set consisting of a convex set and an



5
isolated point, we can see that the bound in 1.2 is best 
possible.

The next proposition shows that the bound used in 1.2 
is also large enough to ensure convexity for a closed (m,n) 
convex set, and thus 1.2 becomes a corollary. For convenience, 
r will stand for the set {‘l,2,. •. ,r|, where r is any natural 
number.

1.3. PROPOSITIONI If S is a closed (m,n) convex set for
which n > , then S is convex.m-i

Proof. This result will be immediate if it is estab­
lished that for any integer m > 2 a closed (m + + 1)
convex set is + D  convex. Let S be a closed (m + 1,
0% + 1) convex set in £, and select X||̂ ,...,Xĝ  any m points 
in S. Suppose that there are not more than jclne det­
ermined by these m points. Let y be any other point in S, 
and suppose there are r joins of the type yx^, for 1€ m, in
S. We have r + + 1 by hypothesis, which Implies
that r > m. Therefore yx^ is in S, for all i t m and for any
y in 8\{x2 ,...,Xĝ }. Since S is closed and connected (by 1.2)
and we may take y in an arbitrary neighborhood of x^, we have 
x^Xj in 8 for any i and j in m, a contradiction. @

If S is a closed (m,n) convex set which is also con-
2neoted, then Kay has shown that if n > i(m - 1) , then S is 

convex. It ceui be seen that this result is best possible by 
considering two intersecting lines.

In an (m,n) convex set̂  if n > then in the proof
of 1*3 we see a relationship between the given (m,n) convex-
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Ity of a closed set and a lower order convexity for the same 
set. In the direction of higher order convexity for an (m,n) 
convex set we offer the following proposition.

1.4. PROPOSITIONI An (m,n) convex set Is (m + k,n + k) 
convex, where n > 0 and k Is any natural number.

Proof. Consider any m + k points p^ # * * * # In S.
Among p-ĵI... »Pjĵ. there are at least n joins. Suppose that 
p^Pj Is one of them, where 1 < 1 < j < m. The points In the 
set {P^» • • • » determine n Jolns^ none of them being
the Join p.p.. Let p p denote one of these Joins. Now1 J 3T S
there are at least n Joins among the m points {Pi»»»*»P5i+2}\ 
f^l'^rl* of these Joins being p^Pj nor P^Pg» Continu­
ing this process, we obtain n + k Joins between the given 
m + k points In S, and we have shown that S Is (m + k,n + k) 
convex.^

The necessity of the restriction n > 0 In 1.4 Is evident 
when one considers the set M consisting of four Isolated 
points I M Is (3,0) convex and also (4,0) convex, but not
(4,1) convex. The subset In E defined by m - 1 segments 
emanating from a single point Is an example of a connected 
set which Is (m,l) convex and (m + k,k + 1 ) convex but not 
(m + k,k + 2) convex for k = 1,...,m - 1. This shows that 
1.4 Is best possible for the case when n = 1.

It Is not hard to construct examples to convince one­
self that the set of (m,n) convex sets, In E, for fixed m 
and n Is not closed under Intersection, union, set differ-
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ence, complementation» or cross product In £ X £• This is 
to be expected» since even convex sets in general are not 
closed under union, set difference, or complementation.

However, certain set theoretic properties of (m,n) 
convex sets are true. In fact, as a consequence of the 
definition of (m,n) convexity, we have that the union of k 
disjoint (m,n) convex sets is exactly (k(m - 1 ) + l,n) con­
vex.

The next result together with Zom's lemma will be used 
later to establish the existance of certain maximal m-convex 
subsets of a set.

1.5. PROPOSITIONI The union of the members of a family of 
(m,n) convex sets which is directed by (the union of any 
two members is contained in some third) is an (m,n) convex set* 

Proof. Let 9  = fc^taC a} be such a family and consider 
a J ss B. Select any m points in B^say p^,...,Pg^, 

Suppose p^ is in for 16 m. By induction there is a set
Cg such that Cg for all i t m. Therefore p^,#. * are
in Cp. Now Cg is (m,n) convex and hence the p^ determine at 
least n joins in C^; since C^C B, they determine at least n 
joins in B. Thus B is an (m,n) convex set. 0

The most singular difference between general (m,n) con­
vex sets and convex sets is closure under intersection. A 
combinatorial result may be stated, where the underlying 
assumption is that the intersection under consideration con­
tains at least m points. Here the square brackets will denote
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the greatest Integer function. An easy preliminary result 
is that the intersection of two (m,n) convex sets is (m,l) 
convex if n > + 1. By considering the two (3,2) convex
sets X and Y indicated in Figure 1.1, we see that this result 
is best possible (dashed lines indicate the deletion of 
boundary points).

P

1 ►
Figure 1.1

More generally, we have :

1.6 PROPOSITION 1 For each integer k > 2, the intersection 
of k (m,n) convex sets is (m,l) convex provided n >
[Cĵ (k - l)/k]+ 1.

Proof. Let C = A^O A2H  • • • 0  where Aĵ for i 6 k is
an (m,n) convex set with n > jCĝ (k - l)/lQ+ 1. Choose any
m distinct points in C. It is obvious that among these m 
points in we can be missing at most Ĉ  ̂- ( ^
joins. Regarding this as a matrix, with a column for each 
set Aĵ and a row for each of the possible C^ Joins, labeling 
these joins consecutively from 1 to , we put a one in the 
a^j-th position if the i-th join is in the set Aj and zero
otherwise, rfe need to show that if we put at most -
(Cpm(^ - 1)/1̂ +  1) zeros arbitrarily in each column, then 
there is still one row free of zeros, or equivalently that.
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- [C^(k - l)/k] - 1 ) < < fc(0„ - [c„<k - D A ] ) .  ( 1 .1 )

Howeverf this inequality is an immediate consequence of a 
property of the greatest integer function, namely,
[z] < X < [x] + 1. (The value on the right of (1.1) shows 
that our bound is best possible j. Therefore, under the hypo­
thesis given, the intersection of k (m,n) convex sets is 
(m,l) convex. ^

To establish several basic algebraic properties of (m,n) 
convex sets we recall the well known result that if A and B 
are nonempty subsets of E and a and 0 are scalars then 
conv(aA + 0B) = a(conv A) + 0(conv B), where conv A denotes 
the convex hull of A. This result implies that the scalar 
multiple of a convex set is convex and the sum of two convex 
sets is convex. If we are careful with the value for n, we 
have some idea what the sum of two (m,n) convex sets is like. 
It is straightfoward to show that if A and B are (m,n) convex 
sets with n > 1, then the sum A + B = [a + bia£A,bÊB|
is (m,l) convex. However, if we wish to conclude that the sum 
is (m,n) convex for general values of m and n, then it is suf­
ficient to assume that one of the summands be convex, as the 
following result shows.

1.7. PROPOSITIONI If C is convex and S is (m,n) convex, then 
for any two scalars a and 0, aC + 08 is (m,n) convex.

Proof. Let A = aC + 08. Choose any m distinct points 
in A and denote them by â  ̂= acĵ  + 0Sĵ , where c^g c, Sĵ £ s, 
and k€m. If s^Sj is one of the guaranteed joins in 8, then
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a^ajC A. Since for 0 < ^ < 1  ve have

+ (l-Y)aj = + 3sĵ ) + (l-yXacj + gSj)
= oXyGi + (I-y )c j ) + 3(ySĵ  + (l-y)Sj)
6 aC + 38.

Since we have at least n joins in S, we must have at least n 
joins in A. Hencet A is (m,n) convex.^

An immediate consequence of 1.7 is that the translate of 
an (m,n) convex set is (m,n) convex. This fact together with 
the next result shows that in any real vector space, (m,n) 
convexity is an affine invariant.

1.8. PROPOSITION» If S is an (m,n) convex set in a real
vector space V and T is a linear transformation over V, then
T(S) is (m,n) convex.

Proof. Let ŷ ,...,yjjj be any m distinct points in T(S). 
There exist m distinct points x^,...,x^ in S such that y^ = 
T(%i), for ie m. Since S is (m,n) convex there are at least 
n joins among the points x-ĵ ,...,3̂ . Suppose one of them is 
x^Xj, where 1 < i < J < m. Now for 0 < a < 1, we have 

T(axĵ  + (l-a)Xj ) = aT(xĵ ) + (l-a)T(xj)
= ayjL + (l-a)yj.

That is, y^yj is contained in T(S). Hence, since there are 
at least n joins in S, there will be at least n joins in T(S), 
among the corresponding points. Thus T(S) is (m,n) convex.^ 

Using the techniques of the last two propositions it 
can be shown that the Cartesian product of a convex set and 
an (m,n) convex set is (m,n) convex, and the intersection of
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a convex set with an (m,n) convex set Is (m,n) convex.

Several topological properties of (m,n) convex sets, 
listed below, will be useful In establishing later results.
All of these properties are straightfoward for convex sets. 
Recall that a set S Is polygonally connected If for any x 
and y In S there exists a finite set x^,... of points In 
S, such that 33] ^ , »% * l % # a r e  contained In S.
Let cl S denote the closure of S In E. The following def­
inition will Introduce another concept which will be useful.

1.9. DEFINITION» A set S Is said to be relatively (m,n) 
convex with respect to a set T If for each m points x^,...
In S there exist n joins x^Xj determined by these points such 
that for each such 1 9̂ j the open segment (x^Xj) = x^Xj 
X̂ĵ ,Xj| Is a subset of T. (We use the term absolute (m,n) 
convexity to designate ordinary (m,n) convexity of a subset 
of T Independent of T, and relative convexity for relative
(2,1) convexity.) S Is said to be exactly (m,n) convex with 
respect to T Iff It Is (m,n) convex but not (m,n + 1) convex 
with respect to T, and S Is exactly m-convex with respect to 
T Iff It Is m-convex but not (m - 1)-convex with respect to 
T. (Again, we assume that no nonempty subset of T Is 1-convex 
relative to T.)

Observe that If a set 8 Is (m,n) convex It Is (m,n) 
convex relative to any set T containing It, and (m,n) convex­
ity for subsets of a convex set T Is equivalent to relative 
(m,n) convexity with respect to T.
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1.10. PROPOSITION I If S is an (m,n) convex set in E, then 
cl S is (m,n) convex with respect to cl 8.

Proof. Select any m points in cl 3» and sup­
pose that Xj^xj^cl 8 for at least Cĵ  - n + 1 pairs (i,j), 
where i < j. Let Uj(xĵ ) and U^(Xj) be neighborhoods of 
and Xj respectfully with the property that for uCUj(Xj^) and 
v€U^(Xj) uvffs. Let = rij where j is such that
XiXj^cl S. Now from the construction of the if y^ is a 
point in snUjL» ïû» then y^y^^S. Hence, for at least 

- n + 1 pairs (i,j) where i < j, 7 ^ 7 contradicting 
the (m,n) convexity of 8.^

It is natural to ask, if 8 is an (m,n) convex set in E, 
whether the topological interior of 8 is (m,n) convex. At 
this writing, however, a proof of the conjecture has not been 
found. The truth of the conjecture i^ of course, well known 
for convex sets.

Several useful concepts are now introduced,

1.11. DEFINITIONt For any point x in 8 CE, let 8^ * fyf Si 
xyC s}. 8^ is called the x star of 8. The kernel of a set 
S, denoted by ker 8 , is defined as the set {zg 8 : 3% « s}.
A set 8 in E is called starshaped if there exists a point x 
In 8 with the property that 8^ = S. A set 8 is called 
locally starshaped iff each point x in 8 lies in some neigh­
borhood whose intersection with 8 is starshaped with respect to z.

1.12. DEPINITI ON I For any point x in 8 CE, let 8^ = |,yc 8i
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xy^s|. S* Is called the x anti-star of S. (Note that if 
S is closed then S* is relatively open for any x£ S and if S 
is m-convex then is (m - l)-convex with respect to S).

It is shown in [9] that every closed m-convex set is 
locally starshaped and that in a finite dimensional linear 
space every connected m-convex set is polygonally connected. 
Since every (m,n) convex set is k-convex for some k > 2, we 
have both of these results valid for (m,n) convex sets.

We frequently have occasion to deal with exactly (m,n) 
convex sets. One may generate such sets by using the fol­
lowing constructive proposition.

1.13. PROPOSITION: Given the nonnegative integers m > 2,
n,r, and k such that:

1) 0 < n < 0 .̂
ii) r is the least nonnegative integer such that n + r 

is in the set ® = 1 ,2,...],
iii) k = i(2m - 1 - ^8(r + n) + 1  ), 

then the reguleur (m - k)-gon (interior included), with r 
adjacent open sides removed, together with k isolated points 
is an exactly (m,n) convex set.

Proof. Consider the regular (m - k)-gon M with the k 
isolated points as described above. To show that this set 
is exactly (m,n) convex, we must prove it is (m,n) convex and 
obtain m distinct points which determine exactly n joins in 
this set. Choose the k isolated points and the m - k vertices 
of M. The only joins in the set determined by these points cor*
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responds to the 0%^% Joins between the vertices of M, minus
the r deleted open sides. Hence, the number of joins in
the set determined by these m points is C , - r =m-K
i(m - k)(m - k - 1) - r = n (by use of iii). By changing
the choice of the m points it is obvious that the number of
joins in M increases. Thus, m arbitrary points determine
at least n joins in the set, and some m determine no more
than n. Therefore, the set described is exactly (m,n) convex.^

In connection with the hypothesis of the theorem, it is
desirable to show that such a choice of integers r and k
satisfying (ii) and (iii) is always possible, and that
m - k > r (and that m - k > 2 i f r ; < l ) .  Choose s the
smallest integer such that n < ; then put n + r = 0^+^
(thus satisfying the choice of r > 0 in (ii)). Now we have

n + r = is(s + 1 ) 
or 28(n + r) + 1 = (2s + 1 ) .
It follows by the definition of k in (iii) that k = m - s - 1,
and thus k is an integer. To show that k > 0, observe that
our choice of s demands that since n < Cĵ , s + 1 < m.
Finally, to show that m - k > r (and > 2) note that s =
m - k - 1 and from the definition of s, n > + 1 , hence,
we have

^s+1 = Gg + 8
n + r =Cg + m -  k -  l

< ( n - l ) + m - k - l
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or, r < m - k - 2.
Hence, m - k > r + 2.

Krasnossel'skiï's theorem states that if S Is a com­
pact, connected set In a normed linear space of dimension 
n and for each set of n + 1 points S there
is at least one point y in S such that yxĵ  is contained 
in S for i in rT*^l, then S is starshaped, A condition 
that would guarantee a subset of to be the union of at 
most two starshaped sets was given by Koch and Marr [l2]. 
For m-converity it is easy to show that every m-convex 
set is the union of m - 1 or fewer starshaped sets, as in 
[6^. Given an (m,n) convex set, it too can be represent­
ed as a finite union of starshaped subsets. In 1.14 we 
not only get a bound, but we also get Guay * s result for 
the case n = 1.

1.14. PROPOSITIONt If S is an (m,n) convex set in a 
linear space with k = - n, let r be determined by
Cj, < k < for k > 1. Then S is the union of r or
fewer starshaped sets.

Before proceeding with the proof, let us establish 
a lemma. For convenience, we adopt the terminology that a 
subset V = (v^,...,v^g, of a set S is visually independent 
relative ^  S if for all i and j such that 1 < i < j < t, 
Vj^Vj^. iVe say that a point x can see a point y via S 
iff the open segment (xy) belongs to S.

1.15. LEMMA: An (m,C^ - 1) convex set S is the union of
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two starshaped sets. If m > 3» then S Is the union of 
two convex sets.

Proof. Let S he an (m,Cĝ  - 1) convex set, m > 2 
(the conclusion of the lemma Is false if m = 2). Consider 
the case where m = 3» If for any two points x and y in 
S, we have xyCS, then S is convex, and the result follows. 
Suppose that there exists x euid y in S such that xy^S.
For any other point z in S, we have xzCS, for otherwise, 
the set £x,y,z| would consist of three points in S with 
only one join in 8. Hence S = S^UjyJ , and the lemma is 
true for this case.

Let m > 3* and suppose that 8 is not convex. Hence, 
there exist u and v in 8 such that u v ^ 8. Suppose that 
there are points w and z in 8 such that wz^S, where (w,z) 
and (u,v) are distinct pairs. Consider the case where the 
four points are distinct. If we choose u,v,w,z, and m - 4 
other points in 8, then we have m points in 8 with at most 
Cju - 2 joins between them, a contradiction of the (m,Cĝ  - 1) 
convexity of 8. If w » u or v, we get a similar contra­
diction by considering u,v,z, and m - 3 other points in 
8. Similarly if z = u or v. Hence, given a pair (w,z) of 
points in 8 distinct from (u,v), wzCS. For any z in 8, 
therefore, zuCS (obviously, uvCbd S). Hence 8 « 8̂ u (vj. 
From the fact that uv is the only join not contained in 8, 
8^ is convex, thus completing the proof.^

Proof of 1.14. Suppose that r is determined by 
C^ < k < C^^2" Assume k > 1. There cannot exist r + 1
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visually Independent points In 8, for otherwise any other 
m - r - 1 points of S determine with these r + 1 points 
a set of m points In 3 missing at least ^ k joins
In St a contradiction to the (m,Ogĵ  - k) convexity of 8, 
Therefore, assuming 3 Is not convex there exists a larg­
est positive Integer t with 2 < t < r, such that there 
exists a set of t visually Independent points In 8. Let 

be such a set. It Is a straightfoward appli­
cation of the maximalIty of t to see that for any other 
point X In 3, we must have xp^c 3, for at least one value

Aof 1 In t. Therefore 3 = Sp^U***USp^, and the proof
Is complete. ^

It was pointed out In 1.15 that (m,Cĝ  - 1) convex
sets are expressible as the union of two convex sets.
3ets of this type are also starshaped, since by 1.2
they are connected. In fact, if 3 Is a (m,n) convex set
In with n > C . one can show that int S, core 8, andm—J.
lln 3 are all convex (see Valentine Ql?» p. if) ).

One useful description of (m,n) convex sets, and most 
difficult to obtain, Is In terms of finite unions of con­
vex sets. For general (m,n) convex sets with n suffici­
ently large such characterizations are easy to obtain.
For example. If 8 Is closed and (m,n) convex with n > C%_2, 
then 3 Is convex (by 1.3). However, If 3 Is not closed, 
then 8 Is still representable as a finite union of convex 
sets In some cases. Prior to characterizing these (m,n) 
convex sets with n > we have the next result, which
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exhibits a strong topological property characteristic of 
such sets.

1.16. PROPOSITIONI Let A be an (m,n) convex set with 
n > If points x,y, and z in A are such that xy
and xz lie in A» then int(conv(x,y,z])gA, where the int­
erior is taken relative to the plane of x,y, and z.

Proof. Since there is nothing to prove if x,y, and 
z are collinear, assume they are not. Choose w in (xy) 
and u in (xz) and suppose that there is a v in (wu) such 
that V is not in A. It is clear from the (m,n) convexity 
of A that there can be at most a finite number of points
in (wu) A  A. So choose m - 1 points in (wu)nc(A), where
C(A) denotes the complement of A relative to E, say 

Let = zq^^n (%*) ; for i« m^^l. Now
z»z^>. . . is a set of m points in A determining at
most Cjjj - (m - 1) * joins in A, a contradiction.
Hence, there cannot exist such a v in (wu)OC(A) and it 
follows that int(convfx,y,z])CA. ̂

It should be mentioned here that in stating 1.16 for 
(3*2) convex sets, (3,2) convexity implies that xyuzzCA. 
It should also be pointed out that since the rather large 
lower bound on n (n > implies that the closure
(and therefore the interior) of S is convex, the nonoon- 
vexity characteristics of such a set are derived from 
properties of the boundary.

1.17. PROPOSITIONI A planar, bounded (m,n) convex set



19
S, with n > may be expressed as the union of k convex
sets, where k < i(l + - 15). The result Is best possible.

Proof. We shall make use of a well-known theorem of 
graph theoryi If G Is any graph without circuits (that Is, 
a tree), then the vertices of G can be colored with two colors.

The proposition Is trivial for all cases except when 
Int 8 ^ 0, and It readily follows that Int S Is convex and 
cl 8 = cl(Int 8). 8uppose p and q are points In bd 8 such 
that p q ^ 8. Then pqc Txi 8. 81nce 8 Is bounded, let J = xy 
be the maximal segment In cl 8 containing pq. Thus, xy^ 8 
and hence xyC bd 8. Since xy contains no Infinite subset of 
8 (by the (m,Cg _̂2 + 1) convexity of S), then xy AS consists 
of a finite set of points, say

~ P» ^2 ” ^3* •••» r > 2.
Clearly, r < m, for otherwise S contains m points none of 
whose joins belong to 8. Choose m - r distinct points x^^^» 
...,Xjjj from Int 8 and consider x^,... ,x̂ .̂ These points deter­
mine no more than Ĉ  ̂- C^ Joins belonging to S, so Cĝ _̂  ̂+ 1 < 
n < Cjn - Cp. The Inequality r < t(l + •Jéia - 15) follows.
Since this argument applies to all the maximal segments Ji#J2*' 
lying In bd 8 and containing points not In 8 we may let k <
&(1 + V8m - 15) be the maximal cardinality of the sets 
1 > 1.

If T = bd (Ji), where (J^) denotes the open
segment J^, let denote the components of Ti since
It lies In the boundary of a convex set, each component Is 
either a single point or an arc. There are two cases.
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Case 1 > At least one component Is an arc, or there 

exist infinitely many components Aĵ . If E(A^) denotes the 
endpoints of Aĵ , define the graph G(T) having as vertex set 
V = UE(Ag)U " ' and as edge set those pairs (x,y)
in V X V  such that xy^S. Suppose G(T) contains a circuit 
X2,...,in+1 = ^1» with (x^,x^^^), 1 < i < n, edges in G(T).
In this case, the points x^ ,...,^^+1 “ ^1 in bd S and 
determine the joins x̂ X̂g, XgZ^» •••» ^®t in S. Clearly,
bd 8 = Ui=i ^i^i+i* But then T could have at most n com­
ponents and none of them is an arc, a contradiction. Hence, 
G(T) is a tree and can be colored with two colors. There­
fore, V = V^U Vg, where and Vg are the vertices of empty 
subgraphs of G(T). Define O(A^) = A]^\ E(Aĵ ) for i > 1 and 
consider the set

Cj = V j U d n t  8)u(Ui>i j = 1,2.
We show that each Cj is convex. Let x€ Cj and y E . If zE
xy n int 8, then since each interior point of 8 can see bd 8 
via int 8, it follows that (xy) = (xzQ (J [zy)C int 8. Thus, 
assume xyCbd S. Then if xyCS, xy lies in one of the com­
ponents of T, and (xy)CO(Aj^) or xyc Cy Finally, if 
xyyü8 then xy belongs to one of the segments and 
{x,y} n  0(\)] = ^ implies {x,yJCVj or xyCS, a con­
tradiction.

It remains to consider the points of (J^)ns. For 
convenience, let S have maximal cardinality k among the 
J^ns, and suppose (Jj^)ns « [Xĵ ,... There is an
onto mapping f^ i (J^)^ 8 -»(J^)ns for each r > 1, so define
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Cj^2 “ conv( fp(Zj))' j “ l,2,.,.,k - 2.

Since xy^S implies xyCbd S for x and y in It follows
easily that Cj^g & convex subset of S. Thus, S = Uj«i(Cjns).

Case 2. There exists finitely many components A^,...,Ag 
and all components are singletons. It follows that there are 
finitely many maximal segments and bd S = Jj,*
Thus, we may suppose that = t^ix* * * * *^ikl » that Xĵ ^
and x̂ ĝ are the endpoints of (1 < i < t), x̂ ĵ̂ = Xi+x,l
(1 < 1 < t - 1), and x̂ jj = x^^. (If 8 has cardinality 
less than k simply choose arbitrary points on to define the 
x^j's.) We have two subcasest

Case 2.1I t even. Let t = 2r and define the sets
Cl = tnt 8Ut%ii'Z2i*Z5i'''''Z2r-l,l1'
Cg = Int 8u{z2x,i4x,Z6x,...,i2r,lt*

Cj+i = Sul=lj'*2j'=3j'''''Z2r,jl* j “ 2,...,k - 1.
It is clear that S is a convex subset of S, and S = U  j_x(CjA 8) 

Case 2.2: t odd. Let t = 2r + 1. Assuming k > 3» define
Cl = 8 u (ill* ' z^i %2r-2,l'^2r,il'
Cg = Int 8u(zx2'Z23'Z32'*42'''''*2r,2'*2r+l,2l'
• • •

Cj = Swtzij'=2,j+l'Z3j*Z4j'''''Z2r,j*=2r+l,j)'
2 < J < k - 2,

Cfc-I = i*it 8utzx;%_x,Z2i,i4,k_i,Z5,k_x"'''*Z2r+l,k-l!'
Ck = SUtx2x,X2 %_i,X2x,Zyx,...,i2r-l,l'=2r+l,l1'

Again each C^Os is a convex subset of S, and S = Uj-x^CjOS).
Finally, if k = 2 then 8 consists of a convex polygon 

and interior, having vertices x^,...«igy+x* with the open
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sides removed. Here, let = {x-jJ , Cg = Int S \J

* * * *^2r^* ^3 * Int S [Ĵ x^,x^,Xy,. ».,x^^^^^ > 
and S = \Jj2i(Cjn8). It remains to show that in this case, 
unless the cardinality of S *.. *^2r+l1 less than 3»

3 < i d  + V8m - 15).
But it is clear that regardless of the value of r > 1, 8
cannot be 0*^2 + 1) = (3.2) nor (4,C^ + 1) = (4,4) convex;
hence, m > 5 and we have 3 = i(l + */^) < i(l + V8m - 15)» 
The result is best possible as the obvious example shows. ^

1.18. COROLLARYi A planar, bounded (3,2) convex set is the 
union of two convex sets.

1.19. COROLLARY» A plauiar, bounded (4,4) convex set is the 
union of two convex sets.

Eduard Helly discovered a theorem in 1913 concerning 
the intersection of convex sets. The first published proof 
of this important theorem was given by Radon in 1921. For 
future reference, we state the theorem.

1.20. HEIiLY*S THEOREMi Suppose that Ç is a family of at
least d + 1 convex sets in E^, and Ç is finite or each
members of Ç is compact. Then if each d + 1 members of Ç  
have a common point, then there is a point common to all 
members of 'Ç .

For a compendium on Helly' s theorem and its appli­
cations, see the excellent paper by Danzer, Grunbaum, 
and Klee C4I. In that paper several generaliza­
tions of Helly * s theorem are mentioned. A useful concept
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in deriving such theorems is the following definition.

1.21. DEFINITIONi Let Jc be a family of sets in E^. 3» 
is said to have Helly order n . if n is the smallest card­
inal number such that for each finite subfamily /Ji of ^  a. 
nonempty intersection of any combination of n sets in jjj 
implies a nonempty intersection of all sets in .

Belly's theorem states that the Helly order of a finite 
or compact family of convex sets in is d + 1. It is an 
interesting but somewhat difficult problem to determine the 
Helly order of the family of (m,n) convex sets in for 
general m and n. We restrict ourselves in this paper to the 
special cases m = 3 and n = 1,2. A series of lemmas will 
lead us directly not only to the finiteness of the Helly 
order for the family of (3,2) convex sets in E^, but to an 
exact value for it. This development will reveal the Helly 
order for the family of (m,C^ - 1 ) convex sets in E^ since 
it is easy to show that (m,Cĝ  - 1 ) convexity implies (3*2) 
convexity. We have already shown that a (3,2) convex set is 
in general a (3 + k,2 + k) convex set (k > 0). However, 
due to the strong topological properties of a (3,2) convex 
set, we get the following result.

1.22. PROPOSITIONi A (3,2) convex set B in a linear 
topological space E is (m,Cĝ  - (m/2]) convex, for m > 2.

Proof. Let p^,...,?^ be any m distinct points in B, 
where m > 2. Note that (p^Pj) and (P̂ Pjj) cannot both have 
points in common with C(B), for otherwise B would not be
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(3,2) convex. We can therefore have at most Qn/2^ open
segments Joining the given m points having a nonempty
intersection with C(B) (for example, (p. p. ),...,(p, P. )»X 2 ir-1 ^r
where (i^....i%.) is some element of order £m/2j in 8(^/ 2̂ ),
the permutation group on [m/2^ objects). Hence in B, we 
have at least Cĵ  - Qû/2][ Joins between the given m points.
Thus, B is (m,Cjjj - ]^/^) convex. ^

An extremely useful result is the following, which is 
an extension of 1,16 in the plane.

1.23. LEMMA: Given x,y,z, and w in a planar (3,2) convex
set A, then int(conv{x,y,z,w|) is a subset of A.

Proof. If one of the four points lies in the convex
hull of the other three, then the result follows immedi­
ately from 1,16 and the application of (3,2) convexity. 
Consider the case where no one point is in the convex hull 
of the other three. That is, we have the four points det­
ermining a convex quadrilateral. By the previous result,
A is (4,4) convex. If one of the four guaranteed Joins is 
a diagonal, then it follows from I.I6 that int(conv{x,y,z,wJ) 
is a subset of A. Suppose on the contrary that the dia­
gonals, say xz and yw, are not subsets of A. Thus, the 
boundary of conv^,y,z,wJ is in A. Again by I.I6, we have 
every point of conv{x,y,z,wJ in A, except possibly v « 
xzOyw. But if V is not in A, by considering the set 
^x,z,s|, where s is an element of xvUvz, we get a contra­
diction of the (3,2) convexity of A. Therefore
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lnt(conv[x,y,z,w}) is a subset of A. ̂

The next lemma is the main tool in establishing the
finite Helly order for the family of (3,2) convex sets in 
2E . It is an interesting result in itself.

21.24. LEMMA: Any five (3,2) convex sets in E each four
of which intersect have nonempty intersection.

Proof. Let Â ,̂ for i £ 5 » be five (3,2) convex sets in
2S , each four of which intersect. Denote by the point 

guaranteed in 0^=1 A^. If at least one of the five 
points is in the interior of the convex hull of the other 
four, then that point is in all five sets by 1.23* So con­
sider the three remaining cases where no one of the five 
points is in the interior of the convex hull of the other four. 
Case 1. No three points are coll inear, then the five points 
are vertices of a convex pentagon. Let ê ĵ = p^p^, r^ =
®13^ ®24* ^i* 1 £^, defined similarly. Let T =
conv((J^^^ r^). Since int(conv{p^j i £ 5 » i j}) is a sub­
set of Aj, by 1.23» we have int T a nonempty subset ot ky 
for J£ f. Hence, int T is a subset of
Case 2. Exactly three of the points are coll inear. We may 
assume without loss of generality that and p^ are
collinear, with p^Ep^Py (see Figure 1.2). Define the seg­
ments ê ĵ and the points r̂  ̂as before, and let L = 
convfr^,r^,r^,p^'J. Since int(conv(p^i i 5, i ^ j}) Is a 
subset of Aj, by 1.23» it follows that int L is a nonempty 
subset of A^.
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Figure 1,2
Case 3. Exactly four of the points are collinear. Assume 
that PifP2»P3* P̂j, &re the four collinear points, taking 
the order indicated in Figure 1*3*

Figure 1.3
Now p^,p^, and p̂  ̂are in Ag, and it follows that PiP||.C-̂ 2* 
for, the existance of a single point of C(Ag) on p̂ Pf,. denies 
the (3,2) convexity of Ag. Hence p^e A^ and therefore p^ g

(^1=1 0
It is straightfoward to see that if x,y,z, and w are 

any four distinct points in O^bI ■̂ i* where for all 1er 
is a (3,2) convex set in E^, then int(conv{x,y,z,w|) is 

a subset of Hisi follows that if A2#A2,A^, and ^
are four (3,2) convex sets in E , and A^ * Hisi where 

for i c s is a planeur (3,2) convex set, euid if each four 
of the sets A2̂ ,A2,Â ,A/|,, emd A^ have a point in common.



27
then there Is a point common to all five sets (simply apply 
the argument of the preceding lemma in each of the cases 
regarding p^,...,p^ to , and any one of the sets B^).

1.25. LEMMAt Given n - 1 (3,2) convex sets in a^ ....
•^-1» and A^ a finite intersection of planar (3,2) convex 
sets, if each four of the sets Aĵ , for i€rï, have a common
point, then Hisi ^

Proof. The conclusion is true if n = 5» by the preceding 
observation. Suppose the lemma is true for n = k. Consider 
the k + 1 sets A^,.., where each Â  ̂is (3,2) convex
for i g k, and ® finite intersection of (3,2) convex
sets in the plane, such that each four of A^,...,A^^2 bave
nonempty intersection. Let = A^QA^,^]^. A^ \ - l ’®k
is a collection of k sets the first k - 1 of which are (3,2) 
convex, and the k-th, a finite intersection of (3,2) convex 
sets. Each four of the sets in the collection A^,...,A^_^,B^ 
have a common point. For, consider A^,Aj,A^ and Each
four of the sets Aĵ 'Aj ,Â ,Â ,̂ and A^^^ bave a common point 
by hypothesis. Hence, A^,AyA^, and B^ have a point in com­
mon by the observation preceding this lemma. Therefore, by 
the induction hypothesis A^ ^

21.26. LEMMAI Given n (3,2) convex sets in E each four of 
which intersect, then they all have a common point, where n > 5« 

Proof. If the number of sets is five, then the result 
is already true by 1.24. Suppose it is true when n = k > 5»
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2Let A-ĵ,..., t>e k + 1 (3,2) convex sets in E each four 

of which have a common point. Consider the collection 
A^,... where four of the sets
have a point in common. For, consider .Aĵ ,Aj,Ajĵ , and 
each four of the sets Aĵ ,Aj,Ajjj,Ak# and A^+i have a point 
in common, and by 1.24 the intersection of these five sets 
is nonempty. Thus Aĵ ,Aj,Ajjj, and have a common point.
We now have k - 1 (3,2) convex sets A]̂ ,...,A^_^, and Bĵ , 
where B^ is the intersection of two (3,2) convex sets, each 
four of which have a point in common. By 1.25, we have
( 0 1=1 ■̂ i ) O  ®k ^ ^• Thus, ^  ^ 0» ̂

1.27. PROPOSITION» The Helly order of the family of (3,2)
2convex sets in E is four.

Proof. Prom the previous lemma we have proved that
the Helly order for the family of (3,2) convex sets in
the plane is no greater than four. The following example
is offered to show that the bound used in 1.24 is best
possible, and that the Hell^ order is exactly four.

2Example. With the usual coordinatization of E , let x = 
(0,0), y = (1,0), z = (0,1), and w = (1,1). Take A as the 
interior of the triangle formed by x,y, and z, including 
the sides xy and xz, B the interior of the triangle form­
ed by x,y, and w Including the sides xy and yw, C the 
interior of the triangle formed by y,z, and w including 
the sides yw and wz, and , finally, D the interior of the 
triangle formed by x,z, and w together with the sides 
xz and zw.
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2We have four (3,2) convex sets A,B,C, and D In E 

each three of which have a point in common yet the inter­
section of all four sets is empty. ^

It would be interesting to know if 1.27 generalizes
d *to E . That is, if y  is a finite family of at least

d + 2 (3,2) convex sets in E*̂  each d + 2 of which have 
a common point, then is there a common point for all the 
members of ?



CHAPTER II 

M-CÜWVEXITY

It Is interesting to specialize the concept of (m,n) 
convexity to (m,l) convexity in order to discover the more 
basic properties of such sets (every (m,n) convex set is 
(k ,x ; convex, or k-convex, for some k > 2). In this chap­
ter, therefore, we turn our attention to m-convexity. We 
will characterize the kernel of a certain family of 
m-convex sets, give a negative answer to a conjecture of 
Danzer, Grunbaum, and Klee concerning the Helly order of
3-convex sets, and introduce the notion of local non­
convexity, which will lead us to several convex covering 
theorems for m-convex sets. In the process, we prove a 
generalized Helly theorem.

The concept of the kernel of a set was introduced by 
Brunn [3̂ , when he showed that in the kernel of any 
set is convex, and is closed iff the original set is clos­
ed. Toranzos formulated in another connection a pre­
viously unpublished result which has been common know­
ledge in the theory of convexity for some time, namely 
that the kernel of a set is the intersection of all its 
msiximal convex subsets. In connection with this. Hare and

30
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Kenelly have shown that the intersection of the max­
imal starshaped subsets of a compact» simply-connected, 
planeur set is steurshaped or empty. For m-convex sets in 
E^, we obtain the following results. First, we observe 
that a straightfoward application of the proof of 1.5 
implies that the union of a chain of relatively m-convex 
subsets of a set is relatively m-convex with respect to 
that set.

2.1. PROPOSITION» For each relatively r-convex subset T 
in S, where S is any set containing at least k visually 
independent points, there exists a maximal closed subset 
of S which is exactly k-convex with respect to S and con­
tains T, where 2 < r < k.

Proof. If T is a relatively r-convex subset of 8 it 
will be an exactly s-convex subset of 8 relative to 8 for 
some s < r. Let Xi,...,x% be a set of k visually indepen­
dent points in 8. Inductively, consider the sets T@ = T,

= T U *T2 — T y Xjîo ̂2 ’ • * • *̂ k ~ T 2 ̂ iî*
least one of these sets, say must be exactly k-convex 
relative to 8 since is relatively exactly s-convex, Tĵ 
is relatively exactly t-convex for some t > k, suid the ad­
dition of a point in 8 to each Tj does not increase the 
order of the relative, exact m-convexity of Tj by more than 
one. Py Zorn's lemma, there is a meucimal subset M of 8 
containing T which is k-convex relative to S. But 
since is exactly k-convex relative to 8, it contains
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k - 1 points which are visually Independent
relative to S. Since M contains y^,...,y%^^, M itself 
is exactly k-convex relative to S.^

2.2. COROLLARY» If T Is any convex subset of an exactly 
m-convex set S, then there exists for each k» 2 < k < m, 
a maximal subset of S containing T which Is exactly 
k-convex relative to S.

We shall need the following concept for subsequent 
results:

2.3. DEFINITION; T C S  Is said to be weakly relatively 
convex with respect to S Iff for each two points x and 
y of T such that (xy)C S, then xyCT.

Thus, any set Is weakly relatively convex with res­
pect to Itself while It need not be convex relative to 
Itself (see 1.9). The convexity of a set Implies both 
weak relative convexity and relative convexity with res­
pect to any set containing It, but, unfortunately for the 
terminology, a relatively convex subset of even a convex 
set need not be weakly relatively convex. Moreover, It Is 
not necessarily true that a maximal, absolutely k-convex 
subset of an m-convex set S be weakly convex relative to S, 
as the following example shows. The set S Illustrated In 
Figure 2.1 consists of two squares (Interiors Included) 
and two line segments. S Is 5-convex, but the subset T 
consisting of U, pq, and rs Is a maximal 4-convex subset of 
S which Is not weakly convex relative to S. For, consider
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the points x and y, as shown in the figure. (This exam­
ple also shows that relative convexity does not imply 
weak relative convexity.)

Figure 2.1

U
For k-convex subsets which do satisfy weak relative 

convexity we can establish a positive result.

2.4. PROPOSITIONI If S is any set, then the intersection 
of any collection of (absolutely) k-convex subsets of S 
(k fixed, k > 2) which are weakly convex relative to S, 
where the intersection contains at least k points, is 
k-convex.

Proof. Let M = Hf^i* 1 ( l}, where each is a 
k-convex subset of S which is weakly convex relative to S. 
Choose any k distinct points in M x^,...,x̂ . Now each 
Xj, for j E k, is in for all i in I. If for some s euid 
t in k and u in I x^x^CS^, then XgX% is in S, since 
SyCS. Hence, XgX% is in for all i in I by the weak 
relative convexity of 8 .̂ Therefore XgX^ is in M. Since 
Sy is k-convex, it must contain at least one join XgX% 
determined by these k points. Hence, M contains a Join 
determined by the k given points, and thus M is k-convex. ^
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2.9. REMARKi It would be Interesting to obtain a direct 
analogue to the Hare-Kenelly result mentioned earlier, 
that is, to establish that the intersection of the max­
imal k-convex subsets of a closed, simply-connected, 
planar set is k-convex. This assertion remains a con­
jecture at this time, however.

It is easy to show that the kernel of any m-convex 
set T is contained in any maximal subset H of T which is 
k-convex relative to T, 2 < k < m. For if x i(ker T)\ E, 
then {x}UH is clearly k-convex relative to T and con­
tains a properly, denying the maximal property of H. A 
slightly different result is possible when T is not requir­
ed to be m-convex,

2.6. DEFINITIONi The join of x and A is the set xA =
£ax + (1 - a)ai a 6 A, 0 < a < l}. This is sometimes 
referred to as the cone over A with vertex x.

2.7. PROPOSITION I If H is any maximal absolutely 
(relatively) k-convex subset of T, then ker TCR.

Proof. We prove this only for absolute k-convexity; 
the proof for relative k-convexity is similar. Suppose 
that there is an element x in ker T which is not in R, 
where R is a maximal k-convex subset of T. Hence, R 
is a proper subset of xR. Moreover, xR is k-convex.
For, if we are to select any k points Pi,...,p% in xR, 
then there exist points x̂ ĝ R, for i E k, such that

APi£ X X T h e r e  is an i and j in k such that x^Xj is in R,
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since R is k-convex. Hence, P^PjC convex,x^^.Xj] C zR. But 
this contradicts the fact that R is a maximal k-convex 
subset of T. Therefore, ker TCR. ^

2.8. COROLLARY» The kernel of any set T is contained in 
the intersection of all maximal absolutely (relatively) 
k-convex subsets of T.

The next result contains Toranzos's theorem in the 
special case k = 2.

2.9. PROPOSITION: Suppose T is any set with the property
that for some integer k > 2 and for any x€T\ker T, T^ 
has at least k - 1 points which are visually independent 
relative to T. Then ker T is the intersection of all the 
maximal subsets of T which are exactly k-convex relative 
to T.

Proof. Let ker T = K and consider x any element of T\K. 
By hypothesis, T^ contains k - 1 points *!*••• In T^
visually independent relative to T (if k = 2, simply 
choose any point x^ in T^). The set S = x̂ K̂ U  • • • Ü  
is the union of k - 1 convex subsets of T and hence is 
relatively k-convex. It is easy to show that S is also 
exactly k-convex relative to T. There exists a maximal 
subset M of T containing S which is exactly k-convex 
relative to T. The point x cannot be an element of M 
since x,x-]̂ ,... are visually independent relative to
T. Therefore x cannot be in the intersection of all max­
imal k-convex subsets of T. Hence, the intersection of
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the maximal k-convex subsets of T is a subset of ker T.
By 2.8 the proposition is established.^

2.10. COROLLARYi If T is any m-convex set, with k a 
positive Integer 2 < k < m - 1, and T has the property

Xthat T for x£T\ker T is exactly r-convex for some r > k, 
then ker T is the intersection of all maximal, relatively 
exactly k-convex subsets of T.

Proof. Straightfoward, since an exactly r-convex set 
relative to T for some r > k has at least k - 1 visually 
independent points.^

Note that, in the event ker T is not the intersection 
of all the maximal k-convex subsets of T, then it cannot 
have the property of T assumed in the theorem. A simple 
example of this is shown in the figure below.

Figure 2.2
Here, ker T = #, but the intersection of all maximal

4-convex subsets of T is the point x^. Thus, at least one 
anti-star T* for x E T\ker T = T is 3-convex (T^3 is obviou­
sly that set, and the only one). This observation shows 
that the plausible conjecture

ksr I = M. (2.1)
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where the Intersection is taken over all maximal rela­
tively k-convex subsets, is false even for m-convex sets, 
m > k + 1; some condition similar to that given in the 
corollary is needed. A more interesting counterexample 
to (2,1) is indicated in the next figure. This set is 
compact, simply-connected, and 4-convex, but the kernel

w

Figure 2.3
is not obtained by intersecting maximal k-convex sets for
any k > 2 (that is, k = 3). Here, ker T = convex,y,u],
but OjiCT M (M = maximal 3-convex subsets) = convfw,x,y,z^.
Moreover, note that is convex relative to T. On the
positive side. Figure 2.4 shows an example of a set T in 
2E which satisfies the property required in 2.9 for each 

k > 2| using complex notation, T consists of a small 
square B centered at the origin, and the union of the 
cones of the points Zgj and z^^^^ over B, n = 1,2....
and j = 0,1,2,3, where Zgj = exp(nj/2 - a + a/n - a/n^)i

n 9and Z2J+I “ exp(TTj/2 + a - a/n + a/n )i, with a chosen
so that Zj (j = 0,...,7) are the points of intersection 
of the sides of B and the unit circle |z| = 1. Here, 
ker T = B, and, according to 2.9» B is obtained by inter­
secting all maximal, relatively exactly k-convex subsets
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of T, for each veQ.ue of k.

/ 7 / y

Figure 2,4
Danzer I Grunbaum, eurid Klee have conjectured [4] that 

the family of all 3-convex subsets of has finite Helly 
order. The next result gives a negative answer to this 
conjecture.

2.11. PROPOSITIONI The Helly order of the family of 
closed, connected, planar 3-convex sets is infinite.

Proof. It suffices to exhibit a set of k closed,
connected, planeur 3-convex sets each k - 1 of which have
a point in common but with eJ.1 k of them having empty 
intersection, for each even integer k > 4.

Let z-̂ = (l,0),Z2,««.,z% be the k-th roots of unity.
Let k = 2m and consider for 4 < i < k - 1 the following
sets.

h = conv{z2,Z3 Zm+ilVJ conv^z^^+i Zj^ ,̂
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Ag = convizg.z^ Zm+2l ^  ....
Â  = conv fz|j. I ẑ  I • • • » U oonv^Zg^^^ 2̂̂  *

# # #

\  - • • • »^m+l 1 ̂  oonv%z^^^ ,...,z^^z^,i..,z^^^^,
• • •

Aĵ  = oonv{zi,Z2,...,Zj^ ] U  conv{zj^ '''«'Zk-lt'
By construction, we have Ç\ A y  Hence, the inter­
section of any k - 1 of the given sets is nonempty. Let 
c = (0,0), every point in convfz^^,,,, ,Zĵ ] must, for some j, 
lie in Bj = int(conv{o,Zj_i,Zj,Zj^^))tj[G%. Since Bj is a 
subset of the complement of Aj, we have Oi=i A^ = 0̂* ^

Thus, a family of sets each of which is closed, connect­
ed, and is the union of three or fewer convex sets need not 
have finite Helly order. The difficulty lies in the fact 
that the intersection of members of such a family may be 
more complicated in structure than the members themselves.
In , Grunbaum and Motzkin considered a modified situ­
ation in which ^  consists of sets which are expressible 
as the union of at most n distinct compact convex sets, 
and which also have the property that the intersection of 
n or fewer members of Jp can be expressed as the union of 
at most n disjoint compact convex sets. In E^, let 
denote the collection of those sets which can be expres­
sed as the union of at most i disjoint compact convex sets. 
Grunbaum and Motzkin were able to establish for the case 
i = 2 that if Jp is a family of sets in such that
any i(d + 1) members have nonempty intersection, and for
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r < 1 the intersection of any r members of 3% is a member 
of then ^ Larman in has extended this
result for the case when 1 - 3 ,

A different way of obtaining a finite Helly order for a 
family of sets in each of which is the union of k or fewer 
convex sets is to require that the intersection of members 
of the family be in the family. One may also require that 
each set in the family be a special union of k-convex sets. 
Turning our attention in that direction, we can obtain a 
generalization of Kelly's theorem in .

2.12. DEFINITION: A k-isolated set is a set consisting of
a convex set and k or fewer isolated points, for k a non­
negative integer.

Since convex sets are 0-isolated sets, the next result 
reduces to a form of Kelly's theorem when k = 0.

2.13. PROPOSITIONt The Kelly order of the family of 
k-isolated sets in E*̂  is no greater than (d + l)(k + 1).

Proof. We shall prove the inductive proposition for 
each integer r > (d + l)(k + 1) + 1 * If fSĵ i i£r} is a 
family of r k-isolated sets in E^ each r - 1 of which have 
nonempty intersection, then all r sets have nonempty inter­
section. It is obvious that this will then imply the 
desired result since by mathematical induction it follows 
that each family {s^ t i C r^ of r k-isolated sets in 
each (d + l)(k + 1) of which intersect have nonempty inter­
section. Assume that t i C r‘\ is a family of r k-isolated
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sets In each r - 1 of which have nonempty intersection, 
r > ( d + l ) ( k + l ) + l .  Let the set of isolated points 
of 8i,...,8p be Pi,...,Pg; thus, each has the form

Si = î^ii**•••%(!)}• 
where each is convex and t(i) < k. Choose in
A i  g r,i?̂ j ®i for each j f r (since each r - 1 of the sets
8  ̂have nonempty intersection), and put T = {q̂ »̂ • • • tq̂ J,
Note that for any u « r  8^ contains r - 1 of the q^ + s. Hence,
each Cy must contain at least r - k - 1 of the q^*s (of the
r - 1 Q.j's in 8^ at most k can belong to 8^\  ), Now
consider any two sets 8^ and 8^, Letting A denote the
cardinality of A and applying the inclusion-exclusion
formula |AAB| = \Al + iBj - \AUB|, it follows that
|(C^nC^)nT\ > (r - k - 1) + (r - k - 1) - r = r - 2(k + 1 ).
Continuing inductively, each intersection of the form
Cj^̂ n "  " A^i^^2 at least r - (d + l)(k + 1) > 1  of
the Qj*s. Hence, {Cĵ * iCr} is a family of convex sets in

each d + 1 of which have a common point. By Helly's
theorem, Hi,! / (f. Therefore Oi=i ^i 0.

We now turn our attention to the concept of m-convex- 
ity as a tool in characterizing sets which are the union 
of finitely many convex sets. The following example, due 
to Kay, shows that if one attempts to use m-convexity as the 
only criterion then the restriction to closed sets is 
necessary.

2.14. EXAMPLE: Let E^ be identified with the complex
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plane and let C be the unit circle |z( = 1, with = 
g-nl/2” n = 0,1,2,,... Let P be the infinite sided 
polygon which circumscribes C, touching C at precisely the 
points l,e"^^^^, and z^ for n even. The set S is then 
defined as the set of points on and inside P with those z^ 
deleted for which n is odd. It can then be shown that S 
is 4-convex but is not the union of any finite number of 
convex sets (see [̂ 9̂ ).

Many of the convex covering theorems for m-convex sets 
have been obtained by imposing conditions on certain sub­
sets of S. For example, if one requires that the kernel of 
a compact m-convex set be empty, then the compact m-convex 
set is the union of finitely many compact (m - 1 )-convex 
sets. Another useful concept for us is the following:

2.15. DEFINITION: A set T is said to be locally convex 
at a point p in T if there exists a neighborhood N of p 
such that T O N  is relatively convex in T. If a set is 
locally convex at every point, it is said to be locally 
convex. A point q of T is a point of local noncohvexity 
(or Inc point) if T is not locally convex at q.

It is clear that q is an Inc point of T iff it is a 
limit point of a pair of nets {x^tif D} and {y^^iiC d\ in T 
such that for every iC D the join Xj^y^^^T. Knowledge of 
the set of Inc points of a set is useful in determining 
properties of the set. In ^6̂  it is proved that if SC 
and the set Q of Inc points of 3 consists of a single point,
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then S Is starshaped from Q. A representation theorem 
appearing In the same paper states that if (Q| = 1 and S 
Is m-convexI then S Is the union of m - 1 or fewer convex 
sets. Stamey and Marr have shown that If S Is a bound­
ed 3-convex set with |Q( > 1 and a point q. £ (ker S)0 (bd. S) 
and S Is locauLly convex at q, then S can be expressed as 
the union of two closed convex sets.

For the sake of completeness, and to give an Indica­
tion of the Importance of the concept of local convexity, 
we state Tletze*s theorem. A proof may be found In QlSQ.

2.16. TIETZE'S THEOREM: A closed, connected set In a
linear topological space which Is locally convex Is convex.

Kay and Guay l̂d][ have recently generalized Tletze's 
theorem by showing that If the set Q of Inc points of a 
closed set T In a linear topological space has finite card­
inality n > 0 and T \ Q  Is connected, then T Is planar and 
Is the union of n + 1 or fewer convex sets.

A result due to Valentine \l73 states that If S Is a 
closed, connected, planar 3-oonvex set, then S Is the union of 
three or fewer closed convex sets. Guay, In his thesis, 
was able to extract the essence of Valentine * s proof and 
establish a result we shall make use of later. From now 
on, Q denotes the Inc points of S and K denotes the kernel 
of S.

22.17. GUAY'S THEOREMi Let S C E  be closed, connected, 
and have at least two points of local nonconvexity. If
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QCK, then S may be expressed as the union of three or 
fewer closed convex sets.

£y considering the five pointed star, one may see that 
for both Valentine and Guay * s results the number three is 
best possible. Two representation theorems follow direct­
ly from Guay's theorem, we introduce the notation =
^x ÉT» xaCT for all a E A].

2.18. COROLLARY i If S has the property that Q = ̂
and S = Uisi then S is the union ox 3» or fewer
closed convex sets.

2.19. GOBOLLAdï i An (m,n) convex set S with n >
the union of three or fewer closed convex sets.

Proof. We need to show that if n > ÜQ_2* then QCK. 
Suppose that q ( Q\K, and let x be a point in 8 suun that 
qx^S. Take a sequence {xĵ ] of points in S with the prop­
erty that lim Xx = X. In addition, there exist two sequen- i-* «0 ^
ces and^Zj^ such that lim ŷ  ̂= lim z^ = q and y^z^^S,
for all i. There exists a positive integer î  ̂such that 
for 1 > 1q qXj^^ S. Hence, there exists a with the pro­
perty that y X and Zx , together with any m - 1 elements Jq Jo
of £x^ I i > i^ , form a set of m points in S with at most 
Cjj-2 joins, a contradiction. Hence, Q is a subset of K. ^

2.20. DEFINITIONi A set T Is called an set if every pair 
of points in T can be joined by a polygonal arc in T consist­
ing of at most n segments.
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In Horn and Valentine characterize properties of

L2 sets In the plane. It Is straightfoward to see that In 
a linear space every connected m-convex set Is an 
set, assuming the set Is polygonally connected (a result 
obtained In for finite dimensions). For If P = 
x^XiUXiXgU'^’UXn-l^n (^o = % and x* = y) Is a polygon­
al arc In S joining x and y such that the number of sides 
Is minimal among all such paths Joining x and y, and 
n > 2m - 2, then Xgĵ  for 1 £ m^^^ Is a set of m visually 
Independent points In S, a contradiction. It can also be 
shown that any closed m-convex set Is an Lm-l set.

2.21. PROPOSITIONt Every m-convex set T which Is an 
exactly L2m-3 (&u ^2^.3 set which Is not an L2m-4 set)
can be expressed as the union of 2m - 3 convex sets.

Proof. Let x and y be points In T such that the min­
imal number of sides of any polygonal arc Joining x and y 
Is 2m - 3» and let P be such an arc, with the vertices of 
P denoted by x = rQ,x^,...,X2m-3 ~ ^ • Denote by L^ the 
set of all points z In T with the property that the min­
imal number of sides of a polygonal arc Joining x and z 
Is 1, for 1 E 2m - 3« It Is clear that T = U ^ l ^  L̂  ̂U^x^. 
Now each Is convex ; for otherwise If there exist p and q 
In LjL with pq^T, then by considering {x = Zo,Z2'"''**2k-2' 
p,q,X2jĵ 2» • • • »*2m-2Î (8?®% subscripts) If 1 « 2k, or 
{xi,X2,...,X2%_2,P,q,X2k+i,...,i2m-3Î subscripts) If
1 = 2k - 1, we see that since P was a minimal polygonal
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arc joining i to y, in either case we have a set of m 
visually independent points in T, a contradiction of the 
m-convezity of T. Also L^U\z\ is convex since z can see 
every point in and itself is convex* Thus, T is
the union of 2m - 3 convex sets, ^

Vsdentine has shown [l93 that knowledge of Q in certain 
cases implies polygonal connectedness. He proves that if 
T is a closed, connected set in with Q = VJi=i ^i» where 
QjL is relatively convex, connected, and closed for all if n, 
then T is an set. As a corollary, he shows that a
closed, connected set in with \Q| = n is an set.

2.22. LEMMAI Any closed, connected, m-convex set is local­
ly starshaped.

Proof, Let x £ S and suppose no such neighborhood of 
X exists. There is a net N = {x^i n f O j c s  converging to 
X such that xx^^g for frequently many x^. Let x^^ be an 
element of the net such that xx^^^ S. There exists a 
neighborhood about x such that x^^ cannot see any point 
in that neighborhood via S, since S is closed. Let x^2
be any point in NOUjj^ such that xx^ ̂  S. Thus, 8.
There is a neighborhood U„ of x such that Ü- C  and x2 "2 "l ^2
cannot see any point in via 8. Select any point in
N , say x_ , then f x,x_ ,x„ ,x̂  ? forms a visually inde- *̂•2 ^  — n^ 2
pendent set with respect to S. There exists a neighborhood
U_ of X such that x cannot see any point of U_ via S
^  3
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and U„ CUv, • Continuing this process, we obtain a contra-3 2
diction of the m-convezity of S. ̂

A conjecture of Kay [9] that a closed, m-convei set in 
is the union of finitely many convex sets has been est­

ablished for several special cases, but the conjecture for 
more general sets remains. We develop here a few tools 
which might be useful toward establishing the conjecture

pin E , which we also use in case of 4-convexity in the fol­
lowing chapter.

2First let S be a closed, m-convex set in E , and let Q 
be the set of all Inc points of S. We use the notation 
H = conv Q, and ^W^* iE l] will denote the collection of 
connected components of S \H (for the m-convex sets we 
shall consider, H will be a subset of S). Note that if 
HCS, then QCbd H; for otherwise, there exists an Inc point 
q E int HCint S, denying the obvious property qCbd S for 
all q£ Q*

By m-convexity there can be at most finitely many one­
dimensional components (each such component must be a 
segment or ray, and thus, for all but possibly one other 
component, no point in can see via S any point of any 
other component). The remaining components have mutually 
disjoint interiors. Hence, I is countable, and we shall 
assume I consists of a subset of the positive integers.

For convenience, we shall now assume that S is compact. 
This will simplify many of the arguments, although many of 
these results can be established without that assumption.
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2A 8Imply-connected subset of E Is a set whose complement 

contains no bounded component. We establish the following 
result t

2.23. LEMMA* If S Is a connected, compact, m-convex sub-
2set of E with conv QCS, then S Is simply-connected.

Proof. With H = conv Q, suppose G Is a bounded compo­
nent of E^\S, and let gg G. Since g ^ H  and H Is compact 
there Is a line J  strongly separating g and H, and let the 
closed half-plane determined by J  not containing H be denot­
ed by P. Let JCJ}, denote the closures of the compo­
nents of FAS. The m-convexlty of S Implies that there can 
be only finitely many components Zy so we may assume with­
out loss of generality that J = ( 1 , 2 , Each Zj Is a 
compact, connected subset of Ft we can show further that Zj 
Is locally convex, and therefore convex by Tletze's theo­
rem. For, let X E Zj. Since x there exists a convex 
neighborhood U of x devlod of points of H, and If and
(Zn|, n = 1 ,2,..., are sequences In UAZj converging to x 
such that then since y^z^C ?, we have for
otherwise points of y^z^ belong to different components of 
FAS. Then z Is an Inc point of 8 proving that xCH, a 
contradiction. Thus, Zj Is convex for each j.

It Is an obvious (easily proved) property of a compact 
convex subset of a half-space that Its complement relative 
to that half-space Is connected. Hence, for each j F\ Zj 
Is connected. Suppose It has been proved that
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P\ (Z2U Z 2U  "  * UZj ) is an open, connected subset of P. 
Consider P \  {ZqU Z2U  * * ' UZjU Zj+i), which will be shown 
to be connected (it is obviously open in P). There is a 
sufficiently small circular neighborhood V of 0 such that 

+ V is disjoint from Z^UZgU • • * UZj* Since 
(Zjy_2 + V)\ Zĵ ĝ  is open and connected (the proof is basic­
ally the argument for the connectedness of the boundary of 
a compact convex set), then (Z^^^ + V)\ Z^^^ is polygonally 
connected. Let x and y be any two points of 
P\(Z^UZ2U ' " U Z j ^ ^ ) C P \ ( ^ U  ZgU "'UZj). There is a 
polygonal arc P with consecutive vertices x = x^,x^,...,x^ = y 
in P \(2q^U Z2Ü  • • * VZj ) joining x and y. If P is disjoint 
from Zj^^ then P C P \ ( ^ U Z 2U  "* UZj+%) and we are done. 
Otherwise P cuts and without loss of generality (by
the convexity of Zj^^) may assume that PHZj+i = *1*1+1"
But and 3CJ.+16 bd Zj^^ so there exist points x^ and x̂ _̂  ̂
in PH((Zj^2 + V)\ aiid there is a polygonal arc in
(Zj^2 + V)\ Zj^2_ joining Xj and x^^^, say, with consecutive
vertices x* = y^.y^ y^ = Thus,
X = Xq,Xq^,... ,x^_2̂ ,y^,y^,. •. ,ŷ ,Xj|̂ 2̂* • * • “ y sre the
consecutive vertices of a polygonal arc P* in 
P\(Zj^U ZgU ' * joining x and y, so the latter is a 
connected open subset of P. This proves, by mathematical 
induction, that P \ O j s i  Z^ is connected. Since gCP/ÏG 
and G is a maximal connected subset of £^\s, G contains 
p \ Z j # denying the boundedness of G. Hence, S is 
simply connected. ^
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In the proof of 2.23 the situation arose where a cer­

tain convex set (the half-plane F) disjoint from Q met S.
It was then shown that any Inc point of a component of 
FOS Is an Inc point of S. The contradiction thereby est­
ablishes the local convexity of each component of Ff)Sf and 
since these components were closed and connected Tletze's 
theorem Implies they are convex. This situation Is of suf­
ficient generality and occurs frequently, so we cite a cor­
responding lemma, the obvious proof of which will be omitted.

2.24. LEMMA I If S Is any closed set In E*̂ , with Q the set 
of Inc points and C any closed convex set disjoint from Q, 
then any component of CHS Is convex.

At this point we also state the classical Caratheodory
2theorem for E , which will be used frequently.

2.25. LEMMAI If x £ conv S there exist points y,z, and w 
In S such that x Cconv(y,z,wj.

We prove a result which will be used later to extend 
any convex covering of S of the form S = Uj=i Cj, Cj convex, 
when (Ql < «• , to the case \qJ = ee . The proof uses the con­
cept of the Hausdorff limit and a theorem of C. Kuratowskl 
Q13Q (Theorem VIII, p. 246) which states that any sequence 
of subsets of a second countable topological space contains 
a topologically convergent subsequence. From the defini­
tion of the Hausdorff limit. It follows that If the sequ­
ence consists of convex sets, then the set to which the 
sequence converges is convex. We have then, the following
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lemma, phrased In the context In which it will be used.

2.26. LEMMAI Each subsequence of convex sets in 
contains a subsequence which converges to a closed convex 
set.

If X. ,x. ,...,x. ,... represents a subsequence Y of ^1 ^2 n
Xi,X2, . w e  write Y = fXj » where I* =
%Al'^2 '"'^n ''"Ï itself will denote the set of posi­
tive integers).

2.27. LEMMA (KAY)» If S = d (U  i t I ^i) for each ifel 
is the union of m convex sets and then S is

the union of m convex sets.
Proof, Let 8  ̂= Oj-i ^ij* where is convex for

each i £uid j. Apply 2,26 to i£I*|, There exists a
convex set (perhaps empty) and a subsequence if Î i
such that 11m = Cl* Consider fSĵ i iC Î } and the corres­
ponding {Ci2* i C I^}. Apply 2.26 once again to {Cĵ 2‘ ^( 1̂^» 
There exists a subsequence ^C^2* 1 £ I2I’ ^2^^1 ^ con­
vex set C2 such that lim Cĵ 2 = ^2* Assume that and I^
have been defined and apply 2.26 to : 1 f There
exists a convex set Ĉ ŷ.̂  and a subsequence It+iCljc such
that lim Cĵ ,k+1 “ Îc+l* Hence 0^,02»••• tCm and Iĵ may be

^^^k+1 * f ?defined. Since iS^i iC If is a nondecreasing family, it is
clear that S = cl(Ui*T S,); also lim C,, = C. for eachm icijj ^  ^
j £ m. We claim that 8 = ^j^i Cj. Let x f Uj«i Cj. Hence, 
for some j, x( Cj. There exists a sequence {ŷ î kflj^^ of
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elements of Cj^jCSij converging to x. Hence x is a limit 
point of S» and since S is closed, x f 8. On the other hand, 
if x€S there exists a such that x is contained in infin­
itely many i C Im» Therefore x£lim = Cj^, which
implies that x ( Uj5i ^

Â similar proposition may he established for a noninc­
reasing sequence i f l\ (Sĵ  ̂ j the set S =
OijI cl 3^ is the union of m convex sets if each is so 
expressible.

We continue the study of the structure of closed m-convex 
sets in in a sequence of results. The hypothesis that 8 
is compact, connected and conv QCS (again we write H = 
conv Q) will be carried throughout.

2.28. LEMMA; Each component W of 8 \ H  has at least one 
member of Q in its closure.

Proof. Certainly there exists x £ cl W Hlxi H (by con­
nectedness of 8). If xC Q, we are finished. Otherwise, 
since H is closed (8 is compact, so Q and thus conv Q is 
compact), X E H. Sy 2.25 there exist points q^,q2t and q^ 
in Q such that x €conv{q]^,q2,q^}. Since x ̂  int H,
X f bd conv{q^,q2,q>j| and hence, % £ * say. Consider
the maximal subsegment ^1^2 ^1^2 containing x and belong­
ing to cl W. Again we are finished unless X]̂ X2C  (Qiq2)\ Q" 
Hence, in that case, a disk D centered at x^ exists such 
that D H S  is convex, and if D/^q^q^ = then
conv^y^,yg,y^^CDnses, so it follows that x^X2Uyiy2 C

‘•m



53
qiqgfl®! W, denying the mstsimal property of a sub­
set of < 1 1 ^ 2 ^ Hence, ~ *̂ 1̂ 2 that
qg belong to cl W. ^

2.29. LEMMA I If H is two-dimensional, each component W of 
S \ H  contains at most two elements of Q in its closure.

Proof. We borrow a consequence of the Jordan closed 
2curve theorem for E j If A-ĵ ,A2» and A^ are arcs having 

only endpoints x and y in common, then for some i = 1,2, 
or 3 the open arc Aj^\^x,y^ lies in the interior of the 
simple closed curve formed by Â ^̂  ̂ -̂ i+2 (cyclic index­
ing understood). Suppose q^,q^, and q^ are points of Q in 
cl W. Since it is obvious that cl W contains exactly one 
point in Q if W is one-dimensional, we may assume W is two - 
dimensional. It then follows that cl W = cl int Wf since 
cl W is polygonally connected it can be easily proved that 
int W is also polygonally connected. Hence, since 8 is 
locally starshaped, there exist points x^,X2» and x^ in 
int W such that for i = 1,2,3» x^q^^g S, with the x^ chosen 
sufficiently close to make Xiqi»Ï2^2* ^3^3 pairwise 
disjoint. It follows that points q^ exist in Q such that

i = 1,2,3» and hence Qcj^qpCint W (we are using 
here the local convexity of W); for convenience, we drop 
the primes. Since int W is connected there are polygonal 
arcs P^Cint W suid P2 Cint W joining the respective pairs 
(x^.z^) and (x^.x^), such that P^\ ̂ x^^ and Pg\ (x^^ are 
disjoint from each other and from q^x^, i = 1,2,3* But H
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Is two-dimensional, compact, and convex, so bd H Is a simple 
closed cuirwe and ^3 separate bd H Into three arcs

and B^, with qĵ  and q̂ ^̂  ̂the endpoints of 
1 = 1 ,2,3. Choose y é Bj distinct from q̂  ̂and qg, separat­
ing Bj Into two subarcs B^^ and B^g» with q^g B^^, 1 = 1,2. 
By convexity of H, yq^CH. Hence, the arcs =

(q̂ X̂ĵ  ) ̂ Pg, Ag — B^g^ (qgXg)^ P-ĵ, and A^ = yq^O^^^^ 
have only the endpoints x^ and y In common. Denoting the 
Interior region determined by the simple closed curve C by 
1(C), the above-mentioned consequence of the Jordan curve 
theorem Implies that for some 1,

^ l \  1 ^ 3 A 1+ 2) •
But q^ f A^\ (z^,y} and by the simple connectedness of S,
^(^^l+lU^l+2)^ ^^^t Is, q^g Int S, which Is Impos­
sible, thus establishing the desired result.^

That the above proof necessarily breaks down If H Is not 
two-dimensional Is easily shown by examples, such as that 
Illustrated In the figure below (S Is a 6-convex set with 
HCS, but W Is a component of s\ H with all of £ In Its 
closure):

s

Figure 2.5
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2.30. LEMMA: If H Is two-dimensional, then the closure
of each component W of s \ H  has at most two Inc points.

Proof. Let z e d  W, and suppose x f Q. Since Q Is closed 
there exists a convex neighborhood U of x disjoint from Q, 
and by 2.24 any component of UOS is convex. Thus U O d  W 
Is locally convex at z. It follows that If z Is an Inc 
point of cl W then x€Q. Hence, by 2.29 cl W has at most 
two Inc points. ^

In the preceding lemma we find that, unless cl W Is 
convex, S* = cl W Is a set similar to S In that It Is a 
closed, m-convex subset of with H*, the convex hull of 
the set of Inc points of S', a subset of S'. But In this 
case, H* Is a subset of a line. We then turn our atten­
tion to the case when the set H associated with S Is a sub­
set of a line, since In that case the problem of covering S 
by finitely many convex sets can be completely solved.

First, we shall need several concepts Involving two-
2dimensional compact, convex subsets of E . If C Is such a 

set, bd C 4s a simple closed curve (homeomorphlc to a circle) 
and, as such, permits a cyclic ordering of its points.
With Xq any point of bd C, this ordering induces a linear 
ordering > on any arc on bd C containing x^ as an interior 
point. Thus, if A is such an arc, we may consider the two 
subarcs

= 1% CA: X > Xq], iÇ  = {x£Aj X < Xq].
For each xE A, define R(x,x.) as the ray consisting of the set

{(1 - A.)x + IXq I 1 > 0, 1 real].
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As X tends to from one side It Is well known that R(x ,Iq )
assumes a limiting position, which we can denote by
11m R(x,Xg) (this Is also a topological limit). Thus, the
one-sided support rays of G at x^,

EÎ = 11m R(x,Xo), X , 
and -̂*̂ 0 y

R = 11m R(x,x_), x €A“ , 
o X-*Xq o +

each exist. Note that the lines containing R and R_
^o

are ordinary lines of support of C at x^. Define further
the open half-planes G_ and G? determined by the support

+ ® °lines containing R_ and R% , respectively, and not contain-
2 ° +  °Ing C (thus, CCE \G ).o

The following result will be used quite frequently 
from this point on.

2.31. LEMMA: If C Is a two-dimensional convex subset of
the plane and an arc ACbd 0 which contains a point x^ bd C
In Its Interior Is ordered by <, the open half-planes G^

. o
and g“ determined by the one-sided support rays and 

o o
R% not containing C have the property that given compact

o _ +
subsets G~ and there exist points A, 1 = 1,2,
such that x^ < Xq < Xg and for any point u€ uXj^HC = txj.} •

Proof. It Is only necessary to prove the desired pro­
perty for (see Figure 2.6). For each x C A  define the open
half-plane F^ determined by R(x,x^) not containing bd C\A, 
and let F^ denote the open half-plane whose edge Is a sup­
port line of C parallel to the edge of F^, with F^CF^. 
Elementary properties of convex sets enable one to prove
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the topological limit

lim = lim PI = cl O" , x CAI .
x-«o G ONow we show that for some x < M^C P̂ . Pirst, for any

y g suppose some sequence {x^^ of points on bd C, with
xi < Zg < • • • < x% and converging to x^ exists such
that y i p * .  Let U be a circular neighborhood of y ofr
radius r > 0 such that UCG% (since G% is open ando o
M. CG? ), Since y glim Pi there is an n„ such that for X *o ®
n > no U meets P* ; since y ip* there is a circular neigh-* n
borhood V^C U with center of radius r/2 deviod of points
of P‘ . We may assume without loss of generality that
lim Zjj = z € Ü, with V the circular neighborhood about z of
radius r/2, and that for all n sufficiently large, V
contains a fixed circular neighborhood V* of radius r/3.
But V'CUCG^ so for all n sufficiently large P* meets V*0 n
and hence V^, a contradiction. Thus, given yC there is
an X < Xq such that yC Pÿ for x < u < x^. Suppose M^^ÿP^
for all X < Xg. Then we may choose a sequence x^-^x^ such
that Xi < Xg < • • • < x^ < " * ', and y^ £ such that y^ ̂  P^^»
By compactness of we may assume 7^^ y € * But y f P^
for all sufficiently large n as was proved, and if UCP* isn
a neighborhood of y then some y £ U or y £ P' t a contra-n " n
diction. Hence, for some x < x^, P^« If L^ is the edge
of P^ it is a support line of G and meets C in some point 
p < Xq.. If p ^ Xq, then set x^ = P < x^i if p = x^, then 
by definition of P̂ ., Lj.PH(x,Xq) and hence x£L^, and in this 
case set x^ = x < x^. In either case, since L^ is a line
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of support of C and. C, with smd C on opposite sides 
of L^, we have ux^AC = {xj for each u£M^.^

X < X

tation 
of/bd C

Figure 2.6 *"%
The figure below illustrates the fact that 2,31 does 

not follow if is merely closed.

R.So

circle tangent to

V ////////// / /////// ///
Figure 2.7
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2.32. PROPOSITIONi If S Is a compact, m-convex subset of
2E • with H = conv QCS and H is one-dimensional or consists 
of a single point, then S is the union of m - 1 convex sets.

Proof. Consider the components of s \L, where L is a 
line containing H. The m-convexity of S implies there are 
at most m - 1 of these on each side of L. If W is any such 
component, let denote a line parallel to L and at a dis­
tance t from it, P^ the closed half-plane determined by 
disjoint from L, and put = WOF^, Since for each t > 0 

is a component of S and P^ is disjoint from Q, by 
2.24 is convex and hence, W is convex. Thus, at this 
point it has been proved that S is the union of 2(m - 1) + 1 = 
2m - 1 or fewer convex sets. To finish the proof we shall 
use induction on m.

Two simple cases must be ruled out firsts When one or 
more of the components of s \ H  (1) are one-dimensional, or
(2) contain only one point of L in their closure. For (1), 
suppose W is a one-dimensional component of s\L, and let 
L' be the line containing W, with W' the component of SAL* 
containing W, Then W* is convex and it is clear that 
cl(s\w') is (m - 1)-convex. Hence, by the induction 
hypothesis cl(S\W*)VJW* * S is the union of (m - 2) + 1 * 
m - 1 convex sets. For (2), suppose W is a component of 
S \ L  such that cl Wf\L = ̂ x^. gy (1) we may assume that W 
is two-dimensional. Since W is convex, int W 0 and there 
exists a circular disk UCW. Let x^^Xg# « » » be any k > 2 
points of (S\W)\l. Since there are only finitely many
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lines passing through x and the points there Is
obviously a point U not on any of these lines. Hence, 
for each 1 » l,...,k, x^z^x^. If x̂  ̂lies on the same side 
of L as Xq' then x^Xj^CS Implies x^6 W (since x^Xj^O L * 
and W Is a component of S\L containing x^), a contradiction. 
If lies on the opposite side of L as x^ then x^x^ meets 
L In a point j ^ x and If x^x^^C S It follows that (yx^CW 
or y E cl W, a contradiction of cl W H L  = ̂ xj. Finally, if 
for some 1 and j, 1 < 1 < j < k, x^x^CS but x^^Xj^ 8\ W 
then there exists a zCZj^x^O^ and hence, by similar reason­
ing either Xĵ z or x^z belongs to W, a contradiction. Thus, 
If ... ,x̂  ̂are visually independent via s\W then they
are visually independent via S. By m-convexity of S, and 
since XqZ ĵ ^S for all i, k < m - 2 and hence any m - 1 
points of s \ w \ l are visually dependent via s\w. But 
cl (8 \W) \ L = 8 \ W, since it may be assumed that nO compo­
nent of S \ H  lies on L (by (1) above). Therefore, s\w is 
a closed, (m - 1)-convex set and by the induction hypo­
thesis, (8 \W)UW * S Is the union of (m - 2) + l » m - l  
convex sets.

Thus, it may be assumed that each component cl W of S\ L 
is a compact two-dimensional convex set which meets L In a 
nontrivial segment xy. We may then designate the components 
W and the corresponding segments in the order in which they 
occur on L by

^2 # * ̂2 ' ̂2^2 * ' * " * » 
where W^,...,W^ are those components on one side of L, with
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Wj^HL = x^y^, and

W{,x|y{|Wj,xJyJ W* ,x*y*,
where W£,...,W^ are those components on the other side of L 
and W^ni» = x^y^. Thus, if < denotes the natural ordering 
on L, we may assume that < 7% < ^2 ^2 — ' "  — *r ^ ^r
emd <•• • < < 7g» But for notation we
have y^ < y^, and either (1) y^ < Xj[, or (2) y^ > x£.
Figure 2.8 illustrates the various cases in the following 
argument.
Case 1 : (ŷ  < x^) Let < induce an orientation on bd(cl W^)
and let A be any arc on bd(cl W^) containing x̂ ŷ  ̂in its
Interior. As previously defined, let be the one-sided

1ray at y, and G = G the open half-plane determined by H 
and not containing cl W,. If L ’ is the line containing R

^1consider z^,Z2,...,z^_i any m - 1 points in S \cl L*, 
where z^,Zg,... » lie in G and Zĵ ^̂ ,...,z^^^ lie in the 
opposite open half-plane G* of G. Applying 2.31» with M =
(z^tZg Zjj.}, there is a point z^€bd(cl Wj^)Col such
that Zq > y^ and z^z^Hcl = tz^t for 1 = l,2,.,.,k. It 
follows that z^^Lt thus z^z^^8, for otherwise, z^z^ meets 
L in a point * ̂  ̂ i^i with z^wCcl W^, a contradiction. For 
i = k + l , . . . , m - l ,  we note that ẑ  must either belong to 
a component different from or a component W^. In the 
former case or else z^€ cl Ŵ , and In the latter,
ZgZ^ meets L at a point w < y^. But wex^y^ and hence 
for some v, a contradiction that x^ > x^ — ̂ l* Hence, z^ 
cannot see z^ via S, i >0, and hence, for some
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8 by the m-convexlty of S. It 

remains to show that Zj^z^CoKs\cl But if z^Zj^
cl(s\ol W^) then there is some point z g not in 
cl(s\cl W^)i hence, z ̂ s\cl so z€cl W^. It follows 
that z ^ y^ for y^£ cl(s\cl W^), One of the points z^ or 
Z y  say ẑ , must belong to G* and, since z^ cannot belong 
to any component W^, ẑ ẑ meets x̂ ŷ  ̂at a point w < y^, 
producing a contradiction similar to one observed previous­
ly. Hence, z^^ZjC cl(s\ cl W^) and it follows that 
cl(8 \cl W^\ L' ) = cl(8 \cl W^) is (m - l)-convex. By the 
induction hypothesis 8 = cl(8 \ cl ) V  cl is the union 
of (m-2) + 1 = m - 1 convex sets.
Case 21 (ŷ  > x^) Again define the line L* containing 
and the open half-planes G and G* determined by L*. Con­
sider the closed, connected set C = cl cl(W£|\G* ). If 
C has no Inc points then C is convex by Tletze's theorem, 
and an argument similar to that given in the preceding case 
shows that cl(8\ C ) is (m - l)-convex. Thus, 8 = cl(8\ C )U C  
is the union of (m-2) + 1 = m - 1 convex sets. Otherwise,
C has an Inc point q, and it is clear that q = x^ or q = x^
which implies q < y^ emd q£ Q. Let ẑ ,̂ Zg» •.. »Zjjj.2 ^  any 
m - 2  points of 8 \cl cl W£\L. Then no z^ can see q
via 8 since, otherwise, z^£W^ or z^f Hence, since 8 is
closed, there exists a neighborhood U of q such that no 
point of U can see any z^ via 8» if Zĝ _̂_ and z^ are points 
of Ü such that z^^^z^^S then by m-convexity there is an i, j 
with l < i < J < m - 2  and z^^z^cS, and it is obvious again
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(C convex)
Case 1. y2. -

g \ G
(C not convex) 

Case 2. > x^
Figure 2.8

that z^Zj cannot meet cl W^^Ucl W^. Thus, 
cl (S \ cl W^\ cl W f \ D  = cl (S \ cl W^\cl W£) is (m - 2)- 
convex. By the induction hypothesis S = 
cl (S \ cl W^\cl W^)VJcl W^Ucl is the union of (m - 3) +
1 + 1 = m - 1 convex sets, completing the proof.^

We note that the above proposition applies to any closed 
m-convex set S having only one or two Inc points, thus pro­
viding the same result that appears in ^1(^. (The proof of 
this result given in differs considerably from the one
presented here.) In particular, it also shows that the 
closure of any nonconvex component W of s \H, where H is two- 
dimensional, is the union of either two or three convex sets 
(by 2.30 and certain observations). It is clear that, in 
our handling of the problem of proving that a closed m-convex 
set S is the union of finitely many convex sets when HCS and 
H is two-dimensional, we need to distinguish between the two



64
cases I (1) The closure of some component of s \ H  Is not 
convex, or (2) the closures of all components of s \ H  are 
convex. We turn our attention to the first of these cases.

Suppose the component W of S \ H  is such that ol W is 
not convex. Then by 2,30» ol W has at most two Inc points 

and q2» and by the proof of that lemma, and q^ belong
to Q. Thus, cl W has either one Inc point q^ or two dis­
tinct Inc points q^ and qg belonging to QCH. In either case 
there is a line L through q^ such that w \ l has a com­
ponent W£ on one side of L and precisely two components 
and Wg on the other side, with W£ and H on the opposite 
side of L (see Figure 2.9), (We may take L to be the line 
determined by q^ and q^ in the latter case, and in the for­
mer, if X fcl W and y f cl W such that xy^cl W and q^^xy, 
choose L any line through q^ not passing through x or y.)

(cl W has one 
Inc point) Figure 2,9

(cl W has two 
Inc points)
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As In the proof of the preceding theorem, ol cl Wg, and
cl are each convex sets, and since cl W is necessarily 
two-dimensional then cl is two-dimensional, and since 
W \ is connected cl must meet L in some point x^ q^; 
if < orders the points on L, we may assume x^ < q^. Taking 
A any arc on bd(cl W^) containing x̂ q̂̂  in its interior we 
may define as before and let L* be the line containing
R*̂  . We note that since H and Wm lie on the same side of
^1 ^L, H and lie on opposite sides of L' (otherwise, it
could be shown that W is not maximal as a connected subset 
of s \H). Thus, it follows that any point x > q^ in A C  
bd(cl W^) is in bd S. Now it follows, just as in a pre­
vious argument, that if G and G' are the two open half­
planes determined by L* with W^Col G', then cl WO cl G* = C 
is convex and cl(S\C) is (m - 1)-convex. Thus, our pro­
blem would be solved by the Inductive hypothesis in this case,
since S = cl(S\C)UG.

Collecting a number of situations in which S can be 
decomposed into a convex set and em (m - 1)-convex set (by 
use of previous arguments) we have

2,33, PROPOSITION: If S is any compact m-convex subset of
2£ such that HCS and H is two-dimensional, then S is the 

union of a convex set and a compact (m - 1)-convex set pro­
vided there exists a component W of S \ H such that either

(a) W is one-dimensional,
(b) cl W is convex and contains only one point of H, or
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(c) cl W Is not convex.
Thus, we turn to case (2) mentioned above and to the

cases not covered by 2.32 and 2.33. That is, we assume that
for a compact, m-convex set S, H is two-dimensional and the 
closure of each component of s\ H is a two-dimensional convex 
set, meeting H in at least two distinct points. Thus, if W
is a component of S \ H  and cl Wf^H = xy it is clear that x
and y are points in Q. (However, it is not true that if 
Wi,W2,...,Wi,... are the components of S \ H then all points 
of Q belong to Ui-i ol W^. A counterexample is provided by 
the infinite-sided polygon and interior S illustrated in 
the figure below, which is 3-convex since it is the union of 2 
convex sets, has the properties being discussed, but the 
point q C Q  shown does not belong to cl for any i.)

W '

Figure 2.10
But owing to 2.27 if we consider the sets = HOW^,
Sg ~ H V J W g , . . . , =  H U ( j^2 then S = it
suffices to consider each set If » conv where
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Is the set of Inc points of S^, then there are only fini­

tely many Inc points, and only finitely many components in 
Si\ is obviously m-convex, so this means we have
only to consider sets having finitely many Inc points.

It is clear that any result giving a bound to the number 
of convex sets decomposing a compact m-convex set can also 
be obtained for closed sets by applying 2.27. Thus, to solve 
the finite convex covering problem for closed m-convex sets
in with H = conv QCS, it suffices to consider sets S
having the following properties (in addition to HCS)»

(1) S is compact.
(2) Q is finite and there are finitely many components

W^,Wg of S\H.
(3) H is two-dimensional.
(4) Each set cl is convex and two-dimensional.
(5) For each i, cl H = where q̂  ̂and qjj are 

distinct Inc points.
For convenience, such sets will be referred to as type W* (W-star).

2.34. REMARKt It was proved in [lO^ that if such a set has 
n Inc points then it is the union of n + 1 or fewer convex 
sets. However, this result is not relevant to the present 
situation as the example of the infinite-sided polygon and 
interior given before emphatically shows.

The next two results will enable us to meOce other 
assumptions later.

2.35. LEMMA: If S is a compact m-convex set with HCS, then
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for any x£S, Is also m-convex.

Proof. Since S is simply-connected., if y^g 8^ and 
yggS^ with y^ygCS, then yixU^cygUyiyaC S Implies 
convex,y^.ygtC 8. Hence, for ug ŷ ŷg, xuc S and n g Ŝ . 
Therefore, yiy2<Z&%. If y^»y2* • • • ty^ be any m points of 3^, 
then by the m-convexity of 8 y^yj C 8 for some l < i < J < m .  
Thus, by the preceding argument, Y^yjC 8^ and it follows that 
8 is m-convex. The fact that 8 is compact is a conse­
quence compactness of 8.^

2.36. LEMMA: If 8 is any closed m-convex set the anti-star
8* is (m - 1)-convex relative to 8 for any xCS. If x = qEQ,
then 8^ is (m - 2)-convex relative to S.

Proof. Since 8^ is the set of all points of 8 which do 
not see x via 8, then obviously, the m-convexity of 8 implies 
that any m - 1 points of s* must be visually dependent via
8. If X = qc Q» suppose yi,...,y% are any k points of 8*
which are visually independent via 8. There is a neighbor­
hood U such that if u€ U, uy^^^ 8 for all i (since 8 is 
closed). In particular, there exist points y^^^ and yjj+2
in U such that yj£+iyic+2 y]_.... ^k+2 k + 2
visually independent points. Hy m-convexity, k + 2 < m - 1 
and k < m - 3» Hence, 8^ is (m - 2)-convex, relative to 8. ^ 

It is not known whether eui m-convex set of type W* for 
values of m > 5 Is the union of even a finite number of 
convex sets. The following result "localizes" the problem;
Q* will denote the set of limit points of Inc points. Note 
that Q*C Q.
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2.37. PROPOSITION t A necessary and sufficient condition

2for a compact m-convex set S in E to be the union of fini­
tely many closed convex sets is that for each qC Q* OK there 
is a neighborhood N of q such that cl N is the union of 
finitely many closed convex sets.

Proof. The necessity is obvious. For the sufficiency, 
we apply induction on m. The theorem is obvious if m = 2.
Each member q* of Q*AK by hypothesis has a neighborhood N(q') 
such that cl N(q') is the union of finitely many closed con­
vex sets. For q£ (QAK)\Q*, since q is not a limit point 
of Q there exists a convex neighborhood N(q) devoid of points 
of Q\£q). Then cl N(q) is a compact m-convex set in E 
having only one Inc point, namely q, and thus by 2.32, N(q) 
is the union of m - 1 closed convex sets. For q£Q\K, there 
is a point x(q) and a convex neighborhood N(q) which
cannot see x(q). Then N(q) is (m - l)-convex, so by the 
induction hypothesis cl N(q) is the union of finitely many 
closed convex sets. Finally, for xç S\Q, by definition 
of local convexity, there exists a convex neighborhood 
N(x)cS. Thus, for each xes, N(x) is a neighborhood of 
X whose closure is a finite union of closed convex sets.
Since 8 is compact, there is a finite subcover N(x^),...,N(x^) 
of S, which proves that S itself is the union of finitely 
many closed, convex sets.



CHAPTER III 

4-CONVEXITY

It will be established that a closed, simply-connected
24-convex subset of E is the union of 9 or fever convex sets.

It is not known whether the bound on the number of convex 
sets is best; it is highly probable that it is not. However, 
up to this time even this bound had not been established, 
in spite of attempts by several authors to do so. Guay's 
thesis includes results concerning convex coverings for a 
4-convex set S when S has a cut point, IQOK) = 2, |Q) = 1,
|q \K| < 1, S is one-dimensional at some point not in Q, or 
K is one-dimensional. (As before, K denotes the kernel of 8,
Q stands for the set of Inc points of S, and H = conv Q.)
In the cases where H % % = 2 or = 1, Guay proved that 8 
may be expressed as the union of three or fewer closed con­
vex sets, and in the remaining cases, S is the union of four
or fewer closed convex sets. Guay's main result was that a

2closed 4-convex set in £ which is not simply-connected is 
the union of five or fewer convex sets. (This result is 
best possible as illustrated in Figure 3.1; the set S in­
dicated there is compact, 4-convex and not simply-connected, 
but it is not the union of any four convex sets.) Establishing a

70



71
best bound for the remaining case, when S is simply con­
nected, would complete the finite convex covering problem

2for closed, connected, 4-convex subsets of E •

Figure 3.1
The following preliminary result reverses a previous 

one, namely 2.23, in the case of 4-convexity.

3.1. LEMMA* For a closed, connected 4-convex subset S of
2E , HC S is equivalent to the simple-connectedness of S.

2Proof. For compact, connected sets in E 2.23 implies 
the result that S is simply-connected if HCS, and this is 
clearly enough to establish that result for closed, con­
nected sets. Conversly, suppose S is simply-connected, and 
let X g H. By 2.25» there exist q^,qg,q^ in Q such that 
X econv^q^.qg.q^"^. Now if S there exist neighborhoods

and Ü2 of q^ and q^ such that for Uĵ g U^, i =1,2, 
UiU2^S. But q^ and q^ are Inc points of S, so there exist 
points Uĵ  and v^ in Uĵ such that Uĵ Vĵ jts, i = 1,2, auid hence 
Ju^,Vi,U2»V2] is a set of four visually independent points 
in S, denying 4-convexity. Hence, q^q^C 8, and in the same 
manner, ^2*3^^ ^1^3^^' Ey simple-connectedness.
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convfq^.q^.q^lC S and z€ S. Therefore, HCS. 0

Thus, Is S Is a closed, simply-connected, 4-convez
2subset of E , HCS; hence inside every disk S is a compact, 

simply-connected 4-convez set. 2.27 we meqr then restrict 
our attention to compact, simply-connected ^-convex sets.
All results on m-convezity established in the preceding 
chapter, therefore, apply here. As pointed out there, 
the problem has been reduced to the consideration of sets 
of type W* since Valentine's theorem may be applied to
the 3-convezity arising from the use of 2.33.

If S is of type W*, suppose are the closures of
the components of 8\H. Orient the boundary of H
counterclockwise, thereby inducing a clockwise orientation 
of each bd Wĵ , i * l,...,n (see figure below). Let A be
any arc on bd containing in its Interior the two Inc
points of S in cl Wĵ , and label those Inc points q̂  ̂and q^,
with For convenience, we introduce the further

i

= cl(S\.Bj^\B') 
Figure 3.21

cl

î



73
notation

^1 = \  » = fiq' •
^1 = Gq^ns, B* = cl G+,nS, = cl(S\B^\ BJ).

Essentially from 2.31 it follows that the sets B̂  ̂and Bĵ 
are compact 3-convei subsets of S. Also, the set 
WiU(CiOH) is convex, owing to its local convexity. For 
each i we let and p^ be the endpoints of the segments

and R^O H different from and q* respectively. The 
following property of the components is a key result to
be used later.

3.2. LEMMA I The set is convex relative to S iff
qiîJCOj and V J C C ^ .

Proof. If then there exists a point zgq^qj^\
which implies x ( B. or xÇB*. By 2.31 there exists a pointÜ J
y C bd WjCWj such that xy^S. Hence, is not convex
relative to S.

Conversely, assume and q^q'CC^. Since there
is nothing to prove otherwise, assume x£Wj^ and y£Wj.
Since then qj^q][CCjnH, and since W^U (GjH H) is
convex, for each u£q^q^, uyc W^U (C^O H)C S (see Figure 3.3). 
Since uCWj^ and is convex, xuCWj^CS. Hence xuUuyCS. 
Choose u c q̂ q̂* such that xuUuyCS and e(x,u) + e(u,y) is 
minimal, where e denotes the euclidean metric. Since u^Wj, 
uy cuts bd Wj at a point v. If v^q^q* then v^H, and hence 
there is a neighborhood U of v devoid of points of H. Then 
uvCS implies there is a point on (uv) in another component
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Wz

Figure 3.3
of S \H, which is impossible. Hence v£ qjqjCC^nH and 
vxC (C^n H) CS. By the same reasoning as before there 
is a point wCvxOqj^q^. Moreover, xwU wy C (C^O H)C S.
But

e(x,w) + e(w,y) < e(x,w) + e(w,v) + e(v,y)
= e(x,v) + e(v,y)
< e(x,u) + e(u,v) + e(v,y)
= e(x,u) + e(u,y).

By the definition of u as a point on q q', equallity prevailsX 1
throughout, and e(x,u) + e(u,v) = e(x,v). Thus u€ xv and 
V g uy, or x,u,v, and y are collinear. Hence xy =
XU Uuvuvy C  HUWjC S, so is relatively convex.^

We shall now consider a situation which will occur repeat­
edly throughout the remaining discussion. Suppose x^ is a 
point on bd H and that x^ lies in the kernel of S. As before,
the removal of x from bd H results in a set which can beo
linearly ordered by <, with x^ as the least element. Using 
this ordering to produce the notation introduced earlier, we 
have x^ E for all i, and if x^^q^q^, p̂  ̂< q̂  ̂< q* < p[
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(see Figure 3.4), and it may be assumed that the sets 
have been so labeled that < q^ whenever 1 < j. Moreover,

Figure 3*4
(int ntxi H consists of those points x on bd H such that

< X < q^, and similarly for int (here, the interior 
is taken relative to S). Thus, we have

(int Bj^)nixi H = ̂ x € bd Hj < x < q̂ |̂ , and
(int B')ntd H = {x£ bd H» qĵ  < x < p*].

It is easy to verify the further relation
Q̂ CiTod H = {x€ bd H« q̂  ̂< x < q^, x < p^, or x > p*J.

Now consider any two sets and W^, for i < j. Then
< q* < q^ < q* (see Figure 3.5). Suppose xcq^q.*, and 

therefore xCbd H and q^ < x < q*. It follows that q* <
implies X < p or xgC.. Conversely, if x^ C. then x > pJ J J 3
and therefore p < q*, Thus q.qîCC. iff q* < P.. In a

3 1  1 1 J 1 3
similar fashion it can be proved that q^q'C^j^ iff P^ —
In view of 3,2 this gives us

3.3. LEMMA: If x^E bd H is a point in the kernel of S and
< is the linear order on bd H determined by x^, with the 
points q̂  ̂ordered accordingly, then for any two integers
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1 < j such that Xq JÉ can see Wj via S Iff both
q; < Pj and pj <

Figure 3.5
Another result which will be useful to us is the following1

3.4. LEMMA; If S is any closed, 4-conver subset of of 
type W*, iand and Wg are the closures of any two compo­
nents of s\H, let be either one of the sets or
and Bg either of Bg or B̂ , with ^  ,q^ and p^.q^ the corres­
ponding endpoints of i^f\bd H and Bgf\bd H, respectively.
If either

q £ int Bg
or __

q £ int B, , then _ 2
int B^n int BgO Q ■

Proof. Suppose q^ g int Bg and that q € int int B2H Q
(the proof for the case q^g int Bĵ is similar). Let ^  and
Bg denote the rays B^ or B-[ and Bg or Bg corresponding to
q and q , respectively. Since q_ g int Bg there exists a 1 2  1
convex neighborhood of q^ such that U^c int Bg, Since
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q is on the opposite side of as , 2.31 (with
C = %  and Mĵ = Çq}) implies the existance of a point
Xig such that x-ĵ q̂ S. Hence both x^ and q lie on
the opposite side of Rg as so again applying 2.31 
(with C = Wg and Mĵ = [x^,qj) there exists a point X2 g ̂ 2 

such that x^Xg^S and qXg^S. Because S is closed there 
exists a neighborhood V of q such that x^ and Xg cannot 
see V 6 V. Since q is an Inc point there exist points x^,x^ 
in V such that x^x^^S. But then {x^.x^iX^fX^j would be a 
set of four visually independent points of S, denying 4- 
convexity. Hence, we conclude that int B̂ Ĥ liit Q = 0. ^ 

life introduce one more concept which will be of use in 
the proof of the next theorem.

3.5. DEFINITION» If i£ l] is a family of clos­
ures of components of S \ H ,  then • t is called
a convex partition of ^  of order r iff the sets 
partition ^  (they are pairwise disjoint and their union 
is ) suid for each i the set ji'j is a relative­
ly convex subset of S.

It is clear that it is pertinent to our problem to find 
a convex partition of finite order for the family ^  of clo­
sures of components of S \ H ,  for if = convjw^ i

i = l,2,...,r it would follow that D.C 8,and since1-

S = HU ( U i l i  D i ) i  

S would be the union of r + 1 convex sets.
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23.6. THEOREM: If S Is a closed ^-convex set in E which

has at least one Inc point in the kernel of S, then S is 
the union of 8 or fewer convex sets.

Proof, py previous observations, we may assume that 
S is of type W*. hypothesis, S = for some point 
q g Q. Let < be the linear ordering on bd H induced by q, 
and, as before, assume that the Inc points occur in the order

q < ^1 < < qg < < ••• < C i  ^ V
with q = q %  Define inductively the integers n^,ng,... ,n^ 
as follows I Let n^ be the largest integer such that the 
family

1 < i < 2̂.]

has a convex partition [3]^, 3^^} of order 3. Let n^
be the largest integer such that the family

jf = 1 < 1 < " g i X K j
has a convex partition order 3. In
general, having defined n^,ng,...,n^, define as the
largest integer such that the family

has a convex p a r t i t i o n o r d e r  3.
Since there are only finitely many sets the process ends 
in a finite number of steps and we let n^ denote the last 
such integer.

vie shall prove first that for each n < n there exist 
integers r < s < t in the set n^\^n^,....n̂ ] such that 
cannot see or via S (that is, there is a point in

which cannot see via 8 some point in for i = r,s,t).
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Suppose on the contrary, that given such integers r,s, and 
t, can see at least one of , or W^, Choose the
three largest integers r < s < t in the set n^\{n^,...,n^]j 
then W_ can see W via S for either u = r, u = s, or u = t,

A U.

If W can see v/. , we may assume W. E and consider any^ j w V J
other set 3»^. Since can also see W^, then by 3*3 
q' < P^. P' < q̂ .. q! < p„ • and p• < q . Therefore,U V ll w w J J
q' < ql < P and p' < q. < q so that W can see W . That u t n j u t n j ^ n j
is, cEui see all the members of via S. If cannot

J J J
see W+. then we have the cases (1) W can see and (2) W„ t nj s n^
cannot see and therefore sees via S. In case (1),
assume Wg e y  At most one for u < s exists such that
Wy cannot see ,for if u < v and both and cannot
see then, since q * < q ' < q * < p  , we must have boths ^u V 8 - Uj
p* > q and p' > q so that u 8 V s

< P',

Which implies that q^g int int and q^£ int B^, con­
tradicting 3*4, Suppose 3*j* Then can see all oth­
er for V < s and hence, if W. W can see all theV w 3 zij
members of ̂  ̂  j if ^ then can see all the members
of In case (2), our basic assumption regarding
implies that since cannot see nor W^, it must see 
all for u < r. Suppose E J* ̂ . If both and are 
members of ̂  ̂ then can see all the members of j, and

j ^1if neither W_ nor W+. are members of J* . then W_ can see8 V J ^ j
all the members of If either Wgfjp ̂  or j' then
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2we may assume Wg (or W^) belongs to ^ ^  and hence can 

see all the members of In all cases, our assumption
V

has led us to the assertion that W_ can see all the mem-
bers of (1 = 1,2, or 3). But then It follows that
Î J  jU î'̂ n 1 » ^ convex partition of order 3
for 1* denying the maximal property of n^.

Therefore, given j there exist Integers r < s < t In
the set rijX^n^^,... such that cannot see Wj,, W^,
nor W^. The Implication Is now that g Int , For, If
q* < p then q' < q* < P and by 3,3» P* > q and s nj r s ” n^ r n^
p' > q . Therefore,

and ' < »;
< K  •

which Implies that q^€ Int (\lnt and q^f Int B^, deny­
ing 3.4. Therefore,

and hence, q^ £ Int .
Now It can be proved that for each j such that ^ n

W„ can see W„ . Assume otherwise, and that for some
J *j+3

n,.^ < n either ( D p *  > q„ , or (2) p* < q and, by 3+3 nj nj+2 *3+3

Case li p' > q . W e  consider the two subcases (1.1) 
^j+3,

P„j,3 ^ ^n,,3 < -lA,"
Case 1.1» p > q" . Let t n. (1 = l,...,n.._) be such

J^3 j that q. 6 Int B_ . Hence, t “rij+3

'"j ^ ' '"j '
and since q^ ^ q^^.
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< "Ay
Therefore, q*. £ int B1 n  int and q g int B1 , deny-

^ j *j+3 ”j+3 jing 3.4,
Case 1.2: p.. < ql . Here, we have

*̂ J+3 J
^^J+3 ^ ^ ^ ^̂ ĵ+3

Hence, q £ int A B^ and q £ int B‘ , deny- %j+2 j "j+3 *j+3
ing 3.4.
Case 2: p' < q„ and ql > p« . It follows that
  "j “j+3 J 3+3

> q2 , for if p < q' then *j+2 %j+2
p < < q^j+2 *j+2

P. 

and
^ **j+2 ^ **j+3' 

which implies q* gint B_ n  int Bl and q E int B ,
J+2 ^ j + 3  *j+2 *j+3

a contradiction. Hence p_ > q« > P« • Let t n,
*j+2 “  *j+3 ^

(i = l,...,j + 2) be such that q ^ £ int B_ . Then^ "j+2
p < p < q^ < q_ < q 
“3+3 ” 3+2 ^ 3 + 2  “ 3+3

and therefore elnt 1"* Bnj+j- "1*“ \ + ; '
Thus, the assumption that cannot see irfĵ via S

J j ̂ 3
has led in every case to a denial of 3*4. Therefore, we
conclude that W_ can see for each j such that n, < n.

*j+3 ^
It then follows that each of the sets : j = r(mod 3)»

3
n^ < n| for r = 0,1, and 2 (define = 0 for this purpose) 
is relatively convex in S. Since the convex hull of any 
relatively convex subset of 8 can easily be shown to lie 
in S by virtue of the simple-connectedness of S, define :

Di = H = conv((J^2)

Ü2 =  c o n v ( U } J )  = c o n v ( U j r 2 )
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= oonv((Jj_^ ), Hj < n Dy = oonv{\J^_^ W^^), n^ < n

Dg = oonv(yj^ ). nj < n Dq = ŵ .
O

It then follows that S = Oi=i ^
23.7. COROLLARYt Any closed ^-convex subset S of E Is the 

union of 9 or fewer convex sets.
Proof. It is obvious that we may assume that S is con­

nected; suppose first that S is simply-connected. If q€ Q 
consider and S . Then by 2.35 S' = 8 is a closed, simply- 
connected ^-convex subset of E with q 6 Q*A H', where Q* is 
the set of Inc points of S' and K' is the kernel. By 3.6,
Sq is the union of 8 convex sets, say D^,...,Dg. Ey 2.36,
S^ is relatively copvex, suid since S is simply-connected,
Dç = conv S^ is a convex subset of S. Then, S = VJi-i 
In the non-simply-connected case, Guay's result in that 
S is the union of 5 or fewer convex sets may be invoked. ^

We note in conclusion that our methods make short work 
of Valentine's theorem. For, if S is a closed 3-convex sub- 
set of E , It follows that Q C K  (since qx^S for q€ Q 
implies that x cannot see via S any point in some neigh­
borhood U of q, there are two points x^ and x^ in U such that 
XgX^^S by virtue of q being an Inc point, contradicting 
3-convexity). Hence, HCS and we may consider the closures 
of the components i f l] in S\H. By 2.33» if one of
the is not convex then S is the union of two convex sets. 
As before, we need therefore only consider the case when S 
is of type W*. Since QCK, we select qc Q at random and
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let < order the points of bd H, as before. The previous
results 3*3 and 3,4 still apply, so It may be easily
proved that for each 1, can see via S. For, If
either qj[ > p^+g then either
Pi+2 < 9i < 1l+l < 41+2 ”  ^ ^ *1+2 Pi
q^ g Int or q^^g g Int B*. But In either case It fol­
lows that an Inc point falls outside the kernel. Define 
r = [n/2^, where n = |Q|, auid put

°i = oonv(Ui=i «21.1 )
D* = 00tlT(tJ,f, W ,)

and, if n is odd,
= “n-

It follows that each D* Is a convex subset of S. Then let
V

Dj denote any maximal convex subset of S containing D^.
Since QCK, H = conv QCconv K = K. Recall that K Is the 
Intersection of all maximal convex subsets of Sj then KCD^ 
and therefore HCDj. Therefore, S = D1U D 2 ^ even
and S = D^UDgUD^ If n Is odd. That Is, 8 Is the union of 
3 convex sets (2 If n Is even), which Is the substance of 
Valentine's theorem • For, 2.27 extends this result to 
closed sets and to sets with ^q | = eo (where S Is the union 
of two convex sets), as In Valentine's theorem.
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